Nominal/activities/cas09/Lec2.thy
author Christian Urban <urbanc@in.tum.de>
Thu, 13 Sep 2018 13:09:24 +0100
changeset 539 5eaec0f9980f
parent 415 f1be8028a4a9
permissions -rw-r--r--
updated

(***************************************************************** 
  
  Isabelle Tutorial
  -----------------

  1st June 2009, Beijing 

*)

theory Lec2
  imports "Main" 
begin

text {***********************************************************

  Automatic proofs again:

*}

inductive
 even :: "nat \<Rightarrow> bool"
where
  eZ[intro]:  "even 0"
| eSS[intro]: "even n \<Longrightarrow> even (Suc (Suc n))"

text {* 
  In the following two lemmas we have to indicate the induction,
  but the routine calculations can be done completely automatically
  by Isabelle's internal tools. 
*}

lemma even_twice:
  shows "even (n + n)"
by (induct n) (auto)

lemma even_add:
  assumes a: "even n"
  and     b: "even m"
  shows "even (n + m)"
using a b by (induct) (auto)

text {* 
  In the next proof it was crucial that we introduced
  the equation
   
     (Suc (Suc n) * m) = (m + m) + (n * m)
    
  because this allowed us to use the induction hypothesis
  and the previous two lemmas. *}

lemma even_mul:
  assumes a: "even n"
  shows "even (n * m)"
using a
proof (induct)
  case eZ
  show "even (0 * m)" by auto
next
  case (eSS n)
  have as: "even n" by fact
  have ih: "even (n * m)" by fact
  have "(Suc (Suc n) * m) = (m + m) + (n * m)" by simp
  moreover 
  have "even (m + m)" using even_twice by simp
  ultimately 
  show "even (Suc (Suc n) * m)" using ih even_add by (simp only:)
qed

text {* 
  This proof cannot be found by the internal tools, but
  Isabelle has an interface to external provers. This
  interface is called sledgehammer and it finds the 
  proof more or less automatically.

*}


lemma even_mul_auto:
  assumes a: "even n"
  shows "even (n * m)"
using a
apply(induct)
apply(metis eZ mult_is_0)
apply(metis even_add even_twice mult_Suc_right nat_add_assoc nat_mult_commute)
done

text {*
  The disadvantage of such proofs is that you do
  not know why they are true.
*}


text {***************************************************************** 

  Function Definitions
  --------------------

  Many functions over datatypes can be defined by recursion on the
  structure. For this purpose, Isabelle provides "fun". To use it one needs 
  to give a name for the function, its type, optionally some pretty-syntax 
  and then some equations defining the function. Like in "inductive",
  "fun" expects that more than one such equation is separated by "|".

  The Fibonacci function:

*}

fun
  fib :: "nat \<Rightarrow> nat"
where
  "fib 0 = 1"
| "fib (Suc 0) = 1"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

text {* The Ackermann function: *}

fun 
  ack :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
  "ack 0 m = Suc m"
| "ack (Suc n) 0 = ack n (Suc 0)"
| "ack (Suc n) (Suc m) = ack n (ack (Suc n) m)"

text {*
  Non-terminating functions can lead to inconsistencies.
*}

lemma
  assumes a: "f x = f x + (1::nat)"
  shows "False"
proof -
  from a have "0 = (1::nat)" by simp
  then show "False" by simp
qed

text {*
  If Isabelle cannot automatically prove termination,
  then you can give an explicit measure that establishes
  termination. For example a generalisation of the
  Fibonacci function to integers can be shown terminating
  
*}

function
  fib' :: "int \<Rightarrow> int"
where
  "n< -1 \<Longrightarrow> fib' n = fib' (n + 2) - fib' (n + 1)"
| "fib' -1 = (1::int)"
| "fib' 0 = (0::int)"
| "fib' 1 = (1::int)"
| "n > 1 \<Longrightarrow> fib' n = fib' (n - 1) + fib' (n - 2)"
  by (atomize_elim, presburger) (auto)

termination
  by (relation "measure (\<lambda>x. nat (\<bar>x\<bar>))")
     (simp_all add: zabs_def)


text {***************************************************************** 

  Datatypes
  ---------

  Datatypes can be defined in Isabelle as follows: we have to provide the name 
  of the datatype and list its type-constructors. Each type-constructor needs 
  to have the information about the types of its arguments, and optionally 
  can also contain some information about pretty syntax. For example, we write
  "[]" for Nil and ":::" for Cons.

