Cut/CL.html
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Tue, 03 Sep 2013 14:30:11 +0100
changeset 216 b6c86027212c
parent 98 e10eb390c103
permissions -rw-r--r--
typo

<HTML lang=en>
<HEAD>
<TITLE> Christian Urban </TITLE>
<BASE HREF="http://www4.in.tum.de/~urbanc/Cut/">
</HEAD>

<BODY TEXT="#000000" 
      BGCOLOR="#000080" 
      LINK="#0000EF" 
      VLINK="#51188E" 
      ALINK="#FF0000">

<TABLE WIDTH="100%" 
       COLS="2" 
       BGCOLOR="#000080" 
       BORDER="0"   
       FRAME="none"  
       CELLPADDING="10"     
       CELLSPACING="2"
       RULES="COLS,ROWS">

<!-- left column -->
<TR>
<TD BGCOLOR="#FFFFFF" 
    WIDTH="24%" 
    VALIGN="TOP" 
    ROWSPAN="4">

<B>Links</B><BR>
<A HREF="http://www4.in.tum.de/~urbanc/index.html">Home</A><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/cutapplet.html">Applet Home</A><BR><BR><p>
 
<B>Java Versions</B><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/CL.html">CL</A><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/LJT.html">LJT</A><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/ND.html">ND</A><BR><BR>

<B>Plugin Versions</B><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/CL-plugin.html">CL</A><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/LJT-plugin.html">LJT</A><BR>
<A HREF="http://www4.in.tum.de/~urbanc/Cut/ND-plugin.html">ND</A><BR>

<BR>
<BR>

<A HREF="http://isabelle.in.tum.de/nominal/">
<IMG SRC="ribbon.gif" ALT="" style="width: 114px; height: 100px;" align="left">
</A>
</TD>


<!-- right column -->
<TD BGCOLOR="#FFFFFF" WIDTH="75%">
<A NAME="Home"></A>
<H2>Cut-Elimination in Classical Logic</H2>

If you use this applet it is strongly(!) recommended to have read the the paper on 
strong normalisation of cut-elimination in classical logic by Urban and Bierman
[<A HREF="http://www4.in.tum.de/~urbanc/Publications/fi-01.ps.gz">ps.gz</A>,
 <A HREF="http://www4.in.tum.de/~urbanc/Publications/fi-01.pdf">pdf</A>].
Mayor difference between the standard sequent calculus and the sequent calculus 
implemented by the applet is that the rules contraction and weakening are completely 
implicit. This means that sequents consist of two sets of (labelled) formulae,
as opposed to lists or multisets of formulae. Although this is very simple, it 
needs some time to get used to.  
</TD>
</TR>

<TR>
<TD BGCOLOR="#FFFFFF" WIDTH="75%">
<B>How to use it?</B>&nbsp;
If your browser is playing game with Java, then you will see a window 
with a number of examples. When pressing on one of the buttons, a new 
window will pop up. What follows is a brief explanation of all 
the features available in this window. 
</TD>
</TR>

<TR>
<TD BGCOLOR="#FFFFFF" WIDTH="75%">
<B>Buttons and Keys</B>
<UL>
<LI> The buttons 
     &nbsp;&nbsp;&nbsp;<IMG SRC="http://www4.in.tum.de/~urbanc/Cut/l.jpg">&nbsp;&nbsp;&nbsp; and 
     &nbsp;&nbsp;&nbsp;<IMG SRC="http://www4.in.tum.de/~urbanc/Cut/r.jpg">&nbsp;&nbsp;&nbsp; are for 
     commuting cuts, which can slide up either in the right or left proof branch.
<LI> Pressing on &nbsp;&nbsp;&nbsp;<IMG SRC="http://www4.in.tum.de/~urbanc/Cut/x.jpg"> 
     &nbsp;,&nbsp;&nbsp;<IMG SRC="http://www4.in.tum.de/~urbanc/Cut/x1.jpg">&nbsp;&nbsp;&nbsp; or 
     &nbsp;&nbsp;&nbsp;<IMG SRC="http://www4.in.tum.de/~urbanc/Cut/x2.jpg">&nbsp;&nbsp;&nbsp; 
     `fires' a logical cut. The latter two buttons correspond to the two possible 
     nestings of multiplicative logical cuts.
<LI> If you use the <B>left mouse button</B> for pressing on those buttons,
     then the new proof will appear inside the window. Whereas if you use 
     the <B>right mouse button</B>, a new window will pop up and  
     the new proof will be displayed in this window. Use the right mouse 
     button if you want to compare a proof and its reduct(s).
<LI> The keys <B>Page-up</B> and <B>Page-down</B> zoom in or out of a proof
     respectively. 
</UL>
</TD>
</TR>

<TR>
<TD BGCOLOR="#FFFFFF"  WIDTH="75%">
<B>Menu Functions</B>

<UL>
<LI> <B>Zoom in</B> and <B>Zoom out</B> work like Page-up and Page-down, 
     respectively.
<LI> <B>Unicode</B>&nbsp; If this radiobutton is switched on, logic symbols 
     are displayed in unicode, otherwise in ascii. (This is for the 
     poor guys who have a browser and/or operating system which cannot handle 
     unicode.)
<LI> <B>Labels</B>&nbsp; As mentioned earlier the sequents are composed of 
     two sets of labelled 
     formulae, not multisets of formulae as in the standard formulation 
     of sequent calculus. Enabling this radiobutton causes that labels are 
     drawn. Use this when you are unsure where implicit contractions are. 
<LI> <B>Auxiliary Substitution</B>&nbsp; If you have read the paper referred
     above, you know what this does.
<LI> <B>Gentzen's D.N.Transl.</B> and <B>Kolmogorov's D.N.Transl.</B> 
     perform double negation translations on the current proof. 
</UL> 
</TD>
</TR>

</TABLE>
<center>
<applet archive=MyApplet.zip code="MyApplet.class" width=1 height=1>
<param name="calculi" value="A">
<p><blink><FONT COLOR="#800000">
Applet should appear in a new window, but you don't have Java enabled in your browser.
</FONT></blink><p>
</applet>

</center>
<P><!-- Created:  Tue Jul  3 21:01:42 BST 2001 -->
<!-- hhmts start -->
Last modified: Sat Mar  3 05:17:31 CET 2007
<!-- hhmts end -->
</BODY>
</HTML>