
Quiz
Assuming that a and b are distinct variables, is
it possible to find λ-terms M1..M7 that make
the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(a M1)

λa.λb.(M2 b) and λb.λa.(a M3)

λa.λb.(b M4) and λb.λa.(a M5)

λa.λb.(b M6) and λa.λa.(a M7)

If there is one solution for a pair, can you de-
scribe all its solutions?

Nancy, 20. August 2004 – p.1 (1/1)

Nominal Techniques
Course

Friday-Lecture
Christian Urban

University of Cambridge

Nancy, 20. August 2004 – p.2 (1/1)

Nominal Unification
What? Unific. for schematic-variables and binders

app(fn a.Y, X) ⇓ V

let a = X in Y ⇓ V

Why?

First-order unification is simple, but cannot
be used for terms involving binders.

Higher-order unification is more complicated,
and for schematic-variables has several
drawbacks e.g., capture-avoiding substitution . . .

Nancy, 20. August 2004 – p.3 (1/1)

Substitution
Schematic variables work with possibly-
capturing substitutions, e.g.

app(fn a.Y, X) ⇓ V

let a = X in Y ⇓ V
scheme

Nancy, 20. August 2004 – p.4 (1/5)

Substitution
Schematic variables work with possibly-
capturing substitutions, e.g.

app(fn a.Y, X) ⇓ V

let a = X in Y ⇓ V
scheme

let a = 1 in a ⇓ 1

Nancy, 20. August 2004 – p.4 (2/5)

Substitution
Schematic variables work with possibly-
capturing substitutions, e.g.

app(fn a.Y, X) ⇓ V

let a = X in Y ⇓ V
scheme

let a = 1 in a ⇓ 1

[Y := a; X, V := 1]

correct instance

app(fn a.a, 1) ⇓ 1

let a = 1 in a ⇓ 1
Nancy, 20. August 2004 – p.4 (3/5)

Substitution
Schematic variables work with possibly-
capturing substitutions, e.g.

app(fn a.Y, X) ⇓ V

let a = X in Y ⇓ V
scheme

let a = 1 in a ⇓ 1

[Y := a; X, V := 1]

correct instance

app(fn a.a, 1) ⇓ 1

let a = 1 in a ⇓ 1

=α let b = 1 in b ⇓ 1

[Y :=b; X, V := 1]

incorrect instance

app(fn a.b, 1) ⇓ 1

let b = 1 in b ⇓ 1
Nancy, 20. August 2004 – p.4 (4/5)

Substitution
Schematic variables work with possibly-
capturing substitutions, e.g.

app(fn a.Y, X) ⇓ V

let a = X in Y ⇓ V
scheme

let a = 1 in a ⇓ 1

[Y := a; X, V := 1]

correct instance

app(fn a.a, 1) ⇓ 1

let a = 1 in a ⇓ 1

=α let b = 1 in b ⇓ 1

[Y :=b; X, V := 1]

incorrect instance

app(fn a.b, 1) ⇓ 1

let b = 1 in b ⇓ 1
Nancy, 20. August 2004 – p.4 (5/5)

HOAS
This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn λa.F (a)) X ⇓ V

let X λa.F (a) ⇓ V
λ-calc.

Nancy, 20. August 2004 – p.5 (1/4)

HOAS
This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn F) X ⇓ V

let X F ⇓ V
λ-calc.

