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Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis. "L
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Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # y.
Case 1.2. M = y. Then both sides equal L, for x ¢ FV (L)
implies L(x := ...] = L.
Case 1.3. M = z #% x,y. Then both sides equal z.

@ Case 2: M = MNz.M. By the variable convention we may assume

2.1.12. Convention: Terms that are a-congruent are identified. So
how we write Ax.x = A\y.y etcetera.

2.1.13. Variable Convention: If M;,..., M, occur in a certain
mathematical context (e.g. definition, proof), then in these terms all
bound variables are chosen to be different from the free variables.

2.1.14. Moral: Using conventions 2.1.12 and 2.1.13 one can work with

A-terms in the naive way.
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Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.

® Case 1: M is a variable.
CQSell M_ o _Theon hath cidec canal Nlasy o T 1 &

Case 1.2. M = | Remember: onlyif y #xandx &€ FV(N) then
impli¢  (Ay.M)[x := N] = Ay.(M|[z := N])
Case 1.3. M =
o Case 2: M = (Az.M;)|x := N[y := L] ,
that z Z x,y{ = (Az.(Mi[z := N]))[y := L] &k
- B=MOF o s (My[ = N[y := L)) &
= izfﬁl{‘ — Az(Mily := L][z == N[y := L]])  IH
_ (A;.Mi)ﬁ = (Az.(Mily := L]))[z := N[y := L]]) >
o Case 3: M =| = (A\z.My)[y:= L]z := N[y:=L]]. = ;
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Existing Formalisation

Techniques

B with "bare hands”

(extremely messy) defining lambda-terms as
syntax-trees; work with explicit a-conversions

B de-Bruijn indices

they are “very formal”; but even if there were
no technical problems with dB, they involve often
quite different lemmas than "paper proofs”

B HOAS

...yes, but induction is problematic, no way to de-
fine conveniently notions such as simultaneous sub-
stitution etc ...not my personal preference ;o)
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Formal Proof In Isabelle

lemma forget:

assumes a: "x # L"

shows "L[x::=N| = L"

using a by (nominal_induct L avoiding: * NN rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:

fixes x :: "name”

assumes a: "x # M" and b: "z # N"

shows "x # M|y ::=N|"

using a b by (hominal_induct M avoiding: * y N rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma subst_lemma:

assumes a: " # y" and b: "x # L"

shows "M [x::=N]|[y::=L] = M|y ::=L][x::= Ny ::=L]]"

using a b by (nominal_induct M avoiding: ©* y NN L rule: lam.induct)
(auto simp add: forget fresh_fact)
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We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

‘a countable infinite set
— this will be important

on later on.
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We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example lambda-calculus
Ac.Aa.\b.(ab c)

how c is bound
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/ r® + ydx
0

x IS an atom—bound and binding
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example integrals

1
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We Start with Atoms

We introduce atoms. Everything that is bound,
bindin{ Why atoms? Because an ndent
from 1 operation we introduce shortly
will act on atoms only and
leaves everything else alone.

[ [+ vae)e

binding 2 does not make sense

examp

J
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Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

Aa.b Ac.b
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Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

b := a|l\a.b b := a|Xe.b
= A\a.a = Ac.a
Traditional Solution: replace [b := al]t by a

more complicated, 'capture-avoiding' form
of substitution.
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Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

(ba)e Aa.b (ba)e Ac.b
= Ab.a = Ac.a

Nice Alternative: use a less complicated
operation for renaming

def
= swap all occurrences of

band a int

(ba)et
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(ba)e Aa.b (ba)e Ac.b
= Ab.a = Ac.a

Nice Alternative: use a less complicated
operation for renaming

def
(ba)+t = swap all occurrences of

b and a\iq t

[be they bound, binding or bindable
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Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

