
LATEX-

with Isabelle

Christian Urban

Munich, 15 August 2009 – p. 1/21



Document Preparation:
Rough Picture

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

e.g. Perl

Munich, 15 August 2009 – p. 2/21

isabelle mkdir Paper



Document Preparation:
Rough Picture

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

e.g. Perl

Munich, 15 August 2009 – p. 2/21

isabelle mkdir Paper



Document Preparation:
Rough Picture

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

e.g. Perl

Munich, 15 August 2009 – p. 2/21

isabelle mkdir Paper



Document Preparation:
Rough Picture

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

e.g. Perl

Munich, 15 August 2009 – p. 2/21

isabelle mkdir Paper



Document Preparation:
Rough Picture

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

e.g. Perl

Munich, 15 August 2009 – p. 2/21

isabelle mkdir Paper



Document Preparation:
Rough Picture

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

e.g. Perl

Munich, 15 August 2009 – p. 2/21

isabelle mkdir Paper



Sources
text {* ... *}
text_raw {* ... *}

fun
rev

where
"rev [] = []" ––"..."
| "rev (x#xs) = rev xs @ [x]"

lemma foo:
assumes a: "∀ i ∈ set Γ 1. i ∈ set Γ 2"
shows "set Γ 1 ⊆ set Γ 2"
using a
txt {* ... *}
txt_raw {* ... *}
by auto

Munich, 15 August 2009 – p. 3/21



Document Antiquotations
lemma foo:
fixes Γ 1 Γ 2::"nat list"
assumes a: "∀ i ∈ set Γ 1. i ∈ set Γ 2"
shows "set Γ 1 ⊆ set Γ 2"
using a by auto

You can refer inside text {*...*} to this lemma
using the document antiquotation
@{thm foo[no_vars]}.

∀ i∈set Γ 1. i ∈ set Γ 2 =⇒ set Γ 1 ⊆ set Γ 2

notation (output) set ("_")

∀ i∈Γ 1. i ∈ Γ 2 =⇒ Γ 1 ⊆ Γ 2

Munich, 15 August 2009 – p. 4/21



Document Antiquotations
lemma foo:
fixes Γ 1 Γ 2::"nat list"
assumes a: "∀ i ∈ set Γ 1. i ∈ set Γ 2"
shows "set Γ 1 ⊆ set Γ 2"
using a by auto

You can refer inside text {*...*} to this lemma
using the document antiquotation
@{thm foo}.

∀ i∈set ?Γ 1. i ∈ set ?Γ 2 =⇒ set ?Γ 1 ⊆ set ?Γ 2

notation (output) set ("_")

∀ i∈Γ 1. i ∈ Γ 2 =⇒ Γ 1 ⊆ Γ 2

Munich, 15 August 2009 – p. 4/21



Document Antiquotations
lemma foo:
fixes Γ 1 Γ 2::"nat list"
assumes a: "∀ i ∈ set Γ 1. i ∈ set Γ 2"
shows "set Γ 1 ⊆ set Γ 2"
using a by auto

You can refer inside text {*...*} to this lemma
using the document antiquotation
@{thm foo[no_vars]}.

∀ i∈set Γ 1. i ∈ set Γ 2 =⇒ set Γ 1 ⊆ set Γ 2

notation (output) set ("_")

∀ i∈Γ 1. i ∈ Γ 2 =⇒ Γ 1 ⊆ Γ 2

Munich, 15 August 2009 – p. 4/21



Document Antiquotations
lemma foo:
fixes Γ 1 Γ 2::"nat list"
assumes a: "∀ i ∈ set Γ 1. i ∈ set Γ 2"
shows "set Γ 1 ⊆ set Γ 2"
using a by auto

You can refer inside text {*...*} to this lemma
using the document antiquotation
@{thm foo[no_vars]}.

∀ i∈set Γ 1. i ∈ set Γ 2 =⇒ set Γ 1 ⊆ set Γ 2

notation (output) set ("_")

∀ i∈Γ 1. i ∈ Γ 2 =⇒ Γ 1 ⊆ Γ 2

Munich, 15 August 2009 – p. 4/21



Changing the Order
of Arguments

lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

abbreviation
my_append

where
"my_append xs ys≡ ys @ xs"

notation (output) my_append ("_ @ _")

Believe it or not, this [y] @ [x] = [x, y] is proved by Isabelle.

Munich, 15 August 2009 – p. 5/21



Changing the Order
of Arguments

lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

abbreviation
my_append

where
"my_append xs ys≡ ys @ xs"

notation (output) my_append ("_ @ _")

Believe it or not, this [y] @ [x] = [x, y] is proved by Isabelle.

