Publications/class-tcs.ps
author Christian Urban <christian.urban@kcl.ac.uk>
Sun, 09 Jul 2023 08:48:22 +0100
changeset 635 84085de35f59
parent 14 680070975206
permissions -rw-r--r--
updated

%!PS-Adobe-2.0
%%Creator: dvips(k) 5.95a Copyright 2005 Radical Eye Software
%%Title: last.dvi
%%Pages: 27
%%PageOrder: Ascend
%%BoundingBox: 0 0 595 842
%%DocumentFonts: Times-Bold Times-Roman Times-Italic
%%DocumentPaperSizes: a4
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips last.dvi -o last.ps
%DVIPSParameters: dpi=600
%DVIPSSource:  TeX output 2006.04.27:1426
%%BeginProcSet: tex.pro 0 0
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S
/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy
setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask
restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro 0 0
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 4, 04/05/10
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
%
%%-------------- DG begin patch 15 ---------------%%
%/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
%PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
%mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
%/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
%0 } ifelse setdash stroke } def
/DashLine {
  dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def PathLength } ifelse
  /b ED /x1 ED /y1 ED /x ED /y ED 
  /z y x add y1 add x1 add def
  /Coef b a .5 sub 2 mul y mul sub z Div round 
  z mul a .5 sub 2 mul y mul add b exch Div def 
  /y y Coef mul def /x x Coef mul def /y1 y1 Coef mul def /x1 x1 Coef mul def
  x1 0 gt y1 0 gt x 0 gt y 0 gt and { [ y x y1 x1 ] 1 a sub y mul}
  { [ 1 0] 0 } ifelse setdash stroke
} def
%%-------------- DG end patch 15 ---------------%%
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
    n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro 0 0
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
%% Version 97 patch 1, 99/12/16
%% Modified by Etienne Riga <etienne.riga@skynet.be> - Dec. 16, 1999
%% to add /Diamond, /SolidDiamond and /BoldDiamond
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    dup (P) 0 get /BoldPentagon put
% DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga
    dup (l) 0 get /SolidDiamond put
    dup (d) 0 get /Diamond put
        (D) 0 get /BoldDiamond put
% DG/SR modification end
  /Metrics 13 dict def
  Metrics begin
    /Bullet        1000   def
    /Circle        1000   def
    /BoldCircle    1000   def
    /SolidTriangle 1344   def
    /Triangle      1344   def
    /BoldTriangle  1344   def
    /SolidSquare    886   def
    /Square         886   def
    /BoldSquare     886   def
    /SolidPentagon 1093.2 def
    /Pentagon      1093.2 def
    /BoldPentagon  1093.2 def
% DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga
    /SolidDiamond  1008   def
    /Diamond       1008   def
    /BoldDiamond   1008   def
% DG/SR modification end
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle        { -550 -550 550 550 } def
    /BoldCircle    /Circle load def
    /Bullet        /Circle load def
    /Triangle      { -571.5 -330 571.5 660 } def
    /BoldTriangle  /Triangle load def
    /SolidTriangle /Triangle load def
    /Square        { -450 -450 450 450 } def
    /BoldSquare    /Square load def
    /SolidSquare   /Square load def
    /Pentagon      { -546.6 -465 546.6 574.7 } def
    /BoldPentagon  /Pentagon load def
    /SolidPentagon /Pentagon load def
% DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga
    /Diamond       { -428.5 -742.5 428.5 742.5 } def
    /BoldDiamond   /Diamond load def
    /SolidDiamond  /Diamond load def
% DG/SR modification end
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath    { 0 0 500 0 360 arc closepath } def
    /Bullet        { 500 500 Adjust CirclePath fill } def
    /Circle        { 500 500 Adjust CirclePath .9 .9 scale CirclePath
                     eofill } def
    /BoldCircle    { 500 500 Adjust CirclePath .8 .8 scale CirclePath
                     eofill } def
    /BoldCircle    { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath  { 0  660 moveto -571.5 -330 lineto 571.5 -330 lineto
                     closepath } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle      { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle  { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath    { -450 450 moveto 450 450 lineto 450 -450 lineto
                     -450 -450 lineto closepath } def
    /SolidSquare   { SquarePath fill } def
    /Square        { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare    { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath  {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon      { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon  { PentagonPath .78 .78 scale PentagonPath eofill } def
% DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga
    /DiamondPath   { 0 742.5 moveto -428.5 0 lineto 0 -742.5 lineto
                     428.5 0 lineto closepath } def
    /SolidDiamond  { DiamondPath fill } def
    /Diamond       { DiamondPath .85 .85 scale DiamondPath eofill } def
    /BoldDiamond   { DiamondPath .7 .7 scale DiamondPath eofill } def
% DG/SR modification end
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
%END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro 0 0
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: 8r.enc 0 0
% File 8r.enc  TeX Base 1 Encoding  Revision 2.0  2002-10-30
%
% @@psencodingfile@{
%   author    = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry,
%                W. Schmidt, P. Lehman",
%   version   = "2.0",
%   date      = "30 October 2002",
%   filename  = "8r.enc",
%   email     = "tex-fonts@@tug.org",
%   docstring = "This is the encoding vector for Type1 and TrueType
%                fonts to be used with TeX.  This file is part of the
%                PSNFSS bundle, version 9"
% @}
% 
% The idea is to have all the characters normally included in Type 1 fonts
% available for typesetting. This is effectively the characters in Adobe
% Standard encoding, ISO Latin 1, Windows ANSI including the euro symbol,
% MacRoman, and some extra characters from Lucida.
% 
% Character code assignments were made as follows:
% 
% (1) the Windows ANSI characters are almost all in their Windows ANSI
% positions, because some Windows users cannot easily reencode the
% fonts, and it makes no difference on other systems. The only Windows
% ANSI characters not available are those that make no sense for
% typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
% (173). quotesingle and grave are moved just because it's such an
% irritation not having them in TeX positions.
% 
% (2) Remaining characters are assigned arbitrarily to the lower part
% of the range, avoiding 0, 10 and 13 in case we meet dumb software.
% 
% (3) Y&Y Lucida Bright includes some extra text characters; in the
% hopes that other PostScript fonts, perhaps created for public
% consumption, will include them, they are included starting at 0x12.
% These are /dotlessj /ff /ffi /ffl.
% 
% (4) hyphen appears twice for compatibility with both ASCII and Windows.
%
% (5) /Euro was assigned to 128, as in Windows ANSI
%
% (6) Missing characters from MacRoman encoding incorporated as follows:
%
%     PostScript      MacRoman        TeXBase1
%     --------------  --------------  --------------
%     /notequal       173             0x16
%     /infinity       176             0x17
%     /lessequal      178             0x18
%     /greaterequal   179             0x19
%     /partialdiff    182             0x1A
%     /summation      183             0x1B
%     /product        184             0x1C
%     /pi             185             0x1D
%     /integral       186             0x81
%     /Omega          189             0x8D
%     /radical        195             0x8E
%     /approxequal    197             0x8F
%     /Delta          198             0x9D
%     /lozenge        215             0x9E
%
/TeXBase1Encoding [
% 0x00
 /.notdef /dotaccent /fi /fl
 /fraction /hungarumlaut /Lslash /lslash
 /ogonek /ring /.notdef /breve
 /minus /.notdef /Zcaron /zcaron
% 0x10
 /caron /dotlessi /dotlessj /ff
 /ffi /ffl /notequal /infinity
 /lessequal /greaterequal /partialdiff /summation
 /product /pi /grave /quotesingle
% 0x20
 /space /exclam /quotedbl /numbersign
 /dollar /percent /ampersand /quoteright
 /parenleft /parenright /asterisk /plus
 /comma /hyphen /period /slash
% 0x30
 /zero /one /two /three
 /four /five /six /seven
 /eight /nine /colon /semicolon
 /less /equal /greater /question
% 0x40
 /at /A /B /C
 /D /E /F /G
 /H /I /J /K
 /L /M /N /O
% 0x50
 /P /Q /R /S
 /T /U /V /W
 /X /Y /Z /bracketleft
 /backslash /bracketright /asciicircum /underscore
% 0x60
 /quoteleft /a /b /c
 /d /e /f /g
 /h /i /j /k
 /l /m /n /o
% 0x70
 /p /q /r /s
 /t /u /v /w
 /x /y /z /braceleft
 /bar /braceright /asciitilde /.notdef
% 0x80
 /Euro /integral /quotesinglbase /florin
 /quotedblbase /ellipsis /dagger /daggerdbl
 /circumflex /perthousand /Scaron /guilsinglleft
 /OE /Omega /radical /approxequal
% 0x90
 /.notdef /.notdef /.notdef /quotedblleft
 /quotedblright /bullet /endash /emdash
 /tilde /trademark /scaron /guilsinglright
 /oe /Delta /lozenge /Ydieresis
% 0xA0
 /.notdef /exclamdown /cent /sterling
 /currency /yen /brokenbar /section
 /dieresis /copyright /ordfeminine /guillemotleft
 /logicalnot /hyphen /registered /macron
% 0xD0
 /degree /plusminus /twosuperior /threesuperior
 /acute /mu /paragraph /periodcentered
 /cedilla /onesuperior /ordmasculine /guillemotright
 /onequarter /onehalf /threequarters /questiondown
% 0xC0
 /Agrave /Aacute /Acircumflex /Atilde
 /Adieresis /Aring /AE /Ccedilla
 /Egrave /Eacute /Ecircumflex /Edieresis
 /Igrave /Iacute /Icircumflex /Idieresis
% 0xD0
 /Eth /Ntilde /Ograve /Oacute
 /Ocircumflex /Otilde /Odieresis /multiply
 /Oslash /Ugrave /Uacute /Ucircumflex
 /Udieresis /Yacute /Thorn /germandbls
% 0xE0
 /agrave /aacute /acircumflex /atilde
 /adieresis /aring /ae /ccedilla
 /egrave /eacute /ecircumflex /edieresis
 /igrave /iacute /icircumflex /idieresis
% 0xF0
 /eth /ntilde /ograve /oacute
 /ocircumflex /otilde /odieresis /divide
 /oslash /ugrave /uacute /ucircumflex
 /udieresis /yacute /thorn /ydieresis
] def


%%EndProcSet
%%BeginProcSet: texps.pro 0 0
%!
TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]FontType 0
ne{/Metrics exch def dict begin Encoding{exch dup type/integertype ne{
pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get
div def}ifelse}forall Metrics/Metrics currentdict end def}{{1 index type
/nametype eq{exit}if exch pop}loop}ifelse[2 index currentdict end
definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{dup
sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll
mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[
exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}if}
forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}def
end

