Nominal Technigues
IN Isabelle/HOL

based on work by Andy Pitts

joint work with Stefan, Markus,

Alexander. ..

ﬂ% >

down

, 8. February 2006 - p.1 (1/1

)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis. "L

Munich, 8. February 2006 - p.2{176)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is a variable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ @,y and z is not free in IN, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis. L1

Munich, 8. February 2006 - p.2 (276)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # y.
Case 1.2. M = y. Then both sides equal L, for x ¢ FV (L)
implies L(x := ...] = L.
Case 1.3. M = z #Z x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis. L1

Munich, 8. February 2006 - p.2 (376)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # y.
Case 1.2. M = y. Then both sides equal L, for x ¢ FV (L)
implies L(x := ...] = L.
Case 1.3. M = z #% x,y. Then both sides equal z.

@ Case 2: M = MNz.M. By the variable convention we may assume

2.1.12. Convention: Terms that are a-congruent are identified. So
how we write Ax.x = A\y.y etcetera.

2.1.13. Variable Convention: If M;,..., M, occur in a certain
mathematical context (e.g. definition, proof), then in these terms all
bound variables are chosen to be different from the free variables.

2.1.14. Moral: Using conventions 2.1.12 and 2.1.13 one can work with

A-terms in the naive way.
MUty puTIieSTS. Munich, 8. February 2006 - p.2 1376)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis. L1

Munich, 8. February 2006 - p.2 (576)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.

® Case 1: M is a variable.
CQSell M_ o _Theon hath cidec canal Nlasy o T 1 &

Case 1.2. M = | Remember: onlyif y #xandx &€ FV(N) then
impli¢ (Ay.M)[x := N] = Ay.(M|[z := N])
Case 1.3. M =
o Case 2: M = (Az.M;)|x := N[y := L] ,
that z Z x,y{ = (Az.(Mi[z := N]))[y := L] &k
- B=MOF o s (My[= N[y := L)) &
= izfﬁl{‘ — Az(Mily := L][z == N[y := L]]) IH
_ (A;.Mi)ﬁ = (Az.(Mily := L]))[z := N[y := L]]) >
o Case 3: M =| = (A\z.My)[y:= L]z := N[y:=L]]. = ;

Tlon hYPOTh@S'Sk Munich, 8. February 2006 - p.2'(67)6)

Existing Formalisation

Techniques

B with "bare hands”

(extremely messy) defining lambda-terms as
syntax-trees; work with explicit a-conversions

B de-Bruijn indices

they are “very formal”; but even if there were
no technical problems with dB, they involve often
quite different lemmas than "paper proofs”

B HOAS

...yes, but induction is problematic, no way to de-
fine conveniently notions such as simultaneous sub-
stitution etc ...not my personal preference ;o)

Munich, 8. February 2006 - p.3 (1/1)

Formal Proof In Isabelle

lemma forget:

assumes a: "x # L"

shows "L[x::=N| = L"

using a by (nominal_induct L avoiding: * NN rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:

fixes x :: "name”

assumes a: "x # M" and b: "z # N"

shows "x # M|y ::=N|"

using a b by (hominal_induct M avoiding: * y N rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma subst_lemma:

assumes a: " # y" and b: "x # L"

shows "M [x::=N]|[y::=L] = M|y ::=L][x::= Ny ::=L]]"

using a b by (nominal_induct M avoiding: ©* y NN L rule: lam.induct)
(auto simp add: forget fresh_fact)

Munich, 8. February 2006 - p.4 (1/1)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

‘a countable infinite set
— this will be important

on later on.

