Publications/Phd-Urban.ps
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 22 Jan 2014 14:47:43 +0000
changeset 264 003df306be97
parent 14 680070975206
permissions -rw-r--r--
updated

%!PS-Adobe-2.0
%%Creator: dvips(k) 5.95a Copyright 2005 Radical Eye Software
%%Title: Main.dvi
%%Pages: 190
%%PageOrder: Ascend
%%BoundingBox: 0 0 595 842
%%DocumentFonts: Times-Roman Times-Bold Times-Italic Courier
%%DocumentPaperSizes: a4
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips Main.dvi -o Main.ps
%DVIPSParameters: dpi=600
%DVIPSSource:  TeX output 2007.03.05:0123
%%BeginProcSet: tex.pro 0 0
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S
/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy
setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask
restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: 8r.enc 0 0
% File 8r.enc  TeX Base 1 Encoding  Revision 2.0  2002-10-30
%
% @@psencodingfile@{
%   author    = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry,
%                W. Schmidt, P. Lehman",
%   version   = "2.0",
%   date      = "30 October 2002",
%   filename  = "8r.enc",
%   email     = "tex-fonts@@tug.org",
%   docstring = "This is the encoding vector for Type1 and TrueType
%                fonts to be used with TeX.  This file is part of the
%                PSNFSS bundle, version 9"
% @}
% 
% The idea is to have all the characters normally included in Type 1 fonts
% available for typesetting. This is effectively the characters in Adobe
% Standard encoding, ISO Latin 1, Windows ANSI including the euro symbol,
% MacRoman, and some extra characters from Lucida.
% 
% Character code assignments were made as follows:
% 
% (1) the Windows ANSI characters are almost all in their Windows ANSI
% positions, because some Windows users cannot easily reencode the
% fonts, and it makes no difference on other systems. The only Windows
% ANSI characters not available are those that make no sense for
% typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
% (173). quotesingle and grave are moved just because it's such an
% irritation not having them in TeX positions.
% 
% (2) Remaining characters are assigned arbitrarily to the lower part
% of the range, avoiding 0, 10 and 13 in case we meet dumb software.
% 
% (3) Y&Y Lucida Bright includes some extra text characters; in the
% hopes that other PostScript fonts, perhaps created for public
% consumption, will include them, they are included starting at 0x12.
% These are /dotlessj /ff /ffi /ffl.
% 
% (4) hyphen appears twice for compatibility with both ASCII and Windows.
%
% (5) /Euro was assigned to 128, as in Windows ANSI
%
% (6) Missing characters from MacRoman encoding incorporated as follows:
%
%     PostScript      MacRoman        TeXBase1
%     --------------  --------------  --------------
%     /notequal       173             0x16
%     /infinity       176             0x17
%     /lessequal      178             0x18
%     /greaterequal   179             0x19
%     /partialdiff    182             0x1A
%     /summation      183             0x1B
%     /product        184             0x1C
%     /pi             185             0x1D
%     /integral       186             0x81
%     /Omega          189             0x8D
%     /radical        195             0x8E
%     /approxequal    197             0x8F
%     /Delta          198             0x9D
%     /lozenge        215             0x9E
%
/TeXBase1Encoding [
% 0x00
 /.notdef /dotaccent /fi /fl
 /fraction /hungarumlaut /Lslash /lslash
 /ogonek /ring /.notdef /breve
 /minus /.notdef /Zcaron /zcaron
% 0x10
 /caron /dotlessi /dotlessj /ff
 /ffi /ffl /notequal /infinity
 /lessequal /greaterequal /partialdiff /summation
 /product /pi /grave /quotesingle
% 0x20
 /space /exclam /quotedbl /numbersign
 /dollar /percent /ampersand /quoteright
 /parenleft /parenright /asterisk /plus
 /comma /hyphen /period /slash
% 0x30
 /zero /one /two /three
 /four /five /six /seven
 /eight /nine /colon /semicolon
 /less /equal /greater /question
% 0x40
 /at /A /B /C
 /D /E /F /G
 /H /I /J /K
 /L /M /N /O
% 0x50
 /P /Q /R /S
 /T /U /V /W
 /X /Y /Z /bracketleft
 /backslash /bracketright /asciicircum /underscore
% 0x60
 /quoteleft /a /b /c
 /d /e /f /g
 /h /i /j /k
 /l /m /n /o
% 0x70
 /p /q /r /s
 /t /u /v /w
 /x /y /z /braceleft
 /bar /braceright /asciitilde /.notdef
% 0x80
 /Euro /integral /quotesinglbase /florin
 /quotedblbase /ellipsis /dagger /daggerdbl
 /circumflex /perthousand /Scaron /guilsinglleft
 /OE /Omega /radical /approxequal
% 0x90
 /.notdef /.notdef /.notdef /quotedblleft
 /quotedblright /bullet /endash /emdash
 /tilde /trademark /scaron /guilsinglright
 /oe /Delta /lozenge /Ydieresis
% 0xA0
 /.notdef /exclamdown /cent /sterling
 /currency /yen /brokenbar /section
 /dieresis /copyright /ordfeminine /guillemotleft
 /logicalnot /hyphen /registered /macron
% 0xD0
 /degree /plusminus /twosuperior /threesuperior
 /acute /mu /paragraph /periodcentered
 /cedilla /onesuperior /ordmasculine /guillemotright
 /onequarter /onehalf /threequarters /questiondown
% 0xC0
 /Agrave /Aacute /Acircumflex /Atilde
 /Adieresis /Aring /AE /Ccedilla
 /Egrave /Eacute /Ecircumflex /Edieresis
 /Igrave /Iacute /Icircumflex /Idieresis
% 0xD0
 /Eth /Ntilde /Ograve /Oacute
 /Ocircumflex /Otilde /Odieresis /multiply
 /Oslash /Ugrave /Uacute /Ucircumflex
 /Udieresis /Yacute /Thorn /germandbls
% 0xE0
 /agrave /aacute /acircumflex /atilde
 /adieresis /aring /ae /ccedilla
 /egrave /eacute /ecircumflex /edieresis
 /igrave /iacute /icircumflex /idieresis
% 0xF0
 /eth /ntilde /ograve /oacute
 /ocircumflex /otilde /odieresis /divide
 /oslash /ugrave /uacute /ucircumflex
 /udieresis /yacute /thorn /ydieresis
] def


%%EndProcSet
%%BeginProcSet: texps.pro 0 0
%!
TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]FontType 0
ne{/Metrics exch def dict begin Encoding{exch dup type/integertype ne{
pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get
div def}ifelse}forall Metrics/Metrics currentdict end def}{{1 index type
/nametype eq{exit}if exch pop}loop}ifelse[2 index currentdict end
definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{dup
sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll
mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[
exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}if}
forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}def
end