%%EndProcSet
%%BeginProcSet: special.pro 0 0
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/setpagedevice{pop}N/copypage{}N/p 3 def
@MacSetUp}N/doclip{psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll
newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto
closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N
/@beginspecial{SDict begin/SpecialSave save N gsave normalscale
currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}
N/@setspecial{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs
neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate
rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse
scale llx neg lly neg TR}{rhiSeen{rhi ury lly sub div dup scale llx neg
lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx
ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N
/setpagedevice{pop}N/copypage{}N newpath}N/@endspecial{count ocount sub{
pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave
restore end}N/@defspecial{SDict begin}N/@fedspecial{end}B/li{lineto}B
/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1
setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY
moveto}N/ellipse{/endangle X/startangle X/yrad X/xrad X/savematrix
matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc
savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro 0 0
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39139632 55387786 1000 600 600 (last.dvi)
@start
%DVIPSBitmapFont: Fa msbm10 12 1
/Fa 1 68 df<00000001FFE000300000003FFFFC0078000001FFFFFF007800000FFFFFFF
C0F800003FFFC07FF8F80000FFFE000FFFF80001FFF80003FFF80007FBF00001FFF8000F
E7E000007FF8001F87C000003F78003F0F8000001F78007E1F8000000FF800FC1F000000
0FF801F83E00000007F803F03E00000003F807E07C00000003F807C07C00000001F80F80
7800000001F80F80F800000000F81F00F800000000F81F00F000000000783E01F0000000
00783E01F000000000783C01E000000000787C01E000000000307C01E000000000007801
E000000000007803E00000000000F803E00000000000F803C00000000000F003C0000000
0000F003C00000000000F003C00000000000F003C00000000000F003C00000000000F003
C00000000000F003C00000000000F003C00000000000F003C00000000000F003C0000000
0000F003C00000000000F003C00000000000F803C00000000000F803C000000000007803
E000000000007803E000000000007C01E000000000007C01E000000000003C01E0000000
00003E01F000000000003E01F000000000001F00F000000000001F00F000000000000F80
F800000000000F80F8000000000607C07C000000000F07E07C000000001F03F03E000000
003F01F83E000000007E00FC1F000000007C007E1F80000000FC003F0F80000001F8001F
87C0000007F0000FE7E000000FE00007FBF800003FC00001FFFE0001FF800000FFFFC00F
FE0000003FFFFFFFFC0000000FFFFFFFF000000001FFFFFFC0000000003FFFFE00000000
0001FFF0000040487CC52E>67 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmbx12 12 7
/Fb 7 122 df<000000001F8000000000000000001F8000000000000000003FC0000000
00000000003FC000000000000000007FE000000000000000007FE000000000000000007F
E00000000000000000FFF00000000000000000FFF00000000000000001FFF80000000000
000001FFF80000000000000001FFF80000000000000003FFFC0000000000000003FFFC00
00000000000007FFFE0000000000000007FFFE0000000000000007FFFE00000000000000
0FFFFF000000000000000F9FFF000000000000001F9FFF800000000000001F1FFF800000
000000001F0FFF800000000000003F0FFFC00000000000003E07FFC00000000000007E07
FFE00000000000007C07FFE00000000000007C03FFE0000000000000FC03FFF000000000
0000F801FFF0000000000001F801FFF8000000000001F001FFF8000000000001F000FFF8
000000000003F000FFFC000000000003E0007FFC000000000007E0007FFE000000000007
C0007FFE000000000007C0003FFE00000000000FC0003FFF00000000000F80001FFF0000
0000001F80001FFF80000000001F00000FFF80000000001F00000FFF80000000003F0000
0FFFC0000000003E000007FFC0000000007E000007FFE0000000007FFFFFFFFFE0000000
007FFFFFFFFFE000000000FFFFFFFFFFF000000000FFFFFFFFFFF000000001FFFFFFFFFF
F800000001F0000000FFF800000001F0000000FFF800000003F0000000FFFC00000003E0
0000007FFC00000007E00000007FFE00000007C00000003FFE00000007C00000003FFE00
00000F800000003FFF0000000F800000001FFF0000001F800000001FFF8000001F000000
000FFF8000003F000000000FFFC000003E000000000FFFC000007E0000000007FFC000FF
FFFF00000FFFFFFFF0FFFFFF00000FFFFFFFF0FFFFFF00000FFFFFFFF0FFFFFF00000FFF
FFFFF0FFFFFF00000FFFFFFFF04C457CC455>65 D<FFFFFFFFFFFF000000FFFFFFFFFFFF
F00000FFFFFFFFFFFFFE0000FFFFFFFFFFFFFF8000FFFFFFFFFFFFFFE000001FFF00000F
FFF000001FFF000001FFF800001FFF0000007FFC00001FFF0000003FFE00001FFF000000
1FFF00001FFF0000000FFF80001FFF0000000FFF80001FFF0000000FFFC0001FFF000000
07FFC0001FFF00000007FFC0001FFF00000007FFE0001FFF00000007FFE0001FFF000000
07FFE0001FFF00000007FFE0001FFF00000007FFE0001FFF00000007FFE0001FFF000000
07FFE0001FFF00000007FFE0001FFF00000007FFE0001FFF00000007FFC0001FFF000000
07FFC0001FFF0000000FFF80001FFF0000000FFF80001FFF0000000FFF00001FFF000000
1FFF00001FFF0000003FFE00001FFF0000007FFC00001FFF000001FFF800001FFF00000F
FFF000001FFFFFFFFFFFC000001FFFFFFFFFFF0000001FFFFFFFFFFC0000001FFFFFFFFF
C00000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000
000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000
000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000
000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000
000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000
000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000
000000001FFF000000000000FFFFFFFFE000000000FFFFFFFFE000000000FFFFFFFFE000
000000FFFFFFFFE000000000FFFFFFFFE00000000043447DC34D>80
D<007FC000FFFFC000FFFFC000FFFFC000FFFFC000FFFFC00003FFC00001FFC00001FFC0
0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0
0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0
0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0
0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0
0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0
0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0
0001FFC000FFFFFF80FFFFFF80FFFFFF80FFFFFF80FFFFFF8019457CC420>108
D<00001FFC0000000001FFFFC000000007FFFFF00000001FFFFFFC0000007FF80FFF0000
00FFC001FF800001FF8000FFC00003FE00003FE00007FE00003FF0000FFC00001FF8000F
F800000FF8001FF800000FFC001FF800000FFC003FF800000FFE003FF0000007FE007FF0
000007FF007FF0000007FF007FF0000007FF007FF0000007FF00FFF0000007FF80FFF000
0007FF80FFF0000007FF80FFF0000007FF80FFF0000007FF80FFF0000007FF80FFF00000
07FF80FFF0000007FF80FFF0000007FF80FFF0000007FF807FF0000007FF007FF0000007
FF007FF0000007FF007FF0000007FF003FF800000FFE003FF800000FFE001FF800000FFC
001FFC00001FFC000FFC00001FF80007FE00003FF00007FE00003FF00003FF8000FFE000
01FFC001FFC000007FF80FFF0000003FFFFFFE0000000FFFFFF800000001FFFFC0000000
001FFC000000312F7DAD38>111 D<0001E000000001E000000001E000000001E0000000
01E000000003E000000003E000000003E000000003E000000007E000000007E00000000F
E00000000FE00000001FE00000001FE00000003FE00000007FE0000000FFE0000003FFE0
00000FFFFFFF80FFFFFFFF80FFFFFFFF80FFFFFFFF80FFFFFFFF8000FFE0000000FFE000
0000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE00000
00FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000
FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE001E000FFE001E000FF
E001E000FFE001E000FFE001E000FFE001E000FFE001E000FFE001E000FFE001E000FFE0
03E000FFF003C0007FF003C0007FF007C0003FF80F80001FFC1F00000FFFFF000007FFFC
000001FFF80000003FE00023407EBE2C>116 D<007FC00001FF00FFFFC003FFFF00FFFF
C003FFFF00FFFFC003FFFF00FFFFC003FFFF00FFFFC003FFFF0003FFC0000FFF0001FFC0
0007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC000
07FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007
FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF
0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF00
01FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001
FFC0000FFF0001FFC0000FFF0001FFC0001FFF0001FFC0001FFF0001FFC0003FFF0000FF
C0003FFF0000FFE0007FFF80007FE001F7FFFE007FF807E7FFFE003FFFFFC7FFFE000FFF
FF07FFFE0003FFFE07FFFE00007FF007FC00372E7CAC3E>I<FFFFFF0003FFFCFFFFFF00
03FFFCFFFFFF0003FFFCFFFFFF0003FFFCFFFFFF0003FFFC01FFE000003E0000FFE00000
3C0000FFF000003C00007FF000007800007FF800007800007FF80000F800003FF80000F0
00003FFC0001F000001FFC0001E000001FFE0003E000000FFE0003C000000FFF0007C000
0007FF000780000007FF800F80000003FF800F00000003FFC00F00000003FFC01F000000
01FFE01E00000001FFE03E00000000FFE03C00000000FFF07C000000007FF07800000000
7FF8F8000000003FF8F0000000003FFDF0000000001FFDE0000000001FFFE0000000000F
FFC0000000000FFFC0000000000FFFC00000000007FF800000000007FF800000000003FF
000000000003FF000000000001FE000000000001FE000000000000FC000000000000FC00
00000000007800000000000078000000000000F8000000000000F0000000000001F00000
00000001E00000001F0003E00000003F8003C00000007FC007C0000000FFE00780000000
FFE00F80000000FFE00F00000000FFE01F00000000FFE03E00000000FFC07C000000007F
C1F8000000007F07F0000000003FFFE0000000001FFFC00000000007FF000000000001FC
000000000036407EAB3B>121 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmmi5 5 3
/Fc 3 68 df<00000380000000038000000007800000000F800000000FC00000001FC000
000037C000000037C000000067C0000000C7E0000000C7E000000183E000000303E00000
0303E000000603E000000C03F000000C03F000001801F000003FFFF000007FFFF0000060
01F00000C001F80001C000F800018000F800030000F800070000F8000F0000F800FFC00F
FFC0FFC00FFF80221D7C9C2B>65 D<03FFFFF80003FFFFFE00003E001F80003E000FC000
3E0007C0003E0003C0007C0003C0007C0007C0007C0007C0007C000F8000F8001F0000F8
007E0000FFFFF80000FFFFF00001F001F80001F0007E0001F0003E0001F0001F0003E000
1F0003E0001F0003E0001F0003E0001E0007C0003E0007C0007C0007C000F80007C007F0
00FFFFFFC000FFFFFE0000221C7C9B2B>I<00007F80400007FFE0C0001FC071C0003E00
1B8000F8000F8001E0000F8003C000078007800007000F000007001F000007003E000007
003E000006007C000000007C000000007C00000000F800000000F800000000F800000000
F800000000F800001800F800001800780000180078000030003C000060003C0000E0001E
0001C0000F8007000007E01E000001FFF80000003FC00000221E7C9C29>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmr6 6 2
/Fd 2 106 df<00000F000000FF000000FF0000001F0000000F0000000F0000000F0000
000F0000000F0000000F0000000F0000000F0000000F0000FF0F0003FFCF0007C0FF000F
003F001E001F003C000F007C000F0078000F00F8000F00F8000F00F8000F00F8000F00F8
000F00F8000F00F8000F0078000F007C000F003C000F003E001F001F003F800FC1EFF003
FF8FF000FE0F001C247DA222>100 D<0C003F003F003F003F000C000000000000000000
0000000000000F00FF00FF001F000F000F000F000F000F000F000F000F000F000F000F00
0F000F000F000F000F00FFE0FFE00B237DA212>105 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe cmmi6 6 1
/Fe 1 106 df<0038007C007C00780070000000000000000000000000000007801FC038
E030E060F0C1E0C1E0C1E003C003C003C0078007800F000F040F061E0C1E0C1E181C181E
700FE007800F237DA116>105 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ff cmex10 10 2
/Ff 2 88 df<0000000E000000000000001F000000000000003F000000000000003F0000
00000000007F800000000000007F800000000000007F80000000000000FFC00000000000
00FFC0000000000000FFC0000000000001FFE0000000000001FFE0000000000001FFE000
0000000003FFF0000000000003F3F0000000000003F3F0000000000007F3F80000000000
07E1F8000000000007E1F800000000000FE1FC00000000000FC0FC00000000000FC0FC00
000000001FC0FE00000000001F807E00000000001F807E00000000003F807F0000000000
3F003F00000000003F003F00000000007F003F80000000007E001F80000000007E001F80
00000000FE001FC000000000FC000FC000000000FC000FC000000001FC000FE000000001
F80007E000000001F80007E000000003F80007F000000003F00003F000000003F00003F0
00000007F00003F800000007E00001F80000000FE00001FC0000000FC00000FC0000000F
C00000FC0000001FC00000FE0000001F8000007E0000001F8000007E0000003F8000007F
0000003F0000003F0000003F0000003F0000007F0000003F8000007E0000001F8000007E
0000001F800000FE0000001FC00000FC0000000FC00000FC0000000FC00001FC0000000F
E00001F800000007E00001F800000007E00003F800000007F00003F000000003F00003F0
00000003F00007F000000003F80007E000000001F80007E000000001F8000FE000000001
FC000FC000000000FC000FC000000000FC001FC000000000FE001F80000000007E001F80
000000007E003F80000000007F003F00000000003F003F00000000003F007F0000000000
3F807E00000000001F807E00000000001F80FE00000000001FC0FC00000000000FC0FC00
000000000FC0F8000000000007C078000000000003803A537B7F45>86
D<7800000000000380F8000000000007C0FC00000000000FC0FC00000000000FC0FE0000
0000001FC07E00000000001F807E00000000001F807F00000000003F803F00000000003F
003F00000000003F003F80000000007F001F80000000007E001F80000000007E001FC000
000000FE000FC000000000FC000FC000000000FC000FE000000001FC0007E000000001F8
0007E000000001F80007F000000003F80003F000000003F00003F000000003F00003F800
000007F00001F800000007E00001F800000007E00001FC0000000FE00000FC0000000FC0
0000FC0000000FC00000FE0000001FC000007E0000001F8000007E0000001F8000007F00
00003F8000003F0000003F0000003F0000003F0000003F8000007F0000001F8000007E00
00001F8000007E0000001FC00000FE0000000FC00000FC0000000FC00000FC0000000FE0
0001FC00000007E00001F800000007F00003F800000003F00003F000000003F00003F000
000003F80007F000000001F80007E000000001F80007E000000001FC000FE000000000FC
000FC000000000FC000FC000000000FE001FC0000000007E001F80000000007E001F8000
0000007F003F80000000003F003F00000000003F003F00000000003F807F00000000001F
807E00000000001F807E00000000001FC0FE00000000000FC0FC00000000000FC0FC0000
0000000FE1FC000000000007E1F8000000000007E1F8000000000007F3F8000000000003
F3F0000000000003F3F0000000000003FFF0000000000001FFE0000000000001FFE00000
00000001FFE0000000000000FFC0000000000000FFC0000000000000FFC0000000000000
7F800000000000007F800000000000007F800000000000003F000000000000003F000000
000000001F000000000000000E000000003A537B7F45>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fg cmsy6 6 2
/Fg 2 49 df<006000007000006000006000406020E06070F861F07E67E01FFF8007FE00
00F00007FE001FFF807E67E0F861F0E0607040602000600000600000700000600014157B
9620>3 D<01E003F003F003F003F007E007E007C00FC00FC00F800F801F001F001E001E
003E003C003C007800780078007000F000E00060000C1A7E9B12>48
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fh cmsy10 10.95 5
/Fh 5 97 df<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFF
FFE00000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F0000000000000006000000003C3C7BBB47>62 D<00000006000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000000000000F000000000000000F000000000000000F000000000000000F0000
00000000000F000000000000000F000000000000000F000000000000000F000000000000
000F000000007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFF
FFE03C3C7BBB47>I<000000C0000000000001E0000000000003F0000000000003F00000
00000007F8000000000007F8000000000007F800000000000FFC00000000000FFC000000
00001F3E00000000001F3E00000000003E1F00000000003E1F00000000003C0F00000000
007C0F80000000007C0F8000000000F807C000000000F807C000000001F003E000000001
F003E000000001E001E000000003E001F000000003E001F000000007C000F800000007C0
00F80000000F80007C0000000F80007C0000001F00003E0000001F00003E0000001E0000
1E0000003E00001F0000003E00001F0000007C00000F8000007C00000F800000F8000007
C00000F8000007C00000F0000003C00001F0000003E00001F0000003E00003E0000001F0
0003E0000001F00007C0000000F80007C0000000F800078000000078000F800000007C00
0F800000007C001F000000003E001F000000003E003E000000001F003E000000001F003C
000000000F007C000000000F807C000000000F80F80000000007C0F80000000007C0F000
00000003C06000000000018032397BB63D>94 D<60000000000180F00000000003C0F800
00000007C0F80000000007C07C000000000F807C000000000F803C000000000F003E0000
00001F003E000000001F001F000000003E001F000000003E000F800000007C000F800000
007C000780000000780007C0000000F80007C0000000F80003E0000001F00003E0000001
F00001F0000003E00001F0000003E00000F0000003C00000F8000007C00000F8000007C0
00007C00000F8000007C00000F8000003E00001F0000003E00001F0000001E00001E0000
001F00003E0000001F00003E0000000F80007C0000000F80007C00000007C000F8000000
07C000F800000003E001F000000003E001F000000001E001E000000001F003E000000001
F003E000000000F807C000000000F807C0000000007C0F80000000007C0F80000000003C
0F00000000003E1F00000000003E1F00000000001F3E00000000001F3E00000000000FFC
00000000000FFC000000000007F8000000000007F8000000000007F8000000000003F000
0000000003F0000000000001E0000000000000C000000032397BB63D>I<600000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000FFFFFFFFFFF0FFFFFFFFFFF8
FFFFFFFFFFF8FFFFFFFFFFF8F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000
F000000000006000000000002D3F7BBE38>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fi cmr10 10.95 15
/Fi 15 119 df<FFFFFFFFFFFE00FFFFFFFFFFFE00FFFFFFFFFFFE0001FFC0000FFE0000
7F800001FE00007F8000007F00007F8000003F00007F8000001F00007F8000001F00007F
8000000F00007F8000000F00007F8000000700007F8000000700007F8000000700007F80
00000700007F8000000700007F8000000380007F8000000380007F8000000380007F8000
000380007F8000000380007F8000000000007F8000000000007F8000000000007F800000
0000007F8000000000007F8000000000007F8000000000007F8000000000007F80000000
00007F8000000000007F8000000000007F8000000000007F8000000000007F8000000000
007F8000000000007F8000000000007F8000000000007F8000000000007F800000000000
7F8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F
8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F80
00000000007F8000000000007F8000000000007F8000000000007F8000000000007F8000
000000007F8000000000007F800000000001FFE000000000FFFFFFF8000000FFFFFFF800
0000FFFFFFF8000000313E7DBD39>0 D<00000000E00000000000000001F00000000000
000001F00000000000000003F80000000000000003F80000000000000007FC0000000000
000007FC000000000000000FFE000000000000000FFE000000000000001DFF0000000000
00001DFF0000000000000038FF8000000000000038FF80000000000000787FC000000000
0000707FC0000000000000F03FE0000000000000E03FE0000000000001E01FF000000000
0001C01FF0000000000003C00FF8000000000003800FF80000000000078007FC00000000
00070007FC00000000000F0003FE00000000000E0003FE00000000001E0001FF00000000
001C0001FF00000000003C0000FF8000000000380000FF80000000007800007FC0000000
007000007FC000000000F000003FE000000000E000003FE000000001E000001FF0000000
01C000001FF000000003C000000FF8000000038000000FF80000000780000007FC000000
0700000007FC0000000F00000003FE0000000E00000003FE0000001E00000001FF000000
1C00000001FF0000003C00000000FF8000003800000000FF80000078000000007FC00000
70000000007FC00000F0000000003FE00000E0000000003FE00001E0000000001FF00001
C0000000001FF00003C0000000000FF8000380000000000FF80007800000000007FC0007
000000000007FC000F000000000003FE000E000000000003FE001E000000000001FF001F
FFFFFFFFFFFFFF003FFFFFFFFFFFFFFF803FFFFFFFFFFFFFFF807FFFFFFFFFFFFFFFC07F
FFFFFFFFFFFFFFC0FFFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFE043417CC04C>I<000000
3C0000000000003C0000000000003C0000000000007E0000000000007E0000000000007E
000000000000FF000000000000FF000000000000FF000000000001FF800000000001FF80
0000000001FF800000000003FFC00000000003FFC00000000003BFC00000000003BFC000
000000073FE000000000071FE000000000071FE0000000000E1FF0000000000E0FF00000
00000E0FF0000000001C0FF8000000001C07F8000000001C07F8000000003C07FC000000
003803FC000000003803FC000000007803FE000000007003FE000000007001FE00000000
7001FE00000000E001FF00000000E000FF00000000E000FF00000001C000FF80000001C0
007F80000001C0007F8000000380007FC000000380003FC000000380003FC00000078000
3FE000000700001FE000000700001FE000000F00001FF000000E00000FF000000E00000F
F000001E00000FF800001C00000FF800001C000007F800001C000007F8000038000007FC
000038000003FC000038000003FC000070000003FE000070000001FE000070000001FE00
00F0000001FF0000F0000000FF0001F0000000FF0003F8000001FF800FFE000007FFC0FF
FFE000FFFFFFFFFFE000FFFFFFFFFFE000FFFFFF38417DC03F>3
D<FFFFFFFFFFFFFFF8FFFFFFFFFFFFFFF8FFFFFFFFFFFFFFF801FF8000000FFC00007F80
00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0
00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80
00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0
00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80
00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0
00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80
00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0
00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80
00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0
00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80
00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0
00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF00001FFE0
00003FFC00FFFFFFC01FFFFFF8FFFFFFC01FFFFFF8FFFFFFC01FFFFFF83D3E7DBD44>5
D<0000300000700000E00001C0000380000780000F00001E00003E00003C0000780000F8
0000F00001F00001E00003E00003E00007C00007C0000FC0000F80000F80001F80001F00
001F00003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C00
00FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC00
00FC0000FC0000FC0000FC0000FC0000FC00007C00007E00007E00007E00007E00007E00
007E00003E00003F00003F00003F00001F00001F00001F80000F80000F80000FC00007C0
0007C00003E00003E00001E00001F00000F00000F800007800003C00003E00001E00000F
000007800003800001C00000E0000070000030145A77C323>40 D<C00000E00000700000
3800001C00001E00000F000007800007C00003C00001E00001F00000F00000F800007800
007C00007C00003E00003E00003F00001F00001F00001F80000F80000F80000FC0000FC0
000FC00007C00007E00007E00007E00007E00007E00007E00003E00003F00003F00003F0
0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F0
0003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C0000FC0
000FC0000FC0000F80000F80001F80001F00001F00003F00003E00003E00007C00007C00
00780000F80000F00001F00001E00003C00007C0000780000F00001E00001C0000380000
700000E00000C00000145A7BC323>I<1E007F807F80FFC0FFC0FFC0FFC07F807F801E00
000000000000000000000000000000000000000000000000000000000000000000000000
00001E007F00FF80FF80FFC0FFC0FFC0FFC07FC01EC000C000C000C000C001C001800180
018003800300070006000E000C001C003800300030000A3979A619>59
D<0000003FF00006000003FFFE000E00000FFFFF801E00003FF007E03E0000FF8000F83E
0003FE00007C7E0007F800001EFE000FF000000FFE003FE0000007FE007FC0000003FE00
FF80000003FE00FF00000001FE01FE00000000FE03FE00000000FE07FC000000007E07F8
000000007E0FF8000000003E0FF8000000003E1FF0000000001E1FF0000000001E3FF000
0000001E3FE0000000001E3FE0000000000E7FE0000000000E7FE0000000000E7FE00000
00000E7FC00000000000FFC00000000000FFC00000000000FFC00000000000FFC0000000
0000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC000000000
00FFC00000000000FFC00000000000FFC000000000007FC000000000007FE00000000000
7FE0000000000E7FE0000000000E3FE0000000000E3FE0000000000E3FF0000000000E1F
F0000000001E1FF0000000001C0FF8000000001C0FF8000000001C07F8000000003C07FC
000000003803FE000000007801FE000000007000FF00000000F000FF80000001E0007FC0
000001C0003FE0000003C0000FF0000007800007F800001F000003FE00003E000000FF80
00F80000003FF007F00000000FFFFFC000000003FFFF00000000003FF0000037427BBF42
>67 D<3FFFFFFFFFFFFF803FFFFFFFFFFFFF803FFFFFFFFFFFFF803FF0007FE001FF803F
80003FC0003F807F00003FC0001FC07E00003FC00007C07C00003FC00007C07800003FC0
0003C07800003FC00003C07800003FC00003C07000003FC00001C07000003FC00001C070
00003FC00001C07000003FC00001C07000003FC00001C0E000003FC00000E0E000003FC0
0000E0E000003FC00000E0E000003FC00000E0E000003FC00000E00000003FC000000000
00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0
0000000000003FC00000000000003FC00000000000003FC00000000000003FC000000000
00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0
0000000000003FC00000000000003FC00000000000003FC00000000000003FC000000000
00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0
0000000000003FC00000000000003FC00000000000003FC00000000000003FC000000000
00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0
0000000000003FC00000000000003FC00000000000007FE0000000000000FFF000000000
07FFFFFFFE00000007FFFFFFFE00000007FFFFFFFE00003B3D7DBC42>84
D<FFFFFFC000FFFFF8FFFFFFC000FFFFF8FFFFFFC000FFFFF801FFE0000007FF00007F80
000001FC00007F80000000F800007F800000007000007F800000007000007F8000000070
00007F800000007000007F800000007000007F800000007000007F800000007000007F80
0000007000007F800000007000007F800000007000007F800000007000007F8000000070
00007F800000007000007F800000007000007F800000007000007F800000007000007F80
0000007000007F800000007000007F800000007000007F800000007000007F8000000070
00007F800000007000007F800000007000007F800000007000007F800000007000007F80
0000007000007F800000007000007F800000007000007F800000007000007F8000000070
00007F800000007000007F800000007000007F800000007000007F800000007000007F80
0000007000007F800000007000007F800000007000007F800000007000007F8000000070
00007F800000007000003F80000000F000003FC0000000E000003FC0000000E000003FC0
000001E000001FC0000001C000001FE0000001C000000FE0000003C000000FF000000780
000007F000000700000003F800000F00000001FC00001E00000000FE00003C000000007F
0000F8000000003F8001F0000000000FF00FE00000000003FFFF800000000000FFFE0000
000000001FF00000003D407DBD44>I<00000001FC00000000FFFC00000000FFFC000000
00FFFC0000000007FC0000000003FC0000000001FC0000000001FC0000000001FC000000
0001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC000000
0001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC000000
0001FC0000000001FC000000FF01FC000007FFE1FC00001F80F9FC00007E003DFC0000FC
001FFC0003F80007FC0007F00007FC0007E00003FC000FC00001FC001FC00001FC003FC0
0001FC003F800001FC007F800001FC007F800001FC007F000001FC007F000001FC00FF00
0001FC00FF000001FC00FF000001FC00FF000001FC00FF000001FC00FF000001FC00FF00
0001FC00FF000001FC00FF000001FC00FF000001FC007F000001FC007F800001FC007F80
0001FC003F800001FC003F800001FC001FC00001FC000FC00003FC000FE00003FC0007E0
0007FC0003F0000FFE0001F8001FFF00007C0079FFF8003F01F1FFF8000FFFC1FFF80001
FE01FC002D407DBE33>100 D<0001FE0000000FFFC000003F03F00000FC01F80001F800
FC0003F0007E0007E0003F000FE0003F800FC0001F801FC0001FC03F80000FC03F80000F
C07F80000FC07F80000FE07F00000FE07F00000FE0FF00000FE0FF00000FE0FFFFFFFFE0
FFFFFFFFE0FF00000000FF00000000FF00000000FF00000000FF00000000FF000000007F
000000007F000000007F800000003F800000003F800000E01FC00000E01FC00001E00FC0
0001C007E00003C007F000078003F800070000FC001E00007E003C00001F80F8000007FF
E0000000FF0000232A7EA828>I<01E00007F80007F8000FFC000FFC000FFC000FFC0007
F80007F80001E00000000000000000000000000000000000000000000000000000000000
000000000000000001FC007FFC007FFC007FFC0007FC0003FC0001FC0001FC0001FC0001
FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001
FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001
FC0001FC0001FC0003FE00FFFFF0FFFFF0FFFFF0143E7DBD1A>105
D<003FC06001FFF8E007C03FE01F000FE03E0007E03C0003E07C0003E0780001E0F80001
E0F80000E0F80000E0FC0000E0FE0000E0FF0000E0FF8000007FF800007FFFC0003FFFF8
001FFFFE000FFFFF0007FFFF8001FFFFC0003FFFE00003FFF000001FF000000FF8E00003
F8E00003F8E00001F8F00001F8F00000F8F00000F8F80000F8F80000F0FC0000F0FC0001
F0FE0001E0FF0003C0FF800780F3E01F00E0FFFC00C01FE0001D2A7DA824>115
D<FFFFE00FFFE0FFFFE00FFFE0FFFFE00FFFE007FE0003FF0003FC0000FC0003FC0000F8
0001FC0000F00001FE0000F00000FE0000E00000FE0000E00000FF0001E000007F0001C0
00007F0001C000003F80038000003F80038000003FC0078000001FC0070000001FC00700
00000FE00E0000000FE00E0000000FF01E00000007F01C00000007F01C00000003F83800
000003F83800000003FC7800000001FC7000000001FC7000000001FEF000000000FEE000
000000FEE0000000007FC0000000007FC0000000007FC0000000003F80000000003F8000
0000001F00000000001F00000000001F00000000000E0000002B287EA630>118
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fj cmmi10 10.95 7
/Fj 7 70 df<1E007F807F80FFC0FFC0FFC0FFC07F807F801E000A0A798919>58
D<1E007F80FF80FFC0FFC0FFE0FFE0FFE07FE01E60006000600060006000E000C000C000
C001C001800380030007000E001C001800380030000B1C798919>I<0000000000070000
00000000000F000000000000000F800000000000001F800000000000001F800000000000
003F800000000000007F800000000000007F80000000000000FF80000000000000FF8000
0000000001FF80000000000003FF80000000000003FF800000000000077FC00000000000
077FC000000000000E3FC000000000001E3FC000000000001C3FC00000000000383FC000
00000000383FC00000000000703FC00000000000703FC00000000000E03FC00000000001
C03FC00000000001C03FE00000000003803FE00000000003801FE00000000007001FE000
0000000F001FE0000000000E001FE0000000001C001FE0000000001C001FE00000000038
001FE00000000078001FE00000000070001FE000000000E0001FE000000000E0001FF000
000001C0001FF000000001C0000FF00000000380000FF00000000700000FF000000007FF
FFFFF00000000FFFFFFFF00000000FFFFFFFF00000001C00000FF00000003C00000FF000
00003800000FF00000007000000FF80000007000000FF8000000E0000007F8000001E000
0007F8000001C0000007F800000380000007F800000380000007F800000700000007F800
000F00000007F800000E00000007F800001E00000007F800003C00000007FC00007C0000
0007FC0000FE00000007FC0007FF0000001FFE00FFFFF00007FFFFFCFFFFF00007FFFFFC
FFFFF00007FFFFF83E417DC044>65 D<0001FFFFFFFFF800000001FFFFFFFFFF00000001
FFFFFFFFFFE000000001FE00003FF000000001FE000007F800000001FC000003FC000000
01FC000001FE00000001FC000001FF00000003FC000000FF00000003F8000000FF000000
03F8000000FF80000003F8000000FF80000007F80000007F80000007F0000000FF800000
07F0000000FF80000007F0000000FF8000000FF0000000FF0000000FE0000001FF000000
0FE0000001FE0000000FE0000003FE0000001FE0000003FC0000001FC0000007F8000000
1FC000000FF80000001FC000001FE00000003FC000003FC00000003F8000007F80000000
3F800001FE000000003F800007F8000000007F80007FE0000000007FFFFFFF0000000000
7FFFFFFFE0000000007F000007F800000000FF000001FE00000000FE000000FF00000000
FE0000007F80000000FE0000003FC0000001FE0000003FC0000001FC0000003FE0000001
FC0000001FE0000001FC0000001FE0000003FC0000001FE0000003F80000001FF0000003
F80000001FF0000003F80000001FF0000007F80000001FE0000007F00000003FE0000007
F00000003FE0000007F00000003FC000000FF00000007FC000000FE00000007F8000000F
E0000000FF8000000FE0000001FF0000001FE0000001FE0000001FC0000003FE0000001F
C0000007FC0000003FC000001FF00000003FC000003FE00000003F800000FFC00000007F
800007FF000000FFFFFFFFFFFC000000FFFFFFFFFFF0000000FFFFFFFFFF00000000413E
7DBD45>I<000000001FF8000700000001FFFE00070000000FFFFF800E0000007FF007E0
1E000001FF0000F03E000003FC0000787E00000FF000003CFC00003FC000001FFC00007F
8000000FFC0000FF0000000FFC0001FE00000007F80007F800000007F8000FF000000003
F8001FF000000003F8001FE000000003F0003FC000000001F0007F8000000001F000FF80
00000001F001FF0000000001E001FE0000000001E003FE0000000001E007FC0000000001
E007FC0000000001C00FF80000000001C00FF80000000001C01FF00000000001C01FF000
00000000003FF00000000000003FE00000000000003FE00000000000007FE00000000000
007FC00000000000007FC00000000000007FC0000000000000FFC0000000000000FF8000
0000000000FF80000000000000FF80000000000000FF80000000000000FF800000000000
00FF00000000000000FF00000000003C00FF00000000003C00FF00000000003800FF0000
0000003800FF00000000007800FF00000000007000FF0000000000F0007F8000000000E0
007F8000000001E0007F8000000003C0003F800000000380003FC00000000780003FC000
00000F00001FC00000001E00000FE00000003C00000FF000000078000007F8000000F000
0003F8000001E0000001FE000007C0000000FF00000F000000007FC0007E000000001FF8
03F80000000007FFFFE00000000001FFFF8000000000001FF80000000040427BBF41>I<
0001FFFFFFFFF800000001FFFFFFFFFF00000001FFFFFFFFFFC000000001FF00003FF000
000001FF00000FF800000001FE000003FC00000001FE000000FE00000001FE0000007F00
000003FE0000003F80000003FC0000003F80000003FC0000001FC0000003FC0000001FC0
000007FC0000000FE0000007F80000000FE0000007F80000000FF0000007F80000000FF0
00000FF800000007F000000FF000000007F000000FF000000007F000000FF000000007F8
00001FF000000007F800001FE000000007F800001FE000000007F800001FE00000000FF8
00003FE00000000FF800003FC00000000FF800003FC00000000FF800003FC00000000FF0
00007FC00000000FF000007F800000001FF000007F800000001FF000007F800000001FF0
0000FF800000001FE00000FF000000003FE00000FF000000003FE00000FF000000003FC0
0001FF000000007FC00001FE000000007FC00001FE000000007F800001FE00000000FF80
0003FE00000000FF000003FC00000000FF000003FC00000001FE000003FC00000001FC00
0007FC00000003FC000007F800000003F8000007F800000007F0000007F80000000FF000
000FF80000001FE000000FF00000001FC000000FF00000003F8000000FF00000007F0000
001FF0000000FE0000001FE0000001FC0000001FE0000007F80000003FE000000FE00000
003FE000003FC00000003FC00001FF000000007FC0000FFC000000FFFFFFFFFFF0000000
FFFFFFFFFFC0000000FFFFFFFFFC00000000453E7DBD4B>I<0001FFFFFFFFFFFFC00001
FFFFFFFFFFFFC00001FFFFFFFFFFFFC0000001FF000001FFC0000001FF0000003FC00000
01FE0000001FC0000001FE0000000FC0000001FE0000000F80000003FE00000007800000
03FC0000000780000003FC0000000780000003FC0000000780000007FC00000007800000
07F80000000780000007F80000000700000007F8000000070000000FF800000007000000
0FF0000700070000000FF0000700070000000FF0000F000F0000001FF0000E000E000000
1FE0000E00000000001FE0001E00000000001FE0001E00000000003FE0003C0000000000
3FC0003C00000000003FC0007C00000000003FC001FC00000000007FFFFFF80000000000
7FFFFFF800000000007FFFFFF800000000007F8003F80000000000FF8001F00000000000
FF0000F00000000000FF0000F00000000000FF0000F00000000001FF0000E00000000001
FE0000E00000000001FE0000E00038000001FE0001E00078000003FE0001C00070000003
FC0001C000F0000003FC00000000E0000003FC00000000E0000007FC00000001E0000007
F800000001C0000007F800000003C0000007F8000000038000000FF8000000078000000F
F00000000F0000000FF00000000F0000000FF00000001F0000001FF00000003E0000001F
E00000007E0000001FE0000000FC0000003FE0000001FC0000003FE0000003F80000003F
C000000FF80000007FC00000FFF80000FFFFFFFFFFFFF00000FFFFFFFFFFFFF00000FFFF
FFFFFFFFE00000423E7DBD43>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fk cmmi8 8 16
/Fk 16 116 df<3C007E00FF00FF00FF80FF807F803D8001800180018003800300030007
0006000E001C0038007000600009157A8714>59 D<0000C000000000C000000000C00000
0000C000000000C000000001E000000001E000000001E000000001E000000001E0000000
01E000000001E00000F001E003C0FF83F07FC03FFFFFFF000FFFFFFC0001FFFFE000007F
FF8000001FFE00000007F80000000FFC0000000FFC0000001FFE0000003F3F0000003E1F
0000007C0F8000007807800000F003C00000F003C00001E001E00003C000F00003800070
000300003000222180A023>63 D<00000000700000000000700000000000F00000000001
F00000000001F00000000003F80000000003F80000000007F8000000000DF8000000000D
F80000000019F80000000039F80000000031F80000000061FC0000000060FC00000000C0
FC0000000180FC0000000180FC0000000300FC0000000700FC0000000600FC0000000C00
FE0000000C007E00000018007E00000030007E00000030007E00000060007E000000E000
7E000000C0007E00000180007F000001FFFFFF000003FFFFFF00000600003F0000060000
3F00000C00003F00001C00003F00001800003F00003000003F80003000001F8000600000
1F8000C000001F8001C000001F8003C000001F8007C000001F800FC000003FC0FFF80007
FFFEFFF80007FFFE2F2F7DAE35>65 D<003FFFFFFF00003FFFFFFFC00000FE0007F00000
FE0001F80000FC0000FC0000FC00007E0001FC00007E0001FC00007F0001F800007F0001
F800007F0003F800007F0003F800007E0003F00000FE0003F00000FE0007F00001FC0007
F00001F80007E00003F00007E00007E0000FE0001FC0000FE0007F00000FC003FC00000F
FFFFF800001FFFFFFE00001FC0003F80001F80000FC0001F80000FE0003F800007E0003F
800007F0003F000007F0003F000003F0007F000003F0007F000003F0007E000007F0007E
000007F000FE000007E000FE00000FE000FC00000FC000FC00001FC001FC00003F8001FC
00007F0001F80000FE0001F80003F80003F8000FF000FFFFFFFFC000FFFFFFFC0000302D
7CAC35>I<0000007FC003000003FFF80700001FC03E0F00007E00071F0001F80003BF00
03F00001FE000FC00000FE001F8000007E003F0000007E007E0000007C00FC0000003C01
F80000003C03F80000003C07F0000000380FE0000000380FE0000000381FC0000000381F
C0000000303F80000000003F80000000007F80000000007F00000000007F00000000007F
0000000000FF0000000000FE0000000000FE0000000000FE0000000000FE0000000000FE
0000000000FE0000000180FE0000000380FE0000000300FE00000003007E00000007007E
00000006007E0000000E003F0000001C003F00000038001F80000070000F800000E00007
C00001C00003E00007800001F8001E0000007E00F80000001FFFE000000003FF00000030
2F7CAD32>I<003FFFFFFE0000003FFFFFFFC0000000FE0007F0000000FE0001F8000000
FC00007E000000FC00003F000001FC00001F000001FC00001F800001F800000F800001F8
00000FC00003F8000007C00003F8000007E00003F0000007E00003F0000007E00007F000
0007E00007F0000007E00007E0000007E00007E0000007E0000FE0000007E0000FE00000
07E0000FC000000FE0000FC000000FE0001FC000000FE0001FC000000FC0001F8000001F
C0001F8000001FC0003F8000001F80003F8000003F80003F0000003F00003F0000003F00
007F0000007E00007F0000007E00007E000000FC00007E000000F80000FE000001F80000
FE000003F00000FC000007E00000FC00000FC00001FC00001F000001FC00003E000001F8
0000FC000001F80003F0000003F8001FC00000FFFFFFFF000000FFFFFFF8000000332D7C
AC3A>I<003FFFFFFFFF80003FFFFFFFFF800000FE00007F800000FE00000F800000FC00
0007800000FC000007800001FC000003800001FC000003000001F8000003000001F80000
03000003F8000003000003F8000003000003F0000003000003F0003003000007F0007003
000007F0007000000007E0006000000007E000E00000000FE000E00000000FE001E00000
000FC007C00000000FFFFFC00000001FFFFFC00000001FC007C00000001F800380000000
1F8003800000003F8003800000003F8003800000003F0003000C00003F0003000C00007F
0003001C00007F0000001800007E0000003800007E000000300000FE000000700000FE00
0000E00000FC000000E00000FC000001C00001FC000003C00001FC000007800001F80000
0F800001F800001F800003F80001FF0000FFFFFFFFFF0000FFFFFFFFFE0000312D7DAC34
>I<003FFFFFFFFF003FFFFFFFFF0000FE00007F0000FE00001F0000FC00000F0000FC00
000F0001FC0000070001FC0000060001F80000060001F80000060003F80000060003F800
00060003F00000060003F00030060007F00070060007F00070000007E00060000007E000
E000000FE000E000000FE001E000000FC007C000000FFFFFC000001FFFFFC000001FC007
C000001F80038000001F80038000003F80038000003F80038000003F00030000003F0003
0000007F00030000007F00000000007E00000000007E0000000000FE0000000000FE0000
000000FC0000000000FC0000000001FC0000000001FC0000000001F80000000001F80000
000003F800000000FFFFF0000000FFFFF0000000302D7DAC2D>I<003FFFFC003FFFFC00
00FE000000FE000000FC000000FC000001FC000001FC000001F8000001F8000003F80000
03F8000003F0000003F0000007F0000007F0000007E0000007E000000FE000000FE00000
0FC000000FC000001FC000001FC000001F8000001F8000003F8000003F8000003F000000
3F0000007F0000007F0000007E0000007E000000FE000000FE000000FC000000FC000001
FC000001FC000001F8000001F8000003F80000FFFFE000FFFFE0001E2D7DAC1F>73
D<0000007C00000001FF00000007C38000000F878000000F0F8000001F1F8000001F1F80
00001F1F8000003E0E0000003E000000003E000000003E000000007E000000007C000000
007C000000007C000000007C00000000FC0000003FFFF800003FFFF8000000F800000000
F800000000F800000001F800000001F000000001F000000001F000000001F000000003F0
00000003E000000003E000000003E000000003E000000007E000000007C000000007C000
000007C000000007C000000007C00000000FC00000000F800000000F800000000F800000
000F800000001F800000001F000000001F000000001F000000001F000000003E00000000
3E000000003E000000383C000000FC3C000000FC78000000FC78000000FCF0000000F0F0
000000E1E00000007FC00000001F00000000213D7CAE22>102 D<0000FC000003FF0000
0F839C001F01BC003E01FC007C00FC00F800FC01F800FC03F000FC03F000F807E000F807
E001F80FE001F80FC001F00FC001F00FC003F01FC003F01F8003E01F8003E01F8007E01F
8007E01F8007C01F8007C00F800FC00F801FC007803F8007C07F8003E1FF8000FF9F8000
3E1F0000001F0000003F0000003F0000003E0000003E0000007E0038007C00FC00FC00FC
00F800FC01F000F807E000F00F80007FFE00001FF800001E2C7E9D22>I<000700000F80
001FC0001FC0000F80000700000000000000000000000000000000000000000000000000
00000001E00007F8000E3C001C3E00383E00303E00703E00607E00E07C00C07C00C0FC00
80F80000F80001F80001F00003F00003E00003E00007E00007C04007C0C00FC0C00F80C0
0F81C01F01801F03801F07000F06000F1E0007F80001F000122E7EAC18>105
D<001F000003FF000003FF0000003F0000003F0000003E0000003E0000007E0000007E00
00007C0000007C000000FC000000FC000000F8000000F8000001F8000001F800F801F003
FC01F00F0E03F01C1E03F0387E03E0707E03E0E07E07E1C07E07E3803807C7000007CE00
000FDC00000FF800000FF800000FFF80001F9FE0001F83F0001F01F8001F00F8003F00F8
043F00F80C3E00F80C3E00F80C7E00F81C7E00F8187C00F0387C00F830FC00F870FC0078
E0F8003FC070000F801F2F7DAD25>107 D<0001F800000FFF00003F0780007C03C001F8
03E003F001F007E001F00FC001F80F8000F81F8000F83F0000F83F0001F87F0001F87E00
01F87E0001F87E0003F8FE0003F0FC0003F0FC0003F0FC0007E0FC0007E0FC000FC0FC00
0FC07C001F807C001F007C003E003E007C001F01F8000F83E00003FF800000FC00001D1F
7D9D22>111 D<007C01F80000FE07FE0001CF8E0F0003879C07800307B807C00707F007
C00607E003E0060FC003E00E0F8003E00C0F8003E00C0F8003E0081F8007E0001F8007E0
001F0007E0001F0007E0003F000FE0003F000FC0003E000FC0003E000FC0007E001F8000
7E001F80007C001F00007C003F0000FC003E0000FC007C0000FC00FC0000FE01F80001FF
03E00001FB87C00001F1FF000001F0FC000003F000000003F000000003E000000003E000
000007E000000007E000000007C000000007C00000000FC00000000FC0000000FFFC0000
00FFFC000000232B829D24>I<0007E0003FF800781E00F00601E00703C00F03C01F03C0
1F07C01E07C00C07E00007F80007FF8003FFE001FFF000FFF8003FFC0001FC0000FC0000
7C78003CFC003CFC003CFC007CF80078E000F8E000F06001E07807C01FFF0007F800181F
7C9D21>115 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fl cmsy8 8 6
/Fl 6 96 df<000C0000001E0000001E0000001E0000001E0000001E0000601E0180781E
0780FC0C0FC07F0C3F803F8C7F0007CCF80001FFE000007F8000001E0000007F800001FF
E00007CCF8003F8C7F007F0C3F80FC0C0FC0781E0780601E0180001E0000001E0000001E
0000001E0000001E0000000C00001A1D7C9E23>3 D<007800FE01FE01FE01FE03FE03FC
03FC03FC07F807F807F807F007F00FE00FE00FE00FC01FC01F801F801F803F003F003F00
3E007E007C007C007C00F800F800F800F0000F227EA413>48 D<7FFFFFFFFFFEFFFFFFFF
FFFE7FFFFFFFFFFE00000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
00000000038000000000018000002F2E7CAD38>62 D<0000018000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000007FFFFFFFFFFEFFFF
FFFFFFFE7FFFFFFFFFFE2F2E7CAD38>I<0000300000000078000000007800000000FC00
000000FC00000001FE00000001CE00000001CE00000003CF000000038700000007878000
0007038000000F03C000000E01C000001E01E000001C00E000003C00F000003800700000
780078000070003800007000380000F0003C0000E0001C0001E0001E0001C0000E0003C0
000F000380000700078000078007000003800F000003C00E000001C01E000001E01C0000
00E01C000000E03C000000F0380000007078000000787000000038F00000003CE0000000
1CE00000000C26297CA72F>94 D<E00000000CE00000001CF00000003C70000000387800
00007838000000703C000000F01C000000E01C000000E01E000001E00E000001C00F0000
03C007000003800780000780038000070003C0000F0001C0000E0001E0001E0000E0001C
0000F0003C000070003800007000380000780078000038007000003C00F000001C00E000
001E01E000000E01C000000F03C0000007038000000787800000038700000003CF000000
01CE00000001CE00000001FE00000000FC00000000FC0000000078000000007800000000
30000026297CA72F>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fm cmr12 12 23
/Fm 23 127 df<FFFFFFFFFFFF80FFFFFFFFFFFF80FFFFFFFFFFFF8001FFC00003FF8000
7F8000003FC0007F8000001FC0007F80000007C0007F80000003C0007F80000003C0007F
80000001C0007F80000001C0007F80000000E0007F80000000E0007F80000000E0007F80
00000060007F8000000060007F8000000060007F8000000060007F8000000070007F8000
000030007F8000000030007F8000000030007F8000000000007F8000000000007F800000
0000007F8000000000007F8000000000007F8000000000007F8000000000007F80000000
00007F8000000000007F8000000000007F8000000000007F8000000000007F8000000000
007F8000000000007F8000000000007F8000000000007F8000000000007F800000000000
7F8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F
8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F80
00000000007F8000000000007F8000000000007F8000000000007F8000000000007F8000
000000007F8000000000007F8000000000007F8000000000007F8000000000007F800000
0000007F8000000000007F8000000000007FC00000000001FFE000000000FFFFFFF80000
00FFFFFFF8000000FFFFFFF800000034447CC33D>0 D<00000000180000000000000000
3C00000000000000003C00000000000000007E00000000000000007E0000000000000000
FF0000000000000000FF0000000000000001FF8000000000000001FF8000000000000003
7FC0000000000000037FC0000000000000063FE0000000000000063FE00000000000000C
1FF00000000000000C1FF0000000000000180FF8000000000000180FF800000000000038
07FC0000000000003007FC0000000000007003FE0000000000006003FE000000000000E0
01FF000000000000C001FF000000000001C000FF8000000000018000FF80000000000380
007FC0000000000300007FC0000000000700003FE0000000000600003FE0000000000E00
001FF0000000000C00001FF0000000001C00000FF8000000001800000FF8000000003800
0007FC0000000030000007FC0000000070000003FE0000000060000003FE00000000E000
0001FF00000000C0000001FF00000001C0000000FF8000000180000000FF800000038000
00007FC0000003000000007FC0000003000000003FC0000006000000003FE00000060000
00001FE000000C000000001FF000000C000000000FF0000018000000000FF80000180000
000007F80000300000000007FC0000300000000003FC0000600000000003FE0000600000
000003FE0000C00000000001FF0000C00000000001FF0001800000000000FF8001800000
000000FF80030000000000007FC0030000000000007FC0060000000000003FE006000000
0000003FE00C0000000000001FF00C0000000000001FF01FFFFFFFFFFFFFFFF81FFFFFFF
FFFFFFFFF83FFFFFFFFFFFFFFFFC3FFFFFFFFFFFFFFFFC7FFFFFFFFFFFFFFFFE7FFFFFFF
FFFFFFFFFEFFFFFFFFFFFFFFFFFF48477CC651>I<000000070000000000000007000000
0000000007000000000000000F800000000000000F800000000000000F80000000000000
1FC00000000000001FC00000000000001FC00000000000003FE00000000000003FE00000
000000003FE00000000000007FF00000000000006FF00000000000006FF0000000000000
EFF8000000000000C7F8000000000000C7F8000000000001C7FC00000000000187FC0000
0000000183FC00000000000383FE00000000000303FE00000000000301FE000000000007
01FF00000000000601FF00000000000600FF00000000000E00FF80000000000C00FF8000
0000000C007F80000000000C007F800000000018007FC00000000018003FC00000000018
003FC00000000030003FE00000000030001FE00000000030001FE00000000060001FF000
00000060000FF00000000060000FF000000000C0000FF800000000C00007F800000000C0
0007F800000001800007FC00000001800003FC00000001800003FC00000003000003FE00
000003000001FE00000003000001FE00000006000001FF00000006000000FF0000000600
0000FF0000000C000000FF8000000C0000007F8000000C0000007F800000180000007FC0
0000180000003FC00000180000003FC00000300000003FE00000300000001FE000003000
00001FE00000700000001FF00000600000001FF00000E00000000FF00000F00000000FF8
0001F00000000FF80003F80000000FFC000FFE0000003FFE00FFFFC00007FFFFF8FFFFC0
0007FFFFF8FFFFC00007FFFFF83D477DC644>3 D<FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFF01FF80000001FF80007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE
00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE
00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE
00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE
00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE
00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE
00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80
000001FE00007F80000001FE00007F80000001FE00007F80000001FE0001FFE0000007FF
80FFFFFFC003FFFFFFFFFFFFC003FFFFFFFFFFFFC003FFFFFF40447CC349>5
D<FFFFFFFFFFFFFF00FFFFFFFFFFFFFF00FFFFFFFFFFFFFF007FE00000003FFF007FE000
000003FF803FF0000000007F801FF8000000003F801FF8000000001F800FFC000000000F
8007FE00000000078007FE00000000038003FF0000000003C001FF0000000001C001FF80
00000001C000FFC000000001C0007FC000000000C0007FE000000000C0003FF000000000
C0001FF000000000E0001FF80000000060000FFC00000000600007FC00000000600007FE
00000000000003FF00000000000001FF00000000000001FF80000000000000FFC0000000
0000007FC00000000000007FE00000000000003FF00000000000001FF00000000000001F
F80000000000000FFC00000000000007FC00000000000007FC00000000000003FC000000
00000001F800000000000001F000000000000000E000000000000001C000000000000003
80000000000000030000000000000007000000000000000E000000000000001C00000000
00000038000000006000007000000000600000E000000000600000C000000000E00001C0
00000000C000038000000000C000070000000000C0000E0000000001C0001C0000000001
C000380000000001C000700000000003C0006000000000038000E000000000078001C000
0000000F800380000000001F800700000000003F800E00000000007F801C0000000003FF
8018000000007FFF803FFFFFFFFFFFFF007FFFFFFFFFFFFF00FFFFFFFFFFFFFF00FFFFFF
FFFFFFFF003B447BC346>I<00000C00001C0000380000700000E00001C00003C0000780
000F00000F00001E00003C00003C0000780000F80000F00001F00001E00003E00003E000
07C00007C00007C0000F80000F80000F80001F00001F00001F00003F00003F00003E0000
3E00007E00007E00007E00007E00007C00007C00007C0000FC0000FC0000FC0000FC0000
FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000
FC0000FC0000FC0000FC00007C00007C00007C00007E00007E00007E00007E00003E0000
3E00003F00003F00001F00001F00001F00000F80000F80000F800007C00007C00007C000
03E00003E00001E00001F00000F00000F800007800003C00003C00001E00000F00000F00
0007800003C00001C00000E000007000003800001C00000C166476CA26>40
D<C00000E000007000003800001C00000E00000F000007800003C00003C00001E00000F0
0000F000007800007C00003C00003E00001E00001F00001F00000F80000F80000F800007
C00007C00007C00003E00003E00003E00003F00003F00001F00001F00001F80001F80001
F80001F80000F80000F80000F80000FC0000FC0000FC0000FC0000FC0000FC0000FC0000
FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000
FC0000F80000F80000F80001F80001F80001F80001F80001F00001F00003F00003F00003
E00003E00003E00007C00007C00007C0000F80000F80000F80001F00001F00001E00003E
00003C00007C0000780000F00000F00001E00003C00003C0000780000F00000E00001C00
00380000700000E00000C0000016647BCA26>I<0000FF00000007FFE000001F81F80000
3E007C0000FC003F0001F8001F8001F0000F8003E00007C007C00003E007C00003E00FC0
0003F00F800001F01F800001F81F800001F83F800001FC3F800001FC3F800001FC3F0000
00FC7F000000FE7F000000FE7F000000FE7F000000FE7F000000FEFF000000FFFF000000
FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FF
FF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF
000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FF7F000000FE7F00
0000FE7F000000FE7F000000FE7F000000FE7F800001FE3F800001FC3F800001FC3F8000
01FC1F800001F81F800001F80FC00003F00FC00003F00FC00003F007E00007E003E00007
C003F0000FC001F8001F8000FC003F00003E007C00001F81F8000007FFE0000000FF0000
28447CC131>48 D<000030000000F0000001F0000003F000001FF00000FFF000FFFFF000
FFE7F000FF07F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000
0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000
0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000
0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000
0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000
0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000
000FF800001FFC007FFFFFFF7FFFFFFF7FFFFFFF204278C131>I<0003FE0000001FFFC0
00007FFFF00001F80FFC0003C001FE00078000FF000E00007F801C00003FC01C00001FE0
3800001FF03000000FF07000000FF860000007F86C000007F8FF000007FCFF800007FCFF
C00007FCFFC00003FCFFC00003FCFFC00003FCFFC00003FC7F800007FC3F000007FC0000
0007FC00000007F800000007F80000000FF80000000FF00000001FF00000001FE0000000
1FE00000003FC00000007F800000007F00000000FF00000000FE00000001FC00000003F8
00000007F000000007E00000000FC00000001F800000003F000000007C00000000F80000
0000F000000001E000000003C000000007800000000F00000C001E00000C003C00000C00
38000018007000001800E000001801C0000018038000003807000000300E000000701FFF
FFFFF01FFFFFFFF03FFFFFFFF07FFFFFFFF0FFFFFFFFE0FFFFFFFFE0FFFFFFFFE026427B
C131>I<1E007F807F80FFC0FFC0FFC0FFC07F807F801E00000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000001E00
7F807F80FFC0FFC0FFC0FFC07F807F801E000A2B78AA1B>58 D<1E007F807F80FFC0FFC0
FFC0FFC07F807F801E000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000001E007F00FF80FF80FFC0FFC0FFC0FFC0
7FC01EC000C000C000C000C000C001C001800180018003800300070006000E000C001C00
3800700060000A3E78AA1B>I<7FFFFFFFFFFFFFFF00FFFFFFFFFFFFFFFF80FFFFFFFFFF
FFFFFF807FFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000007FFFFFFFFFFFFFFF00FFFFFFFFFFFFFFFF80FFFFFFFFFF
FFFFFF807FFFFFFFFFFFFFFF0041187BA44C>61 D<000C0000001E0000003F0000007F80
0000F3C00001E1E00003C0F000078078000F003C001E001E003C000F0070000380E00001
C0400000801A0E75C331>94 D<0007FC000000003FFF80000000F80FE0000003C003F000
00070001F800000E0000FC00000FC0007E00001FE0007F00001FF0003F80001FF0003F80
001FF0003F80001FF0001FC0001FF0001FC0000FE0001FC0000380001FC0000000001FC0
000000001FC0000000001FC0000000001FC00000000FFFC0000001FFFFC000000FFE1FC0
00003FC01FC00000FF001FC00003FC001FC00007F8001FC0000FF0001FC0001FE0001FC0
003FC0001FC0007FC0001FC0007F80001FC0007F80001FC060FF00001FC060FF00001FC0
60FF00001FC060FF00003FC060FF00003FC060FF00003FC060FF80007FC0607F8000EFC0
607FC000C7E0C03FC001C7E0C01FE00783F1C007F81E03FF8001FFFC01FF00001FE0007C
002B2E7CAC31>97 D<01FC00000000FFFC00000000FFFC00000000FFFC0000000007FC00
00000003FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC00
00000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC00
00000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC00
00000001FC0000000001FC0000000001FC03FC000001FC0FFF800001FC3C07E00001FC70
01F80001FDE0007E0001FD80003F0001FF80001F8001FF00001FC001FE00000FE001FC00
0007E001FC000007F001FC000007F001FC000003F801FC000003F801FC000003FC01FC00
0003FC01FC000001FC01FC000001FE01FC000001FE01FC000001FE01FC000001FE01FC00
0001FE01FC000001FE01FC000001FE01FC000001FE01FC000001FE01FC000001FE01FC00
0001FE01FC000001FC01FC000003FC01FC000003FC01FC000003F801FC000003F801FC00
0007F001FC000007F001FE00000FE001FE00000FC001FF00001FC001FB00003F8001F380
007E0001E1C000FC0001E0F001F80001C03C07E00001801FFF8000000003FC00002F467D
C436>I<000000007F000000003FFF000000003FFF000000003FFF0000000001FF000000
0000FF00000000007F00000000007F00000000007F00000000007F00000000007F000000
00007F00000000007F00000000007F00000000007F00000000007F00000000007F000000
00007F00000000007F00000000007F00000000007F00000000007F00000000007F000000
00007F00000000007F0000007F807F000003FFF07F00000FC07C7F00003F000E7F00007E
00077F0000FC0003FF0003F80001FF0007F00000FF0007E00000FF000FE000007F001FC0
00007F001FC000007F003F8000007F003F8000007F007F8000007F007F8000007F007F00
00007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F00FF00
00007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F007F00
00007F007F8000007F007F8000007F003F8000007F003F8000007F001FC000007F001FC0
00007F000FC00000FF000FE00000FF0007F00001FF0003F00003FF0001F800077F8000FC
000E7FC0003F001C7FFE000FC0F87FFE0003FFE07FFE00007F007F002F467DC436>100
D<0001FE00000007FFC000001F03F000007E00FC0000FC007E0001F8003F0003F0003F00
07E0001F800FE0001FC00FC0000FC01FC0000FC03F80000FE03F800007E03F800007E07F
800007F07F000007F07F000007F0FF000007F0FF000007F0FF000007F0FFFFFFFFF0FFFF
FFFFF0FF00000000FF00000000FF00000000FF00000000FF00000000FF000000007F0000
00007F000000007F800000007F800000003F800000003F800000301FC00000301FC00000
700FC00000600FE00000E007F00000C003F00001C001F800038000FC000700003E001E00
001F80F8000003FFE0000000FF0000242E7DAC2B>I<01E00007F80007F8000FFC000FFC
000FFC000FFC0007F80007F80001E0000000000000000000000000000000000000000000
0000000000000000000000000000000000000001FC00FFFC00FFFC00FFFC0007FC0003FC
0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC
0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC
0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0003FE00FFFF
F8FFFFF8FFFFF815437DC21C>105 D<01FC01FE0000FFFC07FFC000FFFC1E07F000FFFC
3801F80007FC7001FC0003FCE000FC0001FDC000FE0001FD8000FE0001FF80007F0001FF
00007F0001FF00007F0001FE00007F0001FE00007F0001FE00007F0001FC00007F0001FC
00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC
00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC
00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC
00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC
00007F0003FE0000FF80FFFFF83FFFFEFFFFF83FFFFEFFFFF83FFFFE2F2C7DAB36>110
D<00007F8000000003FFF00000000FC0FC0000003E001F0000007C000F800000F80007C0
0001F00003E00003E00001F00007C00000F8000FC00000FC000FC00000FC001F8000007E
003F8000007F003F8000007F003F0000003F007F0000003F807F0000003F807F0000003F
807F0000003F80FF0000003FC0FF0000003FC0FF0000003FC0FF0000003FC0FF0000003F
C0FF0000003FC0FF0000003FC0FF0000003FC0FF0000003FC0FF0000003FC07F0000003F
807F0000003F807F8000007F803F8000007F003F8000007F001F8000007E001FC00000FE
000FC00000FC000FE00001FC0007E00001F80003F00003F00001F80007E00000FC000FC0
00003E001F0000001FC0FE00000007FFF8000000007F8000002A2E7DAC31>I<FFFFF001
FFFCFFFFF001FFFCFFFFF001FFFC07FF00007FE003FE00001F8001FE00001F0001FE0000
0E0000FE00000E0000FE00000C00007F00001800007F00001800007F80001800003F8000
3000003F80003000003FC0007000001FC0006000001FE0006000000FE000C000000FE000
C000000FF001C0000007F00180000007F00180000003F80300000003F80300000003FC07
00000001FC0600000001FC0600000000FE0C00000000FE0C00000000FF0C000000007F18
000000007F18000000007FB8000000003FB0000000003FF0000000001FE0000000001FE0
000000001FE0000000000FC0000000000FC0000000000780000000000780000000000780
00000000030000002E2C7EAA33>118 D<00F8000203FE000707FF800E0FFFE01C1F1FF8
F83807FFF07001FFE0E0007FC040001F00200978C131>126 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fn cmsy10 12 20
/Fn 20 107 df<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFF
FFFFE03C04789A4D>0 D<1F003F807FC0FFE0FFE0FFE0FFE0FFE07FC03F801F000B0B78
9E1C>I<600000000006F8000000000FFC000000001F7E000000003F3F000000007E1F80
000000FC0FC0000001F807E0000003F003F0000007E001F800000FC000FC00001F80007E
00003F00003F00007E00001F8000FC00000FC001F8000007E003F0000003F007E0000001
F80FC0000000FC1F800000007E3F000000003F7E000000001FFC000000000FF800000000
07F00000000007F0000000000FF8000000001FFC000000003F7E000000007E3F00000000
FC1F80000001F80FC0000003F007E0000007E003F000000FC001F800001F8000FC00003F
00007E00007E00003F0000FC00001F8001F800000FC003F0000007E007E0000003F00FC0
000001F81F80000000FC3F000000007E7E000000003FFC000000001FF8000000000F6000
00000006303072B04D>I<00007000000000F800000000F800000000F800000000F80000
0000F800000000F800000000F800000000F80000000070000078007000F07C007001F0FF
007007F87F80700FF03FE0703FE00FF0707F8003F870FE0000FE73F800003F77E000000F
FF80000003FE00000000F800000003FE0000000FFF8000003F77E00000FE73F80003F870
FE000FF0707F803FE0703FE07F80700FF0FF007007F87C007001F078007000F000007000
000000F800000000F800000000F800000000F800000000F800000000F800000000F80000
0000F800000000700000252B7AAD32>I<0001FF0000000FFFE000003FFFF800007FFFFC
0001FFFFFF0003FFFFFF8007FFFFFFC00FFFFFFFE01FFFFFFFF01FFFFFFFF03FFFFFFFF8
3FFFFFFFF87FFFFFFFFC7FFFFFFFFC7FFFFFFFFCFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFF
FFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFE7FFFFFFFFC7FFF
FFFFFC7FFFFFFFFC3FFFFFFFF83FFFFFFFF81FFFFFFFF01FFFFFFFF00FFFFFFFE007FFFF
FFC003FFFFFF8001FFFFFF00007FFFFC00003FFFF800000FFFE0000001FF000027277BAB
32>15 D<0007F0000000000080001FFE0000000001C0007FFF8000000001C000FFFFE000
000001C001FFFFF000000001C003FFFFF800000001C007F80FFC00000001C00FE001FE00
000003C01F80007F00000003801F00001FC0000003803E00000FE0000007803C000007F0
0000070038000003F800000F0078000001FC00001F0070000000FE00003E00700000003F
80007E00F00000001FE001FC00E00000000FFC07F800E000000007FFFFF000E000000003
FFFFE000E000000001FFFFC000E0000000007FFF8000E0000000001FFE00004000000000
03F8000042187BA44D>24 D<0000000000000000F00000000000000000000000F0000000
0000000000000000F00000000000000000000000F8000000000000000000000078000000
00000000000000007800000000000000000000007C00000000000000000000003C000000
00000000000000003C00000000000000000000003E00000000000000000000001E000000
00000000000000001F00000000000000000000000F80000000000000000000000F800000
000000000000000007C00000000000000000000003E00000000000000000000003F00000
000000000000000001F80000000000000000000000FC00000000000000000000007E0000
0000000000000000003F00000000000000000000001F80000000000000000000000FE000
00000000000000000003F8007FFFFFFFFFFFFFFFFFFFFE00FFFFFFFFFFFFFFFFFFFFFF80
FFFFFFFFFFFFFFFFFFFFFF807FFFFFFFFFFFFFFFFFFFFE0000000000000000000003F800
0000000000000000000FE0000000000000000000001F80000000000000000000003F0000
0000000000000000007E0000000000000000000000FC0000000000000000000001F80000
000000000000000003F00000000000000000000003E00000000000000000000007C00000
00000000000000000F80000000000000000000000F80000000000000000000001F000000
00000000000000001E00000000000000000000003E00000000000000000000003C000000
00000000000000003C00000000000000000000007C000000000000000000000078000000
0000000000000000780000000000000000000000F80000000000000000000000F0000000
0000000000000000F00000000000000000000000F000000059347BB264>33
D<000000FFFFFF00000007FFFFFF8000003FFFFFFF800000FFFFFFFF000003FF80000000
0007FC00000000001FE000000000003F8000000000007E000000000000FC000000000001
F8000000000003F0000000000007E0000000000007C000000000000F8000000000001F80
00000000001F0000000000003E0000000000003E0000000000003C0000000000007C0000
000000007C00000000000078000000000000F8000000000000F8000000000000F0000000
000000F0000000000000FFFFFFFFFFFF00FFFFFFFFFFFF80FFFFFFFFFFFF80FFFFFFFFFF
FF00F0000000000000F0000000000000F8000000000000F8000000000000780000000000
007C0000000000007C0000000000003C0000000000003E0000000000003E000000000000
1F0000000000001F8000000000000F80000000000007C0000000000007E0000000000003
F0000000000001F8000000000000FC0000000000007E0000000000003F8000000000001F
E0000000000007FC000000000003FF800000000000FFFFFFFF0000003FFFFFFF80000007
FFFFFF80000000FFFFFF00313A78B542>50 D<7FFFFFFFFFFFFFFF80FFFFFFFFFFFFFFFF
C0FFFFFFFFFFFFFFFFC07FFFFFFFFFFFFFFF8000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000001E0000000
0000000001E00000000000000001E00000000000000001E00000000000000000C0000000
0042427BC14D>62 D<00000000C00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E00000000000000001E000000000
00000001E00000000000000001E00000000000000001E0000000007FFFFFFFFFFFFFFF80
FFFFFFFFFFFFFFFFC0FFFFFFFFFFFFFFFFC07FFFFFFFFFFFFFFF8042427BC14D>I<0000
000001FE00000000001FFF8000000001FFFFC000000007FFFFC00000001FFFFFE0000000
7FFFFFE0000001FE01FFE0000003F0007FE000000FC0003FE000001F00003FE000003E00
003FC000007C00003FC00000F800003F800001F000003F800003F000007F800007E00000
7F00000FC00000FF00001F800000FE00001F800000FE00003F000001FC00007F000001FC
0000FE000003F80000FE000003F00001FC000007C00001FC000007000003F80000000000
03F8000000000007F8000000000007F000000000000FF000000000000FF000000000000F
E000000000001FE000000000001FE000000000001FC000000000003FC000000000003FC0
00000000003FC000000000007FC000000000007F8000000000007F8000000000007F8000
000000007F800000000000FF800000000000FF800000000000FF800000000000FF800000
000000FF800000000000FF800000000000FF800000000000FF800000000000FF80000000
0000FFC00000000000FFC00000000000FFC00000001E00FFC00000003E007FE0000000FC
007FE0000001F8007FF0000003F0007FF0000003E0003FF8000007C0003FFC00000F8000
1FFE00001F00001FFF00003E00000FFFC000FC00000FFFF803F0000007FFFFFFE0000003
FFFFFF80000001FFFFFE00000000FFFFF8000000003FFFC00000000007FC000000003348
7FC534>67 D<0000001FFFFFC0000000000003FFFFFFFF00000000001FFFFFFFFFE00000
0000FFFFFFFFFFF800000003FFFFFFFFFFFE0000000FFFFFFFFFFFFF8000003FE07FC03F
FFFFC00000FE007FC000FFFFE00001F8007FC0001FFFF00003E0007F800007FFF80007C0
007F800001FFF8000FC0007F8000007FFC001F80007F8000003FFE003F8000FF8000001F
FE007F8000FF8000000FFE007F0000FF80000007FF00FE0000FF00000007FF00FC0000FF
00000003FF00F00000FF00000003FF80800000FF00000001FF80000001FF00000001FF80
000001FF00000001FF80000001FE00000000FF80000001FE00000000FF80000001FE0000
0000FF80000001FE00000000FF80000003FE00000000FF80000003FC00000000FF800000
03FC00000000FF80000003FC00000000FF00000003FC00000000FF00000007F800000000
FF00000007F800000000FF00000007F800000001FE00000007F800000001FE0000000FF0
00000001FE0000000FF000000001FC0000000FF000000003FC0000000FF000000003F800
00001FE000000003F80000001FE000000007F00000001FE000000007F00000001FC00000
000FE00000003FC00000000FC00000003FC00000001FC00000003F800000001F80000000
7F800000003F000000007F800000007E000000007F000000007C00000000FF00000000F8
00000000FF00000001F000000000FE00000003E000000001FE00000007C000000001FE00
00001F8000000001FC0000003E0000000003FC0000007C0000000003F8000001F8000000
0003F8000007E00000000007F800001FC00000000007F00000FF00000000000FF00007FC
00000000000FE000FFF000000000000FFFFFFFC000000000007FFFFFFE000000000000FF
FFFFF0000000000001FFFFFF80000000000003FFFFF800000000000007FFFF0000000000
000049447EC34D>I<0000001FFFFFF00000000003FFFFFFFF800000001FFFFFFFFFF000
0000FFFFFFFFFFFC000003FFFFFFFFFFFF00000FFFFFFFFFFFFF80003FE07FC00FFFFFC0
00FE007FC0007FFFE001F8007F80000FFFF003E0007F800003FFF007C0007F800000FFF8
0FC0007F8000007FF81F8000FF8000003FF83F8000FF8000001FFC7F8000FF8000000FFC
7F0000FF8000000FFCFE0000FF0000000FFCFC0000FF00000007FCF00000FF00000007FC
800000FF00000007FC000001FF00000007F8000001FE00000007F8000001FE00000007F8
000001FE00000007F0000001FE0000000FF0000003FE0000000FE0000003FC0000000FE0
000003FC0000001FC0000003FC0000001F80000003FC0000003F80000007FC0000003F00
000007F80000007E00000007F8000000FC00000007F8000000F800000007F8000001F000
00000FF0000003E00000000FF0000007C00000000FF000001F800000000FF000003E0000
00001FE00000FC000000001FE00007F0000000001FE0007FE0000000001FC07FFF800000
00003FC1FFFE00000000003FC7FFF000000000003FCFFF8000000000007F9FFC00000000
00007F9F800000000000007F80000000000000007F0000000000000000FF000000000000
0000FF0000000000000000FE0000000000000001FE0000000000000001FE000000000000
0001FC0000000000000003FC0000000000000003FC0000000000000003F8000000000000
0007F80000000000000007F00000000000000007F0000000000000000FF0000000000000
000FE0000000000000001FE0000000000000001FE0000000000000001FC0000000000000
003FC0000000000000003F80000000000000003F00000000000000007E00000000000000
007C0000000000000000600000000000000046497EC345>80 D<00000038000000000000
7C0000000000007C000000000000FE000000000000FE000000000001FF000000000001FF
000000000001EF000000000003EF800000000003EF800000000007C7C00000000007C7C0
000000000F83E0000000000F83E0000000001F01F0000000001F01F0000000001E00F000
0000003E00F8000000003E00F8000000007C007C000000007C007C00000000F8003E0000
0000F8003E00000001F0001F00000001F0001F00000001E0000F00000003E0000F800000
03E0000F80000007C00007C0000007C00007C000000F800003E000000F800003E000001F
000001F000001F000001F000001E000000F000003E000000F800003E000000F800007C00
00007C00007C0000007C0000F80000003E0000F80000003E0001F00000001F0001F00000
001F0003E00000000F8003E00000000F8003C0000000078007C000000007C007C0000000
07C00F8000000003E00F8000000003E01F0000000001F01F0000000001F03E0000000000
F83E0000000000F83C0000000000787C00000000007C7C00000000007CF800000000003E
F800000000003EF000000000001E6000000000000C373D7BBA42>94
D<6000000000000CF000000000001EF800000000003EF800000000003E7C00000000007C
7C00000000007C3C0000000000783E0000000000F83E0000000000F81F0000000001F01F
0000000001F00F8000000003E00F8000000003E007C000000007C007C000000007C003C0
000000078003E00000000F8003E00000000F8001F00000001F0001F00000001F0000F800
00003E0000F80000003E00007C0000007C00007C0000007C00003E000000F800003E0000
00F800001E000000F000001F000001F000001F000001F000000F800003E000000F800003
E0000007C00007C0000007C00007C0000003E0000F80000003E0000F80000001E0000F00
000001F0001F00000001F0001F00000000F8003E00000000F8003E000000007C007C0000
00007C007C000000003E00F8000000003E00F8000000001E00F0000000001F01F0000000
001F01F0000000000F83E0000000000F83E00000000007C7C00000000007C7C000000000
03EF800000000003EF800000000001EF000000000001FF000000000001FF000000000000
FE000000000000FE0000000000007C0000000000007C00000000000038000000373D7BBA
42>I<60000000000000F0000000000000F0000000000000F0000000000000F000000000
0000F0000000000000F0000000000000F0000000000000F0000000000000F00000000000
00F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000
F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000F0
000000000000F0000000000000F0000000000000F0000000000000F0000000000000F000
0000000000F0000000000000F0000000000000F0000000000000F0000000000000F00000
00000000F0000000000000FFFFFFFFFFFF80FFFFFFFFFFFFC0FFFFFFFFFFFFC0FFFFFFFF
FFFFC0F0000000000000F0000000000000F0000000000000F0000000000000F000000000
0000F0000000000000F0000000000000F0000000000000F0000000000000F00000000000
00F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000
F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000F0
000000000000F0000000000000F0000000000000F0000000000000F0000000000000F000
0000000000F0000000000000F0000000000000F0000000000000F0000000000000F00000
00000000F00000000000006000000000000032457BC43D>I<0000000000018000000000
0003C0000000000003C0000000000003C0000000000003C0000000000003C00000000000
03C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003
C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003C0
000000000003C0000000000003C0000000000003C0000000000003C0000000000003C000
0000000003C0000000000003C0000000000003C0000000000003C0000000000003C00000
00000003C0000000000003C0000000000003C0000000000003C0000000000003C03FFFFF
FFFFFFC0FFFFFFFFFFFFC0FFFFFFFFFFFFC0FFFFFFFFFFFFC0000000000003C000000000
0003C0000000000003C0000000000003C0000000000003C0000000000003C00000000000
03C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003
C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003C0
000000000003C0000000000003C0000000000003C0000000000003C0000000000003C000
0000000003C0000000000003C0000000000003C0000000000003C0000000000003C00000
00000003C0000000000003C0000000000003C0000000000003C0000000000003C0000000
0000018032457BC43D>I<0000000FE0000000FFE0000003FC0000000FE00000003FC000
00007F80000000FF00000000FE00000001FC00000001FC00000003F800000003F8000000
03F800000003F800000003F800000003F800000003F800000003F800000003F800000003
F800000003F800000003F800000003F800000003F800000003F800000003F800000003F8
00000003F800000003F800000003F800000003F800000003F800000003F800000003F800
000003F800000003F800000003F800000003F800000003F800000003F800000003F80000
0007F000000007F00000000FE00000001FE00000003FC00000007F80000000FE00000007
F8000000FFE0000000FFE000000007F800000000FE000000007F800000003FC00000001F
E00000000FE000000007F000000007F000000003F800000003F800000003F800000003F8
00000003F800000003F800000003F800000003F800000003F800000003F800000003F800
000003F800000003F800000003F800000003F800000003F800000003F800000003F80000
0003F800000003F800000003F800000003F800000003F800000003F800000003F8000000
03F800000003F800000003F800000003F800000003F800000003F800000001FC00000001
FC00000000FE00000000FF000000007F800000003FC00000000FE000000003FC00000000
FFE00000000FE0236479CA32>102 D<FE00000000FFE000000007F800000000FE000000
007F800000003FC00000001FE00000000FE000000007F000000007F000000003F8000000
03F800000003F800000003F800000003F800000003F800000003F800000003F800000003
F800000003F800000003F800000003F800000003F800000003F800000003F800000003F8
