
Nominal Techniques: Quiz
Assuming that a and b are distinct variables, is
it possible to find λ-terms M1..M7 that make
the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(a M1)

λa.λb.(M2 b) and λb.λa.(a M3)

λa.λb.(b M4) and λb.λa.(a M5)

λa.λb.(b M6) and λa.λa.(a M7)

If there is one solution for a pair, can you de-
scribe all its solutions?
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Nominal Techniques: Quiz
Assuming that a and b are distinct variables, is
it possible to find λ-terms M1..M7 that make
the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(a M1)

λa.λb.(M2 b) and λb.λa.(a M3)

λa.λb.(b M4) and λb.λa.(a M5)

λa.λb.(b M6) and λa.λa.(a M7)

If there is one solution for a pair, can you de-
scribe all its solutions?

Don’t be fooled by the question’s
innocent look: some lambda-calculus
experts had problems with it. Also,
the really interesting question is
the one below.

Quiz will be solved on Friday. ;o)
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Nominal Techniques
Course

every day this week from
11:00 to 12:30 in Room C2

Christian Urban

University of Cambridge
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What this course will
be about

syntax with binders (e.g. lambda-calculus)

how to reason formally about binders

how to use structural induction and
structural recursion conveniently

no de-Bruijn indices, no hand-waving using
a Barendregt-style naming convention. . .

a surprisingly fresh look at something
quite familiar (unless you have already
read the papers by Pitts, of course)
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Relevance to Some
Other Courses?

Two examples:

Morrill: Type logical grammar
(lambda-calculus)

Koller et al: Computational semantics
(accidental bindings, also gives an
implementation of the lambda-calculus)

probably others
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Morrill: Type logical grammar
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Koller et al: Computational semantics
(accidental bindings, also gives an
implementation of the lambda-calculus)

probably othersspend one page of their
reader on what we shall
spend 7.5 hours
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What is the Problem
(Surely you know this, but just to make sure.)

Mathematical version:

∫

1

0

x2 + y dx = y +
1

3
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What is the Problem
(Surely you know this, but just to make sure.)

Mathematical version:

∫

1

0

x2 + y dx = y +
1

3

näıvely applying [y := x] gives the
incorrect equation

∫

1

0

x2 + x dx = x +
1

3
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What is the Problem
(Surely you know this, but just to make sure.)

Computer-scientist version:

λa.(b a)[b := a]
näıvely
−→ λa.(a a)

Näıve substitution does not respect
α-equivalence. What needs to be renamed
is determined by subtle side-constraints.
This makes formal reasoning hard.

e.g. λa.((λb.b c)(λc.a c))
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Another Problem
(If you know it, you probably choose to ignore it.)

Assume we define the set Λ of (raw)
lambda-terms inductively by the grammar:

t ::= a variables
| t t applications
| λa.t abstractions
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Another Problem
(If you know it, you probably choose to ignore it.)

Assume we define the set Λ of (raw)
lambda-terms inductively by the grammar:

t ::= a variables
| t t applications
| λa.t abstractions

We can easily define functions over Λ by
structural recursion; for example

depth (a)
def
= 0

depth (t t′)
def
= 1 + max(depth(t), depth(t′))

depth (λa.t)
def
= 1 + depth(t)
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Another Problem
(If you know it, you probably choose to ignore it.)

Assume we define the set Λ of (raw)
lambda-terms inductively by the grammar:

t ::= a variables
| t t applications
| λa.t abstractions

However, if we form the quotient-set Λ/=α

then what is the structural recursion principle?

(a) [b := s]
def
= if a = b then s else a

(t t′) [b := s]
def
= (t[b := s]) (t′[b := s])

(λa.t) [b := s]
def
= λa.(t[b := s]) plus conditions
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Another Problem
(If you know it, you probably choose to ignore it.)

Assume we define the set Λ of (raw)
lambda-terms inductively by the grammar:

t ::= a variables
| t t applications
| λa.t abstractions

However, if we form the quotient-set Λ/=α

then what is the structural recursion principle?

