Quliz
Assuming that a and b are distinct variables,
is it possible to find A-terms M, to My that
make the following pairs a-equivalent?
_ A&.Ab.(M1 b) and)\b.)\a.(a M1)
_ ACL.AI).(MQ b) and)\b.)\a.(a M3)
B Aa.Ab.(bM;) and Ab.Aa.(a Mj;)

B Aa.Ab.(b Mg) and Aa.\a.(a My)

If there is one solution for a pair, can you
describe all its solutions?

Amsterdam, 3. June 2003 - p.1

Nominal Unification

Christian Urban
Andrew Pitts
Jamie Gabbay

,,,,,,

Nominal Unification
Why?

1 First-order unification is simple, but
cannot be used for terms involving
binders.

2l Higher-order unification is (more)
complicated — e.g. Huet's algorithms or
Ly by Miller — and not satisfactory from
a pragmatic point of view (not always
decidable, not always MGUs or applies
only to a restricted class of terms).

Amsterdam, 3. June 2003 - p.3

...and Substitution

Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fna.Y,X) |y V
v

leta =X inY |

v

Amsterdam, 3. June 2003 - p.4

...and Substitution

Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fna.a, 1) | 1
leta =1 ina { 1

v

Blleta=1ina {1 |[Y:i=a;X,V:=1]

Amsterdam, 3. June 2003 - p.4

...and Substitution

Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fna.b, 1) | 1

\4

letb =1 in b | 1

v

error!

Wleta=1ina {1 [Y:

v

Wletb =1inb {1 [Y:

\4

a; X,V :=1]
b; X,V :=1]

Amsterdam, 3. June 2003 - p.4

...and Substitution

Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn Aa.Fa) X || V
let X(Aa.Fa) || V

Amsterdam, 3. June 2003 - p.4

...and Substitution

Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn F) X | V
let X F || V

B letlAXa.al 1l or letl1 Ab.b| 1

Amsterdam, 3. June 2003 - p.4

...and Substitution

Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn F) X | V
let X F || V

B letlAXa.al 1l or letl1 Ab.b| 1

Does it have to be so0? No!

Amsterdam, 3. June 2003 - p.4

Swappings

Problem: substitution does not respect
«-equivalence, e.g.

fn a.b fn c.b

Amsterdam, 3. June 2003 - p.5

Swappings

Problem: substitution does not respect
«-equivalence, e.g.

b :=alfn a.b b := a|fn c.b
— fn a.a — fn c.a

Amsterdam, 3. June 2003 - p.5

Swappings

Problem: substitution does not respect
«-equivalence, e.g.
b := a]fn a.b b := a|fn c.b
—fn a.a — fn c.a
Traditional Solution: replace [b := alt by a

more complicated, 'capture-avoiding’ form
of substitution.

Amsterdam, 3. June 2003 - p.5

Swappings
Problem: substitution does not respect
«-equivalence, e.g.
(ba):-fn a.b (ba)-fn c.b

— fn b.a — fn c.a

Nice Alternative: use a less complicated
operation for renaming

def
= swap all occurrences of

band a int

(ba)-t

Amsterdam, 3. June 2003 - p.5

Swappings
Problem: substitution does not respect
«-equivalence, e.g.
(ba):-fn a.b (ba)-fn c.b

— fn b.a — fn c.a

Nice Alternative: use a less complicated
operation for renaming

def
= swap all occurrences of

band&\iqt

[be they free, bound or binding

(ba)-t

Amsterdam, 3. June 2003 - p.5

Swappings
Problem: substitution does not respect
«-equivalence, e.g.
(ba):-fn a.b (ba)-fn c.b

— fn b.a — fn c.a

Nice Alternative: use a less complicated
operation for renaming

def
(ba)-t = swap all occurrences of

band a int

Unlike for [b:=a|(—), for (ba)-(—) we do
have if t =, t’ then (ba)-t =, (ba)-t’.