%%EndProcSet
%%BeginProcSet: special.pro 0 0
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/setpagedevice{pop}N/copypage{}N/p 3 def
@MacSetUp}N/doclip{psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll
newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto
closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N
/@beginspecial{SDict begin/SpecialSave save N gsave normalscale
currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}
N/@setspecial{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs
neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate
rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse
scale llx neg lly neg TR}{rhiSeen{rhi ury lly sub div dup scale llx neg
lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx
ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N
/setpagedevice{pop}N/copypage{}N newpath}N/@endspecial{count ocount sub{
pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave
restore end}N/@defspecial{SDict begin}N/@fedspecial{end}B/li{lineto}B
/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1
setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY
moveto}N/ellipse{/endangle X/startangle X/yrad X/xrad X/savematrix
matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc
savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro 0 0
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39139632 55387786 1000 600 600 (Main.dvi)
@start
%DVIPSBitmapFont: Fa cmbx6 6 1
/Fa 1 50 df<000E00003E0001FE00FFFE00FFFE00FEFE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE007FFFFE7FFFFE7FFFFE17217B
A023>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmbsy10 10.95 3
/Fb 3 95 df<7FFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFF
FFFFFFFFFFF07FFFFFFFFFFFFFFFF03FFFFFFFFFFFFFFFC0000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000007FFFFFFFFFFFFFFFE0FFFFFF
FFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF07FFFFF
FFFFFFFFFFE0000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
0000000000003FFFFFFFFFFFFFFFC07FFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFF
FFFFFFFFFFF0FFFFFFFFFFFFFFFFF07FFFFFFFFFFFFFFFE044327AAF51>17
D<3FFFFFFFF80000007FFFFFFFFF000000FFFFFFFFFFE00000FFFFFFFFFFF800007FFFFF
FFFFFE00003FFFFFFFFFFF0000000000000FFFC0000000000001FFE00000000000003FF0
0000000000000FF800000000000007FC00000000000001FE00000000000000FF00000000
0000007F000000000000003F800000000000001FC00000000000001FC00000000000000F
E000000000000007E000000000000007F000000000000003F000000000000003F0000000
00000003F800000000000001F800000000000001F800000000000001FC00000000000000
FC00000000000000FC00000000000000FC00000000000000FC00000000000000FC000000
00000000FC00000000000000FC00000000000000FC00000000000000FC00000000000000
FC00000000000001FC00000000000001F800000000000001F800000000000003F8000000
00000003F000000000000003F000000000000007F000000000000007E00000000000000F
E00000000000001FC00000000000001FC00000000000003F800000000000007F00000000
000000FF00000000000001FE00000000000007FC0000000000000FF80000000000003FF0
000000000001FFE000000000000FFFC0003FFFFFFFFFFF00007FFFFFFFFFFE0000FFFFFF
FFFFF80000FFFFFFFFFFE000007FFFFFFFFF0000003FFFFFFFF80000003E3E77B551>27
D<0000001C000000000000003E000000000000007F000000000000007F00000000000000
7F00000000000000FF80000000000000FF80000000000001FFC0000000000001FFC00000
00000003FFE0000000000003F7E0000000000007F7F0000000000007E3F000000000000F
E3F800000000000FC1F800000000001FC1FC00000000001F80FC00000000003F80FE0000
0000003F007E00000000007F007F00000000007E003F0000000000FE003F8000000000FC
001F8000000001FC001FC000000001F8000FC000000003F8000FE000000003F00007E000
000007F00007F000000007E00003F00000000FE00003F80000000FC00001F80000001FC0
0001FC0000001F800000FC0000003F800000FE0000003F0000007E0000007F0000007F00
00007E0000003F000000FE0000003F800000FC0000001F800001FC0000001FC00001F800
00000FC00003F80000000FE00003F000000007E00007F000000007F00007E000000003F0
000FE000000003F8000FC000000001F8001FC000000001FC001F8000000000FC003F8000
000000FE003F00000000007E007F00000000007F007E00000000003F00FE00000000003F
80FC00000000001F80FC00000000001F80F800000000000F807800000000000700393A7A
B746>94 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmex7 6 4
/Fc 4 126 df<00001F800000FF800007FF80000FFF80003FFF80007FFF8000FFFF8003
FFFF8007FFC00007FC00000FE000001F8000003F0000003E0000007C000000F8000000F0
000000E00000001912818718>122 D<FC000000FF800000FFF00000FFF80000FFFE0000
FFFF0000FFFF8000FFFFE00001FFF000001FF0000003F8000000FC0000007E0000003E00
00001F0000000F8000000780000003801912808718>I<E0000000F0000000F80000007C
0000003E0000003F0000001F8000000FE0000007FC000007FFC00003FFFF8000FFFF8000
7FFF80003FFF80000FFF800007FF800000FF8000001F801912819118>I<000003800000
078000000F8000001F0000003E0000007E000000FC000003F800001FF00001FFF000FFFF
E000FFFF8000FFFF0000FFFE0000FFF80000FFF00000FF800000FC0000001912809118>
I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmmi5 5 5
/Fd 5 90 df<70F8FCFC7C0C0C0C1818306040060D7A8413>59 D<03FFFC0003FFF80000
3E0000003E0000003E0000003E0000007C0000007C0000007C0000007C000000F8000000
F8000000F8000000F8000001F0000001F0000001F0000001F0000C03E0001803E0001803
E0003803E0003007C0007007C000F007C001E007C00FE0FFFFFFC0FFFFFFC01E1C7C9B28
>76 D<03FFFFE00003FFFFFC00003E003F00003E000F80003E0007C0003E0007C0007C00
07C0007C0007C0007C0007C0007C000F8000F8001F0000F8003E0000F800F80000FFFFE0
0001FFFFE00001F003F00001F000F80001F000F80003E000F80003E000F80003E000F800
03E000F80007C001F00007C001F00007C001F03007C001F060FFFC00F8E0FFFC007FC000
00001F00241D7C9B2B>82 D<00FFF80FFE00FFF80FFE000FC003E00007E003000007E006
000003F00C000003F018000001F830000001F8E0000000FDC0000000FF800000007F0000
00003F000000003F000000003F800000007F80000000EFC0000001CFC000000307E00000
0607E000000C03F000001803F000003001F800006001F80001C000FC0007C000FE007FF0
07FFE0FFF007FFE0271C7D9B2E>88 D<7FFC003FF0FFFC003FF007E0000F0007E0001C00
03F000380003F000700001F800E00001F801C00000FC03800000FC070000007E0E000000
7E1C0000003F380000003F700000001FE00000001FC00000000F800000000F000000001F
000000001F000000001F000000001E000000003E000000003E000000003E000000003E00
000007FFE0000007FFE00000241C7D9B22>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe cmss8 5 5
/Fe 5 121 df<03E0000FF8001FFC003E3E003C1E00780F00780F00700700F00780F007
80F00780F00780F00780F00780F00780F00780F00780F00780F00780F00780F00780780F
00780F00780F003C1E003E3E001FFC000FF80003E000111D7E9B16>48
D<018003803F80FF80FF80C7800780078007800780078007800780078007800780078007
800780078007800780078007800780FFFCFFFCFFFC0E1C7C9B16>I<07E0001FF8003FFC
00783E00701F00E00F00E00780400780400780000780000780000780000F00000F00001E
00003C0000780000F00001E00003C0000780000F00001C0000380000700000FFFF80FFFF
80FFFF80111C7E9B16>I<07E0001FF8003FFC007C3E00F00F00600F00400F00000F0000
0F00001E00001E00007C0007F80007F00007F800003E00000F00000F0000078000078000
0780000780800780C00F00E00F00783E003FFC001FF80007E000111D7E9B16>I<7803C0
3C07803E0F001E1E000F3E0007BC0003F80001F00001E00001F00003F80007B800071C00
0F1E001E0F003C07807803C0F803E01312809114>120 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ff cmss8 6 9
/Ff 9 122 df<00F80007FF000FFF801FFFC01F8FC03E03E03C01E07C01F07C01F07800
F07800F0F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800
F8F800F8F800F8F800F87C01F07C01F07C01F03E03E03E03E01F8FC01FFFC00FFF8007FF
0001FC0015237EA11A>48 D<00300000700003F000FFF000FFF000FDF00001F00001F000
01F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F000
01F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F0007FFFC0
7FFFC07FFFC012227CA11A>I<01F80007FF001FFF801FFFC03E0FE07803F07001F0F001
F0F000F86000F82000F80000F80000F80000F80001F00001F00003E00003C00007C0000F
80001F00003C0000F80001F00003E00007C0000F80001F00003C0000780000FFFFF8FFFF
F8FFFFF8FFFFF815227EA11A>I<01FC0007FF000FFF801FFFC03F07E07C03E03801F010
01F00001F00001F00001F00003E00007E0001FC003FF8003FF0003FF0003FF800007C000
03E00001F00001F00000F80000F80000F80000F80000F88001F8C001F0F003F0FE07E07F
FFC03FFF800FFF0001FC0015237EA11A>I<003E0000FF8001FF8003FF8007E18007C000
0F80000F80000F80000F80000F80000F80000F80000F8000FFFC00FFFC00FFFC000F8000
0F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8000
0F80000F80000F80000F80000F80000F8000112480A310>102 D<007E01F800F9FF87FE
00FBFF8FFE00FFFFDFFF00FF0FFC3F80FE07F81F80FC03F00F80FC03F00F80F803E00F80
F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F8
03E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F802117
7C962A>109 D<007F00F9FF80FBFFC0FFFFE0FF07E0FE03F0FC01F0FC01F0F801F0F801
F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801
F0F801F014177D961B>I<7C00FC3E00F83F01F01F83E00F87E007C7C003EF8001FF0001
FE0000FC00007C0000FC0000FE0001FF0003EF8007C7C00F83C00F83E01F01F03E00F87C
00FCFC007E1716809518>120 D<F800F8FC00F87C01F07C01F03E01F03E03E03F03E01F
03C01F07C00F87C00F8780078F8007CF8007CF0003CF0003CE0001CE0001DE0000DC0000
FC0000F80000780000780000F00000F00000F00001E00001E00003C0007FC0007F80007F
00007E000015217F9518>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fg cmti10 10 1
/Fg 1 106 df<0001C00007E00007F0000FF0000FE00007E00003800000000000000000
0000000000000000000000000000000000000000000000000000F00003FC00071E000E1F
001C1F001C1F00381F00383F00703F00703F00707F00F07E00E07E00E0FE0000FC0000FC
0001FC0001F80003F80003F80003F00007F00007E00007E0000FE0E00FC0E00FC1E01FC1
C01F81C01F81C01F83801F03801F07001F07001F0E000F1C0007F80001E000143879B619
>105 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fh cmsy5 5 1
/Fh 1 49 df<038007C007C007C00F800F800F800F001F001E001E003E003C003C003800
7800780070007000E000E0000A157D9612>48 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fi cmbx10 10 1
/Fi 1 62 df<7FFFFFFFFFFFFFFCFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFF
FFFE7FFFFFFFFFFFFFFC0000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000007FFFFFFFFFFFFFFCFFFFFFFFFFFF
FFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFE7FFFFFFFFFFFFFFC3F197BA04A>61
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fj cmmib10 14.4 2
/Fj 2 35 df<00003FFFFFFFFFFFC00001FFFFFFFFFFFFE00007FFFFFFFFFFFFF0000FFF
FFFFFFFFFFF0001FFFFFFFFFFFFFF8007FFFFFFFFFFFFFF800FFFFFFFFFFFFFFF001FFFF
FFFFFFFFFFF003FFFFFFFFFFFFFFE007FFFFFFFFFFFFFFE007FFFFFFFFFFFFFFC00FFFFF
FFFFFFFFFF001FFE0003FC000000003FE00003FC000000007F800003FC000000007F0000
07F800000000FE000007F800000000FC000007F8000000000000000FF800000000000000
0FF8000000000000000FF8000000000000001FF0000000000000001FF000000000000000
3FF0000000000000003FF0000000000000003FF0000000000000007FF000000000000000
7FF0000000000000007FE000000000000000FFE000000000000000FFE000000000000000
FFE000000000000001FFE000000000000001FFE000000000000001FFC000000000000003
FFC000000000000003FFC000000000000003FFC000000000000007FFC000000000000007
FFC000000000000007FFC00000000000000FFF800000000000000FFF800000000000000F
FF800000000000001FFF800000000000001FFF800000000000003FFF800000000000003F
FF800000000000003FFF000000000000003FFF000000000000003FFE000000000000001F
FC000000000000001FF8000000000000000FF0000000000000000180000000000045377D
B43E>28 D<0000001FFF0000000001FFFFF00000000FFFFFFC0000003FFFFFFF000000FF
FFFFFF800003FFFFFFFFC00007FFFFFFFFE0000FFFFFFFFFF0001FFFFFFFFFF0003FFFFF
FFFFF0007FFF0007FFE000FFF00000FFE001FF8000007FC001FE0000001F8003FC000000
000003F8000000000003F0000000000007F0000000000007E0000000000007E000000000
0007E0000000000007E03FFF80000007F1FFFFC0000007FFFFFFE0000003FFFFFFF00000
03FFFFFFF0000001FFF003F0000003FFF80FF0000007FFFFFFF0000007FFFFFFE000000F
EFFFFFC000001FC3FFFF0000003F801FF80000003F0000000000007F0000000000007E00
00000000007E000000000000FE000000000000FC000000000000FC000000000000FC0000
00000000FC000000001C00FE000000003E00FE000000003E00FF00000000FC00FFC00000
03FC007FFC00003FF8007FFFFFFFFFF8003FFFFFFFFFF0003FFFFFFFFFE0001FFFFFFFFF
C0000FFFFFFFFF000007FFFFFFFE000003FFFFFFF8000000FFFFFFE00000001FFFFF8000
000001FFF000000034397BB63F>34 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fk cmmib9 9 1
/Fk 1 64 df<00000C00000000001C00000000001C00000000001C00000000003E000000
00003E00000000003E00000000003E00000000003E00000000007F00000000007F000000
00007F00000000007F00000000007F000000FF007F007F80FFFEFFBFFF807FFFFFFFFF00
1FFFFFFFFC0007FFFFFFF00003FFFFFFE00000FFFFFF8000003FFFFE0000000FFFF80000
0003FFE000000007FFF000000007FFF00000000FFFF80000000FFFF80000001FF7FC0000
001FE3FC0000003FC1FE0000003F80FE0000007F007F0000007E003F000000FC001F8000
00F8000F800000F00007800001E00003C00000C00001800029277FA52C>63
D E
%EndDVIPSBitmapFont
/Fl 131[45 1[45 45 45 45 45 45 45 45 45 1[45 45 45 45
45 2[45 45 45 45 45 45 45 45 45 1[45 1[45 1[45 4[45 3[45
1[45 45 45 45 45 2[45 2[45 45 1[45 1[45 45 1[45 45 1[45
8[45 45 2[45 45 45 45 45 45 45 1[45 38[{TeXBase1Encoding ReEncodeFont}
53 74.7198 /Courier rf /Fm 134[50 50 2[50 50 50 50 1[50
50 50 50 50 2[50 50 50 50 50 50 50 50 50 3[50 1[50 4[50
3[50 1[50 3[50 2[50 2[50 3[50 50 20[50 2[50 50 5[50 34[{
TeXBase1Encoding ReEncodeFont}34 83.022 /Courier rf
%DVIPSBitmapFont: Fn cmmib10 12 2
/Fn 2 23 df<0007FF0000000000000FFFE000000000000FFFF8000000000007FFFC0000
00000000FFFE0000000000003FFE0000000000003FFF0000000000001FFF000000000000
1FFF0000000000000FFF8000000000000FFF80000000000007FFC0000000000007FFC000
0000000007FFE0000000000003FFE0000000000003FFE0000000000001FFF00000000000
01FFF0000000000000FFF8000000000000FFF8000000000000FFFC0000000000007FFC00
00000000007FFC0000000000003FFE0000000000003FFE0000000000001FFF0000000000
001FFF0000000000001FFF8000000000000FFF8000000000000FFF80000000000007FFC0
000000000007FFC0000000000003FFE0000000000003FFE0000000000003FFF000000000
0001FFF0000000000001FFF0000000000001FFF8000000000003FFF800000000000FFFFC
00000000001FFFFC00000000003FFFFE00000000007FBFFE0000000001FFBFFE00000000
03FF1FFF0000000007FE1FFF000000000FFC0FFF800000001FF80FFF800000007FF00FFF
80000000FFE007FFC0000001FFC007FFC0000003FF8003FFE000000FFF0003FFE000001F
FE0001FFF000003FFC0001FFF000007FF80001FFF00001FFF00000FFF80003FFE00000FF
F80007FFC000007FFC000FFF8000007FFC001FFF0000003FFE003FFE0000003FFE007FFC
0000003FFE00FFF80000001FFF00FFF00000001FFF00FFE00000000FFF80FFE00000000F
FF80FFC000000007FFC07F8000000003FFE03E0000000001FFC03B467BC443>21
D<00003E00000000000000FF000000FC000001FF800001FE000003FF800003FE000003FF
800007FF000003FF800007FF000007FF80000FFF000007FF80000FFE000007FF00000FFE
000007FF00000FFE00000FFF00001FFE00000FFF00001FFC00000FFE00001FFC00000FFE
00001FFC00001FFE00003FFC00001FFE00003FF800001FFC00003FF800001FFC00003FF8
00003FFC00007FF800003FFC00007FF000003FF800007FF000003FF800007FF000007FF8
0000FFF000007FF80000FFE000007FF00000FFE000007FF00000FFE00000FFF00001FFE0
0000FFF00001FFC00000FFE00001FFC00000FFE00001FFC07801FFE00003FFC07C01FFE0
0003FF80FC01FFE00003FF80F801FFC00003FF80F803FFC00003FF81F803FFC00007FF81
F003FFE0000FFF01F003FFE0001FFF03F007FFE0003FFF03E007FFF0007FFF03E007FFF8
01FDFF07C007FFFE0FF9FF8F800FFFFFFFF0FFFF800FFFFFFFC07FFF000FFFFFFF001FFE
000FFE1FF80007F8001FFE0000000000001FFE0000000000001FFC0000000000001FFC00
00000000003FFC0000000000003FFC0000000000003FF80000000000003FF80000000000
007FF80000000000007FF80000000000007FF00000000000007FF0000000000000FFF000
0000000000FFF0000000000000FFE0000000000000FFE0000000000000FFE00000000000
00FFC00000000000007F800000000000003E000000000000003E427CAC47>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fo cmssbx10 10.95 11
/Fo 11 117 df<000003FFF000000000000FFFFC00000000000FFFFC00000000001FFFFE
00000000001FFFFE00000000003FFFFF00000000003FFFFF00000000003FFFFF00000000
007FFFFF80000000007FFFFF80000000007FFFFF8000000000FFFFFFC000000000FFF7FF
C000000000FFE7FFC000000001FFE7FFE000000001FFE7FFE000000001FFE3FFE0000000
03FFC3FFF000000003FFC3FFF000000003FFC3FFF000000007FFC1FFF800000007FF81FF
F800000007FF81FFF80000000FFF80FFFC0000000FFF00FFFC0000000FFF00FFFC000000
1FFF007FFE0000001FFF007FFE0000001FFE007FFE0000003FFE003FFF0000003FFE003F
FF0000003FFC003FFF0000007FFC003FFF8000007FFC001FFF800000FFF8001FFFC00000
FFF8001FFFC00000FFF8000FFFC00001FFF0000FFFE00001FFF0000FFFE00001FFF00007
FFE00003FFE00007FFF00003FFE00007FFF00003FFFFFFFFFFF00007FFFFFFFFFFF80007
FFFFFFFFFFF80007FFFFFFFFFFF8000FFFFFFFFFFFFC000FFFFFFFFFFFFC000FFFFFFFFF
FFFC001FFFFFFFFFFFFE001FFF000000FFFE001FFF0000007FFE003FFE0000007FFF003F
FE0000007FFF003FFE0000003FFF007FFC0000003FFF807FFC0000003FFF807FFC000000
1FFF80FFF80000001FFFC0FFF80000000FFFC0FFF00000000FFFC0FFF000000007FFC07F
C000000003FF803A3F7CBE43>65 D<3FF87FF8FFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFF
FCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFF
FCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFF
FCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFC7FF83FF80E3F78
BE1E>73 D<3FFF00000007FC7FFFC0000007FCFFFFE000000FFEFFFFE000000FFEFFFFF0
00000FFEFFFFF000000FFEFFFFF800000FFEFFFFF800000FFEFFFFFC00000FFEFFFFFC00
000FFEFFFFFE00000FFEFFFFFE00000FFEFFEFFF00000FFEFFEFFF00000FFEFFE7FF8000
0FFEFFE7FF80000FFEFFE3FFC0000FFEFFE3FFC0000FFEFFE1FFE0000FFEFFE1FFE0000F
FEFFE0FFF0000FFEFFE0FFF0000FFEFFE07FF8000FFEFFE07FF8000FFEFFE03FFC000FFE
FFE03FFC000FFEFFE01FFE000FFEFFE01FFE000FFEFFE00FFF000FFEFFE00FFF000FFEFF
E007FF800FFEFFE003FF800FFEFFE003FFC00FFEFFE001FFE00FFEFFE001FFE00FFEFFE0
00FFF00FFEFFE000FFF00FFEFFE0007FF80FFEFFE0007FF80FFEFFE0003FFC0FFEFFE000
3FFC0FFEFFE0001FFE0FFEFFE0001FFE0FFEFFE0000FFF0FFEFFE0000FFF0FFEFFE00007
FF8FFEFFE00007FF8FFEFFE00003FFCFFEFFE00003FFCFFEFFE00001FFEFFEFFE00001FF
EFFEFFE00000FFFFFEFFE00000FFFFFEFFE000007FFFFEFFE000007FFFFEFFE000003FFF
FEFFE000003FFFFEFFE000001FFFFEFFE000001FFFFEFFE000000FFFFEFFE000000FFFFE
7FC0000007FFFC3FC0000001FFFC373F78BE48>78 D<000000FFF800000000001FFFFFC0
00000000FFFFFFF800000003FFFFFFFE0000000FFFFFFFFF8000001FFFFFFFFFC000003F
FFFFFFFFE000007FFFFFFFFFF00000FFFFC01FFFF80001FFFE0003FFFC0003FFF80000FF
FE0007FFF000007FFF0007FFE000003FFF000FFFC000001FFF800FFF8000000FFF801FFF
8000000FFFC01FFF00000007FFC03FFF00000007FFE03FFF00000007FFE03FFE00000003
FFE07FFE00000003FFF07FFE00000003FFF07FFE00000003FFF07FFC00000001FFF07FFC
00000001FFF07FFC00000001FFF0FFFC00000001FFF8FFFC00000001FFF8FFFC00000001
FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC
00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001
FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF87FFC
00000001FFF07FFE00000003FFF07FFE00000003FFF07FFE00000003FFF07FFE00000003
FFF03FFF00000007FFE03FFF00000007FFE03FFF00000007FFE01FFF8000000FFFC01FFF
8000000FFFC01FFFC000001FFFC00FFFE000003FFF800FFFE000003FFF8007FFF000007F
FF0003FFFC0001FFFE0001FFFF0007FFFC0001FFFFC01FFFFC0000FFFFFFFFFFF800007F
FFFFFFFFF000001FFFFFFFFFC000000FFFFFFFFF80000003FFFFFFFE00000000FFFFFFF8
000000001FFFFFC00000000000FFF80000003D437BC048>I<00000003FF8000000003FF
8000000007FFC000000007FFC000000007FFC000000007FFC000000007FFC000000007FF
C000000007FFC000000007FFC000000007FFC000000007FFC000000007FFC000000007FF
C000000007FFC000000007FFC000000007FFC000000007FFC000000007FFC000000007FF
C00007FC07FFC0003FFF87FFC000FFFFE7FFC001FFFFF7FFC007FFFFFFFFC00FFFFFFFFF
C00FFFFFFFFFC01FFFE03FFFC03FFF800FFFC03FFF0007FFC03FFE0007FFC07FFC0007FF
C07FFC0007FFC07FFC0007FFC07FFC0007FFC0FFF80007FFC0FFF80007FFC0FFF80007FF
C0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FF
C0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC07FF80007FF
C07FFC0007FFC07FFC0007FFC07FFC0007FFC03FFE0007FFC03FFE000FFFC03FFF001FFF
C01FFFC07FFFC00FFFFFFFFFC00FFFFFFFFFC007FFFFFFFFC003FFFFF7FFC000FFFFC3FF
80003FFF03FF800007F80000002A407DBE33>100 D<3FE001FF80001FF8007FE00FFFE0
00FFFE00FFF03FFFF803FFFF80FFF07FFFFC07FFFFC0FFF0FFFFFE0FFFFFE0FFF1FFFFFF
1FFFFFF0FFF3FFFFFF3FFFFFF0FFF7E03FFF7E03FFF0FFFFC01FFFFC01FFF8FFFF801FFF
F801FFF8FFFF000FFFF000FFF8FFFE000FFFE000FFF8FFFC000FFFC000FFF8FFFC000FFF
C000FFF8FFFC000FFFC000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF87FF00007FF
00007FF03FF00003FF00003FF0452B7BAA50>109 D<3FE001FF007FE00FFFE0FFF03FFF
F0FFF07FFFF8FFF1FFFFFCFFF3FFFFFEFFF3FFFFFEFFF7E07FFEFFFF803FFFFFFF003FFF
FFFF001FFFFFFE001FFFFFFC001FFFFFFC001FFFFFFC001FFFFFF8001FFFFFF8001FFFFF
F8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8
001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF800
1FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001F
FFFFF8001FFFFFF8001FFF7FF0000FFE3FF0000FFE282B7BAA33>I<0000FFE00000000F
FFFE0000003FFFFF800000FFFFFFE00001FFFFFFF00003FFFFFFF80007FFFFFFFC000FFF
C07FFE001FFF001FFF001FFE000FFF003FFE000FFF803FFC0007FF803FFC0007FF807FFC
0007FFC07FF80003FFC07FF80003FFC07FF80003FFC0FFF80003FFE0FFF80003FFE0FFF8
0003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF8
0003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE07FFC0007FFC07FFC
0007FFC07FFC0007FFC03FFE000FFF803FFE000FFF803FFF001FFF801FFFC07FFF000FFF
FFFFFE000FFFFFFFFE0007FFFFFFFC0003FFFFFFF80000FFFFFFE000007FFFFFC000000F
FFFE00000001FFF000002B2D7DAB32>I<000003FE00003FF01FFF80007FF07FFFE000FF
F9FFFFF800FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFE00FFFFFFFFFF00FFFF80FFFF00FF
FC007FFF00FFF8003FFF80FFF8001FFF80FFF8001FFF80FFF8000FFF80FFF8000FFFC0FF
F8000FFFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FF
F80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FF
F80007FFC0FFF8000FFFC0FFF8000FFF80FFF8000FFF80FFF8001FFF80FFF8001FFF80FF
F8003FFF00FFFC003FFF00FFFE007FFE00FFFF01FFFE00FFFFFFFFFC00FFFFFFFFF800FF
FFFFFFF000FFFBFFFFE000FFF9FFFF8000FFF87FFE0000FFF81FF00000FFF800000000FF
F800000000FFF800000000FFF800000000FFF800000000FFF800000000FFF800000000FF
F800000000FFF800000000FFF800000000FFF800000000FFF800000000FFF800000000FF
F800000000FFF8000000007FF0000000003FF0000000002A3D7BAA33>I<3FE003E07FE0
0FE0FFF03FE0FFF07FE0FFF0FFE0FFF1FFE0FFF3FFE0FFF7FFE0FFF7FFE0FFFFFC00FFFF
F000FFFFC000FFFF8000FFFF0000FFFE0000FFFE0000FFFC0000FFFC0000FFF80000FFF8
0000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF8
0000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF8
0000FFF80000FFF80000FFF800007FF000003FF000001B2B7BAA22>114
D<00FF800001FF800003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC0
0003FFC00003FFC00003FFC0003FFFFFF87FFFFFF8FFFFFFFCFFFFFFFCFFFFFFFC7FFFFF
F87FFFFFF803FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC0
0003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC0
0003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFE0
0603FFE00E03FFF07E01FFFFFF01FFFFFF01FFFFFF00FFFFFF00FFFFFC007FFFF0003FFF
80000FF80020377EB525>116 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fp cmtt10 10.95 12
/Fp 12 121 df<007FF800000003FFFF00000007FFFFC000000FFFFFE000001FFFFFF000
003FFFFFF800003FE01FFC00003FC003FE00003FC001FE00003FC000FF00001F80007F00
000F00007F80000000003F80000000003F80000000003F80000000003F80000000FFFF80
00000FFFFF8000007FFFFF800001FFFFFF800007FFFFFF80000FFFFFFF80001FFF803F80
003FF8003F80007FE0003F80007F80003F8000FF00003F8000FE00003F8000FE00003F80
00FE00003F8000FE00003F8000FE00007F8000FF00007F80007F8000FF80007FC003FF80
003FF01FFFFF803FFFFFFFFFC01FFFFFFFFFC00FFFFFEFFFC003FFFF87FFC001FFFE01FF
80003FE00000002A2A7BA830>97 D<0000FFE0000007FFFC00001FFFFE00007FFFFF0000
FFFFFF8001FFFFFFC003FF807FC007FC003FC00FF8003FC01FF0003FC01FE0001F803FC0
000F003F800000007F800000007F000000007F00000000FF00000000FE00000000FE0000
0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FF000000
007F000000007F000000007F800000003F800007C03FC0000FE01FE0000FE01FF0001FE0
0FF8001FC007FE003FC007FFC0FF8003FFFFFF8000FFFFFF00007FFFFE00001FFFF80000
07FFF0000001FF8000232A7AA830>99 D<000001FFE000000003FFF000000007FFF00000
0007FFF000000003FFF000000001FFF00000000007F00000000007F00000000007F00000
000007F00000000007F00000000007F00000000007F00000000007F00000000007F00000
000007F0000003FE07F000001FFF87F000003FFFE7F00000FFFFFFF00001FFFFFFF00003
FFFFFFF00007FF03FFF0000FFC00FFF0001FF0003FF0001FE0001FF0003FC0001FF0003F
C0000FF0007F800007F0007F000007F0007F000007F000FF000007F000FF000007F000FE
000007F000FE000007F000FE000007F000FE000007F000FE000007F000FE000007F000FE
000007F000FE000007F000FF000007F0007F00000FF0007F00000FF0007F80000FF0003F
80001FF0003FC0003FF0001FE0003FF0001FF0007FF0000FF801FFF00007FE07FFFFC003
FFFFFFFFE001FFFFFFFFF000FFFFF7FFF0007FFFC7FFE0001FFF03FFC00007FC0000002C
397DB730>I<0001FF00000007FFE000001FFFF800007FFFFC0000FFFFFE0001FFFFFF00
03FF81FF8007FC007FC00FF8003FC01FE0001FE01FE0000FE03FC0000FF03F800007F07F
800007F07F000007F07F000003F8FF000003F8FE000003F8FFFFFFFFF8FFFFFFFFF8FFFF
FFFFF8FFFFFFFFF8FFFFFFFFF8FFFFFFFFF0FE00000000FF000000007F000000007F0000
00007F800000003F800001F03FC00003F81FE00003F80FF00003F80FF80007F807FE001F
F003FFC07FE001FFFFFFE000FFFFFFC0003FFFFF80001FFFFE000007FFF8000000FFC000
252A7CA830>I<000000FF80000007FFE000001FFFF000003FFFF000007FFFF80000FFFF
F80001FF87F80003FE07F80003FC03F00007F800C00007F000000007F000000007F00000
0007F000000007F000000007F000000007F000000007F000003FFFFFFFC07FFFFFFFE0FF
FFFFFFE0FFFFFFFFE0FFFFFFFFE07FFFFFFFC00007F000000007F000000007F000000007
F000000007F000000007F000000007F000000007F000000007F000000007F000000007F0
00000007F000000007F000000007F000000007F000000007F000000007F000000007F000
000007F000000007F000000007F000000007F000000007F000000007F000000007F00000
0007F000000007F000003FFFFFFE007FFFFFFF00FFFFFFFF80FFFFFFFF807FFFFFFF003F
FFFFFE0025397DB830>I<0000E000000003F800000003F800000007FC00000007FC0000
0007FC00000003F800000003F800000000E0000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000001FFFF800003FFF
FC00007FFFFC00007FFFFC00003FFFFC00001FFFFC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FC00000001FC00000001FC00003FFFFFFFC07FFFFFFFE0FFFFFFFFE0FFFFFFFFE07FFF
FFFFE03FFFFFFFC023397AB830>105 D<7FFFF80000FFFFFC0000FFFFFC0000FFFFFC00
00FFFFFC00007FFFFC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00007FFFFFFFF0FFFFFFFFF8FFFFFFFFF8FFFFFFFFF8FF
FFFFFFF87FFFFFFFF025387BB730>108 D<000001FE00003FFC0FFF80007FFE3FFFE000
FFFEFFFFF000FFFFFFFFF8007FFFFFFFF8003FFFFE07FC0000FFF803FC0000FFE001FE00
00FFC001FE0000FF8000FE0000FF8000FE0000FF0000FE0000FF0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE003FFFF81FFFF87FFFFC3FFFFCFFFFFE3FFFFEFFFFFE3FFFFE7FFFFC3FFFFC
3FFFF81FFFF82F2880A730>110 D<00000007F8003FFF803FFF007FFFC0FFFF80FFFFC3
FFFF80FFFFCFFFFFC07FFFDFFFFFC03FFFFFFC3FC0001FFFE03FC0001FFF801F80001FFF
000F00001FFE000000001FFC000000001FF8000000001FF0000000001FF0000000001FE0
000000001FE0000000001FE0000000001FE0000000001FC0000000001FC0000000001FC0
000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0
000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0
0000003FFFFFFC00007FFFFFFE0000FFFFFFFF0000FFFFFFFF00007FFFFFFE00003FFFFF
FC00002A287EA730>114 D<001FFC1E0001FFFF9F0007FFFFFF000FFFFFFF001FFFFFFF
003FFFFFFF007FF007FF007F8001FF00FE0000FF00FC00007F00FC00007F00FC00007F00
FC00007F00FE00003E007F000000007FE00000003FFF0000001FFFFC00000FFFFF800007
FFFFE00001FFFFF800007FFFFC000003FFFE0000000FFF00000000FF807C00007F80FE00
001FC0FE00001FC0FE00000FC0FF00000FC0FF00000FC0FF80000FC0FF80001FC0FFC000
3F80FFE0007F80FFFC03FF00FFFFFFFF00FFFFFFFE00FFFFFFFC00FCFFFFF000F83FFFC0
00780FFE0000222A79A830>I<0007800000000FC00000001FC00000001FC00000001FC0
0000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000003FFFFFFF
E07FFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF07FFFFFFFE0001FC00000001FC00000
001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000000
1FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001F
C00000001FC00000001FC000F8001FC001FC001FC001FC001FC001FC001FC001FC001FC0
01FC001FE003FC000FE007F8000FF007F8000FFC1FF00007FFFFE00003FFFFC00003FFFF
800001FFFF0000007FFC0000001FF00026337EB130>I<3FFF81FFFC007FFFC3FFFE00FF
FFC3FFFF00FFFFC3FFFF007FFFC3FFFE003FFF81FFFC0000FE007F0000007F007F000000
7F80FE0000003F81FC0000001FC3F80000000FE3F80000000FE7F000000007FFE0000000
03FFC000000001FFC000000000FF8000000000FF00000000007E00000000007F00000000
00FF0000000001FF8000000001FFC000000003F7E000000007E7E00000000FE3F0000000
0FC1F80000001F81FC0000003F80FE0000007F007E0000007E007F000000FE003F800001
FC001FC0007FFF80FFFF00FFFFC1FFFF80FFFFE3FFFF80FFFFE3FFFF80FFFFC1FFFF807F
FF80FFFF0029277DA630>120 D E
%EndDVIPSBitmapFont
/Fq 134[50 1[72 1[55 33 39 44 1[55 50 55 83 28 2[28 55
50 33 44 55 44 55 50 9[100 1[72 66 55 1[78 61 1[72 1[66
78 4[61 66 72 72 66 72 1[50 7[50 1[50 50 50 50 50 2[25
33 25 4[33 39[{TeXBase1Encoding ReEncodeFont}46 99.6264
/Times-Bold rf
%DVIPSBitmapFont: Fr cmsy9 9 5
/Fr 5 107 df<7FFFFFFF80FFFFFFFFC0FFFFFFFFC07FFFFFFFC000000003C000000003
C000000003C000000003C000000003C000000003C000000003C000000003C000000003C0
00000003C000000003C000000003C000000003C000000003C000000003C000000003C000
000003C000000003C000000003C000000003C03FFFFFFFC07FFFFFFFC07FFFFFFFC03FFF
FFFFC000000003C000000003C000000003C000000003C000000003C000000003C0000000
03C000000003C000000003C000000003C000000003C000000003C000000003C000000003
C000000003C000000003C000000003C000000003C000000003C000000003C07FFFFFFFC0
FFFFFFFFC0FFFFFFFFC07FFFFFFF8022347CB32B>57 D<600000000180F000000003C0F8
00000007C0F800000007C07C0000000F807C0000000F803C0000000F003E0000001F003E
0000001F001F0000003E001F0000003E000F8000007C000F8000007C0007800000780007
C00000F80007C00000F80003E00001F00003E00001F00001F00003E00001F00003E00000
F00003C00000F80007C00000F80007C000007C000F8000007C000F8000003E001F000000
3E001F0000001E001E0000001F003E0000001F003E0000000F807C0000000F807C000000
07C0F800000007C0F800000003C0F000000003E1F000000003E1F000000001F3E0000000
01F3E000000000FFC000000000FFC0000000007F80000000007F80000000007F80000000
003F00000000003F00000000001E00000000000C0000002A307CAD33>95
D<000007E000003FE00000FE000003F8000007F000000FE000000FC000001FC000001F80
00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
00001F8000001F8000001F8000001F8000003F8000003F0000007E000000FC000003F800
007FE00000FF0000007FE0000003F8000000FC0000007E0000003F0000003F8000001F80
00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
00001F8000001F8000001F8000001F8000001FC000000FC000000FE0000007F0000003F8
000000FE0000003FE0000007E01B4B7BB726>102 D<FC000000FFC0000007F0000001FC
000000FE0000007F0000003F0000003F8000001F8000001F8000001F8000001F8000001F
8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
8000001FC000000FC0000007E0000003F0000001FC0000007FC000001FE000007FC00001
FC000003F0000007E000000FC000001FC000001F8000001F8000001F8000001F8000001F
8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
8000003F8000003F0000007F000000FE000001FC000007F00000FFC00000FC0000001B4B
7BB726>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F060044B78B715>106 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fs bbold11 10.95 6
/Fs 6 96 df<0001F80007FC001FFC007FF800FF0001FE0003FE0003FE0007DE0007DE00
0F9E000F9E001F1E001F1E001E1E003E1E003E1E003C1E003C1E007C1E007C1E00781E00
781E00781E00781E00781E00781E00F81E00F81E00F01E00F01E00F01E00F01E00F01E00
F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00
F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00
F01E00F01E00F01E00F01E00F81E00F81E00781E00781E00781E00781E00781E00781E00
7C1E007C1E003C1E003C1E003E1E003E1E001E1E001F1E001F1E000F9E000F9E0007DE00
07DE0003FE0003FE0001FE0000FF00007FF8001FFC0007FC0001F8165B79C320>40
D<7E0000FF8000FFE0007FF80003FC0001FE0001FF0001FF0001EF8001EF8001E7C001E7
C001E3E001E3E001E1E001E1F001E1F001E0F001E0F001E0F801E0F801E07801E07801E0
7801E07801E07801E07801E07C01E07C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E07C01E07C01E07801E07801E07801E07801E07801E07801E0F801E0
F801E0F001E0F001E1F001E1F001E1E001E3E001E3E001E7C001E7C001EF8001EF8001FF
0001FF0001FE0003FC007FF800FFE000FF80007E0000165B7EC320>I<7FFFF8FFFFFCFF
FFFCFFFFF8F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
1E00FFFFF8FFFFFCFFFFFC7FFFF8165B79C320>91 D<7FFFF8FFFFFCFFFFFC7FFFFC01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C7FFFFCFFFF
FCFFFFFC7FFFF8165B7EC320>93 D<00001800003C00007C00007C0000780000F80000F8
0001F00001F00003E00003E00003C00007C00007C0000FC0000FC0000FC0001FC0001FC0
003FC0003FC0003FC0007FC0007FC000FBC000FBC001F3C001F3C001E3C003E3C003E3C0
07C3C007C3C00783C00F83C00F83C01F03C01F03C03E03C03E03C03C03C07C03C07C03C0
F803C0F803C0F003C0F803C0F803C07C03C07C03C03C03C03E03C03E03C01F03C01F03C0
0F83C00F83C00783C007C3C007C3C003E3C003E3C001E3C001F3C001F3C000FBC000FBC0
007FC0007FC0003FC0003FC0003FC0001FC0001FC0000FC0000FC0000FC00007C00007C0
0003C00003E00003E00001F00001F00000F80000F800007800007C00007C00003C000018
165B79C320>I<600000F00000F80000F800007800007C00007C00003E00003E00001F00
001F00000F00000F80000F80000FC0000FC0000FC0000FE0000FE0000FF0000FF0000FF0
000FF8000FF8000F7C000F7C000F3E000F3E000F1E000F1F000F1F000F0F800F0F800F07
800F07C00F07C00F03E00F03E00F01F00F01F00F00F00F00F80F00F80F007C0F007C0F00
3C0F007C0F007C0F00F80F00F80F00F00F01F00F01F00F03E00F03E00F07C00F07C00F07
800F0F800F0F800F1F000F1F000F1E000F3E000F3E000F7C000F7C000FF8000FF8000FF0
000FF0000FF0000FE0000FE0000FC0000FC0000FC0000F80000F80000F00001F00001F00
003E00003E00007C00007C0000780000F80000F80000F00000600000165B7EC320>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ft cmss8 7 4
/Ft 4 122 df<003F000001FFE00003FFF00007FFF8000FC0FC001F807E003F003F003E
001F003C000F007C000F807C000F807C000F8078000780F80007C0F80007C0F80007C0F8
0007C0F80007C0F80007C0F80007C0F80007C0F80007C0F80007C0F80007C0F80007C0F8
0007C0F80007C0780007807C000F807C000F807C000F803E001F003E001F003F003F001F
807E000FE1FC000FFFFC0003FFF00001FFE000007F80001A287EA61F>48
D<003F00F8FFC0F9FFE0FBFFF0FF83F0FE01F8FE00F8FC00F8FC00F8F800F8F800F8F800
F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800
F8F800F8F800F8F800F8151B7B9A20>110 D<7C000FC03E001F803F001F001F803E000F
807C0007C0F80003E0F80001F1F00000FBE000007FC000007F8000003F0000001F000000
3F0000003F8000007FC00000F3E00001F1F00003E0F80007C0780007807C000F803E001F
001F003E000F807C000FC0FC0007E01B1A80991C>120 D<F8000F80FC000F807C001F00
7E001F003E003E003E003E001F003E001F007C001F807C000F8078000F80F80007C0F800
07C0F00003C1F00003E1E00001E1E00001E3E00001F3C00000F3C00000F3800000738000
0077800000370000003F0000003E0000001E0000001E0000003C0000003C000000380000
007800000070000000F0000061F000007FE000007FC000007F8000007F00000019267F99
1C>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fu cmss8 8 12
/Fu 12 122 df<001F800000FFF00001FFF80007FFFE000FFFFF000FF0FF001FC03F801F
801F803F000FC03F000FC07E0007E07E0007E07E0007E07C0003E07C0003E0FC0003F0FC
0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC
0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F07C0003E07E0007E07E0007E07E
0007E07E0007E03F000FC03F000FC01F801F801FC03F800FF0FF000FFFFF0007FFFE0003
FFFC0000FFF000003FC0001C2E7DAC23>48 D<000600000E00003E0001FE00FFFE00FFFE
00FFFE00FE7E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E
00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E
00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E007FFF
FE7FFFFE7FFFFE7FFFFE172D7BAC23>I<007F800001FFF00007FFFC000FFFFE001FFFFF
003F81FF803E003FC07C001FC078000FE0F8000FE0F00007E0700007F0600007F0200003
F0000003F0000003F0000007F0000007F0000007E0000007E000000FC000001FC000001F
8000003F0000007E000000FC000001F8000003F0000007E000000FC000001F8000007E00
0000FC000001F8000003F0000007E000000FC000001F8000003E0000007C000000FFFFFF
F0FFFFFFF0FFFFFFF0FFFFFFF0FFFFFFF01C2D7DAC23>I<FF800007E0FFC00007E0FFC0
0007E0FFE00007E0FFE00007E0FDF00007E0FDF00007E0FCF80007E0FCF80007E0FCFC00
07E0FC7C0007E0FC7E0007E0FC3E0007E0FC3F0007E0FC1F0007E0FC1F8007E0FC0F8007
E0FC0FC007E0FC0FC007E0FC07E007E0FC07E007E0FC03F007E0FC03F007E0FC01F807E0
FC01F807E0FC00FC07E0FC00FC07E0FC007E07E0FC007E07E0FC003E07E0FC003F07E0FC
001F07E0FC001F87E0FC000F87E0FC000FC7E0FC0007C7E0FC0007E7E0FC0003E7E0FC00
03E7E0FC0001F7E0FC0001F7E0FC0000FFE0FC0000FFE0FC00007FE0FC00007FE0FC0000
3FE0232E79AD32>78 D<000FFC00007FFF8001FFFFE003FFFFF807FFFFF80FF807F81FC0
00F03F8000303F0000103F0000007E0000007E0000007E0000007E0000007E0000007F00
00003F8000003FC000003FF000001FFF00000FFFF00007FFFE0003FFFF0001FFFFC0007F
FFE0000FFFF00000FFF800000FF8000003FC000001FC000000FC000000FE0000007E0000
007E0000007E0000007E0000007E4000007E600000FC700000FCFC0001F8FF0007F8FFE0
1FF07FFFFFE01FFFFFC007FFFF0001FFFE00001FF0001F307DAE27>83
D<0003F8000FFE003FFE007FFE00FFFE00FE0601F80001F00003F00003F00003F00003F0
0003F00003F00003F00003F00003F000FFFFE0FFFFE0FFFFE0FFFFE003F00003F00003F0
0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F0
0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F000172F
7FAE16>102 D<FEFEFEFEFEFEFE000000000000000000007E7E7E7E7E7E7E7E7E7E7E7E
7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E072F7CAE11>105 D<000FF000FF00FC3FFC
03FFC0FCFFFE0FFFE0FDFFFF1FFFF0FFFFFFBFFFF8FFE07FFE07F8FF801FF801F8FF001F
F001FCFE000FE000FCFE000FE000FCFE000FE000FCFC000FC000FCFC000FC000FCFC000F
C000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000F
C000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000F
C000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FC2E1F7B
9E39>109 D<000FE000FC3FF800FCFFFC00FDFFFE00FFFFFF00FFC0FF00FF803F00FF00
3F80FE001F80FE001F80FE001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC00
1F80FC001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC00
1F80FC001F80FC001F80FC001F80FC001F80FC001F80191F7B9E24>I<01FF0007FFE01F
FFF83FFFFC7FFFFC7F00FCFE0038FC0008FC0000FC0000FC0000FE00007F80007FFC003F
FF801FFFE00FFFF003FFF800FFFC0007FC0001FE0000FE00007E00007E00007E40007E70
00FCFE01FCFFFFF8FFFFF87FFFF00FFFC001FF0017217E9F1B>115
D<7E0000FC3F0001FC1F8003F81FC007F00FE007E007F00FC003F01F8001F83F0000FC7F
00007E7E00003FFC00001FF800001FF000000FE0000007C000000FE000000FF000001FF8
00003EFC00007C7E0000FC3F0001F81F8003F00F8003E00FC007E007E00FC003F01F8001
F83F0001FC7F0000FEFE00007F201E809D21>120 D<FC0000FC7E0001F87E0001F87F00
01F83F0003F03F8003F01F8007E01FC007E00FC007E00FC00FC007E00FC007E00F8007F0
1F8003F01F0003F03F0001F83F0001F83E0000F83E0000FC7C00007C7C00007C7C00007C
7800003EF800003EF000001EF000001EF000000FE000000FE0000007C0000007C0000007
800000078000000F8000000F0000001F0000001E0000003E0000003E0000307C00003FF8
00003FF800003FF000003FE000000FC000001E2C7F9D21>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fv cmr9 9 1
/Fv 1 95 df<00200000700000F80001FC0003DE00078F000F07801E03C03C01E07800F0
E00038400010150C78B326>94 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fw cmmi9 9 3
/Fw 3 78 df<0000FFFFFF000003FFFFFF80000FFFFFFF80003FFFFFFF00007FFFFFFE00
01FF03FC000003F800FC000007F000FE000007E0007E00000FC0007E00001FC0007E0000
1F80003E00003F00007E00003F00007E00007F00007E00007E00007E00007E00007E0000
7E0000FE0000FE0000FC0000FC0000FC0000FC0000FC0000FC0001F80000FC0001F80000
FC0003F000007C0003E000007C0007E000007C000FC000003E001F8000003E003F000000
1F007C0000000F81F800000003FFE0000000007F0000000029217E9F2C>27
D<3C7EFFFFFFFF7E3C08087A8715>58 D<000FFFE00000000FFFC0000FFFE00000001FFF
C0000FFFE00000003FFFC000003FE00000003FE00000003FE00000007FC00000003FE000
0000DFC000000033F0000000DF8000000033F00000019F8000000073F00000033F800000
0073F00000033F0000000063F00000063F0000000063F000000C3F00000000E3F000000C
7F00000000E1F80000187E00000000C1F80000187E00000000C1F80000307E00000001C1
F8000060FE00000001C1F8000060FC0000000181F80000C0FC0000000181F8000180FC00
00000381F8000181FC0000000380FC000301F80000000300FC000301F80000000300FC00
0601F80000000700FC000C03F80000000700FC000C03F00000000600FC001803F0000000
0600FC003003F00000000E007E003007F00000000E007E006007E00000000C007E00C007
E00000000C007E00C007E00000001C007E01800FE00000001C007E01800FC00000001800
7E03000FC000000018007E06000FC000000038003F06001FC000000038003F0C001F8000
000030003F18001F8000000030003F18001F8000000070003F30003F8000000070003F30
003F0000000060003F60003F0000000060001FC0003F00000000E0001FC0007F00000000
E0001F80007E00000001E0001F00007E00000007F0001F0000FE000000FFFF801E007FFF
FC0000FFFF801C007FFFFC0000FFFF800C007FFFFC00004A337CB24A>77
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fx cmbx8 8 2
/Fx 2 42 df<0000E00001E00007C0000F80001F00003E00007E0000FC0000F80001F800
03F00003F00007E00007E0000FC0000FC0001FC0001F80003F80003F80003F00007F0000
7F00007F00007F00007F0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000
FE0000FE0000FE0000FE0000FE0000FE0000FE00007F00007F00007F00007F00007F0000
3F00003F80003F80001F80001FC0000FC0000FC00007E00007E00003F00003F00001F800
00F80000FC00007E00003E00001F00000F800007C00001E00000E0134378B120>40
D<E00000F000007C00003E00001F00000F80000FC00007E00003E00003F00001F80001F8
0000FC0000FC00007E00007E00007F00003F00003F80003F80001F80001FC0001FC0001F
C0001FC0001FC0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000F
E0000FE0000FE0000FE0000FE0000FE0001FC0001FC0001FC0001FC0001FC0001F80003F
80003F80003F00007F00007E00007E0000FC0000FC0001F80001F80003F00003E00007E0
000FC0000F80001F00003E00007C0000F00000E0000013437CB120>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fy cmmib8 8 8
/Fy 8 117 df<00003000000000700000000070000000007000000000F800000000F800
000000F800000000F800000000F800000000F800000001FC00000001FC00007801FC00F0
FFF1FC7FF87FFFFFFFF03FFFFFFFE00FFFFFFF8003FFFFFE0000FFFFF800003FFFE00000
1FFFC000000FFF8000000FFF8000001FFFC000001FFFC000003FDFE000003F8FE000007F
07F000007E03F00000FC01F80000F800F80001F0007C0001E0003C0001C0001C00018000
0C0025237EA129>63 D<001FFFFFFFFC00003FFFFFFFFF80003FFFFFFFFFE0001FFFFFFF
FFF00000FFC0003FF80000FF80001FFC0000FF80000FFC0001FF80000FFE0001FF800007
FE0001FF000007FE0001FF000007FE0003FF00000FFE0003FF00000FFC0003FE00000FFC
0003FE00001FF80007FE00001FF80007FE00003FF00007FC00007FE00007FC0000FFC000
0FFC0003FF00000FFC003FFC00000FFFFFFFF000000FFFFFFFFC00001FFFFFFFFF00001F
F80001FF80001FF00000FFC0001FF000007FE0003FF000003FF0003FF000003FF0003FE0
00003FF0003FE000003FF0007FE000003FF0007FE000003FF0007FC000003FF0007FC000
007FF000FFC000007FE000FFC00000FFE000FF800001FFC000FF800001FF8001FF800007
FF8001FF80000FFF0001FF00007FFC00FFFFFFFFFFF800FFFFFFFFFFE000FFFFFFFFFF80
00FFFFFFFFF80000372E7CAD3D>66 D<001FFFFFFFFFF8003FFFFFFFFFF8003FFFFFFFFF
F8001FFFFFFFFFF80000FFE0001FF80000FFC00007F80000FFC00001F80001FFC00001F8
0001FFC00001F00001FF800000F00001FF800000F00003FF800000F00003FF800E00F000
03FF001E00F00003FF001E00F00007FF003E00F00007FF003C00E00007FE007C00000007
FE007C0000000FFE01FC0000000FFFFFF80000000FFFFFF80000000FFFFFF80000001FFF
FFF80000001FFC03F00000001FF801F00000001FF801F00000003FF801F001C0003FF801
E003C0003FF001E003C0003FF001E007C0007FF001C00780007FF000000F80007FE00000
0F00007FE000001F0000FFE000001F0000FFE000003E0000FFC000007E0000FFC00000FC
0001FFC00003FC0001FFC0000FF80001FF80007FF800FFFFFFFFFFF000FFFFFFFFFFF000
FFFFFFFFFFF000FFFFFFFFFFE000352E7CAD39>69 D<001FFFFFE000003FFFFFF000003F
FFFFF000001FFFFFE0000000FFE000000000FFC000000000FFC000000001FFC000000001
FFC000000001FF8000000001FF8000000003FF8000000003FF8000000003FF0000000003
FF0000000007FF0000000007FF0000000007FE0000000007FE000000000FFE000000000F
FE000000000FFC000000000FFC000000001FFC000000001FFC000000001FF8000000001F
F8000000003FF8000038003FF8000078003FF0000078003FF00000F8007FF00000F0007F
F00001F0007FE00001F0007FE00003E000FFE00003E000FFE00007E000FFC0000FC000FF
C0001FC001FFC0007F8001FFC000FF8001FF800FFF80FFFFFFFFFF00FFFFFFFFFF00FFFF
FFFFFF00FFFFFFFFFE002D2E7CAD35>76 D<001FFFFFFFE00000003FFFFFFFFE0000003F
FFFFFFFF8000001FFFFFFFFFE0000000FFE000FFF0000000FFC0003FF8000000FFC0001F
FC000001FFC0000FFC000001FFC0000FFC000001FF80000FFE000001FF80000FFE000003
FF80000FFE000003FF80001FFC000003FF00001FFC000003FF00001FFC000007FF00003F
F8000007FF00003FF0000007FE00007FE0000007FE0000FFC000000FFE0003FF8000000F
FE000FFE0000000FFFFFFFF80000000FFFFFFFC00000001FFFFFFFC00000001FFC007FE0
0000001FF8003FF00000001FF8001FF80000003FF8000FF80000003FF8000FFC0000003F
F0000FFC0000003FF0000FFC0000007FF0001FFC0000007FF0001FFC0000007FE0001FFC
0000007FE0001FF8000000FFE0003FF8000000FFE0003FF8000000FFC0003FF8018000FF
C0003FF803C001FFC0003FF807C001FFC0003FF8078001FF80003FF80F80FFFFFE001FFC
0F00FFFFFE000FFC3E00FFFFFE0007FFFC00FFFFFE0003FFF80000000000007FE0003A2F
7CAD3D>82 D<0000F00003F80007FC0007FC000FFC000FF8000FF80007F00003C0000000
00000000000000000000000000000000000000FC0003FF0007FFC00F9FE01F0FE03E0FE0
3C1FE0781FE0781FE0F83FE0F03FC0F07FC0007F80007F8000FF8000FF0001FF0001FE00
01FE0003FE0003FC1F07FC1F07F81E07F83E0FF83C0FF07C0FF07807F0F807F1F003FFE0
01FF80007E0018307EAE1D>105 D<0000FE01C00007FF8FC0001FFFFFC0007F83FFC001
FE01FFC003FC00FFC007F8007F8007F8007F800FF0007F801FF000FF801FE000FF003FE0
00FF003FE000FF007FE001FF007FC001FE007FC001FE007FC001FE00FFC003FE00FF8003
FC00FF8003FC00FF8003FC00FF8007FC00FF0007F800FF0007F8007F0007F8007F000FF8
007F801FF0003F807FF0001FC1FFF0000FFFFFF00003FFDFE00000FF1FE00000001FE000
00003FE00000003FC00000003FC00000003FC00000007FC00000007F800000007F800000
0FFFF800000FFFF800001FFFF800000FFFF000222C7D9E26>113
D<00038000000FE000001FE000001FE000003FE000003FE000003FC000003FC000007FC0
00007FC000007F8000007F800000FF80007FFFFF00FFFFFF00FFFFFF00FFFFFE0001FF00
0001FE000001FE000003FE000003FE000003FC000003FC000007FC000007FC000007F800
0007F800000FF800000FF800000FF000000FF000001FF00F801FF00F801FE00F001FE01F
001FE03E001FE03C001FC07C001FE0F8000FE3F0000FFFC00003FF800000FC0000192C7E
AA1E>116 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fz cmbsy8 8 4
/Fz 4 106 df<001FF80000FFFF0003FFFFC007FFFFE00FFFFFF01FF00FF83F8001FC3F
0000FC7E00007E7C00003E7C00003EFC00003FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FFC00003F7C00003E7C00003E7E00007E3F0000FC3F
8001FC1FF00FF80FFFFFF007FFFFE003FFFFC000FFFF00001FF80020207C9F29>14
D<001FF80000FFFF0003FFFFC007FFFFE00FFFFFF01FFFFFF83FFFFFFC3FFFFFFC7FFFFF
FE7FFFFFFE7FFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFE7FFFFFFE7FFFFFFE3FFFFFFC3FFFFFFC1FFFFF
F80FFFFFF007FFFFE003FFFFC000FFFF00001FF80020207C9F29>I<0001C00003E00003
E00007E00007C0000FC0000F80000F80001F80001F00003F00003E00007E00007C0000FC
0000F80001F80001F00001F00003F00003E00007E00007C0000FC0000F80001F80001F00
003F00003E00003E00007E00007C0000FC0000F80000FC00007C00007E00003E00003E00
003F00001F00001F80000F80000FC00007C00007E00003E00003F00001F00001F00001F8
0000F80000FC00007C00007E00003E00003F00001F00001F80000F80000F80000FC00007
C00007E00003E00003E00001C0134378B120>104 D<700000F80000F80000FC00007C00
007E00003E00003E00003F00001F00001F80000F80000FC00007C00007E00003E00003F0
0001F00001F00001F80000F80000FC00007C00007E00003E00003F00001F00001F80000F
80000F80000FC00007C00007E00003E00007E00007C0000FC0000F80000F80001F80001F
00003F00003E00007E00007C0000FC0000F80001F80001F00001F00003F00003E00007E0
0007C0000FC0000F80001F80001F00003F00003E00003E00007E00007C0000FC0000F800
00F8000070000013437CB120>I E
%EndDVIPSBitmapFont
/FA 177[54 6[58 1[50 69[{TeXBase1Encoding ReEncodeFont}3
74.7198 /Times-Bold rf
%DVIPSBitmapFont: FB stmary10 10.95 4
/FB 4 78 df<FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC0F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000FFFFFFC0FFFF
FFC0FFFFFFC0FFFFFFC01A5B77C325>74 D<FFFFFF80FFFFFF80FFFFFF80FFFFFF800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780007807800078078000780780007807800078078000780780007807800078
078000780780FFFFFF80FFFFFF80FFFFFF80FFFFFF80195B7EC325>I<00003000007000
00F00001F00003F00007F0000FF0001EF0003CF0003CF00078F000F8F000F0F001F0F001
E0F003E0F003C0F007C0F00780F00F80F00F80F00F00F01F00F01F00F01F00F03E00F03E
00F03E00F03E00F07E00F07C00F07C00F07C00F07C00F07C00F07C00F0FC00F0FC00F0F8
00F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F8
00F0F800F0FC00F0FC00F07C00F07C00F07C00F07C00F07C00F07C00F07E00F03E00F03E
00F03E00F03E00F01F00F01F00F01F00F00F00F00F80F00F80F00780F007C0F003C0F003
E0F001E0F001F0F000F0F000F8F00078F0003CF0003CF0001EF0000FF00007F00003F000
01F00000F0000070000030145A77C323>I<C00000E00000F00000F80000FC0000FE0000
FF0000F78000F3C000F3C000F1E000F1F000F0F000F0F800F07800F07C00F03C00F03E00
F01E00F01F00F01F00F00F00F00F80F00F80F00F80F007C0F007C0F007C0F007C0F007E0
F003E0F003E0F003E0F003E0F003E0F003E0F003F0F003F0F001F0F001F0F001F0F001F0
F001F0F001F0F001F0F001F0F001F0F001F0F001F0F001F0F001F0F001F0F003F0F003F0
F003E0F003E0F003E0F003E0F003E0F003E0F007E0F007C0F007C0F007C0F007C0F00F80
F00F80F00F80F00F00F01F00F01F00F01E00F03E00F03C00F07C00F07800F0F800F0F000
F1F000F1E000F3C000F3C000F78000FF0000FE0000FC0000F80000F00000E00000C00000
145A7BC323>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FC cmsy6 6 10
/FC 10 96 df<006000007000006000006000406020E06070F861F07E67E01FFF8007FE
0000F00007FE001FFF807E67E0F861F0E060704060200060000060000070000060001415
7B9620>3 D<00000001C000000007C00000001FC00000007F00000001FC00000007F000
00001FC00000007F00000000FC00000003F00000000FC00000003F80000000FE00000003
F80000000FE00000003F80000000FE00000000F800000000FE000000003F800000000FE0
00000003F800000000FE000000003F800000000FC000000003F000000000FC000000007F
000000001FC000000007F000000001FC000000007F000000001FC000000007C000000001
C00000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000007FFFFFFF80FFFFFFFFC0FFFFFFFFC0222F7AA230>20
D<7FFFF80000FFFFFF00007FFFFFC00000000FE000000001F00000000078000000003C00
0000001E000000000E000000000F0000000007800000000380000000038000000003C000
000001C000000001C000000001C000000001C000000001C000000001C000000001C00000
0003C00000000380000000038000000007800000000F000000000E000000001E00000000
3C000000007800000001F00000000FE0007FFFFFC000FFFFFF00007FFFF8000022237A9D
30>27 D<000C0000000000000E0000000000001C0000000000001C0000000000003C0000
00000000380000000000007800000000000070000000000000E0000000000001C0000000
000003C000000000000F0000000000003FFFFFFFFFFFC0FFFFFFFFFFFFE03FFFFFFFFFFF
C00F00000000000003C0000000000001C0000000000000E0000000000000700000000000
0078000000000000380000000000003C0000000000001C0000000000001C000000000000
0E0000000000000C0000000000331B7C993D>32 D<00000000060000000000000E000000
0000000700000000000007000000000000078000000000000380000000000003C0000000
000001C0000000000000E000000000000070000000000000780000000000001E007FFFFF
FFFFFF80FFFFFFFFFFFFE07FFFFFFFFFFF8000000000001E000000000000780000000000
0070000000000000E0000000000001C0000000000003C000000000000380000000000007
80000000000007000000000000070000000000000E000000000000060000331B7C993D>
I<01E003F003F003F003F007E007E007C00FC00FC00F800F801F001F001E001E003E003C
003C007800780078007000F000E00060000C1A7E9B12>48 D<60000006E000000EF00000
1E7000001C7000001C7800003C380000383C0000781C0000701E0000F00E0000E00E0000
E00FFFFFE007FFFFC007FFFFC00380038003C0078001C0070001C0070001E00F0000E00E
0000F01E0000701C0000783C000038380000383800003C7800001C7000001EF000000EE0
00000FE0000007C0000007C0000007C00000038000000380001F247FA223>56
D<FFFFFF80FFFFFF80FFFFFF800000038000000380000003800000038000000380000003
80000003800000038000000380000003800000038000000380000003807FFFFF807FFFFF
807FFFFF8000000380000003800000038000000380000003800000038000000380000003
800000038000000380000003800000038000000380FFFFFF80FFFFFF80FFFFFF8019237C
A223>I<000180000003C0000003C0000007E0000007E000000FF000000E7000001E7800
001C3800003C3C0000381C0000781E0000700E0000F00F0000E0070001E0078001C00380
03C003C0038001C0078001E0070000E00F0000F00E0000701E0000781C0000383C00003C
3800001C7800001E7000000EF000000FE0000007E000000320207C9E2A>94
D<E0000003E0000007F000000F7000000E7800001E3800001C3C00003C1C0000381E0000
780E0000700F0000F0070000E0078001E0038001C003C003C001C0038001E0078000E007
0000F00F0000700E0000781E0000381C00003C3C00001C3800001E7800000E7000000FF0
000007E0000007E0000003C0000003C0000001800020207C9E2A>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FD cmbx10 10.95 6
/FD 6 62 df<0000078000000F8000001F8000003E000000FE000001FC000003F8000003
F0000007E000000FE000001FC000003F8000003F8000007F000000FF000000FE000001FE
000003FC000003FC000007FC000007F8000007F800000FF800000FF000001FF000001FF0
00001FF000003FE000003FE000003FE000003FE000007FE000007FC000007FC000007FC0
00007FC000007FC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
00007FC000007FC000007FC000007FC000007FC000007FE000003FE000003FE000003FE0
00003FE000001FF000001FF000001FF000000FF000000FF8000007F8000007F8000007FC
000003FC000003FC000001FE000000FE000000FF0000007F0000003F8000003F8000001F
C000000FE0000007E0000003F0000003F8000001FC000000FE0000003E0000001F800000
0F8000000780195A77C329>40 D<70000000F80000007C0000003E0000003F8000001FC0
00000FE0000007E0000003F0000003F8000001FC000000FE000000FE0000007F0000007F
8000003F8000003FC000001FE000001FE000001FF000000FF000000FF000000FF8000007
F8000007FC000007FC000007FC000003FE000003FE000003FE000003FE000003FF000001
FF000001FF000001FF000001FF000001FF000001FF800001FF800001FF800001FF800001
FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001
FF800001FF800001FF800001FF000001FF000001FF000001FF000001FF000003FF000003
FE000003FE000003FE000003FE000007FC000007FC000007FC000007F800000FF800000F
F000000FF000001FF000001FE000001FE000003FC000003F8000007F8000007F000000FE
000000FE000001FC000003F8000003F0000007E000000FE000001FC000003F8000003E00
00007C000000F800000070000000195A7AC329>I<00000F000000003F000000007F0000
0001FF0000000FFF000001FFFF0000FFFFFF0000FFFFFF0000FFFFFF0000FFF7FF0000FE
07FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007
FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF
00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00
000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF0000
0007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF000000
07FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007
FF00000007FF00007FFFFFFFF07FFFFFFFF07FFFFFFFF07FFFFFFFF07FFFFFFFF0243C78
BB34>49 D<0003FF800000003FFFF8000000FFFFFE000003FFFFFF800007FFFFFFC0000F
F80FFFE0001FC003FFF0003F8000FFF8007FC0007FFC007FE0003FFE00FFF0003FFE00FF
F8001FFF00FFF8001FFF00FFF8000FFF80FFF8000FFF80FFF8000FFF80FFF8000FFF807F
F0000FFF803FE0000FFF801FC0000FFF800700000FFF800000000FFF800000001FFF0000
00001FFF000000001FFE000000003FFE000000003FFC000000007FF8000000007FF80000
0000FFF000000000FFE000000001FFC000000003FF8000000007FE0000000007FC000000
000FF8000000001FE0000000003FC0000000007F8000000000FF000F800001FC000F8000
03F8000F800007F0001F00000FE0001F00001F80001F00003F00001F00007E00003F0000
FC00003F0001FFFFFFFF0003FFFFFFFE0007FFFFFFFE000FFFFFFFFE001FFFFFFFFE003F
FFFFFFFE007FFFFFFFFE00FFFFFFFFFE00FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFC00FF
FFFFFFFC00293C7BBB34>I<0FC01FE03FF07FF8FFFCFFFCFFFCFFFCFFFCFFFC7FF83FF0
1FE00FC00000000000000000000000000000000000000000000000000FC01FE03FF07FF8
FFFCFFFCFFFCFFFCFFFCFFFC7FF83FF01FE00FC00E2879A71D>58
D<7FFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFF
F0FFFFFFFFFFFFFFFFF03FFFFFFFFFFFFFFFE00000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000003FFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFF
F0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF07FFFFFFFFFFFFFFF
E0441C7AA451>61 D E
%EndDVIPSBitmapFont
/FE 135[33 4[29 29 1[37 37 8[21 33 37 2[37 14[46 82[{
TeXBase1Encoding ReEncodeFont}10 74.7198 /Times-Italic
rf
%DVIPSBitmapFont: FF cmss10 10 28
/FF 28 122 df<0003F80000001FFF0000007FFFC00000FFFFE00001FFFFF00003FE0FF8
0007F803FC000FF001FE000FE000FE001FC0007F001F80003F003F80003F803F80003F80
3F00001F807F00001FC07F00001FC07F00001FC07E00000FC07E00000FC07E00000FC0FE
00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00
000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE0000
0FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE07F00001FC07F00001FC07F00001F
C07F00001FC07F00001FC03F80003F803F80003F803F80003F801FC0007F001FC0007F00
0FE000FE000FF001FE0007F803FC0003FE0FF80001FFFFF00000FFFFE000007FFFC00000
1FFF00000003F80000233A7DB72A>48 D<0000C0000001C0000007C000001FC00000FFC0
00FFFFC000FFFFC000FFFFC000FFFFC000FF1FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC0007FFFFFF07FFFFFF07FFFFFF07FFFFFF07FFFFFF01C3879B72A>I<000007F8
000000000007F800000000000FFC00000000000FFC00000000001FFE00000000001FFE00
000000001F7E00000000003F7F00000000003E7F00000000003E7F00000000007E3F8000
0000007E3F80000000007C3F8000000000FC3FC000000000FC1FC000000000FC1FC00000
0001F81FE000000001F80FE000000003F80FF000000003F00FF000000003F00FF0000000
07F007F800000007E007F800000007E007F80000000FE003FC0000000FC003FC0000000F
C003FC0000001FC001FE0000001F8001FE0000003F8001FF0000003F8000FF0000003F00
00FF0000007F0000FF8000007F00007F8000007E00007F800000FE00003FC00000FFFFFF
FFC00000FFFFFFFFC00001FFFFFFFFE00001FFFFFFFFE00001FFFFFFFFE00003F800000F
F00003F000000FF00007F000000FF80007F0000007F80007E0000007F8000FE0000007FC
000FE0000003FC000FC0000003FC001FC0000003FE001FC0000001FE001F80000001FE00
3F80000000FF003F80000000FF007F00000000FF807F000000007F807E000000007F80FE
000000007FC0323A7EB937>65 D<000003FF800000003FFFF8000000FFFFFF000003FFFF
FFC00007FFFFFFC0001FFFFFFFC0003FFE00FF80007FF0000F8000FFC000038001FF8000
018001FF0000000003FE0000000007FC000000000FF8000000000FF0000000001FF00000
00001FE0000000003FE0000000003FC0000000003FC0000000007F80000000007F800000
00007F80000000007F8000000000FF0000000000FF0000000000FF0000000000FF000000
0000FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF000000
0000FF0000000000FF00000000007F80000000007F80000000007F80000000007F800000
00003FC0000000003FC0000000003FE0000000001FE0000000001FF0000000000FF00000
00000FF80000000007FC0000000003FE0000000001FF0000002001FF800000E000FFC000
01E0007FF0000FE0003FFE007FE0001FFFFFFFE00007FFFFFFC00003FFFFFF000000FFFF
FE0000003FFFF000000003FF80002B3C7BBA35>67 D<FFFFFFFFF0FFFFFFFFF0FFFFFFFF
F0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FF00000000FF00000000FF00000000FF00000000
FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
000000FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FF00000000FF0000
0000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF000000
00FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000
FF00000000FF00000000FF00000000FF00000000FF00000000FFFFFFFFFCFFFFFFFFFCFF
FFFFFFFCFFFFFFFFFCFFFFFFFFFCFFFFFFFFFCFFFFFFFFFC263A78B932>69
D<FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FF00000000
FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
000000FF00000000FF00000000FF00000000FF00000000FFFFFFFF00FFFFFFFF00FFFFFF
FF00FFFFFFFF00FFFFFFFF00FF00000000FF00000000FF00000000FF00000000FF000000
00FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000
FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
000000243A79B92F>I<FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF083A79B9
17>73 D<FFE000001FC0FFE000001FC0FFF000001FC0FFF000001FC0FFF800001FC0FFF8
00001FC0FEFC00001FC0FEFC00001FC0FE7E00001FC0FE7E00001FC0FE7F00001FC0FE3F
00001FC0FE3F80001FC0FE1F80001FC0FE1F80001FC0FE0FC0001FC0FE0FC0001FC0FE0F
E0001FC0FE07E0001FC0FE07F0001FC0FE03F0001FC0FE03F8001FC0FE01F8001FC0FE01
FC001FC0FE00FC001FC0FE00FE001FC0FE00FE001FC0FE007F001FC0FE007F001FC0FE00
3F801FC0FE003F801FC0FE001FC01FC0FE001FC01FC0FE000FC01FC0FE000FE01FC0FE00
07E01FC0FE0007F01FC0FE0003F01FC0FE0003F81FC0FE0001F81FC0FE0001FC1FC0FE00
00FC1FC0FE0000FC1FC0FE00007E1FC0FE00007E1FC0FE00007F1FC0FE00003F1FC0FE00
003F9FC0FE00001F9FC0FE00001F9FC0FE00000FDFC0FE00000FDFC0FE000007FFC0FE00
0007FFC0FE000003FFC0FE000003FFC0FE000001FFC0FE000001FFC02A3A78B93B>78
D<000007F800000000007FFF8000000001FFFFE000000003FFFFF00000000FFFFFFC0000
001FFC0FFE0000003FE001FF0000007F80007F800000FF00003FC00001FE00001FE00003
FC00000FF00003F8000007F00007F8000007F8000FF0000003FC000FE0000001FC001FE0
000001FE001FC0000000FE001FC0000000FE003FC0000000FF003F800000007F007F8000
00007F807F800000007F807F800000007F807F000000003F807F000000003F80FF000000
003FC0FF000000003FC0FF000000003FC0FF000000003FC0FF000000003FC0FF00000000
3FC0FF000000003FC0FF000000003FC0FF000000003FC0FF000000003FC0FF000000003F
C0FF000000003FC07F800000007F807F800000007F807F800000007F807F800000007F80
7F800000007F803FC0000000FF003FC0000000FF003FE0000001FF001FE0000001FE001F
E0000001FE000FF0000003FC000FF0000003FC0007F8000007F80003FC00000FF00003FE
00001FF00001FE00001FE00000FF00003FC000007FC000FF8000003FE001FF0000001FFC
0FFE0000000FFFFFFC00000007FFFFF800000001FFFFE0000000007FFF800000000007F8
000000323E7BBB3D>I<001FF00000FFFC0003FFFF000FFFFF801FFFFFC01FE01FE01F00
0FF01C0007F0180003F8100003F8000003F8000001FC000001FC000001FC000001FC0000
01FC000001FC000001FC00003FFC000FFFFC00FFFFFC03FFFFFC0FFFFFFC1FFE01FC3FE0
01FC7F8001FC7F0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0003FCFF0003FC7F80
0FFC7FE03FFC3FFFFFFC1FFFFFFC0FFFF9FC07FFE1FC01FE00001E287DA628>97
D<FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000
FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE
00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE01FC0000FE0F
FF0000FE3FFFC000FEFFFFE000FFFFFFF000FFF03FF800FFC007F800FF8003FC00FF0001
FC00FE0000FE00FE0000FE00FE00007F00FE00007F00FE00007F00FE00003F80FE00003F
80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80
FE00003F80FE00007F00FE00007F00FE00007F00FE0000FF00FE0000FE00FE0001FE00FF
0001FC00FF8003FC00FFC00FF800FFF03FF000FFFFFFE000FEFFFFC000FE7FFF8000FE1F
FE00000007F80000213B7AB92B>I<0003FE00001FFFC0007FFFE000FFFFF801FFFFFC03
FC03FC07F8007C0FE000381FC000081FC000003F8000003F8000007F0000007F0000007F
0000007E000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE
000000FE0000007F0000007F0000007F0000003F8000003F8000003FC000021FC000060F
E0001E07F0007E07FC03FE03FFFFFE00FFFFFC007FFFF0001FFFC00007FC001F287DA625
>I<0000003F800000003F800000003F800000003F800000003F800000003F800000003F
800000003F800000003F800000003F800000003F800000003F800000003F800000003F80
0000003F800000003F800000003F800000003F800000003F800000003F80000FE03F8000
3FFC3F8000FFFF3F8001FFFFBF8003FFFFFF8007FE07FF800FF801FF801FE000FF801FC0
007F803FC0003F803F80003F807F80003F807F00003F807F00003F807F00003F80FE0000
3F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F
80FE00003F80FE00003F807F00003F807F00003F807F00003F803F80003F803F80007F80
1FC0007F801FE000FF800FF003FF8007FE07FF8003FFFFBF8001FFFF3F8000FFFE3F8000
7FF83F80000FE00000213B7DB92B>I<0007F800001FFE00007FFF8001FFFFC003FFFFE0
07FC0FF00FF003F80FE001F81FC000FC1F80007C3F80007E3F00003E7F00003E7E00003E
7E00001FFE00001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC000000FC000000
FE000000FE0000007E0000007E0000007F0000003F0000003F8000001FC000001FE00002
0FF0000E07F8003E03FE01FE01FFFFFE00FFFFFC007FFFF0001FFFC00003FE0020287EA6
25>I<0000FF000007FFC0000FFFC0001FFFC0003FFFC0007F81C000FE004000FC000001
F8000001F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
F8000003F8000003F8000003F8000003F80000FFFFFC00FFFFFC00FFFFFC00FFFFFC00FF
FFFC0003F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
F8000003F8000003F8000003F8000003F8000003F800001A3B7FBA19>I<FFFFFFFFFFFF
FFFF0000000000000000000000007F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F
7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F08397BB814>105 D<FE00000000FE00000000FE00
000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000
00FE00000000FE00000000FE00000000FE00000000FE0003FE00FE0007FC00FE000FF800
FE001FF000FE003FE000FE007FC000FE00FF8000FE01FF0000FE03FE0000FE03FC0000FE
07F80000FE0FF00000FE1FE00000FE3FC00000FE7F800000FEFFC00000FFFFE00000FFFF
E00000FFFFF00000FFF7F80000FFE3F80000FFC1FC0000FF80FE0000FF00FF0000FE007F
0000FE003F8000FE003FC000FE001FC000FE000FE000FE000FF000FE0007F000FE0003F8
00FE0001FC00FE0001FE00FE0000FE00FE00007F00FE00007F80213A7AB929>107
D<FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE
FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE073A7AB914>I<0001FC0003F8
00FE0FFF801FFF00FE1FFFC03FFF80FE7FFFE0FFFFC0FEFFFFF1FFFFE0FFF81FFBF03FF0
FFE007FBC00FF0FFC003FF8007F0FF8003FF0007F8FF8001FF0003F8FF0001FE0003F8FF
0001FE0003F8FF0001FE0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE00
01FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001
FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC
0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC00
03F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003
F8FE0001FC0003F835267AA542>I<0001FC00FE0FFF80FE1FFFC0FE7FFFE0FEFFFFF0FF
F81FF8FFE007F8FFC003F8FF8003FCFF8001FCFF0001FCFF0001FCFF0001FCFE0001FCFE
0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FC1E267AA52B>I<0003FE000000
0FFF8000003FFFE00000FFFFF80001FFFFFC0003FE03FE0007F800FF000FF0007F800FE0
003F801FC0001FC03F80000FE03F80000FE03F000007E07F000007F07F000007F07E0000
03F0FE000003F8FE000003F8FE000003F8FE000003F8FE000003F8FE000003F8FE000003
F8FE000003F8FE000003F87F000007F07F000007F07F000007F03F80000FE03F80000FE0
1FC0001FC01FE0003FC00FF0007F8007F800FF0003FE03FE0001FFFFFC0000FFFFF80000
7FFFF000001FFFC0000003FE000025287EA62A>I<0001FC0000FE0FFF0000FE3FFFC000
FEFFFFE000FFFFFFF000FFF03FF800FFC00FF800FF8003FC00FF0003FC00FE0001FE00FE
0000FE00FE0000FF00FE00007F00FE00007F00FE00007F80FE00003F80FE00003F80FE00
003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE0000
7F00FE00007F00FE00007F00FE0000FF00FE0000FE00FE0001FE00FF0003FC00FF8007FC
00FFC00FF800FFF03FF000FFFFFFE000FEFFFFC000FE7FFF8000FE1FFE0000FE07F80000
FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE
00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00
00000021367AA52B>I<0000F0FC07F0FC0FF0FC3FF0FC7FF0FCFFF0FDFF00FDFC00FFF0
00FFE000FFC000FFC000FF8000FF0000FF0000FF0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE000014267AA51C>114 D<007FE00001FFFC0007FFFF
800FFFFFC01FFFFFC03FC03FC03F0007803F0001807E0000007E0000007E0000007E0000
007F0000007F0000003F8000003FF000003FFF80001FFFF0000FFFFC0007FFFE0003FFFF
0000FFFF80001FFF800000FFC000003FC000000FE000000FE0000007E0000007E0000007
E0400007E0600007E078000FC0FE001FC0FFC07F80FFFFFF807FFFFF001FFFFE0003FFF8
00007FC0001B287EA620>I<01FC000001FC000001FC000001FC000001FC000001FC0000
01FC000001FC000001FC000001FC0000FFFFFF00FFFFFF00FFFFFF00FFFFFF00FFFFFF00
01FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0000
01FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0000
01FC000001FC000001FC000001FC000001FC000001FC000001FC000001FE008001FE0180
00FF07C000FFFFC000FFFFC0007FFF00003FFC00001FE0001A307FAE1E>I<FE0001FCFE
0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
0003FCFE0003FCFE0007FCFF001FFC7F807FFC7FFFFFFC3FFFF9FC3FFFF1FC0FFFC1FC03
FC00001E267AA42B>I<7F80000FE03F80001FC01FC0003FC01FE0007F800FF0007F0007
F000FE0003F801FC0001FC03FC0001FE03F80000FF07F000007F0FE000003F9FC000001F
DFC000000FFF8000000FFF00000007FE00000003FC00000001FC00000001FC00000003FE
00000007FE0000000FFF0000000FDF8000001F9FC000003F0FE000007F07F00000FE03F0
0000FC03F80001FC01FC0003F800FE0007F0007F000FF0007F000FE0003F801FC0001FC0
3F80001FE07F80000FF0FF000007F8252580A426>120 D<FF00000FE07F00001FC07F00
001FC03F80001FC03F80003F803FC0003F801FC0007F001FC0007F000FE0007F000FE000
FE000FF000FE0007F000FC0007F001FC0003F801FC0003F801F80003FC03F80001FC03F8
0001FC03F00000FE07F00000FE07E000007E07E000007E0FE000007F0FC000003F0FC000
003F0FC000001F9F8000001F9F8000001F9F0000000F9F0000000F9F000000079E000000
07DE00000007DE00000003FC00000003FC00000001F800000001F800000001F800000001
F000000003F000000003E000000003E000000007E000000007C00000000FC00000000FC0
0000001F800000201F800000383F0000003FFE0000003FFE0000003FFC0000003FF80000
000FE000000023367FA426>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FG cmr10 10 8
/FG 8 94 df<FFFFFFFFFFE0FFFFFFFFFFE0FFFFFFFFFFE001FF80003FE000FF000007E0
00FF000003F000FF000001F000FF000000F000FF0000007000FF0000007000FF00000030
00FF0000003000FF0000003000FF0000003000FF0000003800FF0000001800FF00000018
00FF0000001800FF0000001800FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
01FFC0000000FFFFFFE00000FFFFFFE00000FFFFFFE000002D397DB834>0
D<00000006000000000000000F000000000000000F000000000000001F80000000000000
1F800000000000003FC00000000000003FC00000000000007FE00000000000007FE00000
00000000DFF0000000000000DFF00000000000018FF80000000000018FF8000000000003
07FC00000000000307FC00000000000603FE00000000000603FE00000000000E01FF0000
0000000C01FF00000000001C00FF80000000001800FF800000000038007FC00000000030
007FC00000000070003FE00000000060003FE000000000E0001FF000000000C0001FF000
000001C0000FF80000000180000FF800000003800007FC00000003000007FC0000000700
0003FE00000006000003FE0000000E000001FF0000000C000001FF0000001C000000FF80
000018000000FF800000380000007FC00000300000007FC00000700000003FE000006000
00003FE00000E00000001FF00000C00000001FF00000C00000000FF00001800000000FF8
00018000000007F800030000000007FC00030000000003FC00060000000003FE00060000
000001FE000C0000000001FF000C0000000000FF00180000000000FF801FFFFFFFFFFFFF
803FFFFFFFFFFFFFC03FFFFFFFFFFFFFC07FFFFFFFFFFFFFE07FFFFFFFFFFFFFE0FFFFFF
FFFFFFFFF0FFFFFFFFFFFFFFF03C3C7CBB45>I<0000600000E00001C000038000070000
0E00001E00003C0000780000780000F00001E00001E00003C00003C00007C0000780000F
80000F00000F00001F00001E00001E00003E00003E00003E00007C00007C00007C00007C
00007C00007C0000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8
0000F80000F80000F80000F80000F80000F80000F80000F800007C00007C00007C00007C
00007C00007C00003E00003E00003E00001E00001E00001F00000F00000F00000F800007
800007C00003C00003C00001E00001E00000F000007800007800003C00001E00000E0000
07000003800001C00000E0000060135278BD20>40 D<C00000E000007000003800001C00
000E00000F000007800003C00003C00001E00000F00000F000007800007800007C00003C
00003E00001E00001E00001F00000F00000F00000F80000F80000F800007C00007C00007
C00007C00007C00007C00003E00003E00003E00003E00003E00003E00003E00003E00003
E00003E00003E00003E00003E00003E00003E00003E00003E00003E00007C00007C00007
C00007C00007C00007C0000F80000F80000F80000F00000F00001F00001E00001E00003E
00003C00007C0000780000780000F00000F00001E00003C00003C0000780000F00000E00
001C0000380000700000E00000C0000013527CBD20>I<1C007F00FF80FF80FF80FF80FF
807F001C0000000000000000000000000000000000000000000000000000000000000000
00000000001C007F00FF80FF80FF80FF80FF807F001C00092479A317>58
D<7FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF800000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000007FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFF
FFFFFFFC7FFFFFFFFFFFF836167B9F41>61 D<FFF8FFF8FFF8FFF8F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000FFF8FF
F8FFF8FFF80D5378BD17>91 D<FFF8FFF8FFF8FFF8007800780078007800780078007800
780078007800780078007800780078007800780078007800780078007800780078007800
780078007800780078007800780078007800780078007800780078007800780078007800
780078007800780078007800780078007800780078007800780078007800780078007800
780078007800780078007800780078007800780078007800780078FFF8FFF8FFF8FFF80D
537FBD17>93 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FH cmmib10 10 2
/FH 2 106 df<00000300000000000700000000000700000000000700000000000F8000
0000000F80000000000F80000000000F80000000000F80000000001FC0000000001FC000
0000001FC0000000001FC0000000001FC0000000001FC0000070003FE00070FFF03FE07F
F8FFFFFFFFFFF83FFFFFFFFFE01FFFFFFFFFC007FFFFFFFF0001FFFFFFFC00007FFFFFF0
00001FFFFFC0000007FFFF00000001FFFC00000001FFFC00000003FFFE00000003FFFE00
000003FFFE00000007FFFF00000007FDFF0000000FF8FF8000000FF07F8000001FE03FC0
00001FC01FC000003F800FE000003F0007E000007E0003F000007C0001F00000F0000078
0000E0000038000040000010002D2B7FA930>63 D<00001E0000003F800000FF800000FF
C00001FFC00001FF800001FF800001FF000000FE00000038000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000003F00
0000FFE00001FFF00007C3F8000F83FC000F03FC001E03FC003E03FC003C07FC007C07FC
00780FFC00780FF800F80FF800F01FF800001FF000003FF000003FE000003FE000007FE0
00007FC000007FC00000FFC00000FF800001FF800001FF000001FF01E003FF01E003FE03
E007FE03C007FC03C007FC078007FC078007F80F0007F81F0003F83E0003FC7C0001FFF8
00007FE000001F80001B3C7EBA22>105 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FI cmex10 10 11
/FI 11 126 df<000001F0000007F000000FF000003FF000007FF00001FFC00003FF8000
07FF00000FFE00001FFC00003FF800007FF000007FE00000FFC00001FF800003FF800003
FF000007FE000007FE00000FFC00000FFC00001FF800001FF800003FF800003FF000003F
F000007FF000007FE000007FE000007FE000007FE00000FFE00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC000001C4B607E4A>56 D<F8000000FE000000FF
800000FFC00000FFF000003FF800001FFC00000FFE000003FF000001FF800000FFC00000
7FE000003FF000003FF800001FFC00000FFC000007FE000007FF000003FF000003FF8000
01FF800001FFC00000FFC00000FFC000007FE000007FE000007FE000003FF000003FF000
003FF000003FF000003FF800001FF800001FF800001FF800001FF800001FF800001FF800
001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
001FF81D4B737E4A>I<FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
0000FFE000007FE000007FE000007FE000007FE000007FF000003FF000003FF000003FF8
00001FF800001FF800000FFC00000FFC000007FE000007FE000003FF000003FF800001FF
800000FFC000007FE000007FF000003FF800001FFC00000FFE000007FF000003FF800001
FFC000007FF000003FF000000FF0000007F0000001F01C4B60804A>I<00001FF800001F
F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
F800001FF800001FF800001FF800001FF800001FF800003FF800003FF000003FF000003F
F000003FF000007FE000007FE000007FE00000FFC00000FFC00001FFC00001FF800003FF
800003FF000007FF000007FE00000FFC00001FFC00003FF800003FF000007FE00000FFC0
0001FF800003FF00000FFE00001FFC00003FF80000FFF00000FFC00000FF800000FE0000
00F80000001D4B73804A>I<00001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800003FF800003FF000003FF000003FF000003FF000007FE000007FE000007FE0
00007FC00000FFC00000FFC00001FF800001FF800001FF000003FF000003FE000007FE00
000FFC00000FF800001FF800003FF000003FE000007FC00000FF800001FF000003FE0000
07FC00000FF800001FF000007FE00000FF800000FF000000FC000000FF000000FF800000
7FE000001FF000000FF8000007FC000003FE000001FF000000FF8000007FC000003FE000
003FF000001FF800000FF800000FFC000007FE000003FE000003FF000001FF000001FF80
0001FF800000FFC00000FFC000007FC000007FE000007FE000007FE000003FF000003FF0
00003FF000003FF000003FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
00001FF81D9773804A>I<FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC000007FE000007FE000007FE000007FE000007FE000003FF000003FF000003F
F000001FF800001FF800000FF800000FFC00000FFC000007FE000003FE000003FF000001
FF000001FF800000FF8000007FC000003FE000003FF000001FF000000FF8000007FC0000
03FE000001FF000000FF8000003FE000001FF0000007F0000003F0000007F000001FF000
003FE00000FF800001FF000003FE000007FC00000FF800001FF000003FF000003FE00000
7FC00000FF800001FF800001FF000003FF000003FE000007FE00000FFC00000FFC00000F
F800001FF800001FF800003FF000003FF000003FF000007FE000007FE000007FE000007F
E000007FE00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
C000001C9760804A>I<FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0
FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC00A1B60804A>I<00
0000007F800000000FFF800000007FFF80000001FFFF8000000FFFFF8000003FFFFF8000
007FFFFF800001FFFFFF800007FFFFFF80000FFFFFFF80001FFFFF0000003FFFE0000000
FFFF00000001FFF800000003FFE000000003FF8000000007FE000000000FFC000000001F
F0000000003FE0000000003FC0000000007F8000000000FF0000000000FF0000000000FE
0000000000FC0000000000F80000000000291B838925>122 D<FF0000000000FFF80000
0000FFFF00000000FFFFC0000000FFFFF8000000FFFFFE000000FFFFFF000000FFFFFFC0
0000FFFFFFF00000FFFFFFF80000007FFFFC00000003FFFE000000007FFF800000000FFF
C000000003FFE000000000FFE0000000003FF0000000001FF80000000007FC0000000003
FE0000000001FE0000000000FF00000000007F80000000007F80000000003F8000000000
1F80000000000F80291B818925>I<F80000000000FC0000000000FE0000000000FF0000
000000FF00000000007F80000000003FC0000000003FE0000000001FF0000000000FFC00
00000007FE0000000003FF8000000003FFE000000001FFF800000000FFFF000000003FFF
E00000001FFFFF0000000FFFFFFF800007FFFFFF800001FFFFFF8000007FFFFF8000003F
FFFF8000000FFFFF80000001FFFF800000007FFF800000000FFF80000000007F80291B83
9A25>I<000000000F80000000001F80000000003F80000000007F80000000007F800000
0000FF0000000001FE0000000003FE0000000007FC000000001FF8000000003FF0000000
00FFE000000003FFE00000000FFFC00000007FFF80000003FFFE0000007FFFFC0000FFFF
FFF80000FFFFFFF00000FFFFFFC00000FFFFFF000000FFFFFE000000FFFFF8000000FFFF
C0000000FFFF00000000FFF800000000FF0000000000291B819A25>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FJ cmr7 7 6
/FJ 6 51 df<0006000C00180030006000E001C00380038007000F000E001E001E001C00
3C003C003C0078007800780078007800F800F000F000F000F000F000F000F000F000F000
F000F000F800780078007800780078003C003C003C001C001E001E000E000F0007000380
038001C000E0006000300018000C00060F3B7AAB1A>40 D<C0006000300018000C000E00
07000380038001C001E000E000F000F00070007800780078003C003C003C003C003C003E
001E001E001E001E001E001E001E001E001E001E001E003E003C003C003C003C003C0078
00780078007000F000F000E001E001C00380038007000E000C00180030006000C0000F3B
7DAB1A>I<00000E00000000000E00000000000E00000000000E00000000000E00000000
000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
000E00000000000E00000000000E000000FFFFFFFFFFE0FFFFFFFFFFE0FFFFFFFFFFE000
000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
000E00000000000E0000002B2B7DA333>43 D<003F800001FFF00003E0F80007803C000F
001E001E000F003E000F803E000F803C0007807C0007C07C0007C07C0007C07C0007C0FC
0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC
0007E0FC0007E0FC0007E0FC0007E0FC0007E07C0007C07C0007C07C0007C03E000F803E
000F803E000F801F001F000F001E0007803C0003E0F80001FFF000003F80001B277EA521
>48 D<00380000780001F8001FF800FEF800E0F80000F80000F80000F80000F80000F800
00F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F800
00F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F800
01FC00FFFFF8FFFFF815267BA521>I<00FF000003FFE0000E03F0001800F80030007C00
60007E0078003F00FC003F00FE001F80FE001F80FE001F80FE001F807C001F8000001F80
00001F0000003F0000003E0000007E0000007C000000F8000001F0000003E0000003C000
00078000000E0000001C0000003800000070018000E00180018001800300030006000300
0C0003001FFFFF003FFFFF007FFFFE00FFFFFE00FFFFFE0019267DA521>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FK cmex10 10.95 14
/FK 14 112 df<F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0043B73811E>
12 D<0000000000780000000001F80000000007F8000000001FF8000000007FE0000000
00FF8000000003FF0000000007FC000000000FF8000000001FF0000000003FE000000000
7FC000000000FF8000000000FF0000000001FE0000000003FE0000000003FC0000000007
FC0000000007F8000000000FF8000000000FF0000000000FF0000000000FF0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000003FE0000000003FC0000000003FC0000000007F
C0000000007F80000000007F8000000000FF0000000000FF0000000001FE0000000003FE
0000000003FC0000000007F8000000000FF0000000001FE0000000003FC0000000007F80
00000000FF0000000001FE0000000007F8000000000FF0000000003FC000000000FF0000
000000FC0000000000FC0000000000FF00000000003FC0000000000FF00000000007F800
00000001FE0000000000FF00000000007F80000000003FC0000000001FE0000000000FF0
0000000007F80000000003FC0000000003FE0000000001FE0000000000FF0000000000FF
00000000007F80000000007F80000000007FC0000000003FC0000000003FC0000000003F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
E0000000001FE0000000001FE0000000001FE0000000000FF0000000000FF0000000000F
F0000000000FF80000000007F80000000007FC0000000003FC0000000003FE0000000001
FE0000000000FF0000000000FF80000000007FC0000000003FE0000000001FF000000000
0FF80000000007FC0000000003FF0000000000FF80000000007FE0000000001FF8000000
0007F80000000001F80000000000782DDA758344>26 D[<F80000000000FE0000000000
FF8000000000FFC000000000FFE0000000003FF8000000001FFC0000000007FE00000000
03FF0000000001FF8000000000FFC0000000007FE0000000003FF0000000001FF0000000
001FF8000000000FFC0000000007FC0000000007FE0000000003FE0000000003FF000000
0001FF0000000001FF8000000000FF8000000000FF8000000000FFC0000000007FC00000
00007FC0000000007FC0000000007FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FF0000000001FF0000000001FF00000
00001FF0000000001FF8000000000FF8000000000FF8000000000FFC0000000007FC0000
000007FC0000000003FE0000000003FE0000000001FF0000000001FF0000000000FF8000
0000007FC0000000007FC0000000003FE0000000001FF0000000000FF80000000007FC00
00000003FE0000000001FF0000000000FF80000000007FC0000000003FF0000000000FF8
0000000007FC0000000001FC0000000001FC0000000007FC000000000FF8000000003FF0
000000007FC000000000FF8000000001FF0000000003FE0000000007FC000000000FF800
0000001FF0000000003FE0000000007FC0000000007FC000000000FF8000000001FF0000
000001FF0000000003FE0000000003FE0000000007FC0000000007FC000000000FFC0000
00000FF8000000000FF8000000001FF8000000001FF0000000001FF0000000001FF00000
00003FF0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
00003FE0000000007FE0000000007FC0000000007FC0000000007FC000000000FFC00000
0000FF8000000000FF8000000001FF8000000001FF0000000003FF0000000003FE000000
0007FE0000000007FC000000000FFC000000001FF8000000001FF0000000003FF0000000
007FE000000000FFC000000001FF8000000003FF0000000007FE000000001FFC00000000
3FF800000000FFE000000000FFC000000000FF8000000000FE0000000000F80000000000
>46 272 115 131 73 41 D<0000007C000001FC000003FC00000FFC00001FFC00007FF8
0000FFE00001FFC00003FF800007FF00000FFE00001FFC00003FF800007FF000007FE000
00FFE00001FFC00001FF800003FF800007FF000007FF00000FFE00000FFE00000FFC0000
1FFC00001FFC00003FF800003FF800003FF800007FF800007FF000007FF000007FF00000
7FF00000FFF00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE000001E525D7E51>56 D<F8000000FE000000FF800000
FFC00000FFF000003FF800001FFC00000FFE000007FF000001FFC00000FFC000007FE000
007FF000003FF800001FFC00000FFE00000FFE000007FF000003FF800003FF800001FFC0
0001FFC00000FFE00000FFE000007FF000007FF000007FF800003FF800003FF800003FF8
00001FFC00001FFC00001FFC00001FFC00001FFE00000FFE00000FFE00000FFE00000FFE
00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE1F52717E51>I<FF
E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
E00000FFE00000FFF000007FF000007FF000007FF000007FF000007FF800003FF800003F
F800003FF800001FFC00001FFC00000FFC00000FFE00000FFE000007FF000007FF000003
FF800001FF800001FFC00000FFE000007FE000007FF000003FF800001FFC00000FFE0000
07FF000003FF800001FFC00000FFE000007FF800001FFC00000FFC000003FC000001FC00
00007C1E525D8051>I<00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
0FFE00000FFE00000FFE00000FFE00000FFE00001FFE00001FFC00001FFC00001FFC0000
1FFC00003FF800003FF800003FF800007FF800007FF000007FF00000FFE00000FFE00001
FFC00001FFC00003FF800003FF800007FF00000FFE00000FFE00001FFC00003FF800007F
F000007FE00000FFC00001FFC00007FF00000FFE00001FFC00003FF80000FFF00000FFC0
0000FF800000FE000000F80000001F52718051>I<00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00001F
FC00001FFC00001FFC00001FFC00001FFC00003FF800003FF800003FF800003FF000007F
F000007FF000007FE00000FFE00000FFC00001FFC00001FF800003FF800003FF000007FE
000007FE00000FFC00001FF800001FF800003FF000007FE00000FFC00001FF800001FF00
0003FE00000FFC00001FF800003FE000007FC00000FF000000FE000000FE000000FF0000
007FC000003FE000001FF800000FFC000003FE000001FF000001FF800000FFC000007FE0
00003FF000001FF800001FF800000FFC000007FE000007FE000003FF000003FF800001FF
800001FFC00000FFC00000FFE000007FE000007FF000007FF000003FF000003FF800003F
F800003FF800001FFC00001FFC00001FFC00001FFC00001FFC00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
FE1FA6718051>I<FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE000007FF000007FF000007FF000007FF00000
7FF000003FF800003FF800003FF800001FF800001FFC00001FFC00000FFC00000FFE0000
07FE000007FE000003FF000003FF000001FF800001FF800000FFC000007FE000007FE000
003FF000001FF800000FF8000007FC000007FE000003FF000001FF8000007FC000003FE0
00001FF000000FF8000003FC000001FC000001FC000003FC00000FF800001FF000003FE0
00007FC00001FF800003FF000007FE000007FC00000FF800001FF800003FF000007FE000
007FE00000FFC00001FF800001FF800003FF000003FF000007FE000007FE00000FFE0000
0FFC00001FFC00001FFC00001FF800003FF800003FF800003FF800007FF000007FF00000
7FF000007FF000007FF00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
FFE00000FFE00000FFE00000FFE00000FFE00000FFE000001EA65D8051>I<FFE0FFE0FF
E0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FF
E0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE00B1D5D8051>I<7C0000000000001F007C0000
000000001F00FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
000000003F80FE0000000000003F80FE0000000000003F80FF0000000000007F80FF0000
000000007F807F0000000000007F007F800000000000FF007F800000000000FF003F8000
00000000FE003FC00000000001FE003FC00000000001FE001FE00000000003FC001FF000
00000007FC000FF00000000007F8000FF8000000000FF80007FC000000001FF00003FE00
0000003FE00001FF80000000FFC00001FFC0000001FFC00000FFF0000007FF8000007FF8
00000FFF0000003FFF00007FFE0000001FFFF007FFFC00000007FFFFFFFFF000000003FF
FFFFFFE000000000FFFFFFFF80000000007FFFFFFF00000000000FFFFFF8000000000001
FFFFC00000000000001FFC00000000415B7B7F4C>83 D<3C0000000000000000000F007E
0000000000000000001F80FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
0000000000000000003FC0FF8000000000000000007FC07F8000000000000000007F807F
8000000000000000007F807F8000000000000000007F807F8000000000000000007F807F
C00000000000000000FF803FC00000000000000000FF003FE00000000000000001FF003F
E00000000000000001FF001FF00000000000000003FE001FF00000000000000003FE000F
F80000000000000007FC000FF80000000000000007FC0007FC000000000000000FF80007
FC000000000000000FF80003FE000000000000001FF00003FF000000000000003FF00001
FF800000000000007FE00001FFC0000000000000FFE00000FFE0000000000001FFC00000
7FF0000000000003FF8000003FF8000000000007FF0000001FFC00000000000FFE000000
0FFF00000000003FFC00000007FF80000000007FF800000003FFE000000001FFF0000000
01FFF800000007FFE000000000FFFE0000001FFFC0000000007FFFC00000FFFF80000000
003FFFFE001FFFFF00000000000FFFFFFFFFFFFC000000000007FFFFFFFFFFF800000000
0001FFFFFFFFFFE00000000000007FFFFFFFFF800000000000001FFFFFFFFE0000000000
000003FFFFFFF000000000000000007FFFFF80000000000000000003FFF000000000005A
7F7B7F65>91 D<000000003C00000001FC00000007FC0000001FFC0000007FF0000000FF
C0000001FF00000007FC0000000FF80000001FF00000001FE00000003FC00000007F8000
00007F00000000FF00000000FE00000001FE00000001FE00000001FC00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000003FC00000003F800000003F800000007F800000007F00000000FF00000000FE0
0000001FE00000003FC00000007F80000000FF00000001FE00000003FC00000007F00000
001FE00000007F80000000FE00000000F800000000FE000000007F800000001FE0000000
07F000000003FC00000001FE00000000FF000000007F800000003FC00000001FE0000000
0FE00000000FF000000007F000000007F800000003F800000003F800000003FC00000001
FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FE00000001FE00000000FE00000000FF000000007F00
0000007F800000003FC00000001FE00000001FF00000000FF800000007FC00000001FF00
000000FFC00000007FF00000001FFC00000007FC00000001FC000000003C26A375833D>
110 D<F000000000FE00000000FF80000000FFC00000003FF00000000FF800000003FE00
000001FF00000000FF800000003FC00000001FE00000001FE00000000FF000000007F000
000007F800000003F800000003FC00000003FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FE00000000FE00000000FE00000000FF000000007F000000007F800000003F80000000
1FC00000001FE00000000FF000000007F800000003FC00000000FF000000007F80000000
1FE00000000FF800000003FC00000000FC00000003FC0000000FF80000001FE00000007F
80000000FF00000003FC00000007F80000000FF00000001FE00000001FC00000003F8000
00007F800000007F00000000FF00000000FE00000000FE00000001FE00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
FC00000001FC00000003FC00000003FC00000003F800000007F800000007F00000000FF0
0000001FE00000001FE00000003FC0000000FF80000001FF00000003FE0000000FF80000
003FF0000000FFC0000000FF80000000FE00000000F00000000026A375833D>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FL cmss10 10.95 32
/FL 32 123 df<0003FC0000000FFF0000003FFFC00000FFFFF00001FFFFF80003FFFFFC
0003FE07FC0007F801FE000FF000FF000FE0007F001FC0003F801FC0003F801F80001F80
3F80001FC03F80001FC03F00000FC07F00000FE07F00000FE07F00000FE07F00000FE07E
000007E07E000007E0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE00
0007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE0000
07F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007
F0FE000007F07F00000FE07F00000FE07F00000FE07F00000FE07F00000FE03F80001FC0
3F80001FC03F80001FC03FC0003FC01FC0003F801FE0007F800FE0007F000FF000FF0007
F801FE0003FE07FC0003FFFFFC0001FFFFF80000FFFFF000003FFFC000001FFF80000003
FC000024407CBD2D>48 D<0000C0000001C0000007C000000FC000007FC00007FFC000FF
FFC000FFFFC000FFFFC000FFFFC000FF9FC000F81FC000001FC000001FC000001FC00000
1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
1FC000001FC000001FC000001FC000001FC000FFFFFFF8FFFFFFF8FFFFFFF8FFFFFFF8FF
FFFFF8FFFFFFF81D3E78BD2D>I<000FF80000003FFF000000FFFFC00001FFFFF00003FF
FFF80007FFFFFC000FF01FFE001FC003FF003F8000FF803F00007F807F00003FC07E0000
3FC07E00001FE0FE00001FE0FC00000FE07C00000FF03C00000FF03800000FF018000007
F008000007F000000007F000000007F00000000FF00000000FF00000000FE00000000FE0
0000001FE00000001FC00000003FC00000003F800000007F00000000FF00000000FE0000
0001FC00000003F800000007F00000000FE00000001FC00000003F800000007F00000000
FE00000001FC00000003F800000007F00000000FE00000001FC00000003F800000007F00
000000FC00000001F800000003F000000007E00000000FC00000001F800000003F000000
007FFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0
243E7CBD2D>I<0007FC0000003FFF800000FFFFE00001FFFFF00007FFFFFC000FFC07FE
001FF001FE003FC000FF003F80007F807F00003F803E00003FC03C00003FC01C00001FC0
1800001FC00800001FC00000001FC00000003FC00000003FC00000003F800000003F8000
00007F800000007F00000000FF00000001FE00000003FE0000000FFC0000007FF800001F
FFF000001FFFE000001FFF8000001FFF8000001FFFE000001FFFF800000007FC00000001
FE00000000FF000000007F800000003FC00000003FC00000001FE00000001FE00000000F
E00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF0
4000000FF06000001FE06000001FE0F000003FE0F800003FC0FE00007FC07F0000FF803F
C001FF001FF807FE000FFFFFFE0007FFFFF80003FFFFF00000FFFFE000003FFF80000007
FC000024407CBD2D>I<000001FE000000000003FF000000000003FF000000000003FF00
0000000007FF800000000007FF800000000007FF80000000000FDFC0000000000F9FC000
0000001F9FE0000000001F8FE0000000001F8FE0000000003F0FF0000000003F0FF00000
00003F07F0000000007E07F8000000007E07F8000000007E03F800000000FC03FC000000
00FC03FC00000001FC01FE00000001F801FE00000001F801FE00000003F800FF00000003
F000FF00000003F000FF00000007F0007F80000007E0007F8000000FE0003FC000000FE0
003FC000000FC0003FC000001FC0001FE000001F80001FE000001F80001FE000003F8000
0FF000003F00000FF000007F00000FF800007F000007F800007E000007F80000FFFFFFFF
FC0000FFFFFFFFFC0000FFFFFFFFFC0001FFFFFFFFFE0001FFFFFFFFFE0003F8000001FF
0003F8000000FF0003F0000000FF0007F0000000FF8007F00000007F8007E00000007F80
0FE00000003FC00FC00000003FC01FC00000003FE01FC00000001FE01F800000001FE03F
800000001FF03F800000000FF03F000000000FF07F0000000007F87F0000000007F8FE00
00000007FCFE0000000003FCFC0000000003FC363F7DBE3D>65 D<000000FFF00000000F
FFFF8000003FFFFFF00000FFFFFFFC0003FFFFFFFC0007FFFFFFFC000FFF803FF8001FFC
0003F8003FF00000F8007FC000003800FF8000001801FF0000000003FE0000000007FC00
00000007F8000000000FF8000000000FF0000000001FF0000000001FE0000000003FE000
0000003FC0000000003FC0000000007F80000000007F80000000007F80000000007F8000
000000FF8000000000FF0000000000FF0000000000FF0000000000FF0000000000FF0000
000000FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF0000
000000FF80000000007F80000000007F80000000007F80000000007F80000000003FC000
0000003FC0000000003FE0000000001FE0000000001FF0000000000FF0000000000FF800
00000007F80000000007FC0000000003FE0000000001FF0000000400FF8000000C007FC0
00003C003FF000007C001FFC0001FE000FFF801FFE0007FFFFFFFE0003FFFFFFFC0000FF
FFFFF000003FFFFFC000000FFFFF00000000FFF0002F417ABF3A>67
D<FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFC
00FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFC00FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FFFFFFFFFF80FFFFFFFFFF80FFFFFFFFFF80FFFFFFFFFF
80FFFFFFFFFF80FFFFFFFFFF80FFFFFFFFFF80293F78BE36>69 D<FFFFFFFFFEFFFFFFFF
FEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFF00000000FF00000000FF00000000
FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
000000FF00000000FF00000000FF00000000FF00000000FFFFFFFFE0FFFFFFFFE0FFFFFF
FFE0FFFFFFFFE0FFFFFFFFE0FFFFFFFFE0FF00000000FF00000000FF00000000FF000000
00FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000
FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
000000FF00000000FF00000000FF00000000273F78BE34>I<FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF083F78BE19>73 D<FFE0000000003FF8FFE00000
00003FF8FFE0000000003FF8FFF0000000007FF8FFF0000000007FF8FFF800000000FFF8
FFF800000000FFF8FEF800000000FBF8FEFC00000001FBF8FEFC00000001FBF8FE7E0000
0003F3F8FE7E00000003F3F8FE7E00000003F3F8FE3F00000007E3F8FE3F00000007E3F8
FE3F00000007E3F8FE1F8000000FC3F8FE1F8000000FC3F8FE1FC000001FC3F8FE0FC000
001F83F8FE0FC000001F83F8FE0FE000003F83F8FE07E000003F03F8FE07E000003F03F8
FE07F000007F03F8FE03F000007E03F8FE03F80000FE03F8FE03F80000FE03F8FE01F800
00FC03F8FE01FC0001FC03F8FE01FC0001FC03F8FE00FC0001F803F8FE00FE0003F803F8
FE007E0003F003F8FE007F0007F003F8FE007F0007F003F8FE003F0007E003F8FE003F80
0FE003F8FE003F800FE003F8FE001F800FC003F8FE001FC01FC003F8FE000FC01F8003F8
FE000FC01F8003F8FE000FE03F8003F8FE0007E03F0003F8FE0007E03F0003F8FE0007F0
7F0003F8FE0003F07E0003F8FE0003F07E0003F8FE0001F8FC0003F8FE0001F8FC0003F8
FE0001F8FC0003F8FE0000FDF80003F8FE0000FDF80003F8FE0000FFF80003F8FE00007F
F00003F8FE00007FF00003F8FE00003FE00003F8FE00003FE00003F8FE00003FE00003F8
FE00001FC00003F8FE000000000003F8FE000000000003F83D3F77BE50>77
D<FFF0000000FEFFF0000000FEFFF8000000FEFFF8000000FEFFFC000000FEFFFC000000
FEFFFE000000FEFEFE000000FEFE7F000000FEFE7F000000FEFE7F800000FEFE3F800000
FEFE3FC00000FEFE1FC00000FEFE1FE00000FEFE0FE00000FEFE0FF00000FEFE07F00000
FEFE07F80000FEFE03F80000FEFE03FC0000FEFE01FC0000FEFE01FE0000FEFE00FE0000
FEFE00FF0000FEFE007F0000FEFE007F8000FEFE003F8000FEFE003FC000FEFE001FC000
FEFE001FE000FEFE000FE000FEFE000FF000FEFE0007F000FEFE0007F800FEFE0003F800
FEFE0003FC00FEFE0001FC00FEFE0001FE00FEFE0000FE00FEFE0000FF00FEFE00007F00
FEFE00007F80FEFE00003F80FEFE00003FC0FEFE00001FC0FEFE00001FE0FEFE00000FE0
FEFE00000FF0FEFE000007F0FEFE000007F8FEFE000003F8FEFE000003FCFEFE000001FC
FEFE000001FCFEFE000000FEFEFE000000FFFEFE0000007FFEFE0000007FFEFE0000003F
FEFE0000003FFEFE0000001FFEFE0000001FFE2F3F78BE40>I<000001FF80000000000F
FFF0000000007FFFFE00000000FFFFFF00000003FFFFFFC0000007FFFFFFE000001FFF00
FFF800003FF8001FFC00007FE00007FE00007FC00003FE0000FF800001FF0001FF000000
FF8003FE0000007FC003FC0000003FC007F80000001FE00FF00000000FF00FF00000000F
F01FE000000007F81FE000000007F81FC000000003F83FC000000003FC3FC000000003FC
3F8000000001FC7F8000000001FE7F8000000001FE7F8000000001FE7F0000000000FEFF
0000000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF00
00000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF0000
000000FFFF0000000000FFFF8000000001FF7F8000000001FE7F8000000001FE7F800000
0001FE7F8000000001FE7FC000000003FE3FC000000003FC3FC000000003FC3FE0000000
07FC1FE000000007F81FF00000000FF80FF00000000FF00FF80000001FF007FC0000003F
E007FC0000003FE003FE0000007FC001FF000000FF8000FF800001FF0000FFC00003FF00
007FF0000FFE00003FF8001FFC00001FFF00FFF8000007FFFFFFE0000003FFFFFFC00000
00FFFFFF000000007FFFFE000000000FFFF00000000001FF80000038437BC043>I<0000
FFF000000007FFFF0000001FFFFFC000007FFFFFF80000FFFFFFFC0001FFFFFFFC0003FF
803FFC0007FC0007F8000FF80001F8001FE0000078001FC0000038003FC0000018003F80
000000003F80000000007F00000000007F00000000007F00000000007F00000000007F00
000000007F00000000007F80000000007F80000000003FC0000000003FE0000000003FF0
000000001FF8000000000FFE000000000FFFC000000007FFFC00000003FFFFC0000001FF
FFF8000000FFFFFE0000003FFFFF8000000FFFFFC0000003FFFFE00000003FFFF0000000
03FFF8000000007FFC000000000FFC0000000007FE0000000001FE0000000001FF000000
0000FF00000000007F00000000007F80000000003F80000000003F80000000003F800000
00003F80000000003F80000000003F80000000003F80000000007F00600000007F007000
00007F0078000000FE007C000001FE007F000003FC00FFC00007FC00FFF0001FF800FFFF
007FF0007FFFFFFFE0001FFFFFFFC00007FFFFFF000001FFFFFE0000003FFFF800000001
FFC0000029437CC033>83 D<000FF80000FFFF0003FFFF800FFFFFE01FFFFFF01FFFFFF0
1FF00FF81F8003FC1E0001FC180001FE100000FE000000FF0000007F0000007F0000007F
0000007F0000007F0000007F0000007F00007FFF000FFFFF007FFFFF01FFFFFF07FFFFFF
0FFFF07F3FFC007F3FC0007F7F00007FFE00007FFC00007FFC00007FFC00007FFC0000FF
FE0000FFFE0001FF7F8007FF7FE01FFF3FFFFFFF3FFFFFFF1FFFFF7F0FFFFC7F07FFF07F
01FF0000202B7CA92C>97 D<FE00000000FE00000000FE00000000FE00000000FE000000
00FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000
FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE
00000000FE00000000FE00000000FE00FF0000FE07FFE000FE1FFFF000FE7FFFF800FFFF
FFFC00FFFFFFFE00FFF80FFF00FFE001FF00FF8000FF80FF00007FC0FF00003FC0FE0000
1FC0FE00001FE0FE00000FE0FE00000FE0FE00000FE0FE000007F0FE000007F0FE000007
F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0
FE00000FE0FE00000FE0FE00000FE0FE00001FE0FE00003FC0FF00003FC0FF80007F80FF
8000FF80FFE003FF00FFF81FFE00FFFFFFFC00FEFFFFF800FE7FFFF000FE3FFFE000FE0F
FF80000001FE0000244079BE2F>I<00000007F000000007F000000007F000000007F000
000007F000000007F000000007F000000007F000000007F000000007F000000007F00000
0007F000000007F000000007F000000007F000000007F000000007F000000007F0000000
07F000000007F000000007F000000007F00007F807F0003FFF07F0007FFFC7F001FFFFF7
F003FFFFFFF007FFFFFFF007FF80FFF00FFC003FF01FF0001FF01FE0000FF03FC00007F0
3FC00007F07F800007F07F000007F07F000007F07F000007F0FE000007F0FE000007F0FE
000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE00
0007F07F000007F07F000007F07F000007F07F800007F03F80000FF03FC0000FF01FE000
1FF01FF0003FF00FF8007FF00FFF01FFF007FFFFFFF003FFFFF7F001FFFFE7F000FFFF87
F0003FFE07F0000FF0000024407DBE2F>100 D<00001FF00000FFFC0001FFFC0007FFFC
000FFFFC000FFFFC001FE03C003F8004003F0000007F0000007E000000FE000000FE0000
00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
00FE000000FE0000FFFFFF00FFFFFF00FFFFFF00FFFFFF00FFFFFF00FFFFFF0000FE0000
00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
00FE000000FE000000FE000000FE000000FE000000FE00001E407FBF1C>102
D<0003FC003F00000FFF03FF00003FFFDFFF00007FFFFFFF8000FFFFFFFF8001FFFFFFFF
8001FE07FC000003F801FC000007F000FE000007E0007E000007E0007E00000FC0003F00
000FC0003F00000FC0003F00000FC0003F00000FC0003F00000FC0003F00000FC0003F00
000FC0003F000007E0007E000007E0007E000007F000FE000003F801FC000001FE07F800
0003FFFFF8000003FFFFF0000007FFFFE0000007FFFFC0000007CFFF0000000FC3FC0000
000F80000000000FC0000000000FC00000000007C00000000007E00000000007FFFFF000
0003FFFFFF000003FFFFFFC00007FFFFFFE0000FFFFFFFF8001FFFFFFFF8003FE0001FFC
007F800003FE007F000001FE007F000000FF00FE0000007F00FE0000007F00FE0000007F
00FE0000007F00FE0000007F00FF000000FF007F800001FE007FC00003FE003FF0000FFC
001FFE007FF8000FFFFFFFF00007FFFFFFE00003FFFFFFC00000FFFFFF0000001FFFF800
000003FFC00000293D7EA82D>I<FFFFFFFFFFFFFFFF0000000000000000000000000000
007F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F
7F7F7F7F7F083F7ABE16>105 D<FE00000000FE00000000FE00000000FE00000000FE00
000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000
00FE00000000FE00000000FE00000000FE00000000FE0000FF80FE0001FF00FE0003FE00
FE0007FC00FE000FF800FE001FF000FE003FE000FE007FC000FE00FF8000FE01FF0000FE
03FE0000FE07FC0000FE0FF80000FE0FF00000FE1FE00000FE3FC00000FE7FE00000FEFF
E00000FFFFF00000FFFFF80000FFFBF80000FFF1FC0000FFE0FE0000FFC0FF0000FF807F
0000FF003F8000FE003FC000FC001FC000FC000FE000FC000FF000FC0007F000FC0003F8
00FC0003FC00FC0001FC00FC0000FE00FC00007F00FC00007F80FC00003F80FC00001FC0
FC00001FE0233F79BE2C>107 D<FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE
FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE
FEFEFEFEFE073F79BE16>I<FC01FF0000FF8000FC07FFC003FFE000FC1FFFF00FFFF800
FC7FFFF83FFFFC00FCFFFFFC7FFFFE00FDFFFFFCFFFFFE00FFF80FFFFC07FF00FFE003FF
F001FF00FFC001FFE000FF00FF8000FFC0007F80FF8000FFC0007F80FF00007F80003F80
FF00007F80003F80FF00007F80003F80FE00007F00003F80FE00007F00003F80FE00007F
00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80
FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F
00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80
FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F
00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80
FE00007F00003F80FE00007F00003F80392979A848>I<FC01FF00FC07FFC0FC1FFFF0FC
7FFFF8FCFFFFFCFDFFFFFCFFF80FFEFFE003FEFFC001FEFF8000FFFF8000FFFF00007FFF
00007FFF00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE
00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE
00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE
00007FFE00007F202979A82F>I<0001FE0000000FFFC000003FFFF000007FFFF80000FF
FFFC0003FFFFFF0003FF03FF0007F8007F800FF0003FC01FE0001FE01FC0000FE03F8000
07F03F800007F03F000003F07F000003F87F000003F87E000001F8FE000001FCFE000001
FCFE000001FCFE000001FCFE000001FCFE000001FCFE000001FCFE000001FCFE000001FC
FF000003FC7F000003F87F000003F87F000003F83F800007F03FC0000FF03FC0000FF01F
E0001FE00FF0003FC00FFC00FFC007FF03FF8003FFFFFF0001FFFFFE0000FFFFFC00003F
FFF000000FFFC0000001FE0000262B7DA92D>I<0000FF0000FE07FFE000FE1FFFF000FE
7FFFF800FFFFFFFC00FFFFFFFE00FFF80FFF00FFE003FF00FF8000FF80FF00007FC0FF00
003FC0FE00003FC0FE00001FE0FE00001FE0FE00000FE0FE00000FE0FE00000FF0FE0000
07F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007
F0FE00000FF0FE00000FE0FE00000FE0FE00001FE0FE00001FE0FE00003FC0FF00007FC0
FF8000FF80FF8001FF80FFE003FF00FFF81FFE00FFFFFFFC00FEFFFFF800FE7FFFF000FE
3FFFE000FE0FFF8000FE01FE0000FE00000000FE00000000FE00000000FE00000000FE00
000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
0000FE00000000FE00000000FE00000000FE00000000FE00000000243B79A82F>I<FC00
7CFC03FCFC0FFCFC1FFCFC3FFCFC7FFCFCFFC0FDFE00FFF800FFF000FFE000FFC000FFC0
00FF8000FF8000FF0000FF0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
00FE0000FE0000FE0000FE0000162979A81F>114 D<001FF80000FFFF8003FFFFE007FF
FFF80FFFFFF81FFFFFF83FE00FF03F8000F07F8000307F0000007F0000007F0000007F00
00007F0000007F8000003FC000003FF000001FFF00001FFFF0000FFFFE0007FFFF0001FF
FFC000FFFFE0001FFFF00001FFF000001FF8000007F8000003FC000003FC000001FC0000
01FC000001FC400001FC700001FC780003F87E0007F8FFE01FF8FFFFFFF0FFFFFFE07FFF
FFC01FFFFF8003FFFE00003FF0001E2B7EA923>I<00FC000000FC000000FC000000FC00
0000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0000FFFFFF
C0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC000FC000000FC000000FC000000FC00
0000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC00
0000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC00
0000FC000000FC000000FC000000FC000000FE002000FE00E0007F03E0007FFFF0007FFF
F0003FFFF0003FFFC0001FFF000007F0001C357EB321>I<FE00007FFE00007FFE00007F
FE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007F
FE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007F
FE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007F
FE0000FFFE0000FFFE0001FFFF0003FF7F000FFF7FC03FFF7FFFFFFF3FFFFE7F1FFFFC7F
0FFFE07F03FF0000202979A72F>I<7F800001FE003F800001FC001FC00003F8000FE000
07F8000FF0000FF00007F8001FE00003FC001FC00001FC003F800000FE007F0000007F00
FF0000003F81FE0000003FC1FC0000001FE3F80000000FE7F000000007FFE000000003FF
E000000001FFC000000000FF8000000000FF00000000007E0000000000FF0000000001FF
8000000001FFC000000003FFE000000007E7F00000000FE3F80000001FC1F80000003F80
FC0000003F00FE0000007F007F000000FE003F800001FC001FC00003F8001FE00007F800
0FE00007F00007F0000FE00003F8001FC00001FC003FC00001FE007F800000FF00FF0000
007F80292880A72A>120 D<FF000000FE7F000001FC7F800001FC3F800003F83FC00003
F81FC00003F81FC00007F01FE00007F00FE0000FE00FF0000FE007F0000FE007F0001FC0
03F8001FC003F8001F8001FC003F8001FC003F8001FC007F0000FE007F0000FE007E0000
7F00FE00007F00FE00003F00FC00003F81FC00003F81F800001F81F800001FC1F800000F
C3F000000FC3F0000007E3E0000007E7E0000007E7E0000003E7C0000003E7C0000001F7
80000001F780000000FF80000000FF00000000FF000000007E000000007E000000007E00
0000007C000000007C00000000FC00000000F800000001F800000001F000000001F00000
0003F000000003E000000007E000000007C00000200FC000003C1F8000003FFF0000003F
FF0000003FFE0000003FFC00000007F0000000273B7FA72A>I<7FFFFFFF807FFFFFFF80
7FFFFFFF807FFFFFFF807FFFFFFF807FFFFFFF00000001FE00000003FC00000007FC0000
000FF80000000FF00000001FE00000003FC00000007FC00000007F80000000FF00000001
FE00000003FE00000007FC00000007F80000000FF00000001FF00000003FE00000003FC0
0000007F80000000FF00000001FF00000001FE00000003FC00000007F80000000FF80000
001FF00000001FE00000003FC00000007FFFFFFF80FFFFFFFF80FFFFFFFF80FFFFFFFF80
FFFFFFFF80FFFFFFFF8021287DA728>I E
%EndDVIPSBitmapFont
/FM 209[30 46[{TeXBase1Encoding ReEncodeFont}1 119.552
/Times-Roman rf
%DVIPSBitmapFont: FN cmsy10 14.4 3
/FN 3 47 df<000000380000000000007C0000000000007C0000000000007C0000000000
007C0000000000007C0000000000007C0000000000007C0000000000007C000000000000
7C0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C
0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C00
00000000007C0000000000007C0000000000007C0000000000007C0000000000007C0000
000000007C0000000000007C0000000000007C0000000000007C0000000000007C000000
0000007C0000000000007C0000000000007C0000000000007C0000000000007C00000000
00007C0000000000007C0000000000007C0000000000007C0000000000007C0000000000
007C0000000000007C0000000000007C0000000000007C0000000000007C000000000000
7C0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C
0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C00
00000000007C0000000000007C0000000000007C0000000000007C0000000000007C0000
000000007C0000000000007C0000000000007C0000000000007C0000000000007C000000
0000007C0000000000007C0000000000007C0000000000007C0000000000007C00000000
00007C000000E000007C00000EFC00007C00007EFF80007C0003FEFFE0007C000FFEFFF8
007C003FFE3FFC007C007FF807FE007C00FFC000FF807C03FE00003FC07C07F800001FE0
7C0FF0000007F07C1FC0000003F87C3F80000001FC7C7F000000007E7CFC000000007E7C
FC000000003F7DF8000000001FFFF0000000000FFFE00000000007FFC00000000007FFC0
0000000003FF800000000003FF800000000001FF000000000001FF000000000000FE0000
00000000FE0000000000007C0000000000007C0000000000007C0000000000007C000000
00000038000000000000380000000000003800000000000018000000376A7ED23C>35
D<7000000000000000000000000000F800000000000000000000000000FC000000000000
00000000000000FE000000000000000000000000007F000000000000000000000000003F
800000000000000000000000001FC00000000000000000000000000FE000000000000000
000000000007F000000000000000000000000003F800000000000000000000000001FC00
000000000000000000000000FE000000000000000000000000007F000000000000000000
000000003F800000000000000000000000001FC00000000000000000000000000FE00000
0000000000000000000007F000000000000000000000000003F800000000000000000000
000001FC00000000000000000000000000FE000000000000000000000000007F00000000
0000000000000000003F800000000000000000000000001FC00000000000000000000000
000FE000000000000000000000000007F000000000000000000000000003F80000000000
0000000000000001FC00000000000000000000000000FE00000000000000000000000000
7F000000000000000000000000003F800000000000000000000000001FC0000000000000
0000000000000FE000000000000000000000000007F000000000000000000000000003F8
00000000000000000000000001FC00000000000000000000000000FE0000000000000000
00000000007F000000000000000000000000003F800000000000000000000000001FC000
00000000000000000000000FE000000000000000000000000007F0000000000000000000
00000003F800000000000000000000000001FC00000000000000000000000000FE000000
000000000000000000007F000000000000000000000000003F8000000000000000000000
00001FC00000000000000000000000000FE000000000000000000000000007F000000000
000000000000000003F800000000000000000000000001FC000000000000000000000000
00FE000000000000000000000000007F000000000000000000000000003F800000000000
000000000000001FC00000000000000000000000000FE000000000000000000000000007
F000000000000000000000000003F800000000000000000000000001FC00000000000000
000000000000FE000000000000000000000000007F000000000000000000000000003F80
0000000040000000000000001FC000000000E0000000000000000FE000000001F0000000
0000000007F000000003F00000000000000003F800000003F00000000000000001FC0000
0007E00000000000000000FE00000007C000000000000000007F0000000FC00000000000
0000003F8000000F8000000000000000001FC000001F8000000000000000000FE000001F
00000000000000000007F000001F00000000000000000003F800003F0000000000000000
0001FC00003E00000000000000000000FE00003E000000000000000000007F00007E0000
00000000000000003F80007C000000000000000000001FC0007C00000000000000000000
0FE0007C0000000000000000000007F0007C0000000000000000000003F8007C00000000
00000000000001FC00F80000000000000000000000FE00F800000000000000000000007F
00F800000000000000000000003F80F800000000000000000000001FC0F8000000000000
00000000000FE0F8000000000000000000000007F0F8000000000000000000000003F8F8
000000000000000000000001FCF8000000000000000000000000FE7C0000000000000000
000000007F7C0000000000000000000000003FFC0000000000000000000000001FFC0000
000000000000000000000FFC00000000000000000000003FE7FE00000000000000000000
0FFFFFFE000000000000000000007FFFFFFE00000000000000000003FFFFFFFF00000000
00000000000FFFFFFFFF0000000000000000003FFFC01FFF000000000000000000FFF800
00FF800000000000000001FFC000001F800000000000000003FE00000003800000000000
000007F800000000000000000000000003E000000000000000000000000001C000000000
006C6C79D178>38 D<00000000000000000000000000E000000000000000000000000001
F000000000000000000000000003F000000000000000000000000007F000000000000000
00000000000FE00000000000000000000000001FC00000000000000000000000003F8000
00000000000000000000007F00000000000000000000000000FE00000000000000000000
000001FC00000000000000000000000003F800000000000000000000000007F000000000
00000000000000000FE00000000000000000000000001FC0000000000000000000000000
3F800000000000000000000000007F00000000000000000000000000FE00000000000000
000000000001FC00000000000000000000000003F800000000000000000000000007F000
00000000000000000000000FE00000000000000000000000001FC0000000000000000000
0000003F800000000000000000000000007F00000000000000000000000000FE00000000
000000000000000001FC00000000000000000000000003F8000000000000000000000000
07F00000000000000000000000000FE00000000000000000000000001FC0000000000000
0000000000003F800000000000000000000000007F00000000000000000000000000FE00
000000000000000000000001FC00000000000000000000000003F8000000000000000000
00000007F00000000000000000000000000FE00000000000000000000000001FC0000000
0000000000000000003F800000000000000000000000007F000000000000000000000000
00FE00000000000000000000000001FC00000000000000000000000003F8000000000000
00000000000007F00000000000000000000000000FE00000000000000000000000001FC0
0000000000000000000000003F800000000000000000000000007F000000000000000000
00000000FE00000000000000000000000001FC00000000000000000000000003F8000000
00000000000000000007F00000000000000000000000000FE00000000000000000000000
001FC00000000000000000000000003F800000000000000000000000007F000000000000
00000000000000FE00000000000000000000000001FC00000000000000000000000003F8
00000000000000000000000007F00000000000000000000000000FE00000000000000020
000000001FC00000000000000070000000003F8000000000000000F8000000007F000000
0000000000FC00000000FE0000000000000000FC00000001FC00000000000000007E0000
0003F800000000000000003E00000007F000000000000000003F0000000FE00000000000
0000001F0000001FC000000000000000001F8000003F8000000000000000000F8000007F
0000000000000000000F800000FE0000000000000000000FC00001FC0000000000000000
0007C00003F800000000000000000007C00007F000000000000000000007E0000FE00000
0000000000000003E0001FC000000000000000000003E0003F8000000000000000000003
E0007F0000000000000000000003E000FE0000000000000000000003E001FC0000000000
000000000001F003F80000000000000000000001F007F00000000000000000000001F00F
E00000000000000000000001F01FC00000000000000000000001F03F8000000000000000
00000001F07F000000000000000000000001F0FE000000000000000000000001F1FC0000
00000000000000000001F3F8000000000000000000000003E7F000000000000000000000
0003EFE0000000000000000000000003FFC0000000000000000000000003FF8000000000
0000000000000003FF00000000000000000000000007FE7FC00000000000000000000007
FFFFFF0000000000000000000007FFFFFFE00000000000000000000FFFFFFFFC00000000
00000000000FFFFFFFFF0000000000000000000FFF803FFFC000000000000000001FF000
01FFF000000000000000001F8000003FF800000000000000000C00000007FC0000000000
0000000000000001FE000000000000000000000000007C00000000000000000000000000
3800000000000000006C6C7CD178>46 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FO cmmib10 10.95 15
/FO 15 122 df<000007FFFFFFFE0000003FFFFFFFFF000001FFFFFFFFFF800007FFFFFF
FFFF80000FFFFFFFFFFF80001FFFFFFFFFFF80007FFFFFFFFFFF0000FFFFFFFFFFFE0001
FFFFFFFFFFFC0001FFF807FFC0000003FFC000FFE0000007FF00007FE000000FFE00007F
E000000FFC00007FE000001FF800003FE000001FF800003FE000003FF000003FE000003F
F000007FE000007FF000007FE000007FE000007FE000007FE000007FE000007FE00000FF
E00000FFE00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00001FF800000FF
C00001FF800000FF800001FF800000FF800003FF000000FF800003FE000000FF800007FE
0000007FC0000FFC0000007FC0000FF80000003FC0001FF00000003FE0007FE00000001F
F001FFC00000000FFC07FF8000000007FFFFFE0000000003FFFFF80000000000FFFFE000
000000000FFE000000000039297CA73E>27 D<0FC01FE03FF07FF8FFFCFFFCFFFCFFFEFF
FEFFFE7FFE3FFE1FFE0FDE001E001E003E003C003C007C0078007800F801F001F003E007
C00F801F803F001E000C000F20798D1D>59 D<000000001C000000003E000000007E0000
00007E00000000FE00000000FC00000001FC00000001F800000001F800000003F8000000
03F000000003F000000007F000000007E00000000FE00000000FC00000000FC00000001F
C00000001F800000003F800000003F000000003F000000007F000000007E00000000FE00
000000FC00000000FC00000001FC00000001F800000001F800000003F800000003F00000
0007F000000007E000000007E00000000FE00000000FC00000001FC00000001F80000000
1F800000003F800000003F000000007F000000007E000000007E00000000FE00000000FC
00000000FC00000001FC00000001F800000003F800000003F000000003F000000007F000
000007E00000000FE00000000FC00000000FC00000001FC00000001F800000003F800000
003F000000003F000000007F000000007E000000007E00000000FE00000000FC00000001
FC00000001F800000001F800000003F800000003F000000007F000000007E000000007E0
0000000FE00000000FC00000001FC00000001F800000001F800000003F800000003F0000
00003F000000007F000000007E00000000FE00000000FC00000000FC00000000F8000000
007800000000275B7AC334>61 D<00000180000000000380000000000380000000000380
0000000007C00000000007C00000000007C00000000007C00000000007C0000000000FE0
000000000FE0000000000FE0000000000FE0000000000FE0000000001FF0000000001FF0
0000E0001FF0000EFFE01FF00FFEFFFFFFFFFFFE7FFFFFFFFFFC1FFFFFFFFFF007FFFFFF
FFC003FFFFFFFF8000FFFFFFFE00003FFFFFF800000FFFFFE0000003FFFF80000001FFFF
00000001FFFF00000001FFFF00000003FFFF80000003FFFF80000007FFFFC0000007FEFF
C000000FFC7FE000000FF83FE000000FF01FE000001FE00FF000001FC007F000003F8003
F800003F0001F800007E0000FC00007C00007C0000F000001E0000E000000E0000400000
04002F2E7EAD34>63 D<0001FFFFFFFFFFF0000003FFFFFFFFFFFE000003FFFFFFFFFFFF
C00003FFFFFFFFFFFFE00003FFFFFFFFFFFFF8000001FFE00001FFFC000001FFE000007F
FC000003FFE000003FFE000003FFE000003FFE000003FFC000001FFF000003FFC000001F
FF000007FFC000001FFF000007FFC000001FFF000007FF8000001FFF000007FF8000001F
FF00000FFF8000001FFF00000FFF8000003FFE00000FFF0000003FFE00000FFF0000003F
FE00001FFF0000007FFC00001FFF0000007FF800001FFE000000FFF800001FFE000001FF
F000003FFE000003FFE000003FFE000007FFC000003FFC00000FFF8000003FFC00003FFE
0000007FFC0003FFF80000007FFFFFFFFFE00000007FFFFFFFFF000000007FFFFFFFFFE0
000000FFFFFFFFFFFC000000FFF800003FFE000000FFF000000FFF000000FFF0000007FF
800001FFF0000007FFC00001FFF0000003FFE00001FFE0000003FFE00001FFE0000003FF
E00003FFE0000003FFF00003FFE0000003FFF00003FFC0000003FFF00003FFC0000003FF
F00007FFC0000003FFF00007FFC0000003FFE00007FF80000003FFE00007FF80000007FF
E0000FFF80000007FFC0000FFF8000000FFFC0000FFF0000000FFF80000FFF0000001FFF
80001FFF0000001FFF00001FFF0000003FFE00001FFE0000007FFE00001FFE000001FFFC
00003FFE000003FFF800003FFE00001FFFE0007FFFFFFFFFFFFFC000FFFFFFFFFFFFFF00
00FFFFFFFFFFFFFC0000FFFFFFFFFFFFE00000FFFFFFFFFFFE000000483E7CBD4F>66
D<0000000007FFC0000E00000000FFFFFC001F00000007FFFFFF003E0000003FFFFFFF80
FE000000FFFFFFFFE1FE000003FFFF803FF3FE00000FFFF80007FFFC00001FFFC00001FF
FC00007FFF000000FFFC0000FFFC0000007FFC0001FFF00000003FF80003FFE00000001F
F8000FFFC00000001FF8001FFF000000000FF8001FFF000000000FF0003FFE000000000F
F0007FFC0000000007F000FFF80000000007F001FFF80000000007E001FFF00000000007
E003FFE00000000007E007FFE00000000007E007FFC00000000007C00FFFC00000000007
C00FFFC00000000007C01FFF800000000007801FFF800000000000003FFF000000000000
003FFF000000000000003FFF000000000000007FFF000000000000007FFE000000000000
007FFE000000000000007FFE00000000000000FFFE00000000000000FFFC000000000000
00FFFC00000000000000FFFC00000000000000FFFC00000000000000FFF8000000000000
00FFF800000000000000FFF800000000007800FFF80000000000F800FFF80000000000F8
00FFF80000000000F800FFF80000000001F800FFF80000000001F000FFF80000000003F0
00FFF80000000003E0007FF80000000007E0007FFC000000000FC0003FFC000000001F80
003FFC000000001F80001FFE000000003F00001FFF000000007E00000FFF00000001FC00
0007FF80000003F8000003FFE000000FF0000001FFF000003FE0000000FFFE0000FF8000
00007FFFE00FFF000000003FFFFFFFFC000000000FFFFFFFF00000000003FFFFFFC00000
0000007FFFFE00000000000003FFE00000000048427BBF4A>I<0001FFFFFFFFFFF00000
0003FFFFFFFFFFFF00000003FFFFFFFFFFFFC0000003FFFFFFFFFFFFF0000003FFFFFFFF
FFFFFC00000001FFE00003FFFE00000001FFE000007FFF00000003FFE000001FFF800000
03FFE0000007FFC0000003FFC0000003FFC0000003FFC0000001FFE0000007FFC0000001
FFF0000007FFC0000000FFF0000007FF80000000FFF0000007FF800000007FF800000FFF
800000007FF800000FFF800000007FF800000FFF000000007FF800000FFF000000007FFC
00001FFF000000007FFC00001FFF000000007FFC00001FFE000000007FFC00001FFE0000
00007FFC00003FFE000000007FFC00003FFE000000007FFC00003FFC000000007FFC0000
3FFC00000000FFFC00007FFC00000000FFF800007FFC00000000FFF800007FF800000000
FFF800007FF800000001FFF80000FFF800000001FFF80000FFF800000001FFF00000FFF0
00000001FFF00000FFF000000003FFF00001FFF000000003FFE00001FFF000000003FFE0
0001FFE000000007FFE00001FFE000000007FFC00003FFE000000007FFC00003FFE00000
000FFF800003FFC00000000FFF800003FFC00000000FFF000007FFC00000001FFF000007
FFC00000001FFE000007FF800000003FFC000007FF800000007FFC00000FFF800000007F
F800000FFF80000000FFF000000FFF00000001FFE000000FFF00000003FFC000001FFF00
000007FF8000001FFF0000000FFF0000001FFE0000003FFE0000001FFE000000FFFC0000
003FFE000007FFF00000003FFE00007FFFE000007FFFFFFFFFFFFF800000FFFFFFFFFFFF
FE000000FFFFFFFFFFFFF0000000FFFFFFFFFFFF80000000FFFFFFFFFFF0000000004E3E
7CBD55>I<0001FFFFFFFFFFC0000003FFFFFFFFFFFC000003FFFFFFFFFFFF000003FFFF
FFFFFFFFC00001FFFFFFFFFFFFE0000001FFE00007FFF0000001FFE00001FFF8000003FF
E000007FFC000003FFE000003FFC000003FFC000003FFE000003FFC000003FFE000007FF
C000003FFE000007FFC000003FFE000007FF8000003FFF000007FF8000003FFF00000FFF
8000003FFE00000FFF8000007FFE00000FFF0000007FFE00000FFF0000007FFE00001FFF
0000007FFE00001FFF000000FFFC00001FFE000000FFFC00001FFE000000FFF800003FFE
000001FFF800003FFE000001FFF000003FFC000003FFE000003FFC000003FFC000007FFC
000007FF8000007FFC00001FFF0000007FF800003FFE0000007FF80003FFFC000000FFFF
FFFFFFF0000000FFFFFFFFFFC0000000FFFFFFFFFF00000000FFFFFFFFF000000001FFF8
00000000000001FFF800000000000001FFF000000000000001FFF000000000000003FFF0
00000000000003FFF000000000000003FFE000000000000003FFE000000000000007FFE0
00000000000007FFE000000000000007FFC000000000000007FFC00000000000000FFFC0
0000000000000FFFC00000000000000FFF800000000000000FFF800000000000001FFF80
0000000000001FFF800000000000001FFF000000000000001FFF000000000000003FFF00
0000000000003FFF0000000000007FFFFFFF0000000000FFFFFFFF0000000000FFFFFFFF
0000000000FFFFFFFF0000000000FFFFFFFE0000000000483E7CBD42>80
D<000000000FFF80000000000000FFFFFC000000000007FFFFFF00000000003FFFFFFFC0
00000000FFFC03FFF000000003FFC0007FF80000000FFF00001FFC0000001FFC00000FFE
0000007FF8000007FF000000FFE0000003FF800001FFC0000001FFC00003FF80000001FF
C00007FF00000001FFE0000FFE00000000FFE0001FFE00000000FFF0003FFC00000000FF
F0003FF800000000FFF0007FF8000000007FF000FFF0000000007FF800FFF0000000007F
F801FFE0000000007FF803FFE0000000007FF803FFC0000000007FF807FFC0000000007F
F807FF8000000000FFF80FFF8000000000FFF80FFF8000000000FFF80FFF0000000000FF
F81FFF0000000000FFF81FFF0000000000FFF03FFE0000000001FFF03FFE0000000001FF
F03FFE0000000001FFF03FFE0000000001FFF07FFC0000000003FFE07FFC0000000003FF
E07FFC0000000003FFE07FFC0000000003FFC07FFC0000000007FFC07FF80000000007FF
C0FFF80000000007FF80FFF8000000000FFF80FFF8000000000FFF00FFF8000000001FFF
00FFF8000000001FFE007FF8000000001FFE007FF8000000003FFC007FF8000000003FF8
007FF8000000007FF8007FF800000000FFF0007FF8001F8000FFE0003FF800FFE001FFC0
003FFC01FFF003FFC0001FFC03FFF807FF80001FFC07F0FC0FFF00000FFE0FC03E1FFE00
000FFE0F003E3FF8000007FF1F001F7FF0000003FF9F001FFFE0000001FFFE001FFF8000
0000FFFF001FFF000000007FFF80FFFC000000001FFFFFFFF00010000007FFFFFFC00038
000000FFFFFFE000380000000FFF8FE0007800000000000FF000F000000000000FFC07F0
00000000000FFFFFF000000000000FFFFFE000000000000FFFFFE000000000000FFFFFC0
00000000000FFFFFC000000000000FFFFF8000000000000FFFFF8000000000000FFFFF00
000000000007FFFE00000000000007FFFC00000000000003FFF800000000000003FFF000
000000000001FFC0000000000000007F00000045527CBF4F>I<000FF800000007FFF800
00000FFFF80000000FFFF80000000FFFF800000007FFF8000000003FF0000000003FF000
0000007FF0000000007FF0000000007FE0000000007FE000000000FFE000000000FFE000
000000FFC000000000FFC000000001FFC000000001FFC000000001FF8000000001FF8000
000003FF8000000003FF8000000003FF07FE000003FF3FFFC00007FFFFFFE00007FFFFFF
F80007FFFC1FFC0007FFE007FE000FFFC003FE000FFF0003FF000FFE0001FF800FFC0001
FF801FFC0001FF801FFC0001FFC01FF80001FFC01FF80001FFC03FF80003FFC03FF80003
FFC03FF00003FFC03FF00003FFC07FF00007FFC07FF00007FF807FE00007FF807FE00007
FF807FE0000FFF80FFE0000FFF00FFC0000FFF00FFC0000FFF00FFC0001FFE00FFC0001F
FE00FFC0001FFC00FF80003FFC00FF80003FF8007F80007FF0007FC0007FE0007FC000FF
E0003FC001FFC0003FE003FF80001FF007FE00000FF83FFC000007FFFFF8000003FFFFE0
000000FFFF800000001FF80000002A407CBE2F>98 D<000001FFC00000001FFFF0000000
FFFFFC000003FFFFFE000007FFC0FF00001FFE007F00003FF800FF80007FF001FF8000FF
E003FF8001FFC003FF8003FF8003FF8007FF0003FF0007FF0003FF000FFE0003FE001FFE
0001FC001FFE0000F0003FFC000000003FFC000000003FFC000000007FFC000000007FF8
000000007FF8000000007FF800000000FFF800000000FFF000000000FFF000000000FFF0
00000000FFF000000000FFF0000000007FE0000000007FE0000003007FF0000007807FF0
00000FC03FF000001FC01FF800007F801FF80001FF000FFC0007FE0007FF807FFC0003FF
FFFFF00000FFFFFFC000003FFFFE00000007FFE000002A2A7DA82F>I<00000F8000003F
C000007FE00000FFE00000FFE00000FFE00000FFE00000FFC00000FF8000007F0000003E
000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000003F800000FFE00001FFF80003FFFC0007E3FC000F83FE
001F03FE003F03FE003E03FE007E07FE007C07FE00FC07FE00F80FFE00F80FFC00F81FFC
00F01FF800001FF800003FF800003FF000007FF000007FE000007FE00000FFE00000FFC0
0001FFC00001FF800001FF80F003FF81F003FF01F007FF01F007FE03F007FE03E007FE07
E007FC07C007FC0FC007FC0F8007FC1F0003FC7E0003FFFC0001FFF800007FF000001FC0
001C417DBF25>105 D<00001FFC000000FFFF800001FFFFC00007FFFFE0000FF80FF000
1FC003F8003F8007F8003F000FF8007E001FF8007E001FF8007E001FF800FE001FF000FE
001FF000FF000FE000FFE0078000FFFF000000FFFFF000007FFFFC00007FFFFE00003FFF
FF00001FFFFF80000FFFFFC00007FFFFE00000FFFFE0000007FFE00300007FE01FC0001F
E03FE0000FE07FF0000FE07FF00007E0FFF0000FE0FFE0000FC0FFE0000FC0FFE0001F80
FFC0001F807F00007F007F0000FE003FE007FC001FFFFFF8000FFFFFE00003FFFF800000
7FFC0000252A7BA830>115 D<0001FF0007F000000FFFC01FFE00003FFFF07FFF00007F
FFF8FFFF8000FF07FDFC3FC001F803FFF01FC003F003FFE03FE007E001FFC07FE00FC001
FFC0FFE01F8001FF80FFE01F0003FF80FFE03F0003FF81FFC03E0003FF01FFC03E0003FF
00FF803E0007FF007F003C0007FE003E00000007FE000000000007FE00000000000FFE00
000000000FFC00000000000FFC00000000000FFC00000000001FFC00000000001FF80000
0000001FF800000000001FF80000000F803FF80007801FC03FF0000F803FE03FF0000F80
7FF03FF0000F807FF07FF0001F80FFE07FF0001F00FFE07FE0003F00FFE0FFE0007E00FF
C0FFE000FC00FF81FFF001F8007F03FFF007F0007F0FEFFC1FE0003FFFC7FFFFC0001FFF
83FFFF80000FFF00FFFE000003FC001FF00000332A7DA83C>120
D<003F800000000000FFE000003E0001FFF800007F0003FFFC0000FF8007E3FC0001FF80
0F83FE0001FF801F03FE0003FF803F03FE0003FF003E03FE0003FF007E07FE0003FF007C
07FE0007FF00FC07FE0007FE00F80FFE0007FE00F80FFC0007FE00F81FFC000FFE00F01F
F8000FFC00001FF8000FFC00003FF8000FFC00003FF0001FFC00003FF0001FF800007FF0
001FF800007FE0001FF800007FE0003FF80000FFE0003FF00000FFC0003FF00000FFC000
3FF00000FFC0007FF00001FFC0007FE00001FF80007FE00001FF80007FE00001FF8000FF
E00001FF8000FFC00001FF8000FFC00000FF8001FFC00000FF8003FFC00000FFC007FF80
00007FC01FFF8000003FF07FFF8000001FFFFFFF8000000FFFFFFF00000007FFFBFF0000
0000FFC3FF000000000007FF000000000007FE000000400007FE000003F0000FFE000007
F8000FFC00000FFC001FF800001FFC003FF800001FFC003FF000001FFC007FE000001FF8
00FFC000001FF801FF8000001FF003FF0000001FE00FFE0000000FF03FF800000007FFFF
F000000003FFFFC000000001FFFE00000000003FF000000000313C7DA836>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FP cmr5 5 10
/FP 10 58 df<01FC0007FF000F07801C01C03800E03800E07800F0700070700070F000
78F00078F00078F00078F00078F00078F00078F00078F00078F00078F000787000707000
707800F03800E03800E01C01C00F078007FF0001FC00151D7D9B1C>48
D<00600001E0000FE000FFE000F1E00001E00001E00001E00001E00001E00001E00001E0
0001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E0
0001E00001E0007FFF807FFF80111C7B9B1C>I<03FC000FFF003C0FC07003E07801F0FC
00F0FC00F8FC00F8FC00787800780000F80000F00000F00001E00003C0000780000F0000
1C0000380000E00001C0180380180600180C00383FFFF07FFFF0FFFFF0FFFFF0151C7D9B
1C>I<01FC000FFF801E07C03001E07C01F07C00F07E00F07C01F03801E00003E00007C0
001F8003FE0003FC000007800003C00001E00000F00000F83000F87800F8FC00F8FC00F8
FC00F07801F07003E03C07C00FFF0003FC00151D7D9B1C>I<0001C00003C00007C0000F
C0000FC0001BC00033C00073C000E3C001C3C00383C00303C00603C00C03C01C03C03803
C07003C0E003C0FFFFFEFFFFFE0003C00003C00003C00003C00003C00003C0007FFE007F
FE171C7E9B1C>I<1C00E01FFFE01FFFC01FFF001FFC0018000018000018000018000018
000018FC001BFF001F07C01C01E01801E01800F00000F00000F80000F87000F8F800F8F8
00F8F800F0F801F06001E07003C03C0F800FFF0003F800151D7D9B1C>I<003F8000FFC0
03C0E00700F00E01F01C01F03800E038000078000070000070FF00F3FF80F601C0F400E0
F800F0F80070F00078F00078F00078F000787000787000787800703800703800E01C01C0
0F038007FF0001FC00151D7D9B1C>I<6000007FFFF87FFFF87FFFF07FFFE0E000C0C000
C0C00180C00300000600000C0000180000180000300000700000700000F00000E00001E0
0001E00001E00001E00003E00003E00003E00003E00003E00003E00001C000151D7C9B1C
>I<01FC0007FF801E03C03800E03000707000707000707800707E00707F00E03FC1C01F
F7800FFE0003FF0007FF800F7FE03C1FE07807F07001F8E000F8E00078E00038E00038E0
00307000703800E01E03C00FFF0001FC00151D7D9B1C>I<01FC0007FF000F07801C01C0
3800E07800E07000F0F00070F00070F00078F00078F00078F000787000F87800F8380178
1C03780FFE7807F8780000700000F00000E03800E07C01C07C0380780700381E001FFC00
07F000151D7D9B1C>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FQ cmsy7 7 11
/FQ 11 106 df<FFFFFFFFFEFFFFFFFFFEFFFFFFFFFE27037A8F34>0
D<7FFFFF0000FFFFFFE0007FFFFFF800000001FE000000003F000000000F8000000003C0
00000001E000000000F0000000007000000000780000000038000000003C000000001C00
0000001C000000001E000000000E000000000E000000000E000000000E000000000E0000
00000E000000000E000000001E000000001C000000001C000000003C0000000038000000
0078000000007000000000F000000001E000000003C00000000F800000003F00000001FE
007FFFFFF800FFFFFFE0007FFFFF000027277AA134>27 D<00E001F003F803F803F807F0
07F007F007E007E00FE00FC00FC00FC01F801F801F001F003F003E003E003E007C007C00
7C007800F800F800F00010000D1E7D9F13>48 D<6000000060E0000000E0F0000001E070
000001C070000001C078000003C038000003803C000007801C000007001E00000F000E00
000E000E00000E000F00001E0007FFFFFC0007FFFFFC0003FFFFF80003C000780001C000
700001C000700001E000F00000E000E00000F001E000007001C000007001C000007803C0
000038038000003C078000001C070000001E0F0000000E0E0000000E0E0000000F1E0000
00071C00000007BC00000003B800000003F800000001F000000001F000000001F0000000
00E000000000E0000023297FA726>56 D<FFFFFFF8FFFFFFF8FFFFFFF800000038000000
380000003800000038000000380000003800000038000000380000003800000038000000
38000000380000003800000038000000383FFFFFF87FFFFFF87FFFFFF800000038000000
380000003800000038000000380000003800000038000000380000003800000038000000
380000003800000038000000380000003800000038FFFFFFF8FFFFFFF8FFFFFFF81D287C
A726>I<FFFFFFFFF0FFFFFFFFF0FFFFFFFFF00000000070000000007000000000700000
000070000000007000000000700000000070000000007000000000700000000070000000
00700000000070000000007024107C942D>I<00000600000000000E00000000000E0000
0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
0000000E00000000000E00000000000E00000000000E0000007FFFFFFFFFE0FFFFFFFFFF
E07FFFFFFFFFE02B287CA734>63 D<00006000000000F000000000F000000001F8000000
01F800000003FC000000039C000000079E000000070E0000000F0F0000000E070000001E
078000001C038000003C03C000003801C000007801E000007000E00000F000F00000E000
700001E000780001C000380003C0003C000380001C000780001E000700000E000F00000F
000E000007001E000007801C000003803C000003C038000001C078000001E070000000E0
F0000000F0E000000070E00000003024247CA22D>94 D<E000000030E000000070F00000
00F070000000E078000001E038000001C03C000003C01C000003801E000007800E000007
000F00000F000700000E000780001E000380001C0003C0003C0001C000380001E0007800
00E000700000F000F000007000E000007801E000003801C000003C03C000001C03800000
1E078000000E070000000F0F000000070E000000079E000000039C00000003FC00000001
F800000001F800000000F000000000F00000000060000024247CA22D>I<0006000E001E
001C001C003C00380078007000F000E001E001C001C003C00380078007000F000E000E00
1E001C003C003800780070007000F000E000F00070007000780038003C001C001E000E00
0E000F0007000780038003C001C001C001E000E000F0007000780038003C001C001C001E
000E00060F3B79AB1B>104 D<E000E000F00070007000780038003C001C001E000E000E
00070007000780038003C001C001E000E000E000F0007000780038003C001C001C001E00
0E001E001C001C003C00380078007000F000E000E001E001C003C00380078007000F000F
000E001E001C003C003800780070007000F000E000E0000F3B7CAB1B>I
E
%EndDVIPSBitmapFont
/FR 136[60 1[46 28 32 37 2[42 46 4[23 46 2[37 21[65 11[60
8[28 58[{TeXBase1Encoding ReEncodeFont}13 83.022 /Times-Bold
rf
%DVIPSBitmapFont: FS cmmi7 7 18
/FS 18 121 df<000300000000000000078000000000000007000000000000000F000000
000000001E000000000000001E000000000000003C000000000000007800000000000000
F800000000000001F000000000000003E000000000000007C00000000000000F80000000
0000001F000000000000007FFFFFFFFFFFFF80FFFFFFFFFFFFFF80FFFFFFFFFFFFFF8039
117C9D42>40 D<00000000006000000000000000F0000000000000007000000000000000
78000000000000003C000000000000003C000000000000001E000000000000000F000000
000000000F8000000000000007C000000000000003E000000000000001F0000000000000
00F8000000000000007C00FFFFFFFFFFFFFF00FFFFFFFFFFFFFF80FFFFFFFFFFFFFF8039
117C9D42>42 D<60000000F8000000FC000000FF000000EFC00000E7F00000E1F80000E0
7E0000E01F8000E00FC000E003F000E000FC00E0007F00E0001F80E00007E0E00001F8E0
0000F8E00001F8E00007E0E0001F80E0007F00E000FC00E003F000E00FC000E01F8000E0
7E0000E1F80000E7F00000EFC00000FF000000FC000000F8000000600000001D217E9E22
>46 D<387CFEFEFE7C3807077A8614>58 D<387CFEFFFF7F3B0303030606060C18387020
08127A8614>I<003FFFFFF800003FFFFFFF000001FC001FC00001F80007E00001F80003
F00003F80001F00003F80001F00003F00001F80003F00001F80007F00001F80007F00001
F00007E00003F00007E00003E0000FE00007E0000FE0000FC0000FC0001F80000FC0007E
00001FC001FC00001FFFFFF000001FFFFFF000001F8001FC00003F80007E00003F80003F
00003F00001F80003F00000F80007F00000FC0007F00000FC0007E00000FC0007E00000F
C000FE00000FC000FE00001F8000FC00001F8000FC00003F0001FC00003E0001FC0000FE
0001F80001F80001F80003F00003F8001FC000FFFFFFFF0000FFFFFFF800002D287DA732
>66 D<000001FF000800000FFFE01800007F80F0380001F80018700003E0000CF0000F80
0007F0001F000003F0003E000003E0007C000003E000F8000001E001F0000001E003E000
0001C007C0000001C00FC0000001C00F80000001C01F80000001801F00000001803F0000
0000003F00000000007E00000000007E00000000007E00000000007E00000000007C0000
000000FC0000000000FC0000000000FC00000006007C0000000C007C0000000C007C0000
000C007C00000018007E00000030003E00000030003E00000060001F000000C0000F8000
01800007800003000003E0000E000001F00038000000FE01F00000003FFFC000000007FC
0000002D2A7DA830>I<003FFFFFFFFC003FFFFFFFFC0001FC0001FC0001F800007C0001
F800003C0003F80000380003F80000180003F00000180003F00000180007F00000180007
F00000180007E000C0180007E000C018000FE001C000000FE0018000000FC0018000000F
C0038000001FC00F8000001FFFFF0000001FFFFF0000001F800F0000003F80070000003F
80060000003F00060000003F00060000007F000E00E0007F000C00C0007E000000C0007E
000001C000FE0000038000FE0000038000FC0000070000FC0000070001FC00000E0001FC
00001E0001F800003C0001F80000FC0003F80007F800FFFFFFFFF800FFFFFFFFF0002E28
7DA731>69 D<003FFFF0003FFFF00001FC000001F8000001F8000003F8000003F8000003
F0000003F0000007F0000007F0000007E0000007E000000FE000000FE000000FC000000F
C000001FC000001FC000001F8000001F8000003F8000003F8000003F0000003F0000007F
0000007F0000007E0000007E000000FE000000FE000000FC000000FC000001FC000001FC
000001F8000001F8000003F80000FFFFC000FFFFC0001C287DA71D>73
D<003FFFF800003FFFF8000001FC00000001F800000001F800000003F800000003F80000
0003F000000003F000000007F000000007F000000007E000000007E00000000FE0000000
0FE00000000FC00000000FC00000001FC00000001FC00000001F800000001F800000003F
800000003F800000003F000000003F000000007F00001C007F000018007E000018007E00
003800FE00003000FE00007000FC00006000FC0000E001FC0001E001FC0003C001F80007
C001F8000F8003F8007F80FFFFFFFF80FFFFFFFF0026287DA72E>76
D<003FFFFFE000003FFFFFFC000001FC007F000001F8000F800001F80007C00003F80007
E00003F80003E00003F00003E00003F00003F00007F00003F00007F00007E00007E00007
E00007E00007E0000FE0000FC0000FE0000F80000FC0001F00000FC0003E00001FC000F8
00001FC007F000001FFFFF8000001FFFFF8000003F800FE000003F8003F000003F0003F8
00003F0001F800007F0001F800007F0001F800007E0001F800007E0001F80000FE0003F8
0000FE0003F80000FC0003F00000FC0003F00001FC0003F00801FC0003F01801F80003E0
1801F80003E03803F80003F070FFFFC001F0E0FFFFC000FFC0000000003F002D297DA732
>82 D<003FFFE00FFFC0003FFFE00FFFC00001FF0001FC000000FE0001F0000000FE0001
C00000007F0003800000007F0007000000003F000E000000003F801C000000001F803800
0000001FC070000000001FC0E0000000000FE1C0000000000FE3800000000007F7000000
000007FE000000000003FC000000000003F8000000000001FC000000000001FC00000000
0001FE000000000003FE0000000000077F00000000000E7F00000000001C3F0000000000
183F8000000000301F8000000000601FC000000000C01FC000000001800FE00000000300
0FE0000000060007F00000000C0007F0000000380003F8000000700003F8000000F00001
FC000001E00001FC00000FF00003FE0000FFFC001FFFE000FFFC001FFFE00032287DA736
>88 D<001F8000007FC00000F0E70003C03F0007803F000F001F000F001F001E001F003E
003E003C003E007C003E007C003E00F8007C00F8007C00F8007C00F8007C00F000F800F0
00F830F000F830F000F830F001F060F001F0607803F060780EF0C03C1CF9801FF07F8007
C01E001C1B7C9924>97 D<000E00001F00003F00003F00003E00001C0000000000000000
000000000000000000000000000003E00007F0000C7800187C00307C00307C00607C0060
F800C0F800C0F80001F00001F00001F00003E00003E00007C00007C00007C1800F81800F
81801F03001F03001F06000F0C000F1C0007F00003E00011287DA617>105
D<07801FC007E0000FE07FF01FF80018F0E0F8783C0030F1807CE03E0030FB007D801E00
60FE003F001E0060FC003F001E0060F8003E001E00C1F8007C003E00C1F0007C003E0001
F0007C003E0001F0007C003E0003E000F8007C0003E000F8007C0003E000F8007C0003E0
00F800F80007C001F000F80007C001F000F83007C001F001F03007C001F001F0300F8003
E003E0600F8003E003E0600F8003E003E0C00F8003E001E1801F0007C001E3801F0007C0
00FF000E000380007C00341B7D993B>109 D<07801FC0000FE07FF00018F0E0F80030F1
807C0030FB007C0060FE003C0060FC003C0060F8003C00C1F8007C00C1F0007C0001F000
7C0001F0007C0003E000F80003E000F80003E000F80003E001F00007C001F00007C001F0
6007C003E06007C003E0600F8007C0C00F8007C0C00F8007C1800F8003C3001F0003C700
1F0001FE000E0000F800231B7D9929>I<03E000000007F00038000C78007C00187C007C
00307C00F800307C00F800607C00F80060F800F800C0F801F000C0F801F00001F001F000
01F001F00001F003E00003E003E00003E003E00003E003E00007C007C00007C007C18007
C007C18007C007C18007C00F830007C00F830003C01F830003E037860001F0E7CE0000FF
C3FC00003F00F000211B7D9927>117 D<007C03C001FF0FF007079C300E03B0780C03F0
F81803E1F83003E1F83003E1F06007C0E06007C0000007C0000007C000000F8000000F80
00000F8000000F8000001F0000001F0030381F00307C1F0060FC3E0060FC3E00C0F87E00
C0F06F038070C707003F83FE001F01F8001D1B7D9926>120 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FT cmsy10 10 18
/FT 18 107 df<7FFFFFFFFFFF80FFFFFFFFFFFFC0FFFFFFFFFFFFC07FFFFFFFFFFF8032
04799641>0 D<001FF00000FFFE0001FFFF0007FFFFC00FFFFFE01FFFFFF03FFFFFF83F
FFFFF87FFFFFFC7FFFFFFC7FFFFFFCFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFEFF
FFFFFEFFFFFFFEFFFFFFFEFFFFFFFE7FFFFFFC7FFFFFFC7FFFFFFC3FFFFFF83FFFFFF81F
FFFFF00FFFFFE007FFFFC001FFFF0000FFFE00001FF0001F1F7BA42A>15
D<00000000000180000000000007C000000000001FC000000000007F800000000001FF00
0000000007FC00000000001FF000000000007FC00000000001FF000000000007FC000000
00001FF000000000007FC00000000001FF000000000007FC00000000001FF00000000000
7FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001FF00
0000000007FC00000000003FF000000000007FC00000000000FF000000000000FE000000
0000007F8000000000003FE000000000000FF8000000000003FE000000000000FF800000
0000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000
0000000FF8000000000003FE000000000000FF8000000000003FE000000000000FF80000
00000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE0000
00000000FF8000000000003FC000000000000FC000000000000380000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000007FFFFFFFFFFF80FFFFFFFFFFFFC0FFFFFFFFFF
FFC07FFFFFFFFFFF80324479B441>20 D<7FFFFFFC000000FFFFFFFFC00000FFFFFFFFF0
00007FFFFFFFFC000000000007FE0000000000007F8000000000001FC0000000000007E0
000000000003F0000000000001F8000000000000FC0000000000007C0000000000003E00
00000000003E0000000000001F0000000000001F0000000000000F8000000000000F8000
000000000780000000000007C0000000000007C0000000000003C0000000000003C00000
00000003C0000000000003C0000000000003C0000000000003C0000000000003C0000000
000003C0000000000007C0000000000007C00000000000078000000000000F8000000000
000F8000000000001F0000000000001F0000000000003E0000000000003E000000000000
7C000000000000FC000000000001F8000000000003F0000000000007E000000000001FC0
00000000007F800000000007FE00007FFFFFFFFC0000FFFFFFFFF00000FFFFFFFFC00000
7FFFFFFC000000323279AD41>27 D<0000000000001E00000000000000001E0000000000
0000001E00000000000000001E00000000000000001F00000000000000000F0000000000
0000000F00000000000000000F800000000000000007800000000000000007C000000000
00000003E00000000000000003E00000000000000001F00000000000000000F800000000
00000000FC00000000000000007E00000000000000003F00000000000000001F80000000
000000000FC00000000000000007F07FFFFFFFFFFFFFFFFCFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF7FFFFFFFFFFFFFFFFC0000000000000007F0000000000000000FC0000000
000000001F80000000000000003F00000000000000007E0000000000000000FC00000000
00000000F80000000000000001F00000000000000003E00000000000000003E000000000
00000007C0000000000000000780000000000000000F80000000000000000F0000000000
0000000F00000000000000001F00000000000000001E00000000000000001E0000000000
0000001E00000000000000001E0000482C7BAA53>33 D<000FF000000007F000003FFE00
00003FFE0000FFFF800000FFFF0003FFFFC00003F807C007F07FF00007C001E00F801FF8
000F8000F00F0007FC003E0000701E0003FE007C0000383C0001FF007800001C380000FF
80F000001C7000007FC1F000000E7000003FE3E000000E6000001FF3C00000066000001F
F780000006E000000FFF80000007C0000007FF00000003C0000003FE00000003C0000003
FE00000003C0000001FF00000003C0000000FF80000003C00000007FC0000003C0000000
7FC0000003C0000000FFE0000003E0000001FFF000000760000001EFF800000660000003
CFF800000670000007C7FC00000E7000000F83FE00000E3800000F01FF00001C3800001E
00FF80003C1C00003E007FC000780E00007C003FE000F00F0001F0001FF801F0078003E0
000FFE0FE003E01FC00003FFFFC000FFFF000001FFFF00007FFC0000007FFC00000FE000
00000FF00048267BA453>49 D<00001FFFFE0000FFFFFF0003FFFFFF000FFFFFFE001FF0
0000007F80000000FE00000001F800000003F000000007E00000000FC00000000F800000
001F000000001F000000003E000000003E000000007C000000007C000000007800000000
F800000000F800000000F000000000F000000000FFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFEF000000000F000000000F800000000F80000000078000000007C000000007C00
0000003E000000003E000000001F000000001F000000000F800000000FC000000007E000
000003F000000001F800000000FE000000007F800000001FF00000000FFFFFFE0003FFFF
FF0000FFFFFF00001FFFFE283279AD37>I<600000000018F0000000003CF8000000007C
F8000000007C7800000000787C00000000F87C00000000F83C00000000F03E00000001F0
3E00000001F01F00000003E01F00000003E00F00000003C00F80000007C00F80000007C0
07800000078007C000000F8007C000000F8003E000001F0003E000001F0001FFFFFFFE00
01FFFFFFFE0001FFFFFFFE0000FFFFFFFC0000F800007C0000F800007C00007C0000F800
007C0000F800003C0000F000003E0001F000003E0001F000001E0001E000001F0003E000
001F0003E000000F8007C000000F8007C0000007800780000007C00F80000007C00F8000
0003C00F00000003E01F00000003E01F00000001F03E00000001F03E00000000F03C0000
0000F87C00000000F87C000000007878000000007CF8000000007CF8000000003FF00000
00003FF0000000001FE0000000001FE0000000001FE0000000000FC0000000000FC00000
00000FC000000000078000000000030000002E3C80B92F>56 D<7FFFFFFFF0FFFFFFFFF8
FFFFFFFFF87FFFFFFFF80000000078000000007800000000780000000078000000007800
000000780000000078000000007800000000780000000078000000007800000000780000
000078000000007800000000780000000078000000007800000000780000000078000000
00780000000078000000007800000000783FFFFFFFF87FFFFFFFF87FFFFFFFF83FFFFFFF
F80000000078000000007800000000780000000078000000007800000000780000000078
000000007800000000780000000078000000007800000000780000000078000000007800
000000780000000078000000007800000000780000000078000000007800000000780000
00007800000000787FFFFFFFF8FFFFFFFFF8FFFFFFFFF87FFFFFFFF0253A7CB92E>I<7F
FFFFFFFFF8FFFFFFFFFFFCFFFFFFFFFFFC7FFFFFFFFFFC00000000003C00000000003C00
000000003C00000000003C00000000003C00000000003C00000000003C00000000003C00
000000003C00000000003C00000000003C00000000003C00000000003C00000000003C00
000000003C00000000003C00000000003C00000000003C0000000000182E177C9D37>I<
000000300000000000007800000000000078000000000000780000000000007800000000
000078000000000000780000000000007800000000000078000000000000780000000000
007800000000000078000000000000780000000000007800000000000078000000000000
780000000000007800000000000078000000000000780000000000007800000000000078
000000000000780000000000007800000000000078000000000000780000000000007800
000000000078000000000000780000000000007800000000000078000000000000780000
000000007800000000000078000000000000780000000000007800000000000078000000
000000780000000000007800000000000078000000000000780000000000007800000000
000078000000000000780000000000007800000000000078000000000000780000000000
00780000000000007800000000000078000000000000780000007FFFFFFFFFFFF8FFFFFF
FFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF836367BB541>63 D<00000300000000000780
000000000FC0000000000FC0000000001FE0000000001FE0000000001FE0000000003FF0
000000003FF0000000007CF8000000007CF800000000F87C00000000F87C00000000F03C
00000001F03E00000001F03E00000003E01F00000003E01F00000007C00F80000007C00F
8000000F8007C000000F8007C000000F0003C000001F0003E000001F0003E000003E0001
F000003E0001F000007C0000F800007C0000F80000780000780000F800007C0000F80000
7C0001F000003E0001F000003E0003E000001F0003E000001F0007C000000F8007C00000
0F800780000007800F80000007C00F80000007C01F00000003E01F00000003E03E000000
01F03E00000001F03C00000000F07C00000000F87C00000000F8F8000000007CF8000000
007CF0000000003C6000000000182E347CB137>94 D<600000000018F0000000003CF800
0000007CF8000000007C7C00000000F87C00000000F83C00000000F03E00000001F03E00
000001F01F00000003E01F00000003E00F80000007C00F80000007C007800000078007C0
00000F8007C000000F8003E000001F0003E000001F0001F000003E0001F000003E0000F8
00007C0000F800007C00007800007800007C0000F800007C0000F800003E0001F000003E
0001F000001F0003E000001F0003E000000F0003C000000F8007C000000F8007C0000007
C00F80000007C00F80000003E01F00000003E01F00000001F03E00000001F03E00000000
F03C00000000F87C00000000F87C000000007CF8000000007CF8000000003FF000000000
3FF0000000001FE0000000001FE0000000001FE0000000000FC0000000000FC000000000
078000000000030000002E347CB137>I<000001F800000FF800003F800000FC000001F8
000003F0000007E0000007E000000FE000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000001FC000001F8000003F8000007F000000FE000003F800007FE000
00FF0000007FE0000003F8000000FE0000007F0000003F8000001F8000001FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FE0000007E0000007E0
000003F0000001F8000000FC0000003F8000000FF8000001F81D537ABD2A>102
D<FC000000FFC0000007F0000001FC0000007E0000003F0000003F8000001F8000001FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FE0000007E0
000007F0000003F8000001FC0000007E0000001FF0000007F800001FF000007E000001FC
000003F8000007F0000007E000000FE000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
00000FC000000FC000001FC000001F8000003F8000003F0000007E000001FC000007F000
00FFC00000FC0000001D537ABD2A>I<0000C00001E00003E00003E00003C00007C00007
C0000780000F80000F80001F00001F00001E00003E00003E00007C00007C0000780000F8
0000F80001F00001F00001E00003E00003E00003C00007C00007C0000F80000F80000F00
001F00001F00003E00003E00003C00007C00007C0000780000F80000F80000F80000F800
007800007C00007C00003C00003E00003E00001F00001F00000F00000F80000F800007C0
0007C00003C00003E00003E00001E00001F00001F00000F80000F800007800007C00007C
00003E00003E00001E00001F00001F00000F80000F800007800007C00007C00003C00003
E00003E00001E00000C0135278BD20>I<600000F00000F80000F800007800007C00007C
00003C00003E00003E00001F00001F00000F00000F80000F800007C00007C00003C00003
E00003E00001F00001F00000F00000F80000F800007800007C00007C00003E00003E0000
1E00001F00001F00000F80000F800007800007C00007C00003C00003E00003E00003E000
03E00003C00007C00007C0000780000F80000F80001F00001F00001E00003E00003E0000
7C00007C0000780000F80000F80000F00001F00001F00003E00003E00003C00007C00007
C0000F80000F80000F00001F00001F00003E00003E00003C00007C00007C0000780000F8
0000F80000F0000060000013527CBD20>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F060045377BD17>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FU cmmi10 10 30
/FU 30 123 df<003FFFFFFFE000FFFFFFFFF001FFFFFFFFF007FFFFFFFFF007FFFFFFFF
E00F80700600001E00600E00003C00600C00003800E00C00007000C00C0000E000C01C00
00C001C01C00000001C01C00000001801C00000003803800000003803800000007803800
00000700380000000700380000000F00380000000F00780000001E007C0000001E007C00
00001E007C0000003E007C0000003C007C0000007C007C0000007C007E000000FC007E00
0000F8007E000001F8007E000001F8007F000003F8007F000003F0003F000003F0003F00
0003F0003F000001C0001C00002C257EA32F>25 D<00007FFFFFC00003FFFFFFE0000FFF
FFFFE0001FFFFFFFE0007FFFFFFFC000FF81FE000001FC007E000003F8003F000007F000
3F000007E0001F00000FC0001F80001F80001F80001F80001F80003F00001F80003F0000
1F80007E00001F80007E00001F80007E00003F8000FE00003F0000FC00003F0000FC0000
3F0000FC00007F0000FC00007E0000F800007E0000F80000FC0000F80000FC0000F80001
F80000F80001F80000F80003F000007C0007E000007C0007C000003C000F8000003E003F
0000001F007C0000000F81F800000003FFE0000000007F000000002B257DA32F>27
D<1C007F00FF80FF80FF80FF80FF807F001C000909798817>58 D<1C007F00FF80FF80FF
C0FFC0FFC07FC01CC000C000C000C000C001C00180018003800300070006000E001C0038
00700060000A19798817>I<0000000000038000000000000FC000000000003FC0000000
0000FF800000000003FE00000000000FF800000000003FE00000000000FF800000000003
FE00000000000FF800000000003FE00000000000FF800000000003FE00000000000FF800
000000003FE00000000000FF800000000003FE00000000000FF800000000003FE0000000
0000FF800000000003FE00000000000FF800000000003FE000000000007F800000000000
FE000000000000FE0000000000007F8000000000003FE000000000000FF8000000000003
FE000000000000FF8000000000003FE000000000000FF8000000000003FE000000000000
FF8000000000003FE000000000000FF8000000000003FE000000000000FF800000000000
3FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000000000
0FF8000000000003FE000000000000FF8000000000003FC000000000000FC00000000000
0380323279AD41>I<00000C00000000000C00000000000C00000000000C00000000000C