Nancy, 20. August 2004 – p.5 (2/4)

HOAS
This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn F) X ⇓ V

let X F ⇓ V
λ-calc.

let 1 λa.a ⇓ 1 let 1 λb.b ⇓ 1

app(fn λa.a) 1 ⇓ 1

let 1 λa.a ⇓ 1

app(fn λb.b) 1 ⇓ 1

let 1 λb.b ⇓ 1
Nancy, 20. August 2004 – p.5 (3/4)

HOAS
This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn F) X ⇓ V

let X F ⇓ V
λ-calc.

let 1 λa.a ⇓ 1 let 1 λb.b ⇓ 1

app(fn λa.a) 1 ⇓ 1

let 1 λa.a ⇓ 1

app(fn λb.b) 1 ⇓ 1

let 1 λb.b ⇓ 1

Drawbacks:

we targeted α, but have to deal with
β (or Miller’s β0, at least) as well

unification theory is not simple

informal practice suggests that
leaving name dependencies implicit
can be convenient

combining HOAS and structural
induction can be a nightmare

Do we have to put up with them? No!
Nancy, 20. August 2004 – p.5 (4/4)

Terms
〈〉 Units

〈t, t′〉 Pairs

F t Funct.

Nancy, 20. August 2004 – p.6 (1/4)

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct.
generic binder:

pλa.aq 7→ fn a.a

constructions like
fn X.X are not
allowed

bindable names
(of object-level
variables etc.)

Nancy, 20. August 2004 – p.6 (2/4)

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct. π·X Suspensions

Nancy, 20. August 2004 – p.6 (3/4)

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct. π·X Suspensions

π is an explicit permutation,
which is a list of swappings
(a1 b1) . . . (an bn), waiting
to be applied to the term
that is substituted for X

X is a variable
standing for an
unknown term

Nancy, 20. August 2004 – p.6 (4/4)

Permutations
a permutation applied to a term:

[]·a def
= a

(b c) ::π ·a def
=

c if π·a = b
b if π·a = c
π·a otherwise

Nancy, 20. August 2004 – p.7 (1/3)

Permutations
a permutation applied to a term:

[]·a def
= a

(b c) ::π ·a def
=

c if π·a = b
b if π·a = c
π·a otherwise

π·a.t
def
= π·a.π·t

Nancy, 20. August 2004 – p.7 (2/3)

Permutations
a permutation applied to a term:

[]·a def
= a

(b c) ::π ·a def
=

c if π·a = b
b if π·a = c
π·a otherwise

π·a.t
def
= π·a.π·t

π·π′·X
def
= (π@π′)·X

Nancy, 20. August 2004 – p.7 (3/3)

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

Nancy, 20. August 2004 – p.8 (1/4)

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

explicit permutation —
waits to be applied to the
term that is substituted
for X

Nancy, 20. August 2004 – p.8 (2/4)

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

Nancy, 20. August 2004 – p.8 (3/4)

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

If we know more about X , e.g., if we knew that
a # X and b # X , then we can replace
(a b)·X by X .

Nancy, 20. August 2004 – p.8 (4/4)

Freshness Assumptions
Our equality is not just

∇ ` t ≈ t′ α-equivalence

∇ ` a # t

Nancy, 20. August 2004 – p.9 (1/4)

Freshness Assumptions
but judgements

∇ ` t ≈ t′ α-equivalence

∇ ` a # t
where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

Nancy, 20. August 2004 – p.9 (2/4)

Freshness Assumptions
but judgements

∇ ` t ≈ t′ α-equivalence

∇ ` a # t
where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

{a # X, b # X} ` fn a.X ≈ fn b.X

Nancy, 20. August 2004 – p.9 (3/4)

Freshness Assumptions
but judgements

∇ ` t ≈ t′ α-equivalence

∇ ` a # t freshness
where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

{b # X} ` b # a.X
{} ` a # a.X

Nancy, 20. August 2004 – p.9 (4/4)

Rules for Equivalence

Excerpt
(i.e. only the interesting rules)

Nancy, 20. August 2004 – p.10 (1/5)

Rules for Equivalence

∇ ` t ≈ t′

∇ ` a.t ≈ a.t′

a 6= b ∇ ` t ≈ (a b)·t′ ∇ ` a # t′

∇ ` a.t ≈ b.t′

Nancy, 20. August 2004 – p.10 (2/5)

Rules for Equivalence
(a # X) ∈ ∇

for all a with π·a 6= π′·a
∇ ` π·X ≈ π′·X

Nancy, 20. August 2004 – p.10 (3/5)

