
Barendregt’s Variable Convention in Rule
Inductions

Christian Urban1, Stefan Berghofer1, and Michael Norrish2

1 TU Munich, Germany
2 NICTA, Australia

Abstract. Inductive definitions and rule inductions are two fundamen-
tal reasoning tools in logic and computer science. When inductive defini-
tions involve binders, then Barendregt’s variable convention is nearly al-
ways employed (explicitly or implicitly) in order to obtain simple proofs.
Using this convention, one does not consider truly arbitrary bound names,
as required by the rule induction principle, but rather bound names
about which various freshness assumptions are made. Unfortunately, nei-
ther Barendregt nor others give a formal justification for the variable
convention, which makes it hard to formalise such proofs. In this pa-
per we identify conditions an inductive definition has to satisfy so that
a form of the variable convention can be built into the rule induction
principle. In practice this means we come quite close to the informal rea-
soning of “pencil-and-paper” proofs, while remaining completely formal.
Our conditions also reveal circumstances in which Barendregt’s variable
convention is not applicable, and can even lead to faulty reasoning.

1 Introduction

In informal proofs about languages that feature bound variables, one often as-
sumes (explicitly or implicitly) a rather convenient convention about those bound
variables. Barendregt’s statement of the convention is:

Variable Convention: If M1, . . . ,Mn occur in a certain mathematical
context (e.g. definition, proof), then in these terms all bound variables
are chosen to be different from the free variables. [2, Page 26]

The reason for this convention is that it leads to very slick informal proofs—one
can avoid having to rename bound variables.

One example of such a slick informal proof is given in [2, Page 60], proving
the substitutivity property of the −→1−→ (or “parallel reduction”) relation, which
is defined by the rules:

M −→1−→M
One1

M −→1−→M ′

lam(y.M) −→1−→ lam(y.M ′)
One2

M −→1−→M ′ N −→1−→ N ′

app(M,N) −→1−→ app(M ′, N ′)
One3

M −→1−→M ′ N −→1−→ N ′

app(lam(y.M), N) −→1−→M ′[y := N ′]
One4

(1)

The substitutivity property states:

2 Christian Urban, Stefan Berghofer, and Michael Norrish

Lemma. If M −→1−→M ′ and N −→1−→ N ′, then M [x := N] −→1−→M ′[x := N ′].
In [2], the proof of this lemma proceeds by an induction over the definition of
M −→1−→M ′. Though Barendregt does not acknowledge the fact explicitly, there
are two places in his proof where the variable convention is used. In case of
rule One2, for example, Barendregt writes (slightly changed to conform with the
syntax we shall employ for λ-terms):

Case One2. M −→1−→M ′ is lam(y.P) −→1−→ lam(y.P ′) and is a direct consequence
of P −→1−→ P ′. By induction hypothesis one has P [x := N] −→1−→ P [x := N ′]. But
then lam(y.P [x := N]) −→1−→ lam(y.P ′[x := N ′]), i.e. M [x := N] −→1−→ M ′[x :=
N ′]. ut
However, the last step in this case only works if one knows that

lam(y.P [x := N]) = lam(y.P)[x := N] and

lam(y.P ′[x := N ′]) = lam(y.P ′)[x := N ′]

which only holds when the bound variable y is not equal to x, and not free in
N and N ′. These assumptions might be inferred from the variable convention,
provided one has a formal justification for this convention. Since one usually
assumes that λ-terms are α-equated, one might think a simple justification for
the variable convention is along the lines that one can always rename binders with
fresh names. This is however not sufficient in the context of inductive definitions,
because there rules can have the same variable occurring both in binding and
non-binding positions. In rule One4, for example, y occurs in binding position in
the subterm lam(y.M), and in the subterm M ′[y := N ′] it is in a non-binding
position. Both occurrences must refer to the same variable as the rule

M −→1−→M ′ N −→1−→ N ′

app(lam(z.M), N) −→1−→M ′[y := N ′]
One′4

leads to a nonsensical reduction relation.
In the absence, however, of a formal justification for the variable convention,

Barendregt’s argument considering only a well-chosen y seems dubious, because
the induction principle that comes with the inductive definition of −→1−→ is:

∀M. P M M

∀yM M ′. P M M ′ ⇒ P (lam(y.M)) (lam(y.M ′))

∀MM ′N N ′. P M M ′ ∧ P N N ′ ⇒ P (app(M,N)) (app(M ′, N ′))

∀yM M ′N N ′. P M M ′ ∧ P N N ′ ⇒ P (app(lam(y.M), N)) (M ′[y := N ′])

M −→1−→ N ⇒ P M N

where both cases One2 and One4 require that the corresponding implication
holds for all y, not just the ones with y 6= x and y 6∈ FV (N,N ′). Nevertheless,
we will show that Barendregt’s apparently dubious step can be given a faithful,
and sound, mechanisation. Being able to restrict the argument in general to a
suitably chosen bound variable will, however, depend on the form of the rules in
an inductive definition. In this paper we will make precise what this form is and
will show how the variable convention can be built into the induction principle.

Barendregt’s Variable Convention in Rule Inductions 3

The interactions between bound and free occurrences of variables, and their
consequences for obtaining a formal argument, seem to often be overlooked in the
literature when claiming that proofs by rule inductions are straightforward. One
example of this comes with a weakening result for contexts in the simply-typed
λ-calculus.

