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Free Variables of Lambda-Terms:
fv(x) = fxg

fv(t1 t2) = fv(t1) [ fv(t2)
fv(�x:t) = fv(t)� fxg

What are the free variables of pairs, sets, functions. . . ?
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Informal Reasoning

Fluet: “Expressions differing only in names of bound
variables are equivalent.”

Harper and Pfenning about contexts: “. . . when we write
� ,x:A we assume that x is not already declared in � . If
necessary, we tacitly rename x before adding it to the
context � .”

Pfenning in Logical Frameworks - A Brief Introduction:
“We allow tacit �-conversion (renaming of bound variables)
. . . ”
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Plan

How do we get a type for lambda-terms where we
have the equation

�x:x = �y:y?

For this we will have a closer look at the notion of
free variables and describe abstractly what
abstractions are. (Lots of fun!)
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A Non-Starter
If we define

datatype lam =
Var "name"
j App "lam" "lam"
j Lam "name" "lam"

then we do not have �x:x = �y:y.

In this case we have to make sure (manually) that
everything we do is invariant modulo alpha-
equivalence. Curry & Feys need in “Combinatory
Logic” 10 pages just for showing that
M �� M 0; N �� N 0 )M [x :=N ] �� M 0[x :=N 0]
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Types in HOL
HOL includes a mechanism for introducing new types:

If you can identify a non-empty subset in an
existing type, then you can turn this set into a
new type.

typedef my_silly_new_type = "{0, 1, 2::nat}"
by auto

As a result, we will be able to introduce the type
of named �-equivalence classes.

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam"
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big set: nats

small set: {0,1,2}

new type:
my_silly_new_type
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First Naive Attempt
We can define ‘raw’ lambda-terms (i.e. trees) as

datatype raw_lam =
Var "name"
j App "raw_lam" "raw_lam"
j Lam "name" "raw_lam"

and then quotient them modulo �.
typedef lam = "(UNIV::raw_lam set) // alpha"

Problem: This is not an inductive definition and we
have to provide an induction principle for lam
(recall Barendregt’s substitution lemma). This is
painful.
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Second Naive Attempt
We like to define

datatype pre_lam =
Var "name"
j App "pre_lam" "pre_lam"
j Lam "(name�pre_lam) set"

and then perform the following construction

big set: pre_lam

small set:
inductively defined

new type: lam
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Second Naive Attempt (2)
Unfortunately this does not work, because
datatypes need to be definable as sets.
But a Cantor argument will tell us that pre_lam
set will always be bigger than pre_lam.

datatype pre_lam =
Var "name"
j App "pre_lam" "pre_lam"
j Lam "(name�pre_lam) set"
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Second Naive Attempt (2)
Unfortunately this does not work, because
datatypes need to be definable as sets.
But a Cantor argument will tell us that pre_lam
set will always be bigger than pre_lam.

datatype pre_lam =
Var "name"
j App "pre_lam" "pre_lam"
j Lam "(name�pre_lam) set"

In the following we will make this idea to work by
finding an alternative representation for
�-equivalence classes.
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Free Variables
What are the free variables of a lambda-term?

fv(a) def
= fag

fv(t1 t2)
def
= fv(t1) [ fv(t2)

fv(�a:t) def
= fv(t)� fag

What are the free variables of a pair?

fv(t1; t2)
def
= fv(t1) [ fv(t2)

What are the free variables of a list?
fv([]) def

= ? fv(t :: ts) def
= fv(t) [ fv(ts)

What are the free variables of a set?
fv(S)

def
=
S
t2S fv(t)
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Free Variables (2)
What are the free variables of a function, for
example the identity function?

But you just told me what the free variables of
pairs and sets are. The identity function can be
seen as the set of pairs (inputs and outputs):

f(x; x); (y; y); (z; z); : : : ; (t1 t2; t1; t2); : : :g

This would imply that the free variables of �x:x
is the set of all variables?!
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Free Variables (3)
We like to have an (overloaded) definition
recursing over the type hierarchy.