Munich, 8. February 2006 - p.5 (1/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

Munich, 8. February 2006 - p.5 (2/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example lambda-calculus
Aa.\b.(a b c)

a and b are atoms—bound and binding

Munich, 8. February 2006 - p.5 (3/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example lambda-calculus
Aa.\b.(a b c)

c is an atom—bindable

Munich, 8. February 2006 - p.5 (4/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example lambda-calculus
Ac.Aa.\b.(ab c)

how c is bound

Munich, 8. February 2006 - p.5 (5/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example integrals

1
/ r® + ydx
0

x IS an atom—bound and binding

Munich, 8. February 2006 - p.5 (6/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example integrals

o0 1
/ (/ wz—l—ydw>dy
— 00 0

Y is an atom—bindable

Munich, 8. February 2006 - p.5 (7/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example integrals

1
/ r® + ydx
0

0, 1 and 2 are constants

Munich, 8. February 2006 - p.5 (8/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent

from the language at hand).

example integrals

o0 1
/ (/ a32—|—yda3)d2
— 00 0

binding 2 does not make sense

Munich, 8. February 2006 - p.5 (9/10)

We Start with Atoms

We introduce atoms. Everything that is bound,
bindin{ Why atoms? Because an ndent
from 1 operation we introduce shortly
will act on atoms only and
leaves everything else alone.

[[+ vae)e

binding 2 does not make sense

examp

J

Munich, 8. February 2006 - p.5 (10/10)

Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

Aa.b Ac.b

Munich, 8. February 2006 - p.6 (1/6)

Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

b := a|l\a.b b := a|Xe.b

= \a.a = \c.a

Munich, 8. February 2006 - p.6 (2/6)

Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

b := a|l\a.b b := a|Xe.b
= A\a.a = Ac.a
Traditional Solution: replace [b := al]t by a

more complicated, 'capture-avoiding' form
of substitution.

Munich, 8. February 2006 - p.6 (3/6)

Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

(ba)e Aa.b (ba)e Ac.b
= Ab.a = Ac.a

Nice Alternative: use a less complicated
operation for renaming

def
= swap all occurrences of

band a int

(ba)et

Munich, 8. February 2006 - p.6 (4/6)

Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

(ba)e Aa.b (ba)e Ac.b
= Ab.a = Ac.a

Nice Alternative: use a less complicated
operation for renaming

def
(ba)+t = swap all occurrences of

b and a\iq t

[be they bound, binding or bindable

Munich, 8. February 2006 - p.6 (5/6)

Swappings

In general, renaming substitutions do not
respect a-equivalence, e.qg.

(ba)e Aa.b (ba)e Ac.b
= Ab.a = Ac.a

Nice Alternative: use a less complicated
operation for renaming

def
(ba)et = swap all occurrences of

band a int

Unlike for [b:=a](—), for (ba)e+(—) we do
have if t =, t’ then (ba)et =, (ba)st’.

Munich, 8. February 2006 - p.6 (6/6)

Permutations

We shall extend 'swappings’ to ‘(finite) lists of
swappings’

(a1 b1)...(ayby),

also called permutations (we shall often write
7 for them). Permutations are bijective
mappings from atoms to atoms. For example

a— b

mn=|b—a| = (cb)(ab)(ac)
crH>C

Munich, 8. February 2006 - p.7 (1/5)

Permutations

We shall extend 'swappings’ to ‘(finite) lists of
swappings’

(a1 b1)...(ayby),

also called permutations (we shall often write
7 for them). Permutations are bijective
mappings from atoms to atoms. For example

a— b

T=|b—a (cb)(ab)(ac)ea =0
crH>C

Munich, 8. February 2006 - p.7 (2/5)

Permutations

We shall extend 'swappings’ to ‘(finite) lists of
swappings’

(a1 b1)...(ayby),

also called permutations (we shall often write
7 for them). Permutations are bijective
mappings from atoms to atoms. For example

a— b

T=|b—a (cb)(ab)(ac)sb =a
crH>C

Munich, 8. February 2006 - p.7 (3/5)

Permutations

We shall extend 'swappings’ to ‘(finite) lists of
swappings’

((1,1 bl) ¢ oo (an bn),
also called permutations (we shall often write

7 for them). Permutations are bijective
mappings from atoms to atoms. For example

a— b

T=|b—a (cb)(ab)(ac)ec = c
crH>C

Munich, 8. February 2006 - p.7 (4/5)

Permutations

We sh?r_m%n.d_'mmnnj.nag' +.n ‘{‘.F;nj_'t%\’ lists of
swappin Our list-representation is

not unique, because

also cal| (cb)(ab)(ac)and (abd) inwrite

7 for t he , . ve

mappingf‘r'e The same permutation. ample
a+—b

T=|b—a (cb)(ab)(ac)ec = c

CH— C

Munich, 8. February 2006 - p.7 (5/5)

Permutations on Atoms

A permutation acts on an atom as follows:

Jea = a

a1 If mea = a-
def .
((a1az) :: w)ea = (az ifmea=a,
mwea otherwise

B [| stands for the empty list (the identity
permutation), and

B (a; ay) :: 7 stands for the permutation
7 followed by the swapping (a; as)

Munich, 8. February 2006 - p.8 (1/1)

Permutations on Atoms (ct.)

