
Nominal Techniques
or, “The Real Thing”

Christian Urban (TU Munich)
http://isabelle.in.tum.de/nominal/

A Formalisation of a CK Machine:

_�!cbv _

CK_ + _

Eugene, 26. July 2008 – p. 1/49

http://isabelle.in.tum.de/nominal/

Nominal Techniques
or, “The Real Thing”

Christian Urban (TU Munich)
http://isabelle.in.tum.de/nominal/

A Formalisation of a CK Machine:

_�!cbv _

CK_ + _

Eugene, 26. July 2008 – p. 1/49

http://isabelle.in.tum.de/nominal/

Nominal Techniques
or, “The Real Thing”

Christian Urban (TU Munich)
http://isabelle.in.tum.de/nominal/

A Formalisation of a CK Machine:

_�!cbv _

CK_ + _

Eugene, 26. July 2008 – p. 1/49

http://isabelle.in.tum.de/nominal/

Lambda-Terms
We build on the theory Nominal (which in turn
builds on HOL). Nominal provides an infra-
structure to reason with binders.

atom_decl name

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

We allow more than one kind of atoms.
At the moment we only support single, but nested
binders (future: arbitrary binding structures).

Eugene, 26. July 2008 – p. 2/49

Lambda-Terms
We build on the theory Nominal (which in turn
builds on HOL). Nominal provides an infra-
structure to reason with binders.

atom_decl name

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

We allow more than one kind of atoms.
At the moment we only support single, but nested
binders (future: arbitrary binding structures).

Eugene, 26. July 2008 – p. 2/49

Contexts

Eugene, 26. July 2008 – p. 3/49

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"
j CLam "name" "ctx" ("CLam [_]._")

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"
j "(CLam [x].E)[[t]] = Lam [x].(E[[t]])"

lemma alpha_test:
shows "x6=y =) (CLam [x].�) 6= (CLam [y].�)"
and "(CLam [x].�)[[Var x]] = (CLam [y].�)[[Var y]]"

by (simp_all add: ctx.inject lam.inject alpha swap_simps fresh_atm)

Backtrack One Step
For our CK machines we actually do not need
contexts for lambdas.

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Eugene, 26. July 2008 – p. 4/49

Context Composition
fun ctx_compose :: "ctx) ctx) ctx" ("_ � _")
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

by (induct E1 rule: ctx.induct) (simp_all)

types ctxs = "ctx list"

fun ctx_composes :: "ctxs) ctx" ("_#")
where

"[]# = �"
j "(E#Es)# = (Es#) � E"

Eugene, 26. July 2008 – p. 5/49

Context Composition
fun ctx_compose :: "ctx) ctx) ctx" ("_ � _")
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

by (induct E1 rule: ctx.induct) (simp_all)

types ctxs = "ctx list"

fun ctx_composes :: "ctxs) ctx" ("_#")
where

"[]# = �"
j "(E#Es)# = (Es#) � E"

Eugene, 26. July 2008 – p. 5/49

Subgoals
1. � � E2[[t]] = �[[E2[[t]]]]
2.
V
ctx lam. ctx � E2[[t]] = ctx[[E2[[t]]]] =) CAppL ctx lam � E2[[t]] = CAppL ctx

lam[[E2[[t]]]]
3.
V
lam ctx. ctx � E2[[t]] = ctx[[E2[[t]]]] =) CAppR lam ctx � E2[[t]] = CAppR lam

ctx[[E2[[t]]]]

Context Composition
fun ctx_compose :: "ctx) ctx) ctx" ("_ � _")
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

by (induct E1 rule: ctx.induct) (simp_all)

types ctxs = "ctx list"

fun ctx_composes :: "ctxs) ctx" ("_#")
where

"[]# = �"
j "(E#Es)# = (Es#) � E"

Eugene, 26. July 2008 – p. 5/49

Definition of Types
nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")

types ty_ctx = "(name�ty) list"

abbreviation
"sub_ty_ctx" :: "ty_ctx) ty_ctx) bool" ("_� _")

where
"� 1 � � 2 � 8 x. x 2 set � 1 �! x 2 set � 2"

Eugene, 26. July 2008 – p. 6/49

Definition of Types
nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")

types ty_ctx = "(name�ty) list"

abbreviation
"sub_ty_ctx" :: "ty_ctx) ty_ctx) bool" ("_� _")

where
"� 1 � � 2 � 8 x. x 2 set � 1 �! x 2 set � 2"

We can overload�, but this might mean we have
to give explicit type-annotations so that Isabelle
can figure out what is meant.