Starting with definitions for the base types
(such as natural numbers, strings and the
object languages we want to study).
Then for type-formers where the definition
should depend on earlier defined notions:

fv(t1; t2)
def
= fv(t1) [ fv(t2)

fv([]) def
= ?

fv(t :: ts) def
= fv(t) [ fv(ts)

But what shall we do about functions, � ) �?
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Atoms

We start with a countably infinite set of atoms.

They will be used for object language variables.
They are the ‘things’ that can be bound.

We restrict ourselves here to just one kind of
atoms.

Permutations are lists of pairs of atoms:
(a1; b1) : : : (an; bn)
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Permutations
A permutation acts on atoms as follows:

[]�a
def
= a

((a1 a2) ::�)�a
def
=

8><
>:

a1 if ��a = a2

a2 if ��a = a1

��a otherwise

[] stands for the empty list (the identity
permutation), and

(a1 a2) ::� stands for the permutation � followed
by the swapping (a1 a2). (We usually drop the ::.)
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Permutations (2)
the composition of two permutations is given by
list-concatenation, written as �0@�,

the inverse of a permutation is given by list
reversal, written as ��1, and

permutation equality, two permutations
� and �0 are equal iff

� � �0 def
= 8a: ��a = �0

�a

Example calculations:
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Permutations (2)
the composition of two permutations is given by
list-concatenation, written as �0@�,

the inverse of a permutation is given by list
reversal, written as ��1, and

permutation equality, two permutations
� and �0 are equal iff

� � �0 def
= 8a: ��a = �0

�a

Example calculations:
(a a) � []
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Three Properties
We require of all permutation operations that:

[]�x = x

(�1@�2)�x = �1�(�2�x)

If �1 � �2 then �1�x = �2�x.

From this we have:

��1
�(��x) = x

��x1 = x2 if and only if x1 = ��1
�x2

x1 = x2 if and only if ��x1 = ��x2
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Permutations on�-Terms
�� (a) given by the action on atoms

�� (t1 t2)
def
= (��t1)(��t2)

��(�a:t)
def
= �(��a):(��t)

An aside: This definition leads also to a simple
definition of �-equivalence:

t1 = t2
�a:t1 = �a:t2

a 6= b t1 = (a b)�t2 a # t2
�a:t1 = �b:t2
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we treat lambdas as if
there were no binders
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Perm’s for Other Types
��(x1; x2)

def
= (��x1; ��x2) pairs

��[]
def
= [] lists

��(x ::xs)
def
= (��x) :: (��xs)

��X
def
= f��x j x 2 Xg sets

��[�x:N ]� = [�(��x):(��N)]�

��f
def
= �x:��(f (��1

�x)) functions
��(f x) = (��f) (��x)

��x
def
= x integers, strings, bools
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(��f) (��x)
def
= (�x:��(f (��1

�x))) (��x)
= ��(f (��1

�(��x)))
= ��(f x)
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Support and Freshness
The support of an object x is a set of atoms:

supp(x) def
= fa j infinite fb j (a b)�x 6= xgg

a # x
def
= a 62 supp(x)

In words: all atoms a where the set

fb j (a b)�x 6= xg

is infinite (each swapping (a b) needs to change
something in x).
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OK, this definition is a tiny bit
complicated, so let’s go slowly. . .



Support of an Atom
What is the support of the atom c?

supp(c) def
= fa j infinite fb j (a b)�c 6= cgg

Let’s check the (infinitely many) atoms one by one:

a: (a ?)�c 6= c no
b: (b ?)�c 6= c no
c: (c ?)�c 6= c yes
d: (d ?)�c 6= c no

... no
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supp(c) = fcg



Support of a Pair
supp(t1;t2)

def
=fa j inf fb j (a b)�(t1;t2) 6= (t1;t2)gg

fa j inffb j ((a b)�t1; (a b)�t2) 6= (t1; t2)gg

fa j inffb j (a b)�t1 6= t1 _ (a b)�t2 6= t2gg

fa j inf(fb j (a b)�t1 6= t1g[fb j (a b)�t2 6= t2g)g

fa j inffb j (a b)�t1 6= t1g_ inffb j (a b)�t2 6= t2gg

fa j inffb j (a b)�t1 6= t1gg[fa j inffb j (a b)�t2 6= t2gg

supp(t1) [ supp(t2)
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We know
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So supp(t1; t2) = supp(t1) [ supp(t2):