00000000001E00000000001E00000000001E00000000001E00000000001E00000000001E
00000000001E00000000001E00000000003F00000000003F000000FC003F000FC07FF03F
03FF801FFFBF7FFE0003FFFFFFF00000FFFFFFC000003FFFFF0000000FFFFC00000003FF
F000000000FFC000000001FFE000000001FFE000000003FFF000000003FFF000000007F3
F800000007E1F80000000FC0FC0000000F807C0000001F003E0000003E001F0000003C00
0F000000780007800000700003800000E00001C00000C00000C0000080000040002A2880
A82A>63 D<00000000006000000000000070000000000000F0000000000001F000000000
0001F0000000000003F0000000000003F0000000000007F000000000000FF00000000000
0FF000000000001FF800000000001FF8000000000033F8000000000073F8000000000063
F80000000000C3F80000000000C3F8000000000183F8000000000183F8000000000303F8
000000000603F8000000000603FC000000000C03FC000000000C01FC000000001801FC00
0000003001FC000000003001FC000000006001FC000000006001FC00000000C001FC0000
0001C001FC000000018001FC000000030001FE000000030001FE000000060000FE000000
0E0000FE0000000C0000FE000000180000FE0000001FFFFFFE0000003FFFFFFE0000003F
FFFFFE000000600000FE000000C00000FE000000C00000FF000001800000FF0000018000
007F0000030000007F0000060000007F0000060000007F00000C0000007F00000C000000
7F0000180000007F0000380000007F0000700000007F0000F00000007F8001F80000007F
8007F8000000FF80FFFF80003FFFFFFFFF80007FFFFFFFFF80007FFFFF383C7DBB3E>65
D<0003FFFFFFFF80000007FFFFFFFFF0000007FFFFFFFFFC00000007F80003FE00000007
F00000FF00000007F000007F8000000FF000003FC000000FF000001FC000000FE000001F
E000000FE000001FE000001FE000001FE000001FE000001FE000001FC000001FE000001F
C000001FE000003FC000001FE000003FC000001FC000003F8000003FC000003F8000003F
8000007F8000007F8000007F8000007F0000007F000000FE0000007F000001FC000000FF
000003F8000000FF00000FF0000000FE00001FC0000000FE0000FF00000001FFFFFFFC00
000001FFFFFFF800000001FC0000FF00000001FC00003FC0000003FC00000FE0000003FC
000007F0000003F8000007F0000003F8000003F8000007F8000003F8000007F8000003FC
000007F0000001FC000007F0000001FC00000FF0000001FC00000FF0000003FC00000FE0
000003FC00000FE0000003FC00001FE0000003FC00001FE0000007F800001FC0000007F8
00001FC000000FF000003FC000000FF000003FC000001FE000003F8000003FC000003F80
00007F8000007F800000FF0000007F800001FE0000007F000007FC000000FF00003FF000
00FFFFFFFFFFC00000FFFFFFFFFF000000FFFFFFFFF80000003B397DB83F>I<00000000
FF8001C00000000FFFE001C00000007FFFF80380000001FF807E0780000007F8000F0F80
00001FE000079F8000003F800003BF000000FF000001FF000001FC000000FF000003F800
0000FF000007F00000007E00000FE00000007E00001FC00000007E00003F800000003E00
007F800000003C0000FF000000003C0000FE000000003C0001FE000000003C0003FC0000
0000380003F800000000380007F80000000038000FF00000000038000FF0000000003000
1FF00000000030001FE00000000000001FE00000000000003FC00000000000003FC00000
000000003FC00000000000007FC00000000000007F800000000000007F80000000000000
7F80000000000000FF80000000000000FF00000000000000FF00000000000000FF000000
00000000FF00000000000000FF00000000030000FF00000000030000FF00000000070000
FF00000000060000FF000000000600007F000000000E00007F000000000C00007F000000
001C00007F000000003800003F800000003800003F800000007000001F80000000E00000
1FC0000001C000000FE00000038000000FE000000780000007F000000E00000003F80000
3C00000001FC00007800000000FF0001F0000000003FE00FC0000000000FFFFF00000000
0003FFFC0000000000007FC0000000003A3D7CBA3B>I<0003FFFFFFFF00000007FFFFFF
FFE0000007FFFFFFFFF800000007F80007FE00000007F00000FF00000007F000003F8000
000FF000001FC000000FF000000FC000000FE000000FE000000FE0000007F000001FE000
0003F000001FE0000003F000001FC0000003F800001FC0000001F800003FC0000001F800
003FC0000001FC00003F80000001FC00003F80000001FC00007F80000001FC00007F8000
0001FC00007F00000001FC00007F00000001FC0000FF00000001FC0000FF00000003FC00
00FE00000003FC0000FE00000003FC0001FE00000003FC0001FE00000003F80001FC0000
0007F80001FC00000007F80003FC00000007F80003FC00000007F00003F80000000FF000
03F80000000FF00007F80000000FE00007F80000001FE00007F00000001FC00007F00000
001FC0000FF00000003F80000FF00000003F80000FE00000007F00000FE00000007E0000
1FE0000000FE00001FE0000001FC00001FC0000001F800001FC0000003F000003FC00000
07E000003FC000000FC000003F8000001F8000003F8000007F0000007F800000FE000000
7F800003FC0000007F00000FF0000000FF00007FC00000FFFFFFFFFF000000FFFFFFFFFC
000000FFFFFFFFC00000003E397DB845>I<0003FFFFFFFFFFF00007FFFFFFFFFFF00007
FFFFFFFFFFF0000007F800003FF0000007F0000007F0000007F0000003E000000FF00000
01E000000FF0000000E000000FE0000000E000000FE0000000E000001FE0000000E00000
1FE0000000E000001FC0000000E000001FC0000000C000003FC0000000C000003FC00000
00C000003F80003000C000003F80003000C000007F80007000C000007F80007000000000
7F000060000000007F0000E000000000FF0000E000000000FF0001E000000000FE0003C0
00000000FE000FC000000001FFFFFFC000000001FFFFFFC000000001FFFFFF8000000001
FC000F8000000003FC00078000000003FC00078000000003F800030000000003F8000300
00000007F800070000000007F800070003000007F000060003000007F00006000700000F
F00006000600000FF00000000600000FE00000000E00000FE00000000C00001FE0000000
1C00001FE00000001800001FC00000003800001FC00000003800003FC00000007000003F
C0000000F000003F80000001E000003F80000001E000007F80000007E000007F8000000F
C000007F0000003FC00000FF000003FF8000FFFFFFFFFFFF8000FFFFFFFFFFFF8000FFFF
FFFFFFFF00003C397DB83D>I<0003FFFFFFFFFFE00007FFFFFFFFFFE00007FFFFFFFFFF
E0000007F800003FE0000007F000000FE0000007F0000003C000000FF0000003C000000F
F0000001C000000FE0000001C000000FE0000001C000001FE0000001C000001FE0000001
C000001FC0000001C000001FC00000018000003FC00000018000003FC00000018000003F
800000018000003F800060018000007F8000E0018000007F8000E0000000007F0000C000
0000007F0000C000000000FF0001C000000000FF0001C000000000FE00038000000000FE
00078000000001FE001F8000000001FFFFFF8000000001FFFFFF0000000001FFFFFF0000
000003FC001F0000000003FC000F0000000003F8000E0000000003F8000E0000000007F8
000E0000000007F8000E0000000007F0000C0000000007F0000C000000000FF0001C0000
00000FF0001C000000000FE00000000000000FE00000000000001FE00000000000001FE0
0000000000001FC00000000000001FC00000000000003FC00000000000003FC000000000
00003F800000000000003F800000000000007F800000000000007F800000000000007F00
000000000000FF800000000000FFFFFFC000000000FFFFFFC000000000FFFFFFC0000000
003B397DB835>I<00000000FF8000E00000000FFFF000E00000007FFFFC01C0000001FF
803E03C0000007FC000F07C000000FE000038FC000003FC00001DF8000007F000000FF80
0001FE000000FF800003F80000007F800007F00000003F00000FE00000003F00001FC000
00003F00003F800000001F00007F800000001E0000FF000000001E0000FE000000001E00
01FE000000001E0003FC000000001C0003F8000000001C0007F8000000001C000FF00000
00001C000FF00000000018001FF00000000018001FE00000000000001FE0000000000000
3FC00000000000003FC00000000000003FC00000000000007FC00000000000007F800000
000000007F800000000000007F80000000000000FF80000000000000FF00000000000000
FF0000007FFFFE00FF000000FFFFFE00FF000000FFFFFE00FF000000007FC000FF000000
003F8000FF000000007F8000FF000000007F0000FF000000007F00007F000000007F0000
7F00000000FF00007F00000000FE00007F80000000FE00003F80000000FE00003F800000
01FE00001FC0000001FE00001FC0000001FC00000FE0000003FC00000FF0000007FC0000
07F0000007FC000003FC00001EF8000001FE00003CF80000007F8000F0780000003FF007
E0780000000FFFFF803000000003FFFE0000000000003FE0000000003B3D7DBA41>I<00
03FFF8000000003FFF800007FFF8000000007FFF800007FFFC000000007FFF80000007FC
00000000FF8000000006FC00000001BF0000000006FC00000001BF000000000EFC000000
037F000000000EFC000000037E000000000CFC000000067E000000000CFC0000000C7E00
0000001C7E0000000CFE000000001C7E00000018FC00000000187E00000030FC00000000
187E00000030FC00000000387E00000061FC00000000387E00000061F800000000307E00
0000C1F800000000307E00000181F800000000703F00000183F800000000703F00000303
F000000000603F00000603F000000000603F00000603F000000000E03F00000C07F00000
0000E03F00000C07E000000000C03F00001807E000000000C03F00003007E000000001C0
1F8000300FE000000001C01F8000600FC000000001801F8000C00FC000000001801F8000
C00FC000000003801F8001801FC000000003801F8003001F8000000003001F8003001F80
00000003000FC006001F8000000007000FC006003F8000000007000FC00C003F00000000
06000FC018003F0000000006000FC018003F000000000E000FC030007F000000000E000F
C060007E000000000C000FC060007E000000000C0007E0C0007E000000001C0007E0C000
FE000000001C0007E18000FC00000000180007E30000FC00000000180007E30000FC0000
0000380007E60001FC00000000380007EC0001F800000000300007EC0001F80000000030
0003F80001F800000000700003F80003F800000000700003F00003F000000000F00003E0
0003F000000007FC0003E00007F8000000FFFFE003C007FFFFF00000FFFFE0038007FFFF
F00000FFFFE0018007FFFFF0000051397CB851>77 D<0003FFF800001FFFF80007FFFC00
003FFFF80007FFFC00003FFFF8000007FC000001FF00000007FE0000007C00000006FE00
0000780000000EFF000000700000000E7F000000700000000C7F800000600000000C7F80
0000600000001C3F800000E00000001C3FC00000C0000000181FC00000C0000000181FE0
0000C0000000381FE00001C0000000380FF0000180000000300FF00001800000003007F0
0001800000007007F80003800000007003F80003000000006003FC0003000000006003FC
000300000000E001FC000700000000E001FE000600000000C000FE000600000000C000FF
000600000001C0007F000E00000001C0007F800C0000000180007F800C0000000180003F
800C0000000380003FC01C0000000380001FC0180000000300001FE0180000000300000F
E0180000000700000FF0380000000700000FF03000000006000007F03000000006000007
F8300000000E000003F8700000000E000003FC600000000C000003FC600000000C000001
FE600000001C000001FEE00000001C000000FEC000000018000000FFC000000018000000
7FC0000000380000007FC0000000380000007F80000000300000003F8000000030000000
3F80000000700000001F80000000700000001F00000000F00000000F00000007FC000000
0F000000FFFFE000000F000000FFFFE0000006000000FFFFE000000600000045397DB843
>I<0003FFFFFFFF00000007FFFFFFFFE0000007FFFFFFFFF800000007F80007FC000000
07F00000FE00000007F000007F0000000FF000003F8000000FF000001FC000000FE00000
1FC000000FE000001FC000001FE000001FE000001FE000001FE000001FC000001FE00000
1FC000001FE000003FC000001FE000003FC000003FC000003F8000003FC000003F800000
3FC000007F8000007F8000007F8000007F8000007F0000007F0000007F000000FE000000
FF000001FC000000FF000001F8000000FE000007F0000000FE00000FE0000001FE00003F
C0000001FE0001FF00000001FFFFFFFC00000001FFFFFFE000000003FC00000000000003
FC00000000000003F800000000000003F800000000000007F800000000000007F8000000
00000007F000000000000007F00000000000000FF00000000000000FF00000000000000F
E00000000000000FE00000000000001FE00000000000001FE00000000000001FC0000000
0000001FC00000000000003FC00000000000003FC00000000000003F800000000000003F
800000000000007F800000000000007F800000000000007F00000000000000FF80000000
0000FFFFFF0000000000FFFFFF0000000000FFFFFF00000000003B397DB835>80
D<00000001FF00000000001FFFF000000000FE01FC00000003F0007E00000007C0001F80
00001F80000FC000003E000007E00000FC000003F00001F8000003F00003F0000001F800
07E0000001F8000FC0000000FC001F80000000FC003F80000000FE007F00000000FE00FE
00000000FE00FE000000007F01FC000000007F03FC000000007F03F8000000007F07F800
0000007F07F0000000007F0FF0000000007F0FE000000000FF1FE000000000FF1FE00000
0000FF3FC000000000FF3FC000000000FF3FC000000000FF7F8000000001FE7F80000000
01FE7F8000000001FE7F8000000001FEFF0000000003FCFF0000000003FCFF0000000003
FCFF0000000007F8FF0000000007F8FF0000000007F0FF000000000FF0FF000000000FE0
FF000000001FE0FF000000001FC0FF000000003F807F000000003F807F000000007F007F
00000000FE007F0007C000FC003F001FF001F8003F80383803F8001F80701C07F0001F80
E00C0FE0000FC0C00C1F800007E1C00E3F000007E1800E7E000003F18007F8000001F980
07F00000007FC00FC00000003FE07F0003000007FFFE0003000000FF8F0007000000000F
0006000000000F000E000000000F001E000000000F803C000000000F807C000000000FC1
F8000000000FFFF8000000000FFFF0000000000FFFF0000000000FFFE0000000000FFFC0
0000000007FF800000000003FE000000000000F80000384B7CBA42>I<0000001FE00380
000000FFFC0300000003FFFE070000000FE01F8F0000003F0007DF0000007E0001FE0000
00F80000FE000001F00000FE000003E000007E000003E000007C000007C000003C00000F
8000003C00000F8000003C00001F8000003800001F0000003800001F0000003800001F00
00003800003F0000003000003F0000003000003F8000003000003F8000000000003FC000
000000003FE000000000001FF000000000001FFE00000000001FFFE0000000000FFFFE00
00000007FFFFC000000003FFFFF000000001FFFFF800000000FFFFFC000000001FFFFE00
00000003FFFF00000000003FFF000000000003FF800000000000FF8000000000007F8000
000000003F8000000000001F8000000000001F8000000000001F80000C0000001F80000C
0000000F80000C0000000F80001C0000001F80001C0000001F00001C0000001F00001C00
00001F00003C0000003E00003C0000003E00003C0000007C00003E000000F800007E0000
00F800007F000001F000007F800003E000007FC0000FC00000F9F0001F800000F0FE00FE
000000E03FFFF8000000E00FFFE0000000C001FF00000000313D7CBA33>83
D<03FFFFFFFFFFFE03FFFFFFFFFFFE07FFFFFFFFFFFE07F8003FC001FE07C0003F80007E
0F80003F80003C0F00007F80001C1E00007F80001C1C00007F00001C1C00007F00001C38
0000FF00001C380000FF00001C300000FE00001C700000FE000018600001FE000018E000
01FE000018C00001FC000018C00001FC000018C00003FC000018000003FC000000000003
F8000000000003F8000000000007F8000000000007F8000000000007F0000000000007F0
00000000000FF000000000000FF000000000000FE000000000000FE000000000001FE000
000000001FE000000000001FC000000000001FC000000000003FC000000000003FC00000
0000003F8000000000003F8000000000007F8000000000007F8000000000007F00000000
00007F000000000000FF000000000000FF000000000000FE000000000000FE0000000000
01FE000000000001FE000000000001FC000000000001FC000000000003FC000000000003
FC000000000003F800000000000FFC000000003FFFFFFF0000007FFFFFFF0000007FFFFF
FF00000037397EB831>I<0001FFFFF8007FFFF00001FFFFF800FFFFF00001FFFFF800FF
FFE0000003FF80000FFC00000003FE00000FE000000001FE0000078000000001FE00000F
0000000000FF00000E0000000000FF00001C00000000007F00003800000000007F800070
00000000007F8000E000000000003FC001C000000000003FC0038000000000001FC00300
00000000001FE0060000000000001FE00C0000000000000FF0180000000000000FF03000
000000000007F06000000000000007F8C000000000000007F9C000000000000003FF8000
000000000003FF0000000000000001FE0000000000000001FE0000000000000001FE0000
000000000000FF0000000000000000FF0000000000000000FF0000000000000001FF8000
0000000000037F80000000000000063FC00000000000000E3FC00000000000001C1FE000
0000000000381FE0000000000000700FE0000000000000E00FF0000000000000C00FF000
00000000018007F80000000000030007F80000000000060003F800000000000C0003FC00
00000000180003FC0000000000300001FE0000000000700001FE0000000000E00000FE00
00000001C00000FF0000000003800000FF00000000070000007F800000000E0000007F80
0000001E0000003F800000007E0000007FC0000003FF000000FFE000007FFFE0001FFFFF
C000FFFFE0001FFFFFC000FFFFE0001FFFFF800044397EB845>88
D<FFFFFC00003FFFE0FFFFFC00003FFFE0FFFFFC00003FFFE003FF00000007FC0001FF00
000003E00000FF00000003C00000FF00000007800000FF000000070000007F8000000E00
00007F8000001C0000007F800000380000003FC00000300000003FC00000600000003FC0
0000C00000001FE00001800000001FE00003000000000FE00007000000000FF0000E0000
00000FF0000C0000000007F000180000000007F800300000000007F800600000000003FC
00C00000000003FC01C00000000003FC03800000000001FE03000000000001FE06000000
000001FE0C000000000000FF18000000000000FF30000000000000FF700000000000007F
E00000000000007FC00000000000007F800000000000003F000000000000007F00000000
0000007F000000000000007F000000000000007E00000000000000FE00000000000000FE
00000000000000FE00000000000000FC00000000000001FC00000000000001FC00000000
000001FC00000000000001F800000000000003F800000000000003F800000000000003F8
00000000000003F000000000000007F000000000000007F00000000000000FF000000000
000FFFFFF0000000000FFFFFF0000000000FFFFFE0000000003B397DB830>I<00007E00
000003FF8000000FC1C380001F00EFC0007E007FC000FC003FC001F8003FC003F0001F80
07F0001F8007E0001F800FE0003F801FC0003F001FC0003F003F80003F003F80007F007F
80007E007F00007E007F00007E007F0000FE00FF0000FC00FE0000FC00FE0000FC00FE00
01FC00FE0001F800FC0001F80CFC0001F80CFC0003F80CFC0003F01CFC0003F018FC0007
F0187C0007F0387E000FF0303E001FF0303E007BF0701F00E1F0E00F83C0F9C003FF007F
8000FC001F0026267DA42C>97 D<003F00001FFF00001FFF00001FFF0000007F0000007E
0000007E0000007E000000FE000000FC000000FC000000FC000001FC000001F8000001F8
000001F8000003F8000003F0000003F0000003F0000007F0000007E0FC0007E3FF0007E7
07C00FFE03E00FF801F00FF001F80FE000F81FC000F81FC000FC1F8000FC1F8000FC3F80
00FC3F0000FC3F0000FC3F0001FC7F0001FC7E0001FC7E0001FC7E0003FCFE0003FCFC00
03F8FC0003F8FC0007F8FC0007F0F80007F0F8000FE0F8000FE0F8000FC0F8001F80F800
3F8078003F007C007E007C00FC003C01F8001E03F0000F07C00007FF000001FC00001E3B
7CB924>I<00003FC00001FFF00007E03C000F800E003F0007007E001F00FC007F01F800
FF03F000FF07E000FF0FE000FF0FC000FE1FC000383F8000003F8000007F8000007F0000
007F0000007F000000FF000000FE000000FE000000FE000000FE000000FC000000FC0000
00FC000000FC000003FC0000077E0000067E00000E3E00003C3F0000701F0000E00F8007
C007C03F0001FFF800003FC00020267DA424>I<000000003F0000001FFF0000001FFF00
00001FFF000000007F000000007E000000007E00000000FE00000000FE00000000FC0000
0000FC00000001FC00000001FC00000001F800000001F800000003F800000003F8000000
03F000000003F000000007F000000007F000007E07E00003FF87E0000FC1CFE0001F00EF
E0007E007FC000FC003FC001F8003FC003F0001FC007F0001F8007E0001F800FE0003F80
1FC0003F801FC0003F003F80003F003F80007F007F80007F007F00007E007F00007E007F
0000FE00FF0000FE00FE0000FC00FE0000FC00FE0001FC00FE0001FC00FC0001F80CFC00
01F80CFC0003F80CFC0003F81CFC0003F018FC0007F0187C0007F0387E000FF0303E001F
F0303E007BF0701F00E1F0E00F83C0F9C003FF007F8000FC001F00283B7DB92B>I<0000
E00003F80003F80007F80007F80007F80007F00001C00000000000000000000000000000
0000000000000000000000000000000000000000F80003FE00070F000E0F801C0F80180F
80380F80300F80701F80601F80603F80E03F00C03F00C07F00007E00007E0000FE0000FC
0001FC0001FC0001F80003F80003F00003F00007F01807E01807E0380FE0300FC0300FC0
700F80600F80E00F80C00F81C00F838007870003FE0000F80015397EB71D>105
D<00F80003C003FE0007E0070F000FE00E0F800FF01C0F800FF0180F800FF0380F8007F0
300F8003F0701F8001F0601F8001F0601F8000F0E03F8000E0C03F0000E0C07F0000E000
7E0000E0007E0000C000FE0000C000FC0000C000FC0001C001FC00018001F800018001F8
00038001F800030003F800030003F000070003F000060003F0000E0003F0000C0003F000
1C0003F000180003F000380003F000700001F000E00001F801C00000FC038000007E0F00
00001FFE00000007F0000024267EA428>118 D<0007E001F000001FF807FC0000783E0E
0F0000E01F1C1F0001C01F383F8003800FF07F8003000FE0FF8007000FE0FF800E000FC0
FF000C000FC07E000C001FC03C001C001F80000018001F80000018001F80000000003F80
000000003F80000000003F00000000003F00000000007F00000000007F00000000007E00
000000007E0000000000FE0000000000FE0000000000FC000C000000FC000C000001FC00
1C001E01FC0018003F01F80018007F81F80038007F83F8007000FF83F8006000FF07F800
E000FE0E7C01C0007C1C7C03800078383E0F00001FF00FFC000007C003F0000029267EA4
2F>120 D<00F800000003FE000070070F0000F80E0F8001F81C0F8001F8180F8001F838
0F8003F8300F8003F0701F8003F0601F8003F0603F8007F0E03F0007E0C03F0007E0C07F
0007E0007E000FE0007E000FC000FE000FC000FC000FC000FC001FC001FC001F8001F800
1F8001F8001F8001F8003F8003F8003F0003F0003F0003F0003F0003F0007F0003F0007E
0003F0007E0003F0007E0003F000FE0003F000FC0003F001FC0001F003FC0000F807FC00
007C1FF800003FF9F800000FE1F800000003F800000003F000000003F0000E0007F0003F
8007E0007F800FC0007F800FC0007F801F80007F801F00007F003E00007C007C00007000
F800003801F000001E07C000000FFF00000001FC00000025367EA429>I<0001E0006000
0FF800E0001FFC00C0003FFE01C0007FFF038000FFFF070000F81FFF0001E003FE0001C0
001C0001800038000180007000000000E000000001C0000000038000000007000000000E
000000001C000000003800000000F000000001E0000000038000000007000000000E0000
00001C0000000038000300007000030000E000070001C00006000380000E000700001C00
0FFC007C001FFF81F8001E0FFFF8003807FFF0007003FFE0006003FFC000E001FF0000C0
007C000023267DA427>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FV cmr6 6 8
/FV 8 62 df<000C0038007000E001C00380030007000E000E001C001C00380038003800
7800700070007000F000F000F000F000F000F000F000F000F000F000F000700070007000
78003800380038001C001C000E000E0007000300038001C000E000700038000C0E317AA4
18>40 D<C000700038001C000E0007000300038001C001C000E000E00070007000700078
003800380038003C003C003C003C003C003C003C003C003C003C003C0038003800380078
00700070007000E000E001C001C00380030007000E001C0038007000C0000E317CA418>
I<0000380000000038000000003800000000380000000038000000003800000000380000
000038000000003800000000380000000038000000003800000000380000000038000000
00380000000038000000003800000000380000FFFFFFFFFEFFFFFFFFFEFFFFFFFFFE0000
380000000038000000003800000000380000000038000000003800000000380000000038
000000003800000000380000000038000000003800000000380000000038000000003800
0000003800000000380000000038000027277C9F2F>43 D<00E00001E00007E000FFE000
F9E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E000
01E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E000
01E00001E00003F000FFFFC0FFFFC012217AA01E>49 D<01FC0007FF801C0FC03003E060
01F06000F8F800F8FC00FCFC00FCFC007C78007C3000FC0000FC0000F80000F80001F000
03E00003C0000780000F00001E0000380000700000E00001C00C03800C0600180C001818
00183FFFF87FFFF8FFFFF0FFFFF016217CA01E>I<000FC0007FF001F03803C01807803C
0F007C1E007C1C00383C00003C00007C0000780000787FC0F9FFE0FB80F0FE0038FE003C
FC001EFC001EF8001FF8001FF8001FF8001F78001F78001F78001F3C001E3C001E1C003C
1E00380F00700781E001FFC0007F0018227DA01E>54 D<00FE0003FFC00781E00E00701C
00783C003878003C78003CF8001EF8001EF8001EF8001FF8001FF8001FF8001F78003F78
003F3C007F1C007F0F01DF07FF9F03FE1E00001E00001E00003E00003C1C00383E00783E
00703C00E01801C01C07800FFE0003F80018227DA01E>57 D<FFFFFFFFFEFFFFFFFFFEFF
FFFFFFFE0000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000FFFFFFFFFEFFFFFFFFFEFFFFFFFFFE270F7C932F>61
D E
%EndDVIPSBitmapFont
/FW 167[53 3[44 40 49 1[40 53 53 65 44 2[24 53 53 40
44 53 1[49 53 65[{TeXBase1Encoding ReEncodeFont}17 72.7272
/Times-Roman rf
%DVIPSBitmapFont: FX cmsy8 8 14
/FX 14 106 df<000C0000001E0000001E0000001E0000001E0000001E0000601E018078
1E0780FC0C0FC07F0C3F803F8C7F0007CCF80001FFE000007F8000001E0000007F800001
FFE00007CCF8003F8C7F007F0C3F80FC0C0FC0781E0780601E0180001E0000001E000000
1E0000001E0000001E0000000C00001A1D7C9E23>3 D<007F800001FFE00007FFF8000F
FFFC001FFFFE003FFFFF003FFFFF007FFFFF807FFFFF80FFFFFFC0FFFFFFC0FFFFFFC0FF
FFFFC0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC07FFFFF807FFFFF803FFFFF003FFFFF001F
FFFE000FFFFC0007FFF80001FFE000007F80001A1A7C9D23>15 D<0000000001C0000000
0007C0000000001FC0000000007F0000000001FC0000000007F0000000001FC000000000
7F0000000001FC0000000007F0000000000FC0000000003F0000000000FC0000000003F8
000000000FE0000000003F8000000000FE0000000003F8000000000FE0000000003F8000
000000FE0000000000F80000000000FE00000000003F80000000000FE00000000003F800
00000000FE00000000003F80000000000FE00000000003F80000000000FC00000000003F
00000000000FC00000000007F00000000001FC00000000007F00000000001FC000000000
07F00000000001FC00000000007F00000000001FC00000000007C00000000001C0000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
0000007FFFFFFFFF80FFFFFFFFFFC0FFFFFFFFFFC02A3B7AAB37>20
D<7FFFFFC00000FFFFFFF800007FFFFFFE00000000007F80000000000FC00000000003E0
0000000000F000000000007800000000003C00000000001E00000000000E00000000000F
000000000007000000000007800000000003800000000003800000000003C00000000001
C00000000001C00000000001C00000000001C00000000001C00000000001C00000000001
C00000000001C00000000001C00000000003C00000000003800000000003800000000007
80000000000700000000000F00000000000E00000000001E00000000003C000000000078
0000000000F00000000003E0000000000FC0000000007F80007FFFFFFE0000FFFFFFF800
007FFFFFC000002A2B7AA537>27 D<0001C000000E00000001C000000E00000001C00000
0E00000003C000000F000000038000000700000007800000078000000700000003800000
0F00000003C000000E00000001C000001E00000001E000003C00000000F0000078000000
00780000F8000000007C0001F0000000003E0003C0000000000F000F800000000007C07F
FFFFFFFFFFFFF8FFFFFFFFFFFFFFFC7FFFFFFFFFFFFFF80F800000000007C003C0000000
000F0001F0000000003E0000F8000000007C000078000000007800003C00000000F00000
1E00000001E000000E00000001C000000F00000003C00000070000000380000007800000
07800000038000000700000003C000000F00000001C000000E00000001C000000E000000
01C000000E00003E237CA147>36 D<007800FE01FE01FE01FE03FE03FC03FC03FC07F807
F807F807F007F00FE00FE00FE00FC01FC01F801F801F803F003F003F003E007E007C007C
007C00F800F800F800F0000F227EA413>48 D<003F80000007F00000FFF000003FFC0003
FFFC0000FFFF0007FFFF0001F807800F80FF8007C001C01E003FC00F8000E03C001FE01F
00007038000FF03E000030700007F83C000038700003FC78000018600001FEF0000018E0
0000FFE000001CC000007FE000000CC000007FC000000CC000003FC000000CC000001FE0
00000CC000000FF000000CC000000FF800000CC000001FF800000CE000001FFC00001C60
00003DFE00001860000078FF000038700000F07F800038300001F03FC00070380003E01F
E000F01C0007C00FF001E00E000F8007FC07C007807E0003FFFF8003FFFC0000FFFF0000
FFF000003FFC00003F80000007F0003E1F7C9D47>I<6000000006E00000000EF0000000
1E700000001C700000001C780000003C38000000383C000000781C000000701C00000070
1E000000F00E000000E00F000001E007000001C007800003C003FFFFFF8003FFFFFF8003
FFFFFF8001C000070001E0000F0000E0000E0000E0000E0000F0001E000070001C000078
003C0000380038000038003800003C007800001C007000001E00F000000E00E000000E00
E000000F01E000000701C000000783C00000038380000003C780000001C700000001C700
000001EF00000000EE00000000FE000000007C000000007C000000007C00000000380000
0000380000272F80AD28>56 D<FFFFFFFFFCFFFFFFFFFCFFFFFFFFFC000000001C000000
001C000000001C000000001C000000001C000000001C000000001C000000001C00000000
1C000000001C000000001C000000001C000000001C000000001C000000001C0000000008
26137C972F>58 D<00000180000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
00000000038000000000038000007FFFFFFFFFFEFFFFFFFFFFFE7FFFFFFFFFFE2F2E7CAD
38>63 D<0000300000000078000000007800000000FC00000000FC00000001FE00000001
CE00000001CE00000003CF0000000387000000078780000007038000000F03C000000E01
C000001E01E000001C00E000003C00F00000380070000078007800007000380000700038
0000F0003C0000E0001C0001E0001E0001C0000E0003C0000F0003800007000780000780
07000003800F000003C00E000001C01E000001E01C000000E01C000000E03C000000F038
0000007078000000787000000038F00000003CE00000001CE00000000C26297CA72F>94
D<E00000000CE00000001CF00000003C7000000038780000007838000000703C000000F0
1C000000E01C000000E01E000001E00E000001C00F000003C00700000380078000078003
8000070003C0000F0001C0000E0001E0001E0000E0001C0000F0003C0000700038000070
00380000780078000038007000003C00F000001C00E000001E01E000000E01C000000F03
C0000007038000000787800000038700000003CF00000001CE00000001CE00000001FE00
000000FC00000000FC000000007800000000780000000030000026297CA72F>I<000300
07000F000E000E001E001C003C003800380078007000F000E000E001E001C003C0038007
80070007000F000E001E001C001C003C003800780070007000F000E000F0007000700078
0038003C001C001C001E000E000F00070007000780038003C001C001E000E000E000F000
70007800380038003C001C001E000E000E000F0007000310437AB11B>104
D<E000E000F00070007000780038003C001C001C001E000E000F00070007000780038003
C001C001E000E000E000F00070007800380038003C001C001E000E000E000F0007000F00
0E000E001E001C003C003800380078007000F000E000E001E001C003C003800780070007
000F000E001E001C001C003C003800780070007000F000E000E00010437CB11B>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FY eusm10 10.95 7
/FY 7 85 df<0000000000003F8000000000000003FF000000000000000FFE0000000000
00003FFE000000000000007CFC00000000000000F07C00000000000001E07C0000000000
0003C07C00000000000007807C00000000000007807C0000000000000F007C0000000000
001E007C0000000000001E007C0000000000003E007C0000000000003C007C0000000000
007C007C00000000000078007C000000000000F8007C000000000000F0007C0000000000
01F0007C000000000001F0007C000000000003E0007C000000000003E0007C0000000000
07E0007C000000000007C0007C00000000000FC0007C00000000000FC0007C0000000000
1F80007C00000000001F80007C00000000001F80007C00000000003F00007C0000000000
3F00007C00000000007F00007C00000000007E00007C00000000007E00007C0000000000
FE00007C0000000000FC00007C0000000001FFFFFFFC0000000001FFFFFFFC0000000001
FFFFFFFC0000000003FFFFFFFC0000000003FFFFFFFC0000000007F000007C0000000007
E000007C0000000007E000007C000000000FC000007C000000000FC000007C000000001F
8000007C000000001F8000007C000000001F0000007E000000003E0000007E000038003E
0000007E00007E007C0000007E0000FE007C0000007E0000FE00F80000007E0020FE00F8
0000007F00F0FE01F00000007F01E0FE03E00000007F8780FE07C00000007FFF007F0FC0
0000007FFE007FFF800000003FFC003FFE000000003FF0001FFC000000001FE00007E000
0000000F8000444081BE46>65 D<00001FFFF00000000FC00001FFFFF00000003FE0000F
FFFFE0000000FFF0003FFFFF80000001FFF0007FE03F00000003FFF000FC003F00000007
87F001F0003F0000000E01E003E0003F0000001C00C007C0003F0000003C00000F80003F
0000003800000F80003F0000007800001F00003F0000007000001F00003F000000F00000
3F00003F000000F000003F00003F000000E000003F00003F000001E000003F00003F0000
01E000003F00003F000003E000003F80003F000003E000003F80003F000003C000003F80
003F000003C000001F80003F000007C000001F80003F000007C000000F00003F000007C0
00000400003F000007C000000000003F00000FC000000000003F00000FC000000000003F
00000F8000000000003FFFFFFF8000000000003FFFFFFF8000000000003FFFFFFF800000
0000003E00001F8000000000003E00001F8000000000003E00001F8000000000003E0000
0F8000000000003E00000F8000000000003E00000F8000000000003E00000F8000000000
003E00000F8000000000003C00000F8000000000007C00000F8000000000007C00000F80
00000000007C00000F8000000000007C00000F8000000000007800000F80000000000078
00000F8000000000007800000F800000000000F800000F800000000000F000000F800000
000000F000000FC00000000000E000000FC00000000001E0000007C00000000001C00000
07C00000380003C0000007C00000FC000380000007E00180FE000700000007E00380FE00
0E00000003F00700FF001C00000003F00F00FF803800000003F81E00FFC0F000000001FC
3C007FFFE000000000FFFC003FFF8000000000FFF8001FFE00000000007FE00007F00000
0000001F80004C407DBE52>72 D<00003FFFC00007FFFF80003FFFFE0000FF01F00003F8
01F00007C001F0000F8001F0001F0001F0003E0001F0007E0001F0007C0001F0007C0001
F000FC0001F000FC0001F000FC0001F000FE0001F000FE0001F000FE0001F0007E0001F0
007C0001F0003C0001F000000001F000000001F000000001F000000001F000000001F000
000001F000000001F000000001F000000001F000000001F000000001F000000001F00000
0001F000000001F000000001F000000001F000000001F000000001F000000001F0000000
01F000000001F000000001E000000001E000000003E000000003E000000003E000000003
C000000003C000000007C0000000078000000007800000000F000078000F0000FC001E00
00FC001E0000FC003C0000FE00780000FE00F000007F03E000007FFFC000003FFF800000
1FFE00000003F800000022407EBE27>I<0000001FFE000001FFF800000FFFC000007FFF
800001FF1F800003F81F80000FC01F80001F801F80003E001F80007C001F8000F8001F80
01F8001F8003F0001F8003F0001F8007E0001F8007E0001F800FE0001F800FE0001F800F
E0001F800FE0001F800FE0001F800FE0001F800FC0001F8007C0001F800100001F800000
001F800000001F800000001F800000001F800000001F800000001F800000003F80000000
FF80000003FF8000000FDF8000001F1F8000007C1F800000F01F800003E01F800007801F
80000F001F80001E001F80003C001F800078001F800070001F8000E0001F8001C0001F80
03C0000F800380000F800700000F800F00000F800E00000F001E00000F001C00000F003C
00001F003C00001F003C00001E007800001E007800001E007800003E00F800003C00F800
003C00F800007800F800007800F80000F000F80000E000FC0001E000FC0003C0007E000F
80007F001E00003FC07C00003FFFF800001FFFE000000FFF80000001FE000000274B7DBE
2E>I<000000010000000000000007000000000000001F0000000000000FFFFFE0000000
00FFFFFFFE00000003FFFFFFFFC000000FF83F007FE000003F803F0007F800007E003F00
01F80000FC003F0001FC0001F0003F0000FE0003E0003F00007E0007C0003F00007E000F
C0003F00007F000F80003F00003F001F80003F00003F001F80003F00003F001F80003F00
003F003F80003F00003F003F80003F00003F003F80003F00003F003FC0003F00003F003F
C0003F00003F003FC0003F00003E001FC0003F00007E001F80003F00007E000F00003F00
007C000000003F0000FC000000003F0000F8000000003F0001F0000000003F0003E00000
00003F0007C0000000003F000F80000000003F003F00000000003F00FC00000000003FFF
F000000000003FFF8000000000003FFF8000000000003F0FC000000000003F0FC0000000
00003F0FE000000000003E07E000000000003E07E000000000003E03F000000000003E03
F000000000003C01F800000000003C01F800000000003C01F800000000007C00FC000000
00007800FC000000000078007E000000000078007E000000000070007F0000000000F000
3F0000000000E0003F8000000001E0001FC0003C0001C0001FC0087C0003C0001FE00CFE
000380000FF018FF000700000FF818FF000E000007FC707F803C000007FFF07FC0F80000
03FFE03FFFF0000001FFE01FFFC0000000FFC00FFF000000007F8003F8000000003E003E
437EC142>82 D<00007FF0000007FFFE00001FFFFF80007F807FC000FC000FE001F80007
E003E00003F003E00003F007C00001F007C00001F00F800001F00F800001F00F800003F0
0F800003E00F800007C00FC0001F800FC000FF000FC000100007E000000007F000000007
F800000003FC00000003FE00000001FF00000000FFC00000007FF00000003FFC0000001F
FF00000007FFC0000001FFF00000007FFC0000001FFE00000007FF80000001FFC0000000
7FE00000003FF00000000FF800000007F800FF0003FC07FFC001FC0FFFE000FC1F07F000
FE3E07F000FE7C03F0007E7803F0007E7801E0007EF800C0007EF80000007EF80000007E
F80000007CF80000007CF80000007CF8000000FCFC000000F8FC000001F87E000001F07E
000003E07F000007C03F80000F801FE0003F000FF0007E0007FC03F80003FFFFE00000FF
FF8000001FF8000027417CBF31>I<0001FE0000000080000FFFF0000001C0007FFFFE00
00038000FFFFFFE000078001FFFFFFFE000F0007C01FFFFFE01E000F0001FFFFFFFE000E
00003FFFFFFC001E000007FFFFF8003C000007FFFFF0003C000007E7FFE0007C000007E0
3F800078000007E000000078000007E0000000FC000007E0000000FC000007E0000000FE
000007E0000000FE000007E0000000FF000007E0000000FF800007E00000007F800007E0
0000007F800007E00000003F000007E00000001E000007E000000000000007E000000000
000007E000000000000007E000000000000007E000000000000007E000000000000007E0
00000000000007E000000000000007E000000000000007E000000000000007E000000000
000007E000000000000007E000000000000007E000000000000007E000000000000007E0
00000000000007E000000000000007E000000000000007E000000000000007E000000000
000007C000000000000007C000000000000007C000000000000007C000000000000007C0
0000000000000F800000000000000F800000000000000F800000000038000F8000000000
7E000F0000000000FE000F0000000000FE001E0000000000FE001E0000000000FE003C00
00000000FE003C0000000000FE007800000000007F00F000000000007F83E00000000000
3FFF8000000000001FFE00000000000007F800000000003A407EBE39>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: FZ cmmi6 6 11
/FZ 11 117 df<78FCFCFCFC7806067A8513>58 D<78FCFCFEFE7E0606060C0C1C183060
4007107A8513>I<00000001C000000007C00000001FC00000007F00000001FC00000007
F00000001FC00000007F00000000FC00000003F00000000FC00000003F80000000FE0000
0003F80000000FE00000003F80000000FE00000000F800000000FE000000003F80000000
0FE000000003F800000000FE000000003F800000000FC000000003F000000000FC000000
007F000000001FC000000007F000000001FC000000007F000000001FC000000007C00000
0001C022237A9D30>I<00FFE000000FFE00FFE000001FFC0007E000001F800007E00000
3780000DE000006F00000CF000006F00000CF00000CF00000CF000018F000018F000019E
000018F000031E0000187800061E0000187800061E00003078000C3C0000307800183C00
00307800303C0000307800303C0000603C0060780000603C00C0780000603C00C0780000
603C0180780000C03C0300F00000C01E0300F00000C01E0600F00000C01E0C00F0000180
1E0C01E00001801E1801E00001800F3001E00001800F6001E00003000F6003C00003000F
C003C00003000F8003C0000F80078007C000FFF80700FFFE00FFF00600FFFC0037227CA1
3A>77 D<0000FE030007FFC6000F01EE003C007E0070003E00E0001C00C0001C01C0001C
01C0001C03C0001803C0001803C0000003E0000003F0000001FE000000FFE000007FFE00
003FFF00000FFF800000FFC000000FE0000003E0000001E0000000F0000000F0300000E0
300000E0300000E0300001C0700001C078000380780007007E000E00E7807C00C3FFF000
807F800020247CA226>83 D<1FFFFFFFFC1FFFFFFFFC1F003E007C3C003E001C38007C00
1C30007C001C70007C001860007C00186000F80018C000F80018C000F80018C000F80018
0001F000000001F000000001F000000001F000000003E000000003E000000003E0000000
03E000000007C000000007C000000007C000000007C00000000F800000000F800000000F
800000000F800000001F000000001F000000001F000000003F0000001FFFFE00001FFFFC
000026227DA124>I<007FFF007FFC007FFF007FFC0003F8001F800001F8001E000001F8
0018000000FC0030000000FC00600000007E00C00000007E01800000003F03000000003F
06000000001F8C000000001FB8000000000FF0000000000FE00000000007E00000000007
E00000000007F0000000000FF0000000001DF80000000038F80000000070FC00000000E0
7C00000001C07E00000003803E00000007003F0000000E001F80000018001F8000003000
0FC0000060000FC00001E00007E00007E00007E0007FF8003FFF00FFF8007FFF002E227E
A132>88 D<FFFE0003FF80FFFC0007FF8007E00000F80007E00000E00003F00001800003
F00003000001F80006000001F8000C000000FC0018000000FC00380000007E0070000000
7E00E00000003F01C00000003F03800000001F87000000001F8E000000001F9C00000000
0FF8000000000FF00000000007E00000000007C00000000007C00000000007C000000000
0780000000000F80000000000F80000000000F80000000000F00000000001F0000000000
1F00000000001F00000000003F0000000007FFF000000007FFF000000029227DA124>I<
0038007C007C00780070000000000000000000000000000007801FC038E030E060F0C1E0
C1E0C1E003C003C003C0078007800F000F040F061E0C1E0C1E181C181E700FE007800F23
7DA116>105 D<001F0200FF8601E0CE03807E07007C0F003C1E003C3E003C3C00787C00
787C00787C0078F800F0F800F0F800F0F800F0F801E07801E07803E03807E01C1FC00FFB
C007E3C00003C0000780000780000780000780000F00000F0000FFF001FFF017207E951C
>113 D<00300000780000F00000F00000F00000F00001E00001E00001E00001E00003C0
00FFFF80FFFF8003C0000780000780000780000780000F00000F00000F00000F00001E00
001E00001E01001E01803C03003C06003C06003C0C001C38000FF00007C00011217D9F18
>116 D E
%EndDVIPSBitmapFont
/F0 133[32 4[42 23 32 2[42 14[42 24[60 72[{
TeXBase1Encoding ReEncodeFont}7 83.022 /Times-Italic
rf /F1 131[55 3[55 55 1[55 55 1[55 2[55 55 4[55 55 1[55
55 1[55 36[55 16[55 45[{TeXBase1Encoding ReEncodeFont}15
90.9091 /Courier rf /F2 75[25 31[33 33 24[33 37 37 54
37 37 21 29 25 37 37 37 37 58 21 37 21 21 37 37 25 33
37 33 37 33 3[25 1[25 46 2[71 1[54 46 1[50 1[42 54 54
66 46 54 29 25 1[54 42 46 54 1[50 54 5[21 1[37 37 37
1[37 37 1[37 37 37 1[19 25 19 4[25 22[25 13[42 2[{
TeXBase1Encoding ReEncodeFont}65 74.7198 /Times-Roman
rf /F3 199[25 25 25 25 25 25 25 25 2[12 46[{
TeXBase1Encoding ReEncodeFont}9 49.8132 /Times-Roman
rf
%DVIPSBitmapFont: F4 cmr10 10.95 20
/F4 20 95 df<FFFFFFFFFFFE00FFFFFFFFFFFE00FFFFFFFFFFFE0001FFC0000FFE0000
7F800001FE00007F8000007F00007F8000003F00007F8000001F00007F8000001F00007F
8000000F00007F8000000F00007F8000000700007F8000000700007F8000000700007F80
00000700007F8000000700007F8000000380007F8000000380007F8000000380007F8000
000380007F8000000380007F8000000000007F8000000000007F8000000000007F800000
0000007F8000000000007F8000000000007F8000000000007F8000000000007F80000000
00007F8000000000007F8000000000007F8000000000007F8000000000007F8000000000
007F8000000000007F8000000000007F8000000000007F8000000000007F800000000000
7F8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F
8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F80
00000000007F8000000000007F8000000000007F8000000000007F8000000000007F8000
000000007F8000000000007F800000000001FFE000000000FFFFFFF8000000FFFFFFF800
0000FFFFFFF8000000313E7DBD39>0 D<00000000E00000000000000001F00000000000
000001F00000000000000003F80000000000000003F80000000000000007FC0000000000
000007FC000000000000000FFE000000000000000FFE000000000000001DFF0000000000
00001DFF0000000000000038FF8000000000000038FF80000000000000787FC000000000
0000707FC0000000000000F03FE0000000000000E03FE0000000000001E01FF000000000
0001C01FF0000000000003C00FF8000000000003800FF80000000000078007FC00000000
00070007FC00000000000F0003FE00000000000E0003FE00000000001E0001FF00000000
001C0001FF00000000003C0000FF8000000000380000FF80000000007800007FC0000000
007000007FC000000000F000003FE000000000E000003FE000000001E000001FF0000000
01C000001FF000000003C000000FF8000000038000000FF80000000780000007FC000000
0700000007FC0000000F00000003FE0000000E00000003FE0000001E00000001FF000000
1C00000001FF0000003C00000000FF8000003800000000FF80000078000000007FC00000
70000000007FC00000F0000000003FE00000E0000000003FE00001E0000000001FF00001
C0000000001FF00003C0000000000FF8000380000000000FF80007800000000007FC0007
000000000007FC000F000000000003FE000E000000000003FE001E000000000001FF001F
FFFFFFFFFFFFFF003FFFFFFFFFFFFFFF803FFFFFFFFFFFFFFF807FFFFFFFFFFFFFFFC07F
FFFFFFFFFFFFFFC0FFFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFE043417CC04C>I<000000
3C0000000000003C0000000000003C0000000000007E0000000000007E0000000000007E
000000000000FF000000000000FF000000000000FF000000000001FF800000000001FF80
0000000001FF800000000003FFC00000000003FFC00000000003BFC00000000003BFC000
000000073FE000000000071FE000000000071FE0000000000E1FF0000000000E0FF00000
00000E0FF0000000001C0FF8000000001C07F8000000001C07F8000000003C07FC000000
003803FC000000003803FC000000007803FE000000007003FE000000007001FE00000000
7001FE00000000E001FF00000000E000FF00000000E000FF00000001C000FF80000001C0
007F80000001C0007F8000000380007FC000000380003FC000000380003FC00000078000
3FE000000700001FE000000700001FE000000F00001FF000000E00000FF000000E00000F
F000001E00000FF800001C00000FF800001C000007F800001C000007F8000038000007FC
000038000003FC000038000003FC000070000003FE000070000001FE000070000001FE00
00F0000001FF0000F0000000FF0001F0000000FF0003F8000001FF800FFE000007FFC0FF
FFE000FFFFFFFFFFE000FFFFFFFFFFE000FFFFFF38417DC03F>3
D<1E007F80FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC07F807F807F807F807F807F807F
807F807F807F807F807F803F003F003F003F003F003F003F003F003F003F003F003F001E
001E001E001E001E001E001E001E001E001E001E000C0000000000000000000000000000
0000001E007F807F80FFC0FFC0FFC0FFC07F807F801E000A4179C019>33
D<0000300000700000E00001C0000380000780000F00001E00003E00003C0000780000F8
0000F00001F00001E00003E00003E00007C00007C0000FC0000F80000F80001F80001F00
001F00003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C00
00FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC00
00FC0000FC0000FC0000FC0000FC0000FC00007C00007E00007E00007E00007E00007E00
007E00003E00003F00003F00003F00001F00001F00001F80000F80000F80000FC00007C0
0007C00003E00003E00001E00001F00000F00000F800007800003C00003E00001E00000F
000007800003800001C00000E0000070000030145A77C323>40 D<C00000E00000700000
3800001C00001E00000F000007800007C00003C00001E00001F00000F00000F800007800
007C00007C00003E00003E00003F00001F00001F00001F80000F80000F80000FC0000FC0
000FC00007C00007E00007E00007E00007E00007E00007E00003E00003F00003F00003F0
0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F0
0003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C0000FC0
000FC0000FC0000F80000F80001F80001F00001F00003F00003E00003E00007C00007C00
00780000F80000F00001F00001E00003C00007C0000780000F00001E00001C0000380000
700000E00000C00000145A7BC323>I<00000006000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000007FFFFFFFFFFFFFE0FFFFFFFF
FFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE00000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F0000000000000006000000003C3C7BB447>43
D<0001FE0000000FFFC000003F03F000007C00F80000F8007C0001F0003E0003E0001F00
07C0000F8007C0000F800FC0000FC01F800007E01F800007E01F800007E03F800007F03F
800007F03F000003F07F000003F87F000003F87F000003F87F000003F87F000003F87F00
0003F8FF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF0000
03FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003
FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FC7F000003F8
7F000003F87F000003F87F000003F87F000003F83F800007F03F800007F03F800007F01F
800007E01F800007E01F800007E00FC0000FC00FC0000FC007E0001F8003E0001F0001F0
003E0000F8007C00007C00F800003F03F000000FFFC0000001FE0000263F7DBC2D>48
D<0001C0000003C0000007C000001FC000007FC00007FFC000FFFFC000FF9FC000F81FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
00001FC000001FC000001FC000007FF000FFFFFFF8FFFFFFF8FFFFFFF81D3D78BC2D>I<
0007FC0000003FFF800000FFFFE00003F01FF80007C007FC000F0001FE001E0000FF001C
0000FF803C00007FC07800007FC07800003FE07000003FE0FF00003FE0FF80001FF0FFC0
001FF0FFC0001FF0FFC0001FF0FFC0001FF0FFC0001FF07F80001FF03F00001FF00C0000
1FF00000001FE00000003FE00000003FE00000003FC00000007FC00000007F80000000FF
80000000FF00000001FE00000001FC00000003F800000007F000000007E00000000FC000
00001F800000003F000000007E000000007C00000000F800000001F000000003E0000000
07C00000000F800000001F000070003E000070003C000070007800007000F00000E001E0
0000E003C00000E007800000E00F000001E01FFFFFFFE01FFFFFFFE03FFFFFFFE07FFFFF
FFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0243D7CBC2D>I<0007FC0000003FFF800000F8
0FE00001E003F800078001FC000F0001FE000E0000FF001E0000FF801F80007F803FC000
7FC03FE0007FC03FE0007FC03FF0007FC03FE0007FC03FE0007FC01FE0007FC00FC0007F
C00000007F80000000FF80000000FF00000000FF00000001FE00000001FE00000003FC00
000003F800000007E00000000FC00000003F0000001FFC0000001FFF800000000FE00000
0007F800000003FC00000001FE00000000FF00000000FF800000007FC00000007FC00000
007FE00000003FE00000003FE00000003FF00000003FF00C00003FF03F00003FF07F8000
3FF0FFC0003FF0FFC0003FF0FFC0003FF0FFC0003FE0FFC0003FE0FF80007FE07F00007F
C07800007FC0780000FF803C0000FF801E0001FF000F0003FE0007C007FC0003F80FF000
00FFFFE000003FFF80000007F80000243F7CBC2D>I<0000000E000000001E000000003E
000000003E000000007E000000007E00000000FE00000001FE00000001FE00000003FE00
0000077E000000067E0000000E7E0000001C7E0000001C7E000000387E000000707E0000
00707E000000E07E000001C07E000001C07E000003807E000007007E000007007E00000E
007E00001C007E00001C007E000038007E000070007E000070007E0000E0007E0000C000
7E0001C0007E000380007E000300007E000700007E000E00007E000C00007E001C00007E
003800007E003800007E007000007E00E000007E00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
0000FE00000000FE00000000FE00000000FE00000000FE00000001FF000001FFFFFF0001
FFFFFF0001FFFFFF283E7EBD2D>I<1E007F807F80FFC0FFC0FFC0FFC07F807F801E0000
000000000000000000000000000000000000000000000000000000000000000000000000
001E007F807F80FFC0FFC0FFC0FFC07F807F801E000A2779A619>58
D<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE0000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE03C167B
A147>61 D<001FF80000FFFF0003E01FC00F0007F01E0003F83C0001FC780001FE780000
FEFE0000FFFF0000FFFF8000FFFF8000FFFF8000FFFF8000FF7F0000FF3E0000FF000001
FE000001FE000003FC000007F8000007F000000FC000001F8000003F0000003E0000007C
00000078000000F8000000F0000001F0000001E0000001E0000003C0000003C000000380
000003800000038000000380000003800000038000000380000003800000038000000380
000003800000030000000000000000000000000000000000000000000000000000000000
000000000000078000001FE000001FE000003FF000003FF000003FF000003FF000001FE0
00001FE0000007800020407BBF2B>63 D<FFFFFFC0007FFFFCFFFFFFC0007FFFFCFFFFFF
C0007FFFFC01FFE000000FFF80007F80000007FE00007F80000007F800007F80000007E0
00007F80000007C000007F8000000F8000007F8000001F0000007F8000003E0000007F80
00007C0000007F800000F80000007F800001F00000007F800003E00000007F800007C000
00007F80000F800000007F80001F000000007F80003E000000007F80007C000000007F80
00F8000000007F8001F0000000007F8003E0000000007F800780000000007F800FC00000
00007F801FC0000000007F803FE0000000007F807FF0000000007F80FFF0000000007F81
EFF8000000007F83C7FC000000007F8787FC000000007F8F03FE000000007F9E01FF0000
00007FBC01FF000000007FF800FF800000007FF0007FC00000007FE0007FC00000007FC0
003FE00000007F80001FF00000007F80001FF00000007F80000FF80000007F800007FC00
00007F800007FC0000007F800003FE0000007F800001FF0000007F800001FF0000007F80
0000FF8000007F8000007FC000007F8000007FE000007F8000003FE000007F8000001FF0
00007F8000000FF800007F8000000FF800007F80000007FC00007F80000007FE00007F80
000007FF00007F80000007FF8001FFE000000FFFC0FFFFFFC000FFFFFFFFFFFFC000FFFF
FFFFFFFFC000FFFFFF403E7DBD47>75 D<FFFFFFFFC0000000FFFFFFFFFC000000FFFFFF
FFFF80000001FFC000FFE00000007F80001FF00000007F800007FC0000007F800001FE00
00007F800000FF0000007F800000FF8000007F8000007FC000007F8000007FC000007F80
00003FE000007F8000003FE000007F8000003FF000007F8000003FF000007F8000003FF0
00007F8000003FF000007F8000003FF000007F8000003FF000007F8000003FF000007F80
00003FE000007F8000007FE000007F8000007FC000007F8000007F8000007F800000FF80
00007F800000FF0000007F800001FC0000007F800007F80000007F80001FE00000007F80
00FF800000007FFFFFFC000000007FFFFFF0000000007F8001FC000000007F80003F0000
00007F80001FC00000007F80000FE00000007F800007F00000007F800007F80000007F80
0003F80000007F800003FC0000007F800001FC0000007F800001FE0000007F800001FE00
00007F800001FE0000007F800001FF0000007F800001FF0000007F800001FF0000007F80
0001FF0000007F800001FF8000007F800001FF8000007F800001FF8000007F800001FF80
00007F800001FFC004007F800001FFC00E007F800001FFC00E007F800000FFC00E007F80
0000FFE00E007F8000007FE01E01FFE000007FE01CFFFFFFC0003FF01CFFFFFFC0001FF8
38FFFFFFC00007F870000000000001FFE00000000000003F803F407DBD43>82
D<FFFCFFFCFFFCFFFCF000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000FFFCFFFCFF
FCFFFC0E5B77C319>91 D<FFFCFFFCFFFCFFFC003C003C003C003C003C003C003C003C00
3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
3C003C003CFFFCFFFCFFFCFFFC0E5B7FC319>93 D<001800003C00007E0000FF0001E780
03C3C00781E00F00F01E00783C003C78001EF0000F600006180D76BD2D>I
E
%EndDVIPSBitmapFont
/F5 134[33 18[22 29 33 1[33 9[48 3[41 37 44 1[37 48 48
59 41 2[22 48 48 37 41 48 2[48 7[33 33 33 33 33 33 33
33 33 2[17 4[22 22 40[{TeXBase1Encoding ReEncodeFont}33
66.4176 /Times-Roman rf
%DVIPSBitmapFont: F6 cmsy10 10.95 40
/F6 40 107 df<7FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF836
04789847>0 D<1E007F807F80FFC0FFC0FFC0FFC07F807F801E000A0A799B19>I<0003C0
000003C0000003E0000003C0000003C0000003C0000003C0000003C0000003C000F003C0
0FFC03C03FFE03C07FFF03C0FF3FC3C3FC0FE187F003F18FC000FDBF00003FFC00000FF0
000003C000000FF000003FFC0000FDBF0003F18FC00FE187F03FC3C3FCFF03C0FFFE03C0
7FFC03C03FF003C00F0003C0000003C0000003C0000003C0000003C0000003C0000003E0
000003C0000003C00020277AA92D>3 D<000000FFF000000000000FFFFF00000000003F
FFFFC000000000FF871FF000000003F80701FC0000000FE007007F0000001F8007001F80
00003E00070007C000007800070001E00000F000070000F00001E000070000780003C000
0700003C000780000700001E000700000700000E000F00000700000F000E000007000007
001E000007000007801C000007000003803C000007000003C038000007000001C0780000
07000001E070000007000000E070000007000000E070000007000000E0F0000007000000
F0E000000700000070E000000700000070E000000700000070FFFFFFFFFFFFFFF0FFFFFF
FFFFFFFFF0FFFFFFFFFFFFFFF0E000000700000070E000000700000070E0000007000000
70E000000700000070F0000007000000F070000007000000E070000007000000E0700000
07000000E078000007000001E038000007000001C03C000007000003C01C000007000003
801E000007000007800E000007000007000F00000700000F000700000700000E00078000
0700001E0003C0000700003C0001E000070000780000F000070000F000007800070001E0
00003E00070007C000001F8007001F8000000FE007007F00000003F80701FC00000000FF
871FF0000000003FFFFFC0000000000FFFFF000000000000FFF00000003C3C7BB447>8
D<000000FFF000000000000FFFFF00000000003FFFFFC000000000FF801FF000000003F8
0001FC0000000FE000007F0000001F8000001F8000003E00000007C000007800000001E0
0000F000000000F00001F800000000F80003FC00000001FC00079E00000003DE00070F00
0000078E000F078000000F0F000E03C000001E07001E01E000003C07801C00F000007803
803C00780000F003C038003C0001E001C078001E0003C001E070000F00078000E0700007
800F0000E0700003C01E0000E0F00001E03C0000F0E00000F078000070E0000078F00000
70E000003DE0000070E000001FC0000070E000000F80000070E000000F80000070E00000
1FC0000070E000003DE0000070E0000078F0000070E00000F078000070F00001E03C0000
F0700003C01E0000E0700007800F0000E070000F00078000E078001E0003C001E038003C
0001E001C03C00780000F003C01C00F000007803801E01E000003C07800E03C000001E07
000F078000000F0F00070F000000078E00079E00000003DE0003FC00000001FC0001F800
000000F80000F000000000F000007800000001E000003E00000007C000001F8000001F80
00000FE000007F00000003F80001FC00000000FF801FF0000000003FFFFFC0000000000F
FFFF000000000000FFF00000003C3C7BB447>10 D<000FFC0000003FFF000000FFFFC000
03FFFFF00007F807F8000FE001FC001F80007E003F00003F003E00001F007C00000F807C
00000F807800000780F8000007C0F8000007C0F0000003C0F0000003C0F0000003C0F000
0003C0F0000003C0F0000003C0F8000007C0F8000007C078000007807C00000F807C0000
0F803E00001F003F00003F001F80007E000FE001FC0007F807F80003FFFFF00000FFFFC0
00003FFF0000000FFC000022227BA72D>14 D<000FFC0000003FFF000000FFFFC00003FF
FFF00007FFFFF8000FFFFFFC001FFFFFFE003FFFFFFF003FFFFFFF007FFFFFFF807FFFFF
FF807FFFFFFF80FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFF
C0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC07FFFFFFF807FFFFFFF807FFFFFFF80
3FFFFFFF003FFFFFFF001FFFFFFE000FFFFFFC0007FFFFF80003FFFFF00000FFFFC00000
3FFF0000000FFC000022227BA72D>I<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFF
FFFFFFF07FFFFFFFFFFFFFE0000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFF
FFFFFFF07FFFFFFFFFFFFFE0000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFF
FFFFFFF07FFFFFFFFFFFFFE03C287BAA47>17 D<000007FFFFFFF800003FFFFFFFFC0001
FFFFFFFFFC0003FFFFFFFFF8000FFC00000000001FE000000000007F000000000000FE00
0000000001F8000000000003F0000000000007E0000000000007C000000000000F800000
0000001F8000000000001F0000000000003E0000000000003E0000000000007C00000000
00007C0000000000007800000000000078000000000000F8000000000000F80000000000
00F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000
F0000000000000F0000000000000F0000000000000F8000000000000F800000000000078
000000000000780000000000007C0000000000007C0000000000003E0000000000003E00
00000000001F0000000000001F8000000000000F80000000000007C0000000000007E000
0000000003F0000000000001F8000000000000FE0000000000007F0000000000001FE000
000000000FFC000000000003FFFFFFFFF80001FFFFFFFFFC00003FFFFFFFFC000007FFFF
FFF800000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000001FFFFFFFFFFFF83F
FFFFFFFFFFFC3FFFFFFFFFFFFC1FFFFFFFFFFFF8364878B947>I<7FFFFFFF800000FFFF
FFFFF00000FFFFFFFFFE00007FFFFFFFFF000000000000FFC000000000001FE000000000
0003F8000000000001FC0000000000007E0000000000003F0000000000001F8000000000
000F80000000000007C0000000000007E0000000000003E0000000000001F00000000000
01F0000000000000F8000000000000F80000000000007800000000000078000000000000
7C0000000000007C0000000000003C0000000000003C0000000000003C0000000000003C
0000000000003C0000000000003C0000000000003C0000000000003C0000000000007C00
00000000007C0000000000007800000000000078000000000000F8000000000000F80000
00000001F0000000000001F0000000000003E0000000000007E0000000000007C0000000
00000F8000000000001F8000000000003F0000000000007E000000000001FC0000000000
03F800000000001FE00000000000FFC0007FFFFFFFFF0000FFFFFFFFFE0000FFFFFFFFF0
00007FFFFFFF800000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000007F
FFFFFFFFFFE0FFFFFFFFFFFFF0FFFFFFFFFFFFF07FFFFFFFFFFFE0364878B947>I<0000
00000000180000000000007C000000000001FC000000000007F800000000001FF0000000
00007FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001
FF000000000007FC00000000001FF000000000007FC00000000001FF000000000007FC00
000000001FF000000000007FC00000000001FF000000000007FC00000000001FF0000000
00007FC00000000001FF000000000007FC00000000001FF000000000007FC00000000000
FF000000000000FE0000000000007F8000000000003FE000000000000FF8000000000003
FE000000000000FF8000000000003FE000000000000FF8000000000003FE000000000000
FF8000000000003FE000000000000FF8000000000003FE000000000000FF800000000000
3FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000000000
0FF8000000000003FE000000000000FF8000000000003FE000000000000FF80000000000
03FC000000000000FC000000000000380000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
0000000000007FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF83648
78B947>I<60000000000000F8000000000000FE0000000000007F8000000000003FE000
000000000FF8000000000003FE000000000000FF8000000000003FE000000000000FF800
0000000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE00
0000000000FF8000000000003FE000000000000FF8000000000003FE000000000000FF80
00000000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE0
00000000000FF8000000000003FC000000000001FC000000000007F800000000001FF000
000000007FC00000000001FF000000000007FC00000000001FF000000000007FC0000000
0001FF000000000007FC00000000001FF000000000007FC00000000001FF000000000007
FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001FF000
000000007FC00000000001FF000000000007FC00000000001FF000000000007FC0000000
0000FF000000000000FC0000000000007000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000007FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFF
FFFFFFFFF8364878B947>I<000007FFFFFFF800003FFFFFFFFC0001FFFFFFFFFC0003FF
FFFFFFF8000FFC00000000001FE000000000007F000000000000FE000000000001F80000
00000003F0000000000007E0000000000007C000000000000F8000000000001F80000000
00001F0000000000003E0000000000003E0000000000007C0000000000007C0000000000
007800000000000078000000000000F8000000000000F8000000000000F0000000000000
F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000F0
000000000000F0000000000000F8000000000000F8000000000000780000000000007800
00000000007C0000000000007C0000000000003E0000000000003E0000000000001F0000
000000001F8000000000000F80000000000007C0000000000007E0000000000003F00000
00000001F8000000000000FE0000000000007F0000000000001FE000000000000FFC0000
00000003FFFFFFFFF80001FFFFFFFFFC00003FFFFFFFFC000007FFFFFFF8363678B147>
26 D<7FFFFFFF800000FFFFFFFFF00000FFFFFFFFFE00007FFFFFFFFF000000000000FF
C000000000001FE0000000000003F8000000000001FC0000000000007E0000000000003F
0000000000001F8000000000000F80000000000007C0000000000007E0000000000003E0
000000000001F0000000000001F0000000000000F8000000000000F80000000000007800
0000000000780000000000007C0000000000007C0000000000003C0000000000003C0000
000000003C0000000000003C0000000000003C0000000000003C0000000000003C000000
0000003C0000000000007C0000000000007C000000000000780000000000007800000000
0000F8000000000000F8000000000001F0000000000001F0000000000003E00000000000
07E0000000000007C000000000000F8000000000001F8000000000003F0000000000007E
000000000001FC000000000003F800000000001FE00000000000FFC0007FFFFFFFFF0000
FFFFFFFFFE0000FFFFFFFFF000007FFFFFFF800000363678B147>I<6000000C00000000
0000F800001F000000000000FE00001FC000000000007F80000FF000000000003FC00007
F800000000000FF00001FE000000000003FC00007F800000000000FF00001FE000000000
007F80000FF000000000001FE00003FC000000000007F80000FF000000000001FE00003F
C00000000000FF00001FE000000000003FC00007F800000000000FF00001FE0000000000
03FC00007F800000000001FE00003FC000000000007F80000FF000000000001FE00003FC
000000000007F80000FF000000000003FC00007F800000000000FF00001FE00000000000
3FC00007F800000000000FF00001FE000000000007F80000FF000000000001FE00003FC0
00000000007F80000FF000000000001FE00003FC00000000000FF00001FE000000000003
F800007F000000000003F800007F00000000000FF00001FE00000000001FE00003FC0000
0000007F80000FF00000000001FE00003FC00000000007F80000FF00000000000FF00001
FE00000000003FC00007F80000000000FF00001FE00000000003FC00007F800000000007
F80000FF00000000001FE00003FC00000000007F80000FF00000000001FE00003FC00000
000003FC00007F80000000000FF00001FE00000000003FC00007F80000000000FF00001F
E00000000001FE00003FC00000000007F80000FF00000000001FE00003FC00000000007F
80000FF00000000000FF00001FE00000000003FC00007F80000000000FF00001FE000000
00003FC00007F800000000007F80000FF00000000000FE00001FC00000000000F800001F
0000000000006000000C000000000000503C7BB45B>29 D<000000000000003000000000
000000000078000000000000000000780000000000000000007C0000000000000000003C
0000000000000000003C0000000000000000003E0000000000000000001E000000000000
0000001E0000000000000000001F0000000000000000000F8000000000000000000F8000
0000000000000007C0000000000000000003E0000000000000000003E000000000000000
0001F0000000000000000000F80000000000000000007C0000000000000000007E000000
0000000000001F8000000000000000000FC0000000000000000007F07FFFFFFFFFFFFFFF
FFFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFFFFFFFFFC00000000
0000000007F000000000000000000FC000000000000000001F8000000000000000007E00
00000000000000007C000000000000000000F8000000000000000001F000000000000000
0003E0000000000000000003E0000000000000000007C000000000000000000F80000000
00000000000F8000000000000000001F0000000000000000001E0000000000000000001E
0000000000000000003E0000000000000000003C0000000000000000003C000000000000
0000007C0000000000000000007800000000000000000078000000000000000000300000
50307BAE5B>33 D<00000C00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
000000001E00000000001E00000040001E000080F8001E0007C0FF001E003FC0FF801E00
7FC03FE01E01FF0007F81E07F80001FC1E0FE000007E1E1F8000003F1E3F0000000F9E7C
00000007DEF800000003FFF000000003FFF000000001FFE000000000FFC0000000007F80
000000007F80000000003F00000000003F00000000003F00000000001E00000000001E00
000000001E00000000000C00000000000C00000000000C0000002A517FBE2D>35
D<000000000001E0000000000000000001F0000000000000000000F00000000000000000
00F8000000000000000000780000000000000000007C0000000000000000003E00000000
00000000003E0000000000000000001F0000000000000000000F80000000000000000007
C0000000000000000007E0000000000000000003E0000000000000000001F000007FFFFF
FFFFFFFFFC0000FFFFFFFFFFFFFFFE0000FFFFFFFFFFFFFFFF00007FFFFFFFFFFFFFFF80
000000000000000007E0000000000000000003F0000000000000000001FC000000000000
0000007F0000000000000000001FC000000000000000000FF8000000000000000003FF00
0000000000000003FF00000000000000000FF800000000000000001FC000000000000000
007F000000000000000001FC000000000000000003F0000000000000000007E0007FFFFF
FFFFFFFFFF8000FFFFFFFFFFFFFFFF0000FFFFFFFFFFFFFFFE00007FFFFFFFFFFFFFFC00
0000000000000001F0000000000000000003E0000000000000000007E000000000000000
0007C000000000000000000F8000000000000000001F0000000000000000003E00000000
00000000003E0000000000000000007C00000000000000000078000000000000000000F8
000000000000000000F0000000000000000001F0000000000000000001E000000050327B
AF5B>41 D<000000F0000000F0000000000000F0000000F0000000000001F0000000F800
0000000001E000000078000000000003E00000007C000000000003C00000003C00000000
0007C00000003E00000000000F800000001F00000000000F000000000F00000000001F00
0000000F80000000003E0000000007C0000000003C0000000003C0000000007C00000000
03E000000000F80000000001F000000001FFFFFFFFFFFFF800000003FFFFFFFFFFFFFC00
000007FFFFFFFFFFFFFE0000000FFFFFFFFFFFFFFF0000003F0000000000000FC000007E
00000000000007E00000FC00000000000003F00003F800000000000001FC000FE0000000
000000007F003FC0000000000000003FC0FF00000000000000000FF0FF00000000000000
000FF03FC0000000000000003FC00FE0000000000000007F0003F800000000000001FC00
00FC00000000000003F000007E00000000000007E000003F0000000000000FC000000FFF
FFFFFFFFFFFF00000007FFFFFFFFFFFFFE00000003FFFFFFFFFFFFFC00000001FFFFFFFF
FFFFF800000000F80000000001F0000000007C0000000003E0000000003C0000000003C0
000000003E0000000007C0000000001F000000000F80000000000F000000000F00000000
000F800000001F000000000007C00000003E000000000003C00000003C000000000003E0
0000007C000000000001E000000078000000000001F0000000F8000000000000F0000000
F0000000000000F0000000F000000054327DAF5B>44 D<0007FC000000001FE000001FFF
80000000FFF800007FFFE0000003FFFE0001FFFFF800000FF01F8003FFFFFE00003F8003
C007E00FFF00007E0001E00F8003FF8000F80000F00F0000FFE001F00000701E00007FF0
03E00000381C00003FF807C000001C3800001FF80F8000001C3800000FFC1F0000000C70
000007FE3E0000000E70000007FF3E0000000660000003FFFC00000006E0000001FFF800
000007E0000000FFF800000003C00000007FF000000003C00000007FF000000003C00000
003FF000000003C00000001FF800000003C00000000FFC00000003C00000000FFE000000
03C00000000FFE00000003C00000001FFF00000007E00000001FFF80000007600000003F
FFC0000006600000007CFFE000000E700000007C7FE000000E30000000F83FF000001C38
000001F01FF800001C38000003E01FFC0000381C000007C00FFE0000780E00000F8007FF
0000F00F00001F0001FFC001F00780007E0000FFF007E003C001FC00007FFFFFC001F80F
F000001FFFFF80007FFFC0000007FFFE00001FFF00000001FFF8000007F8000000003FE0
0050297BA75B>49 D<000007FFFFE000003FFFFFF00001FFFFFFF00003FFFFFFE0000FFC
000000001FE0000000007F0000000000FE0000000001F80000000003F00000000007E000
00000007C0000000000F80000000001F80000000001F00000000003E00000000003E0000
0000007C00000000007C0000000000780000000000780000000000F80000000000F80000
000000F00000000000F00000000000FFFFFFFFFFE0FFFFFFFFFFF0FFFFFFFFFFF0FFFFFF
FFFFE0F00000000000F00000000000F80000000000F80000000000780000000000780000
0000007C00000000007C00000000003E00000000003E00000000001F00000000001F8000
0000000F800000000007C00000000007E00000000003F00000000001F80000000000FE00
000000007F00000000001FE0000000000FFC0000000003FFFFFFE00001FFFFFFF000003F
FFFFF0000007FFFFE02C3678B13D>I<0000000000600000000000F00000000001F00000
000001F00000000003E00000000003E00000000007C00000000007C0000000000F800000
00000F80000000001F00000000001F00000000003E00000000003E00000000007C000000
00007C0000000000F80000000000F80000000001F00000000001F00000000003E0000000
0003E00000000007C00000000007C0000000000F80000000000F80000000001F00000000
001F00000000003E00000000003E00000000007C00000000007C0000000000F800000000
00F80000000001F00000000001F00000000003E00000000003E00000000007C000000000
07C0000000000F80000000000F80000000001F00000000001F00000000003E0000000000
3E00000000007C00000000007C0000000000F80000000000F80000000001F00000000001
F00000000003E00000000003E00000000007C00000000007C0000000000F80000000000F
80000000001F00000000001F00000000003E00000000003E00000000007C00000000007C
0000000000F80000000000F80000000001F00000000001F00000000003E00000000003E0
0000000007C00000000007C0000000000F80000000000F80000000001F00000000001F00
000000003E00000000003E00000000007C00000000007C0000000000F80000000000F800
00000000F000000000006000000000002C5473C000>54 D<60F0F0F0F0F0F0F0F0F0F0F0
F0F0F0FCFEFEFCF0F0F0F0F0F0F0F0F0F0F0F0F0F06007227BA700>I<60000000000180
F00000000003C0F80000000007C0F80000000007C0780000000007807C000000000F807C
000000000F803C000000000F003E000000001F003E000000001F001F000000003E001F00
0000003E000F000000003C000F800000007C000F800000007C000780000000780007C000
0000F80007C0000000F80003E0000001F00003E0000001F00001E0000001E00001F00000
03E00001FFFFFFFFE00000FFFFFFFFC00000FFFFFFFFC00000FFFFFFFFC000007C00000F
8000007C00000F8000003C00000F0000003E00001F0000003E00001F0000001E00001E00
00001F00003E0000001F00003E0000000F80007C0000000F80007C000000078000780000
0007C000F800000007C000F800000003E001F000000003E001F000000001E001E0000000
01F003E000000001F003E000000000F003C000000000F807C000000000F807C000000000
7C0F80000000007C0F80000000003C0F00000000003E1F00000000003E1F00000000001E
1E00000000001F3E00000000001F3E00000000000FFC00000000000FFC000000000007F8
000000000007F8000000000007F8000000000003F0000000000003F0000000000003F000
0000000001E0000000000000C0000000324180BE33>I<7FFFFFFFFEFFFFFFFFFFFFFFFF
FFFF7FFFFFFFFF000000000F000000000F000000000F000000000F000000000F00000000
0F000000000F000000000F000000000F000000000F000000000F000000000F000000000F
000000000F000000000F000000000F000000000F000000000F000000000F000000000F00
0000000F000000000F000000000F000000000F000000000F1FFFFFFFFF7FFFFFFFFF7FFF
FFFFFF7FFFFFFFFF000000000F000000000F000000000F000000000F000000000F000000
000F000000000F000000000F000000000F000000000F000000000F000000000F00000000
0F000000000F000000000F000000000F000000000F000000000F000000000F000000000F
000000000F000000000F000000000F000000000F000000000F000000000F7FFFFFFFFFFF
FFFFFFFFFFFFFFFFFF7FFFFFFFFE283F7BBE33>I<7FFFFFFFFFFF80FFFFFFFFFFFFC0FF
FFFFFFFFFFC07FFFFFFFFFFFC0000000000003C0000000000003C0000000000003C00000
00000003C0000000000003C0000000000003C0000000000003C0000000000003C0000000
000003C0000000000003C0000000000003C0000000000003C0000000000003C000000000
0003C0000000000003C0000000000003C0000000000003C0000000000003C00000000000
03C0000000000003C032187B9F3D>I<00000018000000003C000000003C000000007C00
0000007C000003FC7800000FFFF800003E07F800007801F00000F000F00001E001F80003
C001FC00078001FE00078001FE000F0003EF000F0003EF001F0003CF801E0007C7803E00
07C7C03E000787C03E000787C03E000F87C07E000F87E07C000F03E07C000F03E07C001F
03E07C001F03E07C001E03E0FC003E03F0FC003E03F0FC003C03F0FC003C03F0FC007C03
F0FC007C03F0FC007803F0FC007803F0FC00F803F0FC00F803F0FC00F003F0FC01F003F0
FC01F003F0FC01E003F0FC01E003F0FC03E003F0FC03E003F0FC03C003F0FC03C003F0FC
07C003F0FC07C003F0FC078003F07C0F8003E07C0F8003E07C0F0003E07E0F0007E07E1F
0007E07E1F0007E03E1E0007C03E1E0007C03E3E0007C01F3E000F801F3C000F800F7C00
0F000F7C000F000FF8001F0007F8001E0003F8003C0001F800780001F000F80000F801E0
0001FE07C00001FFFF000001E3FC000003E000000003E000000003C000000003C0000000
0180000000244D7CC52D>I<00000006000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000000000000F00000000
0000000F000000000000000F000000000000000F000000000000000F000000000000000F
000000000000000F000000000000000F000000000000000F000000007FFFFFFFFFFFFFE0
FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE03C3C7BBB47>63
D<00000000000001800000000000000007C0000000000000000FC0000000000000001FC0
000000000000003FC0000000000000007FC0000000000000007FC000000000000000FFC0
00000000000000FFC000000000000001FFC000000000000001FFC000000000000003FFC0
00000000000003BFC000000000000007BFC0000000000000073FC00000000000000F3FC0
0000000000000E3FC00000000000001E3FC00000000000001C3FC00000000000003C3FC0
000000000000383FC0000000000000783FC0000000000000703FC0000000000000F03FC0
000000000001E03FC0000000000001E03FC0000000000003C03FC0000000000003C03FC0
000000000007803FC0000000000007803FC000000000000F003FC000000000001E003FC0
00000000001E003FC000000000003C003FC000000000003C003FC0000000000078003FC0
0000000000F8003FC00000000000F0003FC00000000001E0003FC00000000001E0003FE0
0000000003C0003FE00000000007C0003FE0000000000780003FE0000000000F00001FE0
000000001F00001FE0000000001E00001FE0000000003FFFFFFFE0000000007FFFFFFFE0
000000007FFFFFFFE000000000FFFFFFFFE000000001FFFFFFFFF000000003E000001FF0
00000003E000001FF000000007C000001FF00000000F8000000FF00010001F8000000FF0
0030001F0000000FF80030003E0000000FF80078007C0000000FF8007C00FC0000000FF8
00FE01F800000007FC00FF87F000000007FC00FFFFE000000007FC1CFFFFE000000007FE
7CFFFFC000000003FFF87FFF8000000003FFE07FFF0000000003FFC03FFE0000000001FF
001FFC0000000000FC000FF00000000000000003C00000000000000046477EC149>65
D<000000003FE000000003FFF80000001FFFFC0000007FFFFE000001FFFFFE000007FC0F
FE00000FC003FE00003F0001FE00007C0001FE0000F80001FC0001F00001FC0003E00001
F80007C00001F8000F800003F0001F800003F0003F000007E0003E000007E0007E00000F
C000FC00000FC000FC00001F8001F800001F0001F800003E0003F00000380003F0000000
0007E00000000007E0000000000FE0000000000FC0000000001FC0000000001FC0000000
001FC0000000003F80000000003F80000000003F80000000003F80000000007F80000000
007F00000000007F00000000007F00000000007F0000000000FF0000000000FF00000000
00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
00FF8000000000FF80000000E0FF80000003E0FF80000007C07FC000000F807FC000001F
807FE000003F007FE000003E003FF000007C003FF80000F8001FFC0001F0001FFF0007E0
000FFFE03F800007FFFFFF000003FFFFFC000001FFFFF00000007FFF800000000FFC0000
002F427FBF30>67 D<000001FFFFFC00000000003FFFFFFFE000000001FFFFFFFFFC0000
0007FFFFFFFFFF8000001FFFFFFFFFFFC000007FE1FC01FFFFF00001FC01FC000FFFF800
03F001FC0001FFFC0007C001FC00003FFE000F8003FC00001FFF001F8003FC000007FF00
3F0003FC000003FF803F0003FC000001FF807E0003F8000000FFC0FE0003F8000000FFC0
FC0003F80000007FC0F00003F80000007FE0C00007F80000003FE0000007F80000003FE0
000007F00000003FE0000007F00000001FE0000007F00000001FE0000007F00000001FE0
00000FF00000001FE000000FE00000001FE000000FE00000001FE000000FE00000001FC0
00000FE00000001FC000001FC00000001FC000001FC00000001FC000001FC00000003F80
00001FC00000003F8000003F800000003F8000003F800000003F0000003F800000007F00
00003F800000007E0000007F000000007E0000007F00000000FC0000007F00000000FC00
00007E00000001F8000000FE00000001F0000000FE00000003F0000000FC00000007E000
0001FC00000007C0000001FC0000000F80000001F80000001F00000003F80000003E0000
0003F80000007C00000003F0000000F800000007F0000003F000000007E0000007C00000
0007E000001F800000000FE000007E000000000FC00001FC000000001FC0000FF0000000
001F80007FC0000000001F800FFF00000000003FFFFFFC0000000000FFFFFFE000000000
01FFFFFF000000000003FFFFF8000000000007FFFF000000000000433E7EBD46>I<6000
0000000180F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000
000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0000000
0003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000000000
03C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003
C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0
F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0
0000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000
00000003C0F00000000003C0F00000000003C0F00000000003C0F80000000007C0F80000
000007C0780000000007807C000000000F807C000000000F803E000000001F003F000000
003F001F800000007E000FC0000000FC0007F0000003F80003FC00000FF00001FF00003F
E000007FF003FF8000001FFFFFFE00000007FFFFF800000001FFFFE0000000001FFE0000
0032397BB63D>91 D<00001FFE0000000001FFFFE000000007FFFFF80000001FFFFFFE00
00007FF003FF800001FF00003FE00003FC00000FF00007F0000003F8000FC0000000FC00
1F800000007E003F000000003F003E000000001F007C000000000F807C000000000F8078
000000000780F80000000007C0F80000000007C0F00000000003C0F00000000003C0F000
00000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000
000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0000000
0003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000000000
03C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003
C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0
F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0
0000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000
00000003C06000000000018032397BB63D>I<000000C0000000000001E0000000000003
F0000000000003F0000000000007F8000000000007F8000000000007F800000000000FFC
00000000000FFC00000000001F3E00000000001F3E00000000003E1F00000000003E1F00
000000003C0F00000000007C0F80000000007C0F8000000000F807C000000000F807C000
000001F003E000000001F003E000000001E001E000000003E001F000000003E001F00000
0007C000F800000007C000F80000000F80007C0000000F80007C0000001F00003E000000
1F00003E0000001E00001E0000003E00001F0000003E00001F0000007C00000F8000007C
00000F800000F8000007C00000F8000007C00000F0000003C00001F0000003E00001F000
0003E00003E0000001F00003E0000001F00007C0000000F80007C0000000F80007800000
0078000F800000007C000F800000007C001F000000003E001F000000003E003E00000000
1F003E000000001F003C000000000F007C000000000F807C000000000F80F80000000007
C0F80000000007C0F00000000003C06000000000018032397BB63D>94
D<60000000000180F00000000003C0F80000000007C0F80000000007C07C000000000F80
7C000000000F803C000000000F003E000000001F003E000000001F001F000000003E001F
000000003E000F800000007C000F800000007C000780000000780007C0000000F80007C0
000000F80003E0000001F00003E0000001F00001F0000003E00001F0000003E00000F000
0003C00000F8000007C00000F8000007C000007C00000F8000007C00000F8000003E0000
1F0000003E00001F0000001E00001E0000001F00003E0000001F00003E0000000F80007C
0000000F80007C00000007C000F800000007C000F800000003E001F000000003E001F000
000001E001E000000001F003E000000001F003E000000000F807C000000000F807C00000
00007C0F80000000007C0F80000000003C0F00000000003E1F00000000003E1F00000000
001F3E00000000001F3E00000000000FFC00000000000FFC000000000007F80000000000
07F8000000000007F8000000000003F0000000000003F0000000000001E0000000000000
C000000032397BB63D>I<0000003F000003FF00000FE000003F8000007E000001FC0000
01F8000003F0000003F0000007E0000007E0000007E0000007E0000007E0000007E00000
07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
07E0000007E0000007E0000007E000000FE000000FC000001FC000003F8000003F000000
FE000003F800007FE00000FF0000007FE0000003F8000000FE0000003F0000003F800000
1FC000000FC000000FE0000007E0000007E0000007E0000007E0000007E0000007E00000
07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
07E0000007E0000007E0000007E0000003F0000003F0000001F8000001FC0000007E0000
003F8000000FE0000003FF0000003F205B7AC32D>102 D<FC000000FFC0000007F00000
01FC0000007E0000003F8000001F8000000FC000000FC0000007E0000007E0000007E000
0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007F0000003F000
0003F8000001FC000000FC0000007F0000001FC0000007FE000000FF000007FE00001FC0
00007F000000FC000001FC000003F8000003F0000007F0000007E0000007E0000007E000
0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
0007E0000007E0000007E0000007E0000007E0000007E0000007E000000FC000000FC000
001F8000003F8000007E000001FC000007F00000FFC00000FC000000205B7AC32D>I<00
00600000F00001F00001F00001E00003E00003E00003C00007C00007C0000F80000F8000
0F00001F00001F00001E00003E00003E00007C00007C0000780000F80000F80000F00001
F00001F00001E00003E00003E00007C00007C0000780000F80000F80000F00001F00001F
00003E00003E00003C00007C00007C0000780000F80000F80000F80000F800007800007C
00007C00003C00003E00003E00001F00001F00000F00000F80000F800007800007C00007
C00003E00003E00001E00001F00001F00000F00000F80000F800007800007C00007C0000
3E00003E00001E00001F00001F00000F00000F80000F800007C00007C00003C00003E000
03E00001E00001F00001F00000F0000060145A77C323>I<600000F00000F80000F80000
7800007C00007C00003C00003E00003E00001F00001F00000F00000F80000F8000078000
07C00007C00003E00003E00001E00001F00001F00000F00000F80000F800007800007C00
007C00003E00003E00001E00001F00001F00000F00000F80000F800007C00007C00003C0
0003E00003E00001E00001F00001F00001F00001F00001E00003E00003E00003C00007C0
0007C0000F80000F80000F00001F00001F00001E00003E00003E00007C00007C00007800
00F80000F80000F00001F00001F00001E00003E00003E00007C00007C0000780000F8000
0F80000F00001F00001F00003E00003E00003C00007C00007C0000780000F80000F80000
F00000600000145A7BC323>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F060045B76C3
19>I E
%EndDVIPSBitmapFont
/F7 75[30 11[30 31[30 13[35 40 40 61 40 45 25 35 35 45
45 45 45 66 25 40 25 25 45 45 25 40 45 40 45 45 6[51
2[76 2[51 45 56 1[56 66 61 76 51 61 40 30 66 66 56 56
66 61 56 56 6[30 7[45 3[23 30 23 4[30 36[45 2[{
TeXBase1Encoding ReEncodeFont}57 90.9091 /Times-Italic
rf /F8 135[86 3[57 1[76 1[96 1[96 4[48 96 2[76 96 2[86
29[124 115 124 11[86 86 86 86 86 49[{TeXBase1Encoding ReEncodeFont}18
172.188 /Times-Bold rf
%DVIPSBitmapFont: F9 cmr8 8 14
/F9 14 62 df<00030007000E001C0038007000F001E001C003C0078007800F000F001E
001E001E003C003C003C003C0078007800780078007800F800F800F000F000F000F000F0
00F000F000F000F000F000F000F800F800780078007800780078003C003C003C003C001E
001E001E000F000F000780078003C001C001E000F000700038001C000E0007000310437A
B11B>40 D<C000E000700038001C000E000F000780038003C001E001E000F000F0007800
780078003C003C003C003C001E001E001E001E001E001F001F000F000F000F000F000F00
0F000F000F000F000F000F001F001F001E001E001E001E001E003C003C003C003C007800
78007800F000F001E001E003C0038007800F000E001C0038007000E000C00010437CB11B
>I<00000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
0000000003800000000003800000000003800000000003800000FFFFFFFFFFFCFFFFFFFF
FFFCFFFFFFFFFFFC00000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
000000000380000000000380000000000380000000000380000000000380000000000380
00000000038000000000038000000000038000000000038000000000038000002E2F7CA7
37>43 D<003FC00000FFF00003E07C0007C03E000F801F000F000F001E0007801E000780
3E0007C03E0007C07C0003E07C0003E07C0003E07C0003E07C0003E0FC0003F0FC0003F0
FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0
FC0003F0FC0003F0FC0003F0FC0003F0FC0003F07C0003E07C0003E07C0003E07E0007E0
3E0007C03E0007C03E0007C01F000F800F000F000F801F0007C03E0003F0FC0000FFF000
003FC0001C2D7DAB23>48 D<000C00003C00007C0003FC00FFFC00FC7C00007C00007C00
007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00
007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00
007C00007C00007C00007C00007C00007C00007C00007C00007C0000FE007FFFFE7FFFFE
172C7AAB23>I<007F800001FFF0000780FC000E003F001C001F8038000FC070000FC060
0007E0F00007E0FC0007F0FE0007F0FE0003F0FE0003F0FE0003F07C0007F0000007F000
0007F0000007E000000FE000000FC000001FC000001F8000003F0000007E0000007C0000
00F8000001F0000003E0000007C000000F8000001E0000003C00000078000000F0003000
E0003001C0003003800060070000600E0000E01FFFFFE03FFFFFE07FFFFFC0FFFFFFC0FF
FFFFC01C2C7DAB23>I<003FC00001FFF00007C0FC000E007E001C003F001C001F803F00
1FC03F001FC03F800FC03F000FC03F000FC00C001FC000001FC000001F8000001F800000
3F0000003E0000007C000000F8000003F00000FFC00000FFF0000000FC0000003F000000
1F8000001FC000000FC000000FE000000FE0000007F0000007F0380007F07C0007F0FE00
07F0FE0007F0FE0007F0FE000FE0F8000FE060000FC070001FC038001F801E003F000780
FC0001FFF000007FC0001C2D7DAB23>I<00000E0000000E0000001E0000003E0000003E
0000007E000000FE000000FE000001BE000003BE0000033E0000063E00000E3E00000C3E
0000183E0000383E0000303E0000603E0000E03E0000C03E0001803E0003803E0003003E
0006003E000E003E000C003E0018003E0038003E0030003E0060003E00E0003E00FFFFFF
FCFFFFFFFC00003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E
0000003E0000007F00001FFFFC001FFFFC1E2D7EAC23>I<0C0001800FC01F800FFFFF00
0FFFFE000FFFFC000FFFF0000FFFC0000C7E00000C0000000C0000000C0000000C000000
0C0000000C0000000C0000000C0000000C1FC0000C7FF8000DE07C000F801F000F001F80
0E000F800C0007C0000007E0000007E0000003E0000003F0000003F0000003F0000003F0
780003F0FC0003F0FC0003F0FC0003F0FC0003F0F80007E0E00007E0600007C070000FC0
38000F801C001F000E003E000780F80001FFE000007F80001C2D7DAB23>I<0003F80000
0FFE00003E078000F8018001F007C003E00FC007C00FC00F800FC00F800FC01F0007801F
0000003E0000003E0000007E0000007E0000007C0000007C0FC000FC3FF000FCF07C00FD
C01E00FF800F00FF000F80FF0007C0FE0007E0FE0007E0FE0003E0FC0003F0FC0003F0FC
0003F0FC0003F07C0003F07C0003F07C0003F07E0003F07E0003F03E0003E03E0007E01E
0007E01F0007C00F000F8007801F0003C03E0001E07C00007FF000001FC0001C2D7DAB23
>I<300000003C0000003FFFFFF83FFFFFF83FFFFFF07FFFFFF07FFFFFE0700001C06000
018060000380C0000700C0000E00C0000C0000001C000000380000003000000070000000
E0000001C0000001C00000038000000380000007000000070000000F0000000E0000001E
0000001E0000003E0000003E0000003E0000003C0000007C0000007C0000007C0000007C
000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC
0000007800001D2E7CAC23>I<001FC00000FFF00003E07C0007801E000F000F001E0007
801E0007803C0003C03C0003C03C0003C03C0003C03E0003C03E0007C03F0007801FC00F
801FE00F001FF81E000FFC3C0007FFF80003FFE00000FFE000003FF80000FFFC0003C7FF
000783FF801F00FFC01E003FC03C001FE07C0007E0780003F0F80003F0F00001F0F00000
F0F00000F0F00000F0F00000F0F80000E0780001E07C0001C03C0003C01E0007800F800F
0007E03C0001FFF000003FC0001C2D7DAB23>I<003F800000FFF00003E0780007C03E00
0F801F001F000F003E000F803E0007807E0007C07C0007C0FC0007E0FC0003E0FC0003E0
FC0003E0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F07C0007F07E0007F07E0007F0
3E000FF01F000FF00F001FF007803BF003E0F3F000FFC3F0003F03E0000003E0000007E0
000007E0000007C0000007C000000FC01E000F803F000F003F001F003F003E003F003C00
3E0078001C00F0000E03E00007FF800001FE00001C2D7DAB23>I<FFFFFFFFFFFCFFFFFF
FFFFFCFFFFFFFFFFFC000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000FFFFFFFFFFFCFFFFFFFFFFFCFFFFFFFFFFFC2E137C
9937>61 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ga cmmi10 10.95 59
/Ga 59 123 df<000001C00000000FFF0000003FFFE0000079FFF00000E03FF00001C00F
F000018007F000018001E0000380000000038000000003C000000001C000000001E00000
0001E000000001F000000001F000000000F800000000FC00000000FC000000007E000000
007F000000003F800000003F800000001FC00000001FE00000000FE00000007FF0000001
F7F8000007C7F800001F83FC00003E03FC00007C01FC0000F801FE0001F801FE0003F000
FE0007E000FE0007E000FE000FC0007E001F80007E001F80007E003F80007E003F00007E
003F00007E007F00007E007E00007E007E00007E007E00007E00FE00007C00FC00007C00
FC0000FC00FC0000FC00FC0000F800FC0001F800FC0001F800FC0001F0007C0003F0007C
0003E0007C0003E0003E0007C0003E000F80001F000F00000F001E000007803C000003E0
78000000FFE00000003F80000024427CC028>14 D<003F00000000003FE00000000007F0
0000000003FC0000000001FC0000000000FE0000000000FE0000000000FE00000000007F
00000000007F00000000003F80000000003F80000000003F80000000001FC0000000001F
C0000000001FC0000000000FE0000000000FE0000000000FE00000000007F00000000007
F00000000007F00000000003F80000000003F80000000001FC0000000001FC0000000001
FC0000000000FE0000000000FE0000000000FE00000000007F00000000007F0000000000
7F00000000003F80000000007F8000000000FF8000000001FFC000000003FFC000000007
CFE00000000F8FE00000001F0FE00000003E07F00000007C07F0000000FC07F0000001F8
03F8000003F003F8000007E003F800000FC001FC00001F8001FC00003F0001FC00007F00
00FE0000FE0000FE0001FC00007F0003F800007F0007F000007F000FE000003F801FC000
003F803FC000003F807F8000001FC0FF0000001FC0FE0000001FE0FC0000000FE0F80000
0007F07000000003F02C407BBE35>21 D<0001C00000000003E00000E00007E00003F000
07E00003F00007E00003F0000FE00007F0000FE00007F0000FC00007E0000FC00007E000
1FC0000FE0001FC0000FE0001F80000FC0001F80000FC0003F80001FC0003F80001FC000
3F00001F80003F00001F80007F00003F80007F00003F80007E00003F00007E00003F0000
FE00007F0000FE00007F0000FC00007E0000FC00007E0001FC0000FE0001FC0000FE0701
F80000FC0701F80000FC0701F80001FC0703F80001FC0F03F80003F80E03F80003F80E07
F80007F81E07F8000FF81C07FC001FF81C07FC003CF8380FFE0070F8380FFF81E07C700F
C7FF803FE00FC1FE000F801FC0000000001FC0000000001F80000000001F80000000003F
80000000003F80000000003F00000000003F00000000007F00000000007F00000000007E
00000000007E0000000000FE0000000000FE0000000000FC0000000000FC0000000000FC
0000000000F80000000000700000000000303C7EA737>I<007F000001C03FFF000003E0
3FFF000007E03FFE000007E000FE000007E000FE00000FE000FE00000FC000FC00000FC0
00FC00001FC001FC00001F8001FC00003F8001F800003F0001F800003F0003F800007E00
03F800007E0003F00000FC0003F00001FC0007F00001F80007F00003F00007E00007E000
07E00007E0000FE0000FC0000FE0001F80000FC0003F00000FC0007E00001FC0007C0000
1FC000F800001F8001F000001F8007E000003F800FC000003F801F0000003F003E000000
3F00F80000007F01F00000007F07C00000007E1F000000007EFC00000000FFE000000000
FF8000000000F800000000002B287CA72D>I<001FFFFFFFFE007FFFFFFFFF01FFFFFFFF
FF03FFFFFFFFFF07FFFFFFFFFE0FC03801C0001F003801C0003E003803C0003C00780380
00780070038000F00070038000F000F0078000E000F00780000000E00780000001E00700
000001E00700000001E00F00000003C00F00000003C00F00000003C00F00000007C00F00
000007800F00000007800F0000000F801F0000000F801F0000001F001F0000001F001F80
00001F001F8000003E001F8000003E001F8000007E001F8000007E001FC00000FC001FC0
0000FC000FC00001FC000FE00001F8000FE00003F8000FE00003F80007E00003F00007E0
0000E00003800030287DA634>25 D<00000FFFFFFE00007FFFFFFF0001FFFFFFFF0007FF
FFFFFF001FFFFFFFFE003FE03FE000007F000FE00000FE0007F00001FC0003F00003F800
03F80007F00001F8000FE00001F8000FC00001F8001FC00001F8001F800001F8003F8000
01F8003F000001F8007F000001F8007E000001F8007E000001F8007E000003F800FE0000
03F000FC000003F000FC000003F000FC000007E000FC000007E000FC00000FE000FC0000
0FC000FC00001F8000FC00001F80007C00003F00007C00007E00007C00007C00003E0000
F800001E0001F000001F0007E000000F800F80000003E07E00000000FFF8000000003FC0
00000030287DA634>27 D<001FFFFFFFC000FFFFFFFFC001FFFFFFFFC003FFFFFFFFC007
FFFFFFFF800FC0070000001F000F0000003E000F0000003C000E00000078001E000000F0
001E000000E0001E000000E0001E00000000003C00000000003C00000000003C00000000
007C00000000007C0000000000780000000000F80000000000F80000000000F800000000
00F80000000001F00000000001F00000000001F00000000003F00000000003F000000000
03E00000000003E00000000007E00000000007E00000000007E0000000000FC000000000
0FC0000000000FC0000000001FC0000000001FC0000000001F80000000000F000000002A
287DA628>I<00001FF0000001FFFC000007FFFF00001FFFFFC0007FC01FE000FC0007E0
01F00001E003C00000000780000000078000000007000000000F000000000E000000000E
000000000F000000000700000000078000000003CFFF000001FFFF800001FF1F000003DF
FE00000781E000000E000000001C000000003C0000000078000000007000000000F00000
0000E000000000E000000000E000000000E000000000E000000000E000000600F000000E
00F000001C0078000038007C0000F0003F8007E0001FFFFFC00007FFFF000001FFFC0000
007FE00000232B7DA82A>34 D<00000C0000000000000000001E0000000000000000003E
0000000000000000003C0000000000000000003C0000000000000000007C000000000000
00000078000000000000000000F8000000000000000001F0000000000000000001F00000
00000000000003E0000000000000000007C0000000000000000007C00000000000000000
0F8000000000000000001F0000000000000000003F0000000000000000007E0000000000
00000000FC000000000000000001F8000000000000000003F0000000000000000007E000
000000000000001FC000000000000000003FFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE501A7BAE5B>40
D<0000000000000030000000000000000000780000000000000000007C00000000000000
00003C0000000000000000003C0000000000000000003E0000000000000000001E000000
0000000000001F0000000000000000000F8000000000000000000F800000000000000000
07C0000000000000000003E0000000000000000003E0000000000000000001F000000000
0000000000F8000000000000000000FC0000000000000000007E0000000000000000003F
0000000000000000001F8000000000000000000FC0000000000000000007E00000000000
00000003F87FFFFFFFFFFFFFFFFFFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F
FFFFFFFFFFFFFFFFFF501A7BAE5B>42 D<1E007F807F80FFC0FFC0FFC0FFC07F807F801E
000A0A798919>58 D<1E007F80FF80FFC0FFC0FFE0FFE0FFE07FE01E6000600060006000
6000E000C000C000C001C001800380030007000E001C001800380030000B1C798919>I<
00000000000038000000000000FC000000000003FC00000000000FF800000000003FE000
00000000FF800000000003FE00000000000FF800000000003FE00000000000FF80000000
0003FE00000000000FF800000000003FE00000000000FF800000000003FE00000000000F
F800000000003FE00000000000FF800000000003FE00000000000FF800000000003FE000
00000000FF800000000003FE00000000000FF800000000003FE000000000007F80000000
0000FE000000000000FE0000000000007F8000000000003FE000000000000FF800000000
0003FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000000
0000FF8000000000003FE000000000000FF8000000000003FE000000000000FF80000000
00003FE000000000000FF8000000000003FE000000000000FF8000000000003FE0000000
00000FF8000000000003FE000000000000FF8000000000003FE000000000000FF8000000
000003FC000000000000FC00000000000038363678B147>I<000000018000000003C000
000007C000000007C000000007800000000F800000000F800000000F000000001F000000
001F000000001E000000003E000000003E000000003C000000007C000000007C00000000
7800000000F800000000F800000000F000000001F000000001F000000001E000000003E0
00000003E000000003C000000007C000000007C000000007800000000F800000000F8000
00001F000000001F000000001E000000003E000000003E000000003C000000007C000000
007C000000007800000000F800000000F800000000F000000001F000000001F000000001
E000000003E000000003E000000003C000000007C000000007C000000007800000000F80
0000000F800000000F000000001F000000001F000000001E000000003E000000003E0000
00007C000000007C000000007800000000F800000000F800000000F000000001F0000000
01F000000001E000000003E000000003E000000003C000000007C000000007C000000007
800000000F800000000F800000000F000000001F000000001F000000001E000000003E00
0000003E000000003C000000007C000000007C000000007800000000F800000000F80000
0000F0000000006000000000225B7BC32D>I<60000000000000F8000000000000FF0000
000000007FC000000000001FF0000000000007FC000000000001FF0000000000007FC000
000000001FF0000000000007FC000000000001FF0000000000007FC000000000001FF000
0000000007FC000000000001FF0000000000007FC000000000001FF0000000000007FC00
0000000001FF0000000000007FC000000000001FF0000000000007FC000000000001FF00
00000000007FC000000000001FF0000000000007F8000000000001FC000000000001FC00
0000000007F800000000001FF000000000007FC00000000001FF000000000007FC000000
00001FF000000000007FC00000000001FF000000000007FC00000000001FF00000000000
7FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001FF00
0000000007FC00000000001FF000000000007FC00000000001FF000000000007FC000000
00001FF000000000007FC00000000000FF000000000000FC000000000000700000000000
00363678B147>I<00000300000000000300000000000300000000000300000000000780
000000000780000000000780000000000780000000000780000000000780000000000780
000000000780000000000FC0000000000FC0000000000FC0000000000FC00000F0000FC0
003CFF800FC007FC3FFE0FC1FFF00FFFFFFFFFC003FFFFFFFF0000FFFFFFFC00001FFFFF
E0000007FFFF80000001FFFE000000007FF8000000007FF800000000FFFC00000000FFFC
00000001FFFE00000001FFFE00000003FCFF00000003F87F00000007F03F80000007E01F
8000000FC00FC000000F8007C000001F0003E000003E0001F000003C0000F00000780000
780000700000380000E000001C000040000008002E2C81AC2D>I<000000000007000000
000000000F000000000000000F800000000000001F800000000000001F80000000000000
3F800000000000007F800000000000007F80000000000000FF80000000000000FF800000
00000001FF80000000000003FF80000000000003FF800000000000077FC0000000000007
7FC000000000000E3FC000000000001E3FC000000000001C3FC00000000000383FC00000
000000383FC00000000000703FC00000000000703FC00000000000E03FC00000000001C0
3FC00000000001C03FE00000000003803FE00000000003801FE00000000007001FE00000
00000F001FE0000000000E001FE0000000001C001FE0000000001C001FE0000000003800
1FE00000000078001FE00000000070001FE000000000E0001FE000000000E0001FF00000
0001C0001FF000000001C0000FF00000000380000FF00000000700000FF000000007FFFF
FFF00000000FFFFFFFF00000000FFFFFFFF00000001C00000FF00000003C00000FF00000
003800000FF00000007000000FF80000007000000FF8000000E0000007F8000001E00000
07F8000001C0000007F800000380000007F800000380000007F800000700000007F80000
0F00000007F800000E00000007F800001E00000007F800003C00000007FC00007C000000
07FC0000FE00000007FC0007FF0000001FFE00FFFFF00007FFFFFCFFFFF00007FFFFFCFF
FFF00007FFFFF83E417DC044>65 D<0001FFFFFFFFF800000001FFFFFFFFFF00000001FF
FFFFFFFFE000000001FE00003FF000000001FE000007F800000001FC000003FC00000001
FC000001FE00000001FC000001FF00000003FC000000FF00000003F8000000FF00000003
F8000000FF80000003F8000000FF80000007F80000007F80000007F0000000FF80000007
F0000000FF80000007F0000000FF8000000FF0000000FF0000000FE0000001FF0000000F
E0000001FE0000000FE0000003FE0000001FE0000003FC0000001FC0000007F80000001F
C000000FF80000001FC000001FE00000003FC000003FC00000003F8000007F800000003F
800001FE000000003F800007F8000000007F80007FE0000000007FFFFFFF00000000007F
FFFFFFE0000000007F000007F800000000FF000001FE00000000FE000000FF00000000FE
0000007F80000000FE0000003FC0000001FE0000003FC0000001FC0000003FE0000001FC
0000001FE0000001FC0000001FE0000003FC0000001FE0000003F80000001FF0000003F8
0000001FF0000003F80000001FF0000007F80000001FE0000007F00000003FE0000007F0
0000003FE0000007F00000003FC000000FF00000007FC000000FE00000007F8000000FE0
000000FF8000000FE0000001FF0000001FE0000001FE0000001FC0000003FE0000001FC0
000007FC0000003FC000001FF00000003FC000003FE00000003F800000FFC00000007F80
0007FF000000FFFFFFFFFFFC000000FFFFFFFFFFF0000000FFFFFFFFFF00000000413E7D
BD45>I<000000001FF8000700000001FFFE00070000000FFFFF800E0000007FF007E01E
000001FF0000F03E000003FC0000787E00000FF000003CFC00003FC000001FFC00007F80
00000FFC0000FF0000000FFC0001FE00000007F80007F800000007F8000FF000000003F8
001FF000000003F8001FE000000003F0003FC000000001F0007F8000000001F000FF8000
000001F001FF0000000001E001FE0000000001E003FE0000000001E007FC0000000001E0
07FC0000000001C00FF80000000001C00FF80000000001C01FF00000000001C01FF00000
000000003FF00000000000003FE00000000000003FE00000000000007FE0000000000000
7FC00000000000007FC00000000000007FC0000000000000FFC0000000000000FF800000
00000000FF80000000000000FF80000000000000FF80000000000000FF80000000000000
FF00000000000000FF00000000003C00FF00000000003C00FF00000000003800FF000000
00003800FF00000000007800FF00000000007000FF0000000000F0007F8000000000E000
7F8000000001E0007F8000000003C0003F800000000380003FC00000000780003FC00000
000F00001FC00000001E00000FE00000003C00000FF000000078000007F8000000F00000
03F8000001E0000001FE000007C0000000FF00000F000000007FC0007E000000001FF803
F80000000007FFFFE00000000001FFFF8000000000001FF80000000040427BBF41>I<00
01FFFFFFFFF800000001FFFFFFFFFF00000001FFFFFFFFFFC000000001FF00003FF00000
0001FF00000FF800000001FE000003FC00000001FE000000FE00000001FE0000007F0000
0003FE0000003F80000003FC0000003F80000003FC0000001FC0000003FC0000001FC000
0007FC0000000FE0000007F80000000FE0000007F80000000FF0000007F80000000FF000
000FF800000007F000000FF000000007F000000FF000000007F000000FF000000007F800
001FF000000007F800001FE000000007F800001FE000000007F800001FE00000000FF800
003FE00000000FF800003FC00000000FF800003FC00000000FF800003FC00000000FF000
007FC00000000FF000007F800000001FF000007F800000001FF000007F800000001FF000
00FF800000001FE00000FF000000003FE00000FF000000003FE00000FF000000003FC000
01FF000000007FC00001FE000000007FC00001FE000000007F800001FE00000000FF8000
03FE00000000FF000003FC00000000FF000003FC00000001FE000003FC00000001FC0000
07FC00000003FC000007F800000003F8000007F800000007F0000007F80000000FF00000
0FF80000001FE000000FF00000001FC000000FF00000003F8000000FF00000007F000000
1FF0000000FE0000001FE0000001FC0000001FE0000007F80000003FE000000FE0000000
3FE000003FC00000003FC00001FF000000007FC0000FFC000000FFFFFFFFFFF0000000FF
FFFFFFFFC0000000FFFFFFFFFC00000000453E7DBD4B>I<0001FFFFFFFFFFFFC00001FF
FFFFFFFFFFC00001FFFFFFFFFFFFC0000001FF000001FFC0000001FF0000003FC0000001
FE0000001FC0000001FE0000000FC0000001FE0000000F80000003FE0000000780000003
FC0000000780000003FC0000000780000003FC0000000780000007FC0000000780000007
F80000000780000007F80000000700000007F8000000070000000FF8000000070000000F
F0000700070000000FF0000700070000000FF0000F000F0000001FF0000E000E0000001F
E0000E00000000001FE0001E00000000001FE0001E00000000003FE0003C00000000003F
C0003C00000000003FC0007C00000000003FC001FC00000000007FFFFFF800000000007F
FFFFF800000000007FFFFFF800000000007F8003F80000000000FF8001F00000000000FF
0000F00000000000FF0000F00000000000FF0000F00000000001FF0000E00000000001FE
0000E00000000001FE0000E00038000001FE0001E00078000003FE0001C00070000003FC
0001C000F0000003FC00000000E0000003FC00000000E0000007FC00000001E0000007F8
00000001C0000007F800000003C0000007F8000000038000000FF8000000078000000FF0
0000000F0000000FF00000000F0000000FF00000001F0000001FF00000003E0000001FE0
0000007E0000001FE0000000FC0000003FE0000001FC0000003FE0000003F80000003FC0
00000FF80000007FC00000FFF80000FFFFFFFFFFFFF00000FFFFFFFFFFFFF00000FFFFFF
FFFFFFE00000423E7DBD43>I<0001FFFFFFFFFFFF0001FFFFFFFFFFFF0001FFFFFFFFFF
FF000001FF000007FF000001FF000000FF000001FE0000007F000001FE0000003F000001
FE0000001E000003FE0000001E000003FC0000001E000003FC0000001E000003FC000000
1E000007FC0000001E000007F80000001E000007F80000001C000007F80000001C00000F
F80000001C00000FF00000001C00000FF00007001C00000FF0000F003C00001FF0000E00
3800001FE0000E000000001FE0000E000000001FE0001E000000003FE0001C000000003F
C0003C000000003FC0007C000000003FC000FC000000007FC003F8000000007FFFFFF800
0000007FFFFFF8000000007FFFFFF800000000FF8003F000000000FF0001F000000000FF
0000F000000000FF0000F000000001FF0000E000000001FE0000E000000001FE0000E000
000001FE0001E000000003FE0001C000000003FC0001C000000003FC0001C000000003FC
00000000000007FC00000000000007F800000000000007F800000000000007F800000000
00000FF80000000000000FF00000000000000FF00000000000000FF00000000000001FF0
0000000000001FE00000000000001FE00000000000003FE00000000000003FE000000000
00003FC00000000000007FE00000000000FFFFFFF800000000FFFFFFF800000000FFFFFF
F800000000403E7DBD3A>I<000000003FF0000E00000003FFFE000E0000001FFFFF801C
0000007FF00FC03C000001FF0001E07C000007FC0000F0FC00000FF0000079F800003FC0
00003FF800007F8000001FF80000FF0000000FF80003FC0000000FF00007F80000000FF0
000FF000000007F0001FE000000007F0003FE000000007E0003FC000000003E0007F8000
000003E000FF0000000003E001FF0000000003C001FE0000000003C003FE0000000003C0
07FC0000000003C007FC0000000003800FF80000000003800FF80000000003801FF00000
000003801FF00000000000003FF00000000000003FE00000000000003FE0000000000000
7FE00000000000007FC00000000000007FC00000000000007FC0000000000000FFC00000
00000000FF80000000000000FF80000000000000FF80000000000000FF8000003FFFFFE0
FF8000003FFFFFE0FF0000003FFFFFE0FF000000001FF800FF000000000FF800FF000000
000FF000FF000000000FF000FF000000001FF000FF000000001FE000FF000000001FE000
FF000000001FE0007F800000003FE0007F800000003FC0007F800000003FC0003FC00000
003FC0003FC00000007FC0001FC00000007F80001FE00000007F80000FF0000000FF8000
07F0000001FF800003F8000003FF000001FC000007BF000000FF00001F1F0000007FC000
7E0F0000001FF803F80E00000007FFFFE00600000001FFFF8000000000001FF800000000
3F427BBF47>I<0001FFFFFFC03FFFFFF80001FFFFFFC03FFFFFF00001FFFFFF803FFFFF
F0000001FF8000003FF000000001FF0000003FE000000001FE0000003FC000000001FE00
00003FC000000001FE0000007FC000000003FE0000007FC000000003FC0000007F800000
0003FC0000007F8000000003FC000000FF8000000007FC000000FF8000000007F8000000
FF0000000007F8000000FF0000000007F8000001FF000000000FF8000001FF000000000F
F0000001FE000000000FF0000001FE000000000FF0000003FE000000001FF0000003FE00
0000001FE0000003FC000000001FE0000003FC000000001FE0000007FC000000003FE000
0007FC000000003FC0000007F8000000003FC0000007F8000000003FC000000FF8000000
007FFFFFFFFFF8000000007FFFFFFFFFF0000000007FFFFFFFFFF0000000007F8000001F
F000000000FF8000001FF000000000FF0000001FE000000000FF0000001FE000000000FF
0000003FE000000001FF0000003FE000000001FE0000003FC000000001FE0000003FC000
000001FE0000007FC000000003FE0000007FC000000003FC0000007F8000000003FC0000
007F8000000003FC000000FF8000000007FC000000FF8000000007F8000000FF00000000
07F8000000FF0000000007F8000001FF000000000FF8000001FF000000000FF0000001FE
000000000FF0000001FE000000000FF0000003FE000000001FF0000003FE000000001FE0
000003FC000000001FE0000003FC000000003FE0000007FC000000003FE0000007FC0000
00003FC0000007F8000000007FE000000FFC000000FFFFFFE01FFFFFFC0000FFFFFFE01F
FFFFFC0000FFFFFFE01FFFFFF800004D3E7DBD4C>I<0001FFFFFFC00003FFFFFFC00003
FFFFFFC0000001FF8000000001FF0000000001FE0000000001FE0000000001FE00000000
03FE0000000003FC0000000003FC0000000003FC0000000007FC0000000007F800000000
07F80000000007F8000000000FF8000000000FF0000000000FF0000000000FF000000000
1FF0000000001FE0000000001FE0000000001FE0000000003FE0000000003FC000000000
3FC0000000003FC0000000007FC0000000007F80000000007F80000000007F8000000000
FF8000000000FF0000000000FF0000000000FF0000000001FF0000000001FE0000000001
FE0000000001FE0000000003FE0000000003FC0000000003FC0000000003FC0000000007
FC0000000007F80000000007F80000000007F8000000000FF8000000000FF0000000000F
F0000000000FF0000000001FF0000000001FE0000000001FE0000000003FE0000000003F
E0000000003FC000000000FFE0000000FFFFFFE00000FFFFFFE00000FFFFFFE000002A3E
7DBD28>I<0001FFFF8000000000FFFFC00001FFFF8000000001FFFF800001FFFF800000
0003FFFF80000001FF8000000003FF8000000001FFC000000007FF0000000001DFC00000
0007FE0000000001DFC00000000EFE0000000001DFC00000001DFE0000000003DFC00000
001DFE00000000039FC000000039FC00000000039FC000000071FC00000000039FC00000
0073FC00000000078FE0000000E3FC00000000070FE0000000E3F800000000070FE00000
01C3F800000000070FE000000387F8000000000F0FE000000387F8000000000E0FE00000
0707F0000000000E0FE000000707F0000000000E0FE000000E0FF0000000001E0FE00000
1C0FF0000000001C07F000001C0FE0000000001C07F00000380FE0000000001C07F00000
701FE0000000003C07F00000701FE0000000003807F00000E01FC0000000003807F00000
E01FC0000000003807F00001C03FC0000000007807F00003803FC0000000007003F80003
803F80000000007003F80007003F80000000007003F8000E007F8000000000F003F8000E
007F8000000000E003F8001C007F0000000000E003F8001C007F0000000000E003F80038
00FF0000000001E003F8007000FF0000000001C001FC007000FE0000000001C001FC00E0
00FE0000000001C001FC01C001FE0000000003C001FC01C001FE00000000038001FC0380
01FC00000000038001FC038001FC00000000038001FC070003FC00000000078001FC0E00
03FC00000000070000FE0E0003F800000000070000FE1C0003F800000000070000FE1C00
07F8000000000F0000FE380007F8000000000E0000FE700007F0000000000E0000FE7000
07F0000000000E0000FEE0000FF0000000001E0000FFC0000FF0000000001C0000FFC000
0FE0000000001C00007F80000FE0000000003C00007F80001FE0000000007C00007F0000
1FE000000000FE00007E00001FC000000003FF00007E00003FE0000000FFFFFC007C007F
FFFFE00000FFFFFC0078007FFFFFE00000FFFFFC0038007FFFFFC000005A3E7CBD58>77
D<0001FFFF800001FFFFF80001FFFF800001FFFFF00001FFFF800001FFFFF0000000FFC0
00000FFE00000001FFC0000003F000000001FFE0000003E000000001FFE0000001C00000
0001DFE0000003C000000003DFF0000003C0000000038FF000000380000000038FF80000
0380000000038FF8000007800000000787FC000007800000000707FC0000070000000007
03FC000007000000000703FE00000F000000000F03FE00000F000000000E01FF00000E00
0000000E01FF00000E000000000E00FF00001E000000001E00FF80001E000000001C007F
80001C000000001C007FC0001C000000001C007FC0003C000000003C003FE0003C000000
0038003FE000380000000038001FE000380000000038001FF000780000000078001FF000
780000000070000FF800700000000070000FF8007000000000700007F800F000000000F0
0007FC00F000000000E00003FC00E000000000E00003FE00E000000000E00003FE01E000
000001E00001FF01E000000001C00001FF01C000000001C00000FF01C000000001C00000
FF83C000000003C00000FF83C0000000038000007FC380000000038000007FC380000000
038000003FC780000000078000003FE780000000070000001FE700000000070000001FF7
00000000070000001FFF000000000F0000000FFF000000000E0000000FFE000000000E00
000007FE000000000E00000007FE000000001E00000007FE000000001C00000003FC0000
00001C00000003FC000000003C00000001FC000000007C00000001FC00000000FE000000
00F800000003FF00000000F8000000FFFFFC000000F8000000FFFFFC00000078000000FF
FFFC000000700000004D3E7DBD49>I<0001FFFFFFFFF000000001FFFFFFFFFF00000001
FFFFFFFFFFC000000001FF00007FE000000001FF00000FF800000001FE000003FC000000
01FE000001FC00000003FE000001FE00000003FE000000FF00000003FC000000FF000000
03FC000000FF00000007FC000000FF00000007FC000000FF80000007F8000000FF800000
07F8000000FF8000000FF8000000FF8000000FF8000001FF0000000FF0000001FF000000
0FF0000001FF0000001FF0000001FE0000001FF0000003FE0000001FE0000003FC000000
1FE0000007FC0000003FE0000007F80000003FE000000FF00000003FC000001FE0000000
3FC000003FC00000007FC000007F800000007FC00000FE000000007F800003FC00000000
7F80003FF000000000FFFFFFFFC000000000FFFFFFFC0000000000FF0000000000000000
FF0000000000000001FF0000000000000001FF0000000000000001FE0000000000000001
FE0000000000000003FE0000000000000003FE0000000000000003FC0000000000000003
FC0000000000000007FC0000000000000007FC0000000000000007F80000000000000007
F8000000000000000FF8000000000000000FF8000000000000000FF0000000000000000F
F0000000000000001FF0000000000000001FF0000000000000001FE0000000000000001F
E0000000000000003FE0000000000000003FE0000000000000003FC0000000000000007F
E0000000000000FFFFFFE00000000000FFFFFFE00000000000FFFFFFE00000000000413E
7DBD3A>80 D<000000003FF0000000000003FFFF00000000001FC03FC0000000007E0007
E000000001F80001F800000007E00000FC0000000FC000007E0000003F8000003F000000
7E0000003F800000FC0000001FC00003F80000001FC00007F00000000FE0000FF0000000
0FE0001FE00000000FF0001FC000000007F0003F8000000007F8007F8000000007F800FF
0000000007F801FE0000000007F801FE0000000007F803FC0000000007FC03FC00000000
07FC07F80000000007FC0FF80000000007FC0FF80000000007FC1FF00000000007FC1FF0
0000000007FC1FE00000000007FC3FE00000000007FC3FE00000000007F87FC000000000
0FF87FC0000000000FF87FC0000000000FF87FC0000000000FF8FF80000000001FF0FF80
000000001FF0FF80000000001FF0FF80000000003FE0FF80000000003FE0FF0000000000
3FE0FF00000000007FC0FF00000000007FC0FF00000000007F80FF0000000000FF80FF00
00000000FF00FF0000000001FE00FF0000000001FE00FF0000000003FC00FF0000000003
F8007F0000000007F8007F000000000FF0007F8000F8000FE0003F8003FE001FC0003F80
0F07003F80001FC01C03007F00001FC0380180FE00000FE0300181FC00000FE03001C3F8
000007F07001C7E0000003F86000CFC0000001FC6000FF80000000FE6000FE000000003F
F003F8000000000FF81FE0000C000003FFFFE0000C0000007FF1E0001C0000000001E000
180000000001E000380000000001F000380000000001F000700000000001F800F0000000
0001F803F00000000001FC0FE00000000001FFFFE00000000001FFFFC00000000001FFFF
800000000001FFFF800000000000FFFF000000000000FFFE0000000000007FFC00000000
00003FF00000000000000FC000003E527BBF48>I<0001FFFFFFFF8000000001FFFFFFFF
F800000001FFFFFFFFFF0000000001FF0001FF8000000001FF00003FE000000001FE0000
0FF000000001FE000007F800000001FE000003FC00000003FE000003FC00000003FC0000
01FE00000003FC000001FE00000003FC000001FE00000007FC000001FF00000007F80000
01FF00000007F8000001FF00000007F8000001FF0000000FF8000003FE0000000FF00000
03FE0000000FF0000003FE0000000FF0000007FC0000001FF0000007FC0000001FE00000
0FF80000001FE000000FF00000001FE000001FE00000003FE000003FC00000003FC00000
7F800000003FC00000FE000000003FC00003FC000000007FC0000FF0000000007F8000FF
80000000007FFFFFFC00000000007FFFFFF80000000000FF8001FE0000000000FF00007F
8000000000FF00001FC000000000FF00001FE000000001FF00000FF000000001FE000007
F000000001FE000007F000000001FE000007F800000003FE000007F800000003FC000007
F800000003FC000007F800000003FC00000FF800000007FC00000FF800000007F800000F
F800000007F800000FF000000007F800001FF00000000FF800001FF00000000FF000001F
F00000000FF000001FF00000000FF000001FF00000001FF000003FF00100001FE000003F
F00380001FE000003FE00380003FE000003FE00780003FE000003FE00700003FC000001F
E00F00007FE000001FE00E00FFFFFFE0000FF01E00FFFFFFE00007F03C00FFFFFFE00003
F87800000000000000FFE0000000000000003F800041407DBD45>I<00000007FC003800
00003FFF0038000000FFFFC070000003F807F0F000000FE000F9F000001F80007FF00000
3F00003FE000007E00001FE00000FC00001FE00001F800000FE00001F000000FC00003F0
000007C00007E0000007C00007E0000007C0000FE000000780000FC000000780000FC000
000780000FC000000780001FC000000700001FC000000700001FC000000700001FE00000
0700001FE000000000001FF000000000001FF800000000001FFE00000000000FFFC00000
00000FFFFC0000000007FFFFC000000007FFFFF800000003FFFFFE00000001FFFFFF0000
0000FFFFFF800000003FFFFFC000000007FFFFE000000000FFFFE0000000000FFFF00000
000000FFF000000000003FF000000000001FF800000000000FF8000000000007F8000000
000007F8000000000003F8000700000003F8000F00000003F8000F00000003F0000E0000
0003F0000E00000003F0001E00000007F0001E00000007E0001E00000007E0001E000000
0FC0003E0000000FC0003F0000001F80003F0000001F80003F8000003F00007F8000007E
00007FC00000FC00007FE00001F800007DF00003F00000F8FC000FE00000F83F803F8000
00F01FFFFE000000E007FFF8000000C0007FC000000035427BBF38>I<01FFFFFFFFFFFF
FC01FFFFFFFFFFFFFC03FFFFFFFFFFFFFC03FF0003FE000FFC03F80003FC0001FC07E000
03FC0000F807C00007FC0000F807800007FC0000780F800007F80000780F000007F80000
781E00000FF80000781E00000FF80000781C00000FF00000703C00000FF0000070380000
1FF00000703800001FF00000707800001FE00000707000001FE00000707000003FE00000
F0F000003FE00000E0E000003FC00000E00000003FC00000000000007FC0000000000000
7FC00000000000007F800000000000007F80000000000000FF80000000000000FF800000
00000000FF00000000000000FF00000000000001FF00000000000001FF00000000000001
FE00000000000001FE00000000000003FE00000000000003FE00000000000003FC000000
00000003FC00000000000007FC00000000000007FC00000000000007F800000000000007
F80000000000000FF80000000000000FF80000000000000FF00000000000000FF0000000
0000001FF00000000000001FF00000000000001FE00000000000001FE00000000000003F
E00000000000003FE00000000000003FC00000000000003FC00000000000007FC0000000
0000007FC0000000000000FFC0000000000001FFE0000000001FFFFFFFFC0000001FFFFF
FFFC0000001FFFFFFFF80000003E3D7FBC35>I<7FFFFFF0007FFFFE7FFFFFF0007FFFFC
7FFFFFE0007FFFFC007FE0000003FF80007FC0000000FC00007F80000000F800007F8000
0000700000FF80000000F00000FF80000000F00000FF00000000E00000FF00000000E000
01FF00000001E00001FF00000001C00001FE00000001C00001FE00000001C00003FE0000
0003C00003FE00000003800003FC00000003800003FC00000003800007FC000000078000
07FC00000007000007F800000007000007F80000000700000FF80000000F00000FF80000
000E00000FF00000000E00000FF00000000E00001FF00000001E00001FF00000001C0000
1FE00000001C00001FE00000001C00003FE00000003C00003FE00000003800003FC00000
003800003FC00000003800007FC00000007800007FC00000007800007F80000000700000
7F80000000700000FF80000000F00000FF80000000F00000FF00000000E00000FF000000
00E00000FF00000001E00000FF00000001C00000FE00000001C00000FE00000003C00000
FE00000003800000FE00000007800000FE0000000F000000FE0000000E000000FE000000
1E000000FE0000003C0000007F000000780000007F000000F00000003F000001E0000000
3F800003C00000001FC00007800000000FE0001F0000000007F0007E0000000003FC03F8
0000000000FFFFE000000000003FFF80000000000007FC00000000003F407ABD3E>I<FF
FFFF00000FFFFFFFFFFF00000FFFFFFFFFFF00000FFFFE03FFC0000000FFE001FF000000
007F0001FF000000003E0001FF000000003C0000FF00000000780000FF00000000700000
FF00000000E00000FF00000000E00000FF00000001C00000FF00000003C00000FF800000
03800000FF800000070000007F8000000F0000007F8000000E0000007F8000001C000000
7F8000001C0000007F800000380000007F800000780000007FC00000700000007FC00000
E00000003FC00000E00000003FC00001C00000003FC00003800000003FC0000380000000
3FC00007000000003FC0000F000000003FE0000E000000003FE0001C000000003FE0001C
000000001FE00038000000001FE00078000000001FE00070000000001FE000E000000000
1FE001E0000000001FE001C0000000001FF00380000000001FF00380000000000FF00700
000000000FF00F00000000000FF00E00000000000FF01C00000000000FF01C0000000000
0FF03800000000000FF87000000000000FF870000000000007F8E0000000000007F9E000
0000000007F9C0000000000007FB80000000000007FB80000000000007FF000000000000
07FE00000000000007FE00000000000007FC00000000000003FC00000000000003F80000
0000000003F000000000000003F000000000000003E000000000000003E0000000000000
03C0000000000040407BBD35>I<00007FFFFF8007FFFFC00000FFFFFF8007FFFFC00000
FFFFFF8007FFFFC0000001FFF80000FFF8000000007FE000007F80000000007FC000007F
00000000003FC000007C00000000003FE000007800000000003FE00000F000000000001F
F00001E000000000001FF00003C000000000000FF800078000000000000FF8000F000000
0000000FF8000E00000000000007FC001C00000000000007FC003800000000000003FE00
7000000000000003FE00E000000000000003FE01E000000000000001FF03C00000000000
0001FF078000000000000000FF8F0000000000000000FF9E0000000000000000FFBC0000
0000000000007FF800000000000000007FF000000000000000003FE00000000000000000
3FE000000000000000003FE000000000000000001FF000000000000000001FF000000000
000000001FF800000000000000003FF800000000000000007FF80000000000000000F7FC
0000000000000001E7FC0000000000000001C3FE000000000000000383FE000000000000
000703FE000000000000000E01FF000000000000001E01FF000000000000003C00FF8000
00000000007800FF80000000000000F000FF80000000000001E0007FC0000000000003C0
007FC000000000000780003FE000000000000700003FE000000000000E00003FE0000000
00001C00001FF000000000003800001FF000000000007000000FF80000000000F000000F
F80000000001E000000FF80000000003C0000007FC0000000007C0000007FC000000001F
80000003FE000000007FC0000007FE00000003FFE000001FFF0000007FFFFC0001FFFFFE
0000FFFFFC0003FFFFFE0000FFFFFC0003FFFFFE00004A3E7EBD4B>88
D<FFFFFF800003FFFF80FFFFFF800003FFFF80FFFFFF800003FFFF8001FFE00000007FF0
0000FFC00000003F8000007FC00000003F0000007FC00000003C0000007FC00000007800
00003FE0000000700000003FE0000000E00000001FF0000001C00000001FF0000003C000
00001FF0000007800000000FF800000F000000000FF800000E000000000FF800001C0000
000007FC0000380000000007FC0000780000000007FC0000F00000000003FE0001E00000
000003FE0001C00000000003FF0003800000000001FF0007000000000001FF000E000000
000000FF801E000000000000FF803C000000000000FF80780000000000007FC070000000
0000007FC0E00000000000007FC1C00000000000003FE3C00000000000003FE780000000
0000003FFF000000000000001FFE000000000000001FFC000000000000000FF800000000
0000000FF8000000000000000FF0000000000000000FF0000000000000000FE000000000
0000001FE0000000000000001FE0000000000000001FE0000000000000001FC000000000
0000003FC0000000000000003FC0000000000000003FC0000000000000003F8000000000
0000007F80000000000000007F80000000000000007F80000000000000007F0000000000
000000FF0000000000000000FF0000000000000000FF0000000000000001FE0000000000
000001FE0000000000000001FE0000000000000003FF00000000000007FFFFFE00000000
0007FFFFFE000000000007FFFFFE0000000000413E7DBD35>I<00001F8000000000FFE0
00000003F0707000000FC039F800001F801DF800003F000FF800007E000FF00000FC000F
F00001FC0007F00003F80007F00007F00007E00007F00007E0000FE00007E0001FE0000F
E0001FE0000FC0003FC0000FC0003FC0000FC0003FC0001FC0007FC0001F80007F80001F
80007F80001F80007F80003F8000FF80003F0000FF00003F0000FF00003F0000FF00007F
0000FF00007E0380FE00007E0380FE00007E0380FE0000FE0380FE0000FC07807E0001FC
07007E0003FC07007E0003FC0F003F0007FC0E003F000EFC0E001F801C7C1C000F80787C
1C0007C1F03E380001FFC01FF000007F0007C00029297DA730>97
D<001FC000000FFFC000000FFF8000000FFF800000003F800000003F800000003F000000
003F000000007F000000007F000000007E000000007E00000000FE00000000FE00000000
FC00000000FC00000001FC00000001FC00000001F800000001F800000003F800000003F8
00000003F000000003F03F800007F0FFE00007F3C1F80007E700FC0007FE007E000FFC00
3E000FF8003F000FF0003F000FE0003F801FE0001F801FC0001F801F80001F801F80003F
C03F80003FC03F80003FC03F00003FC03F00003FC07F00007FC07F00007F807E00007F80
7E00007F807E0000FF80FE0000FF00FC0000FF00FC0000FF00FC0001FE00FC0001FE00FC
0001FC00FC0003FC00F80003F800F80007F8007C0007F0007C000FE0007C000FC0003C00
1F80003E003F00001E007E00000F00F800000783F0000003FFC0000000FE00000022407C
BE27>I<000007F00000007FFE000001FC0F000007E00380000FC001C0003F8001E0007F
0007E000FE001FE001FC001FE003F8001FE003F8001FC007F0001FC00FF0001F800FE000
00001FE00000003FC00000003FC00000003FC00000007FC00000007F800000007F800000
007F80000000FF80000000FF00000000FF00000000FF00000000FF00000000FF00000000
FF000000007E000000607F000000E07F000001E07F000003C03F000007803F80000F001F
80001E000FC0007C0007E001F00001F01FC00000FFFF0000001FF0000023297DA727>I<
0000000007F000000003FFF000000003FFE000000003FFE0000000000FE0000000000FE0
000000000FC0000000000FC0000000001FC0000000001FC0000000001F80000000001F80
000000003F80000000003F80000000003F00000000003F00000000007F00000000007F00
000000007E00000000007E0000000000FE0000000000FE0000000000FC0000001F80FC00
0000FFE1FC000003F071FC00000FC039F800001F801DF800003F000FF800007E000FF800
00FC000FF00001FC0007F00003F80007F00007F00007F00007F00007E0000FE00007E000
1FE0000FE0001FE0000FE0003FC0000FC0003FC0000FC0003FC0001FC0007FC0001FC000
7F80001F80007F80001F80007F80003F8000FF80003F8000FF00003F0000FF00003F0000
FF00007F0000FF00007F0380FE00007E0380FE00007E0380FE0000FE0380FE0000FE0780
7E0001FC07007E0003FC07007E0003FC0F003F0007FC0E003F000EFC0E001F801C7C1C00
0F80787C1C0007C1F03E380001FFC01FF000007F0007C0002C407DBE2F>I<00001FE000
0000FFFC000003F01E00000FC00F00003F800780007E0007C000FC0003C003F80003C007
F80003C007F00007C00FE00007801FE00007801FC0000F803FC0001F003FC0003E007F80
01FC007F801FF0007FFFFF8000FFFFF80000FF00000000FF00000000FF00000000FF0000
0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000
C0FE000001C07E000003C07E000007803F00000F003F00001E001F00003C000F8000F800
07C003E00003E03F800000FFFE0000003FE0000022297CA72A>I<000000003E00000000
00FFC000000003E1E000000007C0F00000000F81F00000000F87F00000001F8FF0000000
1F0FF00000003F0FF00000003F0FF00000003F0FE00000007E03800000007E0000000000
7E00000000007E00000000007E0000000000FC0000000000FC0000000000FC0000000000
FC0000000000FC0000000001FC0000000001F80000000001F80000000001F800000003FF
FFFC000003FFFFFC000003FFFFFC00000003F00000000003F00000000003F00000000007
F00000000007E00000000007E00000000007E00000000007E0000000000FE0000000000F
C0000000000FC0000000000FC0000000000FC0000000000FC0000000001FC0000000001F
80000000001F80000000001F80000000001F80000000003F80000000003F00000000003F
00000000003F00000000003F00000000007F00000000007E00000000007E00000000007E
00000000007E0000000000FE0000000000FC0000000000FC0000000000FC0000000000FC
0000000001FC0000000001F80000000001F80000000001F80000000001F80000000003F0
0000000003F00000000003F00000000003E00000001E07E00000007F07E00000007F07C0
000000FF07C0000000FF0F80000000FF0F80000000FE0F00000000F81E00000000703E00
0000007878000000001FF00000000007C0000000002C537CBF2D>I<000001F800000000
0FFE000000003F0787000000FC03DF800001F801DF800003F000FF80000FE000FF80001F
C0007F00001F80007F00003F80007F00007F00007F0000FF00007E0000FE00007E0001FE
0000FE0001FE0000FE0003FC0000FC0003FC0000FC0003FC0001FC0007FC0001FC0007F8
0001F80007F80001F80007F80003F8000FF80003F8000FF00003F0000FF00003F0000FF0
0007F0000FF00007F0000FF00007E0000FE00007E00007E0000FE00007E0000FE00007E0
001FC00007F0003FC00003F0007FC00001F000FFC00001F801FF800000F803DF8000007E
0F3F8000001FFC3F80000007F03F00000000003F00000000007F00000000007F00000000
007E00000000007E0000000000FE0000000000FE0000000000FC00001C0001FC00007F00
01F80000FF0003F80000FF0003F00000FF0007E00000FF000FC00000FE001F800000F800
7E0000007E01FC0000001FFFE000000003FF00000000293B7FA72B>I<00003C0000FE00
00FE0001FE0001FE0001FE0001FC00007000000000000000000000000000000000000000
0000000000000000000000000000000000000000007E0001FF8003C7C00703C00F03E00E
03E01C03E01C07E03807E03807E0780FE0700FC0700FC0F01FC0F01F80001F80003F8000
3F00007F00007E00007E0000FE0000FC0000FC0001FC0001F80003F80E03F00E03F00E07
F01E07E01C07E01C07E03C07C03807C07807C07007C0E007C1E003E3C001FF00007C0017
3E7EBC1F>105 D<00000001C000000007F000000007F00000000FF00000000FF0000000
0FF00000000FE00000000380000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000003E00000000FF80000003C3E000000701E000000E01F000001C01F0000
03C01F800007801F800007001F80000F003F80000E003F00001E003F00001C003F00003C
007F00003C007F000000007E000000007E00000000FE00000000FE00000000FC00000000
FC00000001FC00000001FC00000001F800000001F800000003F800000003F800000003F0
00000003F000000007F000000007F000000007E000000007E00000000FE00000000FE000
00000FC00000000FC00000001FC00000001FC00000001F800000001F800000003F800000
003F800000003F000000003F000000007F000000007E000000007E00001C00FE00007F00
FC0000FF01FC0000FF01F80000FF03F00000FF07E00000FE0FC00000F81F800000783E00
00003FF80000000FE0000000245081BC25>I<0007F003FFF003FFE003FFE0000FE0000F
E0000FC0000FC0001FC0001FC0001F80001F80003F80003F80003F00003F00007F00007F
00007E00007E0000FE0000FE0000FC0000FC0001FC0001FC0001F80001F80003F80003F8
0003F00003F00007F00007F00007E00007E0000FE0000FE0000FC0000FC0001FC0001FC0
001F80001F80003F80003F80003F00003F00007F00007F03807E03807E0380FE0380FE07
80FC0700FC0700FC0F00FC0E00FC0E007C1C007C3C003E38001FF00007C00014407DBE1B
>108 D<00F80007F00007F8000003FE003FFE001FFE0000078F80F81F00781F00000F0F
81C00F81E00F80000E07C78007C3C007C0001C07CF0007C78007C0001C07FE0007EF0007
E0003C07FC0007FE0007E0003807F80007FC0007E000380FF00007F80007E000780FF000
07F80007E000700FE00007F00007E000700FE00007F00007E000F00FC0000FE0000FE000
F01FC0000FE0000FC000001F80000FC0000FC000001F80000FC0000FC000001F80001FC0
001FC000003F80001FC0001F8000003F00001F80001F8000003F00001F80003F8000003F
00003F80003F0000007F00003F80003F0000007E00003F00007F0000007E00003F00007E
0000007E00007F00007E000000FE00007F0000FE01C000FC00007E0000FC01C000FC0000
7E0000FC01C000FC0000FE0001FC03C001FC0000FE0001F8038001F80000FC0001F80380
01F80000FC0001F8070001F80001FC0001F0070003F80001FC0001F00E0003F00001F800
01F01E0003F00001F80001F01C0003F00003F80001F0380007F00003F80000F8F00007E0
0003F000007FE00001C00000E000001F80004A297EA750>I<00F8000FF0000003FE003F
FC0000078F80F03E00000F0F83C01F00000E07C7800F80001C07CF000F80001C07FE000F
C0003C07FC000FC0003807F8000FC000380FF0000FC000780FF0000FC000700FE0000FC0
00700FE0000FC000F00FC0001FC000F01FC0001F8000001F80001F8000001F80001F8000
001F80003F8000003F80003F0000003F00003F0000003F00007F0000003F00007E000000
7F00007E0000007E0000FE0000007E0000FC0000007E0000FC000000FE0001FC038000FC
0001F8038000FC0001F8038000FC0003F8078001FC0003F0070001F80003F0070001F800
03F00E0001F80003E00E0003F80003E01C0003F00003E03C0003F00003E0380003F00003
E0700007F00001F1E00007E00000FFC00001C000003F000031297EA737>I<000007F800
00007FFE000001FC0F800007E007E0000FC003F0003F8001F8007F0001F800FE0000FC01
FC0000FC03F80000FE03F80000FE07F00000FE0FF00000FE0FE00000FE1FE00000FF3FC0
0000FF3FC00000FF3FC00001FE7FC00001FE7F800001FE7F800001FE7F800003FEFF8000
03FCFF000003FCFF000003FCFF000007F8FF000007F8FF00000FF0FF00000FF07E00000F
E07F00001FC07F00003F807F00003F803F00007F001F8000FC001F8001F8000FC003F000
07E00FC00001F03F000000FFFC0000001FE0000028297DA72C>I<0007C000FE00000FF0
03FF80001C7C0F07E000383C1C03F000783E7801F800703EF000F800F03FE000FC00E03F
C000FC00E03F8000FE01E07F80007E01C07F00007E01C07E00007E01C07E0000FF03C0FE
0000FF03C0FE0000FF0000FC0000FF0000FC0000FF0001FC0001FF0001FC0001FE0001F8
0001FE0001F80001FE0003F80003FE0003F80003FC0003F00003FC0003F00003FC0007F0
0007F80007F00007F80007E00007F00007E0000FF0000FE0000FE0000FE0001FE0000FE0
001FC0000FE0003F80001FE0003F00001FF0007E00001FF000FC00001FB801F800003FBC
03E000003F9E0FC000003F07FF0000003F01F80000007F00000000007F00000000007E00
000000007E0000000000FE0000000000FE0000000000FC0000000000FC0000000001FC00
00000001FC0000000001F80000000001F80000000003F80000000003F800000000FFFFE0
000000FFFFE0000000FFFFE0000000303A84A72E>I<01F0003F8007FC00FFE00F1F03C0
F00E1F0F00F81E0F9E03F81C0FBC03F83C0FF807F8380FF007F8380FF007F8781FE007F0
701FC001C0701FC00000701F800000F01F800000F03F800000003F000000003F00000000
3F000000007F000000007E000000007E000000007E00000000FE00000000FC00000000FC
00000000FC00000001FC00000001F800000001F800000001F800000003F800000003F000
000003F000000003F000000007F000000007E000000007E000000007E00000000FE00000
000FC0000000038000000025297EA729>114 D<00001FC0000000FFF8000003E03C0000
07800E00001E000700001E000780003C000F800078001F800078003F800078003F8000F8
003F0000F8003F0000F8001C0000FC00000000FE00000000FFE0000000FFFE0000007FFF
C000003FFFE000001FFFF800000FFFFC000003FFFC0000001FFE00000003FE00000000FE
000000007E000C00003E003F00003E007F80003E007F80003E00FF00003C00FF00003C00
FF00007800FC00007800F00000F000700001E000780003C0003C000780000F803E000003
FFF80000007FC0000021297CA72B>I<000070000000FC000001FC000001FC000001F800
0001F8000003F8000003F8000003F0000003F0000007F0000007F0000007E0000007E000
000FE000000FE000000FC000000FC0007FFFFFF0FFFFFFF0FFFFFFE0001F8000003F8000
003F8000003F0000003F0000007F0000007F0000007E0000007E000000FE000000FE0000
00FC000000FC000001FC000001FC000001F8000001F8000003F8000003F8000003F00000
03F0000007F0000007F001C007E001C007E003C00FE003800FE003800FC007800FC00700
0FC00E000FC01E000FC03C0007C0380007C0700003E1E00001FF8000003E00001C3A7EB8
21>I<007C0000000001FF0000038003C7C0000FC00703C0000FC00F03E0000FC00E03E0
001FC01C03E0001FC01C07E0001F803807E0001F803807E0003F80780FE0003F80700FC0
003F00700FC0003F00F01FC0007F00F01F80007F00001F80007E00003F80007E00003F00
00FE00003F0000FE00007F0000FC00007E0000FC00007E0001FC0000FE0001FC0000FC00
01F80000FC0001F80000FC0003F80001FC0003F81C01F80003F01C01F80003F01C01F800
07F01C01F80007F03C01F80007E03801F8000FE03801F8001FE07800F8001FE07000FC00
3FE070007C0073E0F0007E00E3E0E0003F03C1F1C0000FFF007F800001FC001F002E297E
A734>I<007E00007801FF0001FC03C7C001FE0703C003FE0F03E003FE0E03E003FE1C03
E003FE1C07E001FE3807E000FE3807E0007E780FE0003E700FC0003E700FC0001EF01FC0
001EF01F80001C001F80001C003F80001C003F00003C003F000038007F000038007E0000
38007E00007800FE00007000FC00007000FC0000F000FC0000E001FC0000E001F80001C0
01F80001C001F800038001F800038001F800070001F800070000F8000E0000F8001C0000
FC003C00007C007800003E00F000001F03C0000007FF80000001FC000027297EA72C>I<
003E00000000038000FF800007000FE001C3E0001F801FE00381E0001F801FF00701F000
1F801FF00E01F0003F801FF01E01F0003F001FF01C03F0003F000FF03C03F0003F0007F0
3803F0007F0003E07807F0007E0003E07007E0007E0003E07007E0007E0001E0F00FE000
FE0001E0F00FC000FC0001C0000FC000FC0001C0001FC000FC0001C0001F8001FC0003C0
001F8001F8000380003F8001F8000380003F0001F8000380003F0003F8000780007F0003
F0000700007E0003F0000700007E0003F0000700007E0003F0000F0000FE0007F0000E00
00FC0007E0000E0000FC0007E0001C0000FC0007E0001C0000FC0007E0001C0000FC0007
E000380000FC000FE0003800007C000FE0007000007E001FE000F000007E001FF000E000
003F0039F001C000001F0070F8038000000FC0E07C0F00000003FFC01FFC000000007F00
07F000003C297EA741>I<0001F8003F000007FE00FFE0001E0F83C0F0003807C780F800
7003CF03F800E003FE03F801C003FC07F803C003FC07F8038003F807F8070003F807F007
0003F801C00E0003F000000E0003F000001E0007F000001E0007F00000000007E0000000
0007E0000000000FE0000000000FC0000000000FC0000000000FC0000000001FC0000000
001F80000000001F80000000001F80000000003F80000000003F0001C000003F0001C000
003F0001C000007F0003C01E007F0003803F007E0007807F80FE0007007F80FE000F00FF
81FE001E00FF01DF001C00FE03DF0038007C078F80F0003C0F07C1E0001FFC03FF800007
F0007E00002D297EA734>I<007C0000000001FF0000038003C7C0000FC00703C0000FC0
0F03E0000FC00E03E0001FC01C03E0001F801C07E0001F803807E0001F803807E0003F80
780FE0003F00700FC0003F00700FC0003F00F01FC0007F00F01F80007E00001F80007E00
003F80007E00003F0000FE00003F0000FC00007F0000FC00007E0000FC00007E0001FC00
00FE0001FC0000FC0001F80000FC0001F80000FC0003F80001FC0003F00001F80003F000
01F80003F00001F80007F00001F80007E00001F80007E00001F8000FE00001F8001FE000
00F8001FC00000FC003FC000007C007FC000007E00FFC000003F03DF8000000FFF1F8000
0001FC1F80000000003F80000000003F00000000003F00000000007F00000380007E0000
0FE000FE00001FE000FC00001FE001F800001FE001F800003FC003F000003FC007E00000
1F000FC000001C001F8000001E003F0000000E007C0000000781F000000003FFC0000000
00FE000000002A3B7EA72D>I<0000F8000E0003FE001E000FFF001C001FFF803C003FFF
C078007FFFC0F0007E07F1E000F800FFE000F0001FC000E000078001E0000F0000C0001E
000000003C000000007800000000F000000001E000000003C000000007800000000F0000
00003E000000007800000000F000000001E000000003C000000007800000000F00000000
1E0000E0003C0000E000780000E000F00001E001E00003C003C00003C007F80007800FFF
001F801F87E07F001E03FFFE003C01FFFC007801FFF8007000FFF000F0007FC000E0001F
000027297DA72A>I E
%EndDVIPSBitmapFont
/Gb 133[40 45 45 66 45 51 30 35 40 51 51 45 51 76 25
51 1[25 51 45 30 40 51 40 51 45 6[61 2[91 66 66 61 51
66 1[56 71 66 86 61 71 1[35 71 71 56 61 66 66 61 66 6[30
45 45 45 45 45 45 45 45 45 45 1[23 30 23 2[30 30 30 36[51
2[{TeXBase1Encoding ReEncodeFont}65 90.9091 /Times-Bold
rf
%DVIPSBitmapFont: Gc cmmi8 8 43
/Gc 43 122 df<000001FC00000007FF0000001E07C000003803E000007001E00000E000
F00001C000F000018000F000038000F000070000F000060000F0000E0001F0000C0001F0
000C0001E0001C0003E000180007C000180007800038000F0000307FBE000030FFFC0000
70FFF80000607FBE000060001E000060000F0000E0000F8000C000078000C000078000C0
00078001C00007C001800007C001800007C001800007C00380000FC00300000F80030000
0F800300000F800700001F800700001F000700003F000700003E000F00007C000F0000F8
000F8001F0000DC003E0001CE007C00018703F0000183FFC0000180FE000003800000000
3000000000300000000030000000007000000000600000000060000000006000000000E0
00000000C000000000C000000000C000000000243C7EAE28>12 D<001F00000000FFC000
3001FFF0007007FFF800600FFFF800E00F807C00C01E003C01C03C001E018038000E0380
700007030060000707006000030600E0000306000000038E000000018C000000019C0000
00019800000001B800000001B000000001B000000001F000000001E000000001E0000000
01E000000001C000000001C0000000018000000001800000000380000000038000000003
80000000038000000007000000000700000000070000000007000000000E000000000E00
0000000E000000000E000000001C000000001C000000001C00000000180000242C7F9D24
>I<00E00001F00001F00003F00003E00003E00003E00007E00007C00007C00007C0000F
C0000F80000F80001F80001F00001F00001F00003F00003E00203E00607E00607C00E07C
00C0F801C0F80380F80700780E00783C003FF0000FC000131F7D9D19>19
D<00E000000001F0003C0001F000FF0003F003FF0003F00F7F0003E01C7E0003E0381C00
07E070000007E0E0000007C3C0000007C70000000FDE0000000FF80000000FFF8000000F
FFF800001F83FE00001F803F00001F001F80001F000F80003F000F80403F000F80C03E00
0F80C03E000F80C07E000F81C07E000F81807C000F03807C000F8300FC000F8700FC0007
8E00F80003FC00700000F000221F7D9D29>I<001C000000003E000380003E0007C0007E
000FC0007E000F80007C000F80007C000F8000FC001F8000FC001F0000F8001F0000F800
1F0001F8003F0001F8003E0001F0003E0001F0003E0003F0007E0003F0007C0003E0007C
0003E0007C0007E000FC0807E000F81807C000F81807C000F8180FC001F8380FC001F830
0FE003F0300FE007F0701FE00EF8601FF83C78E01F7FF03FC01F1FC00F003F000000003F
000000003E000000003E000000007E000000007E000000007C000000007C00000000FC00
000000FC00000000F800000000F8000000007000000000252C7E9D2A>22
D<0003FFFFF0001FFFFFF0007FFFFFF000FFFFFFE001FC1F800003F00FC00007C007C000
0F8003E0001F8003E0001F0003E0003E0003E0003E0003E0007C0003E0007C0003E0007C
0007E000FC0007C000F80007C000F80007C000F8000FC000F8000F8000F8001F8000F800
1F0000F8003E000078003C000078007C00007C00F800003C01E000001F07C0000007FF00
000001F8000000241E7D9C28>27 D<60000000F8000000FE000000FF000000EFC00000E3
F00000E1FC0000E07F0000E01F8000E007E000E001F800E000FE00E0003F80E0000FC0E0
0003F0E00000FCE000007CE00000FCE00003F0E0000FC0E0003F80E000FE00E001F800E0
07E000E01F8000E07F0000E1FC0000E3F00000EFC00000FF000000FE000000F800000060
0000001E217EA023>46 D<3C7EFFFFFFFF7E3C08087A8714>58 D<3C007E00FF00FF00FF
80FF807F803D80018001800180038003000300070006000E001C0038007000600009157A
8714>I<0000000001C00000000007C0000000001FC0000000007F0000000001FC000000
0007F0000000001FC0000000007F0000000001FC0000000007F0000000000FC000000000
3F0000000000FC0000000003F8000000000FE0000000003F8000000000FE0000000003F8
000000000FE0000000003F8000000000FE0000000000F80000000000FE00000000003F80
000000000FE00000000003F80000000000FE00000000003F80000000000FE00000000003
F80000000000FC00000000003F00000000000FC00000000007F00000000001FC00000000
007F00000000001FC00000000007F00000000001FC00000000007F00000000001FC00000
000007C00000000001C02A2B7AA537>I<000000C0000001C0000003C000000380000003
8000000780000007000000070000000F0000000E0000000E0000001E0000001C0000001C
0000003C00000038000000780000007000000070000000F0000000E0000000E0000001E0
000001C0000001C0000003C00000038000000780000007000000070000000F0000000E00
00000E0000001E0000001C0000001C0000003C0000003800000038000000780000007000
0000F0000000E0000000E0000001E0000001C0000001C0000003C0000003800000038000
0007800000070000000F0000000E0000000E0000001E0000001C0000001C0000003C0000
003800000038000000780000007000000070000000F0000000E0000000E00000001A437C
B123>I<00000000700000000000700000000000F00000000001F00000000001F0000000
0003F80000000003F80000000007F8000000000DF8000000000DF80000000019F8000000
0039F80000000031F80000000061FC0000000060FC00000000C0FC0000000180FC000000
0180FC0000000300FC0000000700FC0000000600FC0000000C00FE0000000C007E000000
18007E00000030007E00000030007E00000060007E000000E0007E000000C0007E000001
80007F000001FFFFFF000003FFFFFF00000600003F00000600003F00000C00003F00001C
00003F00001800003F00003000003F80003000001F80006000001F8000C000001F8001C0
00001F8003C000001F8007C000001F800FC000003FC0FFF80007FFFEFFF80007FFFE2F2F
7DAE35>65 D<003FFFFFFF00003FFFFFFFC00000FE0007F00000FE0001F80000FC0000FC
0000FC00007E0001FC00007E0001FC00007F0001F800007F0001F800007F0003F800007F
0003F800007E0003F00000FE0003F00000FE0007F00001FC0007F00001F80007E00003F0
0007E00007E0000FE0001FC0000FE0007F00000FC003FC00000FFFFFF800001FFFFFFE00
001FC0003F80001F80000FC0001F80000FE0003F800007E0003F800007F0003F000007F0
003F000003F0007F000003F0007F000003F0007E000007F0007E000007F000FE000007E0
00FE00000FE000FC00000FC000FC00001FC001FC00003F8001FC00007F0001F80000FE00
01F80003F80003F8000FF000FFFFFFFFC000FFFFFFFC0000302D7CAC35>I<0000007FC0
03000003FFF80700001FC03E0F00007E00071F0001F80003BF0003F00001FE000FC00000
FE001F8000007E003F0000007E007E0000007C00FC0000003C01F80000003C03F8000000
3C07F0000000380FE0000000380FE0000000381FC0000000381FC0000000303F80000000
003F80000000007F80000000007F00000000007F00000000007F0000000000FF00000000
00FE0000000000FE0000000000FE0000000000FE0000000000FE0000000000FE00000001
80FE0000000380FE0000000300FE00000003007E00000007007E00000006007E0000000E
003F0000001C003F00000038001F80000070000F800000E00007C00001C00003E0000780
0001F8001E0000007E00F80000001FFFE000000003FF000000302F7CAD32>I<003FFFFF
FE0000003FFFFFFFC0000000FE0007F0000000FE0001F8000000FC00007E000000FC0000
3F000001FC00001F000001FC00001F800001F800000F800001F800000FC00003F8000007
C00003F8000007E00003F0000007E00003F0000007E00007F0000007E00007F0000007E0
0007E0000007E00007E0000007E0000FE0000007E0000FE0000007E0000FC000000FE000
0FC000000FE0001FC000000FE0001FC000000FC0001F8000001FC0001F8000001FC0003F
8000001F80003F8000003F80003F0000003F00003F0000003F00007F0000007E00007F00
00007E00007E000000FC00007E000000F80000FE000001F80000FE000003F00000FC0000
07E00000FC00000FC00001FC00001F000001FC00003E000001F80000FC000001F80003F0
000003F8001FC00000FFFFFFFF000000FFFFFFF8000000332D7CAC3A>I<003FFFFFFFFF
80003FFFFFFFFF800000FE00007F800000FE00000F800000FC000007800000FC00000780
0001FC000003800001FC000003000001F8000003000001F8000003000003F80000030000
03F8000003000003F0000003000003F0003003000007F0007003000007F0007000000007
E0006000000007E000E00000000FE000E00000000FE001E00000000FC007C00000000FFF
FFC00000001FFFFFC00000001FC007C00000001F8003800000001F8003800000003F8003
800000003F8003800000003F0003000C00003F0003000C00007F0003001C00007F000000
1800007E0000003800007E000000300000FE000000700000FE000000E00000FC000000E0
0000FC000001C00001FC000003C00001FC000007800001F800000F800001F800001F8000
03F80001FF0000FFFFFFFFFF0000FFFFFFFFFE0000312D7DAC34>I<003FFFFC003FFFFC
0000FE000000FE000000FC000000FC000001FC000001FC000001F8000001F8000003F800
0003F8000003F0000003F0000007F0000007F0000007E0000007E000000FE000000FE000
000FC000000FC000001FC000001FC000001F8000001F8000003F8000003F8000003F0000
003F0000007F0000007F0000007E0000007E000000FE000000FE000000FC000000FC0000
01FC000001FC000001F8000001F8000003F80000FFFFE000FFFFE0001E2D7DAC1F>73
D<003FFFFE0000003FFFFE00000000FF0000000000FE0000000000FC0000000000FC0000
000001FC0000000001FC0000000001F80000000001F80000000003F80000000003F80000
000003F00000000003F00000000007F00000000007F00000000007E00000000007E00000
00000FE0000000000FE0000000000FC0000000000FC0000000001FC0000000001FC00000
00001F80000000001F80000000003F80000000003F80000000003F00000180003F000001
80007F00000380007F00000300007E00000700007E0000060000FE00000E0000FE00000E
0000FC00001C0000FC00003C0001FC00003C0001FC0000780001F80001F80001F80003F0
0003F8001FF000FFFFFFFFF000FFFFFFFFE000292D7DAC30>76 D<003FFE00000001FFF0
003FFE00000003FFF00000FF00000003F8000000FF00000007F8000000DF0000000DF000
0000DF0000000DF0000001DF0000001BF0000001DF00000033E00000018F80000033E000
00018F80000063E00000038F800000C7E00000038F800000C7C00000030F80000187C000
00030F80000307C000000707C000030FC000000707C000060F8000000607C0000C0F8000
000607C0000C0F8000000E07C000181F8000000E07C000301F0000000C03E000301F0000
000C03E000601F0000001C03E000C03F0000001C03E000C03E0000001803E001803E0000
001803E003003E0000003801F003007E0000003801F006007C0000003001F00C007C0000
003001F00C007C0000007001F01800FC0000007001F03000F80000006001F03000F80000
006000F86000F8000000E000F8C001F8000000E000F8C001F0000000C000F98001F00000
00C000FB0001F0000001C000FB0003F0000001C0007E0003E000000180007C0003E00000
03C0007C0003E000000FE000780007E00000FFFE007001FFFF8000FFFE003001FFFF8000
442D7CAC44>I<003FFFFFFF0000003FFFFFFFE0000000FE0007F0000000FE0001FC0000
00FC00007E000000FC00007E000001FC00003F000001FC00003F000001F800003F000001
F800003F800003F800003F000003F800007F000003F000007F000003F000007F000007F0
0000FE000007F00000FE000007E00000FC000007E00001F800000FE00003F000000FE000
07E000000FC0001F8000000FC000FF0000000FFFFFF80000001FFFFFC00000001F800000
0000001F8000000000001F8000000000003F8000000000003F0000000000003F00000000
00003F0000000000007F0000000000007E0000000000007E0000000000007E0000000000
00FE000000000000FC000000000000FC000000000000FC000000000001FC000000000001
F8000000000001F8000000000003F80000000000FFFFE000000000FFFFE000000000312D
7DAC2D>80 D<003FFFFFF80000003FFFFFFF00000000FE001FC0000000FE0007E0000000
FC0003F0000000FC0001F8000001FC0000FC000001FC0000FC000001F80000FE000001F8
0000FE000003F80000FE000003F80001FC000003F00001FC000003F00001FC000007F000
03F8000007F00003F0000007E00007E0000007E0000FC000000FE0001F8000000FE0007E
0000000FC003F80000000FFFFFE00000001FFFFF000000001FC007C00000001F8003E000
00001F8001F00000003F8001F80000003F8000F80000003F0000FC0000003F0000FC0000
007F0001FC0000007F0001FC0000007E0001F80000007E0001F8000000FE0003F8000000
FE0003F8000000FC0003F8000000FC0003F8000001FC0003F8038001FC0003F8030001F8
0003F8030001F80003F8070003F80001FC0E00FFFFE000FC3C00FFFFE0007FF000000000
000FC000312E7CAC35>82 D<000007F00600003FFE0E0000F80F9E0003E001FE00078000
FE000F00007C001E00007C003C00003C003C00003C007800003800780000380078000038
00F800003800F800003000F800003000FC00000000FC00000000FE000000007F80000000
7FF80000003FFF8000003FFFF000001FFFFC000007FFFE000000FFFF0000001FFF000000
01FF800000003F800000001F800000000F800000000F8000000007801800000780180000
078018000007801800000F803800000F003800000F003800001E003800001E007C00003C
007E000078007F0000F0007B8003E000F1F00F8000E07FFE0000C00FF00000272F7CAD2B
>I<0FFFFFFFFFFF0FFFFFFFFFFF1FC003F8003F1F0003F8001F1C0003F0000E3C0003F0
000E380007F00006300007F00006700007E0000E700007E0000E60000FE0000CE0000FE0
000CC0000FC0000CC0000FC0000CC0001FC0000C00001FC0000000001F80000000001F80
000000003F80000000003F80000000003F00000000003F00000000007F00000000007F00
000000007E00000000007E0000000000FE0000000000FE0000000000FC0000000000FC00
00000001FC0000000001FC0000000001F80000000001F80000000003F80000000003F800
00000003F00000000003F00000000007F00000000007F00000000007E0000000000FE000
0000001FE00000001FFFFFF000001FFFFFF00000302D7FAC29>I<0007E000001FF80000
7C1CE000F80DE001F00FE003E007E007C007E00FC007E01F8007C01F8007C03F0007C03F
000FC07F000F807E000F807E000F807E001F80FE001F00FC001F00FC001F00FC003F02FC
003E06FC003E06F8003E06F8007E0E7C00FE0C7C00FC0C7C01FC1C3E07BE181F0E1E380F
FC0FF003F003C01F1F7D9D25>97 D<00F800001FF800001FF8000001F8000001F8000001
F0000001F0000003F0000003F0000003E0000003E0000007E0000007E0000007C0000007
C000000FC000000FC7E0000F9FF8000FB83C001FF01E001FE01F001FC01F001F800F803F
000F803F000F803E000F803E000F807E001F807E001F807C001F807C001F807C003F80FC
003F00F8003F00F8003F00F8007E00F8007E00F8007C00F800FC00F800F8007801F00078
03F0007807E0003C0F80001E1F00000FFC000003F00000192F7DAD1E>I<0001F800000F
FE00003E0780007C018001F801C003F007C007E00FC00FC00FC00F800F801F800F803F00
00003F0000007F0000007E0000007E0000007E000000FE000000FC000000FC000000FC00
0000FC000000FC000000FC0000607C0000E07C0001C07C0003803E000F001E001C000F81
F80007FFE00000FE00001B1F7D9D1F>I<0000001F000003FF000003FF0000003F000000
3F0000003E0000003E0000007E0000007E0000007C0000007C000000FC000000FC000000
F8000000F8000001F80007E1F8001FF9F0007C1DF000F80FF001F00FF003E007E007C007
E00FC007E01F8007E01F8007C03F0007C03F000FC07F000FC07E000F807E000F807E001F
80FE001F80FC001F00FC001F00FC003F02FC003F06FC003E06F8003E06F8007E0E7C00FE
0C7C00FC0C7C01FC1C3E07BE181F0E1E380FFC0FF003F003C0202F7DAD24>I<0000FC00
0003FF00000F839C001F01BC003E01FC007C00FC00F800FC01F800FC03F000FC03F000F8
07E000F807E001F80FE001F80FC001F00FC001F00FC003F01FC003F01F8003E01F8003E0
1F8007E01F8007E01F8007C01F8007C00F800FC00F801FC007803F8007C07F8003E1FF80
00FF9F80003E1F0000001F0000003F0000003F0000003E0000003E0000007E0038007C00
FC00FC00FC00F800FC01F000F807E000F00F80007FFE00001FF800001E2C7E9D22>103
D<000700000F80001FC0001FC0000F800007000000000000000000000000000000000000
0000000000000000000001E00007F8000E3C001C3E00383E00303E00703E00607E00E07C
00C07C00C0FC0080F80000F80001F80001F00003F00003E00003E00007E00007C04007C0
C00FC0C00F80C00F81C01F01801F03801F07000F06000F1E0007F80001F000122E7EAC18
>105 D<000000E0000001F0000003F0000003F0000003F0000001C00000000000000000
0000000000000000000000000000000000000000000000000000000000007C000003FE00
00078F80000E0780001C0780003807C0003007C000700FC000600F8000E00F8000C00F80
00801F8000001F8000001F0000001F0000003F0000003F0000003E0000003E0000007E00
00007E0000007C0000007C000000FC000000FC000000F8000000F8000001F8000001F800
0001F0000001F0000003F0000003F0000003E0000003E0000007E0003807C000FC0FC000
FC0F8000FC1F0000F83E0000F0F800007FF000001F8000001C3B81AC1D>I<001F000003
FF000003FF0000003F0000003F0000003E0000003E0000007E0000007E0000007C000000
7C000000FC000000FC000000F8000000F8000001F8000001F800F801F003FC01F00F0E03
F01C1E03F0387E03E0707E03E0E07E07E1C07E07E3803807C7000007CE00000FDC00000F
F800000FF800000FFF80001F9FE0001F83F0001F01F8001F00F8003F00F8043F00F80C3E
00F80C3E00F80C7E00F81C7E00F8187C00F0387C00F830FC00F870FC0078E0F8003FC070
000F801F2F7DAD25>I<007C0FFC0FFC00FC00FC00F800F801F801F801F001F003F003F0
03E003E007E007E007C007C00FC00FC00F800F801F801F801F001F003F003F003E003E00
7E007E007C007C00FC08FC18F818F818F838F830F030F070F86078E03FC00F000E2F7DAD
15>I<078007F0007E00001FE01FFC03FF800018F0781F0783E0003878E00F1E01E00030
79C00FB801F000707F800FB001F000607F000FF001F00060FE000FE001F000E0FE000FC0
01F000C0FC000FC001F000C0F8000F8001F00081F8001F8003F00001F8001F8003E00001
F0001F0003E00001F0001F0003E00003F0003F0007E00003F0003F0007C00003E0003E00
07C00003E0003E000FC00007E0007E000F808007E0007E000F818007C0007C001F818007
C0007C001F01800FC000FC003F03800FC000FC003E03000F8000F8003E07000F8000F800
3E0E001F8001F8001E0C001F8001F8001E3C001F0001F0000FF0000E0000E00003E00039
1F7E9D3E>I<07C007E0001FE03FF80018F8783E003879E01E00307B801F00707F001F00
607F001F0060FE001F00E0FC001F00C0FC001F00C0F8001F0081F8003F0001F8003E0001
F0003E0001F0003E0003F0007E0003F0007C0003E0007C0003E000FC0007E000F80807E0
00F81807C001F81807C001F0180FC001F0380FC003E0300F8003E0700F8003E0E01F8001
E0C01F8001E3C01F0000FF000E00003E00251F7E9D2B>I<0001F800000FFF00003F0780
007C03C001F803E003F001F007E001F00FC001F80F8000F81F8000F83F0000F83F0001F8
7F0001F87E0001F87E0001F87E0003F8FE0003F0FC0003F0FC0003F0FC0007E0FC0007E0
FC000FC0FC000FC07C001F807C001F007C003E003E007C001F01F8000F83E00003FF8000
00FC00001D1F7D9D22>I<007C01F80000FE07FE0001CF8E0F0003879C07800307B807C0
0707F007C00607E003E0060FC003E00E0F8003E00C0F8003E00C0F8003E0081F8007E000
1F8007E0001F0007E0001F0007E0003F000FE0003F000FC0003E000FC0003E000FC0007E
001F80007E001F80007C001F00007C003F0000FC003E0000FC007C0000FC00FC0000FE01
F80001FF03E00001FB87C00001F1FF000001F0FC000003F000000003F000000003E00000
0003E000000007E000000007E000000007C000000007C00000000FC00000000FC0000000
FFFC000000FFFC000000232B829D24>I<0007E030001FF870007C1CF000F80DF001F00F
F003E007E007C007E00FC003E01F8007E01F8007C03F0007C03F0007C07F000FC07E000F
807E000F807E000F80FE001F80FC001F00FC001F00FC001F00FC003F00FC003E00F8003E
00F8007E007C00FE007C00FC007C01FC003E07FC001F0EFC000FFCF80003F0F8000000F8
000001F8000001F0000001F0000001F0000003F0000003E0000003E0000007E0000007E0
0000FFFE0000FFFE001C2B7D9D20>I<07C01F000FF07FC01CF8E0E03879C1E0307B87E0
707F07E0607E07E060FC07E0E0FC0380C0F80000C0F8000081F8000001F8000001F00000
01F0000003F0000003F0000003E0000003E0000007E0000007E0000007C0000007C00000
0FC000000FC000000F8000000F8000001F8000001F8000001F0000000E0000001B1F7E9D
20>I<0007E0003FF800781E00F00601E00703C00F03C01F03C01F07C01E07C00C07E000
07F80007FF8003FFE001FFF000FFF8003FFC0001FC0000FC00007C78003CFC003CFC003C
FC007CF80078E000F8E000F06001E07807C01FFF0007F800181F7C9D21>I<000E00001F
00001F00003F00003F00003E00003E00007E00007E00007C00007C0000FC0000FC00FFFF
F8FFFFF801F80001F80001F00001F00003F00003F00003E00003E00007E00007E00007C0
0007C0000FC0000FC0000F80000F80001F80101F80301F00301F00701F00601F00E01E01
C01E03801F07000F0E0007FC0001F000152B7EA919>I<01E000000007F8000E000E3C00
1F001C3E003F00383E003E00303E003E00703E003E00607E007E00E07C007C00C07C007C
00C0FC007C0080F800FC0000F800F80001F800F80001F000F80001F001F80003F001F000
03E001F00003E001F00003E003F02007E003E06007C003E06007C003E06007C003E0E007
C007E0C003C00FC0C003E01FC1C003E03BE18001F071E380007FE0FF00001F803C00231F
7E9D29>I<003F007C0000FFC1FF0001C1E383800380F703C00700F60FC00E00FE0FC01C
00FC0FC01800FC0FC03800FC07003000F800003000F800002001F800000001F000000001
F000000001F000000003F000000003E000000003E000000003E000000007E001000007E0
03000007C003003807C007007C0FC00600FC0FC00E00FC1FC00C00FC1BC01C00F03BE038
007071E0F0003FE0FFC0000F803F0000221F7E9D28>120 D<01E0000007F8000E0E3C00
1F1C3E003F383E003E303E003E703E003E607E007EE07C007CC07C007CC0FC007C80F800
FC00F800F801F800F801F000F801F001F803F001F003E001F003E001F003E003F007E003
E007C003E007C003E007C007E007C007C003C00FC003E01FC003E03FC001F07F80007FEF
80001F8F8000001F8000001F0000001F003E003E003E003E007E007C007E00F8007C01F0
007003E0003007C0003C0F80000FFE000003F00000202C7E9D23>I
E
%EndDVIPSBitmapFont
/Gd 7[42 79[28 16[83 2[37 37 24[37 42 42 60 42 42 23
32 28 42 42 42 42 65 23 42 23 23 42 42 28 37 42 37 42
37 6[51 60 1[78 60 1[51 46 55 1[46 1[60 74 51 60 32 28
60 60 46 51 60 55 55 60 76 5[23 42 2[42 42 42 42 42 42
42 1[21 28 21 2[28 28 37[46 2[{TeXBase1Encoding ReEncodeFont}69
83.022 /Times-Roman rf /Ge 133[53 60 1[86 1[66 40 47
53 66 66 60 66 100 33 66 1[33 66 60 40 53 66 53 66 60
9[120 86 1[80 66 2[73 93 86 1[80 2[47 1[93 73 80 86 86
80 86 6[40 2[60 60 60 60 60 60 60 2[30 40 30 4[40 39[{
TeXBase1Encoding ReEncodeFont}51 119.552 /Times-Bold
rf /Gf 134[103 103 2[115 69 80 92 115 115 103 115 172
57 2[57 115 103 69 92 115 92 115 103 13[115 2[126 1[149
1[138 2[80 2[126 138 149 149 138 149 19[69 45[{
TeXBase1Encoding ReEncodeFont}33 206.559 /Times-Bold
rf /Gg 32[45 42[30 10[69 30 16[91 45 1[40 40 10[30 13[40
45 45 66 45 45 25 35 30 45 45 45 45 71 25 45 25 25 45
45 30 40 45 40 45 40 30 2[30 1[30 56 66 1[86 66 66 56
51 61 66 51 66 66 81 56 66 35 30 66 66 51 56 66 61 61
66 1[40 3[25 25 45 45 45 45 45 45 45 45 45 45 1[23 30
23 2[30 30 30 71 4[30 2[30 12[25 30 12[51 51 2[{
TeXBase1Encoding ReEncodeFont}89 90.9091 /Times-Roman
rf end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4
 end
%%EndSetup
%%Page: 1 1
TeXDict begin 1 0 bop Black Black 277 851 a @beginspecial
-153 @llx -3 @lly 153 @urx 372 @ury 612 @rwi @clip @setspecial
%%BeginDocument: pics/cam.arms.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: Arms of University of Cambridge
%%Creator: Philip Hazel, July 1986
%%CreationDate: 12:00:00 31-07-86
%%BoundingBox: -153 -3 153 372
%%EndComments

