(**
* the Nominal Unification algorithm by Urban, Pitts & Gabbay
* June, 2003
*)
open List;;
exception Fail;; (* exception for unification failure *)
(* terms *)
type term =
Unit (* units *)
| Atm of string (* atoms *)
| Susp of (string * string) list * string (* suspensions *)
| Fun of string * term (* function symbols *)
| Abst of string * term (* abstracted terms *)
| Pair of term * term;; (* pairs *)
(* swapping operation on atoms *)
let swap (a,b) c =
if a=c then b else if b=c then a else c;;
let swaps pi c = fold_right swap pi c;;
(* permutation on terms *)
let rec perm pi t =
match t with
Unit -> Unit
| Atm(a) -> Atm(swaps pi a)
| Susp(pi',x) -> Susp(pi@pi',x)
| Fun(name,t') -> Fun(name, perm pi t')
| Abst(a,t') -> Abst(swaps pi a,perm pi t')
| Pair(t1,t2) -> Pair(perm pi t1,perm pi t2);;
(* substitution operation
* - implements the simple operation of "hole filling" or "context substitution"
*)
let rec subst t sigma =
match t with
Unit -> Unit
| Atm(a) -> Atm(a)
| Susp(pi,y) -> (try (perm pi (assoc y sigma)) with Not_found -> Susp(pi,y))
| Fun(name,t') -> Fun(name,subst t' sigma)
| Abst(a,t') -> Abst(a,subst t' sigma)
| Pair(t1,t2) -> Pair(subst t1 sigma,subst t2 sigma);;
(* substitution composition *)
let rec subst_compose sigma =
match sigma with
[] -> []
| h::tail -> h::(map (fun (v,t) -> (v,subst t [h])) (subst_compose tail));;
(* occurs check *)
let rec occurs x t =
match t with
Unit -> false
| Atm(a) -> false
| Susp(pi,y) -> if x=y then true else false
| Fun(_,t') | Abst(_,t') -> occurs x t'
| Pair(t1,t2) -> (occurs x t1) || (occurs x t2);;
(* deletes duplicates from a list
* - used for calculating disagreement sets
*)
let rec delete_dups l =
match l with
[] -> []
| h::t -> let t' = delete_dups t in if mem h t' then t' else (h::t');;
(* disagreement set
* - takes two permutation (lists of pairs of atoms) as arguments
*)
let rec ds pi pi' =
let (l1,l2) = split (pi@pi')
in filter (fun a -> (swaps pi a)!=(swaps pi' a)) (delete_dups (l1@l2))
(* eliminates a solved equation *)
let eliminate (v,t) (eprobs,fprobs) =
if occurs v t
then raise Fail
else (map (fun (t1,t2) -> (subst t1 [(v,t)],subst t2 [(v,t)])) eprobs,
map (fun (a,t') -> (a,subst t' [(v,t)])) fprobs);;
(***************)
(* unification *)
(***************)
(* checks and solves all freshness problems *)
let rec check fprobs =
match fprobs with
[] -> []
| (a,Unit)::tail -> check tail
| (a,Atm(b))::tail -> if a=b then raise Fail else check tail
| (a,Susp(pi,x))::tail -> (swaps (rev pi) a,x)::(check tail)
| (a,Fun(_,t))::tail -> check ((a,t)::tail)
| (a,Abst(b,t))::tail -> if a=b then (check tail) else (check ((a,t)::tail))