Amsterdam, 3. June 2003 - p.5

Swappings

Problem: substitution does not respect
«-equivalence, e.g.

(ba):-fn a.b (ba)-fn c.b
= fn b.a = fn c.a
Nice Alternative: use a less comblicated
operati(Preview: A

In the next few slides we shall extend
(|'swappings’ to 'lists of swappings’

(a,l bl) o o o (an bn),

Unlike {also called permutations.
have if\t_—a CINMen (UajJt —q (UaJT.

Amsterdam, 3. June 2003 - p.5

Terms

| Units
W (t,t’') Pairs

W Ft Funct.

Amsterdam, 3. June 2003 - p.6

Terms

| Units M a Atoms
W (t,t") Pairs

W Ft Funct.

Amsterdam, 3. June 2003 - p.6

Terms

| Units W a Atoms
W (t,t") Pairs W a.t Abstractions

W Ft Funct.

Amsterdam, 3. June 2003 - p.6

o)

Units

W (t,t') Pairs

mEt

Funct.

Terms

B a Atoms

M a.t Abstractions

\\

p
"Aa.a ' — fn a.a

are not allowed

constructions like fn X.X

~N

J

Amsterdam, 3. June 2003 - p.6

Terms

| Units W a Atoms
W (t,t") Pairs W a.t Abstractions

W Ft Funct. W m-X Suspensions

Amsterdam, 3. June 2003 - p.6

Terms

() Units d a Atoms
W (t,t") Pairs M a.t Abstractions
W Ft Funct. B - X Suspensions

(7 is an explicit permutation,) (X is a meta-level
which is a list of swappings ||variable, standing
(a1 b1) ... (a,b,), waiting ||for an unknown
to be applied to the term term Y

that is substituted for X

Amsterdam, 3. June 2003 - p.6

Permutations

a permutation applied to a ferm:

. la £ a
tof c ifra=>

W (be)um-a = b ifma=c
m-a otherwise

Amsterdam, 3. June 2003 - p.7

Permutations

a permutation applied to a ferm:

- Ja € a

tof C !f Ta i b
W (be)um-a = b ifma=c
m-a otherwise

d
] wea.l éf wea.7w 1

Amsterdam, 3. June 2003 - p.7

Permutations

a permutation applied to a ferm:

] |-a def a
c ifma=>»
W (be):m-a def b ifma=c
mw-a otherwise
_ we-a.l déf wea.w-1
def

_l mn’- X = (mQ@Qn').-X

Amsterdam, 3. June 2003 - p.7

Permutations

a permutation applied to a ferm:

2 J-a € a
tof C if Ta=20>0
B (be)uma = b ifma=c
mw-a otherwise
] wea.t déf .7 1
_l ra. X © (r@Q7’). X

Permutations on atoms are bijections!
ma=2>b iff a=(x"")b

Amsterdam, 3. June 2003 - p.7

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is fresh for X — (b # X)),
i.e., does not occur freely in any ground term

that might be substituted for X.

Amsterdam, 3. June 2003 - p.8

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is frech £fan YA_ (b L Y
i.e., does not occur explicit permutation —

that might be subs waits to be applied to the
term that is substituted

for X ,

Amsterdam, 3. June 2003 - p.8

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is fresh for X — (b # X)),
i.e., does not occur freely in any ground term

that might be substituted for X.

Amsterdam, 3. June 2003 - p.8

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is fresh for X — (b # X)),

i.e., does not occur freely in any ground term
that might be substituted for X.

If we know more about X, e.g., if we knew
that a # X and b # X, then we can replace

(ab)-X by X.

Amsterdam, 3. June 2003 - p.8

Freshness Assumptions

Our equality is not just

t~t «-equivalence

Freshness Assumptions

but judgements

VEt=1t «-equivalence

where

V:{al#X19°°°9an#Xn}

is a finite set of freshness assumptions.

