Quliz
Assuming that a and b are distinct variables, is

it possible to find A-terms M ..M, that make
the following pairs a-equivalent?

B Aa.Ab.(M;b) and Ab.\a.(a M,)
B Aa.A\b.(My b) and Ab.\a.(a Mj)
B Aa.Ab.(bM;) and Ab.Aa.(a Mj;)
B Aa.A\b.(b Mg) and Aa.\a.(a My)

If there is one solution for a pair, can you de-
scribe all its solutions?

Nancy, 20. August 2004 - p.1 (1/1)

Nominal Techniques
course

Friday-Lecture

Christian Urban
< University of Cambridge

t 2004 - p.2 (1/1

)

Nominal Unification

What? Unific. for schematic-variables and binders

app(fna.Y,X) | V
leta=XinY | V

Why?

Wl First-order unification is simple, but cannot
be used for terms involving binders.

2l Higher-order unification is more complicated,
and for schematic-variables has several
drawbacks e.g., capture-avoiding substitution ..

Nancy, 20. August 2004 - p.3 (1/1)

Substitution

Schematic variables work with possibly-
capturing substitutions, e.g.

app(fna.Y,X) | V

leta=XinY |V scheme

Nancy, 20. August 2004 - p.4 (1/5)

Substitution

Schematic variables work with possibly-
capturing substitutions, e.g.

app(fna.Y,X) | V
leta=XinY |V

scheme

leta=1ina {1

Nancy, 20. August 2004 - p.4 (2/5)

Substitution

Schematic variables work with possibly-

capturing substitutions, e.g.

app(fn a.Y, X) |

v

leta =X in Y .
leta=1ina {1
Y :=a; X,V :=1]
correct instance

app(fn a.a,1) | 1
leta=1ina {1

J)V

scheme

Nancy, 20. August 2004 - p.4 (3/5)

Substitution

Schematic variables work with possibly-
capturing substitutions, e.g.

app(fn

a.Y,X) |V

scheme

leta=XinY | V

leta=1ina {1l =, 1letb=1inb | 1
Y ;= a; X, V:=1] Y :=b; X,V :=1]

correct instanc

e

app(fn a.a,1) | 1

leta =1 in a -

J 1

Nancy, 20. August 2004 - p.4 (4/5)

Substitution

Schematic variables work with possibly-
capturing substitutions, e.g.

app(fna.Y,X) | V
leta=XinY | V

leta=1ina {1l =, 1letb=1inb | 1

scheme

Y ;= a; X, V:=1] Y :=b; X,V :=1]
correct instance Incorrect instance
app(fn a.a,1) | 1 app(fn a.b,1) | 1

leta=1ina {1 letb=1inb { 1

Nancy, 20. August 2004 - p.4 (5/5)

HOAS

This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn Aa.F(a)) X | V

et X Aa.F(a) Vv o4

Nancy, 20. August 2004 - p.5 (1/4)

HOAS

This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn F') X | V

et X F Vv e

Nancy, 20. August 2004 - p.5 (2/4)

HOAS

This style of reasoning can be made precise by
using higher-order abstract syntax (HOAS)
and higher-order unification (capture-avoiding
substitutions).

app (fn F') X | V
let X FF || V

let 1 Aa.a {1 let 1 Ab.b {1

app(fn Aa.a) 1 | 1 app(fn Ab.b) 1 | 1
let 1 Aa.a |} 1 let 1 Ab.b |} 1

Nancy, 20. August 2004 - p.5 (3/4)

A-calc.

HOAS

Th™ Drawbacks: Y
us .
anl B we targeted a, but have to deal with
su 3 (or Miller's B¢, at least) as well

M unification theory is not simple

2 informal practice suggests that

leaving name dependencies implicit
1 can be convenient

2l combining HOAS and structural
induction can be a nightmare 1

\ Do we have to put up with them? No!

Nancy, 20. August 2004 - p.5 (4/4)

Terms

| Units
W (t,t") Pairs

W Ft Funct.

