Local Theories

Makarius Wenzel
TU Munchen

August 2009

Motivation

e Infrastructure for organizing definitions and proofs

e Separation of concerns:

1. definitional packages (e.g. inductive, function)
2. target mechanisms (e.g. locale, class)

— large product space: definitions X targets

e Simplification and generalization of Isabelle/Isar concepts

Context-dependent definitions

A-binding let-binding

types fixed « arbitrary (3

terms fix define c = b
theorems | assume A z | note c = (A z - B x)

Note: clear separation of axiomatic vs. definitional specifications

Hindley-Milner polymorphism:
e Assumptions: fixed types
fix id :: a = «
assume id-def: 1d = Az :: a. T
e Conclusions: arbitrary types
define id = Az :: 0. x (for arbitrary 3)
note refl = (Ax :: 8. x = x) (for arbitrary (3)

Examples

See Slides3/Ex1.thy

Local theory infrastructure

theory background environment (abstract certificate)
context main working environment (contains theory)
local-theory auxiliary-context X target-context

+ interpretation of specification elements

auxiliary context target context background theory

Standard interpretation: \-lifting (over fix x assume A z)

thy.c thy.c = Ax. bz
Azt Bx thy.c= Nz. Az = Bux

define c = b x loc.c
notec=Az+ Bz loc.c

Morphisms

Idea: moving formal entities between contexts

Logical transformations: for type, term, thm

transform-type: morphism — type — type
transform-term: morphism — term — term
transform-thm: morphism — thm — thm

Arbitrary transformations: for morphism — «
transform: morphism — (morphism — a) — (morphism — «)
transform ¢ f = M. f (¢ o @)

form: (morphism — a) — «
form f = f identity

Generic declarations

A-binding let-binding
types fixed « arbitrary (3
terms fix x define c = b
theorems | assume A x | note ¢c = Az + B 2
data declaration «d>

where d: morphism — (context — context)

Note:
e System transforms data declaration functions, not data

e User receives morphism on types/terms/theorems,
and applies it to his aggregated data

Examples

See Slides3/Ex2.thy