/cuarmsdict 50 dict def cuarmsdict begin

/mtrx matrix def
/lionfix{filled{gsave lioncolour fill grestore}if stroke}def
/toefix{gsave lioncolour fill grestore stroke} def

/ea{/savematrix mtrx currentmatrix def
translate 5 -1 roll rotate scale 0 0 1 5 -2 roll arc
savematrix setmatrix}def

/ec{/savematrix mtrx currentmatrix def
translate 5 -1 roll rotate scale 0 0 1 5 -2 roll arcn
savematrix setmatrix}def

/db /rlineto load def /dt /lineto load def /mt /moveto load def

/lion1{0.77 0.77 scale
-200 -600 translate
406 338 mt 440 375 45 -115 38 arc
120 -90 90 15 11 445 425 ea
120 -90 90 15 15 402 442 ea
130 -143 25 33 20 360 454 ea

360 485 32 217 73 arcn 397 507 dt
464 524 45 241 70 arc 464 554 20 36 -133 arcn
377 396 161 63 97 arc 362 494 62 93 227 arc
512 690 308 235 255 arc 437 373 16 70 -105 arcn
420 360 dt -100 20 db -50 0 db -20 40 db

262 55 125 80 55 200 465 ea
270 -41 185 23 15 265 517 ea
260 540 dt -4 20 db -6 10 db -16 -2 db -14 -8 db
90 -90 90 40 20 200 560 ea
-14 8 db -16 2 db -6 -10 db -4 -20 db
90 -5 221 23 15 135 517 ea
98 55 125 80 55 200 465 ea
420 340 285 164 183 arc
} def

/lion2{126 299 27 70 126 arc
98 333 15 271 190 arcn
287 438 230 207 170 arcn
307 0 145 50 25 33 522 ea

240 485 240 162 177 arc
20 496 18 177 270 arc
96 -10 190 26 12 7 450 ea

111 -25 180 36 12 15 388 ea 40 350 dt
119 -30 190 33 10 36 318 ea 70 296 dt

127 -15 180 28 7 66 260 ea
130 213 45 138 120 arcn
120 296 36 -75 -40 arc
}def

/lion3{69 255 81 11 -37 arcn
-123 362 300 -33 -47 arcn
40 57 160 30 11 49 98 ea
40 175 350 40 15 57 90 ea

72 150 345 50 18 115 123 ea
90 150 330 45 14 155 177 ea
80 150 340 50 10 186 230 ea
110 105 240 32 22 218 284 ea
}def

/lion4{332 247 36 115 210 arc
307 160 31 40 -55 arcn
160 390 305 -58 -70 arcn
22 30 160 20 7 243 90 ea
27 170 330 30 12 250 77 ea 288 90 dt

60 125 300 45 15 312 100 ea 340 125 dt
72 155 360 30 12 356 140 ea
380 190 25 210 400 arc
90 230 50 18 13 383 208 ec
363 240 22 300 356 arc
}def

/lion5{476 296 108 212 242 arc
412 171 32 50 -30 arcn
55 90 310 40 20 420 84 ea

498 102 54 200 235 arc
93 200 360 40 11 470 105 ea
95 165 350 30 8 474 173 ea
479 205 5 210 360 arc 490 270 dt
470 260 13 350 195 arcn
348 247 108 10 60 arc
}def

/lion6{90 0 360 30 15 72 445 ea toefix
243 324 108 180 208 arc stroke}def

/lion7{10 0 360 30 20 53 148 ea toefix}def
/lion8{-5 0 360 33 13 243 115 ea toefix}def

/lion9{50 0 360 27 13 393 103 ea toefix
317 280 mt 335 292 18 235 380 arc
385 238 dt stroke}def

/lion10{160 360 mt 4 -20 db 16 -20 db 16 20 db 4 20 db 10 -14 db
10 -6 db 10 6 db 10 24 db 14 0 db 16 10 db stroke
gsave 200 490 translate
1 1 2{pop 16 0 mt 24 40 db -26 -20 db lioneyecolour fill
-1 1 scale}for grestore
90 90 270 60 25 200 465 ea 200 450 dt closepath 1 setlinewidth stroke
500 710 203 240 271 arc stroke
} def

/lion11{280 280 dt 262 203 18 133 220 arc
228 156 36 42 -50 arcn
52 38 315 44 23 160 20 ea 195 40 dt

67 135 322 44 17 220 54 ea
85 100 305 27 20 263 90 ea
75 130 340 22 10 293 118 ea
314 137 8 -150 40 arc

380 197 72 202 148 arcn
250 317 99 323 350 arc

422 334 72 208 248 arc
47 360 240 24 11 394 242 ec
60 60 310 30 20 364 178 ea

65 110 340 30 15 408 196 ea
72 150 350 15 8 435 239 ea
450 260 11 220 40 arc
505 375 108 237 200 arcn
}def

/lion12{30 0 360 30 20 135 56 ea toefix
35 0 360 22 15 352 212 ea toefix
280 280 mt 347 300 dt stroke
}def

/lion13{0 45 -40 31 20 178 242 ec
40 90 310 31 20 137 168 ea 170 174 dt

80 90 320 41 20 189 163 ea
82 160 310 35 20 226 218 ea
73 180 325 25 10 263 266 ea 333 284 dt

341 260 18 145 215 arc
325 183 27 30 -58 arcn
37 90 320 35 15 287 84 ea

80 50 280 23 12 325 80 ea
75 160 335 25 17 350 124 ea
112 140 290 15 11 378 154 ea 383 170 dt
395 180 9 265 31 arc
462 230 72 210 180 arcn

405 160 32 60 -10 arcn
82 90 340 34 17 432 13 ea
105 150 330 35 15 455 63 ea
100 160 330 30 11 466 126 ea 461 161 dt
80 180 345 26 8 475 187 ea
125 180 60 40 15 456 251 ec
325 265 108 14 43 arc
}def

/lion14{335 306 22 265 336 arc 390 230 dt stroke
10 0 360 25 13 122 198 ea toefix
13 0 360 22 13 266 106 ea toefix
60 0 360 28 15 400 24 ea toefix
}def

/lion15{69 255 81 11 -40 arcn
40 57 160 30 11 49 123 ea
40 175 350 40 15 57 113 ea

72 150 320 50 18 115 145 ea
90 120 270 27 15 155 188 ea
80 170 340 50 10 186 230 ea
110 105 240 32 22 218 284 ea
}def

/lion16{10 0 360 30 20 53 168 ea toefix}def


/cuarms{/arg exch def gsave 0.05 0.05 scale
  arg type /booleantype eq { /arg arg {1} {0} ifelse def} if

  arg 3 eq
    {
    % colour definitions
    /erminecolour	{ 0 0 0 setrgbcolor } def
    /lioncolour		{ 1 .9 0 setrgbcolor } def
    /lioneyecolour	{ 1 0 0 setrgbcolor } def
    /bgcolour		{ 1 0 0 setrgbcolor } def
    /crosscolour	{ 1 1 1 setrgbcolor } def
    /bookcolour		{ 1 0 0 setrgbcolor } def
    /bktrimcolour	{ 1 .9 0 setrgbcolor } def
    /filled		true def
    }
    {
    /erminecolour	{ 0 setgray } def
    /lioncolour		{ 1 setgray } def
    /lioneyecolour	{ 0 setgray } def
    /bgcolour		{ 0 setgray } def
    /crosscolour	{ 1 setgray } def
    /bookcolour		{ 0 setgray } def
    /bktrimcolour	{ 1 setgray } def
    /filled		arg 1 eq def
    }
    ifelse


  1 1 2
  {pop   %repeat for symmetry

  %outline
  bgcolour
  0 1475 moveto 600 1475 lineto
  600 343 0 0 500 arcto 4 {pop} repeat
  0 0 lineto gsave crosscolour fill grestore 15 setlinewidth stroke

  125 1475 moveto 125 1000 lineto 600 1000 lineto
  filled {600 1475 lineto fill} if

  125 75 moveto 125 700 lineto 600 700 lineto
  filled {600 343 0 0 500 arcto 4 {pop} repeat fill}
  {20 setlinewidth stroke} ifelse

  %ermine
  [[0 1170] [63 1045] [63 1295] [225 850] [375 850] [525 850]
   [300 730] [450 730] [0 275] [0 540] [63 120] [63 400]]
    {
    aload pop
    gsave translate
    0 115 10 0 360 arc erminecolour fill
    172 107 170 180 210 arc
    8 20 lineto 0 0 lineto -8 20 lineto
    -172 107 170 -30 0 arc
    closepath fill
    grestore
    }
    forall

  %book
  gsave 0 745 translate
  0 0 moveto 60 0 lineto 60 -80 lineto 100 -80 lineto 100 0 lineto
  140 0 lineto 140 225 lineto
  70 213 20 37 143 arc 0 213 20 37 90 arc bookcolour fill

  bktrimcolour
  70 213 12 0 180 arc
  58 183 lineto 82 183 lineto fill
  0 213 12 0 90 arc
  0 183 lineto 12 183 lineto fill

  80 -22 12 0 180 arc
  80 -43 12 180 0 arc fill
  80 -67 6 0 360 arc fill

  105 25 8 0 360 arc fill
  105 180 8 0 360 arc fill

  0 -90 90 50 25 0 112.5 ea
  0 90 -90 45 20 0 112.5 ec fill

  0 -90 90 20 5 0 112.5 ea fill

  grestore -1 1 scale
  }for

%point of shield
0 0 7.5 0 360 arc fill

%lions
2 setlinewidth

gsave -405 1450 translate
lion1 lion2 lion3 lion4 lion5 lionfix
lion6 lion7 lion8 lion9 lion10
grestore

gsave -400 675 translate
lion1 lion2 lion13 lionfix
lion6 lion14 lion10
grestore

gsave 322 1450 translate
lion1 lion2 lion3 lion4 lion5 lionfix
lion6 lion7 lion8 lion9 lion10
grestore

317 675 translate
lion1 lion2 lion15 lion11 lionfix
lion6 lion16 lion12 lion10

grestore}def
end

%%EndProlog

5 5 scale
cuarmsdict begin 3 cuarms end


%%EndDocument
 @endspecial Black Black 2919 1277 a Gg(Christian)25
b(Urban)2500 1390 y(Gon)l(ville)g(and)f(Caius)g(Colle)o(ge)1784
1502 y(Uni)n(v)o(ersity)h(of)e(Cambridge)i(Computer)f(Laboratory)p
277 1638 3226 19 v Black Black 2177 1961 a Gf(Classical)54
b(Logic)1947 2329 y(and)e(Computation)p 277 2516 V Black
Black 1458 2704 a Gg(A)22 b(dissertation)27 b(submitted)f(to)d(the)h
(Uni)n(v)o(ersity)h(of)e(Cambridge)1900 2817 y(to)n(w)o(ards)h(the)g
(de)o(gree)h(of)e(Doctor)h(of)g(Philosophy)-6 b(.)3005
2930 y(October)24 b(2000)p Black Black Black Black 1345
5195 a(Cop)o(yright)i(\251)46 b(Christian)25 b(Urban)p
Black Black eop end
%%Page: 2 2
TeXDict begin 2 1 bop Black Black Black Black eop end
%%Page: 3 3
TeXDict begin 3 2 bop Black Black 277 317 a Ge(Abstract)277
524 y Gg(This)24 b(thesis)h(contains)h(a)e(study)h(of)f(the)g(proof)h
(theory)g(of)f(classical)i(logic)f(and)g(addresses)h(the)e(prob-)277
637 y(lem)h(of)g(gi)n(ving)h(a)f(computational)j(interpretation)h(to)c
(classical)j(proofs.)34 b(This)25 b(interpretation)k(aims)277
750 y(to)24 b(capture)h(features)h(of)e(computation)i(that)f(go)f(be)o
(yond)h(what)f(can)g(be)g(e)o(xpressed)i(in)d(intuitionistic)277
863 y(logic.)418 976 y(W)-7 b(e)34 b(introduce)i(se)n(v)o(eral)g
(strongly)g(normalising)h(cut-elimination)h(procedures)f(for)d
(classical)277 1089 y(logic.)h(Our)24 b(procedures)k(are)e(less)f
(restricti)n(v)o(e)j(than)d(pre)n(vious)j(strongly)f(normalising)h
(procedures,)277 1202 y(while)19 b(at)g(the)g(same)f(time)h(retaining)i
(the)e(strong)h(normalisation)i(property)-6 b(,)22 b(which)d(v)n
(arious)h(standard)277 1315 y(cut-elimination)29 b(procedures)f(lack.)
33 b(In)25 b(order)h(to)f(apply)h(proof)g(techniques)i(from)d(term)f
(re)n(writing,)277 1428 y(including)f(symmetric)d(reducibility)j
(candidates)g(and)d(recursi)n(v)o(e)i(path)e(ordering,)i(we)d(de)n(v)o
(elop)j(term)277 1541 y(annotations)27 b(for)d(sequent)h(proofs)g(of)f
(classical)h(logic.)418 1653 y(W)-7 b(e)25 b(then)g(present)i(a)e
(sequence-conclusio)q(n)31 b(natural)c(deduction)g(calculus)h(for)d
(classical)i(logic)277 1766 y(and)g(study)h(the)f(correspondence)k
(between)c(cut-elimination)k(and)c(normalisation.)40
b(In)27 b(contrast)h(to)277 1879 y(earlier)33 b(w)o(ork,)g(which)f
(analysed)h(this)f(correspondence)k(in)31 b(v)n(arious)i(fragments)g
(of)e(intuitionistic)277 1992 y(logic,)24 b(we)f(establish)j(the)e
(correspondence)k(in)23 b(classical)j(logic.)418 2105
y(Finally)-6 b(,)35 b(we)c(study)i(applications)j(of)31
b(cut-elimination.)58 b(In)32 b(particular)l(,)k(we)c(analyse)h(se)n(v)
o(eral)277 2218 y(classical)e(proofs)e(with)f(respect)i(to)e(their)h
(beha)n(viour)i(under)f(cut-elimination.)46 b(Because)29
b(our)g(cut-)277 2331 y(elimination)k(procedures)g(impose)d(fe)n(wer)g
(constraints)j(than)e(pre)n(vious)h(procedures,)i(we)c(are)g(able)277
2444 y(to)25 b(sho)n(w)f(ho)n(w)h(a)f(fragment)i(of)f(classical)i
(logic)e(can)g(be)g(seen)h(as)e(a)h(typing)h(system)f(for)g(the)g
(simply-)277 2557 y(typed)34 b(lambda)g(calculus)h(e)o(xtended)g(with)e
(an)g(erratic)i(choice)f(operator)-5 b(.)60 b(As)32 b(a)h(pleasing)i
(conse-)277 2670 y(quence,)25 b(we)e(can)h(gi)n(v)o(e)f(a)g(simple)i
(computational)h(interpretation)i(to)23 b(Lafont')-5
b(s)25 b(e)o(xample.)p Black Black eop end
%%Page: 4 4
TeXDict begin 4 3 bop Black Black Black Black eop end
%%Page: 5 5
TeXDict begin 5 4 bop Black Black 277 317 a Ge(Pr)n(eface)277
524 y Gg(This)21 b(dissertation)j(is)d(the)g(result)h(of)f(my)f(o)n(wn)
g(w)o(ork)h(and)g(e)o(xcept)h(where)g(otherwise)g(stated)g(includes)277
637 y(nothing)g(that)e(is)f(the)h(outcome)h(of)f(w)o(ork)f(done)i(in)f
(collaboration.)31 b(Whene)n(v)o(er)21 b(possible)g(long)g(proofs)277
750 y(are)g(gi)n(v)o(en)g(in)f(Appendix)i(B,)e(rather)h(than)g(in)f
(the)h(main)f(te)o(xt.)28 b(A)19 b(reference,)k(in)e(each)g(case,)g
(will)f(point)277 863 y(the)k(reader)h(to)e(the)h(section)h(in)f(the)g
(appendix)i(where)d(the)h(details)h(of)f(the)g(proofs)h(can)e(be)h
(found.)277 1048 y(I)33 b(am)g(grateful)i(to)e(my)g(e)o(xaminers,)k
(Prof.)c(A.)f(M.)g(Pitts)h(and)h(Prof.)f(H.)f(P)-10 b(.)32
b(Barendre)o(gt,)37 b(for)d(their)277 1161 y(helpful)23
b(comments)f(and)g(useful)g(suggestions.)32 b(An)o(y)20
b(remaining)j(errors)g(are)e(of)g(course)i(all)e(my)g(o)n(wn)277
1274 y(w)o(ork.)277 1478 y(The)k(follo)n(wing)i(people)h(ha)n(v)o(e)e
(requested)i(\(or)e(been)g(gi)n(v)o(en)g(;o\))g(a)f(cop)o(y)i(of)e
(this)i(dissertation)i(\(as)c(of)277 1591 y(March)f(2006\):)p
Black Black 547 1743 a Gd(Edmund)18 b(Robinson)638 b(edmundr@dcs.qmw)-5
b(.ac.uk)547 1843 y(Gianluigi)19 b(Bellin)723 b(bellin@sci.uni)n(vr)-5
b(.it)547 1943 y(Pierre-Louis)18 b(Curien)598 b(curien@dmi.ens.fr)547
2042 y(Jose)20 b(Espirito)g(Santo)623 b(jes@math.uminho.pt)547
2142 y(P)o(aul)20 b(Ruet)936 b(ruet@iml.uni)n(v-mrs.fr)547
2242 y(Nicola)20 b(Piccinini)722 b(pic@arena.sci.uni)n(vr)-5
b(.it)547 2341 y(Rene)20 b(V)-9 b(ester)o(gaard)676 b(v)o
(ester@jaist.ac.jp)547 2441 y(Jim)20 b(Laird)939 b
(jiml@cogs.susx.ac.uk)547 2540 y(Marcelo)19 b(Fiore)787
b(Marcelo.Fiore@cl.cam.ac.uk)547 2640 y(Ro)o(y)20 b(Dyckhof)n(f)783
b(rd@dcs.st-and.ac.uk)547 2740 y(Ralph)20 b(Matthes)773
b(matthes@informatik.uni-muenchen)o(.de)547 2839 y(Felix)20
b(Joachimski)694 b(joachski@rz.mathematik.uni-muench)o(en.)o(de)547
2939 y(Thomas)19 b(Antonini)675 b(tototbol@club-internet.fr)547
3039 y(Eduardo)18 b(De)i(la)h(Hoz)621 b(edehozvi@hotmail.com)547
3138 y(Jeremy)19 b(Da)o(wson)728 b(jeremy@discus.anu.edu.au)547
3238 y(Lars)20 b(Birk)o(edal)806 b(birk)o(edal@itu.dk)547
3337 y(Edw)o(ard)19 b(Haeusler)686 b(hermann@inf.puc-rio.br)547
3437 y(Stephane)19 b(Lengrand)614 b(Stephane.Lengrand@ENS-L)-5
b(yon.fr)547 3537 y(Norman)18 b(Danner)722 b(ndanner@wesle)o(yan.edu)
547 3636 y(Dan)20 b(Dougherty)743 b(dd@cs.wpi.edu)547
3736 y(Zena)19 b(Matilde)h(Ariola)582 b(ariola@cs.uore)o(gon.edu)547
3836 y(Masahik)o(o)19 b(Sato)765 b(masahik)o(o@kuis.k)o(yoto-u.ac.jp)
547 3935 y(K)n(en)19 b(Shan)937 b(k)o(en@digitas.harv)n(ard.edu)547
4035 y(James)20 b(Brotherston)643 b(jjb@dcs.ed.ac.uk)547
4135 y(Morten)19 b(Heine)h(S\370rensen)470 b(mhs@it-practice.dk)547
4234 y(Richard)19 b(Nathan)h(Linger)493 b(rlinger@cse.ogi.edu)547
4334 y(T)m(imothy)18 b(Grif)n(\002n)732 b(tim.grif)n(\002n@intel.com)
547 4433 y(V)-9 b(aleria)19 b(de)h(P)o(ai)n(v)n(a)726
b(V)-9 b(aleria.deP)o(ai)n(v)n(a@parc.com)547 4533 y(Stef)o(an)20
b(Hetzl)848 b(shetzl@chello.at)547 4633 y(Stef)n(fen)19
b(v)n(an)h(Bak)o(el)670 b(svb@doc.ic.ac.uk)547 4732 y(Carsten)20
b(Sch)7 b(\250)-35 b(urmann)605 b(carsten@cs.yale.edu)547
4832 y(Jens)20 b(Brage)898 b(brage@math.su.se)547 4932
y(Dominic)19 b(Hughes)694 b(dominic@theory)-5 b(.stanford.edu)547
5031 y(Rajee)n(v)20 b(Gore)844 b(Rajee)n(v)-5 b(.Gore@anu.edu.au)547
5131 y(Ale)o(xander)18 b(Leitsch)650 b(leitsch@logic.at)547
5230 y(Agatha)19 b(Ciabatone)662 b(agata@logic.at)547
5330 y(Mattia)20 b(Petrolo)782 b(mattia.petrolo@libero.it)p
Black Black eop end
%%Page: 6 6
TeXDict begin 6 5 bop Black Black Black Black eop end
%%Page: 7 7
TeXDict begin 7 6 bop Black Black 277 317 a Ge(Ackno)o(wledgements)277
524 y Gg(First,)31 b(and)f(abo)o(v)o(e)h(all,)g(I)e(wish)g(to)h(thank)h
(Ga)n(vin)f(Bierman)g(for)g(his)g(immense)g(help)h(and)f(constant)277
637 y(encouragement)g(during)e(the)e(time)g(of)g(my)g(Ph.D.)e(He)i(not)
g(only)h(has)g(consistently)i(gi)n(v)o(en)e(his)g(time)277
750 y(to)h(impro)o(v)o(e)h(my)f(w)o(ork,)h(b)n(ut)g(has)g(also)g(been)g
(v)o(ery)g(patient)h(with)e(the)g(slo)n(w)g(speed)i(of)e(my)g(writing.)
277 863 y(His)c(e)o(xpertise)j(and)e(the)g(numerous)h(discussions)i
(with)c(him)h(ha)n(v)o(e)g(been)g(in)l(v)n(aluable)j(to)c(this)h
(thesis.)277 976 y(I)e(should)i(lik)o(e)f(to)g(thank)h(him)e(for)h(his)
f(generous)j(support)g(and)e(belief)g(in)g(me.)418 1089
y(I)j(w)o(as)f(pri)n(vile)o(ged)j(in)e(ha)n(ving)h(the)f(opportunity)k
(to)26 b(w)o(ork)h(with)g(Martin)g(Hyland.)40 b(It)26
b(is)h(a)f(great)277 1202 y(pleasure)j(to)e(ackno)n(wledge)i(the)e
(enormous)i(amount)e(I)g(ha)n(v)o(e)g(had)g(learnt)h(from)f(the)g(con)l
(v)o(ersations)277 1315 y(with)c(him.)29 b(His)23 b(enthusiasm)j(and)e
(e)o(xperience)i(in\003uenced)f(this)f(thesis)h(in)f(man)o(y)f(w)o
(ays.)418 1428 y(Ro)o(y)g(Dyckhof)n(f)i(has)e(helped)i(me)e(much)g(o)o
(v)o(er)g(the)h(years.)29 b(I)23 b(ha)n(v)o(e)h(learnt)g(a)f(great)h
(deal)g(from)f(his)277 1541 y(immense)i(insight)h(into)f(proof)h
(theory)-6 b(.)33 b(I)24 b(am)f(indebted)k(to)d(him)g(for)h(gi)n(ving)h
(me)d(in)l(v)n(aluable)28 b(advice)277 1653 y(for)c(my)f(w)o(ork.)418
1766 y(I)j(appreciated)j(v)o(ery)d(much)g(the)g(con)l(v)o(ersation)k
(with)25 b(Henk)h(Barendre)o(gt)i(about)f(my)e(w)o(ork)h(in)g(a)277
1879 y(beautiful)j(churchyard)g(in)e(l'Aquila.)39 b(This)26
b(delightful)j(afternoon)g(has)e(been)h(a)e(refreshing)j(source)277
1992 y(of)24 b(reassurance,)i(which)e(made)g(the)f(process)j(of)d
(writing)i(this)f(thesis)g(less)h(arduous.)418 2105 y(I)32
b(am)f(v)o(ery)h(grateful)i(to)d(Laurent)i(Re)o(gnier)g(and)f(Jean-Yv)o
(es)h(Girard)g(for)f(gi)n(ving)h(me)e(time)g(to)277 2218
y(\002nish)24 b(this)g(thesis)h(while)f(w)o(orking)g(in)g(Marseille.)
418 2331 y(The)35 b(w)o(ork)g(has)h(greatly)h(bene\002ted)f(from)f
(discussions)k(with)c(Harold)h(Schellinx)h(and)e(Jean-)277
2444 y(Baptiste)25 b(Joinet)g(concerning)h(LK)1386 2411
y Gc(tq)1449 2444 y Gg(.)418 2557 y(I)f(thank)i(Claudia)f(F)o(aggian,)g
(who)f(took)i(care)f(of)f(me)g(in)g(the)h(\002rst)f(months)h(of)f(my)g
(stay)h(in)f(Mar)n(-)277 2670 y(seille.)418 2783 y(Thank)d(goes)g(also)
g(to)f(Barbara)h(and)g(W)-7 b(erner)21 b(Daniel,)h(who)f(taught)i(me)e
(that)g(science)i(is)e(fun)h(and)277 2895 y(that)i(research)i(is)d(a)g
(f)o(ascinating)k(lifelong)e(acti)n(vity)-6 b(.)418 3008
y(If)26 b(my)f(laptop)j(had)e(not)h(been)g(repaired)h(in)e(time,)g(my)f
(brother)j(w)o(ould)e(ha)n(v)o(e)h(lent)g(me)e(his)h(most)277
3121 y(holy)33 b(possession)h(\(an)e(Apple)g(Po)n(werbook)h(G3\).)53
b(Thank)32 b(you)g(v)o(ery)g(much)g(for)g(that)g(and)g(all)g(the)277
3234 y(enjo)o(yable)26 b(time)e(with)f(you.)418 3347
y(I)j(am)f(grateful)j(be)o(yond)f(an)o(y)f(measure)h(to)f(my)g(parents)
h(for)g(their)f(unstinting)j(support)f(o)o(v)o(er)e(all)277
3460 y(the)19 b(years\227thank)j(you)d(comes)g(not)h(e)n(v)o(en)e
(close)i(to)f(adequate)i(for)e(ho)n(w)f(much)h(the)o(y)g(ha)n(v)o(e)h
(supported)277 3573 y(me.)277 3785 y(I)26 b(w)o(ant)h(to)g(e)o(xpress)h
(my)e(gratitude)k(to)c(the)h(German)g(Academic)h(Exchange)g(Service)g
(\(D)l(AAD\))d(for)277 3898 y(generously)38 b(supporting)f(me)d(o)o(v)o
(er)g(three)h(years)g(with)g(tw)o(o)f(scholarships.)64
b(I)34 b(ackno)n(wledge)j(use)277 4011 y(of)29 b(P)o(aul)g(T)-7
b(aylor')i(s)30 b(diagram)g(package)h(and)f(thank)g(the)f(authors)i(of)
e(dvips)h(for)g(making)g(their)g(code)277 4124 y(publicly)d(a)n(v)n
(ailable,)g(without)f(which)f(the)g(modi\002cation)i(that)e(allo)n(wed)
g(me)f(to)h(dra)o(w)f(the)h(proofs)h(in)277 4237 y(Appendix)f(A)e(w)o
(ould)h(ha)n(v)o(e)g(been)g(impossible.)p Black Black
eop end
%%Page: 8 8
TeXDict begin 8 7 bop Black Black Black Black eop end
%%Page: 9 9
TeXDict begin 9 8 bop Black Black 277 982 a Gf(Contents)277
1368 y Gb(1)92 b(Intr)n(oduction)2551 b(1)414 1481 y
Gg(1.1)96 b(Outline)24 b(of)f(the)h(Thesis)73 b(.)45
b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g
(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 134 w(6)p
Black 414 1594 a(1.2)96 b(Contrib)n(utions)69 b(.)45
b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g
(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 134 w(8)p Black 277 1798 a Gb(2)92 b(Sequent)21
b(Calculi)2431 b(9)414 1911 y Gg(2.1)96 b(Gentzen')-5
b(s)25 b(Sequent)f(Calculi)78 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g
(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(10)p Black 414 2023 a(2.2)96 b(Cut-Elimination)25
b(in)f(Propositional)i(Classical)f(Logic)83 b(.)45 b(.)g(.)g(.)g(.)h(.)
f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(21)p Black 414
2136 a(2.3)96 b(Proof)23 b(of)h(Strong)g(Normalisation)72
b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)
g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(31)p Black 414 2249
a(2.4)96 b(First-Order)24 b(Classical)h(Logic)47 b(.)f(.)f(.)g(.)g(.)g
(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
h(.)f(.)p Black 88 w(41)p Black 414 2362 a(2.5)96 b(V)-10
b(ariations)25 b(of)e(the)h(Sequent)h(Calculus)58 b(.)45
b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g
(.)h(.)f(.)p Black 88 w(44)p Black 414 2475 a(2.6)96
b(Localised)25 b(V)-10 b(ersion)48 b(.)d(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)
g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g
(.)g(.)h(.)f(.)p Black 88 w(48)p Black 414 2588 a(2.7)96
b(Notes)79 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g
(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
g(.)g(.)h(.)f(.)p Black 88 w(57)p Black 277 2792 a Gb(3)92
b(Natural)23 b(Deduction)2273 b(65)414 2905 y Gg(3.1)96
b(Intuitionistic)27 b(Natural)d(Deduction)87 b(.)45 b(.)g(.)h(.)f(.)g
(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(66)p Black 414 3018 a(3.2)96 b(The)23 b(Correspondence)k
(between)e(Cut-Elimination)g(and)f(Normalisation)i(I)j(.)45
b(.)h(.)f(.)p Black 88 w(73)p Black 414 3131 a(3.3)96
b(Classical)25 b(Natural)f(Deduction)87 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)
g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(81)p Black 414 3243 a(3.4)96 b(The)23 b(Correspondence)k
(between)e(Cut-Elimination)g(and)f(Normalisation)i(II)67
b(.)46 b(.)f(.)p Black 88 w(93)p Black 414 3356 a(3.5)96
b(Notes)79 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g
(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
g(.)g(.)h(.)f(.)p Black 88 w(95)p Black 277 3560 a Gb(4)92
b(A)n(pplications)23 b(of)g(Cut-Elimination)1708 b(101)414
3673 y Gg(4.1)96 b(Implementation)59 b(.)46 b(.)f(.)g(.)g(.)g(.)g(.)h
(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)
g(.)g(.)g(.)g(.)h(.)f(.)p Black 43 w(102)p Black 414
3786 a(4.2)96 b(Non-Deterministic)26 b(Computation:)31
b(Case)24 b(Study)79 b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g
(.)g(.)h(.)f(.)p Black 43 w(113)p Black 414 3899 a(4.3)96
b(A)22 b(Simple,)h(Non-Deterministic)j(Programming)f(Language)89
b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43
w(118)p Black 414 4012 a(4.4)96 b(Notes)79 b(.)46 b(.)f(.)g(.)g(.)g(.)h
(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
43 w(122)p Black 277 4216 a Gb(5)92 b(Conclusion)2518
b(125)414 4329 y Gg(5.1)96 b(Further)24 b(W)-7 b(ork)74
b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 43 w(126)p Black 277 4532 a Gb(A)71 b(Experimental)23
b(Data)2214 b(131)277 4736 y(B)76 b(Details)24 b(f)n(or)f(some)h(Pr)n
(oofs)2057 b(141)414 4849 y Gg(B.1)80 b(Proofs)24 b(of)f(Chapter)i(2)54
b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
43 w(141)p Black 414 4962 a(B.2)80 b(Proofs)24 b(of)f(Chapter)i(3)54
b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
43 w(156)p Black 414 5075 a(B.3)80 b(Proofs)24 b(of)f(Chapter)i(4)54
b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
43 w(167)p Black Black Black eop end
%%Page: 10 10
TeXDict begin 10 9 bop Black Black Black Black eop end
%%Page: 11 11
TeXDict begin 11 10 bop Black Black 277 982 a Gf(List)52
b(of)g(Figur)l(es)414 1277 y Gg(1.1)96 b(Ov)o(ervie)n(w)23
b(of)h(the)f(thesis)90 b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g
(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 134 w(7)p Black 414 1473 a(2.1)96 b(Reduction)25
b(sequence)h(impossible)g(in)d(LK)2007 1440 y Gc(tq)2141
1473 y Gg(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
g(.)h(.)f(.)p Black 88 w(18)p Black 414 1586 a(2.2)96
b(V)-10 b(ariant)24 b(of)f(Kleene')-5 b(s)25 b(sequent)h(calculus)f
(G3a)90 b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
h(.)f(.)p Black 88 w(20)p Black 414 1699 a(2.3)96 b(T)-6
b(erm)22 b(assignment)k(for)d(classical)j(sequent)g(proofs)87
b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(23)p Black 414 1812 a(2.4)96 b(Proof)23 b(substitution)56
b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(27)p Black 414 1925 a(2.5)96 b(Cut-reductions)27
b(for)c(logical)j(cuts)e(and)g(commuting)h(cuts)60 b(.)45
b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88
w(29)p Black 414 2038 a(2.6)96 b(Auxiliary)25 b(proof)f(substitution)30
b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(33)p Black
414 2151 a(2.7)96 b(De\002nition)24 b(of)f(the)h(set)g(operators)i(for)
e(propositional)j(connecti)n(v)o(es)39 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f
(.)p Black 88 w(35)p Black 414 2263 a(2.8)96 b(De\002nition)24
b(of)f(the)h(set)g(operators)i(for)e(quanti\002ers)36
b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(45)p Black 414 2376 a(2.9)96 b(Alternati)n(v)o(e)25
b(formulation)h(of)d(some)h(inference)i(rules)61 b(.)46
b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(46)p Black 414 2489 a(2.10)51 b(T)-6 b(erm)22
b(assignment)k(for)d(intuitionistic)28 b(sequent)d(proofs)73
b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(47)p Black 414 2602 a(2.11)51 b(Cut-reductions)27
b(for)c(labelled)j(cuts)k(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
88 w(50)p Black 414 2715 a(2.12)51 b(T)-6 b(erm)22 b(assignment)k(for)d
(the)h(symmetric)h(lambda)f(calculus)k(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g
(.)g(.)g(.)h(.)f(.)p Black 88 w(62)p Black 414 2911 a(3.1)96
b(Natural)24 b(deduction)i(calculus)g(for)e(intuitionistic)j(logic)71
b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(67)p Black 414 3024 a(3.2)96 b(T)-6 b(erm)22
b(assignment)k(for)d(intuitionistic)28 b(natural)d(deduction)h(proofs)
58 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(70)p
Black 414 3137 a(3.3)96 b(T)m(ranslation)25 b(from)f(NJ-proofs)h(to)e
(intuitionistic)28 b(sequent)d(proofs)75 b(.)45 b(.)g(.)g(.)g(.)g(.)h
(.)f(.)p Black 88 w(71)p Black 414 3250 a(3.4)96 b(T)m(ranslation)25
b(from)f(intuitionistic)j(sequent)f(proofs)f(to)e(NJ-proofs)75
b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(71)p
Black 414 3363 a(3.5)96 b(A)22 b(non-terminating)27 b(reduction)g
(sequence)57 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g
(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(75)p Black 414 3476
a(3.6)96 b(Natural)24 b(deduction)i(calculus)g(for)e(classical)h(logic)
86 b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(83)p Black 414 3588 a(3.7)96 b(T)-6 b(erm)22
b(assignment)k(for)d(classical)j(natural)f(deduction)i(proofs)72
b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88
w(85)p Black 414 3701 a(3.8)96 b(T)m(ranslation)25 b(from)f(natural)h
(deduction)h(proofs)f(to)f(sequent)h(proofs)32 b(.)45
b(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(86)p Black 414
3814 a(3.9)96 b(T)m(ranslation)25 b(from)f(sequent)h(proofs)g(to)f
(natural)h(deduction)h(proofs)32 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 88 w(87)p Black 414 3927 a(3.10)51 b(Proof)23 b(substitution)k
(in)d(natural)h(deduction)h(I)67 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g
(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(91)p
Black 414 4040 a(3.11)51 b(Proof)23 b(substitution)k(in)d(natural)h
(deduction)h(II)37 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g
(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(92)p Black 414 4236
a(4.1)96 b(Excerpt)24 b(from)f(the)h(reduction)i(system)f(for)e(an)h
(outermost-leftmost)k(strate)o(gy)93 b(.)45 b(.)p Black
43 w(104)p Black 414 4349 a(4.2)96 b(T)-7 b(w)o(o)22
b(normal)i(forms)g(reachable)i(by)d(applying)j(dif)n(ferent)g(logical)f
(reductions)40 b(.)46 b(.)f(.)p Black 43 w(105)p Black
414 4462 a(4.3)96 b(Code)23 b(for)h(main)f(datatypes)85
b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43 w(108)p
Black 414 4575 a(4.4)96 b(A)22 b(normal)i(form)g(of)f(Proof)h(\(4.1\))g
(sho)n(wn)g(on)f(P)o(age)g(110)67 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g
(.)g(.)g(.)h(.)f(.)p Black 43 w(112)p Black 414 4688
a(4.5)96 b(Sequent)24 b(proofs)h Ga(\034)33 b Gg(and)24
b Ga(")1462 4702 y Gc(i)1527 4688 y Gg(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g
(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
h(.)f(.)p Black 43 w(119)p Black 414 4801 a(4.6)96 b(T)-7
b(yping)24 b(rules)g(for)g Ga(\025)1282 4764 y F9(+)1391
4801 y Gg(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 43 w(121)p Black 414 4997 a(5.1)96 b(A)22 b(normal)i(form)g(of)f
(the)h(LK-proof)g(gi)n(v)o(en)g(in)g(Example)f(2.1.3)51
b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43
w(128)p Black Black Black eop end
%%Page: 12 12
TeXDict begin 12 11 bop Black Black Black Black eop end
%%Page: 1 13
TeXDict begin 1 12 bop Black Black 277 957 a F8(Chapter)44
b(1)277 1388 y Gf(Intr)l(oduction)p Black Black 1140
1805 a Gd(A)20 b(sequent)f(calculus)g(without)g(cut-elimination)f(is)i
(lik)o(e)g(a)g(car)g(without)f(engine.)3031 2004 y(\227J.-Y)-11
b(.)20 b(Girard)1871 2103 y(in)h(Linear)e(Logic:)25 b(Its)c(Syntax)e
(and)h(Semantics,)f(1995.)277 2416 y Gg(In)f(this)h(thesis)g(we)f
(study)h(the)g(proof)g(theory)h(of)e(classical)i(logic)f(and)g(address)
h(the)f(problem)g(of)f(gi)n(ving)277 2528 y(a)35 b(computational)40
b(interpretation)f(to)d(classical)i(proofs.)67 b(This)35
b(interpretation)40 b(aims)c(to)g(capture)277 2641 y(features)25
b(of)d(computation)k(that)d(go)g(be)o(yond)h(what)f(can)g(be)g(e)o
(xpressed)i(in)e(intuitionistic)j(logic.)k(The)277 2754
y(point)c(of)e(departure)j(for)e(this)g(thesis)g(will)f(be)h(the)g
F7(Curry-Howar)m(d)g(corr)m(espondence)p Gg(,)k(which)c(gi)n(v)o(es)277
2867 y(a)e(computational)k(interpretation)h(to)23 b(intuitionistic)28
b(proofs.)418 2997 y(According)k(to)e(the)h(Curry-Ho)n(w)o(ard)g
(correspondence,)37 b(the)30 b(simply-typed)j(lambda)e(calculus)277
3110 y(can)24 b(be)g(vie)n(wed)g(as)g(a)f(term)h(assignment)i(for)e
(intuitionistic)k(proofs)d(formalised)h(in)d(Gentzen')-5
b(s)26 b(nat-)277 3222 y(ural)32 b(deduction)h(calculus)g(NJ.)d(What)h
(mak)o(es)h(this)f(term)g(assignment)i(e)o(xciting)g(is)e(that)g(it)g
(relates)277 3335 y(not)24 b(just)g(tw)o(o)f(calculi,)i(b)n(ut)f(also)g
(certain)h(concepts)h(within)e(them,)g(as)f(sho)n(wn)h(belo)n(w)-6
b(.)p Black Black 631 3549 a(Gentzen')h(s)25 b(NJ-calculus)614
b(simply-typed)27 b(lambda)d(calculus)895 3732 y(formula)667
b F6(,)585 b Gg(type)940 3845 y(proof)713 b F6(,)580
b Gg(term)789 3958 y(normalisation)563 b F6(,)492 b Gg(reduction)277
4169 y(Curry)20 b(and)g(Fe)o(ys)g([1958])h(hinted)g(at)f(these)h
(correspondences,)k(b)n(ut)20 b(it)g(took)h(quite)f(some)g(time)g
(before)277 4282 y(the)o(y)k(were)f(systematically)k(studied)f(by)d(Ho)
n(w)o(ard)h([1980].)418 4411 y(One)h(consequence)k(of)c(the)g(Curry-Ho)
n(w)o(ard)h(correspondence)k(is)25 b(that)h(we)e(can)h(talk)h(of)f(a)f
F7(com-)277 4524 y(putational)29 b(interpr)m(etation)h
Gg(of)c(NJ-proofs.)37 b(The)26 b(simply-typed)j(lambda)e(calculus)h(is)
d(a)h(prototyp-)277 4637 y(ical)i(functional)j(programming)f(language:)
40 b(the)28 b(terms)g(are)g(programs,)i(and)e(reduction)j(is)c(a)g
(form)277 4750 y(of)c(computation,)i(which)e(con)l(v)o(erts)i(a)d(term)
h(to)g(its)f(simplest)i(form,)f(analogous)j(to)c(symbolic)j(e)n(v)n
(alu-)277 4863 y(ation.)33 b(On)23 b(the)i(other)g(hand,)h
(normalisation)h(is)e(a)f(method)h(for)g(eliminating)i(certain)f
(redundancies)277 4976 y(in)32 b(proofs.)57 b(Applied)33
b(iterati)n(v)o(ely)-6 b(,)37 b(it)32 b(transforms)i(a)e(proof)i(to)e
(one)h(in)f(normal)h(form.)55 b(Using)33 b(the)277 5088
y(Curry-Ho)n(w)o(ard)d(correspondence)k(we)28 b(see)h(that)g(the)h(tw)o
(o)e(notions)j(coincide,)h(and)e(thus)f(the)g(com-)277
5201 y(putational)i(interpretation)i(of)28 b(an)h(NJ-proof)g(is)g(the)f
(corresponding)33 b(simply-typed)e(lambda)f(term)277
5314 y(representing)d(a)c(functional)k(program.)p Black
Black eop end
%%Page: 2 14
TeXDict begin 2 13 bop Black -144 51 a Gb(2)3152 b(Intr)n(oduction)p
-144 88 3691 4 v Black 452 317 a Gg(Because)37 b(of)e(its)h(connection)
j(with)d(computation,)41 b(the)36 b(Curry-Ho)n(w)o(ard)h
(correspondence)k(is)321 430 y(quite)35 b(useful)g(in)e(programming)i
(language)h(design:)51 b(often)34 b(computer)h(scientists)h(and)e
(logicians)321 543 y(ha)n(v)o(e)29 b(arri)n(v)o(ed)g(independently)j
(at)c(the)h(same)f(idea.)43 b(F)o(or)27 b(e)o(xample,)j(Girard)e
([1972])i(and)e(Re)o(ynolds)321 656 y([1974])35 b(independently)i
(studied)e(the)e(second-order)k(polymorphic)f(lambda)e(calculus,)j(and)
c(v)o(er)n(-)321 769 y(sions)g(of)e(the)h(typing)h(algorithm)g(of)e(ML)
f(were)h(de)n(v)o(eloped)j(independently)h(by)d(Hindle)o(y)g([1969])321
882 y(and)22 b(Milner)f([1978].)30 b(Another)22 b(e)o(xample)g
(\(described)i(by)d(Mitchell)h([1996]\))h(is)e(the)g(formulation)j(of)
321 995 y(sums)h(in)f(\223classical\224)j(ML,)c(which)i(w)o(as)f(not)h
(incorrect,)h(b)n(ut)f(relied)h(on)f(e)o(xceptions)i(to)d(ensure)i
(type)321 1108 y(security)-6 b(.)31 b(This)22 b(meant)h(a)f(form)h(of)f
(runtime)i(type)f(check)h(w)o(as)e(necessary)j(to)e(ensure)h(that)f
(programs)321 1221 y(could)33 b(not)e(change)i(their)f(type.)53
b(Clearly)32 b(this)g(runtime)g(check)h(slo)n(wed)f(do)n(wn)f(the)g(e)o
(x)o(ecution)j(of)321 1334 y(programs.)42 b(The)27 b(proper)i
(formulation)h(introduced)g(later)l(,)f(which)f(does)g(not)g(require)h
(an)o(y)f(runtime)321 1446 y(type)d(check,)f(corresponds)j(e)o(xactly)e
(to)e(the)h(inference)i(rules)f(for)e F6(_)g Gg(in)g(NJ.)462
1587 y(In)28 b(practice,)i(the)e(Curry-Ho)n(w)o(ard)h(correspondence)j
(is)27 b(often)i(emplo)o(yed)g(in)e(proof)i(assistants)321
1700 y(with)d(which)g(man)o(y)g(mathematical)i(proofs)g(can)e(be)g
(fully)h(formalised)h(and)e(check)o(ed.)39 b(F)o(ormalised)321
1813 y(proofs)25 b(ho)n(we)n(v)o(er)e(tend)h(to)f(be)h(v)o(ery)f(lar)n
(ge,)i(and)e(therefore)j(one)d(needs)i(good)f(bookk)o(eeping)j(de)n
(vices)321 1926 y(to)c(k)o(eep)g(track)h(of)e(them.)29
b(NuPrl)22 b(and)h(Coq)f(are)h(e)o(xamples)h(of)e(contemporary)k(proof)
e(assistants)h(that)321 2038 y(mak)o(e)f(use)g(of)f(the)h(Curry-Ho)n(w)
o(ard)h(correspondence)j(by)c(representing)j(proofs)e(as)e(terms.)462
2179 y(Whilst)28 b(the)f(Curry-Ho)n(w)o(ard)h(correspondence)k(w)o(as)
26 b(originally)k(established)g(for)d(the)h(simply-)321
2292 y(typed)g(lambda)f(calculus)h(and)e(Gentzen')-5
b(s)28 b(NJ-calculus)h(only)-6 b(,)27 b(later)g(it)f(has)h(been)f
(often)i(studied)g(in)321 2405 y(the)22 b(setting)i(of)e(more)f(e)o
(xpressi)n(v)o(e)j(typed)f(lambda)g(calculi)g(and)f(more)g(e)o(xpressi)
n(v)o(e)i(logics.)29 b(This)22 b(w)o(as)321 2518 y(moti)n(v)n(ated)31
b(by)f(the)g(f)o(act)g(that,)i(although)g(the)d(simply-typed)k(lambda)e
(calculus)g(can)f(be)g(seen)g(as)g(a)321 2630 y(core)24
b(of)e(v)n(arious)i(mainstream)g(functional)i(programming)f(languages,)
g(only)e(a)g(limited)g(number)h(of)321 2743 y(features)32
b(of)d(those)h(languages)i(\(e.g.)d(pattern)i(matching)g(and)f
(abstract)h(datatypes\))h(can)e(be)f(easily)321 2856
y(encoded)e(into)f(this)f(core.)34 b(Other)25 b(features)i(cannot.)34
b(Examples)26 b(are)f(polymorphism)j(and)d(state.)34
b(In)321 2969 y(more)23 b(e)o(xpressi)n(v)o(e)i(typed)f(lambda)f
(calculi)i(these)e(features)i(are)e(directly)i(accessible.)31
b(F)o(or)22 b(instance,)321 3082 y(System)31 b(F)f(pro)o(vides)i(f)o
(acilities)h(for)e(polymorphism)j([Girard)d(et)g(al.,)f(1989],)j(and)f
(linear)g(lambda)321 3195 y(calculi)g(of)n(fer)e(mechanisms)i(to)e
(manipulate)i(state)e([W)-7 b(adler,)31 b(1990].)49 b(Using)30
b(the)g(Curry-Ho)n(w)o(ard)321 3308 y(correspondence)f(one)24
b(\002nds)f(the)h(more)g(e)o(xpressi)n(v)o(e)i(lambda)e(calculi)h(gi)n
(v)o(e)f(a)f(computational)k(inter)n(-)321 3421 y(pretation)f(to)e
(proofs)h(in)e(more)h(e)o(xpressi)n(v)o(e)h(NJ-calculi,)g(three)g(of)e
(which)h(are)g(listed)g(belo)n(w)-6 b(.)p Black Black
925 3699 a(NJ-calculi)865 b(typed)25 b(lambda)f(calculi)625
3883 y(\002rst-order)h(NJ-calculus)147 b F6(,)812 b Ga(\025P)56
b Gg([de)24 b(Bruijn,)g(1980])514 3996 y(second-order)j(NJ-calculus)147
b F6(,)595 b Gg(System)24 b(F)42 b([Girard,)24 b(1972])781
4109 y(linear)h(NJ-calculus)147 b F6(,)118 b Gg(linear)25
b(lambda)f(calculus)46 b([Benton)25 b(et)e(al.,)g(1993])462
4384 y(In)i(this)g(thesis)h(we)e(shall)i(study)f(the)g(Curry-Ho)n(w)o
(ard)h(correspondence)j(in)c(the)g(setting)h(of)f(clas-)321
4496 y(sical)h(logic.)35 b(This)25 b(logic)h(is)f(more)g(e)o(xpressi)n
(v)o(e)i(than)f(intuitionistic)j(logic,)e(in)e(the)g(sense)h(that)g(e)n
(v)o(ery)321 4609 y(intuitionistic)32 b(proof)d(is)e(a)g(classical)j
(proof)f(b)n(ut)f(not)g F7(vice)g(ver)o(sa)p Gg(.)42
b(Grif)n(\002n)27 b([1990])i(w)o(as)e(the)h(\002rst)g(to)321
4722 y(note)34 b(a)e(connection)j(between)f(classical)g(logic)g(and)f
(functional)i(programming)f(languages)i(with)321 4835
y(control)30 b(operators.)44 b(W)-7 b(e)27 b(tak)o(e)i(this)f(observ)n
(ation)j(as)d(e)n(vidence)i(that)e(a)f(computational)32
b(interpreta-)321 4948 y(tion)26 b(for)f(classical)i(proofs)f(can)g
(capture)g(features)h(of)e(computation)i(not)f(directly)g(e)o
(xpressible)i(in)d(a)321 5061 y(typed)g(lambda)f(calculus)i(which)e
(corresponds)j(to)c(intuitionistic)28 b(logic.)462 5201
y(Usually)-6 b(,)32 b(the)e(Curry-Ho)n(w)o(ard)g(correspondence)k(is)29
b(formulated)j(for)d(natural)i(deduction)h(cal-)321 5314
y(culi,)j(because)g(in)d(intuitionistic)37 b(logic)c(the)o(y)g(ha)n(v)o
(e)g(compelling)i(adv)n(antages)g(as)e(deduction)i(sys-)p
Black Black eop end
%%Page: 3 15
TeXDict begin 3 14 bop Black 3922 51 a Gb(3)p 277 88
3691 4 v Black 277 317 a Gg(tems.)27 b(Unfortunately)-6
b(,)23 b(there)d(are)f(v)n(arious)h(technical)h(reasons)2272
284 y F5(1)2330 317 y Gg(which)e(mak)o(e)g(their)h(classical)h(coun-)
277 430 y(terparts)k(less)e(suitable)i(as)d(deduction)k(systems)d(for)g
(classical)i(logic.)k(Sequent)24 b(calculi)g(seem)f(much)277
543 y(better)i(suited.)30 b(Therefore)25 b(in)e(this)h(thesis)g(we)f
(shall)h(mainly)g(focus)h(on)e(sequent)j(calculus)f(formula-)277
656 y(tions)c(of)f(classical)i(logic.)28 b(The)20 b(best-kno)n(wn)i
(sequent)f(calculus)h(for)e(classical)j(logic)d(is)g(the)g(calculus)277
769 y(LK)g(in)l(v)o(ented)j(by)e(Gentzen)h([1935].)30
b(T)-7 b(o)20 b(illustrate)j(some)e(problems)i(concerning)h(a)d
(computational)277 882 y(interpretation)28 b(of)23 b(classical)j
(logic,)e(we)f(shall)h(describe)i(this)e(calculus)i(brie\003y)e(belo)n
(w)-6 b(.)418 1012 y(In)24 b(LK)d(proofs)k(consist)g(of)f(trees)g
(labelled)h(by)f F7(sequents)i Gg(of)d(the)h(form)f F4(\000)p
2751 1000 11 41 v 2762 982 46 5 v 96 w(\001)p Gg(,)f(where)i
F4(\000)f Gg(and)g F4(\001)277 1125 y Gg(are)i(collections)i(of)d
(formulae.)33 b(The)23 b(axioms)j(of)e(LK)e(are)j(of)f(the)h(form)p
2573 1046 244 4 v 24 w Ga(B)p 2667 1113 11 41 v 2677
1095 46 5 v 101 w(B)t Gg(.)31 b(The)23 b(general)j(form)277
1238 y(of)e(an)f F7(infer)m(ence)j(rule)e Gg(is)f(either)p
Black Black 1479 1462 a Ga(P)p 1479 1482 72 4 v 1479
1560 a(C)1744 1494 y Gg(or)2014 1448 y Ga(P)2072 1462
y F9(1)2203 1448 y Ga(P)2261 1462 y F9(2)p 2014 1482
287 4 v 2122 1560 a Ga(C)277 1785 y Gg(where)i(the)g
Ga(P)13 b Gg(')-5 b(s)25 b(stand)h(for)f(sequents,)i(called)f
F7(pr)m(emises)p Gg(,)g(and)g Ga(C)k Gg(stands)d(for)e(a)f(sequent,)j
(called)f(the)277 1898 y F7(conclusion)p Gg(,)i(which)d(is)g(deduced)i
(from)e(the)g(premises.)34 b(There)26 b(are)f(three)g(sorts)h(of)f
(inference)i(rules)277 2011 y(in)32 b(LK.)e(Logical)j(inference)h
(rules)f(introduce)i(a)c(formula)i(in)f(the)g(conclusion)j(and)e(come)f
(in)g(tw)o(o)277 2124 y(\003a)n(v)n(ours\227left)h(rules)f(and)f(right)
g(rules.)51 b(F)o(or)30 b(e)o(xample,)j(the)e(left)g(and)g(right)g
(rule)g(introducing)j(an)277 2237 y(implicational)27
b(formula)d(ha)n(v)o(e)g(the)g(form:)p Black Black 839
2448 a F4(\000)896 2462 y F9(1)p 956 2436 11 41 v 966
2418 46 5 v 1032 2448 a F4(\001)1108 2462 y F9(1)1147
2448 y Ga(;)15 b(B)96 b(C)q(;)15 b F4(\000)1515 2462
y F9(2)p 1575 2436 11 41 v 1586 2418 46 5 v 1651 2448
a F4(\001)1727 2462 y F9(2)p 839 2486 928 4 v 877 2564
a Ga(B)5 b F6(\033)p Ga(C)q(;)15 b F4(\000)1185 2578
y F9(1)1225 2564 y Ga(;)g F4(\000)1322 2578 y F9(2)p
1381 2552 11 41 v 1392 2534 46 5 v 1458 2564 a F4(\001)1534
2578 y F9(1)1573 2564 y Ga(;)g F4(\001)1689 2578 y F9(2)1808
2503 y F6(\033)1879 2517 y Gc(L)2300 2448 y Ga(B)5 b(;)15
b F4(\000)p 2491 2436 11 41 v 2502 2418 46 5 v 96 w(\001)p
Ga(;)g(C)p 2285 2486 485 4 v 2285 2564 a F4(\000)p 2362
2552 11 41 v 2373 2534 46 5 v 96 w(\001)p Ga(;)g(B)5
b F6(\033)p Ga(C)2812 2503 y F6(\033)2882 2517 y Gc(R)277
2789 y Gg(Structural)24 b(inference)h(rules)e(manipulate)i(sequents,)g
(in)d(the)h(sense)g(that)g(contraction)j(identi\002es)e(oc-)277
2902 y(currences)h(of)d(the)h(same)g(formula)g(and)g(weak)o(ening)i
(introduces)g(surplus)f(formulae.)30 b(F)o(or)22 b(e)o(xample,)277
3015 y(the)i(contraction-left)k(and)c(weak)o(ening-right)k(rule)c(ha)n
(v)o(e)g(the)g(form:)p Black Black 1010 3226 a Ga(B)5
b(;)15 b(B)5 b(;)15 b F4(\000)p 1315 3214 11 41 v 1326
3196 46 5 v 96 w(\001)p 1010 3264 457 4 v 1067 3342 a
Ga(B)5 b(;)15 b F4(\000)p 1258 3330 11 41 v 1269 3312
46 5 v 96 w(\001)1509 3288 y Gg(Contr)1715 3302 y Gc(L)2179
3244 y F4(\000)p 2256 3232 11 41 v 2267 3213 46 5 v 96
w(\001)p 2122 3264 343 4 v 2122 3342 a(\000)p 2199 3330
11 41 v 2210 3312 46 5 v 96 w(\001)p Ga(;)g(B)2506 3288
y Gg(W)-7 b(eak)2710 3302 y Gc(R)277 3567 y Gg(The)23
b(third)i(sort)f(of)f(inference)j(rule)e(is)g(the)f(cut-rule)1336
3750 y F4(\000)1393 3764 y F9(1)p 1453 3738 11 41 v 1463
3720 46 5 v 1529 3750 a F4(\001)1605 3764 y F9(1)1644
3750 y Ga(;)15 b(B)96 b(B)5 b(;)15 b F4(\000)2020 3764
y F9(2)p 2079 3738 11 41 v 2089 3720 46 5 v 2155 3750
a F4(\001)2231 3764 y F9(2)p 1336 3788 935 4 v 1503 3867
a F4(\000)1560 3881 y F9(1)1599 3867 y Ga(;)g F4(\000)1696
3881 y F9(2)p 1756 3855 11 41 v 1767 3836 46 5 v 1832
3867 a F4(\001)1908 3881 y F9(1)1948 3867 y Ga(;)g F4(\001)2064
3881 y F9(2)2312 3818 y Gg(Cut)277 4091 y(which)23 b(enables)i(us)e(to)
g(join)g(tw)o(o)g(LK-proofs)h(together)-5 b(.)30 b(W)-7
b(e)22 b(shall)i(often)g(simply)g(refer)f(to)g(an)g(appli-)277
4204 y(cation)i(of)e(the)h(cut-rule)i(as)d(a)g(cut.)418
4334 y(One)f(consequence)k(of)d(our)f(use)h(of)f(sequent)j(calculi)f
(in)e(place)h(of)f(natural)i(deduction)i(calculi)e(is)277
4447 y(that)i(computation)j(corresponds)g(to)d F7(cut-elimination)p
Gg(\227a)j(procedure)g(which)d(transforms)i(a)d(gi)n(v)o(en)277
4560 y(sequent)32 b(proof)g(containing)h(instances)g(of)d(cut)h(to)f
(one)h(with)f(no)g(instances)j(of)d(cut)h(\(called)h(a)e(cut-)277
4673 y(free)e(proof\).)40 b(This)27 b(procedure)i(does)f(not)f
(eliminate)i(all)e(cuts)g(from)g(a)g(proof)h(immediately)-6
b(,)29 b(rather)277 4786 y(it)j(replaces)i(e)n(v)o(ery)f(cut)f(with)g
(simpler)h(cuts,)i(and)e(by)f(iteration)i(one)f(e)n(v)o(entually)i
(ends)e(up)f(with)g(a)277 4899 y(cut-free)25 b(proof.)418
5029 y(Zuck)o(er)37 b([1974])g(and)f(Pottinger)h([1977])g(ha)n(v)o(e)g
(sho)n(wn)f(that)g(normalisation)j(and)d(cut-elimi-)277
5142 y(nation)29 b(are)g(closely)g(related)h(in)d(intuitionistic)32
b(logic.)43 b(Thus)28 b(the)g(question)i(of)e(the)g(computational)p
Black 277 5227 1290 4 v 383 5283 a F3(1)412 5314 y F2(\223One)17
b(may)h(doubt)g(that)f(this)g(is)g(the)h(proper)g(w)o(ay)g(of)f
(analysing)h(classical)f(inferences.)-5 b(\224)24 b([Pra)o(witz,)16
b(1971,)i(P)o(age)f(244])p Black Black Black eop end
%%Page: 4 16
TeXDict begin 4 15 bop Black -144 51 a Gb(4)3152 b(Intr)n(oduction)p
-144 88 3691 4 v Black 321 317 a Gg(meaning)26 b(of)e(cut-elimination)k
(is)c(settled)h(in)f(the)h(intuitionistic)j(case.)j(Surprisingly)-6
b(,)27 b(there)e(is)f(little)321 430 y(attention)36 b(paid)e(in)f(the)h
(literature)h(to)f(an)f(analysis)i(of)f(what)f(cut-elimination)k(in)c
(classical)j(logic)321 543 y(means)23 b(computationally)-6
b(.)33 b(At)21 b(the)i(time)f(of)g(writing)h(we)f(are)g(a)o(w)o(are)h
(only)g(of)f(w)o(ork)h(by)f(Danos)h(et)f(al.)321 656
y([1997],)34 b(which)c(considers)j(a)d(v)n(ariant)i(of)e(Gentzen')-5
b(s)33 b(sequent)f(calculus)g(LK)d(as)h(a)g(programming)321
769 y(language.)51 b(Ho)n(we)n(v)o(er)l(,)31 b(we)e(shall)i(sho)n(w)f
(that)g(there)h(are)f(still)h(man)o(y)f(open)h(questions)h(concerning)
321 882 y(the)24 b(relationship)j(between)e(cut-elimination)i(and)d
(computation.)462 1011 y(One)e(of)h(the)f(reasons)j(for)d(the)h(little)
g(attention)i(is)d(that,)h(in)f(contrast)j(to)d(cut-elimination)k(in)d
(intu-)321 1124 y(itionistic)28 b(logic,)f(cut-elimination)i(in)c
(classical)i(logic)f(had)g(been)g(dismissed)h(in)f(the)f(past)h(as)f
(being)321 1237 y(not)j(v)o(ery)g(interesting)i(from)e(a)f
(computational)k(point)d(of)g(vie)n(w)-6 b(.)40 b(F)o(or)26
b(e)o(xample,)j(Lafont)f(ar)n(gued)i(in)321 1350 y(the)24
b(in\003uential)i(book)e([Girard)h(et)e(al.,)g(1989])i(that)f(in)g
(classical)h(logic)g(a)e(correspondence)28 b(between)321
1463 y(cut-elimination)g(and)d(computation)h(is)e(unachie)n(v)n(able,)j
(o)n(wing)e(to)e(an)h(\223inconsistenc)o(y\224.)35 b(He)23
b(noted)321 1576 y(that)h(the)g(classical)i(proof)p Black
Black 397 2243 a @beginspecial 179 @llx 453 @lly 318
@urx 628 @ury 417 @rwi @clip @setspecial
%%BeginDocument: pics/lafont-left.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: lafont-left.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o lafont-left.ps lafont-left.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.09:0346
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (lafont-left.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi8 8 1
/Fb 1 77 df<90383FFFFEA2010090C8FC5C5CA21301A25CA21303A25CA21307A25CA213
0FA25CA2131FA25CA2133FA291C7EA0180A24914031700017E5C160601FE140EA2495C16
3C12015E49EB01F84B5A0003141FB7FC5E292D7DAC30>76 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmmi12 12 1
/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
A26C48EB00E0342C7EAA37>25 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  2.0 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 139.41826 139.41826 184.94283 213.39557 156.49008 284.52744 91.04869
301.59924 56.90549 256.07469 62.59595 199.1692 102.43004 139.41826
 /currentpoint load stopped pop 1. 0.1 0.  /c ED /b ED /a ED false
OpenCurve  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore end


@endspecial 1344 2024 a
 tx@Dict begin CP CP translate 2.63748 2.85962 scale NET  end
 1344 2024 a Fc(\031)1399 2039
y Fb(L)1344 2024 y
 tx@Dict begin CP CP translate 1 2.63748 div 1 2.85962 div scale NET
 end
 1344 2024 a Black 1918 5251 a Fa(1)p
Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 506 2310 11 41 v 516 2292 46 5 v 582 2322
a Ga(B)p 430 2342 282 4 v 450 2409 11 41 v 460 2391 46
5 v 526 2421 a(B)5 b(;)15 b(C)753 2366 y Gg(W)-7 b(eak)957
2380 y Gc(R)1106 2243 y @beginspecial 365 @llx 453 @lly
519 @urx 628 @ury 462 @rwi @clip @setspecial
%%BeginDocument: pics/lafont-right.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: lafont-right.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o lafont-right.ps lafont-right.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.09:0346
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (lafont-right.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi8 8 1
/Fb 1 83 df<013FB512F816FF903A00FE001FC0EE07E04A6D7E707E01016E7EA24A80A2
13034C5A5CA201074A5A5F4A495A4C5A010F4A5A047EC7FC9138C003F891B512E04991C8
FC9138C007C04A6C7E6F7E013F80150091C77EA2491301A2017E5CA201FE1303A25BA200
01EE038018005B5F0003913801FC0EB5D8E000133CEE7FF0C9EA0FC0312E7CAC35>82
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmmi12 12 1
/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
A26C48EB00E0342C7EAA37>25 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  2.0 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 310.13472 139.41826 384.11203 227.62195 372.73111 284.52744 312.98018
298.7538 241.84831 213.39557 290.2179 139.41826  /currentpoint load
stopped pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0
SLW 0  setgray 0 setlinecap stroke  grestore end


@endspecial 2927 2024 a
 tx@Dict begin CP CP translate 2.50807 2.85962 scale NET  end
 2927 2024 a Fc(\031)2982 2039
y Fb(R)2927 2024 y
 tx@Dict begin CP CP translate 1 2.50807 div 1 2.85962 div scale NET
 end
 2927 2024 a Black 1918 5251 a Fa(1)p
Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 1234 2310 11 41 v 1245 2292 46 5 v 1310
2322 a Ga(B)p 1178 2342 242 4 v 1178 2421 a(C)p 1270
2409 11 41 v 1280 2391 46 5 v 103 w(B)1461 2366 y Gg(W)g(eak)1665
2380 y Gc(L)p 430 2458 990 4 v 803 2525 11 41 v 813 2507
46 5 v 879 2537 a Ga(B)5 b(;)15 b(B)1461 2489 y Gg(Cut)p
783 2575 284 4 v 860 2641 11 41 v 870 2623 46 5 v 936
2653 a Ga(B)1108 2599 y Gg(Contr)1314 2613 y Gc(R)1888
2464 y F6(\000)-31 b(\000)g(!)2229 2433 y @beginspecial
179 @llx 453 @lly 318 @urx 628 @ury 417 @rwi @clip @setspecial
%%BeginDocument: pics/lafont-left.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: lafont-left.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o lafont-left.ps lafont-left.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.09:0346
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (lafont-left.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi8 8 1
/Fb 1 77 df<90383FFFFEA2010090C8FC5C5CA21301A25CA21303A25CA21307A25CA213
0FA25CA2131FA25CA2133FA291C7EA0180A24914031700017E5C160601FE140EA2495C16
3C12015E49EB01F84B5A0003141FB7FC5E292D7DAC30>76 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmmi12 12 1
/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
A26C48EB00E0342C7EAA37>25 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  2.0 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 139.41826 139.41826 184.94283 213.39557 156.49008 284.52744 91.04869
301.59924 56.90549 256.07469 62.59595 199.1692 102.43004 139.41826
 /currentpoint load stopped pop 1. 0.1 0.  /c ED /b ED /a ED false
OpenCurve  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore end


@endspecial 1344 2024 a
 tx@Dict begin CP CP translate 2.63748 2.85962 scale NET  end
 1344 2024 a Fc(\031)1399 2039
y Fb(L)1344 2024 y
 tx@Dict begin CP CP translate 1 2.63748 div 1 2.85962 div scale NET
 end
 1344 2024 a Black 1918 5251 a Fa(1)p
Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 2338 2500 11 41 v 2349 2482 46 5 v 2414
2512 a Ga(B)2700 2464 y Gg(or)2899 2433 y @beginspecial
365 @llx 453 @lly 519 @urx 628 @ury 462 @rwi @clip @setspecial
%%BeginDocument: pics/lafont-right.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: lafont-right.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o lafont-right.ps lafont-right.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.09:0346
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (lafont-right.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi8 8 1
/Fb 1 83 df<013FB512F816FF903A00FE001FC0EE07E04A6D7E707E01016E7EA24A80A2
13034C5A5CA201074A5A5F4A495A4C5A010F4A5A047EC7FC9138C003F891B512E04991C8
FC9138C007C04A6C7E6F7E013F80150091C77EA2491301A2017E5CA201FE1303A25BA200
01EE038018005B5F0003913801FC0EB5D8E000133CEE7FF0C9EA0FC0312E7CAC35>82
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmmi12 12 1
/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
A26C48EB00E0342C7EAA37>25 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  2.0 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 310.13472 139.41826 384.11203 227.62195 372.73111 284.52744 312.98018
298.7538 241.84831 213.39557 290.2179 139.41826  /currentpoint load
stopped pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0
SLW 0  setgray 0 setlinecap stroke  grestore end


@endspecial 2927 2024 a
 tx@Dict begin CP CP translate 2.50807 2.85962 scale NET  end
 2927 2024 a Fc(\031)2982 2039
y Fb(R)2927 2024 y
 tx@Dict begin CP CP translate 1 2.50807 div 1 2.85962 div scale NET
 end
 2927 2024 a Black 1918 5251 a Fa(1)p
Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 3027 2500 11 41 v 3037 2482 46 5 v 3103
2512 a Ga(B)p Black 3372 2307 a Gg(\(1.1\))p Black 321
2862 a(reduces,)29 b(as)d(sho)n(wn,)h(non-deterministically)32
b(to)26 b(one)g(of)g(its)h(subproofs,)i(and)d(based)i(upon)f(a)f(cate-)
321 2975 y(gorical)f(insight)h(of)d(Lambek)h(and)g(Scott)f([1988,)i(P)o
(age)e(67])h(he)g(concluded:)p Black Black 549 3193 a(More)j(generally)
-6 b(,)30 b(all)d(proofs)i(of)e(a)g(gi)n(v)o(en)g(sequent)i
F4(\000)p 2304 3181 11 41 v 2315 3163 46 5 v 97 w(\001)d
Gg(are)h(identi\002ed.)41 b(So)26 b(clas-)549 3306 y(sical)h(logic)h
(is)f F7(inconsistent)p Gg(,)k(not)c(from)f(a)h F7(lo)o(gical)h
Gg(vie)n(wpoint)h(\()p F6(?)d Gg(is)g(not)i(pro)o(v)n(able\),)549
3419 y(b)n(ut)c(from)f(an)h F7(algorithmic)i Gg(one)e([Girard)g(et)f
(al.,)g(1989,)h(P)o(age)f(152].)321 3637 y(His)e(ar)n(gument)j(is)d
(that)i(if)e(one)h(tak)o(es)h(cut-elimination)i(as)d(an)f(equality)j
(preserving)g(operation,)h(then)321 3750 y(in)g(the)g(e)o(xample)g(abo)
o(v)o(e)g(all)f(proofs)i(of)f(an)f(arbitrary)j(formula)f
Ga(B)i Gg(are)c(identi\002ed\227therefore)30 b(there)321
3863 y(is)20 b(an)f(\223inconsistenc)o(y\224)24 b(when)c(vie)n(wing)g
(classical)i(proofs)f(as)f(programs.)29 b(Let)19 b(us)g(stress)i(that)f
(Lafont)321 3975 y(assumes)j(that)f(cut-elimination)j(is)c(an)g
(equality)i(preserving)h(operation;)h(otherwise)e(the)f(\223inconsis-)
321 4088 y(tenc)o(y\224)e(cannot)h(arise.)28 b(Clearly)-6
b(,)20 b(this)g(assumption)h(is)e(the)g(pre)n(v)n(ailing)i(doctrine)g
(in)e(the)h(simply-typed)321 4201 y(lambda)31 b(calculus)h(where)e
(reduction)i(does)f(not)f(change)i(the)e(\(denotational\))k(meaning)d
(of)f(terms.)321 4314 y(Furthermore,)e(it)e(is)g(a)g(v)o(ery)g
(plausible)i(assumption)h(in)d(the)g(conte)o(xt)i(of)e(natural)h
(deduction,)i(to)d(the)321 4427 y(e)o(xtent)f(that)f(Kreisel)g([1971,)h
(P)o(age)e(112])h(vie)n(wed)g(it)f(as)h(a)f F7(minimum)g(r)m(equir)m
(ement)p Gg(.)p Black Black 549 4645 a(A)g(minimum)i(requirement)j(is)
12 b(.)i(.)g(.)g(that)24 b F7(any)i(derivation)i(can)d(be)g(normalized)
p Gg(,)j(that)d(is)549 4758 y(transformed)k(into)f(a)f(unique)i(normal)
f(form)f(by)h(a)f(series)h(of)f(steps,)i(so-called)h(\223con-)549
4871 y(v)o(ersions\224,)25 b(each)f(of)g(which)g(preserv)o(e)h(the)f
(proof)g(described)i(by)e(the)g(deri)n(v)n(ation.)321
5088 y(In)c(this)h(thesis)g(we)f(shall)h(propose)h(that)f(in)f(the)g
(conte)o(xt)i(of)e(classical)i(logic)f(it)f(is)g(ho)n(we)n(v)o(er)h
(prudent)h(to)321 5201 y(reconsider)30 b(this)d(assumption.)40
b(But)26 b(before)h(doing)h(so,)f(let)g(us)f(analyse)i(ho)n(w)e(the)h
(\223inconsistenc)o(y\224)321 5314 y(in)d(Lafont')-5
b(s)24 b(e)o(xample)h(w)o(as)e(dealt)h(with)g(earlier)-5
b(.)p Black Black eop end
%%Page: 5 17
TeXDict begin 5 16 bop Black 3922 51 a Gb(5)p 277 88
3691 4 v Black 418 317 a Gg(According)28 b(to)e(Lafont,)h(the)f
(problem)h(with)f(the)g(\223inconsistenc)o(y\224)31 b(can)26
b(be)g(remedied,)i(if)e(clas-)277 430 y(sical)c(logic)g(is)f
(restricted)i(so)e(that)h(the)f(symmetric)h(instance)h(of)e(the)g(cut)g
(gi)n(v)o(en)h(in)f(\(1.1\))g(is)g(no)g(longer)277 543
y(deri)n(v)n(able.)31 b(Examples)24 b(of)f(such)h(logics)g(are)g
(intuitionistic)j(logic)d(and)g(linear)g(logic.)30 b(In)23
b(intuitionis-)277 656 y(tic)e(logic)g(the)g(sequents)h(are)f
(restricted)i(to)d(be)h(of)f(the)h(form)f F4(\000)p 2236
644 11 41 v 2246 626 46 5 v 96 w Ga(B)t Gg(,)g(thus)i(eliminating)g
(the)f(inference)p 1673 827 11 41 v 1683 809 46 5 v 1749
839 a Ga(B)p 1597 859 282 4 v 1617 926 11 41 v 1627 907
46 5 v 1693 938 a(B)5 b(;)15 b(C)1920 883 y Gg(W)-7 b(eak)2124
897 y Gc(R)277 1143 y Gg(and)24 b(in)g(linear)g(logic)h(the)f
(structural)i(rules)e(are)g(formulated)i(such)e(that)p
1320 1314 11 41 v 1330 1296 46 5 v 1396 1326 a Ga(B)p
1222 1346 325 4 v 1242 1414 11 41 v 1253 1396 46 5 v
1318 1426 a(B)5 b(;)15 b F4(?)p Ga(C)1588 1370 y Gg(W)-7
b(eak)1792 1384 y Gc(R)p 2061 1314 11 41 v 2071 1296
46 5 v 2137 1326 a Ga(B)p 1992 1346 267 4 v 1992 1426
a F4(!)p Ga(C)p 2109 1414 11 41 v 2120 1396 46 5 v 103
w(B)2300 1370 y Gg(W)g(eak)2504 1384 y Gc(L)p 1222 1463
1037 4 v 1619 1530 11 41 v 1629 1512 46 5 v 1695 1542
a Ga(B)5 b(;)15 b(B)2300 1494 y Gg(Cut)277 1748 y(is)32
b(not)g(a)f(v)n(alid)i(instance)h(of)d(the)i(cut-rule.)55
b(Consequently)-6 b(,)37 b(Lafont')-5 b(s)33 b(e)o(xample)f(cannot)i
(arise)e(in)277 1861 y(intuitionistic)c(logic)c(or)g(in)f(linear)i
(logic.)418 1990 y(F)o(or)j(intuitionistic)k(logic)d(we)f(ha)n(v)o(e,)i
(as)e(mentioned)i(earlier)l(,)h(the)e(Curry-Ho)n(w)o(ard)g(correspon-)
277 2103 y(dence)24 b(with)f(the)g(simply-typed)j(lambda)d(calculus.)31
b(F)o(or)22 b(linear)h(logic)h(the)f(situation)i(is)e(unclear)-5
b(.)30 b(At)277 2216 y(its)g(inception)i(it)d(w)o(as)h(thought)h(to)f
(ha)n(v)o(e)g(direct)h(connection)h(with)e(concurrenc)o(y)-6
b(,)34 b(and)c(some)g(con-)277 2329 y(nections)i(ha)n(v)o(e)f(been)f
(unco)o(v)o(ered)i(by)e(Abramsk)o(y)g([1993].)49 b(Ho)n(we)n(v)o(er)l
(,)31 b(it)f(is)f(still)i(f)o(air)f(to)g(say)g(that)277
2442 y(in)h(linear)g(logic)h(the)f(question)i(of)d(what)h(kind)g(of)g
(computation)i(the)e(process)h(of)f(cut-elimination)277
2555 y(corresponds)c(is)c(lar)n(gely)j(unanswered.)418
2684 y(Recently)-6 b(,)38 b(a)33 b(number)h(of)g(other)g(solutions)j
(for)c(the)h(\223inconsistenc)o(y\224)k(in)c(Lafont')-5
b(s)35 b(e)o(xample)277 2797 y(ha)n(v)o(e)26 b(been)g(proposed.)35
b(Instead)27 b(of)e(restricting)j(classical)f(logic)f(so)f(that)h
(Proof)f(\(1.1\))g(is)g(not)g(deri)n(v-)277 2910 y(able,)37
b(the)o(y)e(restrict)g(the)g(reduction)h(rules)f(of)f(classical)j
(logic.)61 b(F)o(or)33 b(e)o(xample)i(in)f(P)o(arigot')-5
b(s)35 b Ga(\025\026)p Gg(-)277 3023 y(calculus,)23 b(although)h
(formulated)f(as)e(a)f(natural)j(deduction)g(calculus,)h(Lafont')-5
b(s)22 b(proof)g(is)f(deri)n(v)n(able,)277 3136 y(b)n(ut)28
b(reduces)i(to)e(one)g(subproof)i(only\227the)f(one)g(on)e(the)h(right)
h([P)o(arigot,)f(1992,)h(Bierman,)e(1999].)277 3249 y(In)h(this)h(w)o
(ay)e(Lafont')-5 b(s)29 b(ar)n(gument)h(does)f(not)g(apply;)i(it)d(is)g
(completely)i(bypassed.)44 b(As)28 b(a)f(pleasing)277
3362 y(consequence,)33 b(Bierman)c([1998])h(w)o(as)e(able)h(to)g(sho)n
(w)f(that)h Ga(\025\026)e Gg(has)i(a)f(simple)h(computational)j(in-)277
3475 y(terpretation:)47 b(it)30 b(is)h(a)f(simply-typed)k(lambda)d
(calculus)i(which)e(is)g(able)g(to)f(sa)n(v)o(e)i(and)f(restore)h(the)
277 3588 y(runtime)25 b(en)l(vironment.)418 3717 y(Another)32
b(solution)h(is)d(gi)n(v)o(en)h(by)g(Danos)g(et)g(al.)f([1997].)51
b(In)31 b(their)g(sequent)i(calculus,)h(named)277 3830
y(LK)399 3797 y Gc(tq)462 3830 y Gg(,)d(Lafont')-5 b(s)33
b(proof)f(is)e(deri)n(v)n(able,)35 b(b)n(ut)c(e)n(v)o(ery)g(formula)h
(is)f(required)i(to)e(be)g(annotated)i(with)e(a)277 3943
y(colour)-5 b(.)33 b(In)24 b(ef)n(fect,)h(their)g(solution)i(of)d(the)g
(\223inconsistenc)o(y\224)29 b(is)24 b(similar)h(to)f(the)h(approach)i
(tak)o(en)e(by)277 4056 y(P)o(arigot,)h(in)f(the)h(sense)g(that)g
(Proof)g(\(1.1\))g(reduces)h(to)e(one)h(subproof)i(only)-6
b(.)35 b(Ho)n(we)n(v)o(er)l(,)25 b(whereas)h(in)277 4169
y Ga(\025\026)f Gg(the)h(reduction)i(system)f(is)f(restricted)i(so)e
(that)g(Lafont')-5 b(s)27 b(proof)g(reduces)h(to)d(only)i(the)f
(subproof)277 4282 y(on)i(the)h(right,)h(in)e(LK)977
4249 y Gc(tq)1066 4282 y Gg(this)h(proof)g(can)g(reduce)g(to)f(either)i
(subproof,)h(b)n(ut)d(the)h(colour)g(annotation)277 4394
y(determines)g(which)d(one.)38 b(The)26 b(colour)i(annotation)i(seems)d
(to)f(correspond)k(to)c(the)h(restriction)i(im-)277 4507
y(posed)35 b(by)f(linear)h(logic,)j(since)d(e)n(v)o(ery)f
(cut-elimination)k(step)c(in)g(LK)2572 4474 y Gc(tq)2668
4507 y Gg(can)g(be)g(mapped)h(onto)g(a)277 4620 y(series)23
b(of)f(cut-elimination)k(steps)d(in)f(linear)h(logic.)29
b(Ho)n(we)n(v)o(er)l(,)22 b(the)g(precise)i(relationship)h(needs)e(yet)
277 4733 y(to)29 b(be)f(w)o(ork)o(ed)i(out.)44 b(Danos)30
b(et)e(al.)g(gi)n(v)o(e)h(a)f(computational)k(interpretation)h(for)c
(LK)3011 4700 y Gc(tq)3073 4733 y Gg(-proofs,)j(b)n(ut)277
4846 y(their)24 b(proposal)i(is)e(some)n(what)g(blurred.)418
4976 y(Although)f(Lafont')-5 b(s)22 b(reasoning)i(has)d(found)h(its)f
(w)o(ay)g(into)h(a)e(number)i(of)f(treatises)i(on)e(the)g(proof)277
5088 y(theory)26 b(of)e(classical)j(logic,)f(for)e(e)o(xample)h
([Girard)h(et)e(al.,)g(1989,)h(Girard,)g(1991,)g(Schellinx,)h(1994,)277
5201 y(Bierman,)19 b(1999],)h(there)g(is)e(an)h(ob)o(vious)h(question)h
(whether)f(the)f(restrictions)i(mentioned)g(abo)o(v)o(e)e(are)277
5314 y F7(r)m(eally)j Gg(necessary)i(to)e(solv)o(e)g(the)g(problem)g
(with)f(the)h(\223inconsistenc)o(y\224)k(in)21 b(Lafont')-5
b(s)23 b(proof.)29 b(There)22 b(is)p Black Black eop
end
%%Page: 6 18
TeXDict begin 6 17 bop Black -144 51 a Gb(6)3152 b(Intr)n(oduction)p
-144 88 3691 4 v Black 321 317 a Gg(a)27 b(fear)g(that)h(certain)g
(computational)i(features)f(of)e(classical)i(logic)f(are)f(lost)h(by)f
(these)h(restrictions.)321 430 y(In)c(classical)h(logic)g(we)d(do)i
(not)g(ha)n(v)o(e)g(access)h(to)e(ne)n(w)g(functions,)i(a)e(f)o(act)h
(established)j(se)n(v)o(eral)e(years)321 543 y(ago)j(\(for)g(e)o
(xample)g(by)f(Friedman)h([1978]\),)h(b)n(ut)f(we)e(do)i(ha)n(v)o(e)f
(access)i(to)e(ne)n(w)g(proofs,)i(compared)321 656 y(to)i
(intuitionistic)k(logic.)51 b(Thus)31 b(we)f(may)h(hope)g(to)g(ha)n(v)o
(e)g(access)i(to)d(a)h(substantially)j(lar)n(ger)f(class)321
769 y(of)k(programs)h(capturing)i(computational)g(beha)n(viour)g(not)d
(e)o(xpressible)j(in)d(intuitionistic)j(typed)321 882
y(lambda)25 b(calculi.)30 b(Unfortunately)-6 b(,)27 b(none)d(of)g(the)g
(proposed)i(solutions)g(for)e(Lafont')-5 b(s)24 b(e)o(xample)h(ha)n(v)o
(e)321 995 y(yet)f(ful\002lled)h(this)f(hope.)462 1132
y(In)f(this)h(thesis)g(we)f(shall)h(sho)n(w)f(that)g(the)h
(restrictions)i(are)d F7(not)h Gg(necessary)h(to)e(obtain)i(a)d
(strongly)321 1245 y(normalising)33 b(cut-elimination)g(procedure.)51
b(Also,)31 b(we)e(w)o(ant)h(to)f(ar)n(gue)j(that)e(the)g(restrictions)j
(are)321 1358 y F7(not)f Gg(required)i(to)d(solv)o(e)h(the)g(problem)h
(arising)g(from)e(Lafont')-5 b(s)33 b(e)o(xample.)53
b(The)31 b(\223inconsistenc)o(y\224)321 1470 y(only)j(appears)h(if)e
(we)f(re)o(gard)i(cut-elimination)j(as)c(an)g(equality)i(preserving)h
(operation.)60 b(This)33 b(is)321 1583 y(of)28 b(course)h(a)e
(plausible)j(doctrine)f(coming)f(from)g(the)g(simply-typed)i(lambda)e
(calculus,)j(b)n(ut)d(there)321 1696 y(are)38 b(man)o(y)e(calculi,)42
b(notably)d(calculi)g(for)e(concurrenc)o(y)-6 b(,)43
b(where)38 b(reduction)h(is)e F7(not)g Gg(an)g(equality)321
1809 y(preserving)28 b(operation.)35 b(T)-7 b(ak)o(e)24
b(for)h(e)o(xample)h(a)e(non-deterministic)29 b(choice)e(operator)l(,)g
(say)e F4(+)p Gg(,)f(with)321 1922 y(the)g(reduction)1448
2174 y Ga(M)30 b F4(+)20 b Ga(N)61 b F6(\000)-32 b(\000)h(!)50
b Ga(M)61 b Gg(or)51 b Ga(N)35 b(:)321 2424 y Gg(Clearly)-6
b(,)25 b(we)e(cannot)i(hope)g(that)f(reduction)j(preserv)o(es)e
(equality)-6 b(.)32 b(Therefore,)25 b(we)e(shall)i(accept)g(the)321
2537 y(vie)n(w)34 b(that)g(cut-elimination)j(corresponds)g(to)c
(computation)k(which)d(may)f(or)h(may)f(not)h(preserv)o(e)321
2650 y(equality)c(between)f(proofs)h(and)e(in)g(this)h(w)o(ay)f(a)n(v)n
(oid)h(the)f(\223inconsistenc)o(y\224)33 b(in)28 b(Lafont')-5
b(s)29 b(e)o(xample.)321 2763 y(Under)g(this)g(assumption)i(it)d(seems)
g(prudent)j(ho)n(we)n(v)o(er)d(to)g(reconsider)k(the)c(proof)i(theory)f
(of)g(clas-)321 2876 y(sical)e(logic,)h(despite)g(the)e(long)h(list)g
(of)f(te)o(xtbooks,)j(for)d(instance)i([Sch)8 b(\250)-38
b(utte,)27 b(1960,)g(T)-7 b(ak)o(euti,)27 b(1975,)321
2989 y(Girard,)e(1987b,)i(T)m(roelstra)f(and)f(Schwichtenber)n(g,)j
(1996,)e(Buss,)e(1998],)j(already)f(written)g(on)f(this)321
3102 y(subject.)321 3455 y Ge(1.1)119 b(Outline)31 b(of)f(the)g(Thesis)
321 3693 y Gg(W)-7 b(e)24 b(shall)i(introduce)h(se)n(v)o(eral)f
(reduction)i(systems)e(in)e(this)i(thesis;)h(Figure)e(1.1)g(gi)n(v)o
(es)g(an)g(o)o(v)o(ervie)n(w)321 3806 y(and)19 b(roughly)i(indicates)f
(the)f(dependencies)k(between)c(them.)27 b(The)18 b(plan)h(of)g(the)f
(thesis)i(is)e(as)h(follo)n(ws:)p Black 458 4072 a F6(\017)p
Black 46 w Gg(Chapter)31 b(2)g(re)n(vie)n(ws)g(Gentzen')-5
b(s)33 b(sequent)g(calculus)g(LK)c(and)i(his)h(cut-elimination)i
(proce-)549 4185 y(dure.)j(Then)26 b(we)g(introduce)i(a)e(ne)n(w)g
(sequent)i(calculus)g(for)f(classical)h(logic)f(and)g(sho)n(w)f(ho)n(w)
549 4298 y(its)j(proofs)i(can)f(be)f(annotated)j(with)e(terms.)46
b(Ne)o(xt,)31 b(tw)o(o)e(cut-elimination)k(procedures)f(for)549
4411 y(this)g(sequent)h(calculus)g(are)f(formulated;)38
b(the)o(y)31 b(include)j(a)d(notion)h(of)g(proof)g(substitution.)549
4524 y(The)e(principal)j(result)g(of)d(this)i(thesis)g(is)f(a)f(proof)i
(that)g(establishes)i(strong)e(normalisation)549 4637
y(for)22 b(both)h(cut-elimination)i(procedures.)32 b(This)21
b(result)j(is)d(then)i(e)o(xtended)h(to)e(\002rst-order)i(clas-)549
4750 y(sical)29 b(logic,)i(to)e(other)h(formulations)h(of)e(classical)i
(logic)f(and)f(to)g(intuitionistic)k(logic.)45 b(W)-7
b(e)549 4863 y(also)33 b(pro)o(v)o(e)h(strong)h(normalisation)h(for)e
(a)f(cut-elimination)j(procedure)g(where)e(the)f(proof)549
4976 y(substitution)e(is)d(replaced)i(with)e(completely)i(local)f
(reduction)i(rules.)43 b(Ha)n(ving)30 b(considered)549
5088 y(se)n(v)o(eral)d(strongly)h(normalising)g(cut-elimination)i
(procedures,)f(we)c(conclude)j(this)f(chapter)549 5201
y(comparing)35 b(our)f(w)o(ork)f(with)g(w)o(ork)h(by)f(Dragalin)h
([1988])h(and)f(w)o(ork)g(by)f(Barbanera)i(and)549 5314
y(Berardi)24 b([1994].)p Black Black eop end
%%Page: 7 19
TeXDict begin 7 18 bop Black 277 51 a Gb(1.1)23 b(Outline)g(of)h(the)f
(Thesis)2703 b(7)p 277 88 3691 4 v Black Black Black
Black 922 229 2077 4 v 922 2146 4 1918 v 1023 2088 a
@beginspecial 81 @llx 332 @lly 495 @urx 732 @ury 2277
@rwi @clip @setspecial
%%BeginDocument: pics/1.0.0.Overview.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: 1.0.0.Overview.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%DocumentFonts: Times-Bold Times-Roman
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips 1.0.0.Overview.dvi -o 1.0.0.Overview.ps
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.06.05:0717
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: 8r.enc
% @@psencodingfile@{
%   author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry",
%   version = "0.6",
%   date = "1 July 1998",
%   filename = "8r.enc",
%   email = "tex-fonts@@tug.org",
%   docstring = "Encoding for TrueType or Type 1 fonts
%                to be used with TeX."
% @}
% 
% Idea is to have all the characters normally included in Type 1 fonts
% available for typesetting. This is effectively the characters in Adobe
% Standard Encoding + ISO Latin 1 + extra characters from Lucida.
% 
% Character code assignments were made as follows:
% 
% (1) the Windows ANSI characters are almost all in their Windows ANSI
% positions, because some Windows users cannot easily reencode the
% fonts, and it makes no difference on other systems. The only Windows
% ANSI characters not available are those that make no sense for
% typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
% (173). quotesingle and grave are moved just because it's such an
% irritation not having them in TeX positions.
% 
% (2) Remaining characters are assigned arbitrarily to the lower part
% of the range, avoiding 0, 10 and 13 in case we meet dumb software.
% 
% (3) Y&Y Lucida Bright includes some extra text characters; in the
% hopes that other PostScript fonts, perhaps created for public
% consumption, will include them, they are included starting at 0x12.
% 
% (4) Remaining positions left undefined are for use in (hopefully)
% upward-compatible revisions, if someday more characters are generally
% available.
% 
% (5) hyphen appears twice for compatibility with both 
% ASCII and Windows.
% 
/TeXBase1Encoding [
% 0x00 (encoded characters from Adobe Standard not in Windows 3.1)
  /.notdef /dotaccent /fi /fl
  /fraction /hungarumlaut /Lslash /lslash
  /ogonek /ring /.notdef
  /breve /minus /.notdef 
% These are the only two remaining unencoded characters, so may as
% well include them.
  /Zcaron /zcaron 
% 0x10
 /caron /dotlessi 
% (unusual TeX characters available in, e.g., Lucida Bright)
 /dotlessj /ff /ffi /ffl 
 /.notdef /.notdef /.notdef /.notdef
 /.notdef /.notdef /.notdef /.notdef
 % very contentious; it's so painful not having quoteleft and quoteright
 % at 96 and 145 that we move the things normally found there to here.
 /grave /quotesingle 
% 0x20 (ASCII begins)
 /space /exclam /quotedbl /numbersign
 /dollar /percent /ampersand /quoteright
 /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash
% 0x30
 /zero /one /two /three /four /five /six /seven
 /eight /nine /colon /semicolon /less /equal /greater /question
% 0x40
 /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O
% 0x50
 /P /Q /R /S /T /U /V /W
 /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore
% 0x60
 /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o
% 0x70
 /p /q /r /s /t /u /v /w
 /x /y /z /braceleft /bar /braceright /asciitilde
 /.notdef % rubout; ASCII ends
% 0x80
 /.notdef /.notdef /quotesinglbase /florin
 /quotedblbase /ellipsis /dagger /daggerdbl
 /circumflex /perthousand /Scaron /guilsinglleft
 /OE /.notdef /.notdef /.notdef
% 0x90
 /.notdef /.notdef /.notdef /quotedblleft
 /quotedblright /bullet /endash /emdash
 /tilde /trademark /scaron /guilsinglright
 /oe /.notdef /.notdef /Ydieresis
% 0xA0
 /.notdef % nobreakspace
 /exclamdown /cent /sterling
 /currency /yen /brokenbar /section
 /dieresis /copyright /ordfeminine /guillemotleft
 /logicalnot
 /hyphen % Y&Y (also at 45); Windows' softhyphen
 /registered
 /macron
% 0xD0
 /degree /plusminus /twosuperior /threesuperior
 /acute /mu /paragraph /periodcentered
 /cedilla /onesuperior /ordmasculine /guillemotright
 /onequarter /onehalf /threequarters /questiondown
% 0xC0
 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
 /Egrave /Eacute /Ecircumflex /Edieresis
 /Igrave /Iacute /Icircumflex /Idieresis
% 0xD0
 /Eth /Ntilde /Ograve /Oacute
 /Ocircumflex /Otilde /Odieresis /multiply
 /Oslash /Ugrave /Uacute /Ucircumflex
 /Udieresis /Yacute /Thorn /germandbls
% 0xE0
 /agrave /aacute /acircumflex /atilde
 /adieresis /aring /ae /ccedilla
 /egrave /eacute /ecircumflex /edieresis
 /igrave /iacute /icircumflex /idieresis
% 0xF0
 /eth /ntilde /ograve /oacute
 /ocircumflex /otilde /odieresis /divide
 /oslash /ugrave /uacute /ucircumflex
 /udieresis /yacute /thorn /ydieresis
] def

%%EndProcSet
%%BeginProcSet: texps.pro
%!
TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics
exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub
dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def}
ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict
end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{
dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1
roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def
dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}
if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}
def end

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (1.0.0.Overview.dvi)
@start /Fa 206[50 49[{TeXBase1Encoding ReEncodeFont}1
99.6264 /Times-Roman rf /Fb 139[48 1[64 1[80 7[80 2[64
3[72 29[104 14[72 72 72 50[{TeXBase1Encoding ReEncodeFont}10
143.462 /Times-Bold rf
%DVIPSBitmapFont: Fc cmbsy10 12 1
/Fc 1 37 df<0378177803FC17FCA3020184A24B177E0203187FA24A48717EA24A48717E
A24A48717E023F854A48717E4ACB6C7EA2D903FE72B4FC4948727F4948737ED93FF0F13F
F04948737E2603FFC073B4FC001F90BD12E0007F1DF8BF12FCA26C1DF8001F1DE0000301
C0CC000F1300C66C6CF11FF86D6C4F5AD90FF8F17FC06D6C4F5A6D6C4E90C7FCD900FFF0
03FCA26E6C4D5A6E6C4D5A021F616E6C4D5AA26E6C4D5AA26E6C4DC8FCA20201187E6F17
FEA2020060A30378177866367AB373>36 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmbsy10 10 1
/Fd 1 49 df<1440EB03F8EB07FE130F14FF5BA35BA214FE137F14FCA2EBFFF8A214F05A
14E0A214C05A148014005A5BA2485AA25B121F5BA2485AA25BA2485A90C7FCA212FEA212
7C120C182C7DAE1D>48 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe cmbsy10 17.28 2
/Fe 2 34 df<003FBE1280481DC0BF12E0A56C1DC06C1D80630972A780>0
D<1FFE1E018BA48C8AA28C1F7F8CA2797EA2797EA2797E8C1F07797E8D797F797F8D7A7E
7A7E7A7E7A7E7A13C07A7F7A13F87A13FE7B6C7E003FC312E04822FCC51280A112C0A3A1
12806CFAFC006C22E0D46C13805748C7FC5613F85613E0565B5690C8FC565A565A565A56
5A69555B555B9EC9FC555A1F0F68555AA2555AA2555AA2681FFF68A2669DCAFCA4671E00
924D77C9A5>33 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ff cmmib10 12 12
/Ff 12 121 df<EB07C0EB1FE0497E137FA313FF5CA35A5CA35A5CA35A91C7FCA25A5BA2
121F5BA2123F5B151E007F143F49133EA200FF147E49137C15FCEC01F89038C003F0EC07
E0EC1FC0EC7F80397FC3FF006CB45A6C13F86C13E0000190C7FC202E7BAC29>19
D<EB07C0D91FE0EC3F80496CECFFC0017F02077F4C7F163F01FF5C16FD9126E003F95BED
07E148DA0FC05B92393F007F80DAC07E013EC7FC4B90C8FC48EBC1F0ECC7E0EC9FC0ECBF
804801FECAFC5CECFFFCEDFFC04815F882D9FE0113FFDA001F7F001F14076F7F497F180F
003FEF1F8019005BA2007F5F183E4915806012FF715A496D13C193387FC3F070B45A496E
5B6C486E5B003EC8D801FEC7FC392E7BAC43>I<EC03FF021F13E091B5EAF0F80103ECF9
FC49903883FFFE903A1FFE007FFFD93FF87F49486D5A495A48150F4849131F4A5C5A4890
C7FC163F485E5B123F167F007F5E5BA216FF00FF5E5BA25D5F5B18784B147CEF80FC18F8
5B17814B14F06C6C15014B1303003F023F14E06D5B001F49B5EA07C0270FFE0FFDEB8F80
6CB500F013FF00014A6C13006C6C9038801FFE903A0FFC0007F8362E7BAC3F>97
D<ED7FF091380FFFFE023FEBFF8091B612C001039038E03FE0010F90388007F090391FFE
000FD93FF8EB3FF8495A4948137F485B48EDFFF0485BA24890C7EA7FE04816C049EC3F80
003F92C7FCA2127F5BA312FF5BA45BA51730007F167817F816036C6CEC07F0001FED1FE0
6DEC7FC06C6C903803FF802707FF803F1300000190B512FC6C15F0013F1480010301F0C7
FC2D2E7BAC33>99 D<EC03F0EC07F8EC0FFC141F143FA415F815F0EC1FE0EC0FC091C7FC
ADEB0FE0EB3FFCEBFFFE487FD803F81380D807E013C0485A5B485A485A123EA2485A1580
A2EAFC0700781400C65A5CA2131F5C133FA25C137F5CA213FFECE01E48143FECC03EA25A
EC807CA215FCEC00F8EC01F01403EC07E06CEB1FC06CEBFF806D1300EB3FFCEB07F02047
7DC528>105 D<ECFF8090B512C05AA215807E1307A21500A25BA25CA2131FA25CA2133F
A25CA2137FA25CA213FFA25CA25AA25CA25AA25CA25AA291C7FCA25AA25BA2121FA25BA2
123FA25B140F007FEB1F80150013F0A25C00FF133E13E0007F5BA214FC5C383FF1F06CB4
5A6C5B00035BC690C7FC1A467EC423>108 D<017FDA0FFEEC1FFC2601FFE090267FFFC0
90B57E48D9F801B5D8E0038048D9FC076E4814F0903FC7FE0FF81FF81FF03FF8D80F8390
3C1FC00FFC3F801F401F03FF3F0007FE7E000FFC037C5D003F4A6E4880003E4A5D49495D
007E4A5D007C605DD8FC0F90C74890C7121F00F84D5D00785B1200011F031F153F644A5D
A2013F033F157F644A5D1BFF017F037F5E624A4B5D1D3C01FF03FF4A147EF4807C4A5D62
484BEF00F8A24A4BECFE011DF0484BEF03E01C074A4BED0FC00803EB3F8074B5120091C7
91C85B6C486E48ED7FF8D800F8DA00F8ED0FE05F2E7DAC67>I<017FEC0FFE2601FFE090
387FFFC048D9F801B57E48D9FC07803C0FC7FE0FF81FF8018390391FC00FFC3C1F03FF3F
0007FE157C003E4A805D495B007C5CA25DD8FC0F90C75A00F85F00785B1200011F151F60
5CA2013F153F605C177F017F5E17FF4A5D191E01FF4A143FF0C03E5C5E48EF807CA24AED
00FC19F848EF01F018034AED07E070EB1FC070EBFF8091C86C13006C48ED3FFCD800F8ED
07F0402E7DAC47>I<ED7FF8020FB57E023F14E091B67E01039038E03FFC010F9038000F
FE49486D7ED93FF86D1380495A49486D13C0485B4817E0485BA24890C7FC5A5B123F5E12
7F5BA25E12FF4916C0A25E18805B18005E5F4C5AA24C5A007F5E4C5A6C6C495B4B5B6C6C
010F90C7FC6C6C495A3A07FF80FFF8000190B512E06C1580013F49C8FC010313C0332E7B
AC3A>I<EC0FC04A7E143F4A7EA314FF5DA35B5DA35B5DA35B92C7FC007FB612C0B712E0
A216C07E26000FFEC7FC131F5CA3133F5CA3137F5CA313FF5CA35A5CA35A5CED03C0ED07
E04815C01400ED0F80151F481500495B0007147E5D4A5A0003495A9038FF0FE06CEBFFC0
6C5CD93FFEC7FCEB0FF823417EBF29>116 D<EB0FE0D93FFCEC03F0D9FFFE4A7E486D14
0FD803F86D497ED807E07F4848153F495E485A485A003E167F60485A5D17FFD8FC075E00
7891C7FCC65A4A5B60131F5C5E013F5E5CA25E017F93C7FC5CF001E04C14F0EFFE034A16
E0A21807041F14C017FC6E013F130F013F027F148016FF90261FF803EC1F00903B0FFE0F
F7FE3E6DB538C3FFFE6D02815B010049C66C5ADA1FF8EB1FE03C2E7DAC44>I<DAFF8013
FF0107D9F00313C0011FD9FC0F13E0496D4813F0903BFF83FF3F83F82601FC009038FE01
FC4848ECFC07D807E09138F80FFE49017F131F000FECFFF04848153F90C7FC4803E013FC
123E4AEC1FF8007E9238C00FF0003CEE07C0C792C7FC5C5EA35C93C8FCA35C5DA2D807C0
1678261FE01F15FCD83FF016F8D87FF85B1701023F15F000FF160301F0ED07E0027F15C0
01E0151F267FC0FFEC3F8001016DEBFF003B3F87F3FF03FCD9FFE1EBFFF86C01C05C0007
D9003F13C0D801FCD907FEC7FC372E7CAC42>120 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fg cmmib10 17.28 1
/Fg 1 60 df<13FE3803FF80000F13E0487F487F487FA2B57EA280A31580A47EA27E7E6C
13EF0003138F3800FE0FEB001FA21500A25CA3147EA35CA2495AA2495A1307495A5C131F
495A49C7FC13FE485A485A485A5B5B6C5A193375962E>59 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fh eusb10 17.28 2
/Fh 2 85 df<0603B512804DB6FC173F0403B6EAFE00041F15F8047F15E00303B7128003
0F01E391C7FC92383FFE03EDFFF84A13C00207138091380FFE00EC3FFCEC7FF04A5A495B
5B495B4990C7FC5B495A137FA213FFA25AA25AA280A45C7E5C6C5BEB7FE0EB3F8090C9FC
AB5F171F94B6FC1603160FEE3FFBEE7FC3923801FF03ED07FEED0FF8ED3FE0ED7FC0EDFF
004A5AEC07FCEC0FF04A5A4A485D4A5A4AC7FC495A495A495AA2495A495A133F495A4A5E
01FF5D4890C8FCA2485A000760A2485AA2121F495F003F5EA261127F5B4D5BA212FF4D5B
A296C8FC4D5AA24D5A7F4C5B4C5B6C6C4A5B4C5B6D4A5B6C6C4A48C9FC6EEBFFFC6CD9E0
015B6CD9F80F13E06C90B612806C4BCAFC6C15F86C15E0011F49CBFC010313E049787CE3
52>74 D<923803FFC0037F01FF181C0203B600F0173E021F03FF177C027F04E016FC49B8
00FCED01F849DDFFC0EC03F0010F06F8140749DEFF80EB1FE0017F07FCEBFFC09026FFE0
0794B612804890C7123F484802071900484802006049031F17F8484803035F001F04005F
65003F6452C7FC007F071F5B080113F06D9538000FC0486C96C9FC7F7F80A28080A37EA2
5C7E5C6C90C9FC6C5AEA01F8CBFCB3A561A54D5BA4615FA261A24D5BA2615F61A2D91FC0
4A90CBFCD97FF05D48486C143F485F6E5D484C5A606E14FF4C5B4C5B6ED907FCCCFC6C91
38801FF89238C07FF092B512C06C5E6C4BCDFC6D14F8011F14C0010701FCCEFCD9003FCF
FC67677DE467>84 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fi cmbx12 17.28 4
/Fi 4 76 df<18FC4D7E4D7EA34D7FA24D7FA34D7FA34D7FA24D7FA394B57EA34C80A24C
80A34C8117F7A2040F8117E3A2DC1FE18017C1043F811780A2047F814D7EA24C6D7F5E03
0182845E0303824C7FA203076E805E030F83845E031F834C7FA2033F6E805E037F838593
C8FC4B834B81A20201707F5D020384855D0207854B81A2020F70805D021F85855D023F85
4B81A2027F8592CA7E4A85865C0101864A83A20103864A8301078786130F90267FFF8085
B76C91B812FCA666647BE371>3 D<167C16FC1501ED07F0150FED1FE0ED3FC0ED7F80ED
FF004A5A14034A5A4A5A5D141F4A5A147F4A5A5D5B4990C7FCA2495A130F5C131FA2495A
A2495AA213FF5C5AA25C5AA25A5CA25AA291C8FCA25AA35B123FA5127F5BA612FFB3A412
7FA67F123FA5121F7FA37EA280A27EA2807EA27E80A27E80137FA26D7EA26D7EA2130F80
13076D7EA26D7F7F816E7E143F6E7E140F816E7E6E7E14016E7EED7F80ED3FC0ED1FE0ED
0FF01507ED01FC1500167C269071EB3F>40 D<127812FC127E6C7E7F6C7E6C7E6C7E6C7E
6C7E7F6C7F6D7E133F806D7E806D7E1307806D7EA26D7F817F81A26E7EA26E7EA281141F
81A2140F81A2168080A216C0A280A216E0A38016F0A516F880A616FCB3A416F8A65C16F0
A516E05CA316C0A25CA21680A25C1600A25D141FA25D143F5DA24A5AA24A5AA25D5B5D49
90C7FCA2495A5C130F495A5C495A5C137F495A4890C8FC5B485A485A485A485A485A5B00
7EC9FC5A1278269077EB3F>I<B96C020FB612FCA6D8000102C0CA003FEBF0000A0390C7
FC525A525AF41FF0525A525A525A090390C8FC515AF30FF8515A515A515A50485A5090C9
FC505AF20FF8505A505A505A4F485A4F90CAFCF107FC4F5A4F5A4F5A4F5A4E485A4E90CB
FCF007FC4E5A4E7E4E7E18FF4D7F4D805F4D804D804D8094B6FC04C181DCC3FE809326C7
FC7F7F9338CFF83F9326DFF01F7FDCFFE0814D6C804D7EDCFE00814C6D804C7F4C6D804C
824C6E7F85737F8873808588738085738088747F86747F8974808689748086748089757F
87757F8A7580878A7580090F14FCB96C010FB8FCA670627AE17E>75
D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 1505 803 a Fi(\()p Fh(J)p Fg(;)1752
718 y Ff(int)1723 803 y Fe(\000)-45 b(!)p Fi(\))1491
1393 y(\()p Fh(T)5 b Fg(;)1758 1308 y Ff(cut)1729 1393
y Fe(\000)-37 b(!)p Fi(\))1473 1984 y(\()p Fh(T)5 b Fg(;)1740
1899 y Ff(aux)1711 1984 y Fe(\000)-64 b(\000)f(!)p Fi(\))1473
2574 y(\()p Fh(T)5 b Fg(;)p 1740 2433 197 4 v 1740 2490
a Ff(aux)1711 2574 y Fe(\000)-64 b(\000)f(!)p Fi(\))1436
3165 y(\()p Fh(T)1607 3113 y Ff(m)1680 3165 y Fg(;)p
1782 3024 V 1782 3080 a Ff(aux)1998 3044 y Fd(0)1754
3165 y Fe(\000)e(\000)f(!)p Fi(\))470 3755 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { BeginArrow 1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow
 } def [ 156.49008 347.12338 156.49008 307.2897  /Lineto /lineto load
def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { BeginArrow 1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow
 } def [ 156.49008 275.99152 156.49008 236.15785  /Lineto /lineto load
def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial
@beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { BeginArrow
1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow  moveto } def /ArrowB
{ } def [ 156.49008 204.85966 156.49008 165.02599  /Lineto /lineto
load def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { BeginArrow
1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow  moveto } def /ArrowB
{ } def [ 156.49008 133.7278 156.49008 93.89413  /Lineto /lineto load
def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial 2478 1984 a(\()p Fh(T)2650 1932
y Fc($)2762 1984 y Fg(;)2864 1899 y Ff(l)q(oc)2836 1984
y Fe(\000)-53 b(!)p Fi(\))470 3755 y @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { BeginArrow 1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow
 } def [ 233.31241 219.08603 199.1692 219.08603  /Lineto /lineto load
def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore
end


