
Types

in Programming Languages (8)

Christian Urbanhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 10. January 2007 – p.1 (1/1)



Recap
We ensured the property of control-flow
safety of typed assembler programs:

Property: A program cannot jump to an
arbitrary address, but only to a well-defined
subset of possible entry points.

Type-inference was not employed: the
compiler has to give enough information
during the compilation process so that the
bytecode only needs to be type-checked.

Munich, 10. January 2007 – p.2 (1/1)



Kinds of Polymorphism
Last year we considered parametric polymorphism,
where functions can be used for different types, but
the functions have to be independent of the types
(e.g. reversing of lists).

In practice however one also want the definition of
functions to depend on types (for example addition
over integers and floats behave differently).

One solution: Ad-hoc polymorphism allows functions
to work differently at different type (for example
object-oriented programming languages and also
OCaml).

An example of ad-hoc polymorphism is subtyping.

Munich, 10. January 2007 – p.3 (1/1)



Subtyping
We wrote T <: T 0 to indicate that T is a
subtype of T 0.
If T <: T 0, then whenever an expression of
type T 0 is needed then we can use an
expression of type T .

� ` e : T T <: T 0� ` e : T 0

Properties we expect of subtyping:

T <: T Refl

T1 <: T2 T2 <: T3T1 <: T3 Trans
Munich, 10. January 2007 – p.4 (1/1)



Subtyping
Another property: If T <: T 0, then an
expression of type T can be coerced to be
an expression of type T 0 (in a unique way).

Problem with uniqueness: assume

int<: string, int <: real, real <:string
Then 3 can be coerced to a string like3 7! "3"3 7! 3:0 and 3:0 7! "3:0"

We require coherence, i.e. uniqueness of
coercion. Munich, 10. January 2007 – p.5 (1/1)



Types and Terms
Types:

T ::= X type variablesj T ! T function typesj Top super-type of everything

Terms:e ::= x variablesj e e applicationsj �x:e lambda-abstractions

Munich, 10. January 2007 – p.6 (1/1)



Function Types
Subtyping of functions (not obvious): e.g.

int ! int <: int ! real

and

real ! int <: int ! int

Therefore

S1 <: T1 T2 <: S2T1 ! T2 <: S1 ! S2

contra-variant in the argument, and

co-variant in the result
Munich, 10. January 2007 – p.7 (1/1)



Subtyping Judgement
As usual we have contexts � of
(type-var,type)-pairs. Valid contexts are:

valid ? valid � X 62 dom �
valid (X <: T );�

Subtyping judgements:

valid �� ` T <: Top Top valid �� ` X <: X Refl

(X <: S) 2 � � ` S <: T� ` X <: T Trans

� ` S1 <: T1 � ` T2 <: S2� ` T1 ! T2 <: S1 ! S2 Funs
Munich, 10. January 2007 – p.8 (1/1)



Properties (I)
Given

valid �� ` T <: Top Top valid �� ` X <: X Refl

(X <: S) 2 � � ` S <: T� ` X <: T Trans

� ` S1 <: T1 � ` T2 <: S2� ` T1 ! T2 <: S1 ! S2 Funs

we have reflexivity (easy proof):� ` T <: T

and transitivity (tricky proof):

If � ` T1 <: T2 and � ` T2 <: T3 then � ` T1 <: T3.
Munich, 10. January 2007 – p.9 (1/1)



Properties (II)
Given

valid �� ` T <: Top Top valid �� ` X <: X Refl

(X <: S) 2 � � ` S <: T� ` X <: T Trans

� ` S1 <: T1 � ` T2 <: S2� ` T1 ! T2 <: S1 ! S2 Funs

subtyping is decidable (with some priorities the rules
are syntax-directed).

Munich, 10. January 2007 – p.10 (1/1)



Simple Type-System
Variables

valid � valid � (x : T ) 2 ��;� ` x : T
Applications�; � ` e1 : T1 ! T2 �; � ` e2 : T1�; � ` e1 e2 : T2
Lambdas�;x : T1; � ` e : T2 x 62 dom��; � ` �x:e : T1 ! T2

Subtyping�;� ` e : T 0 � ` T 0 <: T�;� ` e : T

Munich, 10. January 2007 – p.11 (1/1)



Typing Problem
Given contexts � and � , and an expressione what should the subtyping algorithm
calculate?

