Nominal Techniquesin Isabelle/HOL

based on work by Andy Pitts

joint work with Stefan, Markus, Alexander. . .

 ${\sf Substitution\; Lemma:}$ If $x\not\equiv y$ and $x\not\in FV(L)$, then

 $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of ^M.

Case 1: ^M is ^a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y := L]$ since $x \not\equiv y$.
Case 1.2, $M \equiv u$, Then both sides equal L , for $x \not\sqsubset F V(L)$ Case 1.2. $M \equiv y$. Then both sides equal L , for $x \not\in FV(L)$
implies $L[x := -1] = L$. implies $L[x := \ldots] \equiv L.$

- Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis $(\lambda z.M_1)[x := N][y := L]$ $\equiv \; \lambda z.(M_1[x := N][y := L])$ z:(M1[y := L℄[x := N[y := L℄℄) $\equiv \ (\lambda z.M_1)[y := L][x := N[y := L]].$
- Case 3: $M \equiv M_1M_2$. The statement follows again from the induction hypothesis. tion hypothesis. Munich, 8. February 2006 - p.2 (176)

 ${\sf Substitution\; Lemma:}$ If $x\not\equiv y$ and $x\not\in FV(L)$, then $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of ^M.

Case 1: ^M is ^a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y := L]$ since $x \not\equiv y$.
Case 1.2, $M \equiv u$, Then both sides equal L , for $x \not\sqsubset F V(L)$ Case 1.2. $M \equiv y$. Then both sides equal L , for $x \not\in FV(L)$
implies $L[x := -1] = L$. implies $L[x := \ldots] \equiv L.$

- Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis that $z \not\equiv x, y$ and z is not free in N, L . Then by induction hypothesis $(\lambda z.M_1)[x := N][y := L]$ $\equiv \; \lambda z.(M_1[x := N][y := L])$ z:(M1[y := L℄[x := N[y := L℄℄) $\equiv \ (\lambda z.M_1)[y := L][x := N[y := L]].$
- Case 3: $M \equiv M_1M_2$. The statement follows again from the induction hypothesis. tion hypothesis. Munich, 8. February 2006 - p.2 (276)

 ${\sf Substitution\; Lemma:}$ If $x\not\equiv y$ and $x\not\in FV(L)$, then $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of ^M.

Case 1: ^M is ^a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y := L]$ since $x \not\equiv y$.
Case 1.2, $M \equiv u$, Then both sides equal L, for $x \not\sqsubset F V(L)$ Case 1.2. $M \equiv y$. Then both sides equal L , for $x \not\in FV(L)$
implies $L[x := -1] = L$ implies $L[x := \ldots] \equiv L.$

- Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis $(\lambda z.M_1)[x := N][y := L]$ $\equiv \; \lambda z.(M_1[x := N][y := L])$ z:(M1[y := L℄[x := N[y := L℄℄) $\equiv \ (\lambda z.M_1)[y := L][x := N[y := L]].$
- Case 3: $M \equiv M_1M_2$. The statement follows again from the induction hypothesis. tion hypothesis. Munich, 8. February 2006 - p.2 (376)

 ${\sf Substitution\; Lemma:}$ If $x\not\equiv y$ and $x\not\in FV(L)$, then

 $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of ^M.

Case 1: ^M is ^a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y := L]$ since $x \not\equiv y$.
Case 1.2, $M \equiv u$, Then both sides equal L, for $x \not\sqsubset F V(L)$ Case 1.2. $M \equiv y$. Then both sides equal L , for $x \not\in FV(L)$
implies $L[x := -1] = L$

implies $L[x := \ldots] \equiv L.$

Case 1.3. $M \equiv z \not\equiv x,y$. Then both sides equal z .
Case 2: $M = \lambda z M$. By the variable convention

Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume **2.1.12. Convention:** Terms that are α -congruent are identified. So **2.1.12. Convention**: Terms that are α -congruent are identified. So α now we write $\lambda x . x \equiv \lambda y . y$ etcetera.

 $2.1.13$. Variable Convention: If M_1, \ldots, M_n occur in a certain
mathematical context (e.g. definition, proof), then in these terms m arnemarical context (e.g. definition, proof), men in friese ferms are bound variables. mathematical context (e.g. definition, proof), then in these terms all

2.1.14. Moral: Using conventions 2.1.12 and 2.1.13 one can work with **Case in the naive way.**
The state way. ${\sf Substitution\; Lemma:}$ If $x\not\equiv y$ and $x\not\in FV(L)$, then $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of ^M.

Case 1: ^M is ^a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y := L]$ since $x \not\equiv y$.
Case 1.2, $M \equiv u$, Then both sides equal L , for $x \not\sqsubset F V(L)$ Case 1.2. $M \equiv y$. Then both sides equal L , for $x \not\in FV(L)$
implies $L[x := -1] = L$. implies $L[x := \ldots] \equiv L.$

- Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis $(\lambda z.M_1)[x := N][y := L]$ $\equiv \; \lambda z.(M_1[x := N][y := L])$ z:(M1[y := L℄[x := N[y := L℄℄) $\equiv \ (\lambda z.M_1)[y := L][x := N[y := L]].$
- Case 3: $M \equiv M_1M_2$. The statement follows again from the induction hypothesis. tion hypothesis. Munich, 8. February 2006 - p.2 (576)

 ${\sf Substitution\ Lemma}\colon \text{If }x\not\equiv y\text{ and }x\not\in FV(L)$, then $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of $\bm{M}.$

Case 1: M is a variable.

Case 11 M = a Then

 $\text{Case 1.1. } M = \text{m}$ Then both sides equal $N[\omega - I]$ since $\omega \neq \omega$. Case 1.2. \bm{M} \equiv $\frac{a}{\ln a}$ Remember: only if $y\neq x$ and $x\not\in FV(N)$ then implies $L(\lambda y.M)[x := N] = \lambda y.(M[x := N])$ Case 1.3. $M \equiv$ ● Case 2: $M =$ $(\lambda z . M_1) [x := N] [y := L$ that $z \not\equiv x, y$ and $\begin{array}{ll} \mathbf{z} & \text{if } \mathbf{z} \in \mathbb{R}^n, \ \mathbf$ $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 &$ $(\lambda z.M_1)\|$ $\equiv \lambda z.(M_1[i])$ $\equiv \lambda z.(M_1[x:$ $\equiv \ \lambda z.(M_1[i])$ $\begin{align} \frac{1}{4} \; &\equiv \; \lambda z . (M_1[y := L][x := N[y := L]]) \end{align}$ $\equiv \ (\lambda z.M_1)|$:
|
|
| $(\lambda z. (N))$ $\frac{1}{2}$ $[\lambda z.(M_1[y:=L]))[x]$ **•** Case $3: M \equiv$ $\equiv (\lambda z.M_1)[y := L][x := N[y := L]]. \quad \frac{1}{\rightarrow}$,,,,,,,,, tion hypothesis<mark>.</mark> Munich, 8. February ²⁰⁰⁶ – p.² (6/6)" $(\lambda z.M_1)[x := N][y := L]$ $\equiv \ \lambda z.(M_1[x := N][y := L])$ 1 \leftarrow 2 \leftarrow $\equiv (\lambda z.(M_1[y := L]))[x := N[y := L]])$) IH 2 $\frac{2}{1}$! 1 \rightarrow

