In Programming Languages (11)

Christian Urban

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 30. January 2007 - p.1 (1/1)

Recap from last Week

B We had a look at the Curry-Howard

correspondence

Types

Typed Terms
Evaluation
Typing Problem

<~
<~
<~
<~

Formulae

Proof

Proof Normalisation
Finding a Proof

B We had a look at the Polymorphic
Lambda-Calculus - used to encode algebraic

datatypes.

Munich, 30. January 2007 - p.2 (1/1)

M otivation

B "Arithmetic, equality, showing a value as a
string: three operations guaranteed to give
language designers nightmares” from
Odersky et al.

B Equality: there are types for which equality
should be defined, for others it should not.

B ML has a special sort (or class) of equality

types, i.e. Types over which equality is
defined.

B Type classes allow the user to define such
classes.

Munich, 30. January 2007 - p.3 (1/1)

Type Classes

B A type class is defined by the set of
operations/methods that must be
implemented for every type in the class.

Bl A type can be made a member of a type class
using an instance declaration.

B Note the difference with classes in OO
(classes there are types; type classes are

not types—they are more like Java's
interfaces).

B There is no access control in a type class
(needs to be implemented using modules).

Munich, 30. January 2007 - p.4 (1/1)

Problems

There are some problems with type classes

B a program cannot be assigned a meaning
independent of its types

B type-safety (well-typed programs cannot go
wrong) cannot be formulated for transition
relations

B every phrase in a program has a most
general/principle type

Can be solved in restricted systems; e.g. single
parameter type classes.

Munich, 30. January 2007 - p.5 (1/1)

| ntuition

The intuition behind type classes is as follows

B equal is a function with type

X — X — bool

but under the assumption that X is of type
class EQ.

Munich, 30. January 2007 - p.6 (1/6)

| ntuition

The intuition behind type classes is as follows

B equal is a function with type

VX. X —- X — bool

but under the assumption that X is of type
class EQ.

Munich, 30. January 2007 - p.6 (2/6)

| ntuition

The intuition behind type classes is as follows

B equal is a function with type

VX. X —- X — bool

but under the assumption that X is of type
class EQ.

B VX such that X € EQ. X — X — bool

Munich, 30. January 2007 - p.6 (3/6)

| ntuition

The intuition behind type classes is as follows

B equal is a function with type

VX. X —- X — bool

but under the assumption that X is of type
class EQ.

B VX such that X € EQ. X — X — bool
BVX. X eEQ= X — X — bool

Munich, 30. January 2007 - p.6 (4/6)

| ntuition

The intuition behind type classes is as follows

B equal is a function with type

VX. X —- X — bool

but under the assumption that X is of type
class EQ.

B VX such that X € EQ. X — X — bool
BVX.EQX)= X — X — bool

Munich, 30. January 2007 - p.6 (5/6)

| ntuition

The intuition behind type classes is as follows

B equal is a function with type

VX. X —- X — bool

but under the assumption that X is of type
class EQ.

B VX such that X € EQ. X — X — bool
BVX.EQX)= X — X — bool

B "Types” will be of the form
some constraints = T

Munich, 30. January 2007 - p.6 (6/6)

Concrete Example

class EQ(X) where
equal : X — X — bool

inst equal : int — int — bool
equal = primitive_equal_over_ints

list_equal : (equal: X — X — bool) = [X] — [X]| — bool
list_equal [][]= True
list_equal (x:xs) (y:ys) = equal x y A list_equal xs ys

inst equal : (equal: X — X — bool) = [X] — [X] — bool
equal = list_equal

Munich, 30. January 2007 - p.7 (1/1)

Syntax

= X
T — T
bool, int, [X], ...