The rules are very not helpful: the problem
is the Trans-rule

�;� ` e : T 0 � ` T 0 <: T�;� ` e : T Trans

This rule is always applicable and we have to
guess T 0.

Munich, 10. January 2007 – p.12 (1/1)



Algorithmic Type-System
The rules for variables and lambdas are the
same; delete the rule for transitivity.

The rule for applications�; � ` e1 : T1 ! T2 �; � ` e2 : T1�; � ` e1 e2 : T2
is replaced by

�;� ` e1 : T1 T1 = T11 ! T12�;� ` e2 : T2 � ` T2 <: T11�;� ` e1 e2 : T12

Munich, 10. January 2007 – p.13 (1/1)



Properties
Soundness: If �;� ` e : T in the new
system, then �;� ` e : T in the old
system.

Completeness: If �;� ` e : T in the old
system, then �;� ` e : S for some S in
the new system with � ` S <: T .

Both properties by induction on the
respective relation.

Munich, 10. January 2007 – p.14 (1/1)



Joins
Type-checking expressions with multiple
branches is a bit tricky: for example

�;� ` e1 : bool �; � ` e2 : T �;� ` e3 : T�;� ` if e1 then e2 else e3 : T
We need to calculate the minimal type of
both branches - this is called the join.

A type J is called a join of S and T ifS <: J and T <: J , and for all types U , ifS <: U and T <: U , then J <: U

(Depending on the system, calculation of joins is not
always possible.) Munich, 10. January 2007 – p.15 (1/2)



Joins
Type-checking expressions with multiple
branches is a bit tricky: for example

�;� ` e1 : bool �; � ` e2 : T1 �;� ` e3 : T2�;� ` if e1 then e2 else e3 : T1 _ T2

We need to calculate the minimal type of
both branches - this is called the join.

A type J is called a join of S and T ifS <: J and T <: J , and for all types U , ifS <: U and T <: U , then J <: U

(Depending on the system, calculation of joins is not
always possible.) Munich, 10. January 2007 – p.15 (2/2)



Transition Rules
Given

(�x:e1)e2 �! e1[x :=e2℄ e �! e0�x:e �! �x:e0

e1 �! e01e1e2 �! e01e2 e2 �! e02e1e2 �! e1e02

then in general it is possible that s : S andt : T with s �!� t and T <: S, but notS <: T .

Munich, 10. January 2007 – p.16 (1/1)



Explicit Casts
Casting is often necessary in object-oriented
languages. We can add a term-constructor for
explicit castings.

Terms: e ::= . . .j (S <: T ) e casts

with the rule�;� ` e : T � ` S <: T�;� ` (S <: T ) e : S

Munich, 10. January 2007 – p.17 (1/1)



Historical Points
One of the main points of subtyping is to
model class hierarchies:

class C extends DC <: D
There is a lot of research how
object-oriented languages can be understood
in terms of subtyping (those languages are
prone to problems with typing). One
development is Featherweight Java.

Even functional languages benefited from
this research (Ocaml).

Munich, 10. January 2007 – p.18 (1/1)



Data Types
We next consider how to represent
datatypes, such as

Booleans (either True or False)
Lists (either Nil or Cons)
Nats (either Zero or Successor)
Bin-trees (either Leaf or Node)

The question is how to include them into the
typing-system. Introducing them primitively
is unsatisfactory. Why?

We consider here the PLC.
Munich, 10. January 2007 – p.19 (1/1)



Syntax of PLC
Types:T ::= X type variablesj T ! T function typesj 8X:T 8-type
Terms:e ::= x variablesj e e applicationsj �x:e lambda-abstractionsj �X:e type-abstractionsj e T type-applications

Munich, 10. January 2007 – p.20 (1/1)



Transitions in PLC
We have the same transitions as in the
lambda-calculus, e.g.

