
Welcome!
Files and Programme at:
http://isabelle.in.tum.de/nominal/ijcar-09.html

Have you already installed Nominal Isabelle?

Can you step through Minimal.thy without getting
an error message?

If yes, then very good.
If not, then please ask us now!

Sydney, 11. August 2008 – p. 1/98

http://isabelle.in.tum.de/nominal/ijcar-09.html


Nominal Isabelle

Stefan Berghofer and Christian Urban
TU Munich

Quick overview: a formalisation of a CK machine:

_�!cbv _

CK_ + _

Sydney, 11. August 2008 – p. 2/98



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),

provides an infrastructure for reasoning about
named binders,
for example lets you define

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

which give you named �-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Sydney, 11. August 2008 – p. 3/98

That means Nominal Isabelle is aimed at
helping you with formalising results from:

programming language theory
term-rewriting
logic
. . .

. . . not just the lambda-calculus!



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),
provides an infrastructure for reasoning about
named binders,

for example lets you define
nominal_datatype lam =

Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

which give you named �-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Sydney, 11. August 2008 – p. 3/98

That means Nominal Isabelle is aimed at
helping you with formalising results from:

programming language theory
term-rewriting
logic
. . .

. . . not just the lambda-calculus!



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),
provides an infrastructure for reasoning about
named binders,
for example lets you define

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

which give you named �-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Sydney, 11. August 2008 – p. 3/98

That means Nominal Isabelle is aimed at
helping you with formalising results from:

programming language theory
term-rewriting
logic
. . .

. . . not just the lambda-calculus!



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),
provides an infrastructure for reasoning about
named binders,
for example lets you define

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

which give you named �-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Sydney, 11. August 2008 – p. 3/98

That means Nominal Isabelle is aimed at
helping you with formalising results from:

programming language theory
term-rewriting
logic
. . .

. . . not just the lambda-calculus!



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),
provides an infrastructure for reasoning about
named binders,
for example lets you define

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

which give you named �-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Sydney, 11. August 2008 – p. 3/98

That means Nominal Isabelle is aimed at
helping you with formalising results from:

programming language theory
term-rewriting
logic
. . .

. . . not just the lambda-calculus!



A Six-Slides
Crash-Course on How

to Use Isabelle

Sydney, 11. August 2008 – p. 4/98



Proof General
Important buttons:

Next and Undo advance /
retract the processed part
Goto jumps to the current
cursor position, same as
ctrl-c/ctrl-return

Feedback:
warning messages are given in
yellow

error messages in red

Sydney, 11. August 2008 – p. 5/98



X-Symbols
. . . provide a nice way to input non-ascii
characters; for example:

8 , 9 , +, #,
V
, � ,�, 6=, 2, . . .

they need to be input via the combination
n<name-of-x-symbol>

short-cuts for often used symbols

[j . . . [[
j] . . . ]]

==> . . . =)
=> . . . )

=n . . . ^
n= . . . _

Sydney, 11. August 2008 – p. 6/98



X-Symbols
. . . provide a nice way to input non-ascii
characters; for example:

8 , 9 , +, #,
V
, � ,�, 6=, 2, . . .

they need to be input via the combination
n<name-of-x-symbol>

short-cuts for often used symbols

[j . . . [[
j] . . . ]]

==> . . . =)
=> . . . )

=n . . . ^
n= . . . _

Sydney, 11. August 2008 – p. 6/98



Isabelle Proof-Scripts
Every proof-script (theory) is of the form

theory Name
imports T1:::Tn

begin
:::

end

For Nominal Isabelle proof-scripts, T1 will
normally be the theory Nominal.
We use here the theory Lambda.thy, which
contains the definition for lambda-terms and for
capture-avoiding substitution.

Sydney, 11. August 2008 – p. 7/98



Isabelle Proof-Scripts
Every proof-script (theory) is of the form

theory Name
imports T1:::Tn

begin
:::

end

For Nominal Isabelle proof-scripts, T1 will
normally be the theory Nominal.
We use here the theory Lambda.thy, which
contains the definition for lambda-terms and for
capture-avoiding substitution.

Sydney, 11. August 2008 – p. 7/98



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, lam, . . .
Type-formers: ’a list, ’a� ’b, ’c set, . . .
Type-variables: ’a, ’b, ’c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "(’a� ’b)"
typ "’c set"
typ "nat) bool"

Sydney, 11. August 2008 – p. 8/98



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, lam, . . .
Type-formers: ’a list, ’a� ’b, ’c set, . . .
Type-variables: ’a, ’b, ’c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "(’a� ’b)"
typ "’c set"
typ "nat) bool"

Sydney, 11. August 2008 – p. 8/98



Terms
The well-formedness of terms can be queried
using:
term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "Lam [x].(Var x)"
term "App t1 t2"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "’a"
term "8 x. P x" gives "8 x. P x" :: "bool"

Sydney, 11. August 2008 – p. 9/98



Terms
The well-formedness of terms can be queried
using:
term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "Lam [x].(Var x)"
term "App t1 t2"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "’a"
term "8 x. P x" gives "8 x. P x" :: "bool"

Sydney, 11. August 2008 – p. 9/98



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ^ False"
term "{1,2,3} = {3,2,1}"
term "8 x. P x"
term "A�! B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A�! B" ’=’ term "A =) B"
term "8 x. P x" ’=’ term "

V
x. P x"

term "A =) B =) C" = term "[[A; B]] =) C"

Sydney, 11. August 2008 – p. 10/98



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ^ False"
term "{1,2,3} = {3,2,1}"
term "8 x. P x"
term "A�! B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A�! B" ’=’ term "A =) B"
term "8 x. P x" ’=’ term "

V
x. P x"

term "A =) B =) C" = term "[[A; B]] =) C"

Sydney, 11. August 2008 – p. 10/98



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ^ False"
term "{1,2,3} = {3,2,1}"
term "8 x. P x"
term "A�! B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A�! B" ’=’ term "A =) B"
term "8 x. P x" ’=’ term "

V
x. P x"

term "A =) B =) C" = term "[[A; B]] =) C"

Sydney, 11. August 2008 – p. 10/98



Definition for
the Evaluation Relation,

Contexts and
the CK Machine
on Six Slides

Sydney, 11. August 2008 – p. 11/98



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98

a name



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98

a type



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98

optionally
pretty syntax



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98

a clause

another clause



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98

Lam [x].t + Lam [x].t

t1 + Lam [x].t t2 + v’ t[x::=v’] + v
App t1 t2 + v



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98

optionally
a name



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98



Evaluation Relation
inductive
eval :: "lam) lam) bool" ("_ + _")

where
e_Lam: "Lam [x].t + Lam [x].t"
j e_App: "[[t1+ Lam [x].t; t2+ v’; t[x::=v’]+ v]] =) App t1 t2 + v"

declare eval.intros[intro]

inductive
val :: "lam) bool"

where
v_Lam[intro]: "val (Lam [x].t)"

The attribute [intro] adds the corresponding
clause to the hint theorem base (later more).