Nancy, 20. August 2004 - p.6 (1/4)

Terms

() Units d a Atoms

W (t,t") Pairs M a.t Abstractions

W EFt Funct. %

‘generic binder:

‘bindable names |
(of object-level
variables etc.) ||constructions like
S “|fn X.X are not

allowed Yy

"Aa.a ' — fn a.a

Nancy, 20. August 2004 - p.6 (2/4)

Terms

| Units W a Atoms
W (t,t") Pairs W a.t Abstractions

W Ft Funct. W m-X Suspensions

Nancy, 20. August 2004 - p.6 (3/4)

Terms

() Units d a Atoms
W (t,t") Pairs M a.t Abstractions
W Ft Funct. B m-X Suspensions

(7 is an explicit permutation,
which is a list of swappings
(a1 bl) 5o c (&n bn), waiTing
to be applied to the term

that is substituted for X

‘X is a variable
standing for an

.unknown term

Nancy, 20. August 2004 - p.6 (4/4)

Permutations

a permutation applied to a term:

] [ea def a
C If mea = b
b If mea = c

mwea otherwise

W (be)::mea def

Nancy, 20. August 2004 - p.7 (1/3)

Permutations

a permutation applied to a term:

_ |ea 1PN
C If mea = b
def .
W (be)imea = b ifmea=c
mwea otherwise
def

_ mea.l = Tea.mwel

Nancy, 20. August 2004 - p.7 (2/3)

Permutations

a permutation applied to a term:

Jea

W (be)::mea

wea.l

mer’ - X

def

def

def
def

a
C If mea = b
b If mea = c
mwea otherwise

Tea.TWel

(mr@7n’). X

Nancy, 20. August 2004 - p.7 (3/3)

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is fresh for X — (b # X)),
i.e., does not occur freely in any ground term

that might be substituted for X.

Nancy, 20. August 2004 - p.8 (1/4)

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is frech £fan Y o TE A\
i.e., does not occur explicit permutation —

that might be subs: waits to be applied to the
term that is substituted

for X)

Nancy, 20. August 2004 - p.8 (2/4)

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is fresh for X — (b # X)),
i.e., does not occur freely in any ground term

that might be substituted for X.

Nancy, 20. August 2004 - p.8 (3/4)

Freshness Relation

We will identify
fna.X = fnb.(ab)-X

provided that 'b is fresh for X — (b # X)),

i.e., does not occur freely in any ground term
that might be substituted for X.

If we know more about X, e.g., if we knew that
a # X and b # X, then we can replace
(ab)-X by X.

Nancy, 20. August 2004 - p.8 (4/4)

Freshness Assumptions

Our equality is not just

t ~t «-equivalence

Nancy, 20. August 2004 - p.9 (1/4)

Freshness Assumptions

but judgements

VEt=t «-equivalence

where

V:{al#X19°°°9an#Xn}

is a finite set of freshness assumptions.

Nancy, 20. August 2004 - p.9 (2/4)

Freshness Assumptions

but judgements

VEt=t «-equivalence

where

V = {al #H X1s.05Qn #Xn}
is a finite set of freshness assumptions.
{a # X, b# X} F fna.X = fnb.X

Nancy, 20. August 2004 - p.9 (3/4)

Freshness Assumptions

but judgements

Vv

V
where

—-t=1t «-equivalence

—a # t freshness

V = {al #H X1s.05Qn #Xn}
is a finite set of freshness assumptions.

(b# X} F b# a.X

{} F a# a.X

Nancy, 20. August 2004 - p.9 (4/4)

Rules for Equivalence

Excerpt
(i.e. only the interesting rules)

Rules for Equivalence

VEtxt
VIFEFat=a.t

a# b VEtx(ab)et’ ViEka#l
VEFat=D>b.t

y, 20. August 2004 - p.10 (2/5)

Rules for Equivalence

(a # X) eV
for all a with wea # w'ea

VFEFrnX==nX

000000000000000000000000

Rules for Equivalence

(a # X) eV
for all a with wea # w'ea

VFEFrnX==nX

for example

fa #X,b# X} X ~ (ab)-X

Rules for Equivalence

(a # X) eV
for all a with wea # w'ea

VErnX=xn-X
for example

{a #X,c# X} F (ac)(abdb)- X = (bec)- X

because (ac)(ab): a—b (be): ar— a
b— c b— c
c— a c— b
disagree at a and c.

Nancy, 20. August 2004 - p.10 (5/5)

Rules for Freshness

Excerpt
(again only the interesting rules)

Nancy, 20. August 2004 - p.11 (1/2)

Rules for Freshness

a+£b
VEa#b

azxrb VEas#t

VFEa+# a.t V Fa # b.t

(m lea # X) €V
VEa# 7 X

= IS an Equlvalence

Theorem: = is an equivalence relation.