Existing FormalisationTechniques

with "bare hands"

(extremely messy) defining lambda-terms as syntax-trees; work with explicit α -conversions

de-Bruijn indices

they are "very formal"; but even if there were no technical problems with dB, they involve oftenquite different lemmas than "paper proofs"

HOAS

. . . yes, **but** induction is problematic, no way to define conveniently notions such as simultaneous substitution **etc** . . . not my persona^l preference ;o)

Formal Proof in Isabelle

lemma forget: assumes a: " $x\;\#\;L$ " shows $\displaystyle{ \raisebox{0.6ex}{\scriptsize{*}}} L[x \!:=\! N]=L"$ using a by (nominal_induct L avoiding: $x \, N$ rule: lam.induct)
(auto simp add: abs fresh fresh atm) (auto simp add: abs fresh fresh atm) lemma fresh fact: fixes \times :: "name" assumes a: " $x\mathrel{\#}M$ " and b: " $x\mathrel{\#}N$ " shows " $x\mathbin{\#}M[y\!:=\!N]$ " $a b$ by (noming using a b by (nominal_induct M avoiding: x y N rule: lam.induct)
(auto simp add: abs_fresh_fresh_atm) (auto simp add: abs fresh fresh atm) lemma subst lemma:

assumes a: " $x \neq y$ " and b: " $x \neq L$ " shows " $M[x\!:=\!N][y\!::=L]=M[y\!::=L][x\!::=N[y\!::=L]]''$ using a b by (nominal_induct $\,M\,$ avoiding: $x\,$ $y\,$ $\,N\,$ $\,L\,$ rule: lam.induct)
(auto simp add: foraet fresh_fact) (auto simp add: forget fresh

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

> ^a countable infinite set this will be important <u>on later on.</u>

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example lambda-calculus

 $\lambda a.\lambda b.$ ($\boldsymbol{a} \, \boldsymbol{b} \, \boldsymbol{c}$)

 \boldsymbol{a} a and b are atoms-bound and binding

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example lambda-calculus

 $\lambda a.\lambda b. ($ \boldsymbol{a} \boldsymbol{b} \boldsymbol{c})

 \boldsymbol{C} c is an atom—bindable

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example lambda-calculus

 $\lambda c.\lambda a.\lambda b. ($ \boldsymbol{a} \boldsymbol{b} \boldsymbol{c})

now \boldsymbol{c} is bound

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example integrals

$$
\int_0^1 x^2 + y\, dx
$$

 $\bm{\mathcal{X}}$ \bm{x} is an atom—bound and binding

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example integrals

$$
\int_{-\infty}^{\infty}\left(\int_{0}^{1}x^{2}+y\,dx\right)dy
$$

 \boldsymbol{y} \boldsymbol{y} is an atom—bindable

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example integrals

$$
\int_0^1 x^2 + y\, dx
$$

0,1 and 2 are constants

We introduce **atoms**. Everything that is **bound**,**binding** and **bindable** is an atom (independent from the language at hand).

example integrals

$$
\int_{-\infty}^{\infty}\left(\int_{0}^{1}x^{2}+y\,dx\right) d2
$$

binding2 does not make sense

binding2 does not make sense

In general, renaming substitutions do not respect α -equivalence, e.g.

$\lambda a.b$ $\lambda c.b$

In general, renaming substitutions do not respect α -equivalence, e.g.

$$
[b := a] \lambda a.b
$$

$$
[b := a] \lambda c.b
$$

$$
= \lambda a.a
$$

$$
= \lambda c.a
$$

In general, renaming substitutions do not respect α -equivalence, e.g.

$$
[b := a] \lambda a.b
$$

= $\lambda a.a$
= $\lambda c.a$

$$
b := a] \lambda c.b
$$

= $\lambda c.a$

Traditional Solution: replace $[b :=$ $=a]t$ by a
ling' form more complicated, 'capture-avoiding' formof substitution.

In general, renaming substitutions do not respect α -equivalence, e.g.

$$
\begin{array}{ll}\n(b\,a)\cdot\,\lambda a.b & (b\,a)\cdot\,\lambda c.b \\
= \lambda b.a & = \lambda c.a\n\end{array}
$$

Nice Alternative: use ^a less complicatedoperation for renaming

$$
(b\ a)\cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of} \\ b \text{ and } a \text{ in } t
$$

In general, renaming substitutions do not respect α -equivalence, e.g.

$$
\begin{array}{ll}\n(b\,a)\cdot\,\lambda a.b & (b\,a)\cdot\,\lambda c.b \\
= \lambda b.a & = \lambda c.a\n\end{array}
$$

Nice Alternative: use ^a less complicatedoperation for renaming

$$
(b\ a)\cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of} \\ b \text{ and } a \text{ in } t
$$

(be they bound, binding or bindable)

In general, renaming substitutions do not respect α -equivalence, e.g.

$$
\begin{array}{ll}\n(b\,a)\cdot\,\lambda a.b & (b\,a)\cdot\,\lambda c.b \\
= \lambda b.a & = \lambda c.a\n\end{array}
$$

Nice Alternative: use ^a less complicatedoperation for renaming

$$
(b\ a)\cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of} \\ b \text{ and } a \text{ in } t
$$

Unlike for $[b\!:=\!a](-)$, for $(b\,a)\!\bullet\!(-)$ we do have if $t =_{\alpha} t'$ then $(b \, a) \,{\scriptstyle \bullet } \, t =_{\alpha} (b \, a) \,{\scriptstyle \bullet } \, t'.$

Munich, 8. February ²⁰⁰⁶ – p.⁶ (6/6)

We shall extend 'swappings' to '(finite) lists ofswappings'

$$
(a_1\,b_1)\dots(a_n\,b_n),
$$

$$
\pi = \begin{pmatrix} a \mapsto b \\ b \mapsto a \\ c \mapsto c \end{pmatrix} = (cb)(ab)(ac)
$$

We shall extend 'swappings' to '(finite) lists ofswappings'

$$
(a_1\,b_1)\dots(a_n\,b_n),
$$

$$
\pi = \begin{pmatrix} a \mapsto b \\ b \mapsto a \\ c \mapsto c \end{pmatrix} \qquad (cb)(ab)(ac)\cdot a = b
$$

We shall extend 'swappings' to '(finite) lists ofswappings'

$$
(a_1\,b_1)\dots(a_n\,b_n),
$$

$$
\pi = \begin{pmatrix} a \mapsto b \\ b \mapsto a \\ c \mapsto c \end{pmatrix} \qquad (cb)(a\,b)(a\,c)\cdot b = a
$$

We shall extend 'swappings' to '(finite) lists ofswappings'

$$
(a_1\,b_1)\dots(a_n\,b_n),
$$

$$
\pi = \begin{pmatrix} a \mapsto b \\ b \mapsto a \\ c \mapsto c \end{pmatrix} \qquad (cb)(ab)(ac)\cdot c = c
$$