*}

datatype 'a mylist =
  MyNil                   ("[]")
| MyCons "'a" "'a mylist" ("_ ::: _" 65)

text {*
  You can easily define functions over the structure of datatypes.
*}

fun
  myappend :: "'a mylist \<Rightarrow> 'a mylist \<Rightarrow> 'a mylist" ("_ @@ _" 65)
where
  "[] @@ xs = xs"
| "(y:::ys) @@ xs = y:::(ys @@ xs)"

fun
  myrev :: "'a mylist \<Rightarrow> 'a mylist"
where
  "myrev [] = []"
| "myrev (x:::xs) = (myrev xs) @@ (x:::[])"

text {*****************************************************************

  Exercise: Prove the following fact about append and reversal.

*}

lemma myrev_append:
  shows "myrev (xs @@ ys) = (myrev ys) @@ (myrev xs)"
proof (induct xs)
  case MyNil
  show "myrev ([] @@ ys) = myrev ys @@ myrev []" sorry
next
  case (MyCons x xs)
  have ih: "myrev (xs @@ ys) = myrev ys @@ myrev xs" by fact
  
  show "myrev ((x:::xs) @@ ys) = myrev ys @@ myrev (x:::xs)" sorry
qed
















text {* auxiliary lemmas *}

lemma mynil_append[simp]:
  shows "xs @@ [] = xs"
by (induct xs) (auto)

lemma myappend_assoc[simp]: 
  "(xs @@ ys) @@ zs = xs @@ (ys @@ zs)"
by (induct xs) (auto)

lemma 
  shows "myrev (xs @@ ys) = (myrev ys) @@ (myrev xs)"
by (induct xs) (auto)

text {***************************************************************** 

  A WHILE Language:

  Arithmetic Expressions, Boolean Expressions, Commands
  -----------------------------------------------------

*}

types memory = "nat \<Rightarrow> nat"

datatype aexp = 
    C nat
  | X nat
  | Op1 "nat \<Rightarrow> nat" aexp
  | Op2 "nat \<Rightarrow> nat \<Rightarrow> nat" aexp aexp

datatype bexp = 
    TRUE
  | FALSE
  | ROp  "nat \<Rightarrow> nat \<Rightarrow> bool" aexp aexp
  | NOT bexp
  | AND bexp bexp  
  | OR  bexp bexp

datatype cmd = 
    SKIP                    
  | ASSIGN nat aexp      ("_ ::= _ " 60)
  | SEQ    cmd cmd       ("_; _" [60, 60] 10)
  | COND   bexp cmd cmd  ("IF _ THEN _ ELSE _" 60)
  | WHILE  bexp cmd      ("WHILE _ DO _" 60)

text {***************************************************************** 

  Big-step Evaluation Semantics 
  -----------------------------

*}

inductive
  evala :: "aexp \<Rightarrow> memory \<Rightarrow> nat \<Rightarrow> bool"  ("'(_,_') \<longrightarrow>a _" [100,100] 50)
where
  C:   "(C n, m) \<longrightarrow>a n"
| X:   "(X i, m) \<longrightarrow>a m i" 
| Op1: "(e, m) \<longrightarrow>a n \<Longrightarrow> (Op1 f e, m) \<longrightarrow>a (f n)"
| Op2: "\<lbrakk>(e0, m) \<longrightarrow>a n0;  (e1, m)  \<longrightarrow>a n1\<rbrakk> \<Longrightarrow> (Op2 f e0 e1, m) \<longrightarrow>a f n0 n1"