We assume types are of the form T ::= X | T → T , and that typing
contexts (finite lists of variable-type pairs) are valid if no variable occurs twice.
The typing relation can then be defined by the rules

valid(Γ) (x :T) ∈ Γ
Γ ` var(x) : T

Type1

Γ `M : T1 → T2 Γ ` N : T1

Γ ` app(M,N) : T2

Type2

x # Γ (x :T1) ::Γ `M : T2

Γ ` lam(x.M) : T1 → T2

Type3

(2)

where (x : T) ∈ Γ stands for list-membership, and x # Γ for x being fresh for
Γ , or equivalently x not occuring in Γ . Define a context Γ ′ to be weaker than
Γ (written Γ ⊆ Γ ′), if every name-type pair in Γ also appears in Γ ′. Then we
have

Lemma (Weakening). If Γ ` M : T is derivable, and Γ ⊆ Γ ′ with Γ ′ valid,
then Γ ′ `M : T is also derivable.

The informal proof of this lemma is straightforward, provided(!) one uses the
variable convention.
Informal Proof. By rule induction over Γ ` M : T showing that Γ ′ ` M : T
holds for all Γ ′ with Γ ⊆ Γ ′ and Γ ′ being valid.
Case Type1: Γ ` M : T is Γ ` var(x) : T . By assumption we know valid(Γ ′),
(x :T) ∈ Γ and Γ ⊆ Γ ′. Therefore we can use Type1 to derive Γ ′ ` var(x) : T .
Case Type2: Γ ` M : T is Γ ` app(M1,M2) : T . Case follows from the
induction hypotheses and rule Type2.
Case Type3: Γ ` M : T is Γ ` lam(x.M1) : T1 → T2. Using the variable
convention we assume that x # Γ ′. Then we know that ((x :T1) ::Γ ′) is valid and
hence that ((x :T1) ::Γ ′) `M1 : T2 holds. By appealing to the variable convention
again, we have that Γ ′ ` lam(x.M1) : T1 → T2 holds using rule Type3 ut

However, in order to make this informal proof work with the induction principle
that comes with the rules in (2), namely

∀Γ xT. valid(Γ) ∧ (x :T) ∈ Γ ⇒ P Γ (var(x)) T
∀Γ M N T1 T2. P Γ M (T1 → T2) ∧ P Γ N T1 ⇒ P Γ (app(M,N)) T2

∀xΓ M T1 T2. x # Γ ∧ P ((x :T1) ::Γ) M T2 ⇒ P Γ (lam(x.M)) (T1 → T2)
Γ `M : T ⇒ P Γ M T

(3)
we need in case of rule Type3 to be able to rename the bound variable to be
suitably fresh for Γ ′; by the induction we only know that x is fresh for the smaller
context Γ . To be able to do this renaming depends on two conditions: first, there

4 Christian Urban, Stefan Berghofer, and Michael Norrish

must exist a fresh variable which we can choose. In our example this means that
the context Γ ′ must not contain all possible free variables. Second, the relation
Γ ` M : T must be invariant under suitable renamings. This is because when
we change the goal from Γ ′ ` lam(x.M1) : T1 → T2 to Γ ′ ` lam(z.M1[x :=
z]) : T1 → T2, we must be able to infer from ((x : T1) :: Γ ′) ` M1 : T2 that
((z : T1) :: Γ ′) ` M1[x := z] : T2 holds. This invariance under renamings does,
however, not hold in general, not even under renamings with fresh variables. For
example if we assume that variables are linearly ordered, then the relation

v = min{v0, . . . , vn}
({v0, . . . , vn}, v)

that associates finite subsets of these variables to the smallest variable occurring
in it, is not invariant (apply the renaming [v := v′] where v′ is a variable that is
bigger than every variable in {v0, . . . , vn}). Other examples are rules that involve
a substitution for concrete variables or a substitution with concrete terms. In
order to avoid such pathological cases, we require that the relation for which one
wants to employ the variable convention must be invariant under renamings;
from the induction we require that the variable convention can only be applied
in contexts where there are only finitely many free names.

However, these two requirements are not yet sufficient, and we need to im-
pose a second condition that inductive definitions have to satisfy. Consider the
function that takes a list of variables and binds them in λ-abstractions, that is

bind t []
def
= t bind t (x ::xs)

def
= lam(x.(bind t xs))

Further consider the relation ↪→, which “unbinds” the outermost abstractions of
a λ-term and is defined by:

var(x) ↪→ [], var(x)
Unbind1 app(t1, t2) ↪→ [], app(t1, t2)

Unbind2

t ↪→ xs, t′

lam(x.t) ↪→ x ::xs, t′
Unbind3

(4)

Of course, this relation cannot be expressed as a function because the bound
variables do not have “particular” names. Nonetheless it is well-defined, and not
trivial. For example, we have

lam(x.lam(y.app(var(x), app(var(y), var(z)))))
↪→ [x, y], app(var(x), app(var(y), var(z))) and

lam(x.lam(y.app(var(x), app(var(y), var(z)))))
↪→ [y, x], app(var(y), app(var(x), var(z)))

but we also have ∀t′. lam(x.lam(y.app(x, app(var(y), var(z))))) 6↪→ [x, z], t′.
Further, one can also easily establish (by induction on the term t) that for

every t there exists a t′ and a list xs of distinct variables such that t ↪→ xs, t′

holds, demonstrating that the relation is “total” if the last two parameters are
viewed as results.