We shall extend 'swappings' to '(finite) lists of
swappin Our list-representation is $\overline{}$ $\sqrt{2}$ $\overline{}$ $\overline{}$ Our list-representation is **not** unique, because

also cal
$$
(cb)(ab)(ac)
$$
 and (ab)
or $\frac{\pi}{b}$ for $\frac{1}{b}$ are the 'same' permutation.

$$
\pi = \begin{pmatrix} a \mapsto b \\ b \mapsto a \\ c \mapsto c \end{pmatrix} \qquad (cb)(ab)(ac)\cdot c = c
$$

Permutations on Atoms

^A permutation **acts** on an atom as follows:

$$
[]\cdot a \stackrel{\text{def}}{=} a
$$

$$
((a_1 a_2) :: \pi) \cdot a \stackrel{\text{def}}{=} \begin{cases} a_1 & \text{if } \pi \cdot a = a_2 \\ a_2 & \text{if } \pi \cdot a = a_1 \\ \pi \cdot a & \text{otherwise} \end{cases}
$$

 $[]$ stands for the empty list (the identity permutation), and

 $\bigg($ π foll $\left(a_{1}\ a_{2}\right)\ ::\ \pi$ π stands for the permutation π followed by the swapping ($\bm{a_1}\ \bm{a_2})$

Permutations on Atoms (ct.)

- the **composition** of two permutations is ^given by list-concatenation, written as $\boldsymbol{\pi}$ 0 $\sqrt{\omega_{\pi}}$
- the **inverse** of ^a permutation is ^given by list reversal, written as π^{-1} , and
- **permutation equality**, two permutations $\boldsymbol{\pi}$ π and $\boldsymbol{\pi}$ $^\prime$ are equal iff

$$
\pi\sim\pi'\stackrel{\text{def}}{=}\forall a.\;\,\pi\!\cdot\!a=\pi'\!\cdot\!a
$$

 $\boldsymbol{\pi}$. $\bigg($ \boldsymbol{a}) ^given by the action on atoms $\boldsymbol{\pi}$. $(t_1\,t_2)\;\;\stackrel{\mathsf{def}}{=}\;\;\mathcal{(}$ $\boldsymbol{\pi \bullet t_1})($ $\boldsymbol{\pi \bullet t_2})$ $\boldsymbol{\pi}$. $(\lambda a.t) \stackrel{\mathsf{def}}{=}$ $\boldsymbol{\lambda} ($ $\bm{\pi}\bm{\cdot} \bm{a}$): $\bigg($ $\bm{\pi}\bm{\cdot} \bm{t})$ We have: π^{-1} $t_1=t_2\,$ if a $\overline{}$ $\bigg($ $\bm{\pi}\bm{\cdot} \bm{t})$ $\,=\,t$ $_2$ if and only if $\pi\!\cdot\! t_1=\pi\!\cdot\! t_2$ $\boldsymbol{\pi}{\boldsymbol{\cdot}}\boldsymbol{t}_1=t_2$ $_2$ if and only if $t_1=\pi^{-1}$ $^{\text{{\tiny \texttt{1}}}}\!\bullet\! t_2$

 $\boldsymbol{\pi}$. $\bigg($ \boldsymbol{a}) ^given by the action on atoms $\boldsymbol{\pi}$. $(t_1\,t_2)\;\;\stackrel{\mathsf{def}}{=}\;\;\mathcal{(}$ $\boldsymbol{\pi \bullet t_1})($ $\boldsymbol{\pi \bullet t_2})$ $\boldsymbol{\pi}$. $(\lambda a.t) \stackrel{\mathsf{def}}{=}$ $\boldsymbol{\lambda} ($ $\bm{\pi}\bm{\cdot} \bm{a}$): $\bigg($ $\bm{\pi}\bm{\cdot} \bm{t})$ We have: π^{-1} $t_1=t_2\,$ if a $\overline{}$ $\bigg($ $\bm{\pi}\bm{\cdot} \bm{t})$ $\,=\,t$ $_2$ if and only if $\pi\!\cdot\! t_1=\pi\!\cdot\! t_2$ $\boldsymbol{\pi}{\boldsymbol{\cdot}}\boldsymbol{t}_1=t_2$ $_2$ if and only if $t_1=\pi^{-1}$ $^{\text{{\tiny \texttt{1}}}}\!\bullet\! t_2$

(1)
(1)
(1) II GUULT PEI MUTATIONS: VVEII... What is it about permutations? Well. . .

- \blacksquare they have much nicer properties than
renamina-substitutions (stemmina fro n_{Ω} ey nave m
naming-su the fact that they are $h \rightarrow h$ n
itut $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\frac{1}{2}$ atoms),at Triey):(the fact that they are bijections on renaming-substitutions (stemming from
- $W = H$ $\frac{1}{\sqrt{2}}$ $\overline{}$ yntax-tre y
ir $\sum_{i=1}^{n}$ ے
nc $\frac{1}{2}$ ax-trees (showi syntax-trees (shown next) they ^give rise to ^a relatively simpledefinition of α -equivalence on

a. \overline{t} d_{max} $\overline{2}$ re later on <u>and more later on</u>

1

1
Consider the following four rules:

$$
\frac{t_1 \approx s_1 \quad t_2 \approx s_2}{t_1 \, t_2 \approx s_1 \, s_2} \approx \text{app}
$$
\n
$$
\frac{t \approx s}{\lambda a.t \approx \lambda a.s} \approx \text{lam}_1 \frac{t \approx (a \, b) \cdot s \quad a \not\in \text{fv}(s)}{\lambda a.t \approx \lambda b.s} \approx \text{lam}_2
$$

assuming $a \neq b$

Consider the following four rules:

$$
\overline{a \approx a}^{\approx -\text{atm}} \frac{t_1 \approx s_1 \quad t_2 \approx s_2}{t_1 \, t_2 \approx s_1 \, s_2} \approx -\text{app}} \frac{t \approx s}{\lambda a.t} \approx \frac{t \approx (a \, b) \cdot s}{\lambda a.t} \approx \lambda b.s} \approx -\text{lam}_2
$$

 $\lambda a.t \approx \lambda b.s$ iff t is α -equivalent with s in
which all accumences of b have been renamed which all occurrences of \bm{b} have been renamed to ^a. . . oops **permuted** to ^a.

Consider this alone leads to an 'unso $\ddot{\mathbf{r}}$ $\lambda a.b$ and $\lambda b.a$
ch are not *o-equivalent* However $d = \lambda h.a.$ $\lambda a.b$ and $\lambda b.a$ λ apply the aighthroughtfull in the perimulation in the set of the s
2014 The perimulation of the set THET.
Tion $\mathfrak{so}(a\ b)$ to a we get \mathbf{b} $\begin{array}{|c|c|c|}\n\hline\n\text{I} & \text{I} & \text{I} \\
\hline\n\text{I} & \text{I}\n\end{array}$ \mathbb{R}^2 $\frac{1}{2}$ $\frac{\lambda}{\mu}$ We need to ensure that there are no 'free' whoccurrences of a in s , i.e. $a \not\in \mathsf{fv}(s)$. to ^a. . . oops **permuted** to ^a. But this alone leads to an 'unsound' rule! Considerwhich are **not** α -equivalent. However, if we apply the permutation $(a\,b)$ to a we get $b \approx b$ which leads to non-sense. We need to ensure that there are **no** 'free' occurrences of a in s , i.e. $a \not\in \mathsf{fv}(s)$.

