Quiz?

Assuming that a and b are distinct variables, is
it possible to find A-terms M, to My that
make the following pairs a-equivalent?

B)\a.\b.(M;b) and Ab.Aa.(a M;)

B)\a.\b.(Mj3b) and Ab.Aa.(a M3y)

B \a.\b.(bM;) and Ab.\a.(a Mj;)

B)\a.\b.(b Mg) and Aa.Aa.(a My)

If there is one solution for a pair, can you de-
scribe all its solutions?

Munich, 15. February 2006 - p.1 (1/1)

Nominal Techniques
In Isabelle/HOL (Il):

Alpha-Equivalence Classes

based on work by Andy Pitts

joint work with Stefan, Markus,
Alexander. ..

Munich, 15. February 2006 - p.2 (1/1)

Recap (l): a-Equivalence

The following rules define a-equivalence on
lambda-term (syntax-trees):

ti1 = s1 to = s
1 1 U2 2 ~-app

~-at
a~a " t1ts =~ S71 89

} o~ s . t =~ (ab)es a%]‘:v(s)wl
Aa.t =~ \a.s ™ \a.t =~ \b.s ~oam

assuming a # b

Munich, 15. February 2006 - p.3 (1/1)

Recap (Il): Support and
Freshness

The support of an object « : ¢ is a set of
atoms o

supp, = = {a | infinite{b | (a b)ez # x}}

An atom is fresh for an x, if it is not in the
support of x:

a # x ELLPA & supp,, ()

I often drop the a in supp,, .

Munich, 15. February 2006 - p.4 (1/1)

Nominal Abstractions

We are now going to specify what abstraction
‘abstractly’ means: it is an operation
[_].(_) : @ = ¢ = ¢ which has to satisfy:

B re(lal.x) = [meal.(mex)

B a].x = [bl.yiff
(a=bANx=1y)V
(a ZbAx = (ab)ey N\ a # y)

B these two properties imply for finitely
supported x

supp(|a].z) = supp(x) — {a}

Munich, 15. February 2006 - p.5 (1/3)

‘Remember the definition of ai-equivalence from
the beginning:
t1 = to a # b i1 =~ (a b).tz a€fv(t2)
.)\a.tl ~ Aa.tz)\a.tl ~ Ab.tg
W7 e([A].T) = [eqa].(TeL)
B a].x = [bl.yiff
(a=bANx=1y)V
(@ #bAx=(ab)eyAa#y)

B these two properties imply for finitely
supported x

supp(|a].z) = supp(x) — {a}

Munich, 15. February 2006 - p.5 (2/3)

Nominal Abstractions

We are now going to specify what abstraction
‘abstractly’ means: it is an operation
[_].(_) : @ = ¢ = ¢ which has to satisfy:

B re(lal.x) = [meal.(mex)

B a].x = [bl.yiff
(a=bANx=1y)V
(a ZbAx = (ab)ey N\ a # y)

B these two properties imply for finitely
supported x

supp(|a].z) = supp(x) — {a}

Munich, 15. February 2006 - p.5 (3/3)

Freshness and Abstractions

Given pt,,,, finite(supp) and a # b then
a # x iff a # [b].x

Proof. There exists a c with ¢ # (a, b, x, [b].x).
(<) From a # [b].x and ¢ # [b].x
b].x = (ac)«(|b].x) = [b].(ac)x
Hence * = (a c)ex. Now from c # «:
cHx < (ac)ec # (ac)ex & a # x

Freshness and Abstractions

Given pt,,,, finite(supp) and a # b then
a # x iff a # [b].x

Proof. There exists a c with ¢ # (a, b, x, [b].x).

(=) From ¢ # |b].x we also have
(ac)ec # (ac)e|bl.x

and
a # [bl.(ac)ex

Because a # x and c # x, (ac)ex = .

Freshness and Abstractions

We also have
a # |al.x

Again from ¢ # (a, x, [a].x) we can infer

c # lal.x & (ac)ec # (ac)e|al.x
& a F# [cl.(ac)ex.

lcl.(ac)ex = |a].x

(since ¢ # a, [c].(ac)ex = [a].x
iff (ac)ex = (ac)e m/\c#m)

However:

Freshne

We alsc

Again f
C 7

Howeve

e
So we have shown that

a+b a#x
a # |bl.x a # |al.x

and

a # x ' a Z supp(x)

therefore

tions

_supp(la].x) = supp(x) — {a}

[C]- N CJ¥®L — [UJ..L

(since ¢ #£ a,.[c].(a c)ex = |a].x
iff (ac)ex = (ac)ex A c # x)

Munich, 15. February 2006 - p.7 (2/2)

Nominal Abstractions

We have specified what abstraction
‘abstractly’ means by an operation
[].(1) : @« = ¢ = ¢ which satisfies:
B re(lal.x) = [meal.(mex)
B a].x = [bl.y iff
(a=bANx=1y)V
(a ZbAx = (ab)ey N\ a # y)

'Are there any structures that satisfy these
properties? Are there any structures that are
“supported” in Isabelle/HOL?

