Local Theories

Makarius Wenzel TU München

August 2009

Motivation

- Infrastructure for organizing definitions and proofs
- Separation of concerns:
 - 1. definitional packages (e.g. inductive, function)
 - 2. target mechanisms (e.g. locale, class)
 - \rightarrow large product space: *definitions* \times *targets*
- Simplification and generalization of Isabelle/Isar concepts

Context-dependent definitions

	λ -binding	<i>let</i> -binding
types	fixed α	arbitrary eta
terms	fix x	define $c \equiv b x$
theorems	assume $A x$	note $c = \langle A \ x \vdash B \ x \rangle$

Note: clear separation of axiomatic vs. definitional specifications

Hindley-Milner polymorphism:

- Assumptions: fixed types
 fix id :: α ⇒ α
 assume id-def: id ≡ λx :: α. x
- Conclusions: arbitrary types
 define id ≡ λx :: β. x (for arbitrary β)
 note refl = ⟨Λx :: β. x = x⟩ (for arbitrary β)

Examples

See Slides3/Ex1.thy

Local theory infrastructure

theorybackground environment (abstract certificate)contextmain working environment (contains theory)local-theoryauxiliary-context × target-context+ interpretation of specification elements

Standard interpretation: λ -lifting (over fix x assume A x)

define $c \equiv b x$ $loc.c \equiv thy.c x$ $thy.c \equiv \lambda x. b x$ **note** $c = \langle A \ x \vdash B \ x \rangle$ $loc.c = \langle A \ x \vdash B \ x \rangle$ $thy.c = \langle \bigwedge x. A \ x \Longrightarrow B \ x \rangle$

Morphisms

- Idea: moving formal entities between contexts
- Logical transformations: for *type*, *term*, *thm*
 - transform-type: morphism \rightarrow type \rightarrow type transform-term: morphism \rightarrow term \rightarrow term transform-thm: morphism \rightarrow thm \rightarrow thm

Arbitrary transformations: for $morphism \rightarrow \alpha$

transform: morphism \rightarrow (morphism $\rightarrow \alpha$) \rightarrow (morphism $\rightarrow \alpha$) transform $\varphi f \equiv \lambda \psi$. $f (\psi \circ \varphi)$

form: $(morphism \to \alpha) \to \alpha$ form $f \equiv f$ identity

Generic declarations

	λ -binding	<i>let</i> -binding
types	fixed α	arbitrary eta
terms	fix x	define $c \equiv b x$
theorems	assume $A x$	note $c = \langle A \ x \vdash B \ x \rangle$
data		declaration $\ll d \gg$

where $d: morphism \rightarrow (context \rightarrow context)$

Note:

- System transforms data declaration functions, not data
- User receives morphism on types/terms/theorems, and applies it to his aggregated data

Examples

See Slides3/Ex2.thy