If one wished to do rule inductions over the definition of this relation, one
might imagine that the variable convention allowed us to assume that the bound

Barendregt’s Variable Convention in Rule Inductions 5

name x was distinct from the free variables of the conclusion of the rule, and
in particular that x could not appear in the list xs. However, this use of the
variable convention quickly leads to the faulty lemma:

Lemma (Faulty). If t ↪→ (x ::xs), t′ and x ∈ FV (t′) then x ∈ FV (bind t′ xs).

The “proof” is by an induction over the rules given in (4) and assumes that the
binder x in the third rule is fresh with respect to xs. This lemma is of course
false as witnessed by the term lam(x.lam(x.var(x))). Therefore, including the
variable convention in the induction principle that comes with the rules in (4),
would produce an inconsistency. To prevent this problem we introduce a second
condition for rules, which requires that all variables occurring as a binder in
a rule must be fresh (a notion which we shall make precise later on) for the
conclusion of this rule, and if a rule has several such variables, they must be
mutually distinct.

Our Contribution: We introduce two conditions inductive definitions must
satisfy in order to make sure they are compatible with the variable convention.
We will build a version of this convention into the induction principles that come
with the inductive definitions. Moreover, it will be shown how these new (“vc-
compatible”) induction principles can be automatically derived in the nominal
datatype package [11, 9]. The presented results have already been extensively
used in formalisations: for example in our formalisations of the CR and SN
properties in the λ-calculus, in a formalisation by Bengtson and Parrow for
several proofs in the pi-calculus [3], in a formalisation of Crary’s chapter on
logical relation [4], and in various formalised proofs on structural operational
semantics.

2 Nominal Logic

Before proceeding, we briefly introduce some important notions from nominal
logic [8, 11]. In particular, we will build on the three central notions of permuta-
tions, support and equivariance. Permutations are finite bijective mappings from
atoms to atoms, where atoms are drawn from a countably infinite set denoted
by A. We represent permutations as finite lists whose elements are swappings
(i.e., pairs of atoms). We write such permutations as (a1 b1)(a2 b2) · · · (an bn);
the empty list [] stands for the identity permutation. A permutation π acting
on an atom a is defined as:

[]·a def
= a ((a1 a2) ::π)·a def

=

8<:
a2 if π·a = a1

a1 if π·a = a2

π·a otherwise

where (a b) :: π is the composition of a permutation followed by the swapping
(a b). The composition of π followed by another permutation π′ is given by list-
concatenation, written as π′@π, and the inverse of a permutation is given by list
reversal, written as π−1. Our representation of permutations as lists does not
give unique representatives: for example, the permutation (a a) is “equal” to the
identity permutation. We equate permutations with a relation ∼:

6 Christian Urban, Stefan Berghofer, and Michael Norrish

Definition 1 (Permutation Equality). Two permutations are equal, written
π1 ∼ π2, provided π1·a = π2·a, for all a ∈ A.

The permutation action on atoms can be lifted to other types.

Definition 2 (The Action of a Permutation). A permutation action π·(−)
lifts to a type T provided it the following three properties hold on all values x ∈ T

(i) []·x = x

(ii) (π1@π2)·x = π1·(π2·x)

(iii) if π1 ∼ π2 then π1·x = π2·x
For example, lists and tuples can be given the following permutation action:

lists: π·[]
def
= []

π·(h :: t)
def
= (π·h) :: (π·t)

tuples: π·(x1, . . . , xn)
def
= (π·x1, . . . , π·xn)

(5)

Further, on α-equated λ-terms we can define the permutation action:

π·var(x)
def
= var(π·x)

π·app(M1,M2)
def
= app(π·M1, π·M2)

π·lam(x.M)
def
= lam(π·x.π·M)

(6)

The second notion that we use is that of support (roughly speaking, the
support of an element is its set of free atoms). The set supporting an element
is defined in terms of permutation actions on that element, so that as soon as
one has defined a permutation action for a type, one automatically derives its
accompanying notion of support, which in turn determines the notion of freshness
(see [11]):

Definition 3 (Support and Freshness). The support of x is defined as:

supp(x)
def
= {a | infinite{b | (a b)·x 6= x}}. An atom a is said to be fresh

for an x, written a # x, if a 6∈ supp(x).

We will also use the auxiliary notation a # xs, in which xs stands for a collection
of objects x1 . . . xn, to mean a # x1 . . . a # xn. We further generalise this nota-
tion to a collection of atoms, namely as # xs, which means a1 # xs . . . am # xs.

Later on we will often make use of the following two properties of freshness,
which can be derived from the definition of support, the permutation action on
A and the requirements of permutation actions on other types (see [11]).

Lemma 1.
• (a) a # x implies π·a # π·x; and
• (b) if a # x and b # x, then (a b)·x = x.

Henceforth we will only be interested in those objects which have finite support,
because for them there exists always a fresh atom (recall that the set of atoms
A is infinite).

Barendregt’s Variable Convention in Rule Inductions 7

Lemma 2. If x is finitely supported, then there exists an atom a such that a # x.