However, such things are proved for you:
the user does not have to bother with them.
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lemma
shows "supp (t1,t2) = supp t1 [ ((supp t2)::atom set)"

proof -
have "supp (t1,t2) = {a. inf {b. [(a,b)]�(t1,t2) 6= (t1,t2)}}"
by (simp add: supp_def)

also have "::: = {a. inf {b. ([(a,b)]�t1,[(a,b)]�t2) 6= (t1,t2)}}" by simp
also have "::: = {a. inf {b. [(a,b)]�t1 6= t1 _ [(a,b)]�t2 6= t2}}" by simp
also have "::: = {a. inf ({b. [(a,b)]�t1 6= t1} [ {b. [(a,b)]�t2 6= t2})}"
by (simp only: Collect_disj_eq)

also have "::: = {a. (inf {b. [(a,b)]�t1 6= t1})_(inf {b. [(a,b)]�t2 6= t2})}"
by simp

also have "::: = {a. inf {b. [(a,b)]�t1 6= t1}}[{a. inf {b. [(a,b)]�t2 6= t2}}"
by (simp only: Collect_disj_eq)

also have "::: = supp t1 [ supp t2" by (simp add: supp_def)
finally show "supp (t1,t2) = supp t1 [ ((supp t2)::atom set)" by simp
qed
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Proof:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) f’rm (1)
(3) f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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Proof: case a = b clear.

(1) finfc j (a c)�x 6= xg
finfc j (b c)�x 6= xg

from Ass. +Def. of #

(2) f’rm (1)
(3) f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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a # x
def
= a 62 supp(x)

supp(x) def
= fa j inffc j (a c)�x 6= xgg

Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) f’rm (1)
(3) f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) fin(fc j (a c)�x 6= xg [ fc j (b c)�x 6= xg) f’rm (1)

(3) f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.



It’s as Simple as This
Lemma: a # x ^ b # x) (a b)�x = x

Eugene, 25. July 2008 – p. 22/39

Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) finfc j (a c)�x 6= x _ (b c)�x 6= xg f’rm (1)

(3) f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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Given a finite set of atoms,
its ’co-set’ must be infinite.

Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) finfc j (a c)�x 6= x _ (b c)�x 6= xg f’rm (1)
(3) inffc j :((a c)�x 6= x _ (b c)�x 6= x)g f’rm (2)

(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) finfc j (a c)�x 6= x _ (b c)�x 6= xg f’rm (1)
(3) inffc j (a c)�x = x ^ (b c)�x = xg f’rm (2)

(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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If a set is infinite, it must contain
a few elements. Let’s pick c.

Proof: case a 6= b:
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(3) inffc j (a c)�x = x ^ (b c)�x = xg f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)

(5) (a c)�x = x by (4i)
(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) finfc j (a c)�x 6= x _ (b c)�x 6= xg f’rm (1)
(3) inffc j (a c)�x = x ^ (b c)�x = xg f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)

(6) by bij.
(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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bij.: x = y iff ��x = ��y

Proof: case a 6= b:
(1) finfc j (a c)�x 6= xg

finfc j (b c)�x 6= xg
from Ass. +Def. of #

(2) finfc j (a c)�x 6= x _ (b c)�x 6= xg f’rm (1)
(3) inffc j (a c)�x = x ^ (b c)�x = xg f’rm (2)
(4) (i) (a c)�x = x (ii) (b c)�x = x for a c 2 (3)
(5) (a c)�x = x by (4i)
(6) (b c)�(a c)�x = (b c)�x by bij.

(7) by bij.
(8) (a b)�x = x by prop. of perms
Done.
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Existence of a Fresh Atom

Q: Why do we assume that there are countably
infinitely many atoms?

