TUM

INSTITUT FUR INFORMATIK

Theorem Proving in Higher Order Logics —
Emerging Trends Proceedings

Stefan Berghofer and Makarius Wenzel (Eds.)

TUM-I0916
August 09

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-08-I0916-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2009

Druck: Institut fur Informatik der
Technischen Universitat Miunchen

Theorem Proving in Higher Order Logics
Emerging Trends Proceedings

Stefan Berghofer and Makarius Wenzel (Eds.)

August 2009, Miinchen, Germany

Abstract. This technical report is the Emerging Trends proceedings of
the 22th International Conference on Theorem Proving in Higher Order
Logics (TPHOLSs 2009), which was held during 17-20 August 2009 in Mu-
nich, Germany. TPHOLSs covers all aspects of theorem proving in higher
order logics as well as related topics in theorem proving and verification.
In keeping with longstanding tradition, the Emerging Trends track of
TPHOLs 2009 offered a venue for the presentation of work in progress,
where researchers invited discussion by means of a brief introductory
talk and then discussed their work at a poster session.

Table of Contents

Towards an Implicit Calculus of Inductive Constructions
Bruno Bernardo

Towards a Modular Extensible Isabelle Interface
Holger Gast

A Mechanized Theory of Aspectsoo ...
Florian Kammdiller, Henry Sudhof

A Formalization of the Semantics of Functional-Logic Programming in
Isabelleo
Francisco J. Lopez-Fraguas, Stephan Merz, Juan Rodriguez-Hortald

SAT Solver Verification Project o i i
Filip Marié, Predrag Janici¢

A Theorem Proving Approach Towards Declarative Networking
Anduo Wang, Boon Thau Loo, Changbin Liu, Oleg Sokolsky,
Prithwish Basu

Formalizing Metarouting in PVS........
Anduo Wang, Boon Thau Loo

Verifying Compiling Optimisations Using Isabelle/HOL
Richard Warburton, Sara Kalvala

Author Indexo

Towards an Implicit Calculus of Inductive Constructions

Extending the Implicit Calculus of Constructions with Union and
Subset Types

Bruno Bernardo

Projet TypiCal
Ecole Polytechnique and INRIA Saclay, France
Bruno.Bernardo@lix.polytechnique.fr

Abstract. We present extensions of Miquel’s Implicit Calculus of Constructions
(ICC) and Barras and Bernardo’s decidable Implicit Calculus of Constructions
(ICC*) with union and subset types. The purpose of these systems is to solve the
problem of interaction betweeen logical and computational data. This is a work
in progress and our long term goal is to add the whole inductive types to ICC and
ICC* in order to define a complete framework for theorem proving.

1 Introduction

The Calculus of Inductive Constructions (CIC) [8], the formalism on which the Coq
proof assistant [10] is based, is a powerful type system for theorem proving. However,
one drawback of this formalism is the interaction between logical and computational
subterms. Proofs, type annotations, dependencies are not computationally relevant but
their content is inspected by the type checker as if they were. This can lead to a certain
lack of flexibility that makes theorem proving harder and less intuitive.

Let us for example consider the euclidean division div. Its type is :

forall a b, b >0 > {g& {r | a=b*g+r /\b>r}}

Given two integers a and b and two proofs II; and II5 that b > 0, it would quite natural
to consider that div a b II; and div a b I are equivalent, since these programs have
the same computational behaviour. However, since we do not have proof-irrelevance, it
will be hard to prove that div a b II; = div a b II5 holds because II; and Il may
differ.

In order to distinguish proofs from algorithm, Coq has two sorts Prop and Set that
are almost identical regarding typing rules, but that have different purposes. Prop is
intended to include types that correspond to logical propositions whereas Set is intended
to include datatypes. This distinction is useful for Coq’s extraction procedure [4] that
removes all the logical data, or more precisely the data whose type is in Prop, and keeps
the data whose type is in Set, in order to produce certified programs. Even if Coq’s
extraction is very powerful, it is useless during the proof elaboration stage. Moreover,
since it can only erase terms whose types are in Prop, it cannot remove logical data
whose type is in Set. If we consider lists indexed by their length (also known as vectors),

2 Bruno Bernardo

their index will not be erased by the extraction (since we have nat : Set), even though
this index is a static property and is thus useless for the computation.

Miquel’s Implicit Calculus of Constructions (ICC) [7] seems to be a possible solu-
tion for the interference between logical and computational parts. ICC is a Curry-style
Calculus of Constructions that also have an implicit product Vz : T.U that behaves as
an intersection type rather than a function type. In ICC proofs and dependencies can be
implicit and thus not interfere with computational data. Moreover abstractions do not
carry type annotations. If we consider again the euclidean division program div, the
proof II that b>0 does not need to appear and our previous problem shall not occur :
there will only be one program div a b whatever is the proof I of b > 0 we have.

However, ICC has one major issue : it is unlikely that type inference is decidable
in it. In [2], we have defined ICC*, a more verbose variant that has decidable type
checking. We can see ICC* as a layer upon ICC where the implicit parts are made
explicit and marked with a flag. ICC* and ICC are linked through an extraction function
that removes the static part (annotations and flagged logical parts). This extraction is
also used in the typing rules, mainly the conversion one: conversion is made between
extracted terms. We designed ICC* so that it captures the nice behaviour of ICC while
having decidable type inference.

Our long term goal is to add inductive types to both ICC and ICC* so we can have
a more complete framework for theorem proving. Since inductive types can be decom-
posed into more basic types (sigma types, disjoint sums, fixpoint operators, equality,
booleans, unit type and void type), we intend to do it by adding every basic type.

What we present here is a work in progress. First, we describe ICCy , a version
of ICC containing union types and subset types (Section 2), and then we present its
decidable counterpart ICCY; (Section 3).

Preliminaries In this paper we will adopt the following usual conventions. We will
consider terms up to a-conversion. The set of free variables of a term ¢ will be written
FV(¢). Arrow types are explicit non-dependent products (when = ¢ FV(U), we write
T — U for IIx:T.U). Substitution of the free occurrences of variable x by NV in term
M isnoted M{x/N}. We will consider a set of sorts S = {Prop} U {Type, | i € N}
designating the types of types. Prop is an impredicative sort intended to represent the
types of logical data whereas sorts Type; denote the usual predicative hierarchy of the
Extended Calculus of Constructions[5]. As in the traditional presentation of Pure Type
Systems [1], we define two sets Axiom C S? and Rule C S? by

Axiom = {(Prop, Typeo); (Typei, Typei+1) |i € N}
Rule = {(Prop, s, s); (s, Prop, Prop) | s € S}
U{(Typei, Typej, Type, ,,.; ;) 14,5, € N}

Note that these sets are functional and complete.

We will consider two judgements I'and I" -+ M : T. I' - means that the context
I is well-formed and I" = M : T that M has type T" under the context I'.

Towards an Implicit Calculus of Inductive Constructions 3

2 ICCx

ICCy is an extension of the fragment of ICC we used in [2]. Let us first recall briefly a
few points about this fragment (cf. Figl). More details about ICC’s syntax can be found
in [7] and [6].

2.1 Syntax of ICC

ICC is a Curry-style version of the Calculus of Constructions that also features an im-
plicit product Vz : T.U. This implicit product is interpreted as an intersection type: if
we have f : Va:T.U, then we also have f : U{z/N} for any well-typed N : T. (cf.
rule (INST)). 3- and - reductions are defined in ICC . (3-, n- and (7- reductions have
the Church-Rosser property. Regarding typing rules, we take a restriction of the sys-
tem described in [7]: we remove the (CUM),(EXT) and (STR) rules. (CUM) and (EXT)
are related to subtyping, which we have not implemented yet. (STR) lets a proof of
V_: P.QQ also be a proof of () even if no proof of P is produced and such behaviour is
not wanted. With these typing rules, 37 subject reduction holds. Type inference seems
to be undecidable since it contains Curry-style System F, whose type inference is unde-
cidable [11]. Coherence and strong normalization of the system are proven semantically
(cf. subsection 2.3).

2.2 Adding sigma-types

In ICCy;, we have added a subset type {z : A | P} and an union type 3z : A.B to
ICC . Terms of subset type can be seen as dependent pairs where the second component
(the proof that the property P holds) is implicit. Terms of union type can be seen as
dependent pairs where the first component (the witness) is implicit.

There are six more typing rules (cf. Fig. 2). (SUB) and (U) are formation rules. They
are very similar to the product formation rules except that every object is in the same
sort s. The reason of this restriction is that the extension of the model has yet to be
defined. In the near future, this restriction shall be removed.

There are two introduction rules : (SUB-I) and (U-I). (SUB-I) states that, in some
context I, any a of type A has also type {«: A | B} provided there is a proof b of type
B{a/x}. (U-I) states that in some accurate context I, if b has type B{a/x} with some
a : A, then b has also type Jz: A.B.

Finally elimination rules (SUB-E) and (U-E) allow us to produce an object of any
sort s from an object of union or subset type.

There is no need to add any reduction rule. No projection is definable for terms of
union type : the first argument is implicit so there is no first projection; since the second
projection depends on the first one, we do not have a second projection either. The first
projection of terms of subset type can be emulated with the (SUB-E) rule by choosing
P=Xx.Aand f = \x. x.

Church-Rosser still holds for -, n- and 37- reductions : we prove it using Tait’s
traditional method with parallel reduction. 37-subject reduction does not because Tat-
suta’s counter-example [9] applies here (adding an implicit second-order existential to
Heyting’s Arithmetic breaks subject-reduction).

4 Bruno Bernardo

Sorts

Terms

Contexts

Reduction

Typing rules

s ::= Prop | Type, (i € N)
M=z |s| Huv: M. Mz | Vo : M. Ms | Ax.M | My M,
r:=[|Nz:M

(Az. M) N g M{z/N}
Ae. M x>y M (ifx ¢ FV(M))

I'-T:s x¢DV(I)

—— (WEF-E) (WE-S)
Ik Iiz: Tk
' (s1,s2) € Axiom ' (z:T)er
(SorT) (VAR)
'k sy:s2 I'tx:T

I'ET: s F;x:T}—UZSQ (31,32,33)€Rule

(EXPPROD)
I'EHx:T.U : s3

I'tT:s1 Iyz:THU:s2 (s1,82,53) € Rule

(IMPPROD)
I'=Vz:T.U : s3

ie:THEM:U I'tlx:T.U:s
(Lam)

I'tFXe.M:Hx:T.U

I'-M:Hz:T.U TI'EN:T
(APP)

I'~MN:U{z/N}
I'iz:TFM:U TI'bVz:T.U:s x¢FV(M)

(GEN)
I'EM:Ve:T.U

I'tM:NYo:T.U T'EN:T

(INST)
I'-M:U{z/N}

'EM:T I'tT' :s T2, T

rEM:T (conv)

Fig. 1. Syntax, reduction rules and typing rules of ICC

Towards an Implicit Calculus of Inductive Constructions 5

Terms
M= |{z:A| B} | X[z:Al.B

Typing rules

I'FA:s I'iz:AFB:s seS8S
I'-{z:A|B}:s
I'{z:A|B}:s I'Fa:A I'Fb:B{a/z}
I'a:{z:A| B}
I'-P:{z:A|B} —s I'c:{z:A| B} I'-f:Hx:AVy:B.Px
'+ fc:Pc
I'HA:s I'ix: AFB:s ses

(SuB)

(Sus-I)

(SUB-E)

(U)
I'3x:AB:s

I'+3z:AB:s I'ta:A TI'kb:B{a/x}

(U-D)
I'+b:3x:A.B
I'P:3z2:A.B—s I'ke¢:3z:A.B I'kf:Ve:Ally:B. Py

I'tfc:Pec

(U-E)

Fig. 2. Additional syntax and typing rules of ICCx

2.3 Semantics of ICCx

Miquel designed in [7] two models based on coherence spaces [3]. One was used to
prove that ICC is consistent; the other to prove that every well-typed term of ICC is
strongly normalizing.

The extension of these models for ICCyx is a work in progress. Long discussions
with Alexandre Miquel led us to an informal proof that ICC ’s models are still valid for
ICCy.

In a nutshell, the interpretation of subset types is quite straightforward and follows
the set theoretic intuition: [{z: A | B}] = {x € [A] | [B] # 0}. Introduction and
elimination rules are valid.

For union types, the argument is more intricate. The interpretation of X'[x: A]. B x is
the smallest semantical type that contains | J,, c[A] [B z]. Introduction and elimination
rules seem valid. But the behaviour of union types is more understandable in realizabil-
ity than in set theory.

3 1CCy

ICC35 has two main drawbacks : subject reduction does not hold and type inference is
probably undecidable. The purpose of ICCY; is to fix these problems in the same way
that ICC* fixed ICC ’s type inference issue (cf. [2]). ICC?; should be seen as a wrap-

6 Bruno Bernardo

Terms
M:=zx]s
| Hx:My. My | Ax: M. Mo | My Mo (explicit)
| H[x: Mi]. My | Mz: Ma). M2 | Mi[Ma] (implicit)
Extraction

s =s ¥ =z

(Ha:T.U)* = Hz:T*.U* (H[z:T].U)* = Va: T U*
Az:T.U)* = Az.U" Aez:T).U)* =
(MN)" = M*N* (M[N])* =

Typing rules
I'tT:s z¢DV(I)

——(WF-E) (WE-S)

s 'iz:TkH
I'+ (s1,s2) € Axiom ' (z:T)er
(SORT) (VAR)
' 51189 I'tx:T

I'tT:sy I'jz:THU:s2 (s1,82,83) € Rule

(E-PROD)
I'EIx:T.U: s3

I'tT:s1 Iyz:THU:s2 (s1,s2,53) € Rule
I'-H[z:T).U : s3
iz THM:U I'EHx:T.U:s

(I-PrROD)

(E-LAM)
I'tEXe:T.M:zx:T.U

Iiz:TEM:U I'tHx:T).U:s z¢FV(M™)

(I-LAM)
't Nz:T).M : [z:T].U

I'-M:Hx:TU I'EN:T I'-M:Hz:T\.U I'EN:T

(E-APp)
't MN :U{z/N} I'+ M[N]: U{z/N}

'eEM:T I'tT:s T2, T"
(Conv)

I'-M:T

Fig. 3. Terms, extraction and typing rules in ICC*

Towards an Implicit Calculus of Inductive Constructions 7

ping of ICCy designed to capture both the semantics of ICCs and the good syntactic
properties of a Church-style Calculus of Constructions extended with dependent pairs.
ICC¥; is an extension of ICCy; in the same way that ICC™ is an extension of ICC.

ICC*’s syntax is the same as in a Church-style Calculus of Constructions except that
we duplicate each operation (product, abstraction and application) in an explicit one
and an implicit one. In ICC%,, we add two kinds of sigma-types : X[« : A].B, where
the first component is implicit, and X'z : A.[B] where the second one is implicit. The
corresponding dependent pairs are respectively ([a], b) ojza).3 and (a, [0]) sza.(5). We
also add an elimination operator Elim (cf Fig. 4).

We defined in [2] an extraction function that removes implicit abstractions and im-
plicit applications as well as domains of abstractions (cf. Fig 3). Here, we extend this
function by removing the implicit term in dependent pairs and by mapping X'z : A.[B]
to the subset type {z: A | B} and X[z : A].B to the union type Jz: A.B.

Since we want ICC; and ICC?; to be tightly linked, we also add six rules, each one
corresponding to a rule we have added in ICCy, . In order to capture in ICCY, terms the
behaviour of ICCy; terms, ICCY; rules are designed so that they match exactly ICCx,
rules after extraction.

Moreover, regarding conversion and reduction rules, ICCY, works exactly the same
way than ICC* . This means that, in ICC%; , conversion is still made between extracted
terms and not between annotated ones. Thus, there is still no need for reduction rules in
ICC3%; , since all the computation occurs between extracted terms.

We keep the main metatheoretical properties that we had in ICC* . We prove by mutual
structural induction that the extraction is sound and complete: for every judgement I" -
or ' M :TinlICCy, ,I™ ForI'™ = M* : T holds; and vice-versa for every
judgement I" or I' + M : T in ICCy , there exists A or A, N and U such that
AFANA* =T or AN :UNA*=TANN*= M AU* =T. From this, we deduce
the relative consistency of ICCY; : if ICCy: is consistent, then ICC?; is also consistent.

We prove decidability of type inference as in ICC* by induction using the strong
normalization of ICCy, terms and (-reduction rules that we introduce! in ICC%, . X-
types are treated the same way products are. Dependent pairs have type annotations.
For the Elim operator, the induction step is straightforward.

4 Perspectives and Future Work

The final goal is to have inductive types in our system so that it could eventually be
used in Coq.2 We are going to proceed by adding each basic type that appears in the
decomposition of inductive types.

The very next step is to complete the addition of X-types. We need to prove rigor-
ously how Miquel’s models are still valid in ICCx, . We shall also add explicit X'-types
Yz : A.B, explicit dependent pairs (a,b)x,.4. 5 and allow different universes to be

! These rules are just defined for the sake of the proof, they play no role during computation.
2 A prototype is already available as a darcs repository at
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/cog-implicit

8 Bruno Bernardo

Terms
M = | Xz:Al.B | Y2:A.[B]| ([a],b) sza).B | (@, [b]) sza.m) | Elim(P, f,c)
Extraction
(E[xA}B)* =3z:A".B" (ZxA[B])* — {I'A* ‘ B*}
(([a],b) s(zay.B)" = b ((a, [b]) swa.(B])* = a*
(Ellm(P7 f? C))* = f* c*
Typing rules
I'FA:s I'ix: AFEB:s seS
(ZSUB)

I'Xx:A.B]:s
I'-XYz:A[Bl:s I'ta:A I'tb:B{a/x}

(ESUB'I)
' (a,[b) sza.ip : Zx: A[B]

I'-P:Xz:AB]—s I'tc: Xx:A[B]
't f:Iz:A[y:B]. P (z,[y]) sza.B)

I'+Elim(P, f,¢) : Pc
I'FA:s I'isz: AFB:s s €
I'Yx:AlB:s
I'-X[z:Al.B:s I'ta:A I'bb:Bla/z}

(ESUB'E)

S
(Zv)

(Zu-1)
I't-([a],b) s(za).5 : X[x: A].B
I'-P:X[z:A.B—s I'tc: X[z:ALB
't f:oz: Al (y:B). P([z],y) S[zal.B (S0-E)

I' - Elim(P, f,c) : Pc

Fig. 4. Extended syntax, extraction and typing rules in ICC%,

Towards an Implicit Calculus of Inductive Constructions 9

used in the formation rules (i.e. allow thate.g. I' = X'z : A.B : Type(;,,44(;,5)) When
I' = A: Type; and I' = B : Type;). These additions would require little effort with
regard to syntax, but it should be harder to prove that models are still valid (or to adapt
them if it is not the case).

We will then add more basic types such as unit type and void, which should be much
easier than for the X'-types.

We have already started to think about equality. The syntactic work is almost fin-
ished but the semantic part needs to be done. Our system will support heterogeneous
equality, which would let us prove easily thate.g. div 11 5 = div 13 6, where
div is the euclidean division.

The final step would be to add fixpoints operators so we could express recursion
and have full inductive types.

Acknowledgements Many thanks to Alexandre Miquel for thorough discussions about
his models of ICC and his help in extending them, to Bruno Barras for his continuous
support and advice and to Mathieu Boespflug for his remarks. The author is funded by
the DGA.

References

1. H. Barendregt. Lambda Calculi with Types. Technical Report 91-19, Catholic University
Nijmegen, 1991. In Handbook of Logic in Computer Science, Vol II.

2. B. Barras and B. Bernardo. The implicit calculus of constructions as a programming lan-
guage with dependent types. In R. M. Amadio, editor, FoSSaCS, volume 4962 of Lecture
Notes in Computer Science, pages 365-379. Springer, 2008.

3. J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge University Press, New
York, NY, USA, 1989.

4. P. Letouzey. Programmation fonctionnelle certifiée — L’extraction de programmes dans
I’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

5. Z.Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.

6. A. Miquel. The implicit calculus of constructions. extending pure type systems with an
intersection type binder and subtyping. In Proceedings of the fifth International Conference
on Typed Lambda Calculi and Applications (TLCA’01), Krakow (Poland), 2001.

7. A.Miquel. Le Calcul des Constructions implicite: syntaxe et sémantique. PhD thesis, Uni-
versité Paris 7, Dec. 2001.

8. C. Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supérieur. Habili-
tation a diriger les recherches, Université Claude Bernard Lyon I, Dec. 1996.

9. M. Tatsuta. Simple saturated sets for disjunction and second-order existential quantification.
In S. R. D. Rocca, editor, TLCA, volume 4583 of Lecture Notes in Computer Science, pages
366-380. Springer, 2007.

10. The Coq development team. The coq proof assistant reference manual v8.2. Technical report,
INRIA, France, February 2009. http://coqg.inria.fr/doc/main.html.

11. J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Ann.
Pure Appl. Logic, 98(1-3):111-156, 1999.

Towards a Modular Extensible Isabelle Interface

Holger Gast

Wilhelm-Schickard-Institut fiir Informatik
University of Tiibingen
gast@informatik.uni-tuebingen.de

Abstract. We present the architecture of an Isabelle user interface
based on design principles and mechanisms from the Netbeans platform.
The architecture addresses the challenges of maintainability and exten-
sibility through a modular structure and the novel concept of features as
units of prover functionality.

1 Introduction

Maintaining a user interface for a theorem prover can be a challenge. Since
both the prover and the GUI technology are subject to frequent extensions and
changes, the interface software must be adapted and extended in parallel. This
problem is especially pressing as the maintenance of the interface takes resources
off the central concern of developing the prover itself. Different strategies to solve
this challenge have been proposed.

The first strategy is to distribute with each prover version a corresponding
version of a specialized interface (e.g. [18,14,1]). In this solution, the burden
of maintenance lies entirely with the prover developers, but the close coupling
between the prover and interface also allows direct and pragmatic solutions. For
instance, access to the term structure and the proof state can be implemented
through shared data. In a variant, the prover interface is embedded into a pro-
grammable text editor since the high-level access to proof scripts offered there
is more stable than the details of the underlying GUI libraries (e.g. [17,2]).

A second strategy is to develop a generic interface, to specify a public pro-
tocol, and to let the prover and interface communicate only through this proto-
col [4, 3]. Ideally, this solution separates changes in the prover and in the interface
from each other entirely. In practice, meeting the requirements of the protocol for
a given prover can be surprisingly hard and may even require changes to the soft-
ware structure of the prover [20]. Furthermore, designing a single protocol that
anticipates the demands and capabilities of several provers is a major challenge,
given that the provers change over time. However, the burden of maintenance is
distributed between the developers of the user interface and the prover.