Munich, 15 August 2009 – p. 5/21



LaTeXsugar and Modes
inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

You can print them nicely by using modes defined in
LaTeXsugar.thy.
@{thm[mode=Axiom] @{thm[mode=Rule] @{thm[mode=Rule]

r1[no_vars]} r2[no_vars]} r3[no_vars]}

even 0
odd n

even (Suc n)
even n

odd (Suc n)

@{thm[mode=IfThen] r2[no_vars]}:

If odd n then even (Suc n).

Munich, 15 August 2009 – p. 6/21



LaTeXsugar and Modes
inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

You can print them nicely by using modes defined in
LaTeXsugar.thy.
@{thm[mode=Axiom] @{thm[mode=Rule] @{thm[mode=Rule]

r1[no_vars]} r2[no_vars]} r3[no_vars]}

even 0
odd n

even (Suc n)
even n

odd (Suc n)

@{thm[mode=IfThen] r2[no_vars]}:

If odd n then even (Suc n).
Munich, 15 August 2009 – p. 6/21



Other Document
Antiquotations

lemma disj_swap:
shows "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)

1. P =⇒ Q ∨ P
2. Q =⇒ Q ∨ P

lemma disj_swap:
shows "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)
txt_raw {* @{subgoals [display]} *}
(*<*)oops(*>*)

Munich, 15 August 2009 – p. 7/21



Other Document
Antiquotations

lemma disj_swap:
shows "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)

1. P =⇒ Q ∨ P
2. Q =⇒ Q ∨ P

lemma disj_swap:
shows "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)
txt_raw {* @{subgoals [display]} *}
(*<*)oops(*>*)

Munich, 15 August 2009 – p. 7/21



Your Own Document
Antiquotations

fun check_file_exists _ name =
(if File.exists (Path.append

(Path.explode ("~~/src")) (Path.explode name))
then ThyOutput.output [Pretty.str name]
else
error ("Source file " ^ (quote name) ^ " does not exist."))

val _ = ThyOutput.antiquotation "ML_file"
(Scan.lift Args.name) check_file_exists

Writing @{ML_file "HOL/HOL.thy"}, produces:

HOL/HOL.thy

Munich, 15 August 2009 – p. 8/21



Your Own Theorem-Styles
lemma foo: shows "∀ x y z. P x y z" sorry

fun strip_alls ctxt trm =
case trm of

Const("Trueprop", _) $ t => strip_alls ctxt t
| Const("All", _) $ Abs(n, T, t) =>

strip_alls ctxt (subst_bound (Free (n, T), t))
| _ => trm

setup {* TermStyle.add_style "no_alls" strip_alls *}

Now @{thm_style no_alls foo} produces:

P x y z

Munich, 15 August 2009 – p. 9/21



Correct Tabulation
inductive

even and odd
where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

Munich, 15 August 2009 – p. 10/21



Correct Tabulation
inductive

even and odd
where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

Munich, 15 August 2009 – p. 10/21



inductive
even and odd

where
r1: ––"some comment" "even 0"
| r2: ––"some other comment" "odd n =⇒ even (Suc n)"
| r3: ––"something entirely else" "even n =⇒ odd (Suc n)"

\renewcommand{\isamarkupcmt}[1]%
{\ifthenelse{\equal{TABSET}{#1}}{\=}%

{\ifthenelse{\equal{TAB}{#1}}{\>}
{\isastylecmt--- #1}}%

}%

\newenvironment{isatabbing}%
{\renewcommand{\isanewline}{\\}\begin{tabbing}}%
{\end{tabbing}}

Munich, 15 August 2009 – p. 11/21



inductive
even and odd

where
r1: ––"some comment" "even 0"
| r2: ––"some other comment" "odd n =⇒ even (Suc n)"
| r3: ––"something entirely else" "even n =⇒ odd (Suc n)"

\renewcommand{\isamarkupcmt}[1]%
{\ifthenelse{\equal{TABSET}{#1}}{\=}%

{\ifthenelse{\equal{TAB}{#1}}{\>}
{\isastylecmt--- #1}}%

}%

\newenvironment{isatabbing}%
{\renewcommand{\isanewline}{\\}\begin{tabbing}}%
{\end{tabbing}}

Munich, 15 August 2009 – p. 11/21



Correct Tabulation
text_raw {*\begin{isatabbing}*}
inductive

even and odd
where
r1: ––TABSET "even 0"
| r2: ––TAB "odd n =⇒ even (Suc n)"
| r3: ––TAB "even n =⇒ odd (Suc n)"
text_raw {*\end{isatabbing}*}
inductive

even and odd
where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

Munich, 15 August 2009 – p. 12/21



Definitions Twice?
inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

Redefine in root.tex: \renewcommand{\isasymiota}{}

Munich, 15 August 2009 – p. 13/21



Definitions Twice?
inductive
even and odd

where
r1: "even 0"
| r2: "odd n =⇒ even (Suc n)"
| r3: "even n =⇒ odd (Suc n)"

inductive
evenι and oddι

where
r1ι: "evenι 0"
| r2ι: "oddι n =⇒ evenι (Suc n)"
| r3ι: "evenι n =⇒ oddι (Suc n)"