@endspecial 487 803 a(\(\003)p Fg(;)803 718 y Ff(\023)736
803 y Fe(\000)-110 b(!)-9 b Fi(\))444 1393 y(\(K)p Fg(;)773
1308 y Ff(\024)706 1393 y Fe(\000)-93 b(!)p Fi(\))470
3755 y @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { BeginArrow
1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow  moveto } def /ArrowB
{ } def [ 113.81097 361.34975 73.9773 361.34975  /Lineto /lineto load
def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { BeginArrow
1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow  moveto } def /ArrowB
{ } def [ 113.81097 290.2179 73.9773 290.2179  /Lineto /lineto load
def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 0.8 SLW 0  setgray  0. true -45.52455 261.76515
88.20367 412.56477 .5 Frame  gsave 0.8 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial
139 476 a Fb(Chapter)34 b(3)470 3755 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.8 SLW 0  setgray  0. true 105.27505 193.47873
361.34975 384.11203 .5 Frame  gsave 0.8 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial 2782 713 a(Chapter)g(2)470 3755
y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.8 SLW 0  setgray  0. true 105.27505 14.22636
256.07469 176.40692 .5 Frame  gsave 0.8 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial 1931 3561 a(Chapter)g(4)470
3755 y @beginspecial @setspecial
 tx@Dict begin STP newpath 0.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 177.82964 159.33553 153.64464 159.33553  /Lineto
/lineto load def false Line  gsave 0.8 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 180.6751 88.20367 156.49008 88.20367  /Lineto /lineto
load def false Line  gsave 0.8 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial Black 1918 5251 a Fa(1)p Black
eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 2995 2146 V 922 2149 2077 4 v Black 1256
2403 a Gg(Figure)24 b(1.1:)29 b(Ov)o(ervie)n(w)24 b(of)f(the)h(thesis.)
p Black Black Black 414 2825 a F6(\017)p Black 45 w Gg(Chapter)k(3)f
(concerns)i(the)f(relation)h(between)f(normalisation)i(and)d
(cut-elimination.)43 b(After)504 2938 y(re)n(vie)n(wing)32
b(some)f(standard)h(material)g(on)e(natural)i(deduction)i(in)c
(intuitionistic)k(logic,)f(we)504 3051 y(sho)n(w)21 b(the)h
(correspondence)j(between)e(normalisation)h(and)d(cut-elimination)k(in)
c(the)g F4(\()p F6(\033)q Ga(;)15 b F6(^)p F4(\))p Gg(-)504
3163 y(fragment)34 b(of)f(intuitionistic)j(logic.)57
b(Then,)35 b(we)c(consider)k(a)d(sequent-conclusio)q(n)38
b(natural)504 3276 y(deduction)24 b(formulation)f(for)e(classical)i
(logic)f(and)f(establish)j(the)d(correspondence)k(between)504
3389 y(normalisation)33 b(and)c(cut-elimination)k(for)c(all)h(connecti)
n(v)o(es.)48 b(W)-7 b(e)28 b(close)i(this)g(chapter)h(with)504
3502 y(some)h(remarks)h(about)f(the)g(natural)i(deduction)g(calculus)f
(introduced)i(by)d(P)o(arigot)g([1992])504 3615 y(and)24
b(compare)h(our)f(approach)i(with)d(the)h(one)g(tak)o(en)h(by)e(Ungar)h
([1992].)p Black 414 3809 a F6(\017)p Black 45 w Gg(Chapter)30
b(4)e(describes)j(\002rst)e(an)f(implementation)k(for)d(one)g(of)g(our)
g(cut-elimination)j(proce-)504 3922 y(dures.)d(F)o(or)20
b(this)g(cut-elimination)k(procedure)f(we)d(pro)o(v)o(e)h(se)n(v)o
(eral)g(properties)i(that)e(consider)n(-)504 4035 y(ably)h(simplify)h
(the)e(implementation.)31 b(Ne)o(xt,)21 b(we)g(analyse)i(a)d
(particular)k(classical)g(proof)e(and)504 4148 y(sho)n(w)g(that)g(the)g
(process)h(of)e(eliminating)j(its)e(cuts)g(corresponds)j(to)c
(non-deterministic)26 b(com-)504 4261 y(putation.)66
b(W)-7 b(e)34 b(then)h(introduce)j(a)c(typed,)39 b(non-deterministic)h
(lambda)35 b(calculus,)40 b(which)504 4374 y(can)e(be)f(seen)g(as)g(a)g
(prototypical)j(functional)g(programming)f(language)g(with)e(an)g
(erratic)504 4487 y(choice)32 b(operator)l(,)i(and)c(sho)n(w)g(ho)n(w)g
(computation)i(in)e(this)h(calculus)h(can)e(be)g(simulated)i(by)504
4599 y(cut-elimination)g(in)c(a)g(fragment)h(of)f(classical)j(logic.)43
b(In)28 b(the)h(last)f(section)i(of)e(this)h(chapter)504
4712 y(we)23 b(comment)h(on)g(the)g(colour)h(annotations)i(introduced)f
(in)e(LK)2566 4679 y Gc(tq)2628 4712 y Gg(.)p Black 414
4906 a F6(\017)p Black 45 w Gg(Chapter)i(5)e(completes)i(the)f
(dissertation)j(by)d(dra)o(wing)g(some)f(conclusions)k(and)d
(suggesting)504 5019 y(further)g(w)o(ork.)p Black 414
5213 a F6(\017)p Black 45 w Gg(Appendix)c(A)c(contains)j(tw)o(o)e
(normal)i(forms)e(of)h(the)f(classical)j(proof)f(analysed)g(in)f
(Chapter)g(4.)p Black 414 5407 a F6(\017)p Black 45 w
Gg(Appendix)26 b(B)c(gi)n(v)o(es)i(the)g(details)h(for)f(some)f(proofs)
i(omitted)g(in)e(the)h(main)g(te)o(xt.)p Black Black
eop end
%%Page: 8 20
TeXDict begin 8 19 bop Black -144 51 a Gb(8)3152 b(Intr)n(oduction)p
-144 88 3691 4 v Black 321 317 a Ge(1.2)119 b(Contrib)n(utions)321
541 y Gg(The)29 b(main)h(contrib)n(ution)j(of)c(this)h(thesis)h(is)e
(to)g(re-e)o(xamine)j(the)d(proof)i(theory)g(of)e(classical)j(logic)321
654 y(under)24 b(the)e(assumption)j(that)d(cut-elimination)k(is)c(an)g
(operation)j(which)d(may)g(or)g(may)g(not)h(preserv)o(e)321
767 y(the)h(equality)i(between)e(proofs.)31 b(Some)22
b(speci\002c)j(contrib)n(utions)j(are)23 b(listed)i(belo)n(w)-6
b(.)p Black 321 996 a Gb(Chapter)23 b(2:)p Black Black
Black Black 658 1142 a F6(\017)p Black 46 w Gg(A)h(sequent)k(calculus)g
(with)e(completely)i(implicit)f(structural)i(rules)d(is)g(de)n(v)o
(eloped)i(for)749 1255 y(classical)d(logic.)30 b(A)22
b(term)i(assignment)i(is)d(gi)n(v)o(en)h(for)g(the)g(proofs)h(of)e
(this)h(calculus.)p Black 658 1401 a F6(\017)p Black
46 w Gg(T)-7 b(w)o(o)23 b(strongly)k(normalising)g(cut-elimination)i
(procedures)e(are)e(designed.)35 b(The)o(y)24 b(are)749
1514 y(less)32 b(restricti)n(v)o(e)j(than)d(pre)n(vious)j(strongly)f
(normalising)h(procedures)g(and)e(allo)n(w)-6 b(,)34
b(in)749 1627 y(general,)25 b(more)e(normal)h(forms)g(to)g(be)f
(reached.)p Black 658 1773 a F6(\017)p Black 46 w Gg(A)29
b(strongly)k(normalising)g(cut-elimination)h(procedure)f(with)d
(completely)j(local)e(re-)749 1886 y(duction)e(rules)f(is)f(de)n(v)o
(eloped.)41 b(As)26 b(f)o(ar)i(as)f(I)f(am)h(a)o(w)o(are,)g(it)g(is)g
(the)g(only)h(strongly)i(nor)n(-)749 1999 y(malising)f(cut-elimination)
j(procedure)e(for)e(classical)j(logic)e(whose)f(reduction)j(rules)749
2112 y(are)23 b(local)i(and)f(which)g(allo)n(ws)f(cuts)i(to)e(be)h
(permuted)h(with)e(other)i(cuts.)p Black 321 2299 a Gb(Chapter)e(3:)p
Black Black Black Black 658 2445 a F6(\017)p Black 46
w Gg(The)e(correspondence)27 b(between)c(the)g(standard)h
(normalisation)i(procedure)f(of)d(NJ)f(and)749 2558 y(the)35
b(intuitionistic)k(v)n(ariant)d(of)f(one)g(of)g(our)g(cut-elimination)k
(procedures)f(is)c(estab-)749 2671 y(lished)24 b(in)g(the)g
F4(\()p F6(\033)p Ga(;)15 b F6(^)p F4(\))p Gg(-fragment.)p
Black 658 2817 a F6(\017)p Black 46 w Gg(A)24 b(counter)k(e)o(xample)f
(is)f(gi)n(v)o(en,)h(which)f(sho)n(ws)g(that)h(certain)g
(cut-elimination)j(reduc-)749 2930 y(tions)f(cannot)h(be)e(mapped,)j
(contrary)f(to)e(commonly)i(accepted)g(belief,)h(onto)e(reduc-)749
3043 y(tions)e(of)f(the)h(e)o(xplicit)h(substitution)i(calculus)e
Ga(\025)p F1(x)p Gg(,)e(pro)o(vided)i(one)f(uses)g(the)f(standard)749
3156 y(translations)g(between)f(sequent)h(proofs)f(and)f(natural)h
(deduction)h(proofs.)p Black 658 3302 a F6(\017)p Black
46 w Gg(A)c(sequence-conclusi)q(on)30 b(natural)25 b(deduction)i
(calculus)f(for)e(classical)i(logic)f(is)e(intro-)749
3415 y(duced.)53 b(It)32 b(is)f(sho)n(wn)h(that)g(its)f(normalisation)k
(procedure)f(is)d(strongly)j(normalising)749 3528 y(and)22
b(that)g(the)h(normal)f(natural)i(deduction)g(proofs)g(respect)f(the)f
(subformula)j(property)-6 b(.)749 3641 y(F)o(or)18 b(this)i(natural)h
(deduction)h(calculus)f(the)f(correspondence)k(between)c(normalisation)
749 3754 y(and)k(cut-elimination)j(is)c(established)k(for)d(all)f
(connecti)n(v)o(es.)p Black 321 3941 a Gb(Chapter)g(4:)p
Black Black Black Black 658 4088 a F6(\017)p Black 46
w Gg(An)k(implementation)32 b(for)d(a)f(leftmost-outermost)33
b(cut-reduction)f(strate)o(gy)e(is)f(de)n(v)o(el-)749
4200 y(oped.)f(This)21 b(strate)o(gy)i(does)f(not)f(restrict)i(the)e
(normal)h(forms)f(reachable)i(from)e(a)g(proof.)p Black
658 4347 a F6(\017)p Black 46 w Gg(The)e(classical)j(proof)e(studied)i
(by)e(Barbanera)h(et)f(al.)f([1997])i(is)f(translated)i(into)e(our)g
(se-)749 4459 y(quent)h(calculus.)30 b(The)20 b(beha)n(viour)j(of)e
(this)g(proof)g(under)h(cut-elimination)i(is)d(analysed,)749
4572 y(and)h(it)f(is)h(sho)n(wn)g(that)h(tw)o(o)e(of)h(its)g(normal)g
(forms)h(dif)n(fer)f(in)g(\223essential\224)j(features.)30
b(The)749 4685 y(normal)24 b(forms)g(are)f(gi)n(v)o(en)h(in)g(Appendix)
h(A.)p Black 658 4831 a F6(\017)p Black 46 w Gg(It)h(is)g(sho)n(wn)h
(that)g(normalisation)i(in)e(the)f(simply-typed)k(lambda)d(calculus)i
(e)o(xtended)749 4944 y(with)24 b(an)h(erratic)h(choice)g(operator)h
(can)e(be)g(simulated)h(by)f(cut-elimination)j(in)d(classi-)749
5057 y(cal)e(logic.)p Black Black eop end
%%Page: 9 21
TeXDict begin 9 20 bop Black Black 277 990 a F8(Chapter)44
b(2)277 1455 y Gf(Sequent)50 b(Calculi)p Black Black
1140 1944 a Gd(In)18 b(order)f(to)i(be)g(able)f(to)h(enunciate)e(and)h
(pro)o(v)o(e)e(the)j F0(Hauptsatz)f Gd(in)g(a)h(con)m(v)o(enient)1140
2044 y(form,)d(I)g(had)f(to)i(pro)o(vide)d(a)i(logical)g(calculus)g
(especially)f(suited)h(to)g(the)h(purpose.)1140 2143
y(F)o(or)j(this)g(the)h(natural)e(deduction)f(calculus)i(pro)o(v)o(ed)e
(unsuitable.)3041 2276 y(\227G.)j(Gentzen)1904 2376 y(in)g(In)m(v)o
(estigations)c(into)j(Logical)g(Deductions,)e(1935.)277
3006 y Gg(T)-7 b(w)o(o)32 b(of)g(Gentzen')-5 b(s)35 b(most)e(striking)i
(and)e(highly)i(original)g(in)l(v)o(entions)g(are)f F7(sequent)g
(calculi)h Gg(and)277 3119 y F7(cut-elimination)28 b(pr)l(ocedur)m(es)p
Gg(.)33 b(In)24 b(this)g(chapter)i(we)d(shall)i(sho)n(w)f(that)h(only)g
(a)e(small)h(restriction)j(on)277 3232 y(the)h(standard)i
(cut-elimination)i(procedure)f(for)d(classical)i(logic)f(is)f(suf)n
(\002cient)h(to)f(obtain)h(strongly)277 3345 y(normalising)36
b(proof)e(transformations.)62 b(Prior)34 b(to)f(our)g(w)o(ork,)j(some)d
(strongly)j(normalising)g(cut-)277 3458 y(elimination)e(procedures,)i
(notably)d(in)f([Dragalin,)g(1988,)g(Danos)g(et)f(al.,)g(1997],)j(ha)n
(v)o(e)e(been)g(de-)277 3571 y(v)o(eloped,)c(b)n(ut)e(all)g(of)g(them)f
(impose)i(some)f(quite)g(strong)i(restrictions.)38 b(W)-7
b(e)25 b(shall)i(sho)n(w)e(that)h(these)277 3683 y(restrictions)35
b(are)d(unnecessary)j(to)c(ensure)i(strong)g(normalisation.)56
b(The)31 b(basic)h(idea)g(of)g(our)g(cut-)277 3796 y(elimination)i
(procedure)h(is)d(to)f(pro)o(vide)j(some)e(means)g(to)g(pre)n(v)o(ent)h
(interference)i(between)e(proof)277 3909 y(transformations)27
b(that)e(simply)f(permute)g(cut-rules)i(upw)o(ards)f(in)f(a)f(proof.)
418 4072 y(W)-7 b(e)27 b(shall)h(\002rst)f(describe)j(Gentzen')-5
b(s)29 b(sequent)g(calculi)g(LK)d(and)i(LJ,)e(and)i(the)f(main)h(ideas)
g(be-)277 4185 y(hind)35 b(his)f F7(Hauptsatz)i Gg(\(cut-elimination)i
(theorem\).)61 b(Ne)o(xt,)36 b(we)d(shall)i(de)n(vise)g(term)f
(annotations)277 4298 y(for)i(proofs)h(of)f(a)f(sequent)i(calculus)h
(of)e(classical)h(logic,)j(whose)c(inference)i(rules)e(are)g(inspired)
277 4411 y(by)f(a)f(v)n(ariant)j(of)d(Kleene')-5 b(s)37
b(sequent)f(calculus)h(G3.)62 b(The)35 b(main)f(part)i(of)f(this)g
(chapter)i(is)d(occu-)277 4524 y(pied)23 b(by)g(an,)f(unfortunately)-6
b(,)27 b(rather)d(lengthy)g(proof)f(of)g(strong)h(normalisation)h(in)e
(which)g(we)e(adapt)277 4637 y(the)27 b(technique)j(of)c(symmetric)i
(reducibility)i(candidates)g(de)n(v)o(eloped)f(by)e(Barbanera)h(and)g
(Berardi)277 4750 y([1994].)43 b(Subsequently)-6 b(,)31
b(we)c(e)o(xtend)i(this)f(result)h(to)f(the)g(\002rst-order)h(case)g
(and)f(to)f(other)i(formula-)277 4863 y(tions)i(of)e(the)h
(propositional)j(fragment.)48 b(The)29 b(cut-elimination)k(procedure)f
(for)d(which)h(we)f(pro)o(v)o(e)277 4976 y(strong)d(normalisation)i
(depends)f(on)d(a)g(global,)j(or)d(non-local,)j(notion)f(of)f(proof)g
(substitution.)36 b(Us-)277 5088 y(ing)d(results)i(concerning)h(e)o
(xplicit)e(substitution)j(calculi)d(we)e(can)i(replace)g(the)f(global)i
(operation)277 5201 y(with)23 b(completely)j(local)e(proof)g
(transformations)j(and)d(obtain)g(again)g(a)f(strongly)i(normalising)h
(cut-)277 5314 y(elimination)g(procedure.)p Black Black
eop end
%%Page: 10 22
TeXDict begin 10 21 bop Black -144 51 a Gb(10)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Ge(2.1)119
b(Gentzen')l(s)30 b(Sequent)i(Calculi)321 541 y Gg(In)h(his)f(seminal)i
(paper)f([1935])h(Gentzen)g(introduced)h(the)e(sequent)h(calculi)g(LJ)e
(and)h(LK)e(for)h(in-)321 654 y(tuitionistic)h(and)d(classical)i
(logic,)g(respecti)n(v)o(ely)-6 b(.)50 b(He)29 b(w)o(as)h(able)g(to)g
(sho)n(w)f(that)h(for)g(each)h(sequent)321 767 y(proof)23
b(a)f(normal)h(form)f(can)g(be)h(found)g(in)f(which)g(all)h
(applications)i(of)d(the)h(cut-rule)h(are)e(eliminated.)321
880 y(Gentzen)j(not)e(only)i(pro)o(v)o(ed)f(that)g(all)f(occurrences)k
(of)c(this)h(rule)f(can)h(be)f(eliminated,)j(b)n(ut)d(also)h(ga)n(v)o
(e)321 993 y(a)29 b(simple)h(procedure)i(for)e(doing)h(so.)46
b(Before)30 b(we)e(outline)k(this)e(procedure,)j(let)c(us)h(\002rst)f
(e)o(xamine)321 1106 y(LK)22 b(in)i(more)f(detail.)462
1235 y(A)f F7(sequent)i Gg(in)e(LK)f(is)h(a)g(pair)h
F4(\(\000)p Ga(;)15 b F4(\001\))22 b Gg(of)g(\002nite)g(multisets)i(of)
e(formulae,)i(commonly)g(written)f(as)321 1348 y F4(\000)p
398 1336 11 41 v 409 1318 46 5 v 96 w(\001)p Gg(,)g(where)g(the)h
(formulae)h(are)f(gi)n(v)o(en)g(by)g(the)f(grammar)p
Black Black 1218 1577 a Ga(B)30 b F4(::=)25 b Ga(A)h
F6(j)f(:)p Ga(B)30 b F6(j)25 b Ga(B)5 b F6(^)o Ga(B)30
b F6(j)25 b Ga(B)5 b F6(_)p Ga(B)29 b F6(j)d Ga(B)5 b
F6(\033)o Ga(B)30 b Gg(.)321 1806 y(W)-7 b(e)35 b(adopt)h(the)f(con)l
(v)o(ention)k(that)c Ga(A)g Gg(stands)h(for)g(atomic)f(formulae,)k
(also)d(called)h(propositional)321 1919 y(symbols,)c(and)e
Ga(B)5 b(;)15 b(C)q(;)g(:)g(:)g(:)32 b Gg(for)e(arbitrary)j(formulae.)
51 b(The)30 b(turnstile)i(di)n(vides)g(a)e(sequent)j(into)e(tw)o(o)321
2032 y(zones,)24 b(called)g(the)g F7(antecedent)i Gg(and)d(the)g
F7(succedent)p Gg(.)31 b(The)23 b(intuiti)n(v)o(e)h(meaning)g(of)f(a)g
(sequent)h(of)f(the)321 2145 y(form)1454 2367 y Ga(B)1523
2381 y F9(1)1562 2367 y Ga(;)15 b(:)g(:)g(:)i(;)e(B)1833
2381 y Gc(n)p 1900 2355 11 41 v 1910 2337 46 5 v 1976
2367 a Ga(C)2041 2381 y F9(1)2081 2367 y Ga(;)g(:)g(:)g(:)h(;)f(C)2347
2381 y Gc(m)321 2588 y Gg(is)20 b(that)h(the)f(conjunction)k(of)c(the)g
(formulae,)i Ga(B)1801 2602 y Gc(i)1829 2588 y Gg(,)d(in)h(the)h
(antecedent)i(implies)e(the)f(disjunction)j(of)d(the)321
2701 y(formulae,)27 b Ga(C)762 2715 y Gc(j)799 2701 y
Gg(,)d(in)i(the)f(succedent.)37 b(There)25 b(is)h(no)f(e)o(xplicit)i
(constant)g(for)f(f)o(alsum)g(in)f(LK;)f(ho)n(we)n(v)o(er)l(,)321
2814 y(a)f(sequent)j(with)d(an)h(empty)g(succedent,)i(say)e
F4(\000)p 1853 2802 11 41 v 1863 2784 46 5 v 96 w Gg(,)e(can)i(be)g
(interpreted)i(as)e F4(\000)e Gg(implies)j(f)o(alsum.)462
2943 y(The)k(proofs)i(in)e(Gentzen')-5 b(s)31 b(sequent)g(calculi)g
(are)e(tree-structures)34 b(where)29 b(the)g(lea)n(v)o(es)i(are)e
F7(ax-)321 3056 y(ioms)37 b Gg(of)f(the)g(form)p 999
2977 244 4 v 37 w Ga(B)p 1092 3044 11 41 v 1103 3026
46 5 v 101 w(B)k Gg(and)c(the)h(nodes)h(are)e F7(infer)m(ence)j(rules)p
Gg(.)68 b(There)36 b(are)h(three)g(kinds)h(of)321 3169
y(inference)28 b(rules:)33 b(logical)27 b(rules,)f(structural)h(rules)f
(and)g(the)f(cut-rule.)35 b(The)25 b(logical)h(and)g(structural)321
3282 y(inference)g(rules)f(f)o(all)f(into)g(tw)o(o)f(groups\227left)j
(rules)f(and)f(right)g(rules\227depending)k(on)c(which)g(half)321
3395 y(of)g(the)g(sequent)h(the)o(y)f(act)g(on.)k(Some)23
b(of)h(the)g(logical)h(rules)f(are)g(listed)h(belo)n(w)-6
b(.)p Black Black 1016 3676 a Ga(B)1085 3690 y Gc(i)1113
3676 y Ga(;)15 b F4(\000)p 1231 3664 11 41 v 1241 3646
46 5 v 97 w(\001)p 926 3714 547 4 v 926 3792 a Ga(B)995
3806 y F9(1)1034 3792 y F6(^)p Ga(B)1164 3806 y F9(2)1203
3792 y Ga(;)g F4(\000)p 1321 3780 11 41 v 1331 3762 46
5 v 97 w(\001)1514 3727 y F6(^)1575 3741 y Gc(L)1623
3751 y FZ(i)2190 3676 y F4(\000)p 2267 3664 11 41 v 2277
3646 46 5 v 96 w(\001)p Ga(;)g(B)95 b F4(\000)p 2700
3664 11 41 v 2711 3646 46 5 v 96 w(\001)p Ga(;)15 b(C)p
2190 3714 775 4 v 2339 3792 a F4(\000)p 2416 3780 11
41 v 2427 3762 46 5 v 97 w(\001)p Ga(;)g(B)5 b F6(^)o
Ga(C)3006 3732 y F6(^)3066 3746 y Gc(R)828 3995 y Ga(B)g(;)15
b F4(\000)p 1019 3983 11 41 v 1029 3965 46 5 v 96 w(\001)90
b Ga(C)q(;)15 b F4(\000)p 1445 3983 11 41 v 1456 3965
46 5 v 97 w(\001)p 828 4032 770 4 v 977 4111 a Ga(B)5
b F6(_)p Ga(C)q(;)15 b F4(\000)p 1295 4099 11 41 v 1306
4081 46 5 v 97 w(\001)1639 4051 y F6(_)1699 4065 y Gc(L)2381
3995 y F4(\000)p 2458 3983 11 41 v 2468 3965 46 5 v 96
w(\001)p Ga(;)g(B)2719 4009 y Gc(i)p 2291 4032 547 4
v 2291 4111 a F4(\000)p 2368 4099 11 41 v 2378 4081 46
5 v 96 w(\001)p Ga(;)g(B)2629 4125 y F9(1)2668 4111 y
F6(_)p Ga(B)2798 4125 y F9(2)2879 4046 y F6(_)2939 4060
y Gc(R)2992 4070 y FZ(i)744 4313 y F4(\000)801 4327 y
F9(1)p 860 4301 11 41 v 871 4283 46 5 v 936 4313 a F4(\001)1012
4327 y F9(1)1051 4313 y Ga(;)g(B)96 b(C)q(;)15 b F4(\000)1419
4327 y F9(2)p 1480 4301 11 41 v 1490 4283 46 5 v 1556
4313 a F4(\001)1632 4327 y F9(2)p 744 4351 928 4 v 782
4430 a Ga(B)5 b F6(\033)o Ga(C)q(;)15 b F4(\000)1089
4444 y F9(1)1129 4430 y Ga(;)g F4(\000)1226 4444 y F9(2)p
1286 4418 11 41 v 1296 4400 46 5 v 1362 4430 a F4(\001)1438
4444 y F9(1)1477 4430 y Ga(;)g F4(\001)1593 4444 y F9(2)1712
4368 y F6(\033)1783 4383 y Gc(L)2344 4313 y Ga(B)5 b(;)15
b F4(\000)p 2535 4301 11 41 v 2546 4283 46 5 v 96 w(\001)p
Ga(;)g(C)p 2329 4351 485 4 v 2329 4430 a F4(\000)p 2406
4418 11 41 v 2417 4400 46 5 v 96 w(\001)p Ga(;)g(B)5
b F6(\033)p Ga(C)2856 4368 y F6(\033)2927 4383 y Gc(R)321
4733 y Gg(W)-7 b(e)24 b(say)i(the)f F6(^)806 4747 y Gc(L)854
4757 y FZ(i)884 4733 y Gg(-rule)h(introduces)i(the)e(formula)g
Ga(B)2000 4747 y F9(1)2039 4733 y F6(^)p Ga(B)2169 4747
y F9(2)2208 4733 y Gg(\227the)f F7(main)g(formula)i Gg(of)e(this)g
(inference)321 4846 y(rule\227and)k(refer)e(to)g F4(\000)f
Gg(and)h F4(\001)e Gg(as)i F7(conte)n(xts)i Gg(\(multisets)g(of)d
(formulae\).)40 b(In)27 b(both)g(the)g(premise)h(and)321
4959 y(conclusion)i(of)d(this)h(rule)g(the)f(comma)g(is)g(interpreted)j
(as)d(the)g(multiset)i(union.)40 b(The)27 b(terminology)321
5072 y(gi)n(v)o(en)d(for)g F6(^)732 5086 y Gc(L)780 5096
y FZ(i)833 5072 y Gg(also)g(applies)h(to)f(the)g(other)g(rules.)462
5201 y(There)e(is)f(a)g(slight)i(peculiarity)h(in)e(Gentzen')-5
b(s)23 b F6(\033)2016 5215 y Gc(L)2068 5201 y Gg(-rule,)f(in)f(which,)h
(if)g(we)e(read)i(it)f(from)h(bottom)321 5314 y(to)k(top,)h(the)f
(conte)o(xts)i(are)e(split)h(up)f(into)h(tw)o(o)f(multisets.)37
b(In)26 b(contrast,)i(in)e(the)h(inference)h(rules)f
F6(^)3489 5328 y Gc(R)p Black Black eop end
%%Page: 11 23
TeXDict begin 11 22 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
(Sequent)e(Calculi)2442 b(11)p 277 88 3691 4 v Black
277 317 a Gg(and)33 b F6(_)500 331 y Gc(L)584 317 y Gg(both)g(premises)
g(share)h(the)e(same)g(conte)o(xt.)56 b(The)32 b(rules)h(sharing)h(the)
e(conte)o(xts)i(are)f(said)277 430 y(to)28 b(be)h F7(additive)p
Gg(,)i(while)d(the)h(rules)g(splitting)h(the)f(conte)o(xts)h(are)e
(said)h(to)f(be)g F7(multiplicative)p Gg(.)46 b(Ev)o(ery)277
543 y(inference)26 b(rule)e(with)f(tw)o(o)h(premises)h(can)e(be)h
(de\002ned)g(either)h(w)o(ay)-6 b(.)418 673 y(In)26 b(our)g
(formulation)i(of)e(Gentzen')-5 b(s)28 b(LK)c(there)i(are)g(four)h
(structural)h(rules)f(again)f(di)n(vided)i(into)277 786
y(left)c(and)g(right)g(rules.)967 753 y F5(1)p Black
Black 1067 956 a F4(\000)p 1144 944 11 41 v 1155 926
46 5 v 96 w(\001)p 1010 976 343 4 v 1010 1055 a Ga(B)5
b(;)15 b F4(\000)p 1201 1043 11 41 v 1212 1025 46 5 v
96 w(\001)1395 1000 y Gg(W)-7 b(eak)1599 1014 y Gc(L)2179
956 y F4(\000)p 2256 944 11 41 v 2267 926 46 5 v 96 w(\001)p
2122 976 343 4 v 2122 1055 a(\000)p 2199 1043 11 41 v
2210 1025 46 5 v 96 w(\001)p Ga(;)15 b(B)2506 1000 y
Gg(W)-7 b(eak)2710 1014 y Gc(R)952 1269 y Ga(B)5 b(;)15
b(B)5 b(;)15 b F4(\000)p 1257 1257 11 41 v 1268 1239
46 5 v 96 w(\001)p 952 1307 457 4 v 1009 1385 a Ga(B)5
b(;)15 b F4(\000)p 1200 1373 11 41 v 1211 1355 46 5 v
96 w(\001)1450 1331 y Gg(Contr)1656 1345 y Gc(L)2064
1269 y F4(\000)p 2141 1257 11 41 v 2151 1239 46 5 v 96
w(\001)p Ga(;)g(B)5 b(;)15 b(B)p 2064 1307 457 4 v 2121
1385 a F4(\000)p 2198 1373 11 41 v 2208 1355 46 5 v 96
w(\001)p Ga(;)g(B)2562 1331 y Gg(Contr)2768 1345 y Gc(R)277
1570 y Gg(The)23 b(only)i(inference)g(rule)g(that)f(is)f(neither)i(a)e
(left)h(nor)g(a)f(right)i(rule)f(is)f(the)h(cut-rule)p
Black Black 1336 1741 a F4(\000)1393 1755 y F9(1)p 1453
1729 11 41 v 1463 1711 46 5 v 1529 1741 a F4(\001)1605
1755 y F9(1)1644 1741 y Ga(;)15 b(B)96 b(B)5 b(;)15 b
F4(\000)2020 1755 y F9(2)p 2079 1729 11 41 v 2089 1711
46 5 v 2155 1741 a F4(\001)2231 1755 y F9(2)p 1336 1779
935 4 v 1503 1857 a F4(\000)1560 1871 y F9(1)1599 1857
y Ga(;)g F4(\000)1696 1871 y F9(2)p 1756 1845 11 41 v
1767 1827 46 5 v 1832 1857 a F4(\001)1908 1871 y F9(1)1948
1857 y Ga(;)g F4(\001)2064 1871 y F9(2)2312 1809 y Gg(Cut)277
2042 y(in)24 b(which)f(the)h(formula)h Ga(B)i Gg(is)c(called)i(the)f
F7(cut-formula)p Gg(.)418 2172 y(The)36 b(intuitionistic)k(sequent)e
(calculus)g(LJ)d(can)h(be)g(obtained)j(from)d(LK)e(by)i(restricting)j
(the)277 2285 y(succedent)33 b(of)c(sequents)j(to)e(at)g(most)g(a)f
(single)i(formula,)h(by)e(dropping)i(the)f(Contr)2992
2299 y Gc(R)3050 2285 y Gg(-rule)g(and)f(by)277 2398
y(replacing)c(the)e F6(\033)843 2412 y Gc(L)895 2398
y Gg(-rule)g(with)p Black Black 1415 2568 a F4(\000)1472
2582 y F9(1)p 1532 2556 11 41 v 1542 2538 46 5 v 1608
2568 a Ga(B)95 b(C)q(;)15 b F4(\000)1935 2582 y F9(2)p
1995 2556 11 41 v 2006 2538 46 5 v 2072 2568 a Ga(D)p
1415 2606 735 4 v 1453 2685 a(B)5 b F6(\033)o Ga(C)q(;)15
b F4(\000)1760 2699 y F9(1)1800 2685 y Ga(;)g F4(\000)1897
2699 y F9(2)p 1957 2673 11 41 v 1968 2654 46 5 v 2033
2685 a Ga(D)2191 2623 y F6(\033)2262 2637 y Gc(L)2339
2623 y Ga(:)418 2869 y Gg(One)37 b(of)g(Gentzen')-5 b(s)39
b(moti)n(v)o(es)f(when)f(designing)j(the)d(sequent)i(calculi)g(LK)d
(and)h(LJ)g(w)o(as)f(to)277 2982 y(pro)o(vide)e(deducti)n(v)o(e)h
(systems)e(for)g(classical)h(and)f(intuitionistic)k(logic,)e(respecti)n
(v)o(ely)-6 b(,)37 b(for)c(which)277 3095 y F7(consistency)24
b Gg(could)e(be)e(established)k(by)d(simple)g(methods.)29
b(Let)20 b(us)h(brie\003y)g(illustrate)i(his)d(ar)n(gument)277
3208 y(for)g(consistenc)o(y)-6 b(.)31 b(First)20 b(notice)h(that)f(in)g
(sequent)i(calculi)f(consistenc)o(y)i(coincides)g(with)c(the)h(absence)
277 3321 y(of)35 b(a)g(proof)h(for)f(the)h(empty)f(sequent)i(\(i.e.,)h
(both)e(the)f(antecedent)j(and)e(succedent)i(are)d(empty\).)277
3434 y(Assume)26 b(we)f(w)o(ould)h(be)g(gi)n(v)o(en)g(a)g(proof)g(of)g
(this)g(sequent,)i(then)f(we)e(can)h(construct)i(a)e(proof)g(of)g(the)
277 3547 y(sequent)p 606 3535 11 41 v 617 3517 46 5 v
131 w Ga(B)5 b F6(^)o(:)p Ga(B)35 b Gg(simply)e(by)g(applying)h(W)-7
b(eak)1937 3561 y Gc(R)1996 3547 y Gg(.)54 b(In)32 b(f)o(act,)i(we)e(w)
o(ould)h(be)f(able)h(to)f(construct)277 3660 y(for)f(an)o(y)g(formula)h
Ga(C)k Gg(a)30 b(proof)i(of)f(the)g(sequent)p 1879 3648
11 41 v 1889 3630 46 5 v 144 w Ga(C)22 b Gg(.)49 b(Ob)o(viously)-6
b(,)34 b(LK)29 b(and)j(LJ)e(w)o(ould)h(then)g(be)277
3773 y(inconsistent.)69 b(F)o(ortunately)-6 b(,)41 b(there)c(is)e(no)h
(proof)h(of)f(the)g(empty)g(sequent)i(in)e(either)h(LK)d(or)i(LJ.)277
3886 y(Although)28 b(this)e(is)g(not)h(ob)o(vious,)h(it)d(is)h(easy)h
(to)f(v)o(erify)h(that)f(there)h(cannot)h(be)e(an)o(y)g(such)h(proof)g
(that)277 3998 y(enjo)o(ys)e(the)f(subformula)i(property)-6
b(.)p Black 277 4186 a Gb(De\002nition)23 b(2.1.1)g Gg(\(Subformula)j
(and)e(Subformula)h(Property\))p Gb(:)p Black Black 414
4393 a F6(\017)p Black 45 w Gg(The)j(relation)i Ga(B)h
F7(is)d(a)g(subformula)i(of)41 b Ga(C)34 b Gg(is)28 b(de\002ned)h(as)e
(the)i(transiti)n(v)o(e,)h(re\003e)o(xi)n(v)o(e)f(closure)504
4506 y(of)24 b(the)g(clauses:)p Black 614 4689 a F6(\017)p
Black 45 w Ga(B)5 b Gg(,)22 b Ga(C)30 b Gg(are)23 b(subformulae)j(of)e
Ga(B)5 b F6(^)o Ga(C)i Gg(,)22 b Ga(B)5 b F6(_)o Ga(C)29
b Gg(and)24 b Ga(B)5 b F6(\033)p Ga(C)i Gg(,)21 b(and)p
Black 614 4831 a F6(\017)p Black 45 w Ga(B)28 b Gg(is)23
b(a)g(subformula)j(of)d F6(:)p Ga(B)5 b Gg(.)p Black
414 5014 a F6(\017)p Black 45 w Gg(A)27 b(proof)h Ga(\031)i
Gg(of)d(the)g(sequent)j F4(\000)p 1523 5002 11 41 v 1533
4984 46 5 v 96 w(\001)c Gg(enjo)o(ys)j(the)e F7(subformula)j(pr)l
(operty)p Gg(,)g(if)d(and)h(only)g(if)f(all)504 5127
y(formulae)e(occurring)h(in)e Ga(\031)i Gg(are)d(subformulae)k(of)c
(the)h(formulae)h(in)e F4(\000)g Gg(and)h F4(\001)p Gg(.)p
Black 277 5227 1290 4 v 383 5283 a F3(1)412 5314 y F2(Gentzen)17
b(de\002ned)g(sequents)h(using)g(sequences)g(of)f(formulae)g(and)g
(therefore)g(also)g(had)g(an)g(e)o(xplicit)g(Exchange-rule.)p
Black Black Black eop end
%%Page: 12 24
TeXDict begin 12 23 bop Black -144 51 a Gb(12)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(The)27
b(crux)h(of)f(Gentzen')-5 b(s)29 b(ar)n(gument)g(for)e(consistenc)o(y)k
(is)c(that)g(in)g(LJ)g(and)g(LK)f(all)h(cut-free)i(proofs)321
430 y(enjo)o(y)e(the)f(subformula)j(property:)35 b(the)27
b(premises)g(of)e(the)h(logical)i(and)e(structural)i(inference)h(rules)
321 543 y(contain)37 b(only)f(subformulae)i(of)d(their)h(respecti)n(v)o
(e)h(conclusion.)67 b(If)34 b(there)i(were)f(a)g(proof)h(of)f(the)321
656 y(empty)26 b(sequent,)h(then)f(according)i(to)d(his)h
F7(Hauptsatz)h Gg(there)f(must)f(be)h(one)f(without)i(cuts.)34
b(But)25 b(this)321 769 y(cut-free)34 b(proof)e(w)o(ould)g(lack)g(the)g
(subformula)i(property)-6 b(.)55 b(Consequently)-6 b(,)36
b(there)d(cannot)g(be)e(an)o(y)321 882 y(proof)25 b(of)e(the)h(empty)g
(sequent)i(in)d(either)i(LK)d(or)h(LJ.)462 1017 y(Since)29
b(Gentzen')-5 b(s)31 b(w)o(ork)e(man)o(y)f F7(Haupts)1794
1018 y(\250)1787 1017 y(atze)j Gg(ha)n(v)o(e)f(appeared)h(for)e(v)n
(arious)h(sequent)g(calculus)321 1130 y(formulations.)66
b(The)o(y)34 b(all)h(use)g(his)g(technique)j(of)d(proof)h
(transformations,)41 b(referred)36 b(to)f(as)g F7(cut-)321
1243 y(r)m(eductions)p Gg(,)24 b(which)e(con)l(v)o(ert)h(a)e(proof)h
(containing)i(cuts)e(not)g(immediately)h(to)e(a)f(cut-free)j(proof,)g
(b)n(ut)321 1356 y(replace)e(the)e(cuts)h(by)f(simpler)h(cuts,)h(or)e
(permute)h(the)f(cuts)h(to)n(w)o(ards)g(the)f(lea)n(v)o(es)i(where)e
(the)o(y)g(e)n(v)o(entu-)321 1469 y(ally)j(v)n(anish.)29
b(Iterating)23 b(this)f(process)h(of)e(applying)i(proof)g
(transformations)i(will)20 b(lead)i(to)f(a)g(cut-free)321
1582 y(proof.)66 b(W)-7 b(e)35 b(shall)h(sk)o(etch)h(the)f(main)g
(lines)g(of)g(Gentzen')-5 b(s)37 b F7(Hauptsatz)h Gg(by)d(gi)n(ving)i
(some)f(of)f(his)321 1695 y(cut-reductions.)48 b(Ho)n(we)n(v)o(er)l(,)
30 b(in)e(what)h(follo)n(ws)g(we)e(shall)j(study)g(se)n(v)o(eral)f(dif)
n(ferent)i(cut-reduction)321 1808 y(systems,)h(and)e(for)g(this)g(it)f
(is)g(con)l(v)o(enient)k(to)c(introduce)j(some)e(notation)h(and)f
(terminology)j(com-)321 1921 y(monly)j(used)g(in)f(connection)j(with)d
(term)h(re)n(writing)g(\(see)g(for)f(e)o(xample)h([Baader)g(and)g(Nipk)
o(o)n(w)-6 b(,)321 2033 y(1998]\).)p Black 321 2221 a
Gb(De\002nition)23 b(2.1.2:)p Black Black 458 2422 a
F6(\017)p Black 46 w Gg(A)f F7(r)m(eduction)k(system)e
Gg(is)f(the)h(pair)g F4(\()p FY(A)p Ga(;)15 b F6(\000)-30
b(\000)e(!)p F4(\))p Gg(,)23 b(in)g(which)p Black 658
2633 a F6(\017)p Black 46 w FY(A)f Gg(is)i(a)f(set)h(of)f(objects)i
(\(in)f(this)g(thesis)h(usually)g(a)e(set)h(of)g(terms)f(or)h
(proofs\),)h(and)p Black 658 2791 a F6(\017)p Black 46
w(\000)-32 b(\000)h(!)23 b Gg(is)g(a)g(binary)i(relation)g(o)o(v)o(er)f
FY(A)p Gg(;)f(it)g(is)h(often)g(referred)i(to)d(as)g(a)h
F7(r)m(eduction)p Gg(.)549 3002 y(Instead)33 b(of)e(writing)i
F4(\()p Ga(a;)15 b(b)p F4(\))41 b F6(2\000)-32 b(\000)h(!)p
Gg(,)32 b(we)f(write)g Ga(a)41 b F6(\000)-32 b(\000)h(!)40
b Ga(b)31 b Gg(and)h(say)f Ga(a)g Gg(reduces)j(to)d Ga(b)p
Gg(.)52 b(The)549 3115 y(transiti)n(v)o(e)24 b(and)e(the)h(re\003e)o
(xi)n(v)o(e)f(transiti)n(v)o(e)i(closure)g(of)e F6(\000)-31
b(\000)f(!)22 b Gg(is)g(written)h(as)f F6(\000)-32 b(\000)h(!)3081
3082 y F9(+)3161 3115 y Gg(and)23 b F6(\000)-31 b(\000)f(!)3484
3082 y FX(\003)3524 3115 y Gg(,)549 3228 y(respecti)n(v)o(ely)-6
b(.)30 b(W)-7 b(e)19 b(shall)h(often)h(annotate)h(the)d(`)p
F6(\000)-31 b(\000)g(!)p Gg(')19 b(to)h(qualify)h(the)f(reduction)i(in)
e(question.)549 3390 y(Whene)n(v)o(er)29 b(we)f(de\002ne)h(a)f
(reduction,)k(say)d Ga(a)34 b F6(\000)-31 b(\000)g(!)34
b Ga(b)p Gg(,)29 b(we)e(automatically)32 b(assume)d(that)g(the)549
3503 y(reduction)e(is)e(closed)i(under)f(conte)o(xt)h(formation.)35
b(This)25 b(is)f(a)h(standard)i(con)l(v)o(ention)i(in)c(term)549
3616 y(re)n(writing.)p Black 458 3827 a F6(\017)p Black
46 w Gg(A)d(term)i(is)g(said)h(to)f(be)g(a)f F7(normal)i(form)f
Gg(if)g(and)g(only)h(if)f(it)f(does)i(not)g(reduce.)31
b(In)24 b(this)h(thesis)g(a)549 3940 y(normal)f(form)f(often)i
(corresponds)i(to)c(a)g(cut-free)j(proof.)p Black 458
4151 a F6(\017)p Black 46 w Gg(Let)h Ga(a)h Gg(be)g(an)g(element)h(of)g
FY(A)p Gg(,)f(then)h Ga(a)e Gg(is)i(said)f(to)h(be)f
F7(str)l(ongly)i(normalising)h Gg(if)d(and)h(only)g(if)549
4264 y(all)g(reduction)j(sequences)g(starting)g(from)d
Ga(a)g Gg(are)g(\002nite.)47 b(In)29 b(this)h(case)g(we)f(write)g
Ga(a)c F6(2)g Ga(S)5 b(N)3508 4278 y Gc(r)549 4377 y
Gg(and)21 b(use)j FW(M)t(A)t(X)t(R)t(E)t(D)1184 4391
y Gc(r)1222 4377 y F4(\()p Ga(a)p F4(\))d Gg(to)g(denote)i(the)e
(longest)i(reduction)h(sequence)f(starting)g(from)f Ga(a)e
Gg(\(the)549 4490 y(annotation)26 b Ga(r)f Gg(indicates)h(to)e(which)g
(reduction)i(these)f(notions)g(refer)f(to\).)29 b(Correspondingly)-6
b(,)549 4603 y(a)25 b(reduction)j(system)e(is)g(said)g(to)f(be)h
(strongly)i(normalising)g(if)d(and)h(only)h(if)e(all)h(elements)h(of)
549 4716 y FY(A)22 b Gg(are)i(strongly)i(normalising.)462
4976 y(Cut-reductions)h(come)22 b(in)h(tw)o(o)f(\003a)n(v)n(ours)j
(depending)g(on)e(whether)h(the)o(y)f(apply)h(to)e F7(lo)o(gical)j
(cuts)321 5088 y Gg(or)j F7(commuting)i(cuts)p Gg(.)42
b(A)27 b(cut)i(is)e(said)i(to)f(be)g(a)g(logical)h(cut)g(when)f(the)g
(cut-formula)j(is)d(introduced)321 5201 y(on)d(both)h(sides)f(by)g
(axioms)h(or)e(logical)j(inference)g(rules;)f(otherwise)h(the)e(cut)g
(is)f(said)i(to)e(be)h(a)g(com-)p Black Black eop end
%%Page: 13 25
TeXDict begin 13 24 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
(Sequent)e(Calculi)2442 b(13)p 277 88 3691 4 v Black
277 317 a Gg(muting)24 b(cut.)29 b(An)23 b(instance)j(of)d(a)g(logical)
j(cut)d(is)h(as)f(follo)n(ws.)p Black Black 929 523 a
F4(\000)986 537 y F9(1)p 1046 511 11 41 v 1056 493 46
5 v 1122 523 a F4(\001)1198 537 y F9(1)1237 523 y Ga(;)15
b(B)96 b F4(\000)1499 537 y F9(1)p 1558 511 11 41 v 1569
493 46 5 v 1635 523 a F4(\001)1711 537 y F9(1)1750 523
y Ga(;)15 b(C)p 929 560 933 4 v 1119 639 a F4(\000)1176
653 y F9(1)p 1235 627 11 41 v 1246 609 46 5 v 1311 639
a F4(\001)1387 653 y F9(1)1426 639 y Ga(;)g(B)5 b F6(^)p
Ga(C)1903 579 y F6(^)1964 593 y Gc(R)2176 523 y Ga(B)g(;)15
b F4(\000)2347 537 y F9(2)p 2406 511 11 41 v 2417 493
46 5 v 2482 523 a F4(\001)2558 537 y F9(2)p 2112 560
549 4 v 2112 639 a Ga(B)5 b F6(^)o Ga(C)q(;)15 b F4(\000)2409
653 y F9(2)p 2470 627 11 41 v 2480 609 46 5 v 2546 639
a F4(\001)2622 653 y F9(2)2703 574 y F6(^)2763 588 y
Gc(L)2811 597 y FV(1)p 1119 677 1543 4 v 1590 756 a F4(\000)1647
770 y F9(1)1686 756 y Ga(;)g F4(\000)1783 770 y F9(2)p
1843 744 11 41 v 1853 725 46 5 v 1919 756 a F4(\001)1995
770 y F9(1)2034 756 y Ga(;)g F4(\001)2150 770 y F9(2)2703
707 y Gg(Cut)277 975 y(Here)21 b(the)h(cut-formula,)i
Ga(B)5 b F6(^)o Ga(C)i Gg(,)21 b(is)g(the)h(main)f(formula)i(in)e(both)
h(the)g F6(^)2519 989 y Gc(R)2597 975 y Gg(and)g F6(^)2810
989 y Gc(L)2858 998 y FV(1)2897 975 y Gg(-rule.)28 b(According)277
1088 y(to)c(Gentzen')-5 b(s)25 b(procedure)h(this)e(cut)g(reduces)h(to)
p Black Black 1336 1269 a F4(\000)1393 1283 y F9(1)p
1453 1257 11 41 v 1463 1239 46 5 v 1529 1269 a F4(\001)1605
1283 y F9(1)1644 1269 y Ga(;)15 b(B)96 b(B)5 b(;)15 b
F4(\000)2020 1283 y F9(2)p 2079 1257 11 41 v 2089 1239
46 5 v 2155 1269 a F4(\001)2231 1283 y F9(2)p 1336 1306
935 4 v 1503 1385 a F4(\000)1560 1399 y F9(1)1599 1385
y Ga(;)g F4(\000)1696 1399 y F9(2)p 1756 1373 11 41 v
1767 1355 46 5 v 1832 1385 a F4(\001)1908 1399 y F9(1)1948
1385 y Ga(;)g F4(\001)2064 1399 y F9(2)2312 1337 y Gg(Cut)277
1580 y(where)26 b(the)f(de)o(gree)h(of)f(the)h(cut-formula)h(has)f
(decreased)i(\(the)d(de)o(gree)i(of)e(a)f(formula)i(is)f(de\002ned)h
(as)277 1693 y(usual\).)k(Another)25 b(instance)g(of)f(a)f(logical)i
(cut)f(is)f(as)h(follo)n(ws.)p Black Black 1236 1898
a F4(\000)p 1313 1886 11 41 v 1323 1868 46 5 v 96 w(\001)p
Ga(;)15 b(B)p 1170 1936 475 4 v 1170 2015 a F4(\000)p
1247 2003 11 41 v 1257 1984 46 5 v 96 w(\001)p Ga(;)g(B)5
b F6(_)o Ga(C)1686 1950 y F6(_)1747 1964 y Gc(R)1800
1973 y FV(1)p 1929 1936 508 4 v 1929 2015 a Ga(B)g F6(_)o
Ga(C)p 2155 2003 11 41 v 2166 1984 46 5 v 103 w(B)g F6(_)o
Ga(C)p 1170 2052 1268 4 v 1566 2131 a F4(\000)p 1643
2119 11 41 v 1653 2101 46 5 v 96 w(\001)p Ga(;)15 b(B)5
b F6(_)o Ga(C)2478 2083 y Gg(Cut)277 2351 y(Here)24 b(the)g
(cut-formula)i(is)e(introduced)j(by)d(a)f(logical)j(rule)e(and)h(by)f
(an)g(axiom.)30 b(Clearly)-6 b(,)25 b(this)f(appli-)277
2463 y(cation)h(of)e(the)h(cut)g(can)g(disappear)l(,)i(to)e(yield)g
(the)g(follo)n(wing)h(proof.)p Black Black 1621 2669
a F4(\000)p 1698 2657 11 41 v 1709 2639 46 5 v 96 w(\001)p
Ga(;)15 b(B)p 1555 2707 475 4 v 1555 2785 a F4(\000)p
1632 2773 11 41 v 1643 2755 46 5 v 96 w(\001)p Ga(;)g(B)5
b F6(_)p Ga(C)2072 2720 y F6(_)2132 2734 y Gc(R)2185
2743 y FV(1)418 3005 y Gg(In)31 b(the)h(cases)g(where)g(a)e(cut)i
(cannot)h(be)e(transformed)j(by)d(a)g(cut-reduction)k(for)c(logical)i
(cuts,)277 3118 y(then)28 b(the)g(cut)g(is)g(a)f(commuting)i(cut,)f
(for)g(which)g(proof)h(transformations)i(are)d(de\002ned)g(permuting)
277 3231 y(the)c(cut)g(to)n(w)o(ards)g(the)g(lea)n(v)o(es.)30
b(A)22 b(typical)j(instance)h(of)d(a)h(commuting)g(cut)g(is)g(the)f
(proof)1011 3431 y Ga(B)5 b(;)15 b F4(\000)1182 3445
y F9(1)p 1242 3419 11 41 v 1252 3400 46 5 v 1318 3431
a F4(\001)1394 3445 y F9(1)1433 3431 y Ga(;)g(C)q(;)g(D)p
996 3468 678 4 v 996 3547 a F4(\000)1053 3561 y F9(1)p
1113 3535 11 41 v 1123 3517 46 5 v 1189 3547 a F4(\001)1265
3561 y F9(1)1304 3547 y Ga(;)g(B)5 b F6(\033)p Ga(C)q(;)15
b(D)1715 3486 y F6(\033)1785 3500 y Gc(R)1995 3431 y
Ga(D)s(;)g(E)5 b(;)15 b F4(\000)2282 3445 y F9(2)p 2342
3419 11 41 v 2353 3400 46 5 v 2418 3431 a F4(\001)2494
3445 y F9(2)p 1934 3468 661 4 v 1934 3547 a Ga(D)s(;)g(E)5
b F6(^)p Ga(F)s(;)15 b F4(\000)2343 3561 y F9(2)p 2403
3535 11 41 v 2413 3517 46 5 v 2479 3547 a F4(\001)2555
3561 y F9(2)2636 3482 y F6(^)2696 3496 y Gc(L)2744 3505
y FV(1)p 996 3584 1599 4 v 1250 3663 a Ga(E)5 b F6(^)p
Ga(F)s(;)15 b F4(\000)1541 3677 y F9(1)1581 3663 y Ga(;)g
F4(\000)1678 3677 y F9(2)p 1737 3651 11 41 v 1748 3633
46 5 v 1814 3663 a F4(\001)1890 3677 y F9(1)1929 3663
y Ga(;)g F4(\001)2045 3677 y F9(2)2084 3663 y Ga(;)g(B)5
b F6(\033)p Ga(C)2636 3615 y Gg(Cut)p Black 3328 3663
a(\(2.1\))p Black 277 3846 a(whose)25 b(cut-formula,)j
Ga(D)s Gg(,)c(is)g(not)h(introduced)j(by)d(the)g(inference)j(rules)d
(directly)i(abo)o(v)o(e)e(the)h(cut.)32 b(In)277 3959
y(this)e(case,)h(the)f(cut)f(is)g(permuted)i(upw)o(ards)f(in)g(the)f
(proof)i(yielding)g(either)f(one)g(of)f(the)h(follo)n(wing)277
4072 y(tw)o(o)23 b(proofs.)p Black Black 280 4394 a Ga(B)5
b(;)15 b F4(\000)451 4408 y F9(1)p 510 4382 11 41 v 521
4364 46 5 v 586 4394 a F4(\001)662 4408 y F9(1)702 4394
y Ga(;)g(C)q(;)g(D)1063 4278 y(D)s(;)g(E)5 b(;)15 b F4(\000)1350
4292 y F9(2)p 1411 4266 11 41 v 1421 4247 46 5 v 1487
4278 a F4(\001)1563 4292 y F9(2)p 1002 4315 661 4 v 1002
4394 a Ga(D)s(;)g(E)5 b F6(^)q Ga(F)s(;)15 b F4(\000)1412
4408 y F9(2)p 1471 4382 11 41 v 1482 4364 46 5 v 1547
4394 a F4(\001)1623 4408 y F9(2)1689 4329 y F6(^)1750
4343 y Gc(L)1798 4352 y FV(1)p 280 4431 1383 4 v 441
4510 a Ga(B)5 b(;)15 b(E)5 b F6(^)p Ga(F)s(;)15 b F4(\000)846
4524 y F9(1)886 4510 y Ga(;)g F4(\000)983 4524 y F9(2)p
1043 4498 11 41 v 1053 4480 46 5 v 1119 4510 a F4(\001)1195
4524 y F9(1)1234 4510 y Ga(;)g F4(\001)1350 4524 y F9(2)1389
4510 y Ga(;)g(C)1689 4462 y Gg(Cut)p 426 4548 1091 4
v 426 4627 a Ga(E)5 b F6(^)p Ga(F)s(;)15 b F4(\000)717
4641 y F9(1)757 4627 y Ga(;)g F4(\000)854 4641 y F9(2)p
914 4615 11 41 v 924 4596 46 5 v 990 4627 a F4(\001)1066
4641 y F9(1)1105 4627 y Ga(;)g F4(\001)1221 4641 y F9(2)1260
4627 y Ga(;)g(B)5 b F6(\033)p Ga(C)1558 4565 y F6(\033)1629
4579 y Gc(R)1911 4278 y Ga(B)g(;)15 b F4(\000)2082 4292
y F9(1)p 2141 4266 11 41 v 2151 4247 46 5 v 2217 4278
a F4(\001)2293 4292 y F9(1)2332 4278 y Ga(;)g(C)q(;)g(D)p
1895 4315 678 4 v 1895 4394 a F4(\000)1952 4408 y F9(1)p
2012 4382 11 41 v 2022 4364 46 5 v 2088 4394 a F4(\001)2164
4408 y F9(1)2203 4394 y Ga(;)g(B)5 b F6(\033)p Ga(C)q(;)15
b(D)2599 4333 y F6(\033)2669 4347 y Gc(R)2803 4394 y
Ga(D)s(;)g(E)5 b(;)15 b F4(\000)3090 4408 y F9(2)p 3150
4382 11 41 v 3161 4364 46 5 v 3226 4394 a F4(\001)3302
4408 y F9(2)p 1895 4431 1447 4 v 2134 4510 a Ga(E)5 b(;)15
b F4(\000)2303 4524 y F9(1)2343 4510 y Ga(;)g F4(\000)2440
4524 y F9(2)p 2500 4498 11 41 v 2510 4480 46 5 v 2576
4510 a F4(\001)2652 4524 y F9(1)2691 4510 y Ga(;)g F4(\001)2807
4524 y F9(2)2847 4510 y Ga(;)g(B)5 b F6(\033)p Ga(C)3368
4462 y Gg(Cut)p 2073 4548 1091 4 v 2073 4627 a Ga(E)g
F6(^)p Ga(F)s(;)15 b F4(\000)2364 4641 y F9(1)2404 4627
y Ga(;)g F4(\000)2501 4641 y F9(2)p 2561 4615 11 41 v
2571 4596 46 5 v 2637 4627 a F4(\001)2713 4641 y F9(1)2752
4627 y Ga(;)g F4(\001)2868 4641 y F9(2)2908 4627 y Ga(;)g(B)5
b F6(\033)o Ga(C)3205 4561 y F6(^)3266 4575 y Gc(L)3314
4584 y FV(1)277 4846 y Gg(Usually)-6 b(,)23 b(it)e(is)g(left)g
(unspeci\002ed)j(which)d(alternati)n(v)o(e)j(is)d(tak)o(en,)i(and)e
(therefore)j(commuting)e(cuts)g(are)277 4959 y(a)g(source)h(of)f
(non-determinism.)32 b(This)22 b(is)g(a)g(point)h(we)e(shall)i(study)g
(more)g(closely)g(in)f(the)h(follo)n(wing)277 5072 y(sections)j(of)d
(this)h(chapter)-5 b(.)418 5201 y(The)28 b(intricacies)i(of)e(a)g
(cut-elimination)j(theorem)e(lie)f(in)g(the)g(f)o(act)g(that)h(one)f
(has)g(to)g(sho)n(w)g(that)277 5314 y(the)k(process)i(of)e(applying)i
(cut-reductions)i(terminates;)i(this)33 b(is)f(complicated)i(in)e(LK)e
(and)i(other)p Black Black eop end
%%Page: 14 26
TeXDict begin 14 25 bop Black -144 51 a Gb(14)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(sequent)k(calculi)f(by)
e(the)h(presence)i(of)d(contractions.)33 b(Consider)25
b(the)f(follo)n(wing)h(commuting)f(cut.)1170 521 y F4(\000)1227
535 y F9(1)p 1287 509 11 41 v 1297 491 46 5 v 1363 521
a F4(\001)1439 535 y F9(1)1478 521 y Ga(;)15 b(B)5 b(;)15
b(B)p 1170 559 536 4 v 1227 637 a F4(\000)1284 651 y
F9(1)p 1344 625 11 41 v 1354 607 46 5 v 1420 637 a F4(\001)1496
651 y F9(1)1535 637 y Ga(;)g(B)1747 583 y Gg(Contr)1953
597 y Gc(R)2103 637 y Ga(B)5 b(;)15 b F4(\000)2274 651
y F9(2)p 2333 625 11 41 v 2344 607 46 5 v 2409 637 a
F4(\001)2485 651 y F9(2)p 1227 675 1298 4 v 1576 754
a F4(\000)1633 768 y F9(1)1672 754 y Ga(;)g F4(\000)1769
768 y F9(2)p 1829 742 11 41 v 1839 724 46 5 v 1905 754
a F4(\001)1981 768 y F9(1)2020 754 y Ga(;)g F4(\001)2136
768 y F9(2)2566 705 y Gg(Cut)p Black 3372 754 a(\(2.2\))p
Black 321 942 a(This)24 b(cut)f(reduces)j(to)981 1145
y F4(\000)1038 1159 y F9(1)p 1097 1133 11 41 v 1107 1115
46 5 v 1173 1145 a F4(\001)1249 1159 y F9(1)1288 1145
y Ga(;)15 b(B)5 b(;)15 b(B)96 b(B)5 b(;)15 b F4(\000)1778
1159 y F9(2)p 1837 1133 11 41 v 1848 1115 46 5 v 1914
1145 a F4(\001)1990 1159 y F9(2)p 981 1183 1049 4 v 1148
1262 a F4(\000)1205 1276 y F9(1)1244 1262 y Ga(;)g F4(\000)1341
1276 y F9(2)p 1401 1250 11 41 v 1411 1231 46 5 v 1477
1262 a F4(\001)1553 1276 y F9(1)1592 1262 y Ga(;)g F4(\001)1708
1276 y F9(2)1748 1262 y Ga(;)g(B)2070 1213 y Gg(Cut)2293
1262 y Ga(B)5 b(;)15 b F4(\000)2464 1276 y F9(2)p 2523
1250 11 41 v 2533 1231 46 5 v 2599 1262 a F4(\001)2675
1276 y F9(2)p 1148 1299 1567 4 v 1485 1378 a F4(\000)1542
1392 y F9(1)1581 1378 y Ga(;)g F4(\000)1678 1392 y F9(2)1718
1378 y Ga(;)g F4(\000)1815 1392 y F9(2)p 1875 1366 11
41 v 1885 1348 46 5 v 1951 1378 a F4(\001)2027 1392 y
F9(1)2066 1378 y Ga(;)g F4(\001)2182 1392 y F9(2)2221
1378 y Ga(;)g F4(\001)2337 1392 y F9(2)2756 1330 y Gg(Cut)p
1485 1416 893 4 v 1489 1452 884 4 v 1631 1531 a F4(\000)1688
1545 y F9(1)1727 1531 y Ga(;)g F4(\000)1824 1545 y F9(2)p
1884 1519 11 41 v 1895 1501 46 5 v 1960 1531 a F4(\001)2036
1545 y F9(1)2075 1531 y Ga(;)g F4(\001)2191 1545 y F9(2)2414
1482 y Gg(Contr)p Black 3372 1531 a(\(2.3\))p Black 321
1719 a(where)22 b(the)g(right)g(subproof)i(has)e(been)h(duplicated)h
(and)e(where)g(the)g(double)h(lines)f(stand)h(for)f(se)n(v)o(eral)321
1831 y(contractions.)32 b(The)22 b(reader)h(will)f(see)g(that)h(the)g
(proof-size)h(of)f(the)f(reduct)i(is)d(v)n(astly)j(bigger)f(than)g(the)
321 1944 y(proof)k(from)e(which)g(we)f(started.)35 b(In)26
b(f)o(act,)f(it)g(is)g(not)h(hard)g(to)f(check)h(that)g(the)f
(cut-elimination)k(pro-)321 2057 y(cess)g(can)f(result)g(into)h(super)n
(-e)o(xponential)k(gro)n(wth)28 b(of)f(the)h(proof-size;)33
b(see)28 b(for)f(e)o(xample)i([Girard)321 2170 y(et)24
b(al.,)e(1989,)j(P)o(age)e(111].)462 2301 y(When)d(designing)j(a)c
(cut-elimination)k(procedure)f(one)f(therefore)g(has)f(to)g(tak)o(e)g
(care)h(that)f(for)g(e)n(v-)321 2414 y(ery)26 b(sequent)i(proof)f(the)f
(process)i(of)d(applying)k(cut-reductions)h(actually)e(terminates;)h
(that)d(means)321 2526 y(it)e(leads)h(to)f(a)f(cut-free)j(proof.)31
b(In)24 b(this)h(thesis)g(we)e(shall)i(introduce)h(se)n(v)o(eral)f(no)o
(v)o(el)g(cut-elimination)321 2639 y(procedures)g(for)d(classical)i
(logic.)30 b(The)21 b(design)i(of)f(these)h(procedures)i(is)d(moti)n(v)
n(ated)h(by)f(the)g(follo)n(w-)321 2752 y(ing)i(three)h(criteria:)p
Black 458 2986 a F6(\017)p Black 46 w Gg(\002rst,)42
b(the)e(cut-elimination)j(procedure)f(should)f F7(not)f
Gg(restrict)h(the)e(collection)k(of)c(normal)549 3099
y(forms)31 b(reachable)j(from)d(a)g(gi)n(v)o(en)h(proof)h(in)e(such)h
(a)f(w)o(ay)g(that)h(\223essential\224)i(normal)e(forms)549
3212 y(are)23 b(no)h(longer)h(reachable,)p Black 458
3404 a F6(\017)p Black 46 w Gg(second,)f(the)g(cut-elimination)j
(procedure)g(should)e(be)e F7(str)l(ongly)j(normalising)p
Gg(,)g(i.e.,)c(all)i(pos-)549 3516 y(sible)g(reduction)i(strate)o(gies)
g(should)f(terminate,)g(and)p Black 458 3708 a F6(\017)p
Black 46 w Gg(third,)f(the)g(cut-elimination)j(procedure)f(should)f
(allo)n(w)f(cuts)g(to)f(pass)i(o)o(v)o(er)e(other)i(cuts.)321
3942 y(At)j(the)g(time)g(of)h(writing,)h(we)d(are)i(una)o(w)o(are)g(of)
f(an)o(y)h(other)g(cut-elimination)j(procedure)f(for)d(a)g(se-)321
4055 y(quent)37 b(calculus)h(formulation)h(of)c(classical)j(logic)f
(that)g(satis\002es)g(all)e(three)i(criteria.)68 b(So)35
b(let)h(us)321 4168 y(justify)25 b(these)g(criteria.)462
4298 y(As)31 b(we)f(ha)n(v)o(e)i(seen)g(abo)o(v)o(e,)h(some)e
(cut-reductions)36 b(can)31 b(be)g(applied)i(in)e(a)g
(non-deterministic)321 4411 y(f)o(ashion)36 b(so)d(that)h(applying)i
(dif)n(ferent)g(cut-reductions)h(may)d(result)g(in)g(dif)n(ferent)h
(normal)g(forms.)321 4524 y(W)l(ith)g(respect)h(to)e(our)h(\002rst)f
(criterion,)39 b(most)c(e)o(xisting)h(cut-elimination)i(procedures,)i
(including)321 4637 y(Gentzen')-5 b(s)29 b(original,)g(are)e(thus)g
(quite)h(unsatisf)o(actory)j(since)d(the)o(y)f(terminate)h(only)f(if)g
(a)f(particular)321 4750 y(strate)o(gy)20 b(for)f(applying)h
(cut-reductions)j(is)18 b(emplo)o(yed\227the)o(y)j(are)d
F7(weakly)h(normalising)p Gg(.)30 b(Common)321 4863 y(e)o(xamples)k
(being)g(an)e(innermost)i(reduction)h(strate)o(gy)-6
b(,)36 b(or)d(the)f(elimination)j(of)e(the)f(cut)h(with)f(the)321
4976 y(highest)k(rank.)60 b(An)34 b(unpleasant)i(consequence)i(of)c
(these)h(strate)o(gies)h(is)d(that)i(the)o(y)f(surly)h(restrict)321
5088 y(the)30 b(number)g(of)f(normal)h(forms)f(reachable)j(from)d(a)g
(gi)n(v)o(en)g(proof.)47 b(As)28 b(we)h(shall)h(demonstrate)i(in)321
5201 y(Chapter)f(4,)g(the)g(normal)g(forms)f(reachable)i(from)e(a)g
(proof)h(play)g(ho)n(we)n(v)o(er)f(an)g(important)i(r)8
b(\210)-38 b(ole)31 b(in)321 5314 y(in)l(v)o(estigating)h(a)27
b(computational)k(interpretation)h(for)c(classical)i(proofs.)44
b(Therefore)29 b(our)f(\002rst)g(tw)o(o)321 5427 y(criteria.)p
Black Black eop end
%%Page: 15 27
TeXDict begin 15 26 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
(Sequent)e(Calculi)2442 b(15)p 277 88 3691 4 v Black
418 317 a Gg(As)35 b(a)h(\002rst)g(attempt)h(for)f(a)f(strongly)k
(normalising)f(cut-elimination)i(procedure)e(one)f(might)277
430 y(tak)o(e)e(simply)g(an)g(unrestricted)i(v)o(ersion)f(of)e
(Gentzen')-5 b(s)36 b(cut-elimination)j(procedure;)j(that)35
b(is)f(by)277 543 y(remo)o(ving)21 b(the)f(strate)o(gy)-6
b(.)29 b(Unfortunately)-6 b(,)23 b(this)d(w)o(ould,)h(as)e(stated)i
(earlier)l(,)h(allo)n(w)d(in\002nite)i(reduction)277
656 y(sequences,)32 b(one)c(of)h(which)f(is)g(illustrated)j(in)d(the)g
(follo)n(wing)i(e)o(xample)f(gi)n(v)o(en)g(by)f(Gallier)h([1993])277
769 y(and)24 b(Danos)g(et)f(al.)h([1997].)p Black 277
957 a Gb(Example)f(2.1.3:)p Black 35 w Gg(Consider)i(the)e(proof)p
Black Black 1074 1071 213 4 v 1074 1144 a FU(A)p 1154
1132 10 38 v 1164 1116 42 4 v 88 w(A)p 1369 1071 213
4 v 83 w(A)p 1450 1132 10 38 v 1460 1116 42 4 v 89 w(A)p
1074 1164 509 4 v 1113 1238 a(A)p FT(_)q FU(A)p 1311
1226 10 38 v 1321 1209 42 4 v 88 w(A;)14 b(A)1623 1181
y FT(_)1679 1193 y FS(L)p 1113 1274 430 4 v 1163 1347
a FU(A)p FT(_)p FU(A)p 1361 1335 10 38 v 1371 1318 42
4 v 89 w(A)1584 1296 y FR(Contr)1797 1308 y FS(R)p 1934
1071 213 4 v 1934 1144 a FU(A)p 2014 1132 10 38 v 2024
1116 42 4 v 88 w(A)p 2229 1071 213 4 v 83 w(A)p 2310
1132 10 38 v 2319 1116 42 4 v 88 w(A)p 1934 1164 509
4 v 1973 1238 a(A;)g(A)p 2153 1226 10 38 v 2162 1209
42 4 v 88 w(A)p FT(^)q FU(A)2483 1181 y FT(^)2538 1193
y FS(R)p 1973 1274 430 4 v 2022 1347 a FU(A)p 2103 1335
10 38 v 2113 1318 42 4 v 89 w(A)p FT(^)p FU(A)2444 1296
y FR(Contr)2657 1308 y FS(L)p 1163 1367 1190 4 v 1534
1440 a FU(A)p FT(_)p FU(A)p 1732 1428 10 38 v 1742 1412
42 4 v 89 w(A)p FT(^)p FU(A)2394 1395 y FR(Cut)277 1607
y Gg(The)22 b(problem)h(lies)g(with)e(the)i(lo)n(wer)f(cut,)g(which)h
(needs)g(to)f(be)g(permuted)i(upw)o(ards.)29 b(There)22
b(are)h(tw)o(o)277 1720 y(possible)32 b(reductions:)43
b(either)30 b(the)g(cut)f(can)h(be)f(permuted)i(upw)o(ards)f(in)f(the)h
(left)f(proof)i(branch)f(or)277 1833 y(in)d(the)h(right)g(proof)h
(branch.)42 b(In)27 b(both)h(cases)h(a)e(subproof)i(needs)g(to)e(be)h
(duplicated.)43 b(If)27 b(one)h(is)f(not)277 1945 y(careful,)34
b(applying)f(these)e(reductions)j(in)c(alternation)k(can)d(lead)g(to)g
(arbitrary)i(big)e(normal)g(forms)277 2058 y(and)e(to)f
(non-termination.)47 b(F)o(or)28 b(e)o(xample,)i(consider)g(the)f
(reduction)i(sequence)g(starting)f(with)e(the)277 2171
y(proof)d(abo)o(v)o(e)f(and)g(continuing)i(as)e(follo)n(ws)p
Black Black 730 2395 213 4 v 730 2468 a FU(A)p 811 2456
10 38 v 821 2440 42 4 v 89 w(A)p 1026 2395 213 4 v 83
w(A)p 1107 2456 10 38 v 1116 2440 42 4 v 88 w(A)p 730
2488 509 4 v 770 2562 a(A)p FT(_)p FU(A)p 968 2550 10
38 v 978 2533 42 4 v 89 w(A;)14 b(A)1280 2505 y FT(_)1335
2517 y FS(L)p 1468 2286 213 4 v 1468 2359 a FU(A)p 1549
2347 10 38 v 1558 2330 42 4 v 88 w(A)p 1763 2286 213
4 v 83 w(A)p 1844 2347 10 38 v 1854 2330 42 4 v 89 w(A)p
1468 2379 509 4 v 1507 2452 a(A;)g(A)p 1687 2440 10 38
v 1697 2423 42 4 v 89 w(A)p FT(^)p FU(A)2017 2396 y FT(^)2073
2408 y FS(R)p 1507 2488 430 4 v 1557 2562 a FU(A)p 1638
2550 10 38 v 1647 2533 42 4 v 88 w(A)p FT(^)q FU(A)1978
2510 y Gd(Contr)2168 2522 y FS(L)p 770 2598 1118 4 v
1055 2671 a FU(A)p FT(_)q FU(A)p 1253 2659 10 38 v 1263
2642 42 4 v 88 w(A;)g(A)p FT(^)q FU(A)1929 2625 y Gd(Cut)p
2300 2395 213 4 v 2300 2468 a FU(A)p 2381 2456 10 38
v 2390 2440 42 4 v 88 w(A)p 2595 2395 213 4 v 83 w(A)p
2676 2456 10 38 v 2686 2440 42 4 v 89 w(A)p 2300 2488
509 4 v 2339 2562 a(A;)g(A)p 2519 2550 10 38 v 2529 2533
42 4 v 89 w(A)p FT(^)p FU(A)2849 2505 y FT(^)2905 2517
y FS(R)p 2339 2598 430 4 v 2389 2671 a FU(A)p 2470 2659
10 38 v 2479 2642 42 4 v 88 w(A)p FT(^)q FU(A)2810 2620
y Gd(Contr)3000 2632 y FS(L)p 1055 2707 1665 4 v 1555
2780 a FU(A)p FT(_)p FU(A)p 1753 2768 10 38 v 1763 2752
42 4 v 89 w(A)p FT(^)p FU(A;)g(A)p FT(^)q FU(A)2761 2735
y Gd(Cut)p 1555 2816 665 4 v 1663 2890 a FU(A)p FT(_)q
FU(A)p 1861 2878 10 38 v 1871 2861 42 4 v 88 w(A)p FT(^)q
FU(A)2261 2838 y Gd(Contr)2451 2850 y FS(R)277 3056 y
Gg(where)34 b(the)f(cut)g(is)g(permuted)i(to)e(the)g(left,)j(creating)f
(tw)o(o)e(copies)h(of)f(the)h(right)g(subproof.)60 b(No)n(w)277
3169 y(permute)25 b(the)f(upper)g(cut)g(to)g(the)f(right,)i(which)e(gi)
n(v)o(es)h(the)g(follo)n(wing)h(proof.)p Black Black
395 3393 213 4 v 395 3466 a FU(A)p 476 3454 10 38 v 485
3438 42 4 v 88 w(A)p 690 3393 213 4 v 83 w(A)p 771 3454
10 38 v 781 3438 42 4 v 89 w(A)p 395 3486 509 4 v 434
3559 a(A)p FT(_)q FU(A)p 633 3547 10 38 v 642 3531 42
4 v 88 w(A;)14 b(A)944 3503 y FT(_)1000 3515 y FS(L)p
1132 3283 213 4 v 1132 3357 a FU(A)p 1213 3345 10 38
v 1223 3328 42 4 v 89 w(A)p 1428 3283 213 4 v 83 w(A)p
1509 3345 10 38 v 1518 3328 42 4 v 88 w(A)p 1132 3377
509 4 v 1172 3450 a(A)p FT(_)p FU(A)p 1370 3438 10 38
v 1380 3421 42 4 v 89 w(A;)g(A)1682 3394 y FT(_)1737
3406 y FS(L)p 1870 3283 213 4 v 1870 3357 a FU(A)p 1951
3345 10 38 v 1960 3328 42 4 v 88 w(A)p 2166 3283 213
4 v 84 w(A)p 2246 3345 10 38 v 2256 3328 42 4 v 88 w(A)p
1870 3377 509 4 v 1909 3450 a(A;)g(A)p 2089 3438 10 38
v 2099 3421 42 4 v 89 w(A)p FT(^)p FU(A)2420 3394 y FT(^)2475
3406 y FS(R)p 1172 3486 1167 4 v 1432 3559 a FU(A)p FT(_)q
FU(A;)g(A)p 1730 3547 10 38 v 1739 3531 42 4 v 88 w(A;)g(A)p
FT(^)q FU(A)2380 3514 y Gd(Cut)p 434 3596 1645 4 v 825
3669 a FU(A)p FT(_)p FU(A;)g(A)p FT(_)q FU(A)p 1240 3657
10 38 v 1250 3640 42 4 v 88 w(A;)g(A;)g(A)p FT(^)q FU(A)2120
3623 y Gd(Cut)p 825 3705 863 4 v 933 3778 a FU(A)p FT(_)q
FU(A)p 1132 3766 10 38 v 1141 3750 42 4 v 88 w(A;)g(A;)g(A)p
FT(^)q FU(A)1729 3727 y Gd(Contr)1919 3739 y FS(L)p 933
3814 647 4 v 983 3888 a FU(A)p FT(_)p FU(A)p 1181 3876
10 38 v 1191 3859 42 4 v 89 w(A;)g(A)p FT(^)p FU(A)1621
3837 y FR(Contr)1834 3849 y FS(R)p 2612 3612 213 4 v
2612 3685 a FU(A)p 2693 3673 10 38 v 2703 3656 42 4 v
89 w(A)p 2908 3612 213 4 v 83 w(A)p 2989 3673 10 38 v
2998 3656 42 4 v 88 w(A)p 2612 3705 509 4 v 2652 3778
a(A;)g(A)p 2832 3766 10 38 v 2841 3750 42 4 v 88 w(A)p
FT(^)q FU(A)3162 3722 y FT(^)3217 3734 y FS(R)p 2652
3814 430 4 v 2701 3888 a FU(A)p 2782 3876 10 38 v 2792
3859 42 4 v 89 w(A)p FT(^)p FU(A)3123 3837 y FR(Contr)3336
3849 y FS(L)p 983 3924 2049 4 v 1675 3997 a FU(A)p FT(_)q
FU(A)p 1873 3985 10 38 v 1883 3968 42 4 v 88 w(A)p FT(^)p
FU(A;)g(A)p FT(^)q FU(A)3073 3952 y FR(Cut)p 1675 4033
665 4 v 1783 4106 a FU(A)p FT(_)q FU(A)p 1982 4094 10
38 v 1991 4078 42 4 v 88 w(A)p FT(^)q FU(A)2381 4055
y Gd(Contr)2571 4067 y FS(R)277 4273 y Gg(This)22 b(proof)i(contains)h
(an)d(instance)j(of)d(the)h(reduction)i(applied)f(in)f(the)g(\002rst)f
(step)h(\(bold)g(f)o(ace\).)30 b(Ev)o(en)277 4386 y(w)o(orse,)23
b(it)f(is)h(bigger)h(than)f(the)g(proof)h(with)e(which)h(we)f(started,)
i(and)f(so)f(in)h(ef)n(fect)g(we)f(can)h(construct)277
4499 y(reduction)j(sequences)g(with)e(possibly)i(in\002nitely)f(big)f
(normal)g(forms.)418 4753 y(It)g(seems)h(dif)n(\002cult)g(to)f(a)n(v)n
(oid)i(the)f(in\002nite)g(reduction)h(sequence)h(gi)n(v)o(en)e(in)f
(the)h(e)o(xample)g(abo)o(v)o(e)277 4866 y(using)k(an)e(unrestricted)k
(Gentzen-lik)o(e)f(formulation)g(of)d(the)h(cut-reductions.)44
b(A)26 b(number)i(of)g(peo-)277 4979 y(ple,)38 b(for)d(e)o(xample)g
(Dragalin)h([1988],)g(Herbelin)g([1994],)g(Cichon)g(et)e(al.)h([1996],)
h(Danos)f(et)g(al.)277 5092 y([1997])26 b(and)g(Bittar)f([1999],)h(ha)n
(v)o(e)f(managed)i(to)d(de)n(v)o(elop)i(strongly)h(normalising)h
(cut-elimination)277 5204 y(procedures,)e(b)n(ut)e(the)o(y)g(all)g
(impose)g(f)o(airly)h(strong)g(restrictions)i(on)c(the)h
(cut-reductions.)p Black Black eop end
%%Page: 16 28
TeXDict begin 16 27 bop Black -144 51 a Gb(16)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 462 317 a Gg(Here)j(is)f(one)h
(common)g(restriction:)34 b(consider)27 b(the)e(follo)n(wing)h
(reduction)h(rule,)e(which)g(allo)n(ws)321 430 y(a)e(cut-rule)j(\(Suf)n
(\002x)d(2\))g(to)h(pass)g(o)o(v)o(er)g(another)h(cut-rule)g(\(Suf)n
(\002x)e(1\).)p Black Black 322 561 a Ga(:)15 b(:)g(:)p
464 549 11 41 v 474 531 46 5 v 128 w(:)g(:)g(:)77 b(:)15
b(:)g(:)p 878 549 11 41 v 889 531 46 5 v 127 w(:)g(:)g(:)p
322 581 754 4 v 530 650 a(:)g(:)g(:)p 671 638 11 41 v
681 620 46 5 v 127 w(:)g(:)g(:)1102 605 y Gg(Cut)1233
619 y F9(1)1293 650 y Ga(:)g(:)g(:)p 1434 638 11 41 v
1445 620 46 5 v 127 w(:)g(:)g(:)p 530 670 1102 4 v 911
739 a(:)g(:)g(:)p 1053 727 11 41 v 1063 709 46 5 v 128
w(:)g(:)g(:)1658 694 y Gg(Cut)1789 708 y F9(2)1857 692
y F6(\000)-31 b(\000)f(!)2039 561 y Ga(:)15 b(:)g(:)p
2180 549 11 41 v 2191 531 46 5 v 128 w(:)g(:)g(:)77 b(:)15
b(:)g(:)p 2595 549 11 41 v 2605 531 46 5 v 127 w(:)g(:)g(:)p
2039 581 754 4 v 2246 650 a(:)g(:)g(:)p 2388 638 11 41
v 2398 620 46 5 v 128 w(:)g(:)g(:)2819 605 y Gg(Cut)2950
619 y F9(2)3009 650 y Ga(:)g(:)g(:)p 3151 638 11 41 v
3161 620 46 5 v 128 w(:)g(:)g(:)p 2246 670 1102 4 v 2628
739 a(:)g(:)g(:)p 2769 727 11 41 v 2780 709 46 5 v 128
w(:)g(:)g(:)3375 694 y Gg(Cut)3506 708 y F9(1)321 893
y Gg(Clearly)-6 b(,)25 b(this)f(reduction)i(w)o(ould)f(immediately)g
(break)g(strong)g(normalisation)i(because)f(the)e(reduct)321
1006 y(is)j(again)g(an)g(instance)i(of)e(this)g(rule,)h(and)f(we)f(can)
h(loop)h(by)e(constantly)k(applying)f(this)f(rule.)39
b(Thus)321 1119 y(a)29 b(common)h(restriction)j(is)c(not)h(to)g(allo)n
(w)f(a)h(cut-rule)h(to)f(pass)g(o)o(v)o(er)g(another)h(cut-rule)h(in)d
(an)o(y)h(cir)n(-)321 1232 y(cumstances.)45 b(Ho)n(we)n(v)o(er)l(,)29
b(this)f(has)h(se)n(v)o(eral)g(serious)h(dra)o(wbacks.)43
b(In)28 b(the)h(intuitionistic)j(case,)d(for)321 1345
y(e)o(xample,)f(such)g(a)e(restriction)k(limits)d(the)g(correspondence)
k(between)d(cut-elimination)i(and)e(beta-)321 1458 y(reduction.)47
b(In)28 b(particular)l(,)33 b(strong)d(normalisation)i(of)c
(beta-reduction)33 b(cannot)d(be)f(inferred)i(from)321
1571 y(strong)j(normalisation)h(of)d(cut-elimination,)38
b(as)32 b(noted)h(by)f(Herbelin)i([1994])f(and)g(by)f(Dyckhof)n(f)321
1684 y(and)24 b(Pinto)g([1998].)30 b(Therefore)25 b(our)f(third)h
(criterion.)462 1813 y(In)g(the)h(rest)f(of)g(this)g(chapter)i(we)d
(shall)i(de)n(v)o(elop)h(strongly)g(normalising)g(cut-elimination)i
(pro-)321 1926 y(cedures)36 b(which)f(contain)h(the)e(standard)i
(Gentzen-lik)o(e)h(cut-elimination)h(steps)d(for)f(logical)i(cuts)321
2039 y(and)26 b(allo)n(w)g(commuting)h(cuts)f(to)g(pass)g(o)o(v)o(er)g
(other)g(cuts.)36 b(As)25 b(a)g(pleasing)i(result,)g(we)e(can)h
(simulate)321 2152 y(beta-reduction)i(and)d(infer)f(strong)i
(normalisation)h(for)d(the)g(simply-typed)j(lambda)e(calculus)h(from)
321 2265 y(the)g(strong)h(normalisation)i(result)e(of)f(one)g(of)g(our)
g(cut-elimination)j(procedures.)39 b(W)-7 b(e)24 b(shall)j(pro)o(v)o(e)
321 2378 y(this)d(result)h(in)f(Chapter)g(3.)462 2507
y(Danos)i(et)f(al.)g(allo)n(w)h(cut-rules)h(to)f(pass)g(o)o(v)o(er)f
(other)h(cut-rules)i(in)d(their)h(strongly)i(normalising)321
2620 y(cut-elimination)k(procedure)e(introduced)h(for)d(the)g(sequent)h
(calculus)h(LK)2732 2587 y Gc(tq)2822 2620 y Gg([Danos)e(et)g(al.,)f
(1997,)321 2733 y(Joinet)e(et)d(al.,)h(1998].)29 b(So)23
b(this)g(cut-elimination)k(procedure)e(satis\002es)f(our)g(second)g
(and)g(third)g(crite-)321 2846 y(rion,)h(b)n(ut)g(as)g(we)e(shall)i
(see)g(it)f(violates)j(the)d(\002rst.)31 b(In)24 b(LK)2147
2813 y Gc(tq)2234 2846 y Gg(e)n(v)o(ery)h(formula)g(\(and)g(its)g
(subformulae\))321 2959 y(are)j(required)j(to)c(be)h(coloured)j(with)c
(either)j(`)p Ga(\()p Gg(')d(or)h(`)p Ga(*)p Gg('.)42
b(Here)27 b(is)h(an)g(instance)i(of)e(a)g(cut-rule)i(in)321
3072 y(LK)443 3039 y Gc(tq)506 3072 y Gg(.)p Black Black
1291 3156 a FS(\()1293 3230 y FU(A)p 1399 3210 10 38
v 1408 3193 42 4 v 1495 3109 a FS(\()-11 b FQ(\000)g(\000)g(\000)g
(\000)1494 3156 y FS(\()1491 3230 y FU(B)1582 3222 y
FT(^)1663 3156 y FS(*)1660 3230 y FU(C)1978 3109 y FS(\()g
FQ(\000)g(\000)g(\000)g(\000)1978 3156 y FS(\()1975 3230
y FU(B)2065 3222 y FT(^)2147 3156 y FS(*)2144 3230 y
FU(C)p 2251 3210 10 38 v 2261 3193 42 4 v 2348 3156 a
FS(*)2344 3230 y FU(D)p 1291 3250 1125 4 v 1717 3297
a FS(\()1719 3371 y FU(A)p 1825 3351 10 38 v 1835 3334
42 4 v 1921 3297 a FS(*)1918 3371 y FU(D)2457 3277 y
Gd(Cut)321 3513 y Gg(Recall)32 b(the)g(problematic)i(in\002nite)e
(reduction)j(sequence)e(in)f(Example)g(2.1.3.)52 b(This)32
b(sequence)i(is)321 3612 y(a)n(v)n(oided)e(in)e(LK)856
3579 y Gc(tq)948 3612 y Gg(by)f(de)n(vising)j(a)d(speci\002c)i
(protocol)h(for)e(cut-elimination,)35 b(which)30 b(uses)g(the)g(ad-)321
3712 y(ditional)k(information)g(pro)o(vided)f(by)f(the)g(colours.)54
b(If)32 b(in)f(a)g(commuting)i(cut)f(the)g(colour)h(`)p
Ga(\()p Gg(')e(is)321 3811 y(attached)25 b(to)e(the)h(cut-formula,)h
(then)f(the)f(commuting)h(cut)g(is)f(permuted)h(to)f(the)g(left,)h(and)
f(similarly)321 3911 y(for)i(the)g(`)p Ga(*)p Gg('-colour)h(\(hence)g
(the)f(use)g(of)f(an)h(arro)n(w)f(to)g(denote)i(a)e(colour!\).)34
b(Suppose)26 b(we)d(ha)n(v)o(e)i(the)321 4011 y(follo)n(wing)g(colour)g
(annotation)i(for)d(the)f(commuting)i(cut)f(gi)n(v)o(en)g(in)g
(\(2.1\).)1245 4111 y FS(*)1242 4185 y FU(B)p 1351 4165
10 38 v 1360 4148 42 4 v 1446 4111 a FS(*)1444 4185 y
FU(C)1510 4177 y(;)1550 4111 y FS(\()1546 4185 y FU(D)p
1178 4213 504 4 v 1197 4374 10 38 v 1206 4358 42 4 v
1297 4273 a FS(\()-11 b FQ(\000)g(\000)g(\000)g(\000)1292
4321 y FS(*)1289 4394 y FU(B)1379 4386 y FT(\033)1470
4321 y FS(*)1467 4394 y FU(C)1533 4386 y(;)p 0.75 TeXcolorgray
0.75 TeXcolorgray 1570 4419 112 154 v 0.75 TeXcolorgray
Black 1599 4321 a FS(\()1595 4394 y FU(D)p 0.75 TeXcolorgray
Black 1723 4229 a FT(\033)1788 4241 y FS(R)2125 4111
y(\()2121 4185 y FU(D)2192 4177 y(;)2232 4111 y FS(*)2229
4185 y FU(E)p 2337 4165 10 38 v 2347 4148 42 4 v 2017
4213 494 4 v 0.75 TeXcolorgray 0.75 TeXcolorgray 2017
4419 112 154 v 0.75 TeXcolorgray Black 2046 4321 a FS(\()2042
4394 y FU(D)p 0.75 TeXcolorgray Black 2129 4386 a(;)2168
4273 y FQ(\000)g(\000)g(\000)g(\000)g FS(*)2168 4321
y(*)2166 4394 y FU(E)2255 4386 y FT(^)2339 4321 y FS(*)2334
4394 y FU(F)p 2441 4374 10 38 v 2451 4358 42 4 v 2552
4225 a FT(^)2607 4238 y FS(L)2653 4246 y FP(1)p 1178
4439 1333 4 v 1541 4500 a FQ(\000)g(\000)g(\000)g(\000)g
FS(*)1541 4547 y(*)1538 4621 y FU(E)1628 4613 y FT(^)1712
4547 y FS(*)1707 4621 y FU(F)p 1814 4601 10 38 v 1823
4584 42 4 v 1914 4500 a FQ(\000)g(\000)g(\000)g(\000)g
FS(*)1909 4547 y(*)1906 4621 y FU(B)1996 4613 y FT(\033)2087
4547 y FS(*)2085 4621 y FU(C)2552 4467 y Gd(Cut)324 4767
y Gg(Then)23 b(this)g(cut,)f(because)j(the)d(cut-formula)j
Ga(D)g Gg(is)d(annotated)j(with)e(`)p Ga(\()p Gg(',)f(reduces)i(to)e
(the)h(follo)n(wing)321 4880 y(proof)i(instance,)g(only)-6
b(.)1368 5111 y FS(*)1366 5185 y FU(B)p 1474 5165 10
38 v 1484 5148 42 4 v 1570 5111 a FS(*)1567 5185 y FU(C)1633
5177 y(;)1674 5111 y FS(\()1670 5185 y FU(D)1958 4901
y FS(\()1954 4975 y FU(D)2025 4967 y(;)2064 4901 y FS(*)2062
4975 y FU(E)p 2170 4955 10 38 v 2179 4938 42 4 v 1870
5003 453 4 v 1874 5111 a FS(\()1870 5185 y FU(D)1941
5177 y(;)1981 5064 y FQ(\000)-11 b(\000)g(\000)g(\000)g
FS(*)1981 5111 y(*)1978 5185 y FU(E)2067 5177 y FT(^)2152
5111 y FS(*)2146 5185 y FU(F)p 2253 5165 10 38 v 2263
5148 42 4 v 2364 5015 a FT(^)2420 5028 y FS(L)2466 5036
y FP(1)p 1366 5213 958 4 v 1578 5321 a FS(*)1575 5394
y FU(B)1642 5386 y(;)1682 5274 y FQ(\000)g(\000)g(\000)g(\000)g
FS(*)1682 5321 y(*)1679 5394 y FU(E)1769 5386 y FT(^)1853
5321 y FS(*)1848 5394 y FU(F)p 1955 5374 10 38 v 1964
5358 42 4 v 2050 5321 a FS(*)2048 5394 y FU(C)2364 5240
y Gd(Cut)p 1538 5423 612 4 v 1541 5483 a FQ(\000)g(\000)g(\000)g(\000)g
FS(*)1541 5531 y(*)1538 5604 y FU(E)1628 5596 y FT(^)1712
5531 y FS(*)1707 5604 y FU(F)p 1814 5584 10 38 v 1823
5568 42 4 v 1914 5483 a FQ(\000)g(\000)g(\000)g(\000)g
FS(*)1909 5531 y(*)1906 5604 y FU(B)1996 5596 y FT(\033)2087
5531 y FS(*)2085 5604 y FU(C)2192 5439 y FT(\033)2256
5451 y FS(R)p Black Black eop end
%%Page: 17 29
TeXDict begin 17 28 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
(Sequent)e(Calculi)2442 b(17)p 277 88 3691 4 v Black
277 451 a Gg(By)29 b(enforcing)j(that)e(commuting)h(cuts)f(can)g(be)g
(permuted)h(into)f(one)g(direction)i(only)-6 b(,)32 b(the)e(in\002nite)
277 564 y(reduction)22 b(sequence)f(gi)n(v)o(en)f(in)f(Example)h(2.1.3)
f(cannot)i(be)e(constructed.)31 b(Ho)n(we)n(v)o(er)l(,)19
b(there)h(are)g(tw)o(o)277 677 y(anno)o(ying)31 b(restrictions)h(in)d
(their)g(cut-elimination)j(procedure)g(for)c(LK)2597
644 y Gc(tq)2660 677 y Gg(,)h(both)g(of)g(which)g(violate)277
790 y(our)24 b(\002rst)f(criterion.)p Black 414 1040
a F6(\017)p Black 45 w Gg(First,)k(there)g(is)f(a)g(problem)h(with)f
(the)h(compositionality)j(of)c(the)h(colour)g(annotation,)j(in)c(the)
504 1153 y(sense)38 b(that)e(some)g(cuts)h(require)h(the)e(same)g
(colour)h(annotation)i(for)e(their)f(cut-formulae:)504
1266 y(the)30 b(choice)i(of)d(a)h(colouring)i(can)e(permeate)h(through)
h(a)e(proof.)48 b(In)30 b(particular)l(,)k(the)c(colour)504
1378 y(annotation)h(has)d(to)f(respect,)j(using)e(terminology)i
(introduced)h(for)c(LK)2832 1346 y Gc(tq)2895 1378 y
Gg(,)g F7(identity)j(classes)504 1491 y Gg([Schellinx,)36
b(1994,)i(P)o(age)c(107].)61 b(F)o(or)33 b(e)o(xample,)38
b(in)c(the)g(follo)n(wing)i(LK-proof)f(with)f(tw)o(o)504
1604 y(commuting)25 b(cuts)1208 1940 y(.)1208 1973 y(.)1208
2006 y(.)p 1180 2074 11 41 v 1190 2056 46 5 v 1256 2086
a Ga(B)p 1709 1802 244 4 v 1709 1881 a(B)p 1802 1869
11 41 v 1813 1850 46 5 v 101 w(B)1819 1906 y Gg(.)1819
1940 y(.)1819 1973 y(.)1819 2006 y(.)1602 2086 y Ga(B)5
b(;)15 b F4(\000)p 1793 2074 11 41 v 1803 2056 46 5 v
96 w(\001)p Ga(;)g(B)p 1109 2123 950 4 v 1412 2202 a
F4(\000)p 1489 2190 11 41 v 1500 2172 46 5 v 97 w(\001)p
Ga(;)g(B)2100 2154 y Gg(Cut)2603 2056 y(.)2603 2089 y(.)2603
2122 y(.)2504 2202 y Ga(B)p 2598 2190 11 41 v 2609 2172
46 5 v 1412 2240 1313 4 v 1954 2318 a F4(\000)p 2031
2306 11 41 v 2042 2288 46 5 v 96 w(\001)2766 2270 y Gg(Cut)504
2581 y(all)23 b(occurrences)j(of)c Ga(B)27 b Gg(must)22
b(in)h(LK)1679 2548 y Gc(tq)1763 2581 y Gg(ha)n(v)o(e)h(the)e(same)h
(colour)-5 b(.)30 b(Consequently)-6 b(,)26 b(the)d(normal)504
2694 y(forms)d(that)h(arise)f(in)g(LK)e(by)h(permuting)j(both)e(cuts)h
(to)n(w)o(ards)f(the)g(axiom,)h(where)f(the)o(y)g(mer)n(ge)504
2807 y(into)25 b(a)e(single)i(cut,)e(cannot)i(be)f(obtained)i(in)d(LK)
2053 2774 y Gc(tq)2116 2807 y Gg(.)p Black 414 3011 a
F6(\017)p Black 45 w Gg(Second,)29 b(the)f(colour)h(annotation)h(is)e
(in)l(v)n(ariant)i(under)e(cut-reductions.)45 b(Thus)27
b(whene)n(v)o(er)i(a)504 3124 y(cut)h(is)f(duplicated)j(in)d(a)g
(reduction)j(sequence,)h(the)c(colour)i(annotation)h(pre)n(v)o(ents)f
(both)f(in-)504 3237 y(stances)c(from)e(reducing)i(dif)n(ferently)-6
b(.)33 b(Figure)25 b(2.1)e(gi)n(v)o(es)i(an)f(e)o(xample)h(of)e(such)i
(a)f(reduction)504 3350 y(sequence)i(that)e(e)o(xists)h(in)e(LK,)f(b)n
(ut)i(not)g(in)f(LK)1999 3317 y Gc(tq)2062 3350 y Gg(.)277
3600 y(Making)34 b(the)g(cut-elimination)j(procedure)f(dependent)g(on)d
(the)h(colour)g(annotations)j(is)c(a)g(strong)277 3713
y(restriction:)44 b(certainly)31 b(some)e(normal)h(forms)g(can)f(no)h
(longer)g(be)f(reached.)48 b(In)29 b(f)o(act,)i(the)f(colours)277
3826 y(constrain)35 b(the)e(cut-elimination)k(procedure)e(to)e(be)g
(con\003uent,)j(which)e(is)e(an)h(essential)i(property)277
3939 y(in)30 b(the)h(strong)h(normalisation)i(proof)d(of)f(Danos)h(et)g
(al.:)42 b(it)30 b(enabled)j(them)d(to)g(e)o(xploit)i(the)f(strong)277
4052 y(normalisation)g(result)d(for)g(proof-nets)i(in)d(linear)i(logic)
f([Girard,)g(1987a].)42 b(The)27 b(colours)i(are)f(used)277
4164 y(ingeniously)38 b(to)c(map)g(e)n(v)o(ery)h(LK)1383
4131 y Gc(tq)1446 4164 y Gg(-proof)h(to)e(a)g(corresponding)39
b(proof-net)e(in)d(linear)h(logic)h(and)277 4277 y(e)n(v)o(ery)24
b(cut-elimination)j(step)e(to)e(a)g(series)i(of)e(reductions)k(on)c
(proof-nets.)418 4411 y(W)-7 b(e)24 b(shall)h(sho)n(w)f(that)h(the)g
(colour)g(annotations)j(of)c(LK)2183 4378 y Gc(tq)2269
4411 y Gg(are,)h(in)f(f)o(act,)h(unnecessary)j(to)c(ensure)277
4524 y(strong)h(normalisation)h(of)d(cut-elimination.)33
b(As)22 b(stated)i(earlier)l(,)h(a)e(pleasing)i(consequence)i(is)c
(that,)277 4637 y(in)28 b(general,)j(more)d(normal)g(forms)h(can)f(be)g
(reached)i(from)e(a)f(gi)n(v)o(en)i(proof)g(containing)i(cuts.)43
b(One)277 4750 y(not-so-pleasing)c(consequence)f(of)d(the)g(generality)
i(of)d(our)h(cut-elimination)j(procedure)f(is)e(that)277
4863 y(strong)f(normalisation)h(is)d(more)g(dif)n(\002cult)h(to)f(pro)o
(v)o(e;)37 b(it)32 b(cannot,)j(for)e(e)o(xample,)h(be)f(pro)o(v)o(ed)g
(by)f(a)277 4976 y(translation)i(into)e(proof-nets.)55
b(In)31 b(the)g(end,)i(we)e(found)h(it)f(e)o(xtremely)i(useful)f(to)f
(de)n(v)o(elop)i(a)e(term)277 5088 y(calculus)d(for)d(sequent)i(deri)n
(v)n(ations.)37 b(This)25 b(then)h(allo)n(wed)h(us)e(to)g(adapt)i
(directly)g(a)e(po)n(werful)h(proof)277 5201 y(technique)g(from)e(the)g
(term)f(re)n(writing)i(literature)h([Barbanera)f(and)f(Berardi,)g
(1994].)p Black Black eop end
%%Page: 18 30
TeXDict begin 18 29 bop Black -144 51 a Gb(18)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black Black -144 508 V -144
3960 4 3452 v 67 731 491 4 v 67 810 a Ga(A)p F6(_)p Ga(A)p
284 798 11 41 v 295 780 46 5 v 96 w(A)p F6(_)p Ga(A)p
743 731 491 4 v 186 w(A)p F6(_)p Ga(A)p 960 798 11 41
v 970 780 46 5 v 96 w(A)p F6(_)p Ga(A)p 67 830 1166 4
v 87 915 a F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p F6(_)p
F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 703 903 11 41 v
713 884 46 5 v 97 w Ga(A)p F6(_)p Ga(A;)15 b(A)p F6(_)p
Ga(A)1274 848 y F6(_)1335 862 y Gc(L)p 87 957 1127 4
v 205 1042 a F4(\()p Ga(A)p F6(_)q Ga(A)p F4(\))p F6(_)p
F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 822 1030 11 41 v
832 1012 46 5 v 97 w Ga(A)p F6(_)o Ga(A)1255 981 y Gg(Contr)1461
995 y Gc(R)p 1611 650 233 4 v 1611 729 a Ga(A)p 1699
717 11 41 v 1709 698 46 5 v 96 w(A)p 1934 650 233 4 v
91 w(A)p 2023 717 11 41 v 2033 698 46 5 v 97 w(A)p 1611
748 557 4 v 1654 827 a(A)p F6(_)o Ga(A)p 1871 815 11
41 v 1881 797 46 5 v 97 w(A;)g(A)2208 767 y F6(_)2269
781 y Gc(L)p 1654 865 471 4 v 1708 943 a Ga(A)p F6(_)p
Ga(A)p 1925 931 11 41 v 1936 913 46 5 v 96 w(A)2165 889
y Gg(Contr)2371 903 y Gc(R)p 2521 650 233 4 v 2521 729
a Ga(A)p 2609 717 11 41 v 2620 698 46 5 v 96 w(A)p 2845
650 233 4 v 92 w(A)p 2933 717 11 41 v 2943 698 46 5 v
96 w(A)p 2521 748 557 4 v 2564 827 a(A;)g(A)p 2761 815
11 41 v 2771 797 46 5 v 97 w(A)p F6(^)p Ga(A)3119 767
y F6(^)3179 781 y Gc(R)p 2564 865 471 4 v 2618 943 a
Ga(A)p 2707 931 11 41 v 2717 913 46 5 v 97 w(A)p F6(^)p
Ga(A)3076 889 y Gg(Contr)3282 903 y Gc(L)p 1708 963 1272
4 v 2099 1042 a Ga(A)p F6(_)p Ga(A)p 2316 1030 11 41
v 2326 1012 46 5 v 96 w(A)p F6(^)p Ga(A)3021 994 y Gg(Cut)g
FO(?)p 205 1085 2384 4 v 953 1170 a F4(\()p Ga(A)p F6(_)p
Ga(A)p F4(\))p F6(_)p F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p
1569 1158 11 41 v 1579 1139 46 5 v 97 w Ga(A)p F6(^)p
Ga(A)2631 1115 y Gg(Cut)1671 1405 y FN(#)p -33 1595 233
4 v -33 1674 a Ga(A)p 55 1662 11 41 v 66 1643 46 5 v
97 w(A)p 291 1595 233 4 v 91 w(A)p 379 1662 11 41 v 390
1643 46 5 v 96 w(A)p -33 1694 557 4 v 10 1772 a(A)p F6(_)p
Ga(A)p 227 1760 11 41 v 238 1742 46 5 v 97 w(A;)g(A)565
1712 y F6(_)625 1726 y Gc(L)p 10 1810 471 4 v 65 1889
a Ga(A)p F6(_)o Ga(A)p 282 1877 11 41 v 292 1858 46 5
v 97 w(A)522 1834 y Gg(Contr)728 1848 y Gc(R)p 830 1595
233 4 v 830 1674 a Ga(A)p 919 1662 11 41 v 929 1643 46
5 v 97 w(A)p 1154 1595 233 4 v 91 w(A)p 1242 1662 11
41 v 1253 1643 46 5 v 96 w(A)p 830 1694 557 4 v 873 1772
a(A;)g(A)p 1070 1760 11 41 v 1081 1742 46 5 v 97 w(A)p
F6(^)p Ga(A)1428 1712 y F6(^)1489 1726 y Gc(R)p 873 1810
471 4 v 928 1889 a Ga(A)p 1016 1877 11 41 v 1026 1858
46 5 v 96 w(A)p F6(^)p Ga(A)1385 1834 y Gg(Contr)1591
1848 y Gc(L)p 65 1909 1225 4 v 432 1987 a Ga(A)p F6(_)o
Ga(A)p 649 1975 11 41 v 659 1957 46 5 v 97 w(A)p F6(^)p
Ga(A)1331 1939 y Gg(Cut)g FO(?)p 1735 1595 233 4 v 1735
1674 a Ga(A)p 1823 1662 11 41 v 1834 1643 46 5 v 97 w(A)p
2059 1595 233 4 v 91 w(A)p 2147 1662 11 41 v 2157 1643
46 5 v 96 w(A)p 1735 1694 557 4 v 1778 1772 a(A)p F6(_)p
Ga(A)p 1995 1760 11 41 v 2006 1742 46 5 v 96 w(A;)g(A)2333
1712 y F6(_)2393 1726 y Gc(L)p 1778 1810 471 4 v 1832
1889 a Ga(A)p F6(_)p Ga(A)p 2050 1877 11 41 v 2060 1858
46 5 v 97 w(A)2290 1834 y Gg(Contr)2496 1848 y Gc(R)p
2598 1595 233 4 v 2598 1674 a Ga(A)p 2687 1662 11 41
v 2697 1643 46 5 v 97 w(A)p 2922 1595 233 4 v 91 w(A)p
3010 1662 11 41 v 3021 1643 46 5 v 96 w(A)p 2598 1694
557 4 v 2641 1772 a(A;)g(A)p 2838 1760 11 41 v 2849 1742
46 5 v 97 w(A)p F6(^)p Ga(A)3196 1712 y F6(^)3257 1726
y Gc(R)p 2641 1810 471 4 v 2696 1889 a Ga(A)p 2784 1877
11 41 v 2794 1858 46 5 v 96 w(A)p F6(^)p Ga(A)3153 1834
y Gg(Contr)3359 1848 y Gc(L)p 1832 1909 1225 4 v 2200
1987 a Ga(A)p F6(_)o Ga(A)p 2417 1975 11 41 v 2427 1957
46 5 v 97 w(A)p F6(^)p Ga(A)3099 1939 y Gg(Cut)g FO(?)p
432 2007 2259 4 v 997 2092 a F4(\()p Ga(A)p F6(_)q Ga(A)p
F4(\))p F6(_)p F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 1614
2080 11 41 v 1624 2062 46 5 v 97 w Ga(A)p F6(_)p Ga(A;)g(A)p
F6(_)p Ga(A)2731 2025 y F6(_)2792 2039 y Gc(L)p 997 2135
1127 4 v 1116 2219 a F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p
F6(_)p F4(\()p Ga(A)p F6(_)q Ga(A)p F4(\))p 1732 2207
11 41 v 1743 2189 46 5 v 96 w Ga(A)p F6(_)p Ga(A)2166
2159 y Gg(Contr)2372 2173 y Gc(R)1671 2454 y FN(#)1686
2574 y FM(.)1686 2607 y(.)1686 2640 y(.)1671 2828 y FN(#)p
2 3018 233 4 v 2 3097 a Ga(A)p 90 3085 11 41 v 101 3067
46 5 v 97 w(A)p 326 3018 233 4 v 91 w(A)p 414 3085 11
41 v 425 3067 46 5 v 96 w(A)p 2 3117 557 4 v 45 3196
a(A;)g(A)p 242 3184 11 41 v 253 3165 46 5 v 97 w(A)p
F6(^)p Ga(A)600 3135 y F6(^)660 3149 y Gc(R)p 45 3233
471 4 v 99 3312 a Ga(A)p 188 3300 11 41 v 198 3282 46
5 v 97 w(A)p F6(^)p Ga(A)557 3257 y Gg(Contr)763 3271
y Gc(L)p 860 3018 233 4 v 860 3097 a Ga(A)p 948 3085
11 41 v 959 3067 46 5 v 96 w(A)p 1183 3018 233 4 v 91
w(A)p 1272 3085 11 41 v 1282 3067 46 5 v 97 w(A)p 860
3117 557 4 v 903 3196 a(A;)g(A)p 1100 3184 11 41 v 1110
3165 46 5 v 97 w(A)p F6(^)p Ga(A)1457 3135 y F6(^)1518
3149 y Gc(R)p 903 3233 471 4 v 957 3312 a Ga(A)p 1045
3300 11 41 v 1056 3282 46 5 v 97 w(A)p F6(^)o Ga(A)1414
3257 y Gg(Contr)1620 3271 y Gc(L)p 99 3332 1220 4 v 345
3411 a Ga(A)p F6(_)p Ga(A)p 562 3399 11 41 v 573 3380
46 5 v 96 w(A)p F6(^)p Ga(A;)g(A)p F6(^)q Ga(A)1360 3350
y F6(_)1421 3364 y Gc(L)p 345 3448 728 4 v 464 3527 a
Ga(A)p F6(_)p Ga(A)p 681 3515 11 41 v 692 3497 46 5 v
96 w(A)p F6(^)p Ga(A)1114 3472 y Gg(Contr)1320 3486 y
Gc(R)p 1717 3018 233 4 v 1717 3097 a Ga(A)p 1806 3085
11 41 v 1816 3067 46 5 v 97 w(A)p 2041 3018 233 4 v 91
w(A)p 2129 3085 11 41 v 2140 3067 46 5 v 96 w(A)p 1717
3117 557 4 v 1760 3196 a(A)p F6(_)p Ga(A)p 1978 3184
11 41 v 1988 3165 46 5 v 97 w(A;)g(A)2315 3135 y F6(_)2376
3149 y Gc(L)p 1760 3233 471 4 v 1815 3312 a Ga(A)p F6(_)o
Ga(A)p 2032 3300 11 41 v 2042 3282 46 5 v 97 w(A)2272
3257 y Gg(Contr)2478 3271 y Gc(R)p 2580 3018 233 4 v
2580 3097 a Ga(A)p 2669 3085 11 41 v 2679 3067 46 5 v
97 w(A)p 2904 3018 233 4 v 91 w(A)p 2992 3085 11 41 v
3003 3067 46 5 v 96 w(A)p 2580 3117 557 4 v 2623 3196
a(A)p F6(_)p Ga(A)p 2841 3184 11 41 v 2851 3165 46 5
v 97 w(A;)g(A)3178 3135 y F6(_)3239 3149 y Gc(L)p 2623
3233 471 4 v 2678 3312 a Ga(A)p F6(_)p Ga(A)p 2895 3300
11 41 v 2905 3282 46 5 v 96 w(A)3135 3257 y Gg(Contr)3341
3271 y Gc(R)p 1815 3332 1225 4 v 2063 3411 a Ga(A)p F6(_)p
Ga(A;)g(A)p F6(_)p Ga(A)p 2518 3399 11 41 v 2528 3380
46 5 v 97 w(A)p F6(^)p Ga(A)3081 3350 y F6(^)3141 3364
y Gc(R)p 2063 3448 728 4 v 2182 3527 a Ga(A)p F6(_)p
Ga(A)p 2399 3515 11 41 v 2409 3497 46 5 v 96 w(A)p F6(^)p
Ga(A)2832 3472 y Gg(Contr)3038 3486 y Gc(L)p 464 3547
2209 4 v 1005 3632 a F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p
F6(_)p F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 1621 3620
11 41 v 1631 3601 46 5 v 97 w Ga(A)p F6(^)p Ga(A;)g(A)p
F6(^)p Ga(A)2714 3565 y F6(_)2774 3579 y Gc(L)p 1005
3674 1127 4 v 1123 3759 a F4(\()p Ga(A)p F6(_)p Ga(A)p
F4(\))p F6(_)q F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 1740
3747 11 41 v 1750 3729 46 5 v 97 w Ga(A)p F6(^)o Ga(A)2173
3698 y Gg(Contr)2379 3712 y Gc(R)p 3543 3960 4 3452 v
-144 3963 3691 4 v 321 4116 a Gg(Figure)23 b(2.1:)29
b(The)21 b(displayed)k(LK-proofs)e(are)g(tak)o(en)g(from)f(a)g
(reduction)j(sequence)g(that)d(starts)i(with)321 4229
y(the)34 b(\002rst)f(proof)h(and)g(ends)g(with)f(the)g(third)h
(proof\227a)h(normal)f(form.)58 b(The)32 b(second)j(proof)f(is)g(an)321
4342 y(intermediate)e(step.)46 b(The)28 b(cuts)i(in)f(the)g(top)h
(proof)g(are)f(eliminated)i(such)f(that)g(\002rst)e(the)i(right)g(sub-)
321 4455 y(proof)g(is)f(duplicated)j(creating)e(tw)o(o)f(instances)i
(of)e(the)g(cut)g(mark)o(ed)h(with)e(a)g(star)i(\(second)g(proof\).)321
4568 y(Subsequently)-6 b(,)25 b(each)d(cop)o(y)h(of)e(this)h(cut)g(is)f
(reduced)i(applying)h(dif)n(ferent)f(reduction)h(rules.)29
b(This)21 b(re-)321 4681 y(duction)i(sequence)g(is)e(impossible)h(in)f
(a)f(cut-reduction)25 b(system)c(with)g(colour)n(-annotation,)27
b(because)321 4794 y(the)e(colours)g(pre)n(v)o(ent)h(the)e(tw)o(o)g
(copies)h(of)f(the)g(cut)h(from)f(reducing)i(dif)n(ferently)-6
b(.)33 b(In)24 b(ef)n(fect,)h(starting)321 4907 y(from)i(the)g(\002rst)
f(proof)i(the)f(gi)n(v)o(en)g(normal)g(form)g(is)f(not)h(reachable)i
(in)e(LK)2719 4874 y Gc(tq)2807 4907 y Gg(\(in)g(Section)h(4.4.1)e(we)
321 5020 y(shall)f(sho)n(w)e(that)h(this)g(is)g(an)f(\223essential\224)
k(normal)d(form\).)p Black Black Black eop end
%%Page: 19 31
TeXDict begin 19 30 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
(Sequent)e(Calculi)2442 b(19)p 277 88 3691 4 v Black
418 317 a Gg(T)-7 b(o)28 b(be)g(able)h(to)g(present)h(our)f
(cut-elimination)j(procedures)g(in)c(a)h(con)l(v)o(enient)i(form,)f(we)
d(shall)277 430 y(introduce)34 b(a)d(non-standard)j(formulation)g(of)d
(the)h(sequent)h(calculus.)53 b(This)31 b(sequent)i(calculus)h(is)277
543 y(inspired)d(by)f(a)e(v)n(ariant)j(of)e(Kleene')-5
b(s)30 b(sequent)h(calculus)g(G3.)45 b(Kleene)30 b([1952a,)i(P)o(age)c
(481])i(men-)277 656 y(tioned)f(this)f(v)n(ariant)h(as)f(G3a,)g(b)n(ut)
g(did)g(not)g(formalise)h(it.)41 b(Later)l(,)28 b(a)g(complete)h
(formalisation)h(of)e(a)277 769 y(calculus)e(similar)f(to)f(G3a,)f
(named)i(G3c,)e(w)o(as)h(gi)n(v)o(en)g(by)g(T)m(roelstra)h(and)g
(Schwichtenber)n(g)i([1996].)277 882 y(The)g(distinguishing)k(feature)e
(of)e(these)h(sequent)h(calculi)g(is)e(that)g(the)o(y)h(ha)n(v)o(e)f
(no)h(e)o(xplicit)g(rules)g(for)277 995 y(weak)o(ening)35
b(and)e(contraction.)60 b(In)33 b(our)g(calculus)i(contraction)h(and)e
(weak)o(ening)g(are)f(implicit)h(in)277 1108 y(the)28
b(form)g(of)f(the)h(axioms)h(and)f(logical)h(rules,)g(which)f(is)g
(some)n(what)g(analogous)i(to)e(the)g(approach)277 1221
y(tak)o(en)k(by)f(Kleene)h(in)f(G3a.)50 b(On)31 b(one)g(hand,)i(this)f
(reduces)h(the)e(number)h(of)f(inference)i(rules)f(and)277
1334 y(thus)25 b(simpli\002es)g(the)g(calculus;)i(ho)n(we)n(v)o(er)d
(on)h(the)f(other)i(hand,)f(the)f(formalisation)k(of)c(the)h(conte)o
(xts)277 1446 y(and)f(inference)i(rules)e(is)g(quite)g(intricate.)418
1577 y(In)19 b(the)g(sequel)h(we)e(shall)h(re)o(gard)g(conte)o(xts)i
(as)d(sets)h(of)g(\(label,formula\))i(pairs,)g(as)d(in)h(type)g(theory)
-6 b(,)277 1690 y(and)29 b F7(not)f Gg(as)g(multisets,)j(as)d(in)g(LK)e
(or)i(LJ.)f(This)h(is)g(to)g(a)n(v)n(oid)i(well-kno)n(wn)f(problems)h
(reported)g(by)277 1803 y(Lei)n(v)n(ant)e([1979],)j(which)d(w)o(ould)h
(break)g(the)f(correspondence)k(between)d(the)g(sequent)g(proofs)h(and)
277 1916 y(our)d(term)g(annotations)k(\(the)c(term)g(annotations)j
(will)d(be)g(gi)n(v)o(en)g(in)g(Section)h(2.2\).)39 b(Since)28
b(we)e(ha)n(v)o(e)277 2029 y(conte)o(xts)k(on)e(both)h(sides)g(of)f
(the)h(turnstile,)i(it)d(is)g(con)l(v)o(enient)j(to)d(separate)i(the)f
(labels)g(into)g F7(names)277 2142 y Gg(and)g F7(co-names)p
Gg(;)j Ga(a)p Gg(,)c Ga(b)p Gg(,)g Ga(c)p Gg(,.)14 b(.)g(.)g(stand)27
b(for)h(co-names)i(and)e(.)14 b(.)g(.)g(,)21 b Ga(x)p
Gg(,)h Ga(y)s Gg(,)h Ga(z)31 b Gg(for)d(names.)43 b(In)28
b(this)g(w)o(ay)-6 b(,)29 b(the)277 2255 y(conte)o(xts)36
b(on)e(the)h(left-hand)h(side)f(of)f(the)h(turnstile,)j(called)e
(left-conte)o(xts,)k(will)34 b(be)g(b)n(uilt)h(up)f(by)277
2367 y(\(name,formula\))i(pairs)f(and)f(on)g(the)g(right-hand)i(side)f
(by)f(\(co-name,formula\))j(pairs;)j(we)32 b(shall)277
2480 y(refer)24 b(to)g(those)g(conte)o(xts)i(as)d(right-conte)o(xts.)33
b(Suppose)25 b(we)d(ha)n(v)o(e)j(the)e(conte)o(xts)p
Black Black 1262 2709 a F4(\000)47 b(=)g F6(f)p F4(\()p
Ga(x;)15 b(B)5 b F4(\))p Ga(;)15 b F4(\()p Ga(y)s(;)g(C)7
b F4(\))p Ga(;)15 b F4(\()p Ga(z)t(;)g(D)s F4(\))p F6(g)51
b Gg(and)1243 2865 y F4(\001)c(=)g F6(f)p F4(\()p Ga(a;)15
b(E)5 b F4(\))p Ga(;)15 b F4(\()p Ga(b;)g(F)e F4(\))p
F6(g)277 3097 y Gg(then)20 b(we)e(can)h(form)f(the)h(sequent)i
F4(\000)p 1416 3085 11 41 v 1427 3066 46 5 v 96 w(\001)p
Gg(.)26 b(W)l(ith)19 b(some)g(minor)g(ab)n(use)i(of)d(language)j(we)d
(say)h F6(f)p Ga(x;)c(y)s(;)g(z)t F6(g)277 3210 y Gg(is)23
b(the)f F7(domain)i Gg(of)f F4(\000)p Gg(,)e(written)i
Ga(dom)p F4(\(\000\))p Gg(;)h F6(f)p Ga(a;)15 b(b)p F6(g)23
b Gg(respecti)n(v)o(ely)i(is)e(the)f(domain)i(of)f F4(\001)p
Gg(.)k(In)22 b(the)h(rest)g(of)277 3323 y(the)k(thesis)h(we)e(shall)i
(emplo)o(y)g(some)e(shorthand)k(notation)f(for)e(conte)o(xts;)j(rather)
e(than)g(writing)f(for)277 3435 y(e)o(xample)d F6(f)p
F4(\()p Ga(x;)15 b(B)5 b F4(\))p Ga(;)15 b F4(\()p Ga(y)s(;)g(C)7
b F4(\))p Ga(;)15 b F4(\()p Ga(z)t(;)g(D)s F4(\))p F6(g)p
Gg(,)27 b(we)c(shall)h(simply)g(write)g Ga(x)17 b F4(:)g
Ga(B)5 b(;)15 b(y)20 b F4(:)e Ga(C)q(;)d(z)22 b F4(:)c
Ga(D)s Gg(.)418 3566 y(Figure)34 b(2.2)f(gi)n(v)o(es)h(the)f(inference)
i(rules)f(of)g(our)f(sequent)i(calculus.)60 b(Note)33
b(that)g(there)h(are)g(a)277 3679 y(number)22 b(of)e(subtleties)k
(concerning)g(conte)o(xts)e(implicit)g(in)f(our)g(inference)i(rules.)29
b(First,)21 b(we)f(assume)277 3792 y(the)29 b(con)l(v)o(ention)j(that)e
(a)e(conte)o(xt)i(is)f(ill-formed,)j(if)c(it)h(contains)i(more)d(than)i
(one)f(occurrence)j(of)d(a)277 3905 y(name)g(or)g(co-name.)45
b(F)o(or)28 b(e)o(xample,)i(the)f(left-conte)o(xt)j Ga(x)26
b F4(:)h Ga(B)5 b(;)15 b(x)27 b F4(:)g Ga(C)34 b Gg(is)29
b(not)g(allo)n(wed.)45 b(Hereafter)l(,)277 4018 y(this)24
b(will)e(be)h(referred)i(to)e(as)g(the)g F7(conte)n(xt)i(con)l(vention)
p Gg(,)h(and)e(it)e(will)h(be)g(assumed)h(that)g(all)f(inference)277
4131 y(rules)i(ha)n(ving)g(as)e(conte)o(xts)j(sets)e(of)f
(\(label,formula\))k(pairs)d(respect)h(this)g(con)l(v)o(ention.)418
4261 y(Second,)d(we)d(ha)n(v)o(e)h(the)h(follo)n(wing)g(con)l(v)o
(entions)j(for)c(the)g(commas)g(in)g(Figure)h(2.2:)27
b(a)20 b(comma)f(in)277 4374 y(a)24 b(conclusion)j(stands)f(for)e(set)h
(union)g(and)g(a)f(comma)g(in)g(a)f(premise)j(stands)f(for)g
F7(disjoint)h Gg(set)e(union.)277 4487 y(Consider)h(for)f(e)o(xample)g
(the)g F6(\033)1291 4501 y Gc(R)1348 4487 y Gg(-rule.)1468
4689 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 1770
4677 11 41 v 1781 4659 46 5 v 96 w(\001)p Ga(;)g(a)j
F4(:)f Ga(C)p 1468 4727 674 4 v 1513 4807 a F4(\000)p
1590 4795 11 41 v 1600 4776 46 5 v 96 w(\001)p Ga(;)e(b)i
F4(:)h Ga(B)5 b F6(\033)o Ga(C)2183 4744 y F6(\033)2254
4759 y Gc(R)277 5032 y Gg(This)31 b(rule)g(introduces)j(the)d
(\(co-name,formula\))j(pair)e Ga(b)e F4(:)h Ga(B)5 b
F6(\033)p Ga(C)36 b Gg(in)31 b(the)g(conclusion.)54 b(Ho)n(we)n(v)o(er)
l(,)277 5145 y(there)34 b(might)e(be)h(an)f F7(implicit)i(contr)o
(action)p Gg(.)58 b(By)32 b(this)h(we)f(mean)g Ga(b)g
Gg(might)h(already)h(occur)g(in)e(the)p Black Black eop
end
%%Page: 20 32
TeXDict begin 20 31 bop Black -144 51 a Gb(20)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black Black 321 229 3226
4 v 321 2138 4 1909 v 1596 321 676 4 v 1596 400 a Ga(x)17
b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 1898 388 11 41 v 1909
370 46 5 v 96 w(\001)p Ga(;)g(a)j F4(:)f Ga(B)884 591
y F4(\000)p 961 579 11 41 v 971 560 46 5 v 96 w(\001)p
Ga(;)e(a)i F4(:)h Ga(B)p 852 628 515 4 v 852 707 a(x)f
F4(:)g F6(:)p Ga(B)5 b(;)15 b F4(\000)p 1215 695 11 41
v 1225 677 46 5 v 96 w(\001)1408 641 y F6(:)1469 655
y Gc(L)2380 591 y Ga(x)j F4(:)f Ga(B)5 b(;)15 b F4(\000)p
2683 579 11 41 v 2693 560 46 5 v 96 w(\001)p 2352 628
512 4 v 2352 707 a(\000)p 2429 695 11 41 v 2440 677 46
5 v 96 w(\001)p Ga(;)g(a)j F4(:)f F6(:)p Ga(B)2905 641
y F6(:)2966 655 y Gc(R)857 922 y Ga(x)g F4(:)h Ga(B)1038
936 y Gc(i)1066 922 y Ga(;)d F4(\000)p 1183 910 11 41
v 1194 892 46 5 v 96 w(\001)p 769 960 655 4 v 769 1038
a Ga(y)20 b F4(:)d Ga(B)945 1052 y F9(1)985 1038 y F6(^)o
Ga(B)1114 1052 y F9(2)1154 1038 y Ga(;)e F4(\000)p 1271
1026 11 41 v 1282 1008 46 5 v 96 w(\001)1465 973 y F6(^)1525
987 y Gc(L)1573 997 y FZ(i)2117 922 y F4(\000)p 2194
910 11 41 v 2205 892 46 5 v 96 w(\001)p Ga(;)g(a)j F4(:)f
Ga(B)96 b F4(\000)p 2736 910 11 41 v 2746 892 46 5 v
96 w(\001)p Ga(;)15 b(b)i F4(:)h Ga(C)p 2117 960 981
4 v 2321 1038 a F4(\000)p 2398 1026 11 41 v 2408 1008
46 5 v 96 w(\001)p Ga(;)d(c)i F4(:)h Ga(B)5 b F6(^)o
Ga(C)3140 978 y F6(^)3200 992 y Gc(R)615 1254 y Ga(x)17
b F4(:)h Ga(B)5 b(;)15 b F4(\000)p 917 1242 11 41 v 928
1223 46 5 v 96 w(\001)90 b Ga(y)20 b F4(:)e Ga(C)q(;)d
F4(\000)p 1452 1242 11 41 v 1462 1223 46 5 v 97 w(\001)p
615 1291 989 4 v 821 1370 a Ga(z)22 b F4(:)17 b Ga(B)5
b F6(_)o Ga(C)q(;)15 b F4(\000)p 1245 1358 11 41 v 1256
1340 46 5 v 97 w(\001)1645 1309 y F6(_)1706 1323 y Gc(L)2358
1253 y F4(\000)p 2435 1241 11 41 v 2445 1222 46 5 v 96
w(\001)p Ga(;)g(a)i F4(:)h Ga(B)2804 1267 y Gc(i)p 2272
1290 646 4 v 2272 1370 a F4(\000)p 2349 1358 11 41 v
2359 1340 46 5 v 96 w(\001)p Ga(;)d(b)i F4(:)h Ga(B)2709
1384 y F9(1)2748 1370 y F6(_)p Ga(B)2878 1384 y F9(2)2959
1303 y F6(_)3019 1317 y Gc(R)3072 1327 y FZ(i)610 1585
y F4(\000)p 687 1573 11 41 v 697 1555 46 5 v 96 w(\001)p
Ga(;)d(a)i F4(:)h Ga(B)95 b(x)17 b F4(:)h Ga(C)q(;)d
F4(\000)p 1447 1573 11 41 v 1457 1555 46 5 v 97 w(\001)p
610 1623 989 4 v 810 1701 a Ga(y)20 b F4(:)e Ga(B)5 b
F6(\033)o Ga(C)q(;)15 b F4(\000)p 1246 1689 11 41 v 1256
1671 46 5 v 97 w(\001)1640 1640 y F6(\033)1711 1654 y
Gc(L)2266 1584 y Ga(x)i F4(:)g Ga(B)5 b(;)15 b F4(\000)p
2568 1572 11 41 v 2579 1554 46 5 v 96 w(\001)p Ga(;)g(a)j
F4(:)f Ga(C)p 2266 1622 674 4 v 2311 1701 a F4(\000)p
2388 1689 11 41 v 2398 1671 46 5 v 96 w(\001)p Ga(;)e(b)i
F4(:)h Ga(B)5 b F6(\033)o Ga(C)2981 1639 y F6(\033)3052
1653 y Gc(R)1271 1915 y F4(\000)1328 1929 y F9(1)p 1387
1903 11 41 v 1398 1885 46 5 v 1463 1915 a F4(\001)1539
1929 y F9(1)1578 1915 y Ga(;)15 b(a)j F4(:)f Ga(B)96
b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2173 1929 y F9(2)p
2233 1903 11 41 v 2243 1885 46 5 v 2309 1915 a F4(\001)2385
1929 y F9(2)p 1271 1953 1154 4 v 1547 2032 a F4(\000)1604
2046 y F9(1)1644 2032 y Ga(;)g F4(\000)1741 2046 y F9(2)p
1800 2020 11 41 v 1811 2002 46 5 v 1877 2032 a F4(\001)1953
2046 y F9(1)1992 2032 y Ga(;)g F4(\001)2108 2046 y F9(2)2466
1983 y Gg(Cut)p 3543 2138 4 1909 v 321 2141 3226 4 v
Black 960 2294 a(Figure)24 b(2.2:)30 b(V)-10 b(ariant)24
b(of)f(Kleene')-5 b(s)25 b(sequent)g(calculus)h(G3a.)p
Black Black 321 2725 a(premise.)k(Thus)24 b(the)f(conclusion)k(of)c
(the)h F6(\033)1718 2739 y Gc(R)1776 2725 y Gg(-rule)g(is)f(of)h(the)g
(form)1607 2988 y F4(\000)p 1684 2976 11 41 v 1694 2958
46 5 v 96 w(\001)c F6(\010)g Ga(b)d F4(:)g Ga(B)5 b F6(\033)p
Ga(C)321 3232 y Gg(where)33 b F6(\010)f Gg(denotes)i(set)f(union.)57
b(Note)32 b(that)h Ga(x)h F4(:)g Ga(B)i Gg(and)d Ga(a)h
F4(:)g Ga(C)k Gg(are)33 b(not)g(part)g(of)g(the)f(conclusion)321
3345 y(because)26 b(the)o(y)e(are)f(intended)j(to)e(be)f(dischar)n
(ged.)32 b(Hence)24 b(the)g(premise)h(must)e(be)h(of)f(the)h(form)1526
3609 y Ga(x)17 b F4(:)h Ga(B)24 b F6(\012)c F4(\000)p
1899 3597 11 41 v 1910 3578 46 5 v 96 w(\001)g F6(\012)g
Ga(a)e F4(:)f Ga(C)321 3830 y Gg(where)24 b F6(\012)f
Gg(denotes)i(disjoint)h(set)d(union.)462 3965 y(There)28
b(is)f(one)h(point)g(w)o(orth)f(mentioning)j(in)d(the)h(cut-rule,)h
(because)h(it)d(is)g(the)g(only)h(inference)321 4078
y(rule)33 b(in)g(our)g(sequent)i(calculus)f(that)f(does)h(not)f(share)h
(the)f(conte)o(xts,)j(b)n(ut)d(requires)i(that)e(the)g(tw)o(o)321
4191 y(conte)o(xts)j(of)d(the)h(premises)h(are)f(joined)h(on)f(each)g
(side)h(of)e(the)h(conclusion.)62 b(Thus)34 b(we)f(tak)o(e)h(the)321
4304 y(cut-rule)26 b(to)d(be)h(of)f(the)h(form)1175 4506
y F4(\000)1232 4520 y F9(1)p 1291 4494 11 41 v 1302 4476
46 5 v 1367 4506 a F4(\001)1443 4520 y F9(1)1503 4506
y F6(\012)c Ga(a)d F4(:)g Ga(B)96 b(x)17 b F4(:)g Ga(B)25
b F6(\012)20 b F4(\000)2219 4520 y F9(2)p 2278 4494 11
41 v 2289 4476 46 5 v 2354 4506 a F4(\001)2430 4520 y
F9(2)p 1175 4540 1295 4 v 1451 4619 a F4(\000)1508 4633
y F9(1)1568 4619 y F6(\010)g F4(\000)1716 4633 y F9(2)p
1775 4607 11 41 v 1786 4589 46 5 v 1851 4619 a F4(\001)1927
4633 y F9(1)1987 4619 y F6(\010)g F4(\001)2154 4633 y
F9(2)2511 4570 y Gg(Cut)26 b Ga(:)321 4863 y Gg(In)i(consequence,)k
(this)d(rule)f(is)g(only)h(applicable,)i(if)d(it)f(does)i(not)f(break)h
(the)f(conte)o(xt)i(con)l(v)o(ention,)321 4976 y(which)i(can)f(al)o(w)o
(ays)h(be)f(achie)n(v)o(ed)i(by)e(renaming)i(some)e(labels)h
(appropriately)-6 b(.)56 b(Note,)32 b(ho)n(we)n(v)o(er)l(,)321
5088 y(we)h(do)g(not)h(require)g(that)g(cuts)g(ha)n(v)o(e)g(to)f(be)g
(\223fully\224)i(multiplicati)n(v)o(e:)51 b(the)34 b
F4(\000)2851 5102 y Gc(i)2879 5088 y Gg(')-5 b(s)33 b(can)g(share)h
(some)321 5201 y(formulae)25 b(\(similarly)g(the)f F4(\001)1258
5215 y Gc(j)1295 5201 y Gg(')-5 b(s\).)p Black Black
eop end
%%Page: 21 33
TeXDict begin 21 32 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(21)p
277 88 3691 4 v Black 277 317 a Ge(2.2)119 b(Cut-Elimination)31
b(in)g(Pr)n(opositional)f(Classical)f(Logic)277 541 y
Gg(In)23 b(this)g(section)i(we)d(shall)i(introduce)h(a)d(strongly)j
(normalising)h(cut-elimination)g(procedure.)31 b(Usu-)277
654 y(ally)-6 b(,)29 b(sequent)h(proofs)f(are)f(written)h(pictorially)i
(in)c(a)h(tree-lik)o(e)i(f)o(ashion)g(using)f(inference)h(rules)e(of)
277 767 y(the)k(form)636 729 y Gc(P)681 738 y FV(1)p
636 746 80 4 v 642 798 a Gc(C)756 767 y Gg(or)872 729
y Gc(P)917 738 y FV(1)971 729 y Gc(P)1016 738 y FV(2)p
872 746 179 4 v 934 798 a Gc(C)1060 767 y Gg(.)51 b(This)32
b(is)f(ho)n(we)n(v)o(er)g(a)g(rather)i(space)f(consuming)i(notation.)54
b(In)31 b(order)h(to)277 880 y(present)e(our)f(strong)h(normalisation)h
(proof)f(in)e(a)g(manageable)j(form,)e(we)f(shall)h(annotate)h(our)f
(se-)277 993 y(quent)34 b(proofs)g(with)e(terms)h(and)g(e)o(xpress)h
(the)f(cut-elimination)j(procedure)f(as)e(a)f(term)g(re)n(writing)277
1105 y(system.)46 b(In)29 b(particular)l(,)34 b(we)28
b(are)h(able)h(to)f(e)o(xpress)i(a)d(proof)j(transformation)h(as)d(a)g
(special)i(sort)e(of)277 1218 y(proof)c(substitution.)418
1348 y(F)o(or)f(sequent)i(calculi,)g(e)n(v)o(en)f(in)f(the)h
(intuitionistic)j(case,)d(it)g(is)f(not)h(entirely)h(clear)f(what)g
(appro-)277 1461 y(priate)31 b(term)e(annotations)k(are.)48
b(In)29 b(f)o(act,)j(there)e(are)g(a)f(number)i(of)e(choices,)k(and)d
(there)h(is)e(no)h(real)277 1574 y(consensus)j(on)c(the)h(best.)48
b(Our)29 b(term)g(calculus)j(encodes)f(the)f(entire)h(structure)h(of)d
(a)g(sequent)j(cal-)277 1687 y(culus)c(proof)h(and)e(thus)h(allo)n(ws)g
(us)f(to)g(de\002ne)h(a)e(complete)j(cut-elimination)i(procedure)f(as)d
(a)g(term)277 1799 y(re)n(writing)38 b(system.)918 1766
y F5(2)1022 1799 y Gg(Other)f(proposals)i(use)d(lambda)h(terms)g(as)f
(annotation)j([Pottinger,)f(1977,)277 1912 y(Abramsk)o(y)-6
b(,)32 b(1993,)h(Barendre)o(gt)g(and)f(Ghilezan,)h(2000],)h(which)e(ho)
n(we)n(v)o(er)g(do)g(not)g(fully)h(encode)277 2025 y(the)24
b(structure)i(of)d(the)h(sequent)h(proofs)g(and)f(so)g(w)o(ould)g(seem)
g(less)g(useful)h(for)e(our)h(purposes.)p Black 277 2213
a Gb(De\002nition)f(2.2.1)g Gg(\(Ra)o(w)g(T)-6 b(erms\))p
Gb(:)p Black 33 w Gg(The)23 b(set)h(of)g(ra)o(w)e(terms,)i
FY(R)p Gg(,)e(is)h(de\002ned)h(by)g(the)g(grammar)p Black
Black 603 2386 a Ga(M)5 b(;)15 b(N)110 b F4(::=)99 b
FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))914 b Gg(axiom)967
2499 y F6(j)147 b FL(Cut)p F4(\()1312 2487 y FX(h)1340
2499 y Ga(a)r F4(:)r Ga(B)1491 2487 y FX(i)1518 2499
y Ga(M)11 b(;)1657 2487 y F9(\()1684 2499 y Ga(x)r F4(:)r
Ga(B)1839 2487 y F9(\))1867 2499 y Ga(N)f F4(\))381 b
Gg(cut)967 2612 y F6(j)147 b FL(Not)1282 2626 y Gc(R)1340
2612 y F4(\()1375 2600 y F9(\()1403 2612 y Ga(x)r F4(:)r
Ga(B)1558 2600 y F9(\))1585 2612 y Ga(M)10 b(;)15 b(a)p
F4(\))560 b Gg(not-right)967 2725 y F6(j)147 b FL(Not)1282
2739 y Gc(L)1334 2725 y F4(\()1369 2713 y FX(h)1397 2725
y Ga(a)r F4(:)r Ga(B)1548 2713 y FX(i)1575 2725 y Ga(M)10
b(;)15 b(x)p F4(\))566 b Gg(not-left)967 2838 y F6(j)147
b FL(And)1294 2852 y Gc(R)1352 2838 y F4(\()1387 2826
y FX(h)1414 2838 y Ga(a)r F4(:)r Ga(B)1565 2826 y FX(i)1593
2838 y Ga(M)10 b(;)1731 2826 y FX(h)1759 2838 y Ga(b)r
F4(:)r Ga(C)1899 2826 y FX(i)1926 2838 y Ga(N)g(;)15
b(c)p F4(\))243 b Gg(and-right)967 2953 y F6(j)147 b
FL(And)1294 2916 y Gc(i)1294 2976 y(L)1346 2953 y F4(\()1381
2941 y F9(\()1409 2953 y Ga(x)r F4(:)r Ga(B)1564 2941
y F9(\))1591 2953 y Ga(M)10 b(;)15 b(y)s F4(\))554 b
Gg(and-left)2646 2967 y Gc(i)2893 2953 y Ga(i)25 b F4(=)g(1)p
Ga(;)15 b F4(2)967 3067 y F6(j)147 b FL(Or)1239 3030
y Gc(i)1239 3090 y(R)1296 3067 y F4(\()1331 3055 y FX(h)1359
3067 y Ga(a)r F4(:)r Ga(B)1510 3055 y FX(i)1538 3067
y Ga(M)10 b(;)15 b(b)p F4(\))616 b Gg(or)n(-right)2639
3081 y Gc(i)2893 3067 y Ga(i)25 b F4(=)g(1)p Ga(;)15
b F4(2)967 3180 y F6(j)147 b FL(Or)1239 3194 y Gc(L)1291
3180 y F4(\()1326 3168 y F9(\()1354 3180 y Ga(x)r F4(:)r
Ga(B)1509 3168 y F9(\))1536 3180 y Ga(M)10 b(;)1674 3168
y F9(\()1702 3180 y Ga(y)5 b F4(:)r Ga(C)1851 3168 y
F9(\))1878 3180 y Ga(N)10 b(;)15 b(z)t F4(\))284 b Gg(or)n(-left)967
3293 y F6(j)147 b FL(Imp)1284 3315 y Gc(R)1342 3293 y
F4(\()1377 3281 y F9(\()1404 3293 y Ga(x)r F4(:)r Ga(B)1559
3281 y F9(\))q FX(h)1614 3293 y Ga(a)r F4(:)r Ga(C)1763
3281 y FX(i)1790 3293 y Ga(M)10 b(;)15 b(b)p F4(\))364
b Gg(implication-right)967 3406 y F6(j)147 b FL(Imp)1284
3428 y Gc(L)1336 3406 y F4(\()1371 3394 y FX(h)1399 3406
y Ga(a)r F4(:)r Ga(B)1550 3394 y FX(i)1577 3406 y Ga(M)10
b(;)1715 3394 y F9(\()1743 3406 y Ga(x)r F4(:)r Ga(C)1896
3394 y F9(\))1923 3406 y Ga(N)g(;)15 b(y)s F4(\))237
b Gg(implication-left)277 3578 y(where)30 b Ga(B)j Gg(and)d
Ga(C)35 b Gg(are)30 b(types)g(\(formulae\);)35 b Ga(x)p
Gg(,)30 b Ga(y)s Gg(,)f Ga(z)k Gg(are)d(tak)o(en)h(from)e(a)g(set)h(of)
f(names)h(and)g Ga(a)p Gg(,)g Ga(b)p Gg(,)g Ga(c)277
3690 y Gg(from)24 b(a)f(set)g(of)h(co-names.)418 3944
y(In)34 b(a)f(term)g(we)g(use)g(round)i(brack)o(ets)h(to)d(signify)i
(that)f(a)f(name)h(becomes)g(bound)h(and)f(angle)277
4057 y(brack)o(ets)f(that)f(a)e(co-name)j(becomes)f(bound.)53
b(In)31 b(what)g(follo)n(ws)g(we)f(shall)i(often)g(omit)f(the)h(type)
277 4170 y(annotations)g(on)c(bindings,)k(and)c(assume)h(that)g
Ga(F)13 b(N)d F4(\()p Ga(M)g F4(\))28 b Gg(and)h Ga(F)13
b(C)7 b F4(\()p Ga(M)j F4(\))28 b Gg(stand,)i(respecti)n(v)o(ely)-6
b(,)32 b(for)277 4283 y(the)27 b(set)f(of)g(free)h(names)g(and)g(free)f
(co-names)i(of)e(the)h(term)f Ga(M)10 b Gg(.)36 b(W)-7
b(e)26 b(do)g(not)h(gi)n(v)o(e)f(the)h(formal)g(de\002-)277
4396 y(nitions)d(of)e Ga(F)13 b(N)d F4(\()p 834 4396
28 4 v 852 4396 V 870 4396 V 65 w(\))22 b Gg(and)h Ga(F)13
b(C)7 b F4(\()p 1287 4396 V 1304 4396 V 1322 4396 V 64
w(\))p Gg(,)22 b(rather)h(gi)n(v)o(e)g(the)f(reader)i(tw)o(o)e
(illustrati)n(v)o(e)i(e)o(xamples.)30 b(Consider)277
4509 y(the)24 b(follo)n(wing)h(terms.)p Black Black 1205
4688 a FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))284 b FL(Imp)1947
4710 y Gc(L)1999 4688 y F4(\()2034 4676 y FX(h)2062 4688
y Ga(b)2101 4676 y FX(i)2128 4688 y Ga(M)10 b(;)2266
4676 y F9(\()2294 4688 y Ga(y)2342 4676 y F9(\))2369
4688 y Ga(N)g(;)15 b(z)t F4(\))277 4868 y Gg(Here,)27
b Ga(x)f Gg(and)h Ga(z)j Gg(are)c(free)h(names,)h(and)f
Ga(a)f Gg(is)g(a)g(free)h(co-name.)39 b(On)26 b(the)g(other)i(hand,)g
Ga(y)g Gg(and)f Ga(b)f Gg(are)h(a)277 4980 y(bound)d(name)e(and)g
(bound)i(co-name,)f(respecti)n(v)o(ely)-6 b(.)31 b(F)o(or)21
b(con)l(v)o(enience)26 b Ga(F)13 b(N)d F4(\()p 2790 4980
V 2808 4980 V 2825 4980 V 65 w(\))21 b Gg(and)i Ga(F)13
b(C)7 b F4(\()p 3242 4980 V 3259 4980 V 3277 4980 V 64
w(\))22 b Gg(will)277 5093 y(not)f(be)g(restricted)j(to)c(just)i(a)e
(single)i(term,)f(b)n(ut)h(also)f(be)g(used)h(for)f(sets)g(of)g(terms.)
28 b(Notice)21 b(that)h(names)277 5206 y(and)h(co-names)g(are)f(not)g
(the)h(same)f(notions)h(as)f(a)g(v)n(ariable)h(in)f(the)g(lambda)h
(calculus:)31 b(whilst)22 b(a)g(term)277 5319 y(can)i(be)f(substituted)
j(for)e(a)e(v)n(ariable,)j(a)e(name)g(or)g(a)g(co-name)h(can)g(only)g
(be)f(\223renamed\224.)31 b(Re)n(writing)p Black 277
5384 1290 4 v 383 5439 a F3(2)412 5471 y F2(Pfenning)21
b([1995])g(de)n(v)o(eloped)h(similar)e(terms)g(for)h(an)g(encoding)h
(of)e(a)h(weakly)g(normalising)g(cut-elimination)g(pro-)277
5562 y(cedure)f(into)f(LF)-6 b(.)p Black Black Black
eop end
%%Page: 22 34
TeXDict begin 22 33 bop Black -144 51 a Gb(22)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(a)e(name)h
Ga(x)e Gg(to)i Ga(y)h Gg(in)e Ga(M)30 b Gg(is)20 b(written)h(as)g
Ga(M)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])p Gg(,)20
b(and)h(re)n(writing)h(a)d(co-name)j Ga(a)e Gg(to)g Ga(b)g
Gg(in)g Ga(M)30 b Gg(is)20 b(written)321 430 y(as)k Ga(M)10
b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p Gg(.)28 b(The)c(routine)h
(formalisation)h(of)e(these)g(re)n(writing)h(operations)i(is)c
(omitted.)462 560 y(T)-7 b(o)26 b(annotate)i(terms)f(to)f(the)g
(sequent)j(proofs)e(of)g(the)f(calculus)j(gi)n(v)o(en)d(in)h(Figure)g
(2.2,)f(we)g(shall)321 673 y(replace)h(e)n(v)o(ery)e(sequent)h(of)e
(the)h(form)g F4(\000)p 1643 661 11 41 v 1653 642 46
5 v 96 w(\001)e Gg(with)i(a)f F7(typing)i(judg)o(ement)h
Gg(of)d(the)h(form)f F4(\000)3237 661 y Gc(.)3292 673
y Ga(M)3416 661 y Gc(.)3471 673 y F4(\001)321 786 y Gg(in)32
b(which)g Ga(M)41 b Gg(is)31 b(a)h(term,)h F4(\000)e
Gg(a)g(left-conte)o(xt)k(and)d F4(\001)e Gg(a)i(right-conte)o(xt.)56
b(Henceforth)34 b(we)d(shall)i(be)321 898 y(interested)26
b(in)e F7(well-typed)h Gg(terms,)f(only;)g(this)g(means)g(those)h(for)e
(which)h(there)h(are)e(tw)o(o)g(conte)o(xts,)j F4(\000)321
1011 y Gg(and)g F4(\001)p Gg(,)f(such)i(that)f F4(\000)1036
999 y Gc(.)1091 1011 y Ga(M)1214 999 y Gc(.)1269 1011
y F4(\001)f Gg(holds)i(gi)n(v)o(en)f(the)g(inference)i(rules)f(in)e
(Figure)h(2.3.)35 b(W)-7 b(e)25 b(de\002ne)h(the)321
1124 y(follo)n(wing)f(set)f(of)f(well-typed)j(terms.)p
Black Black 550 1325 a FY(T)706 1273 y F5(def)713 1325
y F4(=)891 1224 y FK(n)977 1325 y Ga(M)1122 1220 y FK(\014)1122
1275 y(\014)1122 1329 y(\014)1200 1325 y Ga(M)35 b F6(2)25
b FY(R)d Gg(and)i(well-typed)i(by)d(the)h(rules)h(sho)n(wn)e(in)h
(Figure)g(2.3)3257 1224 y FK(o)462 1542 y Gg(The)g(de\002nition)h(we)e
(gi)n(v)o(e)g(ne)o(xt)h(corresponds)j(to)d(the)g(traditional)i(notion)g
(of)d(the)h(main)g(formula)321 1655 y(of)g(an)f(inference)j(rule.)p
Black 321 1843 a Gb(De\002nition)d(2.2.2:)p Black Black
458 2035 a F6(\017)p Black 46 w Gg(A)f(term,)h Ga(M)10
b Gg(,)23 b F7(intr)l(oduces)j Gg(the)e(name)f Ga(z)k
Gg(or)d(co-name)h Ga(c)p Gg(,)d(if)i(and)g(only)g(if)f
Ga(M)33 b Gg(is)24 b(of)f(the)h(form:)p Black Black 807
2205 a(for)g Ga(z)t Gg(:)100 b FL(Ax)o F4(\()p Ga(z)t(;)15
b(c)p F4(\))1107 2318 y FL(Not)1250 2332 y Gc(L)1302
2318 y F4(\()1337 2306 y FX(h)1365 2318 y Ga(a)1413 2306
y FX(i)1440 2318 y Ga(S)5 b(;)15 b(z)t F4(\))1107 2432
y FL(And)1262 2395 y Gc(i)1262 2455 y(L)1314 2432 y F4(\()1349
2420 y F9(\()1376 2432 y Ga(x)1428 2420 y F9(\))1456
2432 y Ga(S)5 b(;)15 b(z)t F4(\))1107 2545 y FL(Or)1206
2559 y Gc(L)1258 2545 y F4(\()1293 2533 y F9(\()1321
2545 y Ga(x)1373 2533 y F9(\))1401 2545 y Ga(S)5 b(;)1502
2533 y F9(\()1529 2545 y Ga(y)1577 2533 y F9(\))1605
2545 y Ga(T)12 b(;)j(z)t F4(\))1107 2658 y FL(Imp)1251
2680 y Gc(L)1304 2658 y F4(\()1339 2646 y FX(h)1366 2658
y Ga(a)1414 2646 y FX(i)1442 2658 y Ga(S)5 b(;)1543 2646
y F9(\()1571 2658 y Ga(x)1623 2646 y F9(\))1650 2658
y Ga(T)13 b(;)i(z)t F4(\))2197 2205 y Gg(for)24 b Ga(c)p
Gg(:)100 b FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))2490
2318 y FL(Not)2633 2332 y Gc(R)2691 2318 y F4(\()2726
2306 y F9(\()2753 2318 y Ga(x)2805 2306 y F9(\))2833
2318 y Ga(S)5 b(;)15 b(c)p F4(\))2490 2430 y FL(And)2645
2444 y Gc(R)2703 2430 y F4(\()2738 2418 y FX(h)2765 2430
y Ga(a)2813 2418 y FX(i)2841 2430 y Ga(S)5 b(;)2942 2418
y FX(h)2970 2430 y Ga(b)3009 2418 y FX(i)3036 2430 y
Ga(T)13 b(;)i(c)p F4(\))2490 2545 y FL(Or)2590 2508 y
Gc(i)2590 2568 y(R)2647 2545 y F4(\()2682 2533 y FX(h)2710
2545 y Ga(a)2758 2533 y FX(i)2786 2545 y Ga(S)5 b(;)15
b(c)p F4(\))2490 2658 y FL(Imp)2635 2680 y Gc(R)2692
2658 y F4(\()2727 2646 y F9(\()2755 2658 y Ga(x)2807
2646 y F9(\))q FX(h)2862 2658 y Ga(a)2910 2646 y FX(i)2938
2658 y Ga(S)5 b(;)15 b(c)p F4(\))p Black 458 2825 a F6(\017)p
Black 46 w Gg(A)25 b(term,)i Ga(M)10 b Gg(,)27 b F7(fr)m(eshly)h
Gg(introduces)i(a)c(name,)i(if)e(and)h(only)h(if)e Ga(M)36
b Gg(introduces)30 b(this)e(name,)f(b)n(ut)549 2938 y(none)e(of)g(its)f
(proper)i(subterms.)34 b(In)24 b(other)i(w)o(ords,)f(the)g(name)f(must)
h(not)g(be)f(free)h(in)g(a)f(proper)549 3050 y(subterm)g(of)g
Ga(M)10 b Gg(,)22 b(just)i(on)g(the)g(top-le)n(v)o(el)h(of)e
Ga(M)10 b Gg(.)29 b(Similarly)24 b(for)f(co-names.)321
3304 y(Let)29 b(us)h(illustrate)i(the)e(de\002nition)i(just)e(gi)n(v)o
(en)h(and)f(our)g(implicit)h(con)l(v)o(entions)i(for)d(conte)o(xts)i
(with)321 3417 y(the)24 b(follo)n(wing)h(e)o(xample:)30
b(consider)c(the)e F6(\033)1724 3431 y Gc(R)1782 3417
y Gg(-rule)h(again,)e(this)i(time)e(annotated)j(with)d(terms.)p
Black Black 1431 3574 a Ga(x)17 b F4(:)g Ga(B)5 b(;)15
b F4(\000)1738 3562 y Gc(.)1793 3574 y Ga(M)1917 3562
y Gc(.)1972 3574 y F4(\001)p Ga(;)g(a)i F4(:)g Ga(C)p
1195 3611 1308 4 v 1195 3696 a F4(\000)1277 3684 y Gc(.)1332
3696 y FL(Imp)1476 3718 y Gc(R)1534 3696 y F4(\()1569
3684 y F9(\()1597 3696 y Ga(x)1649 3684 y F9(\))p FX(h)1704
3696 y Ga(a)1752 3684 y FX(i)1779 3696 y Ga(M)10 b(;)15
b(b)p F4(\))2017 3684 y Gc(.)2072 3696 y F4(\001)p Ga(;)g(b)j
F4(:)f Ga(B)5 b F6(\033)o Ga(C)2544 3629 y F6(\033)2615
3643 y Gc(R)321 3868 y Gg(No)n(w)22 b(this)i(rule)g(introduces)i(the)e
(\(co-name,type\))i(pair)l(,)e Ga(b)18 b F4(:)f Ga(B)5
b F6(\033)o Ga(C)i Gg(,)22 b(in)h(the)h(conclusion,)i(and)e(conse-)321
3981 y(quently)-6 b(,)24 b Ga(b)d Gg(is)h(a)f(free)h(co-name)h(in)f
FL(Imp)1567 4003 y Gc(R)1625 3981 y F4(\()1660 3969 y
F9(\()1688 3981 y Ga(x)1740 3969 y F9(\))p FX(h)1795
3981 y Ga(a)1843 3969 y FX(i)1870 3981 y Ga(M)10 b(;)15
b(b)p F4(\))p Gg(.)28 b(In)22 b(general,)i(ho)n(we)n(v)o(er)l(,)e
Ga(b)f Gg(could)i(already)h(be)321 4094 y(free)g(in)g(the)g(subterm)g
Ga(M)10 b Gg(,)23 b(and)h(thus)g(the)g(conclusion)i(of)e(this)g(rule)g
(is)f(of)h(the)g(form)1219 4277 y F4(\000)1301 4265 y
Gc(.)1356 4277 y FL(Imp)1501 4299 y Gc(R)1558 4277 y
F4(\()1593 4265 y F9(\()1621 4277 y Ga(x)1673 4265 y
F9(\))q FX(h)1728 4277 y Ga(a)1776 4265 y FX(i)1804 4277
y Ga(M)10 b(;)15 b(b)p F4(\))2042 4265 y Gc(.)2097 4277
y F4(\001)20 b F6(\010)f Ga(b)f F4(:)f Ga(B)5 b F6(\033)o
Ga(C)32 b(:)321 4448 y Gg(In)25 b(case)g(the)g(term)f
FL(Imp)1071 4470 y Gc(R)1128 4448 y F4(\()1163 4436 y
F9(\()1191 4448 y Ga(x)1243 4436 y F9(\))q FX(h)1298
4448 y Ga(a)1346 4436 y FX(i)1373 4448 y Ga(M)11 b(;)k(b)p
F4(\))24 b Gg(freshly)i(introduces)i Ga(b)19 b F4(:)g
Ga(B)5 b F6(\033)o Ga(C)i Gg(,)23 b(then)j(the)f(conclusion)i(is)e(of)
321 4561 y(the)f(form)1245 4674 y F4(\000)1327 4662 y
Gc(.)1382 4674 y FL(Imp)1526 4696 y Gc(R)1584 4674 y
F4(\()1619 4662 y F9(\()1646 4674 y Ga(x)1698 4662 y
F9(\))q FX(h)1753 4674 y Ga(a)1801 4662 y FX(i)1829 4674
y Ga(M)10 b(;)15 b(b)p F4(\))2067 4662 y Gc(.)2122 4674
y F4(\001)20 b F6(\012)g Ga(b)d F4(:)g Ga(B)5 b F6(\033)p
Ga(C)321 4833 y Gg(where)29 b Ga(b)d F4(:)g Ga(B)5 b
F6(\033)o Ga(C)34 b Gg(is)28 b(not)g(in)g F4(\001)p Gg(.)42
b(The)27 b(binders)j Ga(x)e Gg(and)g Ga(a)g Gg(cannot)h(be)g(part)f(of)
g(the)h(conclusion,)j(and)321 4946 y(therefore)26 b(the)e(premise)g
(must)g(be)g(of)f(the)h(form)1420 5136 y Ga(x)17 b F4(:)g
Ga(B)25 b F6(\012)20 b F4(\000)1798 5124 y Gc(.)1853
5136 y Ga(M)1976 5124 y Gc(.)2031 5136 y F4(\001)g F6(\012)g
Ga(a)d F4(:)h Ga(C)32 b(:)462 5307 y Gg(W)-7 b(e)28 b(add)g(tw)o(o)g
(ne)n(w)f(syntactic)j(cate)o(gories)h(of)d(terms,)h(which)f(are)g
F7(not)h Gg(proof)g(annotations,)j(b)n(ut)321 5420 y(play)h(an)f
(important)i(r)8 b(\210)-38 b(ole)33 b(in)f(the)g(de\002nition)i(of)e
(substitution)k(and)c(in)g(our)h(strong)g(normalisation)321
5533 y(proof.)p Black Black eop end
%%Page: 23 35
TeXDict begin 23 34 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(23)p
277 88 3691 4 v Black Black 277 229 V 277 2078 4 1849
v 1584 321 1054 4 v 1584 406 a Ga(x)17 b F4(:)h Ga(B)5
b(;)15 b F4(\000)1892 394 y Gc(.)1947 406 y FL(Ax)o F4(\()p
Ga(x;)g(a)p F4(\))2286 394 y Gc(.)2341 406 y F4(\001)p
Ga(;)g(a)i F4(:)g Ga(B)818 597 y F4(\000)900 585 y Gc(.)954
597 y Ga(M)1078 585 y Gc(.)1133 597 y F4(\001)p Ga(;)e(a)i
F4(:)h Ga(B)p 555 634 1138 4 v 555 719 a(x)f F4(:)g F6(:)p
Ga(B)5 b(;)15 b F4(\000)923 707 y Gc(.)978 719 y FL(Not)1121
733 y Gc(L)1173 719 y F4(\()1208 707 y FX(h)1236 719
y Ga(a)1284 707 y FX(i)1311 719 y Ga(M)10 b(;)15 b(x)p
F4(\))1562 707 y Gc(.)1617 719 y F4(\001)1734 647 y F6(:)1795
661 y Gc(L)2639 597 y Ga(x)j F4(:)f Ga(B)5 b(;)15 b F4(\000)2947
585 y Gc(.)3002 597 y Ga(M)3125 585 y Gc(.)3180 597 y
F4(\001)p 2378 634 1140 4 v 2378 719 a(\000)2460 707
y Gc(.)2515 719 y FL(Not)2657 733 y Gc(R)2715 719 y F4(\()2750
707 y F9(\()2778 719 y Ga(x)2830 707 y F9(\))2857 719
y Ga(M)c(;)k(a)p F4(\))3105 707 y Gc(.)3159 719 y F4(\001)p
Ga(;)g(a)j F4(:)f F6(:)p Ga(B)3559 647 y F6(:)3620 661
y Gc(R)791 910 y Ga(x)g F4(:)g Ga(B)971 924 y Gc(i)999
910 y Ga(;)e F4(\000)1122 898 y Gc(.)1177 910 y Ga(M)1300
898 y Gc(.)1355 910 y F4(\001)p 466 947 1289 4 v 466
1045 a Ga(y)20 b F4(:)e Ga(B)643 1059 y F9(1)682 1045
y F6(^)p Ga(B)812 1059 y F9(2)851 1045 y Ga(;)d F4(\000)974
1033 y Gc(.)1028 1045 y FL(And)1183 1008 y Gc(i)1183
1068 y(L)1235 1045 y F4(\()1270 1033 y F9(\()1298 1045
y Ga(x)1350 1033 y F9(\))1377 1045 y Ga(M)10 b(;)15 b(y)s
F4(\))1624 1033 y Gc(.)1679 1045 y F4(\001)1796 960 y
F6(^)1857 974 y Gc(L)1905 984 y FZ(i)2212 922 y F4(\000)2294
910 y Gc(.)2349 922 y Ga(M)2472 910 y Gc(.)2527 922 y
F4(\001)p Ga(;)g(a)i F4(:)h Ga(B)277 b F4(\000)3179 910
y Gc(.)3234 922 y Ga(N)3342 910 y Gc(.)3397 922 y F4(\001)p
Ga(;)15 b(b)j F4(:)f Ga(C)p 2212 960 1472 4 v 2238 1045
a F4(\000)2320 1033 y Gc(.)2375 1045 y FL(And)2530 1059
y Gc(R)2587 1045 y F4(\()2622 1033 y FX(h)2650 1045 y
Ga(a)2698 1033 y FX(i)2726 1045 y Ga(M)10 b(;)2864 1033
y FX(h)2892 1045 y Ga(b)2931 1033 y FX(i)2958 1045 y
Ga(N)g(;)15 b(c)p F4(\))3181 1033 y Gc(.)3236 1045 y
F4(\001)p Ga(;)g(c)j F4(:)f Ga(B)5 b F6(^)p Ga(C)3725
978 y F6(^)3786 992 y Gc(R)384 1248 y Ga(x)17 b F4(:)h
Ga(B)5 b(;)15 b F4(\000)692 1236 y Gc(.)747 1248 y Ga(M)870
1236 y Gc(.)925 1248 y F4(\001)272 b Ga(y)20 b F4(:)e
Ga(C)q(;)d F4(\000)1570 1236 y Gc(.)1625 1248 y Ga(N)1733
1236 y Gc(.)1788 1248 y F4(\001)p 384 1285 1480 4 v 434
1370 a Ga(z)21 b F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15 b
F4(\000)863 1358 y Gc(.)918 1370 y FL(Or)1017 1384 y
Gc(L)1069 1370 y F4(\()1104 1358 y F9(\()1132 1370 y
Ga(x)1184 1358 y F9(\))1211 1370 y Ga(M)c(;)1350 1358
y F9(\()1377 1370 y Ga(y)1425 1358 y F9(\))1453 1370
y Ga(N)f(;)15 b(z)t F4(\))1683 1358 y Gc(.)1738 1370
y F4(\001)1905 1303 y F6(_)1966 1317 y Gc(L)2617 1235
y F4(\000)2699 1223 y Gc(.)2754 1235 y Ga(M)2877 1223
y Gc(.)2932 1235 y F4(\001)p Ga(;)g(a)i F4(:)h Ga(B)3225
1249 y Gc(i)p 2326 1273 1218 4 v 2326 1370 a F4(\000)2408
1358 y Gc(.)2463 1370 y FL(Or)2562 1333 y Gc(i)2562 1393
y(R)2620 1370 y F4(\()2655 1358 y FX(h)2683 1370 y Ga(a)2731
1358 y FX(i)2758 1370 y Ga(M)10 b(;)15 b(b)p F4(\))2996
1358 y Gc(.)3051 1370 y F4(\001)p Ga(;)g(b)j F4(:)f Ga(B)3335
1384 y F9(1)3374 1370 y F6(_)p Ga(B)3504 1384 y F9(2)3585
1286 y F6(_)3646 1300 y Gc(R)3699 1310 y FZ(i)379 1560
y F4(\000)461 1548 y Gc(.)516 1560 y Ga(M)639 1548 y
Gc(.)694 1560 y F4(\001)p Ga(;)e(a)j F4(:)f Ga(B)277
b(x)17 b F4(:)h Ga(C)q(;)d F4(\000)1565 1548 y Gc(.)1620
1560 y Ga(N)1728 1548 y Gc(.)1783 1560 y F4(\001)p 379
1598 1480 4 v 400 1683 a Ga(y)20 b F4(:)d Ga(B)5 b F6(\033)o
Ga(C)q(;)15 b F4(\000)840 1671 y Gc(.)895 1683 y FL(Imp)1040
1705 y Gc(L)1092 1683 y F4(\()1127 1671 y FX(h)1155 1683
y Ga(a)1203 1671 y FX(i)1230 1683 y Ga(M)10 b(;)1368
1671 y F9(\()1396 1683 y Ga(x)1448 1671 y F9(\))1475
1683 y Ga(N)g(;)15 b(y)s F4(\))1707 1671 y Gc(.)1762
1683 y F4(\001)1900 1616 y F6(\033)1971 1630 y Gc(L)2525
1560 y Ga(x)i F4(:)g Ga(B)5 b(;)15 b F4(\000)2832 1548
y Gc(.)2887 1560 y Ga(M)3010 1548 y Gc(.)3065 1560 y
F4(\001)p Ga(;)g(a)j F4(:)f Ga(C)p 2289 1598 1308 4 v
2289 1683 a F4(\000)2371 1671 y Gc(.)2426 1683 y FL(Imp)2570
1705 y Gc(R)2628 1683 y F4(\()2663 1671 y F9(\()2691
1683 y Ga(x)2743 1671 y F9(\))p FX(h)2797 1683 y Ga(a)2845
1671 y FX(i)2873 1683 y Ga(M)10 b(;)15 b(b)p F4(\))3111
1671 y Gc(.)3166 1683 y F4(\001)p Ga(;)g(b)i F4(:)h Ga(B)5
b F6(\033)o Ga(C)3638 1616 y F6(\033)3709 1630 y Gc(R)1268
1873 y F4(\000)1325 1887 y F9(1)1390 1861 y Gc(.)1445
1873 y Ga(M)1568 1861 y Gc(.)1623 1873 y F4(\001)1699
1887 y F9(1)1738 1873 y Ga(;)15 b(a)j F4(:)f Ga(B)146
b(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)2384 1887 y F9(2)2448
1861 y Gc(.)2503 1873 y Ga(N)2611 1861 y Gc(.)2666 1873
y F4(\001)2742 1887 y F9(2)p 1268 1911 1514 4 v 1373
1996 a F4(\000)1430 2010 y F9(1)1469 1996 y Ga(;)g F4(\000)1566
2010 y F9(2)1631 1984 y Gc(.)1686 1996 y FL(Cut)p F4(\()1859
1984 y FX(h)1887 1996 y Ga(a)1935 1984 y FX(i)1962 1996
y Ga(M)10 b(;)2100 1984 y F9(\()2128 1996 y Ga(x)2180
1984 y F9(\))2207 1996 y Ga(N)g F4(\))2351 1984 y Gc(.)2406
1996 y F4(\001)2482 2010 y F9(1)2521 1996 y Ga(;)15 b
F4(\001)2637 2010 y F9(2)2823 1941 y Gg(Cut)p 3965 2078
4 1849 v 277 2081 3691 4 v 277 2235 a(Figure)22 b(2.3:)28
b(T)-6 b(erm)20 b(assignment)k(for)e(sequent)h(proofs)g(of)f(the)f
(propositional)26 b(fragment)d(of)e(classical)277 2348
y(logic.)p Black Black 277 2738 a Gb(De\002nition)28
b(2.2.3:)p Black 35 w Gg(Let)g Ga(M)38 b Gg(and)30 b
Ga(N)38 b Gg(be)29 b(well-typed)i(terms,)g(then)2451
2726 y F9(\()2479 2738 y Ga(x)r F4(:)r Ga(B)2634 2726
y F9(\))2661 2738 y Ga(M)39 b Gg(and)2947 2726 y FX(h)2974
2738 y Ga(a)r F4(:)r Ga(C)3123 2726 y FX(i)3151 2738
y Ga(N)f Gg(are)29 b(re-)277 2851 y(ferred)f(to)e(as)g(a)g
F7(named)g(term)h Gg(and)f F7(co-named)i(term)p Gg(,)f(respecti)n(v)o
(ely)-6 b(.)39 b(More)27 b(formally)-6 b(,)28 b(we)d(ha)n(v)o(e)i(the)
277 2964 y(follo)n(wing)e(tw)o(o)e(f)o(amilies)i(of)e(sets)i(inde)o(x)o
(ed)f(by)g(types:)p Black Black 391 3171 a FY(T)448 3190
y F9(\()p Gc(B)s F9(\))659 3120 y F5(def)666 3171 y F4(=)844
3070 y FK(n)929 3159 y F9(\()957 3171 y Ga(x)r F4(:)r
Ga(B)1112 3159 y F9(\))1139 3171 y Ga(M)1284 3067 y FK(\014)1284
3121 y(\014)1284 3176 y(\014)1362 3171 y Ga(M)35 b F6(2)25
b FY(T)51 b Gg(with)23 b(the)h(typing)h(judgement)53
b Ga(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)2994 3159
y Gc(.)3049 3171 y Ga(M)3172 3159 y Gc(.)3227 3171 y
F4(\001)3328 3070 y FK(o)392 3382 y FY(T)449 3400 y FX(h)p
Gc(C)5 b FX(i)659 3330 y F5(def)666 3382 y F4(=)844 3281
y FK(n)929 3370 y FX(h)957 3382 y Ga(a)r F4(:)r Ga(C)1106
3370 y FX(i)1133 3382 y Ga(N)1284 3277 y FK(\014)1284
3332 y(\014)1284 3386 y(\014)1362 3382 y Ga(N)50 b F6(2)25
b FY(T)51 b Gg(with)23 b(the)h(typing)h(judgement)53
b F4(\000)2768 3370 y Gc(.)2823 3382 y Ga(N)2932 3370
y Gc(.)2986 3382 y F4(\001)p Ga(;)15 b(a)j F4(:)f Ga(C)3322
3281 y FK(o)277 3585 y Gg(W)-7 b(e)22 b(e)o(xtend)j(the)e(notion)i(of)e
(free)h(names)f(and)h(free)g(co-names)g(to)f(the)h(named)g(and)f
(co-named)i(terms)277 3698 y(in)f(the)f(ob)o(vious)j(w)o(ay)-6
b(.)418 3952 y(No)n(w)30 b(let)h(us)f(focus)i(on)f(term)g(re)n(writing)
h(rules.)51 b(One)31 b(reason)h(for)f(introducing)j(terms)d(is)g(that)
277 4065 y(the)o(y)c(greatly)h(simplify)g(the)f(formalisation)j(of)c
(the)h(cut-reduction)j(rules,)e(most)f(notably)i(the)d(rules)277
4177 y(for)j(commuting)i(cuts.)46 b(In)29 b(the)h(sequent)h(calculus)g
(gi)n(v)o(en)f(in)f(Figure)g(2.2)g(there)h(are)g(300)f(dif)n(ferent)277
4290 y(cases)k(of)e(commuting)i(cuts!)55 b(T)-7 b(o)30
b(consider)k(each)f(case)f(separately)i(is)e(clearly)h(rather)g
(laborious,)277 4403 y(and)d(unfortunately)j(simpli\002cations)f(using)
e(sequent)h(proofs)g(seem)e(dif)n(\002cult)h(to)f(obtain.)47
b(F)o(or)28 b(e)o(x-)277 4516 y(ample)22 b(Ungar)g([1992,)h(P)o(age)e
(192])h(remarks)h(on)e(a)g(cut-elimination)26 b(procedure)e(in)e(a)f
(much)g(simpler)277 4629 y(setting:)p Black Black 504
4815 a(Unfortunately)-6 b(,)33 b(there)c(are)g(a)f(lar)n(ge)i(number)f
(of)f(cases)i(to)e(consider)j(and)e(I)f(ha)n(v)o(e)h(not)504
4928 y(been)j(able)f(to)f(\002nd)g(a)g(notation)i(that)f(enables)h
(more)e(than)i(a)d(couple)j(of)e(these)i(to)e(be)504
5041 y(amalgamated.)277 5228 y(Therefore)37 b(traditional)g(treatments)
g(of)e(cut-elimination)j(either)e(omit)f(these)h(permutation)h(rules)
277 5341 y(entirely)e(or)d(present)i(only)g(a)e(handful)j(of)d(cases;)
38 b(for)33 b(e)o(xample)h([Gentzen,)f(1935,)h(Girard)f(et)f(al.,)p
Black Black eop end
%%Page: 24 36
TeXDict begin 24 35 bop Black -144 51 a Gb(24)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(1989,)34
b(Gallier,)f(1993].)57 b(This)33 b(is)f(unfortunate)k(as)d(a)f(careful)
j(study)f(of)e(these)i(rules)g(sheds)f(some)321 430 y(light)25
b(on)e(the)h(problems)h(of)f(non-termination)j(of)d(cut-elimination.)
462 591 y(A)j(substitution)k(operation,)g(which)d(we)f(shall)h
(introduce)j(for)c(terms,)i(allo)n(ws)f(us)f(to)h(formalise)321
704 y(the)e(proof)g(transformations)j(necessary)f(for)d(commuting)i
(cuts)f(in)f(only)h(twenty)f(clauses.)36 b(Clearly)-6
b(,)321 817 y(this)28 b(is)f(an)g(adv)n(antage)j(of)d(our)h(use)f(of)g
(terms.)40 b(T)-7 b(o)26 b(gi)n(v)o(e)h(the)h(de\002nition)h(of)e(this)
h(substitution)i(oper)n(-)321 930 y(ation)c(in)f(a)g(compact)h(form,)f
(we)f(assume)i(the)f(follo)n(wing)h(con)l(v)o(ention,)j(which)c(is)g
(standard)i(in)e(term)321 1042 y(re)n(writing.)p Black
321 1230 a Gb(Con)l(v)o(ention)19 b(2.2.4)f Gg(\(Barendre)o(gt-style)k
(Naming)c(Con)l(v)o(ention\))p Gb(:)p Black 37 w Gg(W)-7
b(e)17 b(assume)i(that)g(terms)f(are)g(equal)321 1343
y(up)26 b(to)f(alpha-con)l(v)o(ersion;)31 b(that)26 b(means)g(re)n
(writing)g(bound)h(names)e(or)h(co-names)g(does)g(not)g(change)321
1456 y(terms.)i(This)20 b(con)l(v)o(ersion)k(generates)e(alpha-equi)n
(v)n(alence)k(classes)c(of)e(terms.)28 b(When)20 b(writing)h(terms)321
1569 y(we)28 b(observ)o(e)j(a)d(Barendre)o(gt-style)k(naming)e(con)l(v)
o(ention,)j(which)c(says)h(that)f(free)g(and)h(bound)g(\(co-)321
1682 y(\)names)35 b(are)g(al)o(w)o(ays)g(distinct)h(\(cf.)e(Con)l(v)o
(ention)i(2.1.13)f(gi)n(v)o(en)g(by)f(Barendre)o(gt)i([1981]\).)63
b(Thus)321 1795 y(we)24 b(can)g(vie)n(w)g(our)g(terms)h(as)f
(representati)n(v)o(es)k(of)c(the)g(alpha-equi)n(v)n(alence)29
b(classes)d(and)e(w)o(ork)h(with)321 1908 y(these)g(terms)f(in)f(the)h
(na)m(\250)-27 b(\021v)o(e)24 b(w)o(ay)-6 b(.)p Black
321 2145 a Gb(Remark)39 b(2.2.5:)p Black 34 w Gg(An)f(alternati)n(v)o
(e)j(to)e(this)h(con)l(v)o(ention)i(a)n(v)n(oiding)f(the)f(problems)g
(arising)h(from)321 2258 y(alpha-con)l(v)o(ersions)34
b(w)o(ould)29 b(be)g(to)f(use)h(de)f(Bruijn')-5 b(s)30
b(nameless)g(terms.)44 b(This)28 b(an)g(ele)o(gant)i(method)321
2371 y(for)c(an)g(implementation,)j(ho)n(we)n(v)o(er)l(,)d(at)g(the)f
(e)o(xpense)j(of)d(making)i(our)f(terms)g(ille)o(gible)h(for)f(human)
321 2484 y(readers.)67 b(Another)37 b(alternati)n(v)o(e)h(is)d(to)h
(de\002ne)g(directly)i(the)e(alpha-equi)n(v)n(alence)k(classes)e(of)d
(our)321 2597 y(terms)22 b(using)h(the)e(meta-language)k(pro)o(vided)f
(by)d(Gabbay)h(and)g(Pitts)g([1999].)29 b(Both)22 b(methods)h(seem)321
2710 y(less)32 b(useful)g(for)f(our)g(purposes,)k(since)c(the)o(y)g
(either)h(complicate)h(the)e(de\002nition)i(of)e(terms)g(or)f(the)321
2822 y(de\002nition)23 b(of)e(substitution.)31 b(Therefore)23
b(we)d(shall)i(use)f(the)h(Barendre)o(gt-style)i(naming)e(con)l(v)o
(ention)321 2935 y(throughout)27 b(the)d(thesis.)462
3220 y(Before)h(we)f(formalise)i(the)e(substitution)k(operation,)f(let)
d(us)h(gi)n(v)o(e)f(some)g(intuition)j(behind)f(this)321
3333 y(operation.)31 b(Consider)24 b(the)f(follo)n(wing)i(sequent)f
(proof)g(where)f(we)f(ha)n(v)o(e)h(omitted)h(the)f(term)g(annota-)321
3446 y(tions)i(and)f(labels)h(for)e(bre)n(vity)-6 b(.)p
Black Black 307 3916 a FU(\031)354 3928 y FJ(1)391 3746
y FI(8)391 3821 y(<)391 3970 y(:)p 472 3865 703 4 v 472
3938 a FU(B)t FT(_)q FU(C)p 678 3926 10 38 v 688 3910
42 4 v 94 w(D)r FT(\033)p FU(E)5 b(;)14 b(B)t FT(_)p
FU(C)1216 3884 y FH(?)p 1339 3755 670 4 v 1339 3829 a
FU(B)t FT(_)q FU(C)q(;)g(D)p 1649 3817 10 38 v 1658 3800
42 4 v 90 w(E)5 b(;)14 b(B)t FT(_)q FU(C)2050 3775 y
FH(?)p 1323 3865 703 4 v 1323 3938 a FU(B)t FT(_)p FU(C)p
1529 3926 10 38 v 1539 3910 42 4 v 95 w(D)r FT(\033)o
FU(E)5 b(;)14 b(B)t FT(_)q FU(C)2053 3881 y FT(\033)2117
3893 y FS(R)p 472 3974 1553 4 v 711 4053 a FG(\()p FU(B)t
FT(_)q FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)q
FU(C)g FG(\))p 1290 4041 10 38 v 1299 4024 42 4 v 88
w FU(D)r FT(\033)p FU(E)f(;)14 b(B)t FT(_)p FU(C)2053
3991 y FT(_)2108 4004 y FS(L)p 2245 3761 427 4 v 2245
3834 a FU(B)t(;)g(F)p 2433 3822 10 38 v 2442 3806 42
4 v 100 w(B)t(;)g(C)p 2755 3761 420 4 v 90 w(C)q(;)g(F)p
2935 3822 10 38 v 2945 3806 42 4 v 100 w(B)t(;)g(C)p
2245 3870 929 4 v 2439 3944 a(B)t FT(_)p FU(C)q(;)g(F)p
2742 3932 10 38 v 2752 3915 42 4 v 101 w(B)t(;)g(C)3202
3887 y FT(_)3257 3900 y FS(L)3307 3887 y FT(\017)p 2378
3980 663 4 v 2378 4053 a FU(B)t FT(_)q FU(C)q(;)g(F)e
FT(^)q FU(G)p 2802 4041 10 38 v 2812 4024 42 4 v 88 w(B)t(;)i(C)3069
3992 y FT(^)3124 4005 y FS(L)3170 4013 y FP(1)3355 3746
y FI(9)3355 3821 y(=)3355 3970 y(;)3429 3916 y FU(\031)3476
3928 y FJ(2)p 593 4073 2613 4 v 1261 4152 a FG(\()p FU(B)t
FT(_)p FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)q
FU(C)g FG(\))p FU(;)14 b(F)e FT(^)q FU(G)p 2062 4140
10 38 v 2071 4123 42 4 v 88 w(D)r FT(\033)p FU(E)5 b(;)14
b(B)t(;)g(C)3234 4101 y Gd(Cut)321 4524 y Gg(The)23 b(cut-formula,)j
Ga(B)5 b F6(_)o Ga(C)i Gg(,)22 b(is)h(neither)i(introduced)i(in)c(the)h
(inference)i(rule)e F6(_)2794 4538 y Gc(L)2869 4524 y
Gg(nor)f(in)h F6(^)3166 4538 y Gc(L)3214 4547 y FV(1)3253
4524 y Gg(.)k(There-)321 4637 y(fore)d(the)g(cut)f(is,)h(by)f
(de\002nition,)i(a)e(commuting)i(cut.)31 b(In)24 b Ga(\031)2194
4651 y F9(1)2257 4637 y Gg(the)h(cut-formula)h(is)f(introduced)i(in)d
(the)321 4750 y(axioms)31 b(mark)o(ed)f(with)f(a)g(star)l(,)j(and)e(in)
f Ga(\031)1664 4764 y F9(2)1704 4750 y Gg(,)g(respecti)n(v)o(ely)-6
b(,)34 b(in)c(the)f(inference)j(rule)e(mark)o(ed)h(with)e(a)321
4863 y(disc.)k(Eliminating)26 b(the)f(cut)g(in)g(the)g(proof)h(abo)o(v)
o(e)f(means)g(to)g(either)h(permute)f(the)g(deri)n(v)n(ation)i
Ga(\031)3412 4877 y F9(2)3476 4863 y Gg(to)321 4976 y(the)j(places)g
(mark)o(ed)h(with)e(a)f(star)i(and)g(replace)h(the)e(corresponding)34
b(axioms)c(with)f Ga(\031)3107 4990 y F9(2)3146 4976
y Gg(,)h(or)f(to)g(per)n(-)321 5088 y(mute)23 b Ga(\031)577
5102 y F9(1)639 5088 y Gg(and)h(\223cut)g(it)e(against\224)j(the)f
(inference)h(rule)f(mark)o(ed)g(with)f(a)g(disc.)29 b(In)23
b(the)h(former)f(case)h(the)321 5201 y(deri)n(v)n(ation)i(being)f
(permuted)g(is)e(duplicated.)p Black Black eop end
%%Page: 25 37
TeXDict begin 25 36 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(25)p
277 88 3691 4 v Black 418 294 a Gg(W)-7 b(e)18 b(realise)i(these)f
(operations)j(at)c(the)h(term)f(le)n(v)o(el)h(with)f(tw)o(o)g
(symmetric)i(forms)f(of)f(substitution,)277 407 y(which)24
b(we)f(shall)h(write)g(as)p Black Black 1012 586 a Ga(P)13
b F4([)p Ga(x)k F4(:)r Ga(B)31 b F4(:=)1425 574 y FX(h)1452
586 y Ga(a)17 b F4(:)r Ga(B)1618 574 y FX(i)1646 586
y Ga(Q)p F4(])99 b Gg(or)i Ga(S)5 b F4([)p Ga(b)17 b
F4(:)r Ga(B)30 b F4(:=)2407 574 y F9(\()2435 586 y Ga(y)20
b F4(:)r Ga(B)2601 574 y F9(\))2628 586 y Ga(T)13 b F4(])25
b Gg(.)277 765 y(F)o(or)g(bre)n(vity)j(we)d(shall)i(usually)g(omit)f
(the)g(type)h(annotations)i(in)d(the)g(substitution)k(operation,)f
(pro-)277 878 y(vided)c(the)o(y)f(are)f(clear)i(from)e(the)h(conte)o
(xt.)418 1008 y(Returning)d(to)e(our)g(moti)n(v)n(ating)h(e)o(xample,)h
(assume)e(that)h Ga(M)28 b Gg(and)19 b Ga(N)28 b Gg(are)19
b(the)g(terms)g(correspond-)277 1120 y(ing)24 b(to)f(the)h(subproofs)j
Ga(\031)1077 1134 y F9(1)1139 1120 y Gg(and)d Ga(\031)1345
1134 y F9(2)1384 1120 y Gg(,)e(which)i(thus)g(ha)n(v)o(e)h(the)e
(typing)j(judgements:)p Black Black 1011 1294 a Ga(x)17
b F4(:)h(\()p Ga(B)5 b F6(_)o Ga(C)i F4(\))p F6(_)o F4(\()p
Ga(B)e F6(_)p Ga(C)i F4(\))1786 1282 y Gc(.)1866 1294
y Ga(M)2015 1282 y Gc(.)2095 1294 y Ga(a)17 b F4(:)h
Ga(D)s F6(\033)o Ga(E)5 b(;)15 b(b)j F4(:)g Ga(B)5 b
F6(_)o Ga(C)1092 1421 y(y)20 b F4(:)e Ga(B)5 b F6(_)o
Ga(C)q(;)15 b(z)22 b F4(:)c Ga(F)13 b F6(^)o Ga(G)1800
1409 y Gc(.)1888 1421 y Ga(N)2028 1409 y Gc(.)2108 1421
y Ga(c)18 b F4(:)f Ga(B)5 b(;)15 b(d)j F4(:)f Ga(C)277
1591 y Gg(Consequently)-6 b(,)27 b(we)22 b(ha)n(v)o(e)j(the)e(term)h
(annotation)p Black Black 528 1758 a Ga(x)18 b F4(:)f(\()p
Ga(B)5 b F6(_)o Ga(C)i F4(\))p F6(_)p F4(\()p Ga(B)e
F6(_)o Ga(C)i F4(\))p Ga(;)15 b(z)22 b F4(:)c Ga(F)13
b F6(^)o Ga(G)1653 1746 y Gc(.)1733 1758 y FL(Cut)p F4(\()1906
1746 y FX(h)1934 1758 y Ga(b)1973 1746 y FX(i)2000 1758
y Ga(M)e(;)2139 1746 y F9(\()2166 1758 y Ga(y)2214 1746
y F9(\))2242 1758 y Ga(N)f F4(\))2411 1746 y Gc(.)2491
1758 y Ga(a)17 b F4(:)g Ga(D)s F6(\033)p Ga(E)5 b(;)15
b(c)j F4(:)g Ga(B)5 b(;)15 b(d)i F4(:)g Ga(C)277 1943
y Gg(for)27 b(the)g(conclusion)j(of)c(the)h(e)o(xample)h(proof.)39
b(The)26 b(term)g Ga(M)10 b F4([)p Ga(b)32 b F4(:=)2474
1931 y F9(\()2501 1943 y Ga(y)2549 1931 y F9(\))2576
1943 y Ga(N)10 b F4(])26 b Gg(denotes)j(the)e(follo)n(wing)277
2056 y(proof,)d(where)g(we)f(ha)n(v)o(e)h(again)g(omitted)h(all)f(term)
f(annotations)k(and)d(labels.)p Black Black 286 2296
665 4 v 286 2370 a FU(B)t(;)14 b(F)p 474 2358 10 38 v
483 2341 42 4 v 100 w(D)r FT(\033)p FU(E)5 b(;)14 b(B)t(;)g(C)p
1080 2296 659 4 v 135 w(C)q(;)g(F)p 1261 2358 10 38 v
1271 2341 42 4 v 101 w(D)r FT(\033)o FU(E)5 b(;)14 b(B)t(;)g(C)p
286 2406 1453 4 v 622 2479 a(B)t FT(_)p FU(C)q(;)g(F)p
925 2467 10 38 v 935 2450 42 4 v 101 w(D)r FT(\033)o
FU(E)5 b(;)14 b(B)t(;)g(C)1780 2423 y FT(_)1835 2435
y FS(L)p 562 2515 902 4 v 562 2588 a FU(B)t FT(_)p FU(C)q(;)g(F)e
FT(^)q FU(G)p 986 2576 10 38 v 995 2560 42 4 v 88 w(D)r
FT(\033)p FU(E)5 b(;)14 b(B)t(;)g(C)1505 2528 y FT(^)1560
2540 y FS(L)1606 2548 y FP(1)p 1968 2187 628 4 v 1968
2260 a FU(B)t(;)g(F)r(;)g(D)p 2254 2248 10 38 v 2264
2232 42 4 v 91 w(E)5 b(;)14 b(B)t(;)g(C)p 2725 2187 622
4 v 135 w(C)q(;)g(F)r(;)g(D)p 3005 2248 10 38 v 3014
2232 42 4 v 91 w(E)5 b(;)14 b(B)t(;)g(C)p 1968 2296 1379
4 v 2285 2370 a(B)t FT(_)q FU(C)q(;)g(F)r(;)g(D)p 2687
2358 10 38 v 2697 2341 42 4 v 91 w(E)5 b(;)14 b(B)t(;)g(C)3388
2313 y FT(_)3443 2326 y FS(L)p 2220 2406 874 4 v 2220
2479 a FU(B)t FT(_)q FU(C)q(;)g(F)e FT(^)q FU(G;)i(D)p
2752 2467 10 38 v 2762 2450 42 4 v 90 w(E)5 b(;)14 b(B)t(;)g(C)3136
2418 y FT(^)3191 2431 y FS(L)3237 2439 y FP(1)p 2207
2515 902 4 v 2207 2588 a FU(B)t FT(_)p FU(C)q(;)g(F)e
FT(^)q FU(G)p 2631 2576 10 38 v 2640 2560 42 4 v 88 w(D)r
FT(\033)p FU(E)5 b(;)14 b(B)t(;)g(C)3150 2531 y FT(\033)3214
2544 y FS(R)p 562 2624 2547 4 v 1196 2703 a FG(\()p FU(B)t
FT(_)p FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)q
FU(C)g FG(\))p FU(;)14 b(F)e FT(^)q FU(G)p 1997 2691
10 38 v 2006 2675 42 4 v 88 w(D)r FT(\033)p FU(E)5 b(;)14
b(B)t(;)g(C)3150 2641 y FT(_)3205 2654 y FS(L)277 2901
y Gg(Similarly)-6 b(,)24 b(the)g(symmetric)g(case)h Ga(N)10
b F4([)p Ga(y)28 b F4(:=)1677 2889 y FX(h)1705 2901 y
Ga(b)1744 2889 y FX(i)1771 2901 y Ga(M)10 b F4(])23 b
Gg(denotes)j(the)d(proof)p Black Black 440 3144 703 4
v 440 3218 a FU(B)t FT(_)q FU(C)p 647 3206 10 38 v 656
3189 42 4 v 94 w(D)r FT(\033)p FU(E)5 b(;)14 b(B)t FT(_)p
FU(C)p 1288 3035 670 4 v 1288 3108 a(B)t FT(_)p FU(C)q(;)g(D)p
1597 3096 10 38 v 1607 3080 42 4 v 91 w(E)5 b(;)14 b(B)t
FT(_)p FU(C)p 1272 3144 703 4 v 1272 3218 a(B)t FT(_)p
FU(C)p 1478 3206 10 38 v 1487 3189 42 4 v 94 w(D)r FT(\033)p
FU(E)5 b(;)14 b(B)t FT(_)p FU(C)2015 3160 y FT(\033)2080
3173 y FS(R)p 440 3254 1534 4 v 670 3333 a FG(\()p FU(B)t
FT(_)q FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)p
FU(C)g FG(\))p 1248 3321 10 38 v 1258 3304 42 4 v 89
w FU(D)r FT(\033)o FU(E)f(;)14 b(B)t FT(_)q FU(C)2015
3271 y FT(_)2071 3283 y FS(L)p 2217 3150 427 4 v 2217
3223 a FU(B)t(;)g(F)p 2405 3211 10 38 v 2414 3195 42
4 v 100 w(B)t(;)g(C)p 2773 3150 420 4 v 136 w(C)q(;)g(F)p
2954 3211 10 38 v 2963 3195 42 4 v 100 w(B)t(;)g(C)p
2217 3259 976 4 v 2434 3333 a(B)t FT(_)p FU(C)q(;)g(F)p
2737 3321 10 38 v 2747 3304 42 4 v 101 w(B)t(;)g(C)3234
3276 y FT(_)3289 3289 y FS(L)p 670 3373 2307 4 v 1244
3452 a FG(\()p FU(B)t FT(_)q FU(C)6 b FG(\))p FT(_)q
FG(\()p FU(B)t FT(_)p FU(C)g FG(\))p FU(;)14 b(F)p 1924
3440 10 38 v 1934 3424 42 4 v 101 w(D)r FT(\033)o FU(E)5
b(;)14 b(B)t(;)g(C)3017 3401 y Gd(Cut)p 1183 3493 1280
4 v 1183 3572 a FG(\()p FU(B)t FT(_)q FU(C)6 b FG(\))p
FT(_)q FG(\()p FU(B)t FT(_)q FU(C)g FG(\))p FU(;)14 b(E)5
b FT(^)q FU(F)p 1985 3560 10 38 v 1995 3543 42 4 v 100
w(D)r FT(\033)o FU(E)g(;)14 b(B)t(;)g(C)2504 3505 y FT(^)2559
3518 y FS(L)2605 3526 y FP(1)418 3763 y Gg(As)29 b(we)f(ha)n(v)o(e)i
(seen,)h(commuting)g(cuts)f(need)g(to)f(permute,)j(or)d(\223jump\224,)j
(to)d(the)g(places)i(where)277 3876 y(the)k(cut-formula)j(is)d(a)f
(main)h(formula.)64 b(At)34 b(the)h(le)n(v)o(el)h(of)f(terms)g(this)g
(means)h(the)f(cuts)h(need)f(to)277 3989 y(be)e(permuted)i(to)e(e)n(v)o
(ery)h(subterm)h(that)e(introduces)k(the)c(cut-formula.)61
b(Therefore,)37 b(whene)n(v)o(er)d(a)277 4102 y(substitution)40
b(is)c(ne)o(xt)h(to)g(a)f(term)g(in)g(which)h(the)g(cut-formula)h(is)f
(introduced,)42 b(the)37 b(substitution)277 4215 y(becomes)25
b(an)f(instance)j(of)d(the)g(cut-term)h(constructor)-5
b(.)34 b(In)23 b(the)i(follo)n(wing)g(tw)o(o)f(e)o(xamples)h(we)e
(shall)277 4328 y(write)h F4([)p Ga(\033)s F4(])f Gg(and)h
F4([)p Ga(\034)10 b F4(])23 b Gg(for)h(the)g(substitutions)j
F4([)p Ga(c)f F4(:=)1848 4316 y F9(\()1876 4328 y Ga(x)1928
4316 y F9(\))1955 4328 y Ga(P)13 b F4(])23 b Gg(and)h
F4([)p Ga(x)i F4(:=)2452 4316 y FX(h)2479 4328 y Ga(b)2518
4316 y FX(i)2546 4328 y Ga(Q)p F4(])p Gg(,)c(respecti)n(v)o(ely)-6
b(.)p Black Black 540 4521 a FL(And)694 4535 y Gc(R)752
4521 y F4(\()787 4509 y FX(h)815 4521 y Ga(a)863 4509
y FX(i)890 4521 y Ga(M)10 b(;)1028 4509 y FX(h)1056 4521
y Ga(b)1095 4509 y FX(i)1123 4521 y Ga(N)g(;)15 b(c)p
F4(\)[)p Ga(\033)s F4(])101 b(=)e FL(Cut)p F4(\()1869
4509 y FX(h)1897 4521 y Ga(c)1936 4509 y FX(i)1964 4521
y FL(And)2118 4535 y Gc(R)2176 4521 y F4(\()2211 4509
y FX(h)2239 4521 y Ga(a)2287 4509 y FX(i)2330 4521 y
Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)2573 4509 y FX(h)2601
4521 y Ga(b)2640 4509 y FX(i)2683 4521 y Ga(N)g F4([)p