Finally, it is possible to implement advanced user interfaces with virtually no
support from the prover [12]. By employing standard patterns in user interface
design, the software can be structured in such a way that changes necessitated
by developments in the prover can be accommodated by local changes to the
interface software. The solution has, however, the drawback that the interface

Towards a Modular Extensible Isabelle Interface 11

software must duplicate some functionality already present in the prover. In
particular, the demands on parsing proof scripts are substantial.

The conclusion to be drawn from this overview is that neither a strict sep-
aration nor a tight integration of prover and interface are ideal solutions to
the maintenance problem. While the user interface should be mostly indepen-
dent of the prover, it should access already implemented functionality through
well-defined interfaces. When the prover is modified, most of the interface im-
plementation should remain unchanged.

A second concern in designing the prover interface is extensibility. The user
experience can often be enhanced substantially by application-specific modes
of interaction (e.g. [16]). In such settings, the interface must be extended with
specialized views that access functionality added to the prover in loaded theories.

This paper approaches the maintenance and extensibility problems by apply-
ing techniques used in the Netbeans platform [8]. As a platform for application
programming, Netbeans provides patterns and mechanisms for assembling differ-
ent modules into a consistent application. Using these mechanisms, we propose a
modular architecture for an Isabelle interface. Specifically, we address the prob-
lem of translating new prover functionality into increased interface functionality:
the overall functionality is split into fine-grained, self-contained features. Each
feature comprises a prover-side implementation, an interface-side proxy [11], and
one or more interface-side views that allow the user to access the functionality.
The purpose of this split is to confine changes in the prover to specific fea-
tures, thus reducing the part of the interface code that must be modified when
the prover changes. Furthermore, new features can be installed into the prover
at run-time to enable application-specific interaction modes. The concepts de-
scribed in this paper have been validated through a prototype implementation.

Organization Section 2 summarizes the Netbeans mechanisms used. Section 3
describes the overall architecture. Section 4 gives applications that further mo-
tivate the decisions taken in the architecture. Section 5 concludes.

Acknowledgments 1 would like to thank Makarius Wenzel and Burkhart Wolff
for discussions on the design goals of user interfaces for theorem provers, on the
challenges encountered in the day-to-day maintenance of the Isabelle interface,
and in programming interface extensions.

2 Netbeans Mechanisms for Modularity

The Netbeans platform [8], which underlies the Netbeans IDE, is a framework
that supports the development of arbitrary applications. Its modular structure,
platform independence, and straightforward usage make it particularly attractive
for building a prover interface. The modularity itself rests on a few generic
mechanisms, to be summarized in this section, which can be leveraged to the
design problems identified in the introduction. Furthermore, the mechanisms
described in this section are available as standalone libraries and can be used
independently of the Netbeans platform itself.

12 Holger Gast

2.1 Modules

A Netbeans module is a standard JAR archive that will be loaded into the
platform at runtime. Its manifest may contain additional meta-information such
as the version and dependencies on other modules [8, Ch. 3]. Dynamic loading
and unloading are supported as well [8, §3.3]. An update mechanism [8, Ch. 22]
supports the distribution of new versions of modules to end-users. The reliance
on JVM mechanisms, as well as a mature IDE support, ensure that splitting an
application into different modules does not lead to much development overhead,
compared to a monolithic implementation.

2.2 Lookups

Frameworks in general provide generic mechanisms that can be adapted to spe-
cific application contexts. This goal requires that the generic mechanisms can
access application-specific functionality. In the Netbeans platform, objects ex-
pose their specific capabilities through lookups [8, §5.2]. A lookup is a collection
of objects that can be queried using a required type. The interface Lookup pro-
vides a method that returns the first object in the collection implementing the
interface given by the clazz argument:

T lookup(Class<T> clazz)

Consider, for instance, a menu item “Save” that operates on the current
selection. Netbeans represents the selection by a set of generic nodes [8, Ch. 9.
Since not all selected elements can be saved, the “Save” entry must access that
capability, which is represented by the SaveCookie, through the node’s lookup.
If s is a selected element, it is sufficient to write:

SaveCookie sc = s.getLookup().lookup(SaveCookie.class);

If sc is not null, then s can be saved using sc.save(). Menu- and toolbar
entries can also use the current selection’s capabilities to determine whether

they should be disabled [8, §5.5.].

2.3 The System Filesystem

Netbeans provides an abstraction over the OS filesystem [8, Ch. 6, 10]: files are
assigned MIME types, and they can be accessed using readers registered for
the MIME types. Writing applications that manipulate already defined types
of files is thus greatly simplified. Besides this abstraction, the system filesystem
also contains virtual paths contributed by the modules loaded into the platform.
If a module’s JAR manifest contains a reference to a layer.xzml file, that file’s
content is visible in the system filesystem, and other modules can access the con-
tribution. The system filesystem is used as the central extensibility mechanism
in Netbeans.

For instance, an action is a Ul representation of functionality. Actions usually
appear in menus and toolbars, and the user can customize a Netbeans applica-
tions by assigning them to specific places. A module that wishes to contribute

Towards a Modular Extensible Isabelle Interface 13

a new action simply places its implementation class into a sub-folder of folder
Actions in the system filesystem. The extension .instance here indicates that
the file represents an instance of a Java class [8, §6.6.]. Accessing the file yields
that instance.

<filesystem>
<folder name="Actions">
<folder name="Isabelle">
<file name="org-isabelle-theoryactions-GotoPointAction.instance"/>
</folder>
</folder>
</filesystem>

A frequent access pattern is to extract from a folder all instances that implement
a given interface. The convenience class Lookups provides a method that makes
all instances in a given folder available in a lookup (Section 2.2):

Lookup forPath(String path)
They can then be retrieved using the following method in Lookup:
Collection<? extends T> lookupAll(Class<T> clazz)

In summary, the Netbeans platform makes it simple to write extensible appli-
cations: an extension point defines the required capabilities of extensions as an
interface type; it then specifies a folder in the system filesystem where extensions
should be deposited; finally, it accesses the extensions using Lookups . forPath().
The approach is particularly lightweight in that the main part of the work is car-
ried out at the programming language level — it is not necessary to understand
a separate extension mechanism [10].

3 Architecture

This section describes the architecture addressing the problems stated in the in-
troduction. Section 3.1 gives a general overview. Section 3.2 treats prover-specific
capabilities in more detail. Section 3.3 shows an example feature loaded into the
prover at startup. Section 3.4 points out aspects concerning the maintainability.

3.1 Overview

The system is divided into three layers (Figure 1): the lowest layer contains
the prover running in a separate process. The infrastructure layer contains the
functionality, including the management of proof documents (cf. the model-view-
controller pattern [9]). A thin presentation layer lets the user interact with proof
documents and displays the current state of the proof processing. The presenta-
tion layer does not contain functionality itself, but delegates all requests to the
infrastructure. For instance, the theory outline component merely implements
an adapter [11] that translates the existing proof document structure into a tree
data structure suitable for the Netbeans Ul components.

14 Holger Gast

Hor o o o e e - o__

= X !

s . . Installation | 1

= Feature Ul ‘ ’ Theory Editor ‘ ’Theory Outline |

3! Manager

S !

ol __ ___ T _______T_____

Al
| |
| I
| I
[y :

2} : ’ Feature Proxy ‘ ’AsyncProver ‘ |

£ 4 <des 4 !

é | : &rovuy |

Z : . !

E | : ’ Prover Instance ‘ : ’ Prover Manager ‘ |

=] ' ' I
I . :

A | : : selects I
\ : creates . I
S | |
I T

,,,,,,,,,,,, L 4

g v v ‘ i

31

g Prover Process !

& I

Fig. 1. Architecture Overview

Since the prover runs in a separate process, it must be accessed via inter-
process communication (IPC). Following Wenzel [19], the actual communication
protocol is hidden. The prover instance object encapsulates the life-time of a
single prover process and the communication. The prover instance will usually
depend on the specific prover version used.

However, the prover instance is not a monolithic object defining the interface
to the prover once and forall. Instead, it exposes capabilities of the supported
prover version as features using the lookup mechanism (Section 2.2). One feature
is the support required by the IAPP (infrastructure for asynchronous proof pro-
cessing) [13]. However, the set of features is not fixed (Section 3.2). The features
are represented as proxies [11] that access functionality inside the prover in the
background. Again, the prover communication is encapsulated.

The prover manager keeps track of provers installed on the system. It uses a
prover driver to create a suitable prover instance for an installed prover. Prover
drivers are implemented as separate modules and registered with the prover
manager via the system filesystem (Section 2.3). This setup allows the driver for
a new prover version to be distributed through the Netbeans update mechanism
[8, Ch. 22]. It is expected that prover drivers can determine whether they apply to
a given prover installation, for instance by checking the version number printed
by the prover upon startup. The platform can thus accommodate any number
of drivers simultaneously.

3.2 Features

Features represent the capabilities of specific prover versions. Figure 2 highlights
the role of a feature as a remote proxy [11]: a UI component, or a component in
the infrastructure, accesses the capability by a method call. In the background,

Towards a Modular Extensible Isabelle Interface 15

Prover Instance

e - —

call call ! IPC

UI Component Feature Proxy - » Prover Process

|

I

I

Py Y N ~] !

ﬁ \\§\/ | Feature :
> g,\‘b‘/

% N Initiali I

] nitializer |

Feature 4/ ,,,,,,,,,,,,,, ‘

o loads
Contribution

Fig. 2. Feature Proxies

the feature proxy communicates with the prover process to compute the result.
Two extensions to the basic idea are worth mentioning. First, the feature proxy
itself usually does not use low-level IPC. Instead, it uses a basic communication
facility shared by all features in a given prover instance. This facility is, again,
published as a feature (see Section 3.3).

Second, not all features will be available in the basic prover version: some
may be application-specific, others may be contributed by developers of the
user interface. At startup time, the prover instance therefore scans a particular
directory in the system filesystem (Section 2.3) for feature implementations,
identified by the interface FeatureImpl. Each feature implementation is given
the chance to install new functionality into the running prover by sending ML
code. The result of the method installFeature() is a new feature proxy, which
is added to the prover instance’s lookup. The code for loading feature extensions
is, indeed, very short:

Lookup 1 = Lookups.forPath("Provers/Isabelle2008/features");

for (FeatureImpl fi: 1.lookupAll(FeatureImpl.class)) {
features.add(fi.installFeature(this));

}

3.3 Implementing a Contributed Feature

Contributing new functionality is straightforward. We consider as an example a
feature that extracts information from the current proof state. It is prototypical
of applications that wish to render goals in an application-specific fashion. A
module ExtStateQuery (Ext for extension) contains the implementation.

First, the functionality is implemented at the ML level by defining a new
(improper) Isar command “ext_state_query what”, whose parameter indicates
which information is to be retrieved. Using Isabelle’s Term module, the constants
in the current proof state are determined easily and written to the standard
output. The ML implementation resides in ExtStateQuery as a plain text file.

Next, the ML implementation is installed to the prover during startup. To-
wards that end, ExtStateQuery registers the class StateQueryImpl with the
prover driver using the layer.xml file (Sections 2.3, 3.2):

16 Holger Gast

StateQuery. 4 x| TheoryExplorer W | ProverComtrol wi

|Constants in Proof State || Requery

Results

Name T
op | lbool => boal => bool
Trueprop boci =>prop

op==> prop => prop => prop

Fig. 3. View Component for State Query

<folder name="Provers">
<folder name="Isabelle2008">
<folder name="features">
<file name="StateQuery.instance">
<attr name="instanceClass"
stringvalue="org.isabelle.ext.statequery.prover.StateQueryImpl"/>

Class StateQueryImpl has a method Object installFeature(ProverInstance pi).
It reads the ML file content into a variable and sends it to the prover using a
basic communication facility:

InjectedCommands inj = proverInst.getFeature(InjectedCommands.class);
inj.ML(mlFileContent)

The method getFeature() is a convenience for getLookup() .lookup(). The
InjectedCommands feature executes commands when the prover becomes idle.
The commands are thus injected into the normal processing of proof documents.*
After installing the ML implementation in this way, the method returns the
feature proxy of type of StateQueryFeature.

The class StateQueryFeature provides a method that carries out the query
in the background. Its signature is Constant [] constantsInProofState(), i.e.
it presents the result as proper objects. The method’s implementation uses,
again, InjectedCommands to communicate with the prover:

InjectionResult res = inj.command("ext_state_query constants");

The InjectionResult is a future, a placeholder for a result computed asyn-
chronously. Using res.await (), the method blocks until the prover has executed
the command. The future then contains the standard output of ext_state_query,
which is analyzed and packed into Constant objects (with name and type).

Finally, a view using the feature is implemented directly using Netbeans’
Matisse GUI builder (Figure 3). Accessing the constants in the current goals in
its implementation is straightforward, using the proxy introduced above:

StateQueryFeature q = pi.getFeature(StateQueryFeature.class);
Constant res[] = q.constantsInProofState();

! For asynchronous proof processing[13], command() takes an additional parameter,
the ID of the command after which the injected command should be executed.

Towards a Modular Extensible Isabelle Interface 17

3.4 Addressing Maintainability

The architecture supports maintainability by modularity: features represent fine-
grained units of functionality, made available to the user interface through stan-
dard method calls. The remainder of the infrastructure and presentation layers
is insulated from changes to the feature implementation as long as the method-
call interface remains the same. Furthermore, it can be expected that changes to
one feature do not affect other features. The result is that changes to the prover
have local effects on a well-defined parts of the interface implementation.
Furthermore, the strict division of presentation and infrastructure makes
the infrastructure testable by standard approaches such as JUnit. Testability,
on the other hand, is a prerequisite for changeability and maintainability [6]:
developers can be more confident about necessary changes if they can determine
quickly and automatically whether existing functionality has been broken. Note
that the situation with a user interface differs from the case for the prover itself:
a change has not broken a prover’s functionality if all libraries continue to be
accepted. Most code in a user interface, on the other hand, is executed only very
infrequently, when the user happens to request a particular action.

4 Further Applications

The proposed architecture supports several usages beyond a standard prover
interface. This section sketches these applications briefly.

Isabelle as a Back-end Prover Isabelle is not only used for interactive proof
development, but also for background proofs in higher-order logic (e.g. [21]).
In such applications, the infrastructure layer can serve as a high-level interface
to access Isabelle’s functionality. In particular, the InjectedCommands feature
(Section 3.3) enables execution of single commands.

Background Queries The example in Section 3.3 shows how the term struc-
ture in goal states can be queried through features. We expect this possibility to
be very useful for application-specific theorem proving where theories would be
accompanied by specialized viewers for the formalized objects. Proof-by-pointing
applications [16, 15] could be realized by suitable markups in terms. More exten-
sive computations, for instance the generation of fragments of proof documents
[5], could be realized on the prover side by contributed features as well.

Driver-specific Capabilities Prover drivers so far are responsible only for
the creation of prover instances for installed provers. However, by applying the
lookup pattern to the drivers themselves, more detailed support can be made
available. For instance, an InstallationFeature might offer the capability of
downloading and installing the prover itself into a particular location and con-
figuring and compiling it according to the system environment.?

2 Thanks to Burkhart Wolff for this suggestion.

18 Holger Gast

lq - --p| Prover

Theory IAPP Sync/Async | »
Process

Editor Adapter

SyncProver

Fig. 4. Support for Synchronous Provers

Synchronous Provers The IAPP, as defined in [13], assumes the prover in-
stance to support the protocol for asynchronous proof processing, even if the
proving proceeds in linear order effectively. For backwards compatibility, it would
be desirable if a prover could implement a simpler SyncProver interface, mod-
elled e.g. after [7]. Using features, the desired adaptation is straightforward (Fig-
ure 4): when failing to retrieve the AsyncProver feature, the IAPP asks for the
SyncProver feature and uses a simple adapter, the emulator component from
[13, Figure 5], to obtain the desired functionality.

5 Conclusion

We have proposed a modular architecture for an Isabelle user interface. Its main
design goal is to simplify the maintenance of the prover interface. Towards that
end, we have introduced features as units of functionality that consist of a prover-
side implementation and a interface-side proxy. The proxy object hides the back-
ground communication such that changes to the prover do not affect the inter-
face. The architecture separates an infrastructure layer, which provides the func-
tionality, from a presentation layer, which is responsible for the user interaction.
The division increases testability as a necessary prerequisite to changeability,
and makes Isabelle accessible as a background prover in non-interactive con-
texts. Finally, the architecture supports application-specific theorem proving by
contributed features, which access functionality that is related to loaded theories
or is installed at startup.

The design elements underlying the architecture are taken from the Netbeans
platform: its lookups are used to publish the specific capabilities of objects and
its system filesystem serves as an extension mechanism. Since these facilities
are also available as standalone libraries, the architecture does not, in principle,
depend on a Netbeans realization of the entire interface.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4(1):32-54, 2005.

2. D. Aspinall. Proof General: A generic tool for proof development. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’00), number
1785 in LNCS, 2000.

3. D. Aspinall, C. Liith, and A. Fayyaz. Proof General in Eclipse: System and ar-
chitecture overview. In Eclipse Technology Exchange Workshop at OOPSLA 2006,
2006.

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

Towards a Modular Extensible Isabelle Interface 19

D. Aspinall, C. Liith, and D. Winterstein. Parsing, editing, proving: the PGIP dis-
play protocol. In International Workshop on User Interfaces for Theorem Provers
2005 (UITP’05), 2005.

. D. Aspinall, C. Liith, and B. Wolff. Assisted proof document authoring. In Mathe-

matical Knowledge Management 2005 (MKM ’05), number 3863 in Springer LNAI,
pages 65-80, 2005.

. K. Beck. Eaxtreme Programming Explained: Embrace Change. Addison-Wesley

Longman, Amsterdam, 1999.

. Y. Bertot and L. Théry. A generic approach to building user interfaces for theorem

provers. J. Symbolic Computation, 25:161-194, 1998.

. T. Boudreau, J. Tulach, and G. Wielenga. Rich Client Programming: Plugging into

the Netbeans platform. Prentice Hall, 2007.

. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

oriented Software Architecture: A System of Patterns, volume 1. Wiley & Sons,
1996.

The Eclipse workbench. http://www.eclipse.org.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley, 1995.

H. Gast. An architecture for extensible Click’'n Prove interfaces. In K. Schnei-
der and J. Brandt, editors, Theorem Proving in Higher Order Logics: Emerging
Trends Proceedings, number 364/07. Department of Computer Science, University
of Kaiserslautern, Aug. 2007.

H. Gast. Managing proof documents for asynchronous processing. In User In-
terfaces for Theorem Provers (UITPs 2008), volume 226 of ENTCS, pages 49-66.
Elsevier Science Publishers B. V., 2009.

D. Haneberg, S. Baumler, M. Balser, H. Grandy, F. Ortmeier, W. Reif, G. Schell-
horn, J. Schmitt, and K. Stenzel. The user interface of the KIV verification system
- a system description. In Proceedings of the User Interfaces for Theorem Provers
Workshop (UITP 2005), 2005.

C. Liith, H. Tej, Kolyang, and B. Krieg-Briickner. TAS and IsaWin: Tools for
transformational program development and theorem proving. In Fundamental Ap-
proaches to Software Engineering: Second International Conference (FASE’99),
volume 1577 of LNCS, 1999.

C. Liith and B. Wolff. Functional design and implementation of graphical user
interfaces for theorem provers. Journal of Functional Programming, 19(2):167—
189, 1999.

S. Owre. A brief overview of the PVS user interface (invited tutorial). In UITP,
2008.

C. Team. The Coq proof assistent. http://www.lix.polytechnique.fr/coq/, 2009.
M. Wenzel. Interactive proof documents — theorem provers for user interfaces.
http://www4.in.tum.de/ wenzelm/papers/edinburgh2008.pdf, Nov. 2008.

M. Wenzel. personal communication, 2008.

K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. SIGPLAN Not., 43(6):349-361, 2008.

A Mechanized Theory of Aspects

Florian Kammiiller and Henry Sudhof

Technische Universitat Berlin

Abstract. Aspect-orientation is a novel concept in software develop-
ment and is widely recognized as an important extension of object orien-
tation. The approach promises to overcome limitations of the plain object
oriented paradigm by adding the means to modularize cross-cutting con-
cerns. In this paper, we present our development of a theory of aspects,
in the form of an extension of the ¢—calculus entirely formalized in Is-
abelle/HOL *. With this model, we want to answer essential questions
regarding the power and safety of aspects with a strong base of rigorous
proofs.

1 Introduction

Aspect oriented programming promises to add flexibility into existing program-
ming paradigms to allow the modularization of cross-cutting concerns. The ex-
tension of existing languages by adding a new family of constructs opens new
issues and situations, which need careful examination. In particular, the static
typing of aspects is less strict than in languages like java, leading to uncaught
runtime errors.

Thus, the field is an ideal candidate for using an interactive theorem prover,
as establishing the fundamental implications and limitations calls for a rigorous
approach. For this reason, we have developed our entire approach in the theorem
prover Isabelle/HOL. At the same time, we strove to make the approach as small
and simple as possible, while still capable of capturing the fundamental issues.
For this reason, we have decided to use the object oriented ¢-calculus as basis
for our aspect oriented approach.

In this paper, we will first introduce the basic concepts of aspect orientation
in Section 1.1. Then we present the Isabelle formalization of the core calculus and
aspects in the Sections 2.1 and 2.2, as well as the approach to typing in Section
2.3. Finally we present a discussion introducing an early concept for classifying
the aspects we were able to accommodate and to establish a comparison to
related work.

1.1 Aspect orientation: a brief introduction

Aspect oriented programming (aop) [9] is a novel paradigm to facilitate modular-
ization and flexibility in software development by providing a better separation

! The formalization can be found on our homepage at http://user.cs.tu-berlin.
de/~flokam/ascot/.

A Mechanized Theory of Aspects 21

of concerns. It is often defined [7] as adding a new type of modules — “aspects” —
to a language. Aspects are the combination of two new abilities in programming
and design: the first being able to quantify over a program, the second being
able to alter its behaviour without any explicit changes in the original program
— called “base”. This is referred to as “Quantification and Obliviousness”[7].

Aspects are themselves modules combining pairs of pointcuts and advice.
Pointcuts quantify over the base program. In aop languages like AspectJ, the
pointcuts are expressions in a logical pointcut-language which select situations
in the base program. The situations in a program that these pointcuts quantify
over are called joinpoints or exposed joinpoints; usually method invocations and
executions are examples for joinpoints.