00000003F800000003F800000003F800000003F800000003F800000003F800000003F800
000003F800000003F800000003F800000003F800000003F800000003F800000003F80000
0003F800000001FC00000001FC00000000FE00000000FF000000007F800000003FC00000
000FE000000003FC00000000FFE0000000FFE0000003FC0000000FE00000003FC0000000
7F80000000FF00000000FE00000001FC00000001FC00000003F800000003F800000003F8
00000003F800000003F800000003F800000003F800000003F800000003F800000003F800
000003F800000003F800000003F800000003F800000003F800000003F800000003F80000
0003F800000003F800000003F800000003F800000003F800000003F800000003F8000000
03F800000003F800000003F800000003F800000003F800000003F800000003F800000007
F000000007F00000000FE00000001FE00000003FC00000007F80000000FE00000007F800
0000FFE0000000FE00000000236479CA32>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F060046474CA1C>106 D E
%EndDVIPSBitmapFont
/Fo 87[33 46[44 44 66 44 50 28 39 39 50 50 50 50 72 28
44 28 28 50 50 28 44 50 44 50 50 9[83 1[72 55 50 61 1[61
1[66 83 55 2[33 1[72 61 61 72 66 1[61 6[33 4[50 50 50
50 50 2[25 33 25 2[33 33 37[50 2[{TeXBase1Encoding ReEncodeFont}54
99.6264 /Times-Italic rf /Fp 138[45 25 1[30 1[45 45 45
71 25 2[25 45 2[40 45 40 1[40 12[56 51 2[51 12[61 67[{
.167 SlantFont TeXBase1Encoding ReEncodeFont}18 90.9091
/Times-Roman rf
%DVIPSBitmapFont: Fq cmmi12 12 36
/Fq 36 122 df<000003FC00000000001FFF0000000000FE07C000000003F001F0000000
07E000F80000001FC000FC000E003F80007C000E007F00003E000C00FE00003F000C01FC
00003F001C03F800001F001807F800001F801807F000001F80380FF000001F80301FE000
001F80701FE000001FC0603FC000001FC0603FC000001FC0E03FC000000FC0C07F800000
0FC1C07F8000000FC1807F8000000FC380FF8000000FC700FF0000000FC600FF0000000F
CE00FF0000000FDC00FF0000001FD800FE0000001FF800FE0000001FF000FE0000001FE0
00FE0000001FC000FE0000001FC000FE0000001FC000FE0000001FC000FE0000001FC000
7E0000003FC0007E0000007FC0003F000000EFC0383F000003CFC0381F80000F07C0300F
C0001C07C07007E000F803E0E001F00FE001E1C0007FFF0000FF80001FF000003E00372D
7CAB3E>11 D<000000001FE000000000007FFC0000000001E03F0000000007800F800000
000E0007C00000001C0003E0000000380001E0000000700001F0000000E00000F0000001
C00000F8000001800000F8000003800000F8000007000000F8000006000000F800000E00
0000F800000C000001F800001C000001F8000018000001F0000038000003F00000300000
03E0000030000007E0000070000007C000006000000FC000006000000F800000E000001F
000000C000003E000000C000007C000001C03FF1F800000180FFFFE000000180C01F8000
000180FFFFC0000003803FF1F0000003000000F8000003000000780000030000007C0000
070000003E0000060000003E0000060000003E0000060000001F00000E0000001F00000C
0000001F00000C0000001F00000C0000001F00001C0000001F8000180000001F80001800
00001F8000180000001F8000380000003F0000300000003F0000300000003F0000300000
003F0000700000007F0000700000007E0000600000007E000060000000FE0000E0000000
FC0000E0000000FC0000E0000001F80000E0000001F80001E0000003F00001F0000007E0
0001B000000FC00001B000000F800003B800001F0000031800007E0000031C0000FC0000
030E0001F0000007070007C000000603C03F0000000600FFFC00000006003FC00000000E
0000000000000C0000000000000C0000000000000C0000000000001C0000000000001800
000000000018000000000000180000000000003800000000000030000000000000300000
000000003000000000000070000000000000600000000000006000000000000060000000
000000E0000000000000E000000000000035597DC537>I<00F80003FC0003FE001FFF00
071F007C0FC00E0F80E007E01C0FC3C003E01807C70003F01807CE0001F03807DC0001F8
3007D80001F8300FF80001F8700FF00001F8600FE00001F8600FE00001F8E00FC00003F8
C01FC00003F0C01F800003F0001F800003F0001F800007F0003F800007F0003F000007E0
003F000007E0003F00000FE0007F00000FE0007E00000FC0007E00000FC0007E00001FC0
00FE00001FC000FC00001F8000FC00001F8000FC00003F8001FC00003F8001F800003F00
01F800003F0001F800007F0003F800007F0003F000007E0003F000007E0003F00000FE00
07F00000FE0007E00000FC0007E00000FC0007E00001FC000FE00001FC000FC00001F800
03800001F80000000003F80000000003F80000000003F00000000003F00000000007F000
00000007F00000000007E00000000007E0000000000FE0000000000FE0000000000FC000
0000000FC0000000001FC0000000001FC0000000001F80000000001F80000000003F8000
0000003F80000000003F00000000000E00002D417DAB30>17 D<000007FE0000007FFFC0
0001FFFFF00007FFFFF8001FF003FE003F00007E007800003E00E000000801C000000003
800000000300000000070000000006000000000600000000060000000006000000000700
000000030000000003803E000001E7FFC000007FC1E000007FFFE00001E7FFC000038000
000007000000000E000000001C0000000038000000007000000000600000000060000000
00E000000000C000000000C000000000C000000000C000000000C000000180E000000380
F00000030070000007007800000E003E00003C001FC003F8000FFFFFE00003FFFFC00000
FFFE0000001FF00000272F7EAC2E>34 D<1E007F807F80FFC0FFC0FFC0FFC07F807F801E
000A0A78891B>58 D<1E007F80FF80FFC0FFC0FFE0FFE0FFE07FE01E6000600060006000
6000E000C000C000C001C0018003800300070006000E001C003800700060000B1D78891B
>I<000000C0000000000000C0000000000000C0000000000000C0000000000000C00000
00000001E0000000000001E0000000000001E0000000000001E0000000000001E0000000
000001E0000000000001E0000000000001E0000000000003F0000000000003F000000000
0003F0000000000003F0000000000003F0000000FC0003F0000FC07FE003F001FF801FFF
03F03FFE0007FFFBF7FFF80001FFFFFFFFE000003FFFFFFF0000000FFFFFFC00000003FF
FFF000000000FFFFC0000000003FFF00000000001FFE00000000001FFE00000000003FFF
00000000007FFF80000000007FFF8000000000FF3FC000000000FE1FC000000001FC0FE0
00000001F807E000000003F003F000000007E001F800000007C000F80000000F80007C00
00000F00003C0000001F00003E0000001E00001E0000003C00000F000000380000070000
0070000003800000600000018000323081B031>63 D<0000000000003000000000000000
00700000000000000000F00000000000000000F00000000000000001F000000000000000
03F00000000000000003F00000000000000007F80000000000000007F800000000000000
0FF8000000000000001FF8000000000000001FF80000000000000037F800000000000000
37F80000000000000067F800000000000000E7F800000000000000C7F800000000000001
87FC0000000000000187FC0000000000000307FC0000000000000703FC00000000000006
03FC0000000000000C03FC0000000000000C03FC0000000000001803FC00000000000038
03FC0000000000003003FC0000000000006003FE0000000000006003FE000000000000C0
03FE000000000001C001FE0000000000018001FE0000000000030001FE00000000000300
01FE0000000000060001FE00000000000E0001FE00000000000C0001FE00000000001800
01FE0000000000180001FF0000000000300001FF0000000000700000FF00000000006000
00FF0000000000C00000FF0000000000C00000FF0000000001800000FF0000000003FFFF
FFFF0000000003FFFFFFFF0000000007FFFFFFFF0000000006000000FF800000000C0000
00FF800000001C0000007F80000000180000007F80000000300000007F80000000300000
007F80000000600000007F80000000E00000007F80000000C00000007F80000001800000
007F80000001800000007FC0000003000000007FC0000007000000003FC0000006000000
003FC000000E000000003FC000001C000000003FC000003C000000003FC000007C000000
003FC00000FE000000007FE00007FF00000001FFE0007FFFF000007FFFFFC0FFFFF00000
7FFFFFC0FFFFE000007FFFFFC042477DC649>65 D<0000FFFFFFFFFF80000000FFFFFFFF
FFF0000000FFFFFFFFFFFC00000000FFC00003FF000000007F800000FF80000000FF8000
003FC0000000FF8000003FE0000000FF0000001FE0000000FF0000000FF0000000FF0000
000FF0000001FF0000000FF8000001FE00000007F8000001FE00000007F8000001FE0000
0007F8000003FE00000007F8000003FC00000007F8000003FC0000000FF8000003FC0000
000FF8000007FC0000000FF0000007F80000001FF0000007F80000001FE0000007F80000
003FE000000FF80000003FC000000FF00000007F8000000FF0000000FF0000000FF00000
01FE0000001FF0000003FC0000001FE0000007F80000001FE000001FF00000001FE00000
3FC00000003FE00001FF000000003FC0001FFC000000003FFFFFFFF0000000003FFFFFFF
FE000000007FC000007F800000007F8000001FC00000007F8000000FF00000007F800000
07F8000000FF80000003FC000000FF00000003FC000000FF00000001FE000000FF000000
01FE000001FF00000001FF000001FE00000001FF000001FE00000001FF000001FE000000
01FF000003FE00000001FF000003FC00000001FF000003FC00000001FF000003FC000000
01FF000007FC00000001FE000007F800000003FE000007F800000003FE000007F8000000
07FC00000FF800000007FC00000FF00000000FF800000FF00000001FF000000FF0000000
1FF000001FF00000003FE000001FE00000007FC000001FE0000001FF8000003FE0000003
FE0000003FE000000FFC0000003FC000003FF8000000FFC00001FFE00000FFFFFFFFFFFF
800000FFFFFFFFFFFC000000FFFFFFFFFFC000000045447CC34A>I<0000000001FF8000
18000000003FFFF0003800000001FFFFFC003800000007FF007E00780000001FF0000F80
F00000007F800003C1F0000001FE000001C3F0000003FC000000E7F000000FF00000007F
E000001FE00000003FE000003FC00000003FE00000FF000000001FE00001FE000000001F
C00003FC000000000FC00007F8000000000FC0000FF8000000000FC0000FF0000000000F
80001FE0000000000780003FC0000000000780007FC000000000078000FF800000000007
0000FF0000000000070001FF0000000000070003FE0000000000070003FE000000000006
0007FC0000000000060007FC000000000006000FF8000000000006000FF8000000000000
001FF8000000000000001FF0000000000000001FF0000000000000003FF0000000000000
003FE0000000000000003FE0000000000000003FE0000000000000007FE0000000000000
007FC0000000000000007FC0000000000000007FC0000000000000007FC0000000000000
00FF8000000000000000FF8000000000000000FF8000000000000000FF80000000000000
00FF800000000000C000FF800000000000C000FF800000000001C000FF80000000000180
007F80000000000180007F80000000000380007F80000000000300007F80000000000700
007F80000000000600003FC0000000000E00003FC0000000001C00003FC0000000001800
001FC0000000003800001FE0000000007000000FE000000000E000000FF000000001C000
0007F80000000380000003F80000000700000001FC0000000E00000000FE0000003C0000
00007F00000078000000003FC00001E0000000001FF0000FC00000000007FE007F000000
000001FFFFFC0000000000003FFFE000000000000007FF000000000045487CC546>I<00
00FFFFFFFFFF8000000000FFFFFFFFFFF000000000FFFFFFFFFFFC0000000000FFC00007
FF00000000007F8000007FC000000000FF8000001FE000000000FF8000000FF000000000
FF00000007F800000000FF00000003FC00000000FF00000001FC00000001FF00000000FE
00000001FE00000000FE00000001FE000000007F00000001FE000000007F00000003FE00
0000003F80000003FC000000003F80000003FC000000003F80000003FC000000003FC000
0007FC000000003FC0000007F8000000003FC0000007F8000000003FC0000007F8000000
003FC000000FF8000000003FC000000FF0000000003FE000000FF0000000003FE000000F
F0000000003FE000001FF0000000003FE000001FE0000000003FC000001FE0000000003F
C000001FE0000000003FC000003FE0000000003FC000003FC0000000007FC000003FC000
0000007FC000003FC0000000007FC000007FC0000000007F8000007F8000000000FF8000
007F8000000000FF8000007F8000000000FF800000FF8000000000FF000000FF00000000
01FF000000FF0000000001FE000000FF0000000001FE000001FF0000000003FE000001FE
0000000003FC000001FE0000000007FC000001FE0000000007F8000003FE000000000FF0
000003FC000000000FF0000003FC000000001FE0000003FC000000001FC0000007FC0000
00003FC0000007F8000000003F80000007F8000000007F00000007F800000000FE000000
0FF800000001FC0000000FF000000003FC0000000FF000000007F80000000FF00000000F
E00000001FF00000001FC00000001FE00000003F800000001FE0000000FF000000003FE0
000001FC000000003FE000000FF8000000003FC000003FE000000000FFC00003FF800000
00FFFFFFFFFFFE00000000FFFFFFFFFFF000000000FFFFFFFFFF00000000004B447CC351
>I<0000FFFFFFFFFFFFFC0000FFFFFFFFFFFFFC0000FFFFFFFFFFFFFC000000FFC00000
3FFC0000007F80000003F8000000FF80000001F8000000FF80000000F8000000FF000000
0078000000FF0000000078000000FF0000000038000001FF0000000038000001FE000000
0038000001FE0000000038000001FE0000000038000003FE0000000030000003FC000000
0030000003FC0000000030000003FC0000000030000007FC0000000030000007F8000060
0030000007F80000600030000007F80000E0003000000FF80000C0000000000FF00000C0
000000000FF00000C0000000000FF00001C0000000001FF0000180000000001FE0000380
000000001FE0000780000000001FE0000F80000000003FE0007F00000000003FFFFFFF00
000000003FFFFFFF00000000003FFFFFFF00000000007FC0007E00000000007F80001E00
000000007F80001E00000000007F80000E0000000000FF80000C0000000000FF00000C00
00000000FF00000C0000000000FF00001C0000000001FF0000180003000001FE00001800
03000001FE0000180007000001FE0000180006000003FE0000000006000003FC00000000
0E000003FC000000000C000003FC000000001C000007FC0000000018000007F800000000
38000007F80000000030000007F8000000007000000FF8000000007000000FF000000000
E000000FF000000001E000000FF000000001C000001FF000000003C000001FE000000007
C000001FE00000000F8000003FE00000003F8000003FE00000007F0000003FC0000003FF
000000FFC000003FFE0000FFFFFFFFFFFFFE0000FFFFFFFFFFFFFE0000FFFFFFFFFFFFFC
000046447CC348>I<0000FFFFFFFFFFFFF80000FFFFFFFFFFFFF80000FFFFFFFFFFFFF8
000000FFC000003FF80000007F80000007F0000000FF80000003F0000000FF80000001F0
000000FF00000000F0000000FF00000000F0000000FF0000000070000001FF0000000070
000001FE0000000070000001FE0000000070000001FE0000000070000003FE0000000060
000003FC0000000060000003FC0000000060000003FC0000000060000007FC0000000060
000007F80000000060000007F80000C00060000007F80001C0006000000FF80001800000
00000FF0000180000000000FF0000180000000000FF0000380000000001FF00003000000
00001FE0000700000000001FE0000700000000001FE0000F00000000003FE0001E000000
00003FC000FE00000000003FFFFFFE00000000003FFFFFFE00000000007FFFFFFC000000
00007F8000FC00000000007F80003C00000000007F80003C0000000000FF800018000000
0000FF0000180000000000FF0000180000000000FF0000380000000001FF000030000000
0001FE0000300000000001FE0000300000000001FE0000700000000003FE000060000000
0003FC0000000000000003FC0000000000000003FC0000000000000007FC000000000000
0007F80000000000000007F80000000000000007F8000000000000000FF8000000000000
000FF0000000000000000FF0000000000000000FF0000000000000001FF0000000000000
001FE0000000000000001FE0000000000000003FE0000000000000003FE0000000000000
003FE000000000000000FFE0000000000000FFFFFFF80000000000FFFFFFF80000000000
FFFFFFF8000000000045447CC33F>I<0000000001FF800018000000003FFFF000380000
0001FFFFFC003800000007FF007E00780000001FF0000F80F00000007F800003C1F00000
01FE000001C3F0000003FC000000E7F000000FF00000007FE000001FE00000003FE00000
3FC00000003FE00000FF000000001FE00001FE000000001FC00003FC000000000FC00007
F8000000000FC0000FF8000000000FC0000FF0000000000F80001FE0000000000780003F
C0000000000780007FC000000000078000FF8000000000070000FF0000000000070001FF
0000000000070003FE0000000000070003FE0000000000060007FC0000000000060007FC
000000000006000FF8000000000006000FF8000000000000001FF8000000000000001FF0
000000000000001FF0000000000000003FF0000000000000003FE0000000000000003FE0
000000000000003FE0000000000000007FE0000000000000007FC0000000000000007FC0
000000000000007FC0000000000000007FC000000000000000FF8000000000000000FF80
000001FFFFFF80FF80000003FFFFFF80FF80000003FFFFFF80FF8000000000FFE000FF80
000000007FC000FF80000000007FC000FF80000000007FC0007F80000000007F80007F80
000000007F80007F8000000000FF80007F8000000000FF00007F8000000000FF00003FC0
00000000FF00003FC000000001FF00003FC000000001FE00001FE000000001FE00001FE0
00000001FE00000FE000000003FE00000FF000000003FC000007F800000007FC000003F8
0000000FFC000001FC0000001FFC000000FE0000003DF80000007F80000078F80000003F
C00001E0F80000001FF00007C07800000007FE007F007000000001FFFFFC003000000000
3FFFF000000000000007FF000000000045487CC54D>I<0000FFFFFFFFFE00000000FFFF
FFFFFFE0000000FFFFFFFFFFF800000000FFC0000FFE000000007F800001FF00000000FF
8000007F80000000FF8000003FC0000000FF0000001FE0000000FF0000001FE0000001FF
0000000FF0000001FF0000000FF0000001FE0000000FF0000001FE0000000FF8000003FE
0000000FF8000003FE0000000FF8000003FC0000000FF8000003FC0000000FF8000007FC
0000000FF8000007FC0000001FF0000007F80000001FF0000007F80000001FF000000FF8
0000003FE000000FF80000003FE000000FF00000003FC000000FF00000007FC000001FF0
0000007F8000001FF0000000FF0000001FE0000001FE0000001FE0000003FC0000003FE0
000007F80000003FE000000FF00000003FC000003FC00000003FC00000FF000000007FC0
0007FC000000007FFFFFFFF0000000007FFFFFFF80000000007F8000000000000000FF80
00000000000000FF8000000000000000FF0000000000000000FF0000000000000001FF00
00000000000001FF0000000000000001FE0000000000000001FE0000000000000003FE00
00000000000003FE0000000000000003FC0000000000000003FC0000000000000007FC00
00000000000007FC0000000000000007F80000000000000007F8000000000000000FF800
0000000000000FF8000000000000000FF0000000000000000FF0000000000000001FF000
0000000000001FF0000000000000001FE0000000000000001FE0000000000000003FE000
0000000000003FE0000000000000003FC000000000000000FFE0000000000000FFFFFFE0
0000000000FFFFFFE00000000000FFFFFFE0000000000045447CC33F>80
D<00000000FF80018000000007FFF003800000003FFFFC0380000000FF007E0780000001
F8000F0F80000007E000079F0000000FC00003FF0000001F000001FF0000003E000000FF
0000007C000000FE0000007C0000007E000000F80000007E000001F00000007E000001F0
0000003C000003E00000003C000003E00000003C000007E00000003C000007C000000038
000007C000000038000007C00000003800000FC00000003800000FC00000003000000FE0
0000003000000FE00000003000000FE00000000000000FF000000000000007F800000000
000007FC00000000000007FF00000000000003FFE0000000000003FFFC000000000001FF
FFC00000000000FFFFFC00000000007FFFFF00000000003FFFFFC0000000000FFFFFE000
00000003FFFFF800000000003FFFF8000000000007FFFC0000000000007FFE0000000000
000FFE00000000000003FE00000000000001FF00000000000000FF000000000000007F00
0000000000007F000000000000003F000000000000003F000006000000003F0000060000
00003F000006000000003F000006000000003F00000E000000003E00000E000000003E00
000C000000003E00000C000000007E00001E000000007C00001E000000007C00001E0000
0000F800001E00000000F000003F00000001F000003F00000003E000003F80000007C000
003F8000000F8000007FC000001F0000007FE000003E0000007CF800007C000000787E00
01F8000000F01FC00FE0000000E007FFFF80000000E001FFFE00000000C0003FF0000000
0039487BC53C>83 D<00000FC0000000007FF000000001F8381C000007E01C7E00000FC0
0E7E00003F0007FE00007F0003FC0000FE0003FC0001FC0003FC0001F80001FC0003F800
01F80007F00001F8000FF00001F8000FE00003F8001FE00003F0001FE00003F0003FC000
03F0003FC00007F0007FC00007E0007F800007E0007F800007E0007F80000FE000FF8000
0FC000FF00000FC000FF00000FC000FF00001FC000FF00001F8000FE00001F8000FE0000
1F8000FE00003F8030FE00003F0070FE00003F0060FE00003F0060FE00007F00E0FE0000
7F00C0FE0000FE00C07E0001FE00C07E0003FE01C03E00073E01803F000E3E03801F001C
3E03000F80381F070007C0F00F0E0001FFC007FC00007F0001F0002C2D7CAB33>97
D<000007F80000003FFF000000FC07C00003F000E00007E00070001F800030003F000070
007E0003F800FE0007F801FC0007F803F8000FF007F8000FF007F0000FF00FF00007C01F
E00000001FE00000003FC00000003FC00000007FC00000007F800000007F800000007F80
000000FF80000000FF00000000FF00000000FF00000000FF00000000FE00000000FE0000
0000FE00000000FE00000000FE00000000FE00000018FE00000038FE000000707E000000
E07E000001C03F000003803F000007001F80001E000F8000380007C001F00003F00FC000
00FFFE0000001FF00000252D7CAB2A>99 D<0000000001FC00000000FFFC00000000FFFC
00000000FFFC0000000003F80000000001F80000000003F80000000003F80000000003F0
0000000003F00000000007F00000000007F00000000007E00000000007E0000000000FE0
000000000FE0000000000FC0000000000FC0000000001FC0000000001FC0000000001F80
000000001F80000000003F80000000003F80000000003F0000000FC03F0000007FF07F00
0001F8387F000007E01C7E00000FC00E7E00003F0007FE00007F0003FE0000FE0003FC00
01FC0003FC0001F80001FC0003F80001FC0007F00001F8000FF00001F8000FE00003F800
1FE00003F8001FE00003F0003FC00003F0003FC00007F0007FC00007F0007F800007E000
7F800007E0007F80000FE000FF80000FE000FF00000FC000FF00000FC000FF00001FC000
FF00001FC000FE00001F8000FE00001F8000FE00003F8030FE00003F8070FE00003F0060
FE00003F0060FE00007F00E0FE00007F00C0FE0000FE00C07E0001FE00C07E0003FE01C0
3E00073E01803F000E3E03801F001C3E03000F80381F070007C0F00F0E0001FFC007FC00
007F0001F0002E467CC433>I<000007F80000003FFE000001FC07800003F003C0000FC0
01E0001F8000E0007F0000E000FE00007001FC00007003F80000F007F80000E007F00000
E00FF00001E01FE00001C01FE00003C03FC00007803FC0001F003FC000FC007FC01FF000
7FFFFF80007FFFF000007F80000000FF80000000FF00000000FF00000000FF00000000FF
00000000FF00000000FE00000000FE00000000FE00000000FE00000000FE000000187E00
0000387E000000707F000000E03F000001C03F000003801F000007000F80001E000FC000
380007E001F00001F00FC000007FFE0000001FF00000252D7CAB2D>I<0000000007E000
0000001FF8000000007C1C00000000F80E00000001F03E00000003E07F00000003E0FF00
000007E1FF00000007C1FF00000007C1FE0000000FC0FC0000000FC0780000000FC00000
00001F80000000001F80000000001F80000000001F80000000003F80000000003F000000
00003F00000000003F00000000003F00000000007F00000000007E00000000007E000000
00007E00000000007E00000000FFFFFF800000FFFFFF800000FFFFFF80000000FC000000
0000FC0000000000FC0000000001FC0000000001F80000000001F80000000001F8000000
0001F80000000003F80000000003F00000000003F00000000003F00000000003F0000000
0007F00000000007E00000000007E00000000007E00000000007E0000000000FE0000000
000FC0000000000FC0000000000FC0000000000FC0000000000FC0000000001FC0000000
001F80000000001F80000000001F80000000001F80000000003F80000000003F00000000
003F00000000003F00000000003F00000000007F00000000007E00000000007E00000000
007E00000000007E0000000000FC0000000000FC0000000000FC0000000000FC00000000
00F80000000001F80000000001F80000000001F00000000001F00000001C03F00000007F
03E0000000FF03E0000000FF03C0000000FF07C0000000FF0780000000FE0F00000000F8
0F00000000601E00000000783C000000001FF00000000007C000000000305A7BC530>I<
0000007E0000000003FF800000000FC1E0E000001F0073F000007E0033F00000FC003FF0
0001F8001FF00003F8001FE00007F0000FE0000FE0000FE0000FE0000FE0001FC0000FC0
003FC0000FC0003F80001FC0007F80001FC0007F00001F8000FF00001F8000FF00003F80
01FF00003F8001FE00003F0001FE00003F0001FE00007F0003FE00007F0003FC00007E00
03FC00007E0003FC0000FE0003FC0000FE0003F80000FC0003F80000FC0003F80001FC00
03F80001FC0003F80001F80003F80001F80003F80003F80003F80007F80001F80007F000
01F8000FF00000F8001FF00000FC003FF000007C0077E000003E01E7E000001F078FE000
0007FE0FE0000001F80FC0000000000FC0000000001FC0000000001FC0000000001F8000
0000001F80000000003F80000000003F80000000003F00000000003F00001C00007E0000
7F0000FE0000FF0000FC0000FF0001F80000FF0003F80000FE0007F00000FE000FC00000
F8001F8000007C00FE0000001FFFF800000003FFC00000002C407EAB2F>I<0000FE0000
00007FFE000000007FFE000000007FFE0000000001FC0000000000FC0000000001FC0000
000001FC0000000001F80000000001F80000000003F80000000003F80000000003F00000
000003F00000000007F00000000007F00000000007E00000000007E0000000000FE00000
00000FE0000000000FC0000000000FC0000000001FC0000000001FC0000000001F800000
00001F803FC000003F81FFF000003F87C0FC00003F0E007E00003F3C003E00007F70003F
00007FE0001F00007FC0001F80007F80001F8000FF80001F8000FF00001F8000FE00001F
8000FE00001F8001FC00003F8001FC00003F0001F800003F0001F800003F0003F800007F
0003F800007E0003F000007E0003F000007E0007F00000FE0007F00000FC0007E00000FC
0007E00001FC000FE00001F8000FE00001F8000FC00003F8000FC00003F0001FC00003F0
071FC00007F0061F800007E0061F80000FE0063F80000FC00E3F80000FC00C3F00000FC0
1C3F00000F80187F00000F80387F00000F80307E00000F80707E00000F80E0FE00000781
C0FE000007C380FC000001FF00380000007C0030467BC438>I<00001E0000003F000000
7F000000FF000000FF000000FF0000007E00000038000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000003E000000FF800001C3C0000781E0000601F0000E01F0001C01F0001803
F0003803F0003003F0003003F0007007F0006007E0006007E000E00FE000C00FC000001F
C000001F8000001F8000003F8000003F0000003F0000007F0000007E000000FE000000FC
000000FC000001FC000001F8000001F8038003F8030003F0030007F0030007E0070007E0
060007E00E0007E00C0007C01C0007C0180007C0380007C0700003C0E00003E1C00000FF
8000003E000019437DC121>I<0000FE000000007FFE000000007FFE000000007FFE0000
000001FC0000000000FC0000000001FC0000000001FC0000000001F80000000001F80000
000003F80000000003F80000000003F00000000003F00000000007F00000000007F00000
000007E00000000007E0000000000FE0000000000FE0000000000FC0000000000FC00000
00001FC0000000001FC0000000001F80000000001F80003F00003F8000FFC0003F8003C0
E0003F000703E0003F001E0FE0007F00380FE0007F00701FE0007E00E01FE0007E01C01F
E000FE01801FC000FE0380070000FC0700000000FC0E00000001FC1C00000001FC380000
0001F87000000001F8E000000003FBC000000003FF0000000003FF8000000003FFF80000
0007F1FE00000007F03F80000007E00FE0000007E007F000000FE003F000000FE003F800
000FC001F800000FC001F800001FC001F801C01FC001F801801F8001F801801F8001F801
803F8001F803803F8001F803003F0001F003003F0001F007007F0001F006007F0001F00E
007E0001F00C007E0001F01C00FE0000F03800FE0000787000FC00003FE0003800000F80
002B467BC433>107 D<0003F801FFF801FFF801FFF80007F00003F00007F00007F00007
E00007E0000FE0000FE0000FC0000FC0001FC0001FC0001F80001F80003F80003F80003F
00003F00007F00007F00007E00007E0000FE0000FE0000FC0000FC0001FC0001FC0001F8
0001F80003F80003F80003F00003F00007F00007F00007E00007E0000FE0000FE0000FC0
000FC0001FC0001FC0001F80001F80003F80003F80003F00003F00007F00607F00E07E00
C07E00C07E01C0FE0180FC0180FC0180FC03807C03007C07007C06003E0E001E1C000FF8
0003E00015467CC41D>I<00F80003FC00007F800003FE001FFF0003FFE000071F007C0F
C00F81F8000E0F80E007E01C00FC001C0FC3C003E078007C001807C70003F0E0007E0018
07CE0001F1C0003E003807DC0001FB80003F003007D80001FB00003F00300FF80001FF00
003F00700FF00001FE00003F00600FE00001FC00003F00600FE00001FC00003F00E00FC0
0003F800007F00C01FC00003F800007E00C01F800003F000007E00001F800003F000007E
00001F800007F00000FE00003F800007F00000FC00003F000007E00000FC00003F000007
E00000FC00003F00000FE00001FC00007F00000FE00001F800007E00000FC00001F80000
7E00000FC00003F800007E00001FC00003F00000FE00001FC00003F00000FC00001F8000
07F00000FC00001F800007E00000FC00003F800007E00E01FC00003F80000FE00C01F800
003F00000FC00C01F800003F00001FC00C01F800007F00001F801C03F800007F00001F80
1803F000007E00001F803803F000007E00001F003003F00000FE00001F007007F00000FE
00001F006007E00000FC00001F00E007E00000FC00001F01C007E00001FC00000F03800F
E00001FC00000F87000FC00001F8000003FE000380000070000000F8004F2D7DAB55>I<
000003FC000000003FFF00000000FE07C0000003F003F0000007E001F800001FC000FC00
003F00007C00007F00007E0000FE00007F0001FC00003F0003F800003F0007F800003F80
07F000003F800FF000003F801FE000003F801FE000003F803FC000003F803FC000007F80
7FC000007F807F8000007F807F8000007F807F800000FF80FF800000FF00FF000000FF00
FF000000FF00FF000001FF00FF000001FE00FE000001FE00FE000003FC00FE000003FC00
FE000003F800FE000007F800FE000007F000FE00000FE000FE00001FE0007E00001FC000
7E00003F80003F00007F00003F0000FE00001F8001F800000FC003F0000007E00FC00000
01F03F80000000FFFC000000001FE0000000292D7CAB2F>111 D<0003E0003F8000000F
F800FFE000001C7C03C0F80000383E07007C0000703F1E007E0000601F38003F0000601F
70003F0000E01F60001F8000C01FE0001F8000C03FC0001F8001C03F80001FC001803F00
001FC001803F00001FC003807F00001FC003007F00001FC003007E00001FC000007E0000
1FC00000FE00003FC00000FE00003FC00000FC00003FC00000FC00003FC00001FC00007F
C00001FC00007F800001F800007F800001F800007F800003F80000FF800003F80000FF00
0003F00000FF000003F00000FE000007F00001FE000007F00001FC000007E00003FC0000
07E00003F800000FE00007F800000FE00007F000000FE0000FE000000FE0000FC000001F
F0001F8000001FF0003F0000001FB8007E0000001F9800FC0000003F9C01F80000003F8F
07E00000003F03FF800000003F00FC000000007F0000000000007F0000000000007E0000
000000007E000000000000FE000000000000FE000000000000FC000000000000FC000000
000001FC000000000001FC000000000001F8000000000001F8000000000003F800000000
0003F8000000000007F80000000000FFFFF000000000FFFFF000000000FFFFE000000000
323F83AB31>I<00F8000FC003FE007FF0070F00F0380E0F83C07C0C07C701FC1C07CE01
FC1807DC03FC3807D803FC3007F803FC300FF003F8700FE000E0600FE00000600FC00000
E00FC00000C01FC00000C01F800000001F800000001F800000003F800000003F00000000
3F000000003F000000007F000000007E000000007E000000007E00000000FE00000000FC
00000000FC00000000FC00000001FC00000001F800000001F800000001F800000003F800
000003F000000003F000000003F000000007F000000007E000000007E000000007E00000
000FE00000000FC00000000380000000262D7DAB2C>114 D<00000FF00000007FFE0000
01F00F8000078001C0000F0000E0001E000060003C000060003C0001F000780007F00078
0007F000F8000FE000F0000FE000F8000FE000F800038000FC00000000FE00000000FF00
000000FFF80000007FFF8000007FFFE000003FFFF800001FFFFC000007FFFE000000FFFE
00000007FF00000000FF000000007F000000003F800000001F800E00001F803F00000F00
7F80000F007F80000F007F80001F00FF00001E00FF00001E00FC00003C006000003C0060
00007800700000F000380001E0001C0007C0000F803F000003FFFC0000007FE00000242D
7BAB2E>I<00001C0000007E0000007E0000007E000000FE000000FC000000FC000000FC
000001FC000001F8000001F8000001F8000003F8000003F0000003F0000003F0000007F0
000007E0000007E0007FFFFFFCFFFFFFFCFFFFFFF8000FC000000FC000001FC000001F80
00001F8000001F8000003F8000003F0000003F0000003F0000007F0000007E0000007E00
00007E000000FE000000FC000000FC000000FC000001FC000001F8000001F8000001F800
0003F8000003F0000003F0000003F0007007F0006007E0006007E000E007E000C00FE001
C00FC001800FC003800FC0070007C0060007C00E0007C01C0003E0380001E0F00000FFC0
00003F00001E3F7EBD23>I<003E000000000000FF800000E00003C3C00003F0000703E0
0003F0000601F00003F0000E01F00007F0001C01F00007F0001803F00007E0003803F000
07E0003003F0000FE0003003F0000FE0007007F0000FC0006007E0000FC0006007E0001F
C000E00FE0001FC000C00FC0001F8000001FC0001F8000001F80003F8000001F80003F80
00003F80003F0000003F00003F0000003F00007F0000007F00007F0000007E00007E0000
007E00007E0000007E0000FE000000FE0000FE000000FC0000FC000000FC0000FC000000
FC0001FC018000FC0001FC038001F80001F8030001F80001F8030001F80001F8070001F8
0003F8060001F80003F0060000F80007F0060000F8000FF00E0000FC000DF00C00007C00
1DF01C00007C0039F01800003E00F0F83800001F03C07870000007FF803FE0000001FC00
0F8000312D7DAB38>I<003E00000E0000FF80003F8003C3C0007F800703E0007F800601
F0007F800E01F0007F801C01F0007F801803F0003F803803F0001F803003F0000F803003
F0000F807007F00007806007E00007806007E0000780E00FE0000700C00FC0000300001F
C0000300001F80000700001F80000600003F80000600003F00000600003F00000E00007F
00000C00007E00000C00007E00000C00007E00001C0000FE0000180000FC0000180000FC
0000380000FC0000300000FC0000700001F80000600001F80000E00001F80000C00001F8
0001C00000F80001800000F80003800000FC0007000000FC00060000007C000E0000007E
001C0000003F00780000000F81E000000007FFC000000000FE000000292D7DAB2F>I<00
3E00000000003800FF800001C000FC03C3C00007E001FE0703E00007E001FE0601F00007
E001FE0E01F0000FE001FE1C01F0000FC001FE1803F0000FC000FE3803F0000FC0007E30
03F0001FC0003E7003F0001F80003E6007F0001F80001E6007E0001F80001E6007E0003F
80001EE00FE0003F00001CC00FC0003F00000C001FC0003F00000C001F80007F00001C00
1F80007E000018003F80007E000018003F00007E000018003F0000FE000038007F0000FE
000030007E0000FC000030007E0000FC000030007E0001FC00007000FE0001FC00006000
FC0001F800006000FC0001F80000E000FC0001F80000C000FC0001F80000C000F80003F0
0001C000F80003F000018000F80003F000038000F80003F000030000F80003F000070000
FC0007F000060000FC0007F8000E00007C000FF8001C00007E000CF8001800003E001CFC
003800001F00387E00F000000FC0F01F01C0000003FFC00FFF800000007F0001FE00003F
2D7DAB46>I<003E0000000000FF800000E003C3C00003F00703E00003F00601F00003F0
0E01F00007F01C01F00007E01803F00007E03803F00007E03003F0000FE07003F0000FC0
6007F0000FC06007E0000FC06007E0001FC0E00FE0001F80C00FC0001F80001FC0001F80
001F80003F80001F80003F00003F80003F00003F00003F00003F00007F00007F00007E00
007E00007E00007E00007E00007E0000FE0000FE0000FC0000FC0000FC0000FC0000FC00
00FC0001FC0000FC0001F80001F80001F80001F80001F80001F80003F80001F80003F000
01F80003F00000F80007F00000F8000FF00000FC000FE000007C001FE000007C003FE000
003E00FFE000001F03CFC0000007FF8FC0000001FC0FC0000000001FC0000000001F8000
0000001F80000000003F80000000003F000007C0007F00001FE0007E00001FE000FC0000
1FE000FC00003FC001F800003FC003F000003F8003E00000380007C0000018000F800000
1C001F0000000E007C0000000781F800000003FFE0000000007F000000002C407DAB30>
121 D E
%EndDVIPSBitmapFont
/Fr 87[33 45[44 50 50 72 50 50 28 39 33 50 50 50 50 78
28 50 28 28 50 50 33 44 50 44 50 44 33 2[33 1[33 2[72
94 1[72 61 55 66 1[55 72 72 89 61 72 1[33 72 72 55 61
72 66 66 72 1[44 1[56 1[28 28 50 50 50 50 50 50 50 50
50 50 1[25 33 25 2[33 33 33 5[33 29[55 55 2[{
TeXBase1Encoding ReEncodeFont}74 99.6264 /Times-Roman
rf /Fs 134[50 50 72 50 55 33 39 44 1[55 50 55 83 28 55
1[28 55 50 33 44 55 44 1[50 8[72 3[66 55 72 1[61 1[72
94 66 2[39 3[66 72 72 1[72 6[33 50 50 50 50 50 50 50
50 50 50 1[25 43[55 2[{TeXBase1Encoding ReEncodeFont}48
99.6264 /Times-Bold rf /Ft 87[30 19[40 40 24[40 45 45
66 45 45 25 35 30 45 45 45 45 71 25 45 25 25 45 45 30
40 45 40 45 40 3[30 1[30 1[66 1[86 66 66 56 51 61 66
51 66 66 81 56 66 35 30 66 66 51 56 66 61 61 66 1[40
4[25 45 45 45 45 45 45 45 45 45 45 1[23 30 23 2[30 30
37[51 2[{TeXBase1Encoding ReEncodeFont}73 90.9091 /Times-Roman
rf /Fu 139[30 35 40 14[40 51 45 31[66 11[45 45 45 45
45 45 48[{TeXBase1Encoding ReEncodeFont}13 90.9091 /Times-Bold
rf /Fv 134[40 1[61 40 45 25 35 35 1[45 45 45 66 25 2[25
45 45 25 40 45 40 45 45 11[66 51 45 56 66 56 1[61 76
51 61 1[30 1[66 56 56 66 61 1[56 6[30 11[23 1[23 2[30
30 40[{TeXBase1Encoding ReEncodeFont}43 90.9091 /Times-Italic
rf
%DVIPSBitmapFont: Fw cmr8 8 13
/Fw 13 106 df<FFFFFFFFF0FFFFFFFFF003F80007F001F80001F001F80000F801F80000
7801F800003801F800003801F800001801F800001801F800001801F800001C01F800000C
01F800000C01F800000C01F800000001F800000001F800000001F800000001F800000001
F800000001F800000001F800000001F800000001F800000001F800000001F800000001F8
00000001F800000001F800000001F800000001F800000001F800000001F800000001F800
000001F800000001F800000001F800000001F800000001F800000001F800000001F80000
0003FC000000FFFFF80000FFFFF80000262D7EAC2C>0 D<00000060000000000000F000
0000000000F0000000000001F8000000000003FC000000000003FC000000000007FE0000
00000006FE00000000000E7F00000000000C7F00000000001C3F8000000000183F800000
0000301FC000000000300FC000000000600FE0000000006007E000000000C007F0000000
00C003F0000000018003F8000000018001F8000000030001FC000000070000FE00000006
0000FE0000000E00007F0000000C00007F0000001C00003F8000001800003F8000003800
001FC000003000001FC000006000000FE0000060000007E00000C0000007F00000C00000
03F0000180000003F8000180000001F8000300000001FC000700000000FE000600000000
FE000E000000007F000C000000007F001C000000003F8018000000003F803FFFFFFFFFFF
C03FFFFFFFFFFFC07FFFFFFFFFFFE07FFFFFFFFFFFE0FFFFFFFFFFFFF0342F7DAE3B>I<
00030007000E001C0038007000F001E001C003C0078007800F000F001E001E001E003C00
3C003C003C0078007800780078007800F800F800F000F000F000F000F000F000F000F000
F000F000F000F800F800780078007800780078003C003C003C003C001E001E001E000F00
0F000780078003C001C001E000F000700038001C000E0007000310437AB11B>40
D<C000E000700038001C000E000F000780038003C001E001E000F000F000780078007800
3C003C003C003C001E001E001E001E001E001F001F000F000F000F000F000F000F000F00
0F000F000F000F001F001F001E001E001E001E001E003C003C003C003C00780078007800
F000F001E001E003C0038007800F000E001C0038007000E000C00010437CB11B>I<0000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
03800000000003800000000003800000000003800000FFFFFFFFFFFCFFFFFFFFFFFCFFFF
FFFFFFFC0000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000000000038000000000
038000000000038000000000038000000000038000000000038000002E2F7CA737>43
D<000C00003C00007C0003FC00FFFC00FC7C00007C00007C00007C00007C00007C00007C
00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C
00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C
00007C00007C00007C00007C00007C0000FE007FFFFE7FFFFE172C7AAB23>49
D<007F800001FFF0000780FC000E003F001C001F8038000FC070000FC0600007E0F00007
E0FC0007F0FE0007F0FE0003F0FE0003F0FE0003F07C0007F0000007F0000007F0000007
E000000FE000000FC000001FC000001F8000003F0000007E0000007C000000F8000001F0
000003E0000007C000000F8000001E0000003C00000078000000F0003000E0003001C000
3003800060070000600E0000E01FFFFFE03FFFFFE07FFFFFC0FFFFFFC0FFFFFFC01C2C7D
AB23>I<003FC00001FFF00007C0FC000E007E001C003F001C001F803F001FC03F001FC0
3F800FC03F000FC03F000FC00C001FC000001FC000001F8000001F8000003F0000003E00
00007C000000F8000003F00000FFC00000FFF0000000FC0000003F0000001F8000001FC0
00000FC000000FE000000FE0000007F0000007F0380007F07C0007F0FE0007F0FE0007F0
FE0007F0FE000FE0F8000FE060000FC070001FC038001F801E003F000780FC0001FFF000
007FC0001C2D7DAB23>I<00FF000007FFC0000F01F0001C00F8003F007C003F003E003F
003E003F003F001E001F0000001F0000001F0000001F0000001F000007FF00007FFF0001
FE1F0007F01F001FC01F003F801F007F001F007E001F00FE001F06FC001F06FC001F06FC
001F06FC003F06FE003F067E007F067F00EF8C1F83C7FC0FFF03F801FC01E01F207D9E23
>97 D<07C0000000FFC0000000FFC00000000FC000000007C000000007C000000007C000
000007C000000007C000000007C000000007C000000007C000000007C000000007C00000
0007C000000007C000000007C0FE000007C7FF800007CF03E00007DC01F00007F8007C00
07F0007E0007E0003E0007C0001F0007C0001F8007C0001F8007C0000F8007C0000FC007
C0000FC007C0000FC007C0000FC007C0000FC007C0000FC007C0000FC007C0000FC007C0
000FC007C0001F8007C0001F8007C0001F0007C0003F0007E0003E0007F0007C0007B000
F80007BC01F000070E07E0000607FF80000001FC0000222F7EAD27>I<001FE000007FFC
0001F01E0003E0070007C01F800F801F801F001F803F001F803E000F007E0000007E0000
007C000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0000
00FC0000007E0000007E0000007E0000C03F0000C01F0001C01F8001800FC0038007E007
0001F03E00007FF800001FC0001A207E9E1F>I<000000F80000001FF80000001FF80000
0001F800000000F800000000F800000000F800000000F800000000F800000000F8000000
00F800000000F800000000F800000000F800000000F800000000F800000FE0F800007FF8
F80001F81EF80003E007F80007C003F8000F8001F8001F0001F8003F0000F8003E0000F8
007E0000F8007E0000F800FC0000F800FC0000F800FC0000F800FC0000F800FC0000F800
FC0000F800FC0000F800FC0000F800FC0000F8007C0000F8007E0000F8007E0000F8003E
0001F8001F0001F8001F8003F8000F8007F80003E00EFC0001F03CFFC0007FF0FFC0001F
C0F800222F7EAD27>I<07800FC01FE01FE01FE01FE00FC0078000000000000000000000
00000000000007C0FFC0FFC00FC007C007C007C007C007C007C007C007C007C007C007C0
07C007C007C007C007C007C007C007C007C007C007C007C00FE0FFFCFFFC0E2E7EAD14>
105 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fx cmr10 10 3
/Fx 3 100 df<001FE0000000FFFC000003E03F000007000F80000F8007E0001FC003F0
001FE003F0001FE001F8001FE001F8001FE000FC000FC000FC00078000FC00000000FC00
000000FC00000000FC00000000FC0000007FFC000007FFFC00003FE0FC0000FE00FC0003
F800FC000FF000FC001FC000FC003FC000FC007F8000FC007F0000FC007F0000FC0CFE00
00FC0CFE0000FC0CFE0000FC0CFE0001FC0CFE0001FC0CFF0003FC0C7F00077C0C7F8006
3E183FC01E3E180FE0781FF003FFF00FE0007F8007C026277DA52A>97
D<03F0000000FFF0000000FFF0000000FFF00000000FF000000003F000000003F0000000
03F000000003F000000003F000000003F000000003F000000003F000000003F000000003
F000000003F000000003F000000003F000000003F000000003F000000003F000000003F0
1FE00003F07FF80003F1E03E0003F3801F8003F7000FC003FE0007E003FC0003F003F800
01F803F00001F803F00000FC03F00000FC03F00000FE03F00000FE03F000007E03F00000
7F03F000007F03F000007F03F000007F03F000007F03F000007F03F000007F03F000007F
03F000007F03F000007F03F000007E03F00000FE03F00000FE03F00000FC03F00001FC03
F80001F803F80003F003FC0003F003EE0007E003C6000FC003C7801F000381E07E000300
FFF80000001FC000283B7EB92E>I<0003FC00001FFF80007E03E001F8007003F000F807
E001FC0FC003FC0FC003FC1F8003FC3F8003FC3F0001F87F0000F07F0000007F0000007E
000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE
000000FE0000007E0000007F0000007F0000003F0000063F8000061F80000E1FC0000C0F
C0001C07E0003803F0007001F800E0007C07C0001FFF000007F8001F277DA525>I
E
%EndDVIPSBitmapFont
/Fy 134[60 3[60 33 47 40 2[60 60 93 33 2[33 60 60 1[53
60 1[60 53 11[86 2[80 4[106 4[86 86 1[73 1[80 80 66[{
TeXBase1Encoding ReEncodeFont}24 119.552 /Times-Roman
rf /Fz 134[72 3[80 48 56 64 1[80 72 80 1[40 2[40 80 72
48 64 1[64 1[72 12[96 3[88 12[104 67[{TeXBase1Encoding ReEncodeFont}19
143.462 /Times-Bold rf end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4
 end
%%EndSetup
%%Page: 1 1
TeXDict begin 1 0 bop 0 TeXcolorgray Black 0 TeXcolorgray
1 TeXcolorgray 0 TeXcolorgray 1 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 0 TeXcolorgray 1 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 0 TeXcolorgray 0.25 TeXcolorgray 0 TeXcolorgray
0.5 TeXcolorgray 0 TeXcolorgray 150 315 a Fz(Categorical)33
b(Pr)m(oof)i(Theory)f(of)h(Classical)f(Pr)m(opositional)1446
497 y(Calculus)409 950 y Fy(Gianluigi)d(Bellin)1203 907
y Fx(a)1279 950 y Fy(Martin)f(Hyland)2006 907 y Fx(b)2086
950 y Fy(Edmund)f(Robinson)2999 907 y Fx(a)1313 1099
y Fy(Christian)g(Urban)2100 1056 y Fx(c)977 1266 y Fw(a)1017
1299 y Fv(Queen)24 b(Mary)-5 b(,)23 b(Univer)o(sity)j(of)d(London,)h
(UK)1159 1412 y Fw(b)1203 1445 y Fv(Univer)o(sity)h(of)f(Cambridg)o(e)o
(,)g(UK)936 1558 y Fw(c)971 1591 y Fv(T)-8 b(ec)o(hnical)25
b(Univer)o(sity)g(of)f(Munic)o(h)g(\(TUM\),)e(D)p 83
1871 3454 4 v 83 2000 a Fu(Abstract)83 2206 y Ft(W)-7
b(e)28 b(in)l(v)o(estigate)j(semantics)f(for)f(classical)h(proof)g
(based)f(on)g(the)f(sequent)j(calculus.)f(W)-7 b(e)27
b(sho)n(w)i(that)83 2319 y(the)24 b(propositional)i(connecti)n(v)o(es)g
(are)d(not)g(quite)h(well-beha)n(v)o(ed)i(from)d(a)f(traditional)k
(cate)o(gorical)f(per)n(-)83 2432 y(specti)n(v)o(e,)34
b(and)f(gi)n(v)o(e)g(a)g(more)f(re\002ned,)h(b)n(ut)h(necessarily)h
(comple)o(x,)f(analysis)h(of)d(ho)n(w)g(connecti)n(v)o(es)83
2545 y(may)25 b(be)h(characterised)j(abstractly)-6 b(.)27
b(Finally)f(we)f(e)o(xplain)h(the)g(consequences)j(of)c(insisting)j(on)
d(more)83 2658 y(f)o(amiliar)g(cate)o(gorical)h(beha)n(viour)-5
b(.)83 2925 y Fv(K)m(e)m(y)24 b(wor)m(ds:)46 b Ft(classical)26
b(logic,)e(proof)h(theory)-6 b(,)25 b(cate)o(gory)g(theory)p
83 3031 V 83 3342 a Fs(1)100 b(Intr)n(oduction)83 3639
y Fr(In)34 b(this)e(paper)h(we)h(describe)f(the)g(shape)g(of)g(a)h
(semantics)e(for)h(classical)g(proof)g(in)g(accord)g(with)83
3759 y(Gentzen')-5 b(s)20 b(sequent)f(calculus.)h(F)o(or)g(constructi)n
(v)o(e)e(proof)i(we)g(ha)n(v)o(e)g(the)g(f)o(amiliar)f(correspondence)
83 3879 y(between)k(deductions)e(in)h(minimal)e(logic)i(and)g(terms)g
(of)g(a)h(typed)e(lambda)h(calculus.)g(Deductions)83
4000 y(in)h(minimal)e(logic)h(\(as)h(in)g(most)f(constructi)n(v)o(e)f
(systems\))g(reduce)j(to)e(a)i(unique)e(normal)g(form,)h(and)83
4120 y(around)36 b(1970)e(Per)j(Martin-L)8 b(\250)-41
b(of)34 b(\(see)i([18]\))g(suggested)e(using)h(equality)f(of)i(normal)e
(forms)h(as)83 4241 y(the)26 b(identity)e(criterion)i(for)g(proof)f
(objects)h(in)f(his)g(constructi)n(v)o(e)f(T)-8 b(ype)26
b(Theories:)f(normal)g(forms)83 4361 y(serv)o(e)30 b(as)h(the)f
(semantics)f(of)h(proof.)g(But)h Fq(\014)6 b(\021)t Fr(-normal)29
b(forms)g(for)i(typed)e(lambda)h(calculus)g(gi)n(v)o(e)83
4481 y(maps)23 b(in)f(a)i(free)g(cartesian)f(closed)f(cate)o(gory;)h
(so)f(we)i(get)f(a)g(whole)f(range)i(of)f(cate)o(gorical)g(models)83
4602 y(of)29 b(constructi)n(v)o(e)e(proof.)h(This)g(is)g(the)g(circle)h
(of)f(connections)g(surrounding)f(the)h(Curry-Ho)n(w)o(ard)83
4722 y(isomorphism.)22 b(W)-8 b(e)24 b(seek)g(analogues)g(of)g(these)f
(ideas)h(for)g(classical)g(proof.)g(There)g(are)h(a)f(number)83
4842 y(of)h(immediate)f(problems.)83 5019 y(The)37 b(established)d
(term)i(languages)g(for)g(classical)g(proofs)g(are)h(either)f
(incompatible)e(with)i(the)83 5139 y(symmetries)22 b(apparent)h(in)f
(the)h(sequent)f(calculus)g(\(P)o(arigot)h([16]\))g(or)g(in)f
(reconciling)g(themselv)o(es)83 5259 y(to)29 b(that)f(symmetry)g(at)h
(least)f(mak)o(e)h(e)n(v)n(aluation)e(deterministic)g(\(cf)j(Danos)e
(et)h(al)g([5,21]\).)g(Either)83 5380 y(w)o(ay)20 b(the)f(ideas,)g
(which)g(deri)n(v)o(e)g(from)g(analyses)g(of)h(continuations)d(in)i
(programming)f(\(Grif)n(\002n)h([9],)p 0 TeXcolorgray
106 5712 a Fp(Preprint)25 b(accepted)g(in)f(Theoretical)i(Computer)e
(Science)p 0 TeXcolorgray eop end
%%Page: 2 2
TeXDict begin 2 1 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(Murthy)28 b([15]\))h(can)h(be)f(thought)f(of)h
(as)g(reducing)g(classical)f(proof)h(to)g(constructi)n(v)o(e)e(proof)i
(via)g(a)83 203 y(double)38 b(ne)o(gation)e(translation.)g(\(A)i(cate)o
(gorical)g(semantics)f(is)g(described)h(in)f(Selinger)h([23].\))83
324 y(There)c(are)g(term)f(calculi)g(associated)g(directly)g(with)f
(the)h(sequent)g(calculus)g(\(Urban)h([25]\))f(b)n(ut)83
444 y(it)e(is)g(not)f(clear)i(ho)n(w)e(to)h(formulate)g(mathematically)
e(appealing)i(criteria)g(for)h(identity)e(of)h(such)83
565 y(terms.)j(What)h(we)g(do)f(here)h(suggests)e(man)o(y)h(commutati)n
(v)o(e)e(con)l(v)o(ersions)h(for)i(Urban')-5 b(s)34 b(terms,)83
685 y(b)n(ut)g(the)g(matter)f(is)h(not)f(straightforw)o(ard.)g(Also)h
(since)f(reductions)g(of)h(classical)g(proofs)g(in)f(se-)83
805 y(quent)26 b(calculus)f(form)h(are)h(highly)d(non-deterministic,)g
(normal)h(forms)h(do)f(not)h(readily)g(pro)o(vide)83
926 y(a)g(criterion)e(for)h(identity)e(of)i(such)g(proofs.)83
1287 y(There)g(are)f(problems)f(at)h(the)g(le)n(v)o(el)e(of)i
(semantics.)f(There)h(are)h(more)e(or)h(less)g(de)o(generate)g(models)
83 1407 y(gi)n(ving)33 b(in)l(v)n(ariants)f(of)j(proofs)e(\([7])i(and)f
([12]\))g(and)g(we)h(kno)n(w)e(ho)n(w)g(to)h(construct)f(some)h(more)83
1528 y(general)41 b(models.)f(But)g(all)h(that)f(is)g(parasitic)h(on)f
(e)o(xperience)h(with)f(Linear)g(Logic.)g(W)-8 b(e)41
b(lack)83 1648 y(con)l(vincing)35 b(e)o(xamples)f(of)h(models)f
(sensiti)n(v)o(e)f(to)i(the)h(issues)e(on)h(which)g(we)g(focus)h(here.)
f(The)83 1768 y(connection)25 b(with)f(established)g(w)o(ork)h(on)g
(polarised)g(logic,)f(modelling)f(both)i(call-by-name)g(and)83
1889 y(call-by-v)n(alue)36 b(reduction)g(strate)o(gies)g(\([23],)h
([26],)f([10]\),)h(is)f(also)g(problematic.)g(Ev)o(en)g(if)h(one)83
2009 y(considers)c(a)h(system)e(\(as)h(in)g([5]\))h(that)f(mix)o(es)e
(the)j(tw)o(o)e(and)i(considers)e(all)h(the)g(normal)g(forms)83
2130 y(reachable)j(from)e(representations)g(in)g(it)g(of)h(a)g(proof,)f
(one)h(still)e(does)h(not)g(e)o(xhaust)g(all)g(normal)83
2250 y(forms)29 b(to)g(which)g(a)h(proof)g(in)f(the)g(sequent)g
(calculus)g(can)h(reduce)g(\(see)g(for)f(e)o(xample)g([24,)g(P)o(age)83
2370 y(127]\).)22 b(Moreo)o(v)o(er)l(,)e(there)i(is)f(no)h(easy)g(w)o
(ay)f(to)h(e)o(xtract)f(models)f(for)i(our)g(system)e(from)i(cate)o
(gorical)83 2491 y(models)i(in)h(the)f(style)g(of)h(Selinger)-5
b(.)83 2852 y(The)33 b(project)f(on)h(which)f(we)h(report)g(here)g(w)o
(as)g(moti)n(v)n(ated)d(by)i(Urban')-5 b(s)33 b(strong)e(normalisation)
83 2972 y(result)19 b(\([25])h(and)f([24]\))g(for)h(a)g(formulation)d
(of)j(classical)f(proof.)g(In)g([11],)g(one)h(of)f(us)g(then)g
(outlined)83 3093 y(a)33 b(proposal)f(for)h(a)g(semantics.)f
(Unfortunately)-6 b(,)31 b(the)i(axioms)f(of)g([11])h(entail)f(full)h
(naturality)e(of)83 3213 y(logical)23 b(operations)g(contrary)g(to)g
(the)h(clear)g(intentions)e(of)h(the)g(paper)-5 b(.)24
b(Here)g(we)g(mak)o(e)f(that)g(good)83 3333 y(and)34
b(analyse)g(the)g(issue.)f(Since)h(then,)g(another)f(of)h(us)g
(suggested)f(in)g([19])h(basing)f(analysis)g(of)83 3454
y(classical)c(proof)g(on)f(a)i(simple)d(\(box-free\))j(notion)e(of)h
(proof)f(net.)h(Such)g(systems)f(ha)n(v)o(e)g(implicit)83
3574 y(naturalities)i(b)n(uilt)f(in)h(so)g(this)g(is)g(in)g(contrast)g
(with)f([11].)i(In)f([6])h(F)8 b(\250)-41 b(uhrmann)30
b(and)g(Pym)h(analyse)83 3694 y(Robinson')-5 b(s)23 b(proposal)f
(further)-5 b(.)24 b(The)o(y)f(gi)n(v)o(e)f(cate)o(gorical)h
(combinators,)f(add)i Fq(\021)t Fr(-equalities)e(to)i(the)83
3815 y(implicit)35 b(naturalities)g(and)i(succeed)g(in)f(axiomatizing)f
(reduction.)g(The)i(interaction)e(between)83 3935 y(the)29
b(equalities)e(and)i(reduction)f(presents)g(computational)e(dif)n
(\002culties,)i(so)g(this)f(is)h(a)h(substantial)83 4056
y(achie)n(v)o(ement.)35 b(The)g(proof)h(net)g(model)f(is)g(better)h
(dynamically)e(than)h(feared,)i(and)f(suggests)e(a)83
4176 y(notion)e(of)h(model)g(of)g(classical)f(proof)h(simpler)g(than)f
(that)h(analysed)g(here.)g(W)-8 b(e)34 b(gi)n(v)o(e)d(an)j(e)o(xact)83
4296 y(account)f(of)f(the)g(relation)g(between)g(the)g(tw)o(o,)g(and)g
(sho)n(w)g(in)g(what)g(sense)g(the)g(F)8 b(\250)-41 b(uhrmann-Pym)83
4417 y(equalities)24 b(identify)g(proofs)g(which)h(dif)n(fer)g(on)f(a)h
(sequent)f(calculus)h(reading.)83 4778 y(The)33 b(question)e(of)i(what)
f(are)i(the)e(sensible)g(criteria)g(for)h(identity)e(of)i(proofs)f(is)g
(a)h(delicate)g(one.)83 4898 y(The)e(referee)h(rightly)d(stressed)h
(that)g(this)f(is)h(true)h(also)f(of)g(constructi)n(v)o(e)f(proofs,)h
(the)g(dif)n(ference)83 5019 y(between)36 b(the)f(classical)g(and)g
(constructi)n(v)o(e)f(case)i(being)f(that)f(in)h(the)h(latter)f(we)h
(ha)n(v)o(e)f(a)g(rob)n(ust)83 5139 y(semantic)e(notion)g(which)g(is)g
(generally)g(agreed)h(on.)g(W)-8 b(e)34 b(do)f(not)g(e)o(xpect)g(that)g
(in)g(the)h(classical)83 5259 y(case.)e(At)g(the)f(v)o(ery)h(least)f
(dif)n(ferent)g(systems)f(of)i(proof)g(can)g(be)f(e)o(xpected)h(to)f
(lead)h(to)f(dif)n(ferent)83 5380 y(semantics.)19 b(A)g(compelling)f(e)
o(xample)g(is)h(the)g(recent)h(w)o(ork)f(of)h(Lamarche)g(and)f(Strassb)
n(ur)n(ger)h([14].)p 0 TeXcolorgray 1773 5712 a(2)p 0
TeXcolorgray eop end
%%Page: 3 3
TeXDict begin 3 2 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fs(2)100 b(Modelling)24 b(classical)g(pr)n(oofs)83
380 y Fo(2.1)100 b(Sequent)24 b(Calculus)g(and)g(P)-8
b(olycate)l(gories)83 677 y Fr(It)29 b(is)f(a)g(f)o(amiliar)g(idea)h
(that)f(what)g(the)g(sequent)g(calculus)g(pro)o(vides)f(is)h(not)g(a)h
(collection)e(of)i(ideal)83 798 y(proofs-in-themselv)o(es,)j(b)n(ut)i
(something)e(more)i(lik)o(e)g(instructions)e(for)j(b)n(uilding)d
(proofs.)i(W)l(ith)83 918 y(this)24 b(in)h(mind)e(we)i(formulate)g
(design)f(criteria)h(for)g(our)g(semantics.)p 0 TeXcolorgray
123 1095 a(\(1\))p 0 TeXcolorgray 50 w(Associati)n(vity)-6
b(.)22 b(Cut)j(should)e(be)i(an)g(associati)n(v)o(e)e(operation)i(on)f
(proofs.)p 0 TeXcolorgray 123 1215 a(\(2\))p 0 TeXcolorgray
50 w(Identities.)k(W)-8 b(e)28 b(require)h(that)f(there)h(be)f(a)h
(canonical)f(axiom)g(\(identity)f(proof\))i Fq(A)34 b
Fn(`)h Fq(A)28 b Fr(for)289 1336 y(all)d Fq(A)p Fr(,)g(and)g(that)f(it)
g(should)g(act)h(as)g(an)g(identity)e(under)i(cut.)p
0 TeXcolorgray 123 1456 a(\(3\))p 0 TeXcolorgray 50 w(de)g(Mor)n(gan)f
(Duality)-6 b(.)24 b(W)-8 b(e)25 b(tak)o(e)g(a)g(strict)f(duality)g(on)
g(propositions)f(and)h(proofs.)83 1633 y(Of)33 b(these)g(the)f(\002rst)
h(tw)o(o)f(seem)g(compelling)f(while)h(the)h(third)e(could)h(be)h(re)o
(garded)f(as)h(a)g(matter)83 1753 y(of)38 b(con)l(v)o(enience.)e(While)
h(we)h(ha)n(v)o(e)f(not)g(written)f(out)h(the)g(details,)g(it)f(is)h
(our)g(impression)f(that)83 1874 y(the)29 b(basics)f(of)g(our)h
(analysis)e(w)o(ould)h(not)g(need)g(to)g(change)h(if)g(we)f(did)g(not)g
(tak)o(e)h(full)f(de)g(Mor)n(gan)83 1994 y(duality)-6
b(.)83 2296 y Fo(2.1.1)99 b(P)-8 b(olycate)l(gories)83
2473 y Fr(The)28 b(general)f(cate)o(gory-lik)o(e)g(structure)g(which)g
(encapsulates)g(the)g(\002rst)h(tw)o(o)f(criteria)h(is)e(Szabo')-5
b(s)83 2594 y(notion)25 b(of)h(a)f(polycate)o(gory)g(\(Szabo)h([22]\).)
g(Rather)g(than)g(being)f(de\002niti)n(v)o(e,)f(in)h(the)h(w)o(ay)f
(that)h(the)83 2714 y(notion)c(of)i(an)f(ordinary)g(cate)o(gory)g(is)g
(de\002niti)n(v)o(e,)f(there)h(are)h(an)o(y)f(number)g(of)g(v)n
(ariants)g(adapted)g(to)83 2834 y(particular)i(conte)o(xts)e(\(recent)j
(treatments)e(include)g([4])h(and)g([2]\).)p 0 TeXcolorgray
83 3011 a Fs(De\002nition)g(2.1.)p 0 TeXcolorgray 39
w Fr(A)f Fo(symmetric)f(polycate)l(gory)g Fr(\(henceforth)h(just)f
(polycate)o(gory\))g Fn(P)32 b Fr(consists)22 b(of)p
0 TeXcolorgray 83 3188 a Fn(\017)p 0 TeXcolorgray 50
w Fr(A)29 b(collection)f Fm(ob)p Fn(P)38 b Fr(of)29 b(objects)g(of)g
Fn(P)8 b Fr(;)29 b(and)g(for)h(each)f(pair)g(of)h(\002nite)f(sequences)
g Fm(\000)g Fr(and)g Fm(\001)g Fr(of)183 3308 y(objects,)24
b(a)h(collection)f Fn(P)8 b Fm(\(\000;)17 b(\001\))25
b Fr(of)g(\(poly\)maps)f(from)g Fm(\000)h Fr(to)g Fm(\001)p
Fr(.)p 0 TeXcolorgray 83 3429 a Fn(\017)p 0 TeXcolorgray
50 w Fr(F)o(or)i(each)g(re-ordering)f(of)h(the)f(sequence)h
Fm(\000)g Fr(to)f(produce)g(the)h(sequence)g Fm(\000)2821
3393 y Fl(0)2844 3429 y Fr(,)f(an)h(isomorphism)183 3549
y(from)e Fn(P)8 b Fm(\(\000)578 3513 y Fl(0)601 3549
y Fm(;)17 b(\001\))25 b Fr(to)f Fn(P)8 b Fm(\(\000;)17
b(\001\))p Fr(,)26 b(functorial)e(in)g(its)g(action,)h(and)f(dually)g
(for)h Fm(\001)p Fr(.)p 0 TeXcolorgray 83 3670 a Fn(\017)p
0 TeXcolorgray 50 w Fr(An)g(identity)e Fm(id)740 3685
y Fk(A)825 3670 y Fn(2)28 b(P)8 b Fm(\()p Fq(A)p Fm(;)17
b Fq(A)p Fm(\))25 b Fr(for)g(each)h(object)e Fq(A)p Fr(;)h(and)g(a)g
(composition)958 3893 y Fn(P)8 b Fm(\(\000;)17 b(\001)p
Fq(;)g(A)p Fm(\))22 b Fn(\002)g(P)8 b Fm(\()p Fq(A;)17
b Fm(\005;)g(\006\))29 b Fn(!)e(P)8 b Fm(\(\000)p Fq(;)17
b Fm(\005;)g(\001)p Fq(;)g Fm(\006\))g Fq(:)183 4116
y Fr(for)25 b(each)g Fm(\000)p Fr(,)g Fm(\001)p Fr(,)g
Fq(A)p Fr(,)g Fm(\005)p Fr(,)g Fm(\006)p Fr(,)h(coherent)e(with)g
(re-ordering.)83 4293 y(This)g(data)h(should)f(satisfy)g(identity)f
(and)i(associati)n(vity)e(la)o(ws,)h(which)g(we)h(do)g(not)f(gi)n(v)o
(e)f(here.)83 4470 y(One)41 b(thinks)f(of)g Fn(P)8 b
Fm(\(\000;)17 b(\001\))42 b Fr(as)e(the)h(collection)f(of)g(abstract)h
(proofs)f(of)h Fm(\000)57 b Fn(`)g Fm(\001)p Fr(.)41
b(W)-8 b(e)42 b(write)e(a)83 4590 y(polymap)24 b Fq(f)38
b Fn(2)28 b(P)8 b Fm(\(\000;)17 b(\001\))26 b Fr(as)f
Fq(f)38 b Fm(:)28 b(\000)f Fn(!)h Fm(\001)p Fr(.)d(W)-8
b(e)25 b(picture)g(it)f(as)h(a)g(box)1692 4939 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 8.5359 19.91682 2.84544 19.91682  /Lineto /lineto
load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
@beginspecial @setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 25.60728 19.91682 19.91682 19.91682  /Lineto
/lineto load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 8.5359 8.5359 2.84544 8.5359  /Lineto /lineto
load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 25.60728 8.5359 19.91682 8.5359  /Lineto /lineto
load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
1673 4849 a Fm(\000)142 b(\001)-176 b Fq(f)83 5139 y
Fr(with)32 b(input)f(wires)h Fm(\000)g Fr(and)g(output)f(wires)h
Fm(\001)p Fr(.)g(W)-8 b(e)32 b(ha)n(v)o(e)g(e)o(xplicit)f(identities)f
Fm(id)2907 5154 y Fk(A)2964 5139 y Fr(.)j(Composition)83
5259 y(corresponds)g(to)f(cut:)h(in)f(particular)h(maps)f(are)i
(plugged)e(together)g(at)h(a)h(single)e(object,)g(not)g(an)83
5380 y(entire)24 b(sequence.)f(W)-8 b(e)24 b(adopt)e(a)i(lazy)f
(algebraic)h(notation)e(for)h(composition.)e(F)o(or)i
Fq(f)39 b Fm(:)27 b(\000)h Fn(!)f Fm(\001)p Fq(;)17 b(A)p
0 TeXcolorgray 1773 5712 a Fr(3)p 0 TeXcolorgray eop
end
%%Page: 4 4
TeXDict begin 4 3 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(and)27 b Fq(g)36 b Fm(:)c Fq(A;)17
b Fm(\005)31 b Fn(!)h Fm(\006)27 b Fr(we)h(write)f(the)g(composite)e
(in)i(the)g(diagrammatic)f(order)h(as)h Fq(f)11 b Fm(;)17
b Fq(g)34 b Fm(:)e(\000)p Fq(;)17 b Fm(\005)32 b Fn(!)83
203 y Fm(\001)p Fq(;)17 b Fm(\006)p Fr(.)30 b(W)-8 b(e)30
b(do)e(not)h(introduce)f(a)i(formal)f(notation)f(for)h(composing)f(man)
o(y)g(polymaps,)f(b)n(ut)i(note)83 324 y(that)35 b(such)g(compositions)
e(are)j(determined)e(by)h(trees.)g(Ho)n(we)n(v)o(er)f(it)h(is)g(useful)
f(to)h(ha)n(v)o(e)g(a)h(little)83 444 y(home-spun)24
b(notation)f(for)j(simple)d(cases.)i(W)-8 b(e)25 b(write)1538
660 y Fn(f)p Fq(f)5 b(;)17 b(g)t Fn(g)p Fm(;)g Fn(f)p
Fq(h;)g(k)s Fn(g)83 875 y Fr(to)29 b(indicate)g(compositions)d(in)l(v)n
(olving)i(the)h(four)g(multimaps)e Fq(f)11 b Fr(,)29
b Fq(g)t Fr(,)f Fq(h)i Fr(and)f Fq(k)s Fr(,)g(where)h(the)f
Fq(f)40 b Fr(and)83 996 y Fq(g)33 b Fr(come)d(before)g(the)g
Fq(h)g Fr(and)g Fq(k)s Fr(.)f(F)o(or)h(e)o(xample)f Fq(f)41
b Fr(and)29 b Fq(g)k Fr(might)c(plug)g(into)f Fq(h)i
Fr(and)g Fq(g)j Fr(also)d(into)e Fq(k)s Fr(.)83 1116
y(\(There)f(are)f(essentially)f(four)h(distinct)e(cases.\))i(It)g(will)
f(al)o(w)o(ays)h(be)g(possible)e(to)h(determine)h(what)83
1236 y(we)f(mean)g(from)g(the)f(conte)o(xt.)83 1532 y
Fo(2.1.2)99 b Fn(\003)p Fo(-polycate)l(gories)83 1707
y Fr(Our)25 b(third)g(design)f(criterion)g(amounts)g(to)g(the)h
(simplifying)e(decision)h(to)g(treat)h(ne)o(gation)f(implic-)83
1827 y(itly)-6 b(.)24 b(In)g(proof)h(theoretic)g(terms)f(that)g(is)h
(to)f(tak)o(e)h(a)g(formulation)e(with)h(an)h(in)l(v)n(olutory)f(ne)o
(gation)1330 2043 y Fm(\()p Fn(\000)p Fm(\))1483 2002
y Fl(\003)1551 2043 y Fm(:)k Fq(p)f Fn(!)h Fq(p)1859
2002 y Fl(\003)1926 2043 y Fq(;)44 b(p)2046 2002 y Fl(\003)2113
2043 y Fn(!)27 b Fq(p)83 2258 y Fr(on)e(atomic)f(formulae,)g(and)h(e)o
(xtend)f(it)h(to)f(all)g(formulae)h(by)g(setting)1141
2510 y Fn(>)1218 2474 y Fl(\003)1285 2510 y Fm(=)j Fn(?)644
b(?)2187 2474 y Fl(\003)2255 2510 y Fm(=)27 b Fn(>)17
b Fq(;)878 2690 y Fm(\()p Fq(A)22 b Fn(^)g Fq(B)5 b Fm(\))1216
2654 y Fl(\003)1284 2690 y Fm(=)27 b Fq(B)1466 2654 y
Fl(\003)1528 2690 y Fn(_)22 b Fq(A)1689 2654 y Fl(\003)1847
2690 y Fm(\()p Fq(A)g Fn(_)h Fq(B)5 b Fm(\))2186 2654
y Fl(\003)2253 2690 y Fm(=)28 b Fq(B)2436 2654 y Fl(\003)2497
2690 y Fn(^)23 b Fq(A)2659 2654 y Fl(\003)2715 2690 y
Fq(;)83 2916 y Fr(that)j(is,)g(more)g(or)h(less,)f(by)g(de)g(Mor)n(gan)
g(duality)-6 b(.)24 b(The)j(c)o(yclic)f(choice)g(of)h(order)f(may)g(be)
h(f)o(amiliar)83 3036 y(from)37 b(non-commutati)n(v)o(e)e(linear)i
(logic)g(\(Ruet)g([20]\).)h(It)f(is)g(not)g(strictly)f(necessary)h
(here,)h(b)n(ut)83 3157 y(serv)o(es)25 b(as)f(there)h(to)g(preserv)o(e)
g(a)g(strict)f(duality)f(at)i(the)g(le)n(v)o(el)e(of)i(proofs.)f(Exact)
h(duality)e(permits)h(a)83 3277 y(purely)k(one-sided)f(sequent)h
(calculus)f(as)h(in)g(Girard)g([8],)g(b)n(ut)g(we)g(prefer)h(to)e(k)o
(eep)h(both)g(sides)f(in)83 3397 y(play)e(at)g(the)f(semantic)g(le)n(v)
o(el.)g(Abstractly)g(we)h(get)g(a)g Fn(\003)p Fo(-polycate)l(gory)p
Fr(.)p 0 TeXcolorgray 83 3572 a Fs(De\002nition)34 b(2.2.)p
0 TeXcolorgray 46 w Fr(A)f Fo(symmetric)g Fn(\003)p Fo(-polycate)l
(gory)f Fr(\(henceforth)i(just)e Fn(\003)p Fo(-polycate)l(gory)p
Fr(\))h Fn(P)41 b Fr(con-)83 3693 y(sists)36 b(of)i(a)f(polycate)o
(gory)f Fn(P)46 b Fr(equipped)37 b(with)f(an)i(in)l(v)n(olutory)d(ne)o
(gation)h Fm(\()p Fn(\000)p Fm(\))2892 3657 y Fl(\003)2969
3693 y Fr(on)h(objects)g(to-)83 3813 y(gether)f(with)f(for)h(each)g
Fm(\000)p Fr(,)f Fm(\001)p Fr(,)h Fq(A)p Fr(,)g(an)f(isomorphism)e
Fn(P)8 b Fm(\(\000;)17 b(\001)p Fq(;)g(A)p Fm(\))2537
3786 y Fn(\030)2538 3817 y Fm(=)2662 3813 y Fn(P)8 b
Fm(\()p Fq(A)2850 3777 y Fl(\003)2890 3813 y Fq(;)17
b Fm(\000;)g(\001\))35 b Fr(coherent)83 3934 y(with)24
b(re-ordering)h(and)g(composition.)83 4109 y(W)l(ith)k(this)f(in)h
(place)g(one)g(should)f(not)g(tak)o(e)i(the)f(talk)f(of)h(input)f(and)h
(output)f(abo)o(v)o(e)g(too)h(literally:)83 4229 y(according)c(to)g
(the)g Fn(\003)p Fr(-polycate)o(gorical)f(perspecti)n(v)o(e)f(an)j
(input)d(wire)j(of)f(kind)f Fq(A)h Fr(is)g(ef)n(fecti)n(v)o(ely)e(an)83
4350 y(output)j(wire)i(of)f(type)g Fq(A)952 4313 y Fl(\003)991
4350 y Fr(.)g(W)-8 b(e)28 b(shall)e(not)h(need)g(to)g(pay)g(much)f
(attention)g(to)h(the)g Fm(\()p Fn(\000)p Fm(\))3093
4313 y Fl(\003)3160 4350 y Fr(operation)83 4470 y(which)33
b(tak)o(es)g(polymaps)f Fm(\000)44 b Fn(!)f Fm(\001)p
Fq(;)17 b(B)39 b Fr(to)33 b(polymaps)e Fq(B)2114 4434
y Fl(\003)2154 4470 y Fq(;)17 b Fm(\000)43 b Fn(!)g Fm(\001)p
Fr(.)34 b(Ho)n(we)n(v)o(er)e(we)i(shall)e(need)83 4590
y(notation)24 b(for)h(v)n(ariants)f(of)h(the)f(identity)g
Fm(id)1579 4605 y Fk(A)1664 4590 y Fm(:)j Fq(A)h Fn(!)f
Fq(A)p Fr(.)e(W)-8 b(e)26 b(write)e(these)h(as)918 4806
y Fm(in)999 4821 y Fk(A)1084 4806 y Fm(:)j Fn(\000)g(!)f
Fq(A)1444 4765 y Fl(\003)1500 4806 y Fq(;)17 b(A)100
b Fr(and)f Fm(ev)2057 4821 y Fk(A)2141 4806 y Fm(:)28
b Fq(A;)17 b(A)2386 4765 y Fl(\003)2453 4806 y Fn(!)27
b(\000)17 b Fq(:)83 5021 y Fr(These)25 b(can)g(be)g(pictured)g(as)g
(follo)n(ws.)1385 5382 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial
1550 5215 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A
16 {InitRnode } NewNode end end
 1550 5215 a 1645 5215 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 1645 5215 a 1550
5314 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1550 5314 a 1645 5314 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 1645 5314 a 1385 5382
a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1385 5382 a 1385 5382 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1385 5382 a 1385 5382 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 16.11903
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1385
5382 a 1339 5417 a Fq(A)1412 5380 y Fl(\003)1385 5382
y
 tx@Dict begin PutEnd  end
 1385 5382 a 1385 5382 a
 tx@Dict begin PutEnd  end
 1385 5382 a 1385 5382 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1385
5382 a 1385 5382 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1385 5382 a 1385 5382 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 8.80824
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1385 5382
a 1348 5417 a Fq(A)1385 5382 y
 tx@Dict begin PutEnd  end
 1385 5382 a 1385 5382
a
 tx@Dict begin PutEnd  end
 1385 5382 a 1462 5288 a Fm(in)1999 5382 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 1975 5215 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A
16 {InitRnode } NewNode end end
 1975 5215 a 2070
5215 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 2070 5215 a 1975 5314 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1975 5314 a 2070 5314
a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 2070 5314 a 1999 5382 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1999 5382 a 1999 5382 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1999
5382 a 1999 5382 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 13.5583
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1999 5382 a 1943 5417 a Fq(A)2016
5380 y Fl(\003)1999 5382 y
 tx@Dict begin PutEnd  end
 1999 5382 a 1999 5382 a
 tx@Dict begin PutEnd  end
 1999
5382 a 1999 5382 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1999 5382 a 1999 5382 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1999 5382
a 1999 5382 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 8.80824
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1999 5382 a 1962 5417 a Fq(A)1999 5382
y
 tx@Dict begin PutEnd  end
 1999 5382 a 1999 5382 a
 tx@Dict begin PutEnd  end
 1999 5382 a 2069 5288 a Fm(ev)p
0 TeXcolorgray 1773 5712 a Fr(4)p 0 TeXcolorgray eop
end
%%Page: 5 5
TeXDict begin 5 4 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(W)-8 b(e)32 b(note)g(that)f(the)g(operation)g
(taking)g(a)h(polymap)f Fq(f)51 b Fm(:)40 b(\000)g Fn(!)g
Fm(\001)p Fq(;)17 b(B)37 b Fr(to)31 b Fq(f)2740 47 y
Fl(\003)2820 83 y Fm(:)40 b Fq(B)2966 47 y Fl(\003)3006
83 y Fq(;)17 b Fm(\000)40 b Fn(!)g Fm(\001)32 b Fr(say)83
203 y(is)26 b(implemented)f(by)h(composition:)e(one)i(has)h
Fq(f)1785 167 y Fl(\003)1855 203 y Fm(=)j Fq(f)11 b Fm(;)17
b(in)o Fr(.)26 b(Similarly)g(for)g(the)h(operation)e(taking)83
324 y Fq(g)36 b Fm(:)c Fq(A;)17 b Fm(\000)32 b Fn(!)g
Fm(\001)27 b Fr(to)g Fq(g)831 288 y Fl(\003)902 324 y
Fm(:)32 b(\000)g Fn(!)g Fm(\001)p Fq(;)17 b(A)1384 288
y Fl(\003)1424 324 y Fr(,)27 b(one)g(has)g Fq(g)1858
288 y Fl(\003)1929 324 y Fm(=)32 b(ev)r(;)17 b Fq(g)t
Fr(.)27 b(In)g(particular)g(we)h(ha)n(v)o(e)f(equations)83
444 y(of)e(the)g(form)f Fm(in;)17 b(ev)29 b(=)f(id)c
Fr(as)h(in)f(the)h(follo)n(wing)e(picture.)2100 408 y
Fw(1)1369 772 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial
@beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 31.29819
11.38092 42.67911 -5.69046 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 1535 796 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A
16 {InitRnode } NewNode end end
 1535
796 a 1629 796 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 1629 796 a 1535 702 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1535 702 a 1629
702 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 1629 702 a 1535 607 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E
16 {InitRnode } NewNode end end
 1535 607 a 1629 607 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F
16 {InitRnode } NewNode end end
 1629
607 a 1369 772 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1369 772 a 1369 772 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1369 772 a 1369
772 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@E /N@F InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1369 772 a 1447 678 a Fm(in)1628 772 y(ev)1892
765 y Fr(=)2014 820 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial
@beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 8.5359 14.22636 0.0 14.22636  /Lineto /lineto
load def false Line  gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 28.45274 14.22636 19.91682 14.22636  /Lineto
/lineto load def false Line  gsave 0.85358 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial 2092 730 a Fm(id)83 1060 y Fr(The)38
b(notion)e(of)i(a)f Fn(\003)p Fr(-polycate)o(gory)f(satis\002es)i(our)f
(design)g(criteria)g(and)h(so)f(gi)n(v)o(es)f(a)h(\002rst)h(step)83
1180 y(to)n(w)o(ards)28 b(a)i(de\002nition)e(of)h(a)h(model)e(for)h
(classical)g(proof.)g(It)g(describes)g(a)g(notion)f(of)h(proof)g(with)
83 1300 y(associati)n(v)o(e)d(cut,)i(identities)e(and)h(strict)g
(duality)-6 b(,)26 b(b)n(ut)h(without)g(logical)g(operations)f(and)i
(without)83 1421 y(structural)21 b(rules.)g(F)o(or)h(classical)f(logic)
f(we)i(need)g(to)f(add)g(the)g(propositional)e(connecti)n(v)o(es)h(and)
i(the)83 1541 y(structural)j(rules)f(of)h(weak)o(ening)g(and)f
(contraction.)g(W)-8 b(e)26 b(treat)e(these)h(tw)o(o)f(in)h(turn.)83
1863 y Fo(2.2)100 b(Lo)o(gical)24 b(rules)83 2163 y Fr(W)-8
b(e)40 b(consider)f(ho)n(w)f(rules)h(of)g(inference)h(for)g(the)f
(classical)f(connecti)n(v)o(es)g(should)g(be)h(treated.)83
2284 y(W)-8 b(e)33 b(\002rst)g(describe)f(the)h(operations)e(together)h
(with)g(the)g(properties)g(\(naturality)-6 b(,)31 b(commutati)n(v)o(e)
83 2404 y(con)l(v)o(ersions\))26 b(which)g(we)h(re)o(gard)g(as)g
(implicit;)d(and)j(then)g(we)g(consider)f(which)g(proof)h(diagrams)83
2524 y(should)d(further)h(be)g(identi\002ed)f(as)h(a)g(result)g(of)f
(meaning)g(preserving)h(reductions.)83 2839 y Fo(2.2.1)99
b(Lo)o(gical)25 b(oper)o(ations)83 3019 y Fr(As)e(logical)g(operators)g
(we)g(consider)g(only)g Fn(>)p Fr(,)h Fn(^)p Fr(,)f(and)g(their)g(de)h
(Mor)n(gan)e(duals,)h Fn(?)p Fr(,)g Fn(_)p Fr(.)h(Ne)o(gation)83
3139 y(is)f(de\002ned)g(implicitly)d(by)j(de)g(Mor)n(gan)f(duality)-6
b(,)21 b(and)i(other)g(logical)f(operators)g(in)h(terms)f(of)h(those)83
3260 y(gi)n(v)o(en.)83 3432 y(W)-8 b(e)26 b(recall)f(the)f(rules)h(for)
g Fn(^)g Fr(and)g Fn(>)h Fr(in)e(sequent)g(calculus)h(form.)301
3631 y Fj(A;)15 b(B)5 b(;)15 b Fi(\000)26 b Fh(`)f Fi(\001)p
271 3669 522 4 v 271 3749 a Fj(A)20 b Fh(^)g Fj(B)5 b(;)15
b Fi(\000)25 b Fh(`)g Fi(\001)834 3699 y Fh(^)p Ft(-L)1122
3631 y Fi(\000)g Fh(`)g Fi(\001)p Fj(;)15 b(C)98 b Fi(\005)25
b Fh(`)g Fi(\003)p Fj(;)15 b(D)p 1122 3669 797 4 v 1150
3749 a Fi(\000)p Fj(;)g Fi(\005)26 b Fh(`)f Fi(\001)p
Fj(;)15 b Fi(\003)p Fj(;)g(C)27 b Fh(^)20 b Fj(D)1961
3699 y Fh(^)p Ft(-R)2310 3649 y Fi(\000)25 b Fh(`)g Fi(\001)p
2254 3669 350 4 v 2254 3749 a Fh(>)p Fj(;)15 b Fi(\000)25
b Fh(`)g Fi(\001)2645 3700 y Fh(>)p Ft(-L)p 2944 3669
152 4 v 2944 3749 a Fh(`)f(>)3137 3700 y(>)p Ft(-R)h
Fj(:)83 3982 y Fr(W)-8 b(e)26 b(recast)f(these)f(rules)h(in)f(terms)h
(of)g Fn(\003)p Fr(-polycate)o(gories.)e(So)i(we)g(require)g
(operations)860 4247 y Fn(P)8 b Fm(\()p Fq(A;)17 b(B)5
b(;)17 b Fm(\000;)g(\001\))27 b Fn(\000)-16 b(!)27 b(P)8
b Fm(\()p Fq(A)23 b Fn(^)g Fq(B)5 b(;)17 b Fm(\000;)g(\001\))55
b(:)g Fq(h)28 b Fn(!)p 2649 4168 57 4 v 27 w Fq(h)g(;)361
4428 y Fn(P)8 b Fm(\(\000;)17 b(\001)p Fq(;)g(C)7 b Fm(\))22
b Fn(\002)h(P)8 b Fm(\(\005;)17 b(\003)p Fq(;)g(D)s Fm(\))27
b Fn(\000)-16 b(!)27 b(P)8 b Fm(\(\000)p Fq(;)17 b Fm(\005;)g(\001)p
Fq(;)g Fm(\003)p Fq(;)g(C)29 b Fn(^)22 b Fq(D)s Fm(\))55
b(:)h(\()p Fq(f)5 b(;)17 b(g)t Fm(\))26 b Fn(!)i Fq(f)33
b Fn(\001)21 b Fq(g)31 b(;)1043 4608 y Fn(P)8 b Fm(\(\000;)17
b(\001\))28 b Fn(\000)-17 b(!)28 b(P)8 b Fm(\()p Fn(>)p
Fq(;)17 b Fm(\000;)g(\001\))56 b(:)f Fq(h)28 b Fn(!)f
Fq(h)2463 4572 y Fw(+)2550 4608 y Fq(;)1546 4789 y(?)h
Fn(2)g(P)8 b Fm(\()28 b(;)17 b Fn(>)p Fm(\))28 b Fq(;)83
5030 y Fr(encapsulating)c(the)h Fn(^)p Fr(-L,)g Fn(^)p
Fr(-R,)h Fn(>)p Fr(-L)g(and)f Fn(>)p Fr(-R)h(rules.)e(This)h(imprecise)
f(notation)f(will)i(serv)o(e)f(for)p 0 TeXcolorgray 83
5169 299 4 v 83 5233 a Fw(1)174 5266 y Ft(T)-7 b(o)22
b(a)n(v)n(oid)j(misunderstanding)i(we)22 b(stress)i(that)g(there)g(is)e
(no)h(composition)j(of)d(the)g(form)g Fi(ev)r(;)15 b(id)o
Ft(.)22 b(There)h(is)83 5379 y(nothing)j(to)d(plug)i(into.)p
0 TeXcolorgray 0 TeXcolorgray 1773 5712 a Fr(5)p 0 TeXcolorgray
eop end
%%Page: 6 6
TeXDict begin 6 5 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(this)24 b(paper)-5 b(.)25 b(W)-8
b(e)25 b(can)g(picture)g(the)f(rules)h(thus.)978 528
y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 5.69046
5.69046 17.07181 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 1044 438 a Fq(h)854
437 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 854 437 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
Fn(^)1025 362 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 1025 362 a 1025 457 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1025 457 a 978
528 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 978 528 a 978 528 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@C InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 978 528 a 623 410 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 623 410
a 978 528 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 978 528 a 978 528 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 978 528 a 978 528 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 33.67334
8.2 0.0 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 978
528 a 838 562 a Fq(A)d Fn(^)h Fq(B)978 528 y
 tx@Dict begin PutEnd  end
 978 528
a 978 528 a
 tx@Dict begin PutEnd  end
 978 528 a 1280 410 a @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 11.38092
5.69046 22.76227 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end