| (a,Pair(t1,t2))::tail -> check ((a,t1)::(a,t2)::tail);;
(* solves all equational problems *)
let rec solve eprobs fprobs = solve_aux eprobs fprobs []
and solve_aux eprobs fprobs sigma =
match eprobs with
[] -> (subst_compose sigma, delete_dups (check fprobs))
| (Unit,Unit)::tail -> solve_aux tail fprobs sigma
| (Atm(a),Atm(b))::tail -> if a=b then (solve_aux tail fprobs sigma) else raise Fail
| (Susp(pi,x),Susp(pi',x'))::tail when x=x' ->
let new_fps = map (fun a -> (a,Susp([],x))) (ds pi pi')
in solve_aux tail (new_fps @ fprobs) sigma
| (Susp(pi,x),t)::tail | (t,Susp(pi,x))::tail ->
let new_sigma = (x,perm (rev pi) t) in
let (new_eprobs,new_fprobs) = eliminate new_sigma (tail,fprobs)
in solve_aux new_eprobs new_fprobs (new_sigma::sigma)
| (Fun(n1,t1),Fun(n2,t2))::tail ->
if n1 = n2
then solve_aux ((t1,t2)::tail) fprobs sigma
else raise Fail
| (Abst(a1,t1),Abst(a2,t2))::tail ->
if a1 = a2
then solve_aux ((t1,t2)::tail) fprobs sigma
else solve_aux ((t1,perm [(a1,a2)] t2)::tail) ((a1,t2)::fprobs) sigma
| (Pair(t1,t2),Pair(s1,s2))::tail ->
solve_aux ((t1,s1)::(t2,s2)::tail) fprobs sigma
| _ -> raise Fail;;
(************)
(* Examples *)
(************)
(* a few variables*)
let x = Susp([],"X")
and y = Susp([],"Y")
and z = Susp([],"Z");;
(* lam a.(X a) =? lam b.(c b) --> [X:=c] *)
let t1 = Abst("a",Pair(x,Atm("a")));;
let t2 = Abst("b",Pair(Atm("c"),Atm("b")));;
solve [(t1,t2)] [];;
(* lam a.(X a) =? lam b.(a b) --> fails *)
let t1 = Abst("a",Pair(x,Atm("a")));;
let t2 = Abst("b",Pair(Atm("a"),Atm("b")));;
solve [(t1,t2)] [];;
(* lam a.(X a) =? lam b.(X b) --> a#X, b#X *)
let t1 = Abst("a",Pair(x,Atm("a")));;
let t2 = Abst("b",Pair(x,Atm("b")));;
solve [(t1,t2)] [];;
(* lam a.(X a) =? lam b.(Y b) --> [X:=(a b)oY] a#Y *)
(* --> [Y:=(b a)oX] b#X *)
let t1 = Abst("a",Pair(x,Atm("a")));;
let t2 = Abst("b",Pair(y,Atm("b")));;
solve [(t1,t2)] [];;
solve [(t2,t1)] [];;
(* quiz-questions from the paper *)
let m1 = Susp([],"M1")
and m2 = Susp([],"M2")
and m3 = Susp([],"M3")
and m4 = Susp([],"M4")
and m5 = Susp([],"M5")
and m6 = Susp([],"M6")
and m7 = Susp([],"M7");;
(* 1 --> fail *)
let t1 = Abst("a",Abst("b",Pair(m1,Atm("b"))));;
let t2 = Abst("b",Abst("a",Pair(Atm("a"),m1)));;
solve [(t1,t2)] [];;
(* 2 --> [M2:=b ,M3:=a] *)
let t1 = Abst("a",Abst("b",Pair(m2,Atm("b"))));;
let t2 = Abst("b",Abst("a",Pair(Atm("a"),m3)));;
solve [(t1,t2)] [];;
(* 3 --> [M4:=(a b)o M5] *)
let t1 = Abst("a",Abst("b",Pair(Atm("b"),m4)));;
let t2 = Abst("b",Abst("a",Pair(Atm("a"),m5)));;
solve [(t1,t2)] [];;
(* 4 --> [M6:=(b a)oM7] b#M7 *)
let t1 = Abst("a",Abst("b",Pair(Atm("b"),m6)));;
let t2 = Abst("a",Abst("a",Pair(Atm("a"),m7)));;
solve [(t1,t2)] [];;