Pointcut expressions are assembled from string with wildcards that method
names, i.e. purely lexicographic . These primitive lexicographic patterns are can
be used in a number of advanced operators. The following example describes a
pointcut that selects all invocations of methods that have names starting with
move on instances of the class Point.
call(void Point.movex(..))
call(void Point.movex*(..)) && cflow(call(void Rectangle.movex*(..)))

The second line adds a condition that only those invocations happening in the
context of an invocation to a method starting with move of a class named
Rectangle should be selected.

Pointcuts alone do not alter anything; here, the other part of an aspect comes
in: the advice, which is the code that details what should happen in the program
areas matched by the pointcut. Technically, there, advice can either replace
the original code or add code either before or after the joinpoint. However, as
replacing advice can simulate all other kinds, we only consider replacing advice
in this paper.
around (call(Object Point.movex(..)))

return null;

The advice above replaces all calls to methods captured by its pointcut, i.e.
all calls to methods of the class Point with a name starting with move by a
null pointer. Together, advice and pointcut form the basic aspect construct: a
pointcut that quantifies over a base program and advice code that acts at these
places in the base program. The combination of aspects and base programs is
called weaving.

Aspects are not inherently safe, as aop adds a new dimension of flexibility,
which calls for careful examination of the static safety implications — not in isola-
tion, but in combination with object oriented concepts. For instance, consider the
example given in Figure 1. In the example, an aspect replaces the method test
of the class Point and its subclasses. More literally, the pointcut in the aspect
Asp states that the method test should be replaced in all subclasses of Point,
indicated by the +. However, the subclass ColoredPoint re-defines that method
with a more special return type. The aspect’s return value — Point — is thus not
conform to the type of the redefined method — ColoredPoint. The application
of the aspect at all points indicated by its pointcut results in a type-error, when

22 F. Kammiiller and H. Sudhof

the method is called in a situation expecting an instance of ColoredPoint to be
returned. This situation constitutes a clash between the flexibility provided by
the aspect and existing flexibility provided by the base-language’s — here Java —
concept of inheritance with contra-variant re-definition.

public class Point { public class ColoredPoint extends Point {
public Point test() { public ColoredPoint test() {
return this; return this;
} }
} }

public aspect Asp {
Object around(): call(* Point+.test(..)) {
return new Point();

}
}

Fig. 1. A covariance situation in AspectJ
Considering the current state of the art, we believe it to be worthwhile to

establish a rigorous approach for aop.

2 Formalization

2.1 Semantics of the core calculus

The Theory of Objects consists in various ¢-calculi that are aimed to be as
“simple and fruitful as A-calculi” [2]. The ¢-calculus takes objects as primitive.
What we call parametrized ¢-calculus is a slight extension of ¢-calculus with a
second parameter for methods.

The actual reduction semantics is realized as a small-step operational se-
mantics, using Isabelle’s support for the inductive definition of predicates. Using
this powerful Isabelle feature, allows a representation similar to the notation one
would use on paper.

In the particular case of the operational semantics, we use the inductive
feature to define a relation between two terms. If all the preconditions of a rule
are met, then the two terms in the conclusion are in the reduction relation, i.e.
the first term reduces to the second in one step.

The first rule — BETA — is of particular importance. It expresses method
invocation. The substitution [(0bj £ T), b/0] replaces the self parameter for
the outermost variable — which always has the index 0 — in the object’s [th
field £ 1. At the same time, the parameter variable of the method £ 1 — this
parameter again with the index 0 — is replaced with the call’s second term.
We realize substitution by an Isabelle function over dB-terms with the mixfix-
notation x[y,z/0], which replaces Self 0 with y and Param O with z in x. The
principle to represent function application by substitution is, in the following
section, again used for weaving aspects. The rule for update simply replaces
the old term with the new one in the resulting object. The next four rules:
SELL, SELR, UpDL, UPDR and OBJ are context rules, adding the reduction

A Mechanized Theory of Aspects 23

BETA UpD
l €dom f l € dom f T
Call (Obj f T') | b— the(f 1)[(O0bj f T),b/0] Upd (Obj f T) | a—0bj (f (l—a)) T
SELL SELR UpDL
s —ct s —ct s —ct
Callslb— Calltlb Callals—c Callalt Updslu—cUpdtlu
UprDR OBJ Asp
s —c t s —c t l € dom f s —ct

Upduls — Updult 00 (f(I—s) T — 063 (FImt) T IUs) — 18

Fig. 2. The inductive definition of the reduction relation.

of subterms inside objects and statements. The final rule allows the reduction
inside labelled terms.

2.2 Aspect-orientation with ¢

The aspect oriented expression of the calculus is based on using explicit labels in
terms, which denote joinpoints. These labels are part of the datatype presented in
the preceding section and do not have any semantics on their own. The semantics
for the aforementioned labels are later added by the process of weaving. Our
idea of weaving is a primitive recursive function that traverses the entire term
and applies the advice when it encounters a label matching the pointcut; after
applying all aspects, the labels are erased from the terms. Applying an aspect is
done on term level; the advice code’s self variable is replaced with the labelled
expression by using the normal substitution.

This is realized by the definition of our labels: Each label wraps the term it
marks and has a value acting as identifier. The actual aspects consist of two parts:
one list of label identifiers and a term. The list part correspond to the pointcut
and the term to the advice used in aop. The label list constitutes a quantification
about labels; all labels having an identifier listed in the pointcut are considered to
be joinpoints where the aspect should act, i.e. which are evaluated by the weave
function. The term part — advice — is woven into the base term by replacing the
using the wrapped subterms from the labels and making them available to the
advice by substituting a base variable with the original subterm.

2.3 Basic typing

The typing and subtyping relations are realized as inductive predicates, as shown
in Figure 3, using Isabelle’s inductive package. The subtyping relation allows
the contravariant re-definition of methods, with the added variation of using an
annotation to safely alter between allowing the update operation and subtyping.
The actual subtyping rule is SUB-OBJ; the remaining two rules add the transitive

24

F. Kammiiller and H. Sudhof

and reflexive closure. The relation is a valid partial order, a basic sanity condition
for subtyping relations.

SuB-OBJ
vl € dom(B) return(4;) <: return(B;)

variance(A4;) — (return(A;) = return(B;) A param(A;) = param(B;))

param(B;) <: param(A4;) variance(A;) — variance(B;)
A<:B
SuB-TRANS SUB-R
A<:B B<:C UB-REFL
A<:C A< A
VARSELF VARPARAM
z < |E| E«x =B B<:A z<|E]| Evz =B B <A
E,LtVar (Selfz): A E,L+ Var (Paramz) : A
OBy

dom b = dom B
Vi € dom B E(0: B,param(B;)), L - b; : return(B;) B< A
E,LFobjbB:A

UpD
E,L+a:B l € dom B

E(0: B,param(B;)), L - n : return(B;) B<A —variance(B;)
E,LF-Updaln:A

CALL
E,Lt+a:B |l € dom B return(B;) <: A E,LFb: param(B;)

E,[FCallalb: A

LAB
E,L+-a:B i < |L| L,=B B<: A

E,LFia):A

Fig. 3. The inductive definition of the subtype and typing relations.
The typing rules are very straightforwardly interpreted as follows.

— The VAR rules for typing variables are very similar to each other, only differing

in the type of the variable. The rule VARSELF is for typing instances of “Self”
variables, i.e. a nesting object’s values. VARPARAM on the other hand is used to
type method parameters in the method body. This difference is visible by the
use of < and > respectively. Both rules are read as “if the variable is bound then
the expression’s type is the one referenced in the variable environment for that
variable” — all bound variables have types associated with them in the environment.
The CALL rule for typing method invocations asserts that all sub-expressions are
valid for the invocation. This involves the callee being well-typed and having the
method being invoked. It also enforces that the parameter is well-typed and con-
forms to the parameter type for the method in the callee’s type. If so, the resulting
type is the one found as return type in the callee’s type for the particular method.
The OBJ rule for objects is notable, as we enforce conformity with the type anno-
tation in the rule, linking syntax and typing. The actual rule also states that all
methods of the object have to be well-typed under the assumption that the self
variable 0 — the object’s self variable — is of the object’s type.

A Mechanized Theory of Aspects 25

— Similarly, the object update UPD rule asserts that the object to be updated is well
typed and that the method/field to be updated is defined in its type. Moreover,
the new value for the method or field has to be well typed assuming self 0 to be
of the updated object’s type when supplying a valid parameter. The fundamental
change to the update rule was that it now requires the variance annotation for the
method to be updated to be false.

— To type labels, we introduced a new environment L, which maps labels to types.
LAB, the corresponding typing judgement, enforces that a given label may only be
used to mark terms of a given type. Label environments act as interface between
aspects and base terms.

2.4 Typing of aspects

Following the realization of aspects as a non-invasive extension to the base cal-
culus, we have also formalized the typing of aspects as an extension to the basic
type system. We see the major feature of this approach in its simplicity and
the nearly complete decoupling of aspects from base in the definition of weaving
and in the type system. This in turn allows us to treat aspects as independent
modules while still being able to guarantee static type-safety. This modularity
is also reflected in the proofs: the proofs of type safety reduce to a theorem that
shows that weaving preserves types [10].

The typing of aspects is realized by a condition wf_adv, which is defined as
follows:

wf_adv Lr (pc, adv) =g
V 1€édom Lr. [](O: Lt !1,V0id>, Lr - adv: L¢!'l

It states that an aspect has to be well-typed respective to an interface L. More
precisely, it expresses that for each label in the aspect’s pointcut, the advice is
of the type listed in the environment for that label, if the aspect’s self parameter
was of that type. The function application is indicated by assuming 0 to be of
the type given by the label environment. void is the empty type, indicating that
the parameter is not used. This guarantees that an aspect’s replacement of the
original labelled expression conforms to the same type.

In other words, the result of weaving an advice has to conserve the type under
the label. A notable benefit of this approach is that the condition is not based
on a particular base-term, but is entirely based on Ly, which can be seen as an
generic interface. Another added benefit is the indirect instantiation of the label
type using all labels in the pointcut via Lr. This allows polymorphism of aspects,
as the typing is checked against a set of types. this makes — for instance — the
application of aspects without base effects possible on all marked terms. As the
condition wf_adv is part of the typing constraints, we also prove the decidability
(using a primitive recursive predicate) to guarantee static aspect typability.

Subtypes add themselves naturally to this definition because subsumption
implicitly affects the typing predicate for aspects. Thus we were able to prove
the soundness of weaving and aspects without altering their essential semantics.
We thus are able to statically describe a strong and modular typing definition
for aspects without requiring a concrete base program.

26 F. Kammiiller and H. Sudhof

2.5 Type safety

For showing the type safety of the typing relation, we used the classical approach
[14] of proving progress and preservation. In a second step, we are able to prove
that weaving of well-typed aspects always yields well-typed programs. Using our
strong definition of aspect typing from section 2.4, we can lift the proofs of basic
type safety to aspects. This means, that both type-safety theorems stay valid,
when well-typed aspects are woven. More importantly, we are able to prove static
type-safety for our typing of aspects.

Theorem 1 (Aspect preservation).

[wf_adv L A; t J A - t>] = e, LF t:T

Theorem 2 (Aspect progress).

[wi_adv L A; =(3 ¢ T . delabel (¢t | A) = 0bj c T)]

— (3 t’. delabel (t | A) —c t’)
Summarizing, we presented a modular concept for typing aspects. The simple
link over a shared type dictionary is powerful enough to safely type aspects and
base programs in a simple fashion. Moreover, the proofs are highly modular
themselves and only require minimal changes to allow for subtyping in and with
aspects.

2.6 Compositionality

We were able to deduce a notion compositionality of aspects [12]. By composi-
tionality we mean that aspect weaving respects the evaluation of a term.

Theorem 3 (Aspect compositionality).
[wi_adv L A; t —¢ t° | = tJA -7 t’JA

The theorem only needs one well-formedness conditions as hypothesis: an ad-
vice must not contain any free variables (apart from its parameter). This well-
formedness is contained in the typing rules for aspects and thus — in turn — in
wf_adv - which we chose as a common hypothesis for the above theorem.

The wider implication of this strong property of compositionality for the
classification of aspects is an interesting open question. Clearly, there are many
aspects expressible event based aspect models that are not compositional.

3 Related Work

The formal analysis of aspect-orientation is also being pursued by a number of
other approaches. Some of these approaches use so-called labels to mark areas of
the base program where aspects might be applied. Others follow a strict inter-
pretation of the obliviousness property and avoid annotations in base programs
entirely. There are real-life examples for the use of labels, ranging from pointcut
interfaces to automatically introduced labels to resolve pointcuts [3].

A Mechanized Theory of Aspects 27

Ligatti et al [13] presented an aspect-aware A-calculus to answer type theo-
retic questions. The basic formalism is the simply typed A-calculus, with added
constructs like if and print. This approach uses explicit labels in the base ap-
plication on which to apply aspects. These labels can be added dynamically.
Aspects are handled as part of the base terms, i.e. advice and pointcuts are
notated in the same expression as the base program. Pointcuts are modelled by
expressions about the aforementioned labels; advice uses itself the basic calcu-
lus. Aspects can be added in any order, allowing to affect the advice ordering.
Being based on the A-calculus, there is no native support for modelling objects.
A strong case for the calculus is the inclusion of a type-preserving compilation
to a fully-fledged language.

A dialect of the minimal calculus by Ligatti et al [13] with a more pointed
intention is Harmless Advice [5] by Dantas and Walker. This approach uses the
basic calculus as described above, but adds a control-flow security type sys-
tem that enforces non-interference. The calculus was significantly streamlined,
removing the finer weaving semantics and adding a pseudo-imperative concate-
nation operator. The type system enforces strict separation between domains,
guaranteeing non-interference between base and advice code.

Clifton and Leavens developed the MiniMAO series of core calculi for AspectJ
and its extension MAQO, using an imperative Featherweight Java dialect. The
approach implements a nominal type system and avoids using labels, making it
significantly different from those mentioned before. Other unique features include
its ability to capture dynamic pointcuts and proceed statements. Beyond the
focus on pointcut semantics there is also a soft non-compositional concept of
ownership encoded into the type system.

Riley and Jagadeesan also employed a Featherweight Java dialect to show
that generic types can be used as means to achieve type safety for aspects.
Combining parametric object-orientation and aspects, the work presents a class—
based nominal approach for type-safe aspects. The paper mentions cases where
the use of generics lead to better re-usability in generic and non-generic programs
alike. Even more interesting are the described situations where the use of generics
leads to ways for typing otherwise unsound situations.

De Fraine, Siidholt, and Jonckers contributed strongAspectJ [6], a type-safe
dialect of AspectJ. By adding dual joinpoint/proceed signatures this approach
proposes a type sound extension to AspectJ. These dual interfaces consist of a
proceeds interface detailing the type expected at the join point by the aspect
and an advice interface declaring what type the advice will send to the caller.
By matching the interfaces against the base application, type safety is achieved.
The approach removes some flexibility from AspectJ, notably enforcing that the
number of arguments of the proceed statement matches that of the joinpoint.
The results of this work have not been proved with the use of a theorem prover.

28 F. Kammiiller and H. Sudhof

4 Discussion

We presented a simple, compact and powerful calculus for aspect orientation. The
calculus is object oriented and entirely functional, making it easy to understand
and to use. The mechanization of the calculus adds an unique foundation to
our approach, that allows the rigorous study of aspects and the extraction of
code, for instance type checkers or interpreters. To our knowledge, there is no
other mechanized calculus with aspect orientation. We share the basic approach
of using labels with Ligatti et al [13], but have added a truly object oriented
setting, without losing the compactness that makes a core calculus powerful.
The use of labels, just as in our work is not a drawback, as labels facilitate
the reasoning about aspects by providing explicit and enumerable joinpoints.
Moreover, labels can easily simulate lexicographic patterns.

4.1 Classification of aspects

Our aspect calculus is able to capture a wide range of real-world aspects. The ap-
proach of using a variable to represent the base term, allows the easy simulation
of before/after /replace aspects; labels can be automatically inserted and are able
to represent almost any static pointcut. Dynamic pointcuts are using additional
conditions that go beyond the simple matching of pointcuts. The most impor-
tant class of such dynamic pointcuts are those, which use cflow expressions, i.e.
which apply only when called from the context — control flow — of certain other
joinpoints. It is possible — generally [3] and in our formalization — to select labels
in a way that captures some of those dynamic conditions. A trivial example —
the possible scenarios are not limited to such simple cases — would be, when a
method is only ever called in the context of another method.

Furthermore, it can be argued that the addition of a dynamic condition
cannot make a safe aspect unsafe — dynamic conditions can only limit static
conditions further and not select additional joinpoints.

The class of aspects that pass our well-formedness condition is far more
selective; these aspects are known to be safe and compositional. Hence, we can
classify compositional aspects as the most restrictive kind. This is followed by
aspects that can be expressed in a functional calculus; we are positive that ¢asc
is able to capture nearly all of those aspects. For instance, we can use an aspect
to count the invocations of a given labelled method. However, as the calculus is
functional, it is not possible to have a global counter for all invocations of a given
aspect, as that would require a reference semantic. We can thus classify aspects
into compositional, functional and reference—based and are able to model the
former two classes in our calculus.

4.2 Conclusion

The presented aspect calculus benefits by no small degree from being mechanized
in Isabelle/HOL. The theories are modular, new steps can be tested with only
replacing a few building blocks. As examples, we are currently experimenting

A Mechanized Theory of Aspects 29

with a locally nameless formalization for binders and are extending the ability
to handle dynamic pointcuts. Already without these future steps, the calculus is
able to show the basic issues that arise when introducing aspects and means to
use safe aspects. It is a compact, simple and rigorously proven concept that shows
the basic limits and type-theoretic issues that arise when introducing aspects to
object-orientation, especially in conjunction with width and depth subtyping.
At the same time, we have the simplicity that guarantees easy extendibility to
handle advanced scenarios, like distributed and parallel architectures, including
component systems.

References

1

10.

11.

12.

13.

14.

15.

16.

17.

B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, S. Weirich. Engineering
Formal Metatheory. In POPL’08, ACM Press 2008.

. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
. P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble,

and M. Verbaere. Semantics of static pointcuts in AspectJ. In POPL’07,
ACM Press, 2007.

. C. Clifton, G. T. Leavens, and J. Noble. Mao: Ownership and effects for more

effective reasoning about aspects. In ECOOP 07, Vol. 4609, LNCS, 2007.

. D. S. Dantas and D. Walker. Harmless advice. In POPL 06, pages 383-396.

ACM, 2006.

. B. De Fraine, M. Siidholt, and V. Jonckers StrongAspectJ: Flexible and Safe

Pointcut/Advice Bindings. AOSD 2008, ACM Press, 2008.

. R. Filman and D. Friedman. Aspect—oriented programming is quantification

and obliviousness. In Advanced Separation of Concerns, OOPSLA, 2000.

. R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric polymorphism for

aspects. Sci. of Comp. Programming, 63(3):267-296, 2006.

. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and

J. Irwin. Aspect-oriented programming. In ECOOP 1997. Vol. 1241, LNCS,
Springer, 2008.

F. Kammiiller and H. Sudhof. A Mechanized Framework for Aspects in Is-
abelle/HOL. ACM SIGPLAN Workshop on Mechanizing Metatheory, 2007.
F. Kammiiller and H. Sudhof. Composing safely — a type system for aspects.
In Software Composition, SC’08. Vol. 4954, LNCS, Springer, 2008.

F. Kammiiller and H. Sudhof. Compositionality of aspect weaving. In Au-
tonomous Systems — Self Organization, Management, and Control. Springer,
2008.

J. Ligatti, D. Walker, and S. Zdancewic. A type-theoretic interpretation of
pointcuts and advice. Sci. of Comp. Programming, 63(3):240-266, 2006.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38-94, 1994.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, LNCS 2283, Springer, 2002.

The POPLmark challenge. http://alliance.seas.upenn.edu/ ~plclub/
cgi-bin/ poplmark. July 2007.

Christian Urban and Christine Tasson. Nominal Techniques in Isabelle/HOL.
In CADE 05. LNCS, 3632, Springer, 2005.

A Formalization of the Semantics of
Functional-Logic Programming in Isabelle*

Francisco J. Lépez-Fraguas', Stephan Merz2, and Juan Rodriguez-Hortala!
! Departamento de Sistemas Informéticos y Computacién
Universidad Complutense de Madrid, Spain
fraguas@sip.ucm.es, juanrh@fdi.ucm.es
2 INRIA Nancy & LORIA
Stephan.Merz@loria.fr

Abstract. Modern functional-logic programming languages like Toy or
Curry feature non-strict non-deterministic functions that behave under
call-time choice semantics. A standard formulation for this semantics is
the CRWL logic, that specifies a proof calculus for computing the set
of possible results for each expression. In this paper we present a for-
malization of that calculus in the Isabelle/HOL proof assistant. We have
proved some basic properties of CRWL: closedness under c-substitutions,
polarity and compositionality. We also discuss some insights that have
been gained, such as the fact that left linearity of program rules is not
needed for any of these results to hold.

1 Introduction

Fully formalizing the (meta)theory of a programming language can be beneficial
for developing its foundations. There is an increasing number of researchers (see
e.g. [2]) sharing the conviction that the combination formalization+mechanized
theorem proving must (and will) play a prominent role in programming languages
research and technology. In particular, formalizations help to clarify overlooked
aspects, to discover pitfalls, and even to provide new insights; moreover, formal-
ized metatheories lead to mechanized reasoning about programs, giving reliable
support to tools like certifying compilers or certified program transformations.
In this paper we formalize the semantics of functional logic programming
(FLP), a well established paradigm (see [9]) integrating features of logic and
functional languages. In modern FLP languages such as Curry [10] or Toy [14]
programs are constructor based rewrite systems that may be non-terminating
and non-confluent. Semantically this leads to the presence of non-strict and
non-deterministic functions. The semantics adopted for non-determinism is call-
time choice [11,8], informally meaning that in any reduction, all descendants
of a given subexpression must share the same value. The semantic framework
CRWL? was proposed in [7, 8] to accomodate this view of non-determinism, and

* This work has been partially supported by the Spanish projects TIN2005-09207-C03-
03 (MERIT-FORMS-UCM), S-0505/TIC/0407 (PROMESAS-CAM) and TIN2008-
06622-C03-01/TIN (FAST-STAMP).

3 CRWL stands for “Constructor-based ReWriting Logic”.

Formalization of the Semantics of Functional-Logic Programming 31

is nowadays considered the standard semantics of FLP. For the purpose of this
paper, the most relevant aspect of CRWL is a proof calculus devised to prove
reduction statements of the form P F e — ¢, meaning that ¢ is a possible
(partial) value to which e can be reduced using the program P.