Sydney, 11. August 2008 – p. 12/98



Theorems
Isabelle’s theorem database can be querried using
thm e_Lam
thm e_App
thm conjI
thm conjunct1

Sydney, 11. August 2008 – p. 13/98

e_Lam: Lam [?x].?t + Lam [?x].?t
e_App: [[?t1 + Lam [?x].?t; ?t2 + ?v’; ?t[?x::=?v’] + ?v]]

=) App ?t1 ?t2 + ?v
conjI: [[?P; ?Q]] =) ?P ^ ?Q

conjunct1: ?P ^ ?Q =) ?P



Theorems
Isabelle’s theorem database can be querried using
thm e_Lam
thm e_App
thm conjI
thm conjunct1

Sydney, 11. August 2008 – p. 13/98

e_Lam: Lam [?x].?t + Lam [?x].?t
e_App: [[?t1 + Lam [?x].?t; ?t2 + ?v’; ?t[?x::=?v’] + ?v]]

=) App ?t1 ?t2 + ?v
conjI: [[?P; ?Q]] =) ?P ^ ?Q

conjunct1: ?P ^ ?Q =) ?P



Theorems
Isabelle’s theorem database can be querried using
thm e_Lam
thm e_App
thm conjI
thm conjunct1

Sydney, 11. August 2008 – p. 13/98

e_Lam: Lam [?x].?t + Lam [?x].?t
e_App: [[?t1 + Lam [?x].?t; ?t2 + ?v’; ?t[?x::=?v’] + ?v]]

=) App ?t1 ?t2 + ?v
conjI: [[?P; ?Q]] =) ?P ^ ?Q

conjunct1: ?P ^ ?Q =) ?P

schematic variables



Theorems
Isabelle’s theorem database can be querried using
thm e_Lam[no_vars]
thm e_App[no_vars]
thm conjI[no_vars]
thm conjunct1[no_vars]

Sydney, 11. August 2008 – p. 14/98

attributes

e_Lam: Lam [x].t + Lam [x].t
e_App: [[t1 + Lam [x].t; t2 + v’; t[x::=v’] + v]] =)

App t1 t2 + v
conjI: [[P; Q]] =) P ^ Q

conjunct1: P ^ Q =) P



Generated Theorems
Most definitions result in automatically generated
theorems; for example

thm eval.intros[no_vars]
thm eval.induct[no_vars]

Sydney, 11. August 2008 – p. 15/98

intr’s: Lam [x].t + Lam [x].t
[[t1 + Lam [x].t; t2 + v’; t[x::=v’] + v]] =) App t1 t2 + v

ind’ct: [[x1 + x2;V
x t. P Lam [x].t Lam [x].t;V
t1 x t t2 v’ v. [[t1 + Lam [x].t; P t1 Lam [x].t; t2 + v’; P

t2 v’; t[x::=v’] + v; P t[x::=v’] v]] =) P (App t1 t2) v;]]
=)P x1 x2



Generated Theorems
Most definitions result in automatically generated
theorems; for example

thm eval.intros[no_vars]
thm eval.induct[no_vars]

Sydney, 11. August 2008 – p. 15/98

intr’s: Lam [x].t + Lam [x].t
[[t1 + Lam [x].t; t2 + v’; t[x::=v’] + v]] =) App t1 t2 + v

ind’ct: [[x1 + x2;V
x t. P Lam [x].t Lam [x].t;V
t1 x t t2 v’ v. [[t1 + Lam [x].t; P t1 Lam [x].t; t2 + v’; P

t2 v’; t[x::=v’] + v; P t[x::=v’] v]] =) P (App t1 t2) v;]]
=)P x1 x2



Theorem / Lemma / Corollary

. . . they are of the form:
theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool. Assumptions can have labels.

Sydney, 11. August 2008 – p. 16/98



Theorem / Lemma / Corollary

. . . they are of the form:
theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool. Assumptions can have labels.

Sydney, 11. August 2008 – p. 16/98

lemma alpha_equ:
shows "Lam [x].Var x = Lam [y].Var y"

. . .

lemma Lam_freshness:
assumes a: "x 6= y"
shows "y # Lam [x].t =) y # t"

. . .

lemma neutral_element:
fixes x::"nat"
shows "x + 0 = x"

. . .



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)

Sydney, 11. August 2008 – p. 17/98



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)

Sydney, 11. August 2008 – p. 17/98

a name



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)

Sydney, 11. August 2008 – p. 17/98

constr’s
constr’s
constr’s



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)

Sydney, 11. August 2008 – p. 17/98

arg typearg type



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)

Sydney, 11. August 2008 – p. 17/98

pretty syntax



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)

Sydney, 11. August 2008 – p. 17/98



Datatypes
We define contexts with a single hole as the
datatype:

datatype ctx =
Hole ("�")
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

Isabelle now knows about:
typ ctx
term "�"
term "CAppL"
term "CAppL � (Var x)"

types ctxs = "ctx list" (a type abbreviation)
Sydney, 11. August 2008 – p. 17/98



CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a framestack.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
machines :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"

Sydney, 11. August 2008 – p. 18/98



CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a framestack.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
machines :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"

Sydney, 11. August 2008 – p. 18/98

Initial state of
the CK machine:

ht,[]i



CK Machine
A CK machine works on configurations h_,_i
consisting of a lambda-term and a framestack.

inductive
machine :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7! h_,_i")

where
m1: "hApp e1 e2,Esi 7! he1,(CAppL � e2)#Esi"
j m2: "val v =) hv,(CAppL � e2)#Esi 7! he2,(CAppR v �)#Esi"
j m3: "val v =) hv,(CAppR (Lam [x].e) �)#Esi 7! he[x::=v],Esi"

inductive
machines :: "lam)ctxs)lam)ctxs)bool" ("h_,_i 7!* h_,_i")

where
ms1: "he,Esi 7!* he,Esi"
j ms2: "[[he1,Es1i 7! he2,Es2i; he2,Es2i 7!* he3,Es3i]]

=) he1,Es1i 7!* he3,Es3i"
Sydney, 11. August 2008 – p. 18/98



An Isar Proof for
Evaluation implying
the CK Machine

Sydney, 11. August 2008 – p. 19/98



An Isar Proof . . .

Sydney, 11. August 2008 – p. 20/98

The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.



An Isar Proof . . .

Sydney, 11. August 2008 – p. 20/98

The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.

goal

stepping stones

...

stepping stones

assumptions



An Isar Proof . . .
A Rough Schema of an Isar Proof:

have

n1:

"assumption"

by justification

have

n2:

"assumption"

by justification

. . .
have

n:

"statement"

by justification

have

m:

"statement"

by justification

. . .
show "statement"

by justification

qed

each have-statement can be given a label
obviously, everything needs to have a justifiation

Sydney, 11. August 2008 – p. 21/98



An Isar Proof . . .
A Rough Schema of an Isar Proof:

have n1: "assumption"

by justification

have n2: "assumption"

by justification

. . .
have n: "statement"

by justification

have m: "statement"

by justification

. . .
show "statement"

by justification

qed

each have-statement can be given a label

obviously, everything needs to have a justifiation

Sydney, 11. August 2008 – p. 21/98



An Isar Proof . . .
A Rough Schema of an Isar Proof:

have n1: "assumption" by justification
have n2: "assumption" by justification
. . .
have n: "statement" by justification
have m: "statement" by justification
. . .
show "statement" by justification
qed

each have-statement can be given a label
obviously, everything needs to have a justifiation

Sydney, 11. August 2008 – p. 21/98



Justifications
Omitting proofs
sorry
Assumptions
by fact
Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)
by force simplification & proof search

(first goal)
by blast proof search
. . .

Sydney, 11. August 2008 – p. 22/98



Justifications
Omitting proofs
sorry
Assumptions
by fact
Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)
by force simplification & proof search

(first goal)
by blast proof search
. . .