Eugene, 26. July 2008 – p. 6/49

Typing Judgements
inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#�]]=) valid ((x,T)#�)"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

Eugene, 26. July 2008 – p. 7/49

Typing Judgements
inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#�]]=) valid ((x,T)#�)"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

Eugene, 26. July 2008 – p. 7/49

valid � (x, T) 2 set �
� ` Var x : T

� ` t1 : T1 ! T2 � ` t2 : T1

� ` App t1 t2 : T2

x # � (x, T1)::� ` t : T2

� ` Lam [x].t : T1 ! T2

Typing Judgements
inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#�]]=) valid ((x,T)#�)"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

declare typing.intros[intro] valid.intros[intro]

Eugene, 26. July 2008 – p. 7/49

Typing Judgements
inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#�]]=) valid ((x,T)#�)"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

declare typing.intros[intro] valid.intros[intro]

Eugene, 26. July 2008 – p. 7/49

We want to have the strong induction
principle for the typing judgement.
1.) The relation needs to be equivariant.

Typing Judgements
inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#�]]=) valid ((x,T)#�)"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

declare typing.intros[intro] valid.intros[intro]

equivariance valid
equivariance typing

Eugene, 26. July 2008 – p. 7/49

Typing Judgements
inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#�]]=) valid ((x,T)#�)"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

declare typing.intros[intro] valid.intros[intro]

equivariance valid
equivariance typing

Eugene, 26. July 2008 – p. 7/49

This proves for us:
valid � =) valid (� � �)
� ` t : T =) � � � ` � � t : � � T

Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)

nominal_inductive typing

by (simp_all add: abs_fresh ty_fresh)

Eugene, 26. July 2008 – p. 8/49

Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)

nominal_inductive typing

by (simp_all add: abs_fresh ty_fresh)

Eugene, 26. July 2008 – p. 8/49

Subgoals
1.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # �

2.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # Lam [x].t

3.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # T1 ! T2

Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)

nominal_inductive typing

by (simp_all add: abs_fresh ty_fresh)

Eugene, 26. July 2008 – p. 8/49

Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set �]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1 ! T2"

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)

nominal_inductive typing
by (simp_all add: abs_fresh ty_fresh)

Eugene, 26. July 2008 – p. 8/49

Weakening
lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
by (nominal_induct � 1 t T avoiding: � 2 rule: typing.strong_induct)

(auto simp add: atomize_all atomize_imp)

This proof is can be found automatically, but that
tells us not much. . .

Eugene, 26. July 2008 – p. 9/49

Weakening
lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
by (nominal_induct � 1 t T avoiding: � 2 rule: typing.strong_induct)

(auto simp add: atomize_all atomize_imp)

This proof is can be found automatically, but that
tells us not much. . .

Eugene, 26. July 2008 – p. 9/49

Lemma / Theorem / Corollary

Lemmas / Theorems / Corollary are of the form:
theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool.

Eugene, 26. July 2008 – p. 10/49

Lemma / Theorem / Corollary

Lemmas / Theorems / Corollary are of the form:
theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool.

Eugene, 26. July 2008 – p. 10/49

lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

Struct. of an Ind. Proof
lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof(nominal_induct � 1 t T avoiding: � 2 rule: typing.strong_induct)
case (t_Var � 1 x T). . .
show "� 2 ` Var x : T". . .

next
case (t_App � 1 t1 T1 T2 t2). . .
show "� 2 ` App t1 t2 : T2". . .

next
case (t_Lam x � 1 T1 t T2). . .
show "� 2 ` Lam [x].t : T1 ! T2". . .

qed Eugene, 26. July 2008 – p. 11/49

Cases
Each case is of the form:

case (Name x. . .)
have n1: "statment1" by justification
have n2: "statment2" by justification
. . .
show "statment" by justification

Grey parts are optional.
Justifications can also be: using . . . by . . .

Eugene, 26. July 2008 – p. 12/49

Cases
Each case is of the form:

case (Name x. . .)
have n1: "statment1" by justification
have n2: "statment2" by justification
. . .
show "statment" by justification

Grey parts are optional.
Justifications can also be: using . . . by . . .

using ih by . . .
using n1 n2 n3 by . . .
using lemma_name. . .by . . .