We have chosen Isabelle/HOL as concrete logical framework for our formal-
ization. Using such a broadly used system is not only easier, but also more
flexible and stable than developing language specific tools like has been done,
e.g., for logic programming [15] or functional programming [6].

The remainder of the paper is organized as follows: Sect. 2 contains some
preliminaries about the CRWL framework , Sect. 3 presents the Isabelle theories
developed to formalize CRWL, and Sect. 4 gives the mechanized proofs of some
important properties of CRWL. Finally, Sect. 5 summarizes some conclusions
and points to future work.

An extended version of this paper can be found at http://gpd.sip.ucm.es/
juanrh/pubs/isabell-crwl-report.pdf. The Isabelle code underlying the re-
sults presented here is available at https://gpd.sip.ucm.es/trac/gpd/wiki/
GpdSystems/IsabelleCrwl.

2 Preliminaries

2.1 Constructor-based term rewrite systems

We consider a first-order signature X' = CS U FS, where CS and FS are two
disjoint sets of constructor and defined function symbols respectively, each with
associated arity. We write CS™ (FS™ resp.) for the set of constructor (function)
symbols of arity n. The set Exp of expressions is inductively defined as

Expsex=X|hle,...,en),

where X € V, h € CS™ U FS™ and ey,...,e, € FExp. The set CTerm of con-
structed terms (or c-terms) is defined like Exp, but with h restricted to C'S™ (so
CTerm C Ezxp). The intended meaning is that Ezp stands for evaluable expres-
sions, i.e., expressions that can contain function symbols, while CTerm stands
for data terms representing values. We will write e, ¢/,... for expressions and
t,s,... for c-terms. The set of variables occurring in an expression e will be
denoted as var(e). We will frequently use one-hole contexts, defined as

Cntzt 5 C=[]]h(er,....C,..., €n)

for h € CS™ U FS™. The application of a context C to an expression e, written
Cle], is defined inductively by

[lle] =e and h(e,...,C,...,en)[e] =h(er,...,Cle],..., en).

The set Subst of substitutions consists of finite mappings 6 : V — Ezxp (i.e.,
mappings such that 8(X) # X only for finitely many X € V), which extend
naturally to 6 : Ezp — Fxzp. We write ef for the application of 6 to e, and 66’

32 Francisco J. Lépez-Fraguas, Stephan Merz, and Juan Rodriguez-Hortald

RR) x—x Y€V B) s
er —>t...en =ty n
(DC) cler,...,en) = c(ti, .., ta) c€C§
er > pi1f...en = ppf 6 =1 f(pl,...,pn)—>re79
(OR) f(elz R e'n,) — ¢ 0 e OSUbStJ_

Fig. 1. Rules of CRWL

for the composition of substitutions, defined by X (06') = (X6)¢’. The domain
of 6 is defined as dom(f) = {X € V | X6 # X}. In most cases we will use
c-substitutions § € CSubst, for which X0 € CTerm for all X € dom(9).

A CRWL-program (or simply a program) is a set of rewrite rules of the
form f(t) — e where f € FS™ e € Exp and t is a linear n-tuple of c-terms,
where linearity means that each variable occurs only once in . Notice that we
allow e to contain extra variables, i.e., variables not occurring in ¢. CRWL-
programs often allow also conditions in the program rules. However, CRWL-
programs with conditions can be transformed into equivalent programs without
conditions, therefore we consider only unconditional rules.

2.2 The CRWL framework

In order to accomodate non-strictness at the semantic level, we enlarge X' with a
new constant constructor symbol 1. The sets Fzp,, CTerm , Subst,, CSubst,
of partial expressions, etc., are defined naturally. Notice that L does not appear
in programs. Partial expressions are ordered by the approximation ordering C
defined as the least partial ordering satisfying

1Ce and eC e =Cle] CCle] forall e, e’ € Exp,,C € COntat

This partial ordering can be extended to substitutions: given 6,0 € Subst, we
say 0 C o if X0 C Xo for all X € V.

The semantics of a program P is determined in CRWL by means of a proof
calculus (see Fig. 1) for deriving reduction statements P F e — ¢, with e € Ezp
and t € CTerm, , meaning informally that ¢ is (or approximates) a possible value
of e, obtained by iterated reduction of e using P under call-time choice. Rule B
(bottom) allows us to avoid the evaluation of any expression, in order to get a
non-strict semantics. Rules RR (restricted reflexivity) and DC (decomposition)
allow us to reduce any variable to itself, and to decompose the evaluation of
an expression whose root symbol is a constructor. Rule OR (outer reduction)
expresses that to evaluate a function call we must first evaluate its arguments
to get an instance of a program rule, perform parameter passing (by means of a
CSubst) 0) and then reduce the instantiated right-hand side. The use of partial
c-substitutions in OR is essential to express call-time choice, as only single partial
values are used for parameter passing. Notice also that by the effect of § in OR

Formalization of the Semantics of Functional-Logic Programming 33

extra variables in the right-hand side of a rule can be replaced by any c-term,
but not by any expression. The CRWL-denotation of an expression e € Fxp, is
defined as [e]” = {t € CTerm, | P Fcrwr e — t}.

3 Formalizing CRWL in Isabelle

3.1 Basic definitions

We describe our formalization of CRWL in Isabelle. The first step is to define
elementary types for the syntactic elements.

datatype signat = fs string | cs string

datatype varId = vi string

datatype exp = perp | Var varId | Ap signat "exp list"

types

subst = "varId = exp option"
rule = "exp * exp"
program = "rule set"

Signatures are represented by a datatype that provides two constructors cs and
fs to distinguish between constructor and function symbols. The type varId is
used to represent variable identifiers, which will be employed to define substitu-
tions. Then the datatype exp is naturally defined following the inductive scheme
of Exp, , therefore with this representation every expression is partial by default.

Substitutions (type subst) are represented as partial functions from vari-
able identifiers to expressions, using Isabelle’s option type. Hence the domain
of a substitution ¥ will be the set of elements from varId for which 9 returns
some value different from None. Note that this representation does not ensure
that domains of substitutions are finite. Our proofs do not rely on this finite-
ness assumption. Finally we represent a program rule as a pair of expressions,
where the first element is considered the left-hand side of the rule and the sec-
ond the right-hand side, and a program simply as a set of program rules. The
set of valid CRWL programs is characterized by a predicate crwlProgram ::
"program = bool" that checks whether the restrictions of left-linearity and
constructor discipline are satisfied.

We define a function apSubst :: "subst = exp = exp" for applying a
substitution to an expression. The composition of substitutions is defined through
a function substComp :: "subst = subst = subst". The following lemma
ensures the correctness of this definition.

lemma subsCompAp :
"(apSubst ¥ (apSubst o e)) = (apSubst (substComp ¥ o) e)"

Just as ML, the Isabelle type system does not support subtyping, which could
have been useful to represent the sets of c-terms and c-substitutions. Instead,
we define predicates cterm and csubst characterizing these subtypes. We prove
the expected lemmas, such as that the composition of two c-substitutions is a
c-substitution, or that the application of a c-substitution to a c-term yields a
c-term.

34 Francisco J. Lépez-Fraguas, Stephan Merz, and Juan Rodriguez-Hortald
3.2 Approximation order and contexts

Two key notions of CRWL have not yet been formalized: the approximation
order C, which will be used in the formulation of the polarity of CRWL, and the
notion of one-hole context, which will be used in the compositionality.

The following inductively defined predicate ordap (with concrete infix syntax
C) models the approximation order.

inductive
ordap :: "exp = exp = bool" ("_ C _" [51,51] 50)
where
B: "perp C e"
| V: "Var x C Var x"
| Ap: "[size es = size es’ ; ALL i < size es. es!i C es’!i |
—> Ap hes L Ap h es’"

Rule B asserts that perp T e holds for every e; rule V is needed for C to be
reflexive; finally rule Ap ensures closedness under Y-operations, and thus com-
patibility with context [3], because C is reflexive and transitive, as we will see.
The following results state that our formulation of C defines a partial order.

lemma ordapRefl : "e C e"
lemma ordapTrans :
assumes "el C e2" and "e2 C e3"
shows "el1 C e3"
lemma ordapAntisym :
assumes "el C e2" and "e2 C el"
shows "el = e2"
definition ordap_less ("_ C _" [51,51] 50) where
"'eC e’ =el e ANe #e"
interpretation exp : order [ordap ordap_less]

Contexts are represented as the datatype cntxt, defined as follows:

datatype cntxt = Hole | Cperp | CVar varId
| CAp signat "cntxt list"

Note that cntxt cannot follow the inductive structure of Cntzt with precision,
because the type system of Isabelle is not expressive enough to allow us to
specify that only one of the arguments of CAp will be a context and the others
will be expressions. Then our contexts are defined as expressions with possible
some holes inside. Therefore the datatype cntxt represents contexts with any
number of holes, even zero holes, and the function apCon :: "exp = cntxt =
exp" is defined so it puts the argument expression in every hole of the argument
context. In order to characterize contexts with just one hole, we define a function
numHoles :: "cntxt = nat" that returns the numbers of holes in a context.
Using it we can define define predicates oneHole and noHole and prove the
following lemmas.

Formalization of the Semantics of Functional-Logic Programming 35

lemma noHoleApDontCare :
assumes '"noHole xC"
shows "apCon e xC = apCon e’ xC"

lemma oneHole :
assumes "oneHole (CAp h xCs)"
shows "3 xC yCs zCs. xCs = (yCs @ xC # zCs) A oneHole xC A
(Wc € set (yCs @ zCs). noHole c)"

3.3 The CRWL logic in Isabelle/HOL

The CRWL logic has been formalized through the inductive predicate clto with
infix notation "_ F _ — _". The rules defining clto faithfully follow the in-
ductive structure of the definition of CRWL as it is presented in Fig. 1.

inductive

clto :: "program = exp = exp = bool" ("_ F _ — _"
[100,50,50] 38)
where

Blintro]l: ‘"prog - exp — perp"
| RR[intro]: "prog - Var v — Var v"
| DC[lintrol: "[size es = size ts;
Vi < size es. prog I es!i — ts!i
] = prog - Ap (cs ¢) es — Ap (cs c) ts"
| OR[introl: "[(Ap (fs f) ps, r) € prog ; csubst ¥ ;
size es = size ps ;
Vi < size es. prog I es!i — apSubst ¢ (ps!i);
prog - apSubst J r — t
] = prog - Ap (fs £) es — t"

Using clto we can easily define the CRWL denotations in Isabelle as follows.

definition den :: "program = exp = exp set" where
"den P e ={t. PF e — t}"

4 Reasoning about CRWL in Isabelle

The first interesting property that we are proving about CRWL expresses that
evaluation is closed under c-substitutions: reductions are preserved when terms
are instantiated by c-substitutions.

theorem crwlClosedCSubst :
assumes "prog - e — t" and "csubst "
shows '"prog I apSubst ¢ e — apSubst o t"

The proof of this lemma proceeds by induction on the CRWL-proof of the hy-
pothesis, therefore we will have one case for each CRWL rule. The first three
cases are proved automatically. However, to prove the case for rule OR Isabelle
needs some help from us. We need to prove

prog - (Ap (fs f) (map (apSubst ¥) es)) — (apSubst 9 t)

36 Francisco J. Lépez-Fraguas, Stephan Merz, and Juan Rodriguez-Hortald

and then let the simplifier apply the definition of apSubst. In the proof for
that subgoal we used lemma CSubsComp to ensure that the c-substitution p used
for parameter passing composed with the c-substitution ¢ in the hypothesis
yields another c-substitution, and lemma subsCompAp to guarantee the correct
behaviour of the composition for those c-substitutions.

Note that for this result to hold no additional hypotheses about the program
or the expressions involved are needed. In particular, this implies that the result
holds even for programs that do not follow the constructor discipline or that
have non left-linear rules. The Isabelle proof clearly shows that the important
ingredients are the use of c-substitutions for parameter passing and the reflexivity
of CRWL wrt. c-terms, expressed by lemma ctermRef1, which allows us to reduce
to itself any expression X¢ coming from a premise X — X.

The second property that we address is the polarity of CRWL. This property
is formulated by means of the approximation order and roughly says that if we
can compute a value for an expression then we can compute a smaller value
for a bigger expression. Here we should understand the approximation order
as an information order, in the sense that the bigger the expression, the more
information it gives, and so more values can be computed from it.

theorem crwlPolarity :
assumes "prog - e — t" and "e C e’" and "t’ C t"
shows "prog F e’ — t’"

using assms proof (induct arbitrary: e’ t’)

The idea of the proof is to construct a CRWL-proof for the conclusion from the
CRWL-proof of the hypothesis, hence it is natural to proceed by induction on
the structure of this proof (method induct). The qualifier arbitrary is used
to generalize the assertion for any expressions e’ and t’. The proof also relies
on the following additional lemmas about the approximation order, which were
proved automatically by Isabelle.

lemma ordapPerp: assumes "e T perp" shows "e
lemma ordapVar: assumes "Var v T e" shows "e
lemma ordapVar_converse:
assumes "e C Var v" shows "e = perp V e = Var v"
lemma ordapAp:
assumes "Ap h es L e’"
shows "Jes’. e’ = Ap h es’ A size es = size es’
A (ALL i < size es. es!i C es’!i)"
lemma ordapAp_converse:
assumes "e’ T Ap h es"
shows "e’ = perp V
(Jes’. e’ = Ap h es’ A size es = size es’
A (ALL i < size es. es’!'i C es!i))"

perpll
Var v"

The inductive proof for Thm. crwlPolarity again considers each CRWL rule in
turn. In the case for B we have t = perp, hence we just have to apply ordapPerp
to get t’ = perp, and then use the CRWL rule B. Regarding RR, as then t =

Formalization of the Semantics of Functional-Logic Programming 37

Var v, by ordapVar_converse we get that either t’ = perp or t’> = Var v.
The first case is trivial, and in the latter we just have to apply ordapVar getting
e’ = Var v, which is enough for Isabelle to finish the proof automatically. The
case of DC is more complicated. Again we obtain two cases for t’> = perp and t’
a constructor application, by using lemma ordapAp_converse. While the first
case is trivial, the second one requires some involved reasoning over the list of
arguments, using the information we get from applying lemma ordapAp. Finally,
the proof for OR is similar to the second case of the proof for DC, with a similar
manipulation of the list of arguments, and the use of lemma ordapAp to obtain
the induction hypothesis for the arguments.

Once again we find that this proof does not require any hypothesis on the
linearity or the constructor discipline of the program: this is indeed quite obvious
because this property only talks about what happens when we replace some
subexpression by perp.

Finally we will tackle the compositionality of CRWL, that says that if we
take a context with just one hole and an expression, then the set of values for
the expression put it that context will be the union of the set of values for the
result of putting each value for the expression in that context.

theorem compCRWL :
assumes "oneHole xC"
shows "den P (apCon e xC) =
(Uteden P e. den P (apCon t xC))"

We have proved the two set inclusions separately as auxiliary lemmas compCRWL1
and compCRWL2. The proofs of these lemmas are quite laborious but essentially
proceed by induction on the CRWL-proof in their hypothesis, using it to build
a CRWL-proof for the statement in the conclusion. In these proofs, Lemma
noHoleApDontCare from Subsect. 3.2 is fundamental.

Again, while Thm. compCRWL requires the context to have just one hole, it
does not assume the linearity or constructor discipline of the program. This
came as a surprise to us, and initially made us doubt about the accuracy of our
formalization of CRWL. But it turns out that although CRWL is designed to
work with CRWL-programs, that fulfil these restrictions, it can also be applied
to general programs. For those programs some properties, such as the theorems
crwlClosedCSubst, crwlPolarity and compCRWL still hold, but other funda-
mental properties do not, in particular the strong adequacy results w.r.t. its op-
erational counterparts of [8,12,1]. The point it that for those programs CRWL
does not deliver the “intended semantics” anymore. And this is not strange, be-
cause that semantics was intended with CRWL-programs in mind. For example,
consider the non linear program P = {f(X,X) — a}. There is a CRWL-proof
for the statement P b f(a,b) — a but this value cannot be computed in any
of the operational notions of [8,12,1] nor in any implementation of FLP, in
which the independancy of the matching process of the arguments — derived
from left-linearity of program rules — is assumed. It is also not very natural
that f(a,b) could yield the value a for the arguments a and b being different
values, which implies that the semantics defined by CRWL for non left-linear

38 Francisco J. Lépez-Fraguas, Stephan Merz, and Juan Rodriguez-Hortald

programs is pretty odd. But that is not a big problem, because we only care
about the properties of CRWL for the kind of programs it has been designed
to work with. And if it enjoys some interesting properties for a bigger class of
programs that is fine, because that nice properties will be inherited by the class
of CRWL-programs.

On the other hand, for programs not following the constructor discipline, we
will not even be able to have a matching for an argument of a rule which is not
a constructor, because in the rule OR we have to reduce every argument of a
function call to a value, which will be a c-term by Lemma ctermVals (see the
extended version of this paper), and so could never be an instance of expression
containing function symbols. Thus, the rule OR could not be used for program
rules not following the constructor discipline.

5 Conclusions

This paper presented a formalization of the essentials of CRWL [7,8], a well-
known semantic framework for functional logic programming, in the interactive
proof assistant Isabelle/HOL. We chose that particular logical framework for
its stability and its extensive libraries. The Isar proof language allowed us to
structure the proofs so that they become quite elegant and readable, as it is
apparent looking at our Isabelle code.

Our formalization is generic with respect to syntax, and includes important
auxiliary notions like substitutions or contexts. This is in contrast to previous
work [4, 5] that focused on formalizing the semantics of each concrete program.
In contrast, our paper focuses on developing the metatheory of the formalism,
allowing us to obtain results that are more general and also more powerful: we
formally prove essential properties of the paradigm like polarity or composition-
ality of the CRWL-semantics. We plan to extend our theories so that we will be
able to reason about properties of concrete programs by deriving theorems that
express verification conditions in the line of those stated in [4, 5].

While developing the formalization we realized an interesting fact not pointed
out before: properties like polarity or compositionality do not depend on the
constructor discipline and left-linearity imposed to programs. However, such
requirements will certainly play an essential role when extending our work to
formally relate the CRWL-semantics with operational semantics like the one
developed in [12], one of our intended subjects of future work. We think that
could be interesting in several ways. First of all it would be a further step in
the direction of challenge 3 of [2], “Testing and Animating wrt the Semantics”,
because we would end up getting an interpreter of CRWL during the process. We
should then also formalize the evaluation strategy for the operational semantics,
obtaining an Isabelle proof of its optimality. Finally there are precedents [13,12]
of how the combination of a denotational and operational perspective is useful
for general semantic reasoning in FLP.

Formalization of the Semantics of Functional-Logic Programming 39

References

1.

10.

11.

12.

13.

14.

15.

E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795-829, 2005.

. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,

D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metathe-
ory for the masses: The PoplMark challenge. In J. Hurd and T. F. Melham, edi-
tors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages 50—65.
Springer, 2005.

. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, United Kingdom, 1998.

. J. Cleva, J. Leach, and F. Lépez-Fraguas. A logic programming approach to the

verification of functional-logic programs. In Proc. ACM SIGPLAN Conf. on Prin-
ciples and Practice of Declarative Programming, PPDP’04, pages 9-19. ACM, 2004.

. J. Cleva and I. Pita. Verification of CRWL programs with rewriting logic. J.

Universal Computer Science, 12(11):1594-1617, 2006.

. M. de Mol, M. C. J. D. van Eekelen, and M. J. Plasmeijer. Theorem proving

for functional programmers. In T. Arts and M. Mohnen, editors, Implementation
of Functional Languages, 13th International Workshop, IFL 2002, volume 2312 of
Lecture Notes in Computer Science, pages 55—71. Springer, 2001.

. J. C. Gonzélez-Moreno, T. Hortala-Gonzélez, F. Lopez-Fraguas, and M. Rodriguez-

Artalejo. A rewriting logic for declarative programming. In Proc. European Sym-
posium on Programming (ESOP’96), pages 156-172. Springer LNCS 1058, 1996.

. J. C. Gonzalez-Moreno, T. Hortald-Gonzélez, F. Lépez-Fraguas, and M. Rodriguez-

Artalejo. An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming, 40(1):47-87, 1999.

M. Hanus. Multi-paradigm declarative languages. In Proceedings of the Inter-
national Conference on Logic Programming (ICLP 2007), pages 45-75. Springer
LNCS 4670, 2007.

M. Hanus (ed.). Curry: An integrated functional logic language (version 0.8.2).
Available at http://www.informatik.uni-kiel.de/~ curry/report.html, March 2006.
H. Hussmann. Non-Determinism in Algebraic Specifications and Algebraic Pro-
grams. Birkhauser Verlag, 1993.

F. Loépez-Fraguas, J. Rodriguez-Hortald, and J. Sdnchez-Herndndez. A simple
rewrite notion for call-time choice semantics. In Proc. Principles and Practice of
Declarative Programming, pages 197-208. ACM Press, 2007.

F. Loépez-Fraguas, J. Rodriguez-Hortald, and J. Sdnchez-Herndndez. Rewriting
and call-time choice: the HO case. In Proc. 9th International Symposium on Func-
tional and Logic Programming (FLOPS’08), volume 4989 of LNCS, pages 147-162.
Springer, 2008.

F. Lépez-Fraguas and J. Sdnchez-Herndndez. 7OY: A multiparadigm declarative
system. In Proc. Rewriting Techniques and Applications (RTA’99), pages 244-247.
Springer LNCS 1631, 1999.

R. F. Stark. The theoretical foundations of Iptp (a logic program theorem prover).
J. Log. Program., 36(3):241-269, 1998.

SAT Solver Verification Project*

Filip Mari¢ and Predrag Janicié¢

Faculty of Mathematics, University of Belgrade,
Belgrade, Studentski Trg 16, Serbia
{filip, janicic}@matf.bg.ac.rs

Abstract. In this paper we give an overview of our SAT solver verifi-
cation project. This is the first paper to present this project as a whole.
We summarize the results achieved in the verification of SAT solvers de-
scribed in terms of abstract state transition systems, in the Hoare-style
verification of an imperative implementation of a modern SAT solver,
and in generation of a trusted SAT solver based on the shallow embed-
ding into HOL. Our formalization and verification are accompanied by
a solver implemented in C++ and a trusted, automatically generated
solver implemented in a functional language. One of the main final goals
of our project is reaching to a both efficient and fully trusted SAT solver.
Other goals include rigorous analyzes of existing SAT solving systems.