Sydney, 11. August 2008 – p. 22/98

Automatic justifications can also be:
using . . . by . . .

using ih by . . .
using n1 n2 n3 by . . .
using lemma_name. . .by . . .



First Exercise
Lets try to prove a simple lemma. Remember we
defined

Transitive Closure of the CK Machine:

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2

lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)

Sydney, 11. August 2008 – p. 23/98



First Exercise
Lets try to prove a simple lemma. Remember we
defined

Transitive Closure of the CK Machine:

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2

lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)

Sydney, 11. August 2008 – p. 23/98



Proofs by Induction
Proofs by induction involve cases, which are of
the form:

proof (induct)
case (Case-Name x. . . )
have "assumption" by justification
. . .
have "statment" by justification
. . .
show "statment" by justification

next
case (Another-Case-Name y. . . )
. . .

Sydney, 11. August 2008 – p. 24/98



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" sorry

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact

have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto

show "he1,Es1i 7!* he3,Es3i" sorry
qed Sydney, 11. August 2008 – p. 25/98

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i
he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" sorry

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact

have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto

show "he1,Es1i 7!* he3,Es3i" sorry
qed Sydney, 11. August 2008 – p. 25/98

a

a

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i
he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" using c by simp

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact

have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto

show "he1,Es1i 7!* he3,Es3i" sorry
qed Sydney, 11. August 2008 – p. 25/98

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i
he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" using c by simp

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact
have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto
show "he1,Es1i 7!* he3,Es3i" sorry

qed Sydney, 11. August 2008 – p. 25/98

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i
he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" using c by simp

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact
have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto
show "he1,Es1i 7!* he3,Es3i" using d2 d3 by auto

qed Sydney, 11. August 2008 – p. 25/98

he,Esi 7!* he,Esi
ms1

he1,Es1i 7! he2,Es2i
he2,Es2i 7!* he3,Es3i
he1,Es1i 7!* he3,Es3i

ms2



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
have c: "he1,Es1i 7!* he3,Es3i" by fact
show "he1,Es1i 7!* he3,Es3i" using c by simp

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact
have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto
show "he1,Es1i 7!* he3,Es3i" using d2 d3 by auto

qed Sydney, 11. August 2008 – p. 25/98



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
show "he1,Es1i 7!* he3,Es3i" by fact

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact
have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto
show "he1,Es1i 7!* he3,Es3i" using d2 d3 by auto

qed
Sydney, 11. August 2008 – p. 26/98



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
show "he1,Es1i 7!* he3,Es3i" by fact

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact
have d1: "he2’,Es2’i 7!* he3,Es3i" by fact
have d3: "he2,Es2i 7!* he3,Es3i" using ih d1 by auto
show "he1,Es1i 7!* he3,Es3i" using d2 d3 by auto

qed
Sydney, 11. August 2008 – p. 27/98



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
show "he1,Es1i 7!* he3,Es3i" by fact

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have d2: "he1,Es1i 7! he2,Es2i" by fact
have "he2’,Es2’i 7!* he3,Es3i" by fact
then have d3: "he2,Es2i 7!* he3,Es3i" using ih by auto
show "he1,Es1i 7!* he3,Es3i" using d2 d3 by auto

qed
Sydney, 11. August 2008 – p. 28/98



A Chain of Facts
Isar allows you to build a chain of facts as
follows:

have n1: “. . . ”
have n2: “. . . ”

. . .

have ni: “. . . ”
have “. . . ” using n1 n2 . . . ni

have “. . . ”
moreover have “. . . ”

. . .

moreover have “. . . ”
ultimately have “. . . ”

also works for show

Sydney, 11. August 2008 – p. 29/98



Your Turn
lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
proof (induct)
case (ms1 e1 Es1)
show "he1,Es1i 7!* he3,Es3i" by fact

next
case (ms2 e1 Es1 e2 Es2 e2’ Es2’)
have ih: "he2’,Es2’i 7!* he3,Es3i =) he2,Es2i 7!* he3,Es3i" by fact
have "he1,Es1i 7! he2,Es2i" by fact
moreover
have "he2’,Es2’i 7!* he3,Es3i" by fact
then have "he2,Es2i 7!* he3,Es3i" using ih by auto
ultimately show "he1,Es1i 7!* he3,Es3i" by auto

qed Sydney, 11. August 2008 – p. 30/98



Automatic Proofs
Do not expect Isabelle to be able to solve
automatically show "P=NP", but. . .

lemma
assumes a: "he1,Es1i 7!* he2,Es2i"
and b: "he2,Es2i 7!* he3,Es3i"
shows "he1,Es1i 7!* he3,Es3i"

using a b
by (induct) (auto)

Sydney, 11. August 2008 – p. 31/98



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98

a

a



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98

thm machine.intros
thm machines.intros
thm eval_to_val

a

a



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98

Proof Idea:
hApp t1 t2,[]i

7!* ht1,[CAppL � t2]i
7!* hLam [x].t,[CAppL � t2]i
7!* ht2,[CAppR (Lam [x].t) �]i
7!* hv’,[CAppR (Lam [x].t) �]i
7!* ht[x::=v’],[]i
7!* hv,[]i

thm machine.intros
thm machines.intros
thm eval_to_val

a

a



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98

thm machine.intros
thm machines.intros
thm eval_to_val

a

a



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,[]i 7!* hLam [x].t,[]i" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "ht1,[]i 7!* hLam [x].t,[]i" by fact
have a2: "t2 + v’" by fact
have ih2: "ht2,[]i 7!* hv’,[]i" by fact
have a3: "t[x::=v’] + v" by fact
have ih3: "ht[x::=v’],[]i 7!* hv,[]i" by fact

show "hApp t1 t2,[]i 7!* hv,[]i" sorry
qed Sydney, 11. August 2008 – p. 32/98

thm machine.intros
thm machines.intros
thm eval_to_val

a

a



Eval Implies CK
theorem
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
proof (induct arbitrary: Es)
case (e_Lam x t) (no assumption avail.)
show "hLam [x].t,Esi 7!* hLam [x].t,Esi" sorry

next
case (e_App t1 x t t2 v’ v)
have a1: "t1 + Lam [x].t" by fact (all assumptions)
have ih1: "

V
Es. ht1,Esi 7!* hLam [x].t,Esi" by fact

have a2: "t2 + v’" by fact
have ih2: "

V
Es. ht2,Esi 7!* hv’,Esi" by fact

have a3: "t[x::=v’] + v" by fact
have ih3: "

V
Es. ht[x::=v’],Esi 7!* hv,Esi" by fact

show "hApp t1 t2,Esi 7!* hv,Esi" sorry
qed Sydney, 11. August 2008 – p. 33/98

thm machine.intros
thm machines.intros
thm eval_to_val

a

a



Finally: Eval Implies CK
theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
proof (induct arbitrary: Es)
. . .