@endspecial 1393 320 a Fq(f)1280 410 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 11.38092
-5.69046 22.76227 -22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray
0 setlinecap stroke  grestore end
 
@endspecial 1397 556 a(g)1534 437 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 1534
437 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(^)1469
292 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 1469 292 a 1469 528 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1469 528 a 1280 410 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { /AngleA 170.  def /AngleB 0.  def 0.67 
0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1280
410 a 1280 410 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@C InitNC { /AngleA 190.  def /AngleB 0.  def 0.67 
0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1280 410 a 1871 410 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 1871 410 a 1280
410 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1280 410 a 1280 410 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1280 410 a 1280 410 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 34.68361
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1280
410 a 1153 444 a Fq(C)29 b Fn(^)23 b Fq(D)1280 410 y
 tx@Dict begin PutEnd  end

1280 410 a 1280 410 a
 tx@Dict begin PutEnd  end
 1280 410 a 2136 551 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 8.5359 19.91682 2.84544 19.91682  /Lineto /lineto
load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
@beginspecial @setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 25.60728 19.91682 19.91682 19.91682  /Lineto
/lineto load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 8.5359 8.5359 2.84544 8.5359  /Lineto /lineto
load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 0.42677 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def [ 25.60728 8.5359 19.91682 8.5359  /Lineto /lineto
load def false Line  gsave 0.42677 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
2106 462 a Fm(\000)165 b(\001)-186 b Fq(h)2255 362 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A
16 {InitRnode } NewNode end end