Eugene, 26. July 2008 – p. 12/49

Cases
Each case is of the form:

case (Name x. . .)
have n1: "statment1" by justification
have n2: "statment2" by justification
. . .
show "statment" by justification

Grey parts are optional.
Justifications can also be: using . . . by . . .

using ih by . . .
using n1 n2 n3 by . . .
using lemma_name. . .by . . .

Eugene, 26. July 2008 – p. 12/49

Justifications
Omitting proofs
sorry
Assumptions
by fact
Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)
by force simplification & proof search

(first goal)
by blast proof search
. . .

Eugene, 26. July 2008 – p. 13/49

valid � (x, T) 2 set �
� ` Var x : T

lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof(nominal_induct � 1 t T avoiding: � 2 rule: typing.strong_induct)
case (t_Var � 1 x T)
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
have a3: "(x,T) 2 (set � 1)" by fact
have a4: "(x,T) 2 (set � 2)" using a2 a3 by simp
show "� 2 ` Var x : T" using a1 a4 by auto

next : : :
Eugene, 26. July 2008 – p. 14/49

x # � (x, T1)::� ` t : T2

� ` Lam [x].t : T1 ! T2

next
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "[[valid ((x,T1)#� 2); (x,T1)#� 1 � (x,T1)#� 2]]

=) (x,T1)#� 2 ` t:T2" by fact
have a1: "� 1 � � 2" by fact
have a2: "(x,T1)#� 1 � (x,T1)#� 2" using a1 by simp
have b1: "valid � 2" by fact
have b2: "valid ((x,T1)#� 2)" using vc b1 by auto
have b3: "(x,T1)#� 2 ` t : T2" using ih b2 a2 by simp
show "� 2 ` Lam [x].t : T1!T2" using b3 vc by auto

next : : :

Eugene, 26. July 2008 – p. 15/49

x # � (x, T1)::� ` t : T2

� ` Lam [x].t : T1 ! T2

next
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "[[valid ((x,T1)#� 2); (x,T1)#� 1 � (x,T1)#� 2]]

=) (x,T1)#� 2 ` t:T2" by fact
have "� 1 � � 2" by fact
then have a2: "(x,T1)#� 1 � (x,T1)#� 2" by simp
have "valid � 2" by fact
then have b2: "valid ((x,T1)#� 2)" using vc by auto
have "(x,T1)#� 2 ` t : T2" using ih b2 a2 by simp
then show "� 2 ` Lam [x].t : T1!T2" using vc by auto

next : : :

Eugene, 26. July 2008 – p. 16/49

A Sequence of Facts

have n1: “. . . ”
have n2: “. . . ”

. . .

have nn: “. . . ”
have “. . . ” using n1 n2. . . nn

have “. . . ”
moreover have “. . . ”

. . .

moreover have “. . . ”
ultimately have “. . . ”

Eugene, 26. July 2008 – p. 17/49

x # � (x, T1)::� ` t : T2

� ` Lam [x].t : T1 ! T2

next
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "[[valid ((x,T1)#� 2); (x,T1)#� 1 � (x,T1)#� 2]]

=) (x,T1)#� 2 ` t:T2" by fact
have "� 1 � � 2" by fact
then have "(x,T1)#� 1 � (x,T1)#� 2" by simp
moreover
have "valid � 2" by fact
then have "valid ((x,T1)#� 2)" using vc by auto
ultimately have "(x,T1)#� 2 ` t : T2" using ih by simp
then show "� 2 ` Lam [x].t : T1!T2" using vc by auto

next : : :

Eugene, 26. July 2008 – p. 18/49

x # � (x, T1)::� ` t : T2

� ` Lam [x].t : T1 ! T2

next
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "[[valid ((x,T1)#� 2); (x,T1)#� 1 � (x,T1)#� 2]]

=) (x,T1)#� 2 ` t:T2" by fact
have "� 1 � � 2" by fact
then have "(x,T1)#� 1 � (x,T1)#� 2" by simp
moreover
have "valid � 2" by fact
then have "valid ((x,T1)#� 2)" using vc by auto
ultimately have "(x,T1)#� 2 ` t : T2" using ih by simp
then show "� 2 ` Lam [x].t : T1!T2" using vc by auto

qed (auto)

Eugene, 26. July 2008 – p. 19/49

Capture-Avoiding Subst.
We next want to introduce an evaluation relation
and a CK machine.
For this we need the notion of capture-avoiding
substitution.

consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Eugene, 26. July 2008 – p. 20/49