inductive
  evalb :: "bexp \<Rightarrow> memory \<Rightarrow> bool \<Rightarrow> bool"  ("'(_,_') \<longrightarrow>b _" [100,100] 50)
where
  TRUE:  "(TRUE, m) \<longrightarrow>b True"
| FALSE: "(FALSE, m) \<longrightarrow>b False" 
| ROp:   "\<lbrakk>(e1, m) \<longrightarrow>a n1; (e2, m) \<longrightarrow>a n2\<rbrakk> \<Longrightarrow> (ROp f e1 e2, m) \<longrightarrow>b (f n1 n2)" 
| NOT:   "(e, m) \<longrightarrow>b b \<Longrightarrow> (NOT e, m) \<longrightarrow>b (Not b)"
| AND:   "\<lbrakk>(e1, m) \<longrightarrow>b b1; (e2, m) \<longrightarrow>b b2\<rbrakk> \<Longrightarrow> (AND e1 e2, m) \<longrightarrow>b (b1 \<and> b2)"
| OR:    "\<lbrakk>(e1, m) \<longrightarrow>b b1; (e2, m) \<longrightarrow>b b2\<rbrakk> \<Longrightarrow> (OR e1 e2, m) \<longrightarrow>b (b1 \<or> b2)"

inductive
  evalc :: "cmd \<Rightarrow> memory \<Rightarrow> memory \<Rightarrow> bool" ("'(_,_') \<longrightarrow>c _" [0,0,60] 60)
where
  SKIP:    "(SKIP, m) \<longrightarrow>c m"
| ASSIGN:  "(a, m) \<longrightarrow>a n \<Longrightarrow> (x::=a, m) \<longrightarrow>c m(x:=n)"
| SEQ:     "\<lbrakk>(c0, m) \<longrightarrow>c m'; (c1, m') \<longrightarrow>c m''\<rbrakk> \<Longrightarrow> (c0; c1, m) \<longrightarrow>c m''"
| IFTrue:  "\<lbrakk>(e, m) \<longrightarrow>b True; (c0, m) \<longrightarrow>c m'\<rbrakk> \<Longrightarrow> (IF e THEN c0 ELSE c1, m) \<longrightarrow>c m'"
| IFFalse: "\<lbrakk>(e, m) \<longrightarrow>b False; (c1, m) \<longrightarrow>c m'\<rbrakk> \<Longrightarrow> (IF e THEN c0 ELSE c1, m) \<longrightarrow>c m'"
| WHILEFalse: "(e, m) \<longrightarrow>b False \<Longrightarrow> (WHILE e DO c,m) \<longrightarrow>c m"
| WHILETrue:  "\<lbrakk>(e, m) \<longrightarrow>b True; (c,m) \<longrightarrow>c m'; (WHILE e DO c, m') \<longrightarrow>c m''\<rbrakk>
               \<Longrightarrow> (WHILE e DO c, m) \<longrightarrow>c m''"

lemmas evala.intros[intro] evalb.intros[intro] evalc.intros[intro]

text {***************************************************************** 

  Machine Instructions
  --------------------

*}

datatype instr = 
    JPFZ  "nat"               (* JUMP forward n steps, if top of stack is False *)
  | JPB   "nat"               (* JUMP backward n steps *)
  | FETCH "nat"               (* move memory to top of stack *)  
  | STORE "nat"               (* move top of stack to memory *)
  | PUSH  "nat"               (* push to stack *) 
  | OPU   "nat \<Rightarrow> nat"        (* pop one from stack and apply f *)
  | OPB   "nat \<Rightarrow> nat \<Rightarrow> nat" (* pop two from stack and apply f *)

text {***************************************************************** 

  Booleans 'as' Zero and One
  --------------------------

*}

fun
  WRAP::"bool\<Rightarrow>nat"
where
  "WRAP True = Suc 0"
| "WRAP False = 0"

fun
  MNot::"nat \<Rightarrow> nat"
where
  "MNot 0 = 1"
| "MNot (Suc 0) = 0"

fun
  MAnd::"nat \<Rightarrow> nat \<Rightarrow> nat"
where
  "MAnd 0 x = 0"
| "MAnd x 0 = 0"
| "MAnd (Suc 0) (Suc 0) = 1"