2255 362 a 2255 292 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 2255 292 a 2136 292 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 2136 292
a 2136 551 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2136 551 a 2136 551 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@B /N@C InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2136 551 a 2136 551
a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 2136 551 a 2136 551 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 9.33336
8.33333 0.0 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch w1
add exch } PutCoor PutBegin  end
 2136 551 a 2097 586 a Fn(>)2136
551 y
 tx@Dict begin PutEnd  end
 2136 551 a 2136 551 a
 tx@Dict begin PutEnd  end
 2136 551 a 506 w @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
8.5359 19.91682 19.91682 .5 Frame  gsave 0.85358 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial 2736 457 a Fq(?)2807 433 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A
16 {InitRnode } NewNode end end
 2807
433 a 2949 433 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 2949 433 a 2642 551 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2642 551 a 2642
551 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 2642 551 a 2642 551 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 9.33336
8.33333 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1
add exch } PutCoor PutBegin  end
 2642 551 a 2603 586 a Fn(>)2642
551 y
 tx@Dict begin PutEnd  end
 2642 551 a 2642 551 a
 tx@Dict begin PutEnd  end
 2642 551 a 83 837 a Fr(A)31
b(notion)f(of)i(duality)d(is)i(b)n(uilt)f(into)g(the)h(notion)f(of)h
Fn(\003)p Fr(-polycate)o(gory)-6 b(.)30 b(So)h(gi)n(v)o(en)f(what)g(we)
i(ha)n(v)o(e)83 957 y(said)26 b(about)f(the)g(operations)g
Fn(>)h Fr(and)g Fn(^)p Fr(,)g(there)g(is)f(no)g(need)h(for)g
(substantial)e(discussion)g(of)i(the)f(de)83 1078 y(Mor)n(gan)f(duals)h
Fn(?)g Fr(and)g Fn(_)p Fr(.)g(W)-8 b(e)25 b(may)g(as)g(well)f(o)o(v)o
(erload)g(the)g(notation)g(and)g(tak)o(e)h(operations)881
1342 y Fn(P)8 b Fm(\(\000;)17 b(\001)p Fq(;)g(C)r(;)g(D)s
Fm(\))27 b Fn(\000)-16 b(!)27 b(P)8 b Fm(\(\000;)17 b(\001)p
Fq(;)g(C)29 b Fn(_)23 b Fq(D)s Fm(\))55 b(:)g Fq(h)28
b Fn(!)p 2682 1263 57 4 v 27 w Fq(h)397 1522 y Fn(P)8
b Fm(\()p Fq(A;)17 b Fm(\000;)g(\001\))22 b Fn(\002)h(P)8
b Fm(\()p Fq(B)d(;)17 b Fm(\005;)g(\003\))27 b Fn(\000)-16
b(!)28 b(P)8 b Fm(\()p Fq(A)22 b Fn(_)h Fq(B)5 b(;)17
b Fm(\000)p Fq(;)g Fm(\005;)g(\001)p Fq(;)g Fm(\003\))54
b(:)i(\()p Fq(f)5 b(;)17 b(g)t Fm(\))26 b Fn(!)i Fq(f)33
b Fn(\001)21 b Fq(g)1070 1703 y Fn(P)8 b Fm(\(\000;)17
b(\001\))28 b Fn(\000)-16 b(!)27 b(P)8 b Fm(\(\000;)17
b(\001)p Fq(;)g Fn(?)p Fm(\))56 b(:)f Fq(h)28 b Fn(!)g
Fq(h)2491 1667 y Fw(+)1573 1884 y Fq(?)g Fn(2)g(P)8 b
Fm(\()p Fn(?)p Fm(;)45 b(\))83 2122 y Fr(each)26 b(being)e(the)h(dual)f
(of)h(the)g(corresponding)f(operation)g(abo)o(v)o(e.)83
2433 y Fo(2.2.2)99 b(Natur)o(ality)83 2613 y Fr(Composition)30
b(in)h(a)h Fn(\003)p Fr(-polycate)o(gory)e(corresponds)h(to)g(Cut,)g
(so)g(the)h(general)f(naturality)g(condi-)83 2733 y(tions)e(implicit)g
(in)g(proof)h(nets)g(are)h(clear)-5 b(.)30 b(T)-8 b(w)o(o)30
b(in)l(v)n(olv)o(e)f(a)h(local)g(operation)g(on)f(just)h(one)g(proof,)
83 2853 y(and)25 b(are)h(compelling.)d(In)i(our)f(imprecise)h
(notation,)e(these)i(are)g(as)g(follo)n(ws.)p 0 TeXcolorgray
83 3033 a Fn(\017)p 0 TeXcolorgray 50 w Fr(Naturality)33
b(for)i Fn(^)p Fr(-L.)g(Suppose)f Fq(h)45 b Fm(:)h Fq(A;)17
b(B)50 b Fn(!)45 b Fq(E)6 b Fr(.)34 b(Then)g(for)h Fq(w)48
b Fm(:)d Fq(E)51 b Fn(!)45 b Fq(E)2987 2997 y Fl(0)3045
3033 y Fr(we)35 b(ha)n(v)o(e)f(the)183 3153 y(naturality)24
b(condition)p 1594 3203 V 1594 3282 a Fq(h)q Fm(;)17
b Fq(w)29 b Fm(=)p 1898 3203 173 4 v 28 w Fq(h)p Fm(;)17
b Fq(w)30 b(:)p 0 TeXcolorgray 83 3439 a Fn(\017)p 0
TeXcolorgray 50 w Fr(Naturality)20 b(for)i Fn(>)p Fr(-L.)f(Suppose)g
Fq(h)28 b Fm(:)g Fq(A)g Fn(!)f Fq(B)5 b Fr(.)21 b(Then)g(for)g
Fq(v)32 b Fm(:)c Fq(B)k Fn(!)c Fq(B)2624 3403 y Fl(0)2668
3439 y Fr(we)22 b(ha)n(v)o(e)f(the)g(naturality)183 3560
y(condition)1519 3688 y Fq(h)1575 3647 y Fw(+)1634 3688
y Fm(;)c Fq(v)31 b Fm(=)d(\()p Fq(h)p Fm(;)17 b Fq(v)t
Fm(\))2087 3647 y Fw(+)2173 3688 y Fq(:)83 3868 y Fr(\(W)-8
b(e)26 b(omit)d(irrele)n(v)n(ant)h(conte)o(xts.\))g(By)h(duality)e
(that)i(gi)n(v)o(es)e(us)h(naturality)g(as)h(follo)n(ws)1060
4096 y Fq(w)s Fm(;)p 1177 4017 57 4 v 17 w Fq(h)i Fm(=)p
1363 4017 173 4 v 27 w Fq(w)s Fm(;)17 b Fq(h)99 b Fr(and)h
Fq(v)t Fm(;)17 b Fq(h)2030 4055 y Fw(+)2116 4096 y Fm(=)28
b(\()p Fq(v)t Fm(;)17 b Fq(h)p Fm(\))2447 4055 y Fw(+)2533
4096 y Fq(;)83 4324 y Fr(in)25 b(the)f(right)h(rules)f(for)h
Fn(_)h Fr(and)e Fn(?)p Fr(.)i(W)-8 b(e)25 b(adopt)f(these)h(naturality)
e(equations.)83 4503 y(On)i(the)g(other)f(hand)h(we)g(shall)f(ar)n(gue)
h(against)f(adopting)g(the)g(follo)n(wing)f(condition.)p
0 TeXcolorgray 83 4683 a Fn(\017)p 0 TeXcolorgray 50
w Fr(Naturality)30 b(for)i Fn(^)p Fr(-R.)h(Suppose)e
Fq(f)50 b Fm(:)41 b Fq(A)f Fn(!)f Fq(C)7 b Fr(,)32 b
Fq(g)43 b Fm(:)d Fq(B)45 b Fn(!)39 b Fq(D)s Fr(.)32 b(Then)f(for)g
Fq(u)40 b Fm(:)g Fq(A)3085 4646 y Fl(0)3148 4683 y Fn(!)g
Fq(A)32 b Fr(and)183 4803 y Fq(v)f Fm(:)d Fq(B)395 4767
y Fl(0)446 4803 y Fn(!)g Fq(B)i Fr(we)25 b(ha)n(v)o(e)f(the)h
(naturality)f(equation)1256 5031 y Fn(f)p Fq(u;)17 b(v)t
Fn(g)p Fm(;)g(\()p Fq(f)31 b Fn(\001)22 b Fq(g)t Fm(\))27
b(=)g(\()p Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(\001)h
Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t Fm(\))183 5259 y Fr(where)28
b(on)f(the)g(right)f(we)i(ha)n(v)o(e)f(the)g(ob)o(vious)e(composition)g
(of)i Fq(f)35 b Fn(\001)24 b Fq(g)35 b Fm(:)d Fq(A;)17
b(B)37 b Fn(!)32 b Fq(C)f Fn(^)24 b Fq(D)30 b Fr(with)183
5380 y Fq(u)24 b Fr(and)h Fq(v)t Fr(.)p 0 TeXcolorgray
1773 5712 a(6)p 0 TeXcolorgray eop end
%%Page: 7 7
TeXDict begin 7 6 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(\(Note)25 b(that)f(there)g(is)g(no)g(conte)o
(xt)g(in)g Fn(>)p Fr(-R)h(and)f(so)g(no)h(corresponding)e(naturality)-6
b(.\))23 b(The)h(problem)83 203 y(which)35 b(we)f(will)g(come)h(to)f
(in)g(4.3)g(is)h(that)f(tak)o(en)g(together)g(with)g(contraction)g(and)
h(weak)o(ening)83 324 y(this)22 b(naturality)g(equation)g(identi\002es)
g(proofs)h(with)f(essentially)f(dif)n(ferent)i(collections)e(of)i
(normal)83 444 y(forms.)83 624 y(Ho)n(we)n(v)o(er)c(there)h(are)h
(cases)f(where)h(that)e(cannot)h(happen;)f(and)h(it)g(does)f(seem)h
(reasonable)g(to)g(allo)n(w)83 745 y(some)30 b(maps)f
Fq(u)h Fr(and)g Fq(v)j Fr(to)d(slip)f(harmlessly)g(past)g(the)h
(imagined)f(box)g(around)h Fm(\()p Fq(f)37 b Fn(\001)25
b Fq(g)t Fm(\))p Fr(.)30 b(After)g(all)83 865 y(we)25
b(ine)n(vitably)e(ha)n(v)o(e)966 1096 y Fn(f)p Fm(id)o
Fq(;)17 b Fm(id)o Fn(g)p Fm(;)g(\()p Fq(f)33 b Fn(\001)21
b Fq(g)t Fm(\))27 b(=)h Fq(f)33 b Fn(\001)22 b Fq(g)31
b Fm(=)c(\(id)o(;)17 b Fq(f)11 b Fm(\))22 b Fn(\001)g
Fm(\(id)o(;)17 b Fq(g)t Fm(\))26 b Fq(:)83 1326 y Fr(So)k(we)f(adopt)f
(a)h(restricted)g(form)g(of)g(an)g(idea)g(from)f([11].)h(W)-8
b(e)29 b(call)g(maps)g Fq(u)p Fr(,)f Fq(v)33 b Fr(for)c(which)f(both)83
1446 y(the)d Fn(^)g Fr(equations)99 1677 y Fq(u)p Fm(;)17
b(\()p Fq(f)32 b Fn(\001)22 b Fq(g)t Fm(\))27 b(=)g(\()p
Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(\001)h Fq(g)e(;)44
b(v)t Fm(;)17 b(\()p Fq(f)33 b Fn(\001)21 b Fq(g)t Fm(\))27
b(=)h(\()p Fq(f)11 b Fm(\))22 b Fn(\001)f Fm(\()p Fq(v)t
Fm(;)c Fq(g)t Fm(\))g Fq(;)43 b Fr(and)25 b(so)i Fn(f)p
Fq(u;)17 b(v)t Fn(g)p Fm(;)g(\()p Fq(f)31 b Fn(\001)22
b Fq(g)t Fm(\))27 b(=)g(\()p Fq(u)p Fm(;)17 b Fq(f)11
b Fm(\))21 b Fn(\001)h Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t
Fm(\))83 1907 y Fr(and)31 b(the)f(dual)g(equations)f(for)h
Fn(_)h Fr(hold)e Fo(linear)p Fr(.)h(\(This)f(de\002nition)h(does)g(mak)
o(e)g(sense!\))g(W)-8 b(e)31 b(ha)n(v)o(e)83 2028 y(the)25
b(follo)n(wing.)83 2168 y Fs(Additional)38 b(assumption)g
Fo(Linear)f(maps)g(ar)l(e)g(closed)g(under)g(the)g(lo)o(gical)g(oper)o
(ations)e(intr)l(o-)83 2288 y(duced)25 b(abo)o(ve)o(.)83
2429 y Fr(In)36 b(vie)n(w)e(of)i(the)f(other)g(naturalities,)f(the)i
(essential)e(assumption)f(is)i(that)g Fq(?)g Fr(is)g(linear)h(and)f
(that)83 2549 y(linear)25 b(maps)f(are)i(closed)e(under)h
Fn(\000)e(\001)f(\000)p Fr(.)83 2865 y Fo(2.2.3)99 b(Commutation:)24
b(lo)o(gical)f(rules)83 3045 y Fr(The)33 b(polycate)o(gorical)f
(perspecti)n(v)o(e)g(supports)g(equalities)g(arising)g(from)h(the)g
(commuting)e(con-)83 3166 y(v)o(ersions)d(in)h(sequent)g(calculus.)f(W)
-8 b(e)30 b(sk)o(etch,)f(again)f(using)g(our)h(imprecise)g(notation,)f
(the)h(basic)83 3286 y(phenomena)c(for)g(the)f(binary)h(operators.)83
3466 y(First)g(gi)n(v)o(en)e(proofs)597 3697 y Fq(f)39
b Fm(:)27 b(\000)799 3712 y Fw(1)866 3697 y Fn(!)h Fm(\001)1075
3712 y Fw(1)1115 3697 y Fq(;)17 b(A;)g(B)32 b(;)116 b(g)31
b Fm(:)d(\000)1719 3712 y Fw(2)1786 3697 y Fn(!)f Fm(\001)1994
3712 y Fw(2)2034 3697 y Fq(;)17 b(C)34 b(;)117 b(h)27
b Fm(:)h(\000)2525 3712 y Fw(3)2592 3697 y Fn(!)g Fm(\001)2801
3712 y Fw(3)2840 3697 y Fq(;)17 b(D)30 b(;)83 3927 y
Fr(we)25 b(ha)n(v)o(e)g(\(perhaps)g(modulo)e(e)o(xchange\))i(an)g
(equality)f(of)h(the)f(form)861 4157 y Fm(\()p Fq(f)33
b Fn(\001)22 b Fq(g)t Fm(\))f Fn(\001)h Fq(h)28 b Fm(=)g(\()p
Fq(f)k Fn(\001)22 b Fq(h)p Fm(\))g Fn(\001)g Fq(g)31
b Fm(:)d(\000)g Fn(!)f Fm(\001)p Fq(;)17 b(A)22 b Fn(^)h
Fq(C)r(;)17 b(B)26 b Fn(^)d Fq(D)83 4388 y Fr(\(with)28
b Fm(\000)p Fr(,)h Fm(\001)p Fr(,)g(the)f(sum)g(of)h(the)f
Fm(\000)1240 4403 y Fk(i)1297 4388 y Fr(and)g Fm(\001)1550
4403 y Fk(i)1608 4388 y Fr(respecti)n(v)o(ely\).)f(Of)i(course)f(there)
h(are)g(other)g(v)o(ersions)83 4508 y(obtained)24 b(by)h(duality)83
4689 y(Secondly)g(gi)n(v)o(en)e(proofs)940 4919 y Fq(f)38
b Fm(:)28 b Fq(A;)17 b(B)5 b(;)17 b Fm(\000)1382 4934
y Fw(1)1449 4919 y Fn(!)27 b Fm(\001)1657 4934 y Fw(1)1697
4919 y Fq(;)17 b(C)34 b(;)117 b(g)31 b Fm(:)c(\000)2182
4934 y Fw(2)2249 4919 y Fn(!)h Fm(\001)2458 4934 y Fw(2)2497
4919 y Fq(;)17 b(D)31 b(;)83 5149 y Fr(we)25 b(ha)n(v)o(e)g(an)g
(equality)f(of)h(form)p 1063 5301 59 4 v 1063 5380 a
Fq(f)32 b Fn(\001)22 b Fq(g)31 b Fm(=)p 1375 5301 181
4 v 28 w Fq(f)i Fn(\001)21 b Fq(g)31 b Fm(:)d Fq(A)22
b Fn(^)h Fq(B)5 b(;)17 b Fm(\000)27 b Fn(!)h Fm(\001)p
Fq(;)17 b(C)29 b Fn(^)22 b Fq(D)p 0 TeXcolorgray 1773
5712 a Fr(7)p 0 TeXcolorgray eop end
%%Page: 8 8
TeXDict begin 8 7 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(\(with)36 b Fm(\000)p Fr(,)g
Fm(\001)p Fr(,)h(the)f(sum)f(of)i(the)f Fm(\000)1294
98 y Fk(i)1358 83 y Fr(and)g Fm(\001)1619 98 y Fk(i)1684
83 y Fr(respecti)n(v)o(ely\).)f(As)h(before)h(there)f(are)h(v)n
(ariants)f(by)83 203 y(duality)-6 b(.)83 379 y(Finally)25
b(from)f(a)h(proof)1322 499 y Fq(f)39 b Fm(:)27 b Fq(A;)17
b(B)5 b(;)17 b Fm(\000)28 b Fn(!)f Fm(\001)p Fq(;)17
b(C)r(;)g(D)30 b(;)83 646 y Fr(we)25 b(can)h(apply)e(the)h(operation)p
1182 561 104 4 v 24 w Fm(\()i(\))e Fr(in)g(tw)o(o)f(dif)n(ferent)g
(orders)h(getting)f(an)h(equality)f(of)h(the)f(form)p
1157 783 59 4 v 1157 800 V 1157 879 a Fq(f)39 b Fm(=)p
1347 783 V 1347 800 V 27 w Fq(f)g Fm(:)28 b Fq(A)22 b
Fn(^)g Fq(B)5 b(;)17 b Fm(\000)28 b Fn(!)f Fm(\001)p
Fq(;)17 b(C)29 b Fn(_)23 b Fq(D)30 b(:)83 1097 y Fr(There)c(are)f(v)n
(ariants)f(by)h(duality)-6 b(.)23 b(The)h(picture)h(is)f(as)h(follo)n
(ws.)1692 1413 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 8.5359
5.69046 19.91682 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial
1781 1323 a Fq(f)1615 1323 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 1615 1323 a 20 w @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(^)1763 1248 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 1763 1248 a
1763 1342 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1763 1342 a 1692 1413 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1413 a 1692
1413 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@C InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1413 a 1337 1295 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 1337 1295 a 1692 1413
a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1692 1413 a 1692 1413 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1692 1413 a 1692 1413 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 31.67337
8.2 0.0 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1692
1413 a 1560 1447 a Fq(A)e Fn(^)f Fq(B)1692 1413 y
 tx@Dict begin PutEnd  end
 1692
1413 a 1692 1413 a
 tx@Dict begin PutEnd  end
 1692 1413 a 1898 1323 a
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@E 16 {InitRnode } NewNode end end
 1898 1323
a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(_)1857
1248 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F
16 {InitRnode } NewNode end end
 1857 1248 a 1857 1342 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@G
16 {InitRnode } NewNode end end
 1857 1342 a 1692 1413
a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@E /N@F InitNC { /AngleA 170.  def /AngleB 0.  def 0.67 
0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1413 a 1692 1413 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@E /N@G InitNC { /AngleA 190.  def /AngleB 0.  def 0.67 
0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1413 a 2282 1295 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@H
16 {InitRnode } NewNode end end
 2282
1295 a 1692 1413 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@E /N@H InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1692 1413 a 1692 1413 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1692 1413
a 1692 1413 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 32.68364
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1692 1413 a 1556 1447 a Fq(C)29 b Fn(_)23
b Fq(D)1692 1413 y
 tx@Dict begin PutEnd  end
 1692 1413 a 1692 1413 a
 tx@Dict begin PutEnd  end
 1692 1413
a 83 1584 a Fr(So)j(f)o(ar)g(we)g(ha)n(v)o(e)f(only)g(considered)g(the)
g(binary)g(operators.)g(There)h(are)g(man)o(y)e(similar)h(e)o(xamples)
83 1704 y(in)l(v)n(olving)e(also)i(the)f(rules)h(for)g
Fn(>)g Fr(which)g(we)g(merely)f(list.)763 1931 y Fq(f)822
1890 y Fw(+)903 1931 y Fn(\001)e Fq(g)31 b Fm(=)d(\()p
Fq(f)k Fn(\001)22 b Fq(g)t Fm(\))1392 1890 y Fw(+)1467
1931 y Fq(;)p 1710 1852 59 4 v 216 w(f)1769 1871 y Fw(+)1855
1931 y Fm(=)p 1959 1852 118 4 v 28 w Fq(f)2018 1902 y
Fw(+)2093 1931 y Fq(;)216 b(f)2395 1890 y Fw(++)2537
1931 y Fm(=)27 b Fq(f)2699 1890 y Fw(++)2829 1931 y Fq(:)83
2148 y Fr(\(The)h(\002nal)g(equation)e(re\003ects)j(the)e(tw)o(o)g(dif)
n(ferent)g(orders)g(of)h(applying)e(rules)h(to)g(obtain)g(a)h(proof)83
2269 y(of)d Fn(>)p Fq(;)17 b Fm(\000)28 b Fn(`)g Fm(\001)p
Fq(;)17 b Fn(?)p Fr(.\))25 b(W)-8 b(e)25 b(are)h(happ)o(y)e(to)h(adopt)
f(all)g(these)h(equalities.)83 2564 y Fo(2.2.4)99 b(Reduction)83
2740 y Fr(Most)30 b(of)g(our)h(equalities)e(on)i(proofs)f(k)o(eep)g
(track)h(of)g(inessential)e(re)n(writings,)g(b)n(ut)h(in)g(itself)g
(that)83 2860 y(is)e(dull.)f(The)h(critical)f(equalities)g(tak)o(e)h
(account)g(of)g(meaning)g(preserving)f(reductions.)g(W)-8
b(e)28 b(tak)o(e)83 2980 y(these)d(to)f(arise)h(from)g(logical)f(cuts.)
83 3148 y(Suppose)j(that)f Fq(f)42 b Fm(:)31 b Fq(A)h
Fn(`)f Fq(C)7 b Fr(,)27 b Fq(g)34 b Fm(:)e Fq(B)k Fn(`)31
b Fq(D)f Fr(and)c Fq(k)35 b Fm(:)c Fq(C)r(;)17 b(D)33
b Fn(`)f Fq(E)g Fr(are)c(proofs.)e(\(Again)g(we)h(suppress)83
3261 y(further)e(conte)o(xts.\))f(W)-8 b(e)25 b(can)g(form)g(the)g
(proof)1090 3472 y Fj(A)g Fh(`)1239 3439 y Fk(f)1309
3472 y Fj(C)98 b(B)30 b Fh(`)1627 3439 y Fk(g)1692 3472
y Fj(D)p 1090 3492 680 4 v 1160 3572 a(A;)15 b(B)31 b
Fh(`)25 b Fj(C)h Fh(^)20 b Fj(D)1872 3454 y(C)q(;)15
b(D)29 b Fh(`)2138 3421 y Fk(k)2205 3454 y Fj(E)p 1860
3492 429 4 v 1860 3572 a(C)e Fh(^)20 b Fj(D)28 b Fh(`)d
Fj(E)p 1160 3609 1129 4 v 1544 3689 a(A;)15 b(B)31 b
Fh(`)25 b Fj(E)2330 3640 y Fi(CUT)83 3886 y Fr(which)g(reduces)g(to)
1083 3975 y Fj(A)h Fh(`)1233 3942 y Fk(f)1303 3975 y
Fj(C)97 b(B)30 b Fh(`)1620 3942 y Fk(g)1685 3975 y Fj(D)94
b(C)q(;)15 b(D)29 b Fh(`)2120 3942 y Fk(k)2187 3975 y
Fj(E)p 1083 4013 1177 4 v 1491 4093 a(A;)15 b(B)31 b
Fh(`)24 b Fj(E)2301 4044 y Fi(CUTs)83 4264 y Fr(where)h(by)f(associati)
n(vity)e(we)j(write)f(the)g(tw)o(o)g(Cuts)g(together)-5
b(.)24 b(This)f(gi)n(v)o(es)g(a)i(simple)e(equation)g(for)83
4384 y(our)i(polycate)o(gory:)1367 4504 y Fm(\()p Fq(f)33
b Fn(\001)22 b Fq(g)t Fm(\);)p 1669 4425 55 4 v 17 w
Fq(k)30 b Fm(=)d Fn(f)p Fq(f)5 b(;)17 b(g)t Fn(g)p Fm(;)g
Fq(k)29 b(:)83 4644 y Fr(Similarly)24 b(suppose)g(that)g
Fq(f)39 b Fm(:)28 b Fq(A)f Fn(`)h Fq(B)i Fr(is)24 b(a)h(proof.)g(W)-8
b(e)25 b(can)g(form)g(the)g(proof)1369 4937 y Fh(`)1425
4904 y Fk(?)1489 4937 y Fh(>)1684 4838 y Fj(A)g Fh(`)1833
4805 y Fk(f)1903 4838 y Fj(B)p 1651 4857 359 4 v 1651
4937 a Fh(>)p Fj(;)15 b(A)25 b Fh(`)g Fj(B)p 1369 4975
641 4 v 1565 5055 a(A)h Fh(`)f Fj(B)2051 5006 y Fi(CUT)83
5259 y Fr(and)g(this)f(reduces)h(outright)f(to)1626 5380
y Fq(A)j Fn(`)1787 5339 y Fk(f)1860 5380 y Fq(B)33 b(:)p
0 TeXcolorgray 1773 5712 a Fr(8)p 0 TeXcolorgray eop
end
%%Page: 9 9
TeXDict begin 9 8 bop 0 TeXcolorgray 0 TeXcolorgray 0
TeXcolorgray 83 83 a Fr(This)24 b(gi)n(v)o(es)g(another)g(equation)g
(in)h(our)f(polycate)o(gory:)1582 298 y Fq(?)p Fm(;)17
b Fq(f)1734 257 y Fw(+)1820 298 y Fm(=)28 b Fq(f)38 b(:)83
514 y Fr(These)23 b(equations)e(\(and)h(their)g(duals\))g(constitute)f
Fo(the)h(r)l(eduction)g(principle)f(for)h(lo)o(gical)f(cuts)p
Fr(.)h(F)o(or)83 634 y(us)j(the)f(reduction)h(of)g(logical)f(cuts)g(is)
g(meaning)g(preserving.)83 926 y Fo(2.3)100 b(Structur)o(al)22
b(Rules)83 1222 y(2.3.1)99 b(Implementation)83 1389 y
Fr(The)27 b(structural)g(rule)g(of)g(Exchange)g(is)g(implicit)e(in)i
(our)g(notion)e(of)j(symmetric)d Fn(\003)p Fr(-polycate)o(gory)-6
b(,)83 1502 y(b)n(ut)25 b(we)g(need)g(to)f(consider)h(W)-8
b(eak)o(ening)24 b(and)h(Contraction.)294 1690 y Fi(\000)g
Fh(`)g Fi(\001)p 240 1710 348 4 v 240 1790 a Fj(A;)15
b Fi(\000)26 b Fh(`)e Fi(\001)629 1740 y Ft(W)-6 b(-L)885
1790 y Fj(;)1074 1690 y Fi(\000)25 b Fh(`)f Fi(\001)p
1017 1710 353 4 v 1017 1790 a(\000)h Fh(`)g Fi(\001)p
Fj(;)15 b(B)1411 1740 y Ft(W)-6 b(-R)1672 1790 y Fj(;)1804
1673 y(A;)15 b(A;)g Fi(\000)26 b Fh(`)f Fi(\001)p 1804
1710 456 4 v 1858 1790 a Fj(A;)15 b Fi(\000)26 b Fh(`)f
Fi(\001)2301 1741 y Ft(C-L)2538 1790 y Fj(;)2670 1673
y Fi(\000)g Fh(`)g Fi(\001)p Fj(;)15 b(B)5 b(;)15 b(B)p
2670 1710 467 4 v 2727 1790 a Fi(\000)25 b Fh(`)g Fi(\001)p
Fj(;)15 b(B)3178 1741 y Ft(C-R)3355 1790 y Fj(:)83 1988
y Fr(Naturalities)35 b(implicit)e(in)i(proof)g(nets)g(in)g(tandem)g
(with)g(our)g(reduction)g(principle)g(for)g(logical)83
2108 y(cuts)25 b(suggest)f(a)h(nice)g(w)o(ay)f(to)h(represent)g(these)g
(in)f(our)h Fn(\003)p Fr(-polycate)o(gory)-6 b(.)83 2276
y(W)e(e)34 b(treat)f(contraction)f(\002rst.)h(F)o(or)g(all)f
Fq(A)p Fr(,)h(`generic')h(instances)e(of)h(contraction)f(gi)n(v)o(e)g
(maps)g Fq(d)42 b Fm(:)83 2389 y Fq(A)28 b Fn(!)f Fq(A)c
Fn(^)f Fq(A)j Fr(and)g Fq(m)j Fm(:)g Fq(A)22 b Fn(_)h
Fq(A)k Fn(!)h Fq(A)d Fr(arising)f(from)g(the)h(proofs)816
2559 y Fj(A)h Fh(`)f Fj(A)91 b(A)25 b Fh(`)g Fj(A)p 816
2579 576 4 v 844 2659 a(A;)15 b(A)26 b Fh(`)f Fj(A)20
b Fh(^)g Fj(A)1434 2609 y Fh(^)p Ft(-R)p 844 2696 521
4 v 898 2776 a Fj(A)26 b Fh(`)f Fj(A)20 b Fh(^)g Fj(A)1406
2727 y Ft(C-L)1767 2776 y Fj(;)1989 2559 y(A)26 b Fh(`)e
Fj(A)92 b(A)25 b Fh(`)g Fj(A)p 1989 2579 576 4 v 2017
2659 a(A)20 b Fh(_)g Fj(A)26 b Fh(`)e Fj(A;)15 b(A)2606
2609 y Fh(_)p Ft(-L)p 2017 2696 521 4 v 2071 2776 a Fj(A)21
b Fh(_)e Fj(A)26 b Fh(`)f Fj(A)2579 2727 y Ft(C-R)2778
2776 y Fj(:)83 2974 y Fr(These)h(are)h(ob)o(viously)d(constructed)h(as)
h(de)g(Mor)n(gan)f(duals,)g(so)h(we)g(assume)f(that)h(the)o(y)f(are)i
(inter)n(-)83 3094 y(changed)e(by)g(the)f(duality)g(in)g(our)h
Fn(\003)p Fr(-polycate)o(gory)-6 b(,)23 b(that)i(is,)1176
3310 y Fm(\()p Fq(d)1265 3325 y Fk(A)1321 3310 y Fm(\))1359
3268 y Fl(\003)1426 3310 y Fm(=)j Fq(m)1615 3325 y Fk(A)1668
3306 y Fg(\003)1725 3310 y Fq(;)116 b Fm(\()p Fq(m)1991
3325 y Fk(A)2048 3310 y Fm(\))2086 3268 y Fl(\003)2153
3310 y Fm(=)28 b Fq(d)2308 3325 y Fk(A)2361 3306 y Fg(\003)2417
3310 y Fq(:)83 3525 y Fr(It)c(is)f(consonant)g(with)g(earlier)h
(assumptions)d(to)i(suppose)g(that)g(we)h(can)g(implement)e(the)h(C-L)h
(rule)83 3645 y(by)31 b(composition)e(with)h(its)h(`generic')g
(instance)g Fq(d)p Fr(:)g(that)f(is,)h(we)g(form)p 2605
3566 59 4 v 31 w Fq(f)50 b Fm(:)40 b Fq(A)27 b Fn(^)g
Fq(A;)17 b Fm(\000)39 b Fn(`)g Fm(\001)32 b Fr(and)83
3766 y(then)25 b(compose)f(with)g Fq(d)h Fr(to)f(gi)n(v)o(e)f
Fq(d)p Fm(;)p 1326 3687 V 17 w Fq(f)38 b Fm(:)28 b Fq(A;)17
b Fm(\000)27 b Fn(`)h Fm(\001)d Fr(as)g(in)g(the)f(follo)n(wing)f
(picture.)2046 4079 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 5.69046
5.69046 17.07181 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial
2111 3990 a Fq(f)1946 3989 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 1946 3989 a 20 w @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(^)2093 3914 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 2093 3914 a
2093 4009 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 2093 4009 a 2046 4079 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@B InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2046 4079 a 2046
4079 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@C InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2046 4079 a 1621 3961 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 1621 3961 a 2046 4079
a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2046 4079 a 2046 4079 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 2046 4079 a 2046 4079 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 30.94975
8.2 0.0 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 2046
4079 a 1918 4114 a Fq(A)f Fn(^)g Fq(A)2046 4079 y
 tx@Dict begin PutEnd  end
 2046
4079 a 2046 4079 a
 tx@Dict begin PutEnd  end
 2046 4079 a 1548 3990 a Fq(d)2046
4079 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true -62.59595
5.69046 -51.21501 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 1526 3961
a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E
16 {InitRnode } NewNode end end
 1526 3961 a 1385 3961 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F
16 {InitRnode } NewNode end end
 1385 3961 a 2046 4079 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@E /N@F InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2046
4079 a 2046 4079 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 2046 4079 a 2046 4079 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 8.80824
8.2 0.0 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 2046 4079
a 2009 4114 a Fq(A)2046 4079 y
 tx@Dict begin PutEnd  end
 2046 4079 a 2046 4079
a
 tx@Dict begin PutEnd  end
 2046 4079 a 83 4248 a Fr(Dually)f Fq(m)28 b Fm(:)g
Fq(A)11 b Fn(_)g Fq(A)28 b Fn(!)g Fq(A)22 b Fr(implements)d
(contraction)j(on)f(the)h(right:)e(contracting)h Fq(g)31
b Fm(:)d Fq(B)33 b Fn(!)27 b Fq(D)s(;)17 b(D)83 4368
y Fr(on)25 b(the)g(right)f(is)p 659 4315 51 4 v 24 w
Fq(g)s Fm(;)17 b Fq(m)p Fr(.)83 4536 y(Similarly)23 b(we)h(ha)n(v)o(e)g
(a)g(w)o(ay)g(to)g(implement)e(weak)o(ening.)h(In)h(our)g(polycate)o
(gory)f(we)h(should)f(ha)n(v)o(e)83 4649 y(maps)i Fq(t)i
Fm(:)h Fq(A)g Fn(!)f(>)f Fr(and)f Fq(u)i Fm(:)g Fn(?)i(!)e
Fq(A)e Fr(arising)f(from)h(the)f(proofs)p 1096 4787 243
4 v 1187 4867 a Fh(`)h(>)1380 4819 y(>)p Ft(-R)p 1095
4887 245 4 v 1095 4967 a Fj(A)g Fh(`)g(>)1382 4917 y
Ft(W)-6 b(-L)1729 4967 y Fj(;)p 1953 4787 243 4 v 1953
4867 a Fh(?)24 b(`)2236 4819 y(?)p Ft(-L)p 1951 4887
245 4 v 1951 4967 a Fh(?)h(`)g Fj(A)2238 4917 y Ft(W)-6
b(-R)2499 4967 y Fj(:)83 5164 y Fr(Again)24 b(these)h(are)g(de)g(Mor)n
(gan)f(duals)h(and)f(should)g(be)h(interchanged)f(by)h(duality:)1221
5380 y Fm(\()p Fq(t)1294 5395 y Fk(A)1351 5380 y Fm(\))1389
5339 y Fl(\003)1456 5380 y Fm(=)j Fq(u)1616 5395 y Fk(A)1669
5376 y Fg(\003)1725 5380 y Fq(;)116 b Fm(\()p Fq(u)1962
5395 y Fk(A)2018 5380 y Fm(\))2056 5339 y Fl(\003)2124
5380 y Fm(=)27 b Fq(t)2262 5395 y Fk(A)2315 5376 y Fg(\003)2372
5380 y Fq(:)p 0 TeXcolorgray 1773 5712 a Fr(9)p 0 TeXcolorgray
eop end
%%Page: 10 10
TeXDict begin 10 9 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(No)n(w)27 b(suppose)g(that)h(we)g(ha)n(v)o(e)
f(a)h(proof)g Fq(f)44 b Fm(:)33 b(\000)g Fn(`)g Fm(\001)p
Fr(,)28 b(and)g(we)g(wish)f(to)g(weak)o(en)h(on)g(the)g(left.)f(W)-8
b(e)83 203 y(form)28 b Fq(f)364 167 y Fw(+)455 203 y
Fm(:)k Fn(>)p Fq(;)17 b Fm(\000)33 b Fn(`)f Fm(\001)c
Fr(and)f(compose)g(with)f Fq(t)i Fr(to)f(gi)n(v)o(e)f
Fq(t)p Fm(;)17 b Fq(f)2189 167 y Fw(+)2280 203 y Fm(:)33
b Fq(A;)17 b Fm(\000)32 b Fn(`)g Fm(\001)p Fr(.)c(Thus)f
Fq(t)g Fr(can)h(be)g(used)83 324 y(to)e(implement)e(weak)o(ening)i(on)f
(the)h(left.)g(Dually)f Fq(u)g Fr(can)i(be)f(used)f(to)h(implement)e
(weak)o(ening)i(on)83 444 y(the)f(right:)f(in)g(that)h(case)g
Fq(g)j Fr(is)c(weak)o(ened)i(to)e Fq(g)1686 408 y Fw(+)1744
444 y Fm(;)17 b Fq(u)p Fr(.)83 740 y Fo(2.3.2)99 b(Commuting)24
b(con)l(ver)o(sions)83 915 y Fr(Implementing)29 b(rules)i(by)f
(composition)e(with)i(generic)h(instances)f(tak)o(es)h(care)g(of)g
(naturality)f(is-)83 1035 y(sues;)d(and)h(some)f(commuting)e(con)l(v)o
(ersions)h(are)j(an)e(immediate)g(consequence)g(of)h(the)g(associa-)83
1156 y(ti)n(vity)23 b(of)i(composition)e(in)h(a)h(polycate)o(gory)-6
b(.)23 b(Ho)n(we)n(v)o(er)h(there)h(are)g(more)g(such.)83
1331 y(W)-8 b(e)28 b(e)o(xpect)g(C-L)g(to)f(enjo)o(y)h(the)f(same)h
(commuting)e(possibilities)e(as)k Fn(^)p Fr(-L.)g(This)f(requires)h
(equa-)83 1451 y(tions)c(of)h(the)g(form)660 1660 y Fm(\()p
Fq(d)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(\001)h Fq(g)31
b Fm(=)d Fq(d)p Fm(;)17 b(\()p Fq(f)32 b Fn(\001)22 b
Fq(g)t Fm(\))27 b Fq(;)116 b(d)p Fm(;)p 1760 1580 59
4 v 17 w Fq(f)38 b Fm(=)p 1949 1580 154 4 v 27 w Fq(d)p
Fm(;)17 b Fq(f)38 b(;)116 b(d)p Fm(;)17 b Fq(f)2427 1618
y Fw(+)2513 1660 y Fm(=)28 b(\()p Fq(d)p Fm(;)17 b Fq(f)11
b Fm(\))2847 1618 y Fw(+)2932 1660 y Fq(:)83 1868 y Fr(\(In)29
b(the)g(second)f(equation,)g(the)h(typing)e(should)h(gi)n(v)o(e)f(a)i
(commuting)e(con)l(v)o(ersion)h(in)g Fq(d)p Fm(;)p 3224
1789 59 4 v 17 w Fq(f)10 b Fr(,)29 b(not)f(a)83 1988
y(logical)c(cut.\))h(Similar)f(considerations)g(for)h(W)-6
b(-L)25 b(and)f Fn(>)p Fr(-L)i(gi)n(v)o(e)d(the)i(equations)707
2197 y Fm(\()p Fq(t)p Fm(;)17 b Fq(f)11 b Fm(\))21 b
Fn(\001)h Fq(g)31 b Fm(=)d Fq(t)p Fm(;)17 b(\()p Fq(f)32
b Fn(\001)22 b Fq(g)t Fm(\))27 b Fq(;)116 b(t)p Fm(;)p
1759 2118 V 17 w Fq(f)39 b Fm(=)p 1949 2118 138 4 v 27
w Fq(t)p Fm(;)17 b Fq(f)39 b(;)116 b(t)p Fm(;)17 b Fq(f)2396
2156 y Fw(+)2482 2197 y Fm(=)28 b(\()p Fq(t)p Fm(;)17
b Fq(f)11 b Fm(\))2800 2156 y Fw(+)2886 2197 y Fq(:)83
2405 y Fr(\(In)38 b(the)f(last)g(equation)f(the)h(typing)g(should)f(gi)
n(v)o(e)g(a)h(commuting)e(con)l(v)o(ersion)i(in)f Fq(t)p
Fm(;)17 b Fq(f)3206 2369 y Fw(+)3265 2405 y Fr(,)37 b(not)g(a)83
2526 y(logical)24 b(cut.\))h(W)-8 b(e)25 b(tak)o(e)g(all)g(these.)83
2821 y Fo(2.3.3)99 b(Corr)l(ectness)25 b(equations)83
2996 y Fr(There)20 b(are)g(further)g(issues)f(to)g(consider)g(arising)g
(from)g(the)g(decision)g(to)g(implement)f(the)h(structural)83
3117 y(rules.)i(W)-8 b(e)21 b(implement)e(contraction)g(via)i
(composition)d(with)i Fq(d)27 b Fm(:)h Fq(A)g Fn(!)f
Fq(A)7 b Fn(^)g Fq(A)21 b Fr(and)f Fq(m)28 b Fm(:)g Fq(A)7
b Fn(_)g Fq(A)28 b Fn(!)83 3237 y Fq(A)p Fr(.)e(But)f
Fq(d)g Fr(and)h Fq(m)f Fr(are)h(themselv)o(es)e(produced)h(by)g
(contractions)g(on)g(proofs)g Fm(id)2866 3252 y Fk(A)2945
3237 y Fn(\001)e Fm(id)3077 3252 y Fk(A)3162 3237 y Fm(:)29
b Fq(A;)17 b(A)29 b Fn(!)83 3357 y Fq(A)14 b Fn(^)g Fq(A)23
b Fr(and)g Fm(id)594 3372 y Fk(A)665 3357 y Fn(\001)14
b Fm(id)788 3372 y Fk(A)872 3357 y Fm(:)28 b Fq(A)14
b Fn(_)g Fq(A)28 b Fn(!)f Fq(A;)17 b(A)23 b Fr(respecti)n(v)o(ely)-6
b(.)21 b(So)h(we)h(need)g(to)f(mak)o(e)h(these)f(agree.)h(This)83
3478 y(gi)n(v)o(es)h(us)g(equations:)962 3686 y Fq(d)p
Fm(;)p 1057 3602 425 4 v 17 w(\(id)1175 3701 y Fk(A)1254
3686 y Fn(\001)e Fm(id)1386 3701 y Fk(A)1443 3686 y Fm(\))27
b(=)h Fq(d)f(;)p 1833 3602 V 116 w Fm(\(id)1953 3701
y Fk(A)2032 3686 y Fn(\001)22 b Fm(id)2163 3701 y Fk(A)2220
3686 y Fm(\);)17 b Fq(m)27 b Fm(=)h Fq(m)g(:)83 3895
y Fr(Similarly)-6 b(,)25 b(we)i(implement)e(weak)o(ening)h(via)g
(composition)e(with)i Fq(t)31 b Fm(:)g Fq(A)g Fn(!)f(>)d
Fr(and)g Fq(u)j Fm(:)h Fn(?)g(!)f Fq(A)p Fr(.)83 4015
y(But)40 b(again)f(these)h(are)h(themselv)o(es)d(produced)h(by)h(weak)o
(ening)f(proofs)h Fq(?)55 b Fm(:)g(\()p Fn(\000)p Fm(\))h
Fn(!)f(>)41 b Fr(and)83 4136 y Fq(?)28 b Fm(:)g Fn(?)g(!)f
Fm(\()p Fn(\000)p Fm(\))e Fr(respecti)n(v)o(ely)-6 b(.)23
b(Making)h(these)h(agree)g(gi)n(v)o(es)e(us)i(equations)1324
4344 y Fq(t)p Fm(;)17 b Fq(?)1452 4303 y Fw(+)1538 4344
y Fm(=)27 b Fq(t)h(;)117 b(?)1897 4303 y Fw(+)1956 4344
y Fm(;)17 b Fq(u)26 b Fm(=)i Fq(u)f(:)83 4600 y Fr(There)j(is)f(a)h
(further)f(delicate)h(point)e(which)h(we)g(mention)f(here.)i(Gi)n(v)o
(en)e Fm(\000)36 b Fn(`)2816 4564 y Fk(f)2898 4600 y
Fm(\001)29 b Fr(there)h(are)g(tw)o(o)83 4713 y(distinct)24
b(w)o(ays)g(to)h(introduce)f Fn(>)h Fr(on)g(the)f(left:)1164
4862 y Fi(\000)h Fh(`)g Fi(\001)p 1109 4882 350 4 v 1109
4962 a Fh(>)p Fj(;)15 b Fi(\000)25 b Fh(`)f Fi(\001)1500
4914 y Fh(>)p Ft(-L)1682 4962 y Fj(;)1959 4862 y Fi(\000)h
Fh(`)g Fi(\001)p 1904 4882 V 1904 4962 a Fh(>)p Fj(;)15
b Fi(\000)25 b Fh(`)g Fi(\001)2295 4912 y Ft(W)-6 b(-L)2486
4962 y Fj(:)83 5139 y Fr(In)33 b(our)f(notation)f(these)h(are)h
Fq(f)1173 5103 y Fw(+)1264 5139 y Fr(and)g Fq(t)p Fm(;)17
b Fq(f)1579 5103 y Fw(+)1670 5139 y Fr(respecti)n(v)o(ely:)30
b(the)o(y)i(are)h(not)f(tak)o(en)g(as)g(equal.)g(This)83
5259 y(decision)25 b(arises)g(from)g(an)h(austere)f(vie)n(w)g(of)g(cut)
h(reductions)e(where)i(a)g(last)e(rule)i(is)f(structural.)f(In)83
5380 y(this)g(paper)h(we)g(mak)o(e)g(no)g(equality)f(assumptions)e(in)j
(such)f(circumstances.)p 0 TeXcolorgray 1748 5712 a(10)p
0 TeXcolorgray eop end
%%Page: 11 11
TeXDict begin 11 10 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fo(2.3.4)99 b(Structur)o(al)23
b(congruence)83 258 y Fr(In)j(the)g(interests)f(of)g(simplicity)-6
b(,)23 b(we)j(subject)f(the)h(structural)f(rules)g(to)h(structural)f
(congruence)h(in)83 379 y(a)g(sense)e(popular)g(in)h(concurrenc)o(y)g
(theory)-6 b(.)83 546 y(Consider)25 b(the)g(process)f(of)h(W)-8
b(eak)o(ening)25 b(only)f(immediately)f(to)h(Contract:)1611
727 y Fj(A;)15 b Fi(\000)26 b Fh(`)e Fi(\001)p 1557 765
456 4 v 1557 845 a Fj(A;)15 b(A;)g Fi(\000)26 b Fh(`)f
Fi(\001)p 1557 882 V 1611 962 a Fj(A;)15 b Fi(\000)26
b Fh(`)e Fi(\001)80 b Fj(:)83 1171 y Fr(That)27 b(seems)g(as)h
(pointless)d(a)j(detour)f(as)g(a)h(logical)e(Cut,)i(and)f(we)g(allo)n
(w)g(it)g(to)f(be)i(deleted.)f(Gi)n(v)o(en)83 1291 y(the)e(analysis)f
(abo)o(v)o(e)g(we)h(can)g(e)o(xpress)f(this)g(by)h(the)f(equation:)1504
1510 y Fq(d)p Fm(;)p 1599 1425 273 4 v 17 w(\()p Fq(t)p
Fm(;)17 b Fq(f)1775 1481 y Fw(+)1833 1510 y Fm(\))28
b(=)f Fq(f)39 b(:)83 1729 y Fr(Similarly)26 b(it)h(seems)f(willful)g
(to)h(distinguish)d(between)j(the)g(v)n(arious)f(w)o(ays)h(in)g(which)f
(a)h(series)g(of)83 1849 y(contractions)d(may)h(be)g(performed.)f(This)
g(pro)o(vides)g(the)h(seemingly)e(pointless)g(equation)1394
2080 y Fq(d)p Fm(;)17 b(\()p 1527 1985 154 4 v Fq(d)p
Fm(;)p 1622 2001 59 4 v 17 w Fq(f)9 b Fm(\))28 b(=)f
Fq(d)p Fm(;)17 b(\()p 1981 1985 154 4 v Fq(d)p Fm(;)p
2076 2001 59 4 v 17 w Fq(f)10 b Fm(\))27 b Fq(;)83 2299
y Fr(which)32 b(properly)f(inde)o(x)o(ed)f(is)i(a)g(v)o(ersion)f(of)g
(associati)n(vity)-6 b(.)29 b(Finally)j(there)g(is)f(an)h(issue)f
(relating)83 2420 y(contraction)j(to)g(e)o(xchange:)g(one)h(can)g(e)o
(xchange)f(before)h(contracting)f(tw)o(o)g(copies)g(of)h
Fq(A)p Fr(.)f(One)83 2540 y(may)21 b(as)h(well)e(identify)h(the)g
(proofs.)f(Write)i Fm(\()p Fn(\000)p Fm(\))1750 2504
y Fk(s)1808 2540 y Fr(to)f(indicate)g(a)g(use)g(of)h(symmetry)-6
b(.)19 b(Then)i(modulo)83 2660 y(elimination)i(of)i(logical)f(cuts)h
(we)g(can)g(e)o(xpress)f(this)g(by)1137 2879 y Fq(d)p
Fm(;)p 1232 2800 349 4 v 17 w(id)1313 2894 y Fk(A)1392
2879 y Fn(\001)e Fm(id)1523 2894 y Fk(A)1580 2820 y(s)1645
2879 y Fm(=)27 b Fq(d)h Fm(:)g Fq(A)f Fn(\000)-16 b(!)28
b Fq(A)22 b Fn(^)g Fq(A)28 b(:)83 3098 y Fr(Thus)36 b(structural)g
(congruence)g(gi)n(v)o(es)f(us)h(identity)-6 b(,)34 b(associati)n(vity)
g(and)j(commutati)n(vity)c(condi-)83 3219 y(tions.)24
b(W)-8 b(e)25 b(assume)f(these)h(in)f(the)h(interests)f(of)h
(mathematical)f(ele)o(gance.)83 3574 y Fs(3)100 b(Categorical)24
b(f)n(ormulation)83 3869 y Fr(In)e(section)f(2)g(we)h(surv)o(e)o(yed)f
(all)g(the)g(structure)h(on)f(a)h Fn(\003)p Fr(-polycate)o(gory)e
(needed)i(to)f(model)g(classical)83 3990 y(proofs,)j(and)g(we)g(ga)n(v)
o(e)f(the)h(equations)f(which)h(we)g(think)f(should)g(hold.)g(This)g
(gi)n(v)o(es)g(us)h(a)g(genuine)83 4110 y(though)34 b(unwieldy)g
(notion)g(of)h(model.)f(W)-8 b(e)35 b(shall)f(not)h(spell)f(it)g(out.)h
(Instead)f(we)i(shall)e(e)o(xtract)83 4230 y(from)d(the)g
Fn(\003)p Fr(-polycate)o(gorical)e(formulation)h(structure)g(on)h(its)f
(underlying)g(cate)o(gory)g(gi)n(ving)f(an)83 4351 y(equi)n(v)n(alent)
23 b(notion)h(of)h(cate)o(gorical)f(model.)83 4526 y(Before)g(we)e(get)
g(do)n(wn)f(to)g(w)o(ork,)h(we)g(note)g(that)g(the)g(in)l(v)n(olutary)e
(ne)o(gation)h Fm(\()p Fn(\000)p Fm(\))2840 4478 y Fl(\003)2901
4526 y Fr(e)o(xtends)g(to)h(maps)83 4646 y(as)j(we)g(ha)n(v)o(e)g
(\(for)g(e)o(xample\))f(natural)h(isomorphisms)1040 4865
y Fn(C)6 b Fm(\()p Fq(A)p Fm(;)17 b Fq(B)5 b Fm(\))1398
4838 y Fn(\030)1399 4869 y Fm(=)1503 4865 y Fn(C)h Fm(\()p
Fn(\000)p Fm(;)17 b Fq(A)1793 4824 y Fl(\003)1833 4865
y Fq(;)g(B)5 b Fm(\))2022 4838 y Fn(\030)2022 4869 y
Fm(=)2127 4865 y Fn(C)h Fm(\()p Fq(B)2302 4824 y Fl(\003)2342
4865 y Fm(;)17 b Fq(A)2459 4824 y Fl(\003)2498 4865 y
Fm(\))g Fq(:)83 5084 y Fr(It)25 b(is)f(easy)h(to)g(see)g(that)p
0 TeXcolorgray 83 5259 a Fs(Pr)n(oposition)d(3.1.)p 0
TeXcolorgray 37 w Fo(The)g(oper)o(ation)e Fm(\()p Fn(\000)p
Fm(\))1515 5223 y Fl(\003)1583 5259 y Fm(:)27 b Fn(C)1695
5223 y Fk(op)1797 5259 y Fn(!)g(C)i Fo(is)21 b(a)h(strict)e(functorial)
g(self-duality)g(on)i(our)83 5380 y(cate)l(gory)j Fn(C)6
b Fo(.)p 0 TeXcolorgray 1748 5712 a Fr(11)p 0 TeXcolorgray
eop end
%%Page: 12 12
TeXDict begin 12 11 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(The)24 b(duality)f(more)h(or)g(less)f(halv)o
(es)g(the)h(w)o(ork)g(which)f(we)h(no)n(w)g(ha)n(v)o(e)f(to)h(do.)f
(Whene)n(v)o(er)h(we)g(ha)n(v)o(e)83 203 y(structure)h(we)g(shall)f(ha)
n(v)o(e)h(its)f(dual.)83 545 y Fo(3.1)100 b(Cate)l(gorical)23
b(Pr)l(eliminaries)83 849 y Fr(W)-8 b(e)28 b(start)g(by)f(introducing)f
(some)h(preliminary)g(notions.)f(W)-8 b(e)28 b(consider)f(cate)o
(gories)g Fn(C)34 b Fr(equipped)83 969 y(with)e(a)g(special)g(class)f
(of)h Fn(C)1070 984 y Fw(id)1166 969 y Fr(of)g(idempotents,)e(which)h
(we)i(shall)e(call)h Fo(linear)f(idempotents)p Fr(.)f(In)83
1089 y(our)24 b(application)f(these)h(will)f(be)h(idempotents)e(\(maps)
h Fq(e)h Fr(with)f Fq(e)p Fm(;)17 b Fq(e)28 b Fm(=)g
Fq(e)p Fr(\))c(which)g(are)g(linear)g(in)g(the)83 1210
y(sense)31 b(of)g(2.2.2.)f(F)o(or)g(the)h(moment)e(we)i(need)g(assume)f
(nothing)f(be)o(yond)h(the)g(ob)o(vious)f(require-)83
1330 y(ment)c(that)f(e)n(v)o(ery)g(identity)f(is)i(in)f(the)h(class.)f
(W)-8 b(e)26 b(call)e(such)h(data)g(a)g Fo(guar)l(ded)f(cate)l(gory)p
Fr(.)3168 1294 y Fw(2)p 0 TeXcolorgray 83 1514 a Fs(De\002nition)k
(3.2.)p 0 TeXcolorgray 42 w Fo(A)f(guar)l(ded)f(functor)g
Fq(F)45 b Fm(:)32 b Fn(C)37 b(!)31 b(D)f Fr(between)d(guarded)g(cate)o
(gories)f(consists)f(of)83 1634 y(the)g(usual)g(data)g(for)h(a)g
(functor)f(such)g(that)f Fq(F)39 b Fr(maps)25 b(linear)g(idempotents)f
(to)g(linear)i(idempotents;)83 1755 y(and)f(whene)n(v)o(er)f
Fq(e)h Fr(and)g Fq(e)944 1718 y Fl(0)993 1755 y Fr(are)g(linear)g
(idempotents,)e(then)856 1992 y Fq(F)14 b Fm(\()p Fq(e)p
Fm(\);)j Fq(F)d Fm(\()p Fq(f)d Fm(\);)17 b Fq(F)d Fm(\()p
Fq(g)t Fm(\);)j Fq(F)d Fm(\()p Fq(e)1762 1950 y Fl(0)1783
1992 y Fm(\))27 b(=)h Fq(F)14 b Fm(\()p Fq(e)p Fm(\);)j
Fq(F)d Fm(\()p Fq(f)d Fm(;)17 b Fq(g)t Fm(\);)g Fq(F)d
Fm(\()p Fq(e)2705 1950 y Fl(0)2725 1992 y Fm(\))83 2229
y Fr(W)-8 b(e)27 b(say)g(that)f(a)h(guarded)f(functor)g
Fq(F)41 b Fr(is)26 b Fo(domain)f(absorbing)g Fr(when)h
Fq(F)14 b Fm(\()p Fq(e)p Fm(\);)j Fq(F)d Fm(\()p Fq(f)d
Fm(\))30 b(=)g Fq(F)14 b Fm(\()p Fq(e)p Fm(;)j Fq(f)11
b Fm(\))26 b Fr(for)83 2349 y(linear)j(idempotents)e
Fq(e)p Fr(;)i(it)f(is)h Fo(codomain)f(absorbing)f Fr(when)h
Fq(F)14 b Fm(\()p Fq(f)d Fm(\);)17 b Fq(F)d Fm(\()p Fq(e)p
Fm(\))34 b(=)h Fq(F)14 b Fm(\()p Fq(f)d Fm(;)17 b Fq(e)p
Fm(\))28 b Fr(for)i(linear)83 2469 y(idempotents)23 b
Fq(e)p Fr(.)83 2653 y(W)-8 b(e)30 b(should)e(interpret)h(this)f(in)g
(the)h(case)h Fn(C)36 b Fr(is)28 b(the)h(tri)n(vial)f(one)h(object)g
(cate)o(gory)g Fm(1)g Fr(with)f(its)g(only)83 2773 y(choice)20
b(of)g(linear)g(idempotents.)e(A)i(guarded)f(functor)h
Fq(D)31 b Fm(:)c(1)h Fn(!)f(D)c Fr(is)c(a)h(choice)g(of)g(object)f
Fq(D)31 b Fn(2)d(D)83 2894 y Fr(and)d(linear)g(idempotent)e
Fq(e)1022 2909 y Fk(D)1114 2894 y Fm(:)28 b Fq(D)i Fn(!)d
Fq(D)s Fr(.)e(W)-8 b(e)25 b(call)g(this)f(a)h Fo(guar)l(ded)f(object)p
Fr(.)83 3077 y(W)-8 b(e)26 b(also)e(need)h(some)f(notion)g(of)h
Fm(2)p Fr(-cell)f(between)h(guarded)g(functors)p 0 TeXcolorgray
83 3261 a Fs(De\002nition)31 b(3.3.)p 0 TeXcolorgray
43 w Fr(Let)e Fq(F)s(;)17 b(G)36 b Fm(:)g Fn(C)42 b(!)36
b(D)c Fr(be)d(guarded)h(functors.)e(A)i Fo(guar)l(ded)f(tr)o
(ansformation)c Fr(or)83 3382 y(simply)f Fo(tr)o(ansformation)d
Fr(consists)i(of)i(data)g Fq(\013)1702 3397 y Fk(A)1787
3382 y Fm(:)j Fq(F)14 b(A)27 b Fn(!)g Fq(GA)e Fr(satisfying)1035
3619 y Fq(F)14 b Fm(\(id)1231 3634 y Fk(A)1288 3619 y
Fm(\);)j Fq(F)d Fm(\()p Fq(u)p Fm(\);)j Fq(\013)1685
3634 y Fk(B)1772 3619 y Fm(=)27 b Fq(\013)1937 3634 y
Fk(A)1994 3619 y Fm(;)17 b Fq(G)p Fm(\()p Fq(u)p Fm(\);)g
Fq(G)p Fm(\(id)2486 3634 y Fk(B)2547 3619 y Fm(\))83
3856 y Fr(for)25 b(all)g Fq(u)i Fm(:)h Fq(A)g Fn(!)f
Fq(B)j Fr(in)24 b Fn(C)6 b Fr(.)83 4039 y(W)-8 b(e)26
b(do)e(not)g(spell)g(out)h(here)g(the)g(consequences)f(of)h(these)g
(de\002nitions,)e(b)n(ut)i(note)f(the)h(follo)n(wing.)p
0 TeXcolorgray 83 4223 a Fs(Theor)n(em)38 b(3.4.)p 0
TeXcolorgray 47 w Fo(Guar)l(ded)e(cate)l(gories,)f(guar)l(ded)h
(functor)o(s)e(and)i(tr)o(ansformations)c(form)j(a)h
Fm(2)p Fo(-)83 4343 y(cate)l(gory)-5 b(,)24 b(the)h Fr(guarded)g
Fm(2)p Fr(-cate)o(gory)p Fo(.)83 4527 y Fr(The)30 b(only)e(subtle)h
(point)f(is)h(the)g(composition)e(of)j Fm(2)p Fr(-cells)f(along)g(a)g
Fm(0)p Fr(-cell,)g(where)h(one)g(needs)f(to)83 4647 y(compose)d
(additionally)e(with)h(maps)h(of)g(the)g(form)g Fq(GF)14
b Fm(\(id)o(\))p Fr(.)26 b(W)-8 b(e)26 b(shall)g(not)f(need)h(that)g
(here.)g(The)83 4768 y(composition)g(of)i Fm(2)p Fr(-cells)g(along)f(a)
i Fm(1)p Fr(-cell)f(by)f(contrast)h(is)g(straightforw)o(ard,)f(and)h
(we)g(shall)f(need)83 4888 y(terminology)c(suggested)h(by)h(it.)p
0 TeXcolorgray 83 5056 299 4 v 83 5120 a Fw(2)174 5153
y Ft(The)d(terminology)i(is)d(intended)k(to)c(suggest)j(a)d(focus)i(on)
f(good)h(beha)n(viour)h(once)f(we)e(compose)i(with)e(the)83
5266 y(idempotents)30 b(or)d(guards.)h(There)f(is)g(no)g(stronger)i
(connections)h(with)d(other)h(uses)f(of)g(\223guarded\224)j(in)d(logic)
83 5379 y(or)d(computer)h(science.)p 0 TeXcolorgray 0
TeXcolorgray 1748 5712 a Fr(12)p 0 TeXcolorgray eop end
%%Page: 13 13
TeXDict begin 13 12 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 0 TeXcolorgray 83 83 a Fs(De\002nition)40
b(3.5.)p 0 TeXcolorgray 48 w Fr(Suppose)e(that)h Fq(\013)53
b Fm(:)g Fq(F)67 b Fn(!)53 b Fq(G)38 b Fr(and)h Fq(\014)59
b Fm(:)53 b Fq(G)g Fn(!)f Fq(F)h Fr(are)39 b(\(guarded)g(natural\))83
203 y(transformations.)c Fq(\013)i Fr(and)f Fq(\014)42
b Fr(are)37 b Fo(mutually)f(in)l(ver)o(se)g Fr(\()p Fq(\013)h
Fo(in)l(ver)o(se)f(to)g Fq(\014)6 b Fr(\))36 b(just)g(when)g
Fq(\013)3199 218 y Fk(A)3256 203 y Fm(;)17 b Fq(\014)3355
218 y Fk(A)3461 203 y Fm(=)83 324 y Fq(F)d Fm(\(id)279
339 y Fk(A)336 324 y Fm(\))25 b Fr(and)g Fq(\014)623
339 y Fk(A)680 324 y Fm(;)17 b Fq(\013)786 339 y Fk(A)870
324 y Fm(=)28 b Fq(G)p Fm(\(id)1170 339 y Fk(A)1227 324
y Fm(\))p Fr(.)83 501 y(This)c(amounts)g(to)g(taking)g(in)l(v)o(erses)g
(of)h Fm(2)p Fr(-cells)g(in)f(the)h(guarded)f Fm(2)p
Fr(-cate)o(gory)-6 b(.)83 807 y Fo(3.2)100 b(Lo)o(gical)24
b(oper)o(ator)o(s)83 1104 y(3.2.1)99 b(Extension)24 b(to)g(maps)83
1274 y Fr(Clearly)34 b Fn(C)39 b Fr(must)32 b(be)h(equipped)g(on)g
(objects)f(with)g(the)h(structure,)g Fo(true)p Fr(,)f
Fo(and)p Fr(,)h Fo(false)p Fr(,)f Fo(or)p Fr(,)h Fo(not)f
Fr(of)83 1387 y(classical)39 b(logic:)f(we)i(write)f(this)f(structure)h
(as)g Fm(1)p Fr(,)g Fn(^)p Fr(,)h Fm(0)p Fr(,)f Fn(_)p
Fr(.)g(There)h(is)f(a)g(compelling)f(w)o(ay)h(to)83 1500
y(e)o(xtend)24 b(the)h(propositional)e(operators)h(to)h(maps.)f(Gi)n(v)
o(en)f(proofs)i Fq(A)i Fn(`)2533 1464 y Fk(f)2606 1500
y Fq(B)j Fr(and)25 b Fq(C)35 b Fn(`)3045 1464 y Fk(g)3112
1500 y Fq(D)s Fr(,)25 b(there)g(is)83 1613 y(a)h(canonical)e(proof)h
Fq(A)d Fn(^)h Fq(C)34 b Fn(`)1149 1577 y Fk(f)7 b Fl(^)p
Fk(g)1305 1613 y Fq(B)28 b Fn(^)22 b Fq(D)28 b Fr(gi)n(v)o(en)23
b(by)i(the)f(follo)n(wing)1513 1803 y Fj(A)h Fh(`)g Fj(B)96
b(C)31 b Fh(`)25 b Fj(D)p 1513 1823 594 4 v 1541 1903
a(A;)15 b(C)32 b Fh(`)25 b Fj(B)g Fh(^)19 b Fj(D)p 1510
1940 600 4 v 1510 2020 a(A)i Fh(^)f Fj(C)31 b Fh(`)25
b Fj(B)g Fh(^)20 b Fj(D)83 2238 y Fr(Similarly)h(we)h(ha)n(v)o(e)f
Fq(f)g Fn(_)10 b Fq(g)26 b Fr(a)21 b(proof)h(of)g Fq(A)10
b Fn(_)g Fq(C)35 b Fn(`)28 b Fq(B)15 b Fn(_)10 b Fq(D)s
Fr(.)22 b(So)g(in)f(terms)g(of)h(our)f(algebraic)h(notation)83
2358 y(we)j(should)f(de\002ne)1059 2482 y Fq(f)33 b Fn(^)22
b Fq(g)31 b Fm(=)p 1410 2398 257 4 v 28 w(\()p Fq(f)i
Fn(\001)21 b Fq(g)t Fm(\))99 b Fq(;)117 b(f)32 b Fn(_)23
b Fq(g)31 b Fm(=)p 2260 2398 V 27 w(\()p Fq(f)i Fn(\001)22
b Fq(g)t Fm(\))16 b Fq(:)83 2636 y Fr(Thus)35 b Fn(C)42
b Fr(is)35 b(equipped)g(with)f(operations)h Fn(^)h Fr(and)f
Fn(_)h Fr(on)f(maps.)g(It)h(turns)e(out)h(that)g(the)o(y)g(are)h(not)83
2756 y(functorial,)28 b(b)n(ut)f(in)h(a)g(suitable)f(sense)h(guarded)g
(functorial.)f(T)-8 b(o)28 b(mak)o(e)f(sense)h(of)g(that)g(we)g(need)g
(a)83 2876 y(collection)c(of)h(linear)g(idempotents.)e(W)-8
b(e)25 b(identify)f(that)g(class)h(as)g(follo)n(ws.)83
3053 y(W)-8 b(e)29 b(\002rst)e(note)h(a)g(useful)f(computation)f(in)h
(our)h Fn(\003)p Fr(-polycate)o(gories)e(for)i(classical)g(logic.)f(W)
-8 b(e)28 b(gi)n(v)o(e)83 3174 y(just)c(the)h(v)o(ersion)f(for)h
(conjunction)e(as)i(that)f(for)h(disjunction)e(is)h(dual)h(to)f(it.)p
0 TeXcolorgray 83 3351 a Fs(Pr)n(oposition)k(3.6.)p 0
TeXcolorgray 43 w Fo(Suppose)f(that)g Fq(f)44 b Fm(:)33
b Fq(A)h Fn(!)f Fq(C)7 b Fo(,)27 b Fq(g)37 b Fm(:)c Fq(B)39
b Fn(!)33 b Fq(D)s Fo(,)27 b Fq(h)34 b Fm(:)f Fq(C)41
b Fn(!)33 b Fq(E)h Fo(and)27 b Fq(k)36 b Fm(:)e Fq(D)i
Fn(!)d Fq(F)83 3471 y Fo(ar)l(e)25 b(maps.)g(Then)g Fm(\()p
Fq(f)32 b Fn(^)23 b Fq(g)t Fm(\);)17 b(\()p Fq(h)k Fn(^)i
Fq(k)s Fm(\))k(=)p 1489 3387 549 4 v 28 w Fn(f)p Fq(f)5
b(;)17 b(g)t Fn(g)p Fm(;)g(\()p Fq(h)k Fn(\001)h Fq(k)s
Fm(\))p Fo(.)83 3648 y Fr(Using)i(also)h(the)f(Additional)f(Assumption)
g(of)i(2.2.2)f(we)h(deduce)g(at)g(once)g(the)g(follo)n(wing.)p
0 TeXcolorgray 83 3825 a Fs(Pr)n(oposition)j(3.7.)p 0
TeXcolorgray 43 w Fo(If)g Fq(e)929 3840 y Fk(A)1020 3825
y Fm(:)33 b Fq(A)h Fn(!)f Fq(A)28 b Fo(and)g Fq(e)1644
3840 y Fk(B)1738 3825 y Fm(:)34 b Fq(B)k Fn(!)c Fq(B)f
Fo(ar)l(e)28 b(linear)f(and)h(idempotent,)e(then)i(so)83
3946 y(ar)l(e)d Fq(e)282 3961 y Fk(A)362 3946 y Fn(^)d
Fq(e)495 3961 y Fk(B)581 3946 y Fo(and)i Fq(e)800 3961
y Fk(A)880 3946 y Fn(_)e Fq(e)1013 3961 y Fk(B)1074 3946
y Fo(.)83 4123 y Fr(W)-8 b(e)21 b(no)n(w)e(associate)g(with)g(our)h
(cate)o(gorical)g(model)f Fn(C)26 b Fr(a)20 b(class)g(of)g(linear)g
(idempotents.)e(W)-8 b(e)20 b(simply)83 4243 y(close)k(the)g
(collection)e(of)i(identity)f(maps)g(under)h(the)f(logical)g
(operations.)g(\(W)-8 b(e)25 b(mak)o(e)e(clear)i(what)83
4364 y(that)30 b(means)f(in)g(case)i(of)f Fn(>)g Fr(and)g
Fn(?)p Fr(.\))g(W)-8 b(e)30 b(introduce)f(some)h(notation)e(for)i(the)g
Fo(canonical)e(linear)83 4484 y(idempotents)c Fr(which)g(we)h(ha)n(v)o
(e)g(identi\002ed.)f(W)-8 b(e)25 b(write)510 4708 y Fq(e)555
4723 y Fk(A;B)716 4708 y Fm(=)j Fq(e)865 4723 y Fk(A)p
Fl(^)p Fk(B)1053 4708 y Fm(=)g(id)1238 4723 y Fk(A)1317
4708 y Fn(^)23 b Fm(id)1487 4723 y Fk(B)1575 4708 y Fq(;)415
b(e)2062 4723 y Fk(A;B)2223 4708 y Fm(=)28 b Fq(e)2372
4723 y Fk(A)p Fl(_)p Fk(B)2560 4708 y Fm(=)g(id)2745
4723 y Fk(A)2824 4708 y Fn(_)23 b Fm(id)2994 4723 y Fk(B)3083
4708 y Fq(:)83 4932 y Fr(W)-8 b(e)26 b(also)e(tak)o(e)h(a)g(nullary)f
(v)o(ersion)g(of)h(these,)f(setting)1254 5156 y Fq(e)1299
5171 y Fl(>)1385 5156 y Fm(=)k Fq(?)1538 5115 y Fw(+)2023
5156 y Fq(e)2068 5171 y Fl(?)2155 5156 y Fm(=)f Fq(?)2307
5115 y Fw(+)83 5380 y Fr(with)d(the)h(ob)o(vious)e(interpretation)h(in)
g(each)i(case.)p 0 TeXcolorgray 1748 5712 a(13)p 0 TeXcolorgray
eop end
%%Page: 14 14
TeXDict begin 14 13 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 0 TeXcolorgray 83 83 a Fs(Theor)n(em)27
b(3.8.)p 0 TeXcolorgray 41 w Fo(\(i\))e Fn(>)g Fo(with)g
Fq(e)1148 98 y Fl(>)1232 83 y Fo(and)f(dually)g Fn(?)i
Fo(with)e Fq(e)2024 98 y Fl(?)2108 83 y Fo(ar)l(e)h(guar)l(ded)g
(objects.)83 203 y(\(ii\))i(The)h(oper)o(ator)d Fn(^)33
b Fm(:)f Fn(C)e(\002)24 b(C)39 b(!)31 b(C)j Fo(is)26
b(a)h(domain)f(absorbing)g(guar)l(ded)g(functor)-11 b(,)26
b(while)h(dually)83 324 y Fn(_)h Fm(:)g Fn(C)h(\002)22
b(C)34 b(!)28 b(C)j Fo(is)24 b(a)h(codomain)f(absorbing)f(guar)l(ded)h
(functor)-11 b(.)83 637 y(3.2.2)99 b(Coher)l(ence)83
817 y Fr(When)28 b(we)g(come)f(to)g(reconstruct)g(a)h
Fn(\003)p Fr(-polycate)o(gory)f(from)g(our)g(cate)o(gory)g(we)h(need)g
(to)f(observ)o(e)83 937 y(some)h(relations)g(between)g(our)g(canonical)
g(linear)h(idempotents.)d(W)-8 b(e)29 b(illustrate)e(the)h(point)f
(here.)83 1057 y(Concentrating)e(on)f(conjunction)g(we)h(ha)n(v)o(e)f
(on)h(the)f(one)h(hand)g(the)f(idempotent)682 1287 y
Fq(e)727 1302 y Fk(A;B)s Fl(^)p Fk(C)990 1287 y Fm(=)k(id)1175
1302 y Fk(A)1254 1287 y Fn(^)23 b Fm(id)1424 1302 y Fk(B)s
Fl(^)p Fk(C)1614 1287 y Fm(:)28 b Fq(A)22 b Fn(^)h Fm(\()p
Fq(B)k Fn(^)c Fq(C)7 b Fm(\))27 b Fn(\000)-16 b(!)27
b Fq(A)c Fn(^)f Fm(\()p Fq(B)27 b Fn(^)c Fq(C)7 b Fm(\))83
1516 y Fr(and)25 b(on)g(the)f(other)556 1745 y Fq(e)601
1760 y Fk(A;B)s(;C)836 1745 y Fm(=)k(id)1021 1760 y Fk(A)1100
1745 y Fn(^)23 b Fm(\(id)1308 1760 y Fk(B)1391 1745 y
Fn(^)g Fm(id)1561 1760 y Fk(C)1620 1745 y Fm(\))28 b(:)f
Fq(A)c Fn(^)f Fm(\()p Fq(B)27 b Fn(^)c Fq(C)7 b Fm(\))27
b Fn(\000)-16 b(!)28 b Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k
Fn(^)22 b Fq(C)7 b Fm(\))28 b Fq(:)83 1974 y Fr(Intuiti)n(v)o(ely)22
b(the)i(second)f(decomposes)h(things)e(more)i(than)g(the)g(\002rst,)g
(and)g(this)f(is)h(re\003ected)h(in)f(the)83 2094 y(f)o(act)i(that)e
(the)h(second)f(absorbs)g(the)h(\002rst)g(in)f(the)h(sense)g(that)650
2323 y Fq(e)695 2338 y Fk(A;B)s(;C)903 2323 y Fm(;)17
b Fq(e)992 2338 y Fk(A;B)s Fl(^)p Fk(C)1254 2323 y Fm(=)28
b Fq(e)1403 2338 y Fk(A;B)s(;C)1711 2323 y Fr(and)99
b Fq(e)1999 2338 y Fk(A;B)s Fl(^)p Fk(C)2234 2323 y Fm(;)17
b Fq(e)2323 2338 y Fk(A;B)s(;C)2559 2323 y Fm(=)27 b
Fq(e)2707 2338 y Fk(A;B)s(;C)2943 2323 y Fq(:)83 2552
y Fr(The)e(\002rst)f(calculation)f(depends)h(on)g(the)g(linearity)g(of)
g Fm(id)2069 2567 y Fk(B)2150 2552 y Fn(\001)19 b Fm(id)2279
2567 y Fk(C)2362 2552 y Fr(from)24 b(the)g(Additional)f(Assump-)83
2673 y(tion)h(of)h(2.2.2.)83 2852 y(Generally)h(the)g(situation)e(is)i
(as)g(follo)n(ws.)e(Gi)n(v)o(en)g(propositions)g Fq(A)2425
2867 y Fk(i)2479 2852 y Fr(we)j(ha)n(v)o(e)e(man)o(y)g(brack)o(etings)
83 2973 y(to)d(gi)n(v)o(e)f(a)h(conjunction)932 2906
y Ff(V)1018 2973 y Fq(A)1091 2988 y Fk(i)1119 2973 y
Fr(.)g(Gi)n(v)o(en)f(one)h(such)g(we)g(ha)n(v)o(e)g(a)g(v)n(ariety)g
(of)g(idempotents)e(depending)83 3093 y(on)26 b(ho)n(w)e(deeply)i(we)g
(`analyse)f(the)h(brack)o(etings'.)f(The)g(shallo)n(west)f(analysis)h
(yields)f Fm(id)3200 3059 y Ff(V)3281 3117 y Fk(A)3334
3127 y Fe(i)3364 3093 y Fr(,)i(the)83 3214 y(deepest)f
Fq(e)452 3179 y Ff(V)533 3237 y Fk(A)586 3247 y Fe(i)644
3214 y Fm(=)748 3147 y Ff(V)834 3214 y Fm(id)915 3229
y Fk(A)968 3239 y Fe(i)998 3214 y Fr(.)g(The)g(coherence)h(of)e(these)h
(idempotents)e(is)h(the)h(follo)n(wing)e(f)o(act.)p 0
TeXcolorgray 83 3393 a Fs(Pr)n(oposition)g(3.9.)p 0 TeXcolorgray
38 w Fo(Suppose)f(in)h(the)f(given)h(situation)e(that)h
Fq(e)2219 3408 y Fw(1)2281 3393 y Fo(is)h(an)f(idempotent)g(corr)l
(esponding)83 3514 y(to)j(a)g(deeper)f(analysis)g(than)g
Fq(e)1155 3529 y Fw(2)1195 3514 y Fo(.)g(Then)i Fq(e)1514
3529 y Fw(1)1553 3514 y Fm(;)17 b Fq(e)1642 3529 y Fw(2)1709
3514 y Fm(=)28 b Fq(e)1858 3529 y Fw(1)1925 3514 y Fm(=)g
Fq(e)2074 3529 y Fw(2)2113 3514 y Fm(;)17 b Fq(e)2202
3529 y Fw(1)2242 3514 y Fo(.)83 3693 y Fr(W)-8 b(e)26
b(note)e(the)h(nullary)f(v)o(ersion)g(of)g(the)h(proposition:)e
Fq(e)2012 3708 y Fl(>)2071 3693 y Fm(;)17 b(id)2196 3708
y Fl(>)2283 3693 y Fm(=)27 b Fq(e)2431 3708 y Fl(>)2518
3693 y Fm(=)h(id)2703 3708 y Fl(>)2762 3693 y Fm(;)17
b Fq(e)2851 3708 y Fl(>)2910 3693 y Fr(.)83 4013 y Fo(3.3)100
b(Structur)l(e)83 4313 y(3.3.1)f(Units)24 b(and)g(associator)o(s)83
4493 y Fr(Our)36 b(logical)f(operations)f(are)i(only)f(guarded)h
(functorial,)e(b)n(ut)h(the)o(y)g(do)g(come)g(equipped)g(with)83
4613 y(structure)29 b(f)o(amiliar)g(in)g(the)f(case)i(of)f(tensor)g
(products.)f(W)-8 b(e)30 b(concentrate)f(on)g(the)g(case)h(of)f
Fn(>)h Fr(and)83 4734 y Fn(^)p Fr(;)25 b(the)g(case)g(of)g
Fn(?)h Fr(and)e Fn(_)i Fr(follo)n(ws)d(by)i(duality)-6
b(.)83 4913 y(First)25 b(we)g(can)g(de\002ne)h(maps)776
5178 y Fq(l)k Fm(=)e Fq(?)22 b Fn(\001)f Fm(id)1141 5193
y Fk(A)1225 5178 y Fm(:)28 b Fq(A)g Fn(!)f(>)c(^)f Fq(A)1968
5152 y Fm(~)1969 5178 y Fq(l)30 b Fm(=)p 2131 5085 141
4 v 27 w(id)2213 5135 y Fw(+)2213 5203 y Fk(A)2299 5178
y Fm(:)e Fn(>)23 b(^)f Fq(A)28 b Fn(!)f Fq(A)705 5359
y(r)j Fm(=)d(id)964 5374 y Fk(A)1043 5359 y Fn(\001)22
b Fq(?)27 b Fm(:)h Fq(A)g Fn(!)f Fq(A)22 b Fn(^)h(>)204
b Fm(~)-53 b Fq(r)30 b Fm(=)p 2090 5266 253 4 v 27 w(\(id)2210
5316 y Fw(+)2210 5383 y Fk(A)2269 5359 y Fm(\))2307 5330
y Fk(s)2371 5359 y Fm(:)e Fq(A)22 b Fn(^)h(>)28 b(!)f
Fq(A)p 0 TeXcolorgray 1748 5712 a Fr(14)p 0 TeXcolorgray
eop end
%%Page: 15 15
TeXDict begin 15 14 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(where)35 b(the)f(superscript)g
Fq(s)h Fr(indicates)e(a)i(tacit)f(use)g(of)h(e)o(xchange.)f(W)-8
b(e)35 b(also)f(ha)n(v)o(e)g(associati)n(vity)83 203
y(maps)25 b(de\002ned)g(as)g(follo)n(ws)695 471 y Fq(a)j
Fm(=)p 878 370 641 4 v 878 386 V 28 w(\(id)997 486 y
Fk(A)1076 471 y Fn(\001)22 b Fm(id)1207 486 y Fk(B)1268
471 y Fm(\))g Fn(\001)g Fm(id)1459 486 y Fk(C)1546 471
y Fm(:)28 b Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k Fn(^)22 b
Fq(C)7 b Fm(\))28 b Fn(\000)-16 b(!)27 b Fm(\()p Fq(A)22
b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(^)h Fq(C)34 b(;)697 651
y Fm(~)-51 b Fq(a)28 b Fm(=)p 878 550 V 878 567 V 28
w(id)959 666 y Fk(A)1038 651 y Fn(\001)22 b Fm(\(id)1207
666 y Fk(B)1290 651 y Fn(\001)g Fm(id)1421 666 y Fk(C)1480
651 y Fm(\))28 b(:)g(\()p Fq(A)22 b Fn(^)h Fq(B)5 b Fm(\))22
b Fn(^)g Fq(C)35 b Fn(\000)-16 b(!)27 b Fq(A)22 b Fn(^)h
Fm(\()p Fq(B)k Fn(^)c Fq(C)7 b Fm(\))27 b Fq(:)83 893
y Fr(\(There)c(is)e(only)g(one)h(sensible)f(w)o(ay)h(to)g(read)g(those)
g(de\002nitions!\))f(W)-8 b(e)22 b(note)g(at)f(once)i(that)e(all)h
(these)83 1013 y(structural)j(maps)f(are)h(linear)-5
b(.)83 1194 y(By)26 b(direct)e(computation)f(we)i(sho)n(w)f(the)h
(follo)n(wing.)p 0 TeXcolorgray 83 1375 a Fs(Theor)n(em)k(3.10.)p
0 TeXcolorgray 42 w Fo(The)e(pair)o(s)f(of)g(maps)g Fq(l)k
Fo(and)1720 1349 y Fm(~)1721 1375 y Fq(l)r Fo(,)d Fq(r)j
Fo(and)g Fm(~)-53 b Fq(r)s Fo(,)26 b Fq(a)h Fo(and)h
Fm(~)-50 b Fq(a)p Fo(,)27 b(ar)l(e)g(in)f(eac)o(h)h(case)g(mutually)83
1496 y(in)l(ver)o(se)e(guar)l(ded)f(tr)o(ansformations.)83
1676 y Fr(Note)36 b(that)g(the)g(equations)f(gi)n(v)o(en)g(by)g(our)h
(de\002nitions)f(are)i(not)f(quite)f(the)h(f)o(amiliar)g(ones.)g(F)o
(or)83 1797 y(e)o(xample)24 b(since)h Fn(^)g Fr(is)g(domain)e
(absorbing)h(we)h(do)g(ha)n(v)o(e)950 2028 y Fm(\()p
Fq(f)33 b Fn(^)23 b Fq(g)t Fm(\))e Fn(^)h Fq(h)p Fm(;)d(~)-51
b Fq(a)28 b Fm(=)h(~)-50 b Fq(a)p Fm(;)17 b Fq(f)33 b
Fn(^)22 b Fm(\()p Fq(g)j Fn(^)e Fq(h)p Fm(\);)17 b Fq(e)2285
2044 y Fk(A)2338 2025 y Fg(0)2360 2044 y Fl(^)p Fw(\()p
Fk(B)2490 2025 y Fg(0)2514 2044 y Fl(^)p Fk(C)2616 2025
y Fg(0)2638 2044 y Fw(\))83 2260 y Fr(b)n(ut)25 b(we)g(only)f(ha)n(v)o
(e)g(the)h(more)g(f)o(amiliar)1187 2492 y Fm(\()p Fq(f)33
b Fn(^)22 b Fq(g)t Fm(\))g Fn(^)g Fq(h)p Fm(;)c(~)-50
b Fq(a)28 b Fm(=)h(~)-51 b Fq(a)q Fm(;)17 b Fq(f)32 b
Fn(^)23 b Fm(\()p Fq(g)i Fn(^)e Fq(h)p Fm(\))83 2723
y Fr(when)i Fq(f)11 b Fr(,)25 b Fq(g)j Fr(and)d Fq(h)g
Fr(are)g(linear)-5 b(.)83 2904 y(Perhaps)30 b(surprisingly)-6
b(,)27 b(it)i(is)g(automatic)g(that)g(our)g(associati)n(vities)e
(satisfy)i(the)g(Mac)h(Lane)f(pen-)83 3024 y(tagon)j(condition)f(and)i
(the)f(usual)g(unit)g(conditions)f(on)h(the)g(nose.)g(The)h(diagrams)f
(are)h(f)o(amiliar)83 3145 y(and)25 b(we)g(do)g(not)f(e)o(xhibit)f
(them)h(here.)p 0 TeXcolorgray 83 3326 a Fs(Theor)n(em)j(3.11.)p
0 TeXcolorgray 41 w Fo(The)e(Mac)g(Lane)g(penta)o(gon)f(and)g(unit)g
(conditions)621 3557 y Fq(a)672 3572 y Fk(A;B)s(;C)5
b Fl(^)p Fk(D)987 3557 y Fm(;)17 b Fq(a)1082 3572 y Fk(A)p
Fl(^)p Fk(B)s(;C)q(;D)1420 3557 y Fm(=)28 b(id)1605 3572
y Fk(A)1684 3557 y Fn(^)23 b Fq(a)1824 3572 y Fk(B)s(;C)q(;D)2035
3557 y Fm(;)17 b Fq(a)2130 3572 y Fk(A;B)s Fl(^)p Fk(C)q(;D)2440
3557 y Fm(;)g Fq(a)2535 3572 y Fk(A;B)s(;C)2765 3557
y Fn(^)22 b Fm(id)2935 3572 y Fk(D)1257 3800 y Fq(a)1308
3815 y Fk(A;I)5 b(;C)1495 3800 y Fm(;)17 b Fq(r)1583
3815 y Fk(A)1662 3800 y Fn(^)23 b Fm(id)1832 3815 y Fk(B)1920
3800 y Fm(=)28 b(id)2105 3815 y Fk(A)2184 3800 y Fn(^)23
b Fq(l)2302 3815 y Fk(B)83 3961 y Fo(both)h(hold.)83
4142 y Fr(Of)g(course)g(man)o(y)e(other)h(v)o(ersion)g(of)g(the)h
(diagrams)f(\(e.g.)g(in)l(v)n(olving)g Fm(~)-50 b Fq(a)p
Fr(,)2623 4116 y Fm(~)2624 4142 y Fq(l)r Fr(,)28 b Fm(~)-54
b Fq(r)s Fr(\))24 b(hold.)e(Ho)n(we)n(v)o(er)h(the)83
4263 y(information)28 b(contained)g(in)h(the)g(coherence)h(diagrams)e
(is)h(quite)f(subtle.)g(One)i(needs)f(to)f(bear)i(in)83
4383 y(mind)23 b(that)h(e.g.)g Fq(a)705 4398 y Fk(A;B)s
Fl(^)p Fk(C)q(;D)1040 4383 y Fr(is)g(not)g(guarded)g(natural)g(in)f
Fq(B)30 b Fr(and)24 b Fq(C)7 b Fr(.)24 b(Let)g(us)g(say)g(that)g(a)g
Fo(mixed)g(path)83 4503 y Fr(in)29 b(the)g(pentagon)g(is)g(one)g(which)
g(in)l(v)n(olv)o(es)e(both)i Fq(a)g Fr(and)i Fm(~)-50
b Fq(a)p Fr(.)29 b(Man)o(y)f(b)n(ut)h(by)g(no)g(means)g(all)g(mix)o(ed)
83 4624 y(paths)c(are)g(equal.)g(F)o(or)g(e)o(xample,)e(the)i(tw)o(o)f
(maps)838 4855 y Fq(a)k Fm(:)g Fq(A)22 b Fn(^)h Fm(\()p
Fq(B)k Fn(^)c Fm(\()p Fq(C)29 b Fn(^)22 b Fq(D)s Fm(\)\))27
b Fn(\000)-16 b(!)28 b Fm(\()p Fq(A)22 b Fn(^)g Fq(B)5
b Fm(\))23 b Fn(^)f Fm(\()p Fq(C)29 b Fn(^)23 b Fq(D)s
Fm(\))83 5087 y Fr(and)444 5219 y Fm(id)525 5234 y Fk(A)604
5219 y Fn(^)g Fq(a)p Fm(;)17 b Fq(a)p Fm(;)g Fq(a)22
b Fn(^)g Fm(id)1126 5234 y Fk(D)1190 5219 y Fm(;)17 b(~)-49
b Fq(a)27 b Fm(:)h Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k Fn(^)22
b Fm(\()p Fq(C)30 b Fn(^)22 b Fq(D)s Fm(\)\))27 b Fn(\000)-16
b(!)27 b Fm(\()p Fq(A)c Fn(^)f Fq(B)5 b Fm(\))22 b Fn(^)h
Fm(\()p Fq(C)29 b Fn(^)23 b Fq(D)s Fm(\))83 5380 y Fr(are)j(not)e
(equal.)h(\(There)g(are)h(some)e(similar)g(issues)f(for)j(the)e
(triangle)g(diagrams.\))p 0 TeXcolorgray 1748 5712 a(15)p
0 TeXcolorgray eop end
%%Page: 16 16
TeXDict begin 16 15 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fo(3.3.2)99 b(Symmetry)83 269
y Fr(W)-8 b(e)32 b(ha)n(v)o(e)g(maps)f(induced)g(by)g(the)h(symmetry)e
(of)h(our)h Fn(\003)p Fr(-polycate)o(gory)-6 b(.)30 b(W)-8
b(e)32 b(use)f(a)h(superscript)83 389 y Fm(\()c(\))187
353 y Fk(s)249 389 y Fr(to)c(indicate)g(a)h(use)g(of)g(a)g(symmetry)f
(in)g Fn(P)8 b Fr(,)25 b(and)g(de\002ne)g(a)h(twist)d(map)1051
631 y Fq(c)28 b Fm(=)p 1225 546 465 4 v 28 w(\(id)1344
646 y Fk(B)1427 631 y Fn(\001)21 b Fm(id)1558 646 y Fk(A)1615
631 y Fm(\))1653 602 y Fk(s)1717 631 y Fm(:)28 b Fq(A)22
b Fn(^)h Fq(B)32 b Fn(\000)-16 b(!)28 b Fq(B)f Fn(^)c
Fq(A)k(:)83 872 y Fr(The)e(picture)g(is)f(as)h(follo)n(ws.)1692
1113 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 5.69046
5.69046 22.76227 22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 1742 1023
a Fi(id)1817 1037 y Fk(B)1692 1113 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 5.69046
-5.69046 22.76227 -22.76227 .5 Frame  gsave 0.85358 SLW 0  setgray
0 setlinecap stroke  grestore end


