In Programming L anguages (7)

Christian Urban

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 13. December 2006 - p.1 (1/1)



Previously

untrapped errors trapped errors
e.g. access of e.g. division

an array by zero;
outside its jumping to an
bounds; illegal

Jumping To a address

legal address

evil annhoying

Munich, 13. December 2006 - p.2 (1/5)



Previously

untrapped errors trapped errors
e.g. access of e.g. division

an array by zero;
outside its jumping to an
bounds; illegal

Jumping To a address

legal address

evil annhoying

A programming language is called safe if no
untrapped errors can occur. Safety can be
achieved by run-time checks or static checks.

Munich, 13. December 2006 - p.2 (2/5)



Previously

untrapped errors trapped errors
e.g. access of P> e.g. division

an array /// by zero;
outside its / jumping to an
bounds; illegal

Jumping to a address

'Forbidden errors mclude all untrapped errors
and some trapped ones. A strongly typed pro-

gramming language prevents all forbidden er-
rors.

Munich, 13. December 2006 - p.2 (3/5)



Previously

untrapped errors trapped errors
e.g. access of P> e.g. division

an array /// by zero;
outside its / jumping to an
bounds; illegal

Jumping To a address

A weakly typed programming language prevents
some untrapped errors, but not all; C, C++ have
features that make them weakly typed.

Munich, 13. December 2006 - p.2 (4/5)



Previously

untrapped errors trapped errors
e.g. access of e.g. division

an array by zero;
outside its jumping to an
bounds; illegal

Jumping To a address

legal address

evil annhoying

Typed Untyped
Safe | SML, Java LISP
Unsafe C, C++ Assembler

Munich, 13. December 2006 - p.2 (5/5)



Real World-Compllers

Bl So far we said that a program should type-check, and
then we forget about types (not always possible
because of dynamic checks)

B This is however not what happens in practice:

W an optimising compiler for a high-level language
might make as many as 20 passes over a single
program

B many optimisations require type-information to
succeed (direct register allocation for integer
operations)

B a compiler often translates between many
intermediate languages (type-information helps
to stay sane)

Munich, 13. December 2006 - p.3 (1/1)



Safety In the Target Lang.

B The target language (e.g. Java bytecode or
Microsoft's Common Language infrastructure) might
be typed.

B In Java bytecode the types of the parameters of all

instructions are known and the verifier ensures they
are correct.

Bl This ensures there are no operand stack overflows or
underflows; pointer arithmetic is not arbitrary.

B Only when the bytecode is run, most checks are not
needed anymore.

B The ultimate goal is that you can run untrusted code
on your machine.

Munich, 13. December 2006 - p.4 (1/1)



Example We Shall L ook At

B We want to ensure the property of
control-flow safety of "assembler programs™:

A program cannot jump to an arbitrary
address, but only to a well-defined subset of
possible entry points.

B Greg Morrisett calls this language TAL-0
(Typed Assembly Language) and describes it
in the book on advanced topics on types and
programming languages.

Munich, 13. December 2006 - p.5 (1/1)



L anguage

B Registers
ra=nry| ... |
B Operands
v = mn integer literal
| 1 label or pointer
| 7r register
Bl Instructions
1 = T =
| r:=r4w
| ifr jump v
B Programs
P = Jumpv

Munich, 13. December 2006 - p.6 (1/1)



Example

B The calculation of the product of 77 and 7,
placing the result in r3; return o an address
assumed to be in r4:

prod: 73 := 0 7l res := 0
jump loop

loop: if 71 jumpdone % if a = 0 goto done
rs := T9 + 73 % res :=res -+ b
ri:=r1+(—=1) %ba:=a—1
jump loop

done: jump 74 7 return

Munich, 13. December 2006 - p.7 (1/1)



M achine States

B Machine states are triples (H, R, p)
B Heaps

{ll e— D1y 9lm e = pm}

Munich, 13. December 2006 - p.8 (1/1)



Heaps

{ prod: 73 := 20

Pprod jump loop

loop: if r1 jump done

rs .= T2 T T3
plOOp ’l°1 . — ?“1 L (_1)
jump loop

Ddone 1 done:  jump 74

H = {pr'Od — ppr-od, IOOP — ploop7 done — pdone}

Munich, 13. December 2006 - p.9 (1/1)



M achine States

B Machine states are triples (H, R, p)
B Heaps

{ll e— D1y 9lm e = pm}
B Register files
{r1 := vi1ye..,Tp 1= Vu }

B Safety property is that no machine state is
stuck (for example jump 42 is stuck).

Munich, 13. December 2006 - p.10 (1/1)



Transitions

.Jump H(’U) —p
(H, R, jump v) — (H, R, p)

B Mov
(Ha R,r := ’U;p) — (H,R[’P - = ’U],p)
W Add R(r') =n R(v)=n'
(H,R,7 := 1"+ v;p) — (H, R[r :=r' 4+ v], p)
W If-eq R(r) =0 H(v)=p
(H, R,if r jump v;p) — (H, R, p’)
.If"neq R(r) # 0

(H, R,if r jump v;p) — (H, R, p)

Munich, 13. December 2006 - p.11 (1/1)



Type System

B Any well-typed "machine” cannot get stuck
(remember jump 42 should not be a
well-typed program).