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a eval_implies_machines_ctx by auto

Sydney, 11. August 2008 – p. 34/98



Finally: Eval Implies CK
theorem eval_implies_machines_ctx:
assumes a: "t + t’"
shows "ht,Esi 7!* ht’,Esi"

using a
proof (induct arbitrary: Es)
. . .

corollary eval_implies_machines:
assumes a: "t + t’"
shows "ht,[]i 7!* ht’,[]i"

using a eval_implies_machines_ctx by auto

Sydney, 11. August 2008 – p. 34/98

thm eval_implies_machines_ctx

gives

?t + ?t’ =) h?t,?Esi 7!* h?t’,?Esi



Weakening Lemma
(trivial / routine)

Sydney, 11. August 2008 – p. 35/98



Definition of Types
nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")

(x :T ) 2 � valid �
� ` x : T

� ` t1 : T1!T2 � ` t2 : T1

� ` t1 t2 : T2

x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

valid []
x # � valid �
valid (x :T ) ::�

Sydney, 11. August 2008 – p. 36/98



Definition of Types
nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")

(x :T ) 2 � valid �
� ` x : T

� ` t1 : T1!T2 � ` t2 : T1

� ` t1 t2 : T2

x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

valid []
x # � valid �
valid (x :T ) ::�

Sydney, 11. August 2008 – p. 36/98



Typing Judgements
types ty_ctx = "(name�ty) list"

inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#� ]]=) valid ((x,T)#� )"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

Sydney, 11. August 2008 – p. 37/98



Typing Judgements
types ty_ctx = "(name�ty) list"

inductive
valid :: "ty_ctx) bool"

where
v1: "valid []"
j v2: "[[valid � ; x#� ]]=) valid ((x,T)#� )"

inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

Sydney, 11. August 2008 – p. 37/98

#: list cons
#: freshness

(n<sharp>)



Freshness
Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly to the
notion of “not-free-in”.

lemma
fixes x::"name"
shows "x#Lam [x].t"
and "x#t1 ^ x#t2 =) x#App t1 t2"
and "x#(Var y) =) x#y"
and "[[x#t1; x#t2]] =) x#(t1,t2)"
and "[[x#l1; x#l2]] =) x#(l1@l2)"
and "x#y =) x6=y"

by (simp_all add: abs_fresh fresh_list_append fresh_atm)

Sydney, 11. August 2008 – p. 38/98



Freshness
Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly to the
notion of “not-free-in”.

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)

Sydney, 11. August 2008 – p. 39/98



Freshness
Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly to the
notion of “not-free-in”.

lemma ty_fresh:
fixes x::"name"
and T::"ty"
shows "x#T"

by (induct T rule: ty.induct)
(simp_all add: fresh_string)

Sydney, 11. August 2008 – p. 39/98

nominal_datatype ty =
tVar "string"
j tArr "ty" "ty" ("_! _")



The Weakening Lemma
We can overload� for typing contexts, but this
means we have to give explicit type-annotations.

abbreviation
"sub_ty_ctx" :: "ty_ctx) ty_ctx) bool" ("_� _")

where
"� 1 � � 2 � 8 x. x 2 set � 1 �! x 2 set � 2"

lemma weakening:
fixes � 1 � 2::"(name�ty) list"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)

Sydney, 11. August 2008 – p. 40/98



Your Turn: Variable Case
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Var � 1 x T)
have a1: "valid � 1" by fact
have a2: "(x,T) 2 set � 1" by fact
have a3: "valid � 2" by fact
have a4: "� 1 � � 2" by fact
. . .

show "� 2 ` Var x : T" sorry

Sydney, 11. August 2008 – p. 41/98

a



My Proof for the Variable Case
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Var � 1 x T)
have "� 1 � � 2" by fact
moreover
have "valid � 2" by fact
moreover
have "(x,T)2 set � 1" by fact
ultimately show "� 2 ` Var x : T" by auto

Sydney, 11. August 2008 – p. 42/98



Induction Principle for Typing
The induction principle that comes with the
typing definition is as follows:

8� xT: (x :T ) 2 � ^ valid� ) P � (x) T

8� t1 t2 T1 T2:
P � t1 (T1!T2) ^ P � t2 T1 ) P � (t1 t2) T2

8� x t T1 T2:
x#� ^ P ((x :T1) ::� ) t T2 ) P � (�x:t) (T1!T2)

� ` t : T ) P � t T

Sydney, 11. August 2008 – p. 43/98

Note the quantifiers!



Proof Idea for the Lambda Cs.
x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

If �1` t :T1 then 8�2: valid�2 ^ �1��2)�2` t :T2

For all �1, x, t, T1 and T2:

We know:
8�3: valid�3 ^ (x :T1) ::�1��3 ) �3 ` t :T1

x # �1

valid�2

�1��2

We have to show:
�2`�x:t :T1!T2

Sydney, 11. August 2008 – p. 44/98



Proof Idea for the Lambda Cs.
x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

If �1` t :T1 then 8�2: valid�2 ^ �1��2)�2` t :T2

For all �1, x, t, T1 and T2:

We know:
8�3: valid�3 ^ (x :T1) ::�1��3 ) �3 ` t :T1

x # �1

valid�2

�1��2

We have to show:
�2`�x:t :T1!T2

Sydney, 11. August 2008 – p. 44/98



Proof Idea for the Lambda Cs.
x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

If �1` t :T1 then 8�2: valid�2 ^ �1��2)�2` t :T2

For all �1, x, t, T1 and T2:

We know:
8�3: valid�3 ^ (x :T1) ::�1��3 ) �3 ` t :T1

x # �1

valid�2

�1��2

We have to show:
�2`�x:t :T1!T2

Sydney, 11. August 2008 – p. 44/98



Proof Idea for the Lambda Cs.
x # � (x :T1) ::� ` t : T2

� ` �x:t : T1!T2

If �1` t :T1 then 8�2: valid�2 ^ �1��2)�2` t :T2

For all �1, x, t, T1 and T2:

We know:
8�3: valid�3 ^ (x :T1) ::�1��3 ) �3 ` t :T1

x # �1

valid�2

�1��2

We have to show:
�2`�x:t :T1!T2

Sydney, 11. August 2008 – p. 44/98

�3 7! (x :T1) ::�2



Your Turn: Lambda Case
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Lam x � 1 T1 t T2)
have ih: "

V
� 3. [[valid � 3; (x,T1)#� 1 � � 3]] =) � 3 ` t : T2" by fact

have a0: "x#� 1" by fact
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
. . .

show "� 2 ` Lam [x].t : T1! T2" sorry

Sydney, 11. August 2008 – p. 45/98

a



Strong Induction Principle

Sydney, 11. August 2008 – p. 46/98

Instead we are going to use the strong induction
principle and set up the induction so that the
binder “avoids” �2.



2nd Attempt
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (induct arbitrary: � 2)
case (t_Lam x � 1 T1 t T2)
have ih: "

V
� 3. [[valid � 3; (x,T1)#� 1 � � 3]] =) � 3 ` t : T2" by fact

have a0: "x#� 1" by fact
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
. . .

show "� 2 ` Lam [x].t : T1! T2" sorry

Sydney, 11. August 2008 – p. 47/98



2nd Attempt
lemma
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (nominal_induct avoiding: � 2 rule: typing.strong_induct)
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "

V
� 3. [[valid � 3; (x,T1)#� 1 � � 3]] =) � 3 ` t : T2" by fact

have a0: "x#� 1" by fact
have a1: "valid � 2" by fact
have a2: "� 1 � � 2" by fact
. . .

show "� 2 ` Lam [x].t : T1! T2" sorry
Sydney, 11. August 2008 – p. 48/98

a

a



lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T" and b: "valid � 2" and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
proof (nominal_induct avoiding: � 2 rule: typing.strong_induct)
case (t_Lam x � 1 T1 t T2)
have vc: "x#� 2" by fact
have ih: "[[valid ((x,T1)#� 2); (x,T1)#� 1�(x,T1)#� 2]]

=) (x,T1)#� 2 ` t:T2" by fact
have "� 1 � � 2" by fact
then have "(x,T1)#� 1 � (x,T1)#� 2" by simp
moreover
have "valid � 2" by fact
then have "valid ((x,T1)#� 2)" using vc by auto
ultimately have "(x,T1)#� 2 ` t : T2" using ih by simp
then show "� 2 ` Lam [x].t : T1!T2" using vc by auto

qed (auto)
Sydney, 11. August 2008 – p. 49/98



lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T" and b: "valid � 2" and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
by (nominal_induct avoiding: � 2 rule: typing.strong_induct)

(auto)

Perhaps the weakening lemma is after all trivial /
routine / obvious ;o)
We shall late see that the work we put into the
stronger induction principle needs a bit of
thinking. For you, of course, it is provided
automatially.