Consider the following four rules:

$$
\overline{a \approx a}^{\approx -\text{atm}} \frac{t_1 \approx s_1 \quad t_2 \approx s_2}{t_1 \, t_2 \approx s_1 \, s_2} \approx -\text{app}} \frac{t \approx s}{\lambda a.t} \approx \frac{t \approx (a \, b) \cdot s}{\lambda a.t} \approx \lambda b.s} \approx -\text{lam}_2
$$

 $\lambda a.t \approx \lambda b.s$ iff t is α -equivalent with s in
which all accumences of b have been renamed which all occurrences of \bm{b} have been renamed to ^a. . . oops **permuted** to ^a.

Not-Free-In

$$
a \not\in \mathsf{fv}(b) \qquad \text{fv-atm}
$$

$$
\cfrac{a \not\in \mathsf{fv}(t_1) \quad a \not\in \mathsf{fv}(t_2)}{a \not\in \mathsf{fv}(t_1 \, t_2)} \mathsf{fv}\text{-}\mathsf{app}
$$

$$
a \not\in \mathsf{fv}(\lambda a.t)^{\mathsf{fv-lam}_1}
$$

$$
\frac{a \not\in \mathsf{fv}(t)}{a \not\in \mathsf{fv}(\lambda b.t)} \mathsf{fv}\text{-lam}_2
$$

assuming $a\neq b$

 Be careful, we have defined two relations over lambda-terms/syntax-trees. We have **not** defined what 'bound' or 'free' means. That is ^afeature, not a bug. TM

\approx **is an Equivalence**

You might be an agnostic and notice that

$$
\frac{a \neq b \quad t \approx (a b) \cdot s \quad a \not\in \mathsf{fv}(s)}{\lambda a.t \approx \lambda b.s} \approx \text{-lam}_2
$$

is defined rather asymmetrically. Still we have:

Theorem: \approx is an equivalence relation.

- (Reflexivity) $\quad t$ $t\thickapprox t$
- (Symmetry) if $t_1 \approx t_2$ then $t_2 \approx t_1$

(Transitivity)

 $t_1 \approx t_2$ and $t_2 \approx t_3$ then $t_1 \approx t_3$
 \Rightarrow is rather tricky to prove \Rightarrow is rather tricky to prove

Comparison with= $\boldsymbol{\alpha}$

Traditionally \equiv_{α} $_{\alpha}$ is defined as

least congruence which identifies $\lambda a.t$ with $\boldsymbol{\lambda b}.[a :=$ **|** $\bm{b}]{\bm{t}}$ provided \bm{b} is not free in \bm{t} $\overline{}$

where $[a :=$ \blacksquare $\overline{}$ $\bm{b}]{\bm{t}}$ replaces all free occurrences of a by b in t $\overline{}$ a by b in t .

- with(__) $\boldsymbol{\approx}$ (__) and(**Contract Contract Contract** __ $)\not\in\mathsf{fv}($ __) we never need to choose ^a 'fresh' atom (goodfor implementations)
- permutation respects both relations, whilst renaming-substitution does not

General Permutations

So far we have only considered permutations acting on atoms and lambda-terms. We are nowgoing to overload Ω $\bullet_-: \alpha \; prm \Rightarrow \iota \Rightarrow \iota$ to act on other types as well.

 $\pi \,{\raisebox{.5mm}{\tiny o}}\, a \qquad a$ \mathbf{r} and \mathbf{r} are the set of \mathbf{r} and $\$ a being an atom (of type $\boldsymbol{\alpha})$ $[]$ \bullet \boldsymbol{a} def = \boldsymbol{a} ((\boldsymbol{a} 1 \boldsymbol{a} 2) $:: \pi$) \bullet \boldsymbol{a} def = $\sqrt{2}$ $\left\{ \right\}$ $\overline{\mathcal{L}}$ \boldsymbol{a} 1 $\frac{1}{1}$ if $\boldsymbol{\pi}$ \bullet \boldsymbol{a} = \boldsymbol{a} 2 a_2 if $\pi \cdot a = a$ 22 if $\boldsymbol{\pi}$ \bullet \boldsymbol{a} = \boldsymbol{a} 1 $\pi \cdot a$ otherwise a otherwise

General Permutations

So far we have only considered permutations acting on atoms and lambda-terms. We are nowgoing to overload Ω $\bullet_-\colon \alpha\;prm\Rightarrow\iota\Rightarrow\iota$ to act on other types as well.

 $\boldsymbol{\tau}$ aaike of simplicity, let us a
we only have **one** type $\overline{}$) i
C a
a def $\mathcal{L}=\mathcal{L}^{\text{max}}$ For sake of simplicity, let us assume we only have **one** type of atoms.

((\boldsymbol{a} 1 \boldsymbol{a} 2) $:: \pi$) \bullet \boldsymbol{a} def = $\sqrt{2}$ $\left\{ \right\}$ $\overline{\mathcal{L}}$ \boldsymbol{a} 1 $\frac{1}{1}$ if $\boldsymbol{\pi}$ \bullet \boldsymbol{a} = \boldsymbol{a} 2 a_2 if $\pi \cdot a = a$ 22 if $\boldsymbol{\pi}$ \bullet \boldsymbol{a} = \boldsymbol{a} 1 $\pi \cdot a$ otherwise a otherwise

General Permutations

So far we have only considered permutations acting on atoms and lambda-terms. We are nowgoing to overload Ω $\bullet_-: \alpha \; prm \Rightarrow \iota \Rightarrow \iota$ to act on other types as well.

 $\pi \,{\raisebox{.5mm}{\tiny o}}\, a \qquad a$ \mathbf{r} and \mathbf{r} are the set of \mathbf{r} and $\$ a being an atom (of type $\boldsymbol{\alpha})$ $[]$ \bullet \boldsymbol{a} def = \boldsymbol{a} ((\boldsymbol{a} 1 \boldsymbol{a} 2) $:: \pi$) \bullet \boldsymbol{a} def = $\sqrt{2}$ $\left\{ \right\}$ $\overline{\mathcal{L}}$ \boldsymbol{a} 1 $\frac{1}{1}$ if $\boldsymbol{\pi}$ \bullet \boldsymbol{a} = \boldsymbol{a} 2 a_2 if $\pi \cdot a = a$ 22 if $\boldsymbol{\pi}$ \bullet \boldsymbol{a} = \boldsymbol{a} 1 $\pi \cdot a$ otherwise a otherwise