Unwinding the definitions of permutation actions and support one can often
easily calculate the support of an object:

atoms: supp(a) = {a}
tuples: supp(x1, . . . , xn) = supp(x1) ∪ . . . ∪ supp(xn)

lists: supp([]) = ∅, supp(h :: t) = supp(h) ∪ supp(t)

α-equated λ-terms: supp(var(x)) = {x}
supp(app(M,N)) = supp(M) ∪ supp(N)
supp(lam(x.M)) = supp(M)− {x}

We therefore note the following: all elements in A and all α-equated λ-terms are
finitely supported. Lists (similarly tuples) containing finitely supported elements
are finitely supported. The last three equations show that the support of α-
equated λ-terms coincides with the usual notion of free variables. Hence, a # M
with M being an α-equated λ-term coincides with a not being free in M . If b is
an atom, then a # b coincides with a 6= b.

The last notion of nominal logic we use here is that of equivariance.

Definition 4 (Equivariance).
• A relation R is equivariant if R (π·xs) is implied by R xs for all π.
• A function f is equivariant provided π·(f xs) = f (π·xs) for all π.

Remark 1. Note that if we regard the term-constructors var , app and lam as
functions, then they are equivariant on account of the definition given in (6).
Because of the definition in (5), the cons-constructors of lists are equivariant.
By a simple structural induction on the list argument of valid, we can establish
that the relation valid is equivariant. By Lem. 1(a) freshness is equivariant. Also
list-membership, (−) ∈ (−), is equivariant, which can be shown by an induction
on the length of lists.

3 Schematic Terms and Schematic Rules

Inductive relations are defined as the smallest relation closed under some schematic
rules. In this section we will formally specify the form of such rules. Diagram-
matically they have the form

premises side-conditions

conclusion
%

(7)

where the premises, side-conditions and conclusions are predicates of the form
R ts where we use the letters R, S, P and Q to stand for predicates; ts stands for
a collection of schematic terms (the arguments of R). They are either variables,
abstractions or functions, namely t ::= x | a.t | f ts where a is a variable
standing for an atom and f stands for a function. We call the variable a in a.t
as being in binding position. Note that a schematic rule may contain the same
variable in binding and non-binding positions (One4 and Type3 are examples).

8 Christian Urban, Stefan Berghofer, and Michael Norrish

Assuming an inductive definition of the predicate R, the schematic rule in
(7) must be of the form

R ts1 . . . R tsn S1ss1 . . . Smssm

R ts
%

(8)

where the predicates Sissi (the ones different fromR) stand for the side-conditions
in the schematic rule.

For proving our main result in the next section it is convenient to introduce
several auxiliary notions for schematic terms and rules. The following functions
calculate for a schematic term the set of variables in non-binding position and
the set of variables in binding position, respectively:

vars(x) = {x}
vars(a.t) = vars(t)−{a}

vars(f ts) = vars(ts)

varsbp(x) = ∅
varsbp(a.t) = varsbp(t) ∪ {a}

varsbp(f ts) = varsbp(ts)
(9)

The notation t[as; xs] will be used for schematic terms to indicate that the vari-
ables in binding position of t are included in as and the other variables of t are
either in as or xs. That means we have for t[as; xs] that varsbp(t) ⊆ as and
vars(t) ⊆ as ∪ xs hold.
We extend this notation also to schematic rules: by writing %[as; xs] for (8) we
mean

R ts1[as; xs] . . . R tsn[as; xs] S1 ss1[as; xs] . . . Sm ssm[as; xs]

R ts[as; xs]
%

(10)

However, unlike in the notation for schematic terms, we mean in %[as; xs] that the
as stand exactly for the variables occurring somewhere in % in binding position
and the xs stand for the rest of variables. That means we have for %[as; xs] that
varsbp(%) = as and vars(%) = xs hold, assuming suitable generalisations of the
functions vars and varsbp to schematic rules. To see how the schematic notation
works out in examples, reconsider the definitions for the relations One, given in
(1), and Type, given in (2). Using our schematic notation for the rules, we have

One1[−;M]
One2[y;M,M ′]
One3[−;M,N,M ′, N ′]
One4[y;M,N,M ′, N ′]

Type1[−;Γ, x, T]
Type2[−;Γ,M,N, T1, T2]
Type3[x;Γ,M, T1, T2]

where ‘−’ stands for no variable in binding position.
The main property of an inductive definition, say for the inductive predicate

R, is that it comes with an induction principle, which establishes a property
P ts under the assumption that R ts holds. This means we have an induction
principle diagrammatically looking as follows

. . .
∀as xs. P ts1[as; xs] ∧ . . . ∧ P tsn[as; xs] ∧

Sss1[as; xs] ∧ . . . ∧ Sssm[as; xs] ⇒ P ts[as; xs]
. . .

R ts ⇒ P ts (11)

Barendregt’s Variable Convention in Rule Inductions 9

where for every schematic rule % in the inductive definition we have to establish
an implication. These implications state that we can assume the property for
all premises and also can assume that the side-conditions hold; we have to show
that the property holds for the conclusion of the schematic rule.

As explained in the introduction, we need to impose some conditions on
schematic rules in order to avoid faulty reasoning and to permit an argument
employing the variable convention. A rule %[as; xs], as given in (10), is variable
convention compatible, short vc-compatible, provided the following two conditions
are satisfied.