B the composition of two permutations is
given by list-concatenation, written as

/' Q7
B the inverse of a permutation is given by
list reversal, written as #—!, and

B permutation equality, two permutations
7r and 7’ are equal iff

,def /
wT~T — Va. wea = T ea

Munich, 8. February 2006 - p.9 (1/1)

Permutations on A-Terms

e () given by the action on atoms
me (b1ts) = (wety)(mwets)
re(Aa.t) E A(wea).(7et)
We have:
B le(met) =1t
Wt =ty ifandonly if wet; =
B rwet; =ty ifandonlyif t;

|
=
S+

|
=
L
®
Ny
NV

Munich, 8. February 2006 - p.10 (1/4)

Permutations on A-Terms

e () given by the action on atoms
me (b1ts) = (wety)(mwets)
re(Aa.t) E A(rea).(wet)
We have:

—1 a .
B 7+ (T ('we treat lambdas as if
Wt, =ty ithere were no binders’' }t,

W ety =ty ifandonly if t; = w ety

Munich, 8. February 2006 - p.10 (2/4)

Permutations on A-Terms

e () given by the action on atoms
me (b1ts) = (wety)(mwets)
re(Aa.t) E A(wea).(7et)
We have:
B le(met) =1t
Wt =ty ifandonly if wet; =
B rwet; =ty ifandonlyif t;

|
=
S+

|
=
L
®
Ny
NV

Munich, 8. February 2006 - p.10 (3/4)

Permutations on A-Terms

‘What is it about permutations? Well. .. A

B they have much nicer properties than
renaming-substitutions (stemming from
the fact that they are bijections on
atoms),

B they give rise to a relatively simple
definition of ax-equivalence on
syntax-trees (shown next)

W

_ Il and more later on)

Munich, 8. February 2006 - p.10 (4/4)

a-Equivalence

Consider the following four rules:

t1 = s1 To =~ 89

- ~-app
a=<a atm t1to = s 89
~ g | t ~ (ab)es a&fv(s) |
~-lam ~-lam
\a.t =~ \a.s ' a.t =~ \b.s ’

assuming a % b

Munich, 8. February 2006 - p.11 (1/4)

a-Equivalence

Consider the following four rules:

t1 =~ s1 1o = SZNGPP
~-at -
a~a oM t1to = s 89

} o~ s . t =~ (ab)es a,gl‘:v(s)wl
Xa.t ~ \a.s ™ \a.t =~ \b.s ~oam

assuming a % b

Aa.t = Ab.s iff t is a-equivalent with s in
which all occurrences of b have been renamed
to a...oops permuted to a.

Munich, 8. February 2006 - p.11 (2/4)

a-Equivalence

CoBut this alone leads to an 'unsound’ rulel

Consider

Aa.b and M\b.a

which are not ai-equivalent. However, if we

—|apply the permutation (a b) to a we get lamo
A b= b

which leads to non-sense.

Al We need to ensure that there are no 'free'
Whoccurrences of a in s, i.e. a & fv(s).
to a. . a.

Munich, 8. February 2006 - p.11 (3/4)

a-Equivalence

Consider the following four rules:

t1 =~ s1 1o = SZNGPP
~-at -
a~a oM t1to = s 89

} o~ s . t =~ (ab)es a,gl‘:v(s)wl
Xa.t ~ \a.s ™ \a.t =~ \b.s ~oam

assuming a % b

Aa.t = Ab.s iff t is a-equivalent with s in
which all occurrences of b have been renamed
to a...oops permuted to a.