Ga(\033)s F4(])p Ga(;)15 b(c)p F4(\))r Ga(;)3027 4509
y F9(\()3054 4521 y Ga(x)3106 4509 y F9(\))3134 4521
y Ga(P)e F4(\))539 4657 y FL(Imp)684 4679 y Gc(L)736
4657 y F4(\()771 4645 y FX(h)798 4657 y Ga(a)846 4645
y FX(i)874 4657 y Ga(M)d(;)1012 4645 y F9(\()1040 4657
y Ga(y)1088 4645 y F9(\))1115 4657 y Ga(N)g(;)15 b(x)p
F4(\)[)p Ga(\034)10 b F4(])101 b(=)e FL(Cut)p F4(\()1869
4645 y FX(h)1897 4657 y Ga(b)1936 4645 y FX(i)1964 4657
y Ga(Q)o(;)2075 4645 y F9(\()2103 4657 y Ga(x)2155 4645
y F9(\))2183 4657 y FL(Imp)2327 4679 y Gc(L)2379 4657
y F4(\()2414 4645 y FX(h)2442 4657 y Ga(a)2490 4645 y
FX(i)2533 4657 y Ga(M)10 b F4([)p Ga(\034)g F4(])p Ga(;)2771
4645 y F9(\()2799 4657 y Ga(y)2847 4645 y F9(\))2890
4657 y Ga(N)g F4([)p Ga(\034)g F4(])p Ga(;)15 b(x)p F4(\))q(\))277
4844 y Gg(In)23 b(the)h(\002rst)f(e)o(xample)h(the)g(formula)h
(labelled)g(with)e Ga(c)g Gg(is)h(the)f(main)h(formula)g(and)g(in)f
(the)h(second)h(the)277 4957 y(formula)h(labelled)g(with)e
Ga(x)g Gg(is)g(the)h(main)g(formula.)32 b(So)24 b(in)g(both)i(cases)f
(the)g(substitutions)j(\223e)o(xpand\224)277 5070 y(to)e(cuts,)g(and)g
(in)g(addition)h(the)f(substitutions)k(are)25 b(pushed)j(inside)f(the)e
(subterms.)37 b(This)25 b(is)g(because)277 5183 y(there)34
b(might)e(be)h(se)n(v)o(eral)g(occurrences)j(of)c Ga(c)g
Gg(and)h Ga(x)f Gg(\(both)h(labels)h(need)f(not)g(ha)n(v)o(e)g(been)h
(freshly)p Black Black eop end
%%Page: 26 38
TeXDict begin 26 37 bop Black -144 51 a Gb(26)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 294 a Gg(introduced\).)31
b(An)20 b(e)o(xception)i(applies)g(to)e(axioms,)i(where)f(the)f
(substitution)k(is)c(de\002ned)h(dif)n(ferently)-6 b(.)p
Black Black 1271 467 a FL(Ax)p F4(\()p Ga(x;)15 b(a)p
F4(\)[)p Ga(x)26 b F4(:=)1809 455 y FX(h)1836 467 y Ga(b)1875
455 y FX(i)1903 467 y Ga(P)13 b F4(])99 b(=)h Ga(P)13
b F4([)p Ga(b)d F6(7!)g Ga(a)p F4(])1266 604 y FL(Ax)o
F4(\()p Ga(x;)15 b(a)p F4(\)[)p Ga(a)27 b F4(:=)1799
592 y F9(\()1826 604 y Ga(y)1874 592 y F9(\))1902 604
y Ga(Q)p F4(])99 b(=)h Ga(Q)p F4([)p Ga(y)13 b F6(7!)d
Ga(x)p F4(])321 780 y Gg(Recall)29 b(that)f Ga(P)13 b
F4([)p Ga(b)18 b F6(7!)g Ga(a)p F4(])28 b Gg(stands)h(for)f(the)g(term)
g Ga(P)40 b Gg(where)28 b(e)n(v)o(ery)g(free)h(occurrence)h(of)e(the)g
(co-name)321 893 y Ga(b)i Gg(is)g(re)n(written)i(to)e
Ga(a)g Gg(\(similarly)i Ga(Q)p F4([)p Ga(y)26 b F6(7!)d
Ga(x)p F4(])p Gg(\).)49 b(W)-7 b(e)30 b(are)g(left)h(with)f(the)h
(cases)h(where)e(the)h(name)g(or)321 1006 y(co-name)24
b(that)f(is)f(being)i(substituted)i(for)c(is)h(not)f(a)g(label)i(of)e
(the)h(main)g(formula.)29 b(In)22 b(these)i(cases)f(the)321
1119 y(substitutions)k(are)c(pushed)h(inside)g(the)f(subterms)h(or)e(v)
n(anish)i(in)f(case)g(of)f(the)h(axioms.)29 b(Suppose)24
b(the)321 1232 y(substitution)j F4([)p Ga(\033)s F4(])d
Gg(is)f F7(not)h Gg(of)g(the)f(form)h F4([)p Ga(z)30
b F4(:=)25 b Ga(:)15 b(:)g(:)q F4(])23 b Gg(and)h F4([)p
Ga(a)h F4(:=)h Ga(:)15 b(:)g(:)q F4(])p Gg(,)22 b(then)j(we)d(ha)n(v)o
(e)j(for)e(e)o(xample:)p Black Black 875 1425 a FL(Or)974
1439 y Gc(L)1027 1425 y F4(\()1062 1413 y F9(\()1089
1425 y Ga(x)1141 1413 y F9(\))1169 1425 y Ga(M)10 b(;)1307
1413 y F9(\()1335 1425 y Ga(y)1383 1413 y F9(\))1410
1425 y Ga(N)g(;)15 b(z)t F4(\)[)p Ga(\033)s F4(])101
b(=)f FL(Or)2090 1439 y Gc(L)2142 1425 y F4(\()2177 1413
y F9(\()2205 1425 y Ga(x)2257 1413 y F9(\))2310 1425
y Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)2553 1413 y
F9(\()2581 1425 y Ga(y)2629 1413 y F9(\))2682 1425 y
Ga(N)g F4([)p Ga(\033)s F4(])p Ga(;)15 b(z)t F4(\))1307
1562 y FL(Ax)p F4(\()p Ga(z)t(;)g(a)p F4(\)[)p Ga(\033)s
F4(])101 b(=)f FL(Ax)o F4(\()p Ga(z)t(;)15 b(a)p F4(\))462
1757 y Gg(The)30 b(complete)h(de\002nition)g(of)f(the)g(substitution)j
(operation)f(is)e(gi)n(v)o(en)g(in)f(Figure)i(2.4.)47
b(W)-7 b(e)28 b(do)321 1870 y(not)g(need)g(to)f(w)o(orry)h(about)g
(inserting)i(contraction)g(rules)e(when)f(a)g(term)g(is)g(duplicated,)k
(since)d(our)321 1983 y(conte)o(xts)c(are)e(sets)g(of)g(labelled)h
(formulae,)h(and)e(thus)g(contractions)k(are)c(made)f(implicitly)-6
b(.)30 b(Another)321 2096 y(simpli\002cation)23 b(is)c(due)i(to)f(our)g
(use)g(of)g(the)g(Barendre)o(gt-style)k(naming)d(con)l(v)o(ention,)i
(because)f(we)d(do)321 2209 y(not)h(need)g(to)g(w)o(orry)f(about)i
(possible)h(capture)f(of)e(free)h(names)g(or)f(co-names.)29
b(Let)19 b(us)g(no)n(w)g(introduce)321 2322 y(some)24
b(useful)h(terminology)h(for)e(substitutions.)p Black
321 2509 a Gb(T)-8 b(erminology)35 b(2.2.6:)p Black 34
w Gg(W)-7 b(e)33 b(shall)h(use)g(the)g(e)o(xpression)j
F4([)p Ga(\033)s F4(])c Gg(to)h(range)g(o)o(v)o(er)g(substitutions)k
(of)33 b(the)321 2622 y(form)26 b F4([)p Ga(x)18 b F4(:)f
Ga(B)30 b F4(:=)880 2610 y FX(h)908 2622 y Ga(a)17 b
F4(:)g Ga(B)1089 2610 y FX(i)1131 2622 y Ga(Q)p F4(])26
b Gg(and)g F4([)p Ga(b)18 b F4(:)f Ga(B)30 b F4(:=)1754
2610 y F9(\()1781 2622 y Ga(y)21 b F4(:)c Ga(B)1963 2610
y F9(\))2005 2622 y Ga(T)c F4(])p Gg(.)35 b(In)26 b(the)h(\002rst)e
(case)i Ga(x)17 b F4(:)h Ga(B)29 b Gg(is)d(the)h F7(domain)g
Gg(of)321 2735 y F4([)p Ga(\033)s F4(])p Gg(,)d(written)h(as)f
Ga(dom)p F4(\([)p Ga(\033)s F4(]\))p Gg(,)h(and)f(the)g(co-named)i
(term)2107 2723 y FX(h)2134 2735 y Ga(a)r F4(:)r Ga(B)2285
2723 y FX(i)2313 2735 y Ga(Q)d Gg(is)h(the)g F7(co-domain)i
Gg(of)e F4([)p Ga(\033)s F4(])p Gg(,)g(written)321 2848
y(as)g Ga(codom)p F4(\([)p Ga(\033)s F4(]\))p Gg(.)30
b(Similarly)24 b(in)f(the)h(second)h(case.)462 3085 y(Ne)o(xt,)k(let)f
(us)g(focus)i(on)e(the)g(cut-reductions)33 b(for)28 b(logical)i(cuts.)
43 b(Consider)30 b(an)e(instance)i(of)f(an)321 3198 y
F6(^)382 3212 y Gc(R)440 3198 y Ga(=)p F6(^)546 3212
y Gc(L)594 3221 y FV(1)632 3198 y Gg(-cut)c(for)e(which)h(a)f(na)m
(\250)-27 b(\021v)o(e)25 b(de\002nition)g(of)e(reduction)j(might)e(be)g
(as)f(follo)n(ws.)p Black Black 627 3409 a FL(Cut)p F4(\()800
3397 y FX(h)827 3409 y Ga(c)866 3397 y FX(i)894 3409
y FL(And)1049 3423 y Gc(R)1107 3409 y F4(\()1142 3397
y FX(h)1169 3409 y Ga(a)1217 3397 y FX(i)1245 3409 y
Ga(M)10 b(;)1383 3397 y FX(h)1411 3409 y Ga(b)1450 3397
y FX(i)1477 3409 y Ga(N)g(;)15 b(c)p F4(\))q Ga(;)1715
3397 y F9(\()1743 3409 y Ga(y)1791 3397 y F9(\))1818
3409 y FL(And)1973 3372 y F9(1)1973 3432 y Gc(L)2025
3409 y F4(\()2060 3397 y F9(\()2088 3409 y Ga(x)2140
3397 y F9(\))2167 3409 y Ga(P)e(;)i(y)s F4(\))q(\))23
b F6(\000)-31 b(\000)f(!)23 b FL(Cut)p F4(\()2786 3397
y FX(h)2814 3409 y Ga(a)2862 3397 y FX(i)2889 3409 y
Ga(M)10 b(;)3027 3397 y F9(\()3055 3409 y Ga(x)3107 3397
y F9(\))3134 3409 y Ga(P)j F4(\))321 3629 y Gg(Ho)n(we)n(v)o(er)l(,)20
b(there)g(is)f(a)f(problem)j(with)e(this)g(reduction)j(rule.)28
b(In)19 b(our)g(sequent)i(calculus)h(the)d(structural)321
3742 y(rules)28 b(are)f F7(implicit)p Gg(:)36 b(this)27
b(means)g(that)h(not)f(only)g(does)h(the)e(calculus)j(ha)n(v)o(e)e(fe)n
(wer)g(inference)i(rules,)321 3855 y(b)n(ut)c(more)e(importantly)-6
b(,)27 b(we)c(ha)n(v)o(e)h(a)f(v)o(ery)i(con)l(v)o(enient)h(w)o(ay)e
(of)g(de\002ning)h(substitution)i(\(we)c(do)h(not)321
3968 y(need)g(e)o(xplicit)g(contractions)i(when)d(a)f(term)g(is)h
(duplicated\).)31 b(On)22 b(the)h(other)h(hand,)f(there)h(is)e(a)g
(subtle)321 4081 y(side-ef)n(fect)k(of)e(this)g(design)h(decision;)h
(consider)g(the)e(follo)n(wing)h(instance)g(of)f(the)f(rede)o(x)3179
4048 y F5(3)3241 4081 y Gg(abo)o(v)o(e)p Black Black
325 4290 a FG(\000)377 4302 y FJ(1)437 4278 y FS(.)490
4290 y FU(M)603 4278 y FS(.)656 4290 y FG(\001)725 4302
y FJ(1)762 4290 y FU(;)p 0.75 TeXcolorgray 0.75 TeXcolorgray
799 4315 330 107 v 0.75 TeXcolorgray Black 39 w(c)16
b FG(:)g FU(B)t FT(^)q FU(C)p 0.75 TeXcolorgray Black
31 w(;)e(a)i FG(:)h FU(B)45 b FG(\000)1425 4302 y FJ(1)1485
4278 y FS(.)1538 4290 y FU(N)1637 4278 y FS(.)1690 4290
y FG(\001)1759 4302 y FJ(1)1797 4290 y FU(;)14 b(b)h
FG(:)i FU(C)p 325 4335 1666 4 v 464 4414 a FG(\000)516
4426 y FJ(1)577 4402 y FS(.)630 4414 y FF(And)771 4426
y FS(R)825 4414 y FG(\()857 4402 y FQ(h)884 4414 y FU(a)928
4402 y FQ(i)955 4414 y FU(M)9 b(;)1082 4402 y FQ(h)1108
4414 y FU(b)1144 4402 y FQ(i)1171 4414 y FU(N)g(;)14
b(c)p FG(\))1375 4402 y FS(.)1428 4414 y FG(\001)1497
4426 y FJ(1)1534 4414 y FU(;)g(c)i FG(:)h FU(B)t FT(^)p
FU(C)2018 4352 y FT(^)2073 4364 y FS(R)2484 4287 y FU(x)g
FG(:)f FU(B)t(;)e FG(\000)2743 4299 y FJ(2)2804 4275
y FS(.)2857 4287 y FU(P)2944 4275 y FS(.)2997 4287 y
FG(\001)3066 4299 y FJ(2)p 2211 4323 1168 4 v 2211 4414
a FU(y)k FG(:)f FU(B)t FT(^)p FU(C)q(;)d FG(\000)2581
4426 y FJ(2)2642 4402 y FS(.)2695 4414 y FF(And)2836
4377 y FJ(1)2836 4434 y FS(L)2886 4414 y FG(\()2918 4402
y FJ(\()2944 4414 y FU(x)2991 4402 y FJ(\))3017 4414
y FU(P)e(;)i(y)s FG(\))3218 4402 y FS(.)3271 4414 y FG(\001)3340
4426 y FJ(2)3405 4335 y FT(^)3461 4348 y FS(L)3507 4356
y FP(1)p 464 4455 2914 4 v 795 4546 a FG(\000)847 4558
y FJ(1)884 4546 y FU(;)g FG(\000)973 4558 y FJ(2)1033
4534 y FS(.)1086 4546 y FF(Cut)p FG(\()1244 4534 y FQ(h)1271
4546 y FU(c)1307 4534 y FQ(i)1334 4546 y FF(And)1475
4558 y FS(R)1530 4546 y FG(\()1562 4534 y FQ(h)1589 4546
y FU(a)1633 4534 y FQ(i)1660 4546 y FU(M)8 b(;)1786 4534
y FQ(h)1813 4546 y FU(b)1849 4534 y FQ(i)1875 4546 y
FU(N)h(;)14 b(c)p FG(\))p FU(;)2093 4534 y FJ(\()2119
4546 y FU(y)2163 4534 y FJ(\))2189 4546 y FF(And)2330
4509 y FJ(1)2330 4566 y FS(L)2380 4546 y FG(\()2412 4534
y FJ(\()2438 4546 y FU(x)2485 4534 y FJ(\))2511 4546
y FU(P)e(;)i(y)s FG(\)\))2744 4534 y FS(.)2797 4546 y
FG(\001)2866 4558 y FJ(1)2904 4546 y FU(;)g FG(\001)3010
4558 y FJ(2)3405 4482 y Gd(Cut)321 4762 y Gg(where)24
b Ga(c)f Gg(is)h(a)f(free)h(co-name)g(in)g Ga(M)33 b
Gg(\(shaded)25 b(box\).)30 b(Our)23 b(na)m(\250)-27 b(\021v)o(e)24
b(reduction)i(rule)e(w)o(ould)g(yield)p Black Black 1003
4947 a FG(\000)1055 4959 y FJ(1)1115 4935 y FS(.)1168
4947 y FU(M)1280 4935 y FS(.)1333 4947 y FG(\001)1402
4959 y FJ(1)1440 4947 y FU(;)14 b(c)i FG(:)g FU(B)t FT(^)q
FU(C)q(;)e(a)i FG(:)h FU(B)87 b(x)17 b FG(:)f FU(B)t(;)e
FG(\000)2297 4959 y FJ(2)2357 4935 y FS(.)2410 4947 y
FU(P)2498 4935 y FS(.)2551 4947 y FG(\001)2620 4959 y
FJ(2)p 1003 4983 1655 4 v 1049 5081 a FG(\000)1101 5093
y FJ(1)1138 5081 y FU(;)g FG(\000)1227 5093 y FJ(2)1287
5069 y FS(.)1340 5081 y FF(Cut)p FG(\()1498 5069 y FQ(h)1525
5081 y FU(a)1569 5069 y FQ(i)1596 5081 y FU(M)9 b(;)1723
5069 y FJ(\()1749 5081 y FU(x)1796 5069 y FJ(\))1822
5081 y FU(P)j FG(\))1942 5069 y FS(.)1995 5081 y FG(\001)2064
5093 y FJ(1)2101 5081 y FU(;)i FG(\001)2207 5093 y FJ(2)2245
5081 y FU(;)p 0.75 TeXcolorgray 0.75 TeXcolorgray 2282
5106 330 107 v 0.75 TeXcolorgray Black 39 w(c)i FG(:)g
FU(B)t FT(^)q FU(C)p 0.75 TeXcolorgray Black 2699 5010
a Gd(Cut)23 b FU(:)321 5297 y Gg(Unfortunately)-6 b(,)36
b Ga(c)31 b Gg(has)g(no)n(w)f(become)i(free)g(in)f(the)g(conclusion!)55
b(The)30 b(problem)i(here)g(is)f(that)g(the)p Black 321
5362 1290 4 v 427 5417 a F3(3)456 5449 y FE(Rede)o(x)19
b F2(refers)f(to)h(a)g(place)g(in)g(a)g(term)g(where)g(a)g(reduction)h
(may)f(occur)l(.)p Black Black Black eop end
%%Page: 27 39
TeXDict begin 27 38 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(27)p
277 88 3691 4 v Black Black 277 537 V 277 4783 4 4247
v 818 744 a FL(Ax)p F4(\()p Ga(x;)15 b(c)p F4(\)[)p Ga(c)27
b F4(:=)1334 732 y F9(\()1362 744 y Ga(y)1410 732 y F9(\))1437
744 y Ga(P)13 b F4(])1580 692 y F5(def)1587 744 y F4(=)54
b Ga(P)13 b F4([)p Ga(y)g F6(7!)d Ga(x)p F4(])814 935
y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(y)29
b F4(:=)1343 923 y FX(h)1370 935 y Ga(c)1409 923 y FX(i)1437
935 y Ga(P)13 b F4(])1580 884 y F5(def)1587 935 y F4(=)54
b Ga(P)13 b F4([)p Ga(c)d F6(7!)g Ga(a)p F4(])550 1127
y FL(Not)693 1141 y Gc(R)750 1127 y F4(\()785 1115 y
F9(\()813 1127 y Ga(x)865 1115 y F9(\))892 1127 y Ga(M)h(;)k(a)p
F4(\)[)p Ga(a)26 b F4(:=)1334 1115 y F9(\()1362 1127
y Ga(y)1410 1115 y F9(\))1437 1127 y Ga(P)13 b F4(])1580
1076 y F5(def)1587 1127 y F4(=)54 b FL(Cut)p F4(\()1885
1115 y FX(h)1913 1127 y Ga(a)1961 1115 y FX(i)1989 1127
y FL(Not)2131 1141 y Gc(R)2189 1127 y F4(\()2224 1115
y F9(\()2252 1127 y Ga(x)2304 1115 y F9(\))2331 1127
y Ga(M)10 b F4([)p Ga(a)26 b F4(:=)2649 1115 y F9(\()2676
1127 y Ga(y)2724 1115 y F9(\))2752 1127 y Ga(P)13 b F4(])p
Ga(;)i(a)p F4(\))q Ga(;)3012 1115 y F9(\()3040 1127 y
Ga(y)3088 1115 y F9(\))3115 1127 y Ga(P)e F4(\))560 1319
y FL(Not)703 1333 y Gc(L)755 1319 y F4(\()790 1307 y
FX(h)818 1319 y Ga(a)866 1307 y FX(i)893 1319 y Ga(M)d(;)15
b(x)p F4(\)[)p Ga(x)26 b F4(:=)1343 1307 y FX(h)1370
1319 y Ga(c)1409 1307 y FX(i)1437 1319 y Ga(P)13 b F4(])1580
1268 y F5(def)1587 1319 y F4(=)54 b FL(Cut)p F4(\()1885
1307 y FX(h)1913 1319 y Ga(c)1952 1307 y FX(i)1980 1319
y Ga(P)13 b(;)2091 1307 y F9(\()2119 1319 y Ga(x)2171
1307 y F9(\))2198 1319 y FL(Not)2341 1333 y Gc(L)2393
1319 y F4(\()2428 1307 y FX(h)2456 1319 y Ga(a)2504 1307
y FX(i)2531 1319 y Ga(M)d F4([)p Ga(x)26 b F4(:=)2853
1307 y FX(h)2880 1319 y Ga(c)2919 1307 y FX(i)2947 1319
y Ga(P)13 b F4(])p Ga(;)i(x)p F4(\))q(\))342 1511 y FL(And)497
1525 y Gc(R)554 1511 y F4(\()589 1499 y FX(h)617 1511
y Ga(a)665 1499 y FX(i)693 1511 y Ga(M)10 b(;)831 1499
y FX(h)859 1511 y Ga(b)898 1499 y FX(i)925 1511 y Ga(N)g(;)15
b(c)p F4(\)[)p Ga(c)27 b F4(:=)1334 1499 y F9(\()1362
1511 y Ga(y)1410 1499 y F9(\))1437 1511 y Ga(P)13 b F4(])1580
1460 y F5(def)1587 1511 y F4(=)54 b FL(Cut)p F4(\()1885
1499 y FX(h)1913 1511 y Ga(c)1952 1499 y FX(i)1980 1511
y FL(And)2134 1525 y Gc(R)2192 1511 y F4(\()2227 1499
y FX(h)2255 1511 y Ga(a)2303 1499 y FX(i)2330 1511 y
Ga(M)10 b F4([)p Ga(c)26 b F4(:=)2640 1499 y F9(\()2667
1511 y Ga(y)2715 1499 y F9(\))2742 1511 y Ga(P)13 b F4(])q
Ga(;)2879 1499 y FX(h)2906 1511 y Ga(b)2945 1499 y FX(i)2973
1511 y Ga(N)d F4([)p Ga(c)26 b F4(:=)3267 1499 y F9(\()3294
1511 y Ga(y)3342 1499 y F9(\))3370 1511 y Ga(P)13 b F4(])p
Ga(;)i(c)p F4(\))q Ga(;)3621 1499 y F9(\()3649 1511 y
Ga(y)3697 1499 y F9(\))3724 1511 y Ga(P)e F4(\))552 1703
y FL(And)707 1666 y Gc(i)707 1726 y(L)759 1703 y F4(\()794
1691 y F9(\()822 1703 y Ga(x)874 1691 y F9(\))901 1703
y Ga(M)d(;)15 b(y)s F4(\)[)p Ga(y)29 b F4(:=)1343 1691
y FX(h)1370 1703 y Ga(c)1409 1691 y FX(i)1437 1703 y
Ga(P)13 b F4(])1580 1652 y F5(def)1587 1703 y F4(=)54
b FL(Cut)p F4(\()1885 1691 y FX(h)1913 1703 y Ga(c)1952
1691 y FX(i)1980 1703 y Ga(P)13 b(;)2091 1691 y F9(\()2119
1703 y Ga(y)2167 1691 y F9(\))2194 1703 y FL(And)2349
1666 y Gc(i)2349 1726 y(L)2401 1703 y F4(\()2436 1691
y F9(\()2463 1703 y Ga(x)2515 1691 y F9(\))2543 1703
y Ga(M)d F4([)p Ga(y)28 b F4(:=)2861 1691 y FX(h)2888
1703 y Ga(c)2927 1691 y FX(i)2955 1703 y Ga(P)13 b F4(])p
Ga(;)i(y)s F4(\))q(\))615 1895 y FL(Or)714 1858 y Gc(i)714
1918 y(R)772 1895 y F4(\()807 1883 y FX(h)834 1895 y
Ga(a)882 1883 y FX(i)910 1895 y Ga(M)10 b(;)15 b(c)p
F4(\)[)p Ga(c)27 b F4(:=)1334 1883 y F9(\()1362 1895
y Ga(y)1410 1883 y F9(\))1437 1895 y Ga(P)13 b F4(])1580
1844 y F5(def)1587 1895 y F4(=)54 b FL(Cut)p F4(\()1885
1883 y FX(h)1913 1895 y Ga(c)1952 1883 y FX(i)1980 1895
y FL(Or)2079 1858 y Gc(i)2079 1918 y(R)2137 1895 y F4(\()2172
1883 y FX(h)2200 1895 y Ga(a)2248 1883 y FX(i)2275 1895
y Ga(M)10 b F4([)p Ga(c)26 b F4(:=)2584 1883 y F9(\()2612
1895 y Ga(y)2660 1883 y F9(\))2687 1895 y Ga(P)13 b F4(])p
Ga(;)i(c)p F4(\))q Ga(;)2938 1883 y F9(\()2966 1895 y
Ga(y)3014 1883 y F9(\))3041 1895 y Ga(P)e F4(\))385 2087
y FL(Or)484 2101 y Gc(L)536 2087 y F4(\()571 2075 y F9(\()599
2087 y Ga(x)651 2075 y F9(\))678 2087 y Ga(M)e(;)817
2075 y F9(\()844 2087 y Ga(y)892 2075 y F9(\))920 2087
y Ga(N)f(;)15 b(z)t F4(\)[)p Ga(z)30 b F4(:=)1343 2075
y FX(h)1370 2087 y Ga(c)1409 2075 y FX(i)1437 2087 y
Ga(P)13 b F4(])1580 2036 y F5(def)1587 2087 y F4(=)54
b FL(Cut)p F4(\()1885 2075 y FX(h)1913 2087 y Ga(c)1952
2075 y FX(i)1980 2087 y Ga(P)13 b(;)2091 2075 y F9(\()2119
2087 y Ga(z)2165 2075 y F9(\))2192 2087 y FL(Or)2292
2101 y Gc(L)2344 2087 y F4(\()2379 2075 y F9(\()2407
2087 y Ga(x)2459 2075 y F9(\))2486 2087 y Ga(M)d F4([)p
Ga(z)30 b F4(:=)2802 2075 y FX(h)2830 2087 y Ga(c)2869
2075 y FX(i)2896 2087 y Ga(P)13 b F4(])q Ga(;)3033 2075
y F9(\()3060 2087 y Ga(y)3108 2075 y F9(\))3136 2087
y Ga(N)d F4([)p Ga(z)29 b F4(:=)3437 2075 y FX(h)3464
2087 y Ga(c)3503 2075 y FX(i)3531 2087 y Ga(P)13 b F4(])p
Ga(;)i(z)t F4(\))q(\))463 2279 y FL(Imp)608 2301 y Gc(R)665
2279 y F4(\()700 2267 y F9(\()728 2279 y Ga(x)780 2267
y F9(\))q FX(h)835 2279 y Ga(a)883 2267 y FX(i)911 2279
y Ga(M)10 b(;)15 b(b)p F4(\)[)p Ga(b)26 b F4(:=)1334
2267 y F9(\()1362 2279 y Ga(y)1410 2267 y F9(\))1437
2279 y Ga(P)13 b F4(])1580 2228 y F5(def)1587 2279 y
F4(=)54 b FL(Cut)p F4(\()1885 2267 y FX(h)1913 2279 y
Ga(b)1952 2267 y FX(i)1980 2279 y FL(Imp)2124 2301 y
Gc(R)2182 2279 y F4(\()2217 2267 y F9(\()2244 2279 y
Ga(x)2296 2267 y F9(\))q FX(h)2351 2279 y Ga(a)2399 2267
y FX(i)2427 2279 y Ga(M)10 b F4([)p Ga(b)25 b F4(:=)2736
2267 y F9(\()2763 2279 y Ga(y)2811 2267 y F9(\))2838
2279 y Ga(P)13 b F4(])q Ga(;)i(b)p F4(\))p Ga(;)3089
2267 y F9(\()3117 2279 y Ga(y)3165 2267 y F9(\))3193
2279 y Ga(P)e F4(\))336 2471 y FL(Imp)481 2493 y Gc(L)533
2471 y F4(\()568 2459 y FX(h)596 2471 y Ga(a)644 2459
y FX(i)671 2471 y Ga(M)d(;)809 2459 y F9(\()837 2471
y Ga(x)889 2459 y F9(\))917 2471 y Ga(N)f(;)15 b(y)s
F4(\)[)p Ga(y)29 b F4(:=)1343 2459 y FX(h)1370 2471 y
Ga(c)1409 2459 y FX(i)1437 2471 y Ga(P)13 b F4(])1580
2420 y F5(def)1587 2471 y F4(=)54 b FL(Cut)p F4(\()1885
2459 y FX(h)1913 2471 y Ga(c)1952 2459 y FX(i)1980 2471
y Ga(P)13 b(;)2091 2459 y F9(\()2119 2471 y Ga(y)2167
2459 y F9(\))2194 2471 y FL(Imp)2338 2493 y Gc(L)2391
2471 y F4(\()2426 2459 y FX(h)2453 2471 y Ga(a)2501 2459
y FX(i)2529 2471 y Ga(M)d F4([)p Ga(y)28 b F4(:=)2847
2459 y FX(h)2874 2471 y Ga(c)2913 2459 y FX(i)2941 2471
y Ga(P)13 b F4(])p Ga(;)3077 2459 y F9(\()3105 2471 y
Ga(x)3157 2459 y F9(\))3184 2471 y Ga(N)d F4([)p Ga(y)29
b F4(:=)3487 2459 y FX(h)3514 2471 y Ga(c)3553 2459 y
FX(i)3581 2471 y Ga(P)13 b F4(])p Ga(;)i(y)s F4(\))q(\))315
2734 y Gb(Otherwise:)1114 2926 y FL(Ax)o F4(\()p Ga(x;)g(a)p
F4(\)[)p Ga(\033)s F4(])1580 2874 y F5(def)1587 2926
y F4(=)54 b FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))788
3118 y FL(Cut)o F4(\()960 3106 y FX(h)988 3118 y Ga(a)1036
3106 y FX(i)1064 3118 y Ga(M)10 b(;)1202 3106 y F9(\()1230
3118 y Ga(x)1282 3106 y F9(\))1309 3118 y Ga(N)g F4(\)[)p
Ga(\033)s F4(])1580 3066 y F5(def)1587 3118 y F4(=)54
b FL(Cut)p F4(\()1885 3106 y FX(h)1913 3118 y Ga(a)1961
3106 y FX(i)2014 3118 y Ga(M)10 b F4([)p Ga(\033)s F4(])q
Ga(;)2258 3106 y F9(\()2285 3118 y Ga(x)2337 3106 y F9(\))2390
3118 y Ga(N)g F4([)p Ga(\033)s F4(])q(\))863 3310 y FL(Not)1006
3324 y Gc(R)1063 3310 y F4(\()1098 3298 y F9(\()1126
3310 y Ga(x)1178 3298 y F9(\))1205 3310 y Ga(M)h(;)k(a)p
F4(\)[)p Ga(\033)s F4(])1580 3258 y F5(def)1587 3310
y F4(=)54 b FL(Not)1855 3324 y Gc(R)1913 3310 y F4(\()1948
3298 y F9(\()1976 3310 y Ga(x)2028 3298 y F9(\))2080
3310 y Ga(M)10 b F4([)p Ga(\033)s F4(])q Ga(;)15 b(a)p
F4(\))868 3502 y FL(Not)1011 3516 y Gc(L)1063 3502 y
F4(\()1098 3490 y FX(h)1126 3502 y Ga(a)1174 3490 y FX(i)1202
3502 y Ga(M)10 b(;)15 b(x)p F4(\)[)p Ga(\033)s F4(])1580
3450 y F5(def)1587 3502 y F4(=)54 b FL(Not)1855 3516
y Gc(L)1907 3502 y F4(\()1942 3490 y FX(h)1970 3502 y
Ga(a)2018 3490 y FX(i)2071 3502 y Ga(M)10 b F4([)p Ga(\033)s
F4(])q Ga(;)15 b(x)p F4(\))646 3694 y FL(And)801 3708
y Gc(R)859 3694 y F4(\()894 3682 y FX(h)921 3694 y Ga(a)969
3682 y FX(i)997 3694 y Ga(M)10 b(;)1135 3682 y FX(h)1163
3694 y Ga(b)1202 3682 y FX(i)1229 3694 y Ga(N)g(;)15
b(c)p F4(\)[)p Ga(\033)s F4(])1580 3642 y F5(def)1587
3694 y F4(=)54 b FL(And)1867 3708 y Gc(R)1925 3694 y
F4(\()1960 3682 y FX(h)1987 3694 y Ga(a)2035 3682 y FX(i)2088
3694 y Ga(M)10 b F4([)p Ga(\033)s F4(])q Ga(;)2332 3682
y FX(h)2360 3694 y Ga(b)2399 3682 y FX(i)2452 3694 y
Ga(N)g F4([)p Ga(\033)s F4(])p Ga(;)15 b(c)p F4(\))857
3886 y FL(And)1011 3849 y Gc(i)1011 3909 y(L)1063 3886
y F4(\()1098 3874 y F9(\()1126 3886 y Ga(x)1178 3874
y F9(\))1206 3886 y Ga(M)10 b(;)15 b(y)s F4(\)[)p Ga(\033)s
F4(])1580 3834 y F5(def)1587 3886 y F4(=)54 b FL(And)1867
3849 y Gc(i)1867 3909 y(L)1919 3886 y F4(\()1954 3874
y F9(\()1982 3886 y Ga(x)2034 3874 y F9(\))2087 3886
y Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)15 b(y)s F4(\))919
4077 y FL(Or)1018 4041 y Gc(i)1018 4101 y(R)1076 4077
y F4(\()1111 4065 y FX(h)1139 4077 y Ga(a)1187 4065 y
FX(i)1215 4077 y Ga(M)10 b(;)15 b(b)p F4(\)[)p Ga(\033)s
F4(])1580 4026 y F5(def)1587 4077 y F4(=)54 b FL(Or)1812
4041 y Gc(i)1812 4101 y(R)1869 4077 y F4(\()1904 4065
y FX(h)1932 4077 y Ga(a)1980 4065 y FX(i)2033 4077 y
Ga(M)10 b F4([)p Ga(\033)s F4(])q Ga(;)15 b(b)p F4(\))688
4269 y FL(Or)787 4283 y Gc(L)839 4269 y F4(\()874 4257
y F9(\()902 4269 y Ga(x)954 4257 y F9(\))981 4269 y Ga(M)10
b(;)1119 4257 y F9(\()1147 4269 y Ga(y)1195 4257 y F9(\))1222
4269 y Ga(N)g(;)15 b(z)t F4(\)[)p Ga(\033)s F4(])1580
4218 y F5(def)1587 4269 y F4(=)54 b FL(Or)1812 4283 y
Gc(L)1864 4269 y F4(\()1899 4257 y F9(\()1927 4269 y
Ga(x)1979 4257 y F9(\))2031 4269 y Ga(M)10 b F4([)p Ga(\033)s
F4(])q Ga(;)2275 4257 y F9(\()2303 4269 y Ga(y)2351 4257
y F9(\))2403 4269 y Ga(N)g F4([)p Ga(\033)s F4(])q Ga(;)15
b(z)t F4(\))767 4461 y FL(Imp)912 4483 y Gc(R)969 4461
y F4(\()1004 4449 y F9(\()1032 4461 y Ga(x)1084 4449
y F9(\))q FX(h)1139 4461 y Ga(a)1187 4449 y FX(i)1215
4461 y Ga(M)10 b(;)15 b(b)p F4(\)[)p Ga(\033)s F4(])1580
4410 y F5(def)1587 4461 y F4(=)54 b FL(Imp)1857 4483
y Gc(R)1915 4461 y F4(\()1950 4449 y F9(\()1977 4461
y Ga(x)2029 4449 y F9(\))q FX(h)2084 4461 y Ga(a)2132
4449 y FX(i)2185 4461 y Ga(M)10 b F4([)p Ga(\033)s F4(])q
Ga(;)15 b(b)p F4(\))641 4653 y FL(Imp)785 4675 y Gc(L)837
4653 y F4(\()872 4641 y FX(h)900 4653 y Ga(a)948 4641
y FX(i)975 4653 y Ga(M)c(;)1114 4641 y F9(\()1141 4653
y Ga(x)1193 4641 y F9(\))1221 4653 y Ga(N)f(;)15 b(y)s
F4(\)[)p Ga(\033)s F4(])1580 4602 y F5(def)1587 4653
y F4(=)54 b FL(Imp)1857 4675 y Gc(L)1909 4653 y F4(\()1944
4641 y FX(h)1972 4653 y Ga(a)2020 4641 y FX(i)2073 4653
y Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)2316 4641 y
F9(\()2344 4653 y Ga(x)2396 4641 y F9(\))2449 4653 y
Ga(N)g F4([)p Ga(\033)s F4(])q Ga(;)15 b(y)s F4(\))p
3965 4783 V 277 4786 3691 4 v Black 1340 4940 a Gg(Figure)24
b(2.4:)29 b(Proof)24 b(substitution.)p Black Black Black
Black eop end
%%Page: 28 40
TeXDict begin 28 39 bop Black -144 51 a Gb(28)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 294 a Gg(original)31
b(proof,)g(despite)f(\002rst)f(appearances,)k(is)28 b
F7(not)h Gg(a)g(logical)h(cut,)g(b)n(ut)f(is)g(in)g(f)o(act)g(a)f
(commuting)321 407 y(cut,)c(and)g(should)h(really)g(be)e(reduced)j(to)p
Black Black 1078 586 a FL(And)1233 600 y Gc(R)1290 586
y F4(\()1325 574 y FX(h)1353 586 y Ga(a)1401 574 y FX(i)1429
586 y Ga(M)10 b(;)1567 574 y FX(h)1595 586 y Ga(b)1634
574 y FX(i)1661 586 y Ga(N)g(;)15 b(c)p F4(\)[)p Ga(c)27
b F4(:=)2070 574 y F9(\()2098 586 y Ga(y)2146 574 y F9(\))2173
586 y FL(And)2327 549 y F9(1)2327 609 y Gc(L)2380 586
y F4(\()2415 574 y F9(\()2442 586 y Ga(x)2494 574 y F9(\))2522
586 y Ga(P)13 b(;)i(y)s F4(\)])26 b Gg(.)321 765 y(Consequently)-6
b(,)27 b(we)c(ensure)i(that)f(logical)i(reduction)g(rules)e(apply)h
(only)g(where)f(the)g(cut-formula)i(is)321 878 y F7(fr)m(eshly)h
Gg(introduced.)37 b(Figure)26 b(2.5)f(gi)n(v)o(es)h(the)g
(cut-reductions)k(for)25 b(logical)i(cuts,)f(denoted)i(by)3428
841 y Gc(l)3353 878 y F6(\000)-31 b(\000)g(!)p Gg(,)321
991 y(and)27 b(commuting)h(cuts,)g(denoted)g(by)1614
954 y Gc(c)1544 991 y F6(\000)-31 b(\000)f(!)p Gg(.)37
b(W)-7 b(e)25 b(automatically)30 b(assume)d(that)g(the)g(reductions)i
(are)321 1104 y(closed)24 b(under)f(conte)o(xt)g(formation,)h(which)e
(is)g(a)f(standard)j(con)l(v)o(ention)h(in)d(term)g(re)n(writing.)29
b(F)o(or)21 b(the)321 1217 y(cut-reduction)28 b F6(\033)899
1231 y Gc(R)957 1217 y Ga(=)p F6(\033)1073 1231 y Gc(L)1148
1217 y Gg(\(Rule)c(4\))f(there)i(are)f(a)f(fe)n(w)f(remarks)j(w)o(orth)
f(making.)p Black 321 1404 a Gb(Remark)f(2.2.7:)p Black
Black 458 1526 a F6(\017)p Black 46 w Gg(First,)37 b(there)f(are)g(tw)o
(o)f(w)o(ays)g(to)g(reduce)i(a)d(cut-rule)k(ha)n(ving)f(an)e
(implication)i(as)e(the)h(cut-)549 1639 y(formula.)29
b(Consider)c(the)f(follo)n(wing)h(proof-fragment)p Black
Black 989 1819 a FU(x)17 b FG(:)f FU(B)1182 1807 y FS(.)1235
1819 y FU(M)1348 1807 y FS(.)1401 1819 y FU(a)g FG(:)h
FU(C)p 752 1839 1051 4 v 775 1906 a FS(.)828 1918 y FF(Imp)960
1938 y FS(R)1015 1918 y FG(\()1047 1906 y FJ(\()1073
1918 y FU(x)1120 1906 y FJ(\))p FQ(h)1173 1918 y FU(a)1217
1906 y FQ(i)1244 1918 y FU(M)9 b(;)14 b(b)p FG(\))1461
1906 y FS(.)1514 1918 y FU(b)i FG(:)h FU(B)t FT(\033)o
FU(C)1844 1855 y FT(\033)1909 1867 y FS(R)2128 1791 y(.)2181
1803 y FU(N)2280 1791 y FS(.)2333 1803 y FU(c)f FG(:)g
FU(B)254 b(y)19 b FG(:)d FU(C)2928 1791 y FS(.)2981 1803
y FU(P)3069 1791 y FS(.)p 2046 1839 1135 4 v 2046 1918
a FU(z)k FG(:)c FU(B)t FT(\033)p FU(C)2364 1906 y FS(.)2417
1918 y FF(Imp)2549 1938 y FS(L)2599 1918 y FG(\()2631
1906 y FQ(h)2658 1918 y FU(c)2694 1906 y FQ(i)2721 1918
y FU(N)8 b(;)2833 1906 y FJ(\()2859 1918 y FU(y)2903
1906 y FJ(\))2929 1918 y FU(P)k(;)i(z)t FG(\))3128 1906
y FS(.)3223 1855 y FT(\033)3287 1867 y FS(L)p 752 1958
2429 4 v 1059 2025 a(.)1112 2037 y FF(Cut)p FG(\()1270
2025 y FQ(h)1297 2037 y FU(b)1333 2025 y FQ(i)1360 2037
y FF(Imp)1492 2057 y FS(R)1546 2037 y FG(\()1578 2025
y FJ(\()1604 2037 y FU(x)1651 2025 y FJ(\))q FQ(h)1705
2037 y FU(a)1749 2025 y FQ(i)1775 2037 y FU(M)9 b(;)14
b(b)p FG(\))p FU(;)2007 2025 y FJ(\()2033 2037 y FU(z)2076
2025 y FJ(\))2101 2037 y FF(Imp)2233 2057 y FS(L)2282
2037 y FG(\()2314 2025 y FQ(h)2342 2037 y FU(c)2378 2025
y FQ(i)2404 2037 y FU(N)9 b(;)2517 2025 y FJ(\()2543
2037 y FU(y)2587 2025 y FJ(\))2613 2037 y FU(P)i(;)j(z)t
FG(\)\))2844 2025 y FS(.)3223 1986 y Gd(Cut)549 2224
y Gg(which)23 b(can)h(be)g(reduced)h(either)g(to)p Black
Black 1154 2358 a FS(.)1207 2370 y FU(N)1305 2358 y FS(.)1358
2370 y FU(c)17 b FG(:)f FU(B)87 b(x)17 b FG(:)f FU(B)1793
2358 y FS(.)1846 2370 y FU(M)1959 2358 y FS(.)2012 2370
y FU(a)g FG(:)h FU(C)p 1131 2390 1047 4 v 1228 2456 a
FS(.)1280 2468 y FF(Cut)p FG(\()1438 2456 y FQ(h)1466
2468 y FU(c)1502 2456 y FQ(i)1528 2468 y FU(N)9 b(;)1641
2456 y FJ(\()1667 2468 y FU(x)1714 2456 y FJ(\))1740
2468 y FU(M)g FG(\))1885 2456 y FS(.)1938 2468 y FU(a)16
b FG(:)h FU(C)2218 2417 y Gd(Cut)2421 2468 y FU(y)i FG(:)e
FU(C)2609 2456 y FS(.)2662 2468 y FU(P)2750 2456 y FS(.)p
1204 2509 1599 4 v 1417 2576 a(.)1470 2588 y FF(Cut)p
FG(\()1628 2576 y FQ(h)1655 2588 y FU(a)1699 2576 y FQ(i)1726
2588 y FF(Cut)p FG(\()1884 2576 y FQ(h)1911 2588 y FU(c)1947
2576 y FQ(i)1974 2588 y FU(N)8 b(;)2086 2576 y FJ(\()2112
2588 y FU(x)2159 2576 y FJ(\))2186 2588 y FU(M)g FG(\))q
FU(;)2345 2576 y FJ(\()2370 2588 y FU(y)2414 2576 y FJ(\))2440
2588 y FU(P)k FG(\))2560 2576 y FS(.)2844 2537 y Gd(Cut)549
2717 y Gg(or)23 b(to)p Black Black 1246 2907 a FS(.)1299
2919 y FU(N)1398 2907 y FS(.)1451 2919 y FU(c)16 b FG(:)h
FU(B)1669 2804 y(x)g FG(:)f FU(B)1862 2792 y FS(.)1915
2804 y FU(M)2028 2792 y FS(.)2081 2804 y FU(a)g FG(:)g
FU(C)90 b(y)19 b FG(:)d FU(C)2516 2792 y FS(.)2569 2804
y FU(P)2657 2792 y FS(.)p 1669 2840 1042 4 v 1741 2919
a FU(x)h FG(:)f FU(B)1934 2907 y FS(.)1987 2919 y FF(Cut)p
FG(\()2145 2907 y FQ(h)2172 2919 y FU(a)2216 2907 y FQ(i)2243
2919 y FU(M)9 b(;)2370 2907 y FJ(\()2396 2919 y FU(y)2440
2907 y FJ(\))2465 2919 y FU(P)j FG(\))2585 2907 y FS(.)2752
2867 y Gd(Cut)p 1223 2959 1416 4 v 1344 3026 a FS(.)1397
3038 y FF(Cut)p FG(\()1555 3026 y FQ(h)1582 3038 y FU(c)1618
3026 y FQ(i)1645 3038 y FU(N)d(;)1758 3026 y FJ(\()1784
3038 y FU(x)1831 3026 y FJ(\))1857 3038 y FF(Cut)p FG(\()2015
3026 y FQ(h)2042 3038 y FU(a)2086 3026 y FQ(i)2113 3038
y FU(M)f(;)2239 3026 y FJ(\()2265 3038 y FU(y)2309 3026
y FJ(\))2335 3038 y FU(P)k FG(\)\))2487 3026 y FS(.)2680
2987 y Gd(Cut)549 3226 y Gg(Therefore)26 b(we)e(ha)n(v)o(e)i(included)h
(tw)o(o)e(reductions,)j(which)d(entails)i(that)e(our)h(cut-elimination)
549 3338 y(procedure)g(is)d(non-deterministic.)p Black
458 3509 a F6(\017)p Black 46 w Gg(Second,)38 b(special)e(care)f(needs)
h(to)e(be)h(tak)o(en)h(so)f(that)g(there)g(is)g(no)g(clash)g(between)h
(bound)549 3622 y(and)31 b(free)g(\(co-\)names)s(.)50
b(The)31 b(term)g FL(Imp)1876 3644 y Gc(R)1934 3622 y
F4(\()1969 3610 y F9(\()1996 3622 y Ga(x)2048 3610 y
F9(\))q FX(h)2103 3622 y Ga(a)2151 3610 y FX(i)2179 3622
y Ga(M)10 b(;)15 b(b)p F4(\))31 b Gg(binds)h Ga(x)e Gg(and)h
Ga(a)g Gg(simultaneously;)549 3735 y(ho)n(we)n(v)o(er)24
b(in)g(the)h(reducts)h(the)e(cut-rules)j(bind)e Ga(x)e
Gg(and)i Ga(a)p Gg(,)e(separately)-6 b(.)34 b(Therefore)25
b(in)f(the)h(\002rst)549 3848 y(reduction)33 b(rule)e(we)f(need)i(to)f
(ensure)h(that)g Ga(a)e Gg(is)g(not)h(a)g(free)g(co-name)h(in)2966
3836 y FX(h)2993 3848 y Ga(c)3032 3836 y FX(i)3060 3848
y Ga(N)40 b Gg(and)31 b(in)g(the)549 3961 y(second)k(rule)g(that)g
Ga(x)e Gg(is)h(not)g(a)g(free)g(name)g(in)2089 3949 y
F9(\()2117 3961 y Ga(y)2165 3949 y F9(\))2192 3961 y
Ga(P)13 b Gg(.)59 b(This)34 b(can)h(al)o(w)o(ays)g(be)f(achie)n(v)o(ed)
h(by)549 4074 y(renaming)22 b Ga(a)f Gg(and)h Ga(x)e
Gg(appropriately:)32 b(the)o(y)22 b(are)g(binders)h(in)e
FL(Imp)2573 4096 y Gc(R)2631 4074 y F4(\()2666 4062 y
F9(\()2694 4074 y Ga(x)2746 4062 y F9(\))p FX(h)2801
4074 y Ga(a)2849 4062 y FX(i)2876 4074 y Ga(M)10 b(;)15
b(b)p F4(\))p Gg(.)28 b(W)-7 b(e)21 b(assume)549 4187
y(that)j(the)f(renaming)j(is)d(done)h(implicitly)i(in)d(the)h
(cut-elimination)j(procedure.)321 4412 y(W)-7 b(e)29
b(are)g(no)n(w)f(ready)j(to)e(formulate)h(the)g(cut-elimination)j
(procedure,)f(which)e(we)e(shall)i(de\002ne)g(in)321
4525 y(terms)24 b(of)f(a)h(reduction)i(system.)p Black
321 4712 a Gb(De\002nition)d(2.2.8)g Gg(\(Cut-Elimination)j
(Procedure\))p Gb(:)p Black 321 4825 a Gg(The)d(cut-elimination)28
b(procedure)e F4(\()p FY(T)t Ga(;)1613 4788 y Gc(cut)1583
4825 y F6(\000)-32 b(\000)h(!)p F4(\))23 b Gg(is)g(a)g(reduction)k
(system)d(where:)p Black 458 4988 a F6(\017)p Black 46
w FY(T)e Gg(is)i(the)g(set)f(of)h(well-typed)h(terms,)f(and)p
Black 458 5159 a F6(\017)p Black 579 5122 a Gc(cut)549
5159 y F6(\000)-32 b(\000)h(!)23 b Gg(consists)i(of)f(the)f(reductions)
k(for)d(logical)h(cuts)f(and)g(commuting)h(cuts;)f(that)g(is)1662
5297 y Gc(cut)1631 5334 y F6(\000)-31 b(\000)f(!)1826
5283 y F5(def)1834 5334 y F4(=)2011 5297 y Gc(l)1937
5334 y F6(\000)g(\000)h(!)25 b([)2288 5297 y Gc(c)2218
5334 y F6(\000)-31 b(\000)f(!)51 b Ga(:)p Black Black
eop end
%%Page: 29 41
TeXDict begin 29 40 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(29)p
277 88 3691 4 v Black Black 277 663 V 277 4657 4 3995
v 475 830 a(Logical)24 b(Cuts)46 b(\()p FO(i)30 b FD(=)f(1)p
FO(;)18 b FD(2)p Gb(\):)546 1036 y Gg(1.)99 b FL(Cut)p
F4(\()886 1024 y FX(h)914 1036 y Ga(a)962 1024 y FX(i)990
1036 y FL(Not)1132 1050 y Gc(R)1190 1036 y F4(\()1225
1024 y F9(\()1253 1036 y Ga(x)1305 1024 y F9(\))1332
1036 y Ga(M)10 b(;)15 b(a)p F4(\))q Ga(;)1594 1024 y
F9(\()1622 1036 y Ga(y)1670 1024 y F9(\))1697 1036 y
FL(Not)1840 1050 y Gc(L)1892 1036 y F4(\()1927 1024 y
FX(h)1955 1036 y Ga(b)1994 1024 y FX(i)2021 1036 y Ga(N)10
b(;)15 b(y)s F4(\))q(\))2363 999 y Gc(l)2288 1036 y F6(\000)-31
b(\000)g(!)25 b FL(Cut)p F4(\()2657 1024 y FX(h)2685
1036 y Ga(b)2724 1024 y FX(i)2751 1036 y Ga(N)10 b(;)2874
1024 y F9(\()2902 1036 y Ga(x)2954 1024 y F9(\))2981
1036 y Ga(M)g F4(\))996 1219 y Gg(if)23 b FL(Not)1217
1233 y Gc(R)1275 1219 y F4(\()1310 1207 y F9(\()1337
1219 y Ga(x)1389 1207 y F9(\))1417 1219 y Ga(M)10 b(;)15
b(a)p F4(\))23 b Gg(and)h FL(Not)1958 1233 y Gc(L)2010
1219 y F4(\()2045 1207 y FX(h)2073 1219 y Ga(b)2112 1207
y FX(i)2140 1219 y Ga(N)9 b(;)15 b(y)s F4(\))24 b Gg(freshly)h
(introduce)h Ga(a)d Gg(and)h Ga(y)546 1496 y Gg(2.)99
b FL(Cut)p F4(\()886 1484 y FX(h)914 1496 y Ga(b)953
1484 y FX(i)980 1496 y FL(And)1135 1510 y Gc(R)1193 1496
y F4(\()1228 1484 y FX(h)1256 1496 y Ga(a)1304 1510 y
F9(1)1343 1484 y FX(i)1370 1496 y Ga(M)1458 1510 y F9(1)1498
1496 y Ga(;)1538 1484 y FX(h)1566 1496 y Ga(a)1614 1510
y F9(2)1653 1484 y FX(i)1681 1496 y Ga(M)1769 1510 y
F9(2)1809 1496 y Ga(;)15 b(b)p F4(\))p Ga(;)1963 1484
y F9(\()1991 1496 y Ga(y)2039 1484 y F9(\))2066 1496
y FL(And)2221 1459 y Gc(i)2221 1519 y(L)2273 1496 y F4(\()2308
1484 y F9(\()2336 1496 y Ga(x)2388 1484 y F9(\))2415
1496 y Ga(N)10 b(;)15 b(y)s F4(\))q(\))2757 1459 y Gc(l)2682
1496 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p F4(\()3051
1484 y FX(h)3079 1496 y Ga(a)3127 1510 y Gc(i)3155 1484
y FX(i)3182 1496 y Ga(M)3270 1510 y Gc(i)3299 1496 y
Ga(;)3339 1484 y F9(\()3367 1496 y Ga(x)3419 1484 y F9(\))3446
1496 y Ga(N)10 b F4(\))996 1679 y Gg(if)23 b FL(And)1229
1693 y Gc(R)1286 1679 y F4(\()1321 1667 y FX(h)1349 1679
y Ga(a)1397 1693 y F9(1)1437 1667 y FX(i)1464 1679 y
Ga(M)1552 1693 y F9(1)1592 1679 y Ga(;)1632 1667 y FX(h)1660
1679 y Ga(a)1708 1693 y F9(2)1747 1667 y FX(i)1775 1679
y Ga(M)1863 1693 y F9(2)1902 1679 y Ga(;)15 b(b)p F4(\))24
b Gg(and)g FL(And)2348 1642 y Gc(i)2348 1702 y(L)2400
1679 y F4(\()2435 1667 y F9(\()2463 1679 y Ga(x)2515
1667 y F9(\))2543 1679 y Ga(N)10 b(;)15 b(y)s F4(\))23
b Gg(freshly)i(introduce)h Ga(b)d Gg(and)h Ga(y)546 1956
y Gg(3.)99 b FL(Cut)p F4(\()886 1944 y FX(h)914 1956
y Ga(b)953 1944 y FX(i)980 1956 y FL(Or)1080 1919 y Gc(i)1080
1979 y(R)1137 1956 y F4(\()1172 1944 y FX(h)1200 1956
y Ga(a)1248 1944 y FX(i)1276 1956 y Ga(M)10 b(;)15 b(b)p
F4(\))q Ga(;)1529 1944 y F9(\()1556 1956 y Ga(y)1604
1944 y F9(\))1632 1956 y FL(Or)1731 1970 y Gc(L)1783
1956 y F4(\()1818 1944 y F9(\()1846 1956 y Ga(x)1898
1970 y F9(1)1937 1944 y(\))1965 1956 y Ga(N)2038 1970
y F9(1)2077 1956 y Ga(;)2117 1944 y F9(\()2145 1956 y
Ga(x)2197 1970 y F9(2)2236 1944 y(\))2264 1956 y Ga(N)2337
1970 y F9(2)2376 1956 y Ga(;)g(y)s F4(\))q(\))2635 1919
y Gc(l)2561 1956 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p
F4(\()2929 1944 y FX(h)2957 1956 y Ga(a)3005 1944 y FX(i)3032
1956 y Ga(M)10 b(;)3170 1944 y F9(\()3198 1956 y Ga(x)3250
1970 y Gc(i)3278 1944 y F9(\))3306 1956 y Ga(N)3379 1970
y Gc(i)3407 1956 y F4(\))996 2139 y Gg(if)23 b FL(Or)1173
2153 y Gc(L)1226 2139 y F4(\()1261 2127 y F9(\()1288
2139 y Ga(x)1340 2153 y F9(1)1380 2127 y(\))1407 2139
y Ga(N)1480 2153 y F9(1)1520 2139 y Ga(;)1560 2127 y
F9(\()1588 2139 y Ga(x)1640 2153 y F9(2)1679 2127 y(\))1706
2139 y Ga(N)1779 2153 y F9(2)1819 2139 y Ga(;)15 b(y)s
F4(\))23 b Gg(and)h FL(Or)2218 2102 y Gc(i)2218 2162
y(R)2276 2139 y F4(\()2311 2127 y FX(h)2339 2139 y Ga(a)2387
2127 y FX(i)2414 2139 y Ga(M)11 b(;)k(b)p F4(\))23 b
Gg(freshly)i(introduce)h Ga(y)g Gg(and)e Ga(b)546 2416
y Gg(4.)99 b FL(Cut)p F4(\()886 2404 y FX(h)914 2416
y Ga(b)953 2404 y FX(i)980 2416 y FL(Imp)1125 2438 y
Gc(R)1183 2416 y F4(\()1218 2404 y F9(\()1245 2416 y
Ga(x)1297 2404 y F9(\))q FX(h)1352 2416 y Ga(a)1400 2404
y FX(i)1428 2416 y Ga(M)10 b(;)15 b(b)p F4(\))q Ga(;)1681
2404 y F9(\()1709 2416 y Ga(z)1755 2404 y F9(\))1782
2416 y FL(Imp)1927 2438 y Gc(L)1979 2416 y F4(\()2014
2404 y FX(h)2042 2416 y Ga(c)2081 2404 y FX(i)2108 2416
y Ga(N)10 b(;)2231 2404 y F9(\()2259 2416 y Ga(y)2307
2404 y F9(\))2334 2416 y Ga(P)j(;)i(z)t F4(\))r(\))788
2515 y Gc(l)713 2552 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
F4(\()1082 2540 y FX(h)1110 2552 y Ga(a)1158 2540 y FX(i)1185
2552 y FL(Cut)p F4(\()1358 2540 y FX(h)1386 2552 y Ga(c)1425
2540 y FX(i)1452 2552 y Ga(N)10 b(;)1575 2540 y F9(\()1603
2552 y Ga(x)1655 2540 y F9(\))1683 2552 y Ga(M)g F4(\))p
Ga(;)1856 2540 y F9(\()1884 2552 y Ga(y)1932 2540 y F9(\))1959
2552 y Ga(P)j F4(\))49 b Gg(or)788 2650 y Gc(l)713 2687
y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p F4(\()1082 2675
y FX(h)1110 2687 y Ga(c)1149 2675 y FX(i)1176 2687 y
Ga(N)10 b(;)1299 2675 y F9(\()1327 2687 y Ga(x)1379 2675
y F9(\))1407 2687 y FL(Cut)o F4(\()1579 2675 y FX(h)1607
2687 y Ga(a)1655 2675 y FX(i)1683 2687 y Ga(M)g(;)1821
2675 y F9(\()1849 2687 y Ga(y)1897 2675 y F9(\))1924
2687 y Ga(P)j F4(\)\))996 2870 y Gg(if)23 b FL(Imp)1219
2892 y Gc(L)1271 2870 y F4(\()1306 2858 y FX(h)1334 2870
y Ga(c)1373 2858 y FX(i)1400 2870 y Ga(N)10 b(;)1523
2858 y F9(\()1551 2870 y Ga(y)1599 2858 y F9(\))1626
2870 y Ga(P)j(;)i(z)t F4(\))24 b Gg(and)g FL(Imp)2141
2892 y Gc(R)2198 2870 y F4(\()2233 2858 y F9(\()2261
2870 y Ga(x)2313 2858 y F9(\))q FX(h)2368 2870 y Ga(a)2416
2858 y FX(i)2443 2870 y Ga(M)11 b(;)k(b)p F4(\))23 b
Gg(freshly)i(introduce)h Ga(z)h Gg(and)d Ga(b)546 3147
y Gg(5.)99 b FL(Cut)p F4(\()886 3135 y FX(h)914 3147
y Ga(a)962 3135 y FX(i)990 3147 y Ga(M)10 b(;)1128 3135
y F9(\()1155 3147 y Ga(x)1207 3135 y F9(\))1235 3147
y FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))q(\))1674 3110
y Gc(l)1600 3147 y F6(\000)-31 b(\000)f(!)26 b Ga(M)10
b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])996 3330 y Gg(if)23
b Ga(M)33 b Gg(freshly)25 b(introduces)i Ga(a)546 3607
y Gg(6.)99 b FL(Cut)p F4(\()886 3595 y FX(h)914 3607
y Ga(a)962 3595 y FX(i)990 3607 y FL(Ax)o F4(\()p Ga(y)s(;)15
b(a)p F4(\))q Ga(;)1339 3595 y F9(\()1367 3607 y Ga(x)1419
3595 y F9(\))1446 3607 y Ga(M)10 b F4(\))1679 3570 y
Gc(l)1605 3607 y F6(\000)-31 b(\000)f(!)26 b Ga(M)10
b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])996 3790 y Gg(if)23
b Ga(M)33 b Gg(freshly)25 b(introduces)i Ga(x)475 4067
y Gb(Commuting)22 b(Cuts:)546 4273 y Gg(7.)99 b FL(Cut)p
F4(\()886 4261 y FX(h)914 4273 y Ga(a)962 4261 y FX(i)990
4273 y Ga(M)10 b(;)1128 4261 y F9(\()1155 4273 y Ga(x)1207
4261 y F9(\))1235 4273 y Ga(N)g F4(\))783 4372 y Gc(c)713
4409 y F6(\000)-31 b(\000)g(!)25 b Ga(M)10 b F4([)p Ga(a)26
b F4(:=)1227 4397 y F9(\()1254 4409 y Ga(x)1306 4397
y F9(\))1334 4409 y Ga(N)10 b F4(])113 b Gg(if)24 b Ga(M)33
b Gg(does)24 b(not)g(freshly)h(introduce)h Ga(a)p Gg(,)47
b(or)783 4507 y Gc(c)713 4544 y F6(\000)-31 b(\000)g(!)25
b Ga(N)10 b F4([)p Ga(x)25 b F4(:=)1215 4532 y FX(h)1243
4544 y Ga(a)1291 4532 y FX(i)1318 4544 y Ga(M)11 b F4(])113
b Gg(if)24 b Ga(N)32 b Gg(does)25 b(not)f(freshly)h(introduce)h
Ga(x)p 3965 4657 V 277 4660 3691 4 v Black 730 4814 a
Gg(Figure)f(2.5:)k(Cut-reductions)e(for)c(logical)j(cuts)e(and)g
(commuting)h(cuts.)p Black Black Black Black eop end
%%Page: 30 42
TeXDict begin 30 41 bop Black -144 51 a Gb(30)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(Notice)j(that)820
280 y Gc(l)746 317 y F6(\000)-31 b(\000)f(!)23 b Gg(and)1163
280 y Gc(c)1093 317 y F6(\000)-31 b(\000)f(!)23 b Gg(are,)h(by)g
(assumption,)h(closed)g(under)g(conte)o(xt)g(formation.)31
b(The)24 b F7(com-)321 430 y(pleteness)f Gg(of)799 393
y Gc(cut)769 430 y F6(\000)-32 b(\000)h(!)19 b Gg(is)h(simply)g(the)h
(f)o(act,)g(ob)o(vious)g(by)f(inspection,)k(that)c(e)n(v)o(ery)h(term)e
(be)o(ginning)k(with)321 543 y(a)h(cut)h(matches)h(at)e(least)h(one)g
(left-hand)i(side)e(of)f(the)h(reduction)i(rules.)33
b(So)23 b(each)i(irreducible)j(term,)321 656 y(also)c(called)h(a)e
(normal)i(form,)e(is)g(cut-free.)462 786 y(W)-7 b(e)23
b(should)j(pro)o(v)o(e)e(that)h(the)f(cut-reductions)k(satisfy)e(the)e
(subject)i(reduction)g(property)-6 b(,)26 b(which)321
898 y(states)i(that)e(well-typed)i(terms)f(reduce)g(to)f(well-typed)i
(terms.)37 b(An)25 b(auxiliary)k(lemma)c(required)k(in)321
1011 y(this)24 b(proof)h(follo)n(ws.)p Black 321 1199
a Gb(Lemma)e(2.2.9)g Gg(\(W)-7 b(eak)o(ening)26 b(and)e(Contraction)i
(Lemma\))p Gb(:)p Black Black 458 1396 a F6(\017)p Black
46 w Gg(Suppose)j F4(\000)p Gg(,)f F4(\000)1049 1363
y FX(0)1072 1396 y Gg(,)g F4(\001)f Gg(and)h F4(\001)1460
1363 y FX(0)1510 1396 y Gg(are)g(conte)o(xts.)44 b(If)28
b Ga(M)37 b Gg(is)28 b(a)f(term)h(with)g(the)g(typing)i(judgement)549
1509 y F4(\000)631 1497 y Gc(.)686 1509 y Ga(M)809 1497
y Gc(.)864 1509 y F4(\001)p Gg(,)22 b(then)j(also)f F4(\000)1391
1476 y FX(0)1414 1509 y Ga(;)15 b F4(\000)1537 1497 y
Gc(.)1592 1509 y Ga(M)1715 1497 y Gc(.)1770 1509 y F4(\001)p
Ga(;)g F4(\001)1962 1476 y FX(0)2008 1509 y Gg(is)24
b(a)f(typing)j(judgement)f(for)g Ga(M)10 b Gg(,)22 b(pro)o(vided)k(the)
549 1621 y(conte)o(xt)f(con)l(v)o(ention)h(is)e(observ)o(ed.)p
Black 458 1801 a F6(\017)p Black 46 w Gg(If)e Ga(M)32
b Gg(is)22 b(a)g(term)g(with)g(the)h(typing)h(judgement)h
Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b(y)20 b F4(:)e Ga(B)5
b(;)15 b F4(\000)2588 1789 y Gc(.)2642 1801 y Ga(M)2766
1789 y Gc(.)2821 1801 y F4(\001)o Gg(,)22 b(then)h(for)g(the)g(term)549
1914 y Ga(M)10 b F4([)p Ga(y)27 b F6(7!)d Ga(x)p F4(])30
b Gg(we)g(ha)n(v)o(e)i(a)e(typing)j(judgement)g Ga(x)17
b F4(:)h Ga(B)5 b(;)15 b F4(\000)2356 1902 y Gc(.)2410
1914 y Ga(M)10 b F4([)p Ga(y)j F6(7!)d Ga(x)p F4(])2795
1902 y Gc(.)2850 1914 y F4(\001)p Gg(.)50 b(If)31 b Ga(M)40
b Gg(is)31 b(a)g(term)549 2027 y(with)26 b(the)h(typing)h(judgement)g
F4(\000)1622 2015 y Gc(.)1677 2027 y Ga(M)1800 2015 y
Gc(.)1855 2027 y F4(\001)p Ga(;)15 b(a)j F4(:)f Ga(B)5
b(;)15 b(b)i F4(:)h Ga(B)t Gg(,)26 b(then)h(for)g(the)g(term)f
Ga(M)10 b F4([)p Ga(b)16 b F6(7!)f Ga(a)p F4(])26 b Gg(we)549
2139 y(ha)n(v)o(e)e(a)f(typing)i(judgement)g F4(\000)1547
2127 y Gc(.)1601 2139 y Ga(M)10 b F4([)p Ga(b)g F6(7!)g
Ga(a)p F4(])1973 2127 y Gc(.)2028 2139 y F4(\001)p Ga(;)15
b(a)j F4(:)f Ga(B)5 b Gg(.)p Black 321 2352 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(All)23 b(by)g(tri)n(vial)i(induction)h(on)e(the)g
(structure)i(of)d Ga(M)10 b Gg(.)p 3480 2352 4 62 v 3484
2294 55 4 v 3484 2352 V 3538 2352 4 62 v Black 321 2540
a Gb(Pr)n(oposition)25 b(2.2.10)f Gg(\(Subject)h(Reduction\))p
Gb(:)p Black 321 2653 a Gg(Suppose)i Ga(M)35 b Gg(is)25
b(a)g(term)g(with)g(the)h(typing)g(judgement)i F4(\000)2187
2641 y Gc(.)2242 2653 y Ga(M)2365 2641 y Gc(.)2420 2653
y F4(\001)c Gg(and)i Ga(M)2834 2615 y Gc(cut)2803 2653
y F6(\000)-31 b(\000)f(!)29 b Ga(N)10 b Gg(,)24 b(then)i
Ga(N)35 b Gg(is)25 b(a)321 2765 y(term)f(with)f(the)h(typing)h
(judgement)g F4(\000)1573 2753 y Gc(.)1627 2765 y Ga(N)1736
2753 y Gc(.)1791 2765 y F4(\001)o Gg(.)p Black 321 2978
a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(inspection)j(of)e(the)f
(reduction)k(rules)d(\(see)g(P)o(age)f(141\).)p 3480
2978 V 3484 2920 55 4 v 3484 2978 V 3538 2978 4 62 v
462 3182 a(Let)40 b(us)h(mention)h(that)f(the)g(Barendre)o(gt-style)k
(naming)c(con)l(v)o(ention)j(is)d(indispensable)j(for)321
3295 y(strong)29 b(normalisation)i(of)1236 3258 y Gc(cut)1205
3295 y F6(\000)-31 b(\000)f(!)p Gg(.)41 b(If)27 b(we)g(do)h(not)g
(observ)o(e)h(this)g(con)l(v)o(ention,)i(we)c(lose)i(strong)g(nor)n(-)
321 3408 y(malisation.)61 b(T)-7 b(o)32 b(gi)n(v)o(e)i(an)f(e)o(xample)
i(of)e(a)g(non-terminating)k(reduction)f(sequence)g(we)d(need)h(the)321
3521 y(follo)n(wing)25 b(lemma.)p Black 321 3708 a Gb(Lemma)e(2.2.11:)p
Black 35 w Gg(F)o(or)f(all)i(terms)g Ga(M)35 b F6(2)25
b FY(T)e Gg(we)f(ha)n(v)o(e)p Black 417 3892 a(\(i\))p
Black 47 w Ga(M)10 b F4([)p Ga(x)25 b F4(:=)870 3880
y FX(h)898 3892 y Ga(a)946 3880 y FX(i)973 3892 y FL(Ax)p
F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(])1364 3855 y Gc(cut)1333
3892 y F6(\000)-31 b(\000)g(!)1504 3859 y FX(\003)1568
3892 y Ga(M)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])p
Black 392 4071 a Gg(\(ii\))p Black 47 w Ga(M)g F4([)p
Ga(a)25 b F4(:=)866 4059 y F9(\()894 4071 y Ga(x)946
4059 y F9(\))973 4071 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p
F4(\))q(])1359 4034 y Gc(cut)1328 4071 y F6(\000)-31
b(\000)g(!)1499 4038 y FX(\003)1563 4071 y Ga(M)10 b
F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p Black 321 4284 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(routine)i(induction)h(on)e(the)
g(structure)h(of)f Ga(M)10 b Gg(.)p 3480 4284 V 3484
4226 55 4 v 3484 4284 V 3538 4284 4 62 v Black 321 4546
a Gb(Example)25 b(2.2.12:)p Black 34 w Gg(W)-7 b(e)24
b(start)i(with)e(the)h(term)g FL(Not)1957 4560 y Gc(R)2014
4546 y F4(\()2049 4534 y F9(\()2077 4546 y Ga(x)2129
4534 y F9(\))2157 4546 y Ga(M)10 b(;)15 b(a)p F4(\)[)p
Ga(a)28 b F4(:=)2603 4534 y F9(\()2630 4546 y Ga(y)2678
4534 y F9(\))2706 4546 y FL(Ax)o F4(\()p Ga(y)s(;)15
b(a)p F4(\))q(])24 b Gg(for)h(which)g(we)321 4659 y(assume)d(that)f
(there)h(are)f(se)n(v)o(eral)h(free)f(occurrences)j(of)d
Ga(a)f Gg(in)h Ga(M)10 b Gg(;)21 b(that)h(means)f FL(Not)2938
4673 y Gc(R)2996 4659 y F4(\()3031 4647 y F9(\()3058
4659 y Ga(x)3110 4647 y F9(\))3138 4659 y Ga(M)10 b(;)15
b(a)p F4(\))21 b Gg(does)321 4772 y(not)27 b(freshly)h(introduce)h
Ga(a)p Gg(.)37 b(W)-7 b(e)26 b(apply)h(our)g(de\002nition)i(of)d
(substitution)k(\(see)d(Figure)g(2.4\))g(so)f(as)h(to)321
4885 y(yield)916 5039 y FL(Cut)o F4(\()1088 5027 y FX(h)1116
5039 y Ga(a)1164 5027 y FX(i)1192 5039 y FL(Not)1334
5053 y Gc(R)1392 5039 y F4(\()1427 5027 y F9(\()1455
5039 y Ga(x)1507 5027 y F9(\))1534 5039 y Ga(M)10 b F4([)p
Ga(a)26 b F4(:=)1852 5027 y F9(\()1880 5039 y Ga(y)1928
5027 y F9(\))1955 5039 y FL(Ax)o F4(\()p Ga(y)s(;)15
b(a)p F4(\))q(])q Ga(;)g(a)p F4(\))q Ga(;)2454 5027 y
F9(\()2481 5039 y Ga(y)2529 5027 y F9(\))2557 5039 y
FL(Ax)o F4(\()p Ga(y)s(;)g(a)p F4(\))q(\))26 b Ga(:)p
Black 420 w Gg(\(2.4\))p Black Black Black eop end
%%Page: 31 43
TeXDict begin 31 42 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
n(ong)h(Normalisation)2290 b(31)p 277 88 3691 4 v Black
277 317 a Gg(According)32 b(to)e(the)h(lemma)e(just)i(gi)n(v)o(en)g
(this)f(term)g(reduces,)j(assuming)f(that)f Ga(a)e Gg(is)h(free)g(in)g
Ga(M)10 b Gg(,)31 b(by)277 430 y(some)24 b(reductions)i(to)1071
619 y FL(Cut)p F4(\()1244 607 y FX(h)1272 619 y Ga(a)1320
607 y FX(i)1347 619 y FL(Not)1490 633 y Gc(R)1548 619
y F4(\()1583 607 y F9(\()1611 619 y Ga(x)1663 607 y F9(\))1690
619 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)p F4(])q Ga(;)15
b(a)p F4(\))q Ga(;)2210 607 y F9(\()2237 619 y Ga(y)2285
607 y F9(\))2313 619 y FL(Ax)o F4(\()p Ga(y)s(;)g(a)p
F4(\))q(\))26 b Ga(:)277 823 y Gg(Clearly)-6 b(,)22 b
Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)p F4(])22 b Gg(is)f(equi)n(v)n
(alent)j(to)d Ga(M)10 b Gg(,)20 b(which)i(contains)i(some)d(free)h
(occurrences)i(of)d Ga(a)g Gg(though.)277 936 y(Therefore)f(we)e
(cannot)h(apply)h(a)e(logical)i(rule,)f(b)n(ut)g(ha)n(v)o(e)g(to)f
(apply)i(a)e(reduction)j(rule)d(for)h(commuting)277 1049
y(cuts.)29 b(This)24 b(gi)n(v)o(es)g(us)1279 1240 y FL(Not)1421
1254 y Gc(R)1479 1240 y F4(\()1514 1228 y F9(\()1542
1240 y Ga(x)1594 1228 y F9(\))1621 1240 y Ga(M)10 b(;)15
b(a)p F4(\)[)p Ga(a)27 b F4(:=)2063 1228 y F9(\()2090
1240 y Ga(y)2138 1228 y F9(\))2166 1240 y FL(Ax)o F4(\()p
Ga(y)s(;)15 b(a)p F4(\))q(])277 1444 y Gg(and)27 b(we)f(are)g
(\223back\224)i(where)f(we)f(started)i(from.)37 b(A)25
b(closer)j(analysis)g(of)f(this)g(erroneous)i(reduction)277
1557 y(sequence)37 b(re)n(v)o(eals)e(that)g(in)f(Step)g(\(2.4\))h(the)f
(co-name)i Ga(a)d Gg(became)j(bound)f(by)g(the)f(cut)h(when)f(we)277
1670 y(pushed)27 b(the)f(substitution)j(inside)e(the)f(term)f
FL(Not)1856 1684 y Gc(R)1914 1670 y F4(\()1949 1658 y
F9(\()1977 1670 y Ga(x)2029 1658 y F9(\))2056 1670 y
Ga(M)10 b(;)15 b(a)p F4(\))p Gg(.)35 b(T)-7 b(o)24 b(a)n(v)n(oid)j
(this)f(capture)i(of)d(the)h(free)277 1782 y(occurrence)c(of)e
Ga(a)e Gg(in)945 1770 y F9(\()972 1782 y Ga(y)1020 1770
y F9(\))1047 1782 y FL(Ax)p F4(\()p Ga(y)s(;)d(a)p F4(\))q
Gg(,)k(we)f(ha)n(v)o(e)i(to)g(rename)g(the)f(corresponding)24
b(binder)-5 b(.)29 b(Accordingly)-6 b(,)277 1895 y(we)23
b(should)i(ha)n(v)o(e)f(written)p Black Black 806 2083
a FL(Not)949 2097 y Gc(R)1007 2083 y F4(\()1042 2071
y F9(\()1070 2083 y Ga(x)1122 2071 y F9(\))1149 2083
y Ga(M)10 b(;)15 b(a)p F4(\)[)p Ga(a)26 b F4(:=)1591
2071 y F9(\()1618 2083 y Ga(y)1666 2071 y F9(\))1693
2083 y FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(])636
2220 y F6(\021)99 b FL(Not)949 2234 y Gc(R)1007 2220
y F4(\()1042 2208 y F9(\()1070 2220 y Ga(x)1122 2208
y F9(\))1149 2220 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1479
2187 y FX(0)1503 2220 y F4(])p Ga(;)15 b(a)1616 2187
y FX(0)1640 2220 y F4(\)[)p Ga(a)1748 2187 y FX(0)1797
2220 y F4(:=)1918 2208 y F9(\()1946 2220 y Ga(y)1994
2208 y F9(\))2021 2220 y FL(Ax)p F4(\()p Ga(y)s(;)g(a)p
F4(\))q(])636 2357 y(=)99 b FL(Cut)p F4(\()979 2345 y
FX(h)1007 2357 y Ga(a)1055 2324 y FX(0)1078 2345 y(i)1106
2357 y FL(Not)1249 2371 y Gc(R)1306 2357 y F4(\()1341
2345 y F9(\()1369 2357 y Ga(x)1421 2345 y F9(\))1448
2357 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1778 2324
y FX(0)1802 2357 y F4(][)p Ga(a)1900 2324 y FX(0)1949
2357 y F4(:=)2071 2345 y F9(\()2098 2357 y Ga(y)2146
2345 y F9(\))2173 2357 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(a)p F4(\))q(])p Ga(;)g(a)2596 2324 y FX(0)2620 2357
y F4(\))p Ga(;)2695 2345 y F9(\()2723 2357 y Ga(y)2771
2345 y F9(\))2798 2357 y FL(Ax)p F4(\()p Ga(y)s(;)g(a)p
F4(\))q(\))277 2570 y Gg(assuming)25 b Ga(a)691 2537
y FX(0)737 2570 y Gg(does)g(not)f(occur)g(freely)h(in)e
Ga(M)10 b Gg(.)28 b(No)n(w)23 b(we)f(may)i(apply)g(Lemma)f(2.2.11)h
(and)g(recei)n(v)o(e)277 2700 y(performing)i(some)d(reductions)896
2907 y FL(Cut)p F4(\()1069 2895 y FX(h)1096 2907 y Ga(a)1144
2874 y FX(0)1168 2895 y(i)1195 2907 y FL(Not)1338 2921
y Gc(R)1396 2907 y F4(\()1431 2895 y F9(\()1458 2907
y Ga(x)1510 2895 y F9(\))1538 2907 y Ga(M)10 b F4([)p
Ga(a)g F6(7!)g Ga(a)1868 2874 y FX(0)1892 2907 y F4(][)p
Ga(a)1990 2874 y FX(0)2024 2907 y F6(7!)g Ga(a)p F4(])p
Ga(;)15 b(a)2286 2874 y FX(0)2310 2907 y F4(\))p Ga(;)2385
2895 y F9(\()2413 2907 y Ga(y)2461 2895 y F9(\))2488
2907 y FL(Ax)p F4(\()p Ga(y)s(;)g(a)p F4(\))q(\))25 b
Ga(:)277 3111 y Gg(Because)i FL(Not)747 3125 y Gc(R)805
3111 y F4(\()840 3099 y F9(\()868 3111 y Ga(x)920 3099
y F9(\))947 3111 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1277
3078 y FX(0)1301 3111 y F4(][)p Ga(a)1399 3078 y FX(0)1433
3111 y F6(7!)g Ga(a)p F4(])p Ga(;)15 b(a)1695 3078 y
FX(0)1719 3111 y F4(\))25 b Gg(freshly)i(introduces)h
Ga(a)2507 3078 y FX(0)2531 3111 y Gg(,)d(we)f(can)i(no)n(w)f(apply)h(a)
f(logi-)277 3224 y(cal)f(reduction)i(and)e(obtain)1149
3413 y FL(Not)1292 3427 y Gc(R)1349 3413 y F4(\()1384
3401 y F9(\()1412 3413 y Ga(x)1464 3401 y F9(\))1492
3413 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1822 3380
y FX(0)1845 3413 y F4(][)p Ga(a)1943 3380 y FX(0)1977
3413 y F6(7!)g Ga(a)p F4(])q Ga(;)15 b(a)2240 3375 y
FX(0)2263 3413 y F4(\)[)p Ga(a)2371 3375 y FX(0)2405
3413 y F6(7!)10 b Ga(a)p F4(])26 b Ga(:)277 3600 y Gg(This)d(term)h(is)
f(equi)n(v)n(alent)j(to)e FL(Not)1367 3614 y Gc(R)1425
3600 y F4(\()1460 3588 y F9(\()1488 3600 y Ga(x)1540
3588 y F9(\))1567 3600 y Ga(M)10 b(;)15 b(a)p F4(\))p
Gg(\227the)25 b(term)e(we)g(e)o(xpected)i(gi)n(v)o(en)f(Lemma)f
(2.2.11.)277 3901 y Ge(2.3)119 b(Pr)n(oof)29 b(of)h(Str)n(ong)g
(Normalisation)277 4125 y Gg(In)c(this)g(section)i(we)d(shall)i(gi)n(v)
o(e)f(a)f(direct)i(proof)g(of)f(strong)h(normalisation)i(for)d(the)g
(reduction)j(sys-)277 4238 y(tem)c F4(\()p FY(T)t Ga(;)602
4201 y Gc(cut)571 4238 y F6(\000)-31 b(\000)f(!)p F4(\))p
Gg(.)35 b(The)25 b(proof)h(adapts)h(the)f(technique)i(of)e(the)g
(symmetric)g(reducibility)j(candidates)3461 4205 y F5(4)277
4351 y Gg(de)n(v)o(eloped)j(by)d(Barbanera)i(and)f(Berardi)g([1994].)47
b(Unfortunately)-6 b(,)34 b(we)28 b(cannot)j(apply)g(this)e(tech-)277
4464 y(nique)c(directly)h(to)e(pro)o(v)o(e)g(strong)h(normalisation)i
(for)d F4(\()p FY(T)t Ga(;)2190 4426 y Gc(cut)2159 4464
y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)23 b(because)j(in)e(order)h(to)
e(strengthen)277 4576 y(an)h(induction)i(hypothesis,)g(we)c(need)j(the)
f(follo)n(wing)h(property)897 4817 y Ga(M)10 b F4([)p
Ga(x)26 b F4(:=)1219 4805 y FX(h)1247 4817 y Ga(a)1295
4805 y FX(i)1322 4817 y Ga(P)13 b F4(][)p Ga(b)26 b F4(:=)1629
4805 y F9(\()1657 4817 y Ga(y)1705 4805 y F9(\))1732
4817 y Ga(Q)p F4(])f F6(\021)g Ga(M)10 b F4([)p Ga(b)26
b F4(:=)2259 4805 y F9(\()2287 4817 y Ga(y)2335 4805
y F9(\))2362 4817 y Ga(Q)p F4(][)p Ga(x)f F4(:=)2683
4805 y FX(h)2710 4817 y Ga(a)2758 4805 y FX(i)2786 4817
y Ga(P)13 b F4(])277 5038 y Gg(for)24 b Ga(b)e Gg(not)i(free)g(in)864
5026 y FX(h)891 5038 y Ga(a)939 5026 y FX(i)967 5038
y Ga(P)35 b Gg(and)24 b Ga(x)f Gg(not)h(free)f(in)1685
5026 y F9(\()1712 5038 y Ga(y)1760 5026 y F9(\))1788
5038 y Ga(Q)o Gg(.)28 b(Ho)n(we)n(v)o(er)23 b(this)h(does)g
F7(not)g Gg(hold)h(for)e(the)h(substitu-)p Black 277
5100 1290 4 v 383 5156 a F3(4)412 5188 y F2(It)g(seems)i(this)f(type)g
(of)g(candidates)i(w)o(as)e(\002rst)f(used)i(by)g(Girard)f([1987a])h
(for)f(pro)o(ving)h(strong)g(normalisation)g(of)277 5279
y(proof-nets.)p Black Black Black eop end
%%Page: 32 44
TeXDict begin 32 43 bop Black -144 51 a Gb(32)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(tion)h(operation)i
(de\002ned)e(in)g(Figure)g(2.4.)28 b(In)22 b(ef)n(fect,)h
(\223independent\224)k(substitutions,)f(in)c(general,)i(do)321
430 y(not)g(commute!)30 b(The)23 b(\(only\))i(problematic)h(case)e(is)g
(where)f Ga(M)33 b Gg(is)24 b(of)f(the)h(form)f FL(Ax)p
F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(:)789 643 y FL(Ax)o
F4(\()p Ga(x;)g(b)p F4(\)[)p Ga(x)27 b F4(:=)1317 631
y FX(h)1344 643 y Ga(a)1392 631 y FX(i)1420 643 y Ga(P)13
b F4(][)p Ga(b)26 b F4(:=)1727 631 y F9(\()1754 643 y
Ga(y)1802 631 y F9(\))1830 643 y Ga(Q)p F4(])83 b(=)g
Ga(P)13 b F4([)p Ga(a)d F6(7!)g Ga(b)p F4(][)p Ga(b)26
b F4(:=)2694 631 y F9(\()2721 643 y Ga(y)2769 631 y F9(\))2797
643 y Ga(Q)p F4(])k Ga(;)15 b Gg(b)n(ut)789 792 y FL(Ax)o
F4(\()p Ga(x;)g(b)p F4(\)[)p Ga(b)27 b F4(:=)1304 780
y F9(\()1332 792 y Ga(y)1380 780 y F9(\))1407 792 y Ga(Q)p
F4(][)p Ga(x)e F4(:=)1728 780 y FX(h)1755 792 y Ga(a)1803
780 y FX(i)1831 792 y Ga(P)13 b F4(])83 b(=)g Ga(Q)p
F4([)p Ga(y)13 b F6(7!)d Ga(x)p F4(][)p Ga(x)25 b F4(:=)2721
780 y FX(h)2748 792 y Ga(a)2796 780 y FX(i)2823 792 y
Ga(P)13 b F4(])i Ga(:)321 1002 y Gg(Clearly)-6 b(,)20
b(there)g(is)e(no)h(reason)h(for)e(the)h(tw)o(o)f(resultant)j(terms)e
(to)f(be)h(equal.)28 b(T)-7 b(o)17 b(remedy)i(this)g(situation,)321
1115 y(we)34 b(shall)h(de\002ne)g(an)f(auxiliary)j(cut-reduction)h
(system,)f F4(\()p FY(T)t Ga(;)2380 1078 y Gc(aux)2360
1115 y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)37 b(which)d(has)h(a)f
(more)g(subtle)321 1228 y(de\002nition)23 b(of)d(substitution)k
(including)f(tw)o(o)e(special)h(clauses)g(to)f(handle)h(the)f
(problematic)i(e)o(xample)321 1341 y(abo)o(v)o(e.)30
b(Intuiti)n(v)o(ely)-6 b(,)25 b(we)e(should)i(e)o(xpect)923
1556 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\)[)p Ga(x)26
b F4(:=)1452 1544 y FX(h)1479 1556 y Ga(a)1527 1544 y
FX(i)1555 1556 y Ga(P)13 b F4(][)p Ga(b)25 b F4(:=)1861
1544 y F9(\()1889 1556 y Ga(y)1937 1544 y F9(\))1964
1556 y Ga(Q)p F4(])923 1705 y FL(Ax)p F4(\()p Ga(x;)15
b(b)p F4(\)[)p Ga(b)26 b F4(:=)1439 1693 y F9(\()1466
1705 y Ga(y)1514 1693 y F9(\))1541 1705 y Ga(Q)p F4(][)p
Ga(x)g F4(:=)1862 1693 y FX(h)1890 1705 y Ga(a)1938 1693
y FX(i)1965 1705 y Ga(P)13 b F4(])2103 1475 y FK(\))2227
1631 y F4(=)50 b FL(Cut)p F4(\()2521 1619 y FX(h)2548
1631 y Ga(a)2596 1619 y FX(i)2624 1631 y Ga(P)13 b(;)2735
1619 y F9(\()2763 1631 y Ga(y)2811 1619 y F9(\))2838
1631 y Ga(Q)p F4(\))26 b Ga(:)321 1903 y Gg(The)h(ne)n(w)g
(substitution)k(operation,)f(written)e(as)f Ga(M)5 b
F6(f)-7 b Ga(a)33 b F4(:=)2235 1891 y F9(\()2263 1903
y Ga(x)2315 1891 y F9(\))2342 1903 y Ga(N)p F6(g)27 b
Gg(and)h Ga(N)5 b F6(f)-7 b Ga(x)33 b F4(:=)2974 1891
y F9(\()3001 1903 y Ga(a)3049 1891 y F9(\))3077 1903
y Ga(M)p F6(g)p Gg(,)28 b(is)f(gi)n(v)o(en)321 2016 y(in)j(Figure)h
(2.6.)49 b(W)-7 b(e)29 b(apply)j(the)e(same)g(terminology)j(as)d(for)h
(substitutions)j(of)c(the)h(form)f F4([)p Ga(\033)s F4(])g
Gg(\(see)321 2129 y(T)-6 b(erminology)25 b(2.2.6\).)k(F)o(or)23
b F6(f)p 1270 2129 28 4 v 1288 2129 V 1306 2129 V 65
w(g)g Gg(we)g(ha)n(v)o(e)h(the)g(follo)n(wing)h(substitution)i(lemma.)p
Black 321 2317 a Gb(Lemma)c(2.3.1)g Gg(\(Substitution)k(Lemma\))p
Gb(:)p Black 321 2430 a Gg(F)o(or)f(all)h Ga(M)42 b F6(2)30
b FY(T)d Gg(and)g(tw)o(o)f(arbitrary)j(proof)f(substitutions,)j
F6(f)p Ga(\033)s F6(g)d Gg(and)f F6(f)p Ga(\034)10 b
F6(g)p Gg(,)27 b(such)h(that)f Ga(dom)p F4(\()p F6(f)p
Ga(\033)s F6(g)p F4(\))321 2543 y Gg(is)d(not)g(free)g(in)f
Ga(codom)p F4(\()p F6(f)p Ga(\034)10 b F6(g)p F4(\))p
Gg(,)25 b(we)d(ha)n(v)o(e)1392 2721 y Ga(M)10 b F6(f)p
Ga(\033)s F6(gf)p Ga(\034)g F6(g)28 b(\021)d Ga(M)10
b F6(f)p Ga(\034)g F6(gf)p Ga(\033)s F6(f)p Ga(\034)g
F6(gg)28 b Ga(:)p Black 321 2934 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)e(the)f(structure)j(of)e
Ga(M)32 b Gg(\(see)25 b(P)o(age)e(141\).)p 3480 2934
4 62 v 3484 2876 55 4 v 3484 2934 V 3538 2934 4 62 v
321 3138 a(Since)34 b(we)f(changed)j(the)e(substitution)j(operation)f
(we)d(need)i(to)e(change)j(the)e(reduction)i(rule)e(for)321
3251 y(commuting)25 b(cuts.)30 b(The)23 b(modi\002ed)h(rule)g(is)f(as)h
(follo)n(ws.)p Black Black 427 3469 a FL(Cut)p F4(\()600
3457 y FX(h)628 3469 y Ga(a)676 3457 y FX(i)704 3469
y Ga(M)10 b(;)842 3457 y F9(\()869 3469 y Ga(x)921 3457
y F9(\))949 3469 y Ga(N)g F4(\))1225 3432 y Gc(c)1256
3409 y FC(0)1167 3469 y F6(\000)-31 b(\000)f(!)100 b
Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1763 3457 y F9(\()1790
3469 y Ga(x)1842 3457 y F9(\))1870 3469 y Ga(N)p F6(g)114
b Gg(if)24 b Ga(M)33 b Gg(does)24 b(not)g(freshly)h(introduce)h
Ga(a)p Gg(,)d(or)1225 3581 y Gc(c)1256 3557 y FC(0)1167
3618 y F6(\000)-31 b(\000)f(!)100 b Ga(N)5 b F6(f)-7
b Ga(x)26 b F4(:=)1752 3606 y FX(h)1779 3618 y Ga(a)1827
3606 y FX(i)1855 3618 y Ga(M)p F6(g)114 b Gg(if)24 b
Ga(N)32 b Gg(does)25 b(not)f(freshly)h(introduce)h Ga(x)p
Gg(.)321 3848 y(The)d(auxiliary)j(cut-elimination)i(procedure)e(is)d
(then)p Black 321 4056 a Gb(De\002nition)g(2.3.2)g Gg(\(Auxiliary)j
(Cut-Elimination)g(Procedure\))p Gb(:)p Black 321 4169
a Gg(The)d(auxiliary)j(cut-elimination)i(procedure,)d
F4(\()p FY(T)-11 b Ga(;)1956 4132 y Gc(aux)1936 4169
y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)23 b(is)h(a)f(reduction)j
(system)e(where:)p Black 458 4352 a F6(\017)p Black 46
w FY(T)e Gg(is)i(the)g(set)f(of)h(well-typed)h(terms,)f(and)p
Black 458 4531 a F6(\017)p Black 569 4494 a Gc(aux)549
4531 y F6(\000)-32 b(\000)h(!)26 b Gg(consists)j(of)d(the)h(rules)h
(for)f(the)g(logical)h(cuts)g(and)f(the)g(modi\002ed)g(reduction)j(for)
d(com-)549 4644 y(muting)d(cuts;)g(that)g(is)1651 4741
y Gc(aux)1631 4778 y F6(\000)-31 b(\000)f(!)1826 4726
y F5(def)1834 4778 y F4(=)2011 4741 y Gc(l)1937 4778
y F6(\000)g(\000)h(!)25 b([)2277 4741 y Gc(c)2308 4717
y FC(0)2218 4778 y F6(\000)-31 b(\000)f(!)51 b Ga(:)321
5032 y Gg(W)-7 b(e)27 b(ha)n(v)o(e)h(to)g(v)o(erify)h(that)1186
4995 y Gc(aux)1166 5032 y F6(\000)-31 b(\000)f(!)27 b
Gg(satis\002es)i(the)f(subject)h(reduction)h(property)-6
b(.)44 b(Ho)n(we)n(v)o(er)l(,)28 b(gi)n(v)o(en)g(the)321
5145 y(proof)j(of)f(Proposition)i(2.2.10,)f(this)g(is)e(a)h(routine)h
(matter)l(,)h(and)e(so)g(we)f(omit)g(the)i(details.)48
b(Let)30 b(us)p Black Black eop end
%%Page: 33 45
TeXDict begin 33 44 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
n(ong)h(Normalisation)2290 b(33)p 277 88 3691 4 v Black
Black 277 601 V 277 4767 4 4167 v 879 791 a FL(Ax)o F4(\()p
Ga(x;)15 b(c)p F4(\))-5 b F6(f)e Ga(c)28 b F4(:=)1403
779 y F9(\()1431 791 y Ga(y)1479 779 y F9(\))1506 791
y Ga(P)s F6(g)1646 740 y F5(def)1653 791 y F4(=)40 b
FL(Cut)p F4(\()1937 779 y FX(h)1965 791 y Ga(c)2004 779
y FX(i)2031 791 y FL(Ax)p F4(\()p Ga(x;)15 b(c)p F4(\))q
Ga(;)2376 779 y F9(\()2404 791 y Ga(y)2452 779 y F9(\))2479
791 y Ga(P)e F4(\))874 961 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p
F4(\))-5 b F6(f)e Ga(y)29 b F4(:=)1412 949 y FX(h)1439
961 y Ga(c)1478 949 y FX(i)1506 961 y Ga(P)s F6(g)1646
909 y F5(def)1653 961 y F4(=)40 b FL(Cut)p F4(\()1937
949 y FX(h)1965 961 y Ga(c)2004 949 y FX(i)2031 961 y
Ga(P)13 b(;)2142 949 y F9(\()2170 961 y Ga(y)2218 949
y F9(\))2245 961 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p F4(\))q(\))611
1130 y FL(Not)753 1144 y Gc(R)811 1130 y F4(\()846 1118
y F9(\()874 1130 y Ga(x)926 1118 y F9(\))953 1130 y Ga(M)10
b(;)15 b(a)p F4(\))-5 b F6(f)e Ga(a)27 b F4(:=)1403 1118
y F9(\()1431 1130 y Ga(y)1479 1118 y F9(\))1506 1130
y Ga(P)s F6(g)1646 1079 y F5(def)1653 1130 y F4(=)40
b FL(Cut)p F4(\()1937 1118 y FX(h)1965 1130 y Ga(a)2013
1118 y FX(i)2040 1130 y FL(Not)2183 1144 y Gc(R)2240
1130 y F4(\()2275 1118 y F9(\()2303 1130 y Ga(x)2355
1118 y F9(\))2383 1130 y Ga(M)5 b F6(f)-7 b Ga(a)26 b
F4(:=)2709 1118 y F9(\()2736 1130 y Ga(y)2784 1118 y
F9(\))2812 1130 y Ga(P)s F6(g)q Ga(;)15 b(a)p F4(\))p
Ga(;)3082 1118 y F9(\()3110 1130 y Ga(y)3158 1118 y F9(\))3186
1130 y Ga(P)e F4(\))621 1299 y FL(Not)763 1313 y Gc(L)815
1299 y F4(\()850 1287 y FX(h)878 1299 y Ga(a)926 1287
y FX(i)954 1299 y Ga(M)d(;)15 b(x)p F4(\))-5 b F6(f)e
Ga(x)26 b F4(:=)1412 1287 y FX(h)1439 1299 y Ga(c)1478
1287 y FX(i)1506 1299 y Ga(P)s F6(g)1646 1248 y F5(def)1653
1299 y F4(=)40 b FL(Cut)p F4(\()1937 1287 y FX(h)1965
1299 y Ga(c)2004 1287 y FX(i)2031 1299 y Ga(P)13 b(;)2142
1287 y F9(\()2170 1299 y Ga(x)2222 1287 y F9(\))2250
1299 y FL(Not)2392 1313 y Gc(L)2444 1299 y F4(\()2479
1287 y FX(h)2507 1299 y Ga(a)2555 1287 y FX(i)2583 1299
y Ga(M)5 b F6(f)-7 b Ga(x)26 b F4(:=)2913 1287 y FX(h)2940
1299 y Ga(c)2979 1287 y FX(i)3007 1299 y Ga(P)t F6(g)p
Ga(;)15 b(x)p F4(\))q(\))403 1469 y FL(And)557 1483 y
Gc(R)615 1469 y F4(\()650 1457 y FX(h)678 1469 y Ga(a)726
1457 y FX(i)753 1469 y Ga(M)10 b(;)891 1457 y FX(h)919
1469 y Ga(b)958 1457 y FX(i)986 1469 y Ga(N)g(;)15 b(c)p
F4(\))-5 b F6(f)e Ga(c)27 b F4(:=)1403 1457 y F9(\()1431
1469 y Ga(y)1479 1457 y F9(\))1506 1469 y Ga(P)s F6(g)1646
1417 y F5(def)1653 1469 y F4(=)40 b FL(Cut)p F4(\()1937
1457 y FX(h)1965 1469 y Ga(c)2004 1457 y FX(i)2031 1469
y FL(And)2186 1483 y Gc(R)2244 1469 y F4(\()2279 1457
y FX(h)2306 1469 y Ga(a)2354 1457 y FX(i)2382 1469 y
Ga(M)5 b F6(f)-7 b Ga(c)26 b F4(:=)2699 1457 y F9(\()2727
1469 y Ga(y)2775 1457 y F9(\))2802 1469 y Ga(P)t F6(g)p
Ga(;)2949 1457 y FX(h)2977 1469 y Ga(b)3016 1457 y FX(i)3043
1469 y Ga(N)5 b F6(f)-7 b Ga(c)27 b F4(:=)3346 1457 y
F9(\()3373 1469 y Ga(y)3421 1457 y F9(\))3449 1469 y
Ga(P)s F6(g)q Ga(;)15 b(c)p F4(\))q Ga(;)3711 1457 y
F9(\()3739 1469 y Ga(y)3787 1457 y F9(\))3814 1469 y
Ga(P)e F4(\))613 1638 y FL(And)768 1601 y Gc(i)768 1661
y(L)820 1638 y F4(\()855 1626 y F9(\()883 1638 y Ga(x)935
1626 y F9(\))962 1638 y Ga(M)d(;)15 b(y)s F4(\))-5 b
F6(f)e Ga(y)29 b F4(:=)1412 1626 y FX(h)1439 1638 y Ga(c)1478
1626 y FX(i)1506 1638 y Ga(P)s F6(g)1646 1587 y F5(def)1653
1638 y F4(=)40 b FL(Cut)p F4(\()1937 1626 y FX(h)1965
1638 y Ga(c)2004 1626 y FX(i)2031 1638 y Ga(P)13 b(;)2142
1626 y F9(\()2170 1638 y Ga(y)2218 1626 y F9(\))2245
1638 y FL(And)2400 1601 y Gc(i)2400 1661 y(L)2452 1638
y F4(\()2487 1626 y F9(\()2515 1638 y Ga(x)2567 1626
y F9(\))2594 1638 y Ga(M)5 b F6(f)-7 b Ga(y)29 b F4(:=)2920
1626 y FX(h)2948 1638 y Ga(c)2987 1626 y FX(i)3015 1638
y Ga(P)s F6(g)q Ga(;)15 b(y)s F4(\)\))675 1807 y FL(Or)775
1771 y Gc(i)775 1831 y(R)832 1807 y F4(\()867 1795 y
FX(h)895 1807 y Ga(a)943 1795 y FX(i)971 1807 y Ga(M)10
b(;)15 b(c)p F4(\))-5 b F6(f)e Ga(c)27 b F4(:=)1403 1795
y F9(\()1431 1807 y Ga(y)1479 1795 y F9(\))1506 1807
y Ga(P)s F6(g)1646 1756 y F5(def)1653 1807 y F4(=)40
b FL(Cut)p F4(\()1937 1795 y FX(h)1965 1807 y Ga(c)2004
1795 y FX(i)2031 1807 y FL(Or)2131 1771 y Gc(i)2131 1831
y(R)2188 1807 y F4(\()2223 1795 y FX(h)2251 1807 y Ga(a)2299
1795 y FX(i)2327 1807 y Ga(M)5 b F6(f)-7 b Ga(c)26 b
F4(:=)2644 1795 y F9(\()2672 1807 y Ga(y)2720 1795 y
F9(\))2747 1807 y Ga(P)s F6(g)q Ga(;)15 b(c)p F4(\))q
Ga(;)3009 1795 y F9(\()3037 1807 y Ga(y)3085 1795 y F9(\))3112
1807 y Ga(P)e F4(\))445 1977 y FL(Or)545 1991 y Gc(L)597
1977 y F4(\()632 1965 y F9(\()660 1977 y Ga(x)712 1965
y F9(\))739 1977 y Ga(M)d(;)877 1965 y F9(\()905 1977
y Ga(y)953 1965 y F9(\))980 1977 y Ga(N)g(;)15 b(z)t
F4(\))-5 b F6(f)e Ga(z)31 b F4(:=)1412 1965 y FX(h)1439
1977 y Ga(c)1478 1965 y FX(i)1506 1977 y Ga(P)s F6(g)1646
1925 y F5(def)1653 1977 y F4(=)40 b FL(Cut)p F4(\()1937
1965 y FX(h)1965 1977 y Ga(c)2004 1965 y FX(i)2031 1977
y Ga(P)13 b(;)2142 1965 y F9(\()2170 1977 y Ga(z)2216
1965 y F9(\))2244 1977 y FL(Or)2343 1991 y Gc(L)2395
1977 y F4(\()2430 1965 y F9(\()2458 1977 y Ga(x)2510
1965 y F9(\))2537 1977 y Ga(M)5 b F6(f)-7 b Ga(z)31 b
F4(:=)2862 1965 y FX(h)2889 1977 y Ga(c)2928 1965 y FX(i)2956
1977 y Ga(P)t F6(g)p Ga(;)3103 1965 y F9(\()3131 1977
y Ga(y)3179 1965 y F9(\))3206 1977 y Ga(N)5 b F6(f)-7
b Ga(z)30 b F4(:=)3516 1965 y FX(h)3543 1977 y Ga(c)3582
1965 y FX(i)3610 1977 y Ga(P)s F6(g)q Ga(;)15 b(z)t F4(\))q(\))524
2146 y FL(Imp)668 2168 y Gc(R)726 2146 y F4(\()761 2134
y F9(\()789 2146 y Ga(x)841 2134 y F9(\))p FX(h)896 2146
y Ga(a)944 2134 y FX(i)971 2146 y Ga(M)10 b(;)15 b(b)p
F4(\))-5 b F6(f)e Ga(b)27 b F4(:=)1403 2134 y F9(\()1431
2146 y Ga(y)1479 2134 y F9(\))1506 2146 y Ga(P)s F6(g)1646
2095 y F5(def)1653 2146 y F4(=)40 b FL(Cut)p F4(\()1937
2134 y FX(h)1965 2146 y Ga(b)2004 2134 y FX(i)2031 2146
y FL(Imp)2175 2168 y Gc(R)2233 2146 y F4(\()2268 2134
y F9(\()2296 2146 y Ga(x)2348 2134 y F9(\))p FX(h)2403
2146 y Ga(a)2451 2134 y FX(i)2478 2146 y Ga(M)5 b F6(f)-7
b Ga(b)26 b F4(:=)2796 2134 y F9(\()2823 2146 y Ga(y)2871
2134 y F9(\))2898 2146 y Ga(P)t F6(g)p Ga(;)15 b(b)p
F4(\))q Ga(;)3160 2134 y F9(\()3188 2146 y Ga(y)3236
2134 y F9(\))3263 2146 y Ga(P)e F4(\))397 2316 y FL(Imp)541
2337 y Gc(L)594 2316 y F4(\()629 2304 y FX(h)656 2316
y Ga(a)704 2304 y FX(i)732 2316 y Ga(M)d(;)870 2304 y
F9(\()898 2316 y Ga(x)950 2304 y F9(\))977 2316 y Ga(N)g(;)15
b(y)s F4(\))-5 b F6(f)e Ga(y)29 b F4(:=)1412 2304 y FX(h)1439
2316 y Ga(c)1478 2304 y FX(i)1506 2316 y Ga(P)s F6(g)1646
2264 y F5(def)1653 2316 y F4(=)40 b FL(Cut)p F4(\()1937
2304 y FX(h)1965 2316 y Ga(c)2004 2304 y FX(i)2031 2316
y Ga(P)13 b(;)2142 2304 y F9(\()2170 2316 y Ga(y)2218
2304 y F9(\))2245 2316 y FL(Imp)2390 2337 y Gc(L)2442
2316 y F4(\()2477 2304 y FX(h)2505 2316 y Ga(a)2553 2304
y FX(i)2580 2316 y Ga(M)5 b F6(f)-7 b Ga(y)29 b F4(:=)2906
2304 y FX(h)2934 2316 y Ga(c)2973 2304 y FX(i)3001 2316
y Ga(P)s F6(g)q Ga(;)3148 2304 y F9(\()3175 2316 y Ga(x)3227
2304 y F9(\))3255 2316 y Ga(N)5 b F6(f)-7 b Ga(y)29 b
F4(:=)3566 2304 y FX(h)3593 2316 y Ga(c)3632 2304 y FX(i)3660
2316 y Ga(P)t F6(g)p Ga(;)15 b(y)s F4(\))q(\))314 2532
y FL(Cut)o F4(\()486 2520 y FX(h)514 2532 y Ga(a)562
2520 y FX(i)590 2532 y FL(Ax)o F4(\()p Ga(x;)g(a)p F4(\))q
Ga(;)943 2520 y F9(\()971 2532 y Ga(y)1019 2520 y F9(\))1046
2532 y Ga(M)c F4(\))-5 b F6(f)e Ga(x)26 b F4(:=)1412
2520 y FX(h)1439 2532 y Ga(b)1478 2520 y FX(i)1506 2532
y Ga(P)s F6(g)1646 2481 y F5(def)1653 2532 y F4(=)40
b FL(Cut)p F4(\()1937 2520 y FX(h)1965 2532 y Ga(b)2004
2520 y FX(i)2031 2532 y Ga(P)13 b(;)2142 2520 y F9(\()2170
2532 y Ga(y)2218 2520 y F9(\))2245 2532 y Ga(M)5 b F6(f)-7
b Ga(x)26 b F4(:=)2575 2520 y FX(h)2603 2532 y Ga(b)2642
2520 y FX(i)2669 2532 y Ga(P)t F6(g)p F4(\))323 2702
y FL(Cut)o F4(\()495 2690 y FX(h)523 2702 y Ga(a)571
2690 y FX(i)599 2702 y Ga(M)10 b(;)737 2690 y F9(\()765
2702 y Ga(x)817 2690 y F9(\))844 2702 y FL(Ax)p F4(\()p
Ga(x;)15 b(b)p F4(\))q(\))-5 b F6(f)e Ga(b)26 b F4(:=)1403
2690 y F9(\()1431 2702 y Ga(y)1479 2690 y F9(\))1506
2702 y Ga(P)s F6(g)1646 2650 y F5(def)1653 2702 y F4(=)40
b FL(Cut)p F4(\()1937 2690 y FX(h)1965 2702 y Ga(a)2013
2690 y FX(i)2040 2702 y Ga(M)5 b F6(f)-7 b Ga(b)26 b
F4(:=)2357 2690 y F9(\()2385 2702 y Ga(y)2433 2690 y
F9(\))2460 2702 y Ga(P)t F6(g)p Ga(;)2607 2690 y F9(\()2635
2702 y Ga(y)2683 2690 y F9(\))2710 2702 y Ga(P)13 b F4(\))330
2942 y Gb(Otherwise:)1153 3111 y FL(Ax)p F4(\()p Ga(x;)i(a)p
F4(\))p F6(f)p Ga(\033)s F6(g)1646 3060 y F5(def)1653
3111 y F4(=)40 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))827
3281 y FL(Cut)p F4(\()1000 3269 y FX(h)1028 3281 y Ga(a)1076
3269 y FX(i)1103 3281 y Ga(M)10 b(;)1241 3269 y F9(\()1269
3281 y Ga(x)1321 3269 y F9(\))1348 3281 y Ga(N)g F4(\))p
F6(f)p Ga(\033)s F6(g)1646 3229 y F5(def)1653 3281 y
F4(=)40 b FL(Cut)p F4(\()1937 3269 y FX(h)1965 3281 y
Ga(a)2013 3269 y FX(i)2065 3281 y Ga(M)10 b F6(f)p Ga(\033)s
F6(g)r Ga(;)2350 3269 y F9(\()2377 3281 y Ga(x)2429 3269
y F9(\))2482 3281 y Ga(N)g F6(f)p Ga(\033)s F6(g)q F4(\))902
3450 y FL(Not)1045 3464 y Gc(R)1103 3450 y F4(\()1138
3438 y F9(\()1165 3450 y Ga(x)1217 3438 y F9(\))1245
3450 y Ga(M)g(;)15 b(a)p F4(\))p F6(f)p Ga(\033)s F6(g)1646
3398 y F5(def)1653 3450 y F4(=)40 b FL(Not)1907 3464
y Gc(R)1964 3450 y F4(\()1999 3438 y F9(\()2027 3450
y Ga(x)2079 3438 y F9(\))2132 3450 y Ga(M)10 b F6(f)p
Ga(\033)s F6(g)q Ga(;)15 b(a)p F4(\))908 3619 y FL(Not)1051
3633 y Gc(L)1103 3619 y F4(\()1138 3607 y FX(h)1165 3619
y Ga(a)1213 3607 y FX(i)1241 3619 y Ga(M)10 b(;)15 b(x)p
F4(\))p F6(f)p Ga(\033)s F6(g)1646 3568 y F5(def)1653
3619 y F4(=)40 b FL(Not)1907 3633 y Gc(L)1959 3619 y
F4(\()1994 3607 y FX(h)2021 3619 y Ga(a)2069 3607 y FX(i)2122
3619 y Ga(M)10 b F6(f)p Ga(\033)s F6(g)q Ga(;)15 b(x)p
F4(\))686 3789 y FL(And)840 3803 y Gc(R)898 3789 y F4(\()933
3777 y FX(h)961 3789 y Ga(a)1009 3777 y FX(i)1036 3789
y Ga(M)10 b(;)1174 3777 y FX(h)1202 3789 y Ga(b)1241
3777 y FX(i)1269 3789 y Ga(N)g(;)15 b(c)p F4(\))p F6(f)p
Ga(\033)s F6(g)1646 3737 y F5(def)1653 3789 y F4(=)40
b FL(And)1918 3803 y Gc(R)1976 3789 y F4(\()2011 3777
y FX(h)2039 3789 y Ga(a)2087 3777 y FX(i)2140 3789 y
Ga(M)10 b F6(f)p Ga(\033)s F6(g)q Ga(;)2424 3777 y FX(h)2452
3789 y Ga(b)2491 3777 y FX(i)2543 3789 y Ga(N)g F6(f)p
Ga(\033)s F6(g)r Ga(;)15 b(c)p F4(\))896 3958 y FL(And)1051
3921 y Gc(i)1051 3981 y(L)1103 3958 y F4(\()1138 3946
y F9(\()1166 3958 y Ga(x)1218 3946 y F9(\))1245 3958
y Ga(M)10 b(;)15 b(y)s F4(\))p F6(f)p Ga(\033)s F6(g)1646
3906 y F5(def)1653 3958 y F4(=)40 b FL(And)1918 3921
y Gc(i)1918 3981 y(L)1971 3958 y F4(\()2006 3946 y F9(\()2033
3958 y Ga(x)2085 3946 y F9(\))2138 3958 y Ga(M)10 b F6(f)p
Ga(\033)s F6(g)q Ga(;)15 b(y)s F4(\))959 4127 y FL(Or)1058
4091 y Gc(i)1058 4150 y(R)1116 4127 y F4(\()1151 4115
y FX(h)1178 4127 y Ga(a)1226 4115 y FX(i)1254 4127 y
Ga(M)10 b(;)15 b(b)p F4(\))p F6(f)p Ga(\033)s F6(g)1646
4076 y F5(def)1653 4127 y F4(=)40 b FL(Or)1863 4091 y
Gc(i)1863 4150 y(R)1921 4127 y F4(\()1956 4115 y FX(h)1984
4127 y Ga(a)2032 4115 y FX(i)2084 4127 y Ga(M)10 b F6(f)p
Ga(\033)s F6(g)r Ga(;)15 b(b)p F4(\))727 4297 y FL(Or)826
4311 y Gc(L)878 4297 y F4(\()913 4285 y F9(\()941 4297
y Ga(x)993 4285 y F9(\))1021 4297 y Ga(M)10 b(;)1159
4285 y F9(\()1187 4297 y Ga(y)1235 4285 y F9(\))1262
4297 y Ga(N)g(;)15 b(z)t F4(\))p F6(f)p Ga(\033)s F6(g)1646
4245 y F5(def)1653 4297 y F4(=)40 b FL(Or)1863 4311 y
Gc(L)1915 4297 y F4(\()1950 4285 y F9(\()1978 4297 y
Ga(x)2030 4285 y F9(\))2083 4297 y Ga(M)10 b F6(f)p Ga(\033)s
F6(g)q Ga(;)2367 4285 y F9(\()2395 4297 y Ga(y)2443 4285
y F9(\))2495 4297 y Ga(N)g F6(f)p Ga(\033)s F6(g)q Ga(;)15
b(z)t F4(\))807 4466 y FL(Imp)951 4488 y Gc(R)1009 4466
y F4(\()1044 4454 y F9(\()1072 4466 y Ga(x)1124 4454
y F9(\))p FX(h)1178 4466 y Ga(a)1226 4454 y FX(i)1254
4466 y Ga(M)10 b(;)15 b(b)p F4(\))p F6(f)p Ga(\033)s
F6(g)1646 4415 y F5(def)1653 4466 y F4(=)40 b FL(Imp)1908
4488 y Gc(R)1966 4466 y F4(\()2001 4454 y F9(\()2029
4466 y Ga(x)2081 4454 y F9(\))p FX(h)2136 4466 y Ga(a)2184
4454 y FX(i)2236 4466 y Ga(M)10 b F6(f)p Ga(\033)s F6(g)r
Ga(;)15 b(b)p F4(\))680 4635 y FL(Imp)824 4657 y Gc(L)877
4635 y F4(\()912 4623 y FX(h)939 4635 y Ga(a)987 4623
y FX(i)1015 4635 y Ga(M)10 b(;)1153 4623 y F9(\()1181
4635 y Ga(x)1233 4623 y F9(\))1260 4635 y Ga(N)g(;)15
b(y)s F4(\))p F6(f)p Ga(\033)s F6(g)1646 4584 y F5(def)1653
4635 y F4(=)40 b FL(Imp)1908 4657 y Gc(L)1960 4635 y
F4(\()1995 4623 y FX(h)2023 4635 y Ga(a)2071 4623 y FX(i)2124
4635 y Ga(M)10 b F6(f)p Ga(\033)s F6(g)q Ga(;)2408 4623
y F9(\()2436 4635 y Ga(x)2488 4623 y F9(\))2541 4635
y Ga(N)g F6(f)p Ga(\033)s F6(g)q Ga(;)15 b(y)s F4(\))p
3965 4767 V 277 4770 3691 4 v Black 1157 4923 a Gg(Figure)24
b(2.6:)29 b(Auxiliary)c(proof)g(substitution.)p Black
Black Black Black eop end
%%Page: 34 46
TeXDict begin 34 45 bop Black -144 51 a Gb(34)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(outline)k(ho)n(w)d(we)f
(shall)j(proceed)g(in)f(our)g(proof)g(of)g(strong)h(normalisation)h
(for)e F4(\()p FY(T)t Ga(;)3017 280 y Gc(aux)2997 317
y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(.)p Black Black
Black Black Black 597 536 a(\(1\))p Black 47 w(De\002ne)20
b(the)g(sets)h(of)g(candidates)i(o)o(v)o(er)e(types)g(using)h(a)e
(\002x)o(ed)g(point)i(construction)749 648 y(\(De\002nition)i(2.3.4\).)
p Black 597 791 a(\(2\))p Black 47 w(Pro)o(v)o(e)f(that)h(candidates)i
(are)e(closed)h(under)g(reduction)h(\(Lemma)c(2.3.12\).)p
Black 597 933 a(\(3\))p Black 47 w(Sho)n(w)35 b(that)i(a)f(named)h(or)f
(co-named)i(term)e(in)h(a)f(candidate)i(implies)g(strong)749
1046 y(normalisation)26 b(for)e(the)g(corresponding)k(term)23
b(\(Lemma)g(2.3.13\).)p Black 597 1189 a(\(4\))p Black
47 w(Extend)40 b(the)g(notion)i(of)e(safe)g(substitution)k(to)39
b(simultaneous)k(substitutions)749 1302 y(\(De\002nition)24
b(2.3.15\).)p Black 597 1444 a(\(5\))p Black 47 w(Pro)o(v)o(e)f(that)h
(all)f(terms)h(are)g(strongly)i(normalising)g(\(Theorem)e(2.3.19\).)321
1662 y(Finally)-6 b(,)32 b(we)d(shall)i(sho)n(w)e(that)i(e)n(v)o(ery)
1604 1625 y Gc(cut)1573 1662 y F6(\000)-31 b(\000)f(!)p
Gg(-reduction)33 b(maps)d(onto)g(a)f(series)i(of)2987
1625 y Gc(aux)2967 1662 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)321
1775 y(and)24 b(thus)h(pro)o(v)o(e)f(that)g F4(\()p FY(T)t
Ga(;)1199 1738 y Gc(cut)1168 1775 y F6(\000)-31 b(\000)g(!)p
F4(\))23 b Gg(is)g(strongly)j(normalising,)g(too.)462
1905 y(First,)40 b(we)35 b(shall)j(de\002ne)f(for)f(e)n(v)o(ery)h(type)
g(tw)o(o)f(candidates,)43 b(written)37 b(as)f FB(J)p
F6(h)p Ga(B)5 b F6(i)p FB(K)35 b Gg(and)i FB(J)p F4(\()p
Ga(B)5 b F4(\))p FB(K)p Gg(.)321 2018 y(These)40 b(candidates)j(are)d
(subsets)h(of)e(named)i(or)e(co-named)i(terms;)49 b(i.e.,)42
b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)55 b F6(\022)f FY(T)3264
2036 y FX(h)p Gc(B)s FX(i)3415 2018 y Gg(and)321 2130
y FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)44 b F6(\022)f
FY(T)754 2149 y F9(\()p Gc(B)s F9(\))866 2130 y Gg(.)58
b(Whereas)35 b(traditional)h(notions)f(of)f(candidates)i(are)e
(de\002ned)g(by)g(a)f(simple)h(in-)321 2243 y(duction)h(o)o(v)o(er)e
(types,)j(our)d(candidates)i(are)e(inducti)n(v)o(ely)j(de\002ned)d(o)o
(v)o(er)g(types,)j(b)n(ut)d(also)h(include)321 2356 y(\002x)o(ed)21
b(point)i(operations.)31 b(Before)22 b(we)f(gi)n(v)o(e)g(the)h
(de\002nition)h(of)f(the)f(candidates,)k(we)c(shall)h(introduce)321
2469 y(some)30 b(set)f(operators,)k(which)c(\002x)g(certain)i(closure)g
(properties)g(for)f(the)f(candidates.)49 b(Each)29 b(of)g(the)321
2582 y(operators)i(is)e(de\002ned)g(o)o(v)o(er)g(sets)g(of)g
(\(co-\)named)h(terms)f(ha)n(ving)i(a)d(speci\002c)h(term)g
(constructor)j(at)321 2695 y(the)24 b(top-le)n(v)o(el.)p
Black 321 2883 a Gb(De\002nition)f(2.3.3)g Gg(\(Set)h(Operators\))p
Gb(:)p Black Black Black 745 3192 a FW(A)t(X)t(I)t(O)t(M)t(S)1055
3210 y F9(\()p Gc(B)s F9(\))1256 3140 y F5(def)1263 3192
y F4(=)1426 3091 y FK(n)1537 3180 y F9(\()1564 3192 y
Ga(x)r F4(:)r Ga(B)1719 3180 y F9(\))1747 3192 y FL(Ax)o
F4(\()p Ga(y)s(;)15 b(b)p F4(\))2120 3087 y FK(\014)2120
3142 y(\014)2120 3196 y(\014)2224 3180 y F9(\()2251 3192
y Ga(x)r F4(:)r Ga(B)2406 3180 y F9(\))2433 3192 y FL(Ax)p
F4(\()p Ga(y)s(;)g(b)p F4(\))26 b F6(2)f FY(T)2902 3210
y F9(\()p Gc(B)s F9(\))3064 3091 y FK(o)745 3426 y FW(A)t(X)t(I)t(O)t
(M)t(S)1055 3445 y FX(h)p Gc(B)s FX(i)1256 3375 y F5(def)1263
3426 y F4(=)1426 3325 y FK(n)1537 3414 y FX(h)1564 3426
y Ga(a)r F4(:)r Ga(B)1715 3414 y FX(i)1743 3426 y FL(Ax)o
F4(\()p Ga(y)s(;)15 b(b)p F4(\))2116 3322 y FK(\014)2116
3376 y(\014)2116 3431 y(\014)2220 3414 y FX(h)2247 3426
y Ga(a)r F4(:)r Ga(B)2398 3414 y FX(i)2426 3426 y FL(Ax)o
F4(\()p Ga(y)s(;)g(b)p F4(\))26 b F6(2)f FY(T)2894 3445
y FX(h)p Gc(B)s FX(i)3057 3325 y FK(o)321 3639 y Gg(Note)37
b(that)h Ga(x)e Gg(can)h(be)g(equal)h(to)f Ga(y)s Gg(,)i(and)e
Ga(a)g Gg(to)g Ga(b)p Gg(.)68 b(Figure)37 b(2.7)g(gi)n(v)o(es)g(the)h
(set)f(operators)i(which)321 3752 y(correspond)27 b(to)c(the)h(other)h
(term)e(constructors.)32 b(Additionally)27 b(we)22 b(ha)n(v)o(e)p
Black Black 330 3915 a FW(B)t(I)t(N)t(D)t(I)t(N)t(G)665
3933 y F9(\()p Gc(B)s F9(\))782 3915 y F4(\()p Ga(X)7
b F4(\))1019 3863 y F5(def)1026 3915 y F4(=)1189 3814
y FK(n)1274 3903 y F9(\()1302 3915 y Ga(x)r F4(:)r Ga(B)1457
3903 y F9(\))1484 3915 y Ga(M)1607 3810 y FK(\014)1607
3865 y(\014)1607 3919 y(\014)1663 3915 y Gg(for)24 b(all)1908
3903 y FX(h)1935 3915 y Ga(a)r F4(:)r Ga(B)2086 3903
y FX(i)2114 3915 y Ga(P)38 b F6(2)25 b Ga(X)d(:)k(M)5
b F6(f)-7 b Ga(x)26 b F4(:=)2774 3903 y FX(h)2801 3915
y Ga(a)r F4(:)r Ga(B)2952 3903 y FX(i)2980 3915 y Ga(P)s
F6(g)g(2)f Ga(S)5 b(N)3332 3929 y Gc(aux)3479 3814 y
FK(o)339 4149 y FW(B)t(I)t(N)t(D)t(I)t(N)t(G)674 4168
y FX(h)p Gc(B)s FX(i)791 4149 y F4(\()p Ga(Y)20 b F4(\))1019
4098 y F5(def)1026 4149 y F4(=)1189 4048 y FK(n)1274
4137 y FX(h)1302 4149 y Ga(a)r F4(:)r Ga(B)1453 4137
y FX(i)1480 4149 y Ga(M)1604 4045 y FK(\014)1604 4099
y(\014)1604 4154 y(\014)1659 4149 y Gg(for)k(all)1904
4137 y F9(\()1931 4149 y Ga(x)r F4(:)r Ga(B)2086 4137
y F9(\))2114 4149 y Ga(P)38 b F6(2)25 b Ga(Y)35 b(:)25
b(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2761 4137 y F9(\()2788
4149 y Ga(x)r F4(:)r Ga(B)2943 4137 y F9(\))2970 4149
y Ga(P)t F6(g)g(2)e Ga(S)5 b(N)3322 4163 y Gc(aux)3470
4048 y FK(o)462 4420 y Gg(The)33 b(set)f(operators)37
b FW(A)t(X)t(I)t(O)t(M)t(S)f Gg(and)d(the)g(set)g(operators)i(gi)n(v)o
(en)e(in)f(Figure)i(2.7)e(correspond)k(to)321 4532 y(the)d(properties)i
(we)c(need)j(to)e(pro)o(v)o(e)g(that)h(a)f(logical)i(cut)f(is)f
(strongly)i(normalising;)42 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)35
b Gg(is)321 4645 y(suf)n(\002cient)h(to)f(sho)n(w)f(strong)i
(normalisation)i(of)c(a)g(commuting)i(cut.)62 b(F)o(or)34
b(the)h(de\002nition)h(of)e(the)321 4758 y(candidates)d(we)c(use)h
(\002x)o(ed)g(points)h(of)f(increasing)i(set)e(operators.)44
b(A)27 b(set)h(operator)l(,)j Ga(op)p Gg(,)d(is)f(said)i(to)321
4871 y(be:)p Black Black 774 5065 a(increasing,)118 b(if)23
b(and)h(only)h(if)114 b Ga(S)30 b F6(\022)25 b Ga(S)2114
5032 y FX(0)2188 5065 y F6(\))50 b Ga(op)p F4(\()p Ga(S)5
b F4(\))26 b F6(\022)f Ga(op)p F4(\()p Ga(S)2858 5032
y FX(0)2881 5065 y F4(\))p Gg(,)e(and)774 5213 y(decreasing,)103
b(if)23 b(and)h(only)h(if)114 b Ga(S)30 b F6(\022)25
b Ga(S)2114 5180 y FX(0)2188 5213 y F6(\))50 b Ga(op)p
F4(\()p Ga(S)5 b F4(\))26 b F6(\023)f Ga(op)p F4(\()p
Ga(S)2858 5180 y FX(0)2881 5213 y F4(\))p Gg(.)p Black
Black eop end
%%Page: 35 47
TeXDict begin 35 46 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
n(ong)h(Normalisation)2290 b(35)p 277 88 3691 4 v Black
Black 277 492 V 277 4876 4 4384 v Black Black 708 834
a F5(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)1075 849 y FQ(h:)p
FS(B)s FQ(i)1231 834 y FG(\()p FU(X)7 b FG(\))1471 787
y F5(def)1481 834 y FG(=)1655 664 y FI(8)1655 738 y(<)1655
888 y(:)1771 721 y FQ(h)1798 733 y FU(a)r FG(:)r FT(:)p
FU(B)1991 721 y FQ(i)2019 733 y FF(Not)2149 745 y FS(R)2204
733 y FG(\()2236 721 y FJ(\()2262 733 y FU(x)r FG(:)r
FU(B)2403 721 y FJ(\))2430 733 y FU(M)i(;)14 b(a)p FG(\))23
b FT(j)1960 833 y FF(Not)2090 845 y FS(R)2144 833 y FG(\()2176
821 y FJ(\()2203 833 y FU(x)r FG(:)r FU(B)2344 821 y
FJ(\))2371 833 y FU(M)9 b(;)14 b(a)p FG(\))23 b Gd(freshly)c
(introduces)i FU(a;)1960 920 y FJ(\()1986 932 y FU(x)r
FG(:)r FU(B)2127 920 y FJ(\))2154 932 y FU(M)32 b FT(2)23
b FU(X)3326 664 y FI(9)3326 738 y(=)3326 888 y(;)759
1279 y F5(N)t(O)q(T)t(L)t(E)t(F)t(T)1079 1294 y FJ(\()p
FQ(:)p FS(B)s FJ(\))1231 1279 y FG(\()p FU(X)7 b FG(\))1471
1232 y F5(def)1481 1279 y FG(=)1655 1109 y FI(8)1655
1184 y(<)1655 1333 y(:)1771 1167 y FJ(\()1797 1179 y
FU(x)r FG(:)r FT(:)p FU(B)1993 1167 y FJ(\))2020 1179
y FF(Not)2151 1191 y FS(L)2200 1179 y FG(\()2232 1167
y FQ(h)2260 1179 y FU(a)r FG(:)r FU(B)2398 1167 y FQ(i)2426
1179 y FU(M)h(;)14 b(x)p FG(\))24 b FT(j)1960 1279 y
FF(Not)2090 1291 y FS(L)2140 1279 y FG(\()2172 1267 y
FQ(h)2199 1279 y FU(a)r FG(:)r FU(B)2337 1267 y FQ(i)2365
1279 y FU(M)8 b(;)14 b(x)p FG(\))24 b Gd(freshly)19 b(introduces)i
FU(x;)1960 1366 y FQ(h)1987 1378 y FU(a)r FG(:)r FU(B)2125
1366 y FQ(i)2152 1378 y FU(M)32 b FT(2)23 b FU(X)3326
1109 y FI(9)3326 1184 y(=)3326 1333 y(;)548 1775 y F5(A)t(N)t(D)t(R)t
(I)t(G)t(H)t(T)925 1790 y FQ(h)p FS(B)s FQ(^)p FS(C)t
FQ(i)1132 1775 y FG(\()p FU(X)r(;)14 b(Y)19 b FG(\))1471
1728 y F5(def)1481 1775 y FG(=)1655 1555 y FI(8)1655
1630 y(>)1655 1655 y(>)1655 1680 y(<)1655 1829 y(>)1655
1854 y(>)1655 1879 y(:)1771 1613 y FQ(h)1798 1625 y FU(c)r
FG(:)r FU(B)t FT(^)q FU(C)2049 1613 y FQ(i)2076 1625
y FF(And)2217 1637 y FS(R)2272 1625 y FG(\()2304 1613
y FQ(h)2331 1625 y FU(a)r FG(:)r FU(B)2469 1613 y FQ(i)2497
1625 y FU(M)8 b(;)2623 1613 y FQ(h)2650 1625 y FU(b)r
FG(:)r FU(C)2778 1613 y FQ(i)2806 1625 y FU(N)h(;)14
b(c)p FG(\))23 b FT(j)1960 1724 y FF(And)2101 1736 y
FS(R)2155 1724 y FG(\()2187 1712 y FQ(h)2214 1724 y FU(a)r
FG(:)r FU(B)2352 1712 y FQ(i)2380 1724 y FU(M)9 b(;)2507
1712 y FQ(h)2534 1724 y FU(b)r FG(:)r FU(C)2662 1712
y FQ(i)2689 1724 y FU(N)g(;)14 b(c)p FG(\))23 b Gd(freshly)d
(introduces)h FU(c;)1960 1812 y FQ(h)1987 1824 y FU(a)r
FG(:)r FU(B)2125 1812 y FQ(i)2152 1824 y FU(M)32 b FT(2)23
b FU(X)r(;)1960 1912 y FQ(h)1987 1924 y FU(b)r FG(:)r
FU(C)2115 1912 y FQ(i)2142 1924 y FU(N)32 b FT(2)24 b
FU(Y)3614 1555 y FI(9)3614 1630 y(>)3614 1655 y(>)3614
1680 y(=)3614 1829 y(>)3614 1854 y(>)3614 1879 y(;)636
2276 y F5(A)t(N)t(D)t(L)t(E)t(F)t(T)966 2246 y FS(i)966
2303 y FJ(\()p FS(B)1042 2311 y FP(1)1074 2303 y FQ(^)p
FS(B)1169 2311 y FP(2)1201 2303 y FJ(\))1231 2276 y FG(\()p
FU(X)7 b FG(\))1471 2229 y F5(def)1481 2276 y FG(=)1655
2106 y FI(8)1655 2181 y(<)1655 2330 y(:)1771 2164 y FJ(\()1797
2176 y FU(y)e FG(:)r FU(B)1931 2188 y FJ(1)1969 2176
y FT(^)p FU(B)2087 2188 y FJ(2)2124 2164 y(\))2150 2176
y FF(And)2291 2139 y FS(i)2291 2197 y(L)2341 2176 y FG(\()2373
2164 y FJ(\()2399 2176 y FU(x)r FG(:)r FU(B)2536 2188
y FS(i)2565 2164 y FJ(\))2591 2176 y FU(M)k(;)14 b(y)s
FG(\))23 b FT(j)1960 2281 y FF(And)2101 2244 y FS(i)2101
2302 y(L)2150 2281 y FG(\()2182 2269 y FJ(\()2209 2281
y FU(x)r FG(:)r FU(B)2346 2293 y FS(i)2375 2269 y FJ(\))2401
2281 y FU(M)8 b(;)14 b(y)s FG(\))23 b Gd(freshly)d(introduces)g
FU(y)s(;)1960 2369 y FJ(\()1986 2381 y FU(x)r FG(:)r
FU(B)2123 2393 y FS(i)2152 2369 y FJ(\))2178 2381 y FU(M)31
b FT(2)24 b FU(X)3355 2106 y FI(9)3355 2181 y(=)3355
2330 y(;)642 2734 y F5(O)t(R)t(R)t(I)t(G)t(H)t(T)963
2704 y FS(i)963 2761 y FQ(h)p FS(B)1040 2769 y FP(1)1073
2761 y FQ(_)p FS(B)1168 2769 y FP(2)1200 2761 y FQ(i)1231
2734 y FG(\()p FU(X)7 b FG(\))1471 2687 y F5(def)1481
2734 y FG(=)1655 2564 y FI(8)1655 2638 y(<)1655 2788
y(:)1771 2621 y FQ(h)1798 2633 y FU(b)r FG(:)r FU(B)1924
2645 y FJ(1)1961 2633 y FT(_)q FU(B)2080 2645 y FJ(2)2117
2621 y FQ(i)2144 2633 y FF(Or)2234 2596 y FS(i)2234 2654
y(R)2289 2633 y FG(\()2321 2621 y FQ(h)2348 2633 y FU(a)r
FG(:)r FU(B)2482 2645 y FS(i)2511 2621 y FQ(i)2537 2633
y FU(M)i(;)14 b(b)p FG(\))23 b FT(j)1960 2739 y FF(Or)2050
2702 y FS(i)2050 2759 y(R)2105 2739 y FG(\()2137 2727
y FQ(h)2164 2739 y FU(a)r FG(:)r FU(B)2298 2751 y FS(i)2326
2727 y FQ(i)2353 2739 y FU(M)9 b(;)14 b(b)p FG(\))23
b Gd(freshly)c(introduces)i FU(b;)1960 2827 y FQ(h)1987
2839 y FU(a)r FG(:)r FU(B)2121 2851 y FS(i)2149 2827
y FQ(i)2176 2839 y FU(M)32 b FT(2)23 b FU(X)3291 2564
y FI(9)3291 2638 y(=)3291 2788 y(;)654 3235 y F5(O)t(R)t(L)t(E)t(F)t(T)
928 3250 y FJ(\()p FS(B)s FQ(_)o FS(C)t FJ(\))1132 3235
y FG(\()p FU(X)r(;)14 b(Y)19 b FG(\))1471 3188 y F5(def)1481
3235 y FG(=)1655 3015 y FI(8)1655 3090 y(>)1655 3115
y(>)1655 3140 y(<)1655 3289 y(>)1655 3314 y(>)1655 3339
y(:)1771 3073 y FJ(\()1797 3085 y FU(z)6 b FG(:)r FU(B)t
FT(_)p FU(C)2054 3073 y FJ(\))2081 3085 y FF(Or)2171
3097 y FS(L)2221 3085 y FG(\()2253 3073 y FJ(\()2279
3085 y FU(x)r FG(:)r FU(B)2420 3073 y FJ(\))2448 3085
y FU(M)i(;)2574 3073 y FJ(\()2600 3085 y FU(y)d FG(:)r
FU(C)2736 3073 y FJ(\))2763 3085 y FU(N)k(;)14 b(z)t
FG(\))22 b FT(j)1960 3185 y FF(Or)2050 3197 y FS(L)2100
3185 y FG(\()2132 3173 y FJ(\()2158 3185 y FU(x)r FG(:)r
FU(B)2299 3173 y FJ(\))2327 3185 y FU(M)8 b(;)2453 3173
y FJ(\()2479 3185 y FU(y)d FG(:)r FU(C)2615 3173 y FJ(\))2642
3185 y FU(N)k(;)14 b(z)t FG(\))22 b Gd(freshly)e(introduces)h
FU(z)t(;)1960 3272 y FJ(\()1986 3284 y FU(x)r FG(:)r
FU(B)2127 3272 y FJ(\))2154 3284 y FU(M)32 b FT(2)23
b FU(X)r(;)1960 3372 y FJ(\()1986 3384 y FU(y)5 b FG(:)r
FU(C)2122 3372 y FJ(\))2148 3384 y FU(N)32 b FT(2)24
b FU(Y)3579 3015 y FI(9)3579 3090 y(>)3579 3115 y(>)3579
3140 y(=)3579 3289 y(>)3579 3314 y(>)3579 3339 y(;)566
3880 y F5(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)917 3895 y FQ(h)p
FS(B)s FQ(\033)q FS(C)t FQ(i)1132 3880 y FG(\()p FU(X)r(;)14
b(Y)19 b FG(\))1471 3833 y F5(def)1481 3880 y FG(=)1655
3561 y FI(8)1655 3635 y(>)1655 3660 y(>)1655 3685 y(>)1655
3710 y(>)1655 3735 y(>)1655 3760 y(>)1655 3785 y(<)1655
3934 y(>)1655 3959 y(>)1655 3984 y(>)1655 4009 y(>)1655
4034 y(>)1655 4059 y(>)1655 4084 y(:)1771 3618 y FQ(h)1798
3630 y FU(b)r FG(:)r FU(B)t FT(\033)p FU(C)2058 3618
y FQ(i)2085 3630 y FF(Imp)2217 3651 y FS(R)2271 3630
y FG(\()2303 3618 y FJ(\()2330 3630 y FU(x)r FG(:)r FU(B)2471
3618 y FJ(\))q FQ(h)2525 3630 y FU(a)r FG(:)r FU(C)2661
3618 y FQ(i)2689 3630 y FU(M)9 b(;)14 b(b)p FG(\))23
b FT(j)1960 3730 y FF(Imp)2092 3750 y FS(R)2146 3730
y FG(\()2178 3718 y FJ(\()2204 3730 y FU(x)r FG(:)r FU(B)2345
3718 y FJ(\))r FQ(h)2400 3730 y FU(a)r FG(:)r FU(C)2536
3718 y FQ(i)2564 3730 y FU(M)8 b(;)14 b(b)p FG(\))23
b Gd(freshly)c(introduces)i FU(b;)1960 3830 y Gd(for)e(all)2183
3818 y FJ(\()2209 3830 y FU(z)6 b FG(:)r FU(C)2344 3818
y FJ(\))2371 3830 y FU(P)35 b FT(2)23 b FU(Y)42 b(:)2290
3917 y FJ(\()2316 3929 y FU(x)r FG(:)r FU(B)2457 3917
y FJ(\))2485 3929 y FU(M)t FT(f)-7 b FU(a)22 b FG(:=)2782
3917 y FJ(\()2808 3929 y FU(z)2851 3917 y FJ(\))2876
3929 y FU(P)r FT(g)h(2)g FU(X)r(;)1960 4029 y Gd(for)c(all)2183
4017 y FQ(h)2210 4029 y FU(c)r FG(:)r FU(B)2340 4017
y FQ(i)2368 4029 y FU(Q)k FT(2)g FU(X)30 b(:)2290 4117
y FQ(h)2317 4129 y FU(a)r FG(:)r FU(C)2453 4117 y FQ(i)2481
4129 y FU(M)t FT(f)-7 b FU(x)23 b FG(:=)2782 4117 y FQ(h)2809
4129 y FU(c)2845 4117 y FQ(i)2871 4129 y FU(Q)-9 b FT(g)22
b(2)i FU(Y)3502 3561 y FI(9)3502 3635 y(>)3502 3660 y(>)3502
3685 y(>)3502 3710 y(>)3502 3735 y(>)3502 3760 y(>)3502
3785 y(=)3502 3934 y(>)3502 3959 y(>)3502 3984 y(>)3502
4009 y(>)3502 4034 y(>)3502 4059 y(>)3502 4084 y(;)616
4525 y F5(I)t(M)t(P)t(L)t(E)t(F)t(T)920 4540 y FJ(\()p
FS(B)s FQ(\033)p FS(C)t FJ(\))1132 4525 y FG(\()p FU(X)r(;)14
b(Y)19 b FG(\))1471 4478 y F5(def)1481 4525 y FG(=)1655
4305 y FI(8)1655 4380 y(>)1655 4405 y(>)1655 4430 y(<)1655
4579 y(>)1655 4604 y(>)1655 4629 y(:)1771 4363 y FJ(\()1797
4375 y FU(y)5 b FG(:)r FU(B)t FT(\033)p FU(C)2065 4363
y FJ(\))2091 4375 y FF(Imp)2223 4395 y FS(L)2273 4375
y FG(\()2305 4363 y FQ(h)2332 4375 y FU(a)r FG(:)r FU(B)2470
4363 y FQ(i)2498 4375 y FU(M)j(;)2624 4363 y FJ(\()2650
4375 y FU(x)r FG(:)r FU(C)2789 4363 y FJ(\))2817 4375
y FU(N)h(;)14 b(y)s FG(\))23 b FT(j)1960 4475 y FF(Imp)2092
4495 y FS(L)2141 4475 y FG(\()2173 4463 y FQ(h)2200 4475
y FU(a)r FG(:)r FU(B)2338 4463 y FQ(i)2366 4475 y FU(M)9
b(;)2493 4463 y FJ(\()2519 4475 y FU(x)r FG(:)r FU(C)2658
4463 y FJ(\))2685 4475 y FU(N)g(;)14 b(y)s FG(\))23 b
Gd(freshly)c(introduces)i FU(y)s(;)1960 4562 y FQ(h)1987
4574 y FU(a)r FG(:)r FU(B)2125 4562 y FQ(i)2152 4574
y FU(M)32 b FT(2)23 b FU(X)r(;)1960 4662 y FJ(\()1986
4674 y FU(x)r FG(:)r FU(C)2125 4662 y FJ(\))2152 4674
y FU(N)32 b FT(2)23 b FU(Y)3626 4305 y FI(9)3626 4380
y(>)3626 4405 y(>)3626 4430 y(=)3626 4579 y(>)3626 4604
y(>)3626 4629 y(;)p 3965 4876 V 277 4879 3691 4 v Black
582 5032 a Gg(Figure)h(2.7:)29 b(De\002nition)c(of)e(the)h(set)g
(operators)i(for)d(propositional)28 b(connecti)n(v)o(es.)p
Black Black Black Black eop end
%%Page: 36 48
TeXDict begin 36 47 bop Black -144 51 a Gb(36)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(W)-7
b(e)23 b(are)h(no)n(w)f(ready)h(to)g(de\002ne)g(the)f(set)h(operator)k
FW(N)t(E)t(G)d Gg(and)f(the)g(candidates.)p Black 321
505 a Gb(De\002nition)f(2.3.4)g Gg(\(Reducibility)k(Candidates\))p
Gb(:)p Black 321 618 a Gg(The)c(mutually)i(recursi)n(v)o(e)h
(de\002nition)f(o)o(v)o(er)e(types)i(for)h FW(N)t(E)t(G)f
Gg(and)f(the)g(candidates)j(is)c(as)h(follo)n(ws:)321
781 y FA(NEG)483 798 y Fz(h)p Fy(B)s Fz(i)615 781 y Gb(:)333
974 y FW(N)t(E)t(G)493 993 y FX(h)p Gc(A)p FX(i)606 974
y F4(\()p Ga(X)7 b F4(\))947 923 y F5(def)954 974 y F4(=)333
1155 y FW(N)t(E)t(G)493 1173 y FX(h:)p Gc(C)e FX(i)655
1155 y F4(\()p Ga(X)i F4(\))947 1103 y F5(def)954 1155
y F4(=)333 1336 y FW(N)t(E)t(G)493 1354 y FX(h)p Gc(C)e
FX(^)r Gc(D)r FX(i)715 1336 y F4(\()p Ga(X)i F4(\))947
1284 y F5(def)954 1336 y F4(=)333 1516 y FW(N)t(E)t(G)493
1535 y FX(h)p Gc(C)570 1544 y FV(1)607 1535 y FX(_)p
Gc(C)704 1544 y FV(2)738 1535 y FX(i)770 1516 y F4(\()p
Ga(X)g F4(\))947 1465 y F5(def)954 1516 y F4(=)333 1697
y FW(N)t(E)t(G)493 1715 y FX(h)p Gc(C)e FX(\033)r Gc(D)r
FX(i)723 1697 y F4(\()p Ga(X)i F4(\))947 1645 y F5(def)954
1697 y F4(=)1073 863 y FK(9)1073 945 y(>)1073 972 y(>)1073
999 y(>)1073 1027 y(>)1073 1054 y(>)1073 1081 y(>)1073
1109 y(>)1073 1136 y(>)1073 1163 y(>)1073 1190 y(>)1073
1218 y(=)1073 1381 y(>)1073 1409 y(>)1073 1436 y(>)1073
1463 y(>)1073 1490 y(>)1073 1518 y(>)1073 1545 y(>)1073
1572 y(>)1073 1599 y(>)1073 1627 y(>)1073 1654 y(;)1238
1151 y FW(A)t(X)t(I)t(O)t(M)t(S)1548 1169 y FX(h)p Gc(B)s
FX(i)1690 1151 y F6([)1329 1331 y FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1664
1350 y FX(h)p Gc(B)s FX(i)1781 1331 y F4(\()p Ga(X)g
F4(\))26 b F6([)2102 863 y FK(8)2102 945 y(>)2102 972
y(>)2102 999 y(>)2102 1027 y(>)2102 1054 y(>)2102 1081
y(>)2102 1109 y(>)2102 1136 y(>)2102 1163 y(>)2102 1190
y(>)2102 1218 y(<)2102 1381 y(>)2102 1409 y(>)2102 1436
y(>)2102 1463 y(>)2102 1490 y(>)2102 1518 y(>)2102 1545
y(>)2102 1572 y(>)2102 1599 y(>)2102 1627 y(>)2102 1654
y(:)2224 974 y F6(\000)2226 1155 y FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)
2626 1173 y FX(h:)p Gc(C)5 b FX(i)2790 1155 y F4(\()p
FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o F4(\))2226 1336
y FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)2638 1354 y FX(h)p
Gc(C)e FX(^)r Gc(D)r FX(i)2861 1336 y F4(\()p FB(J)p
F6(h)p Ga(C)i F6(i)p FB(K)o Ga(;)15 b FB(J)p F6(h)p Ga(D)s
F6(i)q FB(K)o F4(\))2224 1448 y FK(S)2300 1543 y Gc(i)p
F9(=1)p Gc(;)p F9(2)2490 1516 y FW(O)t(R)t(R)t(I)t(G)t(H)t(T)2841
1483 y Gc(i)2841 1548 y FX(h)p Gc(C)2918 1557 y FV(1)2955
1548 y FX(_)p Gc(C)3052 1557 y FV(2)3087 1548 y FX(i)3119
1516 y F4(\()p FB(J)p F6(h)p Ga(C)3291 1530 y Gc(i)3319
1516 y F6(i)p FB(K)p F4(\))2226 1697 y FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t
(T)2608 1715 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)2840
1697 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)o F4(\))321 1918 y
FA(NEG)483 1935 y Fx(\()p Fy(B)s Fx(\))615 1918 y Gb(:)333
2111 y FW(N)t(E)t(G)493 2130 y F9(\()p Gc(A)p F9(\))606
2111 y F4(\()p Ga(X)7 b F4(\))947 2060 y F5(def)954 2111
y F4(=)333 2292 y FW(N)t(E)t(G)493 2310 y F9(\()p FX(:)p
Gc(C)e F9(\))655 2292 y F4(\()p Ga(X)i F4(\))947 2240
y F5(def)954 2292 y F4(=)333 2473 y FW(N)t(E)t(G)493
2491 y F9(\()p Gc(C)570 2500 y FV(1)607 2491 y FX(^)p
Gc(C)704 2500 y FV(2)738 2491 y F9(\))770 2473 y F4(\()p
Ga(X)g F4(\))947 2421 y F5(def)954 2473 y F4(=)333 2653
y FW(N)t(E)t(G)493 2672 y F9(\()p Gc(C)e FX(_)r Gc(D)r
F9(\))715 2653 y F4(\()p Ga(X)i F4(\))947 2602 y F5(def)954
2653 y F4(=)333 2834 y FW(N)t(E)t(G)493 2852 y F9(\()p
Gc(C)e FX(\033)r Gc(D)r F9(\))723 2834 y F4(\()p Ga(X)i
F4(\))947 2782 y F5(def)954 2834 y F4(=)1073 2000 y FK(9)1073
2082 y(>)1073 2109 y(>)1073 2137 y(>)1073 2164 y(>)1073
2191 y(>)1073 2218 y(>)1073 2246 y(>)1073 2273 y(>)1073
2300 y(>)1073 2327 y(>)1073 2355 y(=)1073 2518 y(>)1073
2546 y(>)1073 2573 y(>)1073 2600 y(>)1073 2627 y(>)1073
2655 y(>)1073 2682 y(>)1073 2709 y(>)1073 2737 y(>)1073
2764 y(>)1073 2791 y(;)1238 2288 y FW(A)t(X)t(I)t(O)t(M)t(S)1548
2306 y F9(\()p Gc(B)s F9(\))1690 2288 y F6([)1329 2468
y FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1664 2487 y F9(\()p Gc(B)s
F9(\))1781 2468 y F4(\()p Ga(X)g F4(\))26 b F6([)2102
2000 y FK(8)2102 2082 y(>)2102 2109 y(>)2102 2137 y(>)2102
2164 y(>)2102 2191 y(>)2102 2218 y(>)2102 2246 y(>)2102
2273 y(>)2102 2300 y(>)2102 2327 y(>)2102 2355 y(<)2102
2518 y(>)2102 2546 y(>)2102 2573 y(>)2102 2600 y(>)2102
2627 y(>)2102 2655 y(>)2102 2682 y(>)2102 2709 y(>)2102
2737 y(>)2102 2764 y(>)2102 2791 y(:)2224 2111 y F6(\000)2226
2292 y FW(N)t(O)q(T)t(L)t(E)t(F)t(T)2571 2310 y F9(\()p
FX(:)p Gc(C)5 b F9(\))2737 2292 y F4(\()p FB(J)p F6(h)p
Ga(C)i F6(i)p FB(K)o F4(\))2224 2404 y FK(S)2300 2500
y Gc(i)p F9(=1)p Gc(;)p F9(2)2490 2473 y FW(A)t(N)t(D)t(L)t(E)t(F)t(T)
2847 2440 y Gc(i)2847 2504 y F9(\()p Gc(C)2924 2513 y
FV(1)2963 2504 y FX(^)p Gc(c)3041 2513 y FV(2)3075 2504
y F9(\))3107 2473 y F4(\()p FB(J)p F4(\()p Ga(C)3279
2487 y Gc(i)3307 2473 y F4(\))q FB(K)o F4(\))2226 2653
y FW(O)t(R)t(L)t(E)t(F)t(T)2522 2672 y F9(\()p Gc(C)e
FX(_)t Gc(D)r F9(\))2747 2653 y F4(\()p FB(J)p F4(\()p
Ga(C)i F4(\))p FB(K)o Ga(;)15 b FB(J)p F4(\()p Ga(D)s
F4(\))q FB(K)o F4(\))2226 2834 y FW(I)t(M)t(P)t(L)t(E)t(F)t(T)2553
2852 y F9(\()p Gc(C)5 b FX(\033)h Gc(D)r F9(\))2787 2834
y F4(\()p FB(J)p F6(h)p Ga(C)h F6(i)p FB(K)p Ga(;)15
b FB(J)p F4(\()p Ga(D)s F4(\))q FB(K)o F4(\))321 3055
y Gb(Candidates:)574 3228 y FB(J)p F4(\()p Ga(B)5 b F4(\))o
FB(K)891 3176 y F5(def)898 3228 y F4(=)106 b Ga(X)1150
3242 y F9(0)574 3368 y FB(J)p F6(h)p Ga(B)5 b F6(i)o
FB(K)891 3316 y F5(def)898 3368 y F4(=)108 b FW(N)t(E)t(G)1237
3386 y FX(h)p Gc(B)s FX(i)1354 3368 y F4(\()p FB(J)p
F4(\()p Ga(B)5 b F4(\))p FB(K)o F4(\))321 3586 y Gg(where)24
b Ga(X)641 3600 y F9(0)704 3586 y Gg(is)f(the)h(least)g(\002x)o(ed)f
(point)i(of)e(the)h(operator)k FW(N)t(E)t(G)2266 3605
y F9(\()p Gc(B)s F9(\))2382 3586 y F6(\016)40 b FW(N)t(E)t(G)2627
3605 y FX(h)p Gc(B)s FX(i)2744 3586 y Gg(.)p Black 321
3824 a Gb(Remark)28 b(2.3.5:)p Black 34 w Gg(The)h(least)g(\002x)o(ed)f
(point)i(of)e(the)h(operator)k FW(N)t(E)t(G)2434 3842
y F9(\()p Gc(B)s F9(\))2565 3824 y F6(\016)38 b FW(N)t(E)t(G)2808
3842 y FX(h)p Gc(B)s FX(i)2952 3824 y Gg(is)28 b(de\002ned,)j(since)321
3936 y(both)e FW(B)t(I)t(N)t(D)t(I)t(N)t(G)845 3955 y
FX(h)p Gc(B)s FX(i)987 3936 y Gg(and)g FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
1481 3955 y F9(\()p Gc(B)s F9(\))1623 3936 y Gg(are)d(decreasing)j
(operators.)38 b(Consequently)-6 b(,)31 b FW(N)t(E)t(G)3273
3955 y FX(h)p Gc(B)s FX(i)3415 3936 y Gg(and)323 4049
y FW(N)t(E)t(G)483 4068 y F9(\()p Gc(B)s F9(\))622 4049
y Gg(are)23 b(decreasing.)31 b(But)23 b(then)i FW(N)t(E)t(G)1688
4068 y F9(\()p Gc(B)s F9(\))1805 4049 y F6(\016)17 b
FW(N)t(E)t(G)2027 4068 y FX(h)p Gc(B)s FX(i)2166 4049
y Gg(must)22 b(be)h(increasing,)j(and)d(the)g(least)h(\002x)o(ed)321
4162 y(point)h Ga(X)606 4176 y F9(0)668 4162 y Gg(e)o(xists)g
(according)h(to)e(T)-7 b(arski')i(s)24 b(\002x)o(ed)f(point)i(theorem)f
([Da)n(v)o(e)o(y)g(and)g(Priestle)o(y,)g(1990].)321 4437
y(T)-7 b(w)o(o)22 b(basic)j(properties)h(of)e(the)g(candidates)i(are)e
(as)f(follo)n(ws.)p Black 321 4625 a Gb(Lemma)g(2.3.6:)p
Black 34 w Gg(F)o(or)g(the)h(candidates)i(we)d(ha)n(v)o(e:)p
Black Black 722 4776 a(\(i\))100 b FB(J)p F4(\()p Ga(B)5
b F4(\))p FB(K)25 b F4(=)i FW(N)t(E)t(G)1408 4795 y F9(\()p
Gc(B)s F9(\))1524 4776 y F4(\()p FB(J)p F6(h)p Ga(B)5
b F6(i)q FB(K)o F4(\))355 b Gg(\(ii\))103 b FW(A)t(X)t(I)t(O)t(M)t(S)
2690 4795 y F9(\()p Gc(B)s F9(\))2832 4776 y F6(\022)25
b FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)907 4925 y(J)p
F6(h)p Ga(B)g F6(i)p FB(K)25 b F4(=)i FW(N)t(E)t(G)1408
4943 y FX(h)p Gc(B)s FX(i)1524 4925 y F4(\()p FB(J)p
F4(\()p Ga(B)5 b F4(\))q FB(K)o F4(\))568 b FW(A)t(X)t(I)t(O)t(M)t(S)
2690 4943 y FX(h)p Gc(B)s FX(i)2832 4925 y F6(\022)25
b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)p Black 321 5125
a F7(Pr)l(oof)o(.)p Black 34 w Gg(\(i\))25 b(is)g(immediate)i(from)e
(De\002nition)h(2.3.4,)g(and)g(\(ii\))f(holds)i(tri)n(vially)g(since)h
FW(N)t(E)t(G)g Gg(is)d(closed)321 5238 y(under)i FW(A)t(X)t(I)t(O)t(M)t
(S)r Gg(.)p 3480 5238 4 62 v 3484 5180 55 4 v 3484 5238
V 3538 5238 4 62 v Black Black eop end
%%Page: 37 49
TeXDict begin 37 48 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
n(ong)h(Normalisation)2290 b(37)p 277 88 3691 4 v Black
277 294 a Gg(Let)21 b(us)g(analyse)i(some)e(of)g(the)h(moti)n(v)n
(ations)h(behind)g(the)e(completely)j(symmetric)e(de\002nition)h(of)e
(the)277 407 y(candidates.)p Black 277 594 a Gb(Remark)j(2.3.7:)p
Black 34 w Gg(Gi)n(v)o(en)h(the)g(symmetry)h(stated)g(in)e(Lemma)g
(2.3.6\(i\),)h(we)f(ha)n(v)o(e)i(a)e(simple)h(method)277
707 y(to)f(check)h(whether)g(a)f(named)h(or)f(co-named)h(term)f
(belongs)i(to)e(a)g(candidate.)33 b(F)o(or)23 b(e)o(xample,)i(tak)o(e)g
(a)277 820 y(co-named)f(term)f(of)f(the)h(form)1275 808
y FX(h)1302 820 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1586
808 y FX(i)1613 820 y Ga(M)32 b Gg(for)22 b(which)h(we)f(wish)h(to)f
(kno)n(w)h(whether)g(it)g(belongs)h(to)277 933 y FB(J)p
F6(h)p Ga(B)5 b F6(^)o Ga(C)i F6(i)p FB(K)p Gg(.)38 b(Because)28
b(of)f(the)g(equation)i FB(J)p F6(h)p Ga(B)5 b F6(^)o
Ga(C)i F6(i)p FB(K)31 b F4(=)j FW(N)t(E)t(G)2241 952
y FX(h)p Gc(B)s FX(^)r Gc(C)5 b FX(i)2459 933 y F4(\()p
FB(J)p F4(\()p Ga(B)g F6(^)p Ga(C)i F4(\))p FB(K)o F4(\))27
b Gg(it)f(is)h(suf)n(\002cient)h(to)277 1046 y(sho)n(w)f(that)655
1034 y FX(h)682 1046 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p
Ga(C)966 1034 y FX(i)993 1046 y Ga(M)35 b Gg(belongs)29
b(to)f FW(N)t(E)t(G)1683 1064 y FX(h)p Gc(B)s FX(^)r
Gc(C)5 b FX(i)1902 1046 y F4(\()p FB(J)p F4(\()p Ga(B)g
F6(^)o Ga(C)i F4(\))p FB(K)p F4(\))p Gg(.)37 b(By)26
b(de\002nition)i(of)h FW(N)t(E)t(G)3152 1064 y FX(h)p
Gc(B)s FX(^)r Gc(C)5 b FX(i)3396 1046 y Gg(we)277 1159
y(therefore)26 b(ha)n(v)o(e)e(to)g(sho)n(w)f(that)1284
1147 y FX(h)1311 1159 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p
Ga(C)1595 1147 y FX(i)1622 1159 y Ga(M)33 b Gg(is)23
b(in)h(at)f(least)h(one)g(of)g(the)g(follo)n(wing)h(three)f(sets:)p
Black Black 1234 1373 a(\(i\))102 b FW(A)t(X)t(I)t(O)t(M)t(S)1731
1391 y FX(h)p Gc(B)s FX(^)s Gc(C)5 b FX(i)1208 1508 y
Gg(\(ii\))103 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1833
1527 y FX(h)p Gc(B)s FX(^)s Gc(C)5 b FX(i)2052 1508 y
F4(\()p FB(J)p F6(h)p Ga(B)g F6(i)p FB(K)p Ga(;)15 b
FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)p F4(\))1183 1644
y Gg(\(iii\))103 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1756
1662 y FX(h)p Gc(B)s FX(^)r Gc(C)5 b FX(i)1975 1644 y
F4(\()p FB(J)p F4(\()p Ga(B)g F6(^)p Ga(C)i F4(\))o FB(K)p
F4(\))277 1845 y Gg(This)32 b(means)g(that)901 1833 y
FX(h)928 1845 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1212
1833 y FX(i)1239 1845 y Ga(M)41 b Gg(must)32 b(satisfy)i(certain)f
(conditions)i(depending)g(on)d(its)h(top-le)n(v)o(el)277
1958 y(term)24 b(constructor)-5 b(.)35 b(F)o(or)23 b(e)o(xample,)j(in)e
(\(i\))g(it)g(is)h(required)h(that)f(the)g(co-named)h(term)2982
1946 y FX(h)3009 1958 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p
Ga(C)3293 1946 y FX(i)3320 1958 y Ga(M)34 b Gg(is)277
2071 y(of)29 b(the)g(form)725 2059 y FX(h)752 2071 y
Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1036 2059 y FX(i)1063
2071 y FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))q Gg(;)31
b(in)e(\(ii\))g(of)g(the)g(form)2109 2059 y FX(h)2136
2071 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)2420 2059 y
FX(i)2447 2071 y FL(And)2601 2085 y Gc(R)2659 2071 y
F4(\()2694 2059 y FX(h)2722 2071 y Ga(b)2761 2059 y FX(i)2788
2071 y Ga(S)g(;)2889 2059 y FX(h)2917 2071 y Ga(c)2956
2059 y FX(i)2984 2071 y Ga(T)13 b(;)i(a)p F4(\))28 b
Gg(where)i(it)277 2184 y(is)24 b(presupposed)k(that)998
2172 y FX(h)1026 2184 y Ga(b)1065 2172 y FX(i)1092 2184
y Ga(S)g Gg(and)1331 2172 y FX(h)1358 2184 y Ga(c)1397
2172 y FX(i)1425 2184 y Ga(T)36 b Gg(belong)26 b(to)e
FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)23 b Gg(and)h(to)g
FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)p Gg(,)23 b(respecti)n(v)o(ely;)k
(in)d(\(iii\))h(it)f(is)277 2297 y(required)30 b(that)f
Ga(M)38 b Gg(is)28 b(strongly)i(normalising)h(under)e(an)o(y)g
(substitution)i(on)e Ga(a)e Gg(with)h(a)g(named)h(term)277
2410 y(belonging)d(to)e(the)g(candidate)i FB(J)p F4(\()p
Ga(B)5 b F6(^)o Ga(C)i F4(\))p FB(K)o Gg(.)277 2664 y(In)24
b(the)f(ne)o(xt)h(three)h(lemmas)e(we)g(shall)h(deduce)i(some)d
(properties)k(for)2550 2627 y Gc(aux)2530 2664 y F6(\000)-31
b(\000)g(!)p Gg(.)p Black 277 2852 a Gb(Lemma)23 b(2.3.8:)p
Black 34 w Gg(Suppose)i Ga(M)35 b F6(2)25 b FY(T)e Gg(and)h
Ga(M)1760 2815 y Gc(aux)1740 2852 y F6(\000)-31 b(\000)g(!)25
b Ga(M)2034 2819 y FX(0)2057 2852 y Gg(.)p Black 373
3055 a(\(i\))p Black 46 w(If)f Ga(M)33 b Gg(freshly)25
b(introduces)h(the)e(name)g Ga(x)p Gg(,)e(then)i Ga(M)2113
3022 y FX(0)2159 3055 y Gg(freshly)i(introduces)g Ga(x)p
Gg(.)p Black 348 3206 a(\(ii\))p Black 46 w(If)e Ga(M)33
b Gg(freshly)25 b(introduces)h(the)e(co-name)h Ga(a)p
Gg(,)d(then)i Ga(M)2225 3173 y FX(0)2272 3206 y Gg(freshly)h
(introduces)h Ga(a)p Gg(.)p Black 277 3418 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(If)36 b Ga(M)46 b Gg(freshly)39 b(introduces)g(a)e(name)f
(or)h(a)f(co-name,)41 b(then)d Ga(M)46 b Gg(cannot)38
b(be)f(of)f(the)h(form)277 3531 y FL(Cut)p F4(\()p 452
3531 28 4 v 470 3531 V 488 3531 V 65 w Ga(;)p 557 3531
V 575 3531 V 593 3531 V 80 w F4(\))22 b Gg(\(see)h(De\002nition)g
(2.2.2\).)29 b(The)22 b(lemma)g(follo)n(ws)h(by)g(inspection)i(of)e
(the)f(reduction)j(rules)277 3644 y(of)396 3607 y Gc(aux)376
3644 y F6(\000)-32 b(\000)h(!)p Gg(.)p 3436 3644 4 62
v 3440 3586 55 4 v 3440 3644 V 3494 3644 4 62 v Black
277 3832 a Gb(Lemma)23 b(2.3.9:)p Black 34 w Gg(F)o(or)g(all)g(terms)h
Ga(M)35 b F6(2)25 b FY(T)e Gg(we)g(ha)n(v)o(e)p Black
373 4035 a(\(i\))p Black 46 w Ga(M)5 b F6(f)-7 b Ga(x)26
b F4(:=)835 4023 y FX(h)862 4035 y Ga(a)910 4023 y FX(i)938
4035 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))-8 b F6(g)1329
3998 y Gc(aux)1308 4035 y F6(\000)-31 b(\000)g(!)1479
4002 y FX(\003)1543 4035 y Ga(M)10 b F4([)p Ga(x)g F6(7!)g
Ga(y)s F4(])p Black 348 4186 a Gg(\(ii\))p Black 46 w
Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)831 4174 y F9(\()858
4186 y Ga(x)910 4174 y F9(\))938 4186 y FL(Ax)o F4(\()p
Ga(x;)15 b(b)p F4(\))-8 b F6(g)1324 4148 y Gc(aux)1303
4186 y F6(\000)-31 b(\000)g(!)1474 4153 y FX(\003)1538
4186 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p
Black 277 4398 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23
b(routine)i(induction)h(on)e(the)f(structure)j(of)e Ga(M)33
b Gg(\(see)24 b(the)f(proof)i(of)f(Lemma)e(2.2.11\).)p
3436 4398 V 3440 4340 55 4 v 3440 4398 V 3494 4398 4
62 v Black 277 4586 a Gb(Notation)g(2.3.10:)p Black 35
w Gg(The)f(e)o(xpression)k Ga(M)1626 4549 y Gc(aux)1606
4586 y F6(\000)-31 b(\000)f(!)1776 4553 y F9(0)p Gc(=)p
F9(1)1896 4586 y Ga(M)1994 4553 y FX(0)2039 4586 y Gg(stands)23
b(for)f(either)h Ga(M)d F6(\021)10 b Ga(M)2929 4553 y
FX(0)2973 4586 y Gg(or)21 b Ga(M)3198 4549 y Gc(aux)3178
4586 y F6(\000)-32 b(\000)h(!)10 b Ga(M)3456 4553 y FX(0)3479
4586 y Gg(.)p Black 277 4807 a Gb(Lemma)23 b(2.3.11:)p
Black 35 w Gg(F)o(or)f(an)i(arbitrary)h(substitution)j
F6(f)p Ga(\033)s F6(g)p Gg(,)p Black Black 504 5010 a(if)c
Ga(M)726 4973 y Gc(aux)706 5010 y F6(\000)-31 b(\000)f(!)26
b Ga(M)1000 4977 y FX(0)1023 5010 y Gg(,)c(then)j Ga(M)10
b F6(f)p Ga(\033)s F6(g)1537 4973 y Gc(aux)1517 5010
y F6(\000)-31 b(\000)f(!)1687 4977 y F9(0)p Gc(=)p F9(1)1823
5010 y Ga(M)1921 4977 y FX(0)1944 5010 y F6(f)p Ga(\033)s
F6(g)p Gg(.)p Black 277 5223 a F7(Pr)l(oof)o(.)p Black
34 w Gg(By)23 b(induction)j(on)d(the)h(structure)i(of)d
Ga(M)33 b Gg(\(see)24 b(P)o(age)f(142\).)p 3436 5223
V 3440 5165 55 4 v 3440 5223 V 3494 5223 4 62 v Black
Black eop end
%%Page: 38 50
TeXDict begin 38 49 bop Black -144 51 a Gb(38)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(In)k(ef)n(fect,)g(the)g
(substitution)j(operation)f F6(f)p 1674 317 28 4 v 1693
317 V 1710 317 V 65 w(g)e Gg(beha)n(v)o(es)h(quite)g(dif)n(ferent)g
(under)g(reduction)h(in)e(com-)321 430 y(parison)38 b(with)d(the)h
(standard)i(notion)f(of)e(v)n(ariable)j(substitution.)68
b(Note,)38 b(on)e(the)g(other)h(hand,)i(if)321 543 y
Ga(N)450 506 y Gc(aux)430 543 y F6(\000)-32 b(\000)h(!)25
b Ga(N)708 510 y FX(0)731 543 y Gg(,)e(then)h Ga(M)5
b F6(f)-7 b Ga(a)26 b F4(:=)1282 531 y F9(\()1310 543
y Ga(x)1362 531 y F9(\))1389 543 y Ga(N)q F6(g)1554 506
y Gc(aux)1533 543 y F6(\000)-31 b(\000)g(!)1704 510 y
FX(\003)1768 543 y Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2095
531 y F9(\()2122 543 y Ga(x)2174 531 y F9(\))2201 543
y Ga(N)2284 510 y FX(0)2298 543 y F6(g)p Gg(,)d(as)h(e)o(xpected.)462
673 y(The)c(ne)o(xt)f(tw)o(o)h(lemmas)f(establish)j(important)f
(properties)i(of)c(the)h(candidates.)30 b(The)19 b(\002rst)g(sho)n(ws)
321 786 y(that)k(the)f(candidates)i(are)e(closed)i(under)f(reductions,)
h(and)f(the)f(second)h(sho)n(ws)f(ho)n(w)g(the)g(candidates)321
898 y(are)i(link)o(ed)h(to)f(the)f(property)j(of)e(strong)h
(normalisation.)p Black 321 1086 a Gb(Lemma)e(2.3.12:)p
Black Black 417 1262 a Gg(\(i\))p Black 47 w(If)632 1250
y FX(h)659 1262 y Ga(a)r F4(:)r Ga(B)810 1250 y FX(i)838
1262 y Ga(M)35 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)p
FB(K)22 b Gg(and)i Ga(M)1585 1225 y Gc(aux)1564 1262
y F6(\000)-31 b(\000)g(!)25 b Ga(M)1858 1229 y FX(0)1881
1262 y Gg(,)e(then)2106 1250 y FX(h)2133 1262 y Ga(a)r
F4(:)r Ga(B)2284 1250 y FX(i)2312 1262 y Ga(M)2410 1229
y FX(0)2458 1262 y F6(2)i FB(J)p F6(h)p Ga(B)5 b F6(i)p
FB(K)p Gg(.)p Black 392 1404 a(\(ii\))p Black 47 w(If)632
1392 y F9(\()659 1404 y Ga(x)r F4(:)r Ga(B)814 1392 y
F9(\))842 1404 y Ga(M)35 b F6(2)25 b FB(J)p F4(\()p Ga(B)5
b F4(\))p FB(K)22 b Gg(and)i Ga(M)1589 1367 y Gc(aux)1568
1404 y F6(\000)-31 b(\000)g(!)25 b Ga(M)1862 1371 y FX(0)1885
1404 y Gg(,)e(then)2110 1392 y F9(\()2137 1404 y Ga(x)r
F4(:)r Ga(B)2292 1392 y F9(\))2320 1404 y Ga(M)2418 1371
y FX(0)2466 1404 y F6(2)i FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)p Gg(.)p Black 321 1616 a F7(Pr)l(oof)o(.)p Black
34 w Gg(By)33 b(simultaneous)38 b(induction)e(on)f(the)f(de)o(gree)h
(of)g Ga(B)i Gg(\(the)e(number)g(of)f(logical)i(symbols)321
1729 y(in)d Ga(B)5 b Gg(\).)56 b(Gi)n(v)o(en)32 b(Lemma)g(2.3.6\(i\),)k
(the)d(proof)h(analyses)h(all)e(possible)i(sets)e(where)3079
1717 y FX(h)3107 1729 y Ga(a)r F4(:)r Ga(B)3258 1717
y FX(i)3285 1729 y Ga(M)42 b Gg(and)321 1830 y F9(\()349
1842 y Ga(x)r F4(:)r Ga(B)504 1830 y F9(\))531 1842 y
Ga(M)33 b Gg(could)25 b(be)e(member)h(in)f(\(see)h(P)o(age)f(142\).)p
3480 1842 4 62 v 3484 1784 55 4 v 3484 1842 V 3538 1842
4 62 v Black 321 2030 a Gb(Lemma)g(2.3.13:)p Black Black
417 2206 a Gg(\(i\))p Black 47 w(If)632 2194 y FX(h)659
2206 y Ga(a)r F4(:)r Ga(B)810 2194 y FX(i)838 2206 y
Ga(M)35 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)o
Gg(,)23 b(then)h Ga(M)35 b F6(2)25 b Ga(S)5 b(N)1832
2220 y Gc(aux)1954 2206 y Gg(.)p Black 392 2348 a(\(ii\))p
Black 47 w(If)632 2336 y F9(\()659 2348 y Ga(x)r F4(:)r
Ga(B)814 2336 y F9(\))842 2348 y Ga(M)35 b F6(2)25 b
FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)o Gg(,)23 b(then)h
Ga(M)35 b F6(2)25 b Ga(S)5 b(N)1836 2362 y Gc(aux)1958
2348 y Gg(.)p Black 321 2560 a F7(Pr)l(oof)o(.)p Black
34 w Gg(The)23 b(proof)i(is)e(similar)h(to)g(the)g(one)g(gi)n(v)o(en)g
(for)f(Lemma)g(2.3.12)h(\(see)g(P)o(age)f(144\).)p 3480
2560 V 3484 2502 55 4 v 3484 2560 V 3538 2560 4 62 v
462 2764 a(W)-7 b(e)31 b(are)h(no)n(w)f(in)g(the)h(position)i(to)d(pro)
o(v)o(e)h(that)h(a)e(cut)h(is)f(strongly)j(normalising)g(pro)o(vided)f
(its)321 2877 y(immediate)j(subterms)h(are)e(strongly)i(normalising)h
(and)e(in)f(a)f(candidate)k(corresponding)h(to)c(the)321
2990 y(cut-formula.)40 b(This)26 b(is)g(a)g(lengthy)h(lemma:)35
b(the)26 b(cases)h(for)g(the)f(logical)i(reductions)h(require)f(rather)
321 3103 y(dif)n(\002cult)d(ar)n(guments.)p Black 321
3291 a Gb(Lemma)e(2.3.14:)p Black 35 w Gg(If)g Ga(M)5
b(;)15 b(N)36 b F6(2)24 b Ga(S)5 b(N)1477 3305 y Gc(aux)1600
3291 y Gg(,)1645 3279 y FX(h)1673 3291 y Ga(a)r F4(:)r
Ga(B)1824 3279 y FX(i)1851 3291 y Ga(M)35 b F6(2)25 b
FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)22 b Gg(and)2454 3279
y F9(\()2482 3291 y Ga(x)r F4(:)r Ga(B)2637 3279 y F9(\))2664
3291 y Ga(N)35 b F6(2)25 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)p Gg(,)22 b(then)1315 3485 y FL(Cut)p F4(\()1488
3473 y FX(h)1515 3485 y Ga(a)r F4(:)r Ga(B)1666 3473
y FX(i)1694 3485 y Ga(M)10 b(;)1832 3473 y F9(\()1860
3485 y Ga(x)r F4(:)r Ga(B)2015 3473 y F9(\))2042 3485
y Ga(N)g F4(\))26 b F6(2)e Ga(S)5 b(N)2405 3499 y Gc(aux)2528
3485 y Ga(:)p Black 321 3697 a F7(Pr)l(oof)o(.)p Black
34 w Gg(The)26 b(proof)i(of)f(this)h(lemma)e(is)h(inspired)i(by)e(a)g
(technique)i(applied)g(in)e([Pra)o(witz,)g(1971].)40
b(It)321 3810 y(sho)n(ws)34 b(by)g(induction)i(that)e(e)n(v)o(ery)g
(immediate)h(reduct)g(of)e(the)h(term)f FL(Cut)p F4(\()2780
3798 y FX(h)2808 3810 y Ga(a)r F4(:)r Ga(B)2959 3798
y FX(i)2986 3810 y Ga(M)11 b(;)3125 3798 y F9(\()3152
3810 y Ga(x)r F4(:)r Ga(B)3307 3798 y F9(\))3335 3810
y Ga(N)f F4(\))33 b Gg(is)321 3923 y(strongly)f(normalising)f(\(see)f
(P)o(ages)f(145\226148\).)48 b(The)28 b(induction)k(proceeds)g(o)o(v)o
(er)d(a)f(le)o(xicograph-)321 4036 y(ically)37 b(ordered)g(induction)h
(v)n(alue)e(of)f(the)g(form)g F4(\()p Ga(\016)n(;)15
b(\026;)g(\027)6 b F4(\))p Gg(,)39 b(where)c Ga(\016)k
Gg(is)c(the)g(de)o(gree)h(of)g(the)f(cut-)321 4149 y(formula)29
b Ga(B)5 b Gg(;)30 b Ga(\026)d Gg(and)i Ga(\027)k Gg(are)28
b(the)g(longest)i(reduction)h(sequences)g(\(relati)n(v)o(e)f(to)2862
4112 y Gc(aux)2842 4149 y F6(\000)-32 b(\000)h(!)p Gg(\))28
b(starting)i(from)321 4262 y Ga(M)j Gg(and)24 b Ga(N)10
b Gg(,)23 b(respecti)n(v)o(ely\227by)k(assumption)f(both)e
Ga(\026)e Gg(and)i Ga(\027)29 b Gg(are)24 b(\002nite.)p
3480 4262 V 3484 4204 55 4 v 3484 4262 V 3538 4262 4
62 v 462 4466 a(It)g(is)f(left)h(to)f(sho)n(w)h(that)g(all)g
(well-typed)h(terms)f(are)g(strongly)h(normalising.)32
b(In)23 b(order)i(to)e(do)h(so,)321 4579 y(we)19 b(shall)h(consider)i
(a)d(special)i(class)f(of)g(substitutions,)k(which)19
b(are)h(called)h F7(safe)p Gg(.)28 b(T)-7 b(w)o(o)18
b(substitutions,)321 4692 y(say)k F6(f)p Ga(\033)s F6(g)f
Gg(and)h F6(f)p Ga(\034)10 b F6(g)p Gg(,)22 b(are)f(safe,)h(if)f(and)g
(only)h(if)f(the)h(domain)g(of)f F6(f)p Ga(\033)s F6(g)h
Gg(is)f(not)g(free)h(in)f(the)g(co-domain)j(of)321 4805
y F6(f)p Ga(\034)10 b F6(g)22 b Gg(and)h(the)f(domain)h(of)f
F6(f)p Ga(\034)10 b F6(g)22 b Gg(is)g(not)g(free)h(in)f(the)g
(co-domain)i(of)e F6(f)p Ga(\033)s F6(g)p Gg(.)28 b(F)o(or)21
b(e)o(xample)e F6(f)-7 b Ga(x)25 b F4(:=)3336 4793 y
FX(h)3364 4805 y Ga(a)3412 4793 y FX(i)3439 4805 y Ga(P)t
F6(g)321 4917 y Gg(and)h F6(f)-7 b Ga(b)38 b F4(:=)726
4905 y F9(\()753 4917 y Ga(y)801 4905 y F9(\))828 4917
y Ga(Q)-9 b F6(g)30 b Gg(are)g(safe,)i(pro)o(vided)g(that)f
Ga(x)e Gg(is)h(not)h(free)f(in)2410 4905 y F9(\()2438
4917 y Ga(y)2486 4905 y F9(\))2513 4917 y Ga(Q)f Gg(and)i
Ga(b)e Gg(is)h(not)h(free)g(in)3350 4905 y FX(h)3377
4917 y Ga(a)3425 4905 y FX(i)3453 4917 y Ga(P)13 b Gg(.)321
5030 y(As)25 b(e)o(xplained)j(earlier)l(,)f(the)e(substitution)k
(operation)f F6(f)p 2099 5030 28 4 v 2117 5030 V 2135
5030 V 65 w(g)d Gg(is)h(de\002ned)g(with)f(the)h(property)h(in)e(mind)
321 5143 y(that)f(safe)h(substitutions)i(can)d(commute.)30
b(As)23 b(a)g(special)i(case)f(of)g(the)g(substitution)j(lemma)c(for)h
F6(f)p 3438 5143 V 3456 5143 V 3474 5143 V 65 w(g)321
5256 y Gg(\(Lemma)f(2.3.1\))h(we)f(ha)n(v)o(e)h(for)f(all)h
Ga(M)33 b Gg(and)24 b(tw)o(o)f(safe)h(substitutions)k
F6(f)p Ga(\033)s F6(g)c Gg(and)g F6(f)p Ga(\034)10 b
F6(g)1463 5411 y Ga(M)g F6(f)p Ga(\033)s F6(gf)p Ga(\034)g
F6(g)27 b(\021)e Ga(M)10 b F6(f)p Ga(\034)g F6(gf)p Ga(\033)s
F6(g)28 b Ga(:)p Black Black eop end
%%Page: 39 51
TeXDict begin 39 50 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
n(ong)h(Normalisation)2290 b(39)p 277 88 3691 4 v Black
418 317 a Gg(W)-7 b(e)22 b(shall)h(no)n(w)g(e)o(xtend)g(the)g(notion)h
(of)f(safety)h(from)e(substitutions)27 b(to)22 b(simultaneous)k
(substitu-)277 430 y(tions;)f(that)f(is)f(to)h(sets)g(of)f
(substitutions.)p Black 277 618 a Gb(De\002nition)g(2.3.15)h
Gg(\(Safe)f(Simultaneous)j(Substitution,)g FO(sss)p Gg(\))p
Gb(:)p Black Black Black 1167 775 a F6(;)100 b Gg(is)23
b(an)g F7(sss)p Gg(.)915 888 y F4(^)-50 b Ga(\033)23
b F6([)d(f)p Ga(\033)s F6(g)101 b Gg(is)23 b(an)g F7(sss)p
Gg(,)h(if)f(and)h(only)h(if)1413 1000 y F6(\017)52 b
F4(^)-50 b Ga(\033)26 b Gg(is)e(an)f F7(sss)p Gg(,)1413
1113 y F6(\017)47 b Ga(dom)p F4(\()p F6(f)p Ga(\033)s
F6(g)p F4(\))28 b F6(62)c Ga(dom)p F4(\()5 b(^)-50 b
Ga(\033)t F4(\))p Gg(,)1413 1226 y F6(\017)47 b Ga(dom)p
F4(\()p F6(f)p Ga(\033)s F6(g)p F4(\))25 b Gg(not)f(free)g(in)f
Ga(codom)p F4(\()5 b(^)-50 b Ga(\033)5 b F4(\))p Gg(,)22
b(and)1413 1339 y F6(\017)47 b Ga(dom)p F4(\()5 b(^)-50
b Ga(\033)t F4(\))23 b Gg(not)h(free)g(in)f Ga(codom)p
F4(\()p F6(f)p Ga(\033)s F6(g)p F4(\))p Gg(.)277 1593
y(In)j(the)g(presence)i(of)d(our)h(Barendre)o(gt-style)k(naming)d(con)l
(v)o(ention)h(and)f(alpha-con)l(v)o(ersion,)k(which)277
1706 y(we)26 b(assumed)i(in)f(Con)l(v)o(ention)i(2.2.4,)f(an)o(y)f(set)
g(of)g(substitutions)j(can)e(be)f(transformed)i(into)e(a)g(safe)277
1819 y(simultaneous)35 b(substitution.)59 b(W)-7 b(e)31
b(shall,)k(ho)n(we)n(v)o(er)l(,)g(omit)d(a)g(formal)h(proof)g(and)g
(rather)h(gi)n(v)o(e)e(the)277 1932 y(reader)25 b(the)f(follo)n(wing)h
(e)o(xample.)p Black 277 2120 a Gb(Example)g(2.3.16:)p
Black 35 w Gg(Suppose)h(we)e(ha)n(v)o(e)i(a)e(term,)h(say)h
Ga(M)10 b Gg(,)24 b(and)i(a)e(safe)i(simultaneous)i(substitution,)277
2233 y(say)1047 2392 y F4(^)-50 b Ga(\033)29 b F4(=)1219
2291 y FK(n)1275 2392 y F6(f)-7 b Ga(x)25 b F4(:=)1511
2380 y FX(h)1539 2392 y Ga(c)1578 2380 y FX(i)1606 2392
y FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))-8 b F6(g)p Ga(;)10
b F6(f)-7 b Ga(a)27 b F4(:=)2215 2380 y F9(\()2242 2392
y Ga(z)2288 2380 y F9(\))2316 2392 y FL(Ax)o F4(\()p
Ga(z)t(;)15 b(c)p F4(\))-7 b F6(g)2651 2291 y FK(o)2712
2392 y Ga(;)277 2613 y Gg(and)27 b(assume)g(we)e(ha)n(v)o(e)i(the)g
(substitution)j F6(f)p Ga(\033)s F6(g)h(\021)26 b(f)-7
b Ga(b)30 b F4(:=)2146 2601 y F9(\()2173 2613 y Ga(y)2221
2601 y F9(\))2248 2613 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
F4(\))-8 b F6(g)p Gg(.)36 b(Clearly)-6 b(,)33 b F4(^)-50
b Ga(\033)25 b F6([)d(f)p Ga(\033)s F6(g)27 b Gg(is)f(not)277
2726 y(safe,)34 b(and)f(therefore)h Ga(M)10 b F4(\()5
b(^)-50 b Ga(\033)30 b F6([)c(f)p Ga(\033)s F6(g)p F4(\))32
b Gg(is)g(an)g(ill-de\002ned)i(e)o(xpression.)56 b(Ho)n(we)n(v)o(er)l
(,)34 b Ga(x)p Gg(,)f Ga(a)e Gg(and)h Ga(b)f Gg(are)277
2839 y(considered)25 b(as)d(binders)i(and)e(thus)h(can)f(be)g(re)n
(written.)29 b(In)22 b(ef)n(fect,)h(we)e(can)h(form)g(the)g(follo)n
(wing)i(safe)277 2951 y(v)o(ersion)h(of)j F4(^)-49 b
Ga(\033)23 b F6([)d(f)p Ga(\033)s F6(g)608 3205 y F4(^)-50
b Ga(\033)655 3225 y FE(safe)805 3205 y F4(=)901 3104
y FK(n)957 3205 y F6(f)-7 b Ga(x)1047 3168 y FX(0)1096
3205 y F4(:=)1217 3193 y FX(h)1244 3205 y Ga(c)1283 3193
y FX(i)1311 3205 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\))-9
b F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)1772 3168 y FX(0)1822
3205 y F4(:=)1944 3193 y F9(\()1971 3205 y Ga(z)2017
3193 y F9(\))2045 3205 y FL(Ax)o F4(\()p Ga(z)t(;)15
b(c)p F4(\))-7 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(b)2492
3168 y FX(0)2542 3205 y F4(:=)2663 3193 y F9(\()2690
3205 y Ga(y)2738 3193 y F9(\))2766 3205 y FL(Ax)o F4(\()p
Ga(x;)15 b(a)p F4(\))-8 b F6(g)3115 3104 y FK(o)277 3461
y Gg(assuming)25 b(that)g Ga(x)855 3428 y FX(0)878 3461
y Gg(,)d Ga(a)971 3428 y FX(0)1018 3461 y Gg(and)i Ga(b)1211
3428 y FX(0)1257 3461 y Gg(are)g(fresh.)30 b(Subsequently)-6
b(,)26 b(we)d(need)i(to)e(re)n(write)h(the)g(corresponding)277
3574 y(names)36 b(and)f(co-names)i(in)e Ga(M)10 b Gg(.)63
b(No)n(w)33 b(the)j(e)o(xpression)h Ga(M)10 b F4([)p
Ga(x)32 b F6(7!)g Ga(x)2538 3541 y FX(0)2561 3574 y F4(][)p
Ga(a)g F6(7!)f Ga(a)2861 3541 y FX(0)2885 3574 y F4(][)p
Ga(b)h F6(7!)f Ga(b)3167 3541 y FX(0)3190 3574 y F4(])21
b(^)-51 b Ga(\033)3282 3593 y FE(safe)3442 3574 y Gg(is)277
3686 y(well-de\002ned.)277 3949 y(In)24 b(the)f(ne)o(xt)h(lemma)f(we)g
(shall)i(sho)n(w)e(that)h(a)f(speci\002c)i(substitution)i(b)n(uilt)d
(up)g(by)g(axioms)g(is)f(an)h(sss.)p Black 277 4137 a
Gb(Lemma)f(2.3.17:)p Black 35 w Gg(Let)k F4(^)-50 b Ga(\033)26
b Gg(be)e(of)f(the)h(form)672 4265 y FK(8)672 4346 y(<)672
4510 y(:)830 4365 y([)753 4560 y Gc(i)p F9(=0)p Gc(;:::)n(;n)1003
4451 y F6(f)-7 b Ga(x)1093 4465 y Gc(i)1147 4451 y F4(:=)1268
4439 y FX(h)1296 4451 y Ga(c)1335 4439 y FX(i)1362 4451
y FL(Ax)p F4(\()p Ga(x)1552 4465 y Gc(i)1580 4451 y Ga(;)15
b(c)p F4(\))-8 b F6(g)1731 4265 y FK(9)1731 4346 y(=)1731
4510 y(;)1832 4451 y F6([)1913 4265 y FK(8)1913 4346
y(<)1913 4510 y(:)2085 4365 y([)1994 4560 y Gc(j)t F9(=0)p
Gc(;:::)n(;m)2272 4451 y F6(f)h Ga(a)2358 4465 y Gc(j)2420
4451 y F4(:=)2542 4439 y F9(\()2569 4451 y Ga(y)2617
4439 y F9(\))2644 4451 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(a)2918 4465 y Gc(j)2955 4451 y F4(\))-9 b F6(g)3026
4265 y FK(9)3026 4346 y(=)3026 4510 y(;)277 4781 y Gg(where)28
b(the)g Ga(x)716 4795 y Gc(i)744 4781 y Gg(')-5 b(s)27
b(and)h Ga(a)1037 4795 y Gc(i)1065 4781 y Gg(')-5 b(s)28
b(are)g(distinct)h(names)f(and)g(co-names,)i(respecti)n(v)o(ely)-6
b(.)43 b(Substitution)35 b F4(^)-49 b Ga(\033)30 b Gg(is)277
4894 y(an)24 b(sss.)p Black 277 5107 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)f(induction)j(on)d(the)h(length)h(of)j
F4(^)-49 b Ga(\033)s Gg(.)p 3436 5107 4 62 v 3440 5049
55 4 v 3440 5107 V 3494 5107 4 62 v Black Black eop end
%%Page: 40 52
TeXDict begin 40 51 bop Black -144 51 a Gb(40)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 462 317 a Gg(No)n(w)27
b(we)g(can)h(sho)n(w)f(that)i(e)n(v)o(ery)f(well-typed)i(term)d
(together)j(with)e(a)f(closing)i(substitution)j(is)321
430 y(strongly)26 b(normalising.)31 b(This)24 b(is)f(again)h(a)f
(rather)i(lengthy)g(proof.)p Black 321 618 a Gb(Lemma)e(2.3.18:)p
Black Black 458 847 a F6(\017)p Black 46 w Gg(F)o(or)j(e)n(v)o(ery)i
(well-typed)h(term)e Ga(M)10 b Gg(\227not)28 b(necessarily)i(strongly)g
(normalising\227with)g(a)d(typ-)549 960 y(ing)c(judgement)j
F4(\000)1176 948 y Gc(.)1231 960 y Ga(M)1354 948 y Gc(.)1409
960 y F4(\001)p Gg(,)c(and)p Black 458 1158 a F6(\017)p
Black 46 w Gg(for)36 b(e)n(v)o(ery)h(sss,)45 b F4(^)-50
b Ga(\033)s Gg(,)39 b(such)e(that)g Ga(dom)p F4(\(\000\))31
b F6([)e Ga(dom)p F4(\(\001\))50 b F6(\022)f Ga(dom)p
F4(\()5 b(^)-50 b Ga(\033)t F4(\))p Gg(,)39 b(i.e.,)k
F4(^)-50 b Ga(\033)39 b Gg(is)e(a)f(closing)549 1271
y(substitution,)992 1238 y F5(5)1056 1271 y Gg(and)p
Black 658 1470 a F6(\017)p Black 46 w Gg(for)23 b(e)n(v)o(ery)1098
1458 y F9(\()1126 1470 y Ga(x)r F4(:)r Ga(B)1281 1458
y F9(\))1308 1470 y Ga(P)38 b F6(2)25 b Ga(codom)p F4(\()5
b(^)-50 b Ga(\033)t F4(\))23 b Gg(we)g(require)i(that)2461
1458 y F9(\()2489 1470 y Ga(x)r F4(:)r Ga(B)2644 1458
y F9(\))2671 1470 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(B)5 b F4(\))p FB(K)22 b Gg(and)p Black 658 1622 a
F6(\017)p Black 46 w Gg(for)h(e)n(v)o(ery)1098 1610 y
FX(h)1126 1622 y Ga(a)r F4(:)r Ga(C)1275 1610 y FX(i)1302
1622 y Ga(Q)i F6(2)g Ga(codom)p F4(\()5 b(^)-50 b Ga(\033)t
F4(\))23 b Gg(we)g(require)i(that)2456 1610 y FX(h)2484
1622 y Ga(a)r F4(:)r Ga(C)2633 1610 y FX(i)2660 1622
y Ga(Q)g F6(2)g FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)o
Gg(;)p Black Black 549 1821 a(we)22 b(ha)n(v)o(e)i Ga(M)15
b F4(^)-50 b Ga(\033)29 b F6(2)c Ga(S)5 b(N)1267 1835
y Gc(aux)1389 1821 y Gg(.)p Black 321 2034 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(o)o(v)o(er)d(the)h(structure)i(of)e
Ga(M)32 b Gg(\(see)24 b(P)o(ages)g(148\226150\).)p 3480
2034 4 62 v 3484 1976 55 4 v 3484 2034 V 3538 2034 4
62 v 321 2241 a(W)-7 b(e)23 b(are)h(no)n(w)f(able)h(to)f(pro)o(v)o(e)h
(that)g F4(\()p FY(T)t Ga(;)1580 2203 y Gc(aux)1560 2241
y F6(\000)-31 b(\000)g(!)o F4(\))24 b Gg(is)f(strongly)j(normalising.)p
Black 321 2428 a Gb(Theor)n(em)e(2.3.19:)p Black 35 w
Gg(The)f(reduction)j(system)e F4(\()p FY(T)t Ga(;)1945
2391 y Gc(aux)1925 2428 y F6(\000)-31 b(\000)f(!)p F4(\))23
b Gg(is)h(strongly)h(normalising.)p Black 321 2641 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(By)32 b(Lemma)h(2.3.18)h(we)e(kno)n(w)h
(that)h(for)g(an)f(arbitrary)j(well-typed)f(term,)g(say)f
Ga(M)10 b Gg(,)35 b(with)321 2754 y(the)29 b(typing)h(judgement)g
F4(\000)1213 2742 y Gc(.)1268 2754 y Ga(M)1392 2742 y
Gc(.)1446 2754 y F4(\001)e Gg(and)h(an)f(arbitrary)j(safe)d
(simultaneous)k(substitution,)h(say)g F4(^)-50 b Ga(\033)t
Gg(,)321 2867 y(where)32 b(all)g(free)g(names)h(and)f(co-names)h(of)f
Ga(M)41 b Gg(are)32 b(amongst)h(the)f(domain)h(of)j F4(^)-50
b Ga(\033)t Gg(,)32 b(the)g(term)g Ga(M)15 b F4(^)-50
b Ga(\033)321 2979 y Gg(is)27 b(strongly)j(normalising.)43
b(T)-7 b(aking)32 b F4(^)-50 b Ga(\033)30 b Gg(to)d(be)h(the)f(safe)h
(simultaneous)i(substitution)h(from)d(Lemma)321 3092
y(2.3.17,)f(we)d(can)i(infer)l(,)h(using)g(Lemma)e(2.3.9,)h(that)g
Ga(M)15 b F4(^)-50 b Ga(\033)2212 3055 y Gc(aux)2192
3092 y F6(\000)-31 b(\000)f(!)2362 3059 y FX(\003)2431
3092 y Ga(M)10 b Gg(,)25 b(and)h(we)f(therefore)j(ha)n(v)o(e)e(that)321
3205 y Ga(M)33 b Gg(is)24 b(strongly)h(normalising.)31
b(Thus)24 b(we)f(are)g(done.)p 3480 3205 V 3484 3147
55 4 v 3484 3205 V 3538 3205 4 62 v 462 3412 a(From)e(this)h(result)g
(we)f(can)h(deduce)h(strong)g(normalisation)h(for)e F4(\()p
FY(T)t Ga(;)2664 3375 y Gc(cut)2633 3412 y F6(\000)-31
b(\000)g(!)p F4(\))p Gg(,)21 b(which)g(is)h(relati)n(v)o(ely)321
3525 y(straightforw)o(ard)31 b(since)c(e)n(v)o(ery)1374
3488 y Gc(cut)1343 3525 y F6(\000)-31 b(\000)f(!)p Gg(-reduction)30
b(maps)c(onto)i(a)e(series)h(of)2738 3488 y Gc(aux)2718
3525 y F6(\000)-31 b(\000)f(!)p Gg(-reductions.)41 b(First,)321
3638 y(we)23 b(pro)o(v)o(e)h(that)g Ga(M)10 b F6(f)p
Ga(\033)s F6(g)24 b Gg(reduces)h(to)f(or)f(is)h(equi)n(v)n(alent)i(to)d
Ga(M)10 b F4([)p Ga(\033)s F4(])p Gg(.)p Black 321 3826
a Gb(Lemma)23 b(2.3.20:)p Black 35 w Gg(F)o(or)f(all)i(terms)g
Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)e Gg(we)g(ha)n(v)o(e)p
Black 417 4041 a(\(i\))p Black 47 w Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)875 4029 y F9(\()902 4041 y Ga(x)954
4029 y F9(\))982 4041 y Ga(N)p F6(g)1146 4004 y Gc(aux)1126
4041 y F6(\000)-31 b(\000)f(!)1296 4008 y FX(\003)1361
4041 y Ga(M)10 b F4([)p Ga(a)26 b F4(:=)1679 4029 y F9(\()1706
4041 y Ga(x)1758 4029 y F9(\))1786 4041 y Ga(N)10 b F4(])p
Black 392 4240 a Gg(\(ii\))p Black 47 w Ga(M)5 b F6(f)-7
b Ga(x)26 b F4(:=)879 4228 y FX(h)906 4240 y Ga(a)954
4228 y FX(i)982 4240 y Ga(N)p F6(g)1146 4203 y Gc(aux)1126
4240 y F6(\000)-31 b(\000)f(!)1296 4207 y FX(\003)1361
4240 y Ga(M)10 b F4([)p Ga(x)25 b F4(:=)1683 4228 y FX(h)1710
4240 y Ga(a)1758 4228 y FX(i)1786 4240 y Ga(N)10 b F4(])p
Black 321 4453 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23
b(induction)j(on)e(the)f(structure)j(of)e Ga(M)32 b Gg(\(see)25
b(P)o(age)e(150\).)p 3480 4453 V 3484 4395 55 4 v 3484
4453 V 3538 4453 4 62 v 321 4660 a(The)g(ne)o(xt)h(lemma)f(sho)n(ws)h
(that)g(e)n(v)o(ery)1592 4623 y Gc(cut)1561 4660 y F6(\000)-31
b(\000)g(!)p Gg(-reduction)26 b(maps)e(onto)g(a)f(series)i(of)2938
4623 y Gc(aux)2918 4660 y F6(\000)-31 b(\000)g(!)o Gg(-reductions.)p
Black 321 4847 a Gb(Lemma)23 b(2.3.21:)p Black 35 w Gg(F)o(or)f(all)i
(terms)g Ga(M)10 b Gg(,)22 b Ga(N)35 b F6(2)25 b FY(T)t
Gg(,)19 b(if)k Ga(M)2091 4810 y Gc(cut)2060 4847 y F6(\000)-31