fun
  MOr::"nat \<Rightarrow> nat \<Rightarrow> nat"
where
  "MOr 0 0 = 0"
| "MOr (Suc 0) x = 1"
| "MOr x (Suc 0) = 1"

lemma MNot_WRAP:
  "MNot (WRAP b) = WRAP (Not b)"
by (cases b) (auto)

lemma MAnd_WRAP:
  "MAnd (WRAP b1) (WRAP b2) = WRAP (b1 \<and> b2)"
by (cases b1, auto) (cases b2, simp_all)


lemma MOr_WRAP:
  "MOr (WRAP b1) (WRAP b2) = WRAP (b1 \<or> b2)"
by (cases b1, auto) (cases b2, simp_all)

lemmas WRAP_lems = MNot_WRAP MAnd_WRAP MOr_WRAP

text {***************************************************************** 

  Compiler Functions
  ------------------

*}

fun
 compa
where
  "compa (C n) = [PUSH n]"
| "compa (X l) = [FETCH l]"
| "compa (Op1 f e) = (compa e) @ [OPU f]"
| "compa (Op2 f e1 e2) = (compa e1) @ (compa e2) @ [OPB f]"

fun
 compb
where
  "compb (TRUE) = [PUSH 1]"
| "compb (FALSE) = [PUSH 0]"
| "compb (ROp f e1 e2) = (compa e1) @ (compa e2) @ [OPB (\<lambda>x y. WRAP (f x y))]"
| "compb (NOT e) = (compb e) @ [OPU MNot]"
| "compb (AND e1 e2) = (compb e1) @ (compb e2) @ [OPB MAnd]"
| "compb (OR e1 e2) = (compb e1) @ (compb e2) @ [OPB MOr]"

fun
  compc :: "cmd \<Rightarrow> instr list"
where
  "compc SKIP = []"
| "compc (x::=a) = (compa a) @ [STORE x]"
| "compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =
    (compb b) @ [JPFZ (length(compc c1) + 2)] @ compc c1 @   
    [PUSH 0, JPFZ (length(compc c2))] @ compc c2" 
| "compc (WHILE b DO c) = 
    (compb b) @
    [JPFZ (length(compc c) + 1)] @ compc c @
    [JPB (length(compc c) + length(compb b)+1)]"

value "compc SKIP"
value "compc (SKIP; SKIP)"
value "compa (Op2 (op +) (C 2) (C 3))"
value "compb (ROp (op <) (C 2) (C 3))"
value "compc (IF (ROp (op <) (C 2) (C 3)) THEN SKIP ELSE SKIP)"
value "compc (WHILE (ROp (op <) (C 2) (C 3)) DO SKIP)"
value "compc (x::= C 0; WHILE (ROp (op <) (X x) (C 3)) DO (x::= (Op2 (op +) (X x) (C 1))))"

text {***************************************************************** 

  Machine Execution
  -----------------

*}

types instrs = "instr list"
types stack = "nat list"

abbreviation 
 "rtake i xs \<equiv> rev (take i xs)"

inductive
  step :: "instrs \<Rightarrow> instrs \<Rightarrow> stack \<Rightarrow> memory \<Rightarrow> 
           instrs \<Rightarrow> instrs \<Rightarrow> stack \<Rightarrow> memory \<Rightarrow> bool" ("'(_,_,_,_') \<longrightarrow>m '(_,_,_,_')")
where
    "(PUSH n#p, q, s, m) \<longrightarrow>m (p, PUSH n#q, n#s, m)"
  | "(FETCH i#p, q, s, m) \<longrightarrow>m (p, FETCH i#q, m i#s, m)"
  | "(OPU f#p, q, n#s, m) \<longrightarrow>m (p, OPU f#q, f n#s, m)"
  | "(OPB f#p, q, n1#n2#s, m) \<longrightarrow>m (p, OPB f#q, f n2 n1#s, m)"
  | "(STORE i#p, q, n#s, m) \<longrightarrow>m (p, STORE i#q, s, m(i:=n))"
  | "(JPFZ i#p, q, Suc 0#s, m) \<longrightarrow>m (p, JPFZ i#q, s, m)"
  | "i\<le>length p\<Longrightarrow>(JPFZ i#p, q, 0#s, m) \<longrightarrow>m (drop i p, (rtake i p) @ (JPFZ i#q), s, m)"
  | "i\<le>length q\<Longrightarrow>(JPB i#p, q, s, m) \<longrightarrow>m ((rtake i q) @ (JPB i#p), drop i q, s, m)"