W Types:

B Type-schemes:
S =T
| VX.C(X)=S

W Constraints:
C(X) 2= {o: X —>T,...}

where 1" can contain X

Munich, 30. January 2007 - p.8 (1/1)

Syntax

B Terms.
e 1= T
e e
AL.€
let £ = e ine
B Programs:
p == elinsto: Syr=einp

where S is type-scheme with the condition
that T' can't be a variable

Munich, 30. January 2007 - p.9 (1/1)

Concrete Syntax
BForVX.o0: X — 1T, = 15 we write
o: X —T, = 1T5

list_equal : (equal: X — X — bool) = [X] — [X] — bool
B Forinst o: S = e we write

o:S

O—=—e¢e

inst equal : (equal: X — X — bool) = [X] — [X] — bool
equal = list_equal

Munich, 30. January 2007 - p.10 (1/1)

Type-System

validl' x:8 €I’
I'x:8S

'-e:S (x:8),I'tey:T
Fl—le‘l‘w:elineng

.’B:Tl,FI_B:Tz F|—61:T1—>T2 F|_€2:T1

FI—Aw.e:T1—>T2 F|_€1€2:T2

NcC(X)Fe:S X &dom(I')
r-e:vX.Cc(X)= S

Munich, 30. January 2007 - p.11 (1/3)

Type-System

validl' x:8 €I’
I'x:8S

'-e:S (x:8),I'tey:T
Fl—le‘l‘w:elineng

Old rules:

vaidI' (x:S)eIl' ST
I'-x:T

F|_€1:T1 w:VA.Tl,FI—e2:T2

Fl—le‘l‘a?:elinengz
.’B:Tl,FI_B:TQ F|_€1:T1—)T2 F|_€2:T1

F|_A$.€2T1—)T2 F|_€1€2:T2

Munich, 30. January 2007 - p.11 (2/3)

Type-System

validl' x:8 €I’
I'x:8S

'-e:S (x:8),I'tey:T
Fl—le‘l‘w:elineng

.’B:Tl,FI_B:Tz F|—61:T1—>T2 F|_€2:T1

FI—Aw.e:T1—>T2 F|_€1€2:T2

NcC(X)Fe:S X &dom(I')
r-e:vX.Cc(X)= S

Munich, 30. January 2007 - p.11 (3/3)

Type-System

F'Fe:VX.C(X)= S Ik C(X)[X :=T]
I'e:S[X :=T]

I'-oy:8 ... I'o,:S,
Ir-{o,:8,...,0,:8,}

I'+-e:Sr INo: Sr+p: S’
I'-insto: Str=einp: S’

where we require that I' contains only a single declaration
for every o : St (you cannot overload o twice on the same

type)

Munich, 30. January 2007 - p.12 (1/1)

Compilation

B The constraints in C(X) = T represent
different implementations for the

overloaded function. These constraints are
often called dictionaries.

B One can translate the programs with type

classes to terms in "standard ML", that is
let-polymorphism (one needs to rule out

show (read s)).

B However, one can extend the Hindley-Milner
algorithm W to deal with type-classes
directly.

Munich, 30. January 2007 - p.13 (1/1)

Research

B We considered only single-parameter type
classes. Multi-parameter type classes occur
often in practice and are (recently)
supported by some Haskell implementations.
Multi-parameter need careful design in

order to obtain a decidable and meaningful
Type-system.

Munich, 30. January 2007 - p.14 (1/1)

	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (11)\
end {tabular}
	�egin {tabular}{@{}c@{}}Recap from last Weekend {tabular}
	�egin {tabular}{@{}c@{}}Motivationend {tabular}
	�egin {tabular}{@{}c@{}}Type Classesend {tabular}
	�egin {tabular}{@{}c@{}}Problemsend {tabular}
	�egin {tabular}{@{}c@{}}Intuitionend {tabular}
	�egin {tabular}{@{}c@{}}Concrete Exampleend {tabular}
	�egin {tabular}{@{}c@{}}Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Concrete Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Compilationend {tabular}
	�egin {tabular}{@{}c@{}}Researchend {tabular}