Munich, 8. February 2006 - p.11 (4/4)

Not-Free-In

— Z fv(t1) a & fv(t,)
a Q fV(b) a Q fV(tl tz)
a & fv(t)

fv-lamy fv-lamo

a & fv(Ab.t)

fv-app

a & fv(Aa.t)

assuming a # b
Be careful, we have defined two relations over
lambda-terms/syntax-trees. We have not de-
fined what 'bound’ or 'free’ means. That is a
feature, not a bug™

Munich, 8. February 2006 - p.12 (4/4)

~ IS an Equivalence

You might be an agnostic and notice that

a#zb t=(ab)es adfv(s) |
Aa.t = Ab.s e

is defined rather asymmetrically. Still we have:

Theorem: = is an equivalence relation.
(Reflexivity) t =t
(Symmetry) ift; = ts then t; = t;

(Transitivity) if t; = t5 and ts = t3 thent; =~ t3
=> is rather tricky to prove

Munich, 8. February 2006 - p.13 (1/1)

Comparison with =,

Traditionally =, is defined as

least congruence which identifies Aa.t with
Ab.|a := b|t provided b is not free int

where [a := b|t replaces all free occurrences
of a by bint.

B with (—)~(—) and (—) &€ fv(—) we
never need to choose a 'fresh’ atom (good
for implementations)

B permutation respects both relations,
whilst renaming-substitution does not

Munich, 8. February 2006 - p.14 (1/1)

General Permutations

So far we have only considered permutations
acting on atoms and lambda-terms. We are now
going to overload ¢ : o prm = ¢ = ¢ to
act on other types as well.

B 7wea a beinganatom (of type o)

Jea =

a
aq if mea = a»
def .
((a1az) :: w)ea = (az ifmea=a,
mwea otherwise

Munich, 8. February 2006 - p.15 (1/3)

General Permutations

So far we have only considered permutations
acting on atoms and lambda-terms. We are now
going to overload ¢ : o prm = v = ¢ to
act on other types as v%e’fl.

m -For sake of simplicity, let us as-|)
sume we only have one type of
atoms.

wr |91 if mea = a»

e .

((a1az) :: w)ea = (az ifmea=a,
mwea otherwise

Munich, 8. February 2006 - p.15 (2/3)

General Permutations

So far we have only considered permutations
acting on atoms and lambda-terms. We are now
going to overload ¢ : o prm = v = ¢ to
act on other types as well.

B 7wea a beinganatom (of type o)

Jea =

a
aq if mea = a»
def .
((a1az) :: w)ea = (az ifmea=a,
mwea otherwise

Munich, 8. February 2006 - p.15 (3/3)

Overloading of e

B[& lists
e (x :: xS def (mex) :: (wexs)
Br.x ¥ {mex | x € X} sets
- K (:131, wz) déf (71'02131, 7T0£l32) pr'oducTs
B 7<+None % None options
e Some(z) & Some(msx)
def

Brexr = integers, strings, bools

Munich, 8. February 2006 - p.16 (3/3)

Permutation Properties

Whenever we deal with a type, we have to
make sure that it has a sensible permutation
operation...axiomatic type-classes are just(?)
the thing we need:

BIREE
B (7m1Q7my)ex = e (mTaex)

BT ~ 7y implies Tiexr = maex

We refer to these properties as pt,,, and re-
fer to the type ¢ as permutation type (provided
they are satisfied for).

Munich, 8. February 2006 - p.17 (1/1)

Permutation Types

The property of being a permutation type is in
some sense hereditary:

W pilao
W pt..1ise provided pt,,

similar for sets, products and options
B ptonat, Pla,string, Pla,bool

The nominal datatype-package needs to make
sure that every type the implementors deem
important is a permutation type (with axiomatic
type-classes no problem).

Munich, 8. February 2006 - p.18 (1/1)

Permutations on Functions

Interesting: Given f : 11 = 2 and

Bref Ao (f(mr o))
then pt, ., and pt, ., imply Dty =.,.

The definition on functions implies that

B7e(fx)=(mef)(mex)

holds for permutation types.

Munich, 8. February 2006 - p.19 (1/1)

Support and Freshness

Even more interesting: The support of an
object x : ¢ is a set of atoms «:

supp, = = {a | infinite{b | (a b)ez # x}}

An atom is fresh for an x, if it is not in the
support of x:

a # x ELLPA & supp,, ()

I will often drop the o in supp,,.