Capture-Avoiding Subst.
We next want to introduce an evaluation relation
and a CK machine.
For this we need the notion of capture-avoiding
substitution.

consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!
Eugene, 26. July 2008 – p. 20/49

Bound Names Function
However there is a problem with the bound names
function:

consts
bnds :: "lam) name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 t2) = bnds (t1) [bnds (t2)"
"bnds (Lam [x].t) = bnds (t) [{x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Var y) = {y}"

by (simp_all)

Eugene, 26. July 2008 – p. 21/49

Bound Names Function
However there is a problem with the bound names
function:

consts
bnds :: "lam) name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 t2) = bnds (t1) [bnds (t2)"
"bnds (Lam [x].t) = bnds (t) [{x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Var y) = {y}"

by (simp_all)

Eugene, 26. July 2008 – p. 21/49

Assume x 6= y.

Lam [x].Var x = Lam [y].Var y

bnds (Lam [x].Var x) = bnds (Lam [y].Var y)

{x} = {y}

Bound Names Function
However there is a problem with the bound names
function:

consts
bnds :: "lam) name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 t2) = bnds (t1) [bnds (t2)"
"bnds (Lam [x].t) = bnds (t) [{x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Var y) = {y}"

by (simp_all)

Eugene, 26. July 2008 – p. 21/49

Assume x 6= y.

Lam [x].Var x = Lam [y].Var y

bnds (Lam [x].Var x) = bnds (Lam [y].Var y)

{x} = {y}

Bound Names Function
However there is a problem with the bound names
function:

consts
bnds :: "lam) name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 t2) = bnds (t1) [bnds (t2)"
"bnds (Lam [x].t) = bnds (t) [{x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Var y) = {y}"

by (simp_all)

Eugene, 26. July 2008 – p. 21/49

Assume x 6= y.

Lam [x].Var x = Lam [y].Var y

bnds (Lam [x].Var x) = bnds (Lam [y].Var y)

{x} = {y}

Bound Names Function
However there is a problem with the bound names
function:

consts
bnds :: "lam) name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 t2) = bnds (t1) [bnds (t2)"
"bnds (Lam [x].t) = bnds (t) [{x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Var y) = {y}"

by (simp_all)

Eugene, 26. July 2008 – p. 21/49

Assume x 6= y.

Lam [x].Var x = Lam [y].Var y

bnds (Lam [x].Var x) = bnds (Lam [y].Var y)

{x} = {y}

Bound Names Function
However there is a problem with the bound names
function:

consts
bnds :: "lam) name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 t2) = bnds (t1) [bnds (t2)"
"bnds (Lam [x].t) = bnds (t) [{x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Var y) = {y}"

by (simp_all)

Eugene, 26. July 2008 – p. 21/49

Capture-Avoiding Subst.
consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Eugene, 26. July 2008 – p. 22/49

Capture-Avoiding Subst.
consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Eugene, 26. July 2008 – p. 22/49

Freshness Condition for Binders (FCB)
8a ts: a # f) a # f a ts

V
x1 y1. ::: ::: =) x1 # Lam [x1].y1

Capture-Avoiding Subst.
consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Eugene, 26. July 2008 – p. 22/49

Freshness Condition for Binders (FCB)
8a ts: a # f) a # f a tsV

x1 y1. ::: ::: =) x1 # Lam [x1].y1

Capture-Avoiding Subst.
consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)+
apply(fresh_guess)+
done

Eugene, 26. July 2008 – p. 22/49

Freshness Condition for Binders (FCB)
8a ts: a # f) a # f a tsV

x1 y1. ::: ::: =) x1 # Lam [x1].y1

Capture-Avoiding Subst.
consts
subst :: "lam) name) lam) lam" ("_[_::=_]")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"
"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)+
apply(fresh_guess)+
done

Eugene, 26. July 2008 – p. 22/49

FCB for Bound Variable Function:
V
x1 y1. ::: ::: =) x1 # (y1 [{x1})

Freshness Condition for Binders (FCB)
8a ts: a # f) a # f a tsV

x1 y1. ::: ::: =) x1 # Lam [x1].y1

Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

Eugene, 26. July 2008 – p. 23/49

Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

Eugene, 26. July 2008 – p. 23/49

Lam [x].t + Lam [x].t

t1 + Lam [x].t t2 + v’ t[x::=v’] + v
App t1 t2 + v

Values
inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].e)"

lemma eval_to_val:
assumes a: "t + t’"
shows "val t’"

using a by (induct) (auto)

If our language contained natural numbers,
booleans, etc., we would expand on this definition.