(�x:e1)e2 �! e1[x :=e2℄
plus rules for type-abstractions and
type-applications

(�X:e)T �! e[X :=T ℄

Confluence and Termination holds for�!.

Munich, 10. January 2007 – p.21 (1/1)



Typing Rules
Type-Generalisation

� ` e : T X 62 ftv(� )� ` �X:e : 8X:T
Type-Specialisation

� ` e : 8X:T1� ` e T2 : T1[X := T2℄

Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Munich, 10. January 2007 – p.22 (1/2)



Typing Rules
Type-Generalisation

� ` e : T X 62 ftv(� )� ` �X:e : 8X:T
Type-Specialisation

� ` e : 8X:T1� ` e T2 : T1[X := T2℄

Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Therefore we explicitly annotate the
type in lambda-abstractions

�x : T:e
Type-checking is then trivial. (But is
it useful?)

Munich, 10. January 2007 – p.22 (2/2)



Datatypes
We are now returning to the question of
representing datatypes in PLC.

Booleans with values true and false
is represented by

bool
def= 8X:X ! (X ! X)

true
def= �X:�x1 : X:�x2 : X:x1

false
def= �X:�x1 : X:�x2 : X:x2

These are the only two closed normal terms
of type bool.

Munich, 10. January 2007 – p.23 (1/1)



Lists
Lists can be represented as

X list
def= 8Y:Y ! (X!Y !Y )! Y

Nil
def= �XY:�x : Y:�f : X ! Y ! Y:x

Cons
def= : : :

These are infinitely closed normal terms of
this type.

We also have unit-, product- and sum-types.
From this we can already build up all
algebraic types (a.k.a. data types).

Munich, 10. January 2007 – p.24 (1/1)



Possible Questions
Question: A typed programming language is
polymorphic if a term of the language may
have different types (right or wrong)?

PLC is at the heart of the immediate
language in GHC: let-polymorphism of ML is
compiled to (annotated) PLC.

Describe the notion of beta-equality of
terms in PLC. How can one decide that two
typable PLC-terms are in this relation? Why
does this fail for untypable terms?

Munich, 10. January 2007 – p.25 (1/1)



Further Points
Functional programming languages often
allow bounds (constraints) on types:
for example the membership functions of
lists has typeX ! X list ! bool, whereX can only be a type with defined equality.

Haskell generalises this idea by using
type-classes

This is in contrast to object-oriented
programming languages which use subtyping
for modelling this.

Munich, 10. January 2007 – p.26 (1/1)


	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (8)\
end {tabular}
	�egin {tabular}{@{}c@{}}Recapend {tabular}
	�egin {tabular}{@{}c@{}}Kinds of Polymorphismend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Types and Termsend {tabular}
	�egin {tabular}{@{}c@{}}Function Typesend {tabular}
	�egin {tabular}{@{}c@{}}Subtyping Judgementend {tabular}
	�egin {tabular}{@{}c@{}}Properties (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Properties (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Simple Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Typing Problemend {tabular}
	�egin {tabular}{@{}c@{}}Algorithmic Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Propertiesend {tabular}
	�egin {tabular}{@{}c@{}}Joinsend {tabular}
	�egin {tabular}{@{}c@{}}Transition Rulesend {tabular}
	�egin {tabular}{@{}c@{}}Explicit Castsend {tabular}
	�egin {tabular}{@{}c@{}}Historical Pointsend {tabular}
	�egin {tabular}{@{}c@{}}Data Typesend {tabular}
	�egin {tabular}{@{}c@{}}Syntax of PLCend {tabular}
	�egin {tabular}{@{}c@{}}Transitions in PLCend {tabular}
	�egin {tabular}{@{}c@{}}Typing Rulesend {tabular}
	�egin {tabular}{@{}c@{}}Datatypesend {tabular}
	�egin {tabular}{@{}c@{}}Listsend {tabular}
	�egin {tabular}{@{}c@{}}Possible Questionsend {tabular}
	�egin {tabular}{@{}c@{}}Further Pointsend {tabular}