(ba)e Aa.b (ba)e Ac.b
= Ab.a = Ac.a

Nice Alternative: use a less complicated
operation for renaming

def
(ba)et = swap all occurrences of

band a int

Unlike for [b:=a](—), for (ba)e+(—) we do
have if t =, t’ then (ba)et =, (ba)st’.
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Permutations

We shall extend 'swappings’ to ‘(finite) lists of
swappings’

(a1 b1)...(ayby),

also called permutations (we shall often write
7 for them). Permutations are bijective
mappings from atoms to atoms. For example

a— b

mn=|b—a| = (cb)(ab)(ac)
crH>C
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Permutations

We sh?r_m%n.d_'mmnnj.nag' +.n ‘{‘.F;nj_'t%\’ lists of
swappin Our list-representation is

not unique, because

also cal| (cb)(ab)(ac)and (abd) inwrite

7 for t he , . ve

mappingf‘r'e The same permutation. ample
a+—b

T=|b—a (cb)(ab)(ac)ec = c

CH— C
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Permutations on Atoms

A permutation acts on an atom as follows:

Jea = a

a1 If mea = a-
def .
((a1az) :: w)ea = (az ifmea=a,
mwea otherwise

B [| stands for the empty list (the identity
permutation), and

B (a; ay) :: 7 stands for the permutation
7 followed by the swapping (a; as)
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Permutations on Atoms (ct.)

B the composition of two permutations is
given by list-concatenation, written as

/' Q7
B the inverse of a permutation is given by
list reversal, written as #—!, and

B permutation equality, two permutations
7r and 7’ are equal iff

,def /
wT~T — Va. wea = T ea
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Permutations on A-Terms

e () given by the action on atoms
me (b1ts) = (wety)(mwets)
re(Aa.t) E A(wea).(7et)
We have:
B le(met) =1t
Wt =ty ifandonly if wet; =
B rwet; =ty ifandonlyif t;

|
=
S+

|
=
L
®
Ny
NV
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—1 a .
B 7+ (T ('we treat lambdas as if
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Permutations on A-Terms

‘What is it about permutations? Well. .. A

B they have much nicer properties than
renaming-substitutions (stemming from
the fact that they are bijections on
atoms),

B they give rise to a relatively simple
definition of ax-equivalence on
syntax-trees (shown next)

W

\_ Il and more later on )
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a-Equivalence

Consider the following four rules:

t1 = s1 To =~ 89

- ~-app
a=<a atm t1to = s 89
~ g | t ~ (ab)es a&fv(s) |
~-lam ~-lam
\a.t =~ \a.s ' a.t =~ \b.s ’

assuming a % b
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~-at -
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Xa.t ~ \a.s ™ \a.t =~ \b.s ~oam

assuming a % b

Aa.t = Ab.s iff t is a-equivalent with s in
which all occurrences of b have been renamed
to a...oops permuted to a.

Munich, 8. February 2006 - p.11 (2/4)



a-Equivalence

CoBut this alone leads to an 'unsound’ rulel

Consider

Aa.b and M\b.a

which are not ai-equivalent. However, if we

—|apply the permutation (a b) to a we get lamo
A b= b

which leads to non-sense.

Al We need to ensure that there are no 'free'
Whoccurrences of a in s, i.e. a & fv(s).
to a. . a.
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Not-Free-In

— Z fv(t1) a & fv(t,)
a Q fV(b) a Q fV(tl tz)
a & fv(t)

fv-lamy fv-lamo

a & fv(Ab.t)

fv-app

a & fv(Aa.t)

assuming a # b
Be careful, we have defined two relations over
lambda-terms/syntax-trees. We have not de-
fined what 'bound’ or 'free’ means. That is a
feature, not a bug™
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~ IS an Equivalence

You might be an agnostic and notice that

a#zb t=(ab)es adfv(s) |
Aa.t = Ab.s e

is defined rather asymmetrically. Still we have:

Theorem: = is an equivalence relation.
(Reflexivity) t =t
(Symmetry) ift; = ts then t; = t;

(Transitivity) if t; = t5 and ts = t3 thent; =~ t3
=> is rather tricky to prove
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Comparison with =,

Traditionally =, is defined as

least congruence which identifies Aa.t with
Ab.|a := b|t provided b is not free int

where [a := b|t replaces all free occurrences
of a by bint.