Rules for Equivalence
(a # X) ∈ ∇

for all a with π·a 6= π′·a
∇ ` π·X ≈ π′·X

for example

{a #X, b #X} ` X ≈ (a b)·X

Nancy, 20. August 2004 – p.10 (4/5)

Rules for Equivalence
(a # X) ∈ ∇

for all a with π·a 6= π′·a
∇ ` π·X ≈ π′·X

for example

{a #X, c #X} ` (a c)(a b)·X ≈ (b c)·X

because (a c)(a b): a 7→ b (b c): a 7→ a
b 7→ c b 7→ c
c 7→ a c 7→ b

disagree at a and c.

Nancy, 20. August 2004 – p.10 (5/5)

Rules for Freshness

Excerpt
(again only the interesting rules)

Nancy, 20. August 2004 – p.11 (1/2)

Rules for Freshness
a 6= b

∇ ` a # b

∇ ` a # a.t
a 6= b ∇ ` a # t

∇ ` a # b.t

(π−1·a # X) ∈ ∇
∇ ` a # π·X

Nancy, 20. August 2004 – p.11 (2/2)

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

(Reflexivity) ∇ ` t ≈ t

(Symmetry) if ∇ ` t1 ≈ t2 then ∇ ` t2 ≈ t1

(Transitivity) if ∇ ` t1 ≈ t2 and ∇ ` t2 ≈ t3
then ∇ ` t1 ≈ t3

Nancy, 20. August 2004 – p.12 (1/4)

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

because ≈ has very good properties:

∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′

∇ ` a # t then ∇ ` π·a # π·t

Nancy, 20. August 2004 – p.12 (2/4)

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

because ≈ has very good properties:

∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′

∇ ` a # t then ∇ ` π·a # π·t
∇ ` t ≈ π·t′ then ∇ ` (π−1)·t ≈ t′

∇ ` a # π·t then ∇ ` (π−1)·a # t

Nancy, 20. August 2004 – p.12 (3/4)

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

because ≈ has very good properties:

∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′

∇ ` a # t then ∇ ` π·a # π·t
∇ ` t ≈ π·t′ then ∇ ` (π−1)·t ≈ t′

∇ ` a # π·t then ∇ ` (π−1)·a # t

∇ ` a # t and ∇ ` t ≈ t′ then
∇ ` a # t′

Nancy, 20. August 2004 – p.12 (4/4)

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

Nancy, 20. August 2004 – p.13 (1/4)

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

For ground terms:

Theorem: t =α t′ iff ∅ ` t ≈ t′

a 6∈ FA(t) iff ∅ ` a # t

Nancy, 20. August 2004 – p.13 (2/4)

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

In general =α and ≈ are distinct!

a.X =α b.X but not

∅ ` a.X ≈ b.X (a 6= b)

Nancy, 20. August 2004 – p.13 (3/4)

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

In general =α and ≈ are distinct!

a.X =α b.X but not

∅ ` a.X ≈ b.X (a 6= b)

That is a crucial point: if we had

∅ ` a.X ≈ b.X ,

then applying [X := a], [X := b], . . .
give two terms that are not α-equivalent.

The freshness constraints a # X and
b # X rule out the problematic
substitutions. Therefore

{a # X, b # X} ` a.X ≈ b.X

does hold.