Amsterdam, 3. June 2003 - p.9

Freshness Assumptions

but judgements

VEt=1t «-equivalence

where

V:{al#X17°°°7an#Xn}

is a finite set of freshness assumptions.

{a# X, b# X} Ffna.X = fnb. X

Amsterdam, 3. June 2003 - p.9

Freshness Assumptions

but judgements
VEt=1t «-equivalence
VEka#1t freshness

where

V:{al#X17°°°7an#Xn}

is a finite set of freshness assumptions.

{a# X, b# X} Ffna.X = fnb. X

Amsterdam, 3. June 2003 - p.9

Rules for Equivalence

Excerpt
(i.e. only the interesting rules)

sssssssssssssssssssssssss

Rules for Equivalence

VEtxt
VIFEFat=a.t

a#£b Vktx(ab)t Vika#t

VEFat=>b.t

Rules for Equivalence

(a # X) eV
for all a with w-a # w’-a

VFEFrnX=xnX

sssssssssssssssssssssssss

Rules for Equivalence

(a # X) eV
for all a with w-a # 7’-a

VErnX=xn-X
for example

fa #X,b# X} X ~ (ab)-X

sssssssssssssssssssssssss

Rules for Equivalence

(a # X) eV
for all a with w-a # 7’-a

VErnX=xn-X
for example

{a #X,c# X} F (ac)(abdb)- X = (bec)- X

because (ac)(ab): a—b (bc): ar— a
b— c b— c
c— a c— b
disagree at a and c.

Amsterdam, 3. June 2003 - p.10

Rules for Freshness

Excerpt
(again only the interesting rules)

Rules for Freshness

a+£b
VEa#b

azxrb VEas#t

VFEa+# a.t V Fa# b.t

(m ta# X) eV
VEa# 7m-X

= IS an Equlvalence

Theorem: = is an equivalence relation.

(Reflexivity) V HFt=t
(Symmetry) if VEt, =t; then VIt =t

(Transitivity) if VEt, =ty and V -t = i3
thenV - t; = t3

Amsterdam, 3. June 2003 - p.12

= IS an Equlvalence

Theorem: = is an equivalence relation.

because = has very good properties:

av
av

—t~t' thenV

—a # t then V

- 7t &~ et/

— mwea # -t

Amsterdam, 3. June 2003 - p.12

= IS an Equlvalence

Theorem: = is an equivalence relation.

because = has very good properties:

av
av

av
av

—t~t' thenV
—a # t then V

- 7t &~ et/

— mwea # -t

-t~ w-t' then V ('/t_l)-t ~ t/

—a # m-t then V ('u_l)-a # 1

Amsterdam, 3. June 2003 - p.12

= IS an Equlvalence

Theorem: = is an equivalence relation.

because = has very good properties:

av
av

av
av

—t~t' thenV
—a # t then V

- 7t &~ et/

— mwea # -t

-t~ w-t' then V ('/t_l)-t ~ t/

—a # m-t then V ('u_l)-a # 1
WMVEtEa#tand Vit =t then

VEa#t

Amsterdam, 3. June 2003 - p.12

Comparison with =,

Traditionally =, is defined as

least congruence which identifies a.t with
b.[a := b|t provided b is not free in t

where [a := b]t replaces all free occurrences
of abybint.

Amsterdam, 3. June 2003 - p.13

Comparison with =,

Traditionally =, is defined as

least congruence which identifies a.t with
b.[a := b|t provided b is not free in t

where [a := b]t replaces all free occurrences
of abybint.

For ground terms:
Theorem: t=,t iff ot=*t
a FA(t) iff ok a #1

Amsterdam, 3. June 2003 - p.13

Comparison with =,

Traditionally =, is defined as

least congruence which identifies a.t with
b.[a := b|t provided b is not free in t

where [a := b]t replaces all free occurrences
of abybint.