1 Introduction

One of the most important goals of computer science is reaching trusted software.
This is especially important for algorithms and programs that have numerous
applications, including SAT solvers — programs that test satisfiability of propo-
sitional formulae (usually given in conjunctive normal form). The SAT problem
is the first problem that was proved to be NP-complete [Coo71] and it still holds
a central position in the field of computational complexity. The majority of the
state-of-the-art complete SAT solvers are based on the backtracking algorithm
called Davis-Putnam-Logemann-Loveland (DPLL) [DP60,DLL62]. Spectacular
improvements in the performance of SAT solvers have been achieved in the last
decade and nowadays SAT solvers can decide satisfiability of propositional for-
mulae with tens of thousands of variables and millions of clauses. Thanks to these
advances, modern SAT solvers can handle more and more practical problems in
areas such as electronic design automation, software and hardware verification,
artificial intelligence, operations research.

The tremendous advance in the SAT solving technology has not been ac-
companied with corresponding theoretical results about solvers’ correctness. De-
scriptions of new algorithms and techniques are usually given in terms of imple-
mentations, while correctness arguments are either not given or are given only in
outlines. This gap between practical and theoretical progress needs to be filled
and first steps in that direction have been made only recently.

* This work was partially supported by Serbian Ministry of Science grant 144030.

SAT Solver Verification Project 41

Hoare Style Verification Transition Rule Systems Shallow Embedding

[Correctness conditions _||[[Correctness conditions [Correctness conditions |

|
[Termination ordering |
|

[Precondtions || [CRule 1 z Invariant 1
Postconditions -
| | [Rulen Invariant m | i Tovariant 7]

[Propositional Logic |

[Function 1 Invariant 1 |

)

[GEEE R

Fig. 1. Overall structure of the SAT solver verification project

One approach for achieving a higher level of confidence in SAT solvers’ re-
sults, successfully used in recent years, is proof-checking. Solvers are modified
so that they output not only SAT or UNSAT answers, but also evidences for
their claims (models for satisfiable and proof-objects for unsatisfiable instances)
which are then checked by independent checkers. Proof-checking is relatively
easy to implement, but it has some drawbacks. Generating proof-objects intro-
duces some runtime and storage overheads (proofs are typically large and may
consume gigabytes of storage space) [Gel07]. Since proof-checkers have to be
trusted, they must be very simple programs so they can be ,,verified” by code
inspection.

Another approach is to verify a SAT solver itself, instead of checking each
of the solver’s claims. This approach is much harder to realize (since it requires
formal analysis of the complete solver’s behaviour) but is much more rewarding:

— Although the overheads of generating unsatisfiability proofs during solving
are not unmanageable, they can still be avoided if the solver itself is trusted.

— Verification of modern SAT solvers could help in better theoretical under-
standing of how and why they work and their rigorous analysis may reveal
some possible improvements in underlying algorithms and techniques.

— Verified SAT solvers can serve as trusted kernel checkers for verifying re-
sults of other untrusted verifiers (e.g., BDDs, model checkers, SMT solvers)
[SV09]. Also, verification of some SAT solver modules (e.g., BCP) can serve
as a basis for creating both verified and an efficient proof-checkers for SAT.

— In addition to the above benefits, we want to demonstrate that, thanks to
the recent advances in software verification technology, the time has finally
come when it is possible to have a non-trivial, widely used software fully
verified. Such work would contribute to the Verification Grand Challenge.

In this paper we present our ongoing project on SAT solver verification, with
largest parts already completed. The project aims at producing solvers that are
both efficient and fully trusted. In order to achieve the desired, highest level
of trust, a fully mechanized and machine-checkable formalization is being de-
veloped. An overall structure of our project is illustrated in Fig. 1. Within the

42 Filip Mari¢ and Predrag Janici¢

project, we consider three ways of specifying modern SAT solvers and the corre-
sponding verification paradigms (each with its advantages and disadvantages):

Abstract state transition systems. We have formally verified several ab-
stract state transition systems that describe SAT solvers [NOT06,KGO07].
Verification of such systems proves to be of vital importance because it
serves as a key building block in other approaches to formalization.

Imperative implementation. We have made a more detailed (compared to
the abstract state transition systems) description of a SAT solver in an im-
perative pseudo programming language. In parallel, we have developed a
corresponding SAT solver ArgoSAT in C++. Solver’s properties have been
formalized and verified within the Hoare logic.

Shallow embedding into a proof assistant. We have defined a SAT solver
as a set of recursive functions within higher order logic of the system Isabelle
(regarded as a pure functional language) and its correctness has been for-
mally proved. Based on this specification, an executable functional program
has been generated by means of the code extraction.

In the rest of this paper, due to the lack of space, we give just a very few used
definitions and just briefly comment only the central theorems and proofs. All the
definitions, conjectures, and proofs have been completely formalized and verified
within the Isabelle/Isar system [NPW02] and the complete proof documents are
available in [Mar08]. Parts of the described project have been already described
elsewhere [MJ09a,Mar09a,Mar09b,Mar09¢,M.J09b], but in this paper the project
is described as a whole for the first time. For a detailed survey of modern SAT
solving technology and algorithms we refer the interested reader to other sources
on these matters (e.g, [BHM'09]).

2 Formalization of Logic of Propositional CNF Formulae

The syntax of CNF formulae is based on the following types.

Definition 1. A Variable is identified with a natural number. A Literal is either
a positive variable (Pos vbl) or a negative variable (Neg vbl). A Clause is a list
of literals. A CNF Formula is a list of clauses.

Several basic operations on these types are introduced (e.g., variable of a literal
1, denoted by (var [), the set of all variables that occur in a formula F', denoted
by (vars F), the opposite literal of a literal I, denoted by 1).

The semantics of CNF formulae is based on the notion of valuation.

Definition 2. A Valuation is a list of literals. For a given valuation v, a literal
1 is true (denoted v E 1) iff | € v, and is false (denoted v E=l) iff | € v. A clause
c is true, denoted v E ¢, iff 3. 1 € c Av E I, and is false (denoted v E—c) iff
Vi.l € ¢ = v E-l. A formula F is true (denoted v F) iff Ve. c€ F = v E ¢,
and is false (denoted v F—F) iff c. ¢ € F A v E—c. A valuation v is consistent,
denoted (consistent v), iff it does not contain both a literal and its opposite. A
model of a formula F is a consistent valuation in which F' is true. A formula F
is satisfiable, denoted (sat F'), iff it has a model.

SAT Solver Verification Project 43

Note that, although total valuations are usually defined as Boolean variable
assignments, the given definition that covers also partial valuations and more
closely relates to the internal working of modern SAT solvers. The confidence
in our correctness proofs for a SAT solver, in bottom line, relies on the given
definitions. Fortunately, they are rather simple and can be checked by human
inspection. Still, in order to prove correctness conditions, many additional no-
tions have to be introduced and their properties have to be formally proved (e.g.,
entailment of a literal or a clause by a formula, denoted by F' E [or F E ¢, logical
equivalence of two formulae, denoted by Fy = Fb).

SAT solving related notions. Some notions specific to SAT solving are also in-
troduced within our formalization. For example, a unit clause ¢ (denoted by
isUnit ¢ [v), is a clause which contains a literal [undefined in v and whose
all other literals are false in v; a reason clause ¢ for the literal [(denoted by
isReason ¢ [v), is a clause that contains [(true in v), whose all other literals
are false in v, and their opposites precede [in v; the resolvent of two clauses
(denoted by resolve ¢y ¢z 1), etc.

Modern SAT solvers slightly extend the notion of valuation by distinguishing
two different kinds of literals: decision and implied. For example, a trail M could
be [+1,]|—2,46,|+5, —3,|—7]. Decision literals are marked by the symbol | and
they split the trail into levels, so M has 4 different levels (labelled by 0 to 3): +1,
then —2, +6, then +5, —3, and —7. There is a number of operations on assertion
trails used within SAT solvers. These operations have also been formally defined
within our theory and their properties have been formally proved. Some of these
are the list of decisions in a trail (denoted by (decisions M)), the list of decisions
that precede the first occurrence of a given literal (denoted by decisionsTo [M)),
the number of levels in a trail (denoted by (currentLevel M)), prefix of a trail up
to the given level (denoted by (prefixToLevel level M)), etc.

3 Verification of the State Transition Systems

Modern DPLL-based SAT solvers can be modelled as abstract state transition
systems (ASTS). Such systems define the top-level architecture of SAT solvers
as mathematical objects that can be rigorously reasoned about and whose cor-
rectness is expressed in pure mathematical terms. During the last few years two
such systems have been proposed [NOT06,KGO07], both accompanied by infor-
mal, pen-and-paper correctness proofs. We used ASTS from [KGO07] as a starting
point and developed a slightly modified ASTS shown in Fig. 2. The system mod-
els the solver’s behaviour as transitions between states that represent values of
the global variables of the solver. Transitions are performed only by using the
transition rules. The rules have guarded assignment form: above the line is a
condition that enables the rule application, below the line is an update to the
state variables. The solving process is finished when no transition rule applies.
Our system has been formalized in the following way. A state (F, M, C, con f-
lict) consists of a formula F being tested for satisfiability, a trail M, a conflict
analysis clause C', and a Boolean variable con flict that flags if the current for-

44 Filip Mari¢ and Predrag Janici¢

Decide: UnitPropagate:
le Fy LigM ceF isUnit ¢ I M
M:=M|l M:=M1I
Conflict: Explain:
conflict = L ce F M E=c conflicc=T 1€C c€F isReasoncl M
conflict =T C:=c C :=resolve C cl
Backjump:

conflicc=T Ce€F C=IVhLV...Vig level] >m > level I;
conflict = L M := (prefixToLevel m M) 1

Learn: Forget: Restart:
C¢F conflicc=1 ceF F\cFc conflict = L
F:=FucC F:=F\c M := prefixTolLevel 0 M

Fig. 2. Abstract state transition system for a DPLL-based SAT solver

mula is false in the current valuation (i.e., if the conflict analysis is under way).
The rules have been formalized using relations over states. For instance,

unitPropagate (M, Fy, Cy, conflicty) (Ma, Fs, Co, conflicts) <=
del.ce Fy A isUnitel My A

Mo=MQl N Fo =F, N Co=C1 N conflicty = conflicty
Two states are in relation — iff they are in one of the relations describing the
transition rules. A state ([], Fo,[], L) is an initial state for the input formula Fjp.
A state s is final state with respect to —, iff it is its minimal element, i.e., if
there is no state s’ such that s — s’. A final state is an accepting state if it holds
that conflict = 1. A final state is a rejecting state if it holds that con flict = T.

Theorem 1 (Correctness). For any satisfiable input formula, the system con-
sisting of the given rules terminates in an accepting state, and for any unsatis-
fiable formula, it terminates in an rejecting state.

Our correctness proof for the above system is based on formulating a set of
suitable invariants and a well-founded ordering defined on states that ensures
termination (as illustrated in Fig. 1). For example, we proved that the following
invariants hold for each state reached from an initial state.

Invariant ys: consistent M A distinct M
Invariant,q,rs: vars M U vars F' C vars Fy
Invariantequiv: F=F,

InvariantimpliedLiterats: V1. | € M = F @ (decisionsTo | M) F I
Invariantc: conflict = MEF-C N FEC

Invariant,cqsonClauses: ¥V 1. 1 € M A 1 ¢ (decisions M) —>
Jec. (isReason ¢l M) N FEc

The main advantage of the ASTSs is that they are mathematical objects, so
it is relatively easy to make their formalization within higher order logic and to
formally reason about them. Also, their verification can be a key building block
for other verification approaches. Disadvantages are that the transition systems
do not specify many details present in modern solvers’ implementations and that
they are not directly executable. More details on the verification of the ASTSs
for SAT are given in [MJ09b].

SAT Solver Verification Project 45

4 Hoare-style Verification

Verification of imperative programs is usually done in the Floyd-Hoare logic
[Hoa69)]. Its central object is a Hoare triple of the form {P} code {Q}. Hoare
triple should be read as: ”given that the precondition P holds before code is
executed and the code execution terminates, the postcondition () will hold at the
point after code was executed”. Hoare triples are manipulated by the inference
rules that are formulated for each construct of the programming language.

Using this approach, we have verified the core of our solver ArgoSAT! im-
plemented in C++2. Its implementation [Mar09b] closely follows the abstract
state transition system given in Sect. 3, but also supports all standard tech-
niques present in a modern SAT solver (e.g., MiniSAT [ES04]) not covered by
the ASTS. Most important of these are the two-watched literal unit propagation
scheme used for efficient detection of false and unit clauses in F' wrt. the current
trail M, special treatment of single-literal clauses which are directly asserted to
the decision level zero of the trail M instead of adding them to F', and efficient
implementation of conflict analysis using specialized data-structures for storing
the conflict clause C.

Using the Hoare logic for the language complex as C++ was out of our
reach. Therefore, we designed a pseudo language rich enough to support the
implementation of our SAT solver, but simple enough to formulate a convenient
Hoare logic axioms for all its constructs. The whole of the solver’s core has been
expressed within this pseudo language®. As an example, we list one function:

function applyUnitPropagate() : Boolean

begin
assertLiteral ((head @), false);
Q := (tail @);

end

Following the two-watched literal scheme, all unit literals are placed in a unit
propagation queue) from where they are taken and asserted to M. Therefore, a
precondition for the applyUnitPropagate function is that all literals of @ are unit
literals. The following example Hoare triple states that this property is preserved
after the function call:

{M.leQ—3FcceF AisUnitcl M}
applyUnitPropagate()
{M.leQ—3FcceF AisUnitel M}

Heuristic components were specified only by Hoare triples. This way, for any
implementation of a heuristic it suffices to prove that it meets the corresponding
triple. For example, the selection of a literal for the Decide rule is specified as:

{vars M # vars Fy} selectliteral() {var ret € vars Fy A var ret ¢ vars M}

! The web page of ArgoSAT is http://argo.matf.bg.ac.rs.

2 The core of ArgoSAT, implementing the rules given in Fig. 2 in an efficient way,
counts around 1500 loc, while the whole system counts around 5000 loc.

3 The description of the solver in the pseudo language is somewhat shorter then in
C++, because of the simplified syntax.

46 Filip Mari¢ and Predrag Janici¢

Once the solver has been described in the pseudo programming language, the
preconditions and postconditions for each fragment of the code are manually
specified and joint together, following a suitable Hoare logic for our pseudo
language. The entry point to the solver is the solve function which, if terminates,
sets the value of satFlag (either to SAT or UNSAT).

Theorem 2 (Partial correctness). The SAT solver satisfies the Hoare triple:
{T} solve (Fy) {(satFlag=UNSAT A—sat Fy)V (satFlag = SAT ANM F Fy)}

The main benefit of using the Hoare style verification is that it enabled us
to address imperative code which is the way that most real-world SAT solvers
are implemented. Thanks to this, the confidence in our solver ArgoSAT is higher
compared to other C/C++ implementations. On the other hand, there is still a
gap between our correctness proof and the C4++ implementation. First, there is
no formal link between C++ and our pseudo language implementation. Second,
there has been a number of manual steps in formulating correctness conditions
and joining them together. More details on our description of a solver in an
imperative language and its Hoare-style verification are given in [Mar09a].

5 Shallow Embedding into HOL

When using the shallow embedding into HOL approach for verification, a pro-
gram (a SAT solver in our case) is expressed as a set of recursive functions in
HOL (for this purpose, treated as a pure functional programming language) and
its properties are proved mainly by induction and equational reasoning.

Although a programming paradigm had to be changed from imperative to
pure functional, our implementation closely follows the one described in Sect. 4
and that is the core of our solver ArgoSAT. All aspects of the implementation
that are present in the imperative implementation verified by the Hoare-style
approach are also present in our functional implementation within Isabelle*.

In an imperative or object-oriented language, the state of the solver is repre-
sented by using global or class variables. The solver functions access and change
the state variables as their side-effects. In HOL, functions cannot have side-
effects, so the solver state must be wrapped up in a record and passed around
with each function call. For example, the following Isabelle record directly corre-
spond to the state of the abstract state transition systems described in Sect. 3:
record State =

"getF" :: Formula

"getM" :: LiteralTrail

"getC" :: Clause

"getConflictFlag" :: Boolean

However, in order to have more advanced techniques implemented, the state had
to be extended, and in our final definition it contains 14 components.

All functions in our functional implementation receive the current solver state
as their parameter and return the modified state as their result. This explicit

4 Formal definitions of the solver functions count over 500 lines of Isabelle code.

SAT Solver Verification Project 47

state passing can be hidden if standard monadic combinators are used. This
support has been recently added to Isabelle along with a convenient Haskell-like
do-syntax [BKH'08]. In this syntax, the applyUnitPropagate function becomes:

definition applyUnitPropagate :: "State = State"
where
"applyUnitPropagate =
do
Q < readQ; assertLiteral (hd Q) False;
Q> < readQ; updateQ (tl Q’)
done"

Functions readQ and updateQ modify the () component of the current state.
Once the solver has been defined in HOL, its properties are formally proved.
The main result is the following correctness theorem.

Theorem 3 (Correctness). solve Fy = sat Fy

Again, it has been proved that all states that are reached during the code
execution (this time these are the states that are returned by the functions of the
solver) satisfy a given set of invariants (as illustrated in Fig. 1). These invariants
include all invariants formulated for the abstract state transition systems, but
also include additional ones (24 invariants in total). Therefore, it had to be
proved that the code preserves all the additional invariants and it turned out
that this task was equally hard (if not harder) as proving the properties of the
ASTS. For termination, it was required to prove that the function solve is total.
Only three functions called by it have been defined by general recursion and their
termination is not trivial. Since the function solve is the only entry point to our
solver, it was sufficient to prove termination of these functions only for those
values of their input parameters that could actually be passed to them during a
solver’s execution starting from an initial state. We have used Isabelle’s built-in
features to model this kind of partiality [Kra08] and reused the orderings defined
for abstract state transition systems to prove termination.

Unlike the Hoare-style approach that starts with an existing solver imple-
mentation, when using the shallow embedding approach, the executable code
in one of the leading functional languages (Haskell, SML, or OCaml) can be
exported by using the code extraction, supported by Isabelle.

Advantages of using the shallow embedding are that, once the solver is defined
within the proof assistant, it is possible to perform its verification directly inside
the logic and a formal model of the operational or denotational semantics of the
language is not required. Also, executable code can be extracted and it can be
trusted with a very high level of confidence. On the other hand, it is required
to build a fresh implementation of a SAT solver within the logic. Also, special
techniques must be used to have mutable data-structures and consequently, an
efficient generated code. More details on the verification by shallow embedding
are given in [Mar09c]. We used this approach also for verification of the classic
DPLL procedure, and details are given in [MJ09a].

48 Filip Mari¢ and Predrag Janici¢

6 Related Work

First steps towards verification of SAT solvers have been made only recently.
The authors of two transition rule systems for SAT informally proved their cor-
rectness [NOT06,KG07]. Zhang and Malik have informally proved correctness
of a modern SAT solver [ZMO03]. Lescuyer and Conchon have formalized, within
the system Coq, a SAT solver based on the classic DPLL procedure [LS08].
Shankar and Vaucher have formally and mechanically verified a high level de-
scription of a modern DPLL-based SAT solver within the system PVS [SV09].
Although these approaches include most state-of-the art SAT algorithms, lower-
level implementation techniques (e.g., two-watch unit propagation scheme) are
not covered by any of these descriptions. Our project provides fully mechanized
correctness proofs for modern SAT solvers within three verification paradigms
with both higher and lower level state-of-the-art SAT techniques, and, as we are
aware of, it is the only such formalization.

7 Conclusions and Future Work

In this paper we gave an overview of our ongoing project on the modern SAT
solver verification. SAT solvers have been formalized in three different ways: as
abstract state transition systems, as imperative pseudo programming language
code, and as a set of recursive HOL functions. All three formalizations have
been verified using appropriate paradigms. Each of them has its own advan-
tages and disadvantages, making them in some aspects complementary and in
some aspects overlapping. The complete formalization has been made within
Isabelle/Isar proof assistant and is publicly available®. Although it is hard to
quantify the efforts invested in formally proving correctness conditions described
in this work, we estimate that we have, so far, invested around 1.5 man-years
into this project. Although there are other attempts at proving correctness of
modern SAT solvers, to our best knowledge, our project gives the most detailed
formalized and fully verified descriptions of a modern SAT solver so far.

One of the main remaining tasks in our project is to increase the efficiency
of the code exported from the shallow embedding specification. Implementation
of some heuristic components has to be more involved. For example, currently
we have implemented only a trivial decision heuristic that picks a random unde-
fined literal, but in order to have a practically usable solver, an advanced decision
heuristic (e.g., VSIDS) should be used. Also, several low-level algorithmic im-
provements have to be made. Although these modifications require more work,
we believe that they are rather straightforward. However, the most problematic
issue is the fact that because of the pure functional nature of HOL no side-effects
are possible and there can be no destructive updates of data-structures. To over-
come this problem, we are planning to instruct the code generator to generate
monadic Haskell and imperative ML code which would lead to huge efficiency
benefits since it allows mutable references and arrays [BKHT08]. We hope that
with these modifications, the generated code could become practically usable

5 The proof scripts make around 30000 lines of Isabelle code.

SAT Solver Verification Project 49

and comparable to state-of-the-art SAT solvers and this is the subject of our
current work.

References

[BHM'09] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfia-

[BKH'08]

[CooT1]
[DLL62]
[DP60]
[ES04]
[Gel07]
[Hoa69)]
[Kra0g)]
[KGO7]
[LS08]
[Mar08]
[Mar09a]

[Mar09b]
[Mar09c]

[MJ09a]
[MJO9b)]

[NOTO06]

[NPW02]
[SV09]

[ZMO3]

bility. I0S Press, 2009.

L. Bulwahn, A. Krauss, F. Haftmann, L. Erkok, and J. Matthews. Imper-
ative functional programming with Isabelle/HOL. In TPHOLs ’08, LNCS
5170, Montreal, 2008.

S. A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd
STOC, New York, 1971.

M. Davis, G. Logemann, and D. Loveland. A Machine Program for
Theorem-proving. Commun. ACM 5(7), pp. 394-397, 1962.

M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory. J. ACM 7(3), pp. 201-215, 1960.

N. Een and N. Sorensson. An Extensible SAT Solver. In SAT ’03, LNCS
2919, S. Margherita Ligure, 2003.

A. Van Gelder. Verifying Propositional Unsatisfiability: Pitfalls to Avoid.
In SAT ’07, LNCS 4501, Lisbon, 2007.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Com-
mun. ACM 12(10), pp. 576-580, 1969.

A. Krauss. Defining recursive functions in Isabelle/HOL.
http://isabelle.in.tum.de/documentation.html, 2008.

S. Krsti¢ and A. Goel. Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL. In FroCos 07, LNCS 4720, Liverpool, 2007.
S. Lescuyer and S. Conchon A Reflexive Formalization of a SAT Solver in
Coq. In TPHOLs’08: Emerging Trends, Montreal, 2008.