Munich, 15. February 2006 - p.8 (1/1)

Possibllities
B «-equivalence classes (sets of syntax
trees), e.g.[Aa.(a ¢)|o = [Ab.(b ¢)],

B terms with de-Bruijn indices and named
free variables, like A(1 c).
(you need a function abs which
"abstracts” a variable:

abs(x,t) — X(...))
B a weak HOAS encoding (lambdas as

functions — the function for Aa.(a c)
will be the same as the one for Ab.(b c))

Remember the user will only see the "axioms”
from the previous slide.

Munich, 15. February 2006 - p.9 (1/2)

Possibilities
B o-equivalence classes (sets of syntax
trees), e.g.|Aa.(a ¢)|o = [Ab.(b ¢)].
B tferms wu’rh de-Bruijn indices and hamed
. N /(1)\
‘I could now stop here (this is all known),
and probably go for a-equivalence

classes (Norrish did this with the help
of a package by Hohmeier for HOL4),

® (but T do not :o
LW IITZ)ILIITCITUTI I Ul /\'CLTFCL l,}

will be the same as the one for Ab.(b c))

Remember the user will only see the "axioms”
from the previous slide.

(|

Munich, 15. February 2006 - p.9 (2/2)

Function |al.t ‘=" [Aa.t]|

a).t CAb.if a = b

then Some(t)
else if b # t then Some((ba)et) else None)

type: a — ¢ option

Munich, 15. February 2006 - p.10 (1/9)

Function |al.t ‘=" [Aa.t]|

a).t CAb.if a = b
| then Some(t)
else if b # t then Some((ba)et) else None)

‘This is supposed to stand for the |
a-equivalence class of Aa.t.

Munich, 15. February 2006 - p.10 (2/9)

Function |al.t ‘=" [Aa.t]|

a).(a,c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):

Munich, 15. February 2006 - p.10 (3/9)

Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a =b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):
a 'applied to' [a].(a, ¢) 'gives’ Some(a, c)

Munich, 15. February 2006 - p.10 (4/9)

Function |al.t ‘=" [Aa.t]|

a].(a, c) <
(Ab.if a = b
then Some(a, c)
else if b # (a,c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):
a 'applied to' [a].(a, ¢) 'gives’ Some(a, c)
b 'applied to' [a].(a, c) 'gives’ Some(b, c)

Munich, 15. February 2006 - p.10 (5/9)

Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):

a 'app
b ‘app
c ‘app

ied 1o’
ied 1o’
ied 1o’

-a-
a
a

.(a, c) 'gives' Some(a, c)
.(a, c) 'gives' Some(b, c)
.(a, c) 'gives’ None

Munich, 15. February 2006 - p.10 (6/9)

Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):

a 'app
b ‘app
c ‘app
d ‘app

ied o'
ied o'
ied o'
ied to'

ERERERE

.(a, c) 'gives' Some(a, c)
.(a, c) 'gives' Some(b, c)
.(a, c) 'gives’ None

.(a, c) 'gives’ Some(d, c)

Munich, 15. February 2006 - p.10 (7/9)

Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a =b
then Some(a, c)
else if b # (a,c)

then Some((ba)e(a,c)) else None)

Let's check this for [a].(a, c):

a 'app
b ‘app
c ‘app
d ‘app

ied o'
ied o'
ied o'
ied to'

ERERERE

.(a, c) ‘'gives’ Some(a,c) 'Aa.(ac)
.(a, c) 'gives’ Some(b,c) ‘Ab.(bc)
.(a, c) 'gives’ None

.(a, c) 'gives’ Some(d,c) ‘Ad.(dc)

Munich, 15. February 2006 - p.10 (8/9)

Function |al.t ‘=" [Aa.t]|

a).(a, c)

(Ab.if a = b
then Some(a, c)
else if b # (a, c)
then Some((ba)e(a,c)) else None)

Le}'mm_s for [a].(a, c); %([)\a-(a)]ai

a 'applied to' [a].(a, c) ‘gives’ Some(a, c) | 'Aa.(a c)’
b 'applied to' [a].(a, c) 'gives’ Some(b,c) | ‘Ab.(bc)’
c 'applied to' [a].(a, c) 'gives’ None

ied to' [a].(a, c) 'gives' Some(d, ¢)

d ‘app

'Ad.(d c)’

\. J
Munich, 15. February 2006 - p.10 (9/9)

Nominal Datatypes

We define inductively a-equivalence classes of
lambda-terms—but they still have names.