Overloading of __ \bullet **__**

$\boldsymbol{\pi}$ $\pi \cdot [] \equiv []$ lists \bullet [] $\stackrel{\text{def}}{=}$ $\boldsymbol{\pi}$. $\bigg($ $x :: x s$) $\stackrel{\mathsf{def}}{=}$ ($\bm{\pi} \bm{\cdot} \bm{x}$) :: ($\bm{\pi} \bm{\cdot} \bm{x} s$) $\pi\boldsymbol{\cdot} X$ $X \stackrel{\text{def}}{=}$ {
{ $\bm{\pi} \bm{\cdot} \bm{x}$ $x \mid x \in X$ sets $\boldsymbol{\pi}$. $\bigg($ $x_1,x_2) \stackrel{{\sf def}}{=} ($ $\boldsymbol{\pi}{\bm{\cdot}} x_1,\boldsymbol{\pi}{\bm{\cdot}} x_2)$ products $\pi\, \bullet \,$ None $\pi \cdot \textsf{None} \stackrel{\textsf{a.e.}}{=} \textsf{None}$ options $e \stackrel{\text{def}}{=}$ $\boldsymbol{\pi}$ • Some($\bm{\mathcal{X}}$) $\stackrel{\mathsf{def}}{=}$ \equiv Some($\bm{\pi} \bm{\cdot} \bm{x}$) $\bm{\pi} \bm{\cdot} \bm{x}$ def \bm{x} integers, strings, bools

Permutation Properties

Whenever we deal with ^a type, we have to make sure that it has ^a sensible permutation operation. . . axiomatic type-classes are just(?) the thing we need:

$$
\begin{aligned}\n\Box \left[\cdot x = x \right] \n\Box (\pi_1 @ \pi_2) \cdot x = \pi_1 \cdot (\pi_2 \cdot x) \\
\Box \pi_1 &\sim \pi_2 \text{ implies } \pi_1 \cdot x = \pi_2 \cdot x\n\end{aligned}
$$

We refer to these properties as $pt_{\alpha,\iota}$ and refer to the typethey are satisfied for ι). as **permutation type** (provided

Permutation Types

The property of being ^a permutation type is insome sense hereditary:

 $\Box~pt_{\alpha.\alpha}$

 $pt_{\alpha,\iota\;list} \;\;\;\;$ provided $pt_{\alpha,\iota}$

similar for sets, products and options $pt_{\alpha,nat}$, $pt_{\alpha,string}$, $pt_{\alpha,bool}$

The nominal datatype-package needs to make sure that every type the implementors deemimportant is ^a permutation type (with axiomatictype-classes no problem).

Permutations on Functions

Interesting: Given $f:\iota_1\Rightarrow\iota_2$ $_2$ and

- $\boldsymbol{\pi}$. \boldsymbol{f} $f \stackrel{\mathsf{def}}{=}$ $\stackrel{\text{def}}{=} \lambda x. \pi$ \bullet $\left(f\right)$ π^{-1} $\overline{}$ $\bm{x}))$
- then pt_{α,ι_1} $_{_1}$ and $pt_{\alpha,\iota}$ 2 $_{_2}$ imply $pt_{\alpha,\iota}$ $_1\Rightarrow \iota _2\cdot$

The definition on functions implies that

 $\boldsymbol{\pi}$. $(f\,\,x$)=($\boldsymbol{\pi}$. $f)$ $($ $\bm{\pi} \bm{\cdot} \bm{x}$)

holds for permutation types.

Support and Freshness

Even more interesting: The **suppor^t** of an object \boldsymbol{x} : $\boldsymbol{\iota}$ ι is a set of atoms α :

Supp $_{\alpha}$ $\bm{\mathcal{X}}$ def ={
{ \boldsymbol{a} $a \mid$ infinite $\{b \mid ($ $\bm{a}\,\,\bm{b})$ $\bullet x\neq x$

An atom is **fresh** for an ^x, if it is not in thesupport of \boldsymbol{x} :

$$
a \# x \stackrel{\text{def}}{=} a \not\in \text{supp}_{\alpha}(x)
$$

^I will often drop the α in supp $\boldsymbol{\alpha}$.

Support and Freshness

Even more interesting: The **suppor^t** of an object \boldsymbol{x} : $\boldsymbol{\iota}$ ι is a set of atoms α :

$$
\sup p_{\alpha} x \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (a \ b) \cdot x \neq x \}
$$
\n
$$
\text{An a O.K. this definition is a tiny bit com-}he
$$
\n
$$
\text{supp}[\text{plicated, so let's go slowly...}]
$$

$$
a \# x \stackrel{\text{def}}{=} a \not\in \text{supp}_{\alpha}(x)
$$

^I will often drop the α in supp $\boldsymbol{\alpha}$.

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\cdot c \neq c
$$

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\cdot c \neq c\}
$$

$$
a: \quad (a?) \cdot c \neq c
$$

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\cdot c \neq c\}
$$

a:
$$
(a ?) \cdot c \neq c
$$
 no
b: $(b ?) \cdot c \neq c$

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\cdot c \neq c
$$

a:
$$
(a ?) \cdot c \neq c
$$
 no
\nb: $(b ?) \cdot c \neq c$ no
\nc: $(c ?) \cdot c \neq c$

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\cdot c \neq c
$$

a:
$$
(a ?) \cdot c \neq c
$$
 no
\nb: $(b ?) \cdot c \neq c$ no
\nc: $(c ?) \cdot c \neq c$ yes
\nd: $(d ?) \cdot c \neq c$

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\}\cdot c \neq c
$$

Let's check the (infinitely many) atoms one byone:

a:
$$
(a?) \cdot c \neq c
$$
 no
\nb: $(b?) \cdot c \neq c$ no
\nc: $(c?) \cdot c \neq c$ yes
\nd: $(d?) \cdot c \neq c$ no

.

What is the suppor^t of the atomC?

$$
\text{supp}(c) \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (ab)\cdot c \neq c
$$

Let's check the (infinitely many) atoms one by
one: $\boxed{\mathsf{So} \quad \mathsf{supp}(c) = \{c\}}$ (\boldsymbol{C})={
{ \boldsymbol{C}

a:
$$
(a?) \cdot c \neq c
$$
 no
\nb: $(b?) \cdot c \neq c$ no
\nc: $(c?) \cdot c \neq c$ yes
\nd: $(d?) \cdot c \neq c$ no

.

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\{\boldsymbol{a}$ \bm{a} | inf $\{\bm{b} \mid (($ $\bm{a}\:\bm{b})$ $\bullet \, x_1, (a \, b)$ $(\boldsymbol{x}_2)\neq(\boldsymbol{x}_1,\boldsymbol{x}_2)\}\}$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

$$
\{a \mid \inf\{b \mid ((a\ b)\bullet x_1, (a\ b)\bullet x_2) \neq (x_1, x_2)\}\}
$$

