(***************************************************************** Isabelle Tutorial ----------------- 2st June 2009, Beijing *)theory Lec3 imports "Main" begindefinition lang_seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ; _")where "L1 ; L2 = {s1@s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"fun lang_pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _")where "L \<up> 0 = {[]}"| "L \<up> (Suc i) = L ; (L \<up> i)"definition lang_star :: "string set \<Rightarrow> string set" ("_\<star>")where "L\<star> \<equiv> \<Union>i. (L \<up> i)" lemma lang_seq_cases: shows "(s \<in> L1 ; L2) = (\<exists>s1 s2. s = s1@s2 \<and> s1\<in>L1 \<and> s2\<in>L2)"by (simp add: lang_seq_def)lemma lang_seq_union: shows "(L1 \<union> L2);L3 = (L1;L3) \<union> (L2;L3)" and "L1;(L2 \<union> L3) = (L1;L2) \<union> (L1;L3)"unfolding lang_seq_def by autolemma lang_seq_empty: shows "{[]} ; L = L" and "L ; {[]} = L"unfolding lang_seq_def by autolemma lang_seq_assoc: shows "(L1 ; L2) ; L3 = L1 ; (L2 ; L3)"by (simp add: lang_seq_def Collect_def mem_def expand_fun_eq) (metis append_assoc)lemma silly: shows "[] \<in> L \<up> 0"by simplemma lang_star_empty: shows "{[]} \<union> (L\<star>) = L\<star>"unfolding lang_star_def by (auto intro: silly)lemma lang_star_in_empty: shows "[] \<in> L\<star>"unfolding lang_star_def by (auto intro: silly)lemma lang_seq_subseteq: shows "L \<subseteq> (L'\<star>) ; L" and "L \<subseteq> L ; (L'\<star>)"proof - have "L = {[]} ; L" using lang_seq_empty by simp also have "\<dots> \<subseteq> ({[]} ; L) \<union> ((L'\<star>) ; L)" by auto also have "\<dots> = ({[]} \<union> (L'\<star>)) ; L" by (simp add: lang_seq_union[symmetric]) also have "\<dots> = (L'\<star>); L" using lang_star_empty by simp finally show "L \<subseteq> (L'\<star>); L" by simpnext show "L \<subseteq> L ; (L'\<star>)" sorryqedlemma lang_star_subseteq: shows "L ; (L\<star>) \<subseteq> (L\<star>)"unfolding lang_star_def lang_seq_defapply(auto)apply(rule_tac x="Suc xa" in exI)apply(auto simp add: lang_seq_def)done(* regular expressions *)datatype rexp = EMPTY| CHAR char| SEQ rexp rexp| ALT rexp rexp| STAR rexpfun L :: "rexp \<Rightarrow> string set"where "L(EMPTY) = {[]}"| "L(CHAR c) = {[c]}"| "L(SEQ r1 r2) = (L r1) ; (L r2)"| "L(ALT r1 r2) = (L r1) \<union> (L r2)"| "L(STAR r) = (L r)\<star>"definition Ls :: "rexp set \<Rightarrow> string set"where "Ls R = (\<Union>r\<in>R. (L r))"lemma shows "Ls {} = {}"unfolding Ls_def by simplemma Ls_union: "Ls (R1 \<union> R2) = (Ls R1) \<union> (Ls R2)"unfolding Ls_def by autofunction dagger :: "rexp \<Rightarrow> char \<Rightarrow> rexp set" ("_ \<dagger> _")where r1: "(EMPTY) \<dagger> c = {}"| r2: "(CHAR c') \<dagger> c = (if c = c' then {EMPTY} else {})"| r3: "(ALT r1 r2) \<dagger> c = r1 \<dagger> c \<union> r2 \<dagger> c"| r4: "(SEQ EMPTY r2) \<dagger> c = r2 \<dagger> c" | r5: "(SEQ (CHAR c') r2) \<dagger> c = (if c= c' then {r2} else {})"| r6: "(SEQ (SEQ r11 r12) r2) \<dagger> c = (SEQ r11 (SEQ r12 r2)) \<dagger> c" | r7: "(SEQ (ALT r11 r12) r2) \<dagger> c = (SEQ r11 r2) \<dagger> c \<union> (SEQ r12 r2) \<dagger> c" | r8: "(SEQ (STAR r1) r2) \<dagger> c = r2 \<dagger> c \<union> {SEQ (SEQ r' (STAR r1)) r2 | r'. r' \<in> r1 \<dagger> c}" | r9: "(STAR r) \<dagger> c = {SEQ r' (STAR r) | r'. r' \<in> r \<dagger> c}"by (pat_completeness) (auto)termination dagger sorrydefinition OR :: "bool set \<Rightarrow> bool"where "OR S \<equiv> (\<exists>b\<in>S. b)"function matcher :: "rexp \<Rightarrow> string \<Rightarrow> bool" ("_ ! _")where s01: "EMPTY ! s = (s =[])"| s02: "CHAR c ! s = (s = [c])" | s03: "ALT r1 r2 ! s = (r1 ! s \<or> r2 ! s)"| s04: "STAR r ! [] = True"| s05: "STAR r ! c#s = (False \<or> OR {SEQ (r') (STAR r)!s | r'. r' \<in> r \<dagger> c})"| s06: "SEQ r1 r2 ! [] = (r1 ! [] \<and> r2 ! [])"| s07: "SEQ EMPTY r2 ! (c#s) = (r2 ! c#s)"| s08: "SEQ (CHAR c') r2 ! (c#s) = (if c'=c then r2 ! s else False)" | s09: "SEQ (SEQ r11 r12) r2 ! (c#s) = (SEQ r11 (SEQ r12 r2) ! c#s)"| s10: "SEQ (ALT r11 r12) r2 ! (c#s) = ((SEQ r11 r2) ! (c#s) \<or> (SEQ r12 r2) ! (c#s))"| s11: "SEQ (STAR r1) r2 ! (c#s) = (r2 ! (c#s) \<or> OR {SEQ r' (SEQ (STAR r1) r2) ! s | r'. r' \<in> r1 \<dagger> c})"by (pat_completeness) (auto)termination matcher sorrylemma "(CHAR a) ! [a]" by autolemma "\<not>(CHAR a) ! [a,a]" by autolemma "(STAR (CHAR a)) ! []" by autolemma "(STAR (CHAR a)) ! [a,a]" by (auto simp add: OR_def)lemma "(SEQ (CHAR a) (SEQ (STAR (CHAR b)) (CHAR c))) ! [a,b,b,b,c]" by (auto simp add: OR_def) lemma holes: assumes a: "Ls (r \<dagger> c) = {s. c#s \<in> L r}" shows "Ls (r \<dagger> c) ; L (STAR r) = {s''. c#s'' \<in> L (STAR r)}"proof - have "Ls (r \<dagger> c) ; L (STAR r) = {s. c#s \<in> L r} ; L (STAR r)" by (simp add: a) also have "\<dots> = {s'. c#s' \<in> (L r ; L (STAR r))}" sorry also have "\<dots> = {s''. c#s'' \<in> L (STAR r)}" sorry finally show "Ls (r \<dagger> c) ; L (STAR r) = {s''. c#s'' \<in> L (STAR r)}" by simpqedlemma eq: shows "Ls (STAR r) \<dagger> c = (Ls (r \<dagger> c) ; L (STAR r))"proof show "Ls STAR r \<dagger> c \<subseteq> Ls r \<dagger> c ; L (STAR r)" by (auto simp add: lang_star_def lang_seq_def Ls_def) (blast)next show "Ls r \<dagger> c ; L (STAR r) \<subseteq> Ls STAR r \<dagger> c" apply(auto simp add: lang_star_def lang_seq_def Ls_def) apply(rule_tac x="SEQ xa (STAR r)" in exI) apply(simp add: lang_star_def