Eugene, 26. July 2008 – p. 24/49

Values
inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].e)"

lemma eval_to_val:
assumes a: "t + t’"
shows "val t’"

using a by (induct) (auto)

If our language contained natural numbers,
booleans, etc., we would expand on this definition.

Eugene, 26. July 2008 – p. 24/49

CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a list of contexts.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
"machines" :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"

Eugene, 26. July 2008 – p. 25/49

CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a list of contexts.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
"machines" :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"

Eugene, 26. July 2008 – p. 25/49

Initial state of
the CK machine:

ht,[]i

CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a list of contexts.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
"machines" :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"
Eugene, 26. July 2008 – p. 25/49

Our Goal
Our goal is to show that the result the machine
calculates corresponds to the value the evaluation
relation generates and vice versa. That means:

t + v() ht,[]i 7!* hv,[]i

with v being a value.

Eugene, 26. July 2008 – p. 26/49

Left-to-Right Direction

lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Left-to-Right Direction
lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Left-to-Right Direction
lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Left-to-Right Direction
lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Sledgehammer:
Can be used at any point in the development.

Isabelle

external
prover

problem

hints

Left-to-Right Direction
lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Sledgehammer:
Can be used at any point in the development.

Isabelle external
prover

problem

hints

Left-to-Right Direction
lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Sledgehammer:
Can be used at any point in the development.

Isabelle external
prover

problem

hints

Left-to-Right Direction
lemma ms3:
assumes a: "he1,Es1i 7!* he2,Es2i" "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
by (induct arbitrary: Es)

(metis eval_to_val machine.intros ms1 ms2 ms3 v_Lam)+

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a using eval_implies_machines_ctx by simp
Eugene, 26. July 2008 – p. 27/49

Right-to-Left Direction
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"

We can prove this direction by introducing a
small-step reduction relation.

Eugene, 26. July 2008 – p. 28/49

Right-to-Left Direction
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"
oops

We can prove this direction by introducing a
small-step reduction relation.

Eugene, 26. July 2008 – p. 28/49

Right-to-Left Direction
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"
oops

We can prove this direction by introducing a
small-step reduction relation.

Eugene, 26. July 2008 – p. 28/49

CBV Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "val v =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

Later on we like to use the strong induction
principle for this relation.

Eugene, 26. July 2008 – p. 29/49

CBV Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "val v =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

Later on we like to use the strong induction
principle for this relation.

Eugene, 26. July 2008 – p. 29/49

Conditions:
1.
V
v x t. val v =) x # App Lam [x].t v

2.
V
v x t. val v =) x # t[x::=v]

CBV Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "[[val v; x#v]] =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2[intro]: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3[intro]: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

The conditions that give us automatically the
strong induction principle require us to add the
assumption x # v. This makes this rule less
useful.

Eugene, 26. July 2008 – p. 30/49

Strong Induction Principle
lemma subst_eqvt[eqvt]:
fixes �::"name prm"
shows "��(t1[x::=t2]) = (��t1)[(��x)::=(��t2)]"

by (nominal_induct t1 avoiding: x t2 rule: lam.strong_induct)
(auto simp add: perm_bij fresh_atm fresh_bij)

lemma fresh_fact:
fixes z::"name"
shows "[[z#s; (z=y _ z#t)]] =) z#t[y::=s]"

by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_prod fresh_atm)

equivariance val
equivariance cbv
nominal_inductive cbv
by (simp_all add: abs_fresh fresh_fact)

Eugene, 26. July 2008 – p. 31/49

lemma subst_rename:
assumes a: "y#t"
shows "t[x::=s] = ([(y,x)]�t)[y::=s]"

using a
by (nominal_induct t avoiding: x y s rule: lam.strong_induct)

(auto simp add: calc_atm fresh_atm abs_fresh)

lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed
Eugene, 26. July 2008 – p. 32/49

CBV Reduction?
inductive
"cbvs" :: "lam) lam) bool" (" _�!cbv* _")

where
cbvs1[intro]: "e�!cbv* e"
j cbvs2[intro]: "[[e1�!cbv e2; e2 �!cbv* e3]] =) e1 �!cbv* e3"

lemma cbvs3[intro]:
assumes a: "e1 �!cbv* e2" "e2 �!cbv* e3"
shows "e1 �!cbv* e3"

using a by (induct) (auto)

lemma cbv_in_ctx:
assumes a: "t�!cbv t’"
shows "E[[t]] �!cbv E[[t’]]"

using a by (induct E) (auto)