Sydney, 11. August 2008 – p. 50/98



lemma weakening:
fixes � 1 � 2::"ty_ctx"
assumes a: "� 1 ` t : T" and b: "valid � 2" and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
by (nominal_induct avoiding: � 2 rule: typing.strong_induct)

(auto)

Perhaps the weakening lemma is after all trivial /
routine / obvious ;o)
We shall late see that the work we put into the
stronger induction principle needs a bit of
thinking. For you, of course, it is provided
automatially.

Sydney, 11. August 2008 – p. 50/98



Function Definitions
and the Simplifier

Sydney, 11. August 2008 – p. 51/98



Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like

Sydney, 11. August 2008 – p. 52/98



Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like

Sydney, 11. August 2008 – p. 52/98

a name



Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like

Sydney, 11. August 2008 – p. 52/98

a type



Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like

Sydney, 11. August 2008 – p. 52/98

pretty syntax



Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like

Sydney, 11. August 2008 – p. 52/98

char. eqs



Function Definitions
Later on we will need a few functions about
contexts:

fun
filling :: "ctx) lam) lam" ("_[[_]]")

where
"�[[t]] = t"
j "(CAppL E t’)[[t]] = App (E[[t]]) t’"
j "(CAppR t’ E)[[t]] = App t’ (E[[t]])"

Once a function is defined, the simplifier will be
able to solve equations like
lemma
shows "(CAppL � (Var x))[[Var y]] = App (Var y) (Var x)"
by simp

Sydney, 11. August 2008 – p. 52/98



Context Composition
fun
ctx_compose :: "ctx) ctx) ctx" ("_ � _" [101,100] 100)
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

fun
ctx_composes :: "ctxs) ctx" ("_#" [110] 110)

where
"[]# = �"
j "(E#Es)# = (Es#) � E"

Explicit preedences are given in order to enforce
the notation:

(E1 � E2) � E3 (E1 � E2)#

Sydney, 11. August 2008 – p. 53/98



Context Composition
fun
ctx_compose :: "ctx) ctx) ctx" ("_ � _" [101,100] 100)
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

fun
ctx_composes :: "ctxs) ctx" ("_#" [110] 110)

where
"[]# = �"
j "(E#Es)# = (Es#) � E"

Explicit preedences are given in order to enforce
the notation:

(E1 � E2) � E3 (E1 � E2)#
Sydney, 11. August 2008 – p. 53/98

precedence

precedence



Context Composition
fun
ctx_compose :: "ctx) ctx) ctx" ("_ � _" [101,100] 100)
where
"� � E’ = E’"
j "(CAppL E t’) � E’ = CAppL (E � E’) t’"
j "(CAppR t’ E) � E’ = CAppR t’ (E � E’)"

fun
ctx_composes :: "ctxs) ctx" ("_#" [110] 110)

where
"[]# = �"
j "(E#Es)# = (Es#) � E"

Explicit preedences are given in order to enforce
the notation:

(E1 � E2) � E3 (E1 � E2)#
Sydney, 11. August 2008 – p. 53/98

precedence

precedence



Your Turn
lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

proof (induct E1)
case Hole
show "� � E2[[t]] = �[[E2[[t]]]]" sorry

next
case (CAppL E1 t’)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppL E1 t’) � E2)[[t]] = (CAppL E1 t’)[[E2[[t]]]]" sorry

next
case (CAppR t’ E1)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppR t’ E1) � E2)[[t]] = (CAppR t’ E1)[[E2[[t]]]]" sorry

qed

Sydney, 11. August 2008 – p. 54/98

datatype ctx =
Hole
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"



Your Turn
lemma ctx_compose:
shows "(E1 � E2)[[t]] = E1[[E2[[t]]]]"

proof (induct E1)
case Hole
show "� � E2[[t]] = �[[E2[[t]]]]" sorry

next
case (CAppL E1 t’)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppL E1 t’) � E2)[[t]] = (CAppL E1 t’)[[E2[[t]]]]" sorry

next
case (CAppR t’ E1)
have ih: "(E1 � E2)[[t]] = E1[[E2[[t]]]]" by fact
show "((CAppR t’ E1) � E2)[[t]] = (CAppR t’ E1)[[E2[[t]]]]" sorry

qed

Sydney, 11. August 2008 – p. 54/98

thm filling.simps[no_vars]
thm ctx_compose.simps[no_vars]

datatype ctx =
Hole
j CAppL "ctx" "lam"
j CAppR "lam" "ctx"

a

a

a



Your Turn Again
Assuming:
lemma neut_hole: shows "E � � = E"
lemma circ_assoc: shows "(E1 � E2) � E3 = E1 � (E2 � E3)"

Prove
lemma shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"
proof (induct Es1)
case Nil
show "([] @ Es2)# = Es2# � []#" sorry

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact

show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#" sorry
qed

Sydney, 11. August 2008 – p. 55/98



Your Turn Again
Assuming:
lemma neut_hole: shows "E � � = E"
lemma circ_assoc: shows "(E1 � E2) � E3 = E1 � (E2 � E3)"

Prove
lemma shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"
proof (induct Es1)
case Nil
show "([] @ Es2)# = Es2# � []#" sorry

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact

show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#" sorry
qed

Sydney, 11. August 2008 – p. 55/98

a

a



My Solution
lemma
shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"

proof (induct Es1)
case Nil
show "([]@Es2)# = Es2# � []#" using neut_hole by simp

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact
have lhs: "((E#Es1) @ Es2)# = (Es1 @ Es2)# � E" by simp
have lhs’: "(Es1 @ Es2)# � E = (Es2# � Es1#) � E" using ih by simp
have rhs: "Es2# � (E#Es1)# = Es2# � (Es1# � E)" by simp
show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#"
using lhs lhs’ rhs circ_assoc by simp

qed

Sydney, 11. August 2008 – p. 56/98



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = : : : = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "::: = t3" by just.
also have "::: = t4" by just.
. . .
also have "::: = tn" by just.
finally have "t1 = tn" by simp

Sydney, 11. August 2008 – p. 57/98



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = : : : = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "::: = t3" by just.
also have "::: = t4" by just.
. . .
also have "::: = tn" by just.
finally have "t1 = tn" by simp