lang_seq_def) apply(blast) doneqed(* correctness of the matcher *)lemma dagger_holes: "Ls (r \<dagger> c) = {s. c#s \<in> L r}"proof (induct rule: dagger.induct) case (1 c) show "Ls (EMPTY \<dagger> c) = {s. c#s \<in> L EMPTY}" by (simp add: Ls_def)next case (2 c' c) show "Ls (CHAR c') \<dagger> c = {s. c#s \<in> L (CHAR c')}" proof (cases "c=c'") assume "c=c'" then show "Ls (CHAR c') \<dagger> c = {s. c#s \<in> L (CHAR c')}" by (simp add: Ls_def) next assume "c\<noteq>c'" then show "Ls (CHAR c') \<dagger> c = {s. c#s \<in> L (CHAR c')}" by (simp add: Ls_def) qednext case (3 r1 r2 c) have ih1: "Ls r1 \<dagger> c = {s. c#s \<in> L r1}" by fact have ih2: "Ls r2 \<dagger> c = {s. c#s \<in> L r2}" by fact show "Ls (ALT r1 r2) \<dagger> c = {s. c#s \<in> L (ALT r1 r2)}" by (auto simp add: Ls_union ih1 ih2)next case (4 r2 c) have ih: "Ls r2 \<dagger> c = {s. c#s \<in> L r2}" by fact show "Ls (SEQ EMPTY r2) \<dagger> c = {s. c#s \<in> L (SEQ EMPTY r2)}" by (simp add: ih lang_seq_empty)next case (5 c' r2 c) show "Ls (SEQ (CHAR c') r2) \<dagger> c = {s. c#s \<in> L (SEQ (CHAR c') r2)}" proof (cases "c=c'") assume "c=c'" then show "Ls (SEQ (CHAR c') r2) \<dagger> c = {s. c#s \<in> L (SEQ (CHAR c') r2)}" by (simp add: Ls_def lang_seq_def) next assume "c\<noteq>c'" then show "Ls (SEQ (CHAR c') r2) \<dagger> c = {s. c#s \<in> L (SEQ (CHAR c') r2)}" by (simp add: Ls_def lang_seq_def) qednext case (6 r11 r12 r2 c) have ih: "Ls (SEQ r11 (SEQ r12 r2)) \<dagger> c = {s. c#s \<in> L (SEQ r11 (SEQ r12 r2))}" by fact show "Ls (SEQ (SEQ r11 r12) r2) \<dagger> c = {s. c # s \<in> L (SEQ (SEQ r11 r12) r2)}" by (simp add: ih lang_seq_assoc)next case (7 r11 r12 r2 c) have ih1: "Ls (SEQ r11 r2) \<dagger> c = {s. c#s \<in> L (SEQ r11 r2)}" by fact have ih2: "Ls (SEQ r12 r2) \<dagger> c = {s. c#s \<in> L (SEQ r12 r2)}" by fact show "Ls (SEQ (ALT r11 r12) r2) \<dagger> c = {s. c#s \<in> L (SEQ (ALT r11 r12) r2)}" by (auto simp add: Ls_union ih1 ih2 lang_seq_union)next case (8 r1 r2 c) have ih1: "Ls r2 \<dagger> c = {s. c#s \<in> L r2}" by fact have ih2: "Ls r1 \<dagger> c = {s. c#s \<in> L r1}" by fact show "Ls (SEQ (STAR r1) r2) \<dagger> c = {s. c#s \<in> L (SEQ (STAR r1) r2)}" sorrynext case (9 r c) have ih: "Ls r \<dagger> c = {s. c#s \<in> L r}" by fact show "Ls (STAR r) \<dagger> c = {s. c#s \<in> L (STAR r)}" by (simp only: eq holes[OF ih] del: r9)qed(* correctness of the matcher *)lemma macher_holes: shows "r ! s \<Longrightarrow> s \<in> L r" and "\<not> r ! s \<Longrightarrow> s \<notin> L r"proof (induct rule: matcher.induct) case (1 s) { case 1 have "EMPTY ! s" by fact then show "s \<in> L EMPTY" by simp next case 2 have "\<not> EMPTY ! s" by fact then show "s \<notin> L