Munich, 8. February 2006 - p.20 (1/2)

Support and Freshness

Even more interesting: The support of an
object x : ¢ is a set of atoms «:

supp, = = {a | infinite{b | (a b)ez # x}}

An alOK, this definition is a tiny bit com-}je
supp(plicated, so let's go slowly. ..

a # x ELLPA & supp,, ()

I will often drop the o in supp,,.

Munich, 8. February 2006 - p.20 (2/2)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

Munich, 8. February 2006 - p.21 (1/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by

one:
a: (a?)ec#c

Munich, 8. February 2006 - p.21 (2/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a. (a?)ec#c no
b: (b?7)ec # c

Munich, 8. February 2006 - p.21 (3/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a. (a?)ec#c no
b: (b?)ec#c no
c. (c?)ecH#c

Munich, 8. February 2006 - p.21 (4/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

(a?)ec #c no

(b?)ec #c no

(c?)ec # c Yyes

(d?)ec # c

L0 TR

Munich, 8. February 2006 - p.21 (5/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

(a?)ec #c no
(b?)ec #c no

(c?)ec # c Yyes
(d?)ec #Ac no

no

L0 TR

Munich, 8. February 2006 - p.21 (6/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite{b | (ab)ec # c}}

Let's check the finfinitely manu) atams one by
one: So supp(c) = {c}
(a?)ec #c no
(b?)ec #c no
(c?)ec # c yes
(d?)ec #Ac no

no

& QT8

Munich, 8. February 2006 - p.21 (7/7)

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

{a|inf{b|((ab)ex1, (ab)exs) # (%1, %2)}}

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

{a|inf{b|((ab)ex1, (ab)exs) # (%1, %2)}}

‘'We know

(1, x2) = (Y1,Y2) iff T3 = y1 A2 = Yo
hence
(@1, ®2) # (Y1,92) ff T Fyr Ve Fyr

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

{a
{a

inf{b
inf{b

((ab)ex1, (ab)exs) # (T1,22)}}
(ab)ex; # x1 V (ab)exs # x3}}

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

{a |inf{b
{a |inf{b

((ab)ex1, (ab)exs) # (T1,22)}}
(ab)ex; # x1 V (ab)exs # x3}}

la|inf({b|(ab)exy # x1fU{b|(ab)exs # x2})}

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

inf{b
inf{b

((ab)ex1, (ab)exs) # (T1,22)}}
(ab)ex; # x1 V (ab)exs # x3}}

inf({b| (ab)exs # x1}U{b|(ab)exs # T2})}
inf{b| (ab)ex; # x1}Vinf{b| (ab)exs # x2}}

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

inf{b
inf{b

((ab)ex1, (ab)exs) # (T1,22)}}
(ab)ex; # x1 V (ab)exs # x3}}

inf({b| (ab)exy # z1}U{b|(ab)exs # z2})}

inf{b
inf{b

(ab)exy # x1}Vinf{b|(ab)exs # x2}}
(ab)exy # x1}}U{a|inf{b| (ab)exs # x2}}

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

inf{b
inf{b

((ab)ex1, (ab)exs) # (T1,22)}}
(ab)ex; # x1 V (ab)exs # x3}}

inf({b| (ab)exy # z1}U{b|(ab)exs # z2})}

inf{b
inf{b

(ab)exy # x1}Vinf{b|(ab)exs # x2}}
(ab)exy # x1}}U{a|inf{b| (ab)exs # x2}}
supp(x1) U supp(x2)

Support of a Product

supp(1,T2) Gef {a|inf{b|(ab)e(x1,x2) # (T1,T2)}}

inf{b
inf{b

So s‘upp(mll, To) = éupp(azl) U sdp‘p(azz)

(ab)ex; A x1 V(ab)exs 7~ T2}

inf({b| (ab)exy # z1}U{b|(ab)exs # z2})}

inf{b
inf{b

(ab)exy # x1}Vinf{b|(ab)exs # x2}}
(ab)exy # x1}}U{a|inf{b| (ab)exs # x2}}
supp(x1) U supp(x2)

Some Simple Properties

W supp (z1, x2) = (supp x1) U (supp x2)
a # (x1,x2) iff a # 1 N\ a # 2
W supp, (a: o) = {a}
W supp || = 2,
supp(x :: xs) = supp(x) U supp(xs)
B supp(None) = &,
supp(Some(x)) = supp(x)
W supp(1) = supp(”’s”) = supp(True) = <&

Some Simple Properties

~

The support of “finitary” structures
is usually quite simple: for example

the support of a lambda-term t is the |2
B SLllse’r of atoms occuring in t.