(Reflexivity) V Ht=t
(Symmetry) if VEt, =t; then VIt =t

(Transitivity) if VEt; =it and V -t = t3
thenV - t; = t3

Nancy, 20. August 2004 - p.12 (1/4)

= IS an Equlvalence

Theorem: = is an equivalence relation.

because = has very good properties:

av
av

—t~t' thenV

—a # t then V

— Tet =~ el

— TTea # et

Nancy, 20. August 2004 - p.12 (2/4)

= IS an Equlvalence

Theorem: = is an equivalence relation.

because = has very good properties:

av
av
av

—t~t' thenV
—a # t then V

— Tet =~ el

— TTea # et

—t =~ met'then VI (n 7 1)et = t/
WMV Eka+# metthen VE (m1)ea # ¢

Nancy, 20. August 2004 - p.12 (3/4)

= IS an Equlvalence

Theorem: = is an equivalence relation.

because = has very good properties:

av
av
av

—t~t' thenV
—a # t then V

— Tet =~ el

— TTea # et

—t =~ met'then VI (n 7 1)et = t/
WMV Eka+# metthen VE (m1)ea # ¢
WVEka#tand VEt=t then

VEa#t

Nancy, 20. August 2004 - p.12 (4/4)

Comparison with =,

Traditionally =, is defined as

least congruence which identifies a.t with
b.[a := b|t provided b is not free int

where [a := b|t replaces all free occurrences
of abybint.

Nancy, 20. August 2004 - p.13 (1/4)

Comparison with =,

Traditionally =, is defined as

least congruence which identifies a.t with
b.[a := b|t provided b is not free int

where [a := b|t replaces all free occurrences
of abybint.

For ground terms:
Theorem: t=,t iff ot=*t
a FA(t) iff 9k a #1

Nancy, 20. August 2004 - p.13 (2/4)

Comparison with =,

Traditionally =, is defined as

least congruence which identifies a.t with
b.[a := b|t provided b is not free int

where [a := b|t replaces all free occurrences
of abybint.

In general =, and = are distinctl

a.X =, b.X but not
gkFa.X =~ b.X (aF#b)

Nancy, 20. August 2004 - p.13 (3/4)

Comparison with =,
That is a crucial point: if we had h

gFa.X = b.X,

then applying [X := a], [X :=b], ...
give two terms that are not a-equivalent.

The freshness constraints a # X and
b # X rule out the problematic
substitutions. Therefore

{a# X, b # X} Fa.X =b.X
_does hold. Y,

Nancy, 20. August 2004 - p.13 (4/4)

Substitutions

B o(a.t) £ a.o(t)

def | 7T o (T(X) lfO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing

Substitutions

B o(a.t) ! a.o(t)

def | 7T o O'(X) ifO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing
for example

a.(ab)-X [X := (b,Y)]

Substitutions

B o(a.t) ! a.o(t)

def | 7T o O'(X) ifO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing
for example

a.(ab)-X [X := (b,Y)]
— a,.(a, b)X[X - — <b9 Y)]

Substitutions

B o(a.t) ! a.o(t)

def | 7T o O'(X) ifO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing
for example

a.(ab)-X [X := (b,Y)]
— a,.(a, b)X[X - — <b9 Y)]
— a.(a b) ¢ <b7 Y>

Substitutions

B o(a.t) ! a.o(t)

def | 7T o O'(X) ifO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing
for example

a.(ab)-X [X := (b,Y)]
— a,.(a, b)X[X - — <b9 Y)]
— a.(a b)‘<b7 Y>

— a-<a7 (a b)Y>

Substitutions

B o(at) ¥ ao(t)

def | 7T o (T(X) lfO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing

mifVEt~tad V' F o(V)
then V/ - o (t) ~ o (t')

Nancy, 20. August 2004 - p.14 (6/9)

Substitutions

B o(at) ¥ ao(t)

def | 7T o (T(X) lfO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing

B ifVEtxtadV +o(V))
then V' F o(t) = o(t)\

‘this means

V'ka# o(X)

holds for all

(ae#X)eV

Nancy, 20. August 2004 - p.14 (7/9)

\

Substitutions

B o(at) ¥ ao(t)

def | 7T o (T(X) lfO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing

mifVEt~tad V' F o(V)
then V/ - o (t) ~ o (t')

Nancy, 20. August 2004 - p.14 (8/9)

Substitutions

B o(at) ¥ ao(t)

def | 7T o (T(X) lfO'(X) # X
Wo(rX) = {ﬂ-.X owise do nothing
mifVEt~tad V' o(V)

then V' I o(t) = o(t')
] 0'(7Tot) p— W‘U(t)

y, 20. August 2004 - p.14 (9/9)

Equational Problems

An equational problem
~7 t’
IS solved by

M a substitution o (terms for variables)
W and a set of freshness assumptions V

so that V I o(t) = o(t').