In general =, and = are distinct!

a.X =, b.X but not
gkFa.X =~ b.X (aF#Db)

Amsterdam, 3. June 2003 - p.13

Comparison with =,
That is a crucial point: if we had h

gFa.X = b.X,

then applying [X := a], [X :=b], ...
give two terms that are not a-equivalent.

The freshness constraints a # X and
b # X rule out the problematic
substitutions. Therefore

{a # X, b# X} Fa.X = b.X
_does hold. Y,

Amsterdam, 3. June 2003 - p.13

Substitutions

B oat)Eao(t

def [m-0(X) ifo(X)#X
B o(r-X) = {ﬂ-.X otherwise

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

def [-0(X) ifo(X)#X
8 o(mX) = {ﬂ--X otherwise
for example

a.(ab)- X [X :=(b,Y)]

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

def [m-0(X) ifo(X)#X
B o(r-X) = {ﬂ-.X otherwise

for example
a.(ab)- X [X :=(b,Y)]

= a.(ab)-X[X := (b, Y)]

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

def [m-0(X) ifo(X)#X
B o(r-X) = {ﬂ-.X otherwise

for example
a.(ab)- X [X :=(b,Y)]

= a.(ab)-X|[X :=(b,Y)]
= a.(ab)-(b,Y)

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

def [m-0(X) ifo(X)#X
B o(r-X) = {ﬂ-.X otherwise

for example
a.(ab)- X [X :=(b,Y)]

= a.(ab)-X|[X :=(b,Y)]
= a.(ab)-(b,Y)
= a.{a,(ab)Y)

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

def [m-0(X) ifo(X)#X
B o(r-X) = {ﬂ-.X otherwise

mifVEt~tad V' F o(V)
then V/ - o (t) ~ o (t')

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

B o(mX) =

B ifVEtxtadV +o(V))
then V' o (t) =~ o (t')\

def [-0(X) ifo(X)#X
- X otherwise

(this means

holds for all

V'ka # o(X)

\

(a# X) eV

Substitutions

B oat)Eao(t

def [m-0(X) ifo(X)#X
B o(r-X) = {ﬂ-.X otherwise

mifVEt~tad V' F o(V)
then V/ - o (t) ~ o (t')

mmmmmmmmmmmmmmmmmmmmmmmmm

Substitutions

B oat)Eao(t

def [-0(X) ifo(X)#X
B o(mX) = {ﬂ--X otherwise
W ifVEt=tand V' I o(V)
then V' - o(t) = o(t')
W o(mt) =mo(t)

mmmmmmmmmmmmmmmmmmmmmmmmm

Equational Problems

An equational problem
~7 t’
IS solved by

M a substitution o (terms for variables)
W and a set of freshness assumptions V

so that V I o(t) = o(t').

Amsterdam, 3. June 2003 - p.15

Unifying equations may entail solving freshness
problems.

E.g. assuming that a # a’, then
a.t =7 a’.t’
can only be solved if
t =7 (aa’)-t" and a #7t

can be solved.

Amsterdam, 3. June 2003 - p.16

Freshness Problems

A freshness problem

a #7t
IS solved by

W a substitution o
M and a set of freshness assumptions V

so that V - a # o(t).

Amsterdam, 3. June 2003 - p.17

Existence of MGUSs

Theorem: there is an algorithm which, given a
nominal unification problem P, decides
whether or not it has a solution (o, V), and
returns a most general one if it does.

Amsterdam, 3. June 2003 - p.18

Existence of MGUSs

Theorem: there is an algorithm which, given a
nominal unification problem P, decides
whether or not it has a solution (o, V), and
returns a most general one if it does.

N

'straightforward definition:
"iff there exists a T such that ..."

Amsterdam, 3. June 2003 - p.18

Existence of MGUSs

Theorem: there is an algorithm which, given a
nominal unification problem P, decides
whether or not it has a solution (o, V), and
returns a most general one if it does.

Proof: one can reduce all the equations to
'solved form' first (creating a substitution), and
then solve the freshness problems (easy).

Amsterdam, 3. June 2003 - p.18

Remember the Quiz?