Definition 5 (Variable Convention Compatibility). A rule %[as; xs] with
conclusion R ts is vc-compatible provided that:

• all functions and side-conditions occurring in % are equivariant, and
• the side-conditions S1ss1 ∧ . . . ∧ Smssm imply that as # ts holds and

that the as are distinct.

If every schematic rule in an inductive definition satisfies these conditions, then
the induction principle can be strengthened such that it includes a version of
the variable convention.

4 Strengthening of the Induction Principle

In this section we will show how to obtain a stronger induction principle than
the one given in (11). By stronger we mean that it has the variable convention
already built in (this will then enable us to give slick proofs by rule induction
which do not need any renaming). Formally we show that induction principles
of the form

. . .
∀as xs C. (∀C.P C ts1[as; xs]) ∧ . . . ∧ (∀C.P C tsn[as; xs]) ∧

Sss1[as; xs] ∧ . . . ∧ Sssn[as; xs] ∧ as # C ⇒ P C ts[as; xs]
. . .

R ts ⇒ P C ts (12)

can be used, where C stands for an induction context. This induction context
can be instantiated appropriately (we will explain this in the next section). The
only requirement we have about C is that it needs to be finitely supported. The
main difference between the stronger induction principle in (12) and the weaker
one in (11) is that in a proof using the stronger we can assume that the as,
i.e. the variables in binding-position, are fresh with respect to the context C
(see highlighted freshness-condition). This additional assumption allows us to
reason as in informal “paper-and-pencil” proofs where one assumes the variable
convention (we will also show this in the next section).

The first condition of vc-compatibility implies that the inductively defined
predicate R is equivariant and that every schematic subterm occurring in a rule
is equivariant.

10 Christian Urban, Stefan Berghofer, and Michael Norrish

Lemma 3. (a) If all functions in a schematic term t[as; xs] are equivariant,
then (viewed as a function) t is equivariant, that is π· t[as; xs] = t[π·as;π·xs].
(b) If all functions and side-conditions in the rules of an inductive definition for
the predicate R are equivariant, then R is equivariant, that is if R ts holds than
also R (π·ts) holds.

Proof. The first part is by a routine induction on the structure of the schematic
term t. The second part is by a simple rule induction using the weak induction
principle given in (11).

We now prove our main theorem: if the rules of an inductive definition are vc-
compatible, then the strong induction principle in (12) holds.

Theorem 1. Given an inductive definition for the predicate R involving vc-
compatible schematic rules only, then a strong induction principle is available
for this definition establishing the implication R ts ⇒ P C ts with the induction
context C being finitely supported.

Proof. We need to establish R ts ⇒ P C ts using the implications indicated in
(12). To do so we will use the weak induction from (11) and establish that the
proposition R ts ⇒ ∀π C.P C (π·ts) holds. For each schematic rule %[as; xs]

R ts1[as; xs] . . . R tsn[as; xs] S1 ss1[as; xs] . . . Sm ssm[as; xs]

R ts[as; xs]
%

in the inductive definition we have to analyse one case. The reasoning proceeds
in each of them as follows: By induction hypothesis and side-conditions we have

(∀π C.P C (π·ts1[as; xs])) . . . (∀π C.P C (π·tsn[as; xs])) (13)

S1 ss1[as; xs] . . . Sm ssm[as; xs] (14)

hold. Since % is assumed to be vc-compatible, we have by Lem. 3 that (*)
π·tsi[as; xs] is equal to tsi[π·as;π·xs] in (13). For (14) we can further infer
from the vc-compatibility of % that

(a) as # ts[as; xs] and (b) distinct(as) (15)

hold. We have to show that P C (π·ts[as; xs]) holds, which because of Lem. 3 is
equivalent to P C ts[π·as;π·xs].

The proof proceeds by using Lem. 2 and choosing for every atom a in as a fresh
atom c such that for all the cs the following holds:

(a) cs # ts[π·as;π·xs] (b) cs # π·as (c) cs # C (d) distinct(cs) (16)

Such cs always exists: the first and the second property can be obtained since
the schematic terms ts[π·as;π·xs] and π·as stand for finitely supported objects;
the third can also be obtained since we assumed that the induction context C is
finitely supported; the last can be obtained by choosing the cs one after another
avoiding the ones that have already been chosen.

Barendregt’s Variable Convention in Rule Inductions 11

Now we form the permutation π′ def= (π·as cs) where (π·as cs) stands for the
sequence of swappings (π·a1 c1) . . . (π·aj cj). Since permutations are bijective
renamings, we can infer from (15.b) that distinct(π·as) holds. This and the fact
in (16.d) implies that

π′@π·as = π′·(π·as) = cs (17)

We then instantiate the π in the induction hypotheses given in (13) with π′@π
and obtain using (17) and (*) so that

(∀C.P C ts1[cs;π′@π·xs])) . . . (∀C.P C tsn[cs;π′@π·xs])) (18)

hold. Since the rule % is vc-compatible, we can infer from (14) and the equivari-
ance of the side-conditions that

S1 ss1[cs;π′@π·xs] . . . Sm ssm[cs;π′@π·xs] (19)

hold (we use here the fact that π′@π·(ssi[as; xs]) is equal to ssi[cs;π′@π·xs]).
From (16.c), (18), (19) and the implication from the strong induction principle
we can infer P C ts[cs;π′@π·xs] which by Lem. 3 is equivalent to

P C π′·ts[π·as;π·xs] (20)

From (15.a) we can by Lem. 1(a) infer that π·as # ts[π·as;π·xs] holds. This
however implies by (16.a) and by repeated application of Lem. 1(b) that

π′·ts[π·as;π·xs] = ts[π·as;π·xs] (21)

Substituting this equation into (20) establishes the proof obligation for the rule
%. Provided we analysed all such cases, we have shown R ts ⇒ ∀π C.P C (π·ts).
We obtain our original goal by instantiating π with the identity permutation. ut

5 Examples

We can now apply our technique to the examples from the Introduction.