Nancy, 20. August 2004 – p.13 (4/4)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

Nancy, 20. August 2004 – p.14 (1/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

Nancy, 20. August 2004 – p.14 (2/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

⇒ a.(a b)·X[X := 〈b, Y 〉]

Nancy, 20. August 2004 – p.14 (3/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

⇒ a.(a b)·X[X := 〈b, Y 〉]

⇒ a.(a b)·〈b, Y 〉

Nancy, 20. August 2004 – p.14 (4/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

⇒ a.(a b)·X[X := 〈b, Y 〉]

⇒ a.(a b)·〈b, Y 〉

⇒ a.〈a, (a b)·Y 〉
Nancy, 20. August 2004 – p.14 (5/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)

Nancy, 20. August 2004 – p.14 (6/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)
this means
∇′ ` a # σ(X)
holds for all
(a # X) ∈ ∇

Nancy, 20. August 2004 – p.14 (7/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)

Nancy, 20. August 2004 – p.14 (8/9)

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X o’wise do nothing

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)

σ(π·t) = π·σ(t)

Nancy, 20. August 2004 – p.14 (9/9)

Equational Problems
An equational problem

t ≈? t′

is solved by

a substitution σ (terms for variables)

and a set of freshness assumptions ∇

so that ∇ ` σ(t) ≈ σ(t′).

Nancy, 20. August 2004 – p.15 (9/9)

Unifying equations may entail solving freshness
problems.

E.g. assuming that a 6= a′, then

a.t ≈? a′.t′

can only be solved if

t ≈? (a a′)·t′ and a #? t′

can be solved.

Nancy, 20. August 2004 – p.16 (9/9)

Freshness Problems
A freshness problem

a #? t

is solved by

a substitution σ

and a set of freshness assumptions ∇

so that ∇ ` a # σ(t).

Nancy, 20. August 2004 – p.17 (9/9)

Reductions
A set of (t ≈? t′) and (a #? t) problems can
be reduced by

σ
=⇒ or

∇
=⇒

Nancy, 20. August 2004 – p.18 (1/1)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

Nancy, 20. August 2004 – p.19 (1/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

Nancy, 20. August 2004 – p.19 (2/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

{π·X ≈? π′·X}] P
ε

=⇒

{a #? X|a ∈ ds(π, π′)} ∪ P

Nancy, 20. August 2004 – p.19 (3/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

{π·X ≈? π′·X}] P
ε

=⇒

{a #? X|a ∈ ds(π, π′)} ∪ P

{π·X ≈? t}] P
σ

=⇒ σP

if X does not occur in t

Nancy, 20. August 2004 – p.19 (4/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

{π·X ≈? π′·X}] P
ε

=⇒

{a #? X|a ∈ ds(π, π′)} ∪ P

{π·X ≈? t}] P
σ

=⇒ σP

if X does not occur in t

σ = [X := π−1·t]

Nancy, 20. August 2004 – p.19 (5/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

{π·X ≈? π′·X}] P
ε

=⇒

{a #? X|a ∈ ds(π, π′)} ∪ P

{π·X ≈? t}] P
σ

=⇒ σP

if X does not occur in t

{a #? b.t}] P
∅

=⇒{a #? t} ∪ P if a 6= b

Nancy, 20. August 2004 – p.19 (6/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

{π·X ≈? π′·X}] P
ε

=⇒

{a #? X|a ∈ ds(π, π′)} ∪ P

{π·X ≈? t}] P
σ

=⇒ σP

if X does not occur in t

{a #? b.t}] P
∅

=⇒{a #? t} ∪ P if a 6= b

{a #? π·X}] P
∇

=⇒P

Nancy, 20. August 2004 – p.19 (7/8)

Reductions
{a.t ≈? b.t′}] P

ε
=⇒ if a 6= b

{t ≈? (a b)·t′, a #? t′} ∪ P

{a.t ≈? a.t′}] P
ε

=⇒{t ≈? t′} ∪ P

{π·X ≈? π′·X}] P
ε

=⇒

{a #? X|a ∈ ds(π, π′)} ∪ P

{π·X ≈? t}] P
σ

=⇒ σP

if X does not occur in t

{a #? b.t}] P
∅

=⇒{a #? t} ∪ P if a 6= b

{a #? π·X}] P
∇

=⇒P

∇ = {π−1·a # X}

Nancy, 20. August 2004 – p.19 (8/8)

Reductions
A set of (t ≈? t′) and (a #? t) problems can
be reduced by

σ
=⇒ or

∇
=⇒

Nancy, 20. August 2004 – p.20 (1/2)

Reductions
A set of (t ≈? t′) and (a #? t) problems can
be reduced by

σ
=⇒ or

∇
=⇒

If there is a reduction

P
σ1

=⇒ . . .
σn

=⇒ P ′ ∇1

=⇒ . . .
∇m

=⇒ ∅

then

(σn ◦ . . . ◦ σ1, ∇1 ∪ . . . ∪ ∇m)

is a most general unifier for P .