lemmas step.intros[intro]

inductive_cases step_elim[elim]:
   "(p,q,s,m) \<longrightarrow>m (p',q',s',m')"

lemma exec_simp:
  shows "(instr#p, q, s, m) \<longrightarrow>m (p', q', s', m') =
    (case instr of
        PUSH n \<Rightarrow> (p' = p \<and> q' = instr#q \<and> s' = n#s \<and> m' = m)
      | FETCH i \<Rightarrow> (p' = p \<and> q' = instr#q \<and> s' = m i#s \<and> m' = m)     
      | OPU f \<Rightarrow> (\<exists>n si. p' = p \<and> q' = instr#q \<and> s = n#si \<and> s' = f n#si \<and> m' = m) 
      | OPB f \<Rightarrow> (\<exists>n1 n2 si. p' = p \<and> q' = instr#q \<and> s = n1#n2#si \<and> s' = f n2 n1#si \<and> m' = m) 
      | STORE i \<Rightarrow> (\<exists>n si. p' = p \<and> q' = instr#q \<and> s = n#si \<and> s' = si \<and> m' = m(i:=n))
      | JPFZ i \<Rightarrow> (\<exists>si. (p' = p \<and> q' = instr#q \<and> s = Suc 0#si \<and> s' = si \<and> m' = m) \<or>
                        (i\<le> length p \<and> p' = (drop i p) \<and> q' = (rev (take i p))@(instr#q) 
                         \<and> s = 0#si \<and> s' = si \<and> m' = m )) 
      | JPB i \<Rightarrow> (i \<le> length q \<and> p' = (rtake i q)@(JPB i#p) \<and> q' = drop i q \<and> s' = s \<and> m' = m))"
by (auto split: instr.split_asm split_if_asm)

inductive
  steps :: "instrs \<Rightarrow> instrs \<Rightarrow> stack \<Rightarrow> memory \<Rightarrow> 
            instrs \<Rightarrow> instrs \<Rightarrow> stack \<Rightarrow> memory \<Rightarrow> bool" ("'(_,_,_,_') \<longrightarrow>m* '(_,_,_,_')")
where
  refl: "(p,q,s,m) \<longrightarrow>m* (p,q,s,m)"
| step: "\<lbrakk>(p1,q1,s1,m1) \<longrightarrow>m (p2,q2,s2,m2); (p2,q2,s2,m2) \<longrightarrow>m* (p3,q3,s3,m3)\<rbrakk> 
         \<Longrightarrow> (p1,q1,s1,m1) \<longrightarrow>m* (p3,q3,s3,m3)"

lemmas steps.step[intro]
lemmas steps.refl[simp]

inductive_cases steps_elim[elim]:
  "(p,q,s,m) \<longrightarrow>m* (p',q',s',m')"

lemma steps_trans:
  assumes a: "(p1,q1,s1,m1) \<longrightarrow>m* (p2,q2,s2,m2)" 
  and     b: "(p2,q2,s2,m2) \<longrightarrow>m* (p3,q3,s3,m3)" 
  shows "(p1,q1,s1,m1) \<longrightarrow>m* (p3,q3,s3,m3)"
using a b by (induct) (auto)

lemma steps_simp:
  shows "(i#p,q,s,m) \<longrightarrow>m* (p',q',s',m') = 
        ((i#p,q,s,m) = (p',q',s',m') \<or> 
         (\<exists>pi qi si mi. (i#p,q,s,m) \<longrightarrow>m (pi,qi,si,mi) \<and> (pi,qi,si,mi) \<longrightarrow>m* (p',q',s',m')))"
by (auto)