Eugene, 26. July 2008 – p. 33/49

CBV Reduction?
inductive
"cbvs" :: "lam) lam) bool" (" _�!cbv* _")

where
cbvs1[intro]: "e�!cbv* e"
j cbvs2[intro]: "[[e1�!cbv e2; e2 �!cbv* e3]] =) e1 �!cbv* e3"

lemma cbvs3[intro]:
assumes a: "e1 �!cbv* e2" "e2 �!cbv* e3"
shows "e1 �!cbv* e3"

using a by (induct) (auto)

lemma cbv_in_ctx:
assumes a: "t�!cbv t’"
shows "E[[t]] �!cbv E[[t’]]"

using a by (induct E) (auto)

Eugene, 26. July 2008 – p. 33/49

CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a
by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Eugene, 26. July 2008 – p. 34/49

CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a
by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Eugene, 26. July 2008 – p. 34/49

CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a
by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Eugene, 26. July 2008 – p. 34/49

If we had not derived the better
cbv-rule, then we would have to do an
explicit renaming here.

CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a
by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Eugene, 26. July 2008 – p. 34/49

CBV? Implies Evaluation
We need the following scaffolding lemmas in
order to show that cbv-reduction implies
evaluation.

lemma eval_val:
assumes a: "val t"
shows "t + t"

using a by (induct) (auto)

lemma e_App_elim:
assumes a: "App t1 t2 + v"
shows "9 x t v’. t1 + Lam [x].t ^ t2 + v’ ^ t[x::=v’] + v"

using a by (cases) (auto simp add: lam.inject)

Eugene, 26. July 2008 – p. 35/49

lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a
by (induct arbitrary: t3)

(auto intro: eval_val dest!: e_App_elim)

lemma cbvs_eval:
assumes a: "t1 �!cbv* t2" "t2 + t3"
shows "t1 + t3"

using a by (induct) (auto simp add: cbv_eval)

lemma cbvs_implies_eval:
assumes a: "t�!cbv* v" "val v"
shows "t + v"

using a
by (induct)

(auto simp add: eval_val cbvs_eval dest: cbvs2)
Eugene, 26. July 2008 – p. 36/49

Right-to-Left Direction
Via the the cbv-reduction relation we can finally
show that the CK machine implies the evaluation
relation.

theorem machines_implies_eval:
assumes a: "ht1,[]i 7!* ht2,[]i"
and b: "val t2"
shows "t1 + t2"

proof -
from a have "t1 �!cbv* t2" by (simp add: machines_implies_cbvs)
then show "t1 + t2" using b by (simp add: cbvs_implies_eval)

qed

Eugene, 26. July 2008 – p. 37/49

Preservation and Progress
Next we like to prove a type preservation and an
progress lemma for the cbv-reduction relation.

theorem cbv_type_preservation:
assumes a: "t�!cbv t’"
and b: "� ` t : T"
shows "� ` t’ : T"

theorem progress:
assumes a: "[] ` t : T"
shows "(9 t’. t�!cbv t’) _ (val t)"

We need the property of type-substitutivity.

Eugene, 26. July 2008 – p. 38/49

Preservation and Progress
Next we like to prove a type preservation and an
progress lemma for the cbv-reduction relation.

theorem cbv_type_preservation:
assumes a: "t�!cbv t’"
and b: "� ` t : T"
shows "� ` t’ : T"

theorem progress:
assumes a: "[] ` t : T"
shows "(9 t’. t�!cbv t’) _ (val t)"

We need the property of type-substitutivity.