Redefine in root.tex: \renewcommand{\isasymiota}{}
Munich, 15 August 2009 – p. 13/21



Slides with Beamer
text_raw {*
\begin{frame}
\frametitle{FooBar Slide}

\onslide<2,4>{

*}

lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

text_raw {*

}

\end{frame}
*}

Munich, 15 August 2009 – p. 14/21



Slides with Beamer
text_raw {*
\begin{frame}
\frametitle{FooBar Slide}
\onslide<2,4>{
*}
lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

text_raw {*
}
\end{frame}
*}

Munich, 15 August 2009 – p. 14/21



FooBar Slide

lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

Munich, 15 August 2009 – p. 15/21



FooBar Slide
lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

Munich, 15 August 2009 – p. 15/21



FooBar Slide

lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

Munich, 15 August 2009 – p. 15/21



FooBar Slide
lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

Munich, 15 August 2009 – p. 15/21



FooBar Slide
lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

\definecolor{isacol:blue}{rgb}{0,0,.803}
\newcommand{\bluecmd}[1]

{\color{isacol:blue}{\bfseries{#1}}}
\renewcommand{\isakeyword}[1]{\bluecmd{#1}}}

Munich, 15 August 2009 – p. 16/21

\renewcommand{\isakeyword}[1]{%
\ifthenelse{\equal{#1}{show}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{case}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{assume}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{obtain}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{fix}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{oops}}{\redcmd{#1}}{%
\ifthenelse{\equal{#1}{thm}}{\redcmd{#1}}{%
{\bluecmd{#1}}}}}}}}}}%



FooBar Slide
lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

\definecolor{isacol:blue}{rgb}{0,0,.803}
\newcommand{\bluecmd}[1]

{\color{isacol:blue}{\bfseries{#1}}}
\renewcommand{\isakeyword}[1]{\bluecmd{#1}}}

Munich, 15 August 2009 – p. 16/21

\renewcommand{\isakeyword}[1]{%
\ifthenelse{\equal{#1}{show}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{case}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{assume}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{obtain}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{fix}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{oops}}{\redcmd{#1}}{%
\ifthenelse{\equal{#1}{thm}}{\redcmd{#1}}{%
{\bluecmd{#1}}}}}}}}}}%



FooBar Slide
lemma append_bar:
fixes x y::"nat"
shows "[x] @ [y] = [x,y]" by simp

\definecolor{isacol:blue}{rgb}{0,0,.803}
\newcommand{\bluecmd}[1]

{\color{isacol:blue}{\bfseries{#1}}}
\renewcommand{\isakeyword}[1]{\bluecmd{#1}}}

Munich, 15 August 2009 – p. 16/21

\renewcommand{\isakeyword}[1]{%
\ifthenelse{\equal{#1}{show}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{case}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{assume}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{obtain}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{fix}}{\browncmd{#1}}{%
\ifthenelse{\equal{#1}{oops}}{\redcmd{#1}}{%
\ifthenelse{\equal{#1}{thm}}{\redcmd{#1}}{%
{\bluecmd{#1}}}}}}}}}}%



A Perl Script

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

Perl

Munich, 15 August 2009 – p. 17/21

\isachardoublequoteopen ... \isachardoublequoteclose



A Perl Script

Isabelle

LATEX

Formali-
sation.thy

Paper.thy
(LATEX)

.tex
root.tex

.pdf

Perl

Munich, 15 August 2009 – p. 17/21

\isachardoublequoteopen ... \isachardoublequoteclose



A Perl Script (2)
My root.tex defines the environment:

\newenvironment{innerdouble}%
{\isachardoublequoteopen\color{isacol:green}}%
{\color{isacol:black}\isachardoublequoteclose}

and the IsaMakefile calls

perl -i -p -e "s/..isachardoublequoteopen./\\\begin{innerdouble}/g"
Slides/generated/Slides.tex

and the same for isachardoublequoteclose.

Munich, 15 August 2009 – p. 18/21



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 19/21



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Munich, 15 August 2009 – p. 20/21

txt_raw {* \begin{colormixin}{20!averagebackgroundcolor} *}
...

txt_raw {* \end{colormixin} *}



Believe It or Not:
Animations with LATEX

Munich, 15 August 2009 – p. 21/21

The relevant LATEX-package is animate.sty.



Believe It or Not:
Animations with LATEX

Munich, 15 August 2009 – p. 21/21

The relevant LATEX-package is animate.sty.


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	anm1: 
	2.0: 
	anm2: 