F. Marié, SAT Solver Verification. The Archive of Formal Proofs,
http://afp.sf.net/entries/SATSolverVerification.shtml.

F. Mari¢. Formalization and Implementation of SAT solvers. J. Autom.
Reason. To appear. 2009.

F. Marié. Flexible Implementation of SAT solvers. In preparation.

F. Marié¢. Formal Verification of a Modern SAT Solver. Manuscript sub-
mitted.

F. Mari¢ and P. Janici¢. Formal Correctness Proof for DPLL Procedure.
Informatica. To appear. 2009.

F. Mari¢, P. Janic¢i¢. Formalization of Abstract State Transition Systems
for SAT. In preparation.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). J. of the ACM 53(6), pp. 937-977, 2006.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, LNCS 2283, Springer, 2002.

N. Shankar and M. Vaucher. The mechanical verification of a DPLL-based
satisfiability solver. In preparation.

L. Zhang and S. Malik. Validating SAT Solvers Using Independent
Resolution-Based Checker. In DATE ’03, Miinich, 2003.

A Theorem Proving Approach Towards
Declarative Networking

Anduo Wang! Boon Thau Loo!
Changbin Liu! Oleg Sokolsky! Prithwish Basu?

! Computer and Information Sciences Department, University of Pennsylvania,
3330 Walnut Street, Philadelphia, PA 19104-6389
2 Network Research Group, BBN Technologies,
10 Moulton Street, Cambridge, MA 02138
{anduo, changbl,boonloo,sokolsky}@seas.upenn.edu pbasu@bbn.com

Abstract. We present the DRIVER system for designing, analyzing
and implementing network protocols. DRIVER leverages declarative net-
working, a recent innovation that enables network protocols to be con-
cisely specified and implemented using declarative languages. DRIVER
takes as input declarative networking specifications written in the Net-
work Datalog (NDlog) query language, and maps that automatically
into logical specifications that can be directly used in existing theorem
provers to validate protocol correctness. As an alternative approach, net-
work designer can supply a component-based model of their routing de-
sign, automatically generate PVS specifications for verification and sub-
sequent compilation into verified declarative network implementations.
We demonstrate the use of DRIVER for synthesizing and verifying a
variety of well-known network routing protocols.

1 Introduction

In this paper, we present the DRIVER (Declarative Routing Implementation and
VERification) system for designing, analyzing and implementing network proto-
cols within a unified framework. Our work is a significant step towards bridging
network specifications, protocol verification, and implementation within a com-
mon language and system. The DRIVER framework achieves this unified capa-
bility via the use of declarative networking [13,12], a declarative domain-specific
approach for specifying and implementing network protocols, and theorem prov-
ing, a well established verification technique based on logical reasoning.

DRIVER leverages our prior work on a declarative network verifier (DNV) [18]
which demonstrates that one can leverages declarative networking’s connection
to logic programming by automatically compiling high-level declarative network-
ing program written in the Network Datalog (NDlog) query language into formal
specifications, which can be directly used in a theorem prover for verification.
The proving process guided by the user is then carried out in a general-purpose
theorem prover and proofs are mechanically checked. Declarative networking
programs that have been verified in DRIVER can be directly executed as imple-
mentations, hence bridging specifications and implementations within a unified
declarative framework.

In addition to verifying declarative networking programs using a theorem
prover, the DRIVER system enables a similar transformation of verified for-
mal specifications (limited to fragment of second order logic) to NDlog program

A Theorem Proving Approach Towards Declarative Networking 51

for execution. This enables a network designer to either directly verify network
implementation specified in NDlog or conceptualize and verify the design of a
network in components aided by a theorem prover prior to implementation.

2 Background

Declarative networks are implemented using Network Datalog (NDlog), a dis-
tributed logic-based recursive query language first introduced in the database
community for querying network graphs. In prior work, it has been shown that
traditional routing protocols can be implemented in a few lines of declarative
code [13], and complex protocols in orders of magnitude less code [12] compared
to traditional imperative implementations. This compact and high-level lan-
guage enables rapid prototype development, ease of customization, optimizabil-
ity, and the potentiality for protocol verification. When executed, these declar-
ative networks perform efficiently relative to imperative implementations, as
demonstrated by the P2 declarative networking system [1].

2.1 Datalog Language

NDlog is primarily a distributed variant of Datalog. We illustrate NDlog using a
simple example of two rules that computes all pairs of reachable nodes:

rl reachable(@S,N) :- link(@S,N).
r2 reachable(@S,D) :- 1ink(@S,N), reachable(@N,D).
Query reachable(@S,D).

The rules r1 and r2 specify a distributed transitive closure computation,
where rule r1 computes all pairs of nodes reachable within a single hop from all
input links (denoted by neighbor), and rule r2 expresses that “if there is a link
from S to N, and N can reach D, then S can reach D.”

NDlog supports a location specifier in each predicate, expressed with the
@ symbol followed by an attribute. This attribute is used to denote the source
location of each corresponding tuple. For example, all reachable and 1ink tuples
are stored based on the @S address field. The output of interest is the set of all
reachable (@S,D) tuples, representing reachable pairs of nodes from S to D.

2.2 Soft-state Storage Model

Declarative networking incorporates support soft-state [15] derivations commonly
used in networks. In the soft state storage model, all data (input and derivations)
has an explicit “time to live” (TTL) or lifetime, and all tuples must be explicitly
reinserted with their latest values and a new TTL, or they are deleted.

The soft-state storage semantics are as follows. When a tuple is derived,
if there exists another tuple with the same primary key but differs on other
attributes, an update occurs, in which the new tuple replaces the previous one.
On the other hand, if the two tuples are identical, a refresh occurs, in which the
existing tuple is extended by its TTL.

For a given predicate, in the absence of any materialize declaration, it is
treated as an event predicate with zero lifetime. Since events are not stored, they
are primarily used to trigger rules periodically or in response to network events.

52 Authors Suppressed Due to Excessive Length

Property/ Network Design
Invariant Model
Verification I Specification

Theorsm

Proving Specification
Axioms P
I | Implementation
Interactive 1
Theorem i Protocol
Proving ! Execution
I

Fig. 1. Overview of DRIVER

3 Overview of DRIVER

Figure 1 provides an overview of DRIVER’s basic approach towards unifying
specifications, verification, and implementation within a common declarative
framework. The approach is broken up into the following four phases: design,
specification, verification, and implementation.

In the initial design phase of DRIVER, a network designer develops a concep-
tual model for the routing protocol. In practice, this step may be optional, but
having such a model is often useful both from the implementation standpoint,
and for verifying one’s protocol design.

Based on the design, two options are available. First, NDIlog networking pro-
grams can be synthesized from the design, and then the NDlog implementations
can be directly verified in an theorem prover. Second, the designer can first
verify the design using a theorem prover and then automatically generate the
corresponding NDlog program.

Considering the first option, DRIVER takes as input NDlog program repre-
sentation of the routing protocol we are interested in. In order to carry out the
formal verification process, the NDlog programs are automatically compiled into
formal specifications recognizable by a standard theorem prover (e.g. PVS [2],
Coq [3]) using the aziom generator, as depicted in the left-part of Figure 1.

At the same time, the protocol designer specifies high-level invariant proper-
ties of the protocol to be checked via two mechanisms: invariants can be written
directly as theorems in the theorem prover, or expressed as NDlog rules which
can be automatically translated into theorems using the axiom generator. The
first approach increases the expressiveness of invariant properties, where one can
reason with invariants that can be only expressible in higher order logic. The
second approach has restricted expressiveness based on NDlog’s use of Datalog,
but has the added advantage that the same properties expressed in NDlog can
be verified in both theorem prover and checked at runtime.

From the perspective of network designers, as depicted in the left part of
Figure 1, they reason about their protocols using the high-level protocol specifi-
cations and invariant properties.The NDlog high-level specifications are directly
executed and also proved within the theorem prover. Any errors detected in the
theorem prover can be corrected by changing the corresponding NDlog programs.
Our initial DRIVER prototype uses the PVS theorem prover, due to its substan-

A Theorem Proving Approach Towards Declarative Networking 53

tial support for proof strategies which significantly reduce the time required in
the interactive proof process. However, the techniques describe in this paper are
agnostic to other theorem provers. We have also verified some of the properties
presented in this paper using the Coq [3] proof assistant.

As a second option, DRIVER allows the network designer to first utilize a
theorem prover to check the protocol design. This requires a network designer
first develop formal specifications for the routing protocol of interests. Once
the formal representation of the protocol is verified by the prover, corresponding
NDlog programs are then generated for execution. Similar to the first option, this
approach is made possible by the use of NDlog, which is particularly amenable to
the translation into formal specification recognizable by existing theorem provers
(and vice versa), due to its logic-based nature.

Reference [18] provides details on the translation process from NDlog pro-
grams into formal specification in theorem prover, as well as several verification
use cases for standard network routing protocols. In the rest of the paper, we
focus on the second approach.

4 Implementing Networks from Verified Specifications

We present the second option for bridging network verification and implemen-
tation as described in the previous section. In this approach, a network designer
first develops component-based models for their networks. These models are then
used to generate formal specifications that can be directly verified in PVS, and
the verified PVS specifications can be further compiled into NDlog programs for
execution.

Our main driving example is based on a component-based model of routing
protocols. Given this model, a large family of routing protocols can be imple-
mented simply by customizing subcomponents. The use of components provides
the usual benefits of modularity and re-usability. More importantly, in our con-
text, it enables a straightforward translation to formal specifications for verifi-
cation in PVS or any other general purpose theorem prover.

Our approach of representing and verifying system implementation as com-
ponents and predicates is adapted from similar techniques in hardware verifica-
tion [5, 16], where circuits can easily be modeled by composing together electri-
cal components. Interestingly, component-based abstractions have similarly been
explored in the networking literature (e.g. [11,14,17]), where network protocols
are typically composed from existing ones by layered (vertically) or bridging
(horizontally) with existing protocols.

4.1 Component-based Model

Before going into the specifics of routing implementations derivation from veri-
fied specification, we first provide an introduction to the component-based model
adapted from hardware verification, and describe its translation to PVS axioms
and equivalent NDlog programs. The translation is made possible via the use
of predicative specifications [5,16]. In a nutshell, each component is specified as
a predicate (relation) over all its external attributes. The external attributes
constitute the component’s interface, whereas the internal sub-components con-
stitute its implementation in terms of sets of constraints.

54 Authors Suppressed Due to Excessive Length

To illustrate, we consider an example component ¢ shown in Figure 2 (a)
with input I1, I2 and output 0. This component is implemented in terms of
three sub-components c1, c2, c3, as shown in Figure 2 (b).

11—
12—

(a) (b) ©)

Fig. 2. Component Representation

The predicative specification of the corresponding component in PVS is then
written as:

c(I1,12,03): INDUCTIVE bool =
EXISTS (01,02): c1(I1,01) AND c2(I2,02) AND c3(01,02,03)

c1(I,0): INDUCTIVE bool = Constraints ct1(I,0)
c2(I,0): INDUCTIVE bool = Constraints ct2(I,0)
c3(I1,I2,0): INDUCTIVE bool = Constraints ct3(I1,I2,0)

The top-level component c is defined as the conjunction of its sub-components.
Within each subcomponents c1-c3, there are additional constraints cti-ct3
which are typically a conjunction of predicates. We use PVS Inductive defi-
nition to ensure that all components represent the smallest sets satisfying the
constraints in the body.

Translating to Datalog programs: Given the above PVS axioms, there is a
straightforward translation to equivalent Datalog programs, by leveraging the
proof-theoretic semantics of Datalog. For instance, the following four Datalog
rules t1-t4 implement component C:

t1 ¢(I1,I2,0) :- c1(I1,01), c2(I2,02), c3(01,02,03).
t2 c1(I,0) - ct1(I,0).
t3 c2(I,0) :- ct2(1,0).

t4 ¢3(I1,I2,0) :- ct3(I1,12,0).
Query c(I1,I2,0).

The above translation is feasible as long as each individual set of component
constraints (i.e. ctl, ct2 and ct3) can be specified as conjunction of set of pre-
defined predicates. Additional location specifiers are supplied by the network
designer as part of the model in order to compile the equivalent distributed
NDlog programs with the correctly annotated location specifiers. Together with
the above rules, one can further specify the output of interest in Query statement,
which in this case is simply the ¢ component, i.e. c(I1,12,0).

Adding soft-state constraints: To support protocol verification in dynamic
networks via soft-state semantics as described in Section 2.2, we add two addi-
tional attributes Tc and T1 to each component’s interface, as shown in Figure 2
(¢c). Tc and T1 denote the creation time and lifetime of each component respec-
tively. The creation times Tc are typically a variable in PVS specification, and

A Theorem Proving Approach Towards Declarative Networking 55

lifetimes T1 are soft-state lifetimes initialized by the network designer. To illus-
trate by a concrete example, consider the component c introduced earlier. The
equivalent PVS specification capturing soft-state semantics is as follows:

c(I1,I12,03,Tc,T1): INDUCTIVE bool =
EXISTS (01,02,Tc1,T11): c1(I1,01,Tc1,T11) AND c2(I2,02,Tc2,T12) AND
c3(01,02,03,Tc3,T13) AND validate(Tc,T1l,Tc1,T11,Tc2,T12,Tc3,T13)

We further add a validate component as a subcomponent to impose the
constraints that only components active within the same period can interact
with each other. The validate component also determines the creation time Tc
and lifetime T1 for the top-level component based on those of sub-components.
For example, consider the following PVS specification of a validate component:

validate(Tc,T1,Tc1,T11,Tc2,T12,Tc3,T13): INDUCTIVE bool =
T1=TTL AND Tc1<Tc<=Tc1+T1l1l AND Tc2<Tc<=Tc2+T1l2 AND Tc3<Tc<Tc3+T1l3
AND Tc=max(Tc1,Tc2,Tc3)

The above validate subcomponent takes as input the lifetimes of all the
other components, and ensures that the creation time Tc of the resulting com-
ponent is set to the max of all creation times among its components, and that
T1 is set to the specified soft-state lifetime (TTL) of the component c. The
validate also includes additional constraints that ensure that only active com-
ponents whose lifetimes overlap within the same time window are allowed to
interact with each other.

The translation to equivalent Datalog program is straightforward and we
omit for brevity.

4.2 Distance Vector Protocol

To demonstrate the component-based model and translation to PVS specifica-
tions and NDlog programs, we provide a representative example based on the
distance-vector protocol. This protocol is typically used for inter-domain rout-
ing, i.e. computing shortest-paths within a local area network or administrative
domain (Internet service provider). On the other hand, the path vector protocol
presented earlier is generally used for computing routes across over administra-
tive domains. Interestingly, mapping from one protocol to another only require
only minor changes to the component specifications.

In the distance vector protocol, each router in the network executing the
protocol maintains a routing table, and periodically advertises its current best
routes to its neighbors, and updates its routing knowledge when receiving route
advertisements from neighbors. Figure 3 shows the component-based model for
an instance of the distance-vector protocol in which route advertisements are
generated every 5 seconds, and all received routes are stored at each node for 10
seconds to recompute current best hops along shortest paths with minimal hop
cost.

The model consists of three main components: hop, hopMsg and bestHop
respectively, depicted as bold boxes in Figure 3. Besides these three top-level
composite components that are built upon sub-components, we introduce a set of
atomic components depicted by regular (not in bold) boxes, to represent input
data (representing a node’s prior knowledge of the network) or a pre-defined
function (for arithmetic and path concatenation). For example 1ink denotes the

56 Authors Suppressed Due to Excessive Length

hop hop
S e [2 S [hopMse] ¢
\—Rch \—T“‘—w;ﬁ
Tl 10 Tl 10
(a.1) a2
hopMsg @2
= o 5 bestHop
D bestHopCost C
| bestHop Tel S h Tl -
Ti1 |f_cornpute‘— —C op rL
gL 1?22 | validate |~—10
C.
N link [y] n |
5 validate '__0 D hop Te
_l periodic Te Te Z
®) (©

Fig. 3. Component Representation

set of neighbors for each node, and f_compute is a function computing best route
cost.

Figure 3 (a) shows hop component with attributes S,D,Z,C is used to com-
pute all possible routes from S to D via next hop Z with cost C. The component
actually have two instances: the left hop component instance (a.1) is derived via
a direct one-hop link, whereas in (a.2) the component instance computes hops
of increasing hop cost recursively from advertisements received from neighbors
(hopMsg).

Since hops have associated lifetimes, soft-state attributes described in Sec-
tion 4.1 are added as additional attributes to each component. The PVS speci-
fication for hop is as follows:

hop(S,D,Z,C,Tc,T1): INDUCTIVE bool =
(1ink(S,D,Tc,10) AND Z=D AND T1=10 AND C=1) OR
(EXISTS (C2:Metric): hopMsg(S,D,Z,C2,Tc2) AND T1=10 AND Tc=Tc2+5)

Since route advertisements are triggered every 5 seconds, the additional con-
straint Tc=Tc2+5 defined by the validate component requires that the creation
time of each newly computed hop to be advanced accordingly. For ease of ex-
position, we unfold the validate component constraints into the above PVS
specification.

Figure 3 (b) shows the hopMsg component that denotes a route advertise-
ment. The component’s implementation is represented by the conjunction of
constraints imposed by all its internal components bestHop, 1link, periodic,
f_compute and validate. The periodic component is a special atomic compo-
nent periodic used to periodically trigger route advertisement at node S at time
Tc. f_compute is a function used to compute new route costs from existing route
advertisement and link costs. The PVS specification for hopMsg is as follows:

hopMsg(N,D,S,C,Tc,T1): INDUCTIVE bool =

(EXISTS (Tc2,Tc3,C1,C2:Time): periodic(S,5,Tc) AND
bestHop(S,D,Z,Cl,TcZ,lO) AND 1ink(S,N,C2,Tc3,10) AND
Tc2<Tc<=Tc2+10 AND Tc3<Tc<=Tc3+10 AND C=C1+C2 AND T1=0)

A Theorem Proving Approach Towards Declarative Networking 57

Intuitively it means S will send N a route to reach destination D of cost C
via itself if and only if S knows a best route to reach D of cost C1, as indicated
by bestHop(S,D,Z,C1,Tc2,10), and that S is N’s direct neighbor with a link of
cost C1. Note that validate component above sets the creation time of hopMsg
as that of the triggering component periodic, and in addition requires all the
internal components to be alive during the same window of period.

Finally, Figure 3 (c) shows the bestHop component, which is formalized in
PVS as follows:
bestHop(S,D,Z,C,Tc,T1) : INDUCTIVE bool =

bestHopCost(S,D,C,Tc,10) AND hop(S,D,Z,C,Tc,10)

For each pair of source S and destination D, the above PVS specifications
computes the next hop Z with minimal cost C along the shortest path to the
destination. The component utilizes a subcomponent bestHopCost that is used
to compute the min aggregation over attribute C of hop to select the best (lowest)
cost. We view this aggregation as an atomic service provided by bestHopCost
and specify it in PVS as follows:

bestHopCost (S,D,MIN_C,Tc,T1): INDUCTIVE bool =
(EXISTS (Z:Node): hop(S,D,Z,MIN_C,Tc) AND T1=10 AND
(FORALL (C:Metric): (EXISTS (Z:Node): hop(S,D,Z,C,Tc,10))=>MIN_C<=C))

Given the above PVS specifications and additional information on location
specifiers of predicates, the following NDlog program can be automatically gen-
erated.

dv1l hop(@s,D,D,C,Tc,10) :-1ink(@S,D,C,Tc,10).
dv2 hop(@S,D,Z,C,Tc,10) : ~hopMsg(@S,D,Z,C,Tc2) ,Tc=Tc2+5
dv3 bestHopCost (@S,D,min<C>,Tc,10) : - hop(es,D,D,C,Tc,10).
dv4 bestHop(@S,D,Z,C,Tc,10):- bestHopCost(@S,D,C,Tc,10),
hop(@S,D,Z,C,Tc1,10), Tcl<Tc<=Tc1+10.
dv5 hopMsg(@N,D,Z,C,Tc,0) :- periodic_dv(@S,5,Tc), 1link(@S,N,C2,Tc2,10),
bestHop(@S,D,Z,C1,Tc1,10),C=C1+C2,Tc2<Tc<=Tc2+10,Tc1<Tc<=Tc1+10.

The above NDlog program implements the declarative distance-vector proto-
col as presented in references [13,12]. The min keyword in rule dv3 is a built-in
aggregation construct commonly used in database query languages, and it corre-
sponds to the min computation in the bestHopCost component. The interested
reader is referred to these references on detailed performance evaluation of the
above declarative protocol using the P2 declarative networking engine.

4.3 Example Proofs: Convergence and Divergence Analysis

Given the PVS specifications, one can verify a variety of properties of the
distance-vector protocol. Assuming distance vector is executed every 5 seconds,
and all soft-state predicates have a lifetime of 10 seconds, network convergence
can be expressed as:

bestHopCost_converge: THEOREM
EXISTS (j:posnat): FORALL (S,D:Node) (C:Metric) (i:posnat):
(i>j)=> bestHopCost(S,D,C,5%i,10) = bestHopCost(S,D,C,5%*j,10)

Given an input network, the distance-vector protocol requires a number of
rounds of communication among all nodes, for route advertisements (in the form
of hopMsg) to be propagated in the network. In the above theorem, the existential

58 Authors Suppressed Due to Excessive Length

quantified variable j denotes the initial number of periodic intervals (set to be at
least the network diameter) required to propagate all route advertisements. The
theorem states that for any arbitrary time i after j, the value of bestHopCost
converges (i.e. no longer changes).

The distance-vector protocol converges in the static case. However, in a dy-
namic network with link failure, the protocol can diverge, caused by a well-known
problem known as the count-to-infinity problem where the protocol diverges in
the presence of link failures. In a network of three nodes a,b,d with link failure
occurred at time 100, divergence is captured by the following theorem:

bestHop_count_to_infinity: THEOREM
FORALL (a,b,d:Node) (t:Time) (c:Metric):(t>100 AND bestHop(a,d,b,c,t,10))
=>(EXISTS (t’:Time) (c’:Metric):
(t’>t AND c’>c AND bestHop(a,d,b,c’,t’,10)))

The theorem above states that the distance vector protocol will diverge after
link failure, because the best hop from a to d will increase indefinitely over time,
a symptom of the count-to-infinity problem. Due to space constraints, we omit
the proofs of the above theorem. The proof for the convergence case is relatively
straightforward. The divergence proofs require us to supply additional axioms
that describe link dynamics within a three-node cycle. We have also verified that
the count-to-infinity problem exists in a cycle of nodes, and well-known fixes such
as the split-horizon solution can avoid any two-node cycle, and that this solution
is insufficient for preventing count-to-infinity problem in three-node cycle. For a
complete list of theorems and proofs, refer to reference [7].