Munich, 15. February 2006 - p.11 (1/2)

Nominal Datatypes

We define inductively ai-equivalence classes of
lambda-terms—but they still have names.

small-set

\

@(bijection

'big set is a standard datatype:
trm :=Var : «

| App : trm X trm

| Lam: o — trm option

J

big-set

Munich, 15. February 2006 - p.11 (2/2)

Definition of Small-Set

@(bijection \)

t::= Var(a)

App(t1,ta)
Lam [a].t

Definition of Small-Set

@(bijection \)

ti € A, ty € A,
Var(a) € A, App(ti1,t2) € Aqg
t € A,
Lam [a].t € A,

Munich, 15. February 2006 - p.12 (2/4)

Definition of Small- Set

'Which also means that we have a
familiar induction principle in

place for A, (in a moment). And
all terms in A, have finite
support.

>

J

\/

tlEAa t2€Aa

VClI"(CL) - Aa App(tl, tz) & Aa

t € A,
Lam [a].t € A,

Munich, 15. February 2006 - p.12 (3/4)

Definition of Small- Set

'Which also means that we have a
familiar induction principle in >

place for A, (in a moment). And
all terms in A, have finite
support.

J

\/

- supp(Var(a)) = {a}
supp(App(t1,t2)) = supp(tl,t2)
- supp(Lam [a].t) = supp([a].t) = supp(t) — {a}

U _ .l..l.a

Lam [a].t € A,

Munich, 15. February 2006 - p.12 (4/4)

Bljection
In order to show that A/~ and A, are

bijective we define a function g from A to Ag:

gla) ¥ var(a)
g(t1ts) = App(g(tr), q(ts))

q(a.t) ' Lam la].q(t)

with the property
t1 =tz & q(t1) = q(t2)

Munich, 15. February 2006 - p.13 (1/1)

Struct. Induction on A,

tl S~ Aa t2 c Aa
Var(a) € A, App(ti,t3) € Aq,
t € Ag
Lam [a].t € A,

Structural Induction Principle:
Va. P (Var(a))
\V/tl, to. Ptl = Ptz — P (App(tl, tz))

Va,t. Pt = P (Lam [a].t)
Vt. Pt

Munich, 15. February 2006 - p.14 (1/1)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is a variable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = Az.M;. By the variable convention we may assume
that z £ @,y and z is not free in IN, L. Then by induction hypothesis

(Az.M,)[x := N[y := L]
Az.(M;|x := Nl|y := L])

Az.(Mily := L][z := N[y := L]])
(Az.M;)[y := L][x := N[y := L]].

e Case 3: M = M Ms,. The statement follows again from the mduc-
tion hypothesis. X

Munich, 15. February 2006 - p.15 (1/1)

Outlook

B nominal induction-principles (over nominal
datatypes and inductive definitions)

B why the present version of the axiomatic
type-classes are fairly unwieldy for this
work

B functions over nominal datatypes (what

are the conditions that allow a definition
by "recursion” over ai-equivalence classes)

(Vara)[b:=s] = ifa = bthenselse(Vara)
(App tq tz) b pp— 8 — App (tl [b e S]) (tz[b —
(Lam [a].t)[b:=s] = Lam|[al.(t[b := s])

provided a # (b, s)

Munich, 15. February 2006 - p.16 (1/3)

Outlook

B nominal induction-principles (over nominal
datatypes and inductive definitions)

B why the present version of the axiomatic
.’, | | LI L r " | ‘
{

W http://isabelle.in.tum.de/nominal/
{ Mailing List: L

2S
https://mailbroy.informatik.tu-muenchen.de/cgi-)
g bin/mailman/listinfo/nominal-isabelle J(Var a)

(App tq tg)[b pp— S] App (tl [b e S]) (tg[b —
(Lam [a].t)[b := s] Lam [q].(t[b := s])
provided a # (b, s)

Munich, 15. February 2006 - p.16 (2/3)

Nominal Datatype Package:

Outlook

B nominal induction-principles (over nominal
datatypes and inductive definitions)

B why the present version of the axiomatic
type-classes are fairly unwieldy for this
work

] funcj The E nd ? \wha’r

are t hition
1= e | classes)

by "r

(Vara)[b:=s|] = ifa = bthenselse(Vara)
(Apptitz)[b:=s] = App (t1[b:= s]) (t2[b:=s
(Lam [a].t)[b := s] = Lam[a].(t[b := s])

provided a # (b, s)

Munich, 15. February 2006 - p.16 (3/3)

	mbox {Quiz?}
	�egin {tabular}{c} Nominal Techniques\[1mm] in Isabelle/HOL (II):\[1mm]

ormalsize Alpha-Equivalence Classes end {tabular}
	Recap (I):
$alpha $-Equivalence
	Recap (II):
Support and Freshness
	Nominal Abstractions
	mbox {Freshness and Abstractions}
	mbox {Freshness and Abstractions}
	Nominal Abstractions
	Possibilities
	mbox {Function $[a].t$ `$=$' $[lambda a.t]_{alpha }$}
	Nominal Datatypes
	Definition of Small-Set
	Bijection
	Struct.~Induction on $Lambda _alpha $
	
	Outlook

