Theorem Proving

"I think you should be more
explicit here in step two."

Why Theorem Prooving

@ We want to make sure algorithms (and their
implementations) are correct.

Why Theorem Prooving

@ We want to make sure algorithms (and their
implementations) are correct.

@ Ideally we develop the algorithm and the proof of
its correctness concurrently.
@ Nice example about regular expression matching:

'Proof-directed debugging' revisited for a
first-order version by Kwangkeun Yi.

This is based on an earlier paper by Robert
Harper.

Languages

definition

lang_seq :: "string set = string set = string set" ("_; _")
where

"L1;L2={s1@s2 |sls2.s1 € L1 As2 € L2}

fun
lang_pow :: "string set = nat = string set" ("_ T _")
where
"LTOo={[]"
"L T (Suci)=L: (LT

definition
lang_star :: "string set = string set" ("_x"
where

e = Ji. (LT)"

Regular Expressions

datatype rexp =
EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

fun

L :: "rexp = string set"
where

"LEMPTY) = {[T}"
| "L(CHAR ¢) = {[c])"
| "L(SEQ r1r2) = (L rl); (L r2)"
| "L(ALT r1r2) = (L r1) U (L r2)"
| "L(STAR r) = (L r)x"

Dagger

function
dagger :: "rexp = char = rexp set" ("_ 1 _")
where
rl: "(EMPTY) § c = {}"
| r2: "(CHAR C') ¢ = (if ¢ = ¢' then (EMPTY} else {})"
| r3:"(ALTrir2) tc=rlfcUr2yc"
| r4: "(SEQ EMPTY r2) f c=r2 { c"
| r5: "(SEQ (CHAR ¢') r2) 1 ¢ = (if c= ¢’ then {r2} else {})"
| ré: "(SEQ (SEQ r11r12) r2) ¥ c = (SEQ r1l (SEQ r12 r2)) c"
| r7: "(SEQ (ALT rl1r12) r2) f c =
(SEQrlilr2) T c U (SEQri2 r2) § c"
| r8: "(SEQ (STARFr1)r2) t c=
r2 1 c U{SEQ (SEQr' (STARr1))r2 |r'.r €rljc}"
| r9: "(STAR) T c = {SEQr' (STARF) | r.r Eric}"

Matcher

function matcher :: "rexp = string = bool" ("_!_")
where
sOL: "EMPTY I's = (s =[])"
| s02: "CHAR c!'s = (s = [c])"
| s03: "ALTrir2!ls=(rlls Vv r2!s)"
| sO4: "STAR r ! []= True"
| s05: "STAR r | c#s =
(False V OR {SEQ (r') (STARP)ls | r.r € r{ c})"
| s06: "SEQ rir2![]1=(r1![IAr2![])"
| sO7: "SEQ EMPTY r2 | (c#s) = (r2 | c#s)"
| s08: "SEQ (CHAR c') r2 | (c#s) = (if c'=c thenr2 | s else False)"
| s09: "SEQ (SEQ r11 r12) r2 | (c#s) = (SEQ r11 (SEQ r12 r2) | c#s)"
| s10: "SEQ (ALT r11r12) r2 | (c#s) =
((SEQ rll r2) | (c#s) V (SEQ r12 r2) | (c#s))"
| s11: "SEQ (STAR r1) r2 | (c#s) =
(r2 1 (c#s) V OR{SEQr' (SEQ (STARr)r2)!s|r'.r erlfc})"

Correctness

@ Correctness of the matcher:

rlsimpliesss&lLr
—rlsimpliess & Lr