Eugene, 26. July 2008 – p. 38/49

Some Side-Lemmaslemma valid_elim:
assumes a: "valid ((x,T)#�)"
shows "x#� ^ valid � "

using a by (cases) (auto)

lemma valid_insert:
assumes a: "valid (�@[(x,T)]@�)"
shows "valid (�@�)"

using a
by (induct �)

(auto simp add: fresh_list_append fresh_list_cons dest!: valid_elim)

lemma fresh_list:
shows "y#xs = (8 x 2 set xs. y#x)"

by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons)

lemma context_unique:
assumes a1: "valid � "
and a2: "(x,T) 2 set � "
and a3: "(x,U) 2 set � "

shows "T = U"
using a1 a2 a3
by (induct) (auto simp add: fresh_list fresh_prod fresh_atm) Eugene, 26. July 2008 – p. 39/49

lemma type_substitution_aux:
assumes a: "�@[(x,T’)]@� ` e : T"
and b: "� ` e’ : T’"
shows "�@� ` e[x::=e’] : T"

using a b
proof (nominal_induct � ’�"�@[(x,T’)]@� " e T

avoiding: x e’ � rule: typing.strong_induct)
case (t_Var � ’ y T x e’ �)
then have a1: "valid (�@[(x,T’)]@�)"

and a2: "(y,T) 2 set (�@[(x,T’)]@�)"
and a3: "� ` e’ : T’" by simp_all

from a1 have a4: "valid (�@�)" by (rule valid_insert)
{ assume eq: "x=y"
from a1 a2 have "T=T’" using eq by (auto intro: context_unique)
with a3 have "�@� ` Var y[x::=e’] : T" using eq a4 by (auto intro: weakening) }

moreover
{ assume ineq: "x6=y"
from a2 have "(y,T) 2 set (�@�)" using ineq by simp
then have "�@� ` Var y[x::=e’] : T" using ineq a4 by auto }

ultimately show "�@� ` Var y[x::=e’] : T" by blast
qed (force simp add: fresh_list_append fresh_list_cons)+

Eugene, 26. July 2008 – p. 40/49

corollary type_substitution:
assumes a: "(x,T’)#� ` e : T"
and b: "� ` e’ : T’"
shows "� ` e[x::=e’] : T"

lemma type_substitution_aux:
assumes a: "�@[(x,T’)]@� ` e : T"
and b: "� ` e’ : T’"
shows "�@� ` e[x::=e’] : T"

using a b
proof (nominal_induct � ’�"�@[(x,T’)]@� " e T

avoiding: x e’ � rule: typing.strong_induct)
case (t_Var � ’ y T x e’ �)
then have a1: "valid (�@[(x,T’)]@�)"

and a2: "(y,T) 2 set (�@[(x,T’)]@�)"
and a3: "� ` e’ : T’" by simp_all

from a1 have a4: "valid (�@�)" by (rule valid_insert)
{ assume eq: "x=y"
from a1 a2 have "T=T’" using eq by (auto intro: context_unique)
with a3 have "�@� ` Var y[x::=e’] : T" using eq a4 by (auto intro: weakening) }

moreover
{ assume ineq: "x6=y"
from a2 have "(y,T) 2 set (�@�)" using ineq by simp
then have "�@� ` Var y[x::=e’] : T" using ineq a4 by auto }

ultimately show "�@� ` Var y[x::=e’] : T" by blast
qed (force simp add: fresh_list_append fresh_list_cons)+

Eugene, 26. July 2008 – p. 40/49

lemma type_substitution_aux:
assumes a: "�@[(x,T’)]@� ` e : T"
and b: "� ` e’ : T’"
shows "�@� ` e[x::=e’] : T"

using a b
proof (nominal_induct � ’�"�@[(x,T’)]@� " e T

avoiding: x e’ � rule: typing.strong_induct)
case (t_Var � ’ y T x e’ �)
then have a1: "valid (�@[(x,T’)]@�)"

and a2: "(y,T) 2 set (�@[(x,T’)]@�)"
and a3: "� ` e’ : T’" by simp_all

from a1 have a4: "valid (�@�)" by (rule valid_insert)
{ assume eq: "x=y"
from a1 a2 have "T=T’" using eq by (auto intro: context_unique)
with a3 have "�@� ` Var y[x::=e’] : T" using eq a4 by (auto intro: weakening) }

moreover
{ assume ineq: "x6=y"
from a2 have "(y,T) 2 set (�@�)" using ineq by simp
then have "�@� ` Var y[x::=e’] : T" using ineq a4 by auto }

ultimately show "�@� ` Var y[x::=e’] : T" by blast
qed (force simp add: fresh_list_append fresh_list_cons)+

Eugene, 26. July 2008 – p. 40/49

valid � (x, T) 2 set �
� ` Var x : T

Type Substitutivity
lemma type_substitution_aux:
assumes a: "�@[(x,T’)]@� ` e : T"
and b: "� ` e’ : T’"
shows "�@� ` e[x::=e’] : T"

corollary type_substitution:
assumes a: "(x,T’)#� ` e : T"
and b: "� ` e’ : T’"
shows "� ` e[x::=e’] : T"

using a b type_substitution_aux[where �="[]"]
by (auto)

