
Types

in Programming Languages (6)

Christian Urbanhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 29. November 2006 – p.1 (1/1)



Story So Far
We started with a simple expression language where
every expression (if it is typable at all) has a unique
type.

There are functions (identity functions, sorting, list
operations) which are the same for any type:�x:x : T ) T�x:x : (T ) T )) (T ) T )

Therefore we considered polymorphism and
type-schemes.

Munich, 29. November 2006 – p.2 (1/1)



Story So Far
We studied a simple language of types and
expressions:T ::= X type variablesj T ! T function types

e ::= x variablesj e e applicationsj �x:e lambda-abstractionsj let x = e in e lets

We looked at two algorithms that given a (valid)
context and an expression, calculate the type (if
there exists one); they even calculated a principal
type scheme for a typable expression.

Munich, 29. November 2006 – p.3 (1/1)



Story So Far
Type-safety is then the combination of the
preservation and progress property.

Preservation:
If ? ` e : T and e �! e0 then ? ` e0 : T

Progress:
If ? ` e : T then either there exists an e0 withe �! e0, or e is a value.

Munich, 29. November 2006 – p.4 (1/3)



Story So Far
Type-safety is then the combination of the
preservation and progress property.

Preservation:
If ? ` e : T and e + v then ? ` v : T
“Progress”:
If ? ` e : T then either there exists a v such
that e + v.

Munich, 29. November 2006 – p.4 (2/3)



Story So Far
Type-safety is then the combination of the
preservation and progress property.

Preservation:
If ? ` e : T and e + v then ? ` v : T
“Progress”:
If ? ` e : T then either there exists a v such
that e + v.

In order to establish them we need to do several
proofs by induction (some of them are quite tricky).

Munich, 29. November 2006 – p.4 (3/3)



Motivation
Type-systems and type-safety are designed
to prevent things like:

union {
float f;
int i;

} unsafe union

unsafe union.f = 1.5
printf (”%d”, unsafe union.i)

Munich, 29. November 2006 – p.5 (1/1)



Failures
Sometimes functions need to indicate that
they fail and have to handle failure.

e ::= : : :j error error valuej try e1 with e2 error handling

valid�� ` error : T � ` e1 : T � ` e2 : T� ` try e1 with e2 : T

Munich, 29. November 2006 – p.6 (1/1)



Failures
Evaluation rules:

e1 + errore1 e2 + error

e2 + errore1 e2 + errore1 + v
try e1 with e2 + v

e1 + error e2 + v

try e1 with e2 + v

Munich, 29. November 2006 – p.7 (1/1)



Failure
Preservation and progress in the presence of
errors

Preservation:
If ? ` e : T and e �! e0 then? ` e0 : T

Progress:
If ? ` e : T then either there exists
an e0 with e �! e0, or e is a value, or e

is an error.

Munich, 29. November 2006 – p.8 (1/1)



Extending the Language
Adding new types, such as unit, nat, T listT � T , does not pose any difficulties.

Same with simple expressions such as

0, 1, 2. . .
nil, e1 :: e2(e1; e2)

Difficulties arose with references - the
näıve approach leads to problems in the
let-rule. We needed to impose a restriction.

Munich, 29. November 2006 – p.9 (1/1)



Recursion
In a real programming language we need
non-termination

e ::= : : :j fix e fixed point

The following abbreviation is useful:

letrec x = e1 in e2 def=
let x = fix(�x:e1) in e2

Munich, 29. November 2006 – p.10 (1/1)



Recursion
Typing rule for recursions

� ` e : T ! T� ` fix e : T
We specify the behaviour of recursion by
reduction

fix (�x:e) �! e[x := fix (�x:e)℄

e �! e0

fix e �! fix e0

Munich, 29. November 2006 – p.11 (1/1)



Kinds of Polymorphism
So far we considered parametric polymorphism:

Functions can be used at different type, but they
have to be independent of the type.

This allows one to forget about types during run-time
(in theory — in practice one can at least minimise the
need of types, an example is equality).

Ad-hoc polymorphism allows function to compute
differently at different type (for example + over
integers and reals). Here we have coercions and
overloading.

Munich, 29. November 2006 – p.12 (1/1)



Subtyping
We write T <: T 0 to indicate that T is a
subtype of T 0.
If T <: T 0, then whenever an expression of
type T 0 is needed then we can use an
expression of type T .

� ` e : T T <: T 0� ` e : T 0

General principles of subtyping:

T <: T T1 <: T2 T2 <: T3T1 <: T3Munich, 29. November 2006 – p.13 (1/1)



Subtyping
If T <: T 0, then an expression of type T
can be coerced to be an expression of typeT 0 (in a unique way).