B with (—)~(—) and (—) &€ fv(—) we
never need to choose a 'fresh’ atom (good
for implementations)

B permutation respects both relations,
whilst renaming-substitution does not
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General Permutations

So far we have only considered permutations
acting on atoms and lambda-terms. We are now
going to overload ¢ : o prm = ¢ = ¢ to
act on other types as well.

B 7wea a beinganatom (of type o)

Jea =

a
aq if mea = a»
def .
((a1az) :: w)ea = (az ifmea=a,
mwea otherwise
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So far we have only considered permutations
acting on atoms and lambda-terms. We are now
going to overload ¢ : o prm = v = ¢ to
act on other types as v%e’fl.

m -For sake of simplicity, let us as-|)
sume we only have one type of
atoms.

wr |91 if mea = a»

e .
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Overloading of e

B[ & lists
e (x :: xS def (mex) :: (wexs)
Br.x ¥ {mex | x € X} sets
- K (:131, wz) déf (71'02131, 7T0£l32) pr'oducTs
B 7<+None % None options
e Some(z) & Some(msx)
def

Brexr = integers, strings, bools
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Permutation Properties

Whenever we deal with a type, we have to
make sure that it has a sensible permutation
operation...axiomatic type-classes are just(?)
the thing we need:

BIREE
B (7m1Q7my)ex = e (mTaex)

BT ~ 7y implies Tiexr = maex

We refer to these properties as pt,,, and re-
fer to the type ¢ as permutation type (provided
they are satisfied for ).
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Permutation Types

The property of being a permutation type is in
some sense hereditary:

W pilao
W pt..1ise provided pt,,

similar for sets, products and options
B ptonat, Pla,string, Pla,bool

The nominal datatype-package needs to make
sure that every type the implementors deem
important is a permutation type (with axiomatic
type-classes no problem).
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Permutations on Functions

Interesting: Given f : 11 = 2 and

Bref Ao (f(mr o))
then pt, ., and pt, ., imply Dty =.,.

The definition on functions implies that

B7e(fx)=(mef)(mex)

holds for permutation types.
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Support and Freshness

Even more interesting: The support of an
object x : ¢ is a set of atoms «:

supp, = = {a | infinite{b | (a b)ez # x}}

An atom is fresh for an x, if it is not in the
support of x:

a # x ELLPA & supp,, ()

I will often drop the o in supp,,.
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Support and Freshness

Even more interesting: The support of an
object x : ¢ is a set of atoms «:

supp, = = {a | infinite{b | (a b)ez # x}}

An alOK, this definition is a tiny bit com-}je
supp(plicated, so let's go slowly. ..

a # x ELLPA & supp,, ()

I will often drop the o in supp,,.
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:
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(c?)ec # c Yyes
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the finfinitely manu) atams one by
one: So supp(c) = {c}
(a?)ec #c no
(b?)ec #c no
(c?)ec # c yes
(d?)ec #Ac no

no

& QT8
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Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}
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Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}
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Some Simple Properties

W supp (z1, x2) = (supp x1) U (supp x2)
a # (x1,x2) iff a # 1 N\ a # 2
W supp, (a: o) = {a}
W supp || = 2,
supp(x :: xs) = supp(x) U supp(xs)
B supp(None) = &,
supp(Some(x)) = supp(x)
W supp(1) = supp(”’s”) = supp(True) = <&



Some Simple Properties

~

The support of “finitary” structures
is usually quite simple: for example

the support of a lambda-term t is the |2
B SLllse’r of atoms occuring in t.