(a) [b := s]
def
= if a = b then s else a

(t t′) [b := s]
def
= (t[b := s]) (t′[b := s])

(λa.t) [b := s]
def
= λa.(t[b := s]) plus conditions

Equating a set by a
relation does not produce
automatically an inductive
set.
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Another Problem
(If you know it, you probably choose to ignore it.)

Assume we define the set Λ of (raw)
lambda-terms inductively by the grammar:

t ::= a variables
| t t applications
| λa.t abstractions

However, if we form the quotient-set Λ/=α

then what is the structural recursion principle?

(a) [b := s]
def
= if a = b then s else a

(t t′) [b := s]
def
= (t[b := s]) (t′[b := s])

(λa.t) [b := s]
def
= λa.(t[b := s]) plus conditions

Of course, this can be turned into a
proper definition — by recursion on the
depth of α-equated lambda-terms.

But for this we need to lift the depth
function from raw to α-equated
lambda-terms, because clearly depth can
also not be directly defined by structural
recursion.
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De-Bruijn Indices
Of course, of course — all these problems
would go away, if we had used de-Bruijn indices
to encode bindings. Like

λa.λb.(a b c) 7→ λλ(1 0 2)
λa.λb.(a (λc.c a) b) 7→ λλ(1 (λ(0 2)) 0)

But it just is a fact of life that de-Bruijn
indices are hard to read and some important
definitions are too far ’away’ from their named
counter-parts (see reader, page 3, for a
definition of substitution with de-Bruijn
indices). So we should attempt to do better.
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De-Bruijn Indices
Of course, of course — all these problems
would go away, if we had used de-Bruijn indices
to encode bindings. Like

λa.λb.(a b c) 7→ λλ(1 0 2)
λa.λb.(a (λc.c a) b) 7→ λλ(1 (λ(0 2)) 0)

But it just is a fact of life that de-Bruijn
indices are hard to read and some important
definitions are too far ’away’ from their named
counter-parts (see reader, page 3, for a
definition of substitution with de-Bruijn
indices). So we should attempt to do better.

Aside: We insist on names. In
case you were wondering
what ’nominal’ stands for. . .
Well, that we insist on names.
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De-Bruijn Indices
Of course, of course — all these problems
would go away, if we had used de-Bruijn indices
to encode bindings. Like

λa.λb.(a b c) 7→ λλ(1 0 2)
λa.λb.(a (λc.c a) b) 7→ λλ(1 (λ(0 2)) 0)

But it just is a fact of life that de-Bruijn
indices are hard to read and some important
definitions are too far ’away’ from their named
counter-parts (see reader, page 3, for a
definition of substitution with de-Bruijn
indices). So we should attempt to do better.

There is a great deal of other work
(e.g. HOAS) which alleviate some of these
problems (no time to be more specific
about them in this course∗).
However, none of them has made life cosy
and none of them has reached universal
acceptance for formal reasoning with
binders.
∗HOAS would, for example, deserve its own course.
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Plan for the Course
Tentative:

Today: further motivation and some ’exercises’
to become familiar with some of the main nominal
concepts (e.g. definition of α-equivalence)

Tuesday: Nominal Logic—a showcase for the
nominal techniques

Wednesday + Thursday: Justification for the
nominal techniques (a bit mathematical)

Friday: a nice application of the nominal
techniques—unification of terms with binders
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Barendregt-style Naming
Convention

Roughly:

If lambda-terms M1,. . . ,Mn occur in a
certain context, their bound variables are
chosen to be different from the free
variables.

or (my version)

Close your eyes and hope everything goes
well.∗

∗not to be tried whilst driving
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Weakening Property
. . . but sometimes eyes just cannot be closed :o(

Example: weakening property for the
simply-typed lambda-calculus

a : τ ∈ Γ
Γ ` a : τ

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

Γ, a : τ1 ` t : τ2

Γ ` λa.t : τ1 → τ2

a 6∈ dom(Γ)
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Weakening Property
. . . but sometimes eyes just cannot be closed :o(