lemma compa_first_attempt:
  assumes a: "(e, m) \<longrightarrow>a n"
  shows "(compa e, [], [], m) \<longrightarrow>m* ([], rev (compa e), [n], m)"
using a
proof (induct)
  case (C n m)
  show "(compa (C n),[],[],m) \<longrightarrow>m* ([],rev (compa (C n)),[n],m)" 
    sorry
next
  case (X i m)
  show "(compa (X i),[],[],m) \<longrightarrow>m* ([],rev (compa (X i)),[m i],m)" 
    sorry
next
  case (Op1 e m n f)
  have as: "(e, m) \<longrightarrow>a n" by fact
  have ih: "(compa e,[],[],m) \<longrightarrow>m* ([],rev (compa e),[n],m)" by fact
  show "(compa (Op1 f e),[],[],m) \<longrightarrow>m* ([],rev (compa (Op1 f e)),[f n],m)" 
    using ih sorry
next
  case (Op2 e0 m n0 e1 n1 f)
  have as1: "(e0, m) \<longrightarrow>a n0" by fact
  have as2: "(e1, m) \<longrightarrow>a n1" by fact
  have ih1: "(compa e0,[],[],m) \<longrightarrow>m* ([],rev (compa e0),[n0],m)" by fact
  have ih2: "(compa e1,[],[],m) \<longrightarrow>m* ([],rev (compa e1),[n1],m)" by fact
  show "(compa (Op2 f e0 e1),[],[],m) \<longrightarrow>m* ([],rev (compa (Op2 f e0 e1)),[f n0 n1],m)" 
    using ih1[THEN steps_trans] ih2[THEN steps_trans] 
    sorry
qed















lemma compa_aux:
  assumes a: "(e, m) \<longrightarrow>a n"
  shows "(compa e@p, q, s, m) \<longrightarrow>m* (p, rev (compa e)@q, n#s, m)"
using a
proof (induct arbitrary: p q s)
  case (C n m p q s)
  show "(compa (C n)@p,q,s,m) \<longrightarrow>m* (p,rev (compa (C n))@q,n#s,m)" 
    by (simp add: steps_simp exec_simp)
next
  case (X i m p q s)
  show "(compa (X i)@p,q,s,m) \<longrightarrow>m* (p,rev (compa (X i))@q,m i#s,m)" 
    by (simp add: steps_simp exec_simp)
next
  case (Op1 e m n f p q s)
  have as: "(e, m) \<longrightarrow>a n" by fact
  have ih: "\<And>p q s. (compa e@p,q,s,m) \<longrightarrow>m* (p,rev (compa e)@q,n#s,m)" by fact
  show "(compa (Op1 f e)@p,q,s,m) \<longrightarrow>m* (p,rev (compa (Op1 f e))@q,f n#s,m)" 
    using ih[THEN steps_trans] by (simp add: steps_simp exec_simp)
next
  case (Op2 e0 m n0 e1 n1 f p q s)
  have as1: "(e0, m) \<longrightarrow>a n0" by fact
  have as2: "(e1, m) \<longrightarrow>a n1" by fact
  have ih1: "\<And>p q s. (compa e0@p,q,s,m) \<longrightarrow>m* (p,rev (compa e0)@q,n0#s,m)" by fact
  have ih2: "\<And>p q s. (compa e1@p,q,s,m) \<longrightarrow>m* (p,rev (compa e1)@q,n1#s,m)" by fact
  show "(compa (Op2 f e0 e1)@p,q,s,m) \<longrightarrow>m* (p,rev (compa (Op2 f e0 e1))@q,f n0 n1#s,m)" 
    using ih1[THEN steps_trans] ih2[THEN steps_trans] 
    by (simp add: steps_simp exec_simp)
qed


text {*
  After the fact I constructed the detailed proof, I 
  could guide Isabelle to find the proof automatically.