Nancy, 20. August 2004 – p.20 (2/2)

Most General Unifiers
Definition: for a unification problem P , a
solution (σ1, ∇1) is more general than another
solution (σ2, ∇2), iff there exists a
substitution σ with

∇2 ` σ(∇1)

∇2 ` σ2 ≈ σ ◦ σ1

Nancy, 20. August 2004 – p.21 (1/3)

Most General Unifiers
Definition: for a unification problem P , a
solution (σ1, ∇1) is more general than another
solution (σ2, ∇2), iff there exists a
substitution σ with

∇2 ` σ(∇1)

∇2 ` a # σ(X)
holds for all
(a # X) ∈ ∇1

∇2 ` σ2 ≈ σ ◦ σ1

Nancy, 20. August 2004 – p.21 (2/3)

Most General Unifiers
Definition: for a unification problem P , a
solution (σ1, ∇1) is more general than another
solution (σ2, ∇2), iff there exists a
substitution σ with

∇2 ` σ(∇1)

∇2 ` σ2 ≈ σ ◦ σ1

∇2 ` σ2(X) ≈ σ(σ1(X))
holds for all
X ∈ dom(σ2) ∪ dom(σ ◦ σ1)

Nancy, 20. August 2004 – p.21 (3/3)

Existence of MGUs
Theorem: there is an algorithm which, given a
nominal unification problem P , decides
whether or not it has a solution (σ, ∇), and
returns a most general one if it does.

Nancy, 20. August 2004 – p.22 (1/2)

Existence of MGUs
Theorem: there is an algorithm which, given a
nominal unification problem P , decides
whether or not it has a solution (σ, ∇), and
returns a most general one if it does.

Proof: one can reduce all the equations to
‘solved form’ first (creating a substitution), and
then solve the freshness problems (easy).

Nancy, 20. August 2004 – p.22 (2/2)

Remember the Quiz?
Assuming that a and b are distinct variables,
is it possible to find λ-terms M1 to M7 that
make the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(a M1)

λa.λb.(M2 b) and λb.λa.(a M3)

λa.λb.(b M4) and λb.λa.(a M5)

λa.λb.(b M6) and λa.λa.(a M7)

If there is one solution for a pair, can you
describe all its solutions?

Nancy, 20. August 2004 – p.23 (1/1)

Answers to the Quiz
ε

=⇒ λa.λb.(M1 b) and λb.λa.(a M1)

Nancy, 20. August 2004 – p.24 (1/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉

Nancy, 20. August 2004 – p.24 (2/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? (a b)·a.〈a, M1〉 , a #? a.〈a, M1〉

Nancy, 20. August 2004 – p.24 (3/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉

Nancy, 20. August 2004 – p.24 (4/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉

Nancy, 20. August 2004 – p.24 (5/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉

Nancy, 20. August 2004 – p.24 (6/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? (a b)·b , a #? a.〈a, b〉

Nancy, 20. August 2004 – p.24 (7/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? a , a #? a.〈a, b〉

Nancy, 20. August 2004 – p.24 (8/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? a , a #? a.〈a, b〉

=⇒ FAIL

Nancy, 20. August 2004 – p.24 (9/10)

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? a , a #? a.〈a, b〉

=⇒ FAIL

ε

=⇒ λa.λb.(M1 b) =α λb.λa.(a M1) has no solution

Nancy, 20. August 2004 – p.24 (10/10)