@endspecial 1743 1259 a Fi(id)1819 1273 y Fk(A)1969
1140 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 1969 1140 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
Fn(^)1544 1140 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@AA 16 {InitRnode } NewNode end end
 1544 1140 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end


@endspecial Fn(^)1881 995 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B
16 {InitRnode } NewNode end end
 1881 995 a 1881 1231 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C
16 {InitRnode } NewNode end end
 1881
1231 a 1739 995 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BB
16 {InitRnode } NewNode end end
 1739 995 a 1739 1231 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CC
16 {InitRnode } NewNode end end
 1739 1231 a
1692 1113 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg -1.13809
-1.13809 0 0 /N@A /N@B InitNC { /AngleA 230.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1113 a 1692 1113 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg -1.13809
-1.13809 0 0 /N@A /N@C InitNC { /AngleA 130.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1113 a 1692
1113 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@AA /N@BB InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1113 a 1692 1113 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@AA /N@CC InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 1692 1113 a 2282 1113
a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D
16 {InitRnode } NewNode end end
 2282 1113 a 1337 1113 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@DD
16 {InitRnode } NewNode end end
 1337 1113 a 1692 1113 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@AA /N@DD InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1692
1113 a 1692 1113 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1692 1113 a 1692 1113 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 35.00665
8.2 0.0 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1692 1113
a 1546 1147 a Fq(A)e Fn(^)f Fq(B)1692 1113 y
 tx@Dict begin PutEnd  end
 1692 1113
a 1692 1113 a
 tx@Dict begin PutEnd  end
 1692 1113 a 1692 1113 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@D InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 1692 1113 a 1692
1113 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 1692 1113 a 1692 1113 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 35.00665
8.2 0.0 NAngle 90 add  Uput exch pop add a PtoC h1 add exch w1 add
exch } PutCoor PutBegin  end
 1692 1113 a 1574 1147
a Fq(B)27 b Fn(^)c Fq(A)1692 1113 y
 tx@Dict begin PutEnd  end
 1692 1113 a 1692
1113 a
 tx@Dict begin PutEnd  end
 1692 1113 a 83 1473 a Fr(W)-8 b(e)26 b(note)e(at)h(once)g(that)f
(this)g(further)h(structural)f(map)h(is)f(linear)-5 b(.)24
b(W)-8 b(e)25 b(then)g(compute.)p 0 TeXcolorgray 83 1659
a Fs(Pr)n(oposition)f(3.12.)p 0 TeXcolorgray 38 w Fq(c)878
1674 y Fk(A;B)1011 1659 y Fm(;)17 b Fq(c)1097 1674 y
Fk(B)s(;A)1258 1659 y Fm(=)28 b Fq(e)1407 1674 y Fk(A)p
Fl(^)p Fk(B)1595 1659 y Fm(:)g Fq(A)17 b Fn(^)g Fq(B)33
b Fn(\000)-17 b(!)28 b Fq(A)17 b Fn(^)g Fq(B)5 b Fo(,)23
b(that)g(is,)f Fq(c)i Fo(is)f(a)g(tr)o(ansformation)83
1779 y(in)l(ver)o(se)i(to)f(itself)g(in)h(the)f(guar)l(ded)g(sense)o(.)
83 1965 y Fr(Finally)h(we)g(look)f(at)h(coherence.)p
0 TeXcolorgray 83 2151 a Fs(Theor)n(em)i(3.13.)p 0 TeXcolorgray
41 w Fo(The)e(Mac)g(Lane)g(he)n(xa)o(gon)f(and)h(unit)f(conditions)248
2427 y Fq(a)299 2442 y Fk(A;B)s(;C)506 2427 y Fm(;)17
b Fq(cA)22 b Fn(^)h Fq(B)5 b(;)17 b(C)7 b Fm(;)17 b Fq(a)1071
2442 y Fk(C)q(;A;B)1302 2427 y Fm(=)28 b(id)1487 2442
y Fk(A)1566 2427 y Fn(^)23 b Fq(c)1697 2442 y Fk(B)s(;C)1832
2427 y Fm(;)17 b Fq(a)1927 2442 y Fk(A;C)q(;B)2131 2427
y Fm(;)g Fq(c)2217 2442 y Fk(A;C)2370 2427 y Fn(^)23
b Fm(id)2540 2442 y Fk(B)2837 2427 y Fq(c)2879 2442 y
Fl(>)p Fk(;A)3010 2427 y Fm(;)17 b Fq(r)3098 2442 y Fk(A)3183
2427 y Fm(=)27 b Fq(l)3315 2442 y Fk(A)83 2679 y Fo(both)d(hold.)83
2865 y Fr(W)-8 b(e)29 b(note)g(a)g(nuance.)f(A)h(symmetry)e(of)i(the)f
(form)h Fq(c)1906 2880 y Fk(A;)p Fw(\()p Fk(B)s Fl(^)p
Fk(C)5 b Fw(\))2230 2865 y Fm(:)35 b Fq(A)25 b Fn(^)g
Fm(\()p Fq(B)30 b Fn(^)c Fq(C)7 b Fm(\))34 b Fn(!)h Fm(\()p
Fq(B)30 b Fn(^)25 b Fq(C)7 b Fm(\))25 b Fn(^)g Fq(A)83
2985 y Fr(cannot)i(be)h(de\002ned)f(in)g(the)g(usual)g(w)o(ay)g(from)g
(associati)n(vities)e(and)i(symmetries)e Fq(c)3006 3000
y Fk(A;B)3167 2985 y Fr(and)i Fq(c)3380 3000 y Fk(A;C)3511
2985 y Fr(.)83 3106 y(Rather)f(one)f(has)f(an)h(equation)f(of)h(the)g
(form)446 3347 y Fq(c)488 3363 y Fk(A;)p Fw(\()p Fk(B)s
Fl(^)p Fk(C)5 b Fw(\))778 3347 y Fm(;)17 b Fq(e)867 3363
y Fw(\()p Fk(B)s Fl(^)p Fk(C)5 b Fw(\))p Fl(^)p Fk(A)1212
3347 y Fm(=)27 b Fq(a)1366 3362 y Fk(A;B)s(;C)1574 3347
y Fm(;)17 b Fq(c)1660 3362 y Fk(A;B)1815 3347 y Fn(^)23
b Fm(id)1985 3362 y Fk(C)2044 3347 y Fm(;)18 b(~)-50
b Fq(a)2139 3362 y Fk(B)s(;A;C)2347 3347 y Fm(;)17 b(id)2472
3362 y Fk(B)2555 3347 y Fn(^)22 b Fq(c)2685 3362 y Fk(A;C)2817
3347 y Fm(;)17 b Fq(a)2912 3362 y Fk(B)s(;A;C)3147 3347
y Fq(:)83 3589 y Fr(Thus)30 b(the)g(usual)g(de\002nition)f(holds)g(in)h
(the)g(guarded)g(sense.)g(Ho)n(we)n(v)o(er)f(this)g(is)h(quite)f
(enough)h(to)83 3709 y(establish)24 b(the)h(follo)n(wing.)p
0 TeXcolorgray 83 3895 a Fs(Theor)n(em)i(3.14.)p 0 TeXcolorgray
41 w Fo(The)e(symmetry)g Fq(c)f Fo(satis\002es)g(the)h(standar)l(d)e
(br)o(aid)g(identities.)356 4137 y Fq(c)398 4152 y Fk(A;B)554
4137 y Fn(^)f Fm(id)723 4152 y Fk(C)783 4137 y Fm(;)17
b(id)908 4152 y Fk(B)990 4137 y Fn(^)23 b Fq(c)1121 4152
y Fk(A;C)1252 4137 y Fm(;)17 b Fq(c)1338 4152 y Fk(B)s(;C)1496
4137 y Fn(^)22 b Fm(id)1665 4152 y Fk(A)1750 4137 y Fm(=)28
b(id)1935 4152 y Fk(A)2014 4137 y Fn(^)23 b Fq(c)2145
4152 y Fk(B)s(;C)2280 4137 y Fm(;)17 b Fq(c)2366 4152
y Fk(A;C)2519 4137 y Fn(^)23 b Fm(id)2689 4152 y Fk(B)2750
4137 y Fm(;)17 b(id)2875 4152 y Fk(C)2956 4137 y Fn(^)23
b Fq(c)3087 4152 y Fk(A;B)3236 4137 y Fq(:)83 4474 y
Fo(3.3.3)99 b(Linear)25 b(distrib)n(utivity)83 4660 y
Fr(So)i(f)o(ar)g(we)g(ha)n(v)o(e)f(the)g(operations)g
Fn(>)p Fr(,)h Fn(^)g Fr(and)f Fn(?)p Fr(,)h Fn(_)p Fr(,)g(which)f(are)h
(dual.)f(W)-8 b(e)27 b(need)f(something)f(lik)o(e)83
4780 y(the)g(usual)f(connection)g(between)h(them)f(from)g(Linear)h
(Logic)f(to)h(capture)g(general)g(polycate)o(gori-)83
4901 y(cal)g(composition.)e(W)-8 b(e)25 b(de\002ne)326
5178 y Fq(w)30 b Fm(=)p 530 5077 641 4 v 530 5094 V 28
w(id)611 5193 y Fk(A)690 5178 y Fn(\001)22 b Fm(\(id)859
5193 y Fk(B)942 5178 y Fn(\001)g Fm(id)1073 5193 y Fk(C)1133
5178 y Fm(\))27 b(=)p 1302 5077 V 1302 5094 V 28 w(\(id)1421
5193 y Fk(A)1500 5178 y Fn(\001)22 b Fm(id)1631 5193
y Fk(B)1692 5178 y Fm(\))g Fn(\001)g Fm(id)1883 5193
y Fk(C)1970 5178 y Fm(:)28 b Fq(A)22 b Fn(^)g Fm(\()p
Fq(B)28 b Fn(_)22 b Fq(C)7 b Fm(\))28 b Fn(\000)-16 b(!)27
b Fm(\()p Fq(A)22 b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(_)g
Fq(C)346 5359 y Fm(~)-69 b Fq(w)30 b Fm(=)p 530 5258
V 530 5274 V 28 w(\(id)649 5374 y Fk(A)728 5359 y Fn(\001)22
b Fm(id)859 5374 y Fk(B)920 5359 y Fm(\))g Fn(\001)g
Fm(id)1111 5374 y Fk(C)1198 5359 y Fm(=)p 1302 5258 V
1302 5274 V 28 w(id)1383 5374 y Fk(A)1462 5359 y Fn(\001)g
Fm(\(id)1631 5374 y Fk(B)1714 5359 y Fn(\001)g Fm(id)1845
5374 y Fk(C)1904 5359 y Fm(\))28 b(:)g(\()p Fq(A)22 b
Fn(_)g Fq(B)5 b Fm(\))23 b Fn(^)f Fq(C)35 b Fn(\000)-16
b(!)27 b Fq(A)22 b Fn(_)h Fm(\()p Fq(B)k Fn(^)22 b Fq(C)7
b Fm(\))p 0 TeXcolorgray 1748 5712 a Fr(16)p 0 TeXcolorgray
eop end
%%Page: 17 17
TeXDict begin 17 16 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(where)26 b(the)e(man)o(y)g(commuting)f(con)l
(v)o(ersions)g(are)j(indicated)e(in)g(the)h(follo)n(wing)e(pictures.)
771 691 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 3.9833
1.99179 15.93352 17.92503 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 809
628 a Fd(id)850 639 y Fc(C)771 691 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 3.9833
21.90863 15.93352 37.84187 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end


@endspecial 808 463 a Fd(id)849 474 y Fc(B)771 691 y
@beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 3.9833
41.82547 15.93352 57.75871 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 809 298 a Fd(id)850
309 y Fc(A)804 608 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AL
16 {InitRnode } NewNode end end
 804 608 a 804 443 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BL
16 {InitRnode } NewNode end end
 804 443 a 804
278 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CL
16 {InitRnode } NewNode end end
 804 278 a 671 278 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CLL
16 {InitRnode } NewNode end end
 671 278 a 903 608 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AR
16 {InitRnode } NewNode end end
 903 608
a 1035 608 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@ARR
16 {InitRnode } NewNode end end
 1035 608 a 903 443 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BR
16 {InitRnode } NewNode end end
 903 443 a 903 278 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CR
16 {InitRnode } NewNode end end

903 278 a 651 553 a
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 651 553 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end


@endspecial Fn(_)949 388 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@B 16 {InitRnode } NewNode end end
 949 388 a 20 w @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(^)502 429 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@C 16 {InitRnode } NewNode end end
 502 429 a 20
w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(^)1098 512
y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@D 16 {InitRnode } NewNode end end
 1098 512 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
Fn(_)771 691 y
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@AL InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@BL InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771 691
a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@B /N@CR InitNC { /AngleA 170.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@B /N@BR InitNC { /AngleA 190.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@CLL InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771
691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@A InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@CL /N@CLL InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@D /N@B InitNC { /AngleA 170.  def /AngleB 0.  def 0.67 
0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691
a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@D /N@ARR InitNC { /AngleA 190.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@AR /N@ARR InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 771 691 a 1515 484 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E
16 {InitRnode } NewNode end end

1515 484 a 192 402 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F
16 {InitRnode } NewNode end end
 192 402 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@D /N@E InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 771 691 a 771
691 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 771 691 a 771 691 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697
8.2125 2.73749 NAngle 90 add  Uput exch pop add a PtoC h1 add exch
w1 add exch } PutCoor PutBegin  end
 771 691 a 558 714 a Fi(\()p
Fj(A)5 b Fh(^)g Fj(B)g Fi(\))g Fh(_)g Fj(C)771 691 y
 tx@Dict begin PutEnd  end

771 691 a 771 691 a
 tx@Dict begin PutEnd  end
 771 691 a 771 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@F InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 771 691 a 771
691 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 771 691 a 771 691 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697
8.2125 2.73749 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch
w1 add exch } PutCoor PutBegin  end
 771 691 a 558 714 a Fj(A)g
Fh(^)g Fi(\()p Fj(B)10 b Fh(_)5 b Fj(C)i Fi(\))771 691
y
 tx@Dict begin PutEnd  end
 771 691 a 771 691 a
 tx@Dict begin PutEnd  end
 771 691 a 1488 w @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 3.9833
1.99179 15.93352 17.92503 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 2297 628 a Fd(id)2338 639 y
Fc(C)2259 691 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 3.9833
21.90863 15.93352 37.84187 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial
2296 463 a Fd(id)2337 474 y Fc(B)2259 691 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  0.1 true 3.9833
41.82547 15.93352 57.75871 .5 Frame  gsave 0.85358 SLW 0  setgray 0
setlinecap stroke  grestore end
 
@endspecial 2297 298 a Fd(id)2338 309 y
Fc(A)2292 278 y
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AL
16 {InitRnode } NewNode end end
 2292 278 a 2292 443 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BL
16 {InitRnode } NewNode end end
 2292 443 a 2292
608 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CL
16 {InitRnode } NewNode end end
 2292 608 a 2159 608 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CLL
16 {InitRnode } NewNode end end
 2159 608 a 2391 278 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AR
16 {InitRnode } NewNode end end
 2391
278 a 2523 278 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@ARR
16 {InitRnode } NewNode end end
 2523 278 a 2391 443 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BR
16 {InitRnode } NewNode end end
 2391 443 a 2391
608 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CR
16 {InitRnode } NewNode end end
 2391 608 a 2139 388 a
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@A 16 {InitRnode } NewNode end end
 2139 388 a 20 w @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(_)2437 553 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@B 16 {InitRnode } NewNode end end
 2437 553 a 20
w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial Fn(^)1991 512
y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@C 16 {InitRnode } NewNode end end
 1991 512 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial
Fn(^)2586 429 y
 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334
} false /N@D 16 {InitRnode } NewNode end end
 2586 429 a 20 w @beginspecial @setspecial
 tx@Dict begin STP newpath 0.85358 SLW 0  setgray  8.00002 2 div 6.66669
0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add
0 360 arc closepath gsave 0.85358 SLW 0  setgray 0 setlinecap stroke
 grestore end