  *B U T    T H A T    I S   C H E A T I N G!!!*
*}

lemma compa_aux_cheating:
  assumes a: "(e,m) \<longrightarrow>a n"
  shows "(compa e@p,q,s,m) \<longrightarrow>m* (p,rev (compa e)@q,n#s,m)"
using a
by (induct arbitrary: p q s)
   (force intro: steps_trans simp add: steps_simp exec_simp)+


lemma compb_aux_cheating:
  assumes a: "(e,m) \<longrightarrow>b b"
  shows "(compb e@p,q,s,m) \<longrightarrow>m* (p,rev (compb e)@q,(WRAP b)#s,m)"
using a
by (induct arbitrary: p q s)
   (force intro: compa_aux steps_trans 
          simp add: steps_simp exec_simp WRAP_lems)+

text {*
  
  Exercise: After you know the lemma is provable,
  try to give all details.

*}

lemma compb_aux:
  assumes a: "(e, m) \<longrightarrow>b b"
  shows "(compb e@p, q, s, m) \<longrightarrow>m* (p, rev (compb e)@q, WRAP b#s, m)"
using a
proof (induct arbitrary: p q s)
  case (TRUE m p q s)
  show "(compb TRUE@p,q,s,m) \<longrightarrow>m* (p,rev (compb TRUE)@q,WRAP True#s,m)"
    sorry
next
  case (FALSE m p q s)
   show "(compb FALSE@p,q,s,m) \<longrightarrow>m* (p,rev (compb FALSE)@q,WRAP False#s,m)"
    sorry
next
  case (ROp e1 m n1 e2 n2 f p q s)
  have as1: "(e1, m) \<longrightarrow>a n1" by fact
  have as2: "(e2, m) \<longrightarrow>a n2" by fact
  show "(compb (ROp f e1 e2)@p,q,s,m) 
          \<longrightarrow>m* (p,rev (compb (ROp f e1 e2))@q,WRAP (f n1 n2)#s,m)"
    using as1 as2 sorry
next
  case (NOT e m b p q s)
  have ih: "\<And>p q s. (compb e@p,q,s,m) \<longrightarrow>m* (p,rev (compb e)@q,WRAP b#s,m)" by fact
  show "(compb (NOT e)@p,q,s,m) \<longrightarrow>m* (p,rev (compb (NOT e))@q,WRAP (\<not>b)#s,m)"
    using ih[THEN steps_trans] 
    sorry
next
  case (AND e1 m b1 e2 b2 p q s)
  have ih1: "\<And>p q s. (compb e1@p,q,s,m) \<longrightarrow>m* (p,rev (compb e1)@q,WRAP b1#s,m)" by fact
  have ih2: "\<And>p q s. (compb e2@p,q,s,m) \<longrightarrow>m* (p,rev (compb e2)@q,WRAP b2#s,m)" by fact
  show "(compb (AND e1 e2)@p,q,s,m) \<longrightarrow>m* (p,rev (compb (AND e1 e2))@q,WRAP (b1 \<and> b2)#s,m)"
    using ih1[THEN steps_trans] ih2[THEN steps_trans]
    sorry
next
  case (OR e1 m b1 e2 b2 p q s)
  have ih1: "\<And>p q s. (compb e1@p,q,s,m) \<longrightarrow>m* (p,rev (compb e1)@q,WRAP b1#s,m)" by fact
  have ih2: "\<And>p q s. (compb e2@p,q,s,m) \<longrightarrow>m* (p,rev (compb e2)@q,WRAP b2#s,m)" by fact
  show "(compb (OR e1 e2)@p,q,s,m) \<longrightarrow>m* (p,rev (compb (OR e1 e2))@q,WRAP (b1 \<or> b2)#s,m)"
    using ih1[THEN steps_trans] ih2[THEN steps_trans]
    sorry
qed

text {*
  
  Also the detailed proof of this lemma is left as an exercise.

*}

lemma compc_aux_cheating:
  assumes a: "(c,m) \<longrightarrow>c m'"
  shows "(compc c@p,q,s,m) \<longrightarrow>m* (p,rev (compc c)@q,s,m')"
using a
by (induct arbitrary: p q)
   (force intro: compa_aux compb_aux_cheating steps_trans 
            simp add: steps_simp exec_simp)+

end