Example: weakening property for the
simply-typed lambda-calculus

a : τ ∈ Γ
Γ ` a : τ

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

Γ, a : τ1 ` t : τ2

Γ ` λa.t : τ1 → τ2

a 6∈ dom(Γ)

Assume for the moment
that Γ is a set of
variable×type-pairs with
some well-formedness
constraints.
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Weakening Property
. . . but sometimes eyes just cannot be closed :o(

Example: weakening property for the
simply-typed lambda-calculus

a : τ ∈ Γ
Γ ` a : τ

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

Γ, a : τ1 ` t : τ2

Γ ` λa.t : τ1 → τ2

a 6∈ dom(Γ)

If Γ ` t : τ , then also Γ, a : τ ′ ` t : τ .
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Weakening Property
. . . but sometimes eyes just cannot be closed :o(

Example: weakening property for the
simply-typed lambda-calculus

a : τ ∈ Γ
Γ ` a : τ

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

Γ, a : τ1 ` t : τ2

Γ ` λa.t : τ1 → τ2

a 6∈ dom(Γ)

(∀Γ)(∀t)(∀τ ) Γ ` t : τ ⇒
(∀τ ′)(∀a 6∈ dom(Γ)) Γ, a : τ ′ ` t : τ
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Raw Lambda-Terms? No!
This property does not hold for raw
lambda-terms: since

a : τ ` a : τ
∅ ` λa.a : τ → τ

is derivable, but

a : τ ′ ` λa.a : τ → τ

is not, because

Γ, a : τ1 ` t : τ2

Γ ` λa.t : τ1 → τ2

a 6∈ dom(Γ)
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Raw Lambda-Terms? No!
This property does not hold for raw
lambda-terms: since

a : τ ` a : τ
∅ ` λa.a : τ → τ

is derivable, but

a : τ ′ ` λa.a : τ → τ

is not, because

Γ, a : τ1 ` t : τ2

Γ ` λa.t : τ1 → τ2

a 6∈ dom(Γ)

We really mean weakening
for α-equated lambda-terms.
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Let’s Make This Explicit
Nobody usually bothers, but let’s explicitly
write [t]α for the set of (raw) lambda-terms
α-equivalent with t:

[t]α
def
= {t′ | t′ =α t} .

Typing-rules for α-equated lambda-terms:

a : τ ∈ Γ
Γ ` [a]α : τ

Γ ` [t1]α : τ1 →τ2 Γ ` [t2]α : τ1

Γ ` [t1 t2]α : τ2

Γ, a : τ1 ` [t]α : τ2

Γ ` [λa.t]α : τ1 → τ2

a 6∈ dom(Γ)
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Let’s Make This Explicit
Nobody usually bothers, but let’s explicitly
write [t]α for the set of (raw) lambda-terms
α-equivalent with t:

[t]α
def
= {t′ | t′ =α t} .

Typing-rules for α-equated lambda-terms:

a : τ ∈ Γ
Γ ` [a]α : τ

Γ ` [t1]α : τ1 →τ2 Γ ` [t2]α : τ1

Γ ` [t1 t2]α : τ2

Γ, a : τ1 ` [t]α : τ2

Γ ` [λa.t]α : τ1 → τ2

a 6∈ dom(Γ)

Remember, we write [t1]α, but
we mean a set of terms {t1, . . .}
— namely the α-equivalence class
of t1.
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Attempting the Proof
We proceed by rule induction and try to show
that the predicate ϕ(Γ; [t]α; τ ) given by

(∀τ ′)(∀a′ 6∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ

is closed under the axiom and the two
inference rules. Interesting case:

Γ, a : τ1 ` [t]α : τ2

Γ ` [λa.t]α : τ1 → τ2

a 6∈ dom(Γ)
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Attempting the Proof
We proceed by rule induction and try to show
that the predicate ϕ(Γ; [t]α; τ ) given by

(∀τ ′)(∀a′ 6∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ

is closed under the axiom and the two
inference rules. Interesting case:

Γ, a : τ1 ` [t]α : τ2

Γ ` [λa.t]α : τ1 → τ2

a 6∈ dom(Γ)

We know (for the premise):

1. ϕ(Γ, a : τ1; [t]α; τ2)

2. a 6∈ dom(Γ)

We have to prove:

ϕ(Γ, a′ : τ ′; [λa.t]α; τ2)

for all τ ′ and a′ 6∈ dom(Γ).
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Attempting the Proof
We proceed by rule induction and try to show
that the predicate ϕ(Γ; [t]α; τ ) given by

(∀τ ′)(∀a′ 6∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ

is closed under the axiom and the two
inference rules. Interesting case:

Γ, a : τ1 ` [t]α : τ2

Γ ` [λa.t]α : τ1 → τ2

a 6∈ dom(Γ)

We know (for the premise):

1. ϕ(Γ, a : τ1; [t]α; τ2)

2. a 6∈ dom(Γ)

We have to prove:

ϕ(Γ, a′ : τ ′; [λa.t]α; τ2)

for all τ ′ and a′ 6∈ dom(Γ).

But this fails for a′ = a !
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Moral of this Example
Does this mean the weakening property
does not hold for the simply-typed
lambda-calculus?

Clearly, NO!

Just our simple-minded reasoning did not
work. We have to take into account some
facts about α-equivalent classes and their
typing.

And, closing your eyes is a non-starter.
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

a countable infinite set
— this will be important
on Wednesday
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example lambda-calculus

λc.λa.λb.(a b c)

a and b are atoms—bound and binding
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example lambda-calculus

λc.λa.λb.(a b c)

c is an atom—bindable
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example lambda-calculus

λc.λa.λb.(a b c)

now c is bound
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integrals
∫ ∞

−∞

(

∫

1

0

x2 + y dx

)

dy

x is an atom—bound and binding
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integrals
∫ ∞

−∞

(

∫

1

0

x2 + y dx

)

d2

0, 1 and 2 are constants
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integrals
∫ ∞

−∞

(

∫

1

0

x2 + y dx

)

d2

binding 2 does not make sense
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Now We Start in Earnest
Some bookkeeping first.

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integrals
∫ ∞

−∞

(

∫

1

0

x2 + y dx

)

d2

binding 2 does not make sense

Why atoms? Because an
operation we introduce shortly
will act on atoms only and
leaves everything else alone.

Nancy, 16. August 2004 – p.15 (10/10)



Swappings
Recall the problem: substitution does not
respect α-equivalence, e.g.

[b := a]λa.b [b := a]λc.b
λa.a λc.a
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[b := a]λa.b [b := a]λc.b
= λa.a = λc.a

Nancy, 16. August 2004 – p.16 (2/6)



Swappings
Recall the problem: substitution does not
respect α-equivalence, e.g.

[b := a]λa.b [b := a]λc.b
= λa.a = λc.a

Traditional Solution: replace [b := a]t by a
more complicated, ‘capture-avoiding’ form
of substitution.
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Swappings
Recall the problem: substitution does not
respect α-equivalence, e.g.

(b a)·λa.b (b a)·λc.b
= λb.a = λc.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t def
= swap all occurrences of

b and a in t
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Swappings
Recall the problem: substitution does not
respect α-equivalence, e.g.

(b a)·λa.b (b a)·λc.b
= λb.a = λc.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t def
= swap all occurrences of

b and a in t

be they bound, binding or bindable

Nancy, 16. August 2004 – p.16 (5/6)



Swappings
Recall the problem: substitution does not
respect α-equivalence, e.g.