Eugene, 26. July 2008 – p. 41/49

Inversion Lemmas
lemma t_App_elim:
assumes a: "� ` App t1 t2 : T"
shows "9 T’. � ` t1 : T’! T ^ � ` t2 : T’"

using a by (cases) (auto simp add: lam.inject)

lemma t_Lam_elim:
assumes ty: "� ` Lam [x].t : T"
and fc: "x#� "
shows "9 T1 T2. T = T1 ! T2 ^ (x,T1)#� ` t : T2"

using ty fc
by (cases rule: typing.strong_cases)

(auto simp add: alpha lam.inject abs_fresh ty_fresh)

Eugene, 26. July 2008 – p. 42/49

� ` t1 : T1 ! T2 � ` t2 : T1

� ` App t1 t2 : T2

x # � (x, T1)::� ` t : T2

� ` Lam [x].t : T1 ! T2

Type Preservation

Eugene, 26. July 2008 – p. 43/49

theorem cbv_type_preservation:
assumes a: "t�!cbv t’"
and b: "� ` t : T"
shows "� ` t’ : T"

using a b
by (nominal_induct avoiding: � T rule: cbv.strong_induct)

(auto dest!: t_Lam_elim t_App_elim
simp add: type_substitution ty.inject)

corollary cbvs_type_preservation:
assumes a: "t�!cbv* t’"
and b: "� ` t : T"
shows "� ` t’ : T"

using a b
by (induct) (auto intro: cbv_type_preservation)

Progress Lemma
Finally we can establish the progress lemma:

lemma canonical_tArr:
assumes a: "[] ` t : T1! T2"
and b: "val t"
shows "9 x t’. t = Lam [x].t’"

using b a by (induct) (auto)

This lemma is stated with extensions in mind.

theorem progress:
assumes a: "[] ` t : T"
shows "(9 t’. t�!cbv t’) _ (val t)"

using a
by (induct ��"[]::ty_ctx" t T)

(auto intro!: cbv.intros dest: canonical_tArr)
Eugene, 26. July 2008 – p. 44/49

Progress Lemma
Finally we can establish the progress lemma:

lemma canonical_tArr:
assumes a: "[] ` t : T1! T2"
and b: "val t"
shows "9 x t’. t = Lam [x].t’"

using b a by (induct) (auto)

This lemma is stated with extensions in mind.
theorem progress:
assumes a: "[] ` t : T"
shows "(9 t’. t�!cbv t’) _ (val t)"

using a
by (induct ��"[]::ty_ctx" t T)

(auto intro!: cbv.intros dest: canonical_tArr)
Eugene, 26. July 2008 – p. 44/49

Extensions
With only minimal modifications the proofs can be
extended to the language given by:

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")
j Num "nat"
j Minus "lam" "lam" ("_ -- _")
j Plus "lam" "lam" ("_ ++ _")
j TRUE
j FALSE
j IF "lam" "lam" "lam"
j Fix "«name»lam" ("Fix [_]._")
j Zet "lam"
j Eqi "lam" "lam"

Eugene, 26. July 2008 – p. 45/49

Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Eugene, 26. July 2008 – p. 46/49

2h

Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Eugene, 26. July 2008 – p. 46/49

2h

Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Eugene, 26. July 2008 – p. 46/49
(each time one needs to check�31pp of informal paper proofs)

2h

Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Eugene, 26. July 2008 – p. 46/49
(each time one needs to check�31pp of informal paper proofs)

2h

Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Eugene, 26. July 2008 – p. 46/49
(each time one needs to check�31pp of informal paper proofs)

2h

Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)

Eugene, 26. July 2008 – p. 47/49

Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)

Eugene, 26. July 2008 – p. 47/49

Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)

Eugene, 26. July 2008 – p. 47/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set?

If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?

Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?

supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support?

If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Answers to Exercises
Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

What is the support of the set of all atoms?
Let A = fa0; a1 : : :g, then supp(A) = ?.

From the set of all atoms take one atom out.
What is the support of the resulting set?
supp(A� fag) = fag.

Are there any sets of atoms that have infinite
support? If both S and A� S are infinite then
supp(S) = A.

Eugene, 26. July 2008 – p. 48/49

Thank you very much!

Eugene, 26. July 2008 – p. 49/49