Answers to the Quiz
ε

=⇒ λa.λb.(b M6) and λa.λa.(a M7)

Nancy, 20. August 2004 – p.25 (1/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉

Nancy, 20. August 2004 – p.25 (2/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉

Nancy, 20. August 2004 – p.25 (3/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉

Nancy, 20. August 2004 – p.25 (4/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉

Nancy, 20. August 2004 – p.25 (5/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉

Nancy, 20. August 2004 – p.25 (6/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

Nancy, 20. August 2004 – p.25 (7/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

Nancy, 20. August 2004 – p.25 (8/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

∅

=⇒ b #? M7

Nancy, 20. August 2004 – p.25 (9/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

∅

=⇒ b #? M7

{b#M7}
=⇒ ∅

Nancy, 20. August 2004 – p.25 (10/11)

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

∅

=⇒ b #? M7

{b#M7}
=⇒ ∅

λa.λb.(b M6) =α λa.λa.(a M7)

we can take M7 to be any λ-term that
does not contain free occurrences of b,
so long as we take M6 to be the result
of swapping all occurrences of b and a
throughout M7

Nancy, 20. August 2004 – p.25 (11/11)

Conclusion
used a permutation operation for
renaming (has much nicer properties)

Nancy, 20. August 2004 – p.26 (1/6)

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

Nancy, 20. August 2004 – p.26 (2/6)

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

Nancy, 20. August 2004 – p.26 (3/6)

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

Nancy, 20. August 2004 – p.26 (4/6)

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define ≈ so that
substitution respects α-equivalence

Nancy, 20. August 2004 – p.26 (5/6)

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define ≈ so that
substitution respects α-equivalence

verified everything in Isabelle

Nancy, 20. August 2004 – p.26 (6/6)

Is it useful?
applications to logic programming (with J. Cheney)

x :A ∈ Γ

Γ . x :A
Γ . M :A ⊃ B Γ . N :A

Γ . M N :B

x :A, Γ . M :B

Γ . λx.M :A ⊃ B

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :-
type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Nancy, 20. August 2004 – p.27 (1/2)

Is it useful?
applications to logic programming (with J. Cheney)

x :A ∈ Γ

Γ . x :A
Γ . M :A ⊃ B Γ . N :A

Γ . M N :B

x :A, Γ . M :B

Γ . λx.M :A ⊃ B

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :-
type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

αProlog is available from

www.cs.cornell.edu
/people/jcheney/aprolog/

Nancy, 20. August 2004 – p.27 (2/2)

Future Work: Nominal Logic
Wouldn’t it be nice to have an (intelligible)
first-order logic for reasoning about syntax
involving meta-variables and binders? Instead
of the usual axioms

P (t), Γ ` ∆, P (t)
axiom

one would have axioms of the form
∇ ` t1 ≈ t2

∇; P (t1), Γ ` ∆, P (t2)
axiom

where nominal terms are treated ‘modulo ≈’.
Goal: easy induction principles, meta-vars,. . .

(Related work is FOλ∆IN by McDowell & Miller.)
Nancy, 20. August 2004 – p.28 (1/1)

The End

Paper, implementation and Isabelle scripts at:

www.cl.cam.ac.uk/∼cu200/Unification

Nancy, 20. August 2004 – p.29 (1/1)

	Quiz
	Nominal Techniques\[0mm] Course
	Nominal Unification
	Substitution
	HOAS
	Terms
	Permutations
	Freshness Relation
	Freshness Assumptions
	Rules for Equivalence
	Rules for Freshness
	$eq $ is an Equivalence
	Comparison with $aeq $
	Substitutions
	Equational Problems
	
	Freshness Problems
	Reductions
	Reductions
	Reductions
	Most General Unifiers
	Existence of MGUs
	Remember the Quiz?
	Answers to the Quiz
	Answers to the Quiz
	Conclusion
	Is it useful?
	mbox {hspace {-5mm}large {}Future Work: Nominal Logic}
	The End