5.1 Simple Typing

Given the typing relation defined in (2), we must first check the conditions spelt
out in Definition 5. The first condition is that all of the definition’s functions
(namely var , app, lam and ::) and side-conditions (namely valid, ∈ and #) must
be equivariant. This is easily confirmed (see Remark 1). The second condition
requires that all variables in binding positions be distinct (there is just one, the
x in Type3); and that it be fresh for all the terms appearing in the conclusion
of that rule, namely Γ ` lam(x.M) : T1 → T2, under the assumption that the
side-condition, x # Γ , of this rule holds.

In this case, therefore, we must check that x # Γ , x # lam(x.M) and
x # T1 → T2 hold. The first is immediate given our assumption; the second
follows from the definition of support for lambda-terms (x # lam(x.M) for all x
and M); and the third follows from the definition of support for types (we define
permutation on types T as π·T def= T and thus obtain that supp(T) = ∅).

12 Christian Urban, Stefan Berghofer, and Michael Norrish

With these conditions established, Theorem 1 tells us that the strong, or
vc-compatible principle exists, and that it is

∀Γ xT C. valid(Γ) ∧ (x : T) ∈ Γ ⇒ P C Γ (var(x)) T

∀Γ M N T1 T2 C. (∀C. P C Γ M (T1 → T2)) ∧ (∀C. P C Γ N T1) ⇒
P C Γ (app(M,N)) T2

∀Γ xM T1 T2 C. x # Γ ∧ (∀C. P C ((x : T1) ::Γ) M T2) ∧ x # C ⇒
P C Γ (lam(x.M)) (T1 → T2)

Γ `M : T ⇒ P C Γ M T

This principle can now be used to establish the weakening result. The statement
is

Γ `M : T ⇒ Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ `M : T (22)

With the strong induction principle, the formal proof of this statement proceeds
like the informal one given in the Introduction. There, in the Type3 case, we
used the variable convention to assume that the bound x was fresh for Γ ′. Given
this information, we instantiate the induction context C in the strong induction
principle with Γ ′ (which is finitely supported). The complete instantiation of the
vc-compatible induction principle is

P = λΓ M T Γ ′. Γ ⊆ Γ ′ ⇒ valid(Γ ′)⇒ Γ ′ `M : T
C = Γ ′ Γ = Γ M = M T = T

which after some beta-contractions gives us the statement in (22). The induction
cases are then as follows (stripping off the outermost quantifiers):

(1) valid(Γ) ∧ (x : T) ∈ Γ ⇒ Γ ⊆ Γ ′ ⇒ valid(Γ ′)⇒ Γ ′ ` var(x) : T

(2) (∀Γ ′′. Γ ⊆ Γ ′′ ⇒ valid(Γ ′′)⇒ Γ ′′ `M1 : T1 → T2) ∧
(∀Γ ′′. Γ ⊆ Γ ′′ ⇒ valid(Γ ′′)⇒ Γ ′′ `M2 : T1) ⇒
Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ ` app(M1,M2) : T2

(3) (∀Γ ′′. (x : T1) ::Γ ⊆ Γ ′′ ⇒ valid(Γ ′′) ⇒ Γ ′′ `M : T2) ∧ x # Γ ′ ⇒
Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ ` lam(x.M) : T1 → T2

The first two cases are trivial. For (3), we instantiate Γ ′′ in the induction
hypothesis to be (x : T1) :: Γ ′. From the assumption Γ ⊆ Γ ′ we have (x :
T1) :: Γ ⊆ (x : T1) :: Γ ′. Moreover from the assumption valid(Γ ′) we also have
valid((x : T1) ::Γ ′) using the variable convention’s x # Γ ′. Hence we can derive
(x : T1) ::Γ ′ ` M : T2 using the induction hypothesis. Now applying rule Type3

we can obtain Γ ′ ` lam(x.M) : T1 → T2, again using the variable convention’s
x # Γ ′. This completes the proof. Its readable version expressed in Isabelle’s
Isar-language [12] and using the nominal datatype package [9] is shown in Fig. 1.

By way of contrast, recall that a proof without the stronger induction princi-
ple would not be able to assume anything about the relationship between x and
Γ ′, forcing the prover to α-convert lam(x.M) to a form with a new and suitably
fresh bound variable, lam(z.((z x)·M)), say. At this point, the simplicity of the
proof using the variable convention disappears: the inductive hypothesis is much
harder to show applicable because it mentions M , but the desired goal is in
terms of (z x)·M .