@endspecial Fn(_)2259 691 y
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@AL InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@A /N@BL InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259
691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@B /N@CR InitNC { /AngleA 190.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@B /N@BR InitNC { /AngleA 170.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259
691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@CLL InitNC { /AngleA -10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@A InitNC { /AngleA 10.  def /AngleB 180.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@CL /N@CLL InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2259
691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@D /N@B InitNC { /AngleA 190.  def /AngleB 0.  def 0.67 
0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@D /N@ARR InitNC { /AngleA 170.  def /AngleB 0.  def 0.67
 0.67  NCCurve  } if end gsave 0.8 SLW 0  setgray 0 setlinecap stroke
 grestore  grestore end
 2259 691 a 2259
691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@AR /N@ARR InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2259 691 a 3003 402 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E
16 {InitRnode } NewNode end end
 3003 402 a 1680 484 a
 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F
16 {InitRnode } NewNode end end
 1680
484 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@C /N@F InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 2259 691 a 2259
691 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697
8.2125 2.73749 NAngle 90 sub  Uput exch pop add a PtoC h1 add exch
w1 add exch } PutCoor PutBegin  end
 2259 691 a 2046 714 a Fi(\()p Fj(A)e Fh(_)g Fj(B)g
Fi(\))g Fh(^)g Fj(C)2259 691 y
 tx@Dict begin PutEnd  end
 2259 691 a 2259 691 a
 tx@Dict begin PutEnd  end