EMPTY" by simp }next case (2 c s) { case 1 have "CHAR c ! s" by fact then show "s \<in> L (CHAR c)" by simp next case 2 have "\<not> CHAR c ! s" by fact then show "s \<notin> L (CHAR c)" by simp }next case (3 r1 r2 s) have ih1: "r1 ! s \<Longrightarrow> s \<in> L r1" by fact have ih2: "\<not> r1 ! s \<Longrightarrow> s \<notin> L r1" by fact have ih3: "r2 ! s \<Longrightarrow> s \<in> L r2" by fact have ih4: "\<not> r2 ! s \<Longrightarrow> s \<notin> L r2" by fact { case 1 have "ALT r1 r2 ! s" by fact then show "s \<in> L (ALT r1 r2)" by (auto simp add: ih1 ih3) next case 2 have "\<not> ALT r1 r2 ! s" by fact then show "s \<notin> L (ALT r1 r2)" by (simp add: ih2 ih4) }next case (4 r) { case 1 have "STAR r ! []" by fact then show "[] \<in> L (STAR r)" by (simp add: lang_star_in_empty) next case 2 have "\<not> STAR r ! []" by fact then show "[] \<notin> L (STAR r)" by (simp) }next case (5 r c s) have ih1: "\<And>rx. SEQ rx (STAR r) ! s \<Longrightarrow> s \<in> L (SEQ rx (STAR r))" by fact have ih2: "\<And>rx. \<not>SEQ rx (STAR r) ! s \<Longrightarrow> s \<notin> L (SEQ rx (STAR r))" by fact { case 1 have as: "STAR r ! c#s" by fact then have "\<exists>r' \<in> r \<dagger> c. SEQ r' (STAR r) ! s" by (auto simp add: OR_def) then obtain r' where imp1: "r' \<in> r \<dagger> c" and imp2: "SEQ r' (STAR r) ! s" by blast from imp2 have "s \<in> L (SEQ r' (STAR r))" using ih1 by simp then have "s \<in> L r' ; L (STAR r)" by simp then have "c#s \<in> {[c]} ; (L r' ; L (STAR r))" by (simp add: lang_seq_def) also have "\<dots> \<subseteq> L r ; L (STAR r)" using imp1 apply(auto simp add: lang_seq_def) sorry also have "\<dots> \<subseteq> L (STAR r)" by (simp add: lang_star_subseteq) finally show "c#s \<in> L (STAR r)" by simp next case 2 have as: "\<not> STAR r ! c#s" by fact then have "\<forall>r'\<in> r \<dagger> c. \<not> (SEQ r' (STAR r) ! s)" by (auto simp add: OR_def) then have "\<forall>r'\<in> r \<dagger> c. s \<notin> L (SEQ r' (STAR r))" using ih2 by auto then obtain r' where "r'\<in> r \<dagger> c \<Longrightarrow> s \<notin> L (SEQ r' (STAR r))" by auto show "c#s \<notin> L (STAR r)" sorry }next case (6 r1 r2) have ih1: "r1 ! [] \<Longrightarrow> [] \<in> L r1" by fact have ih2: "\<not> r1 ! [] \<Longrightarrow> [] \<notin> L r1" by fact have ih3: "r2 ! [] \<Longrightarrow> [] \<in> L r2" by fact have ih4: "\<not> r2 ! [] \<Longrightarrow> [] \<notin> L r2" by fact { case 1 have as: "SEQ r1 r2 ! []" by fact then have "r1 ! [] \<and> r2 ! []" by (simp) then show "[] \<in> L (SEQ r1 r2)" using ih1 ih3 by (simp add: lang_seq_def) next case 2 have "\<not> SEQ r1 r2 ! []" by fact then have "(\<not> r1 ! []) \<or> (\<not> r2 ! [])" by (simp) then