Sydney, 11. August 2008 – p. 57/98



A Readable Solution
lemma
shows "(Es1 @ Es2)# = (Es2#) � (Es1#)"

proof (induct Es1)
case Nil
show "([]@Es2)# = Es2# � []#" using neut_hole by simp

next
case (Cons E Es1)
have ih: "(Es1 @ Es2)# = Es2# � Es1#" by fact
have "((E#Es1) @ Es2)# = (Es1 @ Es2)# � E" by simp
also have "::: = (Es2# � Es1#) � E" using ih by simp
also have "::: = Es2# � (Es1# � E)" using circ_assoc by simp
also have "::: = Es2# � (E#Es1)#" by simp
finally show "((E#Es1) @ Es2)# = Es2# � (E#Es1)#" by simp

qed

Sydney, 11. August 2008 – p. 58/98



Capture-Avoiding
Substitution and the
Substitution Lemma

Sydney, 11. August 2008 – p. 59/98



Capture-Avoiding Subst.
Lambda.thy contains a definition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y::=s] = (if x=y then s else (Var x))"

"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"

"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Sydney, 11. August 2008 – p. 60/98



Capture-Avoiding Subst.
Lambda.thy contains a definition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y::=s] = (if x=y then s else (Var x))"

"(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])"

"x#(y,s) =) (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Sydney, 11. August 2008 – p. 60/98



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 61/98

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 61/98

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 61/98

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 61/98

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 61/98

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 61/98

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N ] = �y:(M [x := N ])

(�z:M1)[x := N ][y := L]

� (�z:(M1[x := N ]))[y := L]
1

 

� �z:(M1[x := N ][y := L])
2

 

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!



Case Distintions
Assuming P1 _ P2 _ P3 is true then:

{ assume "P1"
. . .
have "something" . . . }

moreover
{ assume "P2"
. . .
have "something" . . . }

moreover
{ assume "P3"
. . .
have "something" . . . }

ultimately have "something" by blast

Sydney, 11. August 2008 – p. 62/98



Case Distintions
Assuming P1 _ P2 _ P3 is true then:

{ assume "P1"
. . .
have "something" . . . }

moreover
{ assume "P2"
. . .
have "something" . . . }

moreover
{ assume "P3"
. . .
have "something" . . . }

ultimately have "something" by blast

Sydney, 11. August 2008 – p. 62/98

P1 7! (z=x)
P2 7! (z=y) ^ (z6=x)
P3 7! (z6=y) ^ (z6=x)



Case Distintions
Assuming P1 _ P2 _ P3 is true then:

{ assume "P1"
. . .
have "something" . . . }

moreover
{ assume "P2"
. . .
have "something" . . . }

moreover
{ assume "P3"
. . .
have "something" . . . }

ultimately have "something" by blast

Sydney, 11. August 2008 – p. 62/98

P1 =) smth
P2 =) smth
P3 =) smth

smth



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 63/98

thm forget:
x # L =) L[x::=P] = L

a

a

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x6=y" by fact
have a2: "x#L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Sydney, 11. August 2008 – p. 64/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = :::" sorry

also have "::: = ?RHS" sorry
finally show "?LHS = ?RHS" by simp

qed
next



Sydney, 11. August 2008 – p. 64/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = :::" sorry

also have "::: = ?RHS" sorry
finally show "?LHS = ?RHS" by simp

qed
next



Sydney, 11. August 2008 – p. 64/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = :::" sorry

also have "::: = ?RHS" sorry
finally show "?LHS = ?RHS" by simp

qed
next



Sydney, 11. August 2008 – p. 64/98

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = :::" sorry

also have "::: = ?RHS" sorry
finally show "?LHS = ?RHS" by simp

qed
next



Sydney, 11. August 2008 – p. 64/98

a

lemma substitution_lemma:
assumes a: "x6=y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = :::" sorry

also have "::: = ?RHS" sorry
finally show "?LHS = ?RHS" by simp

qed
next



Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N ][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N ][y :=L]� �z:(M1[x :=N ][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Sydney, 11. August 2008 – p. 65/98



Substitution Lemma
The strong structural induction principle for
lambda-terms allowed us to follow Barendregt’s
proof quite closely. It also enables Isabelle to
find this proof automatically:

lemma substitution_lemma:
assumes asm: "x6=y" "x#L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using asm

by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
(auto simp add: fresh_fact forget)

Sydney, 11. August 2008 – p. 66/98



How To Prove
False Using the

Variable Convention
(on Paper)

Sydney, 11. August 2008 – p. 67/98



So Far So Good
A Faulty Lemma with the Variable Convention?

Variable Convention:
IfM1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

Inductive Definitions:

prem1 : : : premn
scs

concl

Rule Inductions:
1.) Assume the property for

the premises. Assume
the side-conditions.

2.) Show the property for
the conclusion.

Sydney, 11. August 2008 – p. 68/98



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Sydney, 11. August 2008 – p. 69/98



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Sydney, 11. August 2008 – p. 69/98



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Cases 1 and 2 are trivial:

If y # x then y # x.
If y # t1 t2 then y # t1 t2.

Sydney, 11. August 2008 – p. 69/98



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.

So we have y # t. Hence y # t0 by IH. Done!

Sydney, 11. August 2008 – p. 69/98



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.

So we have y # t. Hence y # t0 by IH. Done!

Sydney, 11. August 2008 – p. 69/98

Variable Convention:
If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.

So we have y # t. Hence y # t0 by IH. Done!

Sydney, 11. August 2008 – p. 69/98

y 62fv(�x:t)() y 62fv(t)�fxg x 6=y
() y 62fv(t)

Variable Convention:
If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.
So we have y # t. Hence y # t0 by IH. Done!

Sydney, 11. August 2008 – p. 69/98

y 62fv(�x:t)() y 62fv(t)�fxg x 6=y
() y 62fv(t)

Variable Convention:
If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.



Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.
So we have y # t. Hence y # t0 by IH. Done!

Sydney, 11. August 2008 – p. 69/98



VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Sydney, 11. August 2008 – p. 70/98



VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Sydney, 11. August 2008 – p. 70/98

A relation R is equivariant iff

8� t1 : : : tn
R t1 : : : tn ) R(��t1) : : : (��tn)

This means the relation has to be invariant under
permutative renaming of variables.



VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Sydney, 11. August 2008 – p. 70/98



Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

equivariance typing
nominal_inductive typing

by (simp_all add: abs_fresh ty_fresh)

Sydney, 11. August 2008 – p. 71/98



Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

equivariance typing
nominal_inductive typing

by (simp_all add: abs_fresh ty_fresh)

Sydney, 11. August 2008 – p. 71/98

Subgoals
1.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # �

2.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # Lam [x].t

3.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # T1! T2



Typing Judgements (2)
inductive
typing :: "ty_ctx) lam) ty) bool" ("_ ` _ : _")

where
t_Var: "[[valid � ; (x,T) 2 set � ]] =) � ` Var x : T"
j t_App: "[[� ` t1 : T1!T2; � ` t2 : T1]] =) � ` App t1 t2 : T2"
j t_Lam: "[[x#� ; (x,T1)#� ` t : T2]] =) � ` Lam [x].t : T1! T2"

equivariance typing
nominal_inductive typing
by (simp_all add: abs_fresh ty_fresh)

Sydney, 11. August 2008 – p. 71/98

Subgoals
1.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # �

2.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # Lam [x].t

3.
V
x � T1 t T2. [[x # � ; (x, T1)::� ` t : T2]] =) x # T1! T2



CK Machine Implies
the Evaluation Relation

(Via A Small-Step
Reduction)

Sydney, 11. August 2008 – p. 72/98



A Direct Attempt
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"

We can prove this direction by introducing a
small-step reduction relation.

Sydney, 11. August 2008 – p. 73/98



A Direct Attempt
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"
oops

We can prove this direction by introducing a
small-step reduction relation.