b(\000)g(!)25 b Ga(N)10 b Gg(,)22 b(then)j Ga(M)2707
4810 y Gc(aux)2687 4847 y F6(\000)-31 b(\000)f(!)2857
4814 y F9(+)2942 4847 y Ga(N)10 b Gg(.)p Black 321 5060
a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e(the)f
(structure)j(of)1791 5023 y Gc(cut)1761 5060 y F6(\000)-32
b(\000)h(!)23 b Gg(\(see)h(P)o(age)f(151\).)p 3480 5060
V 3484 5002 55 4 v 3484 5060 V 3538 5060 4 62 v Black
321 5227 1290 4 v 427 5283 a F3(5)456 5314 y F2(All)18
b(free)h(names)g(and)h(co-names)g(of)f Fw(M)27 b F2(are)19
b(amongst)h(the)f(domain)g(of)k Fv(^)-42 b Fw(\033)s
F2(.)p Black Black Black eop end
%%Page: 41 53
TeXDict begin 41 52 bop Black 277 51 a Gb(2.4)23 b(First-Order)i
(Classical)g(Logic)2399 b(41)p 277 88 3691 4 v Black
277 317 a Gg(It)23 b(is)h(rather)g(easy)h(no)n(w)e(to)g(sho)n(w)h(that)
g F4(\()p FY(T)t Ga(;)1663 280 y Gc(cut)1632 317 y F6(\000)-31
b(\000)g(!)p F4(\))23 b Gg(is)g(strongly)j(normalising.)p
Black 277 574 a Gb(Theor)n(em)e(2.3.22:)p Black 34 w
Gg(The)g(reduction)i(system)e F4(\()p FY(T)t Ga(;)1911
537 y Gc(cut)1881 574 y F6(\000)-32 b(\000)h(!)p F4(\))23
b Gg(is)g(strongly)j(normalising.)p Black 277 821 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(The)c(reduction)i(system)f F4(\()p FY(T)t
Ga(;)1489 784 y Gc(aux)1469 821 y F6(\000)-31 b(\000)f(!)p
F4(\))22 b Gg(is)g(strongly)j(normalising,)f(and)f(whene)n(v)o(er)g
Ga(M)3254 784 y Gc(cut)3224 821 y F6(\000)-32 b(\000)h(!)25
b Ga(N)277 934 y Gg(we)18 b(ha)n(v)o(e)i(that)f Ga(M)886
897 y Gc(aux)865 934 y F6(\000)-31 b(\000)g(!)1036 901
y F9(+)1120 934 y Ga(N)10 b Gg(.)26 b(Consequently)-6
b(,)23 b(the)c(reduction)i(system)f F4(\()p FY(T)t Ga(;)2713
897 y Gc(cut)2682 934 y F6(\000)-31 b(\000)f(!)p F4(\))18
b Gg(must)h(be)g(strongly)277 1047 y(normalising,)26
b(too.)p 3436 1047 4 62 v 3440 988 55 4 v 3440 1047 V
3494 1047 4 62 v 277 1481 a Ge(2.4)119 b(First-Order)30
b(Classical)g(Logic)277 1723 y Gg(In)e(this)g(section)h(we)e(e)o(xtend)
i(the)f(cut-elimination)k(procedure)e F4(\()p FY(T)t
Ga(;)2498 1686 y Gc(cut)2467 1723 y F6(\000)-31 b(\000)f(!)p
F4(\))27 b Gg(to)h(the)g(\002rst-order)i(frag-)277 1836
y(ment)c(of)h(classical)h(logic.)38 b(T)-7 b(o)25 b(do)h(so,)h(we)e(e)o
(xtend)j(the)e(notion)i(of)e(a)g(formula)h(by)f(allo)n(wing)i(atomic)
277 1949 y(formulae)d(to)f(ha)n(v)o(e)g(ar)n(guments)i(ranging)f(o)o(v)
o(er)f F7(e)n(xpr)m(essions)j Gg(and)d(introduce)i(the)e(quanti\002ers)
i F6(8)c Gg(and)277 2062 y F6(9)p Gg(.)57 b(W)-7 b(e)32
b(use)i(`e)o(xpression')i(instead)g(of)d(`term')g(\(the)h(standard)i
(terminology\))g(in)d(order)i(to)e(a)n(v)n(oid)277 2175
y(confusion)38 b(with)d(our)h(terminology)i(introduced)g(in)d(pre)n
(vious)i(sections.)66 b(Moreo)o(v)o(er)l(,)40 b(we)34
b(use)i(a)277 2288 y(sans)28 b(serif)g(font)g(for)f(e)o(xpressions)j
(to)d(clearly)i(distinguish)i(them)c(from)g(terms.)40
b(The)27 b(grammar)g(for)277 2400 y(e)o(xpressions)g(is)p
Black Black 1603 2643 a FL(t)e F4(::=)g FL(x)h F6(j)f
FL(f)c(t)15 b Ga(:)g(:)g(:)i FL(t)277 2885 y Gg(where)25
b FL(x)f Gg(is)g(tak)o(en)i(from)e(a)h(set)f(of)h F7(variables)i
Gg(and)e FL(f)30 b Gg(from)24 b(a)h(set)f(of)h(functional)i(symbols.)34
b(An)23 b F7(arity)277 2998 y Gg(\(a)33 b(natural)h(number\))h(is)d
(assigned)j(to)e(each)h(functional)i(symbol)e(specifying)h(the)f
(number)f(of)g(its)277 3110 y(ar)n(guments.)39 b(W)-7
b(e)26 b(shall)h(often)g(write)g FL(x)p Ga(;)15 b FL(y)q
Ga(;)g FL(z)26 b Gg(for)g(v)n(ariables)j(and)d FL(t)g
Gg(for)g(arbitrary)j(e)o(xpressions.)40 b(The)277 3223
y(formulae)25 b(of)e(\002rst-order)j(classical)f(logic)g(are)f(gi)n(v)o
(en)g(by)f(the)h(grammar)p Black Black 782 3465 a Ga(B)30
b F4(::=)c Ga(A)15 b FL(t)1144 3479 y Fu(1)1198 3465
y Ga(:)g(:)g(:)h FL(t)1352 3479 y Fu(n)1418 3465 y F6(j)26
b(:)p Ga(B)j F6(j)d Ga(B)5 b F6(^)o Ga(B)29 b F6(j)d
Ga(B)5 b F6(_)o Ga(B)30 b F6(j)25 b Ga(B)5 b F6(\033)p
Ga(B)29 b F6(j)d(8)p FL(x)p Ga(:B)j F6(j)d(9)p FL(x)p
Ga(:B)277 3707 y Gg(where)21 b Ga(A)e Gg(ranges)j(o)o(v)o(er)e
F7(pr)m(edicate)i(symbols)p Gg(,)g(each)e(of)h(which)f(tak)o(e)h(a)f
(\002x)o(ed)f(number)i(of)f(e)o(xpressions)277 3820 y(as)25
b(ar)n(guments,)j(and)d(where)h FL(x)e Gg(ranges)i(o)o(v)o(er)f(v)n
(ariables.)36 b(An)24 b(occurrence)k(of)d(the)h(v)n(ariable)h
FL(x)d Gg(is)h(said)277 3933 y(to)31 b(be)f F7(bound)p
Gg(,)j(if)e(it)f(is)g(inside)i(a)e(formula)i(of)e(the)h(form)f
F6(8)p FL(x)p Ga(:B)k Gg(or)d F6(9)p FL(x)p Ga(:B)5 b
Gg(.)48 b(W)-7 b(e)29 b(ha)n(v)o(e)i(the)g(standard)277
4046 y(notion)c(of)e(free)g(v)n(ariables,)j(and)d(for)h(the)f(set)g(of)
g(free)h(v)n(ariables)h(of)e(an)g(e)o(xpression,)j(say)e
FL(t)p Gg(,)e(and)i(of)f(a)277 4159 y(formula,)f(say)g
Ga(B)5 b Gg(,)22 b(we)h(shall)h(write)g Ga(F)13 b(V)20
b F4(\()p FL(t)p F4(\))k Gg(and)g Ga(F)13 b(V)20 b F4(\()p
Ga(B)5 b F4(\))p Gg(,)23 b(respecti)n(v)o(ely)-6 b(.)418
4298 y(Just)27 b(as)f(with)g(terms,)h(we)f(identify)i(formulae)f(that)g
(dif)n(fer)g(only)g(in)f(the)h(names)g(of)f(their)h(bound)277
4411 y(v)n(ariables.)46 b(Moreo)o(v)o(er)l(,)30 b(we)e(shall)h(observ)o
(e)h(a)e(Barendre)o(gt-style)k(naming)e(con)l(v)o(ention)h(for)e(bound)
277 4524 y(and)21 b(free)h(v)n(ariables.)30 b(This)20
b(is)h(a)g(standard)i(con)l(v)o(ention)h(allo)n(wing)e(us)e(to)h
(assume)h(that)f(distinct)i(quan-)277 4637 y(ti\002er)29
b(occurrences)k(are)c(follo)n(wed)h(by)g(distinct)h(v)n(ariables.)48
b(F)o(or)28 b(e)o(xample,)j(it)e(e)o(xcludes)i(formulae)277
4750 y(such)j(as)f F6(9)p FL(x)p Ga(:)p F4(\()p Ga(A)p
FL(x)p F6(^8)p FL(x)p Ga(:B)5 b FL(x)p F4(\))p Gg(,)34
b(which)g(can)g(equally)h(be)e(written)h(as)f F6(9)p
FL(y)q Ga(:)p F4(\()p Ga(A)p FL(y)q F6(^)q(8)p FL(x)p
Ga(:B)5 b FL(x)p F4(\))p Gg(.)56 b(It)33 b(also)h(al-)277
4863 y(lo)n(ws)c(a)f(simple)i(de\002nition)h(of)e(the)g(notion)i(of)d
(capture)j(a)n(v)n(oiding)h(v)n(ariable)f(substitution,)j(written)277
4976 y(as)27 b F4([)p FL(x)32 b F4(:=)g FL(t)p F4(])p
Gg(,)c(b)n(ut)f(we)g(omit)g(to)g(gi)n(v)o(e)g(the)h(de\002nition)h
(\(see)f(for)f(e)o(xample)h([Gallier,)g(1990,)h(P)o(age)d(4]\).)277
5088 y(Later)l(,)h(it)f(will)g(be)h(con)l(v)o(enient)i(to)d(e)o(xtend)i
(this)f(notion)g(to)g(conte)o(xts.)39 b(F)o(or)25 b(instance)j
F4(\000[)p FL(x)j F4(:=)f FL(t)p F4(])c Gg(will)277 5201
y(be)e(tak)o(en)g(to)g(mean)f(that)i(the)e(substitution)k
F4([)p FL(x)f F4(:=)f FL(t)p F4(])e Gg(is)g(applied)j(to)d(e)n(v)o(ery)
h(formula)h(in)e F4(\000)p Gg(.)p Black Black eop end
%%Page: 42 54
TeXDict begin 42 53 bop Black -144 51 a Gb(42)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 462 317 a Gg(W)-7
b(e)25 b(are)g(no)n(w)f(ready)j(to)e(de\002ne)g(the)g(sequent)i
(calculus)h(for)d(\002rst-order)i(classical)g(logic.)34
b(There)321 430 y(are)24 b(four)g(rules)h(to)e(go)o(v)o(ern)i(the)e
(quanti\002ers,)j F7(viz.)p Black Black 916 640 a Ga(x)17
b F4(:)g Ga(B)5 b F4([)p FL(x)25 b F4(:=)h FL(t)p F4(])p
Ga(;)15 b F4(\000)p 1490 628 11 41 v 1501 610 46 5 v
96 w(\001)p 916 683 727 4 v 995 763 a Ga(y)20 b F4(:)d
F6(8)p FL(x)p Ga(:B)5 b(;)15 b F4(\000)p 1411 751 11
41 v 1421 732 46 5 v 96 w(\001)1683 707 y F6(8)1734 721
y Gc(L)2075 640 y F4(\000)p 2152 628 11 41 v 2162 610
46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(B)5 b F4([)p
FL(x)25 b F4(:=)g FL(y)q F4(])p 2075 683 733 4 v 2161
763 a(\000)p 2238 751 11 41 v 2249 732 46 5 v 97 w(\001)p
Ga(;)15 b(b)i F4(:)g F6(8)p FL(x)p Ga(:B)2849 707 y F6(8)2900
721 y Gc(R)911 912 y Ga(x)g F4(:)g Ga(B)5 b F4([)p FL(x)25
b F4(:=)g FL(y)q F4(])p Ga(;)15 b F4(\000)p 1495 900
11 41 v 1506 882 46 5 v 97 w(\001)p 911 955 737 4 v 995
1034 a Ga(y)20 b F4(:)d F6(9)p FL(x)p Ga(:B)5 b(;)15
b F4(\000)p 1411 1022 11 41 v 1421 1004 46 5 v 96 w(\001)1689
979 y F6(9)1740 993 y Gc(L)2080 912 y F4(\000)p 2157
900 11 41 v 2167 882 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h
Ga(B)5 b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])p 2080
955 723 4 v 2161 1034 a(\000)p 2238 1022 11 41 v 2249
1004 46 5 v 97 w(\001)p Ga(;)15 b(b)i F4(:)g F6(9)p FL(x)p
Ga(:B)2844 979 y F6(9)2895 993 y Gc(R)321 1253 y Gg(The)25
b F6(8)538 1267 y Gc(R)619 1253 y Gg(and)g F6(9)825 1267
y Gc(L)901 1253 y Gg(rules)g(are)g(subject)i(to)d(the)h(usual)h(pro)o
(viso)h(that)e FL(y)g Gg(should)i(not)e(appear)h(freely)g(in)f
F4(\000)321 1366 y Gg(and)k F4(\001)p Gg(.)44 b(W)-7
b(e)28 b(obtain)i(the)f(\002rst-order)h(system)g(by)e(adding)j(these)f
(rules)f(to)g(the)g(calculus)i(sho)n(wn)e(in)321 1479
y(Figure)24 b(2.2.)29 b(The)23 b(ne)n(w)g(rules)h(gi)n(v)o(e)g(rise)g
(to)f(the)h(term)g(annotations)j(gi)n(v)o(en)d(ne)o(xt.)p
Black 321 1667 a Gb(De\002nition)18 b(2.4.1)h Gg(\(Ra)o(w)e(T)-6
b(erms)18 b(for)h(Quanti\002ers\))p Gb(:)p Black 36 w
Gg(W)-7 b(e)18 b(e)o(xtend)i(the)f(grammar)g(gi)n(v)o(en)g(in)g
(De\002nition)321 1780 y(2.2.1)24 b(with)f(the)h(follo)n(wing)h
(clauses:)p Black Black 927 1976 a Ga(M)5 b(;)15 b(N)110
b F4(::=)100 b FL(Exists)1684 1990 y Gc(R)1742 1976 y
F4(\()1777 1964 y FX(h)1805 1976 y Ga(a)r F4(:)r Ga(B)1956
1964 y FX(i)1983 1976 y Ga(M)10 b(;)15 b FL(t)p Ga(;)g(b)p
F4(\))265 b Gg(e)o(xists-right)1291 2106 y F6(j)148 b
FL(Exists)1684 2120 y Gc(L)1736 2106 y F4(\()1771 2094
y F9(\()1799 2106 y Ga(x)r F4(:)r Ga(B)1954 2094 y F9(\))1981
2106 y F4([)p FL(y)q F4(])p Ga(M)11 b(;)k(y)s F4(\))237
b Gg(e)o(xists-left)1291 2235 y F6(j)148 b FL(F)m(o)m(rall)1674
2249 y Gc(R)1732 2235 y F4(\()1767 2223 y FX(h)1795 2235
y Ga(a)r F4(:)r Ga(B)1946 2223 y FX(i)1973 2235 y F4([)p
FL(y)q F4(])p Ga(M)11 b(;)k(b)p F4(\))254 b Gg(forall-right)1291
2364 y F6(j)148 b FL(F)m(o)m(rall)1674 2378 y Gc(L)1726
2364 y F4(\()1761 2352 y F9(\()1789 2364 y Ga(x)r F4(:)r
Ga(B)1944 2352 y F9(\))1971 2364 y Ga(M)10 b(;)15 b FL(t)p
Ga(;)g(y)s F4(\))268 b Gg(forall-left)321 2574 y(where)24
b FL(y)g Gg(is)f(a)h(v)n(ariable)h(and)f FL(t)e Gg(is)i(an)f(e)o
(xpression;)k(square)e(brack)o(ets)g(denote)h(a)d(ne)n(w)g(binding)i
(opera-)321 2687 y(tion)f(for)g(v)n(ariables.)31 b(Thus)24
b F4([)p FL(y)q F4(])p Ga(M)33 b Gg(means)24 b(that)g
FL(y)g Gg(becomes)h(bound)g(in)e Ga(M)10 b Gg(.)321 2941
y(Notice)27 b(that)g(in)f(the)h(clauses)h(for)f(e)o(xists-right)i(and)e
(forall-left)i(we)c(ha)n(v)o(e)i(to)g(record)g(an)g(e)o(xpression)321
3054 y(\(this)f(will)e(become)i(clearer)g(when)f(we)f(de\002ne)h(the)g
(cut-reductions\).)37 b(W)-7 b(e)24 b(can)h(no)n(w)f(gi)n(v)o(e)h(the)g
(rules)321 3167 y(for)f(forming)h(typing)g(judgements.)p
Black Black 625 3377 a Ga(x)17 b F4(:)h Ga(B)5 b F4([)p
FL(x)24 b F4(:=)i FL(t)p F4(])p Ga(;)15 b F4(\000)1204
3365 y Gc(.)1259 3377 y Ga(M)1382 3365 y Gc(.)1437 3377
y F4(\001)p 403 3420 1332 4 v 403 3505 a Ga(y)20 b F4(:)e
F6(8)p FL(x)p Ga(:B)5 b(;)15 b F4(\000)824 3493 y Gc(.)879
3505 y FL(F)m(o)m(rall)1090 3519 y Gc(L)1142 3505 y F4(\()1177
3493 y F9(\()1205 3505 y Ga(x)1257 3493 y F9(\))1284
3505 y Ga(M)10 b(;)15 b FL(t)p Ga(;)g(y)s F4(\))1604
3493 y Gc(.)1659 3505 y F4(\001)1776 3444 y F6(8)1827
3458 y Gc(L)2215 3377 y F4(\000)2297 3365 y Gc(.)2352
3377 y Ga(M)2475 3365 y Gc(.)2530 3377 y F4(\001)p Ga(;)g(a)i
F4(:)h Ga(B)5 b F4([)p FL(x)25 b F4(:=)g FL(y)q F4(])p
1994 3420 1337 4 v 1994 3505 a(\000)2076 3493 y Gc(.)2131
3505 y FL(F)m(o)m(rall)2341 3519 y Gc(R)2399 3505 y F4(\()2434
3493 y FX(h)2462 3505 y Ga(a)2510 3493 y FX(i)2537 3505
y F4([)p FL(y)q F4(])p Ga(M)11 b(;)k(b)p F4(\))2869 3493
y Gc(.)2924 3505 y F4(\001)p Ga(;)g(b)i F4(:)h F6(8)p
FL(x)p Ga(:B)3371 3444 y F6(8)3422 3458 y Gc(R)620 3701
y Ga(x)f F4(:)g Ga(B)5 b F4([)p FL(x)25 b F4(:=)h FL(y)q
F4(])p Ga(;)15 b F4(\000)1209 3689 y Gc(.)1264 3701 y
Ga(M)1388 3689 y Gc(.)1443 3701 y F4(\001)p 388 3744
1363 4 v 388 3829 a Ga(y)20 b F4(:)d F6(9)p FL(x)p Ga(:B)5
b(;)15 b F4(\000)809 3817 y Gc(.)864 3829 y FL(Exists)1084
3843 y Gc(L)1137 3829 y F4(\()1172 3817 y F9(\()1199
3829 y Ga(x)1251 3817 y F9(\))1279 3829 y F4([)p FL(y)q
F4(])p Ga(M)c(;)k(y)s F4(\))1619 3817 y Gc(.)1674 3829
y F4(\001)1792 3768 y F6(9)1843 3782 y Gc(L)2220 3701
y F4(\000)2302 3689 y Gc(.)2357 3701 y Ga(M)2480 3689
y Gc(.)2535 3701 y F4(\001)p Ga(;)g(a)i F4(:)h Ga(B)5
b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])p 1999 3744 1326
4 v 1999 3829 a(\000)2081 3817 y Gc(.)2136 3829 y FL(Exists)2356
3843 y Gc(R)2414 3829 y F4(\()2449 3817 y FX(h)2477 3829
y Ga(a)2525 3817 y FX(i)2552 3829 y Ga(M)11 b(;)k FL(t)p
Ga(;)g(b)p F4(\))2864 3817 y Gc(.)2919 3829 y F4(\001)p
Ga(;)g(b)i F4(:)h F6(9)p FL(x)p Ga(:B)3366 3768 y F6(9)3417
3782 y Gc(R)321 4048 y Gg(Again,)31 b(the)g F6(8)788
4062 y Gc(R)874 4048 y Gg(and)f F6(9)1085 4062 y Gc(L)1166
4048 y Gg(rules)h(are)f(subject)i(to)d(the)h(pro)o(viso)i(that)e
FL(y)h Gg(does)f(not)h(occur)g(freely)g(in)f F4(\000)321
4161 y Gg(and)c F4(\001)p Gg(.)31 b(Since)25 b(the)h(logical)g
(cut-reductions)j(for)c(the)h(quanti\002ers)h(include)f(v)n(ariable)h
(substitutions,)321 4274 y(we)33 b(need)i(a)e(corresponding)38
b(operation)f(for)d(terms.)59 b(Assuming)35 b(the)f(Barendre)o
(gt-style)k(naming)321 4386 y(con)l(v)o(ention)27 b(for)d(v)n
(ariables,)h(this)f(operation)i(is)e(de\002ned)g(as)f(follo)n(ws.)p
Black 321 4574 a Gb(De\002nition)g(2.4.2)g Gg(\(V)-10
b(ariable)25 b(Substitution)i(for)c(T)-6 b(erms\))p Gb(:)p
Black 34 w Gg(The)23 b(four)h(non-tri)n(vial)j(cases)d(are:)p
Black Black 680 4794 a FL(Exists)900 4808 y Gc(R)958
4794 y F4(\()993 4782 y FX(h)1021 4794 y Ga(a)1069 4782
y FX(i)1096 4794 y Ga(M)10 b(;)15 b FL(s)p Ga(;)g(b)p
F4(\)[)p FL(x)27 b F4(:=)e FL(t)p F4(])1756 4742 y F5(def)1763
4794 y F4(=)106 b FL(Exists)2161 4808 y Gc(R)2218 4794
y F4(\()2253 4782 y FX(h)2281 4794 y Ga(a)2329 4782 y
FX(i)2382 4794 y Ga(M)10 b F4([)p FL(x)25 b F4(:=)h FL(t)p
F4(])p Ga(;)15 b FL(s)p F4([)p FL(x)25 b F4(:=)h FL(t)p
F4(])p Ga(;)15 b(b)p F4(\))654 4934 y FL(Exists)875 4948
y Gc(L)927 4934 y F4(\()962 4922 y F9(\()990 4934 y Ga(x)1042
4922 y F9(\))1069 4934 y F4([)p FL(y)q F4(])p Ga(M)c(;)k(y)s
F4(\)[)p FL(x)26 b F4(:=)f FL(t)p F4(])1756 4882 y F5(def)1763
4934 y F4(=)106 b FL(Exists)2161 4948 y Gc(L)2213 4934
y F4(\()2248 4922 y F9(\()2276 4934 y Ga(x)2328 4922
y F9(\))2355 4934 y F4([)p FL(y)q F4(])26 b Ga(M)10 b
F4([)p FL(x)25 b F4(:=)h FL(t)p F4(])p Ga(;)15 b(b)p
F4(\))671 5073 y FL(F)m(o)m(rall)882 5087 y Gc(R)940
5073 y F4(\()975 5061 y FX(h)1002 5073 y Ga(a)1050 5061
y FX(i)1078 5073 y F4([)p FL(y)q F4(])p Ga(M)c(;)k(b)p
F4(\)[)p FL(x)26 b F4(:=)f FL(t)p F4(])1756 5022 y F5(def)1763
5073 y F4(=)106 b FL(F)m(o)m(rall)2151 5087 y Gc(R)2208
5073 y F4(\()2243 5061 y FX(h)2271 5073 y Ga(a)2319 5061
y FX(i)2347 5073 y F4([)p FL(y)q F4(])25 b Ga(M)10 b
F4([)p FL(x)26 b F4(:=)f FL(t)p F4(])p Ga(;)15 b(b)p
F4(\))683 5213 y FL(F)m(o)m(rall)893 5227 y Gc(L)945
5213 y F4(\()980 5201 y F9(\()1008 5213 y Ga(x)1060 5201
y F9(\))1087 5213 y Ga(M)c(;)k FL(s)p Ga(;)g(y)s F4(\)[)p
FL(x)26 b F4(:=)f FL(t)p F4(])1756 5162 y F5(def)1763
5213 y F4(=)106 b FL(F)m(o)m(rall)2151 5227 y Gc(L)2203
5213 y F4(\()2238 5201 y F9(\()2265 5213 y Ga(x)2317
5201 y F9(\))2370 5213 y Ga(M)10 b F4([)p FL(x)26 b F4(:=)f
FL(t)p F4(])p Ga(;)15 b FL(s)p F4([)p FL(x)26 b F4(:=)f
FL(t)p F4(])p Ga(;)15 b(b)p F4(\))p Black Black eop end
%%Page: 43 55
TeXDict begin 43 54 bop Black 277 51 a Gb(2.4)23 b(First-Order)i
(Classical)g(Logic)2399 b(43)p 277 88 3691 4 v Black
418 317 a Gg(W)-7 b(e)23 b(should)j(point)f(out)g(that)f(our)h(use)f
(of)g(the)h(Barendre)o(gt-style)i(naming)e(con)l(v)o(ention)j(for)c(v)n
(ari-)277 430 y(ables)37 b(corresponds)i(to)d(the)g F7(pur)m
(e-variable)j(con)l(vention)g Gg(commonly)e(used)g(in)e(treatises)j(of)
e(cut-)277 543 y(elimination)30 b(based)e(on)f(sequent)i(proofs)f
(\(for)g(e)o(xample)g([T)m(roelstra)g(and)g(Schwichtenber)n(g,)i(1996,)
277 656 y(P)o(age)c(58]\).)36 b(This)26 b(con)l(v)o(ention)j(is)d
(vital)h(in)f(the)g(cut-elimination)j(procedure,)g(since)e(without)g
(it)f(not)277 769 y(all)e(\002rst-order)h(proofs)g(will)e(ha)n(v)o(e)h
(a)f(cut-free)j(normal)e(form.)418 903 y(Whilst)37 b(the)f(e)o
(xtension)j(of)d(the)g(proof)h(substitution)j(sho)n(wn)d(in)f(Figure)g
(2.4)g(and)h(the)f(corre-)277 1016 y(sponding)26 b(adaptation)h(of)d
(the)g(reduction)1704 979 y Gc(c)1634 1016 y F6(\000)-31
b(\000)g(!)22 b Gg(for)i(the)g(\002rst-order)i(case)e(are)g(quite)h
(easy)-6 b(,)24 b(and)h(thus)277 1129 y(not)k(e)o(xplained,)k(the)c
(reduction)i(rules)f(for)f(logical)i(cuts)e(need)h(some)f(e)o
(xplanation.)48 b(Consider)30 b(the)277 1242 y(de\002nition)25
b(belo)n(w)-6 b(.)p Black 277 1429 a Gb(De\002nition)23
b(2.4.3)g Gg(\(Cut-Reductions)k(for)d(Quanti\002ers\))p
Gb(:)p Black Black Black 442 1639 a FL(Cut)p F4(\()615
1627 y FX(h)642 1639 y Ga(b)681 1627 y FX(i)709 1639
y FL(Exists)929 1653 y Gc(R)987 1639 y F4(\()1022 1627
y FX(h)1050 1639 y Ga(a)1098 1627 y FX(i)1125 1639 y
Ga(M)10 b(;)15 b FL(t)p Ga(;)g(b)p F4(\))q Ga(;)1451
1627 y F9(\()1479 1639 y Ga(y)1527 1627 y F9(\))1555
1639 y FL(Exists)1775 1653 y Gc(L)1827 1639 y F4(\()1862
1627 y F9(\()1890 1639 y Ga(x)1942 1627 y F9(\))1969
1639 y F4([)p FL(y)q F4(])p Ga(N)c(;)k(y)s F4(\))q(\))516
1738 y Gc(l)442 1776 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p
F4(\()810 1764 y FX(h)838 1776 y Ga(a)886 1764 y FX(i)913
1776 y Ga(M)10 b(;)1051 1764 y F9(\()1079 1776 y Ga(x)1131
1764 y F9(\))1159 1776 y Ga(N)g F4([)p FL(y)26 b F4(:=)g
FL(t)p F4(]\))724 1936 y Gg(if)e FL(Exists)1023 1950
y Gc(R)1081 1936 y F4(\()1116 1924 y FX(h)1143 1936 y
Ga(a)1191 1924 y FX(i)1219 1936 y Ga(M)10 b(;)15 b FL(t)p
Ga(;)g(b)p F4(\))24 b Gg(and)g FL(Exists)1902 1950 y
Gc(L)1954 1936 y F4(\()1989 1924 y F9(\()2017 1936 y
Ga(x)2069 1924 y F9(\))2097 1936 y F4([)p FL(y)q F4(])p
Ga(N)10 b(;)15 b(y)s F4(\))24 b Gg(freshly)h(introduce)h
Ga(a)d Gg(and)h Ga(x)442 2167 y FL(Cut)p F4(\()615 2155
y FX(h)642 2167 y Ga(b)681 2155 y FX(i)709 2167 y FL(F)m(o)m(rall)919
2181 y Gc(R)977 2167 y F4(\()1012 2155 y FX(h)1040 2167
y Ga(a)1088 2155 y FX(i)1115 2167 y F4([)p FL(y)q F4(])p
Ga(M)11 b(;)k(b)p F4(\))q Ga(;)1462 2155 y F9(\()1490
2167 y Ga(y)1538 2155 y F9(\))1565 2167 y FL(F)m(o)m(rall)1775
2181 y Gc(L)1827 2167 y F4(\()1862 2155 y F9(\()1890
2167 y Ga(x)1942 2155 y F9(\))1970 2167 y Ga(N)10 b(;)15
b FL(t)p Ga(;)g(y)s F4(\)\))516 2266 y Gc(l)442 2303
y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p F4(\()810 2291
y FX(h)838 2303 y Ga(a)886 2291 y FX(i)913 2303 y Ga(M)10
b F4([)p FL(y)27 b F4(:=)e FL(t)p F4(])p Ga(;)1324 2291
y F9(\()1352 2303 y Ga(x)1404 2291 y F9(\))1432 2303
y Ga(N)10 b F4(\))724 2463 y Gg(if)24 b FL(F)m(o)m(rall)1013
2477 y Gc(R)1071 2463 y F4(\()1106 2451 y FX(h)1133 2463
y Ga(a)1181 2451 y FX(i)1209 2463 y F4([)p FL(y)q F4(])p
Ga(M)11 b(;)k(b)p F4(\))23 b Gg(and)h FL(F)m(o)m(rall)1903
2477 y Gc(L)1955 2463 y F4(\()1990 2451 y F9(\()2017
2463 y Ga(x)2069 2451 y F9(\))2097 2463 y Ga(N)10 b(;)15
b FL(t)p Ga(;)g(y)s F4(\))23 b Gg(freshly)j(introduce)g
Ga(a)c Gg(and)i Ga(x)277 2713 y Gg(W)-7 b(e)18 b(must)h(ensure)h(that)f
(reducing)i(a)d(v)n(alid)h(proof)h(yields)g(again)g(a)e(v)n(alid)h
(proof)h(\(in)f(the)g(sense)h(of)e(being)277 2826 y(deri)n(v)n(able)j
(by)f(the)f(inference)j(rules\).)28 b(This)19 b(holds)h(only)g(if)f
(some)h(alpha-con)l(v)o(ersions)k(are)c(made.)27 b(An)277
2939 y(e)o(xample)i(where)f(such)h(a)f(con)l(v)o(ersion)j(is)c
(necessary)k(w)o(as)d(gi)n(v)o(en)g(by)g(Kleene)h([1952a,)h(P)o(age)e
(450],)277 3052 y(and)34 b(T)m(roelstra)h(and)e(Schwichtenber)n(g)k
([1996,)g(P)o(age)c(58].)58 b(W)-7 b(e)33 b(assume)h(these)g(con)l(v)o
(ersions)j(are)277 3165 y(done)25 b(implicitly)-6 b(.)418
3299 y(In)37 b(the)h(sequel)g(we)e(shall)i(tak)o(e)1557
3262 y Gc(l)1483 3299 y F6(\000)-31 b(\000)g(!)o Gg(,)1786
3262 y Gc(c)1716 3299 y F6(\000)g(\000)f(!)p Gg(,)39
b F4([)p Ga(\033)s F4(])e Gg(and)h FY(T)e Gg(to)h(denote)i(the)e
(notions)i(for)e(\002rst-)277 3412 y(order)28 b(classical)i(logic.)40
b(The)27 b(de\002nitions)i(are)e(laborious,)j(b)n(ut)e(straightforw)o
(ard)j(gi)n(v)o(en)c(the)h(details)277 3524 y(pro)o(vided)f(for)d(the)h
(propositional)k(calculus.)34 b(The)24 b(cut-elimination)k(procedure)f
(for)e(the)g(\002rst-order)277 3637 y(system)f(is)g(de\002ned)g(as)g
(follo)n(ws.)p Black 277 3825 a Gb(De\002nition)f(2.4.4)g
Gg(\(Cut-Elimination)j(for)e(First-Order)h(Classical)g(Logic\))p
Gb(:)p Black 277 3938 a Gg(The)c(cut-elimination)26 b(procedure)e(for)e
(\002rst-order)i(classical)f(logic,)g F4(\()p FY(T)t
Ga(;)2630 3901 y Gc(cut)2599 3938 y F6(\000)-31 b(\000)f(!)p
F4(\))p Gg(,)22 b(is)f(a)g(reduction)k(sys-)277 4051
y(tem)e(where:)p Black 414 4273 a F6(\017)p Black 45
w FY(T)g Gg(is)h(the)f(set)h(of)g(well-typed)h(\(\002rst-order\))h
(terms,)d(and)p Black 414 4478 a F6(\017)p Black 535
4441 a Gc(cut)504 4478 y F6(\000)-31 b(\000)g(!)22 b
Gg(consists)k(of)d(the)h(reductions)j(for)c(logical)j(cuts)e(and)g
(commuting)h(cuts;)f(that)g(is)1618 4680 y Gc(cut)1587
4717 y F6(\000)-31 b(\000)f(!)1782 4666 y F5(def)1789
4717 y F4(=)1967 4680 y Gc(l)1892 4717 y F6(\000)h(\000)g(!)25
b([)2244 4680 y Gc(c)2174 4717 y F6(\000)-31 b(\000)f(!)50
b Ga(:)277 4976 y Gg(W)-7 b(e)30 b(should)j(no)n(w)e(pro)o(v)o(e)h
(that)1316 4938 y Gc(cut)1286 4976 y F6(\000)-32 b(\000)h(!)30
b Gg(still)i(respects)h(the)f(subject)h(reduction)h(property)-6
b(.)54 b(Ho)n(we)n(v)o(er)l(,)277 5088 y(this)35 b(proof)g(is)f(a)f
(straightforw)o(ard)38 b(e)o(xtension)e(of)e(the)g(proof)h(of)f
(Proposition)j(2.2.10.)60 b(The)34 b(only)277 5201 y(additional)26
b(lemma)e(we)e(need)j(in)e(this)h(proof)h(is)e(as)h(follo)n(ws.)p
Black Black eop end
%%Page: 44 56
TeXDict begin 44 55 bop Black -144 51 a Gb(44)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black Black 321 317 a(Lemma)30
b(2.4.5:)p Black 34 w Gg(If)69 b F4(\000)1105 305 y Gc(.)1160
317 y Ga(M)1283 305 y Gc(.)1338 317 y F4(\001)e Gg(is)31
b(a)f(typing)i(judgement,)i(then)d(for)g(an)f(arbitrary)j(substitution)
321 430 y F4([)p FL(x)26 b F4(:=)f FL(t)p F4(])e Gg(also)h
F4(\000[)p FL(x)h F4(:=)g FL(t)p F4(])1139 418 y Gc(.)1194
430 y Ga(M)10 b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])1589
418 y Gc(.)1644 430 y F4(\001[)p FL(x)g F4(:=)g FL(t)p
F4(])p Gg(.)p Black 321 643 a F7(Pr)l(oof)o(.)p Black
34 w Gg(By)e(induction)j(on)e(the)f(structure)j(of)e
Ga(M)10 b Gg(.)p 3480 643 4 62 v 3484 585 55 4 v 3484
643 V 3538 643 4 62 v 321 847 a(W)-7 b(e)20 b(conclude)j(this)e
(section)h(with)e(the)h(strong)h(normalisation)h(theorem)f(for)e(the)h
(\002rst-order)h(system.)p Black 321 1035 a Gb(Theor)n(em)j(2.4.6:)p
Black 34 w Gg(The)g(reduction)i(system)f F4(\()p FY(T)t
Ga(;)1915 998 y Gc(cut)1885 1035 y F6(\000)-32 b(\000)h(!)p
F4(\))24 b Gg(for)h(\002rst)g(order)h(classical)h(logic)f(is)e
(strongly)321 1148 y(normalising.)p Black 321 1360 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(The)g(proof)j(is)e(similar)g(to)g(the)h
(strong)g(normalisation)i(proof)f(for)e(the)g(propositional)k(calcu-)
321 1473 y(lus,)24 b(and)g(for)g(space)g(reasons)i(all)d(b)n(ut)h(the)g
(follo)n(wing)h(details)g(are)f(omitted.)p Black 458
1663 a F6(\017)p Black 46 w Gg(An)c(auxiliary)j(substitution,)i
F6(f)p 1538 1663 28 4 v 1556 1663 V 1573 1663 V 65 w(g)p
Gg(,)20 b(and)i(an)f(auxiliary)i(reduction,)2697 1626
y Gc(aux)2677 1663 y F6(\000)-32 b(\000)h(!)p Gg(,)20
b(need)i(to)f(be)g(de\002ned)549 1776 y(along)28 b(the)g(lines)g(of)f
(the)h(de\002nitions)h(gi)n(v)o(en)f(for)f(the)h(propositional)j
(calculus.)42 b(This)28 b(a)n(v)n(oids)549 1889 y(the)23
b(problem)i(of)f F4([)p 1134 1889 V 1152 1889 V 1169
1889 V 64 w(])f Gg(where)h(safe)g(substitutions)k(do)23
b(not)h(commute.)p Black 458 2036 a F6(\017)p Black 46
w Gg(The)k(candidates)33 b(need)d(to)f(be)g(e)o(xtended)i(for)f
(quanti\002ed)h(formulae;)j(Figure)29 b(2.8)h(gi)n(v)o(es)f(the)549
2149 y(corresponding)e(set)d(operators.)p Black 458 2297
a F6(\017)p Black 46 w Gg(The)g(induction)k(in)d(Lemma)f(2.3.18)h
(includes)j(in)d(the)g(\002rst-order)i(system)e(a)g(closing)i(substi-)
549 2410 y(tution)d(for)g(v)n(ariables.)p 3480 2410 4
62 v 3484 2352 55 4 v 3484 2410 V 3538 2410 4 62 v 321
2565 a(Unless)g(otherwise)h(stated,)f(we)f(henceforth)j(assume)e(that)f
F4(\()p FY(T)t Ga(;)2376 2528 y Gc(cut)2345 2565 y F6(\000)-31
b(\000)g(!)o F4(\))23 b Gg(and)h F4(\()p FY(T)t Ga(;)2880
2528 y Gc(aux)2860 2565 y F6(\000)-32 b(\000)h(!)p F4(\))23
b Gg(refer)h(to)f(\002rst-)321 2678 y(order)i(classical)h(logic.)321
2984 y Ge(2.5)119 b(V)-11 b(ariations)30 b(of)g(the)g(Sequent)i
(Calculus)321 3208 y Gg(Designing)25 b(a)d(logical)j(calculus)f(is)f
(lik)o(e)g(composing)i(a)d(fugue:)30 b(there)24 b(are)f(man)o(y)g(v)n
(ariations.)30 b(A)22 b(nat-)321 3321 y(ural)28 b(question)i(is)e(to)f
(what)h(e)o(xtent)g(the)g(strong)h(normalisation)i(result)e(depends)g
(on)f(our)g(particular)321 3434 y(formulation)35 b(of)d(the)g
(inference)j(rules.)55 b(Some)31 b(aspects)j(of)e(our)h(rules)g(are)f
(crucial)i(in)e(the)g(strong)321 3547 y(normalisation)d(proof;)f
(others)f(are)f(not.)35 b(The)25 b(use)h(of)g(sets)g(of)g(labelled)h
(formulae)g(as)f(conte)o(xts,)h(for)321 3660 y(e)o(xample,)d(plays)h
(an)f(important)h(r)8 b(\210)-38 b(ole.)29 b(Labels)24
b(allo)n(w)g(us)g(to)f(distinguish)k(dif)n(ferent)e(formula)g(occur)n
(-)321 3772 y(rences)h(in)e(a)g(typing)i(deri)n(v)n(ation.)34
b(This)25 b(is)f(an)g(indispensable)29 b(pro)o(viso)d(for)e(a)g(strong)
i(normalisation)321 3885 y(proof)j(b)n(uilt)f(around)h(the)e(notion)i
(of)e(candidates;)33 b(see)27 b([Lei)n(v)n(ant,)h(1979].)41
b(On)27 b(the)g(other)h(hand,)h(the)321 3998 y(speci\002c)g(form)e(of)g
(our)h(inference)i(rules)f(is)e(irrele)n(v)n(ant,)j(in)d(the)h(sense)h
(that)f(our)g(candidate)i(method)321 4111 y(e)o(xtends)24
b(to)f(other)g(formulations)j(of)c(the)h(inference)i(rules.)k(W)-7
b(e)21 b(shall)j(gi)n(v)o(e)e(some)h(e)o(xamples)h(belo)n(w)-6
b(.)462 4241 y(First,)33 b(there)e(are)g(alternati)n(v)o(e)i
(formulations)h(for)c(and-left)j(and)e(or)n(-right.)52
b(The)31 b(and-left)h(rule,)321 4354 y(for)24 b(instance,)h(may)f(be)f
(of)h(the)f(form)p Black Black 781 4543 a Ga(x)17 b F4(:)g
Ga(B)961 4557 y Gc(i)989 4543 y Ga(;)e F4(\000)p 1107
4531 11 41 v 1117 4513 46 5 v 97 w(\001)p 693 4580 653
4 v 693 4659 a Ga(z)22 b F4(:)17 b Ga(B)868 4673 y F9(1)908
4659 y F6(^)o Ga(B)1037 4673 y F9(2)1077 4659 y Ga(;)e
F4(\000)p 1194 4647 11 41 v 1204 4629 46 5 v 96 w(\001)1387
4602 y F6(^)1448 4617 y Gc(L)1496 4627 y FZ(i)1577 4602
y F4(\()p Ga(i)26 b F4(=)f(1)p Ga(;)15 b F4(2\))2078
4612 y Gg(or)2301 4543 y Ga(x)i F4(:)h Ga(B)5 b(;)15
b(y)k F4(:)f Ga(C)q(;)d F4(\000)p 2818 4531 11 41 v 2828
4513 46 5 v 97 w(\001)p 2301 4580 669 4 v 2347 4659 a
Ga(z)22 b F4(:)17 b Ga(B)5 b F6(^)o Ga(C)q(;)15 b F4(\000)p
2771 4647 11 41 v 2782 4629 46 5 v 97 w(\001)3011 4602
y F6(^)3072 4569 y FX(0)3072 4629 y Gc(L)3149 4602 y
Ga(:)321 4863 y Gg(The)24 b(\002rst)f(rule,)h(which)g(we)f(included)j
(in)e(our)g(sequent)i(calculus,)f(is)f(often)h(referred)g(to)f(as)f
(the)i(addi-)321 4976 y(ti)n(v)o(e)20 b(v)n(ariant)h(of)f(the)g
(and-left)i(rule,)f(and)f(the)g(second)i(as)e(the)g(multiplicati)n(v)o
(e)i(v)n(ariant.)29 b(If)20 b(we)f(are)h(only)321 5088
y(interested)29 b(in)e(pro)o(v)n(ability)-6 b(,)30 b(it)c(is)g(not)h
(dif)n(\002cult)g(to)g(sho)n(w)f(that)h(in)g(classical)h(logic)g(the)f
(tw)o(o)f(v)n(ariants)321 5201 y(are)31 b(interderi)n(v)n(able.)55
b(By)30 b(this)i(we)e(mean)h(that)h(one)f(can)h(be)f(deri)n(v)o(ed)h
(from)f(the)g(other)-5 b(.)52 b(Ho)n(we)n(v)o(er)l(,)321
5314 y(their)23 b(tw)o(o)f(beha)n(viours)k(in)c(the)g(process)i(of)e
(cut-elimination)k(are)c(rather)i(dif)n(ferent.)30 b(Whereas)23
b(a)f(cut-)321 5427 y(instance)27 b F6(^)703 5441 y Gc(R)761
5427 y Ga(=)p F6(^)867 5441 y Gc(L)915 5451 y FZ(i)969
5427 y Gg(is)e(replaced)h(by)f(a)e(single)j(cut)f(on)f(a)g(smaller)i
(formula,)f(a)f(cut-instance)k F6(^)3330 5441 y Gc(R)3388
5427 y Ga(=)p F6(^)3494 5394 y FX(0)3494 5454 y Gc(L)p
Black Black eop end
%%Page: 45 57
TeXDict begin 45 56 bop Black 277 51 a Gb(2.5)23 b(V)-8
b(ariations)25 b(of)e(the)g(Sequent)f(Calculus)2124 b(45)p
277 88 3691 4 v Black Black 277 229 V 277 1974 4 1746
v 529 472 a F5(F)t(O)t(R)t(A)t(L)t(L)t(L)t(E)t(F)t(T)986
487 y FJ(\()p FQ(8)p Ft(x)p FS(:B)s FJ(\))1180 472 y
FG(\()p FU(X)7 b FG(\))1419 425 y F5(def)1429 472 y FG(=)1604
302 y FI(8)1604 376 y(<)1604 526 y(:)1719 359 y FJ(\()1745
371 y FU(y)e FG(:)r FT(8)p FF(x)p FU(:B)1991 359 y FJ(\))2017
371 y FF(F)n(o)n(rall)2209 383 y FS(L)2259 371 y FG(\()2291
359 y FJ(\()2317 371 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)25
b FG(:=)e FF(t)p FG(])2708 359 y FJ(\))2734 371 y FU(M)9
b(;)14 b FF(t)p FU(;)g(y)s FG(\))22 b FT(j)1908 471 y
FF(F)n(o)n(rall)2100 483 y FS(L)2150 471 y FG(\()2182
459 y FJ(\()2208 471 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)j
FG(:=)e FF(t)p FG(])2599 459 y FJ(\))2625 471 y FU(M)8
b(;)14 b FF(t)p FU(;)g(y)s FG(\))23 b Gd(freshly)c(introduces)i
FU(y)s(;)1908 559 y FJ(\()1934 571 y FU(x)r FG(:)r FU(B)t
FG([)p FF(x)k FG(:=)e FF(t)p FG(])2325 559 y FJ(\))2351
571 y FU(M)31 b FT(2)24 b FU(X)3646 302 y FI(9)3646 376
y(=)3646 526 y(;)479 906 y F5(F)t(O)t(R)t(A)t(L)t(L)t(R)t(I)t(G)t(H)t
(T)983 921 y FQ(h8)p Ft(x)p FS(:B)s FQ(i)1180 906 y FG(\()p
FU(X)7 b FG(\))1419 859 y F5(def)1429 906 y FG(=)1604
735 y FI(8)1604 810 y(<)1604 960 y(:)1719 793 y FJ(\()1745
805 y FU(b)r FG(:)r FT(8)p FF(x)p FU(:B)1983 793 y FJ(\))2009
805 y FF(F)n(o)n(rall)2201 817 y FS(R)2256 805 y FG(\()2288
793 y FQ(h)2315 805 y FU(a)r FG(:)r FU(B)t FG([)p FF(x)24
b FG(:=)f FF(y)q FG(])2711 793 y FQ(i)2738 805 y FG([)p
FF(y)q FG(])p FU(M)10 b(;)k(b)p FG(\))22 b FT(j)1908
905 y FF(F)n(o)n(rall)2100 917 y FS(R)2155 905 y FG(\()2187
893 y FQ(h)2214 905 y FU(a)r FG(:)r FU(B)t FG([)p FF(x)i
FG(:=)f FF(y)q FG(])2610 893 y FQ(i)2637 905 y FG([)p
FF(y)q FG(])p FU(M)9 b(;)14 b(b)p FG(\))23 b Gd(freshly)d(introduces)h
FU(b;)1908 1004 y Gd(for)f(all)j FF(t)g Gd(s.t.)2305
992 y FJ(\()2331 1004 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)i
FG(:=)d FF(t)p FG(])2721 992 y FJ(\))2747 1004 y FU(M)32
b FT(2)23 b FU(X)3661 735 y FI(9)3661 810 y(=)3661 960
y(;)562 1340 y F5(E)t(X)t(I)t(S)t(T)t(S)t(L)t(E)t(F)t(T)986
1355 y FJ(\()p FQ(9)p Ft(x)p FS(:B)s FJ(\))1180 1340
y FG(\()p FU(X)7 b FG(\))1419 1293 y F5(def)1429 1340
y FG(=)1604 1169 y FI(8)1604 1244 y(<)1604 1394 y(:)1719
1227 y FJ(\()1745 1239 y FU(y)e FG(:)r FT(9)p FF(x)p
FU(:B)1990 1227 y FJ(\))2017 1239 y FF(Exists)2219 1251
y FS(L)2268 1239 y FG(\()2300 1227 y FJ(\()2326 1239
y FU(x)r FG(:)r FU(B)t FG([)p FF(x)25 b FG(:=)e FF(t)p
FG(])2717 1227 y FJ(\))2743 1239 y FG([)p FF(y)q FG(])p
FU(M)9 b(;)14 b(y)s FG(\))23 b FT(j)1908 1339 y FF(Exists)2109
1351 y FS(L)2159 1339 y FG(\()2191 1327 y FJ(\()2217
1339 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)i FG(:=)e FF(t)p
FG(])2608 1327 y FJ(\))2634 1339 y FG([)p FF(y)q FG(])p
FU(M)9 b(;)14 b(y)s FG(\))23 b Gd(freshly)c(introduces)i
FU(y)s(;)1908 1438 y Gd(for)f(all)g FF(t)h Gd(s.t.)2300
1426 y FJ(\()2326 1438 y FU(x)r FG(:)r FU(B)t FG([)p
FF(x)k FG(:=)e FF(t)p FG(])2717 1426 y FJ(\))2743 1438
y FU(M)31 b FT(2)24 b FU(X)3674 1169 y FI(9)3674 1244
y(=)3674 1394 y(;)512 1774 y F5(E)t(X)t(I)t(S)t(T)t(S)t(R)t(I)t(G)t(H)t
(T)983 1789 y FQ(h9)p Ft(x)p FS(:B)s FQ(i)1180 1774 y
FG(\()p FU(X)7 b FG(\))1419 1726 y F5(def)1429 1774 y
FG(=)1604 1603 y FI(8)1604 1678 y(<)1604 1828 y(:)1719
1661 y FJ(\()1745 1673 y FU(b)r FG(:)r FT(9)p FF(x)p
FU(:B)1982 1661 y FJ(\))2009 1673 y FF(Exists)2211 1685
y FS(R)2265 1673 y FG(\()2297 1661 y FQ(h)2324 1673 y
FU(a)r FG(:)r FU(B)t FG([)p FF(x)25 b FG(:=)d FF(y)q
FG(])2720 1661 y FQ(i)2748 1673 y FU(M)8 b(;)14 b FF(t)p
FU(;)g(b)p FG(\))23 b FT(j)1908 1773 y FF(Exists)2109
1785 y FS(R)2164 1773 y FG(\()2196 1761 y FQ(h)2223 1773
y FU(a)r FG(:)r FU(B)t FG([)p FF(x)h FG(:=)f FF(y)q FG(])2619
1761 y FQ(i)2646 1773 y FU(M)9 b(;)14 b FF(t)p FU(;)g(b)p
FG(\))23 b Gd(freshly)c(introduces)i FU(b;)1908 1860
y FJ(\()1934 1872 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)k
FG(:=)e FF(t)p FG(])2325 1860 y FJ(\))2351 1872 y FU(M)31
b FT(2)24 b FU(X)3651 1603 y FI(9)3651 1678 y(=)3651
1828 y(;)p 3965 1974 V 277 1977 3691 4 v Black 854 2131
a Gg(Figure)g(2.8:)29 b(De\002nition)c(of)e(the)h(set)g(operators)i
(for)e(quanti\002ers.)p Black Black 277 2553 a(is)k(replaced)i(by)f(tw)
o(o)f(cuts,)h(and)g(one)g(can)f(choose)i(the)e(order)i(in)e(which)g
(these)h(cuts)g(appear)h(in)e(the)277 2666 y(reduct.)h(Gi)n(v)o(en)19
b(the)h(term)g(assignment)i(for)d F6(^)1720 2633 y FX(0)1720
2693 y Gc(L)1791 2666 y Gg(sho)n(wn)h(in)f(Figure)h(2.9,)g(we)f(thus)i
(ha)n(v)o(e)f(the)g(reduction)277 2779 y(rule)p Black
Black 434 2991 a FL(Cut)o F4(\()606 2979 y FX(h)634 2991
y Ga(c)673 2979 y FX(i)701 2991 y FL(And)856 3005 y Gc(R)913
2991 y F4(\()948 2979 y FX(h)976 2991 y Ga(a)1024 2979
y FX(i)1052 2991 y Ga(M)10 b(;)1190 2979 y FX(h)1217
2991 y Ga(b)1256 2979 y FX(i)1284 2991 y Ga(N)g(;)15
b(c)p F4(\))q Ga(;)1522 2979 y F9(\()1550 2991 y Ga(z)1596
2979 y F9(\))1624 2991 y FL(And)1778 2954 y FX(0)1778
3014 y Gc(L)1830 2991 y F4(\()1865 2979 y F9(\()1893
2991 y Ga(x)1945 2979 y F9(\)\()2000 2991 y Ga(y)2048
2979 y F9(\))2075 2991 y Ga(P)e(;)i(z)t F4(\))q(\))508
3102 y Gc(l)434 3140 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p
F4(\()802 3128 y FX(h)830 3140 y Ga(a)878 3128 y FX(i)905
3140 y Ga(M)10 b(;)1043 3128 y F9(\()1071 3140 y Ga(x)1123
3128 y F9(\))1151 3140 y FL(Cut)o F4(\()1323 3128 y FX(h)1351
3140 y Ga(b)1390 3128 y FX(i)1418 3140 y Ga(N)g(;)1541
3128 y F9(\()1568 3140 y Ga(y)1616 3128 y F9(\))1644
3140 y Ga(P)j F4(\)\))99 b Gg(or)508 3239 y Gc(l)434
3276 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p F4(\()802
3264 y FX(h)830 3276 y Ga(b)869 3264 y FX(i)896 3276
y Ga(N)10 b(;)1019 3264 y F9(\()1047 3276 y Ga(y)1095
3264 y F9(\))1122 3276 y FL(Cut)p F4(\()1295 3264 y FX(h)1323
3276 y Ga(a)1371 3264 y FX(i)1398 3276 y Ga(M)g(;)1536
3264 y F9(\()1564 3276 y Ga(x)1616 3264 y F9(\))1644
3276 y Ga(P)j F4(\)\))716 3460 y Gg(if)23 b FL(And)949
3474 y Gc(R)1007 3460 y F4(\()1042 3448 y FX(h)1069 3460
y Ga(a)1117 3448 y FX(i)1145 3460 y Ga(M)10 b(;)1283
3448 y FX(h)1311 3460 y Ga(b)1350 3448 y FX(i)1377 3460
y Ga(N)g(;)15 b(c)p F4(\))24 b Gg(and)g FL(And)1907 3423
y FX(0)1907 3483 y Gc(L)1959 3460 y F4(\()1994 3448 y
F9(\()2022 3460 y Ga(x)2074 3448 y F9(\)\()2128 3460
y Ga(y)2176 3448 y F9(\))2204 3460 y Ga(P)13 b(;)i(z)t
F4(\))23 b Gg(freshly)j(introduce)g Ga(c)d Gg(and)h Ga(z)t
Gg(,)277 3694 y(This)f(reduction)i(is)e(similar)h(to)e(that)i(gi)n(v)o
(en)f(in)g(Figure)g(2.5)g(for)g F6(\033)2342 3708 y Gc(R)2400
3694 y Ga(=)p F6(\033)2516 3708 y Gc(L)2568 3694 y Gg(,)f(and)h(also)h
(requires)h(similar)277 3807 y(side-conditions)40 b(as)35
b(speci\002ed)h(in)f(Remark)g(2.2.7.)63 b(Much)35 b(the)h(same)f
(discussion)j(as)d(gi)n(v)o(en)g(for)277 3920 y(and-left)26
b(applies)f(to)e(or)n(-right,)j(whose)e(multiplicati)n(v)o(e)i(v)n
(ariant,)e F6(_)2413 3887 y FX(0)2413 3947 y Gc(R)2471
3920 y Gg(,)e(is)i(sho)n(wn)f(in)h(Figure)g(2.9.)418
4051 y(Another)g(source)g(for)f(v)n(ariation)i(is)e(ho)n(w)f(we)g
(treat)h(the)g(conte)o(xts)i(in)d(the)h(rules)h(with)e(tw)o(o)h(premi-)
277 4164 y(ses:)47 b(these)34 b(conte)o(xts)g(can)f(be)f(either)i
(shared)g(or)e(split.)56 b(In)32 b(ef)n(fect,)k(we)31
b(ha)n(v)o(e)i(the)g(follo)n(wing)h(tw)o(o)277 4277 y(possibilities)27
b(for)d(and-right.)p Black Black 552 4492 a F4(\000)p
629 4480 11 41 v 639 4462 46 5 v 96 w(\001)p Ga(;)15
b(a)j F4(:)f Ga(B)95 b F4(\000)p 1170 4480 11 41 v 1181
4462 46 5 v 97 w(\001)p Ga(;)15 b(b)i F4(:)g Ga(C)p 552
4530 981 4 v 755 4608 a F4(\000)p 833 4596 11 41 v 843
4578 46 5 v 97 w(\001)p Ga(;)e(c)i F4(:)h Ga(B)5 b F6(^)o
Ga(C)1574 4548 y F6(^)1635 4562 y Gc(R)1929 4492 y F4(\000)1986
4506 y F9(1)p 2045 4480 11 41 v 2056 4462 46 5 v 2121
4492 a F4(\001)2197 4506 y F9(1)2237 4492 y Ga(;)15 b(a)i
F4(:)h Ga(B)95 b F4(\000)2606 4506 y F9(2)p 2666 4480
11 41 v 2676 4462 46 5 v 2742 4492 a F4(\001)2818 4506
y F9(2)2857 4492 y Ga(;)15 b(b)j F4(:)f Ga(C)p 1929 4530
1139 4 v 2026 4608 a F4(\000)2083 4622 y F9(1)2122 4608
y Ga(;)e F4(\000)2219 4622 y F9(2)p 2279 4596 11 41 v
2289 4578 46 5 v 2355 4608 a F4(\001)2431 4622 y F9(1)2470
4608 y Ga(;)g F4(\001)2586 4622 y F9(2)2626 4608 y Ga(;)g(c)j
F4(:)f Ga(B)5 b F6(^)o Ga(C)3109 4551 y F6(^)3170 4518
y FX(0)3170 4578 y Gc(R)277 4844 y Gg(Note)26 b(that)g(in)f(the)h
F6(^)932 4812 y FX(0)932 4871 y Gc(R)990 4844 y Gg(-rule)g(the)g(conte)
o(xt)h(are)f(treated)h(as)f(in)f(the)h(cut-rule;)j(that)d(means)g
F4(\000)3162 4858 y F9(1)3223 4844 y F6(\\)21 b F4(\000)3362
4858 y F9(2)3426 4844 y Gg(or)277 4957 y F4(\001)353
4971 y F9(1)410 4957 y F6(\\)c F4(\001)564 4971 y F9(2)625
4957 y Gg(may)23 b(not)g(be)g(empty)-6 b(.)29 b(Thus)23
b F6(^)1586 4924 y FX(0)1586 4984 y Gc(R)1666 4957 y
Gg(is)g(actually)h(a)f(generalisation)k(of)c F6(^)2811
4971 y Gc(R)2869 4957 y Gg(.)28 b(Similar)22 b(remarks)277
5070 y(apply)j(to)e(the)h(other)h(inference)h(rules)e(with)f(tw)o(o)h
(premises)g(\(see)h(Figure)f(2.9\).)418 5201 y(Our)19
b(strong)i(normalisation)i(proof)d(can)g(be)f(easily)i(modi\002ed)f(to)
f(accommodate)i(the)f(alternati)n(v)o(e)277 5314 y(formulations)27
b(of)c(the)h(inference)i(rules)e(mentioned)i(abo)o(v)o(e.)k(In)23
b(f)o(act,)h(it)f(is)h(rob)n(ust)h(enough)g(to)f(pro)o(v)o(e)277
5427 y(strong)34 b(normalisation)j(for)c(a)f(sequent)j(calculus)g
(containing)h(all)d(v)n(ariants)h(and)g(their)f(respecti)n(v)o(e)p
Black Black eop end
%%Page: 46 58
TeXDict begin 46 57 bop Black -144 51 a Gb(46)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black Black -144 229 V -144
1636 4 1407 v 168 370 a Ga(x)17 b F4(:)g Ga(B)5 b(;)15
b(y)20 b F4(:)e Ga(C)q(;)d F4(\()p Ga(z)22 b F4(:)c Ga(B)5
b F6(^)o Ga(C)i F4(\))p Ga(;)15 b F4(\000)1112 358 y
Gc(.)1167 370 y Ga(M)1290 358 y Gc(.)1345 370 y F4(\001)p
139 412 1312 4 v 139 503 a Ga(z)21 b F4(:)d Ga(B)5 b
F6(^)o Ga(C)q(;)15 b F4(\000)568 491 y Gc(.)622 503 y
FL(And)777 466 y FX(0)777 526 y Gc(L)829 503 y F4(\()864
491 y F9(\()892 503 y Ga(x)944 491 y F9(\)\()999 503
y Ga(y)1047 491 y F9(\))1074 503 y Ga(M)10 b(;)15 b(z)t
F4(\))1319 491 y Gc(.)1374 503 y F4(\001)1492 434 y F6(^)1552
401 y FX(0)1552 461 y Gc(L)1841 370 y F4(\000)1923 358
y Gc(.)1978 370 y Ga(M)2102 358 y Gc(.)2156 370 y F4(\001)p
Ga(;)g F4(\()p Ga(c)k F4(:)e Ga(B)5 b F6(^)o Ga(C)i F4(\))p
Ga(;)15 b(a)j F4(:)f Ga(B)5 b(;)15 b(b)i F4(:)h Ga(C)p
1841 412 1241 4 v 1841 503 a F4(\000)1923 491 y Gc(.)1978
503 y FL(Or)2077 466 y FX(0)2077 526 y Gc(R)2134 503
y F4(\()2169 491 y FX(h)2197 503 y Ga(a)2245 491 y FX(i)q(h)2300
503 y Ga(b)2339 491 y FX(i)2367 503 y Ga(M)10 b(;)15
b(c)p F4(\))2605 491 y Gc(.)2660 503 y F4(\001)p Ga(;)g(c)j
F4(:)f Ga(B)5 b F6(^)o Ga(C)3122 434 y F6(_)3183 401
y FX(0)3183 461 y Gc(R)704 718 y F4(\000)761 732 y F9(1)826
706 y Gc(.)880 718 y Ga(M)1004 706 y Gc(.)1059 718 y
F4(\001)1135 732 y F9(1)1174 718 y Ga(;)15 b(a)j F4(:)f
Ga(B)459 b F4(\000)1907 732 y F9(2)1972 706 y Gc(.)2026
718 y Ga(N)2135 706 y Gc(.)2190 718 y F4(\001)2266 732
y F9(2)2305 718 y Ga(;)15 b(b)i F4(:)h Ga(C)p 704 755
1812 4 v 715 846 a F4(\000)772 860 y F9(1)811 846 y Ga(;)d
F4(\000)908 860 y F9(2)973 834 y Gc(.)1028 846 y FL(And)1182
809 y FX(0)1182 869 y Gc(R)1240 846 y F4(\()1275 834
y FX(h)1303 846 y Ga(a)1351 834 y FX(i)1378 846 y Ga(M)10
b(;)1516 834 y FX(h)1544 846 y Ga(b)1583 834 y FX(i)1611
846 y Ga(N)g(;)15 b(c)p F4(\))1834 834 y Gc(.)1889 846
y F4(\001)1965 860 y F9(1)2004 846 y Ga(;)g F4(\001)2120
860 y F9(2)2160 846 y Ga(;)g(c)j F4(:)f Ga(B)5 b F6(^)o
Ga(C)2557 777 y F6(^)2617 744 y FX(0)2617 804 y Gc(R)794
1060 y Ga(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)1077
1074 y F9(1)1141 1048 y Gc(.)1196 1060 y Ga(M)1319 1048
y Gc(.)1374 1060 y F4(\001)1450 1074 y F9(1)1762 1060
y Ga(y)20 b F4(:)d Ga(C)q(;)e F4(\000)2032 1074 y F9(2)2098
1048 y Gc(.)2153 1060 y Ga(N)2261 1048 y Gc(.)2316 1060
y F4(\001)2392 1074 y F9(2)p 737 1097 1751 4 v 737 1188
a Ga(z)22 b F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)1140
1202 y F9(1)1180 1188 y Ga(;)g F4(\000)1277 1202 y F9(2)1342
1176 y Gc(.)1397 1188 y FL(Or)1496 1151 y FX(0)1496 1211
y Gc(L)1548 1188 y F4(\()1583 1176 y F9(\()1611 1188
y Ga(x)1663 1176 y F9(\))1691 1188 y Ga(M)10 b(;)1829
1176 y F9(\()1857 1188 y Ga(y)1905 1176 y F9(\))1932
1188 y Ga(N)g(;)15 b(z)t F4(\))2162 1176 y Gc(.)2217
1188 y F4(\001)2293 1202 y F9(1)2332 1188 y Ga(;)g F4(\001)2448
1202 y F9(2)2529 1119 y F6(_)2590 1086 y FX(0)2590 1146
y Gc(L)698 1402 y F4(\000)755 1416 y F9(1)819 1390 y
Gc(.)874 1402 y Ga(M)998 1390 y Gc(.)1053 1402 y F4(\001)1129
1416 y F9(1)1168 1402 y Ga(;)g(a)i F4(:)h Ga(B)459 b(x)17
b F4(:)g Ga(C)q(;)e F4(\000)2118 1416 y F9(2)2184 1390
y Gc(.)2239 1402 y Ga(N)2347 1390 y Gc(.)2402 1402 y
F4(\001)2478 1416 y F9(2)p 698 1440 1820 4 v 703 1530
a Ga(y)20 b F4(:)d Ga(B)5 b F6(\033)o Ga(C)q(;)15 b F4(\000)1117
1544 y F9(1)1158 1530 y Ga(;)g F4(\000)1255 1544 y F9(2)1319
1518 y Gc(.)1374 1530 y FL(Imp)1519 1493 y FX(0)1519
1553 y Gc(L)1571 1530 y F4(\()1606 1518 y FX(h)1634 1530
y Ga(a)1682 1518 y FX(i)1709 1530 y Ga(M)10 b(;)1847
1518 y F9(\()1875 1530 y Ga(x)1927 1518 y F9(\))1955
1530 y Ga(N)g(;)15 b(y)s F4(\))2186 1518 y Gc(.)2241
1530 y F4(\001)2317 1544 y F9(1)2356 1530 y Ga(;)g F4(\001)2472
1544 y F9(2)2558 1461 y F6(\033)2629 1428 y FX(0)2629
1488 y Gc(L)p 3543 1636 4 1407 v -144 1639 3691 4 v Black
843 1793 a Gg(Figure)25 b(2.9:)k(Alternati)n(v)o(e)c(formulation)h(of)d
(some)h(inference)i(rules.)p Black Black 321 2219 a(cut-reductions.)33
b(Since)21 b(the)h(proof)h(does)f(not)g(pose)h(an)o(y)e(ne)n(w)g
(challenges,)k(the)d(details)h(are)f(omitted.)321 2332
y(In)28 b(what)f(follo)n(ws)i(we)d(shall)j(emplo)o(y)g(the)e
(formulation)j(of)e(the)g(inference)i(rules)e(that)h(seems)f(most)321
2445 y(suited)d(for)f(the)g(problem)g(at)g(hand.)462
2579 y(The)h(last)g(v)n(ariation)i(for)d(classical)j(logic)f(we)e
(shall)h(present)i(arises)e(from)g(the)g(w)o(onderful)i(sym-)321
2691 y(metry)i(of)f(classical)i(logic.)44 b(Ev)o(ery)28
b(sequent)i(of)e(the)h(form)f F4(\000)p 2317 2679 11
41 v 2327 2661 46 5 v 96 w(\001)f Gg(can)i(be)f(replaced)i(by)p
3237 2679 11 41 v 3247 2661 46 5 v 125 w F6(:)p F4(\000)p
Ga(;)15 b F4(\001)321 2804 y Gg(where)21 b F6(:)p F4(\000)f
Gg(is)h(tak)o(en)h(to)e(mean)h(that)h(e)n(v)o(ery)f(formula)h(in)f
F4(\000)e Gg(is)i(ne)o(gated.)29 b(The)20 b(corresponding)26
b(sequent)321 2917 y(calculus)38 b(is)d(commonly)i(referred)g(to)f(as)f
(single-sided)k(sequent)e(calculus)h(or)d(Gentzen-Sch)8
b(\250)-38 b(utte)321 3030 y(system)33 b([Sch)8 b(\250)-38
b(utte,)33 b(1960].)55 b(The)31 b(cut-rule,)36 b(for)c(e)o(xample,)j
(is)d(in)f(this)i(calculus)h(of)e(the)g(follo)n(wing)321
3143 y(form.)p 1412 3327 11 41 v 1423 3309 46 5 v 1488
3339 a F4(\000)p Ga(;)15 b(a)j F4(:)f Ga(B)p 1878 3327
11 41 v 1888 3309 46 5 v 192 w F4(\001)p Ga(;)e(b)i F4(:)h
F6(:)p Ga(B)p 1392 3377 911 4 v 1733 3444 11 41 v 1743
3426 46 5 v 1809 3456 a F4(\000)p Ga(;)d F4(\001)2344
3407 y Gg(Cut)321 3692 y(It)30 b(is)f(easy)i(to)f(adapt)h(De\002nition)
f(2.3.4)g(\(the)h(symmetric)f(reducibility)k(candidates\))f(for)d(a)f
(single-)321 3805 y(sided)21 b(sequent)h(calculus,)g(and)e(the)g(proof)
h(of)e(strong)i(normalisation)i(for)d(cut-elimination)j(proceeds)321
3918 y(just)h(as)g(the)g(proof)g(gi)n(v)o(en)g(for)1308
3881 y Gc(cut)1277 3918 y F6(\000)-31 b(\000)f(!)p Gg(.)28
b(W)-7 b(e)23 b(shall)h(omit)g(the)g(details.)462 4052
y(T)-7 b(o)18 b(conclude)k(this)d(section,)i(we)d(shall)i(introduce)i
(term)c(annotations)23 b(for)c(intuitionistic)k(sequent)321
4165 y(proofs)j(and)f(pro)o(v)o(e)g(a)e(corresponding)29
b(strong)d(normalisation)h(theorem.)32 b(F)o(or)24 b(simplicity)-6
b(,)26 b(we)e(shall)321 4278 y(treat)29 b(only)h(the)e(propositional)k
(connecti)n(v)o(es,)g F6(^)p Gg(,)d F6(_)e Gg(and)h F6(\033)p
Gg(,)h(and)f(not)h(ne)o(gation)h(and)f(the)f(units,)j(as)321
4390 y(the)o(y)24 b(add)g(no)g(substantial)i(ne)n(w)d(issues)i(for)f
(strong)h(normalisation.)462 4524 y(The)g(sequent)i(calculus)g(for)f
(intuitionistic)j(logic)d(can)f(be)g(obtained)j(by)d(restricting)j(the)
d(succe-)321 4637 y(dent)j(of)f(our)g(classical)j(sequents)f(to)e(at)g
(most)g(a)f(single)j(formula.)40 b(So)26 b(our)h(intuitionistic)k
(sequents)321 4750 y(are)24 b(of)g(the)g(form)f F4(\000)p
964 4738 11 41 v 975 4719 46 5 v 96 w Ga(a)17 b F4(:)h
Ga(B)t Gg(.)29 b(W)-7 b(e)22 b(could)j(drop)g(the)f(labels)g(on)g(the)g
(right-hand)j(side)d(of)f(the)h(turnstile)321 4863 y(when)f(assigning)h
(terms)f(to)f(intuitionistic)k(sequents,)e(because)h(on)d(this)h(side)f
(contraction)k(is)c(not)g(al-)321 4976 y(lo)n(wed.)33
b(Ho)n(we)n(v)o(er)l(,)25 b(we)f(shall)i(k)o(eep)f(this)h(slight)g
(incon)l(v)o(enience)j(of)c(ha)n(ving)h(to)f(label)h(this)f(formula:)
321 5088 y(it)i(sa)n(v)o(es)h(us)f(from)g(rede\002ning)i(the)e
(substitution)k(operation)e(and)f(cut-reductions.)43
b(Thus)27 b(our)h(intu-)321 5201 y(itionistic)33 b(typing)e(judgements)
h(are)e(of)g(the)g(form)f F4(\000)2050 5189 y Gc(.)2105
5201 y Ga(M)2229 5189 y Gc(.)2284 5201 y Ga(a)17 b F4(:)g
Ga(B)5 b Gg(,)30 b(in)g(which)g Ga(M)39 b Gg(is)29 b(a)h(term)f(tak)o
(en)321 5314 y(from)f(the)h(set)f(of)g(well-typed)j(terms,)e(denoted)h
(by)e FY(I)g Gg(and)h(inducti)n(v)o(ely)h(de\002ned)f(by)g(the)f
(inference)321 5427 y(rules)d(gi)n(v)o(en)f(in)f(Figure)h(2.10.)29
b(The)23 b(intuitionistic)28 b(cut-elimination)f(procedure)f(is)e(as)f
(follo)n(ws.)p Black Black eop end
%%Page: 47 59
TeXDict begin 47 58 bop Black 277 51 a Gb(2.5)23 b(V)-8
b(ariations)25 b(of)e(the)g(Sequent)f(Calculus)2124 b(47)p
277 88 3691 4 v Black Black 277 229 V 277 1881 4 1652
v 1642 321 938 4 v 1642 406 a Ga(x)18 b F4(:)f Ga(B)5
b(;)15 b F4(\000)1950 394 y Gc(.)2005 406 y FL(Ax)o F4(\()p
Ga(x;)g(a)p F4(\))2344 394 y Gc(.)2399 406 y Ga(a)i F4(:)g
Ga(B)859 620 y(x)g F4(:)g Ga(B)1039 634 y Gc(i)1067 620
y Ga(;)e F4(\000)1190 608 y Gc(.)1245 620 y Ga(M)1368
608 y Gc(.)1423 620 y Ga(a)i F4(:)h Ga(C)p 534 658 1393
4 v 534 755 a(y)i F4(:)e Ga(B)711 769 y F9(1)750 755
y F6(^)p Ga(B)880 769 y F9(2)919 755 y Ga(;)d F4(\000)1042
743 y Gc(.)1097 755 y FL(And)1251 718 y Gc(i)1251 778
y(L)1303 755 y F4(\()1338 743 y F9(\()1366 755 y Ga(x)1418
743 y F9(\))1446 755 y Ga(M)10 b(;)15 b(y)s F4(\))1693
743 y Gc(.)1747 755 y Ga(a)j F4(:)f Ga(C)1968 671 y F6(^)2029
685 y Gc(L)2077 695 y FZ(i)2397 651 y F4(\000)2479 639
y Gc(.)2534 651 y Ga(M)2657 639 y Gc(.)2712 651 y Ga(a)h
F4(:)f Ga(B)186 b F4(\000)3157 639 y Gc(.)3212 651 y
Ga(N)3320 639 y Gc(.)3375 651 y Ga(b)18 b F4(:)f Ga(C)p
2320 671 1303 4 v 2320 755 a F4(\000)2402 743 y Gc(.)2457
755 y FL(And)2611 769 y Gc(R)2669 755 y F4(\()2704 743
y FX(h)2732 755 y Ga(a)2780 743 y FX(i)2807 755 y Ga(M)11
b(;)2946 743 y FX(h)2973 755 y Ga(b)3012 743 y FX(i)3040
755 y Ga(N)f(;)15 b(c)p F4(\))3263 743 y Gc(.)3318 755
y Ga(c)j F4(:)f Ga(B)5 b F6(^)o Ga(C)3664 689 y F6(^)3725
703 y Gc(R)440 978 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b
F4(\000)747 966 y Gc(.)802 978 y Ga(M)926 966 y Gc(.)980
978 y Ga(a)j F4(:)f Ga(D)185 b(y)20 b F4(:)d Ga(C)q(;)e
F4(\000)1644 966 y Gc(.)1699 978 y Ga(N)1807 966 y Gc(.)1862
978 y Ga(a)i F4(:)h Ga(D)p 440 1016 1608 4 v 499 1100
a(z)k F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)928
1088 y Gc(.)983 1100 y FL(Or)1082 1114 y Gc(L)1134 1100
y F4(\()1169 1088 y F9(\()1197 1100 y Ga(x)1249 1088
y F9(\))1276 1100 y Ga(M)c(;)1415 1088 y F9(\()1442 1100
y Ga(y)1490 1088 y F9(\))1518 1100 y Ga(N)f(;)15 b(z)t
F4(\))1748 1088 y Gc(.)1803 1100 y Ga(a)i F4(:)h Ga(D)2089
1034 y F6(_)2150 1048 y Gc(L)2698 969 y F4(\000)2780
957 y Gc(.)2835 969 y Ga(M)2959 957 y Gc(.)3014 969 y
Ga(a)f F4(:)g Ga(B)3190 983 y Gc(i)p 2408 1003 1102 4
v 2408 1100 a F4(\000)2490 1088 y Gc(.)2545 1100 y FL(Or)2644
1063 y Gc(i)2644 1123 y(R)2702 1100 y F4(\()2737 1088
y FX(h)2764 1100 y Ga(a)2812 1088 y FX(i)2840 1100 y
Ga(M)10 b(;)15 b(b)p F4(\))3078 1088 y Gc(.)3133 1100
y Ga(b)i F4(:)h Ga(B)3301 1114 y F9(1)3340 1100 y F6(_)p
Ga(B)3470 1114 y F9(2)3550 1016 y F6(_)3611 1030 y Gc(R)3664
1040 y FZ(i)552 1315 y F4(\000)634 1303 y Gc(.)689 1315
y Ga(M)812 1303 y Gc(.)867 1315 y Ga(a)g F4(:)f Ga(B)186
b(x)17 b F4(:)h Ga(C)q(;)d F4(\000)1531 1303 y Gc(.)1586
1315 y Ga(N)1694 1303 y Gc(.)1749 1315 y Ga(b)i F4(:)g
Ga(D)p 469 1353 1539 4 v 469 1438 a(y)j F4(:)e Ga(B)5
b F6(\033)o Ga(C)q(;)15 b F4(\000)910 1426 y Gc(.)965
1438 y FL(Imp)1109 1460 y Gc(L)1161 1438 y F4(\()1196
1426 y FX(h)1224 1438 y Ga(a)1272 1426 y FX(i)1300 1438
y Ga(M)10 b(;)1438 1426 y F9(\()1466 1438 y Ga(x)1518
1426 y F9(\))1545 1438 y Ga(N)g(;)15 b(y)s F4(\))1777
1426 y Gc(.)1832 1438 y Ga(b)i F4(:)g Ga(D)2050 1371
y F6(\033)2120 1385 y Gc(L)2606 1315 y Ga(x)g F4(:)h
Ga(B)5 b(;)15 b F4(\000)2914 1303 y Gc(.)2969 1315 y
Ga(M)3092 1303 y Gc(.)3147 1315 y Ga(a)i F4(:)h Ga(C)p
2370 1353 1192 4 v 2370 1438 a F4(\000)2453 1426 y Gc(.)2507
1438 y FL(Imp)2652 1460 y Gc(R)2710 1438 y F4(\()2745
1426 y F9(\()2772 1438 y Ga(x)2824 1426 y F9(\))q FX(h)2879
1438 y Ga(a)2927 1426 y FX(i)2955 1438 y Ga(M)10 b(;)15
b(b)p F4(\))3193 1426 y Gc(.)3248 1438 y Ga(b)i F4(:)g
Ga(B)5 b F6(\033)p Ga(C)3604 1371 y F6(\033)3674 1385
y Gc(R)1319 1653 y F4(\000)1376 1667 y F9(1)1440 1641
y Gc(.)1495 1653 y Ga(M)1618 1641 y Gc(.)1673 1653 y
Ga(a)17 b F4(:)h Ga(B)146 b(x)17 b F4(:)g Ga(B)5 b(;)15
b F4(\000)2278 1667 y F9(2)2343 1641 y Gc(.)2398 1653
y Ga(N)2506 1641 y Gc(.)2561 1653 y Ga(b)i F4(:)g Ga(C)p
1319 1691 1413 4 v 1423 1775 a F4(\000)1480 1789 y F9(1)1519
1775 y Ga(;)e F4(\000)1616 1789 y F9(2)1681 1763 y Gc(.)1736
1775 y FL(Cut)p F4(\()1909 1763 y FX(h)1937 1775 y Ga(a)1985
1763 y FX(i)2012 1775 y Ga(M)10 b(;)2150 1763 y F9(\()2178
1775 y Ga(x)2230 1763 y F9(\))2258 1775 y Ga(N)g F4(\))2401
1763 y Gc(.)2456 1775 y Ga(b)17 b F4(:)h Ga(C)2772 1721
y Gg(Cut)p 3965 1881 4 1652 v 277 1884 3691 4 v 277 2038
a(Figure)30 b(2.10:)40 b(T)-6 b(erm)28 b(assignment)k(for)d(sequent)i
(proofs)f(in)f(the)h(propositional)j(fragment)d(of)f(intu-)277
2151 y(itionistic)d(logic.)p Black Black 277 2571 a Gb(De\002nition)d
(2.5.1)g Gg(\(Cut-Elimination)j(for)e(Intuitionistic)j(Logic\))p
Gb(:)p Black 277 2684 a Gg(The)37 b(cut-elimination)k(procedure)e(for)f
(intuitionistic)j(logic,)g F4(\()p FY(I)p Ga(;)2467 2647
y Gc(int)2428 2684 y F6(\000)-31 b(\000)g(!)p F4(\))p
Gg(,)39 b(is)e(a)g(reduction)j(system)277 2797 y(where:)p
Black 414 3004 a F6(\017)p Black 45 w FY(I)23 b Gg(is)h(the)f(set)h(of)
g(well-typed)h(intuitionistic)j(terms,)23 b(and)p Black
414 3195 a F6(\017)p Black 543 3158 a Gc(int)504 3195
y F6(\000)-31 b(\000)g(!)22 b Gg(consists)k(of)d(the)h(reductions)j
(for)c(logical)j(cuts)e(and)g(commuting)h(cuts;)f(that)g(is)1626
3386 y Gc(int)1587 3423 y F6(\000)-31 b(\000)f(!)1782
3371 y F5(def)1789 3423 y F4(=)1967 3386 y Gc(l)1892
3423 y F6(\000)h(\000)g(!)25 b([)2244 3386 y Gc(c)2174
3423 y F6(\000)-31 b(\000)f(!)50 b Ga(:)277 3677 y Gg(Gi)n(v)o(en)28
b(that)h(intuitionistic)k(logic,)d(as)e(we)g(de\002ned)h(it,)h(is)e(a)g
(restricted)j(v)o(ersion)f(of)e(classical)j(logic,)277
3790 y(we)23 b(e)o(xpect)h(that)h F4(\()p FY(I)p Ga(;)977
3753 y Gc(int)939 3790 y F6(\000)-32 b(\000)h(!)p F4(\))23
b Gg(is)g(strongly)j(normalising.)31 b(This)24 b(is)f(indeed)i(the)f
(case.)p Black 277 4004 a Gb(Theor)n(em)g(2.5.2:)p Black
34 w Gg(The)f(reduction)j(system)e F4(\()p FY(I)p Ga(;)1856
3967 y Gc(int)1817 4004 y F6(\000)-31 b(\000)g(!)p F4(\))23
b Gg(is)g(strongly)j(normalising.)p Black 277 4216 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(Assume)31 b(there)h(is)f(a)g
(well-typed)j(intuitionistic)h(term,)d(say)g Ga(M)10
b Gg(,)32 b(from)g(which)f(an)h(in\002nite)277 4329 y(reduction)d
(sequence)f(starts.)38 b(Since)26 b(we)f(kno)n(w)h(that)h
F4(\000)2082 4317 y Gc(.)2137 4329 y Ga(M)2260 4317 y
Gc(.)2315 4329 y Ga(a)18 b F4(:)f Ga(B)30 b Gg(is)c(deri)n(v)n(able)i
(using)f(the)f(rules)277 4442 y(gi)n(v)o(en)36 b(in)f(Figure)h(2.10,)j
(we)34 b(can)i(translate)i(this)e(deri)n(v)n(ation)i(into)e(the)f
(classical)j(system)e(sho)n(wn)277 4555 y(in)d(Figure)h(2.3)g(\(only)g
(the)g F6(\033)1236 4569 y Gc(L)1288 4555 y Gg(-rule)g(requires)h(some)
f(changes\).)61 b(It)33 b(is)g(not)h(hard)g(to)f(see)h(that)g(the)277
4668 y(in\002nite)29 b(reduction)h(sequence)g(starting)f(from)f
Ga(M)37 b Gg(w)o(ould)28 b(entail)h(an)e(in\002nite)i(reduction)h
(sequence)277 4781 y(in)f F4(\()p FY(T)t Ga(;)540 4744
y Gc(cut)509 4781 y F6(\000)-31 b(\000)g(!)o F4(\))p
Gg(.)46 b(Since)30 b(we)f(pro)o(v)o(ed)h(that)g F4(\()p
FY(T)t Ga(;)1755 4744 y Gc(cut)1725 4781 y F6(\000)-32
b(\000)h(!)p F4(\))29 b Gg(is)g(strongly)j(normalising,)h
F4(\()p FY(I)p Ga(;)3016 4744 y Gc(int)2977 4781 y F6(\000)-32
b(\000)h(!)p F4(\))29 b Gg(must)g(be)277 4894 y(strongly)d
(normalising,)g(too.)p 3436 4894 4 62 v 3440 4836 55
4 v 3440 4894 V 3494 4894 4 62 v 277 5201 a(W)-7 b(e)20
b(shall)h(use)g(this)g(result)h(in)f(Chapter)g(3)f(in)h(order)g(to)g
(pro)o(v)o(e)g(strong)h(normalisation)i(for)c(the)h(simply-)277
5314 y(typed)k(lambda)f(calculus.)p Black Black eop end
%%Page: 48 60
TeXDict begin 48 59 bop Black -144 51 a Gb(48)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Ge(2.6)119
b(Localised)30 b(V)-12 b(ersion)321 541 y Gg(In)29 b(the)g(pre)n(vious)
h(section)g(we)e(claimed)i(that)f(our)g(strong)h(normalisation)h
(result)f(e)o(xtends)g(to)e(a)h(v)n(a-)321 654 y(riety)36
b(of)e(formulations)j(of)e(the)f(inference)j(rules.)62
b(In)35 b(this)g(section)h(we)d(shall)j(sho)n(w)e(that)h(strong)321
767 y(normalisation)g(can)e(also)f(be)g(obtained)j(with)d(a)f(dif)n
(ferent)j(set)e(of)g(cut-reduction)k(rules.)55 b(T)-7
b(o)31 b(sa)n(v)o(e)321 880 y(space,)24 b(we)d(shall)j(restrict)g(the)e
(presentation)k(in)d(this)g(section)h(to)e(only)h(the)g(propositional)j
(fragment,)321 993 y(b)n(ut)33 b(it)f(should)i(be)f(emphasised)h(that)f
(the)g(corresponding)k(result)c(for)g(\002rst-order)h(classical)h
(logic)321 1105 y(may)24 b(be)f(obtained)j(by)e(a)f(simple)h
(adaptation)i(of)e(the)g(proof)g(we)f(shall)h(gi)n(v)o(e.)462
1235 y(The)d(cut-elimination)26 b(procedures)e(de\002ned)e(so)g(f)o(ar)
f(include)i(global,)g(or)f(non-local,)i(cut-reduc-)321
1348 y(tions.)32 b(A)23 b(cut-reduction)28 b(is)c(said)h(to)f(be)g
F7(local)p Gg(,)h(if)f(only)h(neighbouring)j(inference)f(rules)e(are)f
(re)n(writ-)321 1461 y(ten,)30 b(possibly)g(duplicating)i(a)c(subderi)n
(v)n(ation.)46 b(Most)28 b(of)g(the)h(traditional)i(cut-elimination)h
(proce-)321 1574 y(dures)c(based)h(on)e(Gentzen')-5 b(s)29
b F7(Hauptsatz)g Gg(ha)n(v)o(e)e(such)h(local)g(cut-reductions.)44
b(One)26 b(reason)j(for)e(our)321 1687 y(use)h(of)e(the)i(non-local)h
(cut-reductions)i(w)o(as)c(to)g(a)n(v)n(oid)h(the)g(in\002nite)f
(reduction)j(gi)n(v)o(en)d(in)g(Example)321 1799 y(2.1.3.)h(Using)20
b(results)h(concerning)h(e)o(xplicit)g(substitution)h(calculi,)e(we)e
(shall)h(sho)n(w)g(that)g(our)g(substi-)321 1912 y(tution)26
b(operation)i(can,)d(in)f(f)o(act,)i(be)e(replaced)j(by)e(local)g
(cut-reductions)k(without)d(breaking)h(strong)321 2025
y(normalisation.)36 b(The)25 b(local)g(cut-reductions)30
b(will)24 b(be)h(de\002ned)h(such)f(that)h(the)o(y)f(bridge)h(the)f
(gap)g(be-)321 2138 y(tween)f(our)g(global)h(cut-reductions)j(gi)n(v)o
(en)c(earlier)h(and)f(the)g(Gentzen-lik)o(e)i(local)e(cut-reductions.)
462 2268 y(Explicit)k(substitution)i(calculi)e(ha)n(v)o(e)f(been)h(de)n
(v)o(eloped)g(in)f(order)g(to)g(internalise)i(the)e(substitu-)321
2381 y(tion)g(operation,)i(a)c(meta-le)n(v)o(el)i(operation)i(on)d
(lambda)g(terms,)h(arising)g(from)f(beta-reductions.)41
b(In)321 2493 y(these)26 b(calculi)f(the)g(reductions)i(are)e
(completely)h(primiti)n(v)o(e)f(in)f(the)h(sense)g(that)g(the)o(y)g
(are)f(part)h(of)f(the)321 2606 y(calculus.)45 b(Note,)29
b(ho)n(we)n(v)o(er)l(,)h(if)d(the)i(\(non-local\))i(substitution)h
(operation)f(is)d(replaced)i(by)e(a)g(na)m(\250)-27 b(\021v)o(e)321
2719 y(de\002nition)28 b(of)d(a)g(\(local\))j(e)o(xplicit)f
(substitution)i(operator)l(,)f(the)e(resulting)i(calculus)g(may)d(no)h
(longer)321 2832 y(be)f(strongly)i(normalising,)h(as)d(sho)n(wn)g(by)g
(Melli)5 b(\036)-35 b(es)26 b([1995].)35 b(Ne)n(v)o(ertheless,)27
b(it)e(is)f(possible)k(to)c(gi)n(v)o(e)321 2945 y(an)g(e)o(xplicit)h
(substitution)i(operation)f(that)e(preserv)o(es)i(strong)f
(normalisation.)462 3075 y(In)30 b Ga(\025)p F1(x)p Gg(,)h(for)f(e)o
(xample,)i(the)e(beta-reduction)35 b F4(\()p Ga(\025x:M)10
b F4(\))p Ga(N)2401 3037 y Gc(\014)2338 3075 y F6(\000)-31
b(\000)f(!)37 b Ga(M)10 b F4([)p Ga(x)38 b F4(:=)f Ga(N)10
b F4(])29 b Gg(is)h(replaced)i(by)321 3187 y(the)g(reduction)j
F4(\()p Ga(\025x:M)10 b F4(\))p Ga(N)1331 3150 y Gc(b)1261
3187 y F6(\000)-32 b(\000)h(!)41 b Ga(M)10 b F6(h)p Ga(x)41
b F4(:=)f Ga(N)10 b F6(i)32 b Gg(where)g(the)g(reduct)h(contains)h(a)e
(ne)n(w)f(syntactic)321 3300 y(constructor)-5 b(.)32
b(The)23 b(follo)n(wing)i(reduction)h(rules)f(apply)g(to)e(this)h(term)
f(constructor)-5 b(.)p Black Black 1236 3474 a Ga(x)p
F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)1793 3437 y Gc(x)1728
3474 y F6(\000)-31 b(\000)f(!)100 b Ga(P)1240 3587 y(y)s
F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)1793 3550 y Gc(x)1728
3587 y F6(\000)-31 b(\000)f(!)100 b Ga(y)993 3700 y F4(\()p
Ga(\025)q(y)s(:M)10 b F4(\))p F6(h)p Ga(x)26 b F4(:=)f
Ga(P)13 b F6(i)1793 3662 y Gc(x)1728 3700 y F6(\000)-31
b(\000)f(!)100 b Ga(\025y)s(:)15 b(M)10 b F6(h)p Ga(x)26
b F4(:=)f Ga(P)13 b F6(i)1036 3812 y F4(\()p Ga(M)d(N)g
F4(\))p F6(h)p Ga(x)27 b F4(:=)e Ga(P)13 b F6(i)1793
3775 y Gc(x)1728 3812 y F6(\000)-31 b(\000)f(!)100 b
Ga(M)10 b F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)i Ga(N)10
b F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)321 3984 y
Gg(The)33 b(reader)i(is)e(referred)i(to)e([Rose,)g(1996])i(for)f(a)e
(detailed)k(study)e(of)f Ga(\025)p F1(x)f Gg(including)k(a)d(proof)i
(of)321 4097 y(strong)26 b(normalisation.)33 b(Here,)24
b(we)f(shall)i(sho)n(w)f(that)g(a)g(similar)g(feat)h(is)f(possible)i
(for)e(our)g(term)g(cal-)321 4210 y(culus,)29 b(where)f(the)f
(substitution)k(operation)f(realises)f(the)e(proof)h(transformations)j
(corresponding)321 4323 y(to)24 b(the)g(elimination)h(of)f(commuting)h
(cuts.)462 4452 y(W)-7 b(e)27 b(be)o(gin)h(by)f(adding)i(to)e(our)g
(term)g(calculus)i(tw)o(o)e(ne)n(w)f(constructors)31
b(which)c(we)g(refer)h(to)f(as)321 4565 y F7(labelled)f(cuts)p
Gg(.)j(The)o(y)23 b(are)h(written:)p Black Black 998
4744 a FL(Cut)1077 4697 y FC( )1138 4744 y F4(\()1173
4732 y FX(h)1200 4744 y Ga(a)1248 4732 y FX(i)1276 4744
y Ga(M)10 b(;)1414 4732 y F9(\()1442 4744 y Ga(x)1494
4732 y F9(\))1521 4744 y Ga(N)g F4(\))205 b Gg(and)h
FL(Cut)2259 4697 y FC(!)2320 4744 y F4(\()2355 4732 y
FX(h)2383 4744 y Ga(a)2431 4732 y FX(i)2458 4744 y Ga(M)10
b(;)2596 4732 y F9(\()2624 4744 y Ga(x)2676 4732 y F9(\))2703
4744 y Ga(N)g F4(\))26 b Gg(.)321 4924 y(Consequently)-6
b(,)27 b(we)c(ha)n(v)o(e)h(tw)o(o)f(ne)n(w)g(rules)h(for)g(forming)h
(typing)g(judgements.)322 5089 y F4(\000)379 5103 y F9(1)443
5077 y Gc(.)498 5089 y Ga(M)622 5077 y Gc(.)677 5089
y F4(\001)753 5103 y F9(1)792 5089 y Ga(;)15 b(a)i F4(:)h
Ga(B)65 b(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)1357
5103 y F9(2)1421 5077 y Gc(.)1476 5089 y Ga(N)1584 5077
y Gc(.)1639 5089 y F4(\001)1715 5103 y F9(2)p 322 5126
1433 4 v 385 5211 a F4(\000)442 5225 y F9(1)482 5211
y Ga(;)g F4(\000)579 5225 y F9(2)643 5199 y Gc(.)698
5211 y FL(Cut)777 5164 y FC( )838 5211 y F4(\()873 5199
y FX(h)901 5211 y Ga(a)949 5199 y FX(i)976 5211 y Ga(M)10
b(;)1114 5199 y F9(\()1142 5211 y Ga(x)1194 5199 y F9(\))1222
5211 y Ga(N)g F4(\))1365 5199 y Gc(.)1420 5211 y F4(\001)1496
5225 y F9(1)1535 5211 y Ga(;)15 b F4(\001)1651 5225 y
F9(2)1781 5159 y Gg(Cut)1853 5112 y FC( )1954 5089 y
F4(\000)2011 5103 y F9(1)2075 5077 y Gc(.)2130 5089 y
Ga(M)2254 5077 y Gc(.)2309 5089 y F4(\001)2385 5103 y
F9(1)2424 5089 y Ga(;)g(a)i F4(:)h Ga(B)65 b(x)17 b F4(:)h
Ga(B)5 b(;)15 b F4(\000)2989 5103 y F9(2)3053 5077 y
Gc(.)3108 5089 y Ga(N)3216 5077 y Gc(.)3271 5089 y F4(\001)3347
5103 y F9(2)p 1954 5126 V 2017 5211 a F4(\000)2074 5225
y F9(1)2113 5211 y Ga(;)g F4(\000)2210 5225 y F9(2)2275
5199 y Gc(.)2330 5211 y FL(Cut)2409 5164 y FC(!)2470
5211 y F4(\()2505 5199 y FX(h)2533 5211 y Ga(a)2581 5199
y FX(i)2608 5211 y Ga(M)10 b(;)2746 5199 y F9(\()2774
5211 y Ga(x)2826 5199 y F9(\))2854 5211 y Ga(N)g F4(\))2997
5199 y Gc(.)3052 5211 y F4(\001)3128 5225 y F9(1)3167
5211 y Ga(;)15 b F4(\001)3283 5225 y F9(2)3412 5159 y
Gg(Cut)3484 5112 y FC(!)p Black 3372 5315 a Gg(\(2.5\))p
Black Black Black eop end
%%Page: 49 61
TeXDict begin 49 60 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
b(ersion)2779 b(49)p 277 88 3691 4 v Black 277 317 a
Gg(Con)l(v)o(ention)39 b(2.2.4)e(concerning)j(the)d(Barendre)o
(gt-style)j(naming)e(con)l(v)o(ention)i(and)d(alpha-equi-)277
430 y(v)n(alence)26 b(e)o(xtends)f(to)f(the)g(ne)n(w)f(terms)h(in)g
(the)g(ob)o(vious)i(w)o(ay)-6 b(.)30 b(Henceforth,)c(we)d(shall)h(only)
h(be)f(inter)n(-)277 543 y(ested)f(in)e(well-typed)i(terms;)g(that)f
(means)f(terms)h Ga(M)31 b Gg(for)21 b(which)h(there)g(are)g(conte)o
(xts)h F4(\000)d Gg(and)i F4(\001)f Gg(such)277 656 y(that)i
F4(\000)517 644 y Gc(.)572 656 y Ga(M)695 644 y Gc(.)750
656 y F4(\001)e Gg(is)h(deri)n(v)n(able)i(gi)n(v)o(en)f(the)f(rules)h
(in)f(\(2.5\))h(and)f(Figure)h(2.3.)28 b(The)22 b(corresponding)k(set)
277 769 y(of)e(well-typed)h(terms)f(is)f(de\002ned)i(as)p
Black Black 428 970 a FY(T)489 936 y FX($)659 918 y F5(def)666
969 y F4(=)844 868 y FK(n)929 970 y Ga(M)1075 865 y FK(\014)1075
919 y(\014)1075 974 y(\014)1152 970 y Ga(M)33 b Gg(is)24
b(well-typed)h(by)f(the)g(rules)g(sho)n(wn)g(in)f(\(2.5\))h(and)g
(Figure)g(2.3)3290 868 y FK(o)277 1167 y Gg(W)l(ith)i(respect)h(to)e
(the)g(terms)h(gi)n(v)o(en)f(earlier)l(,)i(clearly)g(we)e(ha)n(v)o(e)g
FY(T)k F6(\032)f FY(T)2558 1134 y FX($)2629 1167 y Gg(.)33
b(In)25 b(the)g(sequel,)i(we)d(shall)277 1280 y(refer)g(to)g(a)f(term)g
(whose)h(outermost)i(term)d(constructor)k(is)c(a)g(labelled)j(cut)e(as)
f(a)g F7(labelled)j(term)p Gg(.)418 1409 y(Ne)o(xt,)21
b(we)e(replace)k(the)d(non-local)j(reductions)h(of)2052
1372 y Gc(aux)2032 1409 y F6(\000)-31 b(\000)g(!)19 b
Gg(with)h(local)i(ones.)28 b(The)20 b(only)i(reduction)277
1522 y(that)33 b(needs)h(to)f(be)f(replaced)j(is)d(the)h(reduction)i
(for)e(commuting)h(cuts,)h(since)f(it)e(is)h(the)f(only)i(one)277
1635 y(which)24 b(reduces)h(a)e(term)h(by)f(applying)j(a)d(proof)i
(substitution.)32 b(The)23 b(ne)n(w)g(reductions)k(are:)p
Black 414 1814 a F6(\017)p Black 45 w Gg(the)d(reduction)1054
1777 y Gc(c)1085 1754 y FC(00)1004 1814 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(which)i(\223labels\224)h(cuts)g(when)e(the)o(y)h
(need)h(to)e(be)h(commuted,)g F7(viz.)p Black Black 468
1984 a FL(Cut)p F4(\()641 1972 y FX(h)668 1984 y Ga(a)716
1972 y FX(i)744 1984 y Ga(M)10 b(;)882 1972 y F9(\()910
1984 y Ga(x)962 1972 y F9(\))989 1984 y Ga(N)g F4(\))1204
1947 y Gc(c)1235 1923 y FC(00)1155 1984 y F6(\000)-31
b(\000)f(!)47 b FL(Cut)1451 1936 y FC( )1512 1984 y F4(\()1547
1972 y FX(h)1575 1984 y Ga(a)1623 1972 y FX(i)1650 1984
y Ga(M)10 b(;)1788 1972 y F9(\()1816 1984 y Ga(x)1868
1972 y F9(\))1896 1984 y Ga(N)g F4(\))1467 2096 y Gg(if)23
b Ga(M)33 b Gg(does)24 b(not)g(freshly)h(introduce)h
Ga(a)d Gg(and)h(is)g(not)g(labelled,)h(or)1204 2196 y
Gc(c)1235 2173 y FC(00)1155 2233 y F6(\000)-31 b(\000)f(!)47
b FL(Cut)1451 2186 y FC(!)1512 2233 y F4(\()1547 2221
y FX(h)1575 2233 y Ga(a)1623 2221 y FX(i)1650 2233 y
Ga(M)10 b(;)1788 2221 y F9(\()1816 2233 y Ga(x)1868 2221
y F9(\))1896 2233 y Ga(N)g F4(\))1467 2346 y Gg(if)23
b Ga(N)33 b Gg(does)24 b(not)g(freshly)h(introduce)h
Ga(x)d Gg(and)h(is)f(not)h(labelled)p Black 414 2489
a F6(\017)p Black 45 w Gg(the)41 b(reduction)1103 2452
y Gc(x)1038 2489 y F6(\000)-32 b(\000)h(!)p Gg(,)43 b(which)e(permutes)
g(labelled)i(cuts)e(to)f(the)g(places)i(where)e(the)h(cut-)504
2602 y(formula)25 b(is)e(introduced)k(\(Figure)d(2.11)g(gi)n(v)o(es)g
(the)g(corresponding)k(reduction)e(rules\).)277 2781
y(W)-7 b(e)24 b(shall)h(assume)g(that)g(terms)g(ha)n(v)o(e)g(been)g
(suitably)h(alpha-con)l(v)o(erted)k(before)25 b(applying)i(an)3367
2744 y Gc(x)3302 2781 y F6(\000)-32 b(\000)h(!)p Gg(-)277
2894 y(reduction,)28 b(so)e(that)g(name)g(or)f(co-name)i(capture)g
(will)e(not)h(occur)l(,)i(and)e(we)e(assume)j(these)f(con)l(v)o(er)n(-)
277 3007 y(sions)f(are)e(done)i(implicitly)-6 b(.)418
3136 y(Furthermore,)43 b(we)36 b(shall)j(introduce)h(a)d
F7(garba)o(g)o(e)j(r)m(eduction)p Gg(,)j(which)38 b(is)f(some)n(what)i
(similar)277 3249 y(to)31 b(a)f(traditional)j(cut-reduction)h(where)d
(the)g(cut-formula)i(is)d(weak)o(ened,)k(and)d(remo)o(v)o(e)g(the)f
(side-)277 3362 y(conditions)d(on)c(the)h(logical)i(cut-reductions)h
(with)d(axioms.)29 b(Thus)24 b(we)f(ha)n(v)o(e)h(the)g(follo)n(wing)h
(reduc-)277 3475 y(tions:)p Black 414 3654 a F6(\017)p
Black 45 w Gg(the)696 3617 y Gc(g)r(c)644 3654 y F6(\000)-32
b(\000)h(!)p Gg(-reduction)32 b(eliminates)f(labelled)g(cuts)e(pro)o
(vided)i(their)f(corresponding)j(name)c(or)504 3767 y(co-name)c(is)e
(not)h(free,)g F7(viz.)p Black Black 1066 3930 a FL(Cut)1145
3882 y FC( )1206 3930 y F4(\()1241 3918 y FX(h)1269 3930
y Ga(a)1317 3918 y FX(i)1344 3930 y Ga(M)10 b(;)1482
3918 y F9(\()1510 3930 y Ga(x)1562 3918 y F9(\))1590
3930 y Ga(N)g F4(\))1859 3892 y Gc(g)r(c)1808 3930 y
F6(\000)-32 b(\000)h(!)99 b Ga(M)201 b Gg(if)49 b Ga(a)25
b F6(62)g Ga(F)13 b(C)7 b F4(\()p Ga(M)j F4(\))1066 4042
y FL(Cut)1145 3995 y FC(!)1206 4042 y F4(\()1241 4030
y FX(h)1269 4042 y Ga(a)1317 4030 y FX(i)1344 4042 y
Ga(M)g(;)1482 4030 y F9(\()1510 4042 y Ga(x)1562 4030
y F9(\))1590 4042 y Ga(N)g F4(\))1859 4005 y Gc(g)r(c)1808
4042 y F6(\000)-32 b(\000)h(!)99 b Ga(N)216 b Gg(if)49
b Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()p Ga(N)g F4(\))p
Black 414 4209 a F6(\017)p Black 45 w Gg(the)706 4172
y Gc(l)728 4148 y FC(0)643 4209 y F6(\000)-32 b(\000)h(!)p
Gg(-reduction)31 b(is)c(just)1534 4172 y Gc(l)1460 4209
y F6(\000)-31 b(\000)f(!)27 b Gg(e)o(xcept)i(for)f(the)g(logical)i
(cuts)f(with)e(axioms,)j(which)e(are)504 4322 y(as)c(follo)n(ws:)p
Black Black 1206 4473 a FL(Cut)o F4(\()1378 4461 y FX(h)1406
4473 y Ga(a)1454 4461 y FX(i)1482 4473 y FL(Ax)o F4(\()p
Ga(x;)15 b(a)p F4(\))q Ga(;)1835 4461 y F9(\()1863 4473
y Ga(y)1911 4461 y F9(\))1939 4473 y Ga(M)10 b F4(\))2235
4436 y Gc(l)2257 4412 y FC(0)2172 4473 y F6(\000)-32
b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(y)j F6(7!)d Ga(x)p
F4(])1210 4586 y FL(Cut)p F4(\()1383 4574 y FX(h)1411
4586 y Ga(b)1450 4574 y FX(i)1478 4586 y Ga(M)g(;)1616
4574 y F9(\()1644 4586 y Ga(x)1696 4574 y F9(\))1723
4586 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))q(\))2235
4548 y Gc(l)2257 4525 y FC(0)2172 4586 y F6(\000)-32
b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(b)g F6(7!)g Ga(a)p
F4(])277 4756 y Gg(At)25 b(\002rst)h(sight,)i(it)d(seems)i(as)f(if)g(a)
1408 4719 y Gc(g)r(c)1356 4756 y F6(\000)-31 b(\000)g(!)p
Gg(-reduction)28 b(can)f(be)f(simulated)i(by)e(some)2965
4719 y Gc(x)2900 4756 y F6(\000)-31 b(\000)g(!)o Gg(-reductions,)277
4869 y(b)n(ut)19 b(in)g(general)i(this)e(is)g(not)g(true,)h(because)g
(labelled)h(cuts)f(cannot)g(be)f(permuted)h(with)f(other)g(labelled)277
4982 y(cuts.)40 b(In)27 b(the)g(same)g(w)o(ay)-6 b(,)28
b(a)1261 4945 y Gc(l)1283 4921 y FC(0)1198 4982 y F6(\000)-31
b(\000)f(!)p Gg(-reduction)30 b(cannot,)f(in)e(general,)j(be)d
(simulated)h(by)g(some)3376 4945 y Gc(l)3302 4982 y F6(\000)-32
b(\000)h(!)p Gg(-)277 5095 y(and)507 5058 y Gc(x)442
5095 y F6(\000)f(\000)h(!)p Gg(-reductions.)63 b(Since)1390
5058 y Gc(g)r(c)1338 5095 y F6(\000)-31 b(\000)g(!)33
b Gg(and)1769 5058 y Gc(l)1791 5034 y FC(0)1706 5095
y F6(\000)-31 b(\000)f(!)34 b Gg(can)g(be)g(easily)h(accommodated)i(in)
d(our)g(strong)277 5208 y(normalisation)27 b(proof,)d(we)f(include)i
(them)f(in)f(the)h(local)h(cut-elimination)i(procedure.)p
Black Black eop end
%%Page: 50 62
TeXDict begin 50 61 bop Black -144 51 a Gb(50)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black Black -144 318 V -144
5049 4 4732 v Black Black 394 485 a FF(Cut)461 438 y
FC( )522 485 y FG(\()554 473 y FQ(h)581 485 y FU(c)617
473 y FQ(i)643 485 y FF(Ax)q FG(\()p FU(x;)14 b(c)p FG(\))q
FU(;)959 473 y FJ(\()985 485 y FU(y)1029 473 y FJ(\))1054
485 y FU(P)e FG(\))1236 450 y FS(x)1173 485 y FT(\000)-25
b(\000)g(!)22 b FF(Cut)p FG(\()1516 473 y FQ(h)1543 485
y FU(c)1579 473 y FQ(i)1606 485 y FF(Ax)p FG(\()p FU(x;)14
b(c)p FG(\))q FU(;)1921 473 y FJ(\()1947 485 y FU(y)1991
473 y FJ(\))2017 485 y FU(P)d FG(\))-120 621 y FF(Cut)-53
574 y FC( )8 621 y FG(\()40 609 y FQ(h)67 621 y FU(c)103
609 y FQ(i)130 621 y FF(Cut)o FG(\()287 609 y FQ(h)315
621 y FU(a)359 609 y FQ(i)385 621 y FU(M)e(;)512 609
y FJ(\()538 621 y FU(x)585 609 y FJ(\))611 621 y FF(Ax)q
FG(\()p FU(x;)14 b(c)p FG(\))q(\))p FU(;)959 609 y FJ(\()985
621 y FU(y)1029 609 y FJ(\))1054 621 y FU(P)e FG(\))1236
586 y FS(x)1173 621 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p
FG(\()1516 609 y FQ(h)1543 621 y FU(a)1587 609 y FQ(i)1614
621 y FF(Cut)1680 574 y FC( )1741 621 y FG(\()1773 609
y FQ(h)1800 621 y FU(c)1836 609 y FQ(i)1863 621 y FU(M)9
b(;)1990 609 y FJ(\()2016 621 y FU(y)2060 609 y FJ(\))2085
621 y FU(P)j FG(\))p FU(;)2219 609 y FJ(\()2245 621 y
FU(y)2289 609 y FJ(\))2315 621 y FU(P)g FG(\))145 757
y FF(Cut)212 710 y FC( )273 757 y FG(\()305 745 y FQ(h)332
757 y FU(a)376 745 y FQ(i)403 757 y FF(Not)533 769 y
FS(R)588 757 y FG(\()620 745 y FJ(\()646 757 y FU(x)693
745 y FJ(\))719 757 y FU(M)d(;)14 b(a)p FG(\))p FU(;)959
745 y FJ(\()985 757 y FU(y)1029 745 y FJ(\))1054 757
y FU(P)e FG(\))1236 722 y FS(x)1173 757 y FT(\000)-25
b(\000)g(!)22 b FF(Cut)p FG(\()1516 745 y FQ(h)1543 757
y FU(a)1587 745 y FQ(i)1614 757 y FF(Not)1744 769 y FS(R)1798
757 y FG(\()1830 745 y FJ(\()1857 757 y FU(x)1904 745
y FJ(\))1930 757 y FF(Cut)1997 710 y FC( )2058 757 y
FG(\()2090 745 y FQ(h)2117 757 y FU(a)2161 745 y FQ(i)2188
757 y FU(M)8 b(;)2314 745 y FJ(\()2340 757 y FU(y)2384
745 y FJ(\))2410 757 y FU(P)j FG(\))q FU(;)p Gd(\))o
FU(;)2594 745 y FJ(\()2620 757 y FU(y)2664 745 y FJ(\))2690
757 y FU(P)h FG(\))-50 893 y FF(Cut)17 846 y FC( )78
893 y FG(\()110 881 y FQ(h)137 893 y FU(c)173 881 y FQ(i)200
893 y FF(And)341 905 y FS(R)395 893 y FG(\()427 881 y
FQ(h)454 893 y FU(a)498 881 y FQ(i)525 893 y FU(M)d(;)652
881 y FQ(h)679 893 y FU(b)715 881 y FQ(i)741 893 y FU(N)g(;)14
b(c)p FG(\))p FU(;)959 881 y FJ(\()985 893 y FU(y)1029
881 y FJ(\))1054 893 y FU(P)e FG(\))1236 858 y FS(x)1173
893 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
881 y FQ(h)1543 893 y FU(c)1579 881 y FQ(i)1606 893 y
FF(And)1747 905 y FS(R)1801 893 y FG(\()1833 881 y FQ(h)1860
893 y FU(a)1904 881 y FQ(i)1931 893 y FF(Cut)1998 846
y FC( )2059 893 y FG(\()2091 881 y FQ(h)2118 893 y FU(c)2154
881 y FQ(i)2181 893 y FU(M)-5 b(;)2294 881 y FJ(\()2319
893 y FU(y)2363 881 y FJ(\))2389 893 y FU(P)12 b FG(\))p
FU(;)2523 881 y FQ(h)2550 893 y FU(b)2586 881 y FQ(i)2612
893 y FF(Cut)2679 846 y FC( )2740 893 y FG(\()2772 881
y FQ(h)2799 893 y FU(c)2835 881 y FQ(i)2862 893 y FU(N)-5
b(;)2961 881 y FJ(\()2987 893 y FU(y)3031 881 y FJ(\))3056
893 y FU(P)12 b FG(\))q FU(;)i(c)p FG(\))p FU(;)3296
881 y FJ(\()3322 893 y FU(y)3366 881 y FJ(\))3391 893
y FU(P)e FG(\))203 1029 y FF(Cut)269 982 y FC( )330 1029
y FG(\()362 1017 y FQ(h)389 1029 y FU(c)425 1017 y FQ(i)452
1029 y FF(Or)543 992 y FS(i)543 1050 y(R)597 1029 y FG(\()629
1017 y FQ(h)656 1029 y FU(a)700 1017 y FQ(i)727 1029
y FU(M)d(;)14 b(c)p FG(\))p FU(;)959 1017 y FJ(\()985
1029 y FU(y)1029 1017 y FJ(\))1054 1029 y FU(P)e FG(\))1236
994 y FS(x)1173 1029 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p
FG(\()1516 1017 y FQ(h)1543 1029 y FU(c)1579 1017 y FQ(i)1606
1029 y FF(Or)1696 992 y FS(i)1696 1050 y(R)1751 1029
y FG(\()1783 1017 y FQ(h)1810 1029 y FU(a)1854 1017 y
FQ(i)1881 1029 y FF(Cut)1947 982 y FC( )2008 1029 y FG(\()2040
1017 y FQ(h)2067 1029 y FU(c)2103 1017 y FQ(i)2130 1029
y FU(M)9 b(;)2257 1017 y FJ(\()2283 1029 y FU(y)2327
1017 y FJ(\))2352 1029 y FU(P)j FG(\))p FU(;)i(c)p FG(\))q
FU(;)2592 1017 y FJ(\()2617 1029 y FU(y)2661 1017 y FJ(\))2687
1029 y FU(P)e FG(\))63 1165 y FF(Cut)129 1118 y FC( )190
1165 y FG(\()222 1153 y FQ(h)249 1165 y FU(b)285 1153
y FQ(i)312 1165 y FF(Imp)444 1185 y FS(R)498 1165 y FG(\()530
1153 y FJ(\()557 1165 y FU(x)604 1153 y FJ(\))p FQ(h)657
1165 y FU(a)701 1153 y FQ(i)728 1165 y FU(M)c(;)14 b(b)p
FG(\))p FU(;)959 1153 y FJ(\()985 1165 y FU(y)1029 1153
y FJ(\))1054 1165 y FU(P)e FG(\))1236 1130 y FS(x)1173
1165 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
1153 y FQ(h)1543 1165 y FU(b)1579 1153 y FQ(i)1605 1165
y FF(Imp)1737 1185 y FS(R)1792 1165 y FG(\()1824 1153
y FJ(\()1850 1165 y FU(x)1897 1153 y FJ(\))p FQ(h)1950
1165 y FU(a)1994 1153 y FQ(i)2021 1165 y FF(Cut)2088
1118 y FC( )2149 1165 y FG(\()2181 1153 y FQ(h)2208 1165
y FU(b)2244 1153 y FQ(i)2270 1165 y FU(M)9 b(;)2397 1153
y FJ(\()2423 1165 y FU(y)2467 1153 y FJ(\))2492 1165
y FU(P)j FG(\))p FU(;)i(b)p FG(\))p FU(;)2731 1153 y
FJ(\()2757 1165 y FU(y)2801 1153 y FJ(\))2827 1165 y
FU(P)e FG(\))390 1348 y FF(Cut)456 1301 y FC(!)517 1348
y FG(\()549 1336 y FQ(h)576 1348 y FU(c)612 1336 y FQ(i)639
1348 y FU(P)g(;)741 1336 y FJ(\()767 1348 y FU(y)811
1336 y FJ(\))837 1348 y FF(Ax)p FG(\()p FU(y)s(;)i(a)p
FG(\)\))1236 1313 y FS(x)1173 1348 y FT(\000)-25 b(\000)g(!)22
b FF(Cut)p FG(\()1516 1336 y FQ(h)1543 1348 y FU(c)1579
1336 y FQ(i)1606 1348 y FU(P)11 b(;)1707 1336 y FJ(\()1733
1348 y FU(y)1777 1336 y FJ(\))1803 1348 y FF(Ax)q FG(\()p
FU(y)s(;)j(a)p FG(\)\))-119 1484 y FF(Cut)-52 1437 y
FC(!)9 1484 y FG(\()41 1472 y FQ(h)68 1484 y FU(c)104
1472 y FQ(i)131 1484 y FU(P)d(;)232 1472 y FJ(\()258
1484 y FU(y)302 1472 y FJ(\))328 1484 y FF(Cut)p FG(\()486
1472 y FQ(h)513 1484 y FU(a)557 1472 y FQ(i)584 1484
y FF(Ax)p FG(\()p FU(y)s(;)j(a)p FG(\))p FU(;)903 1472
y FJ(\()929 1484 y FU(z)972 1472 y FJ(\))997 1484 y FU(M)9
b FG(\)\))1236 1449 y FS(x)1173 1484 y FT(\000)-25 b(\000)g(!)22
b FF(Cut)p FG(\()1516 1472 y FQ(h)1543 1484 y FU(c)1579
1472 y FQ(i)1606 1484 y FU(P)11 b(;)1707 1472 y FJ(\()1733
1484 y FU(z)1776 1472 y FJ(\))1801 1484 y FF(Cut)1868
1437 y FC(!)1929 1484 y FG(\()1961 1472 y FQ(h)1988 1484
y FU(c)2024 1472 y FQ(i)2051 1484 y FU(P)h(;)2153 1472
y FJ(\()2179 1484 y FU(y)2223 1472 y FJ(\))2248 1484
y FU(M)d FG(\)\))152 1620 y FF(Cut)219 1573 y FC(!)280
1620 y FG(\()312 1608 y FQ(h)339 1620 y FU(c)375 1608
y FQ(i)402 1620 y FU(P)j(;)504 1608 y FJ(\()530 1620
y FU(x)577 1608 y FJ(\))603 1620 y FF(Not)733 1632 y
FS(L)783 1620 y FG(\()815 1608 y FQ(h)842 1620 y FU(a)886
1608 y FQ(i)913 1620 y FU(M)d(;)14 b(x)p FG(\)\))1236
1585 y FS(x)1173 1620 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p
FG(\()1516 1608 y FQ(h)1543 1620 y FU(c)1579 1608 y FQ(i)1606
1620 y FU(P)11 b(;)1707 1608 y FJ(\()1733 1620 y FU(x)1780
1608 y FJ(\))1807 1620 y FF(Not)1937 1632 y FS(L)1987
1620 y FG(\()2019 1608 y FQ(h)2046 1620 y FU(a)2090 1608
y FQ(i)2117 1620 y FF(Cut)2183 1573 y FC(!)2244 1620
y FG(\()2276 1608 y FQ(h)2303 1620 y FU(c)2339 1608 y
FQ(i)2366 1620 y FU(P)h(;)2468 1608 y FJ(\()2494 1620
y FU(x)2541 1608 y FJ(\))2567 1620 y FU(M)d FG(\))p FU(;)14
b(x)p FG(\))q(\))147 1756 y FF(Cut)214 1709 y FC(!)275
1756 y FG(\()307 1744 y FQ(h)334 1756 y FU(c)370 1744
y FQ(i)397 1756 y FU(P)e(;)499 1744 y FJ(\()525 1756
y FU(y)569 1744 y FJ(\))594 1756 y FF(And)735 1719 y
FS(i)735 1777 y(L)785 1756 y FG(\()817 1744 y FJ(\()843
1756 y FU(x)890 1744 y FJ(\))917 1756 y FU(M)c(;)14 b(y)s
FG(\)\))1236 1721 y FS(x)1173 1756 y FT(\000)-25 b(\000)g(!)22
b FF(Cut)p FG(\()1516 1744 y FQ(h)1543 1756 y FU(c)1579
1744 y FQ(i)1606 1756 y FU(P)11 b(;)1707 1744 y FJ(\()1733
1756 y FU(y)1777 1744 y FJ(\))1803 1756 y FF(And)1944
1719 y FS(i)1944 1777 y(L)1994 1756 y FG(\()2026 1744
y FJ(\()2052 1756 y FU(x)2099 1744 y FJ(\))2125 1756
y FF(Cut)2192 1709 y FC(!)2253 1756 y FG(\()2285 1744
y FQ(h)2312 1756 y FU(c)2348 1744 y FQ(i)2375 1756 y
FU(P)h(;)2477 1744 y FJ(\()2503 1756 y FU(y)2547 1744
y FJ(\))2572 1756 y FU(M)d FG(\))p FU(;)14 b(y)s FG(\)\))-8
1892 y FF(Cut)59 1845 y FC(!)120 1892 y FG(\()152 1880
y FQ(h)179 1892 y FU(c)215 1880 y FQ(i)242 1892 y FU(P)e(;)344
1880 y FJ(\()370 1892 y FU(z)413 1880 y FJ(\))438 1892
y FF(Or)529 1904 y FS(L)578 1892 y FG(\()610 1880 y FJ(\()637
1892 y FU(x)684 1880 y FJ(\))710 1892 y FU(M)d(;)837
1880 y FJ(\()862 1892 y FU(y)906 1880 y FJ(\))932 1892
y FU(N)g(;)14 b(z)t FG(\))o(\))1236 1857 y FS(x)1173
1892 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
1880 y FQ(h)1543 1892 y FU(c)1579 1880 y FQ(i)1606 1892
y FU(P)11 b(;)1707 1880 y FJ(\()1733 1892 y FU(z)1776
1880 y FJ(\))1801 1892 y FF(Or)1892 1904 y FS(L)1942
1892 y FG(\()1974 1880 y FJ(\()2000 1892 y FU(x)2047
1880 y FJ(\))2073 1892 y FF(Cut)2140 1845 y FC(!)2201
1892 y FG(\()2233 1880 y FQ(h)2260 1892 y FU(c)2296 1880
y FQ(i)2323 1892 y FU(P)h(;)2425 1880 y FJ(\()2451 1892
y FU(z)2494 1880 y FJ(\))2519 1892 y FU(M)d FG(\))p FU(;)2678
1880 y FJ(\()2704 1892 y FU(y)2748 1880 y FJ(\))2773
1892 y FF(Cut)2840 1845 y FC(!)2901 1892 y FG(\()2933
1880 y FQ(h)2960 1892 y FU(c)2996 1880 y FQ(i)3023 1892
y FU(P)j(;)3125 1880 y FJ(\()3151 1892 y FU(z)3194 1880
y FJ(\))3219 1892 y FU(N)d FG(\))p FU(;)14 b(z)t FG(\))o(\))-54
2028 y FF(Cut)13 1981 y FC(!)74 2028 y FG(\()106 2016
y FQ(h)133 2028 y FU(c)169 2016 y FQ(i)196 2028 y FU(P)e(;)298
2016 y FJ(\()324 2028 y FU(y)368 2016 y FJ(\))393 2028
y FF(Imp)525 2049 y FS(L)575 2028 y FG(\()607 2016 y
FQ(h)634 2028 y FU(a)678 2016 y FQ(i)705 2028 y FU(M)c(;)831
2016 y FJ(\()857 2028 y FU(x)904 2016 y FJ(\))931 2028
y FU(N)g(;)14 b(y)s FG(\)\))1236 1993 y FS(x)1173 2028
y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516 2016
y FQ(h)1543 2028 y FU(c)1579 2016 y FQ(i)1606 2028 y
FU(P)11 b(;)1707 2016 y FJ(\()1733 2028 y FU(y)1777 2016
y FJ(\))1803 2028 y FF(Imp)1935 2049 y FS(L)1985 2028
y FG(\()2017 2016 y FQ(h)2044 2028 y FU(a)2088 2016 y
FQ(i)2114 2028 y FF(Cut)2181 1981 y FC(!)2242 2028 y
FG(\()2274 2016 y FQ(h)2301 2028 y FU(c)2337 2016 y FQ(i)2364
2028 y FU(P)h(;)2466 2016 y FJ(\()2492 2028 y FU(y)2536
2016 y FJ(\))2561 2028 y FU(M)d FG(\))p FU(;)2720 2016
y FJ(\()2746 2028 y FU(x)2793 2016 y FJ(\))2820 2028
y FF(Cut)2886 1981 y FC(!)2947 2028 y FG(\()2979 2016
y FQ(h)3006 2028 y FU(c)3042 2016 y FQ(i)3069 2028 y
FU(P)j(;)3171 2016 y FJ(\()3197 2028 y FU(y)3241 2016
y FJ(\))3267 2028 y FU(N)c FG(\))q FU(;)14 b(y)s FG(\))o(\))-111
2212 y FR(Otherwise:)386 2324 y FF(Cut)453 2277 y FC( )514
2324 y FG(\()546 2312 y FQ(h)573 2324 y FU(b)609 2312
y FQ(i)636 2324 y FF(Ax)p FG(\()p FU(x;)g(a)p FG(\))q
FU(;)959 2312 y FJ(\()985 2324 y FU(y)1029 2312 y FJ(\))1054
2324 y FU(P)e FG(\))1236 2288 y FS(x)1173 2324 y FT(\000)-25
b(\000)g(!)22 b FF(Ax)p FG(\()p FU(x;)14 b(a)p FG(\))83
2460 y FF(Cut)150 2413 y FC( )211 2460 y FG(\()243 2448
y FQ(h)270 2460 y FU(b)306 2448 y FQ(i)332 2460 y FF(Cut)p
FG(\()490 2448 y FQ(h)517 2460 y FU(a)561 2448 y FQ(i)588
2460 y FU(M)9 b(;)715 2448 y FJ(\()741 2460 y FU(x)788
2448 y FJ(\))814 2460 y FU(N)g FG(\))p FU(;)959 2448
y FJ(\()985 2460 y FU(y)1029 2448 y FJ(\))1054 2460 y
FU(P)j FG(\))1236 2424 y FS(x)1173 2460 y FT(\000)-25
b(\000)g(!)22 b FF(Cut)p FG(\()1516 2448 y FQ(h)1543
2460 y FU(a)1587 2448 y FQ(i)1614 2460 y FF(Cut)1680
2413 y FC( )1741 2460 y FG(\()1773 2448 y FQ(h)1800 2460
y FU(b)1836 2448 y FQ(i)1863 2460 y FU(M)9 b(;)1990 2448
y FJ(\()2015 2460 y FU(y)2059 2448 y FJ(\))2085 2460
y FU(P)j FG(\))p FU(;)2219 2448 y FJ(\()2245 2460 y FU(x)2292
2448 y FJ(\))2318 2460 y FF(Cut)2385 2413 y FC( )2446
2460 y FG(\()2478 2448 y FQ(h)2505 2460 y FU(b)2541 2448
y FQ(i)2568 2460 y FU(N)d(;)2681 2448 y FJ(\()2706 2460
y FU(y)2750 2448 y FJ(\))2776 2460 y FU(P)j FG(\)\))154
2596 y FF(Cut)220 2549 y FC( )281 2596 y FG(\()313 2584
y FQ(h)340 2596 y FU(b)376 2584 y FQ(i)403 2596 y FF(Not)533
2608 y FS(R)588 2596 y FG(\()620 2584 y FJ(\()646 2596
y FU(x)693 2584 y FJ(\))719 2596 y FU(M)d(;)14 b(a)p
FG(\))p FU(;)959 2584 y FJ(\()985 2596 y FU(y)1029 2584
y FJ(\))1054 2596 y FU(P)e FG(\))1236 2560 y FS(x)1173
2596 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488 2608 y
FS(R)1542 2596 y FG(\()1574 2584 y FJ(\()1601 2596 y
FU(x)1648 2584 y FJ(\))1674 2596 y FF(Cut)1741 2549 y
FC( )1802 2596 y FG(\()1834 2584 y FQ(h)1861 2596 y FU(b)1897
2584 y FQ(i)1924 2596 y FU(M)8 b(;)2050 2584 y FJ(\()2076
2596 y FU(y)2120 2584 y FJ(\))2146 2596 y FU(P)j FG(\))q
FU(;)j(a)p FG(\))156 2732 y FF(Cut)223 2685 y FC( )284
2732 y FG(\()316 2720 y FQ(h)343 2732 y FU(b)379 2720
y FQ(i)406 2732 y FF(Not)536 2744 y FS(L)586 2732 y FG(\()618
2720 y FQ(h)645 2732 y FU(a)689 2720 y FQ(i)716 2732
y FU(M)8 b(;)14 b(x)p FG(\))q FU(;)959 2720 y FJ(\()985
2732 y FU(y)1029 2720 y FJ(\))1054 2732 y FU(P)e FG(\))1236
2696 y FS(x)1173 2732 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488
2744 y FS(L)1538 2732 y FG(\()1570 2720 y FQ(h)1597 2732
y FU(a)1641 2720 y FQ(i)1668 2732 y FF(Cut)1734 2685
y FC( )1795 2732 y FG(\()1827 2720 y FQ(h)1855 2732 y
FU(b)1891 2720 y FQ(i)1917 2732 y FU(M)9 b(;)2044 2720
y FJ(\()2069 2732 y FU(y)2113 2720 y FJ(\))2139 2732
y FU(P)j FG(\))p FU(;)i(x)p FG(\))-57 2868 y FF(Cut)10
2821 y FC( )70 2868 y FG(\()102 2856 y FQ(h)130 2868
y FU(d)173 2856 y FQ(i)200 2868 y FF(And)341 2880 y FS(R)395
2868 y FG(\()427 2856 y FQ(h)454 2868 y FU(a)498 2856
y FQ(i)525 2868 y FU(M)9 b(;)652 2856 y FQ(h)679 2868
y FU(b)715 2856 y FQ(i)741 2868 y FU(N)g(;)14 b(c)p FG(\))p
FU(;)959 2856 y FJ(\()985 2868 y FU(y)1029 2856 y FJ(\))1054
2868 y FU(P)e FG(\))1236 2832 y FS(x)1173 2868 y FT(\000)-25
b(\000)g(!)22 b FF(And)1499 2880 y FS(R)1553 2868 y FG(\()1585
2856 y FQ(h)1612 2868 y FU(a)1656 2856 y FQ(i)1683 2868
y FF(Cut)1750 2821 y FC( )1811 2868 y FG(\()1843 2856
y FQ(h)1870 2868 y FU(d)1913 2856 y FQ(i)1940 2868 y
FU(M)9 b(;)2067 2856 y FJ(\()2093 2868 y FU(y)2137 2856
y FJ(\))2162 2868 y FU(P)j FG(\))p FU(;)2296 2856 y FQ(h)2323
2868 y FU(b)2359 2856 y FQ(i)2386 2868 y FF(Cut)2453
2821 y FC( )2513 2868 y FG(\()2545 2856 y FQ(h)2573 2868
y FU(d)2616 2856 y FQ(i)2643 2868 y FU(N)c(;)2755 2856
y FJ(\()2781 2868 y FU(y)2825 2856 y FJ(\))2851 2868
y FU(P)k FG(\))p FU(;)i(c)p FG(\))141 3004 y FF(Cut)208
2957 y FC( )269 3004 y FG(\()301 2992 y FQ(h)328 3004
y FU(a)372 2992 y FQ(i)398 3004 y FF(And)540 2967 y FS(i)540
3024 y(L)589 3004 y FG(\()621 2992 y FJ(\()648 3004 y
FU(x)695 2992 y FJ(\))721 3004 y FU(M)9 b(;)14 b(y)s
FG(\))o FU(;)960 2992 y FJ(\()986 3004 y FU(z)1029 2992
y FJ(\))1054 3004 y FU(P)e FG(\))1236 2968 y FS(x)1173
3004 y FT(\000)-25 b(\000)g(!)22 b FF(And)1499 2967 y
FS(i)1499 3024 y(L)1549 3004 y FG(\()1581 2992 y FJ(\()1607
3004 y FU(x)1654 2992 y FJ(\))1680 3004 y FF(Cut)1747
2957 y FC( )1808 3004 y FG(\()1840 2992 y FQ(h)1867 3004
y FU(a)1911 2992 y FQ(i)1938 3004 y FU(M)8 b(;)2064 2992
y FJ(\()2090 3004 y FU(z)2133 2992 y FJ(\))2158 3004
y FU(P)k FG(\))q FU(;)i(y)s FG(\))199 3140 y FF(Cut)266
3093 y FC( )327 3140 y FG(\()359 3128 y FQ(h)386 3140
y FU(c)422 3128 y FQ(i)449 3140 y FF(Or)539 3103 y FS(i)539
3160 y(R)594 3140 y FG(\()626 3128 y FQ(h)653 3140 y
FU(a)697 3128 y FQ(i)724 3140 y FU(M)8 b(;)14 b(b)p FG(\))p
FU(;)955 3128 y FJ(\()981 3140 y FU(x)1028 3128 y FJ(\))1054
3140 y FU(P)e FG(\))1236 3104 y FS(x)1173 3140 y FT(\000)-25
b(\000)g(!)22 b FF(Or)1448 3103 y FS(i)1448 3160 y(R)1503
3140 y FG(\()1535 3128 y FQ(h)1562 3140 y FU(a)1606 3128
y FQ(i)1633 3140 y FF(Cut)1700 3093 y FC( )1760 3140
y FG(\()1792 3128 y FQ(h)1820 3140 y FU(c)1856 3128 y
FQ(i)1882 3140 y FU(M)9 b(;)2009 3128 y FJ(\()2035 3140
y FU(x)2082 3128 y FJ(\))2108 3140 y FU(P)j FG(\))p FU(;)i(b)p
FG(\))-16 3276 y FF(Cut)50 3229 y FC( )111 3276 y FG(\()143
3264 y FQ(h)170 3276 y FU(a)214 3264 y FQ(i)241 3276
y FF(Or)332 3288 y FS(L)382 3276 y FG(\()414 3264 y FJ(\()440
3276 y FU(x)487 3264 y FJ(\))513 3276 y FU(M)9 b(;)640
3264 y FJ(\()666 3276 y FU(y)710 3264 y FJ(\))735 3276
y FU(N)g(;)14 b(z)t FG(\))o FU(;)959 3264 y FJ(\()985
3276 y FU(v)1028 3264 y FJ(\))1054 3276 y FU(P)e FG(\))1236
3240 y FS(x)1173 3276 y FT(\000)-25 b(\000)g(!)22 b FF(Or)1448
3288 y FS(L)1498 3276 y FG(\()1530 3264 y FJ(\()1556
3276 y FU(x)1603 3264 y FJ(\))1630 3276 y FF(Cut)1697
3229 y FC( )1757 3276 y FG(\()1789 3264 y FQ(h)1817 3276
y FU(a)1861 3264 y FQ(i)1887 3276 y FU(M)9 b(;)2014 3264
y FJ(\()2040 3276 y FU(v)2083 3264 y FJ(\))2109 3276
y FU(P)j FG(\))p FU(;)2243 3264 y FJ(\()2269 3276 y FU(y)2313
3264 y FJ(\))2339 3276 y FF(Cut)2405 3229 y FC( )2466
3276 y FG(\()2498 3264 y FQ(h)2525 3276 y FU(a)2569 3264
y FQ(i)2596 3276 y FU(N)d(;)2709 3264 y FJ(\()2735 3276
y FU(v)2778 3264 y FJ(\))2804 3276 y FU(P)j FG(\))p FU(;)i(z)t
FG(\))62 3412 y FF(Cut)129 3365 y FC( )190 3412 y FG(\()222
3400 y FQ(h)249 3412 y FU(c)285 3400 y FQ(i)312 3412
y FF(Imp)444 3432 y FS(R)498 3412 y FG(\()530 3400 y
FJ(\()557 3412 y FU(x)604 3400 y FJ(\))p FQ(h)657 3412
y FU(a)701 3400 y FQ(i)728 3412 y FU(M)8 b(;)14 b(b)p
FG(\))p FU(;)959 3400 y FJ(\()985 3412 y FU(y)1029 3400
y FJ(\))1054 3412 y FU(P)e FG(\))1236 3376 y FS(x)1173
3412 y FT(\000)-25 b(\000)g(!)22 b FF(Imp)1490 3432 y
FS(R)1544 3412 y FG(\()1576 3400 y FJ(\()1602 3412 y
FU(x)1649 3400 y FJ(\))q FQ(h)1703 3412 y FU(a)1747 3400
y FQ(i)1773 3412 y FF(Cut)1840 3365 y FC( )1901 3412
y FG(\()1933 3400 y FQ(h)1960 3412 y FU(c)1996 3400 y
FQ(i)2023 3412 y FU(M)9 b(;)2150 3400 y FJ(\()2175 3412
y FU(y)2219 3400 y FJ(\))2245 3412 y FU(P)j FG(\))p FU(;)i(b)p
FG(\))-52 3548 y FF(Cut)15 3501 y FC( )76 3548 y FG(\()108
3536 y FQ(h)135 3548 y FU(b)171 3536 y FQ(i)197 3548
y FF(Imp)329 3568 y FS(L)379 3548 y FG(\()411 3536 y
FQ(h)438 3548 y FU(a)482 3536 y FQ(i)509 3548 y FU(M)9
b(;)636 3536 y FJ(\()661 3548 y FU(x)708 3536 y FJ(\))735
3548 y FU(N)g(;)14 b(y)s FG(\))o FU(;)960 3536 y FJ(\()986
3548 y FU(z)1029 3536 y FJ(\))1054 3548 y FU(P)e FG(\))1236
3512 y FS(x)1173 3548 y FT(\000)-25 b(\000)g(!)22 b FF(Imp)1490
3568 y FS(L)1539 3548 y FG(\()1571 3536 y FQ(h)1598 3548
y FU(a)1642 3536 y FQ(i)1669 3548 y FF(Cut)1736 3501
y FC( )1797 3548 y FG(\()1829 3536 y FQ(h)1856 3548 y
FU(b)1892 3536 y FQ(i)1919 3548 y FU(M)8 b(;)2045 3536
y FJ(\()2071 3548 y FU(z)2114 3536 y FJ(\))2139 3548
y FU(P)k FG(\))p FU(;)2273 3536 y FJ(\()2299 3548 y FU(x)2346
3536 y FJ(\))2373 3548 y FF(Cut)2440 3501 y FC( )2500
3548 y FG(\()2532 3536 y FQ(h)2560 3548 y FU(b)2596 3536
y FQ(i)2622 3548 y FU(N)d(;)2735 3536 y FJ(\()2761 3548
y FU(z)2804 3536 y FJ(\))2829 3548 y FU(P)j FG(\))p FU(;)i(y)s
FG(\))386 3731 y FF(Cut)453 3684 y FC(!)514 3731 y FG(\()546
3719 y FQ(h)573 3731 y FU(b)609 3719 y FQ(i)636 3731
y FU(P)d(;)737 3719 y FJ(\()763 3731 y FU(y)807 3719
y FJ(\))833 3731 y FF(Ax)p FG(\()p FU(x;)j(a)p FG(\))q(\))1236
3696 y FS(x)1173 3731 y FT(\000)-25 b(\000)g(!)22 b FF(Ax)p
FG(\()p FU(x;)14 b(a)p FG(\))83 3867 y FF(Cut)150 3820
y FC(!)211 3867 y FG(\()243 3855 y FQ(h)270 3867 y FU(b)306
3855 y FQ(i)332 3867 y FU(P)e(;)434 3855 y FJ(\()460
3867 y FU(y)504 3855 y FJ(\))530 3867 y FF(Cut)o FG(\()687
3855 y FQ(h)715 3867 y FU(a)759 3855 y FQ(i)785 3867
y FU(M)d(;)912 3855 y FJ(\()938 3867 y FU(x)985 3855
y FJ(\))1011 3867 y FU(N)g FG(\)\))1236 3832 y FS(x)1173
3867 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
3855 y FQ(h)1543 3867 y FU(a)1587 3855 y FQ(i)1614 3867
y FF(Cut)1680 3820 y FC(!)1741 3867 y FG(\()1773 3855
y FQ(h)1800 3867 y FU(b)1836 3855 y FQ(i)1863 3867 y
FU(P)12 b(;)1965 3855 y FJ(\()1991 3867 y FU(y)2035 3855
y FJ(\))2060 3867 y FU(M)d FG(\))p FU(;)2219 3855 y FJ(\()2245
3867 y FU(x)2292 3855 y FJ(\))2318 3867 y FF(Cut)2385
3820 y FC(!)2446 3867 y FG(\()2478 3855 y FQ(h)2505 3867
y FU(b)2541 3855 y FQ(i)2568 3867 y FU(P)j(;)2670 3855
y FJ(\()2695 3867 y FU(y)2739 3855 y FJ(\))2765 3867
y FU(N)d FG(\)\))154 4003 y FF(Cut)220 3956 y FC(!)281
4003 y FG(\()313 3991 y FQ(h)340 4003 y FU(b)376 3991
y FQ(i)403 4003 y FU(P)j(;)505 3991 y FJ(\()531 4003
y FU(y)575 3991 y FJ(\))600 4003 y FF(Not)731 4015 y
FS(R)785 4003 y FG(\()817 3991 y FJ(\()843 4003 y FU(x)890
3991 y FJ(\))917 4003 y FU(M)c(;)14 b(a)p FG(\)\))1236
3968 y FS(x)1173 4003 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488
4015 y FS(R)1542 4003 y FG(\()1574 3991 y FJ(\()1601
4003 y FU(x)1648 3991 y FJ(\))1674 4003 y FF(Cut)1741
3956 y FC(!)1802 4003 y FG(\()1834 3991 y FQ(h)1861 4003
y FU(b)1897 3991 y FQ(i)1924 4003 y FU(P)11 b(;)2025
3991 y FJ(\()2051 4003 y FU(y)2095 3991 y FJ(\))2121
4003 y FU(M)d FG(\))q FU(;)14 b(a)p FG(\))156 4139 y
FF(Cut)223 4092 y FC(!)284 4139 y FG(\()316 4127 y FQ(h)343
4139 y FU(b)379 4127 y FQ(i)406 4139 y FU(P)e(;)508 4127
y FJ(\()533 4139 y FU(y)577 4127 y FJ(\))603 4139 y FF(Not)733
4151 y FS(L)783 4139 y FG(\()815 4127 y FQ(h)842 4139
y FU(a)886 4127 y FQ(i)913 4139 y FU(M)d(;)14 b(x)p FG(\)\))1236
4104 y FS(x)1173 4139 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488
4151 y FS(L)1538 4139 y FG(\()1570 4127 y FQ(h)1597 4139
y FU(a)1641 4127 y FQ(i)1668 4139 y FF(Cut)1734 4092
y FC(!)1795 4139 y FG(\()1827 4127 y FQ(h)1855 4139 y
FU(b)1891 4127 y FQ(i)1917 4139 y FU(P)12 b(;)2019 4127
y FJ(\()2045 4139 y FU(y)2089 4127 y FJ(\))2114 4139
y FU(M)d FG(\))p FU(;)14 b(x)p FG(\))-57 4275 y FF(Cut)10
4228 y FC(!)70 4275 y FG(\()102 4263 y FQ(h)130 4275
y FU(d)173 4263 y FQ(i)200 4275 y FU(P)e(;)302 4263 y
FJ(\()327 4275 y FU(y)371 4263 y FJ(\))397 4275 y FF(And)538
4287 y FS(R)593 4275 y FG(\()625 4263 y FQ(h)652 4275
y FU(a)696 4263 y FQ(i)723 4275 y FU(M)c(;)849 4263 y
FQ(h)876 4275 y FU(b)912 4263 y FQ(i)938 4275 y FU(N)h(;)14
b(c)p FG(\)\))1236 4240 y FS(x)1173 4275 y FT(\000)-25
b(\000)g(!)22 b FF(And)1499 4287 y FS(R)1553 4275 y FG(\()1585
4263 y FQ(h)1612 4275 y FU(a)1656 4263 y FQ(i)1683 4275
y FF(Cut)1750 4228 y FC(!)1811 4275 y FG(\()1843 4263
y FQ(h)1870 4275 y FU(d)1913 4263 y FQ(i)1940 4275 y
FU(P)12 b(;)2042 4263 y FJ(\()2068 4275 y FU(y)2112 4263
y FJ(\))2138 4275 y FU(M)c FG(\))p FU(;)2296 4263 y FQ(h)2323
4275 y FU(b)2359 4263 y FQ(i)2386 4275 y FF(Cut)2453
4228 y FC(!)2513 4275 y FG(\()2545 4263 y FQ(h)2573 4275
y FU(d)2616 4263 y FQ(i)2643 4275 y FU(P)j(;)2744 4263
y FJ(\()2770 4275 y FU(y)2814 4263 y FJ(\))2840 4275
y FU(N)e FG(\))p FU(;)14 b(c)p FG(\))141 4411 y FF(Cut)208
4364 y FC(!)269 4411 y FG(\()301 4399 y FQ(h)328 4411
y FU(a)372 4399 y FQ(i)398 4411 y FU(P)e(;)500 4399 y
FJ(\()526 4411 y FU(z)569 4399 y FJ(\))594 4411 y FF(And)735
4374 y FS(i)735 4432 y(L)785 4411 y FG(\()817 4399 y
FJ(\()843 4411 y FU(x)890 4399 y FJ(\))917 4411 y FU(M)c(;)14
b(y)s FG(\)\))1236 4376 y FS(x)1173 4411 y FT(\000)-25
b(\000)g(!)22 b FF(And)1499 4374 y FS(i)1499 4432 y(L)1549
4411 y FG(\()1581 4399 y FJ(\()1607 4411 y FU(x)1654
4399 y FJ(\))1680 4411 y FF(Cut)1747 4364 y FC(!)1808
4411 y FG(\()1840 4399 y FQ(h)1867 4411 y FU(a)1911 4399
y FQ(i)1938 4411 y FU(P)12 b(;)2040 4399 y FJ(\()2066
4411 y FU(z)2109 4399 y FJ(\))2134 4411 y FU(M)c FG(\))q
FU(;)14 b(y)s FG(\))199 4547 y FF(Cut)266 4500 y FC(!)327
4547 y FG(\()359 4535 y FQ(h)386 4547 y FU(c)422 4535
y FQ(i)449 4547 y FU(P)e(;)551 4535 y FJ(\()576 4547
y FU(x)623 4535 y FJ(\))650 4547 y FF(Or)740 4510 y FS(i)740
4568 y(R)795 4547 y FG(\()827 4535 y FQ(h)854 4547 y
FU(a)898 4535 y FQ(i)925 4547 y FU(M)c(;)14 b(b)p FG(\)\))1236
4512 y FS(x)1173 4547 y FT(\000)-25 b(\000)g(!)22 b FF(Or)1448
4510 y FS(i)1448 4568 y(R)1503 4547 y FG(\()1535 4535
y FQ(h)1562 4547 y FU(a)1606 4535 y FQ(i)1633 4547 y
FF(Cut)1700 4500 y FC(!)1760 4547 y FG(\()1792 4535 y
FQ(h)1820 4547 y FU(c)1856 4535 y FQ(i)1882 4547 y FU(P)12
b(;)1984 4535 y FJ(\()2010 4547 y FU(x)2057 4535 y FJ(\))2083
4547 y FU(M)d FG(\))p FU(;)14 b(b)p FG(\))-16 4683 y
FF(Cut)50 4636 y FC(!)111 4683 y FG(\()143 4671 y FQ(h)170
4683 y FU(a)214 4671 y FQ(i)241 4683 y FU(P)e(;)343 4671
y FJ(\()369 4683 y FU(v)412 4671 y FJ(\))438 4683 y FF(Or)529
4695 y FS(L)578 4683 y FG(\()610 4671 y FJ(\()637 4683
y FU(x)684 4671 y FJ(\))710 4683 y FU(M)d(;)837 4671
y FJ(\()862 4683 y FU(y)906 4671 y FJ(\))932 4683 y FU(N)g(;)14
b(z)t FG(\))o(\))1236 4648 y FS(x)1173 4683 y FT(\000)-25
b(\000)g(!)22 b FF(Or)1448 4695 y FS(L)1498 4683 y FG(\()1530
4671 y FJ(\()1556 4683 y FU(x)1603 4671 y FJ(\))1630
4683 y FF(Cut)1697 4636 y FC(!)1757 4683 y FG(\()1789
4671 y FQ(h)1817 4683 y FU(a)1861 4671 y FQ(i)1887 4683
y FU(P)12 b(;)1989 4671 y FJ(\()2015 4683 y FU(v)2058
4671 y FJ(\))2084 4683 y FU(M)d FG(\))p FU(;)2243 4671
y FJ(\()2269 4683 y FU(y)2313 4671 y FJ(\))2339 4683
y FF(Cut)2405 4636 y FC(!)2466 4683 y FG(\()2498 4671
y FQ(h)2525 4683 y FU(a)2569 4671 y FQ(i)2596 4683 y
FU(P)j(;)2698 4671 y FJ(\()2724 4683 y FU(v)2767 4671
y FJ(\))2793 4683 y FU(N)d FG(\))p FU(;)14 b(z)t FG(\))62
4819 y FF(Cut)129 4772 y FC(!)190 4819 y FG(\()222 4807
y FQ(h)249 4819 y FU(c)285 4807 y FQ(i)312 4819 y FU(P)e(;)414
4807 y FJ(\()440 4819 y FU(y)484 4807 y FJ(\))509 4819
y FF(Imp)641 4839 y FS(R)696 4819 y FG(\()728 4807 y
FJ(\()754 4819 y FU(x)801 4807 y FJ(\))p FQ(h)854 4819
y FU(a)898 4807 y FQ(i)925 4819 y FU(M)c(;)14 b(b)p FG(\)\))1236
4784 y FS(x)1173 4819 y FT(\000)-25 b(\000)g(!)22 b FF(Imp)1490
4839 y FS(R)1544 4819 y FG(\()1576 4807 y FJ(\()1602
4819 y FU(x)1649 4807 y FJ(\))q FQ(h)1703 4819 y FU(a)1747
4807 y FQ(i)1773 4819 y FF(Cut)1840 4772 y FC(!)1901
4819 y FG(\()1933 4807 y FQ(h)1960 4819 y FU(c)1996 4807
y FQ(i)2023 4819 y FU(P)12 b(;)2125 4807 y FJ(\()2151
4819 y FU(y)2195 4807 y FJ(\))2220 4819 y FU(M)d FG(\))p
FU(;)14 b(b)p FG(\))-52 4955 y FF(Cut)15 4908 y FC(!)76
4955 y FG(\()108 4943 y FQ(h)135 4955 y FU(b)171 4943
y FQ(i)197 4955 y FU(P)e(;)299 4943 y FJ(\()325 4955
y FU(z)368 4943 y FJ(\))393 4955 y FF(Imp)525 4975 y
FS(L)575 4955 y FG(\()607 4943 y FQ(h)634 4955 y FU(a)678
4943 y FQ(i)705 4955 y FU(M)c(;)831 4943 y FJ(\()857
4955 y FU(x)904 4943 y FJ(\))931 4955 y FU(N)g(;)14 b(y)s
FG(\)\))1236 4919 y FS(x)1173 4955 y FT(\000)-25 b(\000)g(!)22
b FF(Imp)1490 4975 y FS(L)1539 4955 y FG(\()1571 4943
y FQ(h)1598 4955 y FU(a)1642 4943 y FQ(i)1669 4955 y
FF(Cut)1736 4908 y FC(!)1797 4955 y FG(\()1829 4943 y
FQ(h)1856 4955 y FU(b)1892 4943 y FQ(i)1919 4955 y FU(P)11
b(;)2020 4943 y FJ(\()2046 4955 y FU(z)2089 4943 y FJ(\))2115
4955 y FU(M)d FG(\))p FU(;)2273 4943 y FJ(\()2299 4955
y FU(x)2346 4943 y FJ(\))2373 4955 y FF(Cut)2440 4908
y FC(!)2500 4955 y FG(\()2532 4943 y FQ(h)2560 4955 y
FU(b)2596 4943 y FQ(i)2622 4955 y FU(P)k(;)2724 4943
y FJ(\()2750 4955 y FU(z)2793 4943 y FJ(\))2818 4955
y FU(N)d FG(\))p FU(;)14 b(y)s FG(\))p 3543 5049 V -144
5052 3691 4 v Black 1112 5206 a Gg(Figure)24 b(2.11:)29
b(Cut-reductions)e(for)d(labelled)i(cuts.)p Black Black
Black Black eop end
%%Page: 51 63
TeXDict begin 51 62 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
b(ersion)2779 b(51)p 277 88 3691 4 v Black Black 277
317 a(De\002nition)23 b(2.6.1)g Gg(\(Local)h(Cut-Elimination)i
(Procedure\))p Gb(:)p Black 277 430 a Gg(The)d(local)i(cut-elimination)
i(procedure,)f F4(\()p FY(T)1724 397 y FX($)1795 430
y Ga(;)1877 393 y Gc(l)q(oc)1835 430 y F6(\000)-31 b(\000)g(!)p
F4(\))p Gg(,)22 b(is)i(a)f(reduction)j(system)e(where:)p
Black 414 615 a F6(\017)p Black 45 w FY(T)565 582 y FX($)659
615 y Gg(is)f(the)h(set)g(of)f(terms)h(well-typed)i(by)d(the)h(rules)g
(sho)n(wn)g(in)g(\(2.5\))g(and)g(Figure)g(2.3,)f(and)p
Black 414 795 a F6(\017)p Black 546 758 a Gc(l)q(oc)504
795 y F6(\000)-31 b(\000)g(!)28 b Gg(consists)k(of)d(the)h(rules)g(for)
f(logical,)k(commuting)d(and)g(labelled)h(cuts)f(as)g(well)f(as)g(the)
504 908 y(rules)c(for)f(garbage)h(collection;)h(that)e(is)1370
1073 y Gc(l)q(oc)1328 1111 y F6(\000)-31 b(\000)g(!)1514
1059 y F5(def)1521 1111 y F4(=)1677 1073 y Gc(l)1699
1050 y FC(0)1614 1111 y F6(\000)f(\000)h(!)25 b([)1944
1073 y Gc(c)1975 1050 y FC(00)1895 1111 y F6(\000)-31
b(\000)f(!)25 b([)2242 1073 y Gc(x)2176 1111 y F6(\000)-31
b(\000)g(!)25 b([)2509 1073 y Gc(g)r(c)2458 1111 y F6(\000)-32
b(\000)h(!)25 b Ga(:)277 1365 y Gg(As)j(usual,)j(we)d(assume)i(the)f
(reductions)i(are)e(closed)i(under)f(conte)o(xt)g(formation.)46
b(An)28 b(immediate)277 1477 y(observ)n(ation)35 b(is)c(that)1030
1440 y Gc(l)q(oc)988 1477 y F6(\000)-31 b(\000)g(!)30
b Gg(is)i(complete,)j(in)c(the)h(sense)h(that)f(it)f(eliminates)j(all)d
(cuts)i(\(routine)g(by)277 1590 y(inspection)k(of)d(the)g(reduction)i
(rules\).)60 b(Another)35 b(is)f(that)2237 1553 y Gc(l)q(oc)2195
1590 y F6(\000)-31 b(\000)g(!)32 b Gg(respects)k(the)e(subject)i
(reduction)277 1703 y(property)-6 b(.)p Black 277 1891
a Gb(Pr)n(oposition)34 b(2.6.2)e Gg(\(Subject)i(Reduction\))p
Gb(:)p Black 110 w Gg(Suppose)g Ga(M)42 b Gg(belongs)35
b(to)d FY(T)2794 1858 y FX($)2897 1891 y Gg(and)h(has)g(the)g(typ-)277
2004 y(ing)f(judgement)i F4(\000)921 1992 y Gc(.)976
2004 y Ga(M)1099 1992 y Gc(.)1154 2004 y F4(\001)p Gg(.)53
b(Let)31 b Ga(M)1638 1967 y Gc(l)q(oc)1596 2004 y F6(\000)-31
b(\000)g(!)40 b Ga(N)10 b Gg(,)33 b(then)f Ga(N)51 b
F6(2)40 b FY(T)2419 1971 y FX($)2520 2004 y Gg(with)32
b(the)g(typing)h(judgement)277 2117 y F4(\000)359 2105
y Gc(.)414 2117 y Ga(N)522 2105 y Gc(.)577 2117 y F4(\001)p
Gg(.)p Black 277 2329 a F7(Pr)l(oof)o(.)p Black 34 w
Gg(By)19 b(inspection)k(of)d(the)g(reduction)j(rules;)f(analogous)h(to)
d(proof)h(of)f(Proposition)j(2.2.10.)p 3436 2329 4 62
v 3440 2271 55 4 v 3440 2329 V 3494 2329 4 62 v 418 2533
a(T)-7 b(o)18 b(pro)o(v)o(e)i(strong)g(normalisation)i(for)e
F4(\()p FY(T)1737 2500 y FX($)1808 2533 y Ga(;)1890 2496
y Gc(l)q(oc)1848 2533 y F6(\000)-31 b(\000)f(!)p F4(\))p
Gg(,)19 b(let)h(us)f(\002rst)f(e)o(xamine)i(if)f(there)h(is)f(a)f
(straight-)277 2646 y(forw)o(ard)25 b(method)g(inferring)h(this)f
(property)h(from)d(the)i(strong)g(normalisation)i(result)e(of)f
F4(\()p FY(T)t Ga(;)3294 2609 y Gc(aux)3274 2646 y F6(\000)-31
b(\000)f(!)p F4(\))p Gg(.)277 2759 y(A)21 b(na)m(\250)-27
b(\021v)o(e)22 b(attempt)h(might)f(use)g(the)g(follo)n(wing)i(lemma,)d
(often)i(applied)h(successfully)h(in)d(the)g(e)o(xplicit)277
2872 y(substitution)30 b(community)e(\(see)f(for)f(e)o(xample)i([Bloo,)
e(1997]\).)39 b(It)26 b(establishes)j(strong)f(normalisa-)277
2985 y(tion)f(for)f(a)g(reduction)i(system)f(with)f(the)g(help)h(of)f
(another)i(one,)f(for)f(which)h(strong)g(normalisation)277
3098 y(is)c(already)j(kno)n(wn)e(to)f(hold.)1195 3065
y F5(6)p Black 277 3286 a Gb(Lemma)d(2.6.3:)p Black 34
w Gg(Let)g F4(\()p FY(R)p Ga(;)1181 3249 y Gc(R)1123
3286 y F6(\000)-31 b(\000)f(!)p F4(\))20 b Gg(and)h F4(\()p
FY(S)p Ga(;)1686 3249 y Gc(S)1624 3286 y F6(\000)-31
b(\000)g(!)p F4(\))20 b Gg(be)h(tw)o(o)f(reduction)j(systems)f(where)
3086 3249 y Gc(S)3024 3286 y F6(\000)-31 b(\000)f(!)20
b Gg(consists)277 3399 y(of)27 b(tw)o(o)f(reductions,)1015
3361 y Gc(S)1058 3370 y FV(1)969 3399 y F6(\000)-32 b(\000)h(!)26
b Gg(and)1368 3361 y Gc(S)1411 3370 y FV(2)1322 3399
y F6(\000)-31 b(\000)f(!)p Gg(,)27 b(and)g(suppose)i(that)e
F4(\()p FY(R)p Ga(;)2380 3361 y Gc(R)2322 3399 y F6(\000)-32
b(\000)h(!)p F4(\))26 b Gg(and)i F4(\()p FY(S)p Ga(;)2882
3361 y Gc(S)2925 3370 y FV(1)2836 3399 y F6(\000)-32
b(\000)h(!)p F4(\))26 b Gg(are)h(strongly)277 3511 y(normalising.)44
b(Let)27 b F6(j)p 950 3511 28 4 v 968 3511 V 986 3511
V 65 w(j)1038 3478 y FX(\017)1105 3511 y Gg(be)g(a)h(translation)i
(which)f(maps)e(elements)j(of)d FY(S)g Gg(to)h(elements)h(of)f
FY(R)f Gg(such)277 3624 y(that)d(\(for)g(all)g Ga(a;)15
b(b)26 b F6(2)e FY(S)p Gg(\):)p Black Black 1254 3823
a F6(\017)74 b Gg(if)23 b Ga(a)1571 3786 y Gc(S)1614
3795 y FV(1)1524 3823 y F6(\000)-31 b(\000)g(!)25 b Ga(b)p
Gg(,)d(then)j F6(j)p Ga(a)p F6(j)2082 3790 y FX(\017)2203
3786 y Gc(R)2144 3823 y F6(\000)-31 b(\000)g(!)2315 3790
y FX(\003)2377 3823 y F6(j)p Ga(b)p F6(j)2466 3790 y
FX(\017)1254 3971 y F6(\017)74 b Gg(if)23 b Ga(a)1571
3934 y Gc(S)1614 3943 y FV(2)1524 3971 y F6(\000)-31
b(\000)g(!)25 b Ga(b)p Gg(,)d(then)j F6(j)p Ga(a)p F6(j)2082
3938 y FX(\017)2203 3934 y Gc(R)2144 3971 y F6(\000)-31
b(\000)g(!)2315 3938 y F9(+)2396 3971 y F6(j)p Ga(b)p
F6(j)2485 3938 y FX(\017)277 4198 y Gg(Then)24 b(we)e(ha)n(v)o(e)j
(that)f F4(\()p FY(S)p Ga(;)1153 4161 y Gc(S)1091 4198
y F6(\000)-32 b(\000)h(!)p F4(\))23 b Gg(is)g(strongly)j(normalising.)p
Black 277 4436 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Assume)e(for)h(the)g
(sak)o(e)g(of)g(deri)n(ving)h(a)e(contradiction)29 b(that)c
F4(\()p FY(S)p Ga(;)2639 4399 y Gc(S)2577 4436 y F6(\000)-31
b(\000)f(!)p F4(\))24 b Gg(is)h(not)g(strongly)i(nor)n(-)277
4548 y(malising.)57 b(W)l(ithout)34 b(loss)f(of)f(generality)j(we)d
(may)g(assume)h(that)g(e)n(v)o(ery)g(reduction)i(sequence)f(in)277
4661 y F4(\()p FY(S)p Ga(;)464 4624 y Gc(S)402 4661 y
F6(\000)-31 b(\000)g(!)o F4(\))23 b Gg(is)h(of)f(the)h(form)1269
4843 y Ga(a)1388 4806 y Gc(S)1431 4815 y FV(1)1342 4843
y F6(\000)-31 b(\000)f(!)1512 4805 y FX(\003)1577 4843
y Ga(b)1688 4806 y Gc(S)1731 4815 y FV(2)1641 4843 y
F6(\000)h(\000)g(!)25 b Ga(c)1948 4806 y Gc(S)1991 4815
y FV(1)1901 4843 y F6(\000)-31 b(\000)g(!)2072 4805 y
FX(\003)2136 4843 y Ga(d)2255 4806 y Gc(S)2298 4815 y
FV(2)2209 4843 y F6(\000)g(\000)f(!)25 b Ga(:)15 b(:)g(:)277
5041 y Gg(Suppose)24 b(the)f(abo)o(v)o(e)g(reduction)j(sequence)f
(denotes)f(an)f(in\002nite)h(reduction)h(sequence,)g(then)e(using)p
Black 277 5114 1290 4 v 383 5170 a F3(6)412 5201 y F2(W)-6
b(e)18 b(will)g(not)h(use)g(this)g(lemma)g(in)g(this)g(section,)g(b)o
(ut)f(in)h(a)g(later)f(one.)p Black Black Black eop end
%%Page: 52 64
TeXDict begin 52 63 bop Black -144 51 a Gb(52)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(the)33
b(translation)i F6(j)p 906 317 28 4 v 923 317 V 941 317
V 64 w(j)993 284 y FX(\017)1064 317 y Gg(we)c(can)i(map)e(it)h(onto)h
(an)f(in\002nite)h(reduction)h(sequence)h(in)d F4(\()p
FY(R)p Ga(;)3267 280 y Gc(R)3209 317 y F6(\000)-31 b(\000)f(!)p
F4(\))p Gg(,)34 b(as)321 430 y(sho)n(wn)24 b(belo)n(w)-6
b(.)1041 565 y Ga(a)1225 528 y Gc(S)1268 537 y FV(1)1143
565 y F6(\000)-21 b(\000)g(\000)g(!)1384 527 y FX(\003)1482
565 y Ga(b)1681 528 y Gc(S)1724 537 y FV(2)1599 565 y
F6(\000)g(\000)g(\000)g(!)78 b Ga(c)2097 528 y Gc(S)2140
537 y FV(1)2016 565 y F6(\000)-21 b(\000)g(\000)g(!)2257
527 y FX(\003)2350 565 y Ga(d)2554 528 y Gc(S)2597 537
y FV(2)2472 565 y F6(\000)g(\000)h(\000)e(!)26 b Ga(:)15
b(:)g(:)996 929 y F6(j)p Ga(a)p F6(j)1094 891 y FX(\017)1003
747 y(\017)1043 810 y F6(#)p 1063 746 4 149 v 1237 892
a Gc(R)1143 929 y F6(\000)-21 b(\000)g(\000)g(!)1384
891 y FX(\003)1437 929 y F6(j)p Ga(b)p F6(j)1526 891
y FX(\017)1439 747 y(\017)1480 810 y F6(#)p 1500 746
V 1663 892 a Gc(R)1570 929 y F6(\000)f(\000)i(\000)f(!)1811
891 y F9(+)1873 929 y F6(j)p Ga(c)p F6(j)1962 891 y FX(\017)1875
747 y(\017)1916 810 y F6(#)p 1936 746 V 2109 892 a Gc(R)2016
929 y F6(\000)g(\000)g(\000)g(!)2257 891 y FX(\003)2305
929 y F6(j)p Ga(d)p F6(j)2402 891 y FX(\017)2312 747
y(\017)2353 810 y F6(#)p 2373 746 V 2537 892 a Gc(R)2443
929 y F6(\000)g(\000)g(\000)g(!)2684 891 y F9(+)2768
929 y Ga(:)15 b(:)g(:)321 1165 y Gg(By)30 b(assumption)j(we)d(kno)n(w)g
(that)h(e)n(v)o(ery)1706 1128 y Gc(S)1749 1137 y FV(1)1660
1165 y F6(\000)-31 b(\000)f(!)1830 1132 y FX(\003)1870
1165 y Gg(-reduction)33 b(is)d(\002nite.)50 b(Thus)30
b(we)g(kno)n(w)h(that)g(there)321 1278 y(must)g(be)f(in\002nitely)i
(man)o(y)1278 1241 y Gc(S)1321 1250 y FV(2)1231 1278
y F6(\000)-31 b(\000)g(!)p Gg(-reductions.)52 b(Ho)n(we)n(v)o(er)l(,)32
b(this)f(implies)g(that)g(we)f(ha)n(v)o(e)h(in\002nitely)321
1391 y(man)o(y)598 1354 y Gc(R)539 1391 y F6(\000)-31
b(\000)g(!)710 1358 y F9(+)769 1391 y Gg(-reductions,)22
b(which)c(contradicts)k(our)c(assumption)j(about)e F4(\()p
FY(R)p Ga(;)2864 1354 y Gc(R)2806 1391 y F6(\000)-31
b(\000)f(!)p F4(\))18 b Gg(being)h(strongly)321 1504
y(normalising.)p 3480 1504 4 62 v 3484 1446 55 4 v 3484
1504 V 3538 1504 4 62 v 462 1708 a(Let)30 b(us)h(return)h(to)e(the)h
(question)h(of)f(whether)g(or)g(not)g F4(\()p FY(T)2325
1675 y FX($)2396 1708 y Ga(;)2478 1671 y Gc(l)q(oc)2436
1708 y F6(\000)-31 b(\000)f(!)p F4(\))30 b Gg(is)h(strongly)h
(normalising.)321 1821 y(It)j(seems)g(as)g(if)f(the)h(lemma)g(gi)n(v)o
(en)g(abo)o(v)o(e)g(should)i(be)d(helpful,)39 b(since)d(it)f(is)f(easy)
i(to)e(sho)n(w)h(that)321 1934 y F4(\()p FY(T)417 1901
y FX($)488 1934 y Ga(;)594 1897 y Gc(x)529 1934 y F6(\000)-31
b(\000)f(!)p F4(\))21 b Gg(and)g F4(\()p FY(T)1002 1901
y FX($)1073 1934 y Ga(;)1165 1897 y Gc(g)r(c)1114 1934
y F6(\000)-32 b(\000)h(!)p F4(\))20 b Gg(are)i(strongly)h(normalising)g
(\(we)e(do)g(not)g(allo)n(w)-6 b(,)22 b(using)g(terminology)321
2047 y(from)27 b(e)o(xplicit)i(substitution)h(calculi,)f(substitution)i
(composition\).)42 b(Furthermore,)29 b(we)d(should)j(be)321
2159 y(able)21 b(to)g(\002nd)f(a)g(translation)j(which)e(maps)1726
2122 y Gc(x)1660 2159 y F6(\000)-31 b(\000)g(!)p Gg(-reductions)23
b(and)2462 2122 y Gc(g)r(c)2410 2159 y F6(\000)-31 b(\000)f(!)p
Gg(-reductions)24 b(onto)d(identities,)321 2272 y(and)549
2235 y Gc(l)571 2212 y FC(0)486 2272 y F6(\000)-32 b(\000)h(!)p
Gg(-)33 b(and)933 2235 y Gc(c)964 2212 y FC(00)883 2272
y F6(\000)-31 b(\000)g(!)p Gg(-reductions)37 b(onto)d(a)g(series)h(of)
2133 2235 y Gc(aux)2112 2272 y F6(\000)-31 b(\000)g(!)p
Gg(-reductions.)62 b(Whilst)35 b(this)f(approach)321
2385 y(seems)i(plausible,)k(in)35 b(f)o(act,)k(it)c(f)o(ails)h(when)f
(using)i(the)e(ob)o(vious)i(candidate)h(for)d(the)h(translation,)321
2498 y(namely)25 b(the)e(one)h(that)h(replaces)g(labelled)h(cuts)e
(with)f(substitutions,)k(as)d(indicated)i(belo)n(w)-6
b(.)p Black Black 1119 2714 a F6(j)p FL(Cut)1223 2666
y FC( )1284 2714 y F4(\()1319 2702 y FX(h)1347 2714 y
Ga(a)1395 2702 y FX(i)1422 2714 y Ga(M)11 b(;)1561 2702
y F9(\()1588 2714 y Ga(x)1640 2702 y F9(\))1668 2714
y Ga(N)f F4(\))p F6(j)1811 2681 y FX(\017)1891 2662 y
F5(def)1898 2714 y F4(=)47 b F6(j)p Ga(M)10 b F6(j)2164
2681 y FX(\017)2200 2714 y F6(f)-7 b Ga(a)25 b F4(:=)2433
2702 y F9(\()2460 2714 y Ga(x)2512 2702 y F9(\))2540
2714 y F6(j)p Ga(N)10 b F6(j)2673 2681 y FX(\017)2703
2714 y F6(g)1119 2886 y(j)p FL(Cut)1223 2839 y FC(!)1284
2886 y F4(\()1319 2874 y FX(h)1347 2886 y Ga(a)1395 2874
y FX(i)1422 2886 y Ga(M)h(;)1561 2874 y F9(\()1588 2886
y Ga(x)1640 2874 y F9(\))1668 2886 y Ga(N)f F4(\))p F6(j)1811
2853 y FX(\017)1891 2835 y F5(def)1898 2886 y F4(=)47
b F6(j)p Ga(N)10 b F6(j)2149 2853 y FX(\017)2185 2886
y F6(f)-7 b Ga(x)25 b F4(:=)2421 2874 y FX(h)2449 2886
y Ga(a)2497 2874 y FX(i)2524 2886 y F6(j)p Ga(M)10 b
F6(j)2672 2853 y FX(\017)2703 2886 y F6(g)321 3078 y
Gg(Using)29 b(this)g(translation,)j(the)d(proof)g(f)o(ails)g(because)h
(in)f F4(\()p FY(T)2216 3045 y FX($)2287 3078 y Ga(;)2369
3041 y Gc(l)q(oc)2327 3078 y F6(\000)-31 b(\000)f(!)p
F4(\))28 b Gg(we)g(can)g(perform)i(reductions)321 3191
y(that)d(cannot)i(be)d(\223mirrored\224)j(by)e(an)o(y)f(reduction)j(in)
e F4(\()p FY(T)t Ga(;)2179 3154 y Gc(aux)2159 3191 y
F6(\000)-31 b(\000)f(!)p F4(\))p Gg(.)37 b(Consider)29
b(for)d(e)o(xample)i(the)f(term)321 3304 y Ga(M)36 b
F6(\021)25 b FL(Cut)619 3257 y FC( )680 3304 y F4(\()715
3292 y FX(h)743 3304 y Ga(a)791 3292 y FX(i)819 3304
y Ga(S)5 b(;)920 3292 y F9(\()947 3304 y Ga(x)999 3292
y F9(\))1027 3304 y Ga(T)13 b F4(\))31 b Gg(with)g Ga(a)f
Gg(not)i(free)g(in)f Ga(S)5 b Gg(.)52 b(So)31 b Ga(M)40
b Gg(is)31 b(translated)j(to)e F6(j)p Ga(S)5 b F6(j)2928
3271 y FX(\017)2963 3304 y F6(f)-7 b Ga(a)40 b F4(:=)3225
3292 y F9(\()3252 3304 y Ga(x)3304 3292 y F9(\))3332
3304 y F6(j)p Ga(T)13 b F6(j)3448 3271 y FX(\017)3478
3304 y F6(g)p Gg(,)321 3417 y(which)25 b(is)e(just)i
F6(j)p Ga(S)5 b F6(j)916 3384 y FX(\017)979 3417 y Gg(because)26
b(of)e(the)g(assumption)i(about)g Ga(a)p Gg(.)j(Clearly)-6
b(,)25 b(there)g(is)e(no)h(reason)i(that)e(an)o(y)321
3530 y(reduction)k Ga(T)37 b Gg(may)25 b(perform)h(can)g(be)f(mirrored)
i(by)e F6(j)p Ga(S)5 b F6(j)2107 3497 y FX(\017)2147
3530 y Gg(,)24 b(and)i(consequently)-6 b(,)30 b(we)24
b(cannot)j(guaran-)321 3643 y(tee)j(that)f(an)g(in\002nite)h(reduction)
h(sequence)h(occurs)e(in)f(\(using)i(again)e(terminology)j(from)d(e)o
(xplicit)321 3756 y(substitution)d(calculi\))e(garbage)f
(substitutions.)33 b(This)22 b(is)f(ho)n(w)h(Melli)5
b(\036)-35 b(es)23 b([1995])h(constructed)h(a)d(non-)321
3869 y(terminating)k(reduction)g(sequence)g(for)e Ga(\025\033)s
Gg(.)462 3998 y(Because)k(of)e(this)g(f)o(ailure)i(our)f(strong)g
(normalisation)j(proof)d(for)f F4(\()p FY(T)2684 3965
y FX($)2755 3998 y Ga(;)2838 3961 y Gc(l)q(oc)2796 3998
y F6(\000)-32 b(\000)h(!)p F4(\))26 b Gg(is)g(again)g(rather)321
4111 y(in)l(v)n(olv)o(ed.)55 b(An)31 b(important)i(f)o(act)e(in)h(this)
g(proof)g(is)f(that)2212 4074 y Gc(x)2147 4111 y F6(\000)-31
b(\000)f(!)31 b Gg(is)g(con\003uent,)k(in)c(contrast)i(to)3395
4074 y Gc(l)q(oc)3353 4111 y F6(\000)-31 b(\000)g(!)p
Gg(,)321 4224 y(which)24 b(clearly)h(is)f(not.)p Black
321 4412 a Gb(Lemma)f(2.6.4:)p Black 34 w Gg(The)g(reduction)1483
4375 y Gc(x)1417 4412 y F6(\000)-31 b(\000)g(!)22 b Gg(is)p
Black 417 4587 a(\(i\))p Black 47 w(strongly)j(normalising)h(and)p
Black 392 4763 a(\(ii\))p Black 47 w(con\003uent.)p Black
321 4976 a F7(Pr)l(oof)o(.)p Black 34 w Gg(The)20 b(measure)i(gi)n(v)o
(en)f(on)g(P)o(age)f(151)h(implies)h Fs([)p Ga(M)10 b
Fs(])26 b Ga(>)f Fs([)p Ga(N)10 b Fs(])21 b Gg(whene)n(v)o(er)g
Ga(M)3041 4938 y Gc(x)2976 4976 y F6(\000)-32 b(\000)h(!)25
b Ga(N)10 b Gg(.)27 b(There-)321 5088 y(fore)561 5051
y Gc(x)495 5088 y F6(\000)-31 b(\000)g(!)28 b Gg(must)g(be)h(strongly)i
(normalising.)46 b(Con\003uence)30 b(of)2449 5051 y Gc(x)2383
5088 y F6(\000)-31 b(\000)g(!)27 b Gg(follo)n(ws)j(from)e(local)i
(con\003u-)321 5201 y(ence,)37 b(which)d(can)g(easily)h(be)f
(established)j(by)d(inspection)i(of)e(the)g(reduction)i(rules,)h(and)d
(strong)321 5314 y(normalisation)27 b(of)1008 5277 y
Gc(x)942 5314 y F6(\000)-31 b(\000)g(!)p Gg(.)p 3480
5314 V 3484 5256 55 4 v 3484 5314 V 3538 5314 4 62 v
Black Black eop end
%%Page: 53 65
TeXDict begin 53 64 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
b(ersion)2779 b(53)p 277 88 3691 4 v Black 277 317 a
Gg(As)33 b(a)h(consequence)j(of)d(this)h(lemma,)h(we)d(may)g(de\002ne)i
(the)f(unique)h Ga(x)p Gg(-normal)g(form)f(of)g(a)g(term)277
430 y(belonging)26 b(to)e FY(T)818 397 y FX($)889 430
y Gg(.)p Black 277 618 a Gb(De\002nition)f(2.6.5:)p Black
34 w Gg(The)g(unique)i Ga(x)p Gg(-normal)g(form)e(of)h(a)f(term)g
Ga(M)36 b F6(2)24 b FY(T)2546 585 y FX($)2640 618 y Gg(is)f(denoted)j
(by)d F6(j)p Ga(M)10 b F6(j)3295 632 y Gc(x)3340 618
y Gg(.)277 855 y(Before)24 b(we)f(continue,)i(tw)o(o)f(quick)g(observ)n
(ations)j(about)e Ga(x)p Gg(-normal)g(forms.)p Black
277 1043 a Gb(Lemma)e(2.6.6:)p Black 34 w Gg(If)g(and)h(only)h(if)e
Ga(M)33 b Gg(is)23 b(an)h(element)g(of)g FY(T)t Gg(,)18
b(then)24 b F6(j)p Ga(M)10 b F6(j)2494 1057 y Gc(x)2564
1043 y F6(\021)25 b Ga(M)10 b Gg(.)p Black 277 1256 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(If)23 b Ga(M)35 b F6(2)25
b FY(T)t Gg(,)18 b(then)24 b Ga(M)33 b Gg(cannot)24 b(contain)h(an)o(y)
f(instance)h(of)e FL(Cut)2433 1208 y FC( )2516 1256 y
Gg(or)g FL(Cut)2693 1208 y FC(!)2754 1256 y Gg(,)f(and)i
F7(vice)g(ver)o(sa)p Gg(.)p 3436 1256 4 62 v 3440 1197
55 4 v 3440 1256 V 3494 1256 4 62 v Black 277 1443 a
Gb(Lemma)f(2.6.7:)p Black 34 w Gg(F)o(or)g(all)g(unlabelled)k(terms,)c
(for)h(e)o(xample)g FL(And)2366 1457 y Gc(R)2424 1443
y F4(\()2459 1431 y FX(h)2486 1443 y Ga(a)2534 1431 y
FX(i)2562 1443 y Ga(M)10 b(;)2700 1431 y FX(h)2728 1443
y Ga(b)2767 1431 y FX(i)2794 1443 y Ga(N)g(;)15 b(c)p
F4(\))p Gg(,)24 b(we)f(ha)n(v)o(e)881 1667 y F6(j)p FL(And)1061
1681 y Gc(R)1119 1667 y F4(\()1154 1655 y FX(h)1182 1667
y Ga(a)1230 1655 y FX(i)1257 1667 y Ga(M)10 b(;)1395
1655 y FX(h)1423 1667 y Ga(b)1462 1655 y FX(i)1489 1667
y Ga(N)g(;)15 b(c)p F4(\))p F6(j)1711 1681 y Gc(x)1782
1667 y F6(\021)25 b FL(And)2032 1681 y Gc(R)2090 1667
y F4(\()2125 1655 y FX(h)2153 1667 y Ga(a)2201 1655 y
FX(i)2228 1667 y F6(j)p Ga(M)10 b F6(j)2376 1681 y Gc(x)2421
1667 y Ga(;)2461 1655 y FX(h)2489 1667 y Ga(b)2528 1655
y FX(i)2555 1667 y F6(j)p Ga(N)g F6(j)2688 1681 y Gc(x)2732
1667 y Ga(;)15 b(c)p F4(\))27 b Ga(:)277 1891 y Gg(Similarly)d(for)g
(the)g(other)g(unlabelled)j(terms.)p Black 277 2104 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(By)c(inspection)j(of)d(the)1358
2067 y Gc(x)1292 2104 y F6(\000)-31 b(\000)g(!)o Gg(-reductions.)p
3436 2104 V 3440 2046 55 4 v 3440 2104 V 3494 2104 4
62 v 277 2314 a(Ne)o(xt,)23 b(we)g(shall)h(pro)o(v)o(e)g(that)1272
2277 y Gc(x)1207 2314 y F6(\000)-31 b(\000)g(!)22 b Gg(correctly)k
(simulates)f(the)f(substitution)j(operation.)p Black
277 2502 a Gb(Lemma)c(2.6.8:)p Black 34 w Gg(F)o(or)g(all)g
Ga(M)5 b(;)15 b(N)36 b F6(2)25 b FY(T)e Gg(we)f(ha)n(v)o(e)p
Black 373 2733 a(\(i\))p Black 46 w FL(Cut)583 2685 y
FC( )644 2733 y F4(\()679 2721 y FX(h)707 2733 y Ga(a)755
2721 y FX(i)782 2733 y Ga(M)11 b(;)921 2721 y F9(\()948
2733 y Ga(x)1000 2721 y F9(\))1028 2733 y Ga(N)f F4(\))1237
2695 y Gc(x)1171 2733 y F6(\000)-31 b(\000)g(!)1342 2700
y F9(+)1426 2733 y Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1752
2721 y F9(\()1780 2733 y Ga(x)1832 2721 y F9(\))1859
2733 y Ga(N)p F6(g)p Black 348 2946 a Gg(\(ii\))p Black
46 w FL(Cut)583 2899 y FC(!)644 2946 y F4(\()679 2934
y FX(h)707 2946 y Ga(a)755 2934 y FX(i)782 2946 y Ga(N)10
b(;)905 2934 y F9(\()933 2946 y Ga(x)985 2934 y F9(\))1013
2946 y Ga(M)g F4(\))1237 2909 y Gc(x)1171 2946 y F6(\000)-31
b(\000)g(!)1342 2913 y F9(+)1426 2946 y Ga(M)5 b F6(f)-7
b Ga(x)26 b F4(:=)1756 2934 y FX(h)1783 2946 y Ga(a)1831
2934 y FX(i)1859 2946 y Ga(N)p F6(g)p Black 277 3159
a F7(Pr)l(oof)o(.)p Black 34 w Gg(Both)d(cases)i(by)e(induction)k(on)c
(the)h(structure)i(of)d Ga(M)10 b Gg(;)23 b(note)i(we)d(assumed)j
Ga(M)5 b(;)15 b(N)36 b F6(2)25 b FY(T)t Gg(.)p 3436 3159
V 3440 3101 55 4 v 3440 3159 V 3494 3159 4 62 v 277 3370
a(If)e(we)g(apply)i F6(j)p 741 3370 28 4 v 759 3370 V
776 3370 V 65 w(j)829 3384 y Gc(x)896 3370 y Gg(to)e(the)h(lemma)f(abo)
o(v)o(e,)h(we)e(ha)n(v)o(e)j(the)e(follo)n(wing)i(corollary)-6
b(.)p Black 277 3557 a Gb(Cor)n(ollary)26 b(2.6.9:)p
Black 34 w Gg(F)o(or)d(all)h Ga(M)5 b(;)15 b(N)35 b F6(2)25
b FY(T)e Gg(we)g(thus)h(ha)n(v)o(e)p Black 373 3788 a(\(i\))p
Black 46 w F6(j)p FL(Cut)608 3741 y FC( )669 3788 y F4(\()704
3776 y FX(h)732 3788 y Ga(a)780 3776 y FX(i)808 3788
y Ga(M)10 b(;)946 3776 y F9(\()974 3788 y Ga(x)1026 3776
y F9(\))1053 3788 y Ga(N)g F4(\))p F6(j)1196 3802 y Gc(x)1266
3788 y F6(\021)25 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1688
3776 y F9(\()1715 3788 y Ga(x)1767 3776 y F9(\))1795
3788 y Ga(N)p F6(g)p Black 348 4002 a Gg(\(ii\))p Black
46 w F6(j)p FL(Cut)608 3955 y FC(!)669 4002 y F4(\()704
3990 y FX(h)732 4002 y Ga(a)780 3990 y FX(i)808 4002
y Ga(M)10 b(;)946 3990 y F9(\()974 4002 y Ga(x)1026 3990
y F9(\))1053 4002 y Ga(N)g F4(\))p F6(j)1196 4016 y Gc(x)1266
4002 y F6(\021)25 b Ga(N)5 b F6(f)-7 b Ga(x)25 b F4(:=)1677
3990 y FX(h)1704 4002 y Ga(a)1752 3990 y FX(i)1780 4002
y Ga(M)p F6(g)277 4262 y Gg(This)i(corollary)i(concerns)g(subterms)g
(belonging)h(to)d FY(T)t Gg(,)22 b(b)n(ut)28 b(we)e(can)h(no)n(w)g
(easily)h(generalise)i(it)c(to)277 4375 y(all)e(terms)f(of)h
FY(T)775 4342 y FX($)846 4375 y Gg(.)p Black 277 4563
a Gb(Lemma)f(2.6.10:)p Black 35 w Gg(F)o(or)f(all)i Ga(M)5
b(;)15 b(N)35 b F6(2)25 b FY(T)1538 4530 y FX($)1632
4563 y Gg(we)e(ha)n(v)o(e)p Black 373 4793 a(\(i\))p
Black 46 w F6(j)p FL(Cut)608 4746 y FC( )669 4793 y F4(\()704
4781 y FX(h)732 4793 y Ga(a)780 4781 y FX(i)808 4793
y Ga(M)10 b(;)946 4781 y F9(\()974 4793 y Ga(x)1026 4781
y F9(\))1053 4793 y Ga(N)g F4(\))p F6(j)1196 4807 y Gc(x)1291
4793 y F6(\021)50 b(j)p Ga(M)10 b F6(j)1560 4807 y Gc(x)1600
4793 y F6(f)-7 b Ga(a)26 b F4(:=)1833 4781 y F9(\()1860
4793 y Ga(x)1912 4781 y F9(\))1955 4793 y F6(j)p Ga(N)10
b F6(j)2088 4807 y Gc(x)2123 4793 y F6(g)p Black 348
5007 a Gg(\(ii\))p Black 46 w F6(j)p FL(Cut)608 4960
y FC(!)669 5007 y F4(\()704 4995 y FX(h)732 5007 y Ga(a)780
4995 y FX(i)808 5007 y Ga(M)g(;)946 4995 y F9(\()974
5007 y Ga(x)1026 4995 y F9(\))1053 5007 y Ga(N)g F4(\))p
F6(j)1196 5021 y Gc(x)1291 5007 y F6(\021)50 b(j)p Ga(N)10
b F6(j)1545 5021 y Gc(x)1585 5007 y F6(f)-7 b Ga(x)25
b F4(:=)1822 4995 y FX(h)1849 5007 y Ga(a)1897 4995 y
FX(i)1940 5007 y F6(j)p Ga(M)10 b F6(j)2088 5021 y Gc(x)2123
5007 y F6(g)p Black 277 5220 a F7(Pr)l(oof)o(.)p Black
34 w Gg(By)23 b(calculation)j(using)f(Lemma)d(2.6.6)i(and)g(Corollary)h
(2.6.9)f(\(see)g(P)o(age)f(151\).)p 3436 5220 4 62 v
3440 5162 55 4 v 3440 5220 V 3494 5220 4 62 v Black Black
eop end
%%Page: 54 66
TeXDict begin 54 65 bop Black -144 51 a Gb(54)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(No)n(w)g(we)h(are)h(in)
f(a)g(position)j(to)e(sho)n(w)f(that)h(the)1894 280 y
Gc(l)q(oc)1852 317 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)27
b(project)e(onto)2934 280 y Gc(aux)2913 317 y F6(\000)-31
b(\000)g(!)p Gg(-reductions.)p Black 321 505 a Gb(Lemma)23
b(2.6.11:)p Black 35 w Gg(F)o(or)f(all)i Ga(M)5 b(;)15
b(N)36 b F6(2)24 b FY(T)1582 472 y FX($)1679 505 y Gg(if)f
Ga(M)1922 468 y Gc(l)q(oc)1880 505 y F6(\000)-31 b(\000)f(!)26
b Ga(N)10 b Gg(,)22 b(then)i F6(j)p Ga(M)10 b F6(j)2531
519 y Gc(x)2621 468 y(aux)2601 505 y F6(\000)-31 b(\000)f(!)2771
472 y FX(\003)2836 505 y F6(j)p Ga(N)10 b F6(j)2969 519
y Gc(x)3013 505 y Gg(.)p Black 321 718 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)e(the)f(de\002nition)j(of)1833
680 y Gc(l)q(oc)1791 718 y F6(\000)-31 b(\000)f(!)23
b Gg(\(see)h(P)o(age)f(151\).)p 3480 718 4 62 v 3484
660 55 4 v 3484 718 V 3538 718 4 62 v 321 922 a(As)28
b(e)o(xplained)j(earlier)l(,)g(this)e(lemma)f(is)h(not)g(strong)h
(enough)g(to)f(pro)o(v)o(e)g(strong)h(normalisation)h(for)321
1035 y F4(\()p FY(T)417 1002 y FX($)488 1035 y Ga(;)571
998 y Gc(l)q(oc)529 1035 y F6(\000)-31 b(\000)f(!)p F4(\))p
Gg(.)47 b(In)30 b(the)g(proof,)i(which)e(we)f(shall)i(gi)n(v)o(e)f(ne)o
(xt,)h(we)e(mak)o(e)h(use)g(of)g(the)g(recursi)n(v)o(e)i(path)321
1148 y(ordering)26 b(theorem)f(by)e(Dersho)n(witz.)p
Black 321 1335 a Gb(De\002nition)g(2.6.12)h Gg(\(Recursi)n(v)o(e)h(P)o
(ath)e(Ordering,)h(Dersho)n(witz,)h(1982\))p Gb(:)p Black
2660 1302 a F5(7)321 1448 y Gg(Let)e Ga(s)i F6(\021)g
Ga(f)10 b F4(\()p Ga(s)762 1462 y F9(1)801 1448 y Ga(;)15
b(:)g(:)g(:)h(;)f(s)1045 1462 y Gc(m)1112 1448 y F4(\))23
b Gg(and)h Ga(t)h F6(\021)g Ga(g)s F4(\()p Ga(t)1592
1462 y F9(1)1632 1448 y Ga(;)15 b(:)g(:)g(:)i(;)e(t)1867
1462 y Gc(n)1914 1448 y F4(\))23 b Gg(be)h(terms,)f(then)h
Ga(s)h(>)2646 1415 y Gc(r)r(po)2779 1448 y Ga(t)p Gg(,)p
Black Black 451 1633 a(if)e(and)h(only)g(if)806 1757
y(\(i\))119 b Ga(s)1053 1771 y Gc(i)1106 1757 y F6(\025)1177
1724 y Gc(r)r(po)1309 1757 y Ga(t)23 b Gg(for)g(some)h
Ga(i)i F4(=)f(1)p Ga(;)15 b(:)g(:)g(:)i(;)e(m)550 b Gg(\(subterm\))451
1881 y(or)780 2005 y(\(ii\))120 b Ga(f)34 b F6(\035)25
b Ga(g)i Gg(and)d Ga(s)g(>)1567 1972 y Gc(r)r(po)1700
2005 y Ga(t)1733 2019 y Gc(j)1792 2005 y Gg(for)g(all)f
Ga(j)31 b F4(=)25 b(1)p Ga(;)15 b(:)g(:)g(:)i(;)e(n)238
b Gg(\(decreasing)27 b(heads\))451 2130 y(or)755 2254
y(\(iii\))120 b Ga(f)34 b F4(=)25 b Ga(g)h Gg(and)e F6(f)-24
b(j)p Ga(s)1497 2268 y F9(1)1537 2254 y Ga(;)15 b(:)g(:)g(:)i(;)e(s)
1782 2268 y Gc(m)1849 2254 y F6(j)-24 b(g)26 b Ga(>)1992
2210 y Gc(r)r(po)1992 2283 y(mul)q(t)2172 2254 y F6(f)-24
b(j)p Ga(t)2251 2268 y F9(1)2291 2254 y Ga(;)15 b(:)g(:)g(:)i(;)e(t)
2526 2268 y Gc(n)2573 2254 y F6(j)-24 b(g)119 b Gg(\(equal)25
b(heads\))321 2439 y(where)h F6(\035)e Gg(is)i(a)e(precedence)29
b(de\002ned)d(o)o(v)o(er)f(term)g(constructors,)k Ga(>)2496
2395 y Gc(r)r(po)2496 2468 y(mul)q(t)2675 2439 y Gg(is)d(the)f(e)o
(xtension)j(of)d Ga(>)3439 2406 y Gc(r)r(po)321 2552
y Gg(to)f(\002nite)f(multisets)i(and)f F6(\025)1200 2519
y Gc(r)r(po)1331 2552 y Gg(means)f Ga(>)1656 2519 y Gc(r)r(po)1787
2552 y Gg(or)g(equi)n(v)n(alent)j(up)e(to)f(permutation)j(of)e
(subterms.)p Black 321 2789 a Gb(Theor)n(em)h(2.6.13)h
Gg(\(Dersho)n(witz,)g(1982\))p Gb(:)p Black 36 w Gg(The)e(recursi)n(v)o
(e)j(path)f(ordering)h Ga(>)2822 2756 y Gc(r)r(po)2954
2789 y Gg(is)e(well-founded,)321 2902 y(if)f(and)g(only)g(if)f(the)h
(precedence)j F6(\035)22 b Gg(is)i(well-founded.)321
3156 y(Unfortunately)-6 b(,)27 b(tw)o(o)c(problems)i(preclude)h(a)d
(direct)i(application)h(of)e(Dersho)n(witz')-5 b(s)25
b(theorem.)p Black 458 3356 a F6(\017)p Black 46 w Gg(First,)33
b(the)f(theorem)h(requires)h(a)d(well-founded)k(precedence)g(for)d(our)
g(term)f(constructors.)549 3469 y(Unfortunately)-6 b(,)38
b(our)c(reduction)i(rules)e(include)i(the)d(tw)o(o)g(reductions)k
(\(written)d(schemati-)549 3581 y(cally\))p Black Black
1327 3771 a FL(Cut)p F4(\()p 1502 3771 28 4 v 1520 3771
V 1537 3771 V 65 w Ga(;)p 1607 3771 V 1625 3771 V 1642
3771 V 80 w F4(\))1854 3734 y Gc(c)1885 3711 y FC(00)1805
3771 y F6(\000)-32 b(\000)h(!)100 b FL(Cut)2154 3724
y FC( )2214 3771 y F4(\()p 2251 3771 V 2269 3771 V 2287
3771 V 65 w Ga(;)p 2357 3771 V 2374 3771 V 2392 3771
V 80 w F4(\))1012 3884 y FL(Cut)1091 3837 y FC( )1151
3884 y F4(\()p FL(Cut)q F4(\()p 1362 3884 V 1380 3884
V 1397 3884 V 64 w Ga(;)p 1467 3884 V 1485 3884 V 1502
3884 V 80 w F4(\))p Ga(;)p 1607 3884 V 1625 3884 V 1642
3884 V 81 w F4(\))1870 3847 y Gc(x)1805 3884 y F6(\000)-32
b(\000)h(!)100 b FL(Cut)o F4(\()p FL(Cut)2326 3837 y
FC( )2387 3884 y F4(\()p 2424 3884 V 2443 3884 V 2460
3884 V 65 w Ga(;)p 2530 3884 V 2547 3884 V 2565 3884
V 80 w F4(\))p Ga(;)15 b FL(Cut)2746 3837 y FC( )2808
3884 y F4(\()p 2845 3884 V 2863 3884 V 2880 3884 V 65
w Ga(;)p 2950 3884 V 2968 3884 V 2985 3884 V 80 w F4(\)\))549
4071 y Gg(and)24 b(consequently)j(we)c(ha)n(v)o(e)h(the)g(c)o(ycle)p
Black Black 1643 4556 a @beginspecial 115 @llx 600 @lly
212 @urx 660 @ury 970 @rwi @clip @setspecial
%%BeginDocument: pics/2.6.0.cycle.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: 2.6.0.cycle.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o 2.6.0.cycle.ps 2.6.0.cycle.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 1999.11.11:2142
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (2.6.0.cycle.dvi)
@start
%DVIPSBitmapFont: Fa cmr10 10 1
/Fa 1 50 df<EB01C013031307131F13FFB5FCA2131F1200B3B3A8497E007FB512F0A31C
3879B72A>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmsy7 7 1
/Fb 1 49 df<13E0EA01F0EA03F8A3EA07F0A313E0A2120F13C0A3EA1F80A21300A25A12
3EA35AA3127812F8A25A12100D1E7D9F13>48 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmmi10 10 2
/Fc 2 121 df<EC3FC0903801FFF0903807E03C90380F800E90383F0007017E131F4913
7F484813FF485A485A120F4913FE001F143848481300A2127F90C8FCA35A5AA45AA31503
1507007E1406150E003E143C003F14706C14E0390F8007C03907C03F003801FFF838003F
C020267DA424>99 D<903907E001F090391FF807FC9039783E0E0F9039E01F1C1FD801C0
9038383F803A03800FF07F0100EBE0FF5A000E4A1300000C157E021F133C001C4AC7FC12
18A2C7123FA292C8FCA25CA2147EA214FEA24A130CA20101141C001E1518003F5BD87F81
143801835C00FF1560010714E03AFE0E7C01C0D87C1C495A2778383E0FC7FC391FF00FFC
3907C003F029267EA42F>120 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmsy5 5 1
/Fd 1 33 df<1338A35BA25B485A485A000FCAFC003FB712F0B812F8003F16F0000FCAFC
EA03806C7E6C7E1370A27FA32D157B9439>32 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe cmss10 10 3
/Fe 3 118 df<913803FF80023F13F891B6FC010315C05B131F4948C61380D97FF0130F
D9FFC013034849130191C9FC485A485A485A5B121F5B123F5BA2485AA448CAFCAC6C7EA4
6C7EA27F121F7F120F7F6C7E6C7E6C6C15206E14E06C6D1301D97FF0130FD93FFE137F6D
B6FC010715C06D150001005C023F13F0020313802B3C7BBA35>67
D<EA01FCAAB6FCA5D801FCC7FCB3A76D138014013900FF07C014FFA26D1300EB3FFCEB1F
E01A307FAE1E>116 D<00FEEB01FCB3AA1403A214076C131F387F807F90B5FC6C13F914
F1000F13C1D803FCC7FC1E267AA42B>I E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 639 1621 a @beginspecial @setspecial
 tx@Dict begin STP newpath 0.6 SLW 0  setgray  0.6 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { BeginArrow
1.  1.  scale false 0.4 0.3 2.0 8. Arrow  EndArrow  } def [ 45.52455
62.59595 28.45274 71.13185 11.38092 62.59595  /currentpoint load stopped
pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 0.6 SLW 0 
setgray 0 setlinecap stroke  grestore end