W Aa.Ab.(M;b) and Ab.\a.(a My)

I

_
W Aa.Ab.(b Mg) and Aa.Aa.(a M7)

mmmmmmmmmmmmmmmmmmmmmmmmm

Answers to the Quiz

Aa.Ab.(M; b) and Ab.A\a.(a M)

0000000000000000000000000

Answers to the Quiz

CL.b.(Ml, b> ~7 b.a.(a, M1>

mmmmmmmmmmmmmmmmmmmmmmmmm

Answers to the Quiz

CL.b.(Ml, b> ~7 b.CL.((I, M1>
—= b.(M,,b) =? (ab)-a.{a, My) , a #? a.{a, M;)

mmmmmmmmmmmmmmmmmmmmmmmmm

Answers to the Quiz

CL.b.(Ml, b> ~7? b.CL.((I, M1>
—= b.(M,,b) =? b.(b, (ab)-M,) , a #? a.{a, M)

mmmmmmmmmmmmmmmmmmmmmmmmm

Answers to the Quiz

a.b.<M1, b> ~7? b.a.(a, M1>
—= b.(M,,b) =? b.(b, (ab)-M,) , a #? a.{a, M)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)

0000000000000000000000000

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
— M, =~?b, b=x? (ab)-M; , a #? a.{a, M)

0000000000000000000000000

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

2576 ~7 (ab)b, a #? a(a,b)

Amsterdam, 3. June 2003 - p.20

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

[Ail—:—ib] ~7a, a#7? a.(a,b)

Amsterdam, 3. June 2003 - p.20

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

[Ail—:—ib] ~7a, a#7? a.(a,b)
—> FAIL

Amsterdam, 3. June 2003 - p.20

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

[Ail—:—ib] b=?a, a#? a.(a,b)
—> FAIL

[)\a.)\b.(Ml b) =, Ab.\a.(a M) has no solu’rion]

Amsterdam, 3. June 2003 - p.20

Answers to the Quiz

Aa.Ab.(b Mg) and Aa.\a.(a My)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M7)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M)
—= (b, M) ~? (b, (ba)-M) , b #? (a, M)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
— b.(b, M) =? a.(a, M)
— (b, M) ~? (b, (ba)-M;) , b #? (a, M)
— b=?b, Mg ~? (ba)-M;, b#7? (a, M)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
— b.(b, Mg) =? a.(a, M)
— (b, M) ~? (b, (ba)-M;) , b #? (a, M)
—b=x?7b, Mg =? (ba)-M;, b#7? {(a, M)
— Mg =~? (ba)-M, , b #7? (a, M)

Amsterdam, 3. June 2003 - p.21

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M)
—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)
—=b=?b, Mg=~? (ba)-M;, b+#? (a, M)
— Mg =~? (ba)-M, , b #7? (a, M)

Meg:=(ba)-
Me My 42 (a, My)

Amsterdam, 3. June 2003 - p.21

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M)
—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)
—=b=?b, Mg=~? (ba)-M;, b+#? (a, M)
— Mg =~? (ba)-M, , b #7? (a, M)
MeSCO My 49 (a, My)
2o b#?a, b#? M,

Amsterdam, 3. June 2003 - p.21

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

== b.(b, M) =? a.(a, M)

—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)

—=b=?b, Mg=~? (ba)-M;, b+#? (a, M)

— Mg =~? (ba)-M, , b #7? (a, M)
MeSCO My 49 (a, My)

2o b#?a, b#? M,

2 b #7? M,

Amsterdam, 3. June 2003 - p.21

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

== b.(b, M) =? a.({a, My)

—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)

—=> b=x?b, Mg ~? (ba)-My;, b#? (a, My)

== Mg =? (ba)-M, , b #? (a, M)
eSO My 42 (a, My)