(b a)·λa.b (b a)·λc.b
= λb.a = λc.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t def
= swap all occurrences of

b and a in t

Unlike for [b :=a](−), for (b a)·(−) we do
have if t =α t′ then (b a)·t =α (b a)·t′.
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Permutations
We shall extend ‘swappings’ to ‘(finite) lists of
swappings’

(a1 b1) . . . (an bn),

also called permutations (we shall often write
π for them). Permutations are bijective
mappings from atoms to atoms. For example

π =





a 7→ b
b 7→ a
c 7→ c



 = (c b)(a b)(a c)·a = b
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π for them). Permutations are bijective
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π =
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Permutations
We shall extend ‘swappings’ to ‘(finite) lists of
swappings’

(a1 b1) . . . (an bn),

also called permutations (we shall often write
π for them). Permutations are bijective
mappings from atoms to atoms. For example

π =





a 7→ b
b 7→ a
c 7→ c



 = (c b)(a b)(a c)·c = c

Our list-representation is
not unique, because

(c b)(a b)(a c) and (a b)

are the ’same’ permutation.
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Permutations on Atoms
A permutation acts on an atom as follows:

[]·a def
= a

((a1 a2) :: π)·a def
=







a1 if π·a = a2

a2 if π·a = a1

π·a otherwise

[] stands for the empty list (the identity
permutation), and

(a1 a2) :: π stands for the permutation
π followed by the swapping (a1 a2)
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Permutations on Atoms (ct.)
the composition of two permutations is
given by list-concatenation, written as
π′@π,

the inverse of a permutation is given by
list reversal, written as π−1, and

the disagreement set of two
permutations π and π′ is the set of atoms

ds(π, π′)
def
= {a | π·a 6= π′·a}
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Permutations on Atoms (ct.)
the composition of two permutations is
given by list-concatenation, written as
π′@π,

the inverse of a permutation is given by
list reversal, written as π−1, and

the disagreement set of two
permutations π and π′ is the set of atoms

ds(π, π′)
def
= {a | π·a 6= π′·a}

π =





a 7→ b
b 7→ c
c 7→ a



 π−1 =





b 7→ a
c 7→ b
a 7→ c





=(a c)(a b) =(a b)(a c)
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Permutations on Atoms (ct.)
the composition of two permutations is
given by list-concatenation, written as
π′@π,

the inverse of a permutation is given by
list reversal, written as π−1, and

the disagreement set of two
permutations π and π′ is the set of atoms

ds(π, π′)
def
= {a | π·a 6= π′·a}

for (finite) permutations this set is
always finite (namely a subset of
the atoms occurring π and π′)
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Permutations on Atoms (ct.)
the composition of two permutations is
given by list-concatenation, written as
π′@π,

the inverse of a permutation is given by
list reversal, written as π−1, and

the disagreement set of two
permutations π and π′ is the set of atoms

ds(π, π′)
def
= {a | π·a 6= π′·a}

Example ds((a c)(a b), (a b))?




a 7→ b
b 7→ c
c 7→ a









a 7→ b
b 7→ a
c 7→ c





= {b, c}
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Properties of Permutations
Here a, b and c are arbitrary atoms:

(b b)·a = a, (b c)·a = (c b)·a
π−1·(π·a) = a

π·a = b if and only if a = π−1·b
π1@π2·a = π1·(π2·a)

π·((b c)·a) = (π·b π·c)·(π·a)

the first, second and last fact can be
generalised to

if ds(π, π′) = ∅ then π·a = π′·a
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(b b)·a = a, (b c)·a = (c b)·a
π−1·(π·a) = a

π·a = b if and only if a = π−1·b
π1@π2·a = π1·(π2·a)

π·((b c)·a) = (π·b π·c)·(π·a)

the first, second and last fact can be
generalised to

if ds(π, π′) = ∅ then π·a = π′·a

Preview: in the future, permutations will be
completely characterised by the properties:

[]·x = x

π1@π2·x = π1·(π2·x)

if ds(π, π′) = ∅ then π·x = π′·x
where x stands also for other ’things’, not
just atoms. Don’t worry this will become
clearer later on.
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Permutations on λ-Terms
π· (a) given by the action on atoms

π· (t1 t2)
def
= (π·t1)(π·t2)

π·(λa.t)
def
= λ(π·a).(π·t2)

We have:

π−1·(π·t) = t

t1 = t2 if and only if π·t1 = π·t2

π·t1 = t2 if and only if t1 = π−1·t2

(The attentive listener might like to prove these
properties. You never know what you are being told.)
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Permutations on λ-Terms
π· (a) given by the action on atoms

π· (t1 t2)
def
= (π·t1)(π·t2)

π·(λa.t)
def
= λ(π·a).(π·t2)

We have:

π−1·(π·t) = t

t1 = t2 if and only if π·t1 = π·t2

π·t1 = t2 if and only if t1 = π−1·t2

(The attentive listener might like to prove these
properties. You never know what you are being told.)