Nancy, 20. August 2004 - p.15 (9/9)

Unifying equations may entail solving freshness
problems.

E.g. assuming that a # a’, then
a.t =7 a’.t’
can only be solved if
t =7 (aa’)et’ and a #7t

can be solved.

Nancy, 20. August 2004 - p.16 (9/9)

Freshness Problems

A freshness problem

a #7t
IS solved by

W a substitution o
M and a set of freshness assumptions V

so that V a # o(t).

Nancy, 20. August 2004 - p.17 (9/9)

Reductions

A set of (t =7 t’)and (a #7 t) problems can
be reduced by

A\
— or —>

Nancy, 20. August 2004 - p.18 (1/1)

Reductions

B{a.t~?bt'}wP = if a #b
{t =7 (ab)et',a #?7t'} U P

Nancy, 20. August 2004 - p.19 (1/8)

Reductions

B{at=?bt'} W P = ifa # b
{t =7 (ab)et',a #?7t'}UP

B{at~?at’'YwP ={t=?7t'}UP

Nancy, 20. August 2004 - p.19 (2/8)

Reductions

B{a.t~?bt'}wP = if a #b
{t =7 (ab)et',a #?7t'} UP

B{at~?at’'YwP ={t=?7t'}UP

B{reX =? e X}wP =
{a #?7 X|a € ds(w, 7))} U P

Nancy, 20. August 2004 - p.19 (3/8)

Reductions

B{a.t~?bt'}wP = if a #b
{t =7 (ab)et',a #?7t'} UP

B{at~?at’'YwP ={t=?7t'}UP

B{reX =? e X}wP =
{a #?7 X|a € ds(w, 7))} U P

B{reX ~?7t}w P== oP
if X does not occurint

Nancy, 20. August 2004 - p.19 (4/8)

Reductions

B{a.t~?bt'}wP = if a #b
{t =7 (ab)et',a #?7t'} UP

B{at~?at’'YwP ={t=?7t'}UP
{W’XN?W‘X U—[X :— w1 et] %

{a #FX#Q ds(m, ")

W{reX ~?t} &y P= oP
if X does not occurint

Nancy, 20. August 2004 - p.19 (5/8)

Reductions

B{a.t~?bt'}wP = if a #b
{t =7 (ab)et',a #?7t'} UP

B{at~?at’'YwP ={t=?7t'}UP

B{reX =? e X}wP =
{a #?7 X|a € ds(w, 7))} U P

B{reX ~?7t}w P== oP
if X does not occurint

W{a#?btlwP={a#?t}UP ifa+#b

Nancy, 20. August 2004 - p.19 (6/8)

Reductions

B{a.t~?bt'}wP = if a #b
{t =7 (ab)et',a #?7t'} UP

B{at~?at’'YwP ={t=?7t'}UP

B{reX =? e X}wP =
{a #?7 X|a € ds(w, 7))} U P

B{reX ~?7t}w P== oP
if X does not occurint

W{a#?btlwP={a#?t}UP ifa+#b
Wi{a#?meX}w P=5P

Nancy, 20. August 2004 - p.19 (7/8)

Reductions

B{at=?bt'} W P = ifa # b
{t =7 (ab)et',a #?7t'} UP

B{at~?at’'YwP ={t=?7t'}UP

B{reX =? e X}wP =
{a #?7 X|a € ds(w, 7))} U P

H{reX =7t} W

Wi{a#?meX}w P=5P

Nancy, 20. August 2004 - p.19 (8/8)

Reductions

A set of (t =7 t’)and (a #7 t) problems can
be reduced by

A\
— or —>

Nancy, 20. August 2004 - p.20 (1/2)

Reductions

A set of (t =7 t’)and (a #7 t) problems can
be reduced by

o \Y
_—> or =

If there is a reduction

P2 ... Ip . By

then
(6pn0...001, Vi U...UV,,)

is a most general unifier for P.