Problem with uniqueness: assume

int <: string, int <: real, real <:string
Then 3 can be coerced to a string like3 7! "3"3 7! 3:0 and 3:0 7! "3:0"

We require coherence - only a unique way.
Munich, 29. November 2006 – p.14 (1/1)



Other Types
Products (clear)T1 <: S1 T2 <: S2T1 � T2 <: S1 � S2
Functions (not so clear)

int ! int <: int ! real

and

real ! int <: int ! int

Therefore S1 <: T1 T2 <: S2T1 ! T2 <: S1 ! S2

Munich, 29. November 2006 – p.15 (1/1)



Co/Contra-Variance
Function types S1 <: T1 T2 <: S2T1 ! T2 <: S1 ! S2

are contra-variant in their arguments, and

co-variant in their result

Lists can be co-variant:T1 <: T2T1 list <: T2 list
Munich, 29. November 2006 – p.16 (1/1)



Interesting Cases
In order to maintain type-safety, references cannot
be co- or contra-variant, but have to be non-variant.
We achieve this by:T1 <: T2 T2 <: T1T1 ref <: T2 ref
Similarly, arrays:T1 <: T2 T2 <: T1T1 array <: T2 array
but Java allows (a flaw in the design):T1 <: T2T1 array <: T2 array

Munich, 29. November 2006 – p.17 (1/1)



Formal Matters
More formally we have:

Types:T ::= X type variablesj T ! T function typesj Top super-type for everything

Terms: e ::= x variablesj e e applicationsj �x:e lambda-abstractions

Munich, 29. November 2006 – p.18 (1/1)



Subtyping Judgement
We have contexts � of (type-variable,type)-pairs.

Valid contexts are:

valid ? valid � X 62 dom �
valid (X <: T );�

Subtyping judgements:

valid �� ` T <: Top Top valid �� ` X <: X Refl

(X <: S) 2 � � ` S <: T� ` X <: T Trans

� ` S1 <: T1 � ` T2 <: S2� ` T1 ! T2 <: S1 ! S2 Funs
Munich, 29. November 2006 – p.19 (1/1)



Properties
Given

valid �� ` T <: Top Top valid �� ` X <: X Refl

(X <: S) 2 � � ` S <: T� ` X <: T Trans

� ` S1 <: T1 � ` T2 <: S2� ` T1 ! T2 <: S1 ! S2 Funs

Do we have reflexivity:� ` T <: T

What about transitivity:

If � ` T1 <: T2 and � ` T2 <: T3 then � ` T1 <: T3.
Munich, 29. November 2006 – p.20 (1/1)



Simple Type-System
Variables

valid � valid � (x : T ) 2 ��;� ` x : T
Applications�; � ` e1 : T1 ! T2 �; � ` e2 : T1�; � ` e1 e2 : T2
Lambdas�;x : T1; � ` e : T2 x 62 dom��; � ` �x:e : T1 ! T2

Subtyping�;� ` e : T 0 � ` T 0 <: T�;� ` e : T

Munich, 29. November 2006 – p.21 (1/1)



Typing Problem
Given contexts � and � , and an expressione what should the subtyping algorithm
calculate?

Munich, 29. November 2006 – p.22 (1/3)



Typing Problem
Given contexts � and � , and an expressione what should the subtyping algorithm
calculate?

Returning Top is probably not a good idea.

Munich, 29. November 2006 – p.22 (2/3)



Typing Problem
Given contexts � and � , and an expressione what should the subtyping algorithm
calculate?

Returning Top is probably not a good idea.

We like to have a minimal type (according to
the subtyping relation).

Munich, 29. November 2006 – p.22 (3/3)



Possible Question
What should the subtyping rule(s) look like
for records?

Explain what is meant by capture-avoiding
substitution.

Give a definition for what it means when �

unifies T and S.

Munich, 29. November 2006 – p.23 (1/1)



More Next Week
Slides at the end ofhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where you
can complain anonymously.

You can say whether the lecture was too
easy, too quiet, too hard to follow, too
chaotic and so on. You can also comment on
things I should repeat.

Munich, 29. November 2006 – p.24 (1/1)


	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (6)\
end {tabular}
	�egin {tabular}{@{}c@{}}Story So Farend {tabular}
	�egin {tabular}{@{}c@{}}Story So Farend {tabular}
	�egin {tabular}{@{}c@{}}Story So Farend {tabular}
	�egin {tabular}{@{}c@{}}Motivationend {tabular}
	�egin {tabular}{@{}c@{}}Failuresend {tabular}
	�egin {tabular}{@{}c@{}}Failuresend {tabular}
	�egin {tabular}{@{}c@{}}Failureend {tabular}
	�egin {tabular}{@{}c@{}}Extending the Languageend {tabular}
	�egin {tabular}{@{}c@{}}Recursionend {tabular}
	�egin {tabular}{@{}c@{}}Recursionend {tabular}
	�egin {tabular}{@{}c@{}}Kinds of Polymorphismend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Other Typesend {tabular}
	�egin {tabular}{@{}c@{}}Co/Contra-Varianceend {tabular}
	�egin {tabular}{@{}c@{}}Interesting Casesend {tabular}
	�egin {tabular}{@{}c@{}}Formal Mattersend {tabular}
	�egin {tabular}{@{}c@{}}Subtyping Judgementend {tabular}
	�egin {tabular}{@{}c@{}}Propertiesend {tabular}
	�egin {tabular}{@{}c@{}}Simple Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Typing Problemend {tabular}
	�egin {tabular}{@{}c@{}}Possible Questionend {tabular}
	�egin {tabular}{@{}c@{}}More Next Weekend {tabular}