We know
\n
$$
(x_1, x_2) = (y_1, y_2)
$$
 iff $x_1 = y_1 \wedge x_2 = y_2$
\nhence
\n $(x_1, x_2) \neq (y_1, y_2)$ iff $x_1 \neq y_1 \vee x_2 \neq y_2$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\{\boldsymbol{a}$ \bm{a} | inf $\{\bm{b} \mid (($ $\bm{a}\:\bm{b})$ $\bullet \, x_1, (a \, b)$ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\vee (a\ b)$ $(\boldsymbol{x}_2)\neq(\boldsymbol{x}_1,\boldsymbol{x}_2)\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\vee(a\,b)$ $\bullet x_{2}\neq x_{2}\}\}$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\{\boldsymbol{a}$ \bm{a} | inf $\{\bm{b} \mid (($ $\bm{a}\:\bm{b})$ $\bullet \, x_1, (a \, b)$ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\vee (a\ b)$ $(\boldsymbol{x}_2)\neq(\boldsymbol{x}_1,\boldsymbol{x}_2)\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\vee(a\,b)$ $\{a\ |\inf(\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\cup\{b\ |\ (a\ b)\}$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}(\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{1}\neq x_{1}\}\cup\{b\ |\ ($ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\})\}$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\{\boldsymbol{a}$ \bm{a} | inf $\{\bm{b} \mid (($ $\bm{a}\:\bm{b})$ $\bullet \, x_1, (a \, b)$ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\vee (a\ b)$ $(\boldsymbol{x}_2)\neq(\boldsymbol{x}_1,\boldsymbol{x}_2)\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\vee(a\,b)$ $\{a\ |\inf(\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\cup\{b\ |\ (a\ b)\}$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}(\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{1}\neq x_{1}\}\cup\{b\ |\ ($ $\{a\ |\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}\vee\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}$ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\})\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\} \vee$ inf $\{b \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\}\}$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\{\boldsymbol{a}$ \bm{a} | inf $\{\bm{b} \mid (($ $\bm{a}\:\bm{b})$ $\bullet \, x_1, (a \, b)$ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\vee (a\ b)$ $(\boldsymbol{x}_2)\neq(\boldsymbol{x}_1,\boldsymbol{x}_2)\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\vee(a\,b)$ $\{a\ |\inf(\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\cup\{b\ |\ (a\ b)\}$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}(\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{1}\neq x_{1}\}\cup\{b\ |\ ($ $\{a\ |\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}\vee\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}$ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\})\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\} \vee$ inf $\{b \mid ($ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\}\cup \{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\}$ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{1}\neq x_{1}\}\}\cup\{a$ \bm{a} | inf $\{\bm{b} \mid ($ $\boldsymbol{a}\ \boldsymbol{b})$ $\bullet x_{2}\neq x_{2}\}\}$

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

 $\{\boldsymbol{a}$ \bm{a} | inf $\{\bm{b} \mid (($ $\bm{a}\:\bm{b})$ $\bullet \, x_1, (a \, b)$ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\vee (a\ b)$ $(\boldsymbol{x}_2)\neq(\boldsymbol{x}_1,\boldsymbol{x}_2)\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\vee(a\,b)$ $\{a\ |\inf(\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\cup\{b\ |\ (a\ b)\}$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}(\{\bm{b} \mid ($ $\bm{a}\,\bm{b})$ $\bullet x_{1}\neq x_{1}\}\cup\{b\ |\ ($ $\{a\ |\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}\vee\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}$ $\bm{a}\,\bm{b})$ $\bullet x_{2}\neq x_{2}\})\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\} \vee$ inf $\{b \mid ($ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\}\cup \{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\}$ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{1}\neq x_{1}\}\}\cup\{a$ $\mathsf{supp}(x_1)$ \bm{a} | inf $\{\bm{b} \mid ($ $\boldsymbol{a}\;\boldsymbol{b})$ $\bullet x_{2}\neq x_{2}\}\}$ \cup supp (x_2) \bigcup

 $\mathsf{supp}(x_1,x_2) \mathbin{\stackrel{\rm def}{=}} \{a$ $\bm{a} \mid \mathsf{inf}\left\{\bm{b} \mid (\bm{b})\right\}$ $\boldsymbol{a}\ \boldsymbol{b})$ \bullet $(x_1,x_2)\neq(x_1,x_2)\}\}$

{
{ \boldsymbol{a} a | inf $\{$ $b\sqrt{S}$ l
D) \overline{a} $\overline{}$; (a $\overline{}$)
)
} x
x <u>.
Supp</u> $\overline{\bigg (}$ \overline{a} 1; \mathbf{r} $\overline{2}$ $\frac{1}{100}$ $\{a \mid \inf\{b \mid (a b) \bullet x_1 \neq x_1 \vee (a b) \bullet x_2 \neq x_2\}$ \boldsymbol{a} a | inf $\{$ $b\prod$ $\overline{a}\,b$) \bullet x_1 $\{a\ |\inf(\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\cup\{b\ |\ (a\ b)\}$ $\neq x_1$ ∇ ($\overline{a}\,b$) \bullet x_2 $\neq x_2 \}$ $\bm{a} \mid \mathsf{inf}(\{\bm{b} \mid ($ $\bm{a}\,\bm{b})$ $\bullet x_{1}\neq x_{1}\}\cup\{b\ |\ ($ $\{a\ |\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}\vee\inf\{b\ |\ (a\ b)\bullet x_1\not=x_1\}$ $\bm{a}\,\bm{b})$ $\bullet x_{2}\neq x_{2}\})\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_1\neq x_1\} \vee$ inf $\{b \mid ($ $\{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\bullet x_1\neq x_1\}\}\cup \{a\ |\ \mathsf{inf}\{b\ |\ (a\ b)\}$ $\bm{a}\:\bm{b})$ $\bullet x_{2}\neq x_{2}\}\}$ $\bm{a} \mid \mathsf{inf}\{\bm{b} \mid ($ $\bm{a}\:\bm{b})$ $\bullet x_{1}\neq x_{1}\}\}\cup\{a$ $\mathsf{supp}(x_1)$ \bm{a} | inf $\{\bm{b} \mid ($ $\boldsymbol{a}\ \boldsymbol{b})$ $\bullet x_{2}\neq x_{2}\}\}$ (x_2) \cup supp So supp ($\bm{\mathcal{X}}$ 1; $\bm{\mathcal{X}}$ $\bf 2$) $=$ supp $($ $\bm{\mathcal{X}}$ 1) \bigcup supp $($ $\bm{\mathcal{X}}$ 2)

Some Simple Propertiessupp($\boldsymbol{x_1},\boldsymbol{x_2})$ \mathcal{L} $\mathcal{$ =(supp $x_1)\cup(\mathsf{supp}% (x_1,\ldots,x_n)$ $x_2)$ $\bm{a} \:\# \: ($ supp $_{\alpha}$ (c $\bm{x_1},\bm{x_2})$ iff $\bm{a}\;\#\; \bm{x_1}\mathrel{\wedge}\bm{a}\;\#\; \bm{x_2}$ supp $\boldsymbol{a}:\,\boldsymbol{\alpha}$)={
{ \boldsymbol{a} $\mathsf{p} \left[\right]$ $=\varnothing$, and the state of the state of supp($x :: x s$) $=$ supp $\bigg($ $\bm{\mathcal{X}}$ $)$ \cup supp $\big(x s\big)$ supp(None)<u>in the contract of the contra</u> $=\varnothing$, . . . $\mathsf{supp}(\mathsf{Some}(x))$ $=$ supp $=$ $\bigg($ $\bm{\mathcal{X}}$) $\mathsf{supp}(1)$ = $=$ supp $("$ s") $=$ supp (\bm{True}) $=\varnothing$

Some Simple Properties

 $\mathsf{SU}|$ $_{\mathsf{ic}}$ יי
נ 1 $\overline{ }$ $\mathbf{r}^{\mathbf{u}}$ 2ו
O $\mathbb{Z}^{\mathbb{Z}^{\times}}$ $\lim_{\epsilon \to 0}$ r
f $\overline{}$ I UCIU
DVamr $\overline{}$ **dr** \overline{C} $r₂$ Γ ; \mathbf{f} ϵ a lar $\overline{\Omega}$ $a-$ 21 1**** 1 \mathbf{R} **t** $\mathsf{P} \mid$ 2su|^{Set d} $\overline{}$ ¹ = $\frac{1}{2}$ ar The suppor^t of "finitary" structures is usually quite simple: for example
the support of a lambda-term t is t the support of a lambda-term t is the set of atoms occuring in t_{\cdot} t.