5 Related Work

In addition, we briefly compare the DRIVER system with existing work on
network protocol verification and development.

Model checking is a collection of algorithmic techniques for checking temporal
properties of system instances based on exhaustive state space exploration. Re-
cent significant advances in model checking network protocol implementations
include MaceMC [10] and CMC [8]. Compared to DRIVER’s use of theorem
proving, these approaches are sound as well, but not complete in the sense that
the large state space persistent in network protocols often prevents complete
exploration of the huge system states. They are typically inconclusive and re-
stricted to small network instances and temporal properties.

Classical theorem proving has been used in the past few decades for verifi-
cation of network protocols [2,6,9,4]. Despite extensive work, this approach is
generally restricted to protocol design and standards, and cannot be directly
applied to protocol implementation. A high initial investment based on domain
expert knowledge is often required to develop the system specifications accept-
able by some theorem prover (up to several man-months). Therefore, even after
successful proofs in the theorem prover, the actual implementation is not guar-
anteed to be error-free. DRIVER is hence a significant improvement over existing
usage of theorem proving [2,9] which typically require several man-months to
develop the system specifications, a step that is reduced to a few hours through
the use of declarative networking.

A Theorem Proving Approach Towards Declarative Networking 59

In summary, compared with existing tools, by adopting a theorem-proving

based approach that can be integrated with component-based declarative pro-
tocol development, DRIVER provides a unifying framework that bridges speci-
fication, verification, and implementation.

6

Future Work

We are exploring more automatic proof support to make DRIVER more ap-
proachable to non theorem proving expert. Most general-purpose theorem provers
utilize an interactive proof process that requires experience of the proof system
of these provers. To ease the user-directed proof construction, we plan to in-
troduce into DRIVER network-specific proof strategies by leveraging the PVS
built-in proof strategy language [2], hence lowering the barrier for adoption by
network designers.

References

Lo

o

10.

11.

12.

13.

14.

15.

16.
17.

18.

P2: Declarative Networking System. http://p2.cs.berkeley.edu.

PVS Specification and Verification System. http://pvs.csl.sri.com/.

The Coq Proof Assistant. http://coq.inria.fr.

K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards
for distance vector routing protocols. J. ACM, 49(4):538-576, 2002.

A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher-order
logic. Technical Report 91, Computer Laboratory, University of Cambridge, June
1986.

R. Cardell-Oliver. On the use of the hol system for protocol verification. In
TPHOLs, pages 5962, 1991.

DNV use cases for protocol verification. http://www.seas.upenn.edu/~anduo/dnv.html.
D. Engler and M. Musuvathi. Model-checking large network protocol implemen-
tations. In NSDI, 2004.

A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol verification in nuprl. In CAV.
Springer-Verlag, 1998.

C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical
transition: Finding liveness bugs in systems code. In NSDI, 2007.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems, 18(3):263-297, 2000.
B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In ACM SOSP, 2005.

B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing:
Extensible Routing with Declarative Queries. In ACM SIGCOMM, 2005.

Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified Platform for
Dynamic Overlay Selection and Composition. In CoNEXT, 2008.

S. Raman and S. McCanne. A model, analysis, and protocol framework for soft
state-based communication. In SIGCOMM, pages 15-25, 1999.

M. Srivas, H. Ruef}; and D. Cyrluk. Hardware verification using PVS. 1997.

The Ensemble Distributed Communication System.
http://dsl.cs.technion.ac.il/projects/Ensemble/.

A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative Network Verification.
In 11th International Symposium on Practical Aspects of Declarative Languages
(PADL), 2009.

Formalizing Metarouting in PVS

Anduo Wang' Boon Thau Loo'

University of Pennsylvania
{anduo,boonloo}@seas.upenn.edu

Abstract. In this paper, we extend PVS specification logic with ab-
stract metarouting theory to aid the development of complex routing
protocol models based on metarouting, which is an algebraic framework
for specifying routing protocols in a restricted fashion such that the pro-
tocol is guaranteed to converge. Our formalization of metarouting theory
utilizes the theory-interpretation extensions of PVS. Our use of a general
purpose theorem prover provides a structured framework for a network
designer to incrementally develop and refine their algebraic routing pro-
tocol model by starting from various base routing algebras, and compos-
ing them into complex algebra models with composition operators. In
addition, one can leverage PVS’s type checking capability and built-in
proof engine to ensure routing model consistency.

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gate-
way Protocol or BGP for short. BGP enables Internet-service providers (ISP)
world-wide to exchange reachability information to destinations over the Inter-
net, and simultaneously, each ISP acts as an autonomous system that imposes
its own import and export policies on route advertisements exchanged among
neighboring ISPs.

Over the past few years, there has been a growing consensus on the complex-
ity and fragility of BGP routing. Even when the basic routing protocol converge,
conflicting policy decisions among different ISPs have lead to route oscillation
and slow convergence. Several empirical studies such as [7] have shown that
there are prolonged periods in which the Internet cannot reliably route data
packets to specific destinations due to routing errors induced by BGP. In re-
sponse, the networking community has proposed several Internet architectures
and policy mechanisms (e.g. [1]) aimed at addressing these challenges.

Given the proliferation of proposed techniques, there is a growing interest in
formal software tools and programming frameworks that can facilitate the de-
sign, implementation, and verification of routing protocols. These proposals can
be broadly classified as: (1) algebraic and logic frameworks (e.g. [3]) that enable
protocol correctness checking in the design phase; (2) runtime debugging plat-
forms that provide mechanisms for runtime verification and distributed replay,
and (3) programming frameworks that enable network protocols to be specified,
implemented, and in the case of the Mace toolkit, verified via model checking [6].

In this paper, we extend PVS specification logic with abstract metarouting
theory [3] to aid the development of complex routing protocol models based on
metarouting, which is an algebraic framework for specifying routing protocols
in a restricted fashion such that the protocol is guaranteed to converge. Using

Formalizing Metarouting in PVS 61

the theory-interpretation [8] extensions of the PVS theorem prover, we formalize
in PVS a variety of metarouting algebra instances and demonstrate that an
interactive theorem prover is suitable for modeling the complicated BGP system
using the metarouting theory developed in PVS.

The main benefits of formalizing metarouting within a mechanized theorem
prover are as follows. First, the network designer can now focus on high-level
protocol design and the conceptual decomposition of the BGP system, and shift
the low level details of ensuring consistency of the derived protocol model with
respect to metarouting theory to the PVS type checker. Second, the PVS proof
engine handles most of the proof effort (via the top-level strategy grind and other
built-in type checking capabilities), and therefore frees the network operator from
the trivial and tedious proof necessary to ensure the convergence of their BGP
algebra model. In the long run, we believe that our framework will also result in
the support of relaxed algebra models, which allow a wider range of well-behaved
convergent component protocols to be supported compared to the restrictions
imposed by metarouting.

2 Background

2.1 Internet Routing

The Internet can be viewed as a network of Autonomous Systems (AS) each
administrated by an Internet Server Provider (ISP). The routing protocol is
executed on all ASes in order to compute reachability information. Given a des-
tination address, each packet sent by a source is forwarded by each intermediate
node to the next neighboring node along the best path computed by the routing
protocol.

In particular, within an AS, the ISP runs its own class of routing protocols
called the Internal Gateway Protocol (IGP), whereas between ASes , the class
of protocols used are called the Ezternal Gateway Protocol (EGP). EGP enables
routing across AS administration borders by including mechanism for policy-
based routing. The role of policy routing is to allow ISPs to influence route
decisions for economical or political concerns, and the basic mechanism used is
to decide which routes to accept from neighbors (import policies), and which
routes to advertise to other neighbors (export policies).

2.2 Metarouting

The Internet uses the Border Gateway Protocol (BGP) as its de facto routing
protocol. This protocol is a combination of the IGP/EGP protocol described
above. Metarouting [3] is first proposed to extend the use of routing algebra to
BGP design and specification. Metarouting enables the construction of a com-
plicated BGP system model from a set of pre-defined base routing algebras and
composition operators. Prior to metarouting, Griffin et al.first proposed combi-
natorial models for BGP [2,4] to aid the static analysis of convergence of routing
protocols. Later a Routing Algebra Framework was proposed by Sobrinho [9, 10]
to provide the rigorous semantics for the design and specification of routing
protocols. Sobrinho uses various algebra instances to represent possible routing
protocols and policy guidelines. Sobrinho further identifies and proves mono-
tonicity as a sufficient condition for protocol convergence. Meta-routing builds
upon these two earlier pieces of work. In the rest of the section, we provide a
short overview of metarouting.

62 Anduo Wang Boon Thau Loo

First, metarouting adopts the use of routing algebra as the mathemati-
cal model for routing. An abstract routing algebra is a tuple A: A = (¥, =
L, ®,0,¢). Here X is the set of signatures used to describe paths in the net-
work totally ordered by preference relation <. Intuitively, the preference relation
is used by a routing protocol to optimize path cost; L is a set of labels describ-
ing links between immediate neighbors. Note that labels may denote complicated
policies associated with the corresponding link; @ is a mapping from £ x X' to
X, which is the label application operation that generates new paths by combin-
ing existing paths and adjacent links; And O is a subset of X' called origination
that represents the initial routes stored at network nodes; Finally ¢ is a special
element in X' denoting the prohibited path. The semantics of routing algebra is
given by the following axioms:

Maximality Vicx_(41 a=X¢
Absorption Ve [®¢p=2¢
Monotonicity Ve Vaery aX1da
Isotonicity Vic Vager a8 = @aX1®f

Maximality and Absorption are straightforward properties of the pro-
hibited path ¢, stating that any other paths are always preferred over ¢, and
that extending the un-usable path ¢ with any usable link would still result in
prohibited path. On the other hand, Monotonicity and Isotonicity are two
non-trivial properties that ensure network convergence®! of a routing protocol
modeled by the routing algebra.

Furthermore, based on the abstract routing algebra, metarouting identifies
a set of atomic (base) algebras such as ADD(n,m) and LP(n), and composition
operators such as Lezical Product @ and Scaled Product ® as the building blocks
for more complicated routing algebras. This paper presents the incremental de-
velopment of metarouting abstract algebras and the use of such abstract theory
to build concrete BGP systems.

Unlike previous combinatorial models [2, 4], metarouting identifies and proves
that the properties of monotonicity and isotonicity are sufficient conditions for
network convergence. Convergence verification of BGP systems are then reduced
to proofs of monotonicity and isotonicity of the related routing algebra, whereas
in the analysis of BGP systems using previous combinatorial models, the proof
requires genuine insights into the models themselves.

Despite its advantages, metarouting is fairly restricted in two ways. First,
it cannot represent all protocols that converge. Second, it places the burden on
network designers to write algebras and composition operators correctly. Our
work aims to address these two limitations by using PVS to provide a frame-
work for expressing routing algebras and their operators correctly, and then
flexibly reason about the convergence properties of these protocols even when
the sufficient conditions are violated. One should view our paper as providing the
initial building blocks and methodology for interesting explorations elaborated
in Section 5.

1 A network routing protocol converges when all routing tables can be computed to a
distributed fixpoint given a stable network, and when any links are updated, these
routing tables can be incrementally recomputed similarly to a fixpoint.

Formalizing Metarouting in PVS 63

3 Basic Approach

This section describes the basic technique of embedding metarouting in PVS. In
particular, this paper presents the development of metarouting in PVS using its
extensions on theory interpretation [8].

The basic approach is to encode metarouting algebraic objects in PVS’s type
system. It involves formalization of abstract routing algebra theory A, the set of
atomic algebra instances of A, and composition operator ®.

First of all, the abstract routing algebra structure A = (¥, <, L,®, O, ¢) is
formalized as an uninterpreted abstract (source) theory in PVS, as described
in [11, 5, 8]. The basic idea is to use types to denote the sets of objects X, L, O.
Accordingly, the special element ¢ denoting prohibited path is expressed as an
uninterpreted constant of type X. And the preference relation < and the label
application operation are denoted by functions. The PVS theory for abstract
route algebra A is given as follows:
routeAlgebra: THEORY

BEGIN

sig: TYPE+

prefRel: [sig, sig -> booll
label: TYPE+

labelApply: [label, sig -> sig]
prohibitPath: sig

initialS: [sig -> booll

org: TYPE = s: sig | initialS (s)
END routeAlgebra

Here uninterpreted types sig and label denote sets X and £, and org de-
noting initial route set O is made subtype of X' via auxiliary predicate initialS
which decides if a path falls into the initial routes. Finally ¢ is made constant
prohibitPath of type sig.

Semantics of abstract routing algebra A are given by the following axiomatic
specification:
monotonicity: AXIOM FORALL (1: label, s: sig): mono(l, s)
isotonicity: AXIOM

FORALL (1: label, s1, sig, s2: sig):

prefRel(sl,s2) => prefRel(labelApply (1,s1), labelApply(l,s2))

maximality: AXIOM FORALL (s: sig): prefRel (s, prohibitPath)
absorption: AXIOM

FORALL (1: label): labelApply (1, prohibitPath) = prohibitPath
Where eqRel (eqRel will be used later) and mono are defined by the following
auxiliary predicates:

eqRel (s1, s2: sig): bool = prefRel (s1, s2) and prefRel (s2, sl)

mono(l: label, s: sig): bool = prefRel (s, labelApply (1, s))

Note that this abstract routing theory A then stands for all possible rout-
ing algebra instances. We also observed that PVS parametric theories offer an
alternative to define abstract algebra, sketched as follows:
routeAlgebra[sig: TYPE+, prefRel: [sig, sig -> booll,

label:TYPE+, labelApply: [label, sig -> sig]]
BEGIN

prohibitPath: sig

initialL: [label -> booll

org: TYPE+ = 1: label | initiall (1)

64 Anduo Wang Boon Thau Loo

In the rest of this paper, to exploit PVS’s theory interpretation mechanism,
we will use of the first uninterpreted theory representation. To encode the basic
building blocks of metarouting: atomic routing algebras and composition op-
erators, we utilize two features provided by the PVS theory interpretation [§]
extensions: mapping and declaration. With the mapping mechanism, a general
(source) theory is instantiated to an interpretation (target) theory. On the other
hand, the theory declaration mechanism takes PVS theories as parameters, and
therefore, unlike mapping, can build a theory from multiple source structures.

Figure 1 shows our basic two-step approach to formalize metarouting building
blocks. First, we utilize abstract routing algebra theory A developed above as a
source theory, applying PVS’s mapping mechanism to this source theory to yield
the set of interpretation theories Ii for atomic routing algebras I;. Second, by
applying PVS’s theory declaration mechanism, we encode composition operator
O; as PVS theories taking routing algebra as parameters, which can be further
instantiated to yield the resulting compositional routing algebra 0i.

The main benefit of this approach Abstract Routing Algebra
is that the semantics (axioms) of source
routing theory A are enforced auto- p— pys
matically in all target theories Ii ‘W declaration
and 0i. This ensures that all atomic
routing algebra instances are valid
routing algebras and that all com- — S
position operators are closed under Atomic Routing Composition

abstract routing algebra (i.e. any com- Algebea Instancs Operators

positional routing algebras that can . . .

be derived using operators 0i are Fig. 1. Overview of PVS Theories
guaranteed to be routing algebras as defined by the abstract routing algebra
theory). The detailed formalization of metarouting building blocks using PVS
theory interpretation is presented in the next section.

4 Compositional Routing Algebra

This section presents the formalization of metarouting building blocks by step-
ping through atomic routing algebras addA(n,m) and cpA(n); as well as com-
position operator lexical product ®.

4.1 Atomic Routing Algebra Instance

Shortest Path Routing The first simple routing algebra addA(n,m) describes
shortest path routing. The labels/signatures can be thought of as the distance
costs associated with the corresponding links/paths. Note that in practice, costs
of valid links/paths have an upper bound, and links/paths with higher cost are
considered prohibited. We use PVS theory addA to capture algebra addA (n,m)
as follows:

addA: THEORY
BEGIN
n, m: posnat
N_M: AXIOM n < m
LABEL: TYPE = upto(n)
SIG: TYPE = upto(m + 1) ...

Formalizing Metarouting in PVS 65

Here n, m are the uninterpreted constants denoting link/path cost bounds. The
preference relation < over signatures SIG are then simply interpreted as the nor-
mal < relation over natural numbers, indicating that a low-cost path is preferred
over high-cost path. The label application operation @& can be interpreted as a
function that computes the cost of the new path obtained from a sub-path and
the adjacent link, where the cost of the new path is simply the normal addition
of that of the sub-path and link. In PVS, we write as follows:

PREF(s1, s2: SIG): bool = (s1 <= s2)

APPLY(1l: LABEL, s: SIG): SIG = IF (1+s < m+1) THEN (1+s) ELSE (m+1) ENDIF

Note that in the definition of label application function APPLY, m+1 is used as the
value of prohibited path. This is directly defined using PVS mapping of abstract
algebra routeAlgebra in the following IMPORTING clause:

IMPORTING routeAlgebra{{sig := SIG, label := LABEL,
prohibitPath :=m + 1,
labelApply (1:LABEL, s:SIG) := APPLY(1l,s),
prefRel(sl, s2: SIG) := PREF (sl, s2)}}

Recall that a routing algebra consists of a set of signatures sig, labels label,
preference relations prefRel over signatures, and label application functions
labelApply. Here, theory addA imports the uninterpreted abstract algebra the-
ory routeAlgebra, and makes the following instantiations:

sig < upto(n)
label <« upto(m)
prohibitPath «+—m+1
labelApply < APPLY
prefRel « PREF

The corresponding instances of routeAlgebra axioms defining the semantics of
routing algebra are proof obligations called type correctness conditions (7'CCs).

For example, monotonicity axiom is instantiated and denoted by the following
automatically generated TCC:

IMP_A_monotonicity_TCC1: OBLIGATION FORALL (1: LABEL, s: SIG): mono(l, s)

All of the TCCs are automatically discharged by either the default TCC
proof strategy or high-level strategy grind.

So far, we have established the encoding of shortest path algebra in PVS by
providing mappings for uninterpreted types in the source theory routeAlgebra
into the target theory (interpreting) addA. We observe that even in this simple
example, PVS significantly reduces manual effort ensuring consistency, generat-
ing proof obligations and enabling the user to focus on high-level mapping for
shortest path routing.

Customer-Provider and Peer-Peer Relationship We provide another example
of base/atomic algebra cpA(n) that captures the policy guideline regarding the
economic relationship between ASes. Customer-Provider and Peer-Peer relation-
ships between ASes are prevalent in today’s Internet. A common policy guide-
line to help BGP convergence is to always prefer customer-routes to peers or
providers routes.

66 Anduo Wang Boon Thau Loo

More specifically, in the algebra cpA = (¥, =<, L, ®, O, ¢), the signature set
can take three values C/R/P, representing customer/peer/provider routes re-
spectively (i.e. routes advertised by a node’s customer, peer, or provider). Ac-
cordingly, labels can take values ¢/r/p, representing customer /peer /provider link
(i.e. links to customer/peer/provider).

The preference relation over signatures is given by: C < R, R<XP, C =
P. Intuitively this relation means, a customer route is always preferred over a
peer and provider route, and a peer route is preferred over a provider route.
The intuition is that each ISP enforces the policy to reduce the use of provider
routes, while maximizing availability and use of its customer routes.

The complete definition of the label application operation @ is given by the

following table: @ e R P
c C c C
r R R R
D P P P

For example the first line ¢®(C/R/P) = C can be read as a customer/peer/provider
path extended by a customer link results in a customer path, hence has the high-
est priority of all available paths.

For simplicity, rename labels and signatures as follows: ¢ «— 1,7 «+— 2,p «— 3
and C «— 1, R « 2, P «+ 3. This renaming enables the preference relation to be
expressed as normal < over natural number. Similar to the algebra for shortest
path, cpA can be encoded using PVS mapping as follows:

cpA: THEORY

BEGIN

SIG: TYPE = x: posnat | x<=3

LABEL: TYPE = x: posnat | x<=3

APPLY (1: LABEL, s: SIG): SIG = 1

IMPORTING routeAlgebra{{sig := SIG, label := LABEL,
labelApply (1: LABEL, s: SIG):= APPLY (1,s),
prohibitPath := c+1}}

END cpA

As in the case of shortest paths, all the TCCs enforcing routing algebra ax-
ioms (for example, monotonicity) are automatically discharged. This is consistent
with the intuition that customer-provider policy does help BGP convergence.

4.2 Lexical Product and Route Selection

This section presents development of lexical product ®, a composition operator
that enables construction of routing algebra from atomic algebra described in
section 4.1. It is particularly useful in modeling route selection in BGP system
where multiple attributes are involved.

Consider product algebras A ® B constructed from two route algebra A, B,
where the parameter theories A and B model two attributes a and b respectively.
First define the signature and label of A ® B as product of that from A and B in
PVS as:

lexProduct[A, B: THEORY routeAlgebra]: THEORY

BEGIN
SIG: TYPE = [A.sig, B.sig]
LABEL: TYPE = [A.label, B.label]

Formalizing Metarouting in PVS 67

Here the first component of signature/label comes from A and the second com-
ponent comes from B. And a natural interpretation of label application function
over path and label is given by the following product in PVS:
APPLY(1:LABEL,s:SIG):SIG =
(A.labelApply(1¢1,s¢1),B.labelApply(1¢2,5°2))

Here the two components invoke the corresponding label application functions
defined in theory A and B respectively.

Next consider the preference relation over A ® B that in PVS as follows:
PREF(s1,s2:5IG) :bool = A.prefRel(s1‘l, s2°1) OR

(A.eqRel(s11,s2°1) AND B.prefRel(s1¢2,s2¢2))

The above definition is particularly interesting because it models the route
selection process in BGP system. This preference relation reads as: a path with
two attributes a and b represented by signature s1 is considered better than a
path denoted by s2 given one of the two following conditions: (1) first component
s1‘1 of s1 is better than the first component s2¢1 of s2, as defined in algebra
A; or (2) if the first component of s1 and s2 are equally good, but s1 is better
than s2 with respect to the second component, as described in algebra B. This
lexicographic comparison captures the route selection process, which is a major
part for any BGP system with multiple attributes. Intuitively, in selecting a route
towards a given destination, the router compares all its possible paths towards
that destination by going through a comparison list, checking one attribute at a
time, selecting the best path based on attributes ordering. The router goes down
the list and compares the next attribute only if the attributes seen in previous
steps are equally good.