B Types

T ::= int

X type-variables
VX. T  polymorphic types
code(I') code labels

ml:={r:T1,...,7,:T,}: theseare
register file types (in a minute)

Munich, 13. December 2006 - p.12 (1/1)



Example

prod: 7r3:=20
jump loop

loop: if r1 jump done
g .= T92 1T T3
ry:i=7ry+ (—1)
jump loop

done: jump 74

B I contains the “"assumptions” we make about the code
{ri,r2,7r3 : int,r4 : VX.code{ri,ra,rs : int,r4 : X}}
B They will be recorded in A, for example
{prod : code(I"), loop : code(I"),done : code(I")}

Munich, 13. December 2006 - p.13 (1/1)



Judgements(l)

B We will have several kinds of judgments:

B Integer literdl

AFmn:int
B Label

(1:T) e A

AFIL:T

(We want to have unique labels.)

Munich, 13. December 2006 - p.14 (1/1)



Judgements (11)

B Register
(r:T) eI
A;I'Er: T
B Value (non-register)
AFv:T
A;I'Fv:T

B Type-instantiation
A;I'Hov:VX.T
A;I'-v:T[X :=T]

Munich, 13. December 2006 - p.15 (1/1)



Judgements (111)

B Instructions will be dealt with by
AF 1 .[}n — FOUT

M
& Mov A;I'Fv: T

ArFr:=v:I' - Ir:T]

B Add |
A;I'=7r":int A;T'E- v :int

AFr:=r"+v:I' — I'[r:int]

W If |
A;I'=7r:int A;I'F v :code(I)

AFifrjumpov: T — I

Munich, 13. December 2006 - p.16 (1/1)




Judgements (1 V)

B programs (instruction sequences)
A F p: code(I)

B Jump
A;I' = v : code(I')
A jump v : code(I)

B Seq
'-q::I' -TI" A+ p:code(I”)
A;I' - 25p : code(I)

Munich, 13. December 2006 - p.17 (1/1)



Examples
BLet I'be

{'rl, T2, T3 - inT, T4 - ‘V’X.code{’rl, T2,T3 - inT, T4 : X}}

B Let A be
{prod : code(I"), loop : code(I"),done : code(I")}

Bl Derivable judgements:
mAFifry junpdone: I' — I
mAFr3g:i=ro+4+rg: ' > I
mAFryi=r14+(—1): I' > T
m A F jump loop : code(I")

B So we showed A F pjyop : code(I7)

Munich, 13. December 2006 - p.18 (1/1)




L oose Ends

B A register file is well-typed, written
AFR: T, if foral(r:T)inR
A;I'=r: T
B A heap is well-typed, written = H : A, if
foralll : Tin A
AFH(Q):T

and the 7' does not contain any free
type-variables.

Munich, 13. December 2006 - p.19 (1/1)



Well-Typedness

B The types avoid to jump to an integer or an

undefined label — however the situation is
more complicated than is solvable by tags.

B We can have

foo: 71 := bar
jump T1

bar:

Munich, 13. December 2006 - p.20 (1/1)



Well-Typedness

Bl Polymorphism even allows us

{7"1 : inT, . o .}
jump bar

{ri1:code(...),...}
jump bar

where the type of bar is
‘V’X.code(rl ‘ X, . o .).

Munich, 13. December 2006 - p.21 (1/1)



Next Time

B We can show that given a well-typed machine state
M then M cannot get stuck (i.e. jump to an integer
or an undefined label).

Bl Proof-Outline: M is not immediately stuck and if
M — M' then M is also well-typed.

B Question: given a machine state M = (H, R, p) can
one find a A and I" such that A - p : code([I") etc?

B Answer: We do not know. (Likely not.)

B The compiler has to give enough information during
the compilation process so that the bytecode only

needs to be "type-verified" — type-inference is too
hard.

Munich, 13. December 2006 - p.22 (1/1)



M ore Next Week

B Slides at the end of

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where you
can complain anonymously.

B You can say whether the lecture was too
easy, too quiet, too hard to follow, too

chaotic and so on. You can also comment on
things T should repeat.

Munich, 13. December 2006 - p.23 (1/1)



	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (7)\
end {tabular}
	Previously
	�egin {tabular}{@{}c@{}}Real World-Compilersend {tabular}
	�egin {tabular}{@{}c@{}}Safety in the Target Lang.end {tabular}
	�egin {tabular}{@{}c@{}}Example We Shall Look Atend {tabular}
	�egin {tabular}{@{}c@{}}Languageend {tabular}
	�egin {tabular}{@{}c@{}}Exampleend {tabular}
	�egin {tabular}{@{}c@{}}Machine Statesend {tabular}
	�egin {tabular}{@{}c@{}}Heapsend {tabular}
	�egin {tabular}{@{}c@{}}Machine Statesend {tabular}
	�egin {tabular}{@{}c@{}}Transitionsend {tabular}
	�egin {tabular}{@{}c@{}}Type Systemend {tabular}
	�egin {tabular}{@{}c@{}}Exampleend {tabular}
	�egin {tabular}{@{}c@{}}Judgements (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Judgements (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Judgements (III)end
{tabular}
	�egin {tabular}{@{}c@{}}Judgements (IV)end
{tabular}
	�egin {tabular}{@{}c@{}}Examplesend {tabular}
	�egin {tabular}{@{}c@{}}Loose Endsend {tabular}
	�egin {tabular}{@{}c@{}}Well-Typednessend {tabular}
	�egin {tabular}{@{}c@{}}Well-Typednessend {tabular}
	�egin {tabular}{@{}c@{}}Next Timeend {tabular}
	�egin {tabular}{@{}c@{}}More Next Weekend {tabular}