A: For any finitely supported x:

9a: a # x

If something is finitely supported, then we can
always choose a fresh atom (also for finitely
supported functions).
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Exercises about Support
Given a finite set of atoms. What is the support
of this set?

What is the support of the set of all atoms?

From the set of all atoms take one atom out.
What is the support of the resulting set?

Are there any sets of atoms that have infinite
support?
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“Support by Andrew Pitts”



In Daily Use there Is Nothing
Scary about Support

We usually restrict ourselves to finitary
structures (lists, lambda-terms, etc). In those
structures, the notion of support coincides with
the usual notion of what the free variables are.
We just have to be careful with sets and
functions (we treat them on a case-by-case basis
and they usually turn out to have empty support).

There are two reasons for wanting to find out
what the free variables of functions are: when we
define functions over the “structure” of
�-equivalence classes and because of a trick.
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Nominal Abstractions
We are now going to specify what abstraction
’abstractly’ means: it is an operation

[_]:(_) : atom ) trm ) trm

and has to satisfy two properties:
��([a]:x) = [��a]:(��x)

[a]:x = [b]:y iff
(a = b ^ x = y) _
(a 6= b ^ x = (a b)�y ^ a # y)

These two properties imply for finitely supported x
supp([a]:x) = supp(x)� fag
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a # [a]:x
b 6= a b # x

b # [a]:x



Function [a]:t ‘=’ [�a:t]�
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[a]:t
def
=(�b:if a = b

then Some(t)
else if b# t then Some((b a)�t) else None)

type: atom ! trm option
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[a]:t
def
=(�b:if a = b

then Some(t)
else if b# t then Some((b a)�t) else None)

This is supposed to stand for
the �-equivalence class of �a:t.



Function [a]:t ‘=’ [�a:t]�

Let’s check this for [a]:(a; c):
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a ’applied to’ [a]:(a; c) ’gives’ Some(a; c)

’�a:(a c)’

b ’applied to’ [a]:(a; c) ’gives’ Some(b; c)

’�b:(b c)’

c ’applied to’ [a]:(a; c) ’gives’ None
d ’applied to’ [a]:(a; c) ’gives’ Some(d; c)

’�d:(d c)’

... ...

[a]:(a; c)
def
=

(�b:if a = b

then Some(a; c)
else if b # (a; c)

then Some((b a)�(a; c)) else None)
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Function [a]:t ‘=’ [�a:t]�

This function ’takes’ a lambda-abstraction and an
atom, and tries to rename the abstraction
according to the given atom.
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[a]:t
def
=(�b:if a = b

then Some(t)
else if b# t then Some((b a)�t) else None)
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[a]:t
def
=(�b:if a = b

then Some(t)
else if b# t then Some((b a)�t) else None)



�-Equivalence Classes
We can now define inductively named
�-equivalence classes of lambda-terms:

big set: pre_lam
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datatype pre_lam =
Var "atom"
j App "pre_lam" "pre_lam"
j Lam "atom) pre_lam option"



Definition of Small Set

big set: pre_lam

small set: ��

��
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Var a 2 ��

t1 2 �� t2 2 ��

App t1 t2 2 ��

t 2 ��

Lam [a]:t 2 ��



Definition of Small Set

big set: pre_lam

small set: ��

��

new type: lam

�=�
bijection
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Definition of Small Set

big set: pre_lam

small set: ��

��

new type: lam

�=�
bijection
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This means we have the
familiar induction principle
for �� and so also for �=�.

Var a 2 ��

t1 2 �� t2 2 ��

App t1 t2 2 ��

t 2 ��

Lam [a]:t 2 ��



Structural Induction

Var a 2 ��

t1 2 �� t2 2 ��
App t1 t2 2 ��

t 2 ��
Lam [a]:t 2 ��

. . . implies the structural induction principle over
the type lam:

8a: P (Var a)
8t1 t2: P t1 ^ P t2 ) P (App t1 t2)
8a t: P t) P (Lam [a]:t)

P t
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Better Structural Induction
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8a c: P c (Var a)
8t1 t2 c: (8d:P d t1) ^ (8d:P d t2))P c (App t1 t2)
8a t c: a # c ^ (8d:P d t)) P c (Lam [a]:t)