As before, we can now instantiate route algebra theories and corresponding
sets of axioms as follows:

IMPORTING routeAlgebra{{sig := SIG, label := LABEL,
labelApply (1:LABEL,s:SIG) := APPLY(1,s),
prefRel(sl, s2: SIG) := PREF(sl, s2)}}

Again, PVS automatically generate and prove all the type checking conditions.

4.3 A Concrete First Example

This section presents an concrete example routing protocol algebra built from
metarouting atomic algebras and composition operators developed in previous
sections. We demonstrate the ease of applying abstract metarouting theory to
concrete example algebra in PVS. In particular, we highlight the intuitive net-
working interpretation in practice.

Consider a simple BGP system where the route paths are measured in terms
of customer-provider relationship and distance cost. For all possible routes reach-
ing a given destination, a route path going through customers and peers is pre-
ferred to path going through providers; and a route go through peers is preferred
to those through providers. Once this customer-provider policy is enforced, the
ISP is concerned with distance cost with respect to each path. For the same
types of paths, the ISP will choose the shortest path with lowest cost.

In the top level, this BGP system can be decomposed into two sub-components:
customer-provider component and the shortest path component developed in sec-
tion 4.1. Because the customer-provider relationship has higher-priority over the
distance cost attribute, it can be naturally implemented by construction using
lexical product, as shown in the following PVS code:

68 Anduo Wang Boon Thau Loo

firstExample: THEORY

BEGIN

IMPORTING Algebralnstance, lexProduct
firstAlgebra: THEORY = lexProduct[A2,B2]

Here firstAlgebra is defined to be the concrete algebra modeling this BGP
system. It is constructed from customer-provider component algebra A2 and
shortest path algebra B2 by applying lexical product, where A2 and B2 are defined
in the imported theory Algebralnstance. First, we show the definition of A2
that enforces ISP customer-provider policy simply as an instance of cpA, where
the uninterpreted constant ¢ is mapped to 3.

Algebralnstance: THEQORY
BEGIN
IMPORTING cpA{{ ¢ := 3 }}
A2:THEORY = routeAlgebra{{sig = cpA.SIG, label = cpA.LABEL,
labelApply(l:cpA.LABEL,s:cpA.SIG) = mod(l+s,c),
prohibitPath = ¢ + 1,
prefRel(sl, s2: cpA.SIG) = (sl <= s2) }} ...

Likewise, concrete algebra B2 for shortest path can be defined in terms of
addA as follows:
IMPORTING addA{{n:= 16, m:=16}}
B2:THEORY = routeAlgebra{{sig = addA.SIG, label = addA.LABEL,

labelApply(l:int,s:int) = 1l+s,
prohibitPath=16, prefRel(sl,s2:int) = (s1<=s2)}}

Where uninterpreted bounds on signature/labels m/n in addA are mapped to
16, which is the actual value used in distance vector protocol practice. Finally, by
type checking, PVS automatically figures out all type correctness conditions to
ensure consistency. All of the TCCs are discharged with default/high-level proof
procedure in one step. This ensures the BGP system we derived from atomic
algebras addA, cpA by using composition operator ® are indeed a valid routing
algebra that is guaranteed to converge.

In summary, we observe that by
incorporating metarouting abstract / \
theory, a non-specialized standard
proof assistant like PVS, can be used
to specify a specific routing proto-
col instance with great ease. And
the routing algebra semantics is en-
forced by proof obligations (TCCs)
automatically generated in PVS, all
of which can be discharged by ei-

A:
Metarouting
Atomic
Algebras

B: Monotonic
Algebras

C: Algebras for BGP
Systems that converge

ther PVS default TCC prOOf strat- Q: Algebras for BGP Systems that will not convergd
egy or high-level strategy grind in
one step! Fig. 2. Classification of BGP algebras

5 Future Work

A straightforward application of the specification technique we explored in this
paper is to construct incrementally in PVS the routing algebraic model for com-
plicated BGP systems by using the base algebra blocks and composition op-
erators we developed in this paper, and the resulting algebraic model checked

Formalizing Metarouting in PVS 69

in PVS is then used as part of design document to derive the real BGP im-
plementation. To achieve full set support for the modeling of BGP system via
metarouting, we plan to encode in PVS more base routing algebras, such as TAG
which is critical in the modeling of complicated routing policies, and more com-
position operators, such as scoped product, which models a BGP system running
in and between administrative regions (i.e. the behavior of BGP protocol across
AS boarder). Furthermore, we conceive a more ambitious (adventurous) use of
PVS to aid the verification of BGP system convergence using a relaxed algebra
model. As depicted in Figure 2, we label the set of atomic metarouting algebras
with type A and denote them with the inner ring. We then observed that all
metarouting algebras that can be composed from type A algebras by composi-
tion satisfy monotonicity by definition and therefore fall into type B algebras
represented by the middle ring. Sobrinho’s original paper [9] showed that mono-
tonicity is a sufficient (not necessary) condition for BGP system convergence.
There are known BGP systems that converge but violate monotonicity, and this
reveals existence of type C algebras modeling the set of converging BGP systems
that are not monotonic. By relaxing the monotonicity property, we would like to
explore the modeling and reasoning of type C systems that fall outside Monotonic
type B Algebra (the middle ring) but are equally good with respect to conver-
gence. Taking this basic approach one step further, instead of starting from the
algebra model, we would like to develop in PVS an algebraic representation of a
given BGP system that falls outside the scope of current metarouting algebra,
and with the aid of PVS proof engine, decide if that corresponding BGP system
falls into type C and converges or type D that does not converge.

References

1. C. T. Ee, B.-G. Chun, V. Ramachandran, K. Lakshminarayanan, and S. Shenker.
Resolving Inter-Domain Policy Disputes. In SIGCOMM, 2007.

2. T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and
interdomain routing. IEEE/ACM Trans. Netw., 2002.

3. T. G. Griffin and J. L. Sobrinho. Metarouting. In ACM SIGCOMM, 2005.

4. T. G. Griffin and G. Wilfong. An Analysis of BGP Convergence Properties. SIG-
COMM Comput. Commun. Rev., pages 277-288, 1999.

5. E. L. Gunter. Doing algebra in simple type theory. 1989.

6. C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical
transition: Finding liveness bugs in systems code. In NSDI, 2007.

7. C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability. ACM/IEEE
Trans. on Networking, 1998.

8. S. Owre and N. Shankar. Theory interpretations in pvs. Technical report, 2001.

9. J. Sobrinho. Network routing with path vector protocols: theory and applications.
In SIGCOMM, 2003.

10. J. Sobrinho. An algebraic theory of dynamic network routing. Technical report,
October 2005. (William R. Bennett Prize 2006).

11. P. J. Windley. Abstract theories in hol. In HOL’92: Proceedings of the IFIP
TC10/WG10.2 Workshop on Higher Order Logic Theorem Proving and its Appli-
cations, pages 197-210. North-Holland/Elsevier, 1993.

Verifying Compiling Optimisations Using
Isabelle/HOL

Richard Warburton and Sara Kalvala

Department of Computer Science
University of Warwick

Abstract. This paper is based on an approach to program optimisation
based on transformations, where temporal logic is used to specify side
conditions. We present an embedding of this domain specific language
in Isabelle/HOL using Constant Propagation as a running example and
describe how proofs of soundness can be constructed for given specifica-
tions.

1 Introduction

Significant effort in modern compiler development is spent implementing opti-
misations, which are often performed after an initial synthesis of low-level code
[1,2,5]. Global optimisations that exploit complex chains of information and
subtle patterns of execution can offer significant rewards in terms of improved
program performance. Ensuring that these optimisations don’t introduce bugs
into the program being optimised by the compiler is a complicated task. Notably
one’s intuition about the correctness of the program being optimised may not
be trustworthy. Currently commercial compilers address this issue with a large
testsuite of programs with a simple and known input/output relation that their
compiler is tested on. We address the problem differently: to focus on the opti-
misations themselves and perform machine checked theorem proving in order to
ensure that they don’t alter the semantics of the program.

The specifications are presented in the TRANS specification language, that
uses succinct rewrite rules to transform the program graph, and uses Computa-
tional Tree Logic as the basis for its side condition specifications.

2 Background

2.1 Validation and Verification

Formal methods research in compiler correctness is categorisable into two main
categories. One approach, known as Translation Validation [7], checks that the
input program and output program are semantically equivalent, for a given run
of the compiler. In other words, for some definition of equivalence, and where
P and P’ are the source and transformed programs respectively that [P] =
[P’]. This is affected by establishing certain checkable criteria that the compiler

Verifying Compiling Optimisations Using Isabelle/HOL 71

must meet after optimisation and instrumenting the compiler to perform the
checks. Frequently Automated Theorem Provers are used in order to perform
the checking for a given run.

We seek to verify the soundness of a optimisation once and for all. So for
some notion of equivalence, and a given optimisation O, we want to show that

YPP'.O(P) =P — [P] = [P'].

2.2 TRANS

In the TRANS language [4], the optimisations are represented through two com-
ponents: a rewrite rule and a side condition which indicates the situations in
which the rewrite can be applied safely.

The rewrite rules use standard programming syntax (assignment statements,
go-to and if statements, etc). They match a sequence of statements within a
program and replace them by another. The syntax is expanded with a few con-
structs to support meta-variables, representing either syntactic fragments of the
program or nodes of the CFG.

The side condition language is an extension of first order CTL, where formu-
lae are built up from basic predicates that describe properties of states. There
are two types of these basic predicates used to obtain information about a node
in the control flow graph; these are the node and stmt predicates. The formula
node(z) will hold at a node n in a valuation that maps n to z. The formula
stmi(s) will hold at a node n where the valuation makes the pattern s match
the statement at node n. As well as judgements about states the language can
make “global” judgements. For example, the formula ¢ @ n A conlit(c) states
that ¢ holds at n and c is a constant literal throughout the program.

A logical judgement of the form: ¢ @ n states that the formula ¢ is satisfied at
node n of the control flow graph. We base our language for expressing conditions
on CTL [3], a path-based logic which can express many optimisations while still
being efficient to model-check. However, we modify the logic slightly to make
it easier to express properties of programs: we include past temporal operators
((L_? and (Z) and extend the next state operators (EX and AX) so that one can
specify what kind of edge they operate over. For example, the operators E X,
and AXprancn stand for “there exists a next state via a seq edge” and “for all
next states reached via a branch edge” respectively.

It is also possible to make use of user defined predicates via a simple macro
system. These can be used in the same way as core language predicates such as
use. They are defined by an equality between a named binding and the temporal
logic condition that the predicate should be expanded into.

[4] demonstrates the expressiveness of TRANS by presenting a catalog of opti-
misations including lazy code motion, constant propagation, strength reduction,
branch elimination, skip elimination, loop fusion, dead code elimination and lazy
strength reduction.

[8] provides an approach to generating compiler optimisations from TRANS
specification. These optimisations can be applied to Java bytecode, using the
Soot framework.

72 Richard Warburton and Sara Kalvala

2.3 Jinja

We base our model of program semantics on the Jinja language [6], which is a
Java like system, entirely mechanized in Isabelle/HOL. It has been published
within the Archive of Formal Proofs *REF*. The theory itself presents big-step
and small-step operational semantics for the source language, a proof of equiv-
alence between these semantics, bytecode semantics and a multi-stage compiler
from the source language to the bytecode language.

Our use of the Jinja framework focusses on the small-step operational se-
mantics for the source program. The TRANS language’s expression pattern
matching works at a higher level than bytecode. For example, there being little
structural restriction within bytecode, assuming some bytecode sequence passes
bytecode verification, one can introduce goto instructions in the middle of integer
arithmetic. Additionally arithmetic is compiled into several stack manipulating
operations. TRANS makes assumptions about the structure of the language that
make bytecode unsuitable. Proofs using TRANS are frequently constructed by
proving that some property about program state is implied by a side condition
and that that property implies the soundness of a rewrite. This makes small-step
semantics more appropriate than big step semantics, since it makes the internal
state of the program at some point in its execution more explicit.

Jinja does not completely represent Java; for example, whilst Java has mul-
tiple primitive datatypes, such as float and short, Jinja only has an int type.
Furthermore the only numerical operations defined within Jinja are addition
and comparison. This somewhat limits certain optimisations, for example the
strength reduction of multiplication operations into addition operations within
loop inductive variables. This can be formally specified within hand written
TRANS specifications, but the Isabelle formalisation doesn’t support it, since
there is no multiplication.

3 An Example - Constant Propagation

For the remainder of this paper we shall use Constant Propagation as a simple
example optimisation. Constant Propagation doesn’t cover all concepts within
the TRANS language, or our framework, but it illustrates key points about the
mechanisation and proof technique.

Constant propagation is a transformation where the use of a variable is re-
placed with the use of a constant known at compile time. An example application
to a trivial program is given in Fig. 1.

Fig. 1. Program before and after Constant Propagation

Verifying Compiling Optimisations Using Isabelle/HOL 73

Hence, where a variable x is assigned to a variable v, replace it with an
assignment of a constant c to the variable x. We consequently specify the rewrite
rule as:

n:(zr=v) = z:=c

The side condition needs to check that x will always be assigned to v at
that program point and that v is always assigned to ¢ on a path through the
control flow graph where this optimisation is applied. It is formulated by looking
backwards on all paths through the program until it finds the point at which v
is assigned to c, and checking that v is not redefined between there and program
point n. Additionally we need another predicate to ensure that c is genuinely a
constant. A complete specification is given in Fig. 2.

.fn Dz = ev]) = x = e[
Z(ﬂdef(v) U stmt(v:=¢)) @Qn A conlit(c)

Fig. 2. Specification of constant propagation

4 Mechanisation and Proofs

We attempt to make our embedding as lightweight and shallow as possible.
We translate transformations into functions that change expressions within the
Jinja semantics. It is worth noting that, because of the way that Jinja is
formalised, there is no distinct notion of a statement, so the body of any method
is an expression. Since our framework is only designed to handle intra-procedural
optimisation, mutating expressions is all that is required.

4.1 Refinement

The TRANS specifications undergo some hand refinement, from the form that
they are written in, to the form that they are used in Isabelle. The rewrite rules
are converted into a pattern matching component that forms part of the side
condition, and a replacement rule that becomes the new action. The replacement
function simply replaces one expression with another in the Jinja expression.
It is consequently simpler to reason about, and is discussed in section 4.5. Ad-
ditionally macros are expanded.

The refinement operations are similar to, albeit simpler than, those performed
in Rosser system for generating Java bytecode optimisers from the TRANS lan-
guage, [8] and within that system this process has been fully automated. This is
currently future work for the Isabelle formalisation.

74 Richard Warburton and Sara Kalvala

4.2 Syntax

A series of datatypes are used in order to embed the syntax of the TRANS lan-
guage into Isabelle/HOL. For example, the following definition describes some
of the expression pattern matching used in TRANS.

datatype
pattern = Skip ()
| Assign literal patternExpr (infixr := 65)
| If patternEzxpr patternExpr (if)
| Return patternExpr (return)

We haven’t completely formalised the syntax of the TRANS language, and
more details are available in **REF**.

4.3 Predicates

Predicates within TRANS can be considered in two ways, firstly there’s the prop-
erty about the program structure or state that is implied by the predicate holding
at a certain point in the program, for a certain path through its execution. We
call this the semantic property. There is also the function that a compiler author
would write in order to implement the corresponding predicate within their sys-
tem. This implementation function should always imply the semantic property
of the predicate, but due to some limitation, or design choice, it may also restrict
the program additionally. For example we refer to use and def predicates, but
a compiler implementor in a Java-like language would have to conservatively
approximate such properties using a may-use and may-def predicate.

Currently within our system we are translating predicates into their semantic
properties, in order to simplify the theorem proving effort. A more complete sys-
tem would define an implementation function that corresponds to each predicate,
and then prove that the function implies the semantic property.

For some predicates we define the negated predicate seperately from the
predicate. For example the notdef definition:

abbreviation notdef :: vname = J-prog = expr = heap = locals = expr = heap
= locals = bool where
notdef var prog e h l e’ h' ' = prog F (e,(h,1)) — (e, (h",1")) & l var = 1" var

Here the semantic property implied by the definition is that as expression
e for a given heap h and local variables 1 evaluates to e’ in (h’, I’) the local
variable var refers the same value within the local variable environment before
the evaluation and after. It additionally enforces that these expressions do indeed
evaluate from e to e’.

4.4 Temporal Operators

Temporal operators within TRANS all correspond to functions within Isabelle/HOL.
These give a satisfying decision for a list of expression, state pairs. This relates to

Verifying Compiling Optimisations Using Isabelle/HOL 75

a possible path of evaluation for the expression to take. By using recursion over
lists, Isabelle’s standard induction tactics provide much help for proving proper-
ties about the temporal operators, which fits our shallow embedding approach.
Additionally we can use HOL’s Exists and Forall quantification, and associated
lemmas for reasoning about the exists and forall quanitification over paths in

CTL.

4.5 Actions

For each TRANS language primitive there is a corresponding function, that per-
forms the general action. An example of the replacement function is given in Fig
3. The The replace function recurses over the structure of Jinja expressions,
replacing any expression or sub-expression within its first argument that is equal
to its second argument with its third argument.

4.6 Constant Propagation
The proof of soundness for constant propagation is structured as follows:

1. Prove that in the out state of v := c that the variable v holds the value of
the constant ¢

2. Prove that if at the beginning state of a path variable v holds the value c
and v isn’t redefined then it will still hold that value at the end of the path.

3. Prove that if for all paths entering an assignment x := v that if v has the
value c at the in state, and x is assigned to v that it results in the variable x
holding the value c, in other words that x := c evaluates to the same state
as x := v when v equals ¢

We now sketch some details of how this is performed within Isabelle. Note
that Within the following section, extracted from the Isabelle script, v is referred
to as sub-var, x as ass-var ahd c as const.

init abbreviates the initial conditions of the until operator, in other words,
that sub-var is assigned a constant.
abbreviation init :: vname = val = J-prog = expr = state = expr = state = bool
where
init sub-var const prog e s ¢’ s' = (e = sub-var := (Val const)) & prog + (e,s) —
(e',s")

It is then trivial to show that sub-var holds the value of const within the
successor state, which corresponds to step (1).

lemma init sub-var const prog e (h,l) e’ (h', ') ==> 1" sub-var = (Some const)
The condition Z(ﬂdef(v) U stmi(v := c¢)) corresponds to this function. Im-

portantly, being just a standard Isabelle/HOL function we can use standard
inductive tactics to reason about the until’s predicates set of states.

fun side-cond :: vname = val = J-prog = expr = state = (expr x state) list =
bool where

76 Richard Warburton and Sara Kalvala

side-cond sub-var const prog e s [(e',h',l")] = init sub-var const prog e s e’ (h',l") |
side-cond sub-var const prog pe ps ((e,h,1)#(e’,h',l")#es) = (notdef sub-var prog e h I
e’ h' 1" & side-cond sub-var const prog pe ps ((e',(h',l"))#es))

We now show, that the state at the final node in the side condition chain, is
the required state, ie step (2) of the proof.

lemma |[| side-cond sub-var const prog e s es; es # [| ; (e,h,l) = (last es) || ==> 1
sub-var = (Some const)

Formulating step (3) can then be done as follows. The assumption states that
sub-var is equal to const in the the initial state.

lemma [|lcl s sub-var = Some const ; s = (h,l)|] ==> (P + (ass-var:=(Var sub-var),
s) —x (unit, (h,l(ass-var— const))))

5 Conclusions and Future Work

TRANS as a domain specific language for compiler optimisations has been shown
to be expressive, and somewhat efficiently implementable. Foundations have been
laid for its formal analysis, starting with proofs of soundness for simple optimi-
sations. There is much work yet to be done. Some elements of the formalisation
are incomplete, such as the embedding of all of the remaining components of the
TRANS language. More optimisations need to proved sound, including the list
cited in Section 2.2. Finally implementing a system for applying the optimisa-
tions as a phase for the Jinja compiler within Isabelle/HOL would complement
the existing work on Java that was based on the Soot system.

fun replace :: expr = expr = expr = expr where

replace init from to = (if (from = init) then to else init) |

replace (Cast cls e) from to = (Cast cls (replace e from to)) |

replace (I<bop>r) from to = ((replace | from to)<bop>(replace r from to)) |

replace (V:=e) from to = (V := (replace e from to)) |

replace (e-V{C}) from to = ((replace e from to)-V{C}) |

replace (z-V{C} := e) from to = ((replace = from to)- V{C} := (replace e from to)) |
replace (e-meth’(args’)) from to = ((replace e from to)-meth'(args’)) |

replace {a:t;e} from to = {a:t;(replace e from to)} |

replace (el;;e2) from to = ((replace el from to);;(replace e2 from to)) |

replace (Cond ¢ y n) from to = (Cond (replace ¢ from to) (replace y from to) (replace
n from to)) |

replace (while (¢) b) from to = (while (replace ¢ from to) (replace b from to)) |
replace (throw e) from to = (throw (replace e from to)) |

replace (TryCatch e ¢ n ce) from to = (TryCatch (replace e from to) ¢ n (replace ce
from to))

Fig. 3. Replacement function

Verifying Compiling Optimisations Using Isabelle/HOL T
References

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Pearson Education;, 2nd edition, 2007.

2. A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 5271,
London, UK, 1982. Springer-Verlag.

4. S. Kalvala, R. Warburton, and D. Lacey. Program transformations using tempo-
ral logic side conditions. Technical Report 439, Department of Computer Science,
University of Warwick, 2008.

5. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

6. T. Nipkow. Jinja: Towards a comprehensive formal semantics for a Java-like lan-
guage. In H. Schwichtenberg and K. Spies, editors, Proof Technology and Compu-
tation, pages 247-277. 10S Press, 2006.

7. A. Pnueli and G. Zaks. Translation validation of interprocedural optimizations. In
Proceedings of the 4th International Workshop on Software Verification and Valida-
tion (SVV 2006). Computing Research Repository (CoRR), Aug. 2006.

8. R. Warburton and S. Kalvala. From specification to optimisation: An architecture
for optimisation of java bytecode. In CC, pages 17-31, 2009.

Author Index

Basu, P. 50 Loo, B.T. 50, 60
Bernardo, B. 1 Marié, F. 40

Gast, H. 10 Merz, S. 30
Janici¢, P. 40 Rodriguez-Hortala, J.
Kalvala, S. 70 Sokolsky, O. 50
Kammiiller, F. 20 Sudhof, H. 20
Lépez-Fraguas, F.J. 30 Wang, A. 50, 60

Liu, C. 50 Warburton, R. 70