B su

B su Ted def o o o
su d f
- 7T ® (tl tz) - (ﬂ"tl) (ﬂ"tz)
su def
sk TeAat =)\(ﬂ'-a) (7ret) y

] supp(l) = supp(” ”) = supp(True) = &

Munich, 8. February 2006 - p.23 (2/2)

FYI: Infinitary Structures

Bsupp A=0 A set of all atoms in o
since Va,b. (a b)e A = A

Wsupp F ={ay,...,a,} assuming F'isa
finite set of atoms a1, ..., a,

B not every set of atoms has finite support:
e.g. "atoms /2"

B the support of functions is even more
intferesting (one instance later on)

Munich, 8. February 2006 - p.24 (2/2)

Existence of a Fresh Atom

Q: Why do we assume that there are infinitely
many atoms?

A: For any finitely supported x:
C. CH @

If something is finitely supported, then we can
always choose a fresh atom (also for finitely
supported functions).

Munich, 8. February 2006 - p.25 (2/2)

It Is as Simple as That. ..

Assuming pt,,:a # c ANb# x = (ab)ex =«

Munich, 8. February 2006 - p.26 (1/16)

It Is as Simple as That. ..

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a = b clear

Munich, 8. February 2006 - p.26 (2/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:
(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}

a# x e o & supp(x)

_swpp(@) E {a]inf{c|(ac)ez #a}}

Munich, 8. February 2006 - p.26 (3/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}

@) fin({c | (ac)ex # x} U{c| (bc)ex # x}) f. (1)

Munich, 8. February 2006 - p.26 (4/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c
fin{c
(2) fin{c

(ac)ex # x} from Ass. +Def. of #
(bc)ex # x}
(ac)ex #xV (bc)ex # x} f. (1)

Munich, 8. February 2006 - p.26 (5/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

3)inf{c| "((ac)ex £ xV (bc)ex £ x)} f.(2)

Given a finite set of atoms,
its ‘co-set’ must be infinite.

Munich, 8. February 2006 - p.26 (6/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)

Munich, 8. February 2006 - p.26 (7/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)

If asetis infinite, it must
contain a few elements. Let's
pick c so that ¢ # a, b.

Munich, 8. February 2006 - p.26 (8/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)
(B) (ac)ex = x by (4i)

Munich, 8. February 2006 - p.26 (9/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)
(B) (ac)ex = x by (4i)
(6) (bec)e(ac)ex = (bc)ex by bij.

bij. x =y iff Tex = ey

Munich, 8. February 2006 - p.26 (10/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)
(B) (ac)ex = x by (4i)
(6') (be)e(ac)ex = x by bij.,(4ii)

Munich, 8. February 2006 - p.26 (11/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)
(B) (ac)ex = x by (4i)
(6') (be)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = (ac)ex by bij.

Munich, 8. February 2006 - p.26 (12/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)
(B) (ac)ex = x by (4i)
(6') (be)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)

Munich, 8. February 2006 - p.26 (13/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)

(5) (ac)ex =< by (4i)
(6') (be)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)

(ac)(bc)(ac) ~ (ab)

Munich, 8. February 2006 - p.26 (14/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (aclex £ =V (beclex £ 1} - f.(D
(3") inf{c | (¢ 3rd property of pt,,,: £.(2)
(4) () (ac)s|™1 Y T2 = M1°X = T2°L jce(3)
(B) (ac)ex = x by (4i)
(6) (bec)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)

(8) (ab)ex =« by 3rd. prop.

Munich, 8. February 2006 - p.26 (15/16)

It Is as Simple as That...