B su

B su Ted def o o o
su d f
- 7T ® (tl tz) - (ﬂ"tl) (ﬂ"tz)
su def
sk TeAat = )\(ﬂ'-a) (7ret) y

] supp(l) = supp(” ”) = supp(True) = &
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FYI: Infinitary Structures

Bsupp A=0 A set of all atoms in o
since Va,b. (a b)e A = A

Wsupp F ={ay,...,a,} assuming F'isa
finite set of atoms a1, ..., a,

B not every set of atoms has finite support:
e.g. "atoms /2"

B the support of functions is even more
intferesting (one instance later on)
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Existence of a Fresh Atom

Q: Why do we assume that there are infinitely
many atoms?

A: For any finitely supported x:
C. CH @

If something is finitely supported, then we can
always choose a fresh atom (also for finitely
supported functions).
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Given a finite set of atoms,
its ‘co-set’ must be infinite.
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If asetis infinite, it must
contain a few elements. Let's
pick c so that ¢ # a, b.
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Done.
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Last Lem. In the SN-Proof

lemma all_Red:
assumesa: "'I' =t : 7"

and b: "V(x,0) € setT'. x € dom(0) A 6{(x) € Red,"
shows "0[t] € Red.."

(Girard in Proofs-and-Types:

Let t be any term (not assumed to be reducible), and
suppose all free variables of t are among x;...x,, of
types o;...0,. If t;1...t,, are reducible terms of type

01...0n then t|x, := t{,...,x, := t,] is reducible.

J
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lemma all_Red:
assumesa: 'I' = ¢ : 7"
and b: "V(x,0) € setT'. x € dom(0) A 6{(x) € Red,"
shows "0[t] € Red.."
using a b proof (nominal_induct ¢ avoiding: I" 7 0 rule: lam.induct)
case (Lam a t)
have ih: "AT'10.[l'Ht:7;V(x,0)€setT'. x €dom(0) A 6{(x) € Red,]
— 0[t] € Red,"
and @_cond: "V(x,0) € setT'. © € dom(0) N O8{x) € Red,"
and fresh: "a # I'" "a # 0"
and “T" - Lam [a].t : 7" by fact
hence "IAmima. T =711 > T2 A ((a, 1) # 1) Et: 72" by (simp ...)
then obtain 71 7 where 7 "7 = ™ — "
and ty: "((a,7m)#1T') - t : 72" by blast
from ih have "Vs € Red.,. (0[t])[a ::= s|] € Red.,," using fresh ty
6_cond
by (force dest: fresh_context simp add: psubst_subst)
hence “Lam [a].(0[t]) € Red., _..," by (simp only: abs_Red)
thus "O[Lam [a].t] € Red;" using fresh T by SIiMp e s rebruary 2006 - 527 2/3)

R |



Last Lem. In the SN-Proof

lemma all_Red:
assumesa: "I' =t : 7"
and b: "V(x,0) € setT'. x € dom(0) A 6{(x) € Red,"
shows "0[t] € Red.."
using a b proof (nominal_induct ¢ avoiding: I" 7 0 rule: lam.induct)
case (Lam a t)
have ih: "AT'10.[l'Ht:7;V(x,0)€setT'. x €dom(0) A 6{(x) € Red,]
— 0[t] € Red,"
and @_cond: "V(x,0) € setT'. © € dom(0) N O8{x) € Red,"
and fresh: "q #1T*re—L-Ax

and “I' I Lam The Eﬂd? by (simp ...)

hence "37'1 T2

then obtain 7 ﬂié %ﬂ
, Jblast

from ih have "Vs € Red,,. (0[t])[a ::= s] € Red,," using fresh ty
6_cond
by (force dest: fresh_context simp add: psubst_subst)
hence "Lam [a].(0[t]) € Red,, _+," by (simp only: abs_Red)
thus "H[Lam [a]-t] € Red." using fresh T by simp .. s February 2006 - p.27 (3/3)
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