Quiz?

Assuming that a and b are distinct variables, is
it possible to find A-terms M, to My that
make the following pairs a-equivalent?

B )\a.\b.(M;b) and Ab.Aa.(a M;)

B )\a.\b.(Mj3b) and Ab.Aa.(a M3y)

B \a.\b.(bM;) and Ab.\a.(a Mj;)

B )\a.\b.(b Mg) and Aa.Aa.(a My)

If there is one solution for a pair, can you de-
scribe all its solutions?
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Nominal Techniques
In Isabelle/HOL (Il):

Alpha-Equivalence Classes

based on work by Andy Pitts

joint work with Stefan, Markus,
Alexander. ..
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Recap (l): a-Equivalence

The following rules define a-equivalence on
lambda-term (syntax-trees):

ti1 = s1 to = s
1 1 U2 2 ~-app

~-at
a~a " t1ts =~ S71 89

} o~ s . t =~ (ab)es a%]‘:v(s)wl
Aa.t =~ \a.s ™ \a.t =~ \b.s ~oam

assuming a # b
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Recap (Il): Support and
Freshness

The support of an object « : ¢ is a set of
atoms o

supp, = = {a | infinite{b | (a b)ez # x}}

An atom is fresh for an x, if it is not in the
support of x:

a # x ELLPA & supp,, ()

I often drop the a in supp,, .
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Nominal Abstractions

We are now going to specify what abstraction
‘abstractly’ means: it is an operation
[_].(_) : @ = ¢ = ¢ which has to satisfy:

B re(lal.x) = [meal.(mex)

B a].x = [bl.yiff
(a=bANx=1y)V
(a ZbAx = (ab)ey N\ a # y)

B these two properties imply for finitely
supported x

supp(|a].z) = supp(x) — {a}

Munich, 15. February 2006 - p.5 (1/3)



‘Remember the definition of ai-equivalence from
the beginning:
t1 = to a # b i1 =~ (a b).tz a€fv(t2)
. )\a.tl ~ Aa.tz )\a.tl ~ Ab.tg
W7 e([A].T) = [eqa].(TeL)
B a].x = [bl.yiff
(a=bANx=1y)V
(@ #bAx=(ab)eyAa#y)

B these two properties imply for finitely
supported x

supp(|a].z) = supp(x) — {a}
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Freshness and Abstractions

Given pt,,,, finite(supp ) and a # b then
a # x iff a # [b].x

Proof. There exists a c with ¢ # (a, b, x, [b].x).
(<) From a # [b].x and ¢ # [b].x
b].x = (ac)«(|b].x) = [b].(ac)x
Hence * = (a c)ex. Now from c # «:
cHx < (ac)ec # (ac)ex & a # x




Freshness and Abstractions

Given pt,,,, finite(supp ) and a # b then
a # x iff a # [b].x

Proof. There exists a c with ¢ # (a, b, x, [b].x).

(=) From ¢ # |b].x we also have
(ac)ec # (ac)e|bl.x

and
a # [bl.(ac)ex

Because a # x and c # x, (ac)ex = .



Freshness and Abstractions

We also have
a # |al.x

Again from ¢ # (a, x, [a].x) we can infer

c # lal.x & (ac)ec # (ac)e|al.x
& a F# [cl.(ac)ex.

lcl.(ac)ex = |a].x

(since ¢ # a, [c].(ac)ex = [a].x
iff (ac)ex = (ac)e m/\c#m)

However:



Freshne

We alsc

Again f
C 7

Howeve

e
So we have shown that

a+b a#x
a # |bl.x a # |al.x

and

a # x ' a Z supp(x)

therefore

tions

_supp(la].x) = supp(x) — {a}

[C]- N CJ¥®L — [UJ..L

(since ¢ #£ a,.[c].(a c)ex = |a].x
iff (ac)ex = (ac)ex A c # x)
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Nominal Abstractions

We have specified what abstraction
‘abstractly’ means by an operation
[ ].(1) : @« = ¢ = ¢ which satisfies:
B re(lal.x) = [meal.(mex)
B a].x = [bl.y iff
(a=bANx=1y)V
(a ZbAx = (ab)ey N\ a # y)

'Are there any structures that satisfy these
properties? Are there any structures that are
“supported” in Isabelle/HOL?
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Possibllities
B «-equivalence classes (sets of syntax
trees), e.g.[Aa.(a ¢)|o = [Ab.(b ¢)],

B terms with de-Bruijn indices and named
free variables, like A(1 c).
(you need a function abs which
"abstracts” a variable:

abs(x,t) — X(...))
B a weak HOAS encoding (lambdas as

functions — the function for Aa.(a c)
will be the same as the one for Ab.(b c))

Remember the user will only see the "axioms”
from the previous slide.
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Possibilities
B o-equivalence classes (sets of syntax
trees), e.g.|Aa.(a ¢)|o = [Ab.(b ¢)].
B tferms wu’rh de-Bruijn indices and hamed
. N /(1 )\
‘I could now stop here (this is all known),
and probably go for a-equivalence

classes (Norrish did this with the help
of a package by Hohmeier for HOL4),

® (but T do not :o
LW IITZ)ILIITCITUTI I Ul /\'CLTFCL l,}

will be the same as the one for Ab.(b c))

Remember the user will only see the "axioms”
from the previous slide.