FYI: Infinitary Structures

Supp $=\varnothing$ set of all atoms in $\boldsymbol{\alpha}$ since $\forall a,b.$ ($\bm{a}\,\,\bm{b})$ \bullet =

- supp $F=\{a_1,\ldots,a_n\quad\,$ assuming F is TO SO {
{ \rightarrow a_1,\ldots,a_n assuming F is a
otoma a finite set of atoms $\boldsymbol{a_1, \ldots, a_n}$
- not every set of atoms has finite support: e.g. " $atoms/2"$
- \blacksquare the support of functions is even more interesting (one instance later on)

Existence of ^a Fresh Atom

Q: Why do we assume that there are infinitelymany atoms?

A: For any finitely supported \boldsymbol{x} :

 $\exists c.~~ c \mathbin{\#} x$

If something is finitely supported, then we can always choose ^a fresh atom (also for finitelysupported functions).
Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

<u>Proof:</u> case $a=b$ clear

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

$$
\frac{\text{Proof: case } a \neq b:}{(\text{1}) \text{ fin}\{c \mid (a c) \bullet x \neq x\}} \text{ fin}\{c \mid (b c) \bullet x \neq x\}
$$

from Ass. +Def. of $\#$

$$
a \# x \stackrel{\text{def}}{=} a \not\in \text{supp}(x)
$$

$$
\text{supp}(x) \stackrel{\text{def}}{=} \{a \mid \inf\{c \mid (a \ c) \bullet x \neq x\}\}
$$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\sqrt{2}$ $\begin{array}{|c|c|}\hline c&b\ c\end{array}$ $\bullet x\neq x\}$ (2) fin $(\{c \mid (a\ c)\bullet x \neq x)$ from Ass. +Def. of $\#$ $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}\cup\{c$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\})$ f. (1)

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ $\bullet x\neq x\}$ f. (1)

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ Ω Ω \sim \rightarrow <u>and the contract of the contr</u> $\bullet x\neq x\}$ (3) inf $\{c\mid \neg((a\ c)\bullet x\neq x\vee(b\ c)\bullet x)$ f. (1) $c \mid \neg (($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\ c)$ $\bullet x\neq x)\}$ f. (2')

> Given ^a finite set of atoms, its 'co-set' must be infinite.

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ f. (1) $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $\bullet x=x)\}$ f. (2')

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ f. (1) $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ (4) (i) $(a c) \cdot x = x$ (ii) $(b c) \cdot x = x$ f. (2') $\bullet x=x \quad$ (ii) $(b\ c)$ $\bullet x = x$ for a $c \in (3')$

> If ^a set is infinite, it must contain ^a few elements. Let's pick c so that $c \neq a, b$.

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ f. (1) $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ (4) (i) $(a\ c)\bullet x=x$ (ii) $(b\ c)\bullet x=x$ f. (2') **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x \quad \text{ for a } c\in (3')$ (5) $(a\ c)$ $\bullet x=x$ x by $(4i)$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ f. (1) $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ (4) (i) $(a\ c)\bullet x=x$ (ii) $(b\ c)\bullet x=x$ f. (2') **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x \quad \text{ for a } c\in (3')$ (5) $(a\ c)$ $\sqrt{1}$ $\bullet x=x$ \blacksquare by (4i) (6) $(b\ c)$ \bullet $(\bm{a}\ \bm{c})$ $\bullet x=$ $(\bm{b}\ \bm{c})$ \bullet \bm{x} by bij.

$$
\text{bij.: } x = y \text{ iff } \pi \bullet x = \pi \bullet y
$$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ $f. (1)$ $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ \mathbf{r} x for a $c \in (3')$ f. (2') (4) (i) $(a\ c)$ **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x$ (5) $(a\ c)$ $\sqrt{1}$ $\bullet x=x$ \blacksquare x by (4i) (6') $(b\ c)$ \bullet $(\bm{a}\ \bm{c})$ $\bullet x=x$ by $bij.$, $(4ii)$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ f. (1) $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ \mathbf{r} f. (2') (4) (i) $(a\ c)$ **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x$ x for a $c \in (3')$ (5) $(a\ c)$ $\sqrt{1}$ $\bullet x=x$ \blacksquare by (4i) (6') $(b\ c)$ \mathcal{L} and \mathcal{L} and \mathcal{L} \bullet $(\bm{a}\ \bm{c})$ $\sqrt{1}$ $\bullet x=x$ \bullet α by bij.,(4ii) (7) $(a\ c)$ \bullet $(\bm{b}\ \bm{c})$ \bullet $(\bm{a}\ \bm{c})$ $\bullet x=$ $(\bm{a}\ \bm{c})$ \bullet \bm{x} by bij.

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ $f. (1)$ $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ \mathbf{r} x for a $c \in (3')$ f. (2') (4) (i) $(a\ c)$ **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x$ (5) $(a\ c)$ $\sqrt{1}$ $\bullet x=x$ \blacksquare x by (4i) (6') $(b\ c)$ \mathcal{L} and \mathcal{L} and \mathcal{L} \bullet $(\bm{a}\ \bm{c})$ $\sqrt{1}$ $\bullet x=x$ \bullet α by $bij.$, $(4ii)$ (7') $(a\ c)$ \bullet $(\bm{b}\ \bm{c})$ \bullet $(\bm{a}\ \bm{c})$ $\bullet x=x$ by $bij.$, $(4i)$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ f. (1) $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ \mathbf{r} x for a $c \in (3')$ f. (2') (4) (i) $(a\ c)$ **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x$ (5) $(a\ c)$ $\sqrt{1}$ $\bullet x=x$ \blacksquare x by (4i) (6') $(b\ c)$ \mathcal{L} and \mathcal{L} and \mathcal{L} \bullet $(\bm{a}\ \bm{c})$ $\sqrt{1}$ $\bullet x=x$ \bullet α by bij.,(4ii) (7') $(a\ c)$ \bullet $(\bm{b}\ \bm{c})$ \bullet $(\bm{a}\ \bm{c})$ $\bullet x=x$ by $bij.$, $(4i)$

> $(a\,c)(b\,c)(a\,c)$ \sim $(\bm{a}\;\bm{b})$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Assuming $pt_{\alpha,\iota}\colon a\;\#\;x\wedge b\;\#\;x\Rightarrow(a\;b)$ $\bullet x=x$