2259 691 a 2259 691 a
 tx@Dict begin gsave STV newpath 0.8 SLW 0  setgray  /ArrowA { moveto
} def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0
0.0 0 0 /N@D /N@E InitNC { NCLine  } if end gsave 0.8 SLW 0  setgray
0 setlinecap stroke  grestore  grestore end
 2259 691 a 2259 691 a
 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin  end
 2259 691
a 2259 691 a
 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697
8.2125 2.73749 NAngle 90 add  Uput exch pop add a PtoC h1 add exch
w1 add exch } PutCoor PutBegin  end
 2259 691 a 2046 714 a Fj(A)g Fh(_)g Fi(\()p
Fj(B)10 b Fh(^)5 b Fj(C)i Fi(\))2259 691 y
 tx@Dict begin PutEnd  end
 2259 691 a
2259 691 a
 tx@Dict begin PutEnd  end
 2259 691 a 83 927 a Fr(Note)25 b(that)f(these)h(maps)f(are)i
(linear)-5 b(.)83 1105 y(There)33 b(are)g(tw)o(o)f(distinct)e(kinds)h
(of)i(symmetry)e(at)h(play)g(here.)g(On)g(the)g(one)g(hand)g(we)h(ha)n
(v)o(e)f(the)83 1226 y(follo)n(wing.)p 0 TeXcolorgray
83 1404 a Fs(Pr)n(oposition)25 b(3.15.)p 0 TeXcolorgray
41 w Fq(w)i Fo(and)45 b Fm(~)-69 b Fq(w)27 b Fo(ar)l(e)e(self-dual:)f
(that)g(is,)g(we)h(have)707 1630 y Fm(\()p Fq(w)815 1645
y Fk(A;B)s(;C)1023 1630 y Fm(\))1061 1589 y Fl(\003)1128
1630 y Fm(=)i Fq(w)1301 1645 y Fk(C)1356 1626 y Fg(\003)1392
1645 y Fk(;B)1468 1626 y Fg(\003)1504 1645 y Fk(;A)1577
1626 y Fg(\003)1716 1630 y Fr(and)100 b Fm(\()19 b(~)-68
b Fq(w)2068 1645 y Fk(A;B)s(;C)2275 1630 y Fm(\))2313
1589 y Fl(\003)2380 1630 y Fm(=)47 b(~)-68 b Fq(w)2554
1645 y Fk(C)2609 1626 y Fg(\003)2644 1645 y Fk(;B)2720
1626 y Fg(\003)2756 1645 y Fk(;A)2829 1626 y Fg(\003)2886
1630 y Fq(:)83 1914 y Fr(Essentially)34 b(this)f(follo)n(ws)h(from)g
(the)h(de)g(Mor)n(gan)f(duality)g(of)h(the)f(proof)h(rules.)f(On)h(the)
g(other)83 2035 y(hand)25 b(we)g(ha)n(v)o(e)g(the)f(follo)n(wing.)p
0 TeXcolorgray 83 2213 a Fs(Pr)n(oposition)h(3.16.)p
0 TeXcolorgray 40 w Fq(w)i Fo(and)44 b Fm(~)-69 b Fq(w)27
b Fo(ar)l(e)d(inter)l(derivable)g(using)f(the)h(symmetry:)h(that)e(is,)
h(we)h(have)g(the)83 2333 y(following)f(equation)f(and)i(its)f(dual.)
680 2559 y Fq(w)750 2574 y Fk(A;B)s(;C)985 2559 y Fm(=)k
Fq(c)1131 2574 y Fk(A;B)s Fl(_)p Fk(C)1366 2559 y Fm(;)17
b Fq(c)1452 2574 y Fk(B)s(;C)1609 2559 y Fn(^)22 b Fm(id)1779
2574 y Fk(A)1836 2559 y Fm(;)36 b(~)-68 b Fq(w)1950 2574
y Fk(C)q(;B)s(;A)2153 2559 y Fm(;)17 b(id)2278 2574 y
Fk(C)2359 2559 y Fn(_)23 b Fq(c)2490 2574 y Fk(A;B)2623
2559 y Fm(;)17 b Fq(c)2709 2574 y Fk(C)q(;A)p Fl(^)p
Fk(B)83 2843 y Fr(Man)o(y)34 b(other)g(relations)g(between)g
Fq(w)j Fr(and)55 b Fm(~)-69 b Fq(w)37 b Fr(are)e(consequences)f(of)h
(these)f(equations)f(and)i(the)83 2964 y(idempotenc)o(y)23
b(of)i(the)g(symmetry)e Fq(c)p Fr(.)83 3142 y(The)i(basic)g(result)f
(is)g(as)h(follo)n(ws.)p 0 TeXcolorgray 83 3320 a Fs(Theor)n(em)i
(3.17.)p 0 TeXcolorgray 41 w Fo(The)e(linear)f(distrib)n(utivities)d
(ar)l(e)26 b(guar)l(ded)e(tr)o(ansformations.)83 3498
y Fr(There)h(are)g(a)g(considerable)f(number)g(of)g(coherence)i
(diagrams)d(for)i(weak)g(distrib)n(uti)n(vities.)20 b(The)o(y)83
3619 y(are)26 b(clearly)f(laid)f(out)g(in)h([2])g(and)g(we)g(do)f(not)h
(ha)n(v)o(e)f(space)h(to)g(repeat)g(them)f(here.)p 0
TeXcolorgray 83 3797 a Fs(Theor)n(em)j(3.18.)p 0 TeXcolorgray
41 w Fo(The)e(coher)l(ence)h(dia)o(gr)o(ams)c(for)i(weak)i(distrib)n
(utivities)c(hold.)83 3975 y Fr(The)j(only)e(place)i(where)g(this)f
(bears)g(interpretation)g(is)g(in)g(the)g(case)h(of)f(`Unit)g
(Coherence')i(where)83 4095 y(one)f(\002nds)g(canonical)f(idempotents)f
(\(identities)h(in)g(the)h Fm(2)p Fr(-cate)o(gory)f(of)h(guarded)g
(functors\).)83 4403 y Fo(3.3.4)99 b(Duality)83 4581
y Fr(A)30 b Fn(\003)p Fr(-polycate)o(gory)f(supports)g(polymaps)f
Fm(in)1684 4596 y Fk(A)1778 4581 y Fm(:)37 b Fn(\000)h(!)f
Fq(A)2167 4545 y Fl(\003)2206 4581 y Fq(;)17 b(A)30 b
Fr(and)g Fm(ev)2623 4596 y Fk(A)2718 4581 y Fm(:)37 b
Fq(A;)17 b(A)2972 4545 y Fl(\003)3048 4581 y Fn(!)37
b(\000)31 b Fr(which)83 4701 y(enable)25 b(us)g(to)f(de\002ne)i
(something)d(lik)o(e)h(a)h(unit)1053 4928 y Fq(\021)1105
4886 y Fk(A)1101 4952 y(B)1189 4928 y Fm(=)p 1293 4848
353 4 v 28 w(in)1374 4943 y Fk(A)1453 4928 y Fn(\001)d
Fm(id)1584 4943 y Fk(B)1672 4928 y Fm(:)28 b Fq(B)33
b Fn(!)27 b Fq(A)2034 4886 y Fl(\003)2096 4928 y Fn(_)c
Fm(\()p Fq(A)f Fn(^)g Fq(B)5 b Fm(\))17 b Fq(;)83 5154
y Fr(and)25 b(something)e(lik)o(e)i(a)g(counit)1046 5380
y Fq(")1092 5339 y Fk(A)1092 5404 y(B)1180 5380 y Fm(=)p
1284 5301 368 4 v 28 w(ev)1380 5395 y Fk(A)1459 5380
y Fn(\001)d Fm(id)1590 5395 y Fk(B)1679 5380 y Fm(:)27
b Fq(A)c Fn(^)f Fm(\()p Fq(A)2028 5339 y Fl(\003)2090
5380 y Fn(_)g Fq(B)5 b Fm(\))28 b Fn(!)g Fq(B)21 b(:)p
0 TeXcolorgray 1748 5712 a Fr(17)p 0 TeXcolorgray eop
end
%%Page: 18 18
TeXDict begin 18 17 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(One)34 b(e)o(xpects)e(that)h(the)g(unit)f
(and)h(counit)f(are)i(interchanged)f(by)f(the)h(self-duality)-6
b(,)32 b(though)g(our)83 203 y(con)l(v)o(entions)f(on)i(duality)e
(require)i(mediating)e(symmetries.)g(\(W)l(ith)i(the)f(other)h(choice)g
(of)f(con-)83 324 y(v)o(ention,)24 b(the)g(problem)g(emer)n(ges)h(else)
n(where!\))p 0 TeXcolorgray 83 518 a Fs(Pr)n(oposition)g(3.19.)p
0 TeXcolorgray 41 w Fo(The)g Fq(\021)k Fo(and)24 b Fq(")h
Fo(ar)l(e)g(dual)f(in)g(the)h(sense)g(that)e(the)i(equations)83
639 y Fq(c)125 654 y Fk(A)178 635 y Fg(\003)214 654 y
Fk(;B)290 635 y Fg(\003)353 639 y Fn(^)d Fm(id)522 654
y Fk(A)579 639 y Fm(;)17 b(\()p Fq(\021)713 603 y Fk(A)709
663 y(B)770 639 y Fm(\))808 603 y Fl(\003)875 639 y Fm(=)27
b Fq(c)1020 654 y Fk(A)1073 635 y Fg(\003)1109 654 y
Fl(_)p Fk(B)1212 635 y Fg(\003)1249 654 y Fk(;A)1325
639 y Fm(;)17 b Fq(")1415 603 y Fk(A)1415 663 y(B)1471
644 y Fg(\003)1536 639 y Fo(and)25 b Fm(\()p Fq(")1795
603 y Fk(A)1795 663 y(B)1855 639 y Fm(\))1893 603 y Fl(\003)1932
639 y Fm(;)17 b Fq(c)2018 654 y Fk(A)2071 635 y Fg(\003)2107
654 y Fk(;B)2183 635 y Fg(\003)2219 654 y Fl(^)p Fk(A)2319
635 y Fg(\003)2387 639 y Fm(=)27 b Fq(\021)2542 603 y
Fk(A)2538 663 y(B)2594 644 y Fg(\003)2635 639 y Fm(;)17
b(id)2760 654 y Fk(A)2813 635 y Fg(\003)2875 639 y Fn(_)23
b Fq(c)3006 654 y Fk(B)3062 635 y Fg(\003)3098 654 y
Fk(;A)3199 639 y Fo(hold.)83 833 y Fr(Finally)i(we)g(get)f(triangle)h
(identities)e(in)h(a)h(guarded)g(sense.)p 0 TeXcolorgray
83 1028 a Fs(Theor)n(em)i(3.20.)p 0 TeXcolorgray 41 w
Fo(W)-9 b(e)25 b(have)g Fm(id)1172 1043 y Fk(A)1251 1028
y Fn(^)e Fq(\021)1392 991 y Fk(A)1388 1052 y(B)1448 1028
y Fm(;)17 b Fq(")1538 991 y Fk(A)1538 1052 y(A)p Fl(^)p
Fk(B)1726 1028 y Fm(=)27 b Fq(e)1874 1043 y Fk(A)p Fl(^)p
Fk(B)2060 1028 y Fo(and)d Fq(\021)2286 991 y Fk(A)2282
1052 y(A)2335 1033 y Fg(\003)2371 1052 y Fl(_)p Fk(B)2479
1028 y Fm(;)17 b(id)2604 1043 y Fk(A)2657 1024 y Fg(\003)2719
1028 y Fn(_)23 b Fq(")2854 991 y Fk(A)2854 1052 y(B)2942
1028 y Fm(=)k Fq(e)3090 1043 y Fk(A)3143 1024 y Fg(\003)3179
1043 y Fl(_)p Fk(B)3287 1028 y Fo(.)83 1222 y Fr(This)d(essentially)g
(gi)n(v)o(es)f(an)i(adjunction)f(in)g(the)h(guarded)g
Fm(2)p Fr(-cate)o(gory)-6 b(.)83 1593 y Fo(3.3.5)99 b(Alg)o(ebr)o(as)23
b(and)i(coalg)o(ebr)o(as)83 1788 y Fr(W)-8 b(e)26 b(consider)e(no)n(w)g
(the)h(structural)f(maps)613 2082 y Fq(d)k Fm(:)f Fq(A)h
Fn(!)g Fq(A)22 b Fn(^)g Fq(A)34 b(t)28 b Fm(:)f Fq(A)h
Fn(!)f(>)190 b Fq(m)28 b Fm(:)g Fq(A)22 b Fn(_)g Fq(A)28
b Fn(!)g Fq(A)33 b(u)27 b Fm(:)h Fn(?)g(!)f Fq(A)83 2351
y Fr(The)33 b(de)h(Mor)n(gan)e(duality)g(of)h(the)g(proof)g(rules)g
(sho)n(ws)e(that)i(these)g(structures)f(are)i(dual)f(to)g(one)83
2471 y(another:)759 2631 y Fq(d)810 2589 y Fl(\003)810
2655 y Fk(A)894 2631 y Fm(=)28 b Fq(m)1083 2646 y Fk(A)1136
2627 y Fg(\003)1193 2631 y Fq(;)116 b(m)1421 2589 y Fl(\003)1421
2655 y Fk(A)1506 2631 y Fm(=)28 b Fq(d)1661 2646 y Fk(A)1714
2627 y Fg(\003)1770 2631 y Fq(;)116 b(t)1948 2589 y Fl(\003)1948
2655 y Fk(A)2033 2631 y Fm(=)28 b Fq(u)2193 2646 y Fk(A)2246
2627 y Fg(\003)2302 2631 y Fq(;)116 b(u)2501 2589 y Fl(\003)2501
2655 y Fk(A)2585 2631 y Fm(=)28 b Fq(t)2724 2646 y Fk(A)2777
2627 y Fg(\003)2834 2631 y Fq(:)83 2893 y Fr(In)i(f)o(amiliar)e(cate)o
(gory)h(theoretic)g(settings)f(maps)g(of)h(these)g(kinds)g(are)g
(usually)g(associated)f(with)83 3013 y(product)f(and)g(coproduct)g
(structure;)g(b)n(ut)g(here)h(we)f(do)g(not)g(e)n(v)o(en)f(ha)n(v)o(e)h
(guarded)h(naturality)-6 b(.)25 b(But)83 3134 y(the)e(correctness)f
(equations)g(of)h(2.3.3)f(gi)n(v)o(e)f(at)h(once)h(the)f(follo)n(wing)f
(relation)h(to)g(canonical)h(linear)83 3254 y(idempotents.)p
0 TeXcolorgray 83 3449 a Fs(Pr)n(oposition)30 b(3.21.)p
0 TeXcolorgray 44 w Fo(The)g(maps)f Fq(d)p Fo(,)g Fq(t)h
Fo(ar)l(e)g(codomain)f(absorbing)f(while)i Fq(m)g Fo(and)f
Fq(u)h Fo(ar)l(e)g(domain)83 3569 y(absorbing)23 b(in)i(the)f(sense)h
(that)f(following)f(equations)h(hold.)574 3828 y Fq(d)p
Fm(;)17 b Fq(e)714 3843 y Fk(A)p Fl(^)p Fk(A)898 3828
y Fm(=)27 b Fq(d)17 b(;)116 b(t)p Fm(;)17 b Fq(e)1336
3843 y Fl(>)1423 3828 y Fm(=)27 b Fq(t)100 b Fr(and)g
Fq(e)1950 3843 y Fk(A)p Fl(_)p Fk(A)2107 3828 y Fm(;)17
b Fq(m)27 b Fm(=)h Fq(m)17 b(;)116 b(e)2657 3843 y Fl(?)2717
3828 y Fm(;)17 b Fq(u)26 b Fm(=)i Fq(u)17 b(:)83 4161
y Fr(Moreo)o(v)o(er)24 b(some)g(structure)h(holds)f(on)g(the)h(nose.)p
0 TeXcolorgray 83 4355 a Fs(Pr)n(oposition)i(3.22.)p
0 TeXcolorgray 41 w Fo(The)g(structur)l(e)e Fm(\()p Fq(A;)17
b(t)1590 4370 y Fk(A)1647 4355 y Fq(;)g(d)1742 4370 y
Fk(A)1799 4355 y Fm(\))26 b Fo(forms)g(a)g(commutative)f(comonoid,)g
(while)i(the)83 4475 y(structur)l(e)d Fm(\()p Fq(A;)17
b(m)704 4490 y Fk(A)761 4475 y Fq(;)g(u)861 4490 y Fk(A)918
4475 y Fm(\))25 b Fo(forms)e(a)i(commutative)f(monoid.)83
4670 y Fr(W)-8 b(e)26 b(list)d(the)i(equations)f(in)l(v)n(olv)o(ed)f
(in)h(the)h(comonoid)e(case.)979 4965 y Fq(d)p Fm(;)17
b Fq(t)22 b Fn(^)h Fm(id)1301 4980 y Fk(A)1358 4965 y
Fm(;)e(~)-53 b Fq(r)30 b Fm(=)e(id)1661 4980 y Fk(A)1917
4965 y Fq(d)p Fm(;)17 b(id)2093 4980 y Fk(A)2172 4965
y Fn(^)23 b Fq(t)p Fm(;)2339 4938 y(~)2340 4965 y Fq(l)29
b Fm(=)f(id)2583 4980 y Fk(A)696 5145 y Fq(d)p Fm(;)17
b(id)872 5160 y Fk(A)951 5145 y Fn(^)22 b Fq(d)p Fm(;)17
b Fq(a)28 b Fm(=)f Fq(d)p Fm(;)17 b Fq(d)k Fn(^)i Fm(id)1653
5160 y Fk(A)1910 5145 y Fq(d)p Fm(;)17 b Fq(d)k Fn(^)h
Fm(id)2247 5160 y Fk(A)2304 5145 y Fm(;)17 b(~)-49 b
Fq(a)27 b Fm(=)h Fq(d)p Fm(;)17 b(id)2705 5160 y Fk(A)2785
5145 y Fn(^)22 b Fq(d)1629 5326 y(d)p Fm(;)17 b Fq(c)27
b Fm(=)g Fq(d)17 b(:)p 0 TeXcolorgray 1748 5712 a Fr(18)p
0 TeXcolorgray eop end
%%Page: 19 19
TeXDict begin 19 18 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fo(3.4)100 b(The)25 b(de\002nition)83
379 y Fr(W)-8 b(e)31 b(are)h(no)n(w)d(in)h(a)h(position)e(to)h(e)o
(xplain)f(a)i(notion)e(of)i(cate)o(gorical)f(model)g(for)h(classical)f
(proof.)83 499 y(In)j(the)f(de\002nition)g(one)g(should)f(think)h(of)g
(the)g(hom-sets)g Fn(C)6 b Fm(\()p Fq(A)p Fm(;)17 b Fq(B)5
b Fm(\))32 b Fr(as)h(being)f(the)g(collection)f(of)83
619 y(classical)24 b(proofs)f(of)h Fq(A)k Fn(`)g Fq(B)5
b Fr(.)24 b(Proofs)g(of)g(more)f(comple)o(x)g(sequents)g(are)i(coded)e
(indirectly)g(in)h(the)83 740 y(model.)p 0 TeXcolorgray
83 915 a Fs(De\002nition)36 b(3.23.)p 0 TeXcolorgray
47 w Fr(A)f Fo(\(static\))g(model)g(for)g(classical)f(\(pr)l
(opositional\))e(pr)l(oofs)h Fr(consists)h(of)i(the)83
1035 y(follo)n(wing)23 b(data)i(satisfying)e(the)i(gi)n(v)o(en)e
(axioms.)p 0 TeXcolorgray 83 1210 a Fn(\017)p 0 TeXcolorgray
50 w Fr(A)i(guarded)g(cate)o(gory)f Fn(C)31 b Fr(equipped)24
b(with)g(a)i(\(strictly\))e(in)l(v)n(oluti)n(v)o(e)e(self-duality)h
Fm(\()p Fn(\000)p Fm(\))3155 1174 y Fl(\003)3195 1210
y Fr(.)p 0 TeXcolorgray 83 1331 a Fn(\017)p 0 TeXcolorgray
50 w Fr(Guarded)28 b(objects)e Fn(>)i Fr(and)g Fn(?)g
Fr(of)f Fn(C)34 b Fr(and)28 b(guarded)f(functors)g Fn(^)p
Fr(,)h Fn(_)g Fr(\(respecti)n(v)o(ely)e(domain)h(and)183
1451 y(codomain)22 b(absorbing\))f(satisfying)h(the)g(usual)g(de)h(Mor)
n(gan)f(la)o(ws)g(with)g(respect)g(to)h(the)f(duality)-6
b(.)183 1571 y(Linear)25 b(maps)f(are)i(maps)e Fq(u)p
Fr(,)g Fq(v)29 b Fr(such)24 b(that)487 1779 y Fq(u)d
Fn(^)i Fq(v)t Fm(;)17 b Fq(f)32 b Fn(^)23 b Fq(g)31 b
Fm(=)c(\()p Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(^)i
Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t Fm(\))98 b Fo(and)h Fq(f)33
b Fn(_)23 b Fq(g)t Fm(;)17 b Fq(u)j Fn(_)j Fq(v)31 b
Fm(=)d(\()p Fq(f)11 b Fm(;)17 b Fq(u)p Fm(\))k Fn(_)h
Fm(\()p Fq(g)t Fm(;)17 b Fq(v)t Fm(\))g Fq(:)p 0 TeXcolorgray
83 1987 a Fn(\017)p 0 TeXcolorgray 50 w Fr(Linear)25
b(mutually)e(in)l(v)o(erse)h(guarded)h(transformations)e(for)i
Fn(>)h Fr(and)f Fn(^)756 2230 y Fq(l)30 b Fm(:)d Fq(A)h
Fn(!)f(>)c(^)g Fq(A;)2333 2204 y Fm(~)2333 2230 y Fq(l)30
b Fm(:)e Fn(>)23 b(^)f Fq(A)28 b Fn(!)f Fq(A;)762 2411
y(r)j Fm(:)e Fq(A)f Fn(!)h Fq(A)22 b Fn(^)h(>)964 b Fm(~)-54
b Fq(r)31 b Fm(:)c Fq(A)c Fn(^)f(>)28 b(!)g Fq(A)400
2591 y(a)g Fm(:)g Fq(A)22 b Fn(^)g Fm(\()p Fq(B)28 b
Fn(^)22 b Fq(C)7 b Fm(\))28 b Fn(!)f Fm(\()p Fq(A)22
b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(^)h Fq(C)244 b Fm(~)-50
b Fq(a)28 b Fm(:)f(\()p Fq(A)c Fn(^)f Fq(B)5 b Fm(\))22
b Fn(^)h Fq(C)35 b Fn(!)27 b Fq(A)22 b Fn(^)h Fm(\()p
Fq(B)k Fn(^)22 b Fq(C)7 b Fm(\))183 2809 y Fr(of)37 b(the)g(left)f(and)
h(right)f(unit)g(la)o(ws)g(and)h(associati)n(vity)d(satisfying)i(the)g
(usual)g(pentagon)h(and)183 2930 y(triangle)24 b(la)o(ws)g(.)183
3050 y(By)h(duality)f(we)h(ha)n(v)o(e)f(also)h(the)f(same)h(structure)g
(for)g Fn(?)g Fr(and)g Fn(_)p Fr(.)p 0 TeXcolorgray 83
3170 a Fn(\017)p 0 TeXcolorgray 50 w Fr(A)g(linear)g(self-in)l(v)o
(erse)f(guarded)h(transformation)1457 3378 y Fq(c)j Fm(:)f
Fq(A)c Fn(^)f Fq(B)33 b Fn(!)27 b Fq(B)h Fn(^)22 b Fq(A)183
3586 y Fr(gi)n(ving)h(a)i(symmetry)f(for)h Fn(^)p Fr(,)g(and)g
(satisfying)e(the)i(usual)f(he)o(xagon)g(condition.)183
3706 y(By)h(duality)f(we)h(ha)n(v)o(e)f(also)h(the)f(same)h(structure)g
(for)g Fn(_)p Fr(.)p 0 TeXcolorgray 83 3826 a Fn(\017)p
0 TeXcolorgray 50 w Fr(Linear)g(guarded)g(transformations)428
4034 y Fq(w)30 b Fm(:)e Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k
Fn(_)22 b Fq(C)7 b Fm(\))28 b Fn(!)f Fm(\()p Fq(A)22
b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(_)h Fq(C)r(;)136 b Fm(~)-69
b Fq(w)30 b Fm(:)e(\()p Fq(A)22 b Fn(_)g Fq(B)5 b Fm(\))22
b Fn(^)h Fq(C)35 b Fn(!)27 b Fq(A)22 b Fn(_)h Fm(\()p
Fq(B)k Fn(^)c Fq(C)7 b Fm(\))183 4242 y Fr(interchanged)32
b(by)g(duality)-6 b(,)30 b(interde\002nable)j(using)e(the)h(symmetry)f
(and)h(satisfying)f(standard)183 4362 y(coherence)26
b(conditions)d(for)i(distrib)n(uti)n(vities.)p 0 TeXcolorgray
83 4482 a Fn(\017)p 0 TeXcolorgray 50 w Fr(Linear)35
b(and)f(mutually)g(dual)g(guarded)h(transformations)e
Fq(\021)2320 4446 y Fk(A)2316 4507 y(B)2423 4482 y Fm(:)46
b Fq(B)51 b Fn(!)45 b Fq(A)2839 4446 y Fl(\003)2908 4482
y Fn(_)30 b Fm(\()p Fq(A)g Fn(^)g Fq(B)5 b Fm(\))35 b
Fr(and)183 4603 y Fq(")229 4567 y Fk(A)229 4627 y(B)317
4603 y Fm(:)28 b Fq(A)22 b Fn(^)h Fm(\()p Fq(A)667 4567
y Fl(\003)728 4603 y Fn(_)g Fq(B)5 b Fm(\))28 b Fn(!)f
Fq(B)j Fr(satisfying)23 b(the)i(triangle)f(identities.)p
0 TeXcolorgray 83 4723 a Fn(\017)p 0 TeXcolorgray 50
w Fr(An)j(association)f(to)h(all)f(objects)h Fq(A)g Fr(of)g(maps)g
Fq(d)k Fm(:)i Fq(A)f Fn(!)f Fq(A)24 b Fn(^)g Fq(A)p Fr(,)k
Fq(t)k Fm(:)g Fq(A)g Fn(!)f Fm(1)p Fr(,)c(and)g(their)g(duals)183
4844 y Fq(m)32 b Fm(:)g Fq(A)24 b Fn(_)g Fq(A)32 b Fn(!)f
Fq(A)c Fr(and)g Fq(u)k Fm(:)h Fn(?)g(!)g Fq(A)27 b Fr(in)f
Fn(C)6 b Fr(,)28 b(codomain)e(and)h(dually)f(domain)g(absorbing,)g(and)
183 4964 y(gi)n(ving)h(to)i(each)h(object)f Fq(A)g Fr(the)g(structure)g
(of)g(a)g(commutati)n(v)o(e)e(comonoid)h(with)g(respect)h(to)g
Fn(^)183 5084 y Fr(and)c(the)f(structure)h(of)g(a)g(commutati)n(v)o(e)d
(monoid)h(with)i(respect)g(to)f Fn(_)p Fr(.)83 5259 y(This)29
b(de\002nition)g(may)g(seem)h(substantially)d(more)j(comple)o(x)e(than)
i(analogues)f(for)h(linear)f(logic;)83 5380 y(b)n(ut)36
b(that)g(may)g(well)g(be)g(more)g(a)h(matter)f(of)g(lack)h(of)f(f)o
(amiliarity)-6 b(.)34 b(Much)i(of)g(the)h(de\002nition)e(is)p
0 TeXcolorgray 1748 5712 a(19)p 0 TeXcolorgray eop end
%%Page: 20 20
TeXDict begin 20 19 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(concerned)36 b(to)f(say)g(that)g(one)h(has)f
(a)h Fn(\003)p Fr(-autonomous)d(cate)o(gory)-6 b(,)35
b(modulo)f(issues)g(of)i(canonical)83 203 y(idempotents.)83
380 y(W)-8 b(e)25 b(no)n(w)e(e)o(xplain)g(ho)n(w)-6 b(,)23
b(gi)n(v)o(en)f(a)j(model)e Fn(C)31 b Fr(of)24 b(classical)g(proof)g
(in)f(the)h(sense)g(just)f(described,)h(we)83 501 y(can)d(construct)f
(a)g Fn(\003)p Fr(-polycate)o(gory)f Fn(C)27 b Fr(modelling)19
b(classical)h(proof)g(in)g(the)g(sense)g(analyzed)h(earlier)-5
b(.)83 621 y(Splitting)27 b(idempotents)g(is)h(a)h(basic)f(tool)f(in)i
(cate)o(gory)f(theory)-6 b(,)27 b(f)o(amiliar)h(in)g(particular)g(from)
h(the)83 741 y(theory)d(of)h(Morita)e(equi)n(v)n(alence.)h(Here)h(we)f
(could)g(use)g(it)g(for)h(a)g(no)o(v)o(el)d(purpose:)i(splitting)e
(some)83 862 y(canonical)h(idempotents)e(pro)o(vides)h(objects)g
(representing)h(polysets)e(of)i(objects)g(on)f(either)h(sides)83
982 y(of)f(polymaps.)e(This)h(means)h(that)f(we)h(reco)o(v)o(er)g(the)f
(sets)h(of)g(polymaps)e Fn(C)6 b Fm(\(\000)p Fq(;)17
b Fm(\001\))p Fr(.)24 b(W)-8 b(e)24 b(e)o(xplain)f(the)83
1103 y(point)h(in)h(a)g(simple)e(case.)j(W)-8 b(e)25
b(ha)n(v)o(e)f(canonical)h(polymaps)226 1326 y Fq(i)259
1341 y Fk(A)p Fl(^)p Fk(B)448 1326 y Fm(=)i(id)633 1341
y Fk(A)712 1326 y Fn(\001)21 b Fm(id)843 1341 y Fk(B)931
1326 y Fm(:)28 b Fq(A;)17 b(B)33 b Fn(!)27 b Fq(A)22
b Fn(^)h Fq(B)104 b Fr(and)c Fq(i)1976 1341 y Fk(C)5
b Fl(_)p Fk(D)2170 1326 y Fm(=)27 b(id)2355 1341 y Fk(C)2436
1326 y Fn(\001)22 b Fm(id)2567 1341 y Fk(D)2659 1326
y Fm(:)28 b Fq(C)h Fn(_)22 b Fq(D)31 b Fn(!)c Fq(C)r(;)17
b(D)29 b(:)83 1559 y Fr(Since)f Fq(i)365 1574 y Fk(A)p
Fl(^)p Fk(B)526 1559 y Fm(;)p 570 1463 59 4 v 570 1480
V 17 w Fq(f)11 b Fm(;)17 b Fq(i)706 1574 y Fk(C)5 b Fl(_)p
Fk(D)904 1559 y Fm(=)33 b Fn(f)p Fm(id)1144 1574 y Fk(A)1201
1559 y Fq(;)17 b Fm(id)1326 1574 y Fk(B)1386 1559 y Fn(g)p
Fm(;)g Fq(f)11 b Fm(;)17 b Fn(f)p Fm(id)1713 1574 y Fk(C)1773
1559 y Fq(;)g Fm(id)1898 1574 y Fk(D)1962 1559 y Fn(g)32
b Fm(=)g Fq(f)11 b Fr(,)28 b(we)f(can)h(re)o(gard)f Fn(C)6
b Fm(\()p Fq(A;)17 b(B)5 b Fm(;)17 b Fq(C)r(;)g(D)s Fm(\))26
b Fr(as)83 1680 y(arising)e(by)h(splitting)e(the)h(idempotent)1099
1903 y Fq(g)31 b Fn(!)p 1304 1811 531 4 v 1304 1828 V
27 w Fq(i)1337 1918 y Fk(A)p Fl(^)p Fk(B)1498 1903 y
Fm(;)17 b Fq(g)t Fm(;)g Fq(i)1670 1918 y Fk(C)5 b Fl(_)p
Fk(D)1863 1903 y Fm(=)27 b Fq(e)2011 1918 y Fk(A)p Fl(^)p
Fk(B)2172 1903 y Fm(;)17 b Fq(g)t Fm(;)g Fq(e)2356 1918
y Fk(C)5 b Fl(_)p Fk(D)83 2127 y Fr(on)25 b Fn(C)6 b
Fm(\()p Fq(A)22 b Fn(^)h Fq(B)5 b Fm(;)17 b Fq(C)29 b
Fn(_)22 b Fq(D)s Fm(\))p Fr(.)83 2303 y(So)39 b(in)f(outline)f(the)g
(construction)g(of)h(the)g(polycate)o(gorical)f(model)h(is)f(as)i
(follo)n(ws.)d(W)-8 b(e)39 b(mak)o(e)83 2424 y(a)i(choice)g(of)g(brack)
o(etings)e(of)i(both)f Fm(\000)h Fr(and)f Fm(\001)p Fr(.)h(This)f(gi)n
(v)o(es)f(us)h(hom-sets)f Fn(C)6 b Fm(\()2956 2357 y
Ff(V)3042 2424 y Fm(\000)p Fq(;)3147 2357 y Ff(W)3233
2424 y Fm(\001\))41 b Fr(and)83 2544 y(canonical)j(idempotents)e
Fq(e)1085 2510 y Ff(V)1166 2568 y Fw(\000)1258 2544 y
Fr(and)h Fq(e)1490 2510 y Ff(W)1571 2568 y Fw(\001)1634
2544 y Fr(.)h(W)-8 b(e)44 b(can)g(then)f(tak)o(e)h Fn(C)6
b Fm(\(\000;)17 b(\001\))43 b Fr(to)h(consist)e(of)i(the)83
2676 y Fq(f)54 b Fn(2)44 b(C)6 b Fm(\()391 2610 y Ff(V)477
2676 y Fm(\000)p Fq(;)582 2610 y Ff(W)668 2676 y Fm(\001\))33
b Fr(such)g(that)g Fq(e)1264 2642 y Ff(V)1345 2700 y
Fw(\000)1393 2676 y Fm(;)17 b Fq(f)11 b Fm(;)17 b Fq(e)1585
2642 y Ff(W)1666 2700 y Fw(\001)1772 2676 y Fm(=)43 b
Fq(f)11 b Fr(.)33 b(Finally)g(we)g(ha)n(v)o(e)g(a)h(series)f(of)g
(\002ddly)g(b)n(ut)83 2796 y(routine)25 b(tasks.)p 0
TeXcolorgray 123 2973 a(\(1\))p 0 TeXcolorgray 50 w(W)-8
b(e)34 b(sho)n(w)d(that)i Fn(C)6 b Fm(\(\000;)17 b(\001\))33
b Fr(is)f(essentially)g(independent)g(of)h(the)f(brack)o(eting)h
(chosen.)f(This)289 3094 y(follo)n(ws)24 b(from)g(the)h(coherence)h(of)
e(the)h(canonical)g(linear)f(idempotents.)p 0 TeXcolorgray
123 3214 a(\(2\))p 0 TeXcolorgray 50 w(W)-8 b(e)23 b(sho)n(w)f(ho)n(w)g
(to)g(de\002ne)h(composition)e(on)h(the)h(sets)f(of)h(polymaps.)e(This)
h(combines)g(point)289 3334 y(\(1\))36 b(with)f(hea)n(vy)h(use)g(of)g
(the)g(linear)f(distrib)n(uti)n(vities.)d(And)k(we)g(sho)n(w)f(that)g
(the)h(result)f(is)289 3455 y(indeed)25 b(a)g Fn(\003)p
Fr(-polycate)o(gory)-6 b(.)p 0 TeXcolorgray 123 3575
a(\(3\))p 0 TeXcolorgray 50 w(W)e(e)37 b(de\002ne)f(the)g(logical)f
(operations)g(on)g(the)h(collections)f(of)h(polymaps)e(and)i(deri)n(v)o
(e)f(the)289 3695 y(man)o(y)24 b(equations.)g(This)g(is)g(pretty)g
(much)h(routine.)83 4063 y Fs(4)100 b(Explanation)25
b(and)h(comparison)83 4360 y Fo(4.1)100 b(Repr)l(esentable)24
b(polycate)l(gories)83 4658 y Fr(W)-8 b(e)27 b(recall)g(the)f
(relationship)f(between)h Fn(\003)p Fr(-polycate)o(gories)f(and)i
Fn(\003)p Fr(-autonomous)d(cate)o(gories)i(\(see)83 4778
y([2])e(or)f([11])g(for)g(e)o(xample\).)f(T)-8 b(ak)o(e)23
b(the)g(ob)o(vious)e Fm(2)p Fr(-cate)o(gories)38 b Fn(\003)15
b Fb(P)m(oly)23 b Fr(of)g Fn(\003)p Fr(-polycate)o(gories)f(and)83
4898 y Fn(\003)p Fb(Aut)29 b Fr(of)g Fn(\003)p Fr(-autonomous)f(cate)o
(gories:)g(all)h Fm(2)p Fr(-cells)g(are)h(in)l(v)o(ertible)e(so)h(we)h
(are)g(in)f(the)g(groupoid)83 5019 y(enriched)38 b(setting.)e(An)o(y)h
Fn(\003)p Fr(-autonomous)e(cate)o(gory)i(determines)g(a)g
Fn(\003)p Fr(-polycate)o(gory)-6 b(,)36 b(with)h(the)83
5139 y(linear)c(tensor)f(and)h(par)g(representing)f(polymaps;)f(so)i
(one)f(sees)h(that)f(there)h(is)g(a)g(groupoid)e(en-)83
5259 y(riched)h(for)n(getful)g(functor)f Fq(S)6 b(P)14
b(ol)r(y)43 b Fm(:)d Fn(\003)p Fb(Aut)g Fn(!)g(\003)p
Fb(P)m(oly)p Fr(.)32 b(On)f(the)h(other)f(hand)g(one)h(can)g(freely)83
5380 y(construct)e(a)h Fn(\003)p Fr(-autonomous)e(cate)o(gory)h
(generated)h(by)g(a)f Fn(\003)p Fr(-polycate)o(gory)-6
b(,)29 b(subject)h(to)g(ob)o(vious)p 0 TeXcolorgray 1748
5712 a(20)p 0 TeXcolorgray eop end
%%Page: 21 21
TeXDict begin 21 20 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(identi\002cations.)27 b(This)g(gi)n(v)o(es)g
(a)h(groupoid)f(enriched)i(functor)f Fq(S)6 b(Aut)33
b Fm(:)h Fn(\003)p Fb(P)m(oly)g Fn(!)g(\003)p Fb(Aut)27
b Fr(and)h(a)83 203 y(groupoid)i(enriched)i(adjunction)d
Fq(S)6 b(Aut)39 b Fn(a)h Fq(S)6 b(P)14 b(ol)r(y)r Fr(.)31
b(The)g(basic)g(conserv)n(ati)n(vity)e(result)i(pro)o(v)o(ed)83
324 y(by)22 b(direct)g(syntactic)f(considerations)g(in)h([2])g
(\(though)f(see)h([11])h(for)f(an)g(indication)f(of)h(a)g(semantic)83
444 y(proof\))j(is)g(as)f(follo)n(ws.)p 0 TeXcolorgray
83 620 a Fs(Theor)n(em)j(4.1.)p 0 TeXcolorgray 41 w Fo(In)e(the)f(gr)l
(oupoid)f(enric)o(hed)h(adjunction)f Fq(S)6 b(Aut)28
b Fn(a)f Fq(S)6 b(P)14 b(ol)r(y)s Fo(,)24 b(the)h(unit)1366
840 y Fn(P)37 b(!)27 b Fq(S)6 b(P)14 b(ol)r(y)r(S)6 b(Aut)p
Fm(\()p Fn(P)i Fm(\))83 1060 y Fo(is)25 b(full)f(and)g(faithful)f(for)h
(any)h Fn(\003)p Fo(-polycate)l(gory)f Fn(P)8 b Fo(.)83
1236 y Fr(When)29 b(does)f(a)h Fn(\003)p Fr(-polycate)o(gory)e
Fn(P)37 b Fr(arise)29 b(from)f(a)h Fn(\003)p Fr(-autonomous)d(cate)o
(gory)-6 b(,)28 b(that)g(is)g(when)g(is)g(it)83 1356
y(in)d(the)f(essential)g(image)h(of)g Fq(S)6 b(P)14 b(ol)r(y)t
Fr(?)23 b(This)h(occurs)h(just)f(when)h(there)g(are)h(maps)305
1612 y Fq(i)338 1627 y Fk(A;B)499 1612 y Fm(:)h Fq(A;)17
b(B)33 b Fn(!)27 b Fq(A)c Fn(^)f Fq(B)39 b(i)1234 1627
y Fl(>)1321 1612 y Fm(:)27 b Fn(\000)i(!)e(>)237 b Fq(i)1955
1627 y Fk(C)q(;D)2117 1612 y Fm(:)28 b Fq(C)h Fn(_)23
b Fq(D)30 b Fn(!)d Fq(C)r(;)17 b(D)35 b(i)2863 1627 y
Fl(?)2950 1612 y Fm(:)28 b Fn(?)g(!)g(\000)83 1843 y
Fr(composition)23 b(with)h(which)g(induces)h(isomorphisms)525
2099 y Fn(P)8 b Fm(\()p Fq(A)22 b Fn(^)h Fq(B)5 b(;)17
b Fm(\000;)g(\001\))1198 2072 y Fn(\030)1199 2103 y Fm(=)1304
2099 y Fn(P)8 b Fm(\()p Fq(A;)17 b(B)5 b(;)17 b Fm(\000;)g(\001\))241
b Fn(P)8 b Fm(\()p Fn(>)p Fq(;)17 b Fm(\000;)g(\001\))2613
2072 y Fn(\030)2613 2103 y Fm(=)2718 2099 y Fn(P)8 b
Fm(\(\000;)17 b(\001\))g Fq(;)519 2280 y Fn(P)8 b Fm(\(\000;)17
b(\001)p Fq(;)g(C)29 b Fn(_)23 b Fq(D)s Fm(\))1201 2252
y Fn(\030)1202 2284 y Fm(=)1306 2280 y Fn(P)8 b Fm(\(\000;)17
b(\001)p Fq(;)g(C)r(;)g(D)s Fm(\))249 b Fn(P)8 b Fm(\(\000;)17
b(\001)g Fn(?)p Fm(\))2599 2252 y Fn(\030)2600 2284 y
Fm(=)2704 2280 y Fn(P)8 b Fm(\(\000;)17 b(\001\))g Fq(:)83
2517 y Fr(In)34 b(particular)f(for)g(an)o(y)g Fm(\000)p
Fr(,)g Fm(\001)h Fr(we)g(ha)n(v)o(e)f(isomorphisms)d
Fn(C)6 b Fm(\(\000;)17 b(\001\))2498 2489 y Fn(\030)2498
2521 y Fm(=)2618 2517 y Fn(C)6 b Fm(\()2714 2451 y Ff(V)2800
2517 y Fm(\000;)2905 2451 y Ff(W)2991 2517 y Fm(\001\))33
b Fr(where)h(we)83 2637 y(write)322 2571 y Ff(V)408 2637
y Fm(\000)g Fr(and)681 2571 y Ff(W)767 2637 y Fm(\001)g
Fr(for)g(a)h(conjunction)d(and)i(disjunction)e(according)i(to)g(some)f
(brack)o(etings.)83 2758 y(In)i(these)g(circumstances)f(we)i(say)e
(that)h Fq(i)1577 2773 y Fk(A;B)1710 2758 y Fr(,)g Fq(i)1803
2773 y Fl(>)1862 2758 y Fr(,)g Fq(i)1955 2773 y Fk(C)q(;D)2125
2758 y Fr(and)g Fq(i)2337 2773 y Fl(?)2431 2758 y Fo(pr)l(o)o(vide)f(a)
h(r)l(epr)l(esentation)f(of)83 2878 y(polymaps)p Fr(,)24
b(or)h(more)g(loosely)e(that)i Fn(^)p Fo(,)g Fn(>)p Fo(,)g
Fn(_)p Fo(,)g Fn(?)h Fo(r)l(epr)l(esent)f(polymaps)p
Fr(.)83 3175 y Fo(4.2)100 b(Repr)l(esentability)23 b(and)h
(functoriality)83 3471 y Fr(Consider)j(no)n(w)g(a)g Fn(\003)p
Fr(-polycate)o(gorical)f(model)h Fn(C)33 b Fr(for)28
b(classical)e(proof:)h(it)g(comes)g(equipped)f(with)83
3591 y(structure)805 3712 y Fq(i)838 3727 y Fk(A;B)999
3712 y Fm(=)i Fq(i)1136 3727 y Fk(A)p Fl(^)p Fk(B)1313
3712 y Fq(;)117 b(i)1490 3727 y Fl(>)1577 3712 y Fm(=)27
b Fq(?)17 b(;)116 b(i)1922 3727 y Fk(C)q(;D)2084 3712
y Fm(=)28 b Fq(i)2221 3727 y Fk(C)5 b Fl(_)p Fk(C)2399
3712 y Fq(;)116 b(i)2575 3727 y Fl(?)2662 3712 y Fm(=)28
b Fq(?)83 3862 y Fr(\(using)c(earlier)i(notation\))d(potentially)g(pro)
o(viding)g(a)i(representation)g(of)g(polymaps.)83 4037
y(From)i(our)f(outline)g(of)h(the)f(reconstruction)g(of)h(the)f
Fn(\003)p Fr(-polycate)o(gory)-6 b(,)25 b(we)i(see)g(that)f(we)h(ha)n
(v)o(e)f(rep-)83 4157 y(resentability)e(just)g(when)g(the)h(canonical)g
(linear)f(idempotents)600 4378 y Fq(e)645 4393 y Fk(A)p
Fl(^)p Fk(B)834 4378 y Fm(=)p 937 4302 167 4 v 27 w Fq(i)970
4393 y Fk(A;B)1120 4378 y Fq(;)117 b(e)1309 4393 y Fl(>)1396
4378 y Fm(=)27 b(\()p Fq(i)1570 4393 y Fl(>)1629 4378
y Fm(\))1667 4337 y Fw(+)1743 4378 y Fq(;)116 b(e)1931
4393 y Fk(C)5 b Fl(_)p Fk(D)2125 4378 y Fm(=)p 2229 4302
168 4 v 28 w Fq(i)2262 4393 y Fk(C)q(;D)2413 4378 y Fq(;)117
b(e)2602 4393 y Fl(?)2689 4378 y Fm(=)27 b(\()p Fq(i)2863
4393 y Fl(?)2922 4378 y Fm(\))2960 4337 y Fw(+)83 4598
y Fr(are)f(in)e(f)o(act)h(identities.)e(By)i(duality)-6
b(,)23 b(we)i(only)f(need)h(half)g(of)g(this)e(so)i(representability)e
(is)i(equi)n(v)n(a-)83 4719 y(lent)g(to)f(the)h(conditions)1047
4939 y Fq(e)1092 4954 y Fl(>)1178 4939 y Fm(=)j(id)1363
4954 y Fl(>)1522 4939 y Fr(and)99 b Fm(id)1847 4954 y
Fk(A)1926 4939 y Fn(^)22 b Fm(id)2096 4954 y Fk(B)2184
4939 y Fm(=)28 b(id)2369 4954 y Fk(A)p Fl(^)p Fk(B)2546
4939 y Fq(:)83 5159 y Fr(Ne)o(xt)c(note)h(that,)f(as)h
Fn(^)g Fr(is)g(guarded)g(domain)e(absorbing,)h(we)h(ha)n(v)o(e)779
5380 y Fq(f)33 b Fn(^)23 b Fq(g)t Fm(;)17 b Fq(h)k Fn(^)i
Fq(k)s Fm(;)17 b(id)1389 5395 y Fk(E)1471 5380 y Fn(^)22
b Fm(id)1640 5395 y Fk(F)1727 5380 y Fm(=)27 b(\()p Fq(f)11
b Fm(;)17 b Fq(h)p Fm(\))22 b Fn(^)g Fm(\()p Fq(h)p Fm(;)17
b Fq(k)s Fm(\);)g(id)2530 5395 y Fk(E)2612 5380 y Fn(^)22
b Fm(id)2782 5395 y Fk(F)p 0 TeXcolorgray 1748 5712 a
Fr(21)p 0 TeXcolorgray eop end
%%Page: 22 22
TeXDict begin 22 21 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(so)25 b(that)f Fm(id)452 98
y Fk(E)534 83 y Fn(^)f Fm(id)704 98 y Fk(F)790 83 y Fm(=)28
b(id)975 98 y Fk(E)t Fl(^)p Fk(F)1161 83 y Fr(gi)n(v)o(es)1215
303 y Fq(f)k Fn(^)23 b Fq(g)t Fm(;)17 b Fq(h)k Fn(^)i
Fq(k)31 b Fm(=)c(\()p Fq(f)11 b Fm(;)17 b Fq(h)p Fm(\))22
b Fn(^)g Fm(\()p Fq(h)p Fm(;)17 b Fq(k)s Fm(\))83 524
y Fr(which)22 b(is)f(functoriality)g(of)g Fn(^)p Fr(.)i(One)f(should)e
(re)o(gard)i Fq(e)1965 539 y Fl(>)2052 524 y Fm(=)27
b(id)2236 539 y Fl(>)2317 524 y Fr(as)22 b(functoriality)f(of)h
Fn(>)p Fr(.)g(Then)g(one)83 644 y(can)k(summarise)d(the)i(discussion)e
(in)h(the)h(follo)n(wing.)p 0 TeXcolorgray 83 820 a Fs(Theor)n(em)i
(4.2.)p 0 TeXcolorgray 41 w Fo(Let)e Fn(C)31 b Fo(be)25
b(a)g(model)f(for)g(classical)g(pr)l(oof)o(.)f(Then)i(the)g(following)e
(ar)l(e)i(equivalent.)p 0 TeXcolorgray 123 995 a(\(1\))p
0 TeXcolorgray 50 w(The)h(identity)d(conditions)g Fm(id)1309
1010 y Fk(A)1388 995 y Fn(^)f Fm(id)1558 1010 y Fk(B)1646
995 y Fm(=)28 b(id)1831 1010 y Fk(A)p Fl(^)p Fk(B)2016
995 y Fo(and)d Fq(e)2236 1010 y Fl(>)2323 995 y Fm(=)i(id)2507
1010 y Fl(>)2567 995 y Fo(.)p 0 TeXcolorgray 123 1115
a(\(2\))p 0 TeXcolorgray 50 w(Full)d(functoriality)f(of)h
Fn(^)p Fo(,)h(and)g Fn(>)p Fo(.)p 0 TeXcolorgray 123
1236 a(\(3\))p 0 TeXcolorgray 50 w(Repr)l(esentability)f(of)g(polymaps)
g(by)h Fn(^)p Fo(,)g Fn(>)g Fo(and)g Fn(_)p Fo(,)g Fn(?)p
Fo(.)83 1411 y Fr(This)39 b(mak)o(es)g(clear)g(the)g(o)o(v)o(ersight)e
(in)i([11].)g(There)h(linear)f(maps)f(were)i(assumed)f(to)f(form)h(a)83
1531 y Fn(\003)p Fr(-autonomous)29 b(cate)o(gory;)h(b)n(ut)g(that)h(gi)
n(v)o(es)e Fm(id)1739 1546 y Fk(A)1823 1531 y Fn(^)e
Fm(id)1997 1546 y Fk(B)2096 1531 y Fm(=)39 b(id)2292
1546 y Fk(A)p Fl(^)p Fk(B)2483 1531 y Fr(and)31 b(so)f(functoriality)g
(of)h(the)83 1652 y(logical)21 b(operators.)f(Note)h(also)g(that)f(the)
h(condition)e Fq(f)g Fn(^)8 b Fq(g)t Fm(;)17 b Fq(h)8
b Fn(^)g Fq(k)30 b Fm(=)e(\()p Fq(f)11 b Fm(;)17 b Fq(h)p
Fm(\))8 b Fn(^)g Fm(\()p Fq(h)p Fm(;)17 b Fq(k)s Fm(\))j
Fr(follo)n(ws)g(from)83 1772 y(that)g(naturality)e(of)i(the)g
Fn(^)p Fr(-R)h(rule)f(which)f(we)h(did)f(not)g(adopt.)g(Ho)n(we)n(v)o
(er)g(that)g(condition)f(is)i(weak)o(er)83 1892 y(than)k(full)f
(functoriality)-6 b(.)22 b(It)h(is)h(easy)g(to)f(\002nd)h(models)f(in)g
(which)g(it)g(holds)g(b)n(ut)g Fm(id)2862 1907 y Fk(A)2937
1892 y Fn(^)18 b Fm(id)3103 1907 y Fk(B)3191 1892 y Fm(=)28
b(id)3376 1907 y Fk(A)p Fl(^)p Fk(B)83 2013 y Fr(f)o(ails.)83
2309 y Fo(4.3)100 b(Why)24 b(functoriality)f(should)h(fail)83
2605 y Fr(As)h(we)g(shall)f(see)h(the)f(assumption)f(of)i
(representability)e(pro)o(vides)g(a)i(substantial)e(simpli\002cation)83
2726 y(of)i(the)g(notion)e(of)i(cate)o(gorical)g(model.)f(So)h(it)f(is)
g(time)h(to)f(e)o(xplain)g(why)g(we)h(do)f(not)g(adopt)h(it.)83
2901 y(First)g(we)g(ar)n(gue)g(against)f(the)h(tempting)e(naturality)h
(of)h Fn(^)p Fr(-R)1184 3121 y Fn(f)p Fq(u;)17 b(v)t
Fn(g)p Fm(;)g(\()p Fq(f)31 b Fn(\001)22 b Fq(g)t Fm(\))27
b(=)h(\()p Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))20 b Fn(\001)i
Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t Fm(\))g Fq(:)83 3334
y Fr(Consider)29 b(\002rst)g Fn(f)p Fq(m;)17 b Fm(id)916
3349 y Fk(B)977 3334 y Fn(g)p Fm(;)g(\(id)1190 3349 y
Fk(A)1247 3334 y Fq(;)g Fm(id)1372 3349 y Fk(B)1432 3334
y Fm(\))p Fr(.)29 b(Composing)f(with)g Fm(id)2300 3349
y Fk(B)2390 3334 y Fr(does)g(nothing)g(so)g(this)g(is)h(equal)83
3447 y(to)c Fq(m)p Fm(;)17 b(\(id)434 3462 y Fk(A)491
3447 y Fq(;)g Fm(id)616 3462 y Fk(B)677 3447 y Fm(\))p
Fr(,)24 b(which)h(is)f(represented)h(by)g(the)f(proof)1183
3635 y Fj(A)i Fh(`)f Fj(A)91 b(A)25 b Fh(`)g Fj(A)p 1183
3655 576 4 v 1211 3735 a(A)20 b Fh(_)g Fj(A)26 b Fh(`)f
Fj(A;)15 b(A)p 1211 3773 521 4 v 1265 3852 a(A)21 b Fh(_)f
Fj(A)25 b Fh(`)g Fj(A)1850 3753 y(A)g Fh(`)g Fj(A)91
b(B)30 b Fh(`)25 b Fj(B)p 1850 3773 587 4 v 1878 3852
a(A;)15 b(B)30 b Fh(`)25 b Fj(A)20 b Fh(^)g Fj(B)p 1265
3890 1144 4 v 1487 3970 a(A)g Fh(_)g Fj(A;)15 b(B)31
b Fh(`)24 b Fj(A)d Fh(^)f Fj(B)1247 b Ft(\(1\))83 4175
y Fr(There)26 b(are)f(tw)o(o)f(distinct)g(w)o(ays)g(to)h(eliminate)f
(the)g(Cut.)h(One)g(results)f(in)g(the)h(normal)f(form)1350
4359 y Fj(A)h Fh(`)g Fj(A)91 b(A)26 b Fh(`)f Fj(A)p 1350
4379 576 4 v 1378 4459 a(A)20 b Fh(_)g Fj(A)25 b Fh(`)g
Fj(A;)15 b(A)p 1378 4497 521 4 v 1432 4576 a(A)20 b Fh(_)g
Fj(A)26 b Fh(`)f Fj(A)173 b(B)29 b Fh(`)c Fj(B)p 1432
4596 838 4 v 1501 4676 a(A)20 b Fh(_)g Fj(A;)15 b(B)30
b Fh(`)25 b Fj(A)c Fh(^)e Fj(B)1234 b Ft(\(2\))83 4881
y Fr(and)25 b(the)g(other)f(in)h(the)f(normal)h(form)1178
5045 y Fj(A)g Fh(`)g Fj(A)91 b(B)30 b Fh(`)25 b Fj(B)p
1178 5065 587 4 v 1206 5145 a(A;)15 b(B)30 b Fh(`)25
b Fj(A)20 b Fh(^)g Fj(B)1855 5045 y(A)26 b Fh(`)f Fj(A)91
b(B)29 b Fh(`)c Fj(B)p 1855 5065 V 1883 5145 a(A;)15
b(B)30 b Fh(`)25 b Fj(A)c Fh(^)e Fj(B)p 1206 5183 1209
4 v 1261 5262 a(A)i Fh(_)f Fj(A;)15 b(B)5 b(;)15 b(B)30
b Fh(`)25 b Fj(A)20 b Fh(^)g Fj(B)5 b(;)15 b(A)20 b Fh(^)g
Fj(B)p 1261 5300 1098 4 v 1460 5380 a(A)g Fh(_)g Fj(A;)15
b(B)30 b Fh(`)25 b Fj(A)c Fh(^)e Fj(B)1275 b Ft(\(3\))p
0 TeXcolorgray 1748 5712 a Fr(22)p 0 TeXcolorgray eop
end
%%Page: 23 23
TeXDict begin 23 22 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(No)n(w)22 b(consider)g Fm(\()p
Fq(m)p Fm(;)17 b(id)905 98 y Fk(A)962 83 y Fm(\))12 b
Fn(\001)g Fm(\(id)1171 98 y Fk(B)1232 83 y Fm(;)17 b(id)1357
98 y Fk(B)1417 83 y Fm(\))p Fr(.)22 b(This)g(is)f(clearly)i(equal)f(to)
f Fq(m)12 b Fn(\001)g Fm(id)2640 98 y Fk(B)2723 83 y
Fr(which)22 b(is)f(represented)83 203 y(by)i(the)f(\002rst)g(of)h(the)f
(abo)o(v)o(e)g(tw)o(o)g(normal)g(forms.)f(There)i(is)f(no)h(w)o(ay)f
(to)g(get)g(at)h(the)f(second)g(\(though)83 324 y(that)i(is)f(the)h
(normal)f(form)h(in)g(which)f Fq(m)i Fr(has)e(done)h(its)f(intended)g
(job)h(of)g(cop)o(ying\).)f(No)n(w)g(we)h(tak)o(e)83
444 y(the)k(vie)n(w)e(that)h(f)o(ailure)h(to)f(ha)n(v)o(e)g(the)g(same)
h(normal)e(forms)h(\(e)n(v)o(en)g(modulo)f(ob)o(vious)g(re)n
(writings\))83 565 y(is)f(a)g(clear)g(sign)f(of)h(non-identity)-6
b(.)23 b(W)-8 b(e)25 b(conclude)f(that)h(the)f(naturality)g(equation)
914 786 y Fn(f)p Fq(m;)17 b Fm(id)1174 801 y Fk(B)1235
786 y Fn(g)p Fm(;)g(\(id)1447 801 y Fk(A)1526 786 y Fn(\001)22
b Fm(id)1658 801 y Fk(B)1718 786 y Fm(\))28 b(=)f(\()p
Fq(m)p Fm(;)17 b(id)2136 801 y Fk(A)2193 786 y Fm(\))22
b Fn(\001)g Fm(\(id)2422 801 y Fk(B)2482 786 y Fm(;)17
b(id)2607 801 y Fk(B)2668 786 y Fm(\))83 1008 y Fr(is)25
b(not)f(f)o(aithful)g(to)h(the)f(notion)g(of)h(proof)f(encapsulated)h
(in)f(the)h(sequent)f(calculus.)83 1184 y(W)-8 b(e)26
b(e)o(xplain)e(the)i(signi\002cance)f(of)h(this)e(for)i(the)f
(functoriality)f(of)h Fn(^)p Fr(.)h(Consider)g Fm(id)2982
1199 y Fk(A)3061 1184 y Fn(^)d Fm(id)3232 1199 y Fk(B)3292
1184 y Fr(.)j(Note)83 1304 y(that)271 1526 y Fm(\()p
Fq(m)d Fn(^)f Fm(id)586 1541 y Fk(B)647 1526 y Fm(\);)17
b(\(id)848 1541 y Fk(A)927 1526 y Fn(^)23 b Fm(id)1097
1541 y Fk(B)1158 1526 y Fm(\))k(=)p 1327 1441 843 4 v
28 w Fn(f)p Fq(m;)17 b Fm(id)1587 1541 y Fk(B)1647 1526
y Fn(g)p Fm(;)g(\(id)1860 1541 y Fk(A)1939 1526 y Fn(\001)22
b Fm(id)2070 1541 y Fk(B)2131 1526 y Fm(\))100 b(and)f
Fq(m)23 b Fn(^)f Fm(id)2803 1541 y Fk(B)2891 1526 y Fm(=)p
2995 1447 300 4 v 28 w Fq(m)g Fn(\001)g Fm(id)3233 1541
y Fk(B)3322 1526 y Fq(:)83 1748 y Fr(No)n(w)i(we)i(just)d(ar)n(gued)j
(that)e(we)h(should)f(not)g(ha)n(v)o(e)1146 1970 y Fn(f)p
Fq(m;)17 b Fm(id)1406 1985 y Fk(B)1467 1970 y Fn(g)p
Fm(;)g(\(id)1680 1985 y Fk(A)1759 1970 y Fn(\001)22 b
Fm(id)1890 1985 y Fk(B)1951 1970 y Fm(\))27 b(=)h Fq(m)22
b Fn(\001)g Fm(id)2358 1985 y Fk(B)2447 1970 y Fq(:)83
2191 y Fr(But)j(as)g Fq(i)393 2206 y Fk(A)p Fl(^)p Fk(B)554
2191 y Fm(;)p 598 2112 57 4 v 17 w Fq(h)i Fm(=)h Fq(h)p
Fr(,)d(the)g(operation)p 1439 2107 104 4 v 24 w Fm(\()i(\))e
Fr(is)g(injecti)n(v)o(e.)e(So)i(we)g(cannot)f(ha)n(v)o(e)h(the)f
(equation)1086 2413 y Fm(\()p Fq(m)e Fn(^)h Fm(id)1401
2428 y Fk(B)1462 2413 y Fm(\);)17 b(\(id)1662 2428 y
Fk(A)1742 2413 y Fn(^)22 b Fm(id)1911 2428 y Fk(B)1972
2413 y Fm(\))28 b(=)f Fq(m)c Fn(^)f Fm(id)2419 2428 y
Fk(B)2507 2413 y Fq(:)83 2635 y Fr(The)32 b(general)g(point)e(seems)h
(to)g(be)h(this.)e(If)i(we)g(cut)f(a)h(classical)f(proof)g(e)n(v)o(en)g
(with)g(such)g(simple)83 2755 y(proofs)j(as)h(gi)n(v)o(en)e(by)h(our)h
(canonical)f(linear)g(idempotents,)f(then)h(we)h(can,)g(in)f(general,)g
(obtain)83 2876 y(additional)24 b(normal)g(forms)g(that)h(were)g(not)f
(a)n(v)n(ailable)g(from)h(the)g(classical)f(proof)h(on)f(its)g(o)n(wn.)
83 3176 y Fo(4.4)100 b(F)377 3177 y(\250)369 3176 y(uhrmann-Pym)23
b(Axioms)83 3472 y Fr(W)-8 b(e)31 b(observ)o(ed)f(already)g(that)g(a)h
Fn(\003)p Fr(-polycate)o(gory)e(in)h(which)g(the)g(polymaps)f(are)i
(represented)g(by)83 3592 y Fn(^)c Fr(and)f Fn(_)h Fr(is)e(in)h(ef)n
(fect)g(a)h Fn(\003)p Fr(-autonomous)d(cate)o(gory)-6
b(.)25 b(If)i(one)f(has)g(a)g(model)f(for)i(classical)e(proof)h(of)83
3713 y(this)e(kind)g(the)h(structure)f(simpli\002es)g(drastically)-6
b(.)p 0 TeXcolorgray 83 3889 a Fs(Theor)n(em)36 b(4.3.)p
0 TeXcolorgray 46 w Fo(T)-9 b(o)34 b(give)g(a)f(model)h(of)f(classical)
g(pr)l(oof)f(in)h(whic)o(h)h Fn(^)p Fo(,)g Fn(>)h Fo(and)e
Fn(_)p Fo(,)h Fn(?)g Fo(r)l(epr)l(esent)83 4009 y(polymaps)24
b(is)g(to)h(give)g(the)f(following)g(data.)p 0 TeXcolorgray
83 4185 a Fn(\017)p 0 TeXcolorgray 50 w Fo(A)h Fn(\003)p
Fo(-autonomous)e(cate)l(gory)h Fa(C)51 b Fo(\(with)25
b(a)g(strict)e(duality\):)h(tensor)g(is)h Fn(^)g Fo(and)f(par)h
Fn(_)p Fo(.)p 0 TeXcolorgray 83 4306 a Fn(\017)p 0 TeXcolorgray
50 w Fo(The)33 b(equipment)e(on)h(eac)o(h)g(object)g
Fq(A)g Fo(of)g Fa(C)58 b Fo(of)32 b(the)g(structur)l(e)f(of)h(a)g
(commutative)f(comonoid)183 4426 y(with)36 b(r)l(espect)f(to)h(tensor)f
(\(and)g(so)h(dually)f(the)g(structur)l(e)g(of)g(a)h(commutative)f
(monoid)g(with)183 4546 y(r)l(espect)25 b(to)f(par\).)83
4722 y Fr(This)h(is)g(the)g(equality)g(component)f(of)h(the)g
(structure)h(proposed)e(in)h(F)8 b(\250)-41 b(uhrmann)25
b(and)h(Pym)f([6].)g(\(It)83 4843 y(is)32 b(not)g(the)g(only)g(simple)f
(possibility)-6 b(.)29 b(W)-8 b(e)32 b(ha)n(v)o(e)g(recently)h(seen)f
(w)o(ork)g([14])g(of)h(Lamarche)g(and)83 4963 y(Strassb)n(ur)n(ger)26
b(which)e(leads)h(to)f(an)h(e)n(v)o(en)f(more)h(restricti)n(v)o(e)e
(notion.\))83 5139 y(There)k(are)h(a)f(number)f(of)h(further)g
(connections)e(between)i(the)f(F)8 b(\250)-41 b(uhrmann-Pym)27
b(notion)e(and)i(the)83 5259 y(one)22 b(described)g(in)g(this)f(paper)
-5 b(.)22 b(One)g(simple)e(thought)h(is)g(as)i(follo)n(ws.)d(Suppose)i
(that)f Fn(C)28 b Fr(is)22 b(a)g(model)83 5380 y(for)f(classical)f
(logic)g(in)g(the)g(general)h(sense,)f(freely)h(generated)f(by)h(some)e
(cate)o(gory)h(of)h(objects)f(and)p 0 TeXcolorgray 1748
5712 a(23)p 0 TeXcolorgray eop end
%%Page: 24 24
TeXDict begin 24 23 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(maps.)24 b(\(This)f(mak)o(es)h(sense)g(by)g
(K)n(elly-Po)n(wer)g([13].\))g(W)-8 b(e)24 b(can)h(inducti)n(v)o(ely)d
(de\002ne)i(idempotents)83 203 y Fq(e)128 218 y Fk(A)209
203 y Fr(on)f(objects)f Fq(A)i Fr(of)f Fn(C)6 b Fr(:)23
b(we)h(set)e Fq(e)1267 218 y Fk(A)1352 203 y Fm(=)28
b(id)1537 218 y Fk(A)1617 203 y Fr(for)c(atomic)e(objects)h(\(which)g
(includes)f(the)h(duals)g Fq(A)3464 167 y Fl(\003)3503
203 y Fr(\))83 324 y(and)g(then)g(set)g Fq(e)624 339
y Fk(A)p Fl(^)p Fk(B)812 324 y Fm(=)28 b Fq(e)961 339
y Fk(A)1034 324 y Fn(^)16 b Fq(e)1161 339 y Fk(B)1245
324 y Fr(and)23 b Fq(e)1457 339 y Fk(A)p Fl(_)p Fk(B)1646
324 y Fm(=)k Fq(e)1794 339 y Fk(A)1867 324 y Fn(_)16
b Fq(e)1994 339 y Fk(B)2055 324 y Fr(.)23 b(\(Implicitly)f(we)h(ha)n(v)
o(e)g(tak)o(en)g Fq(e)3183 339 y Fl(>)3265 324 y Fr(and)g
Fq(e)3477 339 y Fl(?)83 444 y Fr(as)i(we)g(found)g(them.\))f(Then)h(we)
g(can)g(de\002ne)g(a)g(quotient)2113 419 y Fm(^)2095
444 y Fn(C)31 b Fr(of)25 b Fn(C)31 b Fr(with)963 632
y Fm(^)944 657 y Fn(C)6 b Fm(\()p Fq(A;)17 b(B)5 b Fm(\))28
b(=)g Fn(f)p Fq(f)38 b Fn(2)28 b(C)6 b Fm(\()p Fq(A;)17
b(B)5 b Fm(\))17 b Fn(j)g Fq(e)2073 672 y Fk(A)2129 657
y Fm(;)g Fq(f)11 b Fm(;)17 b Fq(e)2321 672 y Fk(B)2409
657 y Fm(=)27 b Fq(f)11 b Fn(g)27 b Fq(:)83 870 y Fr(The)e(quotient)f
(functor)g(is)h(gi)n(v)o(en)e(by)992 1083 y Fn(C)6 b
Fm(\()p Fq(A;)17 b(B)5 b Fm(\))27 b Fn(\000)-16 b(!)1556
1057 y Fm(^)1538 1083 y Fn(C)6 b Fm(\()p Fq(A;)17 b(B)5
b Fm(\))55 b(:)g Fq(f)39 b Fn(!)27 b Fq(e)2264 1098 y
Fk(A)2321 1083 y Fm(;)17 b Fq(f)11 b Fm(;)17 b Fq(e)2513
1098 y Fk(B)2601 1083 y Fq(:)83 1296 y Fr(No)n(w)22 b(it)f(is)h(easy)g
(to)f(see)i(that)1101 1270 y Fm(^)1082 1296 y Fn(C)29
b Fr(has)21 b(on)h(the)g(nose)g(the)g(structure)f(which)h
Fn(C)28 b Fr(has)22 b(up)g(to)f(idempotents.)p 0 TeXcolorgray
83 1471 a Fs(Theor)n(em)26 b(4.4.)p 0 TeXcolorgray 40
w Fo(If)f Fn(C)30 b Fo(is)24 b(a)g(model)g(for)g(classical)f(pr)l(oof)f
(fr)l(eely)j(g)o(ener)o(ated)e(by)i(a)f(cate)l(gory)-5
b(,)23 b(then)3497 1445 y Fm(^)3478 1471 y Fn(C)83 1591
y Fo(is)i(a)f(model)h(in)f(the)h(F)836 1592 y(\250)828
1591 y(uhrmann-Pym)f(sense)o(.)83 1881 y(4.5)100 b(Semantic)24
b(possibilities)83 2177 y Fr(W)-8 b(e)28 b(hope)f(to)g(write)g(more)g
(fully)f(about)h(models)f(in)h(further)g(papers,)h(so)e(for)i(no)n(w)e
(we)i(surv)o(e)o(y)e(the)83 2297 y(possibilities.)c(W)-8
b(e)26 b(distinguish)c(between)j(the)f(follo)n(wing.)p
0 TeXcolorgray 83 2472 a Fn(\017)p 0 TeXcolorgray 50
w Fr(De)o(generate)33 b(models:)e(that)h(is)g(cate)o(gorical)g(models)f
(based)i(on)f(compact)g(closed)g(cate)o(gories)183 2593
y(\(and)d(so)f(ignoring)g(the)h(dif)n(ference)g(between)g
Fn(^)g Fr(and)g Fn(_)p Fr(\).)g(W)-8 b(e)30 b(think)d(of)i(these)g(as)g
(abstract)g(in-)183 2713 y(terpretations,)24 b(allo)n(wing)f(one)i(in)f
(particular)h(to)f(associate)h(a)g(v)n(ariety)f(of)h(in)l(v)n(ariants)f
(to)g(proofs.)183 2833 y(Preliminary)g(observ)n(ations)f(are)j(in)e
([12],)h([7].)p 0 TeXcolorgray 83 2954 a Fn(\017)p 0
TeXcolorgray 50 w Fr(Cate)o(gorical)37 b(models:)e(that)i(is)f(models)g
(satisfying)f(the)i(F)8 b(\250)-41 b(uhrmann-Pym)37 b(equality)f
(axioms)183 3074 y([6].)29 b(W)-8 b(e)29 b(kno)n(w)f(some)h(e)o
(xamples)e(of)i(these,)g(and)g(ha)n(v)o(e)f(a)i(little)d(theory)-6
b(,)28 b(b)n(ut)h(there)g(is)f(more)h(to)183 3195 y(do.)p
0 TeXcolorgray 83 3315 a Fn(\017)p 0 TeXcolorgray 50
w Fr(General)c(models:)d(that)i(is,)g(models)f(which)h(are)g(equi)n(v)n
(alent)f(to)h(polycate)o(gories)e(which)i(do)g(not)183
3435 y(arise)h(from)g Fn(\003)p Fr(-autonomous)e(cate)o(gories.)h(W)-8
b(e)25 b(kno)n(w)f(almost)f(nothing)h(about)g(these.)83
3786 y Fs(5)100 b(Pr)n(o)o(visional)24 b(Conclusions)83
4081 y Fo(5.1)100 b(Guiding)23 b(Principles)83 4377 y
Fr(The)g(notion)e(of)h(model)f(for)i(classical)f(proof)g(theory)g
(which)g(we)g(ha)n(v)o(e)g(de)n(v)o(eloped)f(has)h(unf)o(amiliar)83
4497 y(features.)35 b(Hence)g(it)e(seems)h(w)o(orth)g(re\003ecting)g
(on)g(the)g(principles)f(which)h(ha)n(v)o(e)g(informed)g(our)83
4618 y(analysis.)83 4758 y Fs(Reduction)40 b(principle)f(f)n(or)f
(logical)g(cuts)p Fr(.)g(F)o(or)h(us)f(this)f(is)h(the)g(remnant)g(of)g
(the)g(Martin-L)8 b(\250)-41 b(of)83 4878 y(criterion)30
b(\(see)h(Pra)o(witz)f([18]\))g(for)g(identity)f(of)h(proofs.)f(At)h
(least)g(some)f(part)h(of)g(normalisation)83 4999 y(preserv)o(es)h
(meaning:)f(we)h(ask)g(that)f(simple)g(detours)g(should)g(not)g(matter)
-5 b(.)30 b(This)g(is)g(an)h(essential)83 5119 y(component)37
b(of)i(our)f(analysis,)f(without)g(which)h(we)g(w)o(ould)g(not)g(ha)n
(v)o(e)g(interesting)f(equalities)83 5240 y(between)25
b(\(representations)f(of\))i(proofs.)83 5380 y Fs(Structural)34
b(congruence)p Fr(.)g(This)d(an)h(idea)g(tak)o(en)g(from)f(concurrenc)o
(y)h(theory)-6 b(.)31 b(W)-8 b(e)32 b(follo)n(w)f(that)p
0 TeXcolorgray 1748 5712 a(24)p 0 TeXcolorgray eop end
%%Page: 25 25
TeXDict begin 25 24 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fr(culture)24 b(in)f(taking)g(the)h(structural)f
(rules)h(of)g(W)-8 b(eak)o(ening)24 b(and)f(Contraction)h(to)f(beha)n
(v)o(e)h(well)f(with)83 203 y(respect)35 b(to)f(themselv)o(es:)f(so)h
(we)h(end)g(up)f(with)g(commutati)n(v)o(e)e(comonoid)h(structure)h(for)
h Fn(>)p Fr(,)g Fn(^)83 324 y Fr(and)h(commutati)n(v)o(e)d(monoid)h
(structure)h(for)g Fn(?)p Fr(,)h Fn(_)p Fr(.)g(Ho)n(we)n(v)o(er)e(not)h
(a)h(great)g(deal)f(rides)g(on)g(this)83 444 y(choice.)24
b(W)-8 b(e)25 b(note)e(that)h(the)g(optical)f(graphs)h(of)g(Carbone)g
([3])h(pro)o(vide)d(free)j(models)e(for)h(a)h(notion)83
565 y(of)g(abstract)g(interpretation)f(in)g(which)g(this)g(choice)h(is)
g(not)f(made.)83 705 y Fs(Computation)e(of)f(v)o(alues)p
Fr(.)g(W)-8 b(e)22 b(tak)o(e)f(something)f(from)g(ideas)h(of)h
(non-determinism:)c(a)k(classical)83 825 y(proof)e(has)g(a)g
(non-deterministic)e(choice)i(as)g(to)f(the)h(normal)f(forms)h(to)f
(which)h(it)f(reduces.)h(W)-8 b(e)20 b(tak)o(e)83 946
y(account)f(of)g(all)g(plausible)f(commuting)f(con)l(v)o(ersions)h(and)
h(the)g(lik)o(e,)f(with)g(a)i(vie)n(w)e(to)h(ha)n(ving)f(some)83
1066 y(good)30 b(representation)g(of)h(proofs.)f(F)o(or)g(these)g(we)h
(hope)f(that)g(it)g(is)g(plausible)f(that)h(if)h(proofs)f(are)83
1186 y(equal)21 b(then)e(the)o(y)h(should)f(ha)n(v)o(e)h(the)g(same)g
(normal)g(forms.)f(Where)i(we)g(ha)n(v)o(e)f(e)n(vidence)g(of)g
(distinct)83 1307 y(normal)30 b(forms)f(we)i(ha)n(v)o(e)e(tak)o(en)h
(it)g(to)g(be)g(e)n(vidence)g(that)f(the)h(proofs)g(are)h(distinct.)d
(Though)h(we)83 1427 y(need)c(to)e(say)h(more)g(about)g(equality)f(to)g
(mak)o(e)h(the)g(claim)g(precise,)g(we)g(belie)n(v)o(e)f(that)g(our)h
(analysis)83 1548 y(is)h(consistent)e(with)h(this)g(principle)g(in)h
(the)f(follo)n(wing)f(sense.)p 0 TeXcolorgray 83 1755
a Fs(Pr)n(oposition)37 b(5.1.)p 0 TeXcolorgray 48 w Fo(If)g(two)g(pr)l
(oofs)e(ar)l(e)j(equal)e(then)h(the)m(y)g(r)l(educe)g(to)g(the)g(same)g
(collection)p 3029 1769 393 4 v 36 w(of)83 1875 y(normal)24
b(forms.)83 2344 y(5.2)100 b(Further)23 b(issues)83 2672
y Fs(Normal)k(f)n(orms)g(and)h(meaning)p Fr(.)g(W)-8
b(e)27 b(consider)g(the)g(question)f(whether)i(our)f(general)g
(principle)83 2792 y(in)k(the)g(last)g(proposition)e(should)h(be)i(an)f
(equi)n(v)n(alence:)f(does)h(ha)n(ving)f(the)h(same)g(set)g(\(or)h
(maybe)83 2912 y(multiset\))h(of)h(normal)g(forms)f(entail)h(equality)f
(of)h(proofs?)g(At)g(the)g(moment)f(we)i(w)o(ould)e(ar)n(gue)83
3033 y(against)24 b(that.)83 3173 y Fs(MIX)p Fr(.)39
b(There)g(is)f(something)f(right)g(about)h(the)h(idea)f(that)h(proofs)f
(in)g(classical)g(logic)g(in)l(v)n(olv)o(e)83 3293 y(some)e(kind)f(of)h
(non-determinism:)e(the)i(computation)e(or)i(reduction)g(process)g(is)g
(in)f(principle)83 3414 y(non-deterministic.)h(But)j(we)f(do)g(not)f
(for)i(e)o(xample)e(ha)n(v)o(e)h(primiti)n(v)o(es)d(for)k
(non-deterministic)83 3534 y(choice.)c(In)g(particular)f(in)g(vie)n(w)g
(of)h([1])g(we)g(should)e(in)l(v)o(estigate)f(an)j(approach)g(to)f(the)
h(idea)f(of)83 3655 y(non-deterministic)23 b(choice)i(in)f(proofs)h
(using)f(the)g(MIX)h(rule.)83 3795 y Fs(Idempotents)p
Fr(.)31 b(While)f(it)f(is)g(not)g(clear)h(whether)g(our)f(formulation)g
(of)g(semantics)g(for)h(classical)83 3915 y(proof)h(is)f(rob)n(ust,)f
(its)h(use)g(of)g(canonical)g(idempotents)f(w)o(ould)g(bear)i(further)g
(in)l(v)o(estigation.)c(W)-8 b(e)83 4036 y(ha)n(v)o(e)23
b(not)g(space)g(to)g(describe)g(here)h(the)e(consequence)i(of)f
(splitting)e(idempotents)g(in)i(a)g(model)f(for)83 4156
y(classical)j(proof)f(in)h(our)g(sense.)83 4296 y Fs(Linearity)p
Fr(.)40 b(In)g(this)f(paper)g(we)h(ha)n(v)o(e)f(used)h(a)f(notion)g(of)
g(linearity)g(which)g(has)g(mitigated)f(to)83 4417 y(some)30
b(e)o(xtent)f(the)h(general)h(f)o(ailure)f(of)g(functoriality)f(of)h
(the)g(logical)f(operations.)h(W)-8 b(e)30 b(ha)n(v)o(e)g(not)83
4537 y(troubled)e(with)f(natural)h(re\002nements)g(\(linearity)g(in)g
(the)g(domain)f(or)i(codomain\).)e(In)h(a)h(properly)83
4658 y(algebraic)35 b(formulation)e(we)i(w)o(ould)e(e)o(xpect)h(to)g
(follo)n(w)f(Po)n(wer)i([17])f(and)h(tak)o(e)f(this)g(e)o(xplicitly)83
4778 y(as)f(part)g(of)g(the)f(structure.)g(Before)i(doing)e(that)g(we)h
(should)f(probably)g(decide)g(just)g(ho)n(w)g(much)83
4898 y(use)38 b(to)f(mak)o(e)g(of)g(it.)g(In)g([11])h(where)g(already)f
(an)h(e)o(xplicit)d(notion)h(of)i(linearity)e(is)h(proposed,)83
5019 y(the)c(idea)g(w)o(as)g(that)f(linear)g(maps)h(w)o(ould)f(also)g
(be)h(maps)f(of)h(the)f(commutati)n(v)o(e)e(coalgebra)k(and)83
5139 y(commutati)n(v)o(e)19 b(algebra)i(structure.)g(It)g(seems)f(that)
h(to)f(mak)o(e)h(good)g(sense)f(of)i(that)e(one)h(must)f(forbid)83
5259 y(some)i(super\002cially)f(natural)h(w)o(ays)g(to)f(reduce)i
(Cuts.)f(\(F)o(or)g(e)o(xample)f(we)h(w)o(ould)f(allo)n(w)g(to)h
(reduce)83 5380 y(proof)j(\(1\))g(in)g(Section)f(4.3)h(to)f(only)g
(\(2\))h(b)n(ut)g(not)f(\(3\).\))p 0 TeXcolorgray 1748
5712 a(25)p 0 TeXcolorgray eop end
%%Page: 26 26
TeXDict begin 26 25 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 83 83 a Fs(Ackno)o(wledgements:)22 b Fr(W)-8
b(e)21 b(should)e(lik)o(e)h(to)g(thank)f(colleagues)h(with)g(whom)f(we)
i(ha)n(v)o(e)f(discussed)83 203 y(the)h(matters)g(described)g(here,)h
(and)f(also)f(the)h(anon)o(ymous)f(referee)i(for)g(penetrating)e
(observ)n(ations)83 324 y(to)25 b(which)f(we)h(ha)n(v)o(e)g(tried)f(to)
h(respond)f(as)h(best)f(we)h(are)h(able.)83 693 y Fs(Refer)n(ences)p
0 TeXcolorgray 83 984 a Ft([1])p 0 TeXcolorgray 72 w(G.)56
b(Bellin.)i(T)-7 b(w)o(o)56 b(paradigms)j(of)f(logical)h(computation)h
(in)e(Af)n(\002ne)f(Logic?)h(In)g(Logic)f(for)260 1097
y(Concurrenc)o(y)22 b(and)e(Synchronisation)k(\(R.)18
b(de)i(Queiroz)g(Ed.\),)f(Kluwer)h(T)m(rends)g(in)f(Logic)h(n.18,)g
(2003,)260 1210 y(pp.115-150.)p 0 TeXcolorgray 83 1406
a([2])p 0 TeXcolorgray 72 w(R.)31 b(F)-7 b(.)32 b(Blute,)h(J.)f(R.)g
(B.)g(Cock)o(ett,)i(R.)d(A.)h(G.)g(Seely)h(and)h(T)-7
b(.)32 b(H.)f(T)m(rimble.)i(Natural)h(deduction)i(and)260
1519 y(coherence)f(for)f(weakly)g(distrib)n(uti)n(v)o(e)i(cate)o
(gories.)f(Journal)g(of)e(Pure)f(and)i(Applied)g(Algebra)g
Fu(113)p Ft(,)260 1632 y(\(1996\),)25 b(229-296.)p 0
TeXcolorgray 83 1829 a([3])p 0 TeXcolorgray 72 w(A.)f(Carbone.)j
(Duplication)i(of)d(directed)i(graphs)g(and)e(e)o(xponential)j(blo)n(w)
d(up)h(of)f(proofs.)h(Annals)g(of)260 1942 y(Pure)c(and)h(Applied)h
(Logic)f Fu(100)p Ft(,)f(\(1999\),)i(1-67.)p 0 TeXcolorgray
83 2139 a([4])p 0 TeXcolorgray 72 w(J.)k(R.)g(B.)g(Cock)o(ett)j(and)f
(R.)e(A.)g(G.)g(Seely)-6 b(.)30 b(W)-7 b(eakly)31 b(distrib)n(uti)n(v)o
(e)j(cate)o(gories.)e(Journal)h(of)d(Pure)g(and)260 2252
y(Applied)24 b(Algebra)h Fu(114)f Ft(\(1997\),)h(133-173.)p
0 TeXcolorgray 83 2449 a([5])p 0 TeXcolorgray 72 w(V)-12
b(.)32 b(Danos)j(and)f(J.-B.)f(Joinet)i(and)g(H.)d(Schellinx.)j(LKT)d
(and)i(LKQ:)f(sequent)i(calculi)h(for)e(second)260 2562
y(order)24 b(logic)h(based)g(upon)g(dual)f(linear)h(decomposition)i(of)
d(classical)i(implication.)g(In:)d Fv(Advances)j(in)260
2675 y(Linear)e(Lo)o(gic)g Ft(\(J.-Y)-12 b(.)24 b(Girard)g(and)g(Y)-12
b(.)23 b(Lafont)h(and)g(L.)f(Re)o(gnier)h(eds\),)g(Cambridge)h(Uni)n(v)
o(ersity)g(Press)260 2788 y(\(1995\),)g(43-59.)p 0 TeXcolorgray
83 2985 a([6])p 0 TeXcolorgray 72 w(C.)32 b(F)8 b(\250)-38
b(uhrmann)34 b(and)g(D.)e(Pym.)g(Order)n(-enriched)37
b(Cate)o(gorical)e(Models)g(of)e(the)h(Classical)g(Sequent)260
3098 y(Calculus.)24 b(Journal)i(of)d(Pure)h(and)g(Applied)g(Algebra)h
Fu(204)p Ft(,)f(\(2006\),)g(21-78.)p 0 TeXcolorgray 83
3295 a([7])p 0 TeXcolorgray 72 w(C.)h(F)8 b(\250)-38
b(uhrmann)27 b(and)g(D.)f(Pym.)f(On)h(the)h(Geometry)g(of)f
(Interaction)k(for)d(Classical)h(Logic)f(\(Extended)260
3408 y(Abstract\).)d(In)g(Proceedings)i(of)d(LICS)f(04,)i(IEEE)d
(Computer)k(Society)-6 b(,)24 b(2004,)g(211-220.)p 0
TeXcolorgray 83 3605 a([8])p 0 TeXcolorgray 72 w(J.-Y)-12
b(.)22 b(Girard.)i(Linear)g(Logic.)g(Theoretical)h(Computer)g(Science)f
Fu(50)p Ft(,)g(\(1987\),)g(1-102.)p 0 TeXcolorgray 83
3802 a([9])p 0 TeXcolorgray 72 w(T)-7 b(.)33 b(Grif)n(\002n.)h(A)g(F)o
(ormulae-as-T)-7 b(ypes)38 b(Notion)d(of)g(Control.)h(In)f(Proceedings)
i(of)e(POPL)d(90,)j(A)l(CM)260 3914 y(Press,)23 b(47-78.)p
0 TeXcolorgray 83 4111 a([10])p 0 TeXcolorgray 27 w(H.)35
b(Herbelin)j(and)g(P)-10 b(.-L.)35 b(Curien.)i(The)f(duality)j(of)e
(computation.)i(In)e Fv(Pr)l(oceedings)j(of)c(the)i(F)l(ifth)260
4224 y(A)m(CM)20 b(SIGPLAN)f(International)26 b(Confer)m(ence)d(on)f
(Functional)i(Pr)l(o)o(gr)o(amming)o(,)e Ft(M.)f(Odersk)o(y)h(and)g(P)
-10 b(.)260 4337 y(W)j(adler)24 b(\(eds\),)g(A)l(CM)e(Press)i(2000,)g
(233-243.)p 0 TeXcolorgray 83 4534 a([11])p 0 TeXcolorgray
27 w(J.)31 b(M.)h(E.)e(Hyland.)j(Proof)g(Theory)g(in)f(the)h(Abstract.)
h(Annals)f(of)f(Pure)g(and)h(Applied)h(Logic)e Fu(114)p
Ft(,)260 4647 y(\(2002\),)25 b(43-78.)p 0 TeXcolorgray
83 4844 a([12])p 0 TeXcolorgray 27 w(M.)56 b(Hyland.)i(Abstract)h
(Interpretation)j(of)57 b(Proofs:)i(Classical)g(Propositional)i
(Calculus.)e(In)260 4957 y(Computer)30 b(Science)h(Logic,)e(J.)g
(Marcink)o(o)n(wski)j(and)e(A.)f(T)-7 b(arlecki)30 b(\(eds\).)g(LNCS)d
(3210,)k(Springer)n(-)260 5070 y(V)-10 b(erlag)24 b(2004,)g(6-21.)p
0 TeXcolorgray 83 5267 a([13])p 0 TeXcolorgray 27 w(G.)18
b(M.)g(K)n(elly)i(and)g(A.)e(J.)h(Po)n(wer)-5 b(.)18
b(Adjunctions)k(whose)e(counits)i(are)e(coequalizers)j(and)d
(presentations)260 5380 y(of)j(enriched)j(monads,)e(Journal)i(of)d
(Pure)g(and)h(Applied)h(Algebra,)f(89)g(\(1993\),)h(163-179.)p
0 TeXcolorgray 1748 5712 a Fr(26)p 0 TeXcolorgray eop
end
%%Page: 27 27
TeXDict begin 27 26 bop 0 TeXcolorgray 0 TeXcolorgray
0 TeXcolorgray 0 TeXcolorgray 83 83 a Ft([14])p 0 TeXcolorgray
27 w(F)-7 b(.)49 b(Lamarche)i(and)g(L.)e(Strassb)n(ur)n(ger)-5
b(.)54 b(Naming)c(Proofs)i(in)e(Classical)i(Logic.)f(T)-7
b(o)50 b(appear)i(in)260 196 y(Proceedings)26 b(of)d(TLCA)e(2005.)p
0 TeXcolorgray 83 382 a([15])p 0 TeXcolorgray 27 w(C.)k(R.)g(Murthy)-6
b(.)27 b(Classical)i(Proofs)e(as)g(Programs:)g(Ho)n(w)-6
b(,)26 b(What,)g(and)h(Why)-6 b(.)26 b(LNCS)f(613,)i(Springer)n(-)260
495 y(V)-10 b(erlag)24 b(1992.)p 0 TeXcolorgray 83 682
a([16])p 0 TeXcolorgray 27 w(M.)47 b(P)o(arigot.)i(Lambda-mu-calculus:)
k(An)48 b(Algorithmic)j(Interpretation)i(of)c(Classical)h(natural)260
795 y(Deduction.)26 b(In)f Fv(Lo)o(gic)g(Pr)l(o)o(gr)o(amming)g(and)h
(A)n(utomated)g(Reasoning)g Ft(ed)f(A.)e(V)-12 b(oronk)o(o)o(v)-6
b(,)27 b(LNCS)22 b(624)260 907 y(Springer)j(1992,)f(190-201.)p
0 TeXcolorgray 83 1094 a([17])p 0 TeXcolorgray 27 w(A.)35
b(J.)h(Po)n(wer)-5 b(.)35 b(Premonoidal)k(cate)o(gories)g(as)d(cate)o
(gories)j(with)e(algebraic)i(structure.)f(Theoretical)260
1207 y(Computer)24 b(Science.)g(278\(1-2\),)i(303-321.)p
0 TeXcolorgray 83 1393 a([18])p 0 TeXcolorgray 27 w(D.)g(Pra)o(witz.)h
(Ideas)h(and)g(results)h(in)e(proof)i(theory)-6 b(.)29
b(In)e Fv(Pr)l(oceedings)j(of)e(the)f(Second)i(Scandinavian)260
1506 y(Lo)o(gic)24 b(Symposium.)g Ft(J.-E.)f(Fenstad)h(\(ed\),)g
(North-Holland)i(1971,)e(237-309.)p 0 TeXcolorgray 83
1692 a([19])p 0 TeXcolorgray 27 w(E.)34 b(P)-10 b(.)34
b(Robinson.)j(Proof)e(Nets)h(for)f(Classical)i(Logic.)f(Journal)h(of)e
(Logic)h(and)g(Computation)i Fu(13)p Ft(,)260 1805 y(2003,)24
b(777-797.)p 0 TeXcolorgray 83 1992 a([20])p 0 TeXcolorgray
27 w(P)-10 b(.)22 b(Ruet)i(and)h(M.)e(Abrusci.)i(Non-commutati)n(v)o(e)
h(logic)g(I)d(:)h(the)h(multiplicati)n(v)o(e)h(fragment.)g(Annals)f(of)
260 2105 y(Pure)e(and)h(Applied)h(Logic)f(101\(1\):)h(29-64.)p
0 TeXcolorgray 83 2291 a([21])p 0 TeXcolorgray 27 w(H.)46
b(Schellinx.)j(The)f(Noble)g(Art)g(of)f(Linear)i(Decorating.)g(PhD)e
(Dissertation,)j(Uni)n(v)o(ersity)g(of)260 2404 y(Amsterdam,)23
b(1994.)p 0 TeXcolorgray 83 2590 a([22])p 0 TeXcolorgray
27 w(M.)f(E.)g(Szabo.)i(Polycate)o(gories.)i(Comm.)c(Alg.)h
Fu(3)g Ft(\(1975\),)i(663-689.)p 0 TeXcolorgray 83 2777
a([23])p 0 TeXcolorgray 27 w(P)-10 b(.)22 b(Selinger)-5
b(.)25 b(Control)g(cate)o(gories)i(and)d(duality:)j(on)d(the)g(cate)o
(gorical)j(semantics)f(of)e(the)g(lambda-mu)260 2890
y(calculus.)h(Mathematical)h(Structures)f(in)f(Computer)g(Science)g
(11\(2\):)h(207-260)h(\(2001\).)p 0 TeXcolorgray 83 3076
a([24])p 0 TeXcolorgray 27 w(C.)19 b(Urban)j(and)g(G.)d(M.)h(Bierman.)h
(Strong)h(Normalisation)i(of)d(Cut-Elimination)i(in)e(Classical)i
(Logic.)260 3189 y(Fundamenta)i(Informaticae)h Fu(45)p
Ft(,)d(\(2000\))j(123-155.)p 0 TeXcolorgray 83 3375 a([25])p
0 TeXcolorgray 27 w(C.)g(Urban.)i(Classical)h(Logic)f(and)g
(Computation.)h(PhD)d(Dissertation,)k(Uni)n(v)o(ersity)f(of)f
(Cambridge,)260 3488 y(2000.)p 0 TeXcolorgray 83 3675
a([26])p 0 TeXcolorgray 27 w(P)-10 b(.)41 b(W)-7 b(adler)i(.)44
b(Call-by-v)n(alue)i(is)d(dual)g(to)g(call-by-name.)j(In)d
Fv(Pr)l(oceedings)j(of)d(the)g(Eighth)h(A)m(CM)260 3787
y(SIGPLAN)34 b(International)41 b(Confer)m(ence)e(on)e(Functional)j(Pr)
l(o)o(gr)o(amming)o(,)d Ft(C.)f(Runciman)i(and)f(O.)260
3900 y(Shi)n(v)o(ers)24 b(\(eds\),)g(A)l(CM)e(Press)i(2003,)g(189-201.)
p 0 TeXcolorgray 1748 5712 a Fr(27)p 0 TeXcolorgray eop
end
%%Trailer

userdict /end-hook known{end-hook}if
%%EOF