’we treat lambdas as if
there were no binders’
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Permutations on λ-Terms
π· (a) given by the action on atoms

π· (t1 t2)
def
= (π·t1)(π·t2)

π·(λa.t)
def
= λ(π·a).(π·t2)

We have:

π−1·(π·t) = t

t1 = t2 if and only if π·t1 = π·t2

π·t1 = t2 if and only if t1 = π−1·t2

(The attentive listener might like to prove these
properties. You never know what you are being told.)

What is it about permutations? Well. . .

they have much nicer properties than
renaming-substitutions (stemming from
the fact that they are bijections on
atoms),

they give rise to a very simple definition
of α-equivalence (shown next)

and don’t get me started ;o)
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α-Equivalence
Consider the following four rules:

a ≈ a ≈-atm
t1 ≈ s1 t2 ≈ s2

t1 t2 ≈ s1 s2

≈-app

t ≈ s
λa.t ≈ λa.s

≈-lam1

t ≈ (a b)·s a # s

λa.t ≈ λb.s
≈-lam2

assuming a 6= b
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≈-app

t ≈ s
λa.t ≈ λa.s

≈-lam1

t ≈ (a b)·s a # s

λa.t ≈ λb.s
≈-lam2

assuming a 6= b

λa.t ≈ λb.s iff t is α-equivalent with s in
which all occurrences of b have been renamed
to a. . . oops permuted to a.
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α-Equivalence
Consider the following four rules:

a ≈ a ≈-atm
t1 ≈ s1 t2 ≈ s2

t1 t2 ≈ s1 s2

≈-app

t ≈ s
λa.t ≈ λa.s

≈-lam1

t ≈ (a b)·s a # s

λa.t ≈ λb.s
≈-lam2

assuming a 6= b

λa.t ≈ λb.s iff t is α-equivalent with s in
which all occurrences of b have been renamed
to a. . . oops permuted to a.

But this alone leads to an ’unsound’ rule!
Consider∗

λa.b and λb.a
which are not α-equivalent. However, if we apply
the permutation (a b) to a we get

b ≈ b
which leads to non-sense.

We need to ensure that there are no ’free’
occurrences of a in s. This is achieved by
freshness, written a # s.
∗there is a typo in the reader where this example is given
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α-Equivalence
Consider the following four rules:

a ≈ a ≈-atm
t1 ≈ s1 t2 ≈ s2

t1 t2 ≈ s1 s2

≈-app

t ≈ s
λa.t ≈ λa.s

≈-lam1

t ≈ (a b)·s a # s

λa.t ≈ λb.s
≈-lam2
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which all occurrences of b have been renamed
to a. . . oops permuted to a.
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Freshness

a # b
#-atm

a # t1 a # t2

a # t1 t2

#-app

a # λa.t
#-lam1

a # t
a # λb.t

#-lam2

assuming a 6= b

Be careful, we have defined two relations over
raw lambda-terms. We have not defined what
’bound’ or ’free’ means. That is a feature, not a
bug.TM
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≈ is an Equivalence
You might be an agnostic and notice that

t ≈ (a b)·s a # s

λa.t ≈ λb.s
≈-lam2

is defined rather unsymmetrically. Still we
have:

Theorem: ≈ is an equivalence relation.

(Reflexivity) t ≈ t

(Symmetry) if t1 ≈ t2 then t2 ≈ t1

(Transitivity) if t1 ≈ t2 and t2 ≈ t3 then t1 ≈ t3
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≈ is an Equivalence
You might be an agnostic and notice that

t ≈ (a b)·s a # s

λa.t ≈ λb.s
≈-lam2

is defined rather unsymmetrically. Still we
have:

Theorem: ≈ is an equivalence relation.