Assuming pt,,:a # c ANb# x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex #x V (bc)ex # x} f. (1)

(3)inf{c | (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x foracé€ (3)

(B) (ac)ex = x by (4i)
(6') (be)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)
(8) (ab)ex =« by 3rd. prop.

Done.

Munich, 8. February 2006 - p.26 (16/16)

Last Lem. In the SN-Proof

lemma all_Red:
assumesa: "'I' =t : 7"

and b: "V(x,0) € setT'. x € dom(0) A 6{(x) € Red,"
shows "0[t] € Red.."

(Girard in Proofs-and-Types:

Let t be any term (not assumed to be reducible), and
suppose all free variables of t are among x;...x,, of
types o;...0,. If t;1...t,, are reducible terms of type

01...0n then t|x, := t{,...,x, := t,] is reducible.

J

Munich, 8. February 2006 - p.27 (1/3)

Last Lem. In the SN-Proof

lemma all_Red:
assumesa: 'I' = ¢ : 7"
and b: "V(x,0) € setT'. x € dom(0) A 6{(x) € Red,"
shows "0[t] € Red.."
using a b proof (nominal_induct ¢ avoiding: I" 7 0 rule: lam.induct)
case (Lam a t)
have ih: "AT'10.[l'Ht:7;V(x,0)€setT'. x €dom(0) A 6{(x) € Red,]
— 0[t] € Red,"
and @_cond: "V(x,0) € setT'. © € dom(0) N O8{x) € Red,"
and fresh: "a # I'" "a # 0"
and “T" - Lam [a].t : 7" by fact
hence "IAmima. T =711 > T2 A ((a, 1) # 1) Et: 72" by (simp ...)
then obtain 71 7 where 7 "7 = ™ — "
and ty: "((a,7m)#1T') - t : 72" by blast
from ih have "Vs € Red.,. (0[t])[a ::= s|] € Red.,," using fresh ty
6_cond
by (force dest: fresh_context simp add: psubst_subst)
hence “Lam [a].(0[t]) € Red., _..," by (simp only: abs_Red)
thus "O[Lam [a].t] € Red;" using fresh T by SIiMp e s rebruary 2006 - 527 2/3)

R |

Last Lem. In the SN-Proof

lemma all_Red:
assumesa: "I' =t : 7"
and b: "V(x,0) € setT'. x € dom(0) A 6{(x) € Red,"
shows "0[t] € Red.."
using a b proof (nominal_induct ¢ avoiding: I" 7 0 rule: lam.induct)
case (Lam a t)
have ih: "AT'10.[l'Ht:7;V(x,0)€setT'. x €dom(0) A 6{(x) € Red,]
— 0[t] € Red,"
and @_cond: "V(x,0) € setT'. © € dom(0) N O8{x) € Red,"
and fresh: "q #1T*re—L-Ax

and “I' I Lam The Eﬂd? by (simp ...)

hence "37'1 T2

then obtain 7 ﬂié %ﬂ
, Jblast

from ih have "Vs € Red,,. (0[t])[a ::= s] € Red,," using fresh ty
6_cond
by (force dest: fresh_context simp add: psubst_subst)
hence "Lam [a].(0[t]) € Red,, _+," by (simp only: abs_Red)
thus "H[Lam [a]-t] € Red." using fresh T by simp .. s February 2006 - p.27 (3/3)

R |

	�egin {tabular}{c}Nominal Techniques\[1mm] in Isabelle/HOLend {tabular}
	
	Existing Formalisation\[1mm] Techniques
	mbox {Formal Proof in Isabelle}
	We Start with Atoms
	Swappings
	Permutations
	mbox {Permutations on Atoms}
	mbox {Permutations on Atoms (ct.)}
	mbox {Permutations on �oldmath $lambda $-Terms}
	$alpha $-Equivalence
	Not-Free-In
	$eq $ is an Equivalence
	Comparison with $aeq $
	General Permutations
	Overloading of {large $_!_�ullet _!_$}
	Permutation Properties
	Permutation Types
	mbox {Permutations on Functions}
	Support and Freshness
	Support of an Atom
	Support of a Product
	Some Simple Properties
	FYI: Infinitary Structures
	Existence of a Fresh Atom
	It is as Simple as Thatldots
	Last Lem.~in the SN-Proof