P c t

provided c is finitely supported

8a: P (Var a)
8t1 t2: P t1 ^ P t2 ) P (App t1 t2)
8a t: P t) P (Lam [a]:t)

P t

implies (as seen yesterday)



“All” for Free
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thm fresh_atm[no_vars]
a # b = (a 6= b)
thm swap_simps[no_vars]
[(a, b)] � a = b
[(a, b)] � b = a

thm alpha[no_vars]
([a].x = [b].y) =

(a = b ^ x = y _ a 6= b ^ x = [(a, b)] � y ^ a # y)

thm lam.inject[no_vars]
(Var x1 = Var y1) = (x1 = y1)
(App x2 x1 = App y2 y1) = (x2 = y2 ^ x1 = y1)
(Lam [x1].x2 = Lam [y1].y2) = ([x1].x2 = [y1].y2)

nominal_datatype lam =
Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

lemma alpha_test:
shows "Lam [x].Var x = Lam [y].Var y"
by (simp add: lam.inject alpha swap_simps fresh_atm)
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In LF
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nominal_datatype
kind = Type

j KPi "ty" "«name»kind"
and ty = TConst "id"

j TApp "ty" "trm"
j TPi "ty" "«name»ty"

and trm = Const "id"
j Var "name"
j App "trm" "trm"
j Lam "ty" "«name»trm"

abbreviation KPi_syn :: "name) ty) kind) kind" ("�[_:_]._")
where "�[x:A].K� KPi A x K"

abbreviation TPi_syn :: "name) ty) ty) ty" ("�[_:_]._")
where "�[x:A1].A2 � TPi A1 x A2"

abbreviation Lam_syn :: "name) ty) trm) trm" ("Lam [_:_]._")
where "Lam [x:A].M� Lam A x M"



In My PhD
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nominal_datatype trm =
Ax "name" "coname"
j Cut "«coname»trm" "«name»trm" ("Cut h_i._ (_)._")
j NotR "«name»trm" "coname" ("NotR (_)._ _")
j NotL "«coname»trm" "name" ("NotL h_i._ _")
j AndR "«coname»trm" "«coname»trm" "coname" ("AndR h_i._ h_i._ _")
j AndL1 "«name»trm" "name" ("AndL1 (_)._ _")
j AndL2 "«name»trm" "name" ("AndL2 (_)._ _")
j OrR1 "«coname»trm" "coname" ("OrR1 h_i._ _")
j OrR2 "«coname»trm" "coname" ("OrR2 h_i._ _")
j OrL "«name»trm" "«name»trm" "name" ("OrL (_)._ (_)._ _")
j ImpR "«name»(«coname»trm)" "coname" ("ImpR (_).h_i._ _")
j ImpL "«coname»trm" "«name»trm" "name" ("ImpL h_i._ (_)._ _")

A SN-result for cut-elimination in CL: reviewed by Henk
Barendregt and Andy Pitts, and reviewers of conference and
journal paper. Still, I found errors in central lemmas;
fortunately the main claim was correct :o)



Conclusions
The support of �x:x:

���x:x
def
= �x:��((�x:x) (��1

�x))
= �x:���

�1
�x

= �x:x

Therefore

supp(�x:x) def
= fa j infinitefb j (a b)��x:x 6= �x:xgg
= fa j infinitefb j�x:x 6= �x:xgg
=?
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Conclusions
To represent �-equivalence classes we used a
trick:

The same �-equivalence class can be written in
many ways (�x:x, �y:y).
Similarly, one and the same function can be
written in many ways ([x]:Var x, [y]:Var y).

Next: This all might look complicated, but my
claim is that nearly all complications can be
hidden away. I will show you tomorrow how to
formalise a simple CK machine.
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Exercises

Given a finite set of atoms. What is the support
of this set?

What is the support of the set of all atoms?

From the set of all atoms take one atom out.
What is the support of the resulting set?

Are there any sets of atoms that have infinite
support?
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