Proof: case $a\neq b$: \overline{a} (1) fin $\{c$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $c \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\}$ $\operatorname{\textsf{fin}}\{c\mid (b\, c)\bullet x\neq x\}$ $\bm{c} \mid (\bm{b}\ \bm{c})$ $\bullet x\neq x\}$ (2') fin $\{c \mid (a\,c) \,{\raisebox{.5em}{\text{\circle*{1.5}}}}\, x \neq x$ from Ass. +Def. of $\#$ ϵ f 1 / $\bm{c} \mid ($ $\bm{a}\ \bm{c})$ $\bullet x\neq x\vee(b\,c)$ \bullet m \bullet m \sim \sim \sim \sim \sim \sim $\bullet x\neq x\}$ (3') inf $\{c \mid (a \, c) \bullet x = x \land (b \, c) \bullet x = 0\}$ $f. (1)$ $\sqrt{2}$ \bm{c} \mid $\left($ $\bm{a}\ \bm{c})$ $\bullet x=x\wedge(b\,c)$ $-$ m $\left| \cdots \right|$ the contract of the contract of the $\bullet x=x)\}$ \mathbf{r} x for a $c \in (3')$ f. (2') (4) (i) $(a\ c)$ **Contract Contract Street** $\bullet x=x \quad$ (ii) $(b\ c)$ $\overline{}$ $\bullet x=x$ (5) $(a\ c)$ $\sqrt{1}$ $\bullet x=x$ \blacksquare x by (4i) (6') $(b\ c)$ \mathcal{L} and \mathcal{L} and \mathcal{L} \bullet $(\bm{a}\ \bm{c})$ $\sqrt{1}$ $\bullet x=x$ \bullet α by bij.,(4ii) (7') $(a\ c)$ $\sqrt{1}$ \bullet $(\bm{b}\ \bm{c})$ \bullet $(\bm{a}\ \bm{c})$ (8) $(a\ b)\bullet x=x$ $\bullet x=x$ by b ij., $(4i)$ Done. $\bullet x=x$ by 3rd. prop.

Last Lem. in the SN-Proof

lemma all Red: assumes a: " $\Gamma\vdash t:\tau$ " and b: " $\forall (x,\sigma)\in$ set $\Gamma.$ $x\in$ dom $(\theta)\wedge \theta\langle x\rangle\!\in\!Red_{\sigma}$ \sim \bf{D} shows " $\theta[t]\!\in\!Red_{\bm{\tau}}$ " "

Girard in Proofs-and-Types:

Let t be any term (not assumed to be reducible), and suppose all free variables of t are among $x_1...x_n$ of types $\boldsymbol{\sigma}_1\ldots\boldsymbol{\sigma}_n.$ If $t_1\ldots t_n$ are reducible terms $\frac{n}{f}$ of $\pmb{\sigma}_1 \ldots \pmb{\sigma}_n$ then $t \vert x_1 := t$ $1 \cdots l$ $\boldsymbol{t_n}$ n are reducible terms of type $\sum_{n=1}^{\infty}$ then $t[x_1:=t_1,\ldots,x_n]$ [$n := t_n$ ׀ is reducible.

Last Lem. in the SN-Proof

lemma all Red: assumes a: " $\Gamma\vdash t:\tau$ " and b: " $\forall (x,\sigma)\in$ set $\Gamma.$ $x\in$ dom $(\theta)\wedge \theta\langle x\rangle\!\in\!Red_{\sigma}$ shows " $\theta[t]\!\in\!Red_{\bm{\tau}}$ " using a b proof (nominal induct t avoiding: $\Gamma \mathrel{\tau} \theta$ rule: lam.induct) " case (Lam $a\;t)$ have ih: " $\bigwedge \Gamma \tau \theta.$ $[\Gamma \vdash t\!:\! \tau;\forall(x,\sigma)\!\!\in$ set $\Gamma.$ $x\!\in\!\mathsf{dom}(\theta)\wedge \theta\langle x\rangle\!\in\!Red_{\sigma}]$ $\Longrightarrow \theta[t] \!\in\! Red_\tau$ and θ cond: " $\forall (x, \sigma) \in$ set Γ . $x \in$ dom $(\theta) \wedge \theta \langle x \rangle$ \in Red_{σ}
and frash: "a $\#$ Γ ""a $\#$ θ " " $\mathcal{L}_{\text{model}}$, \mathcal{U}_{eq} \mathcal{U} and fresh: " $a \mathrel{\#} \Gamma$ " " $a \mathrel{\#} \theta$ " " and " $\Gamma \vdash \mathsf{Lam}\left[a\right] . t :\tau$ " by fact hence " $\exists \tau_1 \tau_2.~\tau = \tau_1 \mathop{\rightarrow} \tau_2 \wedge ((a, \tau_1) \mathop{\#}\Gamma) \vdash t : \tau_2$ " by (simp ...)
then ebtein π , π whene π : " $\pi = \pi$...) π " $\mathbf{L} = \mathbf{L} + \mathbf{L}$ **IMING** then obtain τ_1 τ_2 where τ : " $\tau=\tau_1\!\rightarrow\!\tau_2$ " \boldsymbol{a} $\boldsymbol{\tau}$ and ty: " $((a, \tau_1) \mathbin{\#} \Gamma) \vdash t : \tau_2$ " by blast from ih have " $\forall s \in Red_{\tau_1}$. $(\theta[t])[a ::= s] \in R$ $\boldsymbol{\tau_1}$ $\mathcal{C}_1 \cdot (\theta[t])[a \, ::= \, s] \, \in \, Red$ $\bm{\tau_2}$ " using fresh ty θ _cond

by (force dest: fresh context simp add: psubst subst) hence "Lam $[a].(\theta[t]) \in Red$
thus "All am [a] t] \subset $\bm{P_{ed}}$ ". $\|H\cap H\|_{\mathcal{L}}$ is $\|H\cap H\|_{\mathcal{L}}$ if $\|H\cap H\|_{\mathcal{L}}$ $\tau_1{\rightarrow}\tau_2$ thus " θ [Lam $[a].t]\in Red_\tau$ " using ' $\mathrm{^{\prime\prime}}$ by (simp only: abs_Red) $\boldsymbol{\tau}$ " using fresh τ by simp $\text{Munich, 8. February 2006 - p.27 (2/3)}$ \sim \sim \sim

Last Lem. in the SN-Proof

by (force dest: fresh context simp add: psubst subst) hence "Lam $[a].(\theta[t]) \in Red$
thus "All am [a] t] \subset $\bm{P_{ed}}$ ". $\|H\cap H\|_{\mathcal{L}}$ is $\|H\cap H\|_{\mathcal{L}}$ if $\|H\cap H\|_{\mathcal{L}}$ $\tau_1{\rightarrow}\tau_2$ thus " θ [Lam $[a].t]\in Red_\tau$ " using ' $\mathrm{^{\prime\prime}}$ by (simp only: abs_Red) $\boldsymbol{\tau}$ " using fresh τ by simp $\text{minich, 8. February 2006 - p.27 (3/3)}$ \sim \sim \sim