Sydney, 11. August 2008 – p. 73/98



A Direct Attempt
The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "ht,[]i 7!* hv,[]i"
and b: "val v"
shows "t + v"
oops

We can prove this direction by introducing a
small-step reduction relation.

Sydney, 11. August 2008 – p. 73/98



CBV-Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "val v =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

Later on we like to use the strong induction
principle for this relation.

Sydney, 11. August 2008 – p. 74/98



CBV-Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "val v =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

Later on we like to use the strong induction
principle for this relation.

Sydney, 11. August 2008 – p. 74/98

Conditions:
1.
V
v x t. val v =) x # App Lam [x].t v

2.
V
v x t. val v =) x # t[x::=v]



CBV-Reduction
inductive
cbv :: "lam)lam)bool" ("_�!cbv _")

where
cbv1: "[[val v; x#v]] =) App (Lam [x].t) v�!cbv t[x::=v]"
j cbv2[intro]: "t�!cbv t’ =) App t t2 �!cbv App t’ t2"
j cbv3[intro]: "t�!cbv t’ =) App t2 t�!cbv App t2 t’"

The conditions that give us automatically the
strong induction principle require us to add the
assumption x # v. This makes this rule less
useful.

Sydney, 11. August 2008 – p. 75/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



Better Introduction Rule
lemma better_cbv1[intro]:
assumes a: "val v"
shows "App (Lam [x].t) v�!cbv t[x::=v]"

proof -
obtain y::"name" where fs: "y#(x,t,v)"

by (rule exists_fresh) (auto simp add: fs_name1)
have "App (Lam [x].t) v = App (Lam [y].([(y,x)]�t)) v" using fs

by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have ":::�!cbv ([(y,x)]�t)[y::=v]" using fs a

by (auto simp add: cbv1 fresh_prod)
also have "::: = t[x::=v]" using fs

by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].t) v�!cbv t[x::=v]" by simp

qed

Sydney, 11. August 2008 – p. 76/98



CBV-Reduction?
inductive
"cbvs" :: "lam) lam) bool" (" _�!cbv* _")

where
cbvs1[intro]: "e�!cbv* e"
j cbvs2[intro]: "[[e1�!cbv e2; e2 �!cbv* e3]] =) e1 �!cbv* e3"

lemma cbvs3[intro]:
assumes a: "e1 �!cbv* e2" "e2 �!cbv* e3"
shows "e1 �!cbv* e3"

using a by (induct) (auto)

lemma cbv_in_ctx:
assumes a: "t�!cbv t’"
shows "E[[t]] �!cbv E[[t’]]"

using a by (induct E) (auto)

Sydney, 11. August 2008 – p. 77/98



CBV-Reduction?
inductive
"cbvs" :: "lam) lam) bool" (" _�!cbv* _")

where
cbvs1[intro]: "e�!cbv* e"
j cbvs2[intro]: "[[e1�!cbv e2; e2 �!cbv* e3]] =) e1 �!cbv* e3"

lemma cbvs3[intro]:
assumes a: "e1 �!cbv* e2" "e2 �!cbv* e3"
shows "e1 �!cbv* e3"

using a by (induct) (auto)

lemma cbv_in_ctx:
assumes a: "t�!cbv t’"
shows "E[[t]] �!cbv E[[t’]]"

using a by (induct E) (auto)

Sydney, 11. August 2008 – p. 77/98

Is another such
exercise needed?



CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Sydney, 11. August 2008 – p. 78/98



CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Sydney, 11. August 2008 – p. 78/98



CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Sydney, 11. August 2008 – p. 78/98

If we had not derived the better
cbv-rule, then we would have to do an
explicit renaming here.



CK Machine Implies CBV?

lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "he,Esi 7!* he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "he,[]i 7!* he’,[]i"
shows "e�!cbv* e’"

using a by (auto dest: machines_implies_cbvs_ctx)

Sydney, 11. August 2008 – p. 78/98



Your Turn
lemma machine_implies_cbvs_ctx:
assumes a: "he,Esi 7! he’,Es’i"
shows "(Es#)[[e]] �!cbv* (Es’#)[[e’]]"

using a proof (induct)
case (m1 t1 t2 Es)

show "Es#[[App t1 t2]] �!cbv* (CAppL � t2#Es)#[[t1]]" sorry
next
case (m2 v t2 Es)
have "val v" by fact

show "(CAppL � t2#Es)#[[v]] �!cbv* (CAppR v �#Es)#[[t2]]" sorry
next
case (m3 v x t Es)
have "val v" by fact

show "(CAppR Lam [x].t �#Es)#[[v]] �!cbv* (Es#)[[t[x::=v]]]" sorry
qed

Sydney, 11. August 2008 – p. 79/98

a

a

a



CBV? Implies Evaluation
We need the following auxiliary lemmas in order
to show that cbv-reduction implies evaluation.

lemma eval_val:
assumes a: "val t"
shows "t + t"

using a by (induct) (auto)

lemma e_App_elim:
assumes a: "App t1 t2 + v"
shows "9 x t v’. t1 + Lam [x].t ^ t2 + v’ ^ t[x::=v’] + v"

using a by (cases) (auto simp add: lam.inject)

Sydney, 11. August 2008 – p. 80/98



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" sorry

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 81/98

a



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98

lemma e_App_elim:
assumes a: "App t1 t2 + v"
shows "9 x t v’. t1 + Lam [x].t ^ t2 + v’ ^ t[x::=v’] + v"



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98

lemma e_App_elim:
assumes a: "App t1 t2 + v"
shows "9 x t v’. t1 + Lam [x].t ^ t2 + v’ ^ t[x::=v’] + v"



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98



lemma cbv_eval:
assumes a: "t1 �!cbv t2" "t2 + t3"
shows "t1 + t3"

using a proof(induct arbitrary: t3)
case (cbv1 v x t t3)
have a1: "val v" by fact
have a2: "t[x::=v] + t3" by fact
show "App Lam [x].t v + t3" using eval_val a1 a2 by auto

next
case (cbv2 t t’ t2 t3)
have ih: "

V
t3. t’ + t3 =) t + t3" by fact

have "App t’ t2 + t3" by fact
then obtain x t’’ v’
where a1: "t’ + Lam [x].t’’"

and a2: "t2 + v’"
and a3: "t’’[x::=v’] + t3" using e_App_elim by blast

have "t + Lam [x].t’’" using ih a1 by auto
then show "App t t2 + t3" using a2 a3 by auto

qed (auto dest!: e_App_elim)
Sydney, 11. August 2008 – p. 82/98



Nothing Interesting
lemma cbvs_eval:
assumes a: "t1 �!cbv* t2" "t2 + t3"
shows "t1 + t3"

using a by (induct) (auto intro: cbv_eval)

lemma cbvs_implies_eval:
assumes a: "t�!cbv* v" "val v"
shows "t + v"

using a by (induct) (auto intro: eval_val cbvs_eval)

theorem machines_implies_eval:
assumes a: "ht1,[]i 7!* ht2,[]i" and b: "val t2"
shows "t1 + t2"

proof -
have "t1 �!cbv* t2" using a by (simp add: machines_implies_cbvs)
then show "t1 + t2" using b by (simp add: cbvs_implies_eval)

qed
Sydney, 11. August 2008 – p. 83/98



Extensions
With only minimal modifications the proofs can be
extended to the language given by:

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")
j Num "nat"
j Minus "lam" "lam" ("_ -- _")
j Plus "lam" "lam" ("_ ++ _")
j TRUE
j FALSE
j IF "lam" "lam" "lam"
j Fix "«name»lam" ("Fix [_]._")
j Zet "lam"
j Eqi "lam" "lam"

Sydney, 11. August 2008 – p. 84/98



Honest Toil, No Theft!
The sacred principle of HOL:

“The method of ‘postulating’ what we want has
many advantages; they are the same as the
advantages of theft over honest toil.”