(|
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Function |al.t ‘=" [Aa.t]|

a).t CAb.if a = b

then Some(t)
else if b # t then Some((ba)et) else None)

type: a — ¢ option
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Function |al.t ‘=" [Aa.t]|

a).t CAb.if a = b
| then Some(t)
else if b # t then Some((ba)et) else None)

‘This is supposed to stand for the |
a-equivalence class of Aa.t.
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Function |al.t ‘=" [Aa.t]|

a).(a,c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):
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Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a =b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):
a 'applied to' [a].(a, ¢) 'gives’ Some(a, c)
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Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):

a 'app
b ‘app
c ‘app

ied 1o’
ied 1o’
ied 1o’

-a-
a
a

.(a, c) 'gives' Some(a, c)
.(a, c) 'gives' Some(b, c)
.(a, c) 'gives’ None
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Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a =b
then Some(a, c)
else if b # (a,c)

then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):

a 'app
b ‘app
c ‘app
d ‘app

ied o'
ied o'
ied o'
ied to'

ERERERE

.(a, c) ‘'gives’ Some(a,c) 'Aa.(ac)
.(a, c) 'gives’ Some(b,c) ‘Ab.(bc)
.(a, c) 'gives’ None

.(a, c) 'gives’ Some(d,c) ‘Ad.(dc)
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Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Le}'mm_s for [a].(a, c); %([)\a-(a )]ai

a 'applied to' [a].(a, c) ‘gives’ Some(a, c) | 'Aa.(a c)’
b 'applied to' [a].(a, c) 'gives’ Some(b,c) | ‘Ab.(bc)’
c 'applied to' [a].(a, c) 'gives’ None

ied to' [a].(a, c) 'gives' Some(d, ¢)

d ‘app

'Ad.(d c)’

\. J
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Nominal Datatypes

We define inductively a-equivalence classes of
lambda-terms—but they still have names.
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Nominal Datatypes

We define inductively ai-equivalence classes of
lambda-terms—but they still have names.

small-set

\

@( bijection

'big set is a standard datatype:
trm :=Var : «

| App : trm X trm

| Lam: o — trm option

J

big-set
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Definition of Small-Set

@( bijection \)

t::= Var(a)

App(t1,ta)
Lam [a].t




Definition of Small-Set

@( bijection \)

ti € A, ty € A,
Var(a) € A, App(ti1,t2) € Aqg
t € A,
Lam [a].t € A,
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Definition of Small- Set

'Which also means that we have a
familiar induction principle in

place for A, (in a moment). And
all terms in A, have finite
support.

>

J

\/

tlEAa t2€Aa

VClI"(CL) - Aa App(tl, tz) & Aa

t € A,
Lam [a].t € A,
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Definition of Small- Set

'Which also means that we have a
familiar induction principle in >

place for A, (in a moment). And
all terms in A, have finite
support.

J

\/

- supp(Var(a)) = {a}
supp(App(t1,t2)) = supp(tl,t2)
- supp(Lam [a].t) = supp([a].t) = supp(t) — {a}

U \_ .l..l.a

Lam [a].t € A,
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Bljection
In order to show that A/~ and A, are

bijective we define a function g from A to Ag:

gla) ¥ var(a)
g(t1ts) = App(g(tr), q(ts))

q(a.t) ' Lam la].q(t)

with the property
t1 =tz & q(t1) = q(t2)
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Struct. Induction on A,

tl S~ Aa t2 c Aa
Var(a) € A,  App(ti,t3) € Aq,
t € Ag
Lam [a].t € A,

Structural Induction Principle:
Va. P (Var(a))
\V/tl, to. Ptl = Ptz — P (App(tl, tz))

Va,t. Pt = P (Lam [a].t)
Vt. Pt
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Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is a variable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = Az.M;. By the variable convention we may assume
that z £ @,y and z is not free in IN, L. Then by induction hypothesis

(Az.M,)[x := N[y := L]
Az.(M;|x := Nl|y := L])

Az.(Mily := L][z := N[y := L]])
(Az.M;)[y := L][x := N[y := L]].

e Case 3: M = M Ms,. The statement follows again from the mduc-
tion hypothesis. X
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Outlook

B nominal induction-principles (over nominal
datatypes and inductive definitions)

B why the present version of the axiomatic
type-classes are fairly unwieldy for this
work

B functions over nominal datatypes (what

are the conditions that allow a definition
by "recursion” over ai-equivalence classes)

(Vara)[b:=s] = ifa = bthenselse(Vara)
(App tq tz) b pp— 8 — App (tl [b e S]) (tz[b —
(Lam [a].t)[b:=s] = Lam|[al.(t[b := s])

provided a # (b, s)
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Outlook

B nominal induction-principles (over nominal
datatypes and inductive definitions)

B why the present version of the axiomatic
.’, | | LI L r " | ‘
{

W http://isabelle.in.tum.de/nominal/
{ Mailing List: L

2S
https://mailbroy.informatik.tu-muenchen.de/cgi- )
g bin/mailman/listinfo/nominal-isabelle J(Var a)

(App tq tg)[b pp— S] App (tl [b e S]) (tg[b —
(Lam [a].t)[b := s] Lam [q].(t[b := s])
provided a # (b, s)
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Nominal Datatype Package:




Outlook

B nominal induction-principles (over nominal
datatypes and inductive definitions)

B why the present version of the axiomatic
type-classes are fairly unwieldy for this
work

] funcj The E nd ? \wha’r

are t hition
1= e | classes)

by "r

(Vara)[b:=s|] = ifa = bthenselse(Vara)
(Apptitz)[b:=s] = App (t1[b:= s]) (t2[b:=s
(Lam [a].t)[b := s] = Lam[a].(t[b := s])

provided a # (b, s)
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