(Reflexivity) t ≈ t

(Symmetry) if t1 ≈ t2 then t2 ≈ t1

(Transitivity) if t1 ≈ t2 and t2 ≈ t3 then t1 ≈ t3

because ≈ and # have very good properties:

t ≈ t′ then π·t ≈ π·t′

a # t then π·a # π·t

t ≈ π·t′ then (π−1)·t ≈ t′

a # π·t then (π−1)·a # t

a # t and t ≈ t′ then a # t′
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Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

with ≈ and # we never need to choose a
’fresh’ atom (good for implementations and
for nominal unification—wait until Friday)

permutation respects both relations,
whilst renaming-substitution does not
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Does This Help?
. . . with our proof for the weakening property.
Let’s first extend the permutation operation
to:

sets of lambda-terms

π·{t1, . . . , tn}
def
= {π·t1, . . . , π·tn}

pairs

π·(x, y)
def
= (π·x, π·y)

types τ := X | τ → τ

π·τ def
= τ
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Does This Help?
. . . with our proof for the weakening property.
Let’s first extend the permutation operation
to:

sets of lambda-terms

π·{t1, . . . , tn}
def
= {π·t1, . . . , π·tn}

pairs

π·(x, y)
def
= (π·x, π·y)

types τ := X | τ → τ

π·τ def
= τ

you are probably by now not surprised that
we have:

t ∈ X if and only if (π·t) ∈ (π·X)

π·[t]α = [π·t]α
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Does This Help?
. . . with our proof for the weakening property.
Let’s first extend the permutation operation
to:

sets of lambda-terms

π·{t1, . . . , tn}
def
= {π·t1, . . . , π·tn}

pairs

π·(x, y)
def
= (π·x, π·y)

types τ := X | τ → τ

π·τ def
= τ

So given a typing-context Γ

π·Γ
will always be a typing-context,
while

Γ[a := b]

is only in some specific circum-
stances.
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Equivariance of ≈ and #
A relation (or predicate) is called equivariant
provided it is preserved under permutations,
that is its validity is invariant under
permutations. For example:

t1 ≈ t2 if and only if π·t1 ≈ π·t2

a # t if and only if π·a # π·t
It seems, equivariance is an important con-
cept when reasoning about properties involving
binders.
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. . . Also ` and ϕ
the typing relation is equivariant

Γ ` t : τ ⇔ π·Γ ` π·t : π·τ
a : τ ∈ Γ
Γ ` [a]α : τ

⇔
π·(a : τ ) ∈ π·Γ

π·Γ ` [π·a]α : π·τ
our induction-hypothesis is equivariant,
i.e. ϕ(Γ;[t]α; τ )⇔ϕ(π·Γ; π·[t]α; π·τ )

(∀τ ′)(∀a′ 6∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ
⇔

(∀τ ′)(∀a′ 6∈ dom(π·Γ)) π·Γ, a′ : τ ′ ` π·[t]α :π·τ
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. . . Also ` and ϕ
the typing relation is equivariant

Γ ` t : τ ⇔ π·Γ ` π·t : π·τ
a : τ ∈ Γ
Γ ` [a]α : τ

⇔
π·(a : τ ) ∈ π·Γ

π·Γ ` [π·a]α : π·τ
our induction-hypothesis is equivariant,
i.e. ϕ(Γ;[t]α; τ )⇔ϕ(π·Γ; π·[t]α; π·τ )

(∀τ ′)(∀a′ 6∈ dom(Γ)) Γ, a′ : τ ′ ` [t]α : τ
⇔

(∀τ ′)(∀a′ 6∈ dom(π·Γ)) π·Γ, a′ : τ ′ ` π·[t]α :π·τ

Be careful! The ∀-quantifiers are
not allowed to quantify anything in
π—if they do, we have to rename
the quantified meta-variables. How
this is done conveniently will be ex-
plained on Tuesday and Wednesday.
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Now the Proof
Case a′ = a: from the premise we know