Barendregt’s Variable Convention in Rule Inductions 13

lemma weakening :
assumes a1: Γ ` M :T and a2: Γ ⊆ Γ ′ and a3: valid Γ ′

shows Γ ′ ` M :T
using a1 a2 a3

proof (nominal-induct Γ M T avoiding : Γ ′ rule: strong-typing-induct)
case (Type3 x Γ T 1 T 2 M)
have vc: x#Γ ′ by fact — variable convention
have ih: (x :T 1)::Γ⊆(x :T 1)::Γ ′=⇒valid ((x :T 1)::Γ ′)=⇒(x :T 1)::Γ ′̀ M :T 2 by fact
have Γ ⊆ Γ ′ by fact
then have (x :T 1)::Γ ⊆ (x :T 1)::Γ ′ by simp
moreover
have valid Γ ′ by fact
then have valid ((x :T 1)::Γ ′) using vc by (simp add : valid-cons)
ultimately have (x :T 1)::Γ ′ ` M :T 2 using ih by simp
with vc show Γ ′ ` lam(x .M) : T 1 → T 2 by auto

qed (auto) — cases Type1 and Type2

Fig. 1. A readable Isabelle-Isar proof for the weakening lemma using the strong in-
duction principle of the typing relation. The stronger induction principle allows us
to assume a variable convention, in this proof x # Γ ′, which makes the proof to go
through without difficulties.

5.2 Parallel Reduction

In [2], the central lemma of the proof for the Church-Rosser property of beta-
reduction is the substitutivity property of the −→1−→-reduction. To formalise this
proof while preserving the informal version’s simplicity, we will need the strong
induction principle for −→1−→.

Before proceeding, we need two important properties of the substitution func-
tion, which occurs in the redex rule One4. We characterise the action of a per-
mutation over a substitution (showing that substitution is equivariant), and
the support of a substitution. Both proofs are by straightforward vc-compatible
structural induction over M :

π·(M [x := N]) = (π·M)[(π·x) := (π·N)] (23)

supp(M [x := N]) ⊆ (supp(M)− {x}) ∪ supp(N) (24)

With this we can start to check the vc-compatibility conditions: the condition
about equivariance of functions and side-conditions is again easily confirmed. The
second condition is that bound variables are free in the relation’s rules’ conclu-
sions. In rule One2, this is trivial because y # lam(y.M) and y # lam(y.M ′)
hold. A problem arises, however, with rule One4. Here we have to show that
y # app(lam(y.M), N) and y # M ′[y := N ′], and we have no assumptions to
hand about y.

It is certainly true that y is fresh for lam(y.M), but it may occur in N . As for
the term M ′[y := N ′], we know that any occurrences of y in M ′ will be masked
by the substitution (see (24)), but y may still be free in N ′.

14 Christian Urban, Stefan Berghofer, and Michael Norrish

We need to reformulate One4 to read

y # N y # N ′ M −→1−→M ′ N −→1−→ N ′

app(lam(y.M), N) −→1−→M ′[y := N ′]
One′′

4

so that the vc-compatibility conditions can be discharged. In other words, if we
have rule One′′4 we can apply Theorem 1, but not if we use One4. This is annoying
because both versions can be shown to define the same relation, but we have
no general, and automatable, method for determining this. For the moment, we
reject rule One4 and require the user of the nominal datatype package to use
One′′4 . If this is done, the substitutivity lemma is almost automatic:

lemma substitutivity-aux :
assumes a: N−→1N

′

shows M [x :=N] −→1 M [x :=N ′]
using a by (nominal-induct M avoiding : x N N ′ rule: strong-lam-induct) (auto)

lemma subtitutivity :
assumes a1: M−→1M

′ and a2: N−→1N
′

shows M [x :=N]−→1M
′[x :=N ′]

using a1 a2 by (nominal-induct M M ′ avoiding : N N ′ x rule: strong-parallel-induct)
(auto simp add : substitutivity-aux substitution-lemma fresh-atm)

The first lemma is proved by a vc-compatible structural induction over M ; the
second, the actual substitutivity property, is proved by a vc-compatible rule
induction relying on the substitution lemma, and the lemma fresh-atm, which
states that x # y is the same as x 6= y when y is an atom.

6 Related Work

Apart from our own preliminary work in this area [10], we believe the prettiest
formal proof of the weakening lemma to be that in Pitts [8]. This proof uses
the equivariance property of the typing relation, and includes a renaming step
using permutations. Because of the pleasant properties that permutations enjoy
(they are bijective renamings, in contrast to substitutions which might identify
two names), the renaming can be done with relatively minimal overhead. Our
contribution is that we have built this renaming into our vc-compatible induction
principles once and for all. Proofs using the vc-compatible principles then do not
need to perform any explicit renaming steps.

Somewhat similar to our approach is the work of Pollack and McKinna [6].
Starting from the standard induction principle that is associated with an induc-
tive definition, we derived an induction principle that allows emulation of Baren-
dregt’s variable convention. Pollack and McKinna, in contrast, gave a “weak”
and “strong” version of the typing relation. These versions differ in the way the
rule for abstractions is stated:

x # M (x : T1) :: Γ `M [y := x] : T2

Γ ` lam(y.M) : T1 → T2
weak

∀x. x # Γ ⇒ (x : T1) :: Γ `M [y := x] : T2

Γ ` lam(y.M) : T1 → T2

strong

Barendregt’s Variable Convention in Rule Inductions 15

They then showed that both versions derive the same typing judgements. With
this they proved the weakening lemma using the “strong” version of the princi-
ple, while knowing that the result held for the “weak” relation as well. The main
difference between this and our work seems to be of convenience: we can rela-
tively easily derive, in a uniform way, an induction principle for vc-compatible
relations (we have illustrated this point with two examples). Achieving the same
uniformity in the style of McKinna and Pollack does not seem as straightforward.