Nancy, 20. August 2004 - p.20 (2/2)

Most General Unifiers

Definition: for a unification problem P, a
solution (o1, V1) is more general than another
solution (o3, V3), iff there exists a
substitution o with

_ Vg = O'(Vl)

.V2|_0'2z0'00'1

Nancy, 20. August 2004 - p.21 (1/3)

Most General Unifiers

Definition: for a unification problem P, a
solution (o1, V1) is more general than another
solution (o3, V3), iff there exists a
substitution o with) .
V2 F a # O'(X)

_ (Vz - U(VlD/\?ZIg;é f)o(r)ag Vi

.V2|_0'2z0'00'1

J

Nancy, 20. August 2004 - p.21 (2/3)

Most General Unifiers

Definition: for a unification problem P, a
solution (o1, V1) is more general than another
solution (o2, V3), iff there exists a

substitution UV[Vz - o2(X) = o(01(X))

holds for all
WV, Fo(WXE dom(o2) Udom(o ooy) |
.(Vg = O UOO’D"—J

N

Nancy, 20. August 2004 - p.21 (3/3)

Existence of MGUSs

Theorem: there is an algorithm which, given a
nominal unification problem P, decides
whether or not it has a solution (o, V), and
returns a most general one if it does.

Nancy, 20. August 2004 - p.22 (1/2)

Existence of MGUSs

Theorem: there is an algorithm which, given a
nominal unification problem P, decides
whether or not it has a solution (o, V), and
returns a most general one if it does.

Proof: one can reduce all the equations to
'solved form' first (creating a substitution), and
then solve the freshness problems (easy).

Nancy, 20. August 2004 - p.22 (2/2)

Remember the Quiz?

W Aa.Ab.(M;b) and Ab.Aa.(a My)

I

_
W Aa.Ab.(b Mg) and Aa.Aa.(a M7)

st 2004 - p.23 (1/1

)

Answers to the Quiz

Aa.Ab.(M; b) and Ab.Aa.(a M)

Answers to the Quiz

CL.b.(Ml, b> ~7 b.a.(a, M1>

Answers to the Quiz

CL.b.(Ml, b> ~7 b.CL.((I, M1>
—== b.(M,,b) =? (ab)ea.{a, M), a #? a.(a, M)

Answers to the Quiz

CL.b.(Ml, b> ~7 b.CL.((I, M1>
—= b.(M,,b) =? b.(b, (ab)-M,) , a #? a.{a, M)

Answers to the Quiz

CL.b.(Ml, b> ~7 b.a.(a, M1>
—= b.(M,,b) =? b.(b, (ab)-M,) , a #? a.{a, M)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

Nancy, 20. August 2004 - p.24 (6/10)

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

Pty (ab)eb, a #? a.{a,b)

Nancy, 20. August 2004 - p.24 (7/10)

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

:=b
Sty ~7 a , a #7 a.(a,b)

Nancy, 20. August 2004 - p.24 (8/10)

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

Pty 27 a , a #7 a.(a,b)
—> FAIL

Nancy, 20. August 2004 - p.24 (9/10)

Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)
—= b.(M;,b) =? b.(b, (ab)-M,) , a #? a.{a, M;)
—= (M, b) =? (b, (ab)-M,) , a #? a.(a, M)
—= M, =?b, b~? (ab)-M; , a #? a.{a, M)

[Ail—:—ib] b=?a, a#? a.(a,b)
—> FAIL

[)\a.)\b.(Ml b) =, Ab.Aa.(a M) has no solu’rion]

Nancy, 20. August 2004 - p.24 (10/10)

Answers to the Quiz

Aa.Ab.(b Mg) and Aa.\a.(a My)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M7)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M)
—= (b, M) ~? (b, (ba)-M-) , b #? (a, M)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
— b.(b, Mg) =? a.(a, M)
— (b, M) ~? (b, (ba)-M;) , b #? (a, M)
— b=?b, Mg ~? (ba)-M;, b#7? (a, M)

Nancy, 20. August 2004 - p.25 (5/11)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
— b.(b, Mg) =? a.(a, M)
— (b, M) ~? (b, (ba)-M;) , b #? (a, M)
— b=?b, Mg ~? (ba)-M;, b#7? (a, M)
— Mg =~? (ba)-M, , b #7? (a, M)

Nancy, 20. August 2004 - p.25 (6/11)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M)
—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)
—b=?b, Mg=~? (ba)-M;, b#? (a, M)
— Mg =~? (ba)-M, , b #7? (a, M)

Me:=(ba)-:
EEEOM b 47 (a, My

Nancy, 20. August 2004 - p.25 (7/11)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)
== b.(b, M) =? a.(a, M)
—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)
—b=?b, Mg=~? (ba)-M;, b#? (a, M)
— Mg =~? (ba)-M, , b #7? (a, M)
MeSCO My 49 (a, My)
2o b#?a, b#? M,