B. Russell, Introduction of Mathematical Philosophy

I will show next that the weak structural
induction principle implies the strong structural
induction principle.

(I am only going to show the lambda-case.)

Sydney, 11. August 2008 – p. 85/98



Permutations
A permutation acts on variable names as follows:

[]�a
def
= a

((a1 a2) ::�)�a
def
=

8><
>:

a1 if ��a = a2

a2 if ��a = a1

��a otherwise

[] stands for the empty list (the identity
permutation), and

(a1 a2) ::� stands for the permutation �
followed by the swapping (a1 a2).

Sydney, 11. August 2008 – p. 86/98



Permutations on Lambda-Terms
Permutations act on lambda-terms as follows:

��x
def
= “action on variables”

�� (t1 t2)
def
= (��t1) (��t2)

��(�x:t)
def
= �(��x):(��t)

Alpha-equivalence can be defined as:

t1 = t2
�x:t1 = �x:t2

x 6= y t1 = (x y)�t2 x # t2
�x:t1 = �y:t2

Sydney, 11. August 2008 – p. 87/98



Permutations on Lambda-Terms
Permutations act on lambda-terms as follows:

��x
def
= “action on variables”

�� (t1 t2)
def
= (��t1) (��t2)

��(�x:t)
def
= �(��x):(��t)

Alpha-equivalence can be defined as:

t1 = t2
�x:t1 = �x:t2

x 6= y t1 = (x y)�t2 x # t2
�x:t1 = �y:t2

Sydney, 11. August 2008 – p. 87/98

Notice, I wrote equality here!



My Claim
8x: P x

8t1 t2: P t1 ^ P t2 ) P (t1 t2)

8x t: P t) P (�x:t)

P t

implies

8x c: Pc x

8t1 t2 c: (8d: Pd t1) ^ (8d: Pd t2) ) Pc (t1 t2)

8x t c: x # c ^ (8d: Pd t) ) Pc (�x:t)

Pc t
Sydney, 11. August 2008 – p. 88/98



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove Pc t by induction on t.

I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.

I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc (��(�x:t)).

We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).

We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.

Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).

Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc (((y ��x) ::�)�t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t) to infer

P c�y:((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t) to infer

P c�y:((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



Proof for the Strong Induction Principle

Sydney, 11. August 2008 – p. 89/98

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t) ) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t) to infer

P c�y:((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2



This Proof in Isabelle

Sydney, 11. August 2008 – p. 90/98

lemma lam_strong_induct:
fixes c::"’a::fs_name"
assumes h1: "

V
x c. P c (Var x)"

and h2: "
V
t1 t2 c. [[8 d. P d t1; 8 d. P d t2]] =) P c (App t1 t2)"

and h3: "
V
x t c. [[x#c; 8 d. P d t]] =) P c (Lam [x].t)"

shows "P c t"
proof -

have "8 (�::name prm) c. P c (��t)" : : :
interesting bit

then have "P c (([]::name prm)�t)" by blast
then show "P c t" by simp

qed



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Interesting Bit

Sydney, 11. August 2008 – p. 91/98

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98

boundbound

free



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98

freefreefree



Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Sydney, 11. August 2008 – p. 92/98



Formalisation of LF

Sydney, 11. August 2008 – p. 93/98

nominal_datatype
kind = Type

j KPi "ty" "«name»kind"
and ty = TConst "id"

j TApp "ty" "trm"
j TPi "ty" "«name»ty"

and trm = Const "id"
j Var "name"
j App "trm" "trm"
j Lam "ty" "«name»trm"

abbreviation KPi_syn :: "name) ty) kind) kind" ("�[_:_]._")
where "�[x:A].K� KPi A x K"

abbreviation TPi_syn :: "name) ty) ty) ty" ("�[_:_]._")
where "�[x:A1].A2 � TPi A1 x A2"

abbreviation Lam_syn :: "name) ty) trm) trm" ("Lam [_:_]._")
where "Lam [x:A].M� Lam A x M"



Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Sydney, 11. August 2008 – p. 94/98

2h



Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Sydney, 11. August 2008 – p. 94/98

2h



Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Sydney, 11. August 2008 – p. 94/98
(each time one needs to check�31pp of informal paper proofs)

2h



Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Sydney, 11. August 2008 – p. 94/98
(each time one needs to check�31pp of informal paper proofs)

2h



Formalisation of LF
(joint work with Cheney and Berghofer)

1. Solution Proofdef
= Alg.

1st Solution Proofdef
=

+ex Alg.

2nd Solution Proofdef
= Alg.-ex

3rd Solution Proofdef
= Alg.

Sydney, 11. August 2008 – p. 94/98
(each time one needs to check�31pp of informal paper proofs)

2h



In My PhD

Sydney, 11. August 2008 – p. 95/98

nominal_datatype trm =
Ax "name" "coname"
j Cut "«coname»trm" "«name»trm" ("Cut h_i._ (_)._")
j NotR "«name»trm" "coname" ("NotR (_)._ _")
j NotL "«coname»trm" "name" ("NotL h_i._ _")
j AndR "«coname»trm" "«coname»trm" "coname" ("AndR h_i._ h_i._ _")
j AndL1 "«name»trm" "name" ("AndL1 (_)._ _")
j AndL2 "«name»trm" "name" ("AndL2 (_)._ _")
j OrR1 "«coname»trm" "coname" ("OrR1 h_i._ _")
j OrR2 "«coname»trm" "coname" ("OrR2 h_i._ _")
j OrL "«name»trm" "«name»trm" "name" ("OrL (_)._ (_)._ _")
j ImpR "«name»(«coname»trm)" "coname" ("ImpR (_).h_i._ _")
j ImpL "«coname»trm" "«name»trm" "name" ("ImpL h_i._ (_)._ _")

A SN-result for cut-elimination in CL: reviewed by Henk
Barendregt and Andy Pitts, and reviewers of conference and
journal paper. Still, I found errors in central lemmas;
fortunately the main claim was correct :o)



Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)

Sydney, 11. August 2008 – p. 96/98



Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)

Sydney, 11. August 2008 – p. 96/98



Two Health Warnings ;o)
Theorem provers should come with two health
warnings:

Theorem provers are addictive!
(Xavier Leroy: “Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...”)

Theorem provers cause you to lose faith in your
proofs done by hand!
(Michael Norrish, Mike Gordon, me, very possibly others)

Sydney, 11. August 2008 – p. 96/98



Conclusions
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus);
also for rule inductions (though they have to
satisfy a vc-condition).
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can actually be
used.

Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine. . . provided you use Nominal Isabelle. ;o)

Sydney, 11. August 2008 – p. 97/98



Conclusions
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus);
also for rule inductions (though they have to
satisfy a vc-condition).
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can actually be
used.
Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine. . . provided you use Nominal Isabelle. ;o)

Sydney, 11. August 2008 – p. 97/98



Thank you very much!

Sydney, 11. August 2008 – p. 98/98


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	anm0: 