7 Future Work

Our future work will concentrate on two aspects: first on generalising our defini-
tion of schematic rules so that they may, for example, include quantifiers. Second
on being more liberal about which variables can be included in the induction
context. To see what we have in mind with this, recall that we allowed in the
induction context only variables that are in binding position. However there are
examples where this is too restrictive: for example Crary gives in [4, Page 231]
the following mutual inductive definition for the judgements Γ ` s ⇔ t : T
and Γ ` p ↔ q : T (they represent a type-driven equivalence algorithm for
lambda-terms with constants):

s ⇓ p t ⇓ q Γ ` p↔ q : T

Γ ` s⇔ t : b
Ae1

(x : T1) ::Γ ` s x⇔ t x : T2

Γ ` s⇔ t : T1 → T2
Ae2

Γ ` s⇔ t : unit
Ae3

(x : T) ∈ Γ
Γ ` x↔ x : T

Pe1

Γ ` p↔ q : T1 → T2 Γ ` s↔ t : T1

Γ ` p s↔ q t : T2
Pe2

Γ ` k ↔ k : b
Pe3

What is interesting is that these rules do not contain any variable in binding
position. Still, in some proofs by induction over those rules one wants to be
able to assume that the variable x in the rule Ae2 satisfies certain freshness
conditions. Our implementation already deals with this situation by explicitly
giving the information that x should appear in the induction context. However,
we have not yet worked out the theory.

8 Conclusion

In the POPLmark Challenge [1], the proof of the weakening lemma is described
as a “straightforward induction”. In fact, mechanising this informal proof is not
straightforward at all (see for example [6, 5, 8]). We have given a novel rule
induction principle for the typing relation that makes proving the weakening
lemma mechanically as simple as performing the informal proof.

Importantly, this new principle can be derived from the original inductive
definition of the typing relation in a mechanical way. This method extends our
earlier work [10, 7], where we constructed our new induction principles by hand.
By formally deriving principles that avoid the need to rename bound variables,
we advance the state-of-the-art in mechanical theorem-proving over syntax with
binders. The results of this paper have already been used many times in the
nominal datatype package: for example in the proofs of the CR and SN properties

16 Christian Urban, Stefan Berghofer, and Michael Norrish

in the λ-calculus, in proofs about the pi-calculus, in proofs about logical relations
and in several proofs from structural operational semantics.

The fact that our technique may require users to cast some inductive defi-
nitions in alternative forms is unfortunate. In the earlier [10], our hand-proofs
correctly derived a vc-compatible principle from the original definition of −→1−→;
we hope that future work will automatically justify comparable derivations.
Acknowledgements We are very grateful to Andrew Pitts for the many dis-
cussions with him on the subject of this paper.

References

1. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized Metathe-
ory for the Masses: The PoplMark Challenge. In Proc. of the 18th International
Conference on Theorem Proving in Higher-Order Logics (TPHOLs), volume 3603
of LNCS, pages 50–65, 2005.

2. H. Barendregt. The Lambda Calculus: its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1981.

3. J. Bengtson and J. Parrow. Formalising the pi-Calculus using Nominal Logic. In
Proc. of the 10th International Conference on Foundations of Software Science and
Computation Structures (FOSSACS), volume 4423 of LNCS, pages 63–77, 2007.

4. K. Crary. Advanced Topics in Types and Programming Languages, chapter Logical
Relations and a Case Study in Equivalence Checking, pages 223–244. MIT Press,
2005.

5. J. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Prov-
ing. Harper & Row, 1986.

6. J. McKinna and R. Pollack. Some type theory and lambda calculus formalised.
Journal of Automated Reasoning, 23(1-4), 1999.

7. M. Norrish. Mechanising λ-calculus using a classical first order theory of terms
with permutation. Higher-Order and Symbolic Computation, 19:169–195, 2006.

8. A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding. Infor-
mation and Computation, 186:165–193, 2003.

9. C. Urban and S. Berghofer. A Recursion Combinator for Nominal Datatypes
Implemented in Isabelle/HOL. In Proc. of the 3rd International Joint Conference
on Automated Reasoning (IJCAR), volume 4130 of LNAI, pages 498–512, 2006.

10. C. Urban and M. Norrish. A formal treatment of the Barendregt Variable Conven-
tion in rule inductions. In MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN
workshop on Mechanized reasoning about languages with variable binding, pages
25–32, New York, NY, USA, 2005. ACM Press.

11. C. Urban and C. Tasson. Nominal techniques in Isabelle/HOL. In Proc. of the
20th International Conference on Automated Deduction (CADE), volume 3632 of
Lecture Notes in Computer Science, pages 38–53, 2005.

12. M. Wenzel. Isar — A Generic Interpretative Approach to Readable Formal Proof
Documents. In Proc. of the 12th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs), number 1690 in LNCS, pages 167–184, 1999.