Nancy, 20. August 2004 - p.25 (8/11)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

== b.(b, M) =? a.(a, M)

—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)

—b=?b, Mg=~? (ba)-M;, b#? (a, M)

— Mg =~? (ba)-M, , b #7? (a, M)
MeSCO My 49 (a, My)

2o b#?a, b#? M,

25 b #? M,

Nancy, 20. August 2004 - p.25 (9/11)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

== b.(b, M) =? a.({a, My)

—= (b, M) =~? (b, (ba)-M,) , b #? (a, M)

> b=x?b, Mg ~? (ba)-My;, b#? (a, My)

== My =~? (ba)-My , b #? {(a, M)
Mo:ZCOM Y 2 (a, M)

2o b#?a, b#? M,

25 b #? M,
oM}

Nancy, 20. August 2004 - p.25 (10/11)

Answers to the Quiz

a.b.(b, Mg) =7 a.a.(a, Mry)

— b.(b, M) =? a.{a, M)
) MaAb.(bMg) = Aara.(a M;)

we can take M to be any A-term that

—> b =7 b, Mdoes not contain free occurrences of b,
so long as we take Mg to be the result

= M =7 (b|of swapping all occurrences of b and a
[Mo:=(ba)-Mr] #\Ih‘rolughglu’r M, y

2. b#2a, b #? M,

25 b #? M,

b4 M
{b# 7}®

Nancy, 20. August 2004 - p.25 (11/11)

Conclusion

@ used a permutation operation for
renaming (has much nicer properties)

Nancy, 20. August 2004 - p.26 (1/6)

Conclusion

@ used a permutation operation for
renaming (has much nicer properties) !l

g
k.
f
\.Ji";';‘-# x
)
o~
.)\

Nancy, 20. August 2004 - p.26 (2/6)

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

Nancy, 20. August 2004 - p.26 (3/6)

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

Nancy, 20. August 2004 - p.26 (4/6)

= =

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define = so that
substitution respects a-equivalence

Nancy, 20. August 2004 - p.26 (5/6)

= =

Conclusion

used a permutation operation for
renaming (has much nicer properties) !l

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define = so that
substitution respects a-equivalence

verified everything in Isabelle

Nancy, 20. August 2004 - p.26 (6/6)

Is 1t useful?

applications to logic programming (with J. Cheney)

r:Acecl' I'>bM:ADB I'>bN:A r:A,I'>M:B
I'>bx: A I'>M N:B '>bXc.M:A DB

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :-
type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Nancy, 20. August 2004 - p.27 (1/2)

Is 1t useful?

applications to logic programming (with J. Cheney)

anAEI} DM A NP T N-.A m-4F5A413
r>z: A aProlog is available from O B

WWwW.Cs.cornell.edu
/people/jcheney/aprolog/

\- J?
Type Gamma N A.

type Gamn

type Gamn

type Gamma (lam x.M) (arrow A B) / x#Gamma :-
type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Nancy, 20. August 2004 - p.27 (2/2)

Future Work: Nominal Logic

Wouldn't it be nice to have an (intelligible)
first-order logic for reasoning about syntax
involving meta-variables and binders? Instead
of the usual axioms

P(t),I - A, P(t)

one would have axioms of the form
V t1 = {5

V;P(t,), ' - A, P(t5)

where nominal terms are treated 'modulo =~'.
Goal: easy induction principles, meta-vars,. ..

(Related work is FOX2YN by McDowell & Miller.)

Nancy, 20. August 2004 - p.28 (1/1)

axiom

axiom

The End

Paper, implementation and Isabelle scripts at:

www.cl.cam.ac.uk /~cu200/Unification

Nancy, 20. August 2004 - p.29 (1/1)

	Quiz
	Nominal Techniques\[0mm] Course
	Nominal Unification
	Substitution
	HOAS
	Terms
	Permutations
	Freshness Relation
	Freshness Assumptions
	Rules for Equivalence
	Rules for Freshness
	$eq $ is an Equivalence
	Comparison with $aeq $
	Substitutions
	Equational Problems
	
	Freshness Problems
	Reductions
	Reductions
	Reductions
	Most General Unifiers
	Existence of MGUs
	Remember the Quiz?
	Answers to the Quiz
	Answers to the Quiz
	Conclusion
	Is it useful?
	mbox {hspace {-5mm}large {}Future Work: Nominal Logic}
	The End