2o b#?a, b#? M,

25 b #? M,
oM}

Amsterdam, 3. June 2003 - p.21

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

— b.(b, M) =? a.{a, M)
) MaAb.(bMg) = Aada.(aM;)

we can take M, to be any A-term that

—> b =7 b, Mdoes not contain free occurrences of b,
so long as we take Mg to be the result

= M =7 (b|of swapping all occurrences of b and a
(M= (ba)-Mr] #\Ih‘rolughc.)’u’r M, y

2o b#2a, b #? M,

25 b #? M,

b4 M
{b# 7}®

Amsterdam, 3. June 2003 - p.21

Conclusion

@ used a permutation operation for
renaming (has much nicer properties)

i
o
{¥
=Y !
)
~—
.m'
2

Amsterdam, 3. June 2003 - p.22

Conclusion

@ used a permutation operation for
renaming (has much nicer properties) !l

i
o
{¥
=Y !
)
~—
.m'
2

Amsterdam, 3. June 2003 - p.22

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

Amsterdam, 3. June 2003 - p.22

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

Amsterdam, 3. June 2003 - p.22

= =

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define = so that
substitution respects a-equivalence

Amsterdam, 3. June 2003 - p.22

= =

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define = so that
substitution respects a-equivalence

verified everything in Isabelle

Amsterdam, 3. June 2003 - p.22

Is 1t useful?

M applications to logic programming (w. J. Cheney)

r:Acecl' I'>bM:ADB I'>bN:A x: A, I'>M:B
I'>bx: A I'> M N:B I'>bX\c.M:A DB

Amsterdam, 3. June 2003 - p.23

Is 1t useful?

2 applications to logic programming (w. J. Cheney)

r:Acecl' I'>bM:ADB I'>bN:A x: A, I'>M:B
I'>bx: A I'> M N:B I'>bX\c.M:A DB

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :-
type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Amsterdam, 3. June 2003 - p.23

Is 1t useful?

2 applications to logic programming (w. J. Cheney)

r:Acecl' I'>bM:ADB I'>bN:A x: A, I'>M:B
I'bx:A I'> M N:B 'bXx.M:A DB

Jl term-rewriting (Knuth-Bendix)

Roughly: given a rewrite system, which
reduction need to be added in order to
get confluence.

No such algorithm for rewriting with binders.

Amsterdam, 3. June 2003 - p.23

The End

Paper and Isabelle scripts at:

www.cl.cam.ac.uk /~cu200/Unification

Amsterdam, 3. June 2003 - p.24

Most General Unifiers

Definition: for a unification problem P, a
solution (o1, V1) is more general than another
solution (o3, V3), iff there exists a
substitution o with

_ Vg = O'(Vl)

.V2|_0'2z0'00'1

Amsterdam, 3. June 2003 - p.25

Most General Unifiers

Definition: for a unification problem P, a
solution (o1, V1) is more general than another
solution (o3, V3), iff there exists a
substitution o with) .
V2 F a # O'(X)

2= a(v@/\?g'gg % v,

.V2|_0'2z0'00'1

J

Amsterdam, 3. June 2003 - p.25

Most General Unifiers

Definition: for a unification problem P, a
solution (o1, V1) is more general than another

solution (o3, V3), iff there exists a

substitution o witl Vs F 02(X) = o(o1(X))
holds for all
X €
W V:Eo(V, dom(oz) Udom(o ooq)

I<V2|—0'2~0'00'1><——J

Amsterdam, 3. June 2003 - p.25

	Quiz
	Nominal Unification
	Nominal Unification
	ldots and Substitution
	Swappings
	Terms
	Permutations
	Freshness Relation
	Freshness Assumptions
	Rules for Equivalence
	Rules for Freshness
	$eq $ is an Equivalence
	Comparison with $aeq $
	Substitutions
	Equational Problems
	
	Freshness Problems
	Existence of MGUs
	Remember the Quiz?
	Answers to the Quiz
	Answers to the Quiz
	Conclusion
	Is it useful?
	The End
	Most General Unifiers