1. ϕ(Γ, a : τ1; [t]α; τ2) 2. a 6∈ dom(Γ)
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Case a′ = a: from the premise we know

1. ϕ(Γ, a : τ1; [t]α; τ2) 2. a 6∈ dom(Γ)

By equivariance we know

1’. ϕ(Γ, b : τ1; [(a b)·t]α; τ2) 2’. b 6∈ dom(Γ)

for any fresh atom b, i.e. one not occurring in Γ, t, or
{a, a′}.
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Now the Proof
Case a′ = a: from the premise we know

1. ϕ(Γ, a : τ1; [t]α; τ2) 2. a 6∈ dom(Γ)

By equivariance we know

1’. ϕ(Γ, b : τ1; [(a b)·t]α; τ2) 2’. b 6∈ dom(Γ)

for any fresh atom b, i.e. one not occurring in Γ, t, or
{a, a′}.

This looks very much like we are closing our eyes again.
But not quite! It very much depends on how easy it is
to work with ’fresh’. Also, we do not need to explicitly
give a b—its existence will be enough.
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1’. ϕ(Γ, b : τ1; [(a b)·t]α; τ2) 2’. b 6∈ dom(Γ)

for any fresh atom b, i.e. one not occurring in Γ, t, or
{a, a′}.

By definition of ϕ we have ∀a′ 6∈ dom(Γ, b : τ1)

3. Γ, b : τ1, a′ : τ ′ ` [(a b)·t]α : τ2

Nancy, 16. August 2004 – p.29 (4/6)



Now the Proof
Case a′ = a: from the premise we know

1. ϕ(Γ, a : τ1; [t]α; τ2) 2. a 6∈ dom(Γ)

By equivariance we know

1’. ϕ(Γ, b : τ1; [(a b)·t]α; τ2) 2’. b 6∈ dom(Γ)

for any fresh atom b, i.e. one not occurring in Γ, t, or
{a, a′}.

By definition of ϕ we have ∀a′ 6∈ dom(Γ, b : τ1)

3. Γ, b : τ1, a′ : τ ′ ` [(a b)·t]α : τ2

By choice of b we can now apply the typing-rule and get

4. Γ, a′ : τ ′ ` [λb.(a b)·t]α : τ1 → τ2

Nancy, 16. August 2004 – p.29 (5/6)



Now the Proof
Case a′ = a: from the premise we know

1. ϕ(Γ, a : τ1; [t]α; τ2) 2. a 6∈ dom(Γ)

By equivariance we know

1’. ϕ(Γ, b : τ1; [(a b)·t]α; τ2) 2’. b 6∈ dom(Γ)

for any fresh atom b, i.e. one not occurring in Γ, t, or
{a, a′}.

By definition of ϕ we have ∀a′ 6∈ dom(Γ, b : τ1)

3. Γ, b : τ1, a′ : τ ′ ` [(a b)·t]α : τ2

By choice of b we can now apply the typing-rule and get

4. Γ, a′ : τ ′ ` [λb.(a b)·t]α : τ1 → τ2

But now
λb.(a b)·t ≈ λa.t

so we have
[λb.(a b)·t]α = [λa.t]α

and finally we know that

Γ, a′ : τ ′ ` [λa.t]α : τ1 → τ2

holds in the case a′ = a. Done. :o)
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A Bird’s Eye View
Old World

meta-
language
binders,
quantifiers

object-
language

HOAS
FOAS

}

Nominal World

meta-
language
binders,
quantifiers

object-
language
FOAS
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lambda-calculus,
pi-calculus,
proof-theory,. . .
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A Bird’s Eye View
Old World

meta-
language
binders,
quantifiers

object-
language

HOAS
FOAS

}

Nominal World

meta-
language
binders,
quantifiers

object-
language

NAS
Tomorrow
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Two Points to Sleep Over

if you need to rename binders:

permutations behave much better than
renaming-substitutions

if you are trying to prove something about
syntax with binders:

equivariance seems to be the key
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