show "[] \<notin> L (SEQ r1 r2)" using ih2 ih4 by (auto simp add: lang_seq_def) }next case (7 r2 c s) have ih1: "r2 ! c#s \<Longrightarrow> c#s \<in> L r2" by fact have ih2: "\<not> r2 ! c#s \<Longrightarrow> c#s \<notin> L r2" by fact { case 1 have "SEQ EMPTY r2 ! c#s" by fact then show "c#s \<in> L (SEQ EMPTY r2)" using ih1 by (simp add: lang_seq_def) next case 2 have "\<not> SEQ EMPTY r2 ! c#s" by fact then show "c#s \<notin> L (SEQ EMPTY r2)" using ih2 by (simp add: lang_seq_def) }next case (8 c' r2 c s) have ih1: "\<lbrakk>c' = c; r2 ! s\<rbrakk> \<Longrightarrow> s \<in> L r2" by fact have ih2: "\<lbrakk>c' = c; \<not>r2 ! s\<rbrakk> \<Longrightarrow> s \<notin> L r2" by fact { case 1 have "SEQ (CHAR c') r2 ! c#s" by fact then show "c#s \<in> L (SEQ (CHAR c') r2)" using ih1 by (auto simp add: lang_seq_def split: if_splits) next case 2 have "\<not> SEQ (CHAR c') r2 ! c#s" by fact then show "c#s \<notin> L (SEQ (CHAR c') r2)" using ih2 by (auto simp add: lang_seq_def) }next case (9 r11 r12 r2 c s) have ih1: "SEQ r11 (SEQ r12 r2) ! c#s \<Longrightarrow> c#s \<in> L (SEQ r11 (SEQ r12 r2))" by fact have ih2: "\<not> SEQ r11 (SEQ r12 r2) ! c#s \<Longrightarrow> c#s \<notin> L (SEQ r11 (SEQ r12 r2))" by fact { case 1 have "SEQ (SEQ r11 r12) r2 ! c#s" by fact then show "c#s \<in> L (SEQ (SEQ r11 r12) r2)" using ih1 apply(auto simp add: lang_seq_def) apply(rule_tac x="s1@s1a" in exI) apply(rule_tac x="s2a" in exI) apply(simp) apply(blast) done next case 2 have "\<not> SEQ (SEQ r11 r12) r2 ! c#s" by fact then show "c#s \<notin> L (SEQ (SEQ r11 r12) r2)" using ih2 by (auto simp add: lang_seq_def) }next case (10 r11 r12 r2 c s) have ih1: "SEQ r11 r2 ! c#s \<Longrightarrow> c#s \<in> L (SEQ r11 r2)" by fact have ih2: "\<not> SEQ r11 r2 ! c#s \<Longrightarrow> c#s \<notin> L (SEQ r11 r2)" by fact have ih3: "SEQ r12 r2 ! c#s \<Longrightarrow> c#s \<in> L (SEQ r12 r2)" by fact have ih4: "\<not> SEQ r12 r2 ! c#s \<Longrightarrow> c#s \<notin> L (SEQ r12 r2)" by fact { case 1 have "SEQ (ALT r11 r12) r2 ! c#s" by fact then show "c#s \<in> L (SEQ (ALT r11 r12) r2)" using ih1 ih3 by (auto simp add: lang_seq_union) next case 2 have "\<not> SEQ (ALT r11 r12) r2 ! c#s" by fact then show " c#s \<notin> L (SEQ (ALT r11 r12) r2)" using ih2 ih4 by (simp add: lang_seq_union) }next case (11 r1 r2 c s) have ih1: "r2 ! c#s \<Longrightarrow> c#s \<in> L r2" by fact have ih2: "\<not>r2 ! c#s \<Longrightarrow> c#s \<notin> L r2" by fact { case 1 have "SEQ (STAR r1) r2 ! c#s" by fact then show "c#s \<in> L (SEQ (STAR r1) r2)" using ih1 sorry next case 2 have "\<not> SEQ (STAR r1) r2 ! c#s" by fact then show "c#s \<notin> L (SEQ (STAR r1) r2)" using ih2 sorry }qed end