@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 0.6 SLW 0  setgray  0.6 SLW 0  setgray 
/ArrowA { BeginArrow 1.  1.  scale false 0.4 0.3 2.0 8. Arrow  EndArrow
 moveto } def /ArrowB { } def [ 45.52455 51.21501 28.45274 42.67911
11.38092 51.21501  /currentpoint load stopped pop 1. 0.1 0.  /c ED
/b ED /a ED false OpenCurve  gsave 0.6 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial 576
1178 a Fe(Cut)1050 1181 y(Cut)1117 1133 y Fd( )860 991
y Fc(c)896 961 y Fb(00)852 1356 y Fc(x)p Black 1926 5255
a Fa(1)p Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 549 4610 a(for)32 b(the)h(outermost)i(term)d
(constructors.)60 b(Bloo)33 b(and)g(Geuv)o(ers)g([1999])h(ha)n(v)o(e)g
(presented)h(a)549 4723 y(cle)n(v)o(er)k(solution)i(for)e(an)g
(analogous)i(problem)f(in)f Ga(\025)p F1(x)p Gg(,)i(which)f(we)e(shall)
h(adapt)h(for)f(our)549 4836 y(re)n(write)g(system.)76
b(The)39 b(essence)i(of)e(this)g(solution)j(is)d(that)g(we)f(tak)o(e)i
(into)g(account)h(that)549 4949 y F4(\()p FY(T)t Ga(;)702
4912 y Gc(aux)681 4949 y F6(\000)-31 b(\000)g(!)p F4(\))32
b Gg(is)h(strongly)j(normalising.)60 b(This)33 b(allo)n(ws)h(us)f(to)g
(order)h(the)g(term)f(constructors)549 5062 y(according)26
b(to)e(the)g(maximal)g(number)h(of)1919 5025 y Gc(aux)1898
5062 y F6(\000)-31 b(\000)g(!)p Gg(-reductions)27 b(their)d
Ga(x)p Gg(-normal)h(form)f(can)g(per)n(-)549 5175 y(form.)p
Black 321 5228 1290 4 v 427 5283 a F3(7)456 5314 y Fr(f)-24
b(j)14 b Fw(:)f(:)g(:)g Fr(j)-24 b(g)20 b F2(stands)f(for)g(a)g
(multiset)g(of)f(terms.)p Black Black Black eop end
%%Page: 55 67
TeXDict begin 55 66 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
b(ersion)2779 b(55)p 277 88 3691 4 v Black Black 414
317 a F6(\017)p Black 45 w Gg(The)28 b(second)i(problem)g(arises)g
(from)e(the)h(f)o(act)g(that)g(the)f(recursi)n(v)o(e)i(path)g(ordering)
g(theorem)504 430 y(applies)e(only)f(to)f(\002rst-order)h(re)n(write)g
(systems,)g(i.e.,)f(no)g(binding)i(operations)h(are)d(allo)n(wed.)504
543 y(In)g(our)h(term)f(calculus)i(ho)n(we)n(v)o(er)e(we)g(ha)n(v)o(e)g
(tw)o(o)g(binding)i(operations:)37 b(one)27 b(for)f(names)h(and)504
656 y(one)34 b(for)f(co-names.)58 b(W)-7 b(e)31 b(solv)o(e)j(this)f
(problem)h(by)f(introducing)j(another)f(term)e(calculus,)504
769 y(denoted)24 b(by)e FY(H)q Gg(,)e(for)h(which)h(we)f(can)h(apply)h
(this)g(theorem,)f(and)h(then)f(pro)o(v)o(e)g(strong)h(normal-)504
882 y(isation)j(for)d F4(\()p FY(T)t Ga(;)1073 845 y
Gc(l)q(oc)1031 882 y F6(\000)-31 b(\000)f(!)p F4(\))23
b Gg(by)h(translation.)277 1061 y(The)f(term)h(calculus)h
FY(H)e Gg(is)g(de\002ned)h(as)g(follo)n(ws.)p Black 277
1249 a Gb(De\002nition)f(2.6.14:)p Black 35 w Gg(Let)f
FY(H)h Gg(denote)i(the)f(set)f(of)h(all)g(terms)f(generated)j(by)e(the)
g(grammar)p Black Black 364 1428 a Ga(M)5 b(;)15 b(N)110
b F4(::=)100 b Ga(?)g F6(j)g Ga(M)30 b F6(\001)1314 1442
y Gc(n)1381 1428 y Ga(N)110 b F6(j)100 b Ga(M)10 b F6(h)p
Ga(N)g F6(i)1940 1442 y Gc(n)2087 1428 y F6(j)100 b(h)p
Ga(M)10 b F6(i)2380 1442 y Gc(n)2428 1428 y Ga(N)109
b F6(j)100 b FB(L)p Ga(M)5 b(;)15 b(N)10 b FB(M)101 b
F6(j)f FB(L)p Ga(M)10 b FB(M)277 1607 y Gg(where)24 b
Ga(n)e Gg(is)i(a)f(natural)i(number)-5 b(.)30 b(Furthermore,)24
b(we)f(ha)n(v)o(e)h(the)g(well-founded)j(precedence)p
Black Black 729 1787 28 4 v 746 1787 V 764 1787 V 811
1787 a F6(\001)836 1801 y Gc(n)p F9(+1)p 996 1787 V 1013
1787 V 1031 1787 V 1109 1787 a F6(\035)50 b(h)p 1287
1787 V 1305 1787 V 1323 1787 V 65 w(i)1385 1801 y Gc(n)p
1435 1787 V 1452 1787 V 1470 1787 V 1512 1787 a Ga(;)p
1580 1787 V 1598 1787 V 1615 1787 V 105 w F6(h)p 1679
1787 V 1697 1787 V 1715 1787 V 65 w(i)1777 1801 y Gc(n)1875
1787 y F6(\035)p 2019 1787 V 2036 1787 V 2054 1787 V
135 w(\001)2126 1801 y Gc(n)p 2196 1787 V 2213 1787 V
2231 1787 V 2309 1787 a F6(\035)g Ga(?;)41 b FB(L)p 2598
1787 V 2616 1787 V 2634 1787 V 65 w(M)p Ga(;)g FB(L)p
2799 1787 V 2817 1787 V 2835 1787 V 65 w Ga(;)p 2905
1787 V 2922 1787 V 2940 1787 V 80 w FB(M)26 b Ga(:)277
2041 y Gg(In)g(order)g(to)g(de\002ne)g(a)f(translation)j(from)e(terms)g
(of)f FY(T)2000 2008 y FX($)2096 2041 y Gg(to)g(terms)h(of)f
FY(H)q Gg(,)f(we)h(shall)h(use,)h(as)e(it)g(turns)277
2153 y(out)g(later)l(,)h(an)f(alternati)n(v)o(e)i(de\002nition)f(of)f
(the)f(set)h(of)g FY(T)2028 2121 y FX($)2099 2153 y Gg(.)31
b(This)24 b(alternati)n(v)o(e)j(de\002nition)g(is)d(required)277
2266 y(to)g(strengthen)i(an)e(induction)i(hypothesis.)p
Black 277 2454 a Gb(De\002nition)d(2.6.15:)p Black Black
Black 425 2631 a FY(T)486 2598 y FX($)482 2653 y Gc(<)p
FX(1)708 2579 y F5(def)715 2631 y F4(=)892 2530 y FK(n)978
2631 y Ga(M)1117 2526 y FK(\014)1117 2581 y(\014)1117
2635 y(\014)1195 2631 y Ga(M)35 b F6(2)25 b FY(T)1465
2598 y FX($)1559 2631 y Gg(and)f(for)g(e)n(v)o(ery)g(subterm)g
Ga(N)33 b Gg(of)23 b Ga(M)10 b Gg(,)23 b F6(j)p Ga(N)10
b F6(j)2859 2645 y Gc(x)2928 2631 y F6(2)25 b Ga(S)5
b(N)3148 2645 y Gc(aux)3293 2530 y FK(o)277 2903 y Gg(Clearly)-6
b(,)31 b(we)d(ha)n(v)o(e)h FY(T)982 2870 y FX($)978 2925
y Gc(<)p FX(1)1139 2903 y F6(\022)34 b FY(T)1305 2870
y FX($)1376 2903 y Gg(.)43 b(The)28 b(\002rst)h(property)h(we)e(need)i
(to)e(sho)n(w)h(for)g FY(T)2961 2870 y FX($)2957 2925
y Gc(<)p FX(1)3110 2903 y Gg(is)g(that)g(it)g(is)277
3016 y(closed)c(under)804 2979 y Gc(l)q(oc)762 3016 y
F6(\000)-31 b(\000)f(!)p Gg(-reductions.)p Black 277
3203 a Gb(Lemma)23 b(2.6.16:)p Black 35 w FY(T)950 3170
y FX($)946 3226 y Gc(<)p FX(1)1094 3203 y Gg(is)h(closed)h(under)1704
3166 y Gc(l)q(oc)1662 3203 y F6(\000)-31 b(\000)g(!)p
Gg(-reductions.)p Black 277 3416 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)d(the)h(de\002nition)h(of)1789
3379 y Gc(l)q(oc)1747 3416 y F6(\000)-31 b(\000)f(!)23
b Gg(\(see)h(P)o(age)f(152\).)p 3436 3416 4 62 v 3440
3358 55 4 v 3440 3416 V 3494 3416 4 62 v 277 3620 a(Ne)o(xt,)g(we)g
(shall)h(de\002ne)g(a)f(translation)k(from)c(terms)h(of)f
FY(T)2119 3587 y FX($)2115 3643 y Gc(<)p FX(1)2264 3620
y Gg(to)g(terms)h(of)g FY(H)q Gg(.)p Black 277 3808 a
Gb(De\002nition)c(2.6.17:)p Black 34 w Gg(The)g(translation)p
1553 3808 28 4 v 1571 3808 V 1588 3808 V 129 w F4(:)25
b FY(T)1752 3775 y FX($)1748 3830 y Gc(<)p FX(1)1900
3808 y F6(!)g FY(H)19 b Gg(is)h(inducti)n(v)o(ely)j(de\002ned)f(by)e
(the)h(follo)n(wing)277 3921 y(clauses)k(\()p Ga(l)r(;)15
b(m;)g(n)24 b Gg(are)f(natural)i(numbers\).)p Black Black
495 4119 a FL(Cut)p F4(\()668 4107 y FX(h)696 4119 y
Ga(a)744 4107 y FX(i)771 4119 y Ga(S)5 b(;)872 4107 y
F9(\()900 4119 y Ga(x)952 4107 y F9(\))980 4119 y Ga(T)12
b F4(\))p 495 4156 586 4 v 1128 4067 a F5(def)1135 4119
y F4(=)54 b Ga(S)p 1260 4134 61 4 v 25 w F6(\001)1366
4134 y Gc(l)1413 4119 y Ga(T)p 1413 4134 66 4 v 345 w(l)1887
4067 y F5(def)1894 4119 y F4(=)i FW(M)t(A)t(X)t(R)t(E)t(D)2361
4133 y Gc(aux)2484 4119 y F4(\()p F6(j)p FL(Cut)p F4(\()2717
4107 y FX(h)2745 4119 y Ga(a)2793 4107 y FX(i)2820 4119
y Ga(S)5 b(;)2921 4107 y F9(\()2949 4119 y Ga(x)3001
4107 y F9(\))3029 4119 y Ga(T)12 b F4(\))p F6(j)3154
4133 y Gc(x)3199 4119 y F4(\))493 4266 y FL(Cut)572 4219
y FC( )633 4266 y F4(\()668 4254 y FX(h)696 4266 y Ga(a)744
4254 y FX(i)771 4266 y Ga(S)5 b(;)872 4254 y F9(\()900
4266 y Ga(x)952 4254 y F9(\))980 4266 y Ga(T)12 b F4(\))p
493 4303 588 4 v 1128 4214 a F5(def)1135 4266 y F4(=)54
b Ga(S)p 1260 4281 61 4 v 5 w F6(h)p Ga(T)p 1356 4281
66 4 v 13 w F6(i)1457 4280 y Gc(m)1760 4266 y Ga(m)1887
4214 y F5(def)1894 4266 y F4(=)i FW(M)t(A)t(X)t(R)t(E)t(D)2361
4280 y Gc(aux)2484 4266 y F4(\()p F6(j)p FL(Cut)2623
4219 y FC( )2684 4266 y F4(\()2719 4254 y FX(h)2747 4266
y Ga(a)2795 4254 y FX(i)2822 4266 y Ga(S)5 b(;)2923 4254
y F9(\()2951 4266 y Ga(x)3003 4254 y F9(\))3031 4266
y Ga(T)12 b F4(\))p F6(j)3156 4280 y Gc(x)3201 4266 y
F4(\))493 4413 y FL(Cut)572 4365 y FC(!)633 4413 y F4(\()668
4401 y FX(h)696 4413 y Ga(a)744 4401 y FX(i)771 4413
y Ga(S)5 b(;)872 4401 y F9(\()900 4413 y Ga(x)952 4401
y F9(\))980 4413 y Ga(T)12 b F4(\))p 493 4450 588 4 v
1128 4361 a F5(def)1135 4413 y F4(=)54 b F6(h)p Ga(S)p
1295 4428 61 4 v 5 w F6(i)1391 4427 y Gc(n)1439 4413
y Ga(T)p 1439 4428 66 4 v 294 w(n)1887 4361 y F5(def)1894
4413 y F4(=)i FW(M)t(A)t(X)t(R)t(E)t(D)2361 4427 y Gc(aux)2484
4413 y F4(\()p F6(j)p FL(Cut)2623 4365 y FC(!)2684 4413
y F4(\()2719 4401 y FX(h)2747 4413 y Ga(a)2795 4401 y
FX(i)2822 4413 y Ga(S)5 b(;)2923 4401 y F9(\()2951 4413
y Ga(x)3003 4401 y F9(\))3031 4413 y Ga(T)12 b F4(\))p
F6(j)3156 4427 y Gc(x)3201 4413 y F4(\))277 4630 y Gg(Otherwise)p
Black Black 930 4743 a FL(Ax)p F4(\()p Ga(x;)j(a)p F4(\))p
930 4780 314 4 v 1344 4692 a F5(def)1351 4743 y F4(=)106
b Ga(?)679 4890 y FL(Not)822 4904 y Gc(R)880 4890 y F4(\()915
4878 y F9(\()943 4890 y Ga(x)995 4878 y F9(\))1022 4890
y Ga(M)10 b(;)15 b(a)p F4(\))p 679 4927 565 4 v 1344
4838 a F5(def)1351 4890 y F4(=)106 b FB(L)p Ga(M)p 1563
4905 99 4 v 10 w FB(M)463 5037 y FL(And)617 5051 y Gc(R)675
5037 y F4(\()710 5025 y FX(h)738 5037 y Ga(a)786 5025
y FX(i)813 5037 y Ga(M)11 b(;)952 5025 y FX(h)979 5037
y Ga(b)1018 5025 y FX(i)1046 5037 y Ga(N)f(;)15 b(c)p
F4(\))p 463 5074 782 4 v 1344 4985 a F5(def)1351 5037
y F4(=)106 b FB(L)p Ga(M)p 1563 5052 99 4 v 10 w(;)15
b(N)p 1701 5052 83 4 v 11 w FB(M)736 5184 y FL(Or)835
5147 y Gc(i)835 5207 y(R)893 5184 y F4(\()928 5172 y
FX(h)956 5184 y Ga(a)1004 5172 y FX(i)1031 5184 y Ga(M)10
b(;)15 b(b)p F4(\))p 736 5221 509 4 v 1344 5132 a F5(def)1351
5184 y F4(=)106 b FB(L)p Ga(M)p 1563 5199 99 4 v 10 w
FB(M)584 5331 y FL(Imp)728 5353 y Gc(R)786 5331 y F4(\()821
5319 y F9(\()849 5331 y Ga(x)901 5319 y F9(\))p FX(h)956
5331 y Ga(a)1004 5319 y FX(i)1031 5331 y Ga(M)10 b(;)15
b(b)p F4(\))p 584 5368 661 4 v 1344 5279 a F5(def)1351
5331 y F4(=)106 b FB(L)p Ga(M)p 1563 5346 99 4 v 10 w
FB(M)2170 4817 y FL(Not)2313 4831 y Gc(L)2365 4817 y
F4(\()2400 4805 y FX(h)2428 4817 y Ga(a)2476 4805 y FX(i)2504
4817 y Ga(M)10 b(;)15 b(x)p F4(\))p 2170 4854 559 4 v
2829 4765 a F5(def)2836 4817 y F4(=)106 b FB(L)p Ga(M)p
3048 4832 99 4 v 11 w FB(M)2159 4963 y FL(And)2313 4927
y Gc(i)2313 4986 y(L)2365 4963 y F4(\()2400 4951 y F9(\()2428
4963 y Ga(x)2480 4951 y F9(\))2508 4963 y Ga(M)10 b(;)15
b(y)s F4(\))p 2159 5001 571 4 v 2829 4912 a F5(def)2836
4963 y F4(=)106 b FB(L)p Ga(M)p 3048 4978 99 4 v 11 w
FB(M)1990 5111 y FL(Or)2089 5125 y Gc(L)2141 5111 y F4(\()2176
5099 y F9(\()2204 5111 y Ga(x)2256 5099 y F9(\))2283
5111 y Ga(M)10 b(;)2421 5099 y F9(\()2449 5111 y Ga(y)2497
5099 y F9(\))2524 5111 y Ga(N)g(;)15 b(z)t F4(\))p 1990
5148 740 4 v 2829 5059 a F5(def)2836 5111 y F4(=)106
b FB(L)p Ga(M)p 3048 5126 99 4 v 11 w(;)15 b(N)p 3187
5126 83 4 v 10 w FB(M)1943 5257 y FL(Imp)2087 5279 y
Gc(L)2139 5257 y F4(\()2174 5245 y FX(h)2202 5257 y Ga(a)2250
5245 y FX(i)2277 5257 y Ga(M)c(;)2416 5245 y F9(\()2443
5257 y Ga(x)2495 5245 y F9(\))2523 5257 y Ga(N)f(;)15
b(y)s F4(\))p 1943 5295 787 4 v 2829 5206 a F5(def)2836
5257 y F4(=)106 b FB(L)p Ga(M)p 3048 5272 99 4 v 11 w(;)15
b(N)p 3187 5272 83 4 v 10 w FB(M)p Black Black eop end
%%Page: 56 68
TeXDict begin 56 67 bop Black -144 51 a Gb(56)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(Because)30
b(of)f(the)h(restriction)i(put)d(on)g FY(T)1617 284 y
FX($)1613 340 y Gc(<)p FX(1)1739 317 y Gg(,)h(it)f(is)f(not)i(dif)n
(\002cult)g(to)f(pro)o(v)o(e)g(that)h(this)g(translation)i(is)321
430 y(well-de\002ned.)p Black 321 618 a Gb(Lemma)23 b(2.6.18:)p
Black 35 w Gg(The)g(translation)p 1503 633 60 4 v 111
w F4(:)i FY(T)1699 585 y FX($)1695 640 y Gc(<)p FX(1)1846
618 y F6(!)h FY(H)c Gg(is)h(well-de\002ned.)p Black 321
830 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Assume)32 b Ga(M)52
b F6(2)41 b FY(T)1206 797 y FX($)1202 853 y Gc(<)p FX(1)1328
830 y Gg(.)55 b(W)-7 b(e)31 b(ha)n(v)o(e)i(by)g(de\002nition)h(of)e
FY(T)2427 797 y FX($)2423 853 y Gc(<)p FX(1)2580 830
y Gg(that)h(the)g Ga(x)p Gg(-normal)g(form)g(of)321 943
y(e)n(v)o(ery)25 b(subterm,)h Ga(N)10 b Gg(,)24 b(of)g
Ga(M)34 b Gg(is)25 b(an)f(element)i(in)e Ga(S)5 b(N)1968
957 y Gc(aux)2091 943 y Gg(.)31 b(Consequently)-6 b(,)29
b FW(M)t(A)t(X)t(R)t(E)t(D)3028 957 y Gc(aux)3150 943
y F4(\()p F6(j)p Ga(N)10 b F6(j)3318 957 y Gc(x)3362
943 y F4(\))25 b Gg(is)f(a)321 1056 y(natural)h(number)-5
b(.)p 3480 1056 4 62 v 3484 998 55 4 v 3484 1056 V 3538
1056 4 62 v 462 1260 a(The)32 b(ne)o(xt)h(lemma)f(is)g(useful)h(for)f
(comparing)j(labels)e(of)f(terms)g(belonging)j(to)e FY(H)q
Gg(;)h(it)e(relates)321 1373 y(tw)o(o)27 b(terms)h(of)f
FY(T)875 1340 y FX($)871 1396 y Gc(<)p FX(1)1024 1373
y Gg(according)j(to)e(the)f(number)i(of)2071 1336 y Gc(aux)2051
1373 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)31 b(their)d
Ga(x)p Gg(-normal)h(form)e(can)321 1486 y(perform.)p
Black 321 1674 a Gb(Lemma)c(2.6.19:)p Black 35 w Gg(F)o(or)f(all)i
(terms)g Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)1807 1641
y FX($)1803 1696 y Gc(<)p FX(1)1952 1674 y Gg(we)e(ha)n(v)o(e)p
Black 417 1846 a(\(i\))p Black 49 w FW(M)t(A)t(X)t(R)t(E)t(D)891
1860 y Gc(aux)1013 1846 y F4(\()p F6(j)p Ga(M)10 b F6(j)1196
1860 y Gc(x)1241 1846 y F4(\))25 b F6(\025)i FW(M)t(A)t(X)t(R)t(E)t(D)
1739 1860 y Gc(aux)1862 1846 y F4(\()p F6(j)p Ga(N)10
b F6(j)2030 1860 y Gc(x)2074 1846 y F4(\))p Gg(,)23 b(pro)o(vided)j
Ga(M)2665 1809 y Gc(l)q(oc)2623 1846 y F6(\000)-31 b(\000)f(!)25
b Ga(N)10 b Gg(.)p Black 392 1990 a(\(ii\))p Black 49
w FW(M)t(A)t(X)t(R)t(E)t(D)891 2004 y Gc(aux)1013 1990
y F4(\()p F6(j)p Ga(M)g F6(j)1196 2004 y Gc(x)1241 1990
y F4(\))35 b F6(\025)h FW(M)t(A)t(X)t(R)t(E)t(D)1758
2004 y Gc(aux)1880 1990 y F4(\()p F6(j)p Ga(N)10 b F6(j)2048
2004 y Gc(x)2093 1990 y F4(\))p Gg(,)29 b(pro)o(vided)h
Ga(N)38 b Gg(is)28 b(an)h(immediate)g(subterm)549 2103
y(of)23 b Ga(M)10 b Gg(,)23 b(and)h Ga(M)32 b Gg(is)24
b(unlabelled.)p Black 367 2247 a(\(iii\))p Black 49 w
FW(M)t(A)t(X)t(R)t(E)t(D)891 2261 y Gc(aux)1013 2247
y F4(\()p F6(j)p Ga(M)10 b F6(j)1196 2261 y Gc(x)1241
2247 y F4(\))k Ga(>)i FW(M)t(A)t(X)t(R)t(E)t(D)1718 2261
y Gc(aux)1840 2247 y F4(\()p F6(j)p Ga(N)10 b F6(j)2008
2261 y Gc(x)2053 2247 y F4(\))p Gg(,)25 b(pro)o(vided)j
Ga(M)2674 2210 y Gc(l)2696 2186 y FC(0)2611 2247 y F6(\000)-31
b(\000)f(!)30 b Ga(N)35 b Gg(or)26 b Ga(M)3197 2210 y
Gc(c)3228 2186 y FC(00)3148 2247 y F6(\000)-32 b(\000)h(!)29
b Ga(N)35 b Gg(on)549 2360 y(the)23 b(outermost)j(le)n(v)o(el.)p
Black 321 2572 a F7(Pr)l(oof)o(.)p Black 34 w Gg(\(i\))31
b(follo)n(ws)h(from)f(Lemma)f(2.6.11;)36 b(for)31 b(\(ii\))h(note)g
(that)f(all)h(reductions)i(which)d F6(j)p Ga(N)10 b F6(j)3345
2586 y Gc(x)3420 2572 y Gg(can)321 2685 y(perform)25
b(can)e(be)h(performed)h(by)e F6(j)p Ga(M)10 b F6(j)1556
2699 y Gc(x)1601 2685 y Gg(;)23 b(\(iii\))h(is)f(by)g(simple)h
(calculation)j(using)d(Lemma)f(2.6.7)g(and)321 2798 y(the)h(f)o(act)g
(that)g(the)g(side)g(conditions)j(put)d(on)1779 2761
y Gc(c)1810 2737 y FC(00)1729 2798 y F6(\000)-31 b(\000)g(!)22
b Gg(ensures)k(that)e F6(j)p Ga(M)10 b F6(j)2525 2812
y Gc(x)2615 2761 y(aux)2595 2798 y F6(\000)-32 b(\000)h(!)25
b(j)p Ga(N)10 b F6(j)2923 2812 y Gc(x)2967 2798 y Gg(.)p
3480 2798 V 3484 2740 55 4 v 3484 2798 V 3538 2798 4
62 v 321 3002 a(No)n(w)26 b(we)g(are)h(in)g(the)h(position)h(to)e(pro)o
(v)o(e)g(the)h(\(main\))f(lemma)g(that)g(relates)i(e)n(v)o(ery)3044
2965 y Gc(l)q(oc)3002 3002 y F6(\000)-31 b(\000)g(!)p
Gg(-reduction)321 3115 y(to)21 b(a)g(pair)h(of)f(terms)h(that)f(belong)
i(to)e FY(H)g Gg(and)g(which)h(are)f(ordered)i(decreasingly)i
(according)f(to)d Ga(>)3416 3082 y Gc(r)r(po)3524 3115
y Gg(.)p Black 321 3303 a Gb(Lemma)i(2.6.20:)p Black
35 w Gg(F)o(or)f(all)i Ga(M)5 b(;)15 b(N)36 b F6(2)24
b FY(T)1582 3270 y FX($)1578 3325 y Gc(<)p FX(1)1704
3303 y Gg(,)f(if)g Ga(M)1993 3265 y Gc(l)q(oc)1952 3303
y F6(\000)-32 b(\000)h(!)25 b Ga(N)10 b Gg(,)22 b(then)j
Ga(M)p 2455 3318 99 4 v 35 w(>)2649 3270 y Gc(r)r(po)2782
3303 y Ga(N)p 2782 3318 83 4 v 10 w Gg(.)p Black 321
3515 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(induction)j(on)e(the)f
(de\002nition)j(of)1833 3478 y Gc(l)q(oc)1791 3515 y
F6(\000)-31 b(\000)f(!)23 b Gg(\(see)h(P)o(ages)g(152\226155\).)p
3480 3515 4 62 v 3484 3457 55 4 v 3484 3515 V 3538 3515
4 62 v 321 3719 a(Using)j(this)g(lemma,)f(we)f(can)i(sho)n(w)f(that)h
(e)n(v)o(ery)1943 3682 y Gc(l)q(oc)1901 3719 y F6(\000)-32
b(\000)h(!)p Gg(-reduction)29 b(sequence)g(starting)f(with)e(a)g(term)
321 3832 y(of)e FY(T)f Gg(is)g(terminating.)p Black 321
4020 a Gb(Lemma)32 b(2.6.21:)p Black 35 w Gg(Ev)o(ery)1231
3983 y Gc(l)q(oc)1189 4020 y F6(\000)-31 b(\000)g(!)p
Gg(-reduction)35 b(sequence)g(starting)g(with)d(a)g(term)h(belonging)i
(to)e FY(T)f Gg(is)321 4133 y(terminating.)p Black 321
4345 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Suppose)22 b(for)e(the)h(sak)o
(e)g(of)f(deri)n(ving)i(a)e(contradiction)k(that)d(from)g
Ga(M)29 b Gg(the)21 b(follo)n(wing)h(in\002nite)321 4458
y(reduction)k(sequence)g(starts.)1074 4624 y Ga(M)36
b F6(\021)25 b Ga(M)1382 4638 y F9(1)1488 4587 y Gc(l)q(oc)1447
4624 y F6(\000)-32 b(\000)h(!)25 b Ga(M)1730 4638 y F9(2)1837
4587 y Gc(l)q(oc)1795 4624 y F6(\000)-31 b(\000)f(!)25
b Ga(M)2078 4638 y F9(3)2185 4587 y Gc(l)q(oc)2143 4624
y F6(\000)-31 b(\000)g(!)25 b Ga(M)2427 4638 y F9(4)2534
4587 y Gc(l)q(oc)2492 4624 y F6(\000)-32 b(\000)h(!)25
b Ga(:)15 b(:)g(:)321 4806 y Gg(By)25 b(Lemma)g(2.6.6)h(we)f(ha)n(v)o
(e)h(for)g(all)g(subterms)h Ga(N)35 b Gg(of)25 b Ga(M)35
b Gg(that)26 b F6(j)p Ga(N)10 b F6(j)2511 4820 y Gc(x)2585
4806 y F6(\021)29 b Ga(N)35 b Gg(\()p Ga(M)g Gg(does)27
b(not)f(contain)321 4919 y(an)o(y)21 b(labelled)h(cut\),)f(and)g(by)f
(Theorem)h(2.3.19)g(we)e(kno)n(w)h(that)h(each)g(of)f(them)g(is)g
(strongly)j(normalis-)p Black Black eop end
%%Page: 57 69
TeXDict begin 57 68 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
b(57)p 277 88 3691 4 v Black 277 353 a Gg(ing)24 b(under)666
316 y Gc(aux)645 353 y F6(\000)-31 b(\000)g(!)p Gg(.)28
b(Consequently)-6 b(,)26 b(e)n(v)o(ery)g FW(M)t(A)t(X)t(R)t(E)t(D)1969
367 y Gc(aux)2091 353 y F4(\()p F6(j)p Ga(N)10 b F6(j)2259
367 y Gc(x)2304 353 y F4(\))23 b Gg(is)g(\002nite,)g(and)h(thus)g
Ga(M)33 b Gg(belongs)25 b(to)277 466 y FY(T)338 433 y
FX($)334 488 y Gc(<)p FX(1)460 466 y Gg(.)j(By)21 b(Lemmas)h(2.6.16)g
(and)h(2.6.20)g(we)e(ha)n(v)o(e)i(that)g(the)g(in\002nite)g(reduction)i
(sequence)f(starting)277 579 y(from)g Ga(M)32 b Gg(can)24
b(be)g(mapped)g(onto)h(the)f(decreasing)i(chain)1124
802 y Ga(M)1212 816 y F9(1)p 1124 830 128 4 v 1277 802
a Ga(>)1348 765 y Gc(r)r(po)1480 802 y Ga(M)1568 816
y F9(2)p 1480 830 V 1633 802 a Ga(>)1704 765 y Gc(r)r(po)1837
802 y Ga(M)1925 816 y F9(3)p 1837 830 V 1989 802 a Ga(>)2060
765 y Gc(r)r(po)2193 802 y Ga(M)2281 816 y F9(4)p 2193
830 V 2346 802 a Ga(>)2417 765 y Gc(r)r(po)2549 802 y
Ga(:)15 b(:)g(:)277 1034 y Gg(which)33 b(ho)n(we)n(v)o(er)h
(contradicts)i(the)d(well-foundedness)k(of)c Ga(>)2297
1001 y Gc(r)r(po)2404 1034 y Gg(.)56 b(Thus)33 b(all)2862
997 y Gc(l)q(oc)2820 1034 y F6(\000)-31 b(\000)g(!)o
Gg(-reduction)36 b(se-)277 1147 y(quences)26 b(starting)f(with)e(a)h
(term)f(that)h(is)f(an)h(element)g(in)g FY(T)f Gg(must)g(terminate.)p
3436 1147 4 62 v 3440 1089 55 4 v 3440 1147 V 3494 1147
4 62 v 418 1351 a(Ne)o(xt,)h(we)f(e)o(xtend)i(this)g(lemma)f(to)g(all)g
(terms)h(of)f FY(T)2053 1318 y FX($)2123 1351 y Gg(.)30
b(T)-7 b(o)23 b(do)h(so,)g(we)g(shall)h(\002rst)f(sho)n(w)f(that)i(for)
277 1464 y(e)n(v)o(ery)h Ga(M)39 b F6(2)28 b FY(T)777
1431 y FX($)873 1464 y Gg(there)e(is)f(a)g(term)g Ga(N)39
b F6(2)29 b FY(T)t Gg(,)20 b(such)27 b(that)f Ga(N)2232
1427 y Gc(l)q(oc)2190 1464 y F6(\000)-31 b(\000)g(!)2361
1431 y FX(\003)2429 1464 y Ga(M)10 b Gg(.)34 b(Because)26
b Ga(N)35 b Gg(is)25 b(an)g(element)277 1577 y(in)31
b FY(T)t Gg(,)c(we)j(ha)n(v)o(e)i(that)f Ga(N)40 b Gg(is)30
b(strongly)j(normalising)g(by)e(the)g(lemma)g(just)g(gi)n(v)o(en,)i
(and)e(so)g Ga(M)10 b Gg(,)31 b(too,)277 1690 y(must)24
b(be)f(strongly)j(normalising.)p Black 277 1877 a Gb(Lemma)d(2.6.22:)p
Black 35 w Gg(F)o(or)h(e)n(v)o(ery)g(term)g Ga(M)37 b
F6(2)26 b FY(T)1722 1844 y FX($)1816 1877 y Gg(with)e(the)h(typing)h
(judgement)g F4(\000)2881 1865 y Gc(.)2936 1877 y Ga(M)3059
1865 y Gc(.)3114 1877 y F4(\001)p Gg(,)d(there)j(is)277
1990 y(a)d(term)h Ga(N)35 b F6(2)25 b FY(T)d Gg(with)i(the)g(typing)h
(judgement)g F4(\000)1840 1957 y FX(0)1863 1990 y Ga(;)15
b F4(\000)1986 1978 y Gc(.)2041 1990 y Ga(N)2149 1978
y Gc(.)2204 1990 y F4(\001)p Ga(;)g F4(\001)2396 1957
y FX(0)2442 1990 y Gg(such)24 b(that)g Ga(N)2940 1953
y Gc(l)q(oc)2898 1990 y F6(\000)-31 b(\000)g(!)3069 1957
y FX(\003)3133 1990 y Ga(M)10 b Gg(.)p Black 277 2203
a F7(Pr)l(oof)o(.)p Black 34 w Gg(W)-7 b(e)23 b(construct)k
Ga(N)33 b Gg(by)24 b(inducti)n(v)o(ely)j(replacing)f(in)e
Ga(M)34 b Gg(all)24 b(occurrences)k(of)c FL(Cut)3009
2155 y FC( )3094 2203 y Gg(and)g FL(Cut)3327 2155 y FC(!)3411
2203 y Gg(by)277 2316 y(some)g(instances)i(of)d FL(Cut)g
Gg(\(see)h(P)o(age)f(155\).)p 3436 2316 V 3440 2257 55
4 v 3440 2316 V 3494 2316 4 62 v 277 2520 a(No)n(w)f(the)i(strong)h
(normalisation)i(theorem)d(is)g(by)f(a)h(simple)g(contradiction)j(ar)n
(gument.)p Black 277 2707 a Gb(Theor)n(em)d(2.6.23:)p
Black 34 w Gg(The)g(reduction)i(system)e F4(\()p FY(T)1844
2674 y FX($)1915 2707 y Ga(;)1997 2670 y Gc(l)q(oc)1955
2707 y F6(\000)-31 b(\000)g(!)p F4(\))23 b Gg(is)g(strongly)j
(normalising.)p Black 277 2920 a F7(Pr)l(oof)o(.)p Black
34 w Gg(Suppose)21 b Ga(M)35 b F6(2)25 b FY(T)1132 2887
y FX($)1222 2920 y Gg(is)20 b(not)h(strongly)h(normalising.)30
b(Then)20 b(by)g(the)h(lemma)e(just)i(gi)n(v)o(en)f(there)277
3033 y(is)27 b(a)g(term)g Ga(N)42 b F6(2)32 b FY(T)26
b Gg(such)j(that)e Ga(N)1428 2996 y Gc(l)q(oc)1387 3033
y F6(\000)-32 b(\000)h(!)1557 3000 y FX(\003)1628 3033
y Ga(M)10 b Gg(.)40 b(Clearly)-6 b(,)28 b(if)f Ga(M)37
b Gg(is)27 b(not)h(strongly)h(normalising,)i(then)277
3146 y(so)d(is)g Ga(N)10 b Gg(,)29 b(which)f(ho)n(we)n(v)o(er)h
(contradicts)i(Lemma)c(2.6.21.)44 b(Consequently)-6 b(,)32
b Ga(M)38 b Gg(must)28 b(be)g(strongly)277 3259 y(normalising.)p
3436 3259 V 3440 3201 55 4 v 3440 3259 V 3494 3259 4
62 v 277 3463 a(While)k(Gentzen-lik)o(e)i(local)f(reductions)h(tend)f
(to)e(break)i(strong)g(normalisation,)j(in)c(this)g(section)277
3576 y(we)23 b(ha)n(v)o(e)h(sho)n(wn)g(that)g(a)e(strongly)k
(normalising)g(cut-elimination)h(procedure)f(can)e(be)g(obtained)h(by)
277 3689 y(replacing)h(our)e(global)h(operation)h(of)e(proof)g
(substitution)j(with)d(appropriate)i(local)f(reductions.)277
3995 y Ge(2.7)119 b(Notes)277 4218 y Gg(Se)n(v)o(eral)35
b(cut-elimination)k(procedures)f(ha)n(v)o(e)d(been)h(introduced)i(in)d
(this)h(chapter)l(,)j(and)d(we)e(ha)n(v)o(e)277 4331
y(focused)e(on)e(sho)n(wing,)i(in)d(each)i(case,)g(the)f(property)i(of)
e(strong)h(normalisation.)51 b(In)29 b(this)i(section)277
4444 y(we)25 b(shall)h(tak)o(e)g(a)f(step)h(back)g(and)g(consider)i(a)d
(more)g(global)i(picture.)36 b(W)-7 b(e)24 b(shall)j(\002rst)e(moti)n
(v)n(ate)h(our)277 4557 y(use)31 b(of)g(tw)o(o)f(slightly)j(dif)n
(ferent)g(notions)g(of)d(proof)i(substitution.)54 b(Ne)o(xt,)32
b(we)e(shall)i(compare)g(our)277 4670 y(w)o(ork)23 b(to)g(the)h
(cut-elimination)j(procedure)e(by)e(Dragalin)h(and)g(to)f(the)g
(symmetric)h(lambda)g(calculus)277 4783 y(by)g(Barbanera)h(and)f
(Berardi.)277 5046 y Fq(2.7.1)99 b(Wh)o(y)24 b(T)-7 b(w)o(o)25
b(Notions)f(of)h(Pr)n(oof)g(Substitution?)277 5237 y
Gg(The)33 b(proof)h(substitution)i(denoted)f(by)e F4([)p
1606 5237 28 4 v 1624 5237 V 1642 5237 V 65 w(])f Gg(w)o(as)h
(introduced)j(in)d(order)h(to)f(a)n(v)n(oid)h(in\002nite)g(reduc-)277
5350 y(tion)i(sequences)j(arising)e(from)e(the)h(too)g(liberal)h
(de\002nition)h(of)d(Gentzen')-5 b(s)37 b(reduction)i(rules)d(for)p
Black Black eop end
%%Page: 58 70
TeXDict begin 58 69 bop Black -144 51 a Gb(58)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 353 a Gg(commuting)29
b(cuts.)40 b(W)-7 b(e)26 b(modi\002ed)i(this)f(proof)i(substitution)h
(in)d(Section)h(2.3)f(so)g(that)h(independent)321 466
y(substitutions)i(can)d(commute.)36 b(The)26 b(modi\002ed)g(v)n(ariant)
h(w)o(as)f(referred)i(to)e(as)f(auxiliary)k(proof)e(sub-)321
579 y(stitution)33 b(and)f(denoted)g(by)f F6(f)p 1296
579 28 4 v 1315 579 V 1332 579 V 65 w(g)p Gg(.)51 b(Both)30
b(substitution)35 b(operations)f(are)d(applied)h(when)f(instances)321
692 y(of)h(commuting)h(cuts)f(are)g(reduced:)47 b F4([)p
1576 692 V 1594 692 V 1612 692 V 65 w(])31 b Gg(is)g(used)i(in)e(the)h
(cut-elimination)k(procedure)e F4(\()p FY(T)t Ga(;)3372
654 y Gc(cut)3341 692 y F6(\000)-32 b(\000)h(!)p F4(\))321
804 y Gg(and)25 b F6(f)p 523 804 V 541 804 V 559 804
V 65 w(g)f Gg(in)g F4(\()p FY(T)t Ga(;)902 767 y Gc(aux)882
804 y F6(\000)-32 b(\000)h(!)p F4(\))p Gg(.)30 b(In)24
b(Section)h(2.6)g(we)e(deri)n(v)o(ed)i(from)f F4(\()p
FY(T)t Ga(;)2447 767 y Gc(aux)2427 804 y F6(\000)-31
b(\000)g(!)o F4(\))24 b Gg(the)h(local)g(cut-elimination)321
917 y(procedure)30 b F4(\()p FY(T)807 884 y FX($)878
917 y Ga(;)960 880 y Gc(l)q(oc)918 917 y F6(\000)-31
b(\000)g(!)p F4(\))p Gg(,)27 b(where)g(in)f(place)i(of)f(the)g
(substitution)k(operation)e F6(f)p 2842 917 V 2860 917
V 2878 917 V 65 w(g)p Gg(,)e(local)h(reduction)321 1030
y(rules)23 b(are)e(applied.)30 b(This)21 b(cut-elimination)k(procedure)
f(could)f(also)f(be)g(deri)n(v)o(ed)g(from)f F4(\()p
FY(T)t Ga(;)3257 993 y Gc(cut)3226 1030 y F6(\000)-31
b(\000)g(!)o F4(\))q Gg(,)21 b(in)321 1143 y(which)27
b(case)g(we)f(w)o(ould)h(ha)n(v)o(e)g(a)g(slightly)h(dif)n(ferent)h
(local)e(procedure.)40 b(All)26 b(procedures)k(are)d(com-)321
1256 y(plete)f(in)f(the)g(sense)g(of)g(eliminating)i(all)e(cuts)g(from)
g(a)f(classical)j(proof.)34 b(Thus)25 b(the)g(question)i(arises,)321
1369 y(why)22 b(did)g(we)g(introduce)j(tw)o(o)d(cut-elimination)k
(procedures)f(for)d FY(T)t Gg(,)c(or)k(more)g(speci\002cally)j(why)c
(did)321 1482 y(we)i(introduce)i(tw)o(o)e(proof)i(substitutions?)33
b(In)23 b(the)g(follo)n(wing)i(we)d(will)h(discuss)i(the)f(trade-of)n
(fs)h(that)321 1595 y(led)f(us)g(to)f(gi)n(v)o(e)h(the)g(tw)o(o)f(v)o
(ersions)i(of)f(substitution)j(and)d(cut-elimination.)462
1724 y(Whilst)e(our)f(sequent)i(calculus)g(gi)n(v)o(en)e(in)g(Section)g
(2.2)g(is)f(rather)i(dif)n(ferent)h(from)e(Gentzen')-5
b(s)22 b(se-)321 1837 y(quent)i(calculus)g(LK)d(\(all)i(structural)h
(rules)g(are)e(implicit\),)i(the)e(cut-elimination)k(rules)e(of)e
F4(\()p FY(T)t Ga(;)3372 1800 y Gc(cut)3341 1837 y F6(\000)-32
b(\000)h(!)p F4(\))321 1950 y Gg(are)32 b(v)o(ery)f(reminiscent)i(of)e
(his)h(rules,)h(e)o(xcept)f(that)g(we)e(allo)n(w)h(cuts)h(to)f(pass)h
(o)o(v)o(er)f(other)h(cuts.)52 b(In)321 2063 y(contrast,)36
b(the)c(rules)g(of)g F4(\()p FY(T)t Ga(;)1274 2026 y
Gc(aux)1254 2063 y F6(\000)-31 b(\000)f(!)p F4(\))31
b Gg(dif)n(fer)i(some)n(what)f(from)g(Gentzen')-5 b(s)33
b(rules.)55 b(The)31 b(dif)n(ferences)321 2176 y(arise)25
b(from)e(the)h(tw)o(o)f(clauses)p Black Black 692 2390
a FL(Cut)p F4(\()865 2378 y FX(h)892 2390 y Ga(a)940
2378 y FX(i)968 2390 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
F4(\))q Ga(;)1322 2378 y F9(\()1349 2390 y Ga(y)1397
2378 y F9(\))1425 2390 y Ga(M)10 b F4(\))-5 b F6(f)e
Ga(x)26 b F4(:=)1790 2378 y FX(h)1818 2390 y Ga(b)1857
2378 y FX(i)1884 2390 y Ga(P)t F6(g)2015 2338 y F5(def)2022
2390 y F4(=)k FL(Cut)p F4(\()2296 2378 y FX(h)2324 2390
y Ga(b)2363 2378 y FX(i)2390 2390 y Ga(P)13 b(;)2501
2378 y F9(\()2529 2390 y Ga(y)2577 2378 y F9(\))2604
2390 y Ga(M)5 b F6(f)-7 b Ga(x)26 b F4(:=)2935 2378 y
FX(h)2962 2390 y Ga(b)3001 2378 y FX(i)3029 2390 y Ga(P)s
F6(g)q F4(\))701 2530 y FL(Cut)p F4(\()874 2518 y FX(h)902
2530 y Ga(a)950 2518 y FX(i)977 2530 y Ga(M)10 b(;)1115
2518 y F9(\()1143 2530 y Ga(x)1195 2518 y F9(\))1222
2530 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\))q(\))-5 b
F6(f)e Ga(b)26 b F4(:=)1781 2518 y F9(\()1809 2530 y
Ga(y)1857 2518 y F9(\))1884 2530 y Ga(P)t F6(g)2015 2478
y F5(def)2022 2530 y F4(=)k FL(Cut)p F4(\()2296 2518
y FX(h)2324 2530 y Ga(a)2372 2518 y FX(i)2399 2530 y
Ga(M)5 b F6(f)-7 b Ga(b)26 b F4(:=)2717 2518 y F9(\()2744
2530 y Ga(y)2792 2518 y F9(\))2819 2530 y Ga(P)t F6(g)p
Ga(;)2966 2518 y F9(\()2994 2530 y Ga(y)3042 2518 y F9(\))3069
2530 y Ga(P)13 b F4(\))321 2732 y Gg(which)24 b(allo)n(w)g(us,)f(for)h
(e)o(xample,)g(to)f(reduce)i(the)f(lo)n(wer)f(cut-instance)k(in)d(the)g
(proof)843 3083 y F4(\000)925 3071 y Gc(.)980 3083 y
Ga(N)1088 3071 y Gc(.)1143 3083 y Ga(b)17 b F4(:)g Ga(B)p
1406 2871 841 4 v 1406 2955 a(x)g F4(:)g Ga(B)1616 2943
y Gc(.)1671 2955 y FL(Ax)p F4(\()p Ga(x;)e(a)p F4(\))2010
2943 y Gc(.)2065 2955 y Ga(a)i F4(:)h Ga(B)95 b(y)20
b F4(:)d Ga(B)2543 2943 y Gc(.)2598 2955 y Ga(M)2721
2943 y Gc(.)2776 2955 y F4(\001)p 1406 2998 1447 4 v
1485 3083 a Ga(x)g F4(:)h Ga(B)1696 3071 y Gc(.)1750
3083 y FL(Cut)p F4(\()1923 3071 y FX(h)1951 3083 y Ga(a)1999
3071 y FX(i)2027 3083 y FL(Ax)o F4(\()p Ga(x;)d(a)p F4(\))q
Ga(;)2380 3071 y F9(\()2408 3083 y Ga(y)2456 3071 y F9(\))2483
3083 y Ga(M)10 b F4(\))2642 3071 y Gc(.)2697 3083 y F4(\001)2894
3028 y Gg(Cut)p 843 3125 1931 4 v 962 3210 a F4(\000)1044
3198 y Gc(.)1099 3210 y FL(Cut)p F4(\()1272 3198 y FX(h)1299
3210 y Ga(b)1338 3198 y FX(i)1366 3210 y Ga(N)g(;)1489
3198 y F9(\()1517 3210 y Ga(x)1569 3198 y F9(\))1596
3210 y FL(Cut)p F4(\()1769 3198 y FX(h)1797 3210 y Ga(a)1845
3198 y FX(i)1872 3210 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
F4(\))q Ga(;)2226 3198 y F9(\()2254 3210 y Ga(y)2302
3198 y F9(\))2329 3210 y Ga(M)10 b F4(\)\))2523 3198
y Gc(.)2578 3210 y F4(\001)2814 3156 y Gg(Cut)321 3413
y(in)24 b(a)f(single)i(step)f(to)1283 3595 y F4(\000)1365
3583 y Gc(.)1420 3595 y Ga(N)1528 3583 y Gc(.)1583 3595
y Ga(b)17 b F4(:)h Ga(B)95 b(y)20 b F4(:)e Ga(B)2052
3583 y Gc(.)2107 3595 y Ga(M)2231 3583 y Gc(.)2285 3595
y F4(\001)p 1283 3632 1079 4 v 1362 3717 a(\000)1444
3705 y Gc(.)1499 3717 y FL(Cut)p F4(\()1672 3705 y FX(h)1700
3717 y Ga(b)1739 3705 y FX(i)1766 3717 y Ga(N)10 b(;)1889
3705 y F9(\()1917 3717 y Ga(y)1965 3705 y F9(\))1993
3717 y Ga(M)g F4(\))2151 3705 y Gc(.)2206 3717 y F4(\001)2403
3663 y Gg(Cut)25 b Ga(:)321 3920 y Gg(This)30 b(kind)g(of)f
(cut-reduction,)35 b(which)30 b(\223mer)n(ges\224)h(tw)o(o)e(cuts)h
(into)g(a)f(single)i(cut)f(has,)h(as)e(f)o(ar)h(as)f(we)321
4033 y(are)c(a)o(w)o(are,)g(not)g(been)g(considered)j(else)n(where.)33
b(Therefore)26 b(comparing)h(the)e(cut-elimination)j(pro-)321
4146 y(cedure)k F4(\()p FY(T)t Ga(;)746 4109 y Gc(aux)726
4146 y F6(\000)-32 b(\000)h(!)p F4(\))30 b Gg(with)g(traditional)j
(cut-elimination)h(procedures,)g(for)c(e)o(xample,)j(according)g(to)321
4259 y(which)h(normal)f(forms)g(can)h(be)e(reached)j(from)e(a)f(proof,)
k(is)d(rather)h(dif)n(\002cult.)58 b(Much)33 b(simpler)h(is)321
4372 y(the)26 b(comparison)i(with)d F4(\()p FY(T)t Ga(;)1256
4335 y Gc(cut)1225 4372 y F6(\000)-31 b(\000)g(!)o F4(\))26
b Gg(because)h(its)f(reduction)i(rules)e(are)g(easier)h(to)e(relate)i
(to)e(standard)321 4485 y(reduction)h(rules.)462 4614
y(Another)l(,)g(more)f(important)h(reason)g(for)f(presenting)i
F4(\()p FY(T)t Ga(;)2348 4577 y Gc(cut)2317 4614 y F6(\000)-31
b(\000)f(!)p F4(\))24 b Gg(is)h(the)f(close)i(correspondence)321
4727 y(with)i(normalisation)j(in)d(natural)h(deduction.)45
b(As)27 b(we)g(shall)h(see)h(in)e(Chapter)i(3,)f(we)f(ha)n(v)o(e)i(the)
f(fol-)321 4840 y(lo)n(wing)c(correspondences)29 b(in)23
b(the)h F4(\()p F6(\033)p Ga(;)15 b F6(^)p F4(\))p Gg(-fragment)26
b(of)d(intuitionistic)28 b(logic)p Black Black 1190 5032
a Ga(M)1427 4995 y Gc(int)1352 5032 y F6(\000)-21 b(\000)h(\000)f(!)64
b Ga(N)1179 5395 y(M)1277 5358 y FX(0)1176 5214 y Fu(n)1218
5270 y F6(#)p 1238 5207 4 142 v 1449 5358 a Gc(\014)1350
5395 y F6(\000)-21 b(\000)h(\000)f(!)1592 5358 y FX(\003)1646
5395 y Ga(N)1729 5358 y FX(0)1725 5214 y Fu(n)1678 5270
y F6(#)p 1698 5207 V 2159 5032 a Ga(S)2386 4995 y Gc(\014)2287
5032 y F6(\000)g(\000)h(\000)f(!)76 b Ga(T)2148 5395
y(S)2209 5358 y FX(0)2135 5214 y Fu(s)2168 5270 y F6(#)p
2188 5207 V 2360 5358 a Gc(int)2286 5395 y F6(\000)-21
b(\000)g(\000)g(!)2522 5358 y F9(+)2606 5395 y Ga(T)2672
5358 y FX(0)2664 5214 y Fu(s)2616 5270 y F6(#)p 2636
5207 V Black Black eop end
%%Page: 59 71
TeXDict begin 59 70 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
b(59)p 277 88 3691 4 v Black 277 353 a Gg(where)568 316
y Gc(int)529 353 y F6(\000)-31 b(\000)f(!)30 b Gg(is)g(the)h
(intuitionistic)k(v)o(ersion)d(of)1882 316 y Gc(cut)1851
353 y F6(\000)-31 b(\000)f(!)30 b Gg(and)h F6(j)p 2239
353 28 4 v 2257 353 V 2274 353 V 65 w(j)2327 320 y Fu(n)2368
353 y Gg(,)g F6(j)p 2449 353 V 2467 353 V 2484 353 V
65 w(j)2537 320 y Fu(s)2598 353 y Gg(are)g(slight)g(v)n(ariants)i(of)d
(the)277 466 y(standard)k(translations)i(between)d(natural)h(deduction)
h(proofs)e(and)g(sequent)h(proofs.)56 b(Thus)3371 429
y Gc(int)3332 466 y F6(\000)-31 b(\000)f(!)277 579 y
Gg(can)24 b(simulate)h(beta-reduction,)i(which)d(\(using)h
F6(j)p 1849 579 V 1867 579 V 1885 579 V 65 w(j)1937 546
y Fu(s)1969 579 y Gg(\))e(the)g(intuitionistic)28 b(v)o(ersion)d(of)
3045 542 y Gc(aux)3025 579 y F6(\000)-31 b(\000)g(!)22
b Gg(cannot.)418 724 y(Whilst)d(the)g(proof)h(substitution)i
F4([)p 1491 724 V 1509 724 V 1526 724 V 64 w(])c Gg(leads)i(to)e(a)g
(more)g(traditional)k(cut-elimination)g(procedure,)277
837 y(the)j(auxiliary)j(proof)e(substitution)i F6(f)p
1476 837 V 1494 837 V 1512 837 V 65 w(g)p Gg(,)d(on)g(the)g(other)h
(hand,)g(plays)g(a)f(crucial)h(r)8 b(\210)-38 b(ole)26
b(in)f(our)g(strong)277 950 y(normalisation)d(proof:)28
b(it)18 b(allo)n(ws)h(independent)k(substitutions)f(to)d(commute.)28
b(Indeed,)21 b(it)d(is)h(dif)n(\002cult)277 1063 y(to)j(imagine)i(a)e
(v)o(ersion)h(of)g(the)f(proof)i(of)e(Lemma)f(2.3.18)i(that)g(does)g
(not)g(require)h(the)e(commutation)277 1175 y(of)i(independent)j
(substitutions.)418 1321 y(Another)j(important)g(point)g(in)f(f)o(a)n
(v)n(our)h(of)1823 1284 y Gc(aux)1803 1321 y F6(\000)-32
b(\000)h(!)28 b Gg(is)g(the)h(f)o(act)g(that)g(if)g(we)e(are)i
(interested)j(in)c(the)277 1434 y(collection)22 b(of)c(normal)i(forms)f
(which)g(can)g(be)f(reached)j(by)e(cut-elimination,)k(then)2941
1397 y Gc(aux)2921 1434 y F6(\000)-31 b(\000)f(!)18 b
Gg(has)h(se)n(v)o(eral)277 1546 y(adv)n(antages)26 b(o)o(v)o(er)913
1509 y Gc(cut)882 1546 y F6(\000)-31 b(\000)g(!)o Gg(.)28
b(T)-7 b(o)22 b(calculate)k(a)c(certain)j(normal)f(form,)f(it)f(is)h
(possible)j(to)d(apply)h(the)f(rules)277 1659 y(of)396
1622 y Gc(aux)376 1659 y F6(\000)-32 b(\000)h(!)23 b
Gg(in)g(a)g(leftmost-outermost)28 b(strate)o(gy)-6 b(.)30
b(This)24 b(can)g(be)f(e)o(xploited)j(in)d(an)h(implementation,)i(the)
277 1772 y(details)d(of)f(which)f(will)g(be)h(gi)n(v)o(en)g(in)f
(Chapter)i(4.)k(If)22 b(we)e(restrict)2369 1735 y Gc(cut)2338
1772 y F6(\000)-31 b(\000)g(!)20 b Gg(in)i(the)f(same)h(w)o(ay)-6
b(,)21 b(we)g(\223lose\224)277 1885 y(some)29 b(normal)g(forms.)43
b(By)28 b(this)h(we)e(mean)i(some)f(normal)i(forms)e(reachable)j(by)
2979 1848 y Gc(cut)2949 1885 y F6(\000)-32 b(\000)h(!)27
b Gg(cannot)j(be)277 1998 y(reached)c(by)e(the)g(corresponding)k
(leftmost-outermost)g(strate)o(gy)-6 b(.)31 b(Unfortunately)-6
b(,)27 b(without)e(such)g(a)277 2111 y(restriction)h(an)e
(implementation)i(of)1500 2074 y Gc(cut)1469 2111 y F6(\000)-31
b(\000)f(!)23 b Gg(is)g(no)h(picnic!)277 2470 y Fq(2.7.2)99
b(Dragalin')l(s)25 b(Str)n(ong)g(Normalisation)f(Pr)n(oof)h(f)n(or)g
(Cut-Elimination)277 2692 y Gg(As)19 b(f)o(ar)h(as)f(we)g(are)h(a)o(w)o
(are,)g(Dragalin)g([1988])h(ga)n(v)o(e)f(the)g(\002rst)f(strong)i
(normalisation)i(proof)e(for)f(a)f(cut-)277 2805 y(elimination)32
b(procedure)g(for)e(classical)i(logic.)48 b(His)29 b(procedure)k(is)c
(based)i(on)f(Gentzen-lik)o(e)i(local)277 2918 y(reduction)c(rules,)g
(and)e(thus)g(he)g(had)g(to)g(o)o(v)o(ercome)h(se)n(v)o(eral)g(dif)n
(\002culties)g(in)f(order)h(to)f(pro)o(v)o(e)g(strong)277
3031 y(normalisation.)33 b(One)24 b(dif)n(\002culty)h(arises)g(in)f
(situations)j(where)d(the)g(cut-formula)i(is)e(contracted)j(just)277
3144 y(abo)o(v)o(e)g(the)g(cut-rule,)i(as)e(illustrated)i(in)e(\(2.2\))
g(on)f(P)o(age)h(14.)38 b(Reducing)28 b(this)f(kind)g(of)g
(cut-instance)277 3257 y(using)33 b(a)e(Gentzen-lik)o(e)k(reduction)f
(rule)e(yields)h(a)f(proof)g(with)g(tw)o(o)f(ne)n(w)g(cuts.)54
b(As)31 b(a)g(result,)k(the)277 3370 y(proof)c(size)f(increases)i
(without)e(a)g(decrease)h(of)f(the)f(height)j(of)d(the)h(subproofs)i
(abo)o(v)o(e)e(the)g(lo)n(west)277 3483 y(cut.)56 b(This)32
b(is)g(v)o(ery)h(anno)o(ying)i(in)d(a)g(strong)i(normalisation)i
(proof,)f(because)f(simple)f(inductions)277 3596 y(on)25
b(the)g(proof)h(size)g(or)f(on)g(the)g(proof)h(height)g(are)f(not)h
(applicable.)35 b(F)o(ollo)n(wing)25 b(Gentzen,)i(Dragalin)277
3708 y(o)o(v)o(ercame)f(this)f(dif)n(\002culty)h(by)f(using)h(the)g
(multicut-rule)h(in)e(place)h(of)f(the)g(cut-rule.)35
b(Thus,)25 b(instead)277 3821 y(of)d(reducing)h(the)f(cut)g(in)f
(\(2.2\))h(to)g(a)f(proof)i(with)e(tw)o(o)g(ne)n(w)g(cuts,)h(one)g
(just)g(remo)o(v)o(es)g(the)g(contraction)277 3934 y(and)i(increases)i
(the)e(corresponding)k(inde)o(x)c(of)f(the)h(multicut,)h(as)e(sho)n(wn)
h(belo)n(w)-6 b(.)p Black Black 288 4225 a FG(\000)340
4237 y FJ(1)p 396 4213 10 38 v 405 4196 42 4 v 465 4225
a FG(\001)534 4237 y FJ(1)572 4225 y FU(;)14 b(C)674
4195 y FS(n)p FJ(+1)p 288 4261 515 4 v 330 4334 a FG(\000)382
4346 y FJ(1)p 438 4322 10 38 v 447 4306 42 4 v 507 4334
a FG(\001)576 4346 y FJ(1)614 4334 y FU(;)g(C)716 4304
y FS(n)831 4283 y Gd(Contr)1021 4295 y FS(R)1116 4334
y FU(C)1181 4304 y FS(m)1244 4334 y FU(;)g FG(\000)1333
4346 y FJ(2)p 1389 4322 10 38 v 1398 4306 42 4 v 1458
4334 a FG(\001)1527 4346 y FJ(2)p 330 4370 1235 4 v 671
4444 a FG(\000)723 4456 y FJ(1)760 4444 y FU(;)g FG(\000)849
4456 y FJ(2)p 905 4432 10 38 v 914 4415 42 4 v 974 4444
a FG(\001)1043 4456 y FJ(1)1081 4444 y FU(;)g FG(\001)1187
4456 y FJ(2)1592 4398 y Gd(Multicut)1937 4396 y FT(\000)-25
b(\000)g(!)2158 4334 y FG(\000)2210 4346 y FJ(1)p 2266
4322 10 38 v 2275 4306 42 4 v 2335 4334 a FG(\001)2404
4346 y FJ(1)2442 4334 y FU(;)14 b(C)2544 4304 y FS(n)p
FJ(+1)2729 4334 y FU(C)2794 4304 y FS(m)2857 4334 y FU(;)g
FG(\000)2946 4346 y FJ(2)p 3001 4322 10 38 v 3011 4306
42 4 v 3071 4334 a FG(\001)3140 4346 y FJ(2)p 2158 4370
1020 4 v 2391 4444 a FG(\000)2443 4456 y FJ(1)2481 4444
y FU(;)g FG(\000)2570 4456 y FJ(2)p 2625 4432 10 38 v
2635 4415 42 4 v 2695 4444 a FG(\001)2764 4456 y FJ(1)2801
4444 y FU(;)g FG(\001)2907 4456 y FJ(2)3205 4398 y Gd(Multicut)418
4739 y Gg(Another)31 b(dif)n(\002culty)g(arises)f(from)g(reduction)i
(rules)e(that)h(allo)n(w)e(\(multi\)cuts)j(to)d(be)h(permuted)277
4838 y(with)h(other)h(\(multi\)cuts:)46 b(the)o(y)31
b(cause)h(loops,)h(unless)g(some)e(restrictions)j(are)d(imposed.)52
b(Unfor)n(-)277 4938 y(tunately)-6 b(,)38 b(Dragalin)c(did)f(not)h
(consider)h(an)o(y)e(of)g(these)h(restricted)i(rules,)g(and)e(without)g
(them)f(the)277 5038 y(correpondence)d(between)c(normalisation)i(and)e
(cut-elimination)j(f)o(ails.)34 b(W)-7 b(e)25 b(feel)g(this)h(is)f(a)g
(serious)277 5137 y(shortcoming)k(of)d(his)g(cut-elimination)k
(procedure,)f(not)e(just)f(because)i(we)e(\223lose\224)h(the)f
(correspon-)277 5237 y(dence)32 b(with)f(normalisation)j(\(see)e(ne)o
(xt)f(chapter\),)k(b)n(ut)c(also)h(the)o(y)g(are)f(required)i(to)e
(interpret)i(La-)p Black Black eop end
%%Page: 60 72
TeXDict begin 60 71 bop Black -144 51 a Gb(60)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black 321 388 a Gg(font')-5
b(s)27 b(e)o(xample)f(as)g(an)f(instance)j(of)e(a)f(non-deterministic)
30 b(choice.)36 b(Although)27 b(Lafont')-5 b(s)27 b(e)o(xample)321
488 y(\(translated)g(into)d(Dragalin')-5 b(s)25 b(system\))p
1399 675 10 38 v 1409 658 42 4 v 1469 687 a FU(B)p 1311
707 295 4 v 1329 779 10 38 v 1339 762 42 4 v 1399 791
a(B)t(;)14 b(C)1568 761 y FJ(1)1647 729 y Gd(W)-7 b(eak)1834
741 y FS(R)p 2041 675 10 38 v 2051 658 42 4 v 2111 687
a FU(B)p 1971 707 258 4 v 1971 791 a(C)2036 761 y FJ(1)p
2092 779 10 38 v 2102 762 42 4 v 2162 791 a FU(B)2271
729 y Gd(W)g(eak)2458 741 y FS(L)p 1311 827 919 4 v 1659
888 10 38 v 1668 872 42 4 v 1728 900 a FU(B)t(;)14 b(B)2271
855 y Gd(Multicut)p 1640 936 260 4 v 1711 998 10 38 v
1721 981 42 4 v 1780 1010 a FU(B)1941 958 y Gd(Contr)2131
970 y FS(R)321 1220 y Gg(can)24 b(reduce)g(non-deterministicall)q(y)k
(to)23 b(either)i(subproof,)g(the)e(lo)n(wer)g(cut)g(in)g(the)h
(\223nested\224)h(v)o(ersion)321 1333 y(of)f(Lafont')-5
b(s)24 b(e)o(xample)p 909 1671 11 41 v 919 1653 46 5
v 985 1683 a Ga(B)p 813 1703 322 4 v 833 1783 11 41 v
844 1765 46 5 v 909 1795 a(B)5 b(;)15 b(C)1095 1762 y
F9(1)1176 1727 y Gg(W)-7 b(eak)1380 1741 y Gc(R)p 1683
1541 11 41 v 1694 1523 46 5 v 1760 1553 a Ga(B)p 1584
1573 328 4 v 1605 1653 11 41 v 1615 1635 46 5 v 1681
1665 a(B)5 b(;)15 b(D)1873 1632 y F9(1)1953 1597 y Gg(W)-7
b(eak)2157 1611 y Gc(R)p 1529 1703 439 4 v 1529 1795
a Ga(C)1601 1762 y F9(1)p 1660 1783 11 41 v 1671 1765
46 5 v 1736 1795 a Ga(B)5 b(;)15 b(D)1928 1762 y F9(1)2009
1727 y Gg(W)-7 b(eak)2213 1741 y Gc(L)p 813 1833 1155
4 v 1190 1913 11 41 v 1200 1895 46 5 v 1266 1925 a Ga(B)5
b(;)15 b(B)5 b(;)15 b(D)1572 1892 y F9(1)2009 1863 y
Gg(Multicut)p 2492 1801 11 41 v 2502 1783 46 5 v 2568
1813 a Ga(B)p 2413 1833 288 4 v 2413 1925 a(D)2491 1892
y F9(1)p 2550 1913 11 41 v 2561 1895 46 5 v 2626 1925
a Ga(B)2741 1857 y Gg(W)-7 b(eak)2945 1871 y Gc(L)p 1169
1963 1531 4 v 1756 2029 11 41 v 1767 2011 46 5 v 1832
2041 a Ga(B)5 b(;)15 b(B)5 b(;)15 b(B)2741 1993 y Gg(Multicut)p
1736 2079 398 4 v 1751 2116 369 4 v 1870 2182 11 41 v
1880 2164 46 5 v 1946 2194 a Ga(B)2160 2140 y Gg(Contr)2366
2154 y Gc(R)321 2444 y Gg(cannot.)40 b(Using)27 b(Dragalin')-5
b(s)28 b(reduction)i(rules,)e(the)f(lo)n(wer)f(multicut)i(can)g(reduce)
g(to)e(its)h(right)h(sub-)321 2557 y(proof,)g(b)n(ut)e(not)g
(immediately)i(to)e(its)g(left)g(one.)37 b(F)o(or)25
b(this)h(the)g(upper)h(multicut)h(has)e(to)g(reduce)h(\002rst.)321
2670 y(Consequently)-6 b(,)28 b(the)c(lo)n(wer)g(multicut)i(is)e(not)h
(a)e(genuine)k(non-deterministic)i(choice)c(as)f(it)g(depends)321
2783 y(on)30 b(another)i(multicut.)48 b(Clearly)-6 b(,)32
b(to)e(remedy)g(this)g(problem)h(we)e(need)i(reduction)h(rules)f(that)f
(per)n(-)321 2896 y(mute)25 b(the)g(lo)n(wer)g(multicut)h(with)e(the)h
(upper)h(one.)33 b(As)24 b(mentioned)i(earlier)l(,)h(the)e(na)m(\250)
-27 b(\021v)o(e)25 b(formulation)321 3009 y(of)f(these)g(reduction)i
(rules,)f(e.g.)p Black Black 445 3238 a FU(:)14 b(:)g(:)p
574 3226 10 38 v 583 3210 42 4 v 115 w(:)g(:)g(:)83 b(:)14
b(:)g(:)p 966 3226 10 38 v 976 3210 42 4 v 116 w(:)g(:)g(:)p
445 3258 702 4 v 641 3324 a(:)g(:)g(:)p 770 3312 10 38
v 780 3295 42 4 v 115 w(:)g(:)g(:)1188 3280 y Gd(Multicut)1475
3292 y FJ(2)1523 3324 y FU(:)g(:)g(:)p 1652 3312 10 38
v 1662 3295 42 4 v 116 w(:)g(:)g(:)p 641 3344 1192 4
v 1082 3410 a(:)g(:)g(:)p 1211 3398 10 38 v 1221 3381
42 4 v 116 w(:)g(:)g(:)1874 3366 y Gd(Multicut)2161 3378
y FJ(1)893 3731 y F6(\000)-31 b(\000)g(!)1254 3654 y
FU(:)14 b(:)g(:)p 1383 3642 10 38 v 1393 3625 42 4 v
116 w(:)g(:)g(:)83 b(:)14 b(:)g(:)p 1776 3642 10 38 v
1785 3625 42 4 v 115 w(:)g(:)g(:)p 1254 3674 702 4 v
1450 3740 a(:)g(:)g(:)p 1580 3728 10 38 v 1589 3711 42
4 v 116 w(:)g(:)g(:)1997 3696 y Gd(Multicut)2284 3708
y FJ(1)2357 3654 y FU(:)g(:)g(:)p 2486 3642 10 38 v 2495
3625 42 4 v 115 w(:)g(:)g(:)83 b(:)14 b(:)g(:)p 2878
3642 10 38 v 2888 3625 42 4 v 115 w(:)g(:)g(:)p 2357
3674 702 4 v 2553 3740 a(:)g(:)g(:)p 2682 3728 10 38
v 2691 3711 42 4 v 115 w(:)g(:)g(:)3100 3696 y Gd(Multicut)3387
3708 y FJ(1)p 1450 3760 1412 4 v 2002 3825 a FU(:)g(:)g(:)p
2131 3813 10 38 v 2140 3797 42 4 v 115 w(:)g(:)g(:)2904
3782 y Gd(Multicut)3191 3794 y FJ(2)321 4078 y Gg(breaks)25
b(strong)g(normalisation.)462 4215 y(As)k(f)o(ar)i(as)e(I)h(ha)n(v)o(e)
g(been)h(able)f(to)g(ascertain,)j(the)e(cut-elimination)i(procedure)g
(gi)n(v)o(en)d(in)g(Sec-)321 4328 y(tion)c(2.6)f(is)h(the)f(only)h
(strongly)i(normalising)g(cut-elimination)h(procedure)f(that)e(is)f
(both)h(local)g(and)321 4440 y(allo)n(ws)20 b(cut-instances)k(to)19
b(be)h(permuted)h(with)f(other)h(cut-instances.)2505
4408 y F5(8)2573 4440 y Gg(Of)e(course)i(we)e(can)h(easily)h(re-)321
4553 y(formulate)j(Dragalin')-5 b(s)24 b(cut-elimination)i(procedure,)g
(along)d(the)g(lines)g(of)g F4(\()p FY(T)2825 4520 y
FX($)2896 4553 y Ga(;)2978 4516 y Gc(l)q(oc)2936 4553
y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)22 b(to)h(include)321
4666 y(reduction)31 b(rules)e(that)g(permute)g(multicuts)h(with)e
(other)h(multicuts)h(so)e(that)h(strong)g(normalisation)321
4779 y(still)f(holds.)39 b(But)27 b(a)f(strong)i(normalisation)i(proof)
e(is)e(then)i(much)f(harder:)37 b(these)28 b(rules)f(do)g(not)g(de-)321
4892 y(crease)g(the)f(proof)g(size)g(or)g(proof)g(height.)36
b(It)25 b(is)g(not)h(ob)o(vious)h(ho)n(w)e(Dragalin')-5
b(s)27 b(proof)g(method)f(can)321 5005 y(be)e(adapted)h(to)f(pro)o(v)o
(e)g(strong)h(normalisation)h(in)e(this)g(case.)p Black
321 5115 1290 4 v 427 5171 a F3(8)456 5202 y F2(Zuck)o(er)j([1974])g
(obtained)g(a)f(strongly)h(normalising)g(cut-elimination)g(procedure)g
(for)f(intuitionistic)g(logic)g(with)321 5294 y(local)18
b(reduction)h(rules)e(by)h(considering)h FE(pr)m(oper)g
F2(reductions,)f(i.e.,)f(non-repeating)j(and)e(termination)g
(reductions,)g(b)o(ut)g(he)321 5385 y(did)h(not)h(restrict)e(his)h
(reduction)h(rules)f(accordingly)-5 b(.)p Black Black
Black eop end
%%Page: 61 73
TeXDict begin 61 72 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
b(61)p 277 88 3691 4 v Black 277 388 a Fq(2.7.3)99 b(Comparison)25
b(with)g(the)h(Symmetric)f(Lambda)h(Calculus)277 589
y Gg(In)38 b(this)g(section)h(we)d(compare)j(our)f(w)o(ork)f(with)h
(the)f(symmetric)i(lambda)f(calculus,)43 b Ga(\025)3209
552 y Gc(S)t(y)r(m)3396 589 y Gg(for)277 702 y(short,)33
b(de)n(v)o(eloped)f(by)e(Barbanera)i(and)e(Berardi)h([1994].)50
b(This)29 b(comparison)k(is)d(w)o(orthwhile)h(be-)277
815 y(cause)41 b(we)d(adapted)k(their)e(proof)g(technique)i(based)f(on)
e(the)h(notion)h(of)e(symmetric)i(reducibil-)277 928
y(ity)c(candidates,)43 b(and)38 b(moreo)o(v)o(er)g(the)o(y)f(also)g
(tak)o(e)h(the)f(vie)n(w)g(that)h(cut-elimination)i(in)d(classical)277
1041 y(logic)30 b(corresponds)i(via)d(the)g(Curry-Ho)n(w)o(ard)h
(correspondence)k(to)28 b(non-deterministic)34 b(computa-)277
1154 y(tion)24 b([Barbanera)i(et)d(al.,)g(1997].)418
1288 y(The)g(formulae)i(of)f Ga(\025)1085 1251 y Gc(S)t(y)r(m)1258
1288 y Gg(are)g(gi)n(v)o(en)g(by)f(the)h(grammar)p Black
Black 1218 1542 a Ga(B)5 b(;)15 b(C)32 b F4(::=)26 b
Ga(A)50 b F6(j)h Ga(A)1838 1509 y FX(?)1948 1542 y F6(j)f
Ga(B)5 b F6(^)p Ga(C)57 b F6(j)50 b Ga(B)5 b F6(_)o Ga(C)277
1808 y Gg(where)23 b Ga(A)g Gg(stands)h(for)f(atomic)h(formulae.)30
b(The)23 b(ne)o(gation)h(in)f Ga(\025)2281 1771 y Gc(S)t(y)r(m)2454
1808 y Gg(is)f(not)i(a)e(primiti)n(v)o(e)i(connecti)n(v)o(e,)277
1921 y(as)g(in)f(our)h(sequent)h(calculus,)h(instead)f(it)e(is)h
(de\002ned)g(by)g(the)f(clauses:)p Black Black 1138 2196
a F4(\()p Ga(A)p F4(\))1276 2163 y FX(?)1371 2144 y F5(def)1379
2196 y F4(=)42 b Ga(A)1560 2163 y FX(?)1855 2196 y F4(\()p
Ga(B)5 b F6(^)p Ga(C)i F4(\))2132 2163 y FX(?)2226 2144
y F5(def)2233 2196 y F4(=)42 b Ga(B)2420 2163 y FX(?)2494
2196 y F6(_)15 b Ga(C)2642 2163 y FX(?)1079 2336 y F4(\()p
Ga(A)1182 2303 y FX(?)1242 2336 y F4(\))1277 2303 y FX(?)1371
2284 y F5(def)1379 2336 y F4(=)42 b Ga(A)295 b F4(\()p
Ga(B)5 b F6(_)p Ga(C)i F4(\))2132 2303 y FX(?)2226 2284
y F5(def)2233 2336 y F4(=)42 b Ga(B)2420 2303 y FX(?)2494
2336 y F6(^)15 b Ga(C)2642 2303 y FX(?)277 2601 y Gg(The)23
b(terms)h(of)f Ga(\025)817 2564 y Gc(S)t(y)r(m)991 2601
y Gg(are)g(gi)n(v)o(en)h(by)g(the)g(grammar)p Black Black
942 2855 a Ga(M)5 b(;)15 b(N)35 b F4(::=)26 b Ga(x)40
b F6(j)h(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)41 b(j)g Ga(\033)1933
2869 y Gc(i)1961 2855 y F4(\()p Ga(M)10 b F4(\))41 b
F6(j)g Ga(\025x:M)51 b F6(j)41 b Ga(M)30 b(?)21 b(N)277
3109 y Gg(where)31 b Ga(x)f Gg(is)h(tak)o(en)g(from)g(a)f(set)h(of)g(v)
n(ariables.)52 b(There)31 b(are)g(tw)o(o)g(kinds)g(of)g(typing)h
(judgements)h(in)277 3222 y Ga(\025)330 3186 y Gc(S)t(y)r(m)481
3222 y Gg(,)22 b F7(viz.)1275 3350 y F4(\000)1357 3338
y Gc(.)1412 3350 y Ga(M)28 b F4(:)17 b Ga(B)186 b Gg(and)e
F4(\000)2221 3338 y Gc(.)2275 3350 y Ga(M)28 b F4(:)17
b F6(?)p Black 824 w Gg(\(2.6\))p Black 277 3556 a(where)27
b(in)g(the)g(latter)h F6(?)d Gg(is)i(a)f(distinguished)31
b(atomic)c(formula.)40 b(In)26 b(the)h(sequel)i(we)d(are)g(only)i
(inter)n(-)277 3669 y(ested)f(in)f(well-typed)h(terms,)g(that)f(means)g
(those)h(for)f(which)g(there)h(is)e(a)h(conte)o(xt)h
F4(\000)e Gg(and)h(a)f(formula)277 3782 y Ga(B)i Gg(such)c(that)h
(either)g F4(\000)1031 3770 y Gc(.)1086 3782 y Ga(M)j
F4(:)17 b Ga(B)27 b Gg(or)22 b F4(\000)1518 3770 y Gc(.)1573
3782 y Ga(M)28 b F4(:)17 b F6(?)22 b Gg(is)g(deri)n(v)n(able)j(gi)n(v)o
(en)e(the)h(inference)h(rules)e(sho)n(wn)g(in)277 3895
y(Figure)j(2.12.)34 b(Because)26 b(ne)o(gation)h(is)e(not)h(a)e
(primiti)n(v)o(e)j(connecti)n(v)o(e,)g(the)f(inference)h(rules)g(of)e
Ga(\025)3352 3858 y Gc(S)t(y)r(m)277 4008 y Gg(are)33
b(quite)g(hard)g(to)g(read,)i(in)d(particular)j(the)e(inference)i(rule)
e Ga(?)p Gg(.)55 b(An)31 b(e)o(xample)j(may)e(clarify)i(this)277
4121 y(inference)26 b(rule.)j(Consider)c(the)f(follo)n(wing)h
Ga(\025)1742 4084 y Gc(S)t(y)r(m)1893 4121 y Gg(-proof.)p
740 4310 417 4 v 740 4383 a FU(x)17 b FG(:)f FU(B)934
4371 y FS(.)987 4383 y FU(x)g FG(:)h FU(B)p 1240 4310
406 4 v 87 w(y)i FG(:)d FU(C)1428 4371 y FS(.)1481 4383
y FU(y)j FG(:)d FU(C)p 726 4419 934 4 v 726 4518 a(x)h
FG(:)f FU(B)t(;)e(y)19 b FG(:)d FU(C)1121 4506 y FS(.)1174
4518 y FT(h)p FU(x;)e(y)s FT(i)j FG(:)p 0.75 TeXcolorgray
0.75 TeXcolorgray 1422 4542 238 107 v 0.75 TeXcolorgray
Black 41 w FU(B)t FT(^)p FU(C)p 0.75 TeXcolorgray Black
1701 4440 a FT(h)p 1736 4440 25 4 v 1752 4440 V 1768
4440 V 60 w FU(;)p 1833 4440 V 1849 4440 V 1865 4440
V 74 w FT(i)p 2207 4299 519 4 v 2207 4386 a FU(z)j FG(:)c
FU(B)2372 4356 y FQ(?)2451 4374 y FS(.)2504 4386 y FU(z)k
FG(:)c FU(B)2669 4356 y FQ(?)p 2006 4406 922 4 v 2006
4518 a FU(z)j FG(:)d FU(B)2170 4487 y FQ(?)2250 4506
y FS(.)2303 4518 y FU(\033)2350 4530 y FJ(1)2387 4518
y FG(\()p FU(z)t FG(\))g(:)p 0.75 TeXcolorgray 0.75 TeXcolorgray
2550 4542 378 121 v 0.75 TeXcolorgray Black 42 w FU(B)2642
4487 y FQ(?)2712 4518 y FT(_)e FU(C)2846 4487 y FQ(?)p
0.75 TeXcolorgray Black 2969 4417 a FU(\033)3016 4429
y FJ(1)p 726 4562 2202 4 v 1185 4649 a FU(x)i FG(:)h
FU(B)t(;)d(y)19 b FG(:)d FU(C)q(;)e(z)20 b FG(:)d FU(B)1754
4619 y FQ(?)1833 4637 y FS(.)1886 4649 y FT(h)p FU(x;)d(y)s
FT(i)19 b FU(?)f(\033)2204 4661 y FJ(1)2241 4649 y FG(\()p
FU(z)t FG(\))f(:)f FT(?)2969 4582 y FU(?)p Black 3328
4649 a Gg(\(2.7\))p Black 277 4855 a(The)22 b(last)g(step)h(in)e(this)i
(proof)g(is)f(a)f(v)n(alid)i(instance)h(of)e Ga(?)p Gg(,)f(since)i
F4(\()p Ga(B)5 b F6(^)p Ga(C)i F4(\))2551 4822 y FX(?)2630
4855 y Gg(is)22 b(de\002ned)h(as)f Ga(B)3172 4822 y FX(?)3246
4855 y F6(_)14 b Ga(C)3393 4822 y FX(?)3452 4855 y Gg(.)418
4990 y(Barbanera)24 b(and)e(Berardi)h(call)f(a)f(term)h(of)g(the)g
(form)f Ga(M)j(?)14 b(N)32 b F7(symmetric)22 b(application)p
Gg(,)j(because)277 5103 y(if)e Ga(M)29 b(?)19 b(N)32
b Gg(is)23 b(well-typed,)i(then)f(so)f(is)g Ga(N)29 b(?)19
b(M)10 b Gg(.)28 b(Ho)n(we)n(v)o(er)l(,)23 b(one)g(can)h(also)g(re)o
(gard)f Ga(?)g Gg(as)g(an)g(instance)277 5216 y(of)30
b(the)h(cut-rule.)51 b(T)-7 b(o)29 b(illustrate)k(this,)f(let)f(us)f
(reformulate)j(the)d(proof)i(just)f(gi)n(v)o(en)f(in)h(our)f(sequent)p
Black Black eop end
%%Page: 62 74
TeXDict begin 62 73 bop Black -144 51 a Gb(62)2987 b(Sequent)22
b(Calculi)p -144 88 3691 4 v Black Black 321 300 3226
4 v 321 1258 4 958 v 1601 392 548 4 v 1601 471 a Ga(x)17
b F4(:)h Ga(B)5 b(;)15 b F4(\000)1909 459 y Gc(.)1963
471 y Ga(x)j F4(:)f Ga(B)692 699 y F4(\000)774 687 y
Gc(.)829 699 y Ga(M)27 b F4(:)18 b Ga(B)95 b F4(\000)1233
687 y Gc(.)1288 699 y Ga(N)27 b F4(:)18 b Ga(C)p 692
719 811 4 v 753 804 a F4(\000)835 792 y Gc(.)890 804
y F6(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)18 b F4(:)f Ga(B)5
b F6(^)o Ga(C)1544 741 y F6(h)p 1581 741 28 4 v 1599
741 V 1616 741 V 65 w Ga(;)p 1686 741 V 1704 741 V 1721
741 V 80 w F6(i)2400 685 y F4(\000)2482 673 y Gc(.)2537
685 y Ga(M)27 b F4(:)18 b Ga(B)2764 699 y Gc(i)p 2235
719 723 4 v 2235 804 a F4(\000)2317 792 y Gc(.)2372 804
y Ga(\033)2424 818 y Gc(i)2452 804 y F4(\()p Ga(M)10
b F4(\))18 b(:)f Ga(B)2749 818 y F9(1)2789 804 y F6(_)o
Ga(B)2918 818 y F9(2)2999 731 y Ga(\033)3051 745 y Gc(i)895
1019 y Ga(x)h F4(:)f Ga(B)5 b(;)15 b F4(\000)1203 1007
y Gc(.)1258 1019 y Ga(M)27 b F4(:)18 b F6(?)p 895 1056
591 4 v 912 1152 a F4(\000)994 1140 y Gc(.)1049 1152
y Ga(\025x:M)28 b F4(:)17 b Ga(B)1411 1119 y FX(?)1528
1088 y Ga(\025)2138 1039 y F4(\000)2195 1053 y F9(1)2260
1027 y Gc(.)2315 1039 y Ga(M)27 b F4(:)18 b Ga(B)95 b
F4(\000)2694 1053 y F9(2)2758 1027 y Gc(.)2813 1039 y
Ga(N)27 b F4(:)18 b Ga(B)3030 1006 y FX(?)p 2138 1072
951 4 v 2258 1152 a F4(\000)2315 1166 y F9(1)2355 1152
y Ga(;)d F4(\000)2452 1166 y F9(2)2516 1140 y Gc(.)2571
1152 y Ga(M)31 b(?)20 b(N)27 b F4(:)18 b F6(?)3130 1093
y Ga(?)p 3543 1258 4 958 v 321 1261 3226 4 v Black 735
1415 a Gg(Figure)24 b(2.12:)30 b(T)-6 b(erm)22 b(assignment)k(for)d
(the)h(symmetric)h(lambda)f(calculus.)p Black Black 321
1828 a(calculus.)65 b(Here)35 b(is)g(the)g(sequent)i(proof)f(that)f
(corresponds)k(to)34 b(\(2.7\))i(\(for)f(bre)n(vity)h(we)f(omit)f(all)
321 1941 y(labels\).)p 1192 2201 244 4 v 1192 2280 a
Ga(B)p 1285 2268 11 41 v 1296 2250 46 5 v 100 w(B)p 1526
2201 240 4 v 96 w(C)p 1618 2268 11 41 v 1628 2250 46
5 v 103 w(C)p 1192 2300 574 4 v 1235 2379 a(B)5 b(;)15
b(C)p 1440 2367 11 41 v 1451 2349 46 5 v 102 w(B)5 b
F6(^)p Ga(C)1807 2318 y F6(^)1867 2332 y Gc(R)p 2130
2085 244 4 v 2130 2164 a Ga(B)p 2224 2152 11 41 v 2234
2134 46 5 v 101 w(B)p 2079 2184 345 4 v 2079 2262 a(B)g(;)15
b F6(:)p Ga(B)p 2348 2250 11 41 v 2358 2232 46 5 v 2465
2196 a F6(:)2526 2210 y Gc(L)p 2016 2300 472 4 v 2016
2379 a Ga(B)5 b F6(^)o Ga(C)q(;)15 b F6(:)p Ga(B)p 2411
2367 11 41 v 2422 2349 46 5 v 2529 2314 a F6(^)2589 2328
y Gc(L)2637 2337 y FV(1)p 1235 2416 1253 4 v 1635 2495
a Ga(B)5 b(;)15 b(C)q(;)g F6(:)p Ga(B)p 2010 2483 11
41 v 2021 2465 46 5 v 2529 2447 a Gg(Cut)321 2708 y(As)27
b(the)h(reader)h(can)f(see,)h(e)n(v)o(en)e(if)h(the)g
Ga(\033)1628 2722 y F9(1)1667 2708 y Gg(-rule)g(introduces)j(an)d
F6(_)o Gg(,)g(it)f(corresponds)k(to)d(an)f(instance)321
2821 y(of)d(the)g F6(^)614 2835 y Gc(L)662 2844 y FV(1)701
2821 y Gg(-rule,)g(and)g(the)g Ga(?)p Gg(-rule)h(is)e(clearly)i(a)e
(cut.)462 2950 y(There)f(are)f(a)g(number)h(of)f(reduction)j(rules)e
(associated)i(with)d Ga(\025)2471 2913 y Gc(S)t(y)r(m)2622
2950 y Gg(,)f(some)i(of)f(which)h(are)f(gi)n(v)o(en)321
3063 y(belo)n(w)-6 b(.)p Black Black 1194 3160 a Ga(\025x:M)30
b(?)21 b(N)1704 3123 y Gc(sy)r(m)1691 3160 y F6(\000)-32
b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(x)26 b F4(:=)f Ga(N)10
b F4(])1194 3297 y Ga(M)30 b(?)21 b(\025x:N)1704 3260
y Gc(sy)r(m)1691 3297 y F6(\000)-32 b(\000)h(!)99 b Ga(N)10
b F4([)p Ga(x)26 b F4(:=)f Ga(M)10 b F4(])917 3445 y
F6(h)p Ga(M)1040 3459 y F9(1)1080 3445 y Ga(;)15 b(M)1208
3459 y F9(2)1248 3445 y F6(i)21 b Ga(?)f(\033)1421 3459
y Gc(i)1449 3445 y F4(\()p Ga(N)10 b F4(\))1699 3408
y Gc(sy)r(m)1686 3445 y F6(\000)-31 b(\000)f(!)83 b Ga(M)2027
3459 y Gc(i)2076 3445 y Ga(?)21 b(N)917 3581 y(\033)969
3595 y Gc(i)997 3581 y F4(\()p Ga(N)10 b F4(\))21 b Ga(?)g
F6(h)p Ga(M)1360 3595 y F9(1)1400 3581 y Ga(;)15 b(M)1528
3595 y F9(2)1568 3581 y F6(i)1699 3544 y Gc(sy)r(m)1686
3581 y F6(\000)-31 b(\000)f(!)83 b Ga(N)31 b(?)20 b(M)2196
3595 y Gc(i)2539 3358 y FK(\))2718 3513 y Ga(i)26 b F4(=)f(1)p
Ga(;)15 b F4(2)321 3788 y Gg(As)30 b(usual,)i(the)e(e)o(xpression)j
Ga(M)10 b F4([)p Ga(x)38 b F4(:=)f Ga(N)10 b F4(])29
b Gg(stands)j(for)e(the)g(substitution)k(of)c(the)g(v)n(ariable)i
Ga(x)p Gg(.)47 b(Ac-)321 3901 y(cording)33 b(to)d(the)h(reduction)i
(rules)e(of)g Ga(\025)1608 3864 y Gc(sy)r(m)1744 3901
y Gg(,)g(the)g(term)f Ga(\025x:M)36 b(?)26 b(\025y)s(:N)39
b Gg(reduces)33 b(to)d(either)i Ga(M)40 b Gg(or)321 4014
y Ga(N)35 b Gg(assuming)28 b(that)f Ga(x)e Gg(and)h Ga(y)i
Gg(are)f(not)f(free)g(v)n(ariables)i(in)e Ga(M)36 b Gg(and)26
b Ga(N)10 b Gg(,)26 b(respecti)n(v)o(ely)-6 b(.)39 b(So)25
b(the)h(reduc-)321 4127 y(tion)e(system)f(of)g Ga(\025)910
4090 y Gc(S)t(y)r(m)1082 4127 y Gg(is)g(non-deterministic,)k(analogous)
f(to)c(our)h(cut-elimination)k(procedure)e(for)321 4239
y(classical)h(logic.)462 4369 y(Because)h(of)f(the)g(close)g
(correspondence)31 b(with)25 b(our)h(sequent)i(calculus,)g(one)e(may)g
(reasonably)321 4482 y(ask)38 b(whether)g(our)f(strong)i(normalisation)
h(results)f(for)e F4(\()p FY(T)t Ga(;)2345 4445 y Gc(cut)2314
4482 y F6(\000)-31 b(\000)f(!)p F4(\))37 b Gg(and)h F4(\()p
FY(T)t Ga(;)2877 4445 y Gc(aux)2856 4482 y F6(\000)-31
b(\000)g(!)p F4(\))36 b Gg(follo)n(w)i(from)321 4595
y(Barbanera)d(and)e(Berardi')-5 b(s)34 b(strong)f(normalisation)j
(result,)g(for)d(e)o(xample,)i(by)d(a)h(simple)g(transla-)321
4708 y(tion.)42 b(Ho)n(we)n(v)o(er)l(,)29 b(it)e(does)i(not)f(appear)h
(that)f(such)h(a)e(simple)h(translation)j(e)o(xists.)42
b(Primarily)28 b(this)h(is)321 4821 y(because)g(our)f(term)e
(constructors)31 b(include)e(multiple)f(binders;)j(for)c(e)o(xample,)h
(the)f(term)g(construc-)321 4933 y(tor)j FL(Imp)596 4955
y Gc(R)653 4933 y F4(\()688 4921 y F9(\()716 4933 y Ga(x)768
4921 y F9(\))q FX(h)823 4933 y Ga(a)871 4921 y FX(i)898
4933 y Ga(M)11 b(;)k(b)p F4(\))29 b Gg(and)h FL(And)1455
4897 y FX(0)1455 4957 y Gc(L)1507 4933 y F4(\()1542 4921
y F9(\()1570 4933 y Ga(x)1622 4921 y F9(\)\()1677 4933
y Ga(y)1725 4921 y F9(\))1752 4933 y Ga(M)10 b(;)15 b(z)t
F4(\))p Gg(.)47 b(Owing)30 b(to)f(the)h(speci\002c)h(form)e(of)h(the)g
(typing)321 5046 y(judgements)c(sho)n(wn)e(in)g(\(2.6\),)f(where)h
(only)g(a)g(single)h(formula)f(on)g(the)g(right-hand)i(side)e(is)g
(permit-)321 5159 y(ted,)d(it)e(is)h(dif)n(\002cult)h(to)e(imagine)i(a)
f(translation)i(that)f(encodes)h(the)e(typing)h(judgements)h(of)e
(these)h(term)321 5272 y(constructors)28 b(into)c Ga(\025)1006
5235 y Gc(S)t(y)r(m)1157 5272 y Gg(.)k(Another)d(obstacle)h(to)e(a)f
(proof)i(by)f(translation)j(are)d(our)g(cut-reductions)321
5385 y(that)g(replace)h(a)e(single)h(cut-instance)j(with)c(tw)o(o)g
(nested)i(cut-instances.)32 b(In)23 b(f)o(act,)h(we)e(had)i(to)f(e)o
(xtend)p Black Black eop end
%%Page: 63 75
TeXDict begin 63 74 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
b(63)p 277 88 3691 4 v Black 277 388 a Gg(the)27 b(proof)g(technique)h
(of)e(Barbanera)i(and)f(Berardi)g(to)f(deal)h(with)f(such)g
(cut-reductions.)41 b(It)26 b(seems)277 501 y(highly)34
b(unlik)o(ely)h(that)e(this)g(dynamic)h(beha)n(viour)i(of)c(our)h
(cut-elimination)j(procedure)g(could)d(be)277 614 y(captured)26
b(by)d(a)h(simple)g(translation.)418 744 y(Ev)o(en)29
b(when)g(restricting)j(our)e(calculus)h(to)e(just)h(the)g
F4(\()p F6(^)o Ga(;)15 b F6(_)p F4(\))p Gg(-fragment,)33
b(i.e.,)c(to)h(the)f(fragment)277 856 y(where)20 b(term)f(constructors)
k(bind)d(only)h(a)e(single)i(name)e(or)h(co-name)g(and)g(where)g
(reduction)i(rules)e(do)277 969 y(not)28 b(create)i(nested)f
(cut-instances,)k(the)28 b(strong)h(normalisation)i(proof)e(by)f
(translation)j(f)o(ails)e(using)277 1082 y(the)24 b(natural)h
(candidate,)h F6(j)p 1107 1082 28 4 v 1125 1082 V 1142
1082 V 65 w(j)1195 1049 y Fu(Sym)1327 1082 y Gg(,)c(as)i(translation.)
32 b(The)23 b(clauses)i(of)e F6(j)p 2480 1082 V 2498
1082 V 2516 1082 V 65 w(j)2568 1049 y Fu(Sym)2723 1082
y Gg(are)h(gi)n(v)o(en)g(belo)n(w)-6 b(.)p Black Black
1211 1310 a F6(j)p FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))p
F6(j)1573 1277 y Fu(Sym)1806 1259 y F5(def)1813 1310
y F4(=)107 b Ga(x)20 b(?)g(a)743 1450 y F6(j)p FL(And)923
1464 y Gc(R)981 1450 y F4(\()1016 1438 y FX(h)1043 1450
y Ga(a)1091 1438 y FX(i)1119 1450 y Ga(M)10 b(;)1257
1438 y FX(h)1285 1450 y Ga(b)1324 1438 y FX(i)1351 1450
y Ga(N)g(;)15 b(c)p F4(\))p F6(j)1573 1417 y Fu(Sym)1806
1399 y F5(def)1813 1450 y F4(=)107 b F6(h)p Ga(\025a:)p
F6(j)p Ga(M)10 b F6(j)2300 1417 y Fu(Sym)2433 1450 y
Ga(;)15 b(\025b:)p F6(j)p Ga(N)10 b F6(j)2723 1417 y
Fu(Sym)2856 1450 y F6(i)20 b Ga(?)h(c)954 1590 y F6(j)p
FL(And)1133 1553 y Gc(i)1133 1613 y(L)1186 1590 y F4(\()1221
1578 y F9(\()1248 1590 y Ga(x)1300 1578 y F9(\))1328
1590 y Ga(M)10 b(;)15 b(y)s F4(\))p F6(j)1574 1557 y
Fu(Sym)1806 1539 y F5(def)1813 1590 y F4(=)107 b Ga(\033)2043
1604 y Gc(i)2071 1590 y F4(\()p Ga(\025x:)p F6(j)p Ga(M)10
b F6(j)2384 1557 y Fu(Sym)2517 1590 y F4(\))20 b Ga(?)h(y)1016
1730 y F6(j)p FL(Or)1141 1693 y Gc(i)1141 1753 y(R)1198
1730 y F4(\()1233 1718 y FX(h)1261 1730 y Ga(a)1309 1718
y FX(i)1337 1730 y Ga(M)10 b(;)15 b(b)p F4(\))p F6(j)1574
1697 y Fu(Sym)1806 1678 y F5(def)1813 1730 y F4(=)107
b Ga(\033)2043 1744 y Gc(i)2071 1730 y F4(\()p Ga(\025a:)p
F6(j)p Ga(M)10 b F6(j)2380 1697 y Fu(Sym)2513 1730 y
F4(\))21 b Ga(?)f(b)784 1870 y F6(j)p FL(Or)909 1884
y Gc(L)961 1870 y F4(\()996 1858 y F9(\()1024 1870 y
Ga(x)1076 1858 y F9(\))1103 1870 y Ga(M)10 b(;)1241 1858
y F9(\()1269 1870 y Ga(y)1317 1858 y F9(\))1344 1870
y Ga(N)g(;)15 b(z)t F4(\))p F6(j)1573 1837 y Fu(Sym)1806
1818 y F5(def)1813 1870 y F4(=)107 b F6(h)p Ga(\025x:)p
F6(j)p Ga(M)10 b F6(j)2304 1837 y Fu(Sym)2437 1870 y
Ga(;)15 b(\025y)s(:)p F6(j)p Ga(N)10 b F6(j)2736 1837
y Fu(Sym)2869 1870 y F6(i)20 b Ga(?)h(z)884 2009 y F6(j)p
FL(Cut)p F4(\()1082 1997 y FX(h)1110 2009 y Ga(a)1158
1997 y FX(i)1186 2009 y Ga(M)10 b(;)1324 1997 y F9(\()1352
2009 y Ga(x)1404 1997 y F9(\))1431 2009 y Ga(N)g F4(\))p
F6(j)1574 1976 y Fu(Sym)1806 1958 y F5(def)1813 2009
y F4(=)107 b Ga(\025a:)p F6(j)p Ga(M)10 b F6(j)2265 1976
y Fu(Sym)2418 2009 y Ga(?)20 b(\025x:)p F6(j)p Ga(N)10
b F6(j)2746 1976 y Fu(Sym)277 2226 y Gg(The)20 b(translation)j
(respects)f(the)f(typing)h(judgements)g(of)e FY(T)2130
2193 y F9(\()p FX(^)m Gc(;)p FX(_)o F9(\))2299 2226 y
Gg(,)g(as)g(stated)h(in)g(the)f(follo)n(wing)i(propo-)277
2339 y(sition.)p Black 277 2526 a Gb(Pr)n(oposition)j(2.7.1:)p
Black 34 w Gg(If)f Ga(M)36 b F6(2)25 b FY(T)1348 2493
y F9(\()p FX(^)m Gc(;)p FX(_)p F9(\))1540 2526 y Gg(with)f(the)g
(typing)i(judgement)f F4(\000)2604 2514 y Gc(.)2658 2526
y Ga(M)2782 2514 y Gc(.)2837 2526 y F4(\001)o Gg(,)e(then)i
F6(j)p Ga(M)10 b F6(j)3286 2493 y Fu(Sym)3442 2526 y
Gg(is)277 2639 y(well-typed)31 b(in)e Ga(\025)847 2602
y Gc(S)t(y)r(m)1025 2639 y Gg(with)g(the)h(typing)h(judgement)g
F4(\000)p Ga(;)15 b F4(\001)2201 2606 y FX(?)2285 2627
y Gc(.)2340 2639 y F6(j)p Ga(M)10 b F6(j)2488 2606 y
Fu(Sym)2638 2639 y F4(:)17 b F6(?)p Gg(,)29 b(where)h
F4(\001)3130 2606 y FX(?)3217 2639 y Gg(is)f(tak)o(en)277
2752 y(to)24 b(mean)f(that)h(all)g(formulae)h(of)e F4(\001)g
Gg(are)h(ne)o(gated.)p Black 277 2989 a F7(Pr)l(oof.)p
Black 46 w Gg(By)f(induction)j(on)e(the)g(structure)i(of)d
Ga(M)10 b Gg(.)p 3436 2989 4 62 v 3440 2931 55 4 v 3440
2989 V 3494 2989 4 62 v 277 3194 a(But)18 b F6(j)p 453
3194 28 4 v 471 3194 V 489 3194 V 65 w(j)541 3161 y Fu(Sym)691
3194 y Gg(does)i F7(not)f Gg(respect)i(the)e(reductions)i(in)e(the)g
(system)h F4(\()p FY(T)2396 3161 y F9(\()p FX(^)m Gc(;)p
FX(_)o F9(\))2565 3194 y Ga(;)2636 3157 y Gc(cut)2605
3194 y F6(\000)-31 b(\000)g(!)o F4(\))p Gg(.)27 b(T)-7
b(o)18 b(gi)n(v)o(e)h(a)f(counter)n(-)277 3307 y(e)o(xample,)k
(consider)h(the)e(term)g FL(Cut)o F4(\()1445 3295 y FX(h)1473
3307 y Ga(a)1521 3295 y FX(i)1549 3307 y Ga(M)10 b(;)1687
3295 y F9(\()1715 3307 y Ga(x)1767 3295 y F9(\))1794
3307 y Ga(N)g F4(\))20 b Gg(and)i(assume)f Ga(M)30 b
Gg(introduces)24 b Ga(a)p Gg(,)c(b)n(ut)i(not)f(freshly)277
3419 y(\(i.e.,)37 b(there)e(is)f(an)h(implicit)g(contraction\).)65
b(According)37 b(to)d(our)h(reduction)i(rules)f(this)f(term)f(can)277
3532 y(reduce)25 b(as)f(follo)n(ws.)1193 3754 y FL(Cut)p
F4(\()1366 3742 y FX(h)1394 3754 y Ga(a)1442 3742 y FX(i)1469
3754 y Ga(M)10 b(;)1607 3742 y F9(\()1635 3754 y Ga(x)1687
3742 y F9(\))1714 3754 y Ga(N)g F4(\))1889 3717 y Gc(cut)1858
3754 y F6(\000)-31 b(\000)f(!)25 b Ga(M)10 b F4([)p Ga(a)26
b F4(:=)2371 3742 y FX(h)2399 3754 y Ga(x)2451 3742 y
FX(i)2478 3754 y Ga(N)10 b F4(])277 3975 y Gg(Since)23
b Ga(M)33 b Gg(introduces)26 b Ga(a)p Gg(,)c(the)h(reduct)i
Ga(M)10 b F4([)p Ga(a)25 b F4(:=)1816 3963 y FX(h)1844
3975 y Ga(x)1896 3963 y FX(i)1923 3975 y Ga(N)10 b F4(])23
b Gg(is)g(of)g(the)g(form)g FL(Cut)p F4(\()2740 3963
y FX(h)2768 3975 y Ga(a)2816 3963 y FX(i)2858 3975 y
Ga(:)15 b(:)g(:)q(;)3004 3963 y F9(\()3032 3975 y Ga(x)3084
3963 y F9(\))3112 3975 y Ga(N)10 b F4(\))p Gg(,)22 b(mean-)277
4088 y(ing)34 b(that)g(the)g(outermost)i(cut-instance)h(does)d(not)g
(change.)60 b(Gi)n(v)o(en)34 b(the)g(translation)i F6(j)p
3133 4088 V 3151 4088 V 3169 4088 V 65 w(j)3221 4055
y Fu(Sym)3353 4088 y Gg(,)f(no)277 4201 y(reduction)i(of)d
Ga(\025)816 4164 y Gc(S)t(y)r(m)1000 4201 y Gg(can)g(\223mirror\224)i
(this)e(beha)n(viour)-5 b(.)64 b(The)34 b(e)o(xistence)i(of)e(a)g(more)
g(complicated)277 4314 y(translation)26 b(of)d(our)g(sequent)h(proofs)h
(into)e Ga(\025)1694 4277 y Gc(S)t(y)r(m)1845 4314 y
Gg(,)e(which)j(gi)n(v)o(es)f(a)f(strong)i(normalisation)i(proof)e(for)
277 4427 y FY(T)338 4394 y F9(\()p FX(^)m Gc(;)p FX(_)o
F9(\))507 4427 y Gg(,)e(is)i(possible,)h(b)n(ut)f(we)f(conjecture)j
(unlik)o(ely)-6 b(.)p Black Black eop end
%%Page: 64 76
TeXDict begin 64 75 bop Black Black Black Black eop end
%%Page: 65 77
TeXDict begin 65 76 bop Black Black 277 1004 a F8(Chapter)44
b(3)277 1435 y Gf(Natural)52 b(Deduction)f(Calculi)p
Black Black 1140 1853 a Gd(I)19 b(intended)e(\002rst)i(to)g(set)g(up)g
(a)g(formal)e(system)i(which)f(comes)g(as)i(close)e(as)i(possi-)1140
1952 y(ble)15 b(to)h(actual)f(reasoning.)21 b(The)15
b(result)g(w)o(as)h(a)g(\223calculus)f(of)g(natural)f(deduction\224.)
3041 2152 y(\227G.)21 b(Gentzen)1904 2251 y(in)g(In)m(v)o(estigations)c
(into)j(Logical)g(Deductions,)e(1935.)277 2497 y F7(Natur)o(al)24
b(deduction)i(calculi)p Gg(,)e(lik)o(e)g(sequent)h(calculi,)f(were)f
(in)l(v)o(ented)i(by)e(Gentzen)i([1935].)30 b(Whilst)277
2610 y(sequent)k(calculi)g(of)n(fered)f(a)f(con)l(v)o(enient)j(w)o(ay)d
(to)g(state)h(his)f F7(Hauptsatz)p Gg(,)k(natural)e(deduction)h(cal-)
277 2723 y(culi)c(of)n(fered)i(a)d(con)l(v)o(enient)k(approach)f(to)e
(reasoning)i(by)e(mimicking)h(the)f(reasoning)j(emplo)o(yed)277
2836 y(by)24 b(mathematicians.)33 b(Pra)o(witz)23 b([1965])j(pro)o(v)o
(ed)f(later)g(that)f(a)g(v)o(ersion)h(of)f(the)g(cut-elimination)k
(the-)277 2948 y(orem)23 b(also)h(holds)g(for)f(NJ)f(and)i(NK,)d
(Gentzen')-5 b(s)25 b(natural)f(deduction)i(calculi)f(for)e
(intuitionistic)k(and)277 3061 y(classical)f(logic,)e(respecti)n(v)o
(ely)-6 b(.)418 3191 y(In)25 b(this)h(chapter)h(we)d(shall)i(study)g
(the)g(striking)h(similarities)g(between)f(natural)h(deduction)h(cal-)
277 3304 y(culi)21 b(and)g(sequent)h(calculi.)29 b(In)21
b(particular)l(,)i(we)d(shall)h(sho)n(w)f(a)g(close)h(correspondence)k
(between)d(cut-)277 3417 y(elimination)31 b(and)e(normalisation)j
(using)e(slight)g(v)n(ariants)g(of)f(the)f(standard)j(translations)h
(between)277 3530 y(natural)22 b(deduction)h(proofs)f(and)f(sequent)h
(proofs.)29 b(This)21 b(gi)n(v)o(es,)g(for)g(e)o(xample,)g(in)f(the)h
(classical)i(case)277 3642 y(the)h(correspondences)k(illustrated)f
(with)c(the)h(diagrams)p Black Black 1182 3799 a Ga(S)1411
3762 y Gc(\024)1310 3799 y F6(\000)-21 b(\000)h(\000)f(!)64
b Ga(T)1171 4163 y(S)1232 4125 y FX(0)1146 3981 y Fu(S)1191
4037 y F6(#)p 1211 3974 4 142 v 1353 4125 a Gc(cut)1281
4163 y F6(\000)-21 b(\000)g(\000)g(!)1522 4125 y F9(+)1605
4163 y Ga(T)1671 4125 y FX(0)1675 3981 y Fu(S)1628 4037
y F6(#)p 1648 3974 V 2116 3799 a Ga(M)2335 3762 y Gc(cut)2263
3799 y F6(\000)g(\000)g(\000)g(!)56 b Ga(N)2104 4163
y(M)2202 4125 y FX(0)2088 3981 y Fu(N)2144 4037 y F6(#)p
2164 3974 V 2358 4125 a Gc(\024)2258 4163 y F6(\000)-21
b(\000)h(\000)e(!)2494 4125 y FX(\003)2561 4163 y Ga(N)2644
4125 y FX(0)2627 3981 y Fu(N)2580 4037 y F6(#)p 2600
3974 V 277 4316 a Gg(where)34 b F6(j)p 559 4316 28 4
v 577 4316 V 595 4316 V 65 w(j)647 4283 y Fu(S)724 4316
y Gg(is)g(a)f(translation)k(from)d(natural)h(deduction)i(proofs)e(to)f
(sequent)i(proofs,)i F6(j)p 3193 4316 V 3211 4316 V 3228
4316 V 65 w(j)3281 4283 y Fu(N)3368 4316 y Gg(is)c(a)277
4429 y(translation)c(from)d(sequent)i(proofs)f(to)f(natural)i
(deduction)h(proofs,)f(and)2717 4392 y Gc(\024)2652 4429
y F6(\000)-31 b(\000)g(!)26 b Gg(is)h(a)f(normalisation)277
4542 y(procedure)i(for)e(our)f(natural)i(deduction)h(calculus.)36
b(In)26 b(contrast)h(to)e(earlier)i(w)o(ork,)e(we)g(obtain)i(such)277
4655 y(tight)c(correspondences)k(because)d(of)d(the)h(fe)n(wer)g
(constraints)j(in)d(our)g(cut-elimination)k(procedures.)418
4784 y(W)-7 b(e)20 b(shall)i(be)o(gin)g(with)f(sho)n(wing)h(the)f
(correspondence)k(between)d(our)g(intuitionistic)j(cut-elimi-)277
4897 y(nation)k(procedure)h(and)e(the)g(standard)h(normalisation)i
(procedure)f(of)d(NJ.)f(This)i(part)g(will)f(closely)277
5010 y(follo)n(w)34 b(e)o(xisting)h(w)o(ork.)60 b(The)33
b(ne)o(xt)h(step)g(will)f(be)h(to)g(e)o(xtend)g(the)g(correspondence)39
b(to)33 b(classical)277 5123 y(logic.)51 b(Unfortunately)-6
b(,)36 b(it)30 b(is)h(v)o(ery)g(impractical)i(to)e(do)f(the)h(e)o
(xtension)i(using)f(Gentzen')-5 b(s)33 b(natural)277
5236 y(deduction)j(calculus)f(NK,)c(because)k(this)e(calculus)i
(requires)g(double)g(ne)o(gation)f(translations)i(for)277
5349 y(encoding)24 b(classical)f(proofs.)29 b(So)20 b(instead)j(of)d
(using)j(NK,)c(we)h(shall)i(introduce)h(a)d(v)n(ariant)j(of)e(the)g
(nat-)277 5462 y(ural)f(deduction)i(calculus)f(de)n(v)o(eloped)h(by)d
(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c)20 b([1985])h(and)e(gi)n(v)o
(e)h(normalisation)i(rules)e(inspired)277 5575 y(by)27
b(the)h(rules)f(P)o(arigot)h([1992])g(de\002ned)g(for)g(his)f
Ga(\025\026)p Gg(-calculus.)41 b(No)26 b(claim)i(is)e(made)i(about)g
(superi-)277 5688 y(ority)i(of)e(our)h(natural)i(deduction)g(calculus)g
(o)o(v)o(er)e(other)g(natural)i(deduction)g(calculi)f(for)f(classical)
277 5801 y(logic.)p Black Black eop end
%%Page: 66 78
TeXDict begin 66 77 bop Black -144 51 a Gb(66)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Ge(3.1)119
b(Intuitionistic)31 b(Natural)f(Deduction)321 588 y Gg(Lik)o(e)d
(sequent)j(proofs,)f(natural)g(deduction)h(proofs)f(are)e(written)h(in)
f(a)g(tree-lik)o(e)i(f)o(ashion,)h(and)e(tw)o(o)321 701
y(styles)d(of)f(writing)g(them)f(can)h(be)g(identi\002ed)h(in)f(the)f
(literature.)p Black 458 880 a F6(\017)p Black 46 w Gg(One,)30
b(used)h(for)e(e)o(xample)i(in)e([Gentzen,)i(1935])g(and)f(in)g(the)f
(classic)j(w)o(ork)d(on)h(natural)h(de-)549 993 y(duction)25
b([Pra)o(witz,)e(1965],)i(is)e(to)g(write)h(trees)g(of)g(the)g(form)
2019 1165 y F4(\000)2036 1191 y Gg(.)2036 1224 y(.)2036
1257 y(.)2036 1290 y(.)2011 1370 y Ga(B)549 1554 y Gg(where)36
b(the)g(formula)h Ga(B)j Gg(is)c(the)h(conclusion)i(and)d
F4(\000)g Gg(stands)h(for)f(a)g(\002nite)g(number)h(of)f(as-)549
1667 y(sumption)d(pack)o(ets.)53 b(The)31 b(assumption)j(pack)o(ets)f
(are)f(multisets)g(containing)j(formulae)d(all)549 1780
y(of)27 b(which)i(are)f(annotated)i(with)e(a)g(unique)h(\(natural)h
(number\))f(label.)43 b(The)27 b(inference)k(rules)549
1892 y(that)26 b(dischar)n(ge,)j(or)d(\223close\224,)j(assumption)f
(pack)o(ets)g(are)e(annotated)j(with)d(the)g(labels)h(of)f(the)549
2005 y(pack)o(ets)f(the)o(y)f(dischar)n(ge.)p Black 458
2176 a F6(\017)p Black 46 w Gg(The)19 b(other)l(,)j(used)e(for)g(e)o
(xample)h(in)f([Gentzen,)g(1936],)i(is)e(to)f(write)h(natural)i
(deduction)g(proofs)549 2289 y(in)27 b(\223sequent-style\224)33
b(where)28 b(in)f(e)n(v)o(ery)i(stage)f(of)g(the)g(proof)h(the)f
(undischar)n(ged)k(assumption)549 2402 y(pack)o(ets)25
b(are)f(recorded)h(e)o(xplicitly)-6 b(.)32 b(Thus)23
b(the)h(proofs)h(are)f(of)f(the)h(form)2036 2527 y(.)2036
2560 y(.)2036 2593 y(.)2036 2626 y(.)1934 2706 y F4(\000)p
2011 2694 11 41 v 2022 2676 46 5 v 96 w Ga(B)549 2889
y Gg(Throughout)d(this)f(chapter)g(we)f(shall)g(use)h(the)f
(sequent-style)k(for)c(writing)h(natural)h(deduction)549
3002 y(proofs.)66 b(W)-7 b(e)35 b(shall)i(tak)o(e)f F4(\000)f
Gg(to)g(be)h(a)f(set)h(of)g(labelled)i(formulae)f(analogous)h(to)e(the)
g(left-)549 3115 y(conte)o(xts)24 b(de\002ned)f(in)f(connection)k(with)
c(sequent)i(calculi.)30 b(Ho)n(we)n(v)o(er)22 b(in)h(this)g(section)h
(and)f(in)549 3228 y(the)j(ne)o(xt,)h(the)g(standard)h(terminology)h
(for)e(natural)h(deduction)h(will)d(be)g(adopted,)j(and)e(thus)549
3341 y(the)19 b(labels)i(are)f(referred)h(to)e(as)g F7(variables)j
Gg(\(these)f(tw)o(o)e(sections)j(deal)e(with)f(the)h(propositional)549
3454 y(fragment)25 b(of)f(intuitionistic)k(logic,)d(only;)h(so)e(no)g
(confusion)j(can)d(occur)i(with)e(the)g(notion)i(of)549
3567 y(v)n(ariables)f(introduced)i(in)c(Section)i(2.4)e(for)h
(\002rst-order)h(classical)h(logic\).)321 3746 y(Figure)d(3.1)e(gi)n(v)
o(es)h(the)g(inference)i(rules)f(of)e(Gentzen')-5 b(s)23
b(intuitionistic)j(natural)d(deduction)i(calculus,)321
3859 y(called)i(NJ.)687 3826 y F5(1)750 3859 y Gg(The)e(inference)j
(rules)f(come)f(in)g(tw)o(o)g(\003a)n(v)n(ours,)h(those)g(for)f
F7(intr)l(oducing)k Gg(a)25 b(connecti)n(v)o(e)321 3972
y(and)32 b(those)g(for)f F7(eliminating)j Gg(a)c(connecti)n(v)o(e.)54
b(Writing)32 b(the)f(proofs)i(in)e(sequent-style)j(means)e(that)321
4085 y(the)23 b(inference)i(rules)f(of)f(natural)h(deduction)h(are)e
(solely)h(concerned)i(with)c(manipulating)k(formulae)321
4198 y(in)g(the)h(succedent,)i(unlik)o(e)f(in)e(sequent)i(calculi)g
(where)e(inference)j(rules)e(manipulate)h(formulae)g(in)321
4311 y(both)e(the)f(antecedent)j(and)d(the)h(succedent.)35
b(This)25 b(is)g(why)f(it)h(is)f(often)i(said)g(that)f(natural)i
(deduction)321 4424 y(calculi)e(are)f(asymmetric.)462
4553 y(There)i(are)g(well-kno)n(wn)h(translations)i(going)e(back)f(to)g
(Gentzen)h([1935])g(between)g(NJ-proofs)321 4666 y(and)d
(intuitionistic)j(sequent)d(proofs.)30 b(Belo)n(w)-6
b(,)23 b(we)f(shall)h(de\002ne)h(the)f(translation)j
F6(j)p 2946 4666 28 4 v 2964 4666 V 2981 4666 V 65 w(j)3034
4633 y Fu(s)3065 4666 y Gg(,)c(which)h(maps)321 4779
y(NJ-proofs)28 b(to)e(sequent)i(proofs,)f(and)g(the)f(translation)j
F6(j)p 2118 4779 V 2136 4779 V 2153 4779 V 65 w(j)2206
4746 y Fu(n)2246 4779 y Gg(,)d(which)g(maps)g(sequent)i(proofs)f(to)f
(NJ-)321 4892 y(proofs.)55 b(It)31 b(will)h(be)f(con)l(v)o(enient)k(to)
d(de\002ne)g(both)h(o)o(v)o(er)e(terms,)j(rather)f(than)f(proofs.)55
b(One)31 b(slight)321 5005 y(complication)39 b(arises)e(from)e(the)h(f)
o(act)g(that)g(we)f(ha)n(v)o(e)h(chosen)h(intuitionistic)j(sequents)e
(to)d(be)h(of)321 5118 y(the)e(form)f F4(\000)p 751 5106
11 41 v 761 5087 46 5 v 96 w Ga(a)17 b F4(:)h Ga(B)36
b Gg(\(see)e(P)o(age)f(46\).)57 b(This)33 b(choice)i(spared)f(us)g(the)
f(w)o(ork)g(of)g(ha)n(ving)i(to)e(de\002ne)321 5230 y(speci\002c)22
b(cut-elimination)i(rules)e(for)f(intuitionistic)k(sequent)d(proofs,)h
(b)n(ut)e(it)f(causes)j(the)e(translation)p Black 321
5295 1290 4 v 427 5351 a F3(1)456 5382 y F2(W)-6 b(e)18
b(are)h(not)g(concerned)i(here)e(with)g(the)g(quanti\002ers)g(and)h(ne)
o(gation.)p Black Black Black eop end
%%Page: 67 79
TeXDict begin 67 78 bop Black 277 51 a Gb(3.1)23 b(Intuitionistic)i
(Natural)f(Deduction)2216 b(67)p 277 88 3691 4 v Black
Black 277 300 3226 4 v 277 1564 4 1265 v 1486 392 453
4 v 1486 471 a Ga(x)18 b F4(:)f Ga(B)5 b(;)15 b F4(\000)p
1789 459 11 41 v 1799 441 46 5 v 96 w Ga(B)609 685 y(x)j
F4(:)f Ga(B)5 b(;)15 b F4(\000)p 912 673 11 41 v 922
655 46 5 v 96 w Ga(C)p 609 723 451 4 v 650 801 a F4(\000)p
727 789 11 41 v 738 771 46 5 v 96 w Ga(B)5 b F6(\033)o
Ga(C)1101 740 y F6(\033)1172 754 y Gc(I)1980 699 y F4(\000)p
2057 687 11 41 v 2067 669 46 5 v 96 w Ga(B)g F6(\033)o
Ga(C)98 b F4(\000)p 2517 687 11 41 v 2527 669 46 5 v
96 w Ga(B)p 1980 723 687 4 v 2211 801 a F4(\000)p 2288
789 11 41 v 2298 771 46 5 v 96 w Ga(C)2708 740 y F6(\033)2778
754 y Gc(E)568 1029 y F4(\000)p 645 1017 11 41 v 656
999 46 5 v 97 w Ga(B)d F4(\000)p 963 1017 11 41 v 973
999 46 5 v 96 w Ga(C)p 568 1049 543 4 v 660 1128 a F4(\000)p
737 1116 11 41 v 748 1098 46 5 v 96 w Ga(B)5 b F6(^)o
Ga(C)1152 1067 y F6(^)1213 1081 y Gc(I)2101 1016 y F4(\000)p
2179 1004 11 41 v 2189 985 46 5 v 97 w Ga(B)2324 1030
y F9(1)2363 1016 y F6(^)p Ga(B)2493 1030 y F9(2)p 2101
1049 431 4 v 2192 1128 a F4(\000)p 2269 1116 11 41 v
2279 1098 46 5 v 96 w Ga(B)2414 1142 y Gc(i)2574 1062
y F6(^)2634 1076 y Gc(E)2686 1086 y FZ(i)704 1346 y F4(\000)p
781 1334 11 41 v 791 1316 46 5 v 96 w Ga(B)926 1360 y
Gc(i)p 614 1380 431 4 v 614 1458 a F4(\000)p 691 1446
11 41 v 701 1428 46 5 v 96 w Ga(B)836 1472 y F9(1)875
1458 y F6(_)p Ga(B)1005 1472 y F9(2)1086 1393 y F6(_)1146
1407 y Gc(I)1177 1417 y FZ(i)1607 1342 y F4(\000)p 1684
1330 11 41 v 1694 1312 46 5 v 96 w Ga(B)g F6(_)o Ga(C)98
b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 2359 1330 11
41 v 2370 1312 46 5 v 96 w Ga(D)94 b(y)20 b F4(:)d Ga(C)q(;)e
F4(\000)p 2895 1330 11 41 v 2906 1312 46 5 v 97 w Ga(D)p
1607 1380 1443 4 v 2213 1458 a F4(\000)p 2290 1446 11
41 v 2300 1428 46 5 v 96 w Ga(D)3091 1398 y F6(_)3151
1412 y Gc(E)p 3499 1564 4 1265 v 277 1567 3226 4 v Black
770 1721 a Gg(Figure)24 b(3.1:)29 b(Natural)24 b(deduction)i(calculus)g
(for)e(intuitionistic)j(logic.)p Black Black 277 2107
a F6(j)p 304 2107 28 4 v 322 2107 V 340 2107 V 65 w(j)392
2074 y Fu(s)456 2107 y Gg(to)34 b(be)f(slightly)j(messy:)50
b(we)33 b(ha)n(v)o(e)h(to)g(e)o(xplicitly)i(record)f(the)e(co-name)i
(of)f(the)g(formula)g(in)277 2219 y(the)c(succedent.)48
b(Before)30 b(gi)n(ving)g(the)g(de\002nition)h(of)e F6(j)p
2025 2219 V 2043 2219 V 2060 2219 V 64 w(j)2112 2186
y Fu(s)2172 2219 y Gg(and)h F6(j)p 2359 2219 V 2377 2219
V 2395 2219 V 65 w(j)2447 2186 y Fu(n)2488 2219 y Gg(,)f(we)g(shall)h
(\002rst)e(illustrate)k(the)277 2332 y(translations)27
b(on)d(the)f(le)n(v)o(el)h(of)g(proofs.)p Black 277 2512
a Gb(Axioms:)p Black 47 w Gg(The)f(sequent)i(proof)p
1723 2636 560 4 v 1723 2715 a Ga(x)18 b F4(:)f Ga(B)5
b(;)15 b F4(\000)p 2026 2703 11 41 v 2036 2685 46 5 v
96 w Ga(a)i F4(:)h Ga(B)504 2898 y Gg(is)24 b(translated)i(to)p
1752 3004 453 4 v 1752 3083 a Ga(x)17 b F4(:)h Ga(B)5
b(;)15 b F4(\000)p 2054 3071 11 41 v 2065 3053 46 5 v
96 w Ga(B)29 b(:)504 3266 y Gg(The)h(re)n(v)o(erse)h(translation)h(is)e
(analogous,)k(b)n(ut)c(we)f(ha)n(v)o(e)h(to)g(record,)j(as)c(mentioned)
j(abo)o(v)o(e,)504 3379 y(the)24 b(co-name)h Ga(a)p Gg(.)p
Black 277 3550 a Gb(Right)e(Rules:)p Black 46 w Gg(A)f(sequent)k(proof)
e(ending)i(with)d(an)g(instance)j(of)e(the)f F6(^)2595
3564 y Gc(R)2653 3550 y Gg(-rule)1671 3689 y Ga(\031)1723
3703 y F9(1)1549 3781 y F4(\000)p 1626 3769 11 41 v 1637
3751 46 5 v 96 w Ga(a)17 b F4(:)h Ga(B)2090 3688 y(\031)2142
3702 y F9(2)1974 3781 y F4(\000)p 2051 3769 11 41 v 2062
3751 46 5 v 96 w Ga(b)g F4(:)f Ga(C)p 1549 3801 749 4
v 1695 3880 a F4(\000)p 1772 3868 11 41 v 1782 3850 46
5 v 96 w Ga(c)g F4(:)h Ga(B)5 b F6(^)o Ga(C)2339 3819
y F6(^)2400 3833 y Gc(R)504 4063 y Gg(is)24 b(translated)i(to)1658
4211 y F6(j)p Ga(\031)1735 4225 y F9(1)1775 4211 y F6(j)1800
4179 y Fu(n)1636 4313 y F4(\000)p 1713 4301 11 41 v 1723
4283 46 5 v 96 w Ga(B)1975 4211 y F6(j)p Ga(\031)2052
4225 y F9(2)2091 4211 y F6(j)2116 4179 y Fu(n)1953 4313
y F4(\000)p 2030 4301 11 41 v 2041 4283 46 5 v 97 w Ga(C)p
1636 4333 543 4 v 1728 4412 a F4(\000)p 1805 4400 11
41 v 1815 4381 46 5 v 96 w Ga(B)5 b F6(^)o Ga(C)2220
4351 y F6(^)2280 4365 y Gc(I)2345 4351 y Ga(:)p Black
277 4595 a Gb(Left)23 b(Rules:)p Black 46 w Gg(A)g(sequent)i(proof)g
(ending)g(with)e(an)h(instance)h(of)f(the)g F6(_)2539
4609 y Gc(L)2591 4595 y Gg(-rule)1563 4733 y Ga(\031)1615
4747 y F9(1)1331 4825 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15
b F4(\000)p 1633 4813 11 41 v 1644 4795 46 5 v 97 w Ga(c)i
F4(:)h Ga(D)2204 4733 y(\031)2256 4747 y F9(2)1977 4825
y Ga(y)i F4(:)e Ga(C)q(;)d F4(\000)p 2269 4813 11 41
v 2279 4795 46 5 v 97 w Ga(c)i F4(:)h Ga(D)p 1331 4863
1191 4 v 1588 4941 a(z)j F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15
b F4(\000)p 2012 4929 11 41 v 2022 4911 46 5 v 97 w Ga(c)i
F4(:)h Ga(D)2563 4881 y F6(_)2624 4895 y Gc(L)p Black
Black eop end
%%Page: 68 80
TeXDict begin 68 79 bop Black -144 51 a Gb(68)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 549 365 a Gg(is)g(translated)j(to)
p 725 573 706 4 v 725 652 a Ga(z)c F4(:)17 b Ga(B)5 b
F6(_)o Ga(C)q(;)15 b F4(\000)p 1149 640 11 41 v 1160
621 46 5 v 97 w Ga(B)5 b F6(_)o Ga(C)1832 550 y F6(j)p
Ga(\031)1909 564 y F9(1)1949 550 y F6(j)1974 517 y Fu(n)1522
652 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b(z)22 b F4(:)17
b Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)p 2171 640 11
41 v 2182 621 46 5 v 97 w Ga(D)2721 550 y F6(j)p Ga(\031)2798
564 y F9(2)2837 550 y F6(j)2862 517 y Fu(n)2416 652 y
Ga(y)20 b F4(:)d Ga(C)q(;)e(z)23 b F4(:)17 b Ga(B)5 b
F6(_)o Ga(C)q(;)15 b F4(\000)p 3054 640 11 41 v 3065
621 46 5 v 97 w Ga(D)p 725 689 2483 4 v 1678 768 a(z)21
b F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)p 2102
756 11 41 v 2112 738 46 5 v 97 w Ga(D)3249 707 y F6(_)3310
721 y Gc(E)549 989 y Gg(where)23 b Ga(z)f F4(:)17 b Ga(B)5
b F6(_)o Ga(C)30 b Gg(might)24 b(need)g(to)f(be)h(added)h(to)e
F6(j)p Ga(\031)2169 1003 y F9(1)2209 989 y F6(j)2234
956 y Fu(n)2297 989 y Gg(or)h(to)f F6(j)p Ga(\031)2566
1003 y F9(2)2606 989 y F6(j)2631 956 y Fu(n)2672 989
y Gg(.)p Black 321 1170 a Gb(The)g(Cut-Rule:)p Black
45 w Gg(A)f(sequent)k(proof)e(ending)h(with)f(an)f(instance)j(of)d(the)
h(cut-rule)1576 1346 y Ga(\031)1628 1360 y F9(1)1435
1439 y F4(\000)1492 1453 y F9(1)p 1551 1427 11 41 v 1561
1409 46 5 v 1627 1439 a Ga(a)17 b F4(:)h Ga(B)2148 1345
y(\031)2200 1359 y F9(2)1899 1439 y Ga(x)f F4(:)h Ga(B)5
b(;)15 b F4(\000)2182 1453 y F9(2)p 2241 1427 11 41 v
2252 1409 46 5 v 2317 1439 a Ga(b)j F4(:)f Ga(C)p 1435
1476 1053 4 v 1711 1556 a F4(\000)1768 1570 y F9(1)1808
1556 y Ga(;)e F4(\000)1905 1570 y F9(2)p 1964 1544 11
41 v 1975 1526 46 5 v 2041 1556 a Ga(b)i F4(:)g Ga(C)2529
1507 y Gg(Cut)549 1777 y(is)23 b(translated)j(to)1470
1963 y F6(j)p Ga(\031)1547 1977 y F9(1)1586 1963 y F6(j)1611
1930 y Fu(n)1374 2065 y F4(\000)1431 2079 y F9(1)p 1490
2053 11 41 v 1501 2035 46 5 v 1567 2065 a Ga(a)17 b F4(:)g
Ga(B)2042 1962 y F6(j)p Ga(\031)2119 1976 y F9(2)2158
1962 y F6(j)2183 1929 y Fu(n)1839 2065 y Ga(x)g F4(:)g
Ga(B)5 b(;)15 b F4(\000)2121 2079 y F9(2)p 2181 2053
11 41 v 2191 2035 46 5 v 2257 2065 a Ga(b)i F4(:)g Ga(C)p
1374 2102 1053 4 v 1651 2182 a F4(\000)1708 2196 y F9(1)1747
2182 y Ga(;)e F4(\000)1844 2196 y F9(2)p 1904 2170 11
41 v 1914 2152 46 5 v 1980 2182 a Ga(b)i F4(:)h Ga(C)2468
2133 y Gg(Subst)27 b Ga(:)549 2403 y Gg(There)c(are)g(tw)o(o)f
(possible)j(w)o(ays)e(of)g(dealing)i(with)e(the)g(substitution:)32
b(either)24 b(it)f(is)g(performed)549 2516 y(immediately)-6
b(,)33 b(or)e(it)f(is)g(\223suspended\224)k(and)d(performed)h(later)-5
b(.)50 b(W)-7 b(e)29 b(shall)j(emplo)o(y)f(the)g(\002rst)549
2629 y(method)24 b(and)g(mention)h(some)e(problems)i(with)f(the)g
(second.)p Black 321 2811 a Gb(Intr)n(oduction)g(Rules:)p
Black 46 w Gg(An)f(NJ-proof)i(ending)g(with)f(an)f(instance)j(of)d(the)
h F6(^)2792 2825 y Gc(I)2832 2811 y Gg(-rule)1764 3009
y F6(D)1834 3023 y F9(1)1705 3101 y F4(\000)p 1782 3089
11 41 v 1793 3071 46 5 v 96 w Ga(B)2080 3009 y F6(D)2150
3023 y F9(2)2023 3101 y F4(\000)p 2100 3089 11 41 v 2110
3071 46 5 v 96 w Ga(C)p 1705 3121 543 4 v 1797 3200 a
F4(\000)p 1874 3188 11 41 v 1885 3169 46 5 v 96 w Ga(B)5
b F6(^)o Ga(C)2289 3139 y F6(^)2350 3153 y Gc(I)549 3420
y Gg(is)23 b(translated)j(to)1660 3612 y F6(jD)1755 3626
y F9(1)1794 3612 y F6(j)1819 3579 y Fu(s)1819 3634 y
Gc(a)1593 3713 y F4(\000)p 1670 3701 11 41 v 1681 3683
46 5 v 96 w Ga(a)18 b F4(:)f Ga(B)2083 3606 y F6(jD)2178
3620 y F9(2)2218 3606 y F6(j)2243 3573 y Fu(s)2243 3634
y Gc(b)2019 3713 y F4(\000)p 2096 3701 11 41 v 2106 3683
46 5 v 96 w Ga(b)g F4(:)g Ga(C)p 1593 3733 749 4 v 1739
3812 a F4(\000)p 1816 3800 11 41 v 1826 3782 46 5 v 96
w Ga(c)g F4(:)h Ga(B)5 b F6(^)o Ga(C)2383 3751 y F6(^)2444
3765 y Gc(R)549 4033 y Gg(where)23 b Ga(c)g Gg(is)h(a)f(fresh)h
(co-name.)p Black 321 4214 a Gb(Elimination)g(Rules:)p
Black 46 w Gg(An)e(NJ-proof)j(ending)h(with)d(an)g(instance)j(of)e(the)
f F6(_)2758 4228 y Gc(E)2818 4214 y Gg(-rule)1370 4412
y F6(D)1440 4426 y F9(1)1246 4505 y F4(\000)p 1323 4493
11 41 v 1333 4475 46 5 v 96 w Ga(B)5 b F6(_)o Ga(C)1869
4412 y F6(D)1939 4426 y F9(2)1695 4505 y Ga(x)17 b F4(:)h
Ga(B)5 b(;)15 b F4(\000)p 1998 4493 11 41 v 2008 4475
46 5 v 96 w Ga(D)2410 4412 y F6(D)2480 4426 y F9(3)2242
4505 y Ga(y)21 b F4(:)c Ga(C)q(;)e F4(\000)p 2534 4493
11 41 v 2544 4475 46 5 v 97 w Ga(D)p 1246 4542 1443 4
v 1851 4621 a F4(\000)p 1928 4609 11 41 v 1939 4591 46
5 v 96 w Ga(D)2729 4561 y F6(_)2790 4575 y Gc(E)549 4842
y Gg(is)23 b(translated)j(to)1229 5144 y F6(jD)1324 5158
y F9(1)1364 5144 y F6(j)1389 5111 y Fu(s)1389 5166 y
Gc(a)1096 5245 y F4(\000)p 1173 5233 11 41 v 1184 5215
46 5 v 97 w Ga(a)17 b F4(:)g Ga(B)5 b F6(_)o Ga(C)1834
5027 y F6(jD)1929 5041 y F9(2)1969 5027 y F6(j)1994 4994
y Fu(s)1994 5050 y Gc(c)1654 5129 y Ga(x)17 b F4(:)g
Ga(B)5 b(;)15 b F4(\000)p 1956 5117 11 41 v 1967 5099
46 5 v 96 w Ga(c)j F4(:)f Ga(D)2475 5027 y F6(jD)2570
5041 y F9(3)2610 5027 y F6(j)2635 4994 y Fu(s)2635 5050
y Gc(c)2300 5129 y Ga(y)j F4(:)e Ga(C)q(;)d F4(\000)p
2591 5117 11 41 v 2602 5099 46 5 v 96 w Ga(c)j F4(:)f
Ga(D)p 1654 5166 1191 4 v 1911 5245 a(z)k F4(:)d Ga(B)5
b F6(_)o Ga(C)q(;)15 b F4(\000)p 2334 5233 11 41 v 2345
5215 46 5 v 97 w Ga(c)i F4(:)h Ga(D)2886 5185 y F6(_)2946
5199 y Gc(L)p 1096 5283 1491 4 v 1677 5361 a F4(\000)p
1754 5349 11 41 v 1764 5331 46 5 v 96 w Ga(c)g F4(:)f
Ga(D)2629 5313 y Gg(Cut)p Black Black eop end
%%Page: 69 81
TeXDict begin 69 80 bop Black 277 51 a Gb(3.1)23 b(Intuitionistic)i
(Natural)f(Deduction)2216 b(69)p 277 88 3691 4 v Black
504 365 a Gg(where)25 b Ga(z)j Gg(is)d(a)f(fresh)i(name.)32
b(This)24 b(is)g(the)h(standard)i(translation)h(for)d(the)g
F6(_)2895 379 y Gc(E)2955 365 y Gg(-rule;)h(ho)n(we)n(v)o(er)l(,)504
478 y(we)g(shall)h(slightly)h(modify)g(this)e(translation)k(by)c(using)
i(our)e(proof)i(substitution)h(instead)f(of)504 590 y(the)c(cut-rule.)
418 812 y(As)32 b(mentioned)j(earlier)l(,)i(it)c(will)f(be)h(con)l(v)o
(enient)j(to)d(de\002ne)g(the)g(translations)k F6(j)p
3032 812 28 4 v 3050 812 V 3067 812 V 65 w(j)3120 779
y Fu(s)3183 812 y Gg(and)d F6(j)p 3374 812 V 3391 812
V 3409 812 V 64 w(j)3461 779 y Fu(n)277 925 y Gg(o)o(v)o(er)24
b(terms.)29 b(T)-7 b(o)22 b(do)i(so,)f(NJ-proofs)i(will)e(be)h
(annotated)i(with)d(lambda)i(terms.)p Black 277 1113
a Gb(De\002nition)30 b(3.1.1)h Gg(\(Ra)o(w)f(Lambda)h(T)-6
b(erms\))p Gb(:)p Black 34 w Gg(The)31 b(set)g(of)g(ra)o(w)f(lambda)i
(terms)f(is)g(de\002ned)h(by)f(the)277 1225 y(grammar)p
Black Black 482 1417 a Ga(M)5 b(;)15 b(N)5 b(;)15 b(P)113
b F4(::=)100 b Ga(x)1232 b Gg(v)n(ariable)952 1530 y
F6(j)148 b Ga(\025x)17 b F4(:)g Ga(B)5 b(:M)933 b Gg
(implication-introducti)q(on)952 1643 y F6(j)148 b Ga(M)25
b(N)1098 b Gg(implication-elimination)952 1756 y F6(j)148
b(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)998 b Gg(and-introduction)952
1869 y F6(j)148 b Fp(fst)o F4(\()p Ga(M)10 b F4(\))973
b Gg(and)2539 1836 y F9(1)2579 1869 y Gg(-elimination)952
1982 y F6(j)148 b Fp(snd)o F4(\()p Ga(M)10 b F4(\))973
b Gg(and)2539 1949 y F9(2)2579 1982 y Gg(-elimination)952
2095 y F6(j)148 b Fp(inl)o F4(\()p Ga(M)10 b F4(\))973
b Gg(or)2484 2062 y F9(1)2524 2095 y Gg(-introduction)952
2208 y F6(j)148 b Fp(inr)o F4(\()p Ga(M)10 b F4(\))973
b Gg(or)2484 2175 y F9(2)2524 2208 y Gg(-introduction)952
2321 y F6(j)148 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025x)j
F4(:)f Ga(B)5 b(:M)g(;)15 b(\025y)20 b F4(:)e Ga(C)q(:N)10
b F4(\))190 b Gg(or)n(-elimination)277 2566 y(Let)30
b(us)g(brie\003y)h(describe)i(the)e(notions)h(and)f(con)l(v)o(entions)j
(we)c(shall)h(use)g(for)f(lambda)i(terms:)43 b(the)277
2679 y(notions)30 b(of)d(bound)i(and)g(free)f(v)n(ariables)i(will)d(be)
h(as)f(usual;)k(for)d(bre)n(vity)h(we)e(shall)i(often)f(omit)g(the)277
2792 y(typings)35 b(on)e(binders)h(and)g(simply)f(write)g
Ga(\025x:M)10 b Gg(;)37 b(a)c(Barendre)o(gt-style)j(naming)e(con)l(v)o
(ention)i(for)277 2905 y(v)n(ariables)c(will)e(al)o(w)o(ays)h(be)f
(observ)o(ed;)36 b(and)30 b(lambda)h(terms)f(will)g(be)g(re)o(garded)i
(as)e(equi)n(v)n(alent)i(up)277 3018 y(to)25 b(renaming)h(of)f(bound)i
(v)n(ariables.)34 b(A)24 b(pleasing)j(consequence)i(of)c(these)g(con)l
(v)o(entions)k(is)c(that)g(the)277 3131 y(notion)e(of)f(v)n(ariable)h
(substitution)i(can)d(be)g(de\002ned)g(without)g(w)o(orrying)i(about)e
(clashes)i(and)e(capture)277 3243 y(of)j(v)n(ariables.)34
b(Since)25 b(it)f(will)h(al)o(w)o(ays)g(be)g(clear)h(from)e(the)h
(conte)o(xt)h(whether)g(we)e(deal)h(with)g(a)f(proof)277
3356 y(substitution)i(or)c(a)g(v)n(ariable)j(substitution,)h(no)c
(confusion)j(will)d(occur)i(when)f(we)e(emplo)o(y)j(the)e(same)277
3469 y(shorthand)k(notation)g(for)e(both)g(substitutions;)k(that)c(is)f
F4([)p Ga(\033)s F4(])p Gg(.)418 3599 y(T)-7 b(o)28 b(annotate)k
(natural)e(deduction)i(proofs)f(with)d(lambda)i(terms,)h(we)d(shall)i
(replace)h(e)n(v)o(ery)e(se-)277 3712 y(quent)f(of)e(the)g(form)g
F4(\000)p 1021 3700 11 41 v 1032 3681 46 5 v 96 w Ga(B)k
Gg(with)c(a)g(typing)i(judgement)g(of)e(the)h(form)f
F4(\000)2638 3700 y Gc(.)2693 3712 y Ga(M)h F4(:)18 b
Ga(B)30 b Gg(in)c(which)g F4(\000)g Gg(is)g(a)277 3825
y(conte)o(xt,)i Ga(M)35 b Gg(is)26 b(a)g(lambda)g(term)g(and)h
Ga(B)i Gg(is)d(a)g(formula.)37 b(In)26 b(the)g(sequel)i(we)d(are)h
(interested)j(in)d(only)277 3937 y(simply-typed)34 b(lambda)e(terms,)h
(i.e.,)g(those)f(for)f(which)h(there)g(is)f(a)g(conte)o(xt)i
F4(\000)d Gg(and)i(a)e(formula)j Ga(B)277 4050 y Gg(such)25
b(that)f F4(\000)708 4038 y Gc(.)763 4050 y Ga(M)j F4(:)18
b Ga(B)27 b Gg(is)d(deri)n(v)n(able)h(gi)n(v)o(en)g(the)f(inferences)i
(sho)n(wn)e(in)g(Figure)g(3.2.)30 b(The)23 b(follo)n(wing)277
4163 y(set)h(contains)i(all)d(simply-typed)k(lambda)d(terms.)p
Black Black 495 4406 a F4(\003)658 4354 y F5(def)665
4406 y F4(=)843 4305 y FK(n)928 4406 y Ga(M)1074 4301
y FK(\014)1074 4356 y(\014)1074 4410 y(\014)1151 4406
y F4(\000)1233 4394 y Gc(.)1288 4406 y Ga(M)k F4(:)17
b Ga(B)27 b Gg(is)d(deri)n(v)n(able)h(using)g(the)f(rules)g(gi)n(v)o
(en)g(in)g(Figure)g(3.2)3246 4305 y FK(o)418 4650 y Gg(No)n(w)19
b(we)h(return)h(to)f(the)h(translations)i F6(j)p 1660
4650 28 4 v 1678 4650 V 1696 4650 V 65 w(j)1748 4617
y Fu(s)1799 4650 y Gg(and)d F6(j)p 1976 4650 V 1994 4650
V 2012 4650 V 65 w(j)2064 4617 y Fu(n)2125 4650 y Gg(whose)g(clauses)i
(are)f(gi)n(v)o(en)f(in)g(Figures)i(3.3)277 4763 y(and)g(3.4,)f
(respecti)n(v)o(ely)-6 b(.)30 b(Clearly)-6 b(,)22 b(we)f(e)o(xpect)h
(that)f(both)h(translations)i(respect)f(typing)f(judgements.)p
Black 277 4951 a Gb(Pr)n(oposition)j(3.1.2:)p Black Black
97 w Gg(\(i\))p Black 46 w(If)35 b Ga(M)56 b F6(2)45
b F4(\003)34 b Gg(with)h(the)f(typing)j(judgement)f F4(\000)2735
4939 y Gc(.)2790 4951 y Ga(M)28 b F4(:)17 b Ga(B)5 b
Gg(,)36 b(then)f(for)g(all)504 5063 y(co-names)25 b Ga(a)e
Gg(we)g(ha)n(v)o(e)h F6(j)p Ga(M)10 b F6(j)1414 5030
y Fu(s)1414 5086 y Gc(a)1482 5063 y F6(2)25 b FY(I)d
Gg(with)i(the)g(typing)h(judgement)g F4(\000)2691 5051
y Gc(.)2746 5063 y F6(j)p Ga(M)10 b F6(j)2894 5030 y
Fu(s)2894 5086 y Gc(a)2962 5051 y(.)3017 5063 y Ga(a)17
b F4(:)g Ga(B)5 b Gg(.)p Black 348 5249 a(\(ii\))p Black
46 w(If)28 b Ga(M)42 b F6(2)33 b FY(I)27 b Gg(with)g(the)h(typing)h
(judgement)g F4(\000)1960 5237 y Gc(.)2014 5249 y Ga(M)2138
5237 y Gc(.)2193 5249 y Ga(a)17 b F4(:)g Ga(B)5 b Gg(,)27
b(then)i(we)d(ha)n(v)o(e)j F6(j)p Ga(M)10 b F6(j)3084
5216 y Fu(n)3157 5249 y F6(2)33 b F4(\003)27 b Gg(with)504
5361 y(the)d(typing)h(judgement)h F4(\000)1382 5349 y
Gc(.)1437 5361 y F6(j)p Ga(M)10 b F6(j)1585 5329 y Fu(n)1643
5361 y F4(:)18 b Ga(B)t Gg(.)p Black Black eop end
%%Page: 70 82
TeXDict begin 70 81 bop Black -144 51 a Gb(70)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black 321 277 3226
4 v 321 1863 4 1587 v 1483 369 548 4 v 1483 447 a Ga(x)17
b F4(:)g Ga(B)5 b(;)15 b F4(\000)1790 435 y Gc(.)1845
447 y Ga(x)i F4(:)h Ga(B)536 638 y(x)f F4(:)g Ga(B)5
b(;)15 b F4(\000)843 626 y Gc(.)898 638 y Ga(M)27 b F4(:)18
b Ga(C)p 511 676 641 4 v 511 755 a F4(\000)593 743 y
Gc(.)648 755 y Ga(\025x:M)28 b F4(:)17 b Ga(B)5 b F6(\033)o
Ga(C)1193 693 y F6(\033)1264 707 y Gc(I)2030 653 y F4(\000)2112
641 y Gc(.)2167 653 y Ga(M)27 b F4(:)18 b Ga(B)5 b F6(\033)o
Ga(C)97 b F4(\000)2713 641 y Gc(.)2768 653 y Ga(N)27
b F4(:)18 b Ga(B)p 2030 677 955 4 v 2275 755 a F4(\000)2357
743 y Gc(.)2412 755 y Ga(M)25 b(N)i F4(:)18 b Ga(C)3026
694 y F6(\033)3096 708 y Gc(E)431 983 y F4(\000)514 971
y Gc(.)568 983 y Ga(M)28 b F4(:)17 b Ga(B)96 b F4(\000)973
971 y Gc(.)1028 983 y Ga(N)27 b F4(:)17 b Ga(C)p 431
1003 811 4 v 492 1088 a F4(\000)574 1076 y Gc(.)629 1088
y F6(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)18 b F4(:)g Ga(B)5
b F6(^)o Ga(C)1283 1021 y F6(^)1344 1035 y Gc(I)1760
969 y F4(\000)1842 957 y Gc(.)1897 969 y Ga(M)28 b F4(:)17
b Ga(B)2124 983 y F9(1)2164 969 y F6(^)o Ga(B)2293 983
y F9(2)p 1738 1003 617 4 v 1738 1088 a F4(\000)1820 1076
y Gc(.)1875 1088 y Fp(fst)o F4(\()p Ga(M)10 b F4(\))18
b(:)g Ga(B)2316 1102 y F9(1)2396 1017 y F6(^)2457 1031
y Gc(E)2509 1040 y FV(1)2661 969 y F4(\000)2743 957 y
Gc(.)2798 969 y Ga(M)27 b F4(:)18 b Ga(B)3025 983 y F9(1)3064
969 y F6(^)p Ga(B)3194 983 y F9(2)p 2638 1003 V 2638
1088 a F4(\000)2721 1076 y Gc(.)2775 1088 y Fp(snd)p
F4(\()p Ga(M)10 b F4(\))18 b(:)f Ga(B)3216 1102 y F9(2)3297
1017 y F6(^)3358 1031 y Gc(E)3410 1040 y FV(2)1066 1302
y F4(\000)1148 1290 y Gc(.)1203 1302 y Ga(M)27 b F4(:)17
b Ga(B)1429 1316 y F9(1)p 874 1335 786 4 v 874 1420 a
F4(\000)956 1408 y Gc(.)1011 1420 y Fp(inl)o F4(\()p
Ga(M)10 b F4(\))18 b(:)g Ga(B)1452 1434 y F9(1)1491 1420
y F6(_)p Ga(B)1621 1434 y F9(2)1702 1349 y F6(_)1762
1363 y Gc(I)1793 1372 y FV(1)2228 1302 y F4(\000)2310
1290 y Gc(.)2364 1302 y Ga(M)28 b F4(:)17 b Ga(B)2591
1316 y F9(2)p 2036 1335 V 2036 1420 a F4(\000)2118 1408
y Gc(.)2173 1420 y Fp(inr)o F4(\()p Ga(M)10 b F4(\))18
b(:)g Ga(B)2614 1434 y F9(1)2653 1420 y F6(_)p Ga(B)2783
1434 y F9(2)2864 1349 y F6(_)2924 1363 y Gc(I)2955 1372
y FV(2)941 1634 y F4(\000)1023 1622 y Gc(.)1078 1634
y Ga(P)30 b F4(:)17 b Ga(B)5 b F6(_)o Ga(C)98 b(x)17
b F4(:)g Ga(B)5 b(;)15 b F4(\000)1812 1622 y Gc(.)1867
1634 y Ga(M)28 b F4(:)17 b Ga(D)94 b(y)20 b F4(:)d Ga(C)q(;)e
F4(\000)2490 1622 y Gc(.)2545 1634 y Ga(N)27 b F4(:)17
b Ga(D)p 941 1672 1825 4 v 1298 1757 a F4(\000)1380 1745
y Gc(.)1435 1757 y Fp(case)o F4(\()p Ga(P)s(;)e(\025x:M)5
b(;)15 b(\025)q(y)s(:N)10 b F4(\))18 b(:)f Ga(D)2807
1690 y F6(_)2867 1704 y Gc(E)p 3543 1863 4 1587 v 321
1866 3226 4 v Black 636 2019 a Gg(Figure)24 b(3.2:)30
b(T)-6 b(erm)22 b(assignment)k(for)d(intuitionistic)28
b(natural)d(deduction)h(proofs.)p Black Black Black 321
2465 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Both)d(by)h(routine)h(induction)
i(on)c(the)h(structure)i(of)d Ga(M)10 b Gg(.)p 3480 2465
4 62 v 3484 2407 55 4 v 3484 2465 V 3538 2465 4 62 v
Black 321 2653 a Gb(Remark)35 b(3.1.3:)p Black 34 w Gg(It)g(is)g
(well-kno)n(wn)h(that)g F6(j)p 1768 2653 28 4 v 1786
2653 V 1804 2653 V 65 w(j)1856 2620 y Fu(n)1897 2653
y Gg(,)h(the)e(translation)j(from)d(sequent)i(proofs)g(to)e(NJ-)321
2766 y(proofs,)25 b(is)e(man)o(y-to-one.)31 b(T)-7 b(ak)o(e)24
b(for)f(e)o(xample)i(the)f(sequent)h(proof)p Black Black
1320 2960 233 4 v 1320 3039 a Ga(A)p 1408 3027 11 41
v 1418 3008 46 5 v 96 w(A)p 1252 3058 367 4 v 1252 3137
a(A)p F6(^)p Ga(B)p 1475 3125 11 41 v 1485 3107 46 5
v 101 w(A)1661 3072 y F6(^)1721 3086 y Gc(L)1769 3095
y FV(1)p 1899 2960 233 4 v 1899 3039 a Ga(A)p 1987 3027
11 41 v 1998 3008 46 5 v 97 w(A)p 2223 2960 233 4 v 91
w(A)p 2311 3027 11 41 v 2321 3008 46 5 v 96 w(A)p 1899
3058 557 4 v 1996 3137 a(A)p 2085 3125 11 41 v 2095 3107
46 5 v 97 w(A)p F6(^)p Ga(A)2497 3077 y F6(^)2557 3091
y Gc(R)p 1252 3157 1106 4 v 1557 3236 a Ga(A)p F6(^)p
Ga(B)p 1780 3224 11 41 v 1790 3206 46 5 v 101 w(A)p F6(^)p
Ga(A)2399 3187 y Gg(Cut)p 1451 3256 708 4 v 1472 3329
11 41 v 1482 3310 46 5 v 1548 3341 a F4(\()p Ga(A)p F6(^)p
Ga(B)5 b F4(\))p F6(\033)o F4(\()p Ga(A)p F6(^)q Ga(A)p
F4(\))2201 3273 y F6(\033)2271 3287 y Gc(R)321 3591 y
Gg(and)24 b(the)g(tw)o(o)f(normal)i(forms)p Black Black
852 3766 233 4 v 852 3845 a Ga(A)p 940 3833 11 41 v 950
3815 46 5 v 96 w(A)p 1175 3766 233 4 v 91 w(A)p 1263
3833 11 41 v 1274 3815 46 5 v 97 w(A)p 852 3865 557 4
v 949 3943 a(A)p 1037 3931 11 41 v 1048 3913 46 5 v 96
w(A)p F6(^)p Ga(A)1449 3883 y F6(^)1510 3897 y Gc(R)p
882 3963 496 4 v 882 4042 a Ga(A)p F6(^)p Ga(B)p 1104
4030 11 41 v 1115 4012 46 5 v 100 w(A)p F6(^)p Ga(A)1419
3977 y F6(^)1480 3991 y Gc(L)1528 4000 y FV(1)p 776 4062
708 4 v 796 4135 11 41 v 806 4117 46 5 v 872 4147 a F4(\()p
Ga(A)p F6(^)p Ga(B)5 b F4(\))p F6(\033)p F4(\()p Ga(A)p
F6(^)p Ga(A)p F4(\))1525 4080 y F6(\033)1596 4094 y Gc(R)p
1957 3766 233 4 v 1957 3845 a Ga(A)p 2045 3833 11 41
v 2056 3815 46 5 v 96 w(A)p 1890 3865 367 4 v 1890 3943
a(A)p F6(^)o Ga(B)p 2112 3931 11 41 v 2123 3913 46 5
v 101 w(A)2298 3878 y F6(^)2359 3892 y Gc(L)2407 3901
y FV(1)p 2603 3766 233 4 v 2603 3845 a Ga(A)p 2692 3833
11 41 v 2702 3815 46 5 v 97 w(A)p 2536 3865 367 4 v 2536
3943 a(A)p F6(^)p Ga(B)p 2759 3931 11 41 v 2769 3913
46 5 v 101 w(A)2945 3878 y F6(^)3005 3892 y Gc(L)3053
3901 y FV(1)p 1890 3963 1014 4 v 2149 4042 a Ga(A)p F6(^)o
Ga(B)p 2371 4030 11 41 v 2381 4012 46 5 v 101 w(A)p F6(^)p
Ga(A)2945 3982 y F6(^)3005 3996 y Gc(R)p 2042 4062 708
4 v 2063 4135 11 41 v 2073 4117 46 5 v 2139 4147 a F4(\()p
Ga(A)p F6(^)p Ga(B)g F4(\))p F6(\033)o F4(\()p Ga(A)p
F6(^)q Ga(A)p F4(\))2792 4080 y F6(\033)2862 4094 y Gc(R)321
4397 y Gg(reachable)25 b(from)e(it)f(\(for)h(bre)n(vity)h(we)e(omitted)
i(all)f(labels\).)30 b(All)22 b(three)h(sequent)i(proofs)f(are)f
(mapped)321 4510 y(by)h F6(j)p 462 4510 28 4 v 480 4510
V 497 4510 V 65 w(j)550 4477 y Fu(n)613 4510 y Gg(to)g(the)g(same)f
(lambda)h(term,)g(namely)1522 4755 y Ga(\025x:)p F6(h)p
Fp(fst)p F4(\()p Ga(x)p F4(\))p Ga(;)15 b Fp(snd)p F4(\()p
Ga(x)p F4(\))p F6(i)26 b Ga(:)462 5023 y Gg(Ne)o(xt)i(we)g(shall)h
(de\002ne)g(the)g(reduction)i(rules)e(for)g(NJ-proofs.)45
b(Recall)29 b(that)f(one)h(of)g(the)f(moti-)321 5136
y(v)n(ations)e(of)e(cut-elimination)j(are)d(to)g(transform)i(a)d(proof)
i(containing)i(cuts)e(to)f(one)g(in)g(normal)h(form)321
5249 y(satisfying)h(the)d(subformula)i(property)g(\(see)f(De\002nition)
f(2.1.1\).)29 b(Whereas)24 b(in)f(sequent)i(calculi)f(one)321
5361 y(can)h(check)g(by)g(simple)g(inspection)i(of)d(a)g(proof)h
(whether)h(the)e(subformula)j(property)f(holds,)g(this)f(is)p
Black Black eop end
%%Page: 71 83
TeXDict begin 71 82 bop Black 277 51 a Gb(3.1)23 b(Intuitionistic)i
(Natural)f(Deduction)2216 b(71)p 277 88 3691 4 v Black
Black 277 533 V 277 2392 4 1860 v 587 711 a Gg(\(1\))926
b F6(j)p Ga(x)p F6(j)1720 678 y Fu(s)1720 733 y Gc(c)1855
659 y F5(def)1862 711 y F4(=)106 b FL(Ax)p F4(\()p Ga(x;)15
b(c)p F4(\))587 851 y Gg(\(2\))750 b F6(j)p Ga(\025x:M)10
b F6(j)1720 818 y Fu(s)1720 873 y Gc(c)1855 799 y F5(def)1862
851 y F4(=)106 b FL(Imp)2184 873 y Gc(R)2242 851 y F4(\()2277
839 y F9(\()2304 851 y Ga(x)2356 839 y F9(\))q FX(h)2411
851 y Ga(a)2459 839 y FX(i)2502 851 y F6(j)p Ga(M)10
b F6(j)2650 818 y Fu(s)2650 873 y Gc(a)2692 851 y Ga(;)15
b(c)p F4(\))587 990 y Gg(\(3\))691 b F6(jh)p Ga(M)5 b(;)15
b(N)10 b F6(ij)1719 957 y Fu(s)1719 1013 y Gc(c)1855
939 y F5(def)1862 990 y F4(=)106 b FL(And)2194 1004 y
Gc(R)2252 990 y F4(\()2287 978 y FX(h)2315 990 y Ga(a)2363
978 y FX(i)2405 990 y F6(j)p Ga(M)10 b F6(j)2553 957
y Fu(s)2553 1013 y Gc(a)2595 990 y Ga(;)2635 978 y FX(h)2663
990 y Ga(b)2702 978 y FX(i)2745 990 y F6(j)p Ga(N)g F6(j)2878
957 y Fu(s)2878 1018 y Gc(b)2913 990 y Ga(;)15 b(c)p
F4(\))587 1130 y Gg(\(4\))666 b F6(j)p Fp(inl)p F4(\()p
Ga(M)10 b F4(\))p F6(j)1720 1097 y Fu(s)1720 1153 y Gc(c)1855
1079 y F5(def)1862 1130 y F4(=)106 b FL(Or)2139 1093
y F9(1)2139 1153 y Gc(R)2196 1130 y F4(\()2231 1118 y
FX(h)2259 1130 y Ga(a)2307 1118 y FX(i)2350 1130 y F6(j)p
Ga(M)10 b F6(j)2498 1097 y Fu(s)2498 1153 y Gc(a)2540
1130 y Ga(;)15 b(c)p F4(\))587 1270 y Gg(\(5\))666 b
F6(j)p Fp(inr)p F4(\()p Ga(M)10 b F4(\))p F6(j)1720 1237
y Fu(s)1720 1293 y Gc(c)1855 1219 y F5(def)1862 1270
y F4(=)106 b FL(Or)2139 1233 y F9(2)2139 1293 y Gc(R)2196
1270 y F4(\()2231 1258 y FX(h)2259 1270 y Ga(a)2307 1258
y FX(i)2350 1270 y F6(j)p Ga(M)10 b F6(j)2498 1237 y
Fu(s)2498 1293 y Gc(a)2540 1270 y Ga(;)15 b(c)p F4(\))587
1528 y Gg(\(6\))772 b F6(j)p Ga(M)35 b(N)10 b F6(j)1720
1495 y Fu(s)1720 1550 y Gc(c)1855 1476 y F5(def)1862
1528 y F4(=)106 b F6(j)p Ga(M)10 b F6(j)2187 1495 y Fu(s)2187
1550 y Gc(a)2230 1528 y F4([)p Ga(a)25 b F4(:=)2449 1516
y F9(\()2477 1528 y Ga(y)2525 1516 y F9(\))2552 1528
y FL(Imp)2697 1550 y Gc(L)2749 1528 y F4(\()2784 1516
y FX(h)2812 1528 y Ga(b)2851 1516 y FX(i)2878 1528 y
F6(j)p Ga(N)10 b F6(j)3011 1495 y Fu(s)3011 1556 y Gc(b)3046
1528 y Ga(;)3086 1516 y F9(\()3114 1528 y Ga(z)3160 1516
y F9(\))3187 1528 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p
F4(\))r Ga(;)g(y)s F4(\)])587 1668 y Gg(\(7\))666 b F6(j)p
Fp(fst)p F4(\()p Ga(M)10 b F4(\))p F6(j)1720 1635 y Fu(s)1720
1690 y Gc(c)1855 1616 y F5(def)1862 1668 y F4(=)106 b
F6(j)p Ga(M)10 b F6(j)2187 1635 y Fu(s)2187 1690 y Gc(a)2230
1668 y F4([)p Ga(a)25 b F4(:=)2449 1656 y F9(\()2477
1668 y Ga(y)2525 1656 y F9(\))2552 1668 y FL(And)2707
1631 y F9(1)2707 1691 y Gc(L)2759 1668 y F4(\()2794 1656
y F9(\()2822 1668 y Ga(x)2874 1656 y F9(\))2901 1668
y FL(Ax)p F4(\()p Ga(x;)15 b(c)p F4(\))q Ga(;)g(y)s F4(\))q(])587
1808 y Gg(\(8\))666 b F6(j)p Fp(snd)p F4(\()p Ga(M)10
b F4(\))p F6(j)1720 1775 y Fu(s)1720 1830 y Gc(c)1855
1756 y F5(def)1862 1808 y F4(=)106 b F6(j)p Ga(M)10 b
F6(j)2187 1775 y Fu(s)2187 1830 y Gc(a)2230 1808 y F4([)p
Ga(a)25 b F4(:=)2449 1796 y F9(\()2477 1808 y Ga(y)2525
1796 y F9(\))2552 1808 y FL(And)2707 1771 y F9(2)2707
1831 y Gc(L)2759 1808 y F4(\()2794 1796 y F9(\()2822
1808 y Ga(x)2874 1796 y F9(\))2901 1808 y FL(Ax)p F4(\()p
Ga(x;)15 b(c)p F4(\))q Ga(;)g(y)s F4(\))q(])587 1947
y Gg(\(9\))142 b F6(j)p Fp(case)p F4(\()p Ga(P)s(;)15
b(\025x:M)5 b(;)15 b(\025)q(y)s(:N)10 b F4(\))p F6(j)1720
1914 y Fu(s)1720 1970 y Gc(c)1855 1896 y F5(def)1862
1947 y F4(=)106 b F6(j)p Ga(P)13 b F6(j)2160 1914 y Fu(s)2160
1970 y Gc(a)2203 1947 y F4([)p Ga(a)25 b F4(:=)2422 1935
y F9(\()2450 1947 y Ga(z)2496 1935 y F9(\))2524 1947
y FL(Or)2623 1961 y Gc(L)2675 1947 y F4(\()2710 1935
y F9(\()2738 1947 y Ga(x)2790 1935 y F9(\))2817 1947
y F6(j)p Ga(M)10 b F6(j)2965 1914 y Fu(s)2965 1970 y
Gc(c)3000 1947 y Ga(;)3040 1935 y F9(\()3068 1947 y Ga(y)3116
1935 y F9(\))3144 1947 y F6(j)p Ga(N)g F6(j)3277 1914
y Fu(s)3277 1970 y Gc(c)3312 1947 y Ga(;)15 b(z)t F4(\))q(])1289
2173 y Gg(where)24 b(in:)101 b(\(6\))114 b Ga(y)28 b
F6(62)d Ga(F)13 b(N)d F4(\()2297 2161 y FX(h)2325 2173
y Ga(b)2364 2161 y FX(i)2392 2173 y F6(j)p Ga(N)g F6(j)2525
2140 y Fu(s)2525 2201 y Gc(b)2559 2173 y F4(\))1730 2286
y Gg(\(9\))114 b Ga(z)30 b F6(62)25 b Ga(F)13 b(N)d F4(\()2296
2274 y F9(\()2324 2286 y Ga(x)2376 2274 y F9(\))2403
2286 y F6(j)p Ga(M)g F6(j)2551 2253 y Fu(s)2551 2309
y Gc(c)2586 2286 y Ga(;)2626 2274 y F9(\()2654 2286 y
Ga(y)2702 2274 y F9(\))2729 2286 y F6(j)p Ga(N)g F6(j)2862
2253 y Fu(s)2862 2309 y Gc(c)2898 2286 y F4(\))p 3965
2392 V 277 2395 3691 4 v Black 601 2549 a Gg(Figure)24
b(3.3:)29 b(T)m(ranslation)d(from)d(NJ-proofs)i(to)f(intuitionistic)j
(sequent)f(proofs.)p Black Black Black 277 3151 V 277
4929 4 1779 v 595 3329 a(\(1\))661 b F6(j)p FL(Ax)p F4(\()p
Ga(x;)15 b(a)p F4(\))p F6(j)1724 3296 y Fu(n)1865 3277
y F5(def)1872 3329 y F4(=)107 b Ga(x)595 3468 y Gg(\(2\))335
b F6(j)p FL(Cut)p F4(\()1233 3456 y FX(h)1261 3468 y
Ga(a)1309 3456 y FX(i)1336 3468 y Ga(M)10 b(;)1474 3456
y F9(\()1502 3468 y Ga(x)1554 3456 y F9(\))1582 3468
y Ga(N)g F4(\))p F6(j)1725 3435 y Fu(n)1865 3417 y F5(def)1872
3468 y F4(=)107 b F6(j)p Ga(N)10 b F6(j)2183 3435 y Fu(n)2224
3468 y F4([)p Ga(x)25 b F4(:=)h F6(j)p Ga(M)10 b F6(j)2596
3435 y Fu(n)2637 3468 y F4(])595 3726 y Gg(\(3\))194
b F6(j)p FL(And)1073 3740 y Gc(R)1131 3726 y F4(\()1166
3714 y FX(h)1194 3726 y Ga(a)1242 3714 y FX(i)1269 3726
y Ga(M)11 b(;)1408 3714 y FX(h)1435 3726 y Ga(b)1474
3714 y FX(i)1502 3726 y Ga(N)f(;)15 b(c)p F4(\))p F6(j)1724
3693 y Fu(n)1865 3675 y F5(def)1872 3726 y F4(=)107 b
F6(hj)p Ga(M)10 b F6(j)2233 3693 y Fu(n)2274 3726 y Ga(;)15
b F6(j)p Ga(N)10 b F6(j)2447 3693 y Fu(n)2489 3726 y
F6(i)595 3866 y Gg(\(4\))467 b F6(j)p FL(Or)1291 3829
y F9(1)1291 3889 y Gc(R)1349 3866 y F4(\()1384 3854 y
FX(h)1412 3866 y Ga(a)1460 3854 y FX(i)1487 3866 y Ga(M)10
b(;)15 b(b)p F4(\))p F6(j)1724 3833 y Fu(n)1865 3815
y F5(def)1872 3866 y F4(=)107 b Fp(inl)o F4(\()p F6(j)p
Ga(M)10 b F6(j)2376 3833 y Fu(n)2418 3866 y F4(\))595
4006 y Gg(\(5\))467 b F6(j)p FL(Or)1291 3969 y F9(2)1291
4029 y Gc(R)1349 4006 y F4(\()1384 3994 y FX(h)1412 4006
y Ga(a)1460 3994 y FX(i)1487 4006 y Ga(M)10 b(;)15 b(b)p
F4(\))p F6(j)1724 3973 y Fu(n)1865 3954 y F5(def)1872
4006 y F4(=)107 b Fp(inr)o F4(\()p F6(j)p Ga(M)10 b F6(j)2376
3973 y Fu(n)2418 4006 y F4(\))595 4146 y Gg(\(6\))314
b F6(j)p FL(Imp)1184 4168 y Gc(R)1242 4146 y F4(\()1277
4134 y F9(\()1304 4146 y Ga(x)1356 4134 y F9(\))q FX(h)1411
4146 y Ga(a)1459 4134 y FX(i)1487 4146 y Ga(M)10 b(;)15
b(c)p F4(\))p F6(j)1724 4113 y Fu(n)1865 4094 y F5(def)1872
4146 y F4(=)107 b Ga(\025x:)p F6(j)p Ga(M)10 b F6(j)2328
4113 y Fu(n)595 4404 y Gg(\(7\))404 b F6(j)p FL(And)1284
4367 y F9(1)1284 4427 y Gc(L)1336 4404 y F4(\()1371 4392
y F9(\()1399 4404 y Ga(x)1451 4392 y F9(\))1478 4404
y Ga(M)10 b(;)15 b(y)s F4(\))p F6(j)1724 4371 y Fu(n)1865
4352 y F5(def)1872 4404 y F4(=)107 b F6(j)p Ga(M)10 b
F6(j)2198 4371 y Fu(n)2239 4404 y F4([)p Ga(x)25 b F4(:=)h
Fp(fst)o F4(\()p Ga(y)s F4(\)])595 4543 y Gg(\(8\))404
b F6(j)p FL(And)1284 4507 y F9(2)1284 4566 y Gc(L)1336
4543 y F4(\()1371 4531 y F9(\()1399 4543 y Ga(x)1451
4531 y F9(\))1478 4543 y Ga(M)10 b(;)15 b(y)s F4(\))p
F6(j)1724 4510 y Fu(n)1865 4492 y F5(def)1872 4543 y
F4(=)107 b F6(j)p Ga(M)10 b F6(j)2198 4510 y Fu(n)2239
4543 y F4([)p Ga(x)25 b F4(:=)h Fp(snd)o F4(\()p Ga(y)s
F4(\)])595 4683 y Gg(\(9\))235 b F6(j)p FL(Or)1059 4697
y Gc(L)1111 4683 y F4(\()1146 4671 y F9(\()1174 4683
y Ga(x)1226 4671 y F9(\))1254 4683 y Ga(M)10 b(;)1392
4671 y F9(\()1420 4683 y Ga(y)1468 4671 y F9(\))1495
4683 y Ga(N)g(;)15 b(z)t F4(\))p F6(j)1724 4650 y Fu(n)1865
4632 y F5(def)1872 4683 y F4(=)107 b Fp(case)o F4(\()p
Ga(z)t(;)15 b(\025)q(x:)p F6(j)p Ga(M)10 b F6(j)2641
4650 y Fu(n)2682 4683 y Ga(;)15 b(\025)q(y)s(:)p F6(j)p
Ga(N)10 b F6(j)2982 4650 y Fu(n)3023 4683 y F4(\))595
4823 y Gg(\(10\))143 b F6(j)p FL(Imp)1058 4845 y Gc(L)1110
4823 y F4(\()1145 4811 y FX(h)1172 4823 y Ga(a)1220 4811
y FX(i)1248 4823 y Ga(M)10 b(;)1386 4811 y F9(\()1414
4823 y Ga(x)1466 4811 y F9(\))1493 4823 y Ga(N)g(;)15
b(y)s F4(\))p F6(j)1724 4790 y Fu(n)1865 4771 y F5(def)1872
4823 y F4(=)107 b F6(j)p Ga(N)10 b F6(j)2183 4790 y Fu(n)2224
4823 y F4([)p Ga(x)25 b F4(:=)h(\()p Ga(y)33 b F6(j)p
Ga(M)10 b F6(j)2709 4790 y Fu(n)2750 4823 y F4(\)])p
3965 4929 V 277 4932 3691 4 v Black 601 5086 a Gg(Figure)24
b(3.4:)29 b(T)m(ranslation)d(from)d(intuitionistic)k(sequent)f(proofs)f
(to)e(NJ-proofs.)p Black Black Black Black eop end
%%Page: 72 84
TeXDict begin 72 83 bop Black -144 51 a Gb(72)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(more)h(dif)n
(\002cult)g(in)f(NJ.)f(Consider)i(the)g(proof)g(fragment)h(where)e(an)g
(implication)j(is)d(introduced)j(and)321 478 y(eliminated)g
(immediately)f(afterw)o(ards.)1558 696 y F6(D)1628 710
y F9(1)1388 788 y Ga(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)p
1691 776 11 41 v 1701 758 46 5 v 96 w Ga(C)p 1388 825
451 4 v 1429 904 a F4(\000)p 1506 892 11 41 v 1516 874
46 5 v 96 w Ga(B)5 b F6(\033)o Ga(C)1880 843 y F6(\033)1950
857 y Gc(I)2140 812 y F6(D)2210 826 y F9(2)2081 904 y
F4(\000)p 2158 892 11 41 v 2169 874 46 5 v 96 w Ga(B)p
1429 928 880 4 v 1756 1006 a F4(\000)p 1833 994 11 41
v 1843 976 46 5 v 96 w Ga(C)2349 945 y F6(\033)2420 959
y Gc(E)p Black 3372 1006 a Gg(\(3.1\))p Black 321 1210
a(Here)21 b(the)h(formula)g Ga(B)5 b F6(\033)o Ga(C)27
b Gg(violates)c(the)f(subformula)h(property)-6 b(.)30
b(Ho)n(we)n(v)o(er)l(,)21 b(we)g(e)o(xpect)h(that)g F4(\000)p
3399 1198 11 41 v 3409 1180 46 5 v 96 w Ga(C)321 1323
y Gg(is)g(pro)o(v)n(able)h(without)g(introducing)i(this)e(formula.)29
b(Indeed,)23 b(we)e(can)h(construct)j(a)c(proof)i(roughly)h(as)321
1436 y(follo)n(ws:)37 b(some)27 b(lea)n(v)o(es)h(in)e
F6(D)1286 1450 y F9(1)1352 1436 y Gg(are)h(of)g(the)g(form)p
1931 1357 569 4 v 27 w Ga(x)17 b F4(:)g Ga(B)5 b(;)15
b F4(\000)p Ga(;)g F4(\001)p 2349 1424 11 41 v 2360 1406
46 5 v 96 w Ga(B)5 b Gg(\227replace)28 b(all)f(those)h(instances)321
1549 y(with)23 b(the)g(natural)h(deduction)h(proof)f(of)e
F4(\001)p Ga(;)15 b F4(\000)p 1802 1537 11 41 v 1812
1519 46 5 v 97 w Ga(B)26 b Gg(that)d(is)g(obtained)i(by)d(adding)i
F4(\001)e Gg(to)h(all)f(sequents)321 1662 y(of)32 b F6(D)498
1676 y F9(2)568 1662 y Gg(and)g(by)f(possibly)j(renaming)f(some)e(v)n
(ariables;)38 b(\002nally)32 b(remo)o(v)o(e)f(all)h(assumptions)i
Ga(x)e F4(:)g Ga(B)321 1775 y Gg(in)k F6(D)497 1789 y
F9(1)536 1775 y Gg(.)64 b(Belo)n(w)-6 b(,)37 b(we)e(shall)h(introduce)i
(the)e(reduction)i(rules,)h(commonly)e(referred)g(to)e(as)h
F7(beta-)321 1888 y(r)m(eductions)p Gg(,)26 b(realising)g(this)e(kind)g
(of)g(proof)h(transformations.)p Black 321 2075 a Gb(De\002nition)e
(3.1.4)g Gg(\(Beta-Reductions\))p Gb(:)p Black Black
Black 1667 2285 a F4(\()p Ga(\025x:M)10 b F4(\))15 b
Ga(N)2227 2248 y Gc(\014)2164 2285 y F6(\000)-32 b(\000)h(!)99
b Ga(M)10 b F4([)p Ga(x)26 b F4(:=)f Ga(N)10 b F4(])1563
2422 y Fp(fst)o F4(\()p F6(h)p Ga(M)5 b(;)15 b(N)10 b
F6(i)p F4(\))2227 2385 y Gc(\014)2164 2422 y F6(\000)-32
b(\000)h(!)99 b Ga(M)1563 2558 y Fp(snd)o F4(\()p F6(h)p
Ga(M)5 b(;)15 b(N)10 b F6(i)p F4(\))2227 2521 y Gc(\014)2164
2558 y F6(\000)-32 b(\000)h(!)99 b Ga(N)1004 2695 y Fp(case)o
F4(\()p Fp(inl)p F4(\()p Ga(P)13 b F4(\))p Ga(;)i(\025)q(x:M)5
b(;)15 b(\025)q(y)s(:N)10 b F4(\))2227 2658 y Gc(\014)2164
2695 y F6(\000)-32 b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(x)26
b F4(:=)f Ga(P)13 b F4(])1004 2831 y Fp(case)o F4(\()p
Fp(inr)p F4(\()p Ga(P)g F4(\))p Ga(;)i(\025)q(x:M)5 b(;)15
b(\025)q(y)s(:N)10 b F4(\))2227 2794 y Gc(\014)2164 2831
y F6(\000)-32 b(\000)h(!)99 b Ga(N)10 b F4([)p Ga(y)29
b F4(:=)c Ga(P)13 b F4(])321 3081 y Gg(The)28 b(\002rst)f(reduction)k
(rule)d(deals)h(with)f(proof)h(instances)h(as)e(sho)n(wn)g(in)g
(\(3.1\).)42 b(Since)28 b(all)g(rules)g(are)321 3194
y(rather)d(standard,)g(we)e(do)h(not)g(e)o(xplain)h(them)e(further)-5
b(.)462 3328 y(Unfortunately)f(,)40 b(to)34 b(ensure)h(that)f(the)g
(subformula)i(property)g(holds)f(for)f(normal)h(NJ-proofs,)321
3441 y(the)30 b(beta-reductions)j(are)d(not)f(suf)n(\002cient.)47
b(F)o(or)28 b(this)i(property)h(to)e(hold,)j(further)e(reduction)i
(rules,)321 3554 y(referred)37 b(to)f(as)f F7(commuting)i(r)m
(eductions)p Gg(,)j(are)c(required.)66 b(These)36 b(rules)g(are)f
(often)i(criticised)h(as)321 3667 y(being)e(inele)o(gant,)i(if)c(not)g
(catastrophic)k([Girard)d(et)f(al.,)f(1989,)38 b(P)o(age)c(74].)61
b(Certainly)-6 b(,)38 b(the)o(y)c(are)321 3780 y(more)27
b(complicated)i(than)e(beta-reductions)k(and)c(seem)f(to)g(be)h
(necessary)h(just)f(because)i(of)d(certain)321 3893 y(defects)f(of)d
(the)h(syntax)h(based)g(on)f(terms,)g(b)n(ut)g(we)f(shall)h(sho)n(w)g
(that)g(the)o(y)g(correspond)j(to)c(the)h(\(quite)321
4005 y(natural\))j(commuting)f(reductions)h(of)e(sequent)h(calculi.)p
Black 321 4193 a Gb(De\002nition)e(3.1.5)g Gg(\(Commuting)i
(Reductions\))p Gb(:)p Black Black Black 964 4403 a Fp(case)o
F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025y)s(:N)10
b F4(\))15 b Ga(Q)2036 4366 y Gc(\015)1971 4403 y F6(\000)-31
b(\000)g(!)99 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p
F4(\()p Ga(M)26 b(Q)p F4(\))p Ga(;)15 b(\025y)s(:)p F4(\()p
Ga(N)26 b(Q)p F4(\)\))837 4540 y Fp(fst)o F4(\()p Fp(case)p
F4(\()p Ga(P)s(;)15 b(\025x:M)5 b(;)15 b(\025)q(y)s(:N)10
b F4(\)\))2036 4502 y Gc(\015)1971 4540 y F6(\000)-31
b(\000)g(!)99 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p
Fp(fst)o F4(\()p Ga(M)10 b F4(\))p Ga(;)15 b(\025)q(y)s(:)p
Fp(fst)p F4(\()p Ga(N)10 b F4(\)\))837 4676 y Fp(snd)o
F4(\()p Fp(case)p F4(\()p Ga(P)s(;)15 b(\025x:M)5 b(;)15
b(\025)q(y)s(:N)10 b F4(\)\))2036 4639 y Gc(\015)1971
4676 y F6(\000)-31 b(\000)g(!)99 b Fp(case)o F4(\()p
Ga(P)s(;)15 b(\025)q(x:)p Fp(snd)o F4(\()p Ga(M)10 b
F4(\))p Ga(;)15 b(\025)q(y)s(:)p Fp(snd)p F4(\()p Ga(N)10
b F4(\)\))331 4822 y Fp(case)o F4(\()p Fp(case)o F4(\()p
Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
b F4(\))p Ga(;)15 b(\025)q(u:S;)g(\025v)s(:T)e F4(\))2036
4785 y Gc(\015)1971 4822 y F6(\000)-31 b(\000)g(!)2240
4813 y Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p Fp(case)o
F4(\()p Ga(M)5 b(;)15 b(\025)q(u:S;)g(\025)q(v)s(:T)e
F4(\))p Ga(;)2566 4925 y(\025y)s(:)p Fp(case)o F4(\()p
Ga(N)5 b(;)15 b(\025)q(u:S;)g(\025)q(v)s(:T)e F4(\)\))321
5175 y Gg(W)-7 b(e)26 b(shall,)h(as)f(usual,)h(assume)g(that)1546
5138 y Gc(\014)1482 5175 y F6(\000)-31 b(\000)f(!)26
b Gg(and)1899 5138 y Gc(\015)1834 5175 y F6(\000)-31
b(\000)f(!)26 b Gg(are)g(closed)i(under)f(conte)o(xt)g(formation.)39
b(Thus)321 5288 y(we)23 b(can)h(de\002ne)g(the)g(normalisation)i
(procedure)h(of)c(NJ-proofs)i(as)f(follo)n(ws.)p Black
Black eop end
%%Page: 73 85
TeXDict begin 73 84 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
b(73)p 277 88 3691 4 v Black Black 277 365 a(De\002nition)23
b(3.1.6)g Gg(\(Normalisation)j(Procedure)g(of)d(NJ-Proofs\))p
Gb(:)p Black 277 478 a Gg(The)g(normalisation)k(procedure)f(for)e
(NJ-proofs,)h F4(\(\003)p Ga(;)2099 440 y Gc(\023)2027
478 y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)23 b(is)g(a)g(reduction)j
(system)f(where:)p Black 414 676 a F6(\017)p Black 45
w F4(\003)e Gg(is)h(the)f(set)h(of)g(simply-typed)i(lambda)f(terms,)e
(and)p Black 414 861 a F6(\017)p Black 577 824 a Gc(\023)504
861 y F6(\000)-31 b(\000)g(!)22 b Gg(consists)k(of)d(beta-reductions)29
b(and)24 b(commuting)h(reductions;)h(that)e(is)1659 1042
y Gc(\023)1587 1079 y F6(\000)-31 b(\000)f(!)1782 1028
y F5(def)1789 1079 y F4(=)1956 1042 y Gc(\014)1892 1079
y F6(\000)h(\000)g(!)25 b([)2239 1042 y Gc(\015)2174
1079 y F6(\000)-31 b(\000)f(!)50 b Ga(:)277 1333 y Gg(It)23
b(is)h(simple)g(to)f(sho)n(w)h(that)1241 1296 y Gc(\023)1169
1333 y F6(\000)-31 b(\000)f(!)23 b Gg(satis\002es)h(the)g(subject)i
(reduction)g(property)-6 b(.)p Black 277 1521 a Gb(Pr)n(oposition)39
b(3.1.7)e Gg(\(Subject)i(Reduction,)k(Pra)o(witz,)37
b(1965\))p Gb(:)p Black 35 w Gg(Suppose)i Ga(M)47 b Gg(is)37
b(a)g(simply-typed)277 1634 y(lambda)28 b(term)f(with)h(the)f(typing)i
(judgement)g F4(\000)1841 1622 y Gc(.)1896 1634 y Ga(M)f
F4(:)17 b Ga(B)31 b Gg(and)d Ga(M)2515 1597 y Gc(\023)2442
1634 y F6(\000)-31 b(\000)g(!)32 b Ga(N)10 b Gg(,)27
b(then)h Ga(N)36 b Gg(is)27 b(a)g(simply-)277 1747 y(typed)e(lambda)f
(term)g(with)f(the)h(typing)h(judgement)g F4(\000)2043
1735 y Gc(.)2098 1747 y Ga(M)j F4(:)17 b Ga(B)5 b Gg(.)p
Black 277 1984 a F7(Pr)l(oof.)p Black 46 w Gg(Analogous)26
b(to)d(proof)i(of)e(Proposition)j(2.2.10.)p 3436 1984
4 62 v 3440 1926 55 4 v 3440 1984 V 3494 1984 4 62 v
277 2187 a(Furthermore,)k(the)e(reduction)1363 2150 y
Gc(\023)1290 2187 y F6(\000)-31 b(\000)g(!)27 b Gg(is)g(complete)i(in)f
(the)g(sense)h(that)f(the)g(normal)g(NJ-proofs)i(sat-)277
2300 y(isfy)j(the)f(subformula)j(property)-6 b(.)56 b(Whilst)33
b(in)f(the)h(setting)g(of)f(sequent)i(calculi)g(the)f(proof)g(of)f
(this)277 2413 y(property)d(is)d(by)g(tri)n(vial)h(inspection)i(of)d
(the)h(inference)h(rules,)g(the)e(proof)i(for)e(NJ)g(is)g(more)g(dif)n
(\002cult.)277 2526 y(F)o(or)k(e)o(xample,)i(a)e(simple)h(inspection)j
(of)c(the)h(inference)i(rules)e(is)f(not)h(suf)n(\002cient;)k(for)c
(the)g(details)277 2639 y(of)25 b(the)g(proof)h(we)e(refer)h(to)g([Pra)
o(witz,)f(1965].)34 b(One)24 b(interesting)k(feature)e(of)f(the)g
(natural)i(deduction)277 2752 y(calculus)g(we)d(shall)h(introduce)j(in)
c(Section)i(3.3)e(for)h(classical)i(logic)f(is)e(that)h(the)g
(subformula)i(prop-)277 2865 y(erty)j(for)g(normal)g(proofs)h(can)e(be)
h(pro)o(v)o(ed,)h(lik)o(e)f(in)f(sequent)j(calculi,)g(by)d(a)g(simple)h
(inspection)i(of)277 2978 y(the)24 b(inference)i(rules.)277
3286 y Ge(3.2)119 b(The)48 b(Corr)n(espondence)i(between)f
(Cut-Elimination)g(and)g(Nor)l(-)546 3435 y(malisation)29
b(I)277 3659 y Gg(In)f(this)g(section,)i(we)d(address)i(the)f(question)
i(whether)f(there)f(is)g(a)f(correspondence)32 b(between)d(cut-)277
3772 y(elimination)h(and)e(normalisation,)j(or)c(more)h(precisely)i
(whether)e(the)g(translations)i(de\002ned)f(in)e(the)277
3885 y(preceding)j(section)e(respect)h(reduction.)41
b(This)27 b(\223correspondence)32 b(question\224)d(w)o(as)e(tackled)h
(pre)n(vi-)277 3997 y(ously)23 b(by)e(Zuck)o(er)h([1974])h(and)f
(Pottinger)h([1977],)g(who)e(wrote)g(the)h(classic)h(w)o(orks)f(on)f
(the)h(subject.)277 4110 y(Zuck)o(er)g(mentioned)g(that)g(the)f
(correspondence)k(question)e(goes)f(back)f(to)g(the)g(follo)n(wing)h
(remark)f(by)277 4223 y(Kreisel)j([1971,)h(P)o(age)e(113],)h(which)g
(both)g(Zuck)o(er)h(and)f(Pottinger)h(dispro)o(v)o(e.)p
Black Black 504 4445 a(Consider)9 b(.)14 b(.)g(.)g(a)35
b(calculus)h(of)d(sequents)k(and)d(a)f(system)i(of)f(natural)h
(deduction.)63 b(In-)504 4558 y(spection)39 b(sho)n(ws)d(that)12
b(.)i(.)g(.)g(the)36 b(normalization)k(procedure)e(for)f(systems)g(of)f
(natural)504 4671 y(deduction)31 b(does)d(not)g(correspond)i(to)d(a)g
(particularly)k(natural)e(cut)f(elimination)h(pro-)504
4784 y(cedure.)277 5006 y(Ho)n(we)n(v)o(er)l(,)h(there)g(are)f(some)h
(subtle)g(points)h(in)e(their)h(w)o(orks,)g(which)g(mak)o(e)f(their)h
(answers)g(not)f(so)277 5119 y(clear)n(-cut.)i(Let)23
b(us)h(analyse)h(in)e(turn)i(these)f(subtleties.)418
5249 y(Zuck)o(er)32 b(studied)g(the)f(correspondence)k(question)e
(between)f(NJ)e(and)h(a)f(v)n(ariant)i(of)f(LJ.)e(Since)277
5361 y(all)38 b(reduction)h(sequences)i(of)c(NJ)f(are)i(terminating,)43
b(one)38 b(pro)o(viso)g(for)g(the)g(correspondence)k(is)p
Black Black eop end
%%Page: 74 86
TeXDict begin 74 85 bop Black -144 51 a Gb(74)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(that)28
b(all)g(reduction)h(sequences)i(in)c(the)g(sequent)j(calculus)f(are)e
(terminating,)k(too.)40 b(Indeed,)30 b(a)d(non-)321 478
y(terminating)c(reduction)f(sequence)g(in)e(the)h(sequent)g(calculus)h
(w)o(ould)f(hamper)g(the)f(correspondence)321 590 y(with)29
b(NJ.)f(Another)j(pro)o(viso)f(is)f(that)h(the)g(cut-elimination)j
(procedure)e(has)f(to)f(include)i(reduction)321 703 y(rules)k(which)f
(allo)n(w)f(cuts)i(to)e(pass)i(o)o(v)o(er)e(other)i(cuts.)60
b(Gentzen)35 b([1935])g(did)f(not)g(consider)i(such)321
816 y(rules,)23 b(as)f(the)o(y)g(are)h(usually)g(the)g(source)g(for)f
(loops)h(and)g(therefore)h(for)e(non-terminating)k(reduction)321
929 y(sequences;)h(ho)n(we)n(v)o(er)l(,)d(the)o(y)g(are)f(crucial)i
(for)f(the)g(correspondence)k(question.)462 1059 y(One)22
b(\(rather)h F7(ad)e(hoc)p Gg(\))h(w)o(ay)g(round)g(the)g(problem)h(of)
e(loops)i(is)e(to)g(consider)j(only)e F7(pr)l(oper)h(r)m(educ-)321
1172 y(tion)f(sequences)h Gg([Zuck)o(er,)f(1974,)g(P)o(age)e(93],)i
(which)f(do)g(not)g(include)h(repetitions.)31 b(This)21
b(restriction)321 1284 y(is)i(suf)n(\002cient)h(to)f(ensure)i
(termination)g(of)e(Zuck)o(er')-5 b(s)24 b(cut-elimination)j(procedure)
f(in)c(the)i F4(\()p F6(^)p Ga(;)15 b F6(\033)p Ga(;)g
F6(8)p F4(\))p Gg(-)321 1397 y(fragment)24 b(of)d(intuitionistic)26
b(logic,)d(and)f(so)g(he)g(could)h(answer)g(the)f(correspondence)27
b(question)d(pos-)321 1510 y(iti)n(v)o(ely)34 b(for)e(this)h(fragment.)
56 b(Using)33 b(the)f F6(_)1739 1524 y Gc(L)1791 1510
y Gg(-rule,)j(ho)n(we)n(v)o(er)l(,)g(he)d(constructed)k(a)c
(non-repeating,)321 1623 y(non-terminating)40 b(reduction)d(sequence,)k
(and)35 b(thus)h(he)g(f)o(ailed)g(to)f(ensure)i(the)e(\002rst)g(pro)o
(viso.)66 b(A)321 1736 y(simpli\002ed)31 b(v)o(ersion)g(of)f(this)h
(reduction)h(sequence)g(is)e(sho)n(wn)g(in)g(Figure)g(3.5.)48
b(Consequently)-6 b(,)35 b(he)321 1849 y(ga)n(v)o(e)28
b(a)g(ne)o(gati)n(v)o(e)g(answer)h(to)e(the)i(correspondence)j
(question)e(for)e(the)g(fragment)h(that)g(includes)h
F6(_)321 1962 y Gg(and)i F6(9)p Gg(.)52 b(Zuck)o(er)32
b(concluded)j(that)d(the)g(lack)g(of)g(termination)i(of)d
(cut-elimination)36 b(w)o(as)31 b(responsi-)321 2075
y(ble)e(for)f(this)g(f)o(ailure,)j(b)n(ut)d(we)g(shall)h(sho)n(w)f
(that)g(e)n(v)o(en)g(if)g(one)h(does)f(ha)n(v)o(e)h(a)f(strongly)i
(normalising)321 2188 y(cut-elimination)j(procedure)f(\(which)e(is)f(v)
o(ery)h(similar)g(to)f(the)h(one)g(used)g(by)f(Zuck)o(er\),)j(the)d
(corre-)321 2301 y(spondence)i(between)e(cut-elimination)i(and)d
(normalisation)j(f)o(ails)d(for)g(the)g(standard)i(formulation)321
2414 y(of)h(NJ:)g(certain)i(commuting)f(reductions)i(of)d(the)h
(sequent)h(calculus)g(cannot)g(be)e(encoded)j(in)d(NJ.)321
2526 y(In)c(Section)g(3.3)g(we)f(shall)h(mak)o(e)g(appropriate)j
(changes)e(to)f(the)g(standard)h(formulation)h(of)e(natural)321
2639 y(deduction)i(and)d(impro)o(v)o(e)h(Zuck)o(er')-5
b(s)27 b(result)g(by)g(sho)n(wing)g(the)f(correspondence)k(in)c
(classical)j(logic)321 2752 y(for)24 b(all)g(connecti)n(v)o(es.)462
2882 y(In)g(some)h(sense)g(Pottinger)h(solv)o(ed)f(Zuck)o(er')-5
b(s)25 b(problem)h(with)e(non-terminating)k(reduction)e(se-)321
2995 y(quences,)j(and)e(thus)h(he)e(could)i(sho)n(w)e(the)h
(correspondence)32 b(for)26 b(all)h(connecti)n(v)o(es.)41
b(Unfortunately)-6 b(,)321 3108 y(his)25 b(method)g(had)g(a)f(subtle)h
(defect:)32 b(he)25 b(annotated)i(sequent)f(proofs)g(with)e
(lambda-terms)i(and)f(then)321 3220 y(formalised)30 b(cut-elimination)h
(as)c(normalisation.)43 b(As)27 b(already)i(noted)g(by)e(himself,)i
(the)f(notion)h(of)321 3333 y(normality)e(for)f(lambda)g(terms)f(does)h
F7(not)g Gg(coincide)i(with)d(the)g(notion)i(of)e(cut-freedom)j
([Pottinger,)321 3446 y(1977,)d(P)o(age)e(323].)29 b(Consider)c(for)f
(e)o(xample)g(the)g(follo)n(wing)h(sequent)h(proof.)p
1235 3619 244 4 v 1235 3698 a Ga(B)p 1329 3686 11 41
v 1339 3668 46 5 v 101 w(B)p 1569 3619 244 4 v 95 w(B)p
1663 3686 11 41 v 1673 3668 46 5 v 101 w(B)p 1235 3718
578 4 v 1402 3797 a(B)p 1496 3785 11 41 v 1506 3767 46
5 v 101 w(B)1854 3748 y Gg(Cut)p 2091 3602 354 4 v 2091
3680 a Ga(B)5 b(;)15 b(C)p 2297 3668 11 41 v 2308 3650
46 5 v 103 w(C)p 2076 3718 384 4 v 2076 3797 a(B)p 2170
3785 11 41 v 2181 3767 46 5 v 101 w(C)7 b F6(\033)o Ga(C)2501
3736 y F6(\033)2572 3750 y Gc(R)p 1402 3820 1058 4 v
1739 3899 a Ga(B)p 1833 3887 11 41 v 1843 3869 46 5 v
101 w(C)g F6(\033)o Ga(C)2501 3851 y Gg(Cut)321 4103
y(Using)31 b(Pottinger')-5 b(s)33 b(term)e(assignment,)k(this)c(proof)h
(is)e(annotated)k(with)c(the)h(lambda)h(term)e Ga(\025x:x)p
Gg(.)321 4216 y(Clearly)-6 b(,)33 b(this)e(term)g(is)f(normal,)j(b)n
(ut)e(the)f(sequent)j(proof)e(contains)i(tw)o(o)d(cuts.)51
b(Because)31 b(the)g(cut-)321 4329 y(elimination)23 b(reductions)g
(that)d(start)h(from)f(the)g(proof)h(abo)o(v)o(e)g(are)f(not)h
(\223mirrored\224)h(by)e(an)o(y)g(reduction)321 4442
y(of)26 b(the)h(lambda)g(term,)f(the)g(question)j(whether)e(these)g
(cut-reductions)j(break)d(the)g(correspondence)321 4555
y(remains)d(open.)29 b(W)-7 b(e)22 b(shall)i(a)n(v)n(oid)g(this)g
(problem)g(by)f(using)h(our)f(term)f(assignment,)j(which)f(encodes)321
4667 y(precisely)i(the)e(structure)i(of)d(sequent)j(proofs.)462
4797 y(No)n(w)32 b(we)g(shall)i(be)o(gin)f(by)g(sho)n(wing)h(that)g
(normalisation)i(in)c(NJ)h(can)g(be)g(simulated)h(by)f(our)321
4910 y(intuitionistic)39 b(cut-elimination)g(procedure.)65
b(T)-7 b(o)34 b(do)h(so,)i(we)d(shall)i(sho)n(w)e(that)i
(beta-reductions)321 5023 y(map)28 b(onto)h(a)f(series)h(of)g
(cut-reductions)j(and)d(that)g(commuting)g(reductions)i(map)d(onto)h
(identities.)321 5136 y(F)o(or)35 b(the)h(\002rst)f(part)h(we)f(ha)n(v)
o(e)h(to)g(pro)o(v)o(e)g(three)h(lemmas.)65 b(The)35
b(\002rst)g(sho)n(ws)h(that)g(a)f(form)h(of)f(the)321
5249 y(substitution)e(lemma)d(holds)h(for)e(the)h(proof)h(substitution)
i F4([)p 2257 5249 28 4 v 2275 5249 V 2293 5249 V 65
w(])c Gg(\(the)h(\223usual\224)i(substitution)h(lemma)321
5361 y(does,)24 b(in)g(general,)h(not)f(hold)g(for)g(this)g
(substitution;)j(cf.)c(Lemma)g(2.3.1\).)p Black Black
eop end
%%Page: 75 87
TeXDict begin 75 86 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
b(75)p 277 88 3691 4 v Black Black 277 990 V 277 3907
4 2917 v Black Black 1093 1331 a Ga(\031)1145 1345 y
F9(1)1020 1423 y Ga(C)p 1111 1411 11 41 v 1122 1393 46
5 v 102 w(F)1426 1331 y(\031)1478 1345 y F9(2)1349 1423
y Ga(D)p 1447 1411 11 41 v 1458 1393 46 5 v 99 w(F)p
1020 1443 575 4 v 1118 1522 a(C)7 b F6(_)p Ga(D)p 1349
1510 11 41 v 1359 1492 46 5 v 99 w(F)1636 1461 y F6(_)1697
1475 y Gc(L)1912 1215 y Ga(\031)1964 1229 y F9(3)1840
1307 y Ga(A)p 1928 1295 11 41 v 1939 1277 46 5 v 96 w(F)2241
1215 y(\031)2293 1229 y F9(4)2166 1307 y Ga(B)p 2260
1295 11 41 v 2270 1277 46 5 v 101 w(F)p 1840 1327 568
4 v 1939 1406 a(A)p F6(_)o Ga(B)p 2161 1394 11 41 v 2172
1375 46 5 v 101 w(F)2449 1345 y F6(_)2509 1359 y Gc(L)2777
1313 y Ga(\031)2829 1327 y F9(5)2652 1406 y Ga(F)s(;)15
b(F)p 2845 1394 11 41 v 2855 1375 46 5 v 110 w(G)p 1939
1443 1054 4 v 2225 1522 a(A)p F6(_)p Ga(B)5 b(;)15 b(F)p
2559 1510 11 41 v 2569 1492 46 5 v 109 w(G)3034 1474
y Gb(Cut)3181 1441 y Fy(?)p 1118 1559 1588 4 v 1602 1638
a Ga(C)7 b F6(_)o Ga(D)s(;)15 b(A)p F6(_)p Ga(B)p 2075
1626 11 41 v 2085 1608 46 5 v 101 w(G)2748 1590 y Gb(Cut)2093
1868 y FN(#)898 2304 y Ga(\031)950 2318 y F9(1)825 2397
y Ga(C)p 916 2385 11 41 v 927 2366 46 5 v 102 w(F)1231
2304 y(\031)1283 2318 y F9(2)1154 2397 y Ga(D)p 1252
2385 11 41 v 1263 2366 46 5 v 100 w(F)p 825 2417 575
4 v 924 2495 a(C)7 b F6(_)o Ga(D)p 1154 2483 11 41 v
1164 2465 46 5 v 99 w(F)1441 2435 y F6(_)1502 2449 y
Gc(L)1717 2054 y Ga(\031)1769 2068 y F9(3)1645 2146 y
Ga(A)p 1733 2134 11 41 v 1744 2116 46 5 v 96 w(F)2096
2054 y(\031)2148 2068 y F9(5)1971 2146 y Ga(F)s(;)15
b(F)p 2164 2134 11 41 v 2174 2116 46 5 v 110 w(G)p 1645
2184 667 4 v 1804 2263 a(A;)g(F)p 2004 2251 11 41 v 2015
2232 46 5 v 110 w(G)2353 2214 y Gg(Cut)2650 2054 y Ga(\031)2702
2068 y F9(4)2575 2146 y Ga(B)p 2669 2134 11 41 v 2680
2116 46 5 v 101 w(F)3032 2054 y(\031)3084 2068 y F9(5)2907
2146 y Ga(F)s(;)g(F)p 3100 2134 11 41 v 3110 2116 46
5 v 110 w(G)p 2575 2184 673 4 v 2735 2263 a(B)5 b(;)15
b(F)p 2940 2251 11 41 v 2951 2232 46 5 v 109 w(G)3289
2214 y Gg(Cut)p 1804 2300 1284 4 v 2155 2379 a Ga(A)p
F6(_)o Ga(B)5 b(;)15 b(F)s(;)g(F)p 2590 2367 11 41 v
2600 2349 46 5 v 110 w(G)3129 2318 y F6(_)3190 2332 y
Gc(L)p 2155 2417 583 4 v 2205 2495 a Ga(A)p F6(_)p Ga(B)5
b(;)15 b(F)p 2539 2483 11 41 v 2550 2465 46 5 v 109 w(G)2779
2440 y Gg(Contr)2985 2454 y Gc(L)p 924 2533 1764 4 v
1495 2612 a Ga(C)7 b F6(_)o Ga(D)s(;)15 b(A)p F6(_)p
Ga(B)p 1968 2600 11 41 v 1978 2581 46 5 v 101 w(G)2728
2565 y Gg(Cut)2859 2532 y Fz(\017)2093 2841 y FN(#)488
3278 y Ga(\031)540 3292 y F9(1)415 3370 y Ga(C)p 506
3358 11 41 v 517 3340 46 5 v 102 w(F)821 3278 y(\031)873
3292 y F9(2)744 3370 y Ga(D)p 842 3358 11 41 v 853 3340
46 5 v 99 w(F)p 415 3390 575 4 v 513 3469 a(C)7 b F6(_)p
Ga(D)p 744 3457 11 41 v 754 3438 46 5 v 99 w(F)1031 3408
y F6(_)1092 3422 y Gc(L)1309 3161 y Ga(\031)1361 3175
y F9(1)1235 3254 y Ga(C)p 1326 3242 11 41 v 1337 3223
46 5 v 103 w(F)1641 3161 y(\031)1693 3175 y F9(2)1565
3254 y Ga(D)p 1663 3242 11 41 v 1673 3223 46 5 v 99 w(F)p
1235 3274 575 4 v 1334 3352 a(C)g F6(_)o Ga(D)p 1564
3340 11 41 v 1574 3322 46 5 v 99 w(F)1851 3292 y F6(_)1912
3306 y Gc(L)2127 3027 y Ga(\031)2179 3041 y F9(3)2055
3120 y Ga(A)p 2143 3108 11 41 v 2154 3089 46 5 v 96 w(F)2506
3027 y(\031)2558 3041 y F9(5)2381 3120 y Ga(F)s(;)15
b(F)p 2574 3108 11 41 v 2585 3089 46 5 v 110 w(G)p 2055
3157 667 4 v 2215 3236 a(A;)g(F)p 2414 3224 11 41 v 2425
3206 46 5 v 110 w(G)2763 3188 y Gg(Cut)3060 3027 y Ga(\031)3112
3041 y F9(4)2985 3120 y Ga(B)p 3079 3108 11 41 v 3090
3089 46 5 v 101 w(F)3442 3027 y(\031)3494 3041 y F9(5)3317
3120 y Ga(F)s(;)g(F)p 3510 3108 11 41 v 3520 3089 46
5 v 110 w(G)p 2985 3157 673 4 v 3145 3236 a(B)5 b(;)15
b(F)p 3350 3224 11 41 v 3361 3206 46 5 v 109 w(G)3699
3188 y Gg(Cut)p 2215 3274 1284 4 v 2565 3352 a Ga(A)p
F6(_)p Ga(B)5 b(;)15 b(F)s(;)g(F)p 3000 3340 11 41 v
3011 3322 46 5 v 109 w(G)3539 3292 y F6(_)3600 3306 y
Gc(L)p 1334 3390 1815 4 v 1875 3469 a Ga(C)7 b F6(_)o
Ga(D)s(;)15 b(A)p F6(_)p Ga(B)5 b(;)15 b(F)p 2459 3457
11 41 v 2469 3438 46 5 v 109 w(G)3189 3420 y Gb(Cut)p
513 3506 2094 4 v 1125 3585 a Ga(C)7 b F6(_)o Ga(D)s(;)15
b(C)7 b F6(_)o Ga(D)s(;)15 b(A)p F6(_)p Ga(B)p 1848 3573
11 41 v 1858 3555 46 5 v 101 w(G)2648 3537 y Gb(Cut)p
1125 3623 871 4 v 1250 3701 a Ga(C)7 b F6(_)o Ga(D)s(;)15
b(A)p F6(_)p Ga(B)p 1723 3689 11 41 v 1733 3671 46 5
v 101 w(G)2037 3647 y Gg(Contr)2243 3661 y Gc(L)p 3965
3907 4 2917 v 277 3910 3691 4 v 277 4064 a Gg(Figure)40
b(3.5:)62 b(A)38 b(non-terminating)44 b(reduction)e(sequence)h(in)c
(Zuck)o(er')-5 b(s)41 b(sequent)h(calculus)g(\(see)277
4177 y([Ungar,)22 b(1992]\).)30 b(In)22 b(the)g(\002rst)g(step,)h(the)f
(cut)g(mark)o(ed)h(with)f(a)g(star)g(is)g(reduced)i(creating)g(tw)o(o)e
(copies)277 4289 y(of)i Ga(\031)428 4303 y F9(5)491 4289
y Gg(as)g(well)g(as)g(introducing)j(a)d(contraction.)33
b(In)24 b(the)h(second)h(step,)e(the)h(cut)f(mark)o(ed)h(with)f(a)g
(disk)277 4402 y(is)32 b(permuted)i(with)e(the)g(contraction)k(rule)c
(creating)j(tw)o(o)c(copies)j(of)e Ga(\031)2606 4416
y F9(1)2677 4402 y Gg(and)g Ga(\031)2891 4416 y F9(2)2931
4402 y Gg(.)53 b(No)n(w)31 b(the)i(cuts)277 4515 y(written)27
b(in)e(bold)i(f)o(ace)f(ha)n(v)o(e)h(the)f(same)f(shape,)i(and)g(we)e
(can)h(repeat)h(the)f(reduction)i(applied)f(in)f(the)277
4628 y(\002rst)d(step)h(and)g(so)g(forth)g F7(ad)g(in\002nitum.)p
Black Black Black eop end
%%Page: 76 88
TeXDict begin 76 87 bop Black -144 51 a Gb(76)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(Lemma)32
b(3.2.1:)p Black 34 w Gg(F)o(or)f(all)i Ga(M)51 b F6(2)41
b FY(J)32 b Gg(and)h(tw)o(o)e(substitutions)37 b(ha)n(ving)d(the)e
(form)g F4([)p Ga(a)42 b F4(:=)3195 353 y F9(\()3222
365 y Ga(y)3270 353 y F9(\))3297 365 y Ga(S)5 b F4(])32
b Gg(and)321 478 y F4([)p Ga(x)26 b F4(:=)545 466 y FX(h)572
478 y Ga(b)611 466 y FX(i)639 478 y Ga(T)13 b F4(])p
Gg(,)22 b(we)h(ha)n(v)o(e)684 694 y Ga(M)10 b F4([)p
Ga(a)26 b F4(:=)1002 682 y F9(\()1029 694 y Ga(y)1077
682 y F9(\))1105 694 y Ga(S)5 b F4(][)p Ga(x)25 b F4(:=)1415
682 y FX(h)1442 694 y Ga(b)1481 682 y FX(i)1508 694 y
Ga(T)13 b F4(])1664 657 y Gc(int)1625 694 y F6(\000)-32
b(\000)h(!)1795 656 y FX(\003)1860 694 y Ga(M)10 b F4([)p
Ga(x)25 b F4(:=)2181 682 y FX(h)2209 694 y Ga(b)2248
682 y FX(i)2275 694 y Ga(T)13 b F4(][)p Ga(a)26 b F4(:=)2586
682 y F9(\()2614 694 y Ga(y)2662 682 y F9(\))2689 694
y Ga(S)5 b F4([)p Ga(x)25 b F4(:=)2973 682 y FX(h)3001
694 y Ga(b)3040 682 y FX(i)3067 694 y Ga(T)13 b F4(]])321
910 y Gg(pro)o(vided)26 b Ga(a)d Gg(is)g(not)h(free)g(in)1216
898 y FX(h)1244 910 y Ga(b)1283 898 y FX(i)1310 910 y
Ga(T)13 b Gg(,)22 b(and)i Ga(S)k Gg(freshly)d(introduces)i
Ga(y)s Gg(,)22 b(b)n(ut)i(is)g(not)f(an)h(axiom.)p Black
321 1122 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)f(induction)j(on)e(the)f
(structure)j(of)e Ga(M)32 b Gg(\(see)25 b(P)o(age)e(156\).)p
3480 1122 4 62 v 3484 1064 55 4 v 3484 1122 V 3538 1122
4 62 v 321 1330 a(The)e(ne)o(xt)h(lemma)f(concerns)j(the)d(freshness)j
(of)d(a)g(co-name,)i(say)f Ga(c)p Gg(,)f(when)g(forming)i(the)f
(translation)321 1443 y F6(j)p 348 1443 28 4 v 366 1443
V 384 1443 V 65 w(j)436 1410 y Fu(s)436 1466 y Gc(c)471
1443 y Gg(;)h(it)g(will)h(be)f(applied)i(to)f(determine)h(whether)g(a)e
(logical)i(cut-reduction)i(can)d(be)g(performed.)p Black
321 1631 a Gb(Lemma)f(3.2.2:)p Black 34 w Gg(F)o(or)g(all)h
Ga(M)35 b F6(2)25 b F4(\003)e Gg(and)h(for)f(all)h(co-names)h
Ga(c)p Gg(,)e(if)g Ga(M)33 b Gg(is)23 b(of)h(the)g(form)p
Black Black 1168 1851 a Ga(x)51 b F6(j)g Ga(\025x:S)k
F6(j)c(h)p Ga(S;)15 b(T)e F6(i)51 b(j)g Fp(inl)o F4(\()p
Ga(S)5 b F4(\))52 b F6(j)e Fp(inr)p F4(\()p Ga(S)5 b
F4(\))321 2071 y Gg(then)25 b F6(j)p Ga(M)10 b F6(j)649
2038 y Fu(s)649 2093 y Gc(c)707 2071 y Gg(freshly)25
b(introduces)h Ga(c)p Gg(.)p Black 321 2283 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)21 b(inspection)j(of)e(the)f(inference)j(rules)f(sho)n
(wn)e(in)h(Figure)g(3.2)f(and)h(the)g(translations)j(gi)n(v)o(en)321
2396 y(in)f(Figure)g(3.3.)p 3480 2396 4 62 v 3484 2338
55 4 v 3484 2396 V 3538 2396 4 62 v 321 2604 a(The)f(v)n(ariable)j
(substitution)h(and)d(proof)g(substitution)j(are)d(related)h(as)f
(follo)n(ws.)p Black 321 2792 a Gb(Lemma)f(3.2.3:)p Black
34 w Gg(F)o(or)g(all)h Ga(M)5 b(;)15 b(N)35 b F6(2)25
b F4(\003)e Gg(and)h(for)g(all)f(co-names)i Ga(a)p Gg(,)e
Ga(b)p Gg(,)f(we)h(ha)n(v)o(e)1167 3008 y F6(j)p Ga(M)10
b F6(j)1315 2971 y Fu(s)1315 3031 y Gc(a)1357 3008 y
F4([)p Ga(x)26 b F4(:=)1581 2996 y FX(h)1608 3008 y Ga(b)1647
2996 y FX(i)1675 3008 y F6(j)p Ga(N)10 b F6(j)1808 2975
y Fu(s)1808 3036 y Gc(b)1843 3008 y F4(])1932 2971 y
Gc(int)1893 3008 y F6(\000)-31 b(\000)f(!)2063 2971 y
FX(\003)2128 3008 y F6(j)p Ga(M)10 b F4([)p Ga(x)26 b
F4(:=)f Ga(N)10 b F4(])p F6(j)2608 2971 y Fu(s)2608 3031
y Gc(a)2675 3008 y Ga(:)p Black 321 3221 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)e(the)f(structure)j(of)e
Ga(M)32 b Gg(\(see)25 b(P)o(age)e(157\).)p 3480 3221
V 3484 3163 55 4 v 3484 3221 V 3538 3221 4 62 v 321 3429
a(No)n(w)c(we)g(are)h(in)g(a)g(position)i(to)e(sho)n(w)g(that)h
(beta-reductions)j(map)c(onto)h(a)e(series)j(of)e(cut-reductions.)321
3542 y(T)-7 b(o)29 b(mak)o(e)g(the)h(induction)i(go)d(through,)j(we)d
(ha)n(v)o(e)h(to)f(pro)o(v)o(e)h(this)g(in)f(conjunction)k(with)c(a)g
(slightly)321 3655 y(more)24 b(general)h(statement.)p
Black 321 3842 a Gb(Pr)n(oposition)32 b(3.2.4:)p Black
34 w Gg(F)o(or)e(all)h Ga(M)5 b(;)15 b(M)1551 3809 y
FX(0)1614 3842 y F6(2)38 b F4(\003)p Gg(,)31 b(for)g(all)g(co-names)h
Ga(c)p Gg(,)g(and)g(for)e(an)o(y)h(substitution)k(of)321
3955 y(the)h(form)e F4([)p Ga(c)47 b F4(:=)931 3943 y
F9(\()958 3955 y Ga(y)1006 3943 y F9(\))1033 3955 y Ga(N)10
b F4(])35 b Gg(where)g Ga(N)44 b Gg(freshly)37 b(introduces)h
Ga(y)f Gg(and)e(is)g(not)g(an)g(axiom,)j(we)c(ha)n(v)o(e)i(if)321
4068 y Ga(M)508 4031 y Gc(\014)445 4068 y F6(\000)-32
b(\000)h(!)25 b Ga(M)738 4035 y FX(0)784 4068 y Gg(then)p
Black 417 4288 a(\(i\))p Black 47 w F6(j)p Ga(M)10 b
F6(j)697 4255 y Fu(s)697 4311 y Gc(c)796 4251 y(int)757
4288 y F6(\000)-31 b(\000)f(!)927 4255 y F9(+)1012 4288
y F6(j)p Ga(M)1135 4255 y FX(0)1158 4288 y F6(j)1183
4255 y Fu(s)1183 4311 y Gc(c)p Black 392 4446 a Gg(\(ii\))p
Black 47 w F6(j)p Ga(M)10 b F6(j)697 4413 y Fu(s)697
4469 y Gc(c)732 4446 y F4([)p Ga(c)26 b F4(:=)943 4434
y F9(\()970 4446 y Ga(y)1018 4434 y F9(\))1046 4446 y
Ga(N)10 b F4(])1218 4409 y Gc(int)1179 4446 y F6(\000)-31
b(\000)f(!)1349 4413 y F9(+)1434 4446 y F6(j)p Ga(M)1557
4413 y FX(0)1580 4446 y F6(j)1605 4413 y Fu(s)1605 4469
y Gc(c)1640 4446 y F4([)p Ga(c)26 b F4(:=)1851 4434 y
F9(\()1879 4446 y Ga(y)1927 4434 y F9(\))1954 4446 y
Ga(N)10 b F4(])p Black 321 4659 a F7(Pr)l(oof)o(.)p Black
34 w Gg(By)23 b(induction)j(on)e(the)f(de\002nition)j(of)1855
4622 y Gc(\014)1791 4659 y F6(\000)-31 b(\000)f(!)23
b Gg(\(see)h(P)o(age)f(157\).)p 3480 4659 V 3484 4601
55 4 v 3484 4659 V 3538 4659 4 62 v 321 4867 a(It)h(remains)g(to)g
(check)g(whether)h(commuting)g(reductions)h(translate)g(onto)e
(identities.)p Black 321 5055 a Gb(Pr)n(oposition)h(3.2.5:)p
Black 34 w Gg(F)o(or)e(all)h Ga(M)5 b(;)15 b(N)35 b F6(2)25
b F4(\003)e Gg(and)h(for)g(all)f Ga(c)p Gg(')-5 b(s,)24
b(if)f Ga(M)2520 5017 y Gc(\015)2455 5055 y F6(\000)-31
b(\000)g(!)25 b Ga(N)10 b Gg(,)22 b(then)i F6(j)p Ga(M)10
b F6(j)3106 5022 y Fu(s)3106 5077 y Gc(c)3167 5055 y
F6(\021)25 b(j)p Ga(N)10 b F6(j)3396 5022 y Fu(s)3396
5077 y Gc(c)3456 5055 y Ga(:)p Black 321 5267 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)e(the)f(de\002nition)j(of)1856
5230 y Gc(\015)1791 5267 y F6(\000)-31 b(\000)f(!)23
b Gg(\(see)h(P)o(age)f(158\).)p 3480 5267 V 3484 5209
55 4 v 3484 5267 V 3538 5267 4 62 v Black Black eop end
%%Page: 77 89
TeXDict begin 77 88 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
b(77)p 277 88 3691 4 v Black 418 365 a Gg(So)27 b(we)g(ha)n(v)o(e)h
(sho)n(wn)g(that)g(normalisation)j(can)d(be)g(simulated)h(by)f
(cut-elimination)j(using)e(the)277 478 y(translation)h
F6(j)p 714 478 28 4 v 732 478 V 749 478 V 64 w(j)801
445 y Fu(s)833 478 y Gg(.)36 b(T)-7 b(o)26 b(sum)g(up)g(this)h(result,)
h(we)e(should)i(lik)o(e)f(to)g(sho)n(w)f(that)h F4(\(\003)p
Ga(;)2959 440 y Gc(\023)2887 478 y F6(\000)-32 b(\000)h(!)p
F4(\))26 b Gg(is)g(strongly)277 590 y(normalising)32
b(by)d(appealing)j(to)d(the)h(strong)h(normalisation)h(result)e(of)g
F4(\()p FY(J)p Ga(;)2759 553 y Gc(int)2720 590 y F6(\000)-31
b(\000)g(!)p F4(\))p Gg(.)45 b(This)29 b(is)g(a)g(v)o(ery)277
703 y(roundabout)j(w)o(ay)c(for)h(pro)o(ving)h(this)f(property)h(for)f
F4(\(\003)p Ga(;)2179 666 y Gc(\023)2107 703 y F6(\000)-32
b(\000)h(!)p F4(\))p Gg(,)29 b(b)n(ut)g(the)f(point)i(here)f(is)f(to)g
(support)277 816 y(the)21 b(claim)g(made)g(in)g(Section)g(2.5)g
(stating)i(that)e(our)g(reduction)i(system)f(for)f(cut-elimination)j
(is)d(v)o(ery)277 929 y(useful)k(for)f(strong)h(normalisation)h(proofs)
f(by)f(translation.)p Black 277 1117 a Gb(Theor)n(em)e(3.2.6)g
Gg(\(Pra)o(witz,)f(1971\))p Gb(:)p Black 36 w Gg(The)g(reduction)j
(system)f F4(\(\003)p Ga(;)2490 1080 y Gc(\023)2418 1117
y F6(\000)-31 b(\000)f(!)p F4(\))21 b Gg(is)h(strongly)i(normalising.)p
Black 277 1329 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Ev)o(ery)846
1292 y Gc(\023)773 1329 y F6(\000)-31 b(\000)f(!)p Gg(-reduction)27
b(sequence)f(is)d(of)g(the)h(form)1068 1497 y Ga(M)1156
1511 y F9(1)1310 1460 y Gc(\015)1209 1497 y F6(\000)-21
b(\000)h(\000)f(!)1450 1460 y FX(\003)1504 1497 y Ga(M)1592
1511 y F9(2)1764 1460 y Gc(\014)1665 1497 y F6(\000)g(\000)h(\000)f(!)
33 b Ga(M)2028 1511 y F9(3)2182 1460 y Gc(\015)2082 1497
y F6(\000)-21 b(\000)g(\000)g(!)2323 1460 y FX(\003)2377
1497 y Ga(M)2465 1511 y F9(4)2606 1497 y Ga(:)15 b(:)g(:)1075
1861 y(N)1148 1875 y F9(1)1077 1679 y Fu(s)1110 1748
y F6(#)p 1130 1685 4 141 v 1214 1861 a(\021)-21 b(\021)g(\021)g(\021)g
(\021)27 b Ga(N)1585 1875 y F9(2)1513 1679 y Fu(s)1546
1748 y F6(#)p 1566 1685 V 1710 1824 a Gc(int)1636 1861
y F6(\000)-21 b(\000)g(\000)g(!)1877 1824 y F9(+)1948
1861 y Ga(N)2021 1875 y F9(3)1950 1679 y Fu(s)1983 1748
y F6(#)p 2003 1685 V 2086 1861 a(\021)g(\021)h(\021)f(\021)g(\021)26
b Ga(N)2457 1875 y F9(4)2386 1679 y Fu(s)2419 1748 y
F6(#)p 2439 1685 V 2606 1861 a Ga(:)15 b(:)g(:)277 2033
y Gg(which)31 b(as)f(sho)n(wn)h(can)g(be)f(mapped)h(onto)h(a)d
(reduction)k(sequence)g(in)d(our)h(intuitionistic)j(sequent)277
2146 y(calculus)f(\(\002rst)e(and)h(third)f(square)i(are)e(by)g
(Proposition)j(3.2.5)d(and)g(second)i(square)f(by)f(Proposi-)277
2259 y(tion)j(3.2.4\).)58 b(Gi)n(v)o(en)33 b(the)g(measure)h(sho)n(wn)g
(on)f(P)o(age)g(159,)i(we)e(can)g(easily)i(infer)f(that)f(all)3367
2222 y Gc(\015)3302 2259 y F6(\000)-32 b(\000)h(!)p Gg(-)277
2372 y(reduction)26 b(sequences)g(must)d(terminate.)31
b(Hence)23 b(by)h(Lemma)e(2.6.3)h(and)h(Theorem)g(2.5.2,)f(we)g(\002nd)
277 2485 y(that)h(e)n(v)o(ery)730 2448 y Gc(\023)657
2485 y F6(\000)-31 b(\000)g(!)o Gg(-reduction)27 b(sequence)f(is)d
(terminating.)31 b(Thus)24 b(we)e(are)i(done.)p 3436
2485 4 62 v 3440 2427 55 4 v 3440 2485 V 3494 2485 4
62 v 418 2689 a(Ne)o(xt)38 b(we)g(shall)h(sho)n(w)f(the)h
(correspondence)k(in)38 b(the)h(other)g(direction,)44
b(meaning)c(that)f(cut-)277 2802 y(elimination)g(can)d(be)h(simulated)h
(by)e(normalisation.)70 b(As)36 b(we)f(shall)j(see,)h(the)e(dif)n
(\002culties)h(here)277 2915 y(arise)25 b(from)f(the)h(commuting)g
(reductions)i(in)d(our)h(sequent)h(calculus,)g(and)f(therefore)h(we)e
(shall)h(\002rst)277 3028 y(focus)k(on)e(the)g F4(\()p
F6(^)p Ga(;)15 b F6(\033)p F4(\))p Gg(-fragment)30 b(of)d
(intuitionistic)k(logic)d(where)g(the)g(problems)g(can)g(be)f(a)n(v)n
(oided.)277 3141 y(W)-7 b(e)23 b(shall)i(write)g FY(I)864
3108 y F9(\()p FX(^)p Gc(;)p FX(\033)p F9(\))1068 3141
y Gg(for)f(the)g(corresponding)29 b(set)24 b(of)g(well-typed)i(terms)e
(of)h(our)f(sequent)i(calcu-)277 3254 y(lus.)44 b(Before)29
b(we)f(can)h(pro)o(v)o(e)g(the)g(proposition)j(for)d(the)g
(correspondence,)34 b(we)28 b(ha)n(v)o(e)h(to)f(sho)n(w)h(that)277
3366 y(the)e(proof)h(substitution)j(of)c(our)g(sequent)i(calculus)g
(corresponds)h(to)d(the)g(v)n(ariable)i(substitution)h(in)277
3479 y(NJ.)p Black 277 3667 a Gb(Lemma)23 b(3.2.7:)p
Black 34 w Gg(F)o(or)g(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25
b FY(I)1471 3634 y F9(\()p FX(^)q Gc(;)p FX(\033)o F9(\))1674
3667 y Gg(we)e(ha)n(v)o(e)p Black 373 3855 a(\(i\))p
Black 46 w F6(j)p Ga(M)10 b F4([)p Ga(x)26 b F4(:=)851
3843 y FX(h)879 3855 y Ga(a)927 3843 y FX(i)954 3855
y Ga(N)10 b F4(])p F6(j)1087 3822 y Fu(n)1154 3855 y
F6(\021)25 b(j)p Ga(M)10 b F6(j)1398 3822 y Fu(n)1439
3855 y F4([)p Ga(x)25 b F4(:=)h F6(j)p Ga(N)10 b F6(j)1796
3822 y Fu(n)1837 3855 y F4(])p Black 348 4002 a Gg(\(ii\))p
Black 46 w F6(j)p Ga(M)g F4([)p Ga(a)26 b F4(:=)848 3990
y F9(\()875 4002 y Ga(x)927 3990 y F9(\))954 4002 y Ga(N)10
b F4(])p F6(j)1087 3969 y Fu(n)1154 4002 y F6(\021)25
b(j)p Ga(N)10 b F6(j)1383 3969 y Fu(n)1424 4002 y F4([)p
Ga(x)25 b F4(:=)g F6(j)p Ga(M)10 b F6(j)1795 3969 y Fu(n)1837
4002 y F4(])p Gg(,)22 b(pro)o(vided)k Ga(a)f F6(2)g Ga(F)13
b(C)7 b F4(\()p Ga(M)j F4(\))p Gg(.)p Black 277 4214
a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)d(the)h
(structure)i(of)d Ga(M)33 b Gg(\(see)24 b(P)o(age)f(159\).)p
3436 4214 V 3440 4156 55 4 v 3440 4214 V 3494 4214 4
62 v 277 4418 a(The)29 b(proposition)k(which)c(sho)n(ws)h(that)g
(cut-elimination)j(can)c(be)h(simulated)h(by)e(normalisation)k(is)277
4531 y(as)24 b(follo)n(ws.)p Black 277 4719 a Gb(Pr)n(oposition)h
(3.2.8:)p Black 34 w Gg(F)o(or)e(all)g Ga(M)5 b(;)15
b(N)36 b F6(2)25 b FY(I)1621 4686 y F9(\()p FX(^)q Gc(;)p
FX(\033)o F9(\))1802 4719 y Gg(,)d(if)h Ga(M)2088 4682
y Gc(int)2049 4719 y F6(\000)-32 b(\000)h(!)25 b Ga(N)10
b Gg(,)23 b(then)h F6(j)p Ga(M)10 b F6(j)2700 4686 y
Fu(n)2839 4682 y Gc(\023)2766 4719 y F6(\000)-31 b(\000)g(!)2937
4686 y FX(\003)3001 4719 y F6(j)p Ga(N)10 b F6(j)3134
4686 y Fu(n)3175 4719 y Gg(.)p Black 277 4932 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)d(the)h(de\002nition)h(of)1786
4894 y Gc(int)1747 4932 y F6(\000)-31 b(\000)f(!)23 b
Gg(\(see)h(P)o(age)f(160\).)p 3436 4932 V 3440 4873 55
4 v 3440 4932 V 3494 4932 4 62 v 418 5136 a(Let)d(us)g(no)n(w)f(tak)o
(e)i(a)f(step)h(back)g(and)f(analyse)i(the)e(result)i(obtained)g(in)e
(Proposition)j(3.2.8.)k(What)277 5249 y(is)21 b(sho)n(wn)g(is)f(that)i
(cut-elimination)i(steps)e(can)f(be)g(simulated)h(by)f
(beta-reductions\227b)n(ut)27 b(simulated)p Black Black
eop end
%%Page: 78 90
TeXDict begin 78 89 bop Black -144 51 a Gb(78)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(in)h(a)f(weak)g
(sense.)30 b(Whene)n(v)o(er)1172 605 y FL(Cut)p F4(\()1345
593 y FX(h)1373 605 y Ga(a)1421 593 y FX(i)1448 605 y
Ga(M)10 b(;)1586 593 y F9(\()1614 605 y Ga(x)1666 593
y F9(\))1693 605 y Ga(N)g F4(\))1876 568 y Gc(int)1837
605 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o F4(\()2205
593 y FX(h)2233 605 y Ga(a)2281 593 y FX(i)2309 605 y
Ga(M)2407 572 y FX(0)2430 605 y Ga(;)2470 593 y F9(\()2498
605 y Ga(x)2550 593 y F9(\))2577 605 y Ga(N)10 b F4(\))321
843 y Gg(with)24 b Ga(x)e Gg(is)i(not)g(free)g(in)f Ga(N)10
b Gg(,)22 b(then)1105 1095 y F6(j)p FL(Cut)q F4(\()1304
1083 y FX(h)1331 1095 y Ga(a)1379 1083 y FX(i)1407 1095
y Ga(M)10 b(;)1545 1083 y F9(\()1573 1095 y Ga(x)1625
1083 y F9(\))1652 1095 y Ga(N)g F4(\))p F6(j)1795 1057
y Fu(n)1862 1095 y F6(\021)25 b(j)p FL(Cut)p F4(\()2156
1083 y FX(h)2183 1095 y Ga(a)2231 1083 y FX(i)2259 1095
y Ga(M)2357 1062 y FX(0)2380 1095 y Ga(;)2420 1083 y
F9(\()2448 1095 y Ga(x)2500 1083 y F9(\))2528 1095 y
Ga(N)10 b F4(\))p F6(j)2671 1057 y Fu(n)2737 1095 y Ga(:)321
1334 y Gg(W)-7 b(e)29 b(achie)n(v)o(e)i(a)e(some)n(what)h(closer)h
(correspondence)j(between)d(cut-elimination)i(and)e(normalisa-)321
1446 y(tion,)h(if)e(we)f(translate)j(the)e(sequent)i(calculus)g(into)e
(a)g(simply-typed)j(lambda)e(calculus)h(e)o(xtended)321
1559 y(with)39 b(an)f(e)o(xplicit)i(substitution)j(operator)-5
b(.)76 b(This)38 b(w)o(as)g(proposed,)45 b(for)39 b(e)o(xample,)k(by)38
b(Herbelin)321 1672 y([1994],)30 b(and)d(Barendre)o(gt)i(and)f
(Ghilezan)h([2000].)41 b(On)27 b(one)g(hand,)i(the)f(e)o(xplicit)g
(substitution)j(op-)321 1785 y(erator)24 b(ensures)g(that)f(more)g
(cut-elimination)j(reductions)f(match)e(with)g(normalisation)i
(reductions;)321 1898 y(on)33 b(the)h(other)l(,)i(we)d(are)g(not)g(a)o
(w)o(are)g(of)g(an)o(y)h(w)o(ork)f(that)g(points)i(out)e(that)h(there)g
(is)f(a)g(discrepanc)o(y)321 2011 y(pre)n(v)o(enting)24
b(a)d(perfect)j(match.)k(W)-7 b(e)21 b(shall)h(demonstrate)i(the)e
(discrepanc)o(y)j(using)d Ga(\025)p Fp(x)f Gg([Rose,)h(1996].)p
Black 321 2199 a Gb(Remark)37 b(3.2.9:)p Black 34 w Gg(First)h(let)f
(us)h(remind)g(the)g(reader)g(of)g(the)f(e)o(xplicit)i(substitution)i
(calculus)f Ga(\025)p F1(x)321 2312 y Gg(brie\003y)24
b(described)i(on)e(P)o(age)f(48.)29 b(The)23 b(terms)h(are)g(gi)n(v)o
(en)g(by)f(the)h(grammar)1256 2570 y Ga(x)50 b F6(j)h
Ga(\025x:M)61 b F6(j)51 b Ga(M)25 b(N)60 b F6(j)51 b
Ga(M)10 b F6(h)p Ga(x)26 b F4(:=)f Ga(N)10 b F6(i)26
b Ga(:)321 2809 y Gg(In)d(contrast)h(to)f(the)g(simply-typed)j(lambda)d
(calculus,)i(in)d Ga(\025)p Fp(x)g Gg(beta-reductions)27
b(are)c(split)g(into)h(more)321 2922 y(atomic)35 b(steps:)52
b(one)34 b(step)h(is)f(the)g(reduction)j F4(\()p Ga(\025x:M)10
b F4(\))p Ga(N)2315 2885 y Gc(b)2245 2922 y F6(\000)-31
b(\000)f(!)45 b Ga(M)10 b F6(h)p Ga(x)45 b F4(:=)g Ga(N)10
b F6(i)34 b Gg(introducing)j(the)321 3035 y(e)o(xplicit)24
b(substitution)h(operator)l(,)f(and)e(the)g(others)h(in)l(v)n(olv)o(e)h
(reductions)g(that)e(permute)h(this)f(operator)321 3147
y(inside)37 b(the)e(term)g Ga(M)10 b Gg(.)62 b(As)34
b(a)h(consequence,)41 b(the)36 b(translation)i(from)d(sequent)h(proofs)
h(to)e(natural)321 3260 y(deduction)27 b(proofs)e(can)e(be)h
(modi\002ed,)g(so)f(as)h(to)f(incorporate)k(the)d(ne)n(w)f(term)g
(constructor)-5 b(.)p Black Black 1076 3533 a F6(j)p
FL(Cut)p F4(\()1274 3521 y FX(h)1302 3533 y Ga(a)1350
3521 y FX(i)1377 3533 y Ga(M)10 b(;)1515 3521 y F9(\()1543
3533 y Ga(x)1595 3521 y F9(\))1622 3533 y Ga(N)g F4(\))p
F6(j)1765 3500 y Fu(n)1801 3476 y FC(0)1929 3481 y F5(def)1936
3533 y F4(=)106 b F6(j)p Ga(N)10 b F6(j)2246 3500 y Fu(n)2282
3476 y FC(0)2309 3533 y F6(h)p Ga(x)26 b F4(:=)f F6(j)p
Ga(M)10 b F6(j)2691 3500 y Fu(n)2727 3476 y FC(0)2755
3533 y F6(i)1055 3673 y(j)p FL(Imp)1225 3694 y Gc(R)1282
3673 y F4(\()1317 3661 y F9(\()1345 3673 y Ga(x)1397
3661 y F9(\))q FX(h)1452 3673 y Ga(a)1500 3661 y FX(i)1528
3673 y Ga(M)g(;)15 b(c)p F4(\))p F6(j)1765 3640 y Fu(n)1801
3616 y FC(0)1929 3621 y F5(def)1936 3673 y F4(=)106 b
Ga(\025x:)p F6(j)p Ga(M)10 b F6(j)2391 3640 y Fu(n)2427
3616 y FC(0)929 3812 y F6(j)p FL(Imp)1098 3834 y Gc(L)1151
3812 y F4(\()1186 3800 y FX(h)1213 3812 y Ga(a)1261 3800
y FX(i)1289 3812 y Ga(M)g(;)1427 3800 y F9(\()1455 3812
y Ga(x)1507 3800 y F9(\))1534 3812 y Ga(N)g(;)15 b(y)s
F4(\))p F6(j)1765 3779 y Fu(n)1801 3756 y FC(0)1929 3761
y F5(def)1936 3812 y F4(=)106 b F6(j)p Ga(N)10 b F6(j)2246
3779 y Fu(n)2282 3756 y FC(0)2309 3812 y F6(h)p Ga(x)26
b F4(:=)f(\()p Ga(y)34 b F6(j)p Ga(M)10 b F6(j)2805 3779
y Fu(n)2841 3756 y FC(0)2868 3812 y F4(\))p F6(i)462
4055 y Gg(T)-7 b(o)19 b(sho)n(w)g(the)h(discrepanc)o(y)-6
b(,)23 b(we)18 b(shall)j(no)n(w)d(consider)k(the)e(logical)h
(cut-reduction)i(for)d(cuts)g(with)321 4168 y(a)k(cut-formula)j(ha)n
(ving)g(an)d(implication)j(as)d(top-most)i(connecti)n(v)o(e.)34
b(On)24 b(P)o(age)g(29)h(we)f(de\002ned)h(this)321 4281
y(cut-reduction)j(as)1009 4516 y FL(Cut)p F4(\()1182
4504 y FX(h)1210 4516 y Ga(b)1249 4504 y FX(i)1276 4516
y FL(Imp)1421 4538 y Gc(R)1478 4516 y F4(\()1513 4504
y F9(\()1541 4516 y Ga(x)1593 4504 y F9(\))q FX(h)1648
4516 y Ga(a)1696 4504 y FX(i)1723 4516 y Ga(M)11 b(;)k(b)p
F4(\))p Ga(;)1976 4504 y F9(\()2004 4516 y Ga(z)2050
4504 y F9(\))2078 4516 y FL(Imp)2222 4538 y Gc(L)2275
4516 y F4(\()2310 4504 y FX(h)2337 4516 y Ga(c)2376 4504
y FX(i)2404 4516 y Ga(N)10 b(;)2527 4504 y F9(\()2555
4516 y Ga(y)2603 4504 y F9(\))2630 4516 y Ga(P)j(;)i(z)t
F4(\))q(\))1265 4627 y Gc(l)1191 4664 y F6(\000)-31 b(\000)f(!)25
b FL(Cut)p F4(\()1559 4652 y FX(h)1587 4664 y Ga(a)1635
4652 y FX(i)1663 4664 y FL(Cut)o F4(\()1835 4652 y FX(h)1863
4664 y Ga(c)1902 4652 y FX(i)1930 4664 y Ga(N)10 b(;)2053
4652 y F9(\()2081 4664 y Ga(x)2133 4652 y F9(\))2160
4664 y Ga(M)g F4(\))q Ga(;)2334 4652 y F9(\()2362 4664
y Ga(y)2410 4652 y F9(\))2437 4664 y Ga(P)j F4(\))51
b Gg(or)1265 4740 y Gc(l)1191 4777 y F6(\000)-31 b(\000)f(!)25
b FL(Cut)p F4(\()1559 4765 y FX(h)1587 4777 y Ga(c)1626
4765 y FX(i)1654 4777 y Ga(N)10 b(;)1777 4765 y F9(\()1805
4777 y Ga(x)1857 4765 y F9(\))1884 4777 y FL(Cut)p F4(\()2057
4765 y FX(h)2085 4777 y Ga(a)2133 4765 y FX(i)2160 4777
y Ga(M)g(;)2298 4765 y F9(\()2326 4777 y Ga(y)2374 4765
y F9(\))2401 4777 y Ga(P)j F4(\))q(\))p Black 3372 4647
a Gg(\(3.2\))p Black 321 5023 a(including)25 b(a)d(choice)h(of)f(ho)n
(w)f(the)i(cuts)f(are)h(arranged)h(in)e(the)g(reduct.)30
b(There)22 b(is)g(no)g(reason)h(to)f(prefer)321 5136
y(one)28 b(choice)i(o)o(v)o(er)d(the)h(other)h(\(the)o(y)f(e)n(v)o(en)g
(lead)g(to)g(dif)n(ferent)i(normal)e(forms)g(as)g(we)e(shall)j(sho)n(w)
f(in)321 5249 y(Chapter)c(4\).)29 b(Unfortunately)-6
b(,)26 b(using)e(the)f(translation)j F6(j)p 2092 5249
28 4 v 2110 5249 V 2128 5249 V 65 w(j)2180 5216 y Fu(n)2216
5192 y FC(0)2265 5249 y Gg(gi)n(v)o(en)e(abo)o(v)o(e)f(only)h(the)f
(\002rst)g(reduction)p Black Black eop end
%%Page: 79 91
TeXDict begin 79 90 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
b(79)p 277 88 3691 4 v Black 277 365 a Gg(is)29 b(matched)i(by)e
(reductions)j(in)e Ga(\025)p Fp(x)o Gg(;)i(the)e(other)g(is)f
F7(not)p Gg(.)47 b(The)28 b(translations)33 b(of)c(the)h(reducts)h(sho)
n(wn)277 478 y(in)24 b(\(3.2\))f(are:)p Black Black 631
702 a F6(j)p FL(Cut)p F4(\()829 690 y FX(h)857 702 y
Ga(a)905 690 y FX(i)932 702 y FL(Cut)p F4(\()1105 690
y FX(h)1133 702 y Ga(c)1172 690 y FX(i)1200 702 y Ga(N)9
b(;)1322 690 y F9(\()1350 702 y Ga(x)1402 690 y F9(\))1430
702 y Ga(M)h F4(\))p Ga(;)1603 690 y F9(\()1631 702 y
Ga(y)1679 690 y F9(\))1706 702 y Ga(P)j F4(\))p F6(j)1837
669 y Fu(n)1873 646 y FC(0)1926 702 y F4(=)25 b F6(j)p
Ga(P)13 b F6(j)2143 669 y Fu(n)2179 646 y FC(0)2207 702
y F6(h)p Ga(y)28 b F4(:=)d F6(j)p Ga(M)10 b F6(j)2584
669 y Fu(n)2620 646 y FC(0)2648 702 y F6(h)p Ga(x)25
b F4(:=)h F6(j)p Ga(N)10 b F6(j)3015 669 y Fu(n)3051
646 y FC(0)3078 702 y F6(ii)631 868 y(j)p FL(Cut)p F4(\()829
856 y FX(h)857 868 y Ga(c)896 856 y FX(i)923 868 y Ga(N)g(;)1046
856 y F9(\()1074 868 y Ga(x)1126 856 y F9(\))1154 868
y FL(Cut)o F4(\()1326 856 y FX(h)1354 868 y Ga(a)1402
856 y FX(i)1430 868 y Ga(M)g(;)1568 856 y F9(\()1596
868 y Ga(y)1644 856 y F9(\))1671 868 y Ga(P)j F4(\)\))p
F6(j)1837 835 y Fu(n)1873 811 y FC(0)1926 868 y F4(=)25
b F6(j)p Ga(P)13 b F6(j)2143 835 y Fu(n)2179 811 y FC(0)2207
868 y F6(h)p Ga(y)28 b F4(:=)d F6(j)p Ga(M)10 b F6(j)2584
835 y Fu(n)2620 811 y FC(0)2648 868 y F6(ih)p Ga(x)26
b F4(:=)f F6(j)p Ga(N)10 b F6(j)3050 835 y Fu(n)3086
811 y FC(0)3113 868 y F6(i)277 1089 y Gg(W)l(ith)24 b(the)g
(\(standard\))i(reduction)g(rules)f(of)e Ga(\025)p Fp(x)p
Gg(,)f(only)j(the)f(\002rst)f(reduct)i(can)f(be)f(reached.)p
Black Black 908 1318 a F6(j)p FL(Cut)p F4(\()1106 1306
y FX(h)1134 1318 y Ga(b)1173 1306 y FX(i)1201 1318 y
FL(Imp)1345 1340 y Gc(R)1403 1318 y F4(\()1438 1306 y
F9(\()1466 1318 y Ga(x)1518 1306 y F9(\))p FX(h)1572
1318 y Ga(a)1620 1306 y FX(i)1648 1318 y Ga(M)10 b(;)15
b(b)p F4(\))q Ga(;)1901 1306 y F9(\()1929 1318 y Ga(z)1975
1306 y F9(\))2002 1318 y FL(Imp)2147 1340 y Gc(L)2199
1318 y F4(\()2234 1306 y FX(h)2262 1318 y Ga(c)2301 1306
y FX(i)2328 1318 y Ga(N)10 b(;)2451 1306 y F9(\()2479
1318 y Ga(y)2527 1306 y F9(\))2555 1318 y Ga(P)j(;)i(z)t
F4(\))q(\))p F6(j)2808 1285 y Fu(n)2844 1261 y FC(0)1008
1459 y F4(=)93 b F6(j)p Ga(P)13 b F6(j)1293 1426 y Fu(n)1329
1403 y FC(0)1357 1459 y F6(h)p Ga(y)28 b F4(:=)d Ga(z)20
b F6(j)p Ga(N)10 b F6(j)1781 1426 y Fu(n)1817 1403 y
FC(0)1844 1459 y F6(ih)p Ga(z)30 b F4(:=)c Ga(\025x:)p
F6(j)p Ga(M)10 b F6(j)2386 1426 y Fu(n)2422 1403 y FC(0)2449
1459 y F6(i)908 1601 y(\000)-31 b(\000)f(!)94 b(j)p Ga(P)13
b F6(j)1293 1568 y Fu(n)1329 1545 y FC(0)1357 1601 y
F6(h)p Ga(y)28 b F4(:=)d Ga(z)20 b F6(j)p Ga(N)10 b F6(j)1781
1568 y Fu(n)1817 1545 y FC(0)1844 1601 y F6(h)p Ga(z)30
b F4(:=)25 b Ga(\025x:)p F6(j)p Ga(M)10 b F6(j)2350 1568
y Fu(n)2386 1545 y FC(0)2414 1601 y F6(ii)908 1743 y(\000)-31
b(\000)f(!)1097 1710 y FX(\003)1172 1743 y F6(j)p Ga(P)13
b F6(j)1293 1710 y Fu(n)1329 1686 y FC(0)1357 1743 y
F6(h)p Ga(y)28 b F4(:=)d(\()p Ga(\025)q(x:)p F6(j)p Ga(M)10
b F6(j)1900 1710 y Fu(n)1936 1686 y FC(0)1963 1743 y
F4(\))15 b F6(j)p Ga(N)10 b F6(j)2146 1710 y Fu(n)2182
1686 y FC(0)2210 1743 y F6(i)908 1884 y(\000)-31 b(\000)f(!)94
b(j)p Ga(P)13 b F6(j)1293 1851 y Fu(n)1329 1828 y FC(0)1357
1884 y F6(h)p Ga(y)28 b F4(:=)d F6(j)p Ga(M)10 b F6(j)1734
1851 y Fu(n)1770 1828 y FC(0)1798 1884 y F6(h)p Ga(x)25
b F4(:=)h F6(j)p Ga(N)10 b F6(j)2165 1851 y Fu(n)2201
1828 y FC(0)2228 1884 y F6(ii)277 2152 y Gg(The)33 b(discrepanc)o(y)j
(appears)f(if)e(we)f(try)h(to)g(reach)h(the)g(second)g(reduct.)59
b(Here)33 b(we)f(w)o(ould)i(need)g(a)277 2265 y(reduction)26
b(of)e(the)f(form)h(\()p Ga(x)h F6(62)g Ga(F)13 b(V)21
b F4(\()p Ga(P)13 b F4(\))p Gg(\))993 2509 y Ga(P)g F6(h)p
Ga(y)29 b F4(:=)c Ga(M)10 b F6(h)p Ga(x)25 b F4(:=)h
Ga(N)10 b F6(ii)26 b(\000)-32 b(\000)h(!)25 b Ga(P)13
b F6(h)p Ga(y)28 b F4(:=)e Ga(M)10 b F6(ih)p Ga(x)26
b F4(:=)f Ga(N)10 b F6(i)277 2730 y Gg(which,)29 b(as)e(f)o(ar)g(as)h
(we)e(kno)n(w)-6 b(,)28 b(has)g(not)g(been)g(considered)i(for)e(an)o(y)
f(e)o(xplicit)i(substitution)i(calculus)277 2842 y(and)24
b(indeed)h(w)o(ould)f(be)g(rather)h(strange.)418 2972
y(What)39 b(is)g(sho)n(wn)g(by)g(this)g(e)o(xample)g(is)g(that)g(the)g
(ob)o(vious)i(candidate)g(for)e(a)f(simply-typed)277
3085 y(lambda)29 b(calculus)g(with)f(an)g(e)o(xplicit)h(substitution)i
(operator)f(and)e(a)f(natural)j(translation)h(from)c(se-)277
3198 y(quent)34 b(proofs)f(to)f(this)h(lambda)g(calculus)h(gi)n(v)o(es)
f(a)f(closer)h(correspondence)k(between)d(cut-elimi-)277
3311 y(nation)e(and)e(normalisation,)35 b(b)n(ut)30 b(not)g(all)h
(cut-reductions)j(are)c(\223mirrored\224.)50 b(In)30
b(the)g(ne)o(xt)h(section)277 3424 y(we)26 b(shall)i(de)n(v)o(elop)g(a)
e(natural)i(deduction)i(calculus)f(with)d(a)h(symmetric)g(e)o(xplicit)i
(substitution)h(op-)277 3536 y(erator)-5 b(.)58 b(F)o(or)32
b(this)h(calculus)i(we)d(shall)i(gi)n(v)o(e)f(translations)j(so)d(that)
g F7(all)g Gg(cut-reductions)k(map)c(onto)277 3649 y(normalisation)27
b(reductions.)418 3903 y(In)h(the)h(rest)g(of)f(this)g(section)i(we)e
(shall)h(analyse)h(whether)f(we)f(can)g(e)o(xtend)i(Proposition)g
(3.2.8)277 4016 y(to)22 b(all)h(connecti)n(v)o(es)i(of)d
(intuitionistic)k(logic.)j(As)22 b(mentioned)i(earlier)l(,)g(Zuck)o(er)
f(concluded)i(that)e(this)277 4129 y(cannot)h(be)e(done)h(for)f(the)h
(fragment)g(including)i F6(_)c Gg(or)h F6(9)p Gg(,)f(because)j(\(in)e
(his)h(setting\))h(cut-elimination)277 4242 y(f)o(ails)i(to)e(be)h
(strongly)h(normalising.)35 b(Our)24 b(cut-elimination)k(procedure)f
F4(\()p FY(I)p Ga(;)2756 4205 y Gc(int)2717 4242 y F6(\000)-31
b(\000)f(!)p F4(\))24 b F7(is)h Gg(strongly)i(nor)n(-)277
4355 y(malising,)g(and)f(thus)f(it)g(is)g(interesting)k(to)c
(re-address)j(the)d(question)j(of)d(the)g(correspondence.)39
b(Un-)277 4468 y(fortunately)-6 b(,)28 b(it)d(turns)h(out)f(that)h(the)
f F6(_)p Gg(-connecti)n(v)o(e)i(is)e(still)h(problematic)h(with)e
(respect)h(to)f(the)h(sim-)277 4581 y(ulation)f(of)f(cut-elimination.)
418 4710 y(Clearly)-6 b(,)34 b(to)d(eliminate)i(all)e(cut-instances)k
(from)c(sequent)i(proofs)f(we)f(need)h(the)f(commuting)277
4823 y(reduction)26 b(of)e(the)f(form)1193 5028 y FL(Cut)p
F4(\()1366 5016 y FX(h)1394 5028 y Ga(a)1442 5016 y FX(i)1469
5028 y Ga(M)10 b(;)1607 5016 y F9(\()1635 5028 y Ga(x)1687
5016 y F9(\))1714 5028 y Ga(N)g F4(\))1928 4990 y Gc(c)1858
5027 y F6(\000)-31 b(\000)f(!)2053 5028 y Ga(M)10 b F4([)p
Ga(a)26 b F4(:=)2371 5016 y F9(\()2399 5028 y Ga(x)2451
5016 y F9(\))2478 5028 y Ga(N)10 b F4(])p Black 742 w
Gg(\(3.3\))p Black 277 5249 a(which)25 b(may)f(be)g(applied)i(if)e
Ga(M)33 b Gg(does)25 b(not)g(freshly)h(introduce)h Ga(a)p
Gg(.)j(In)24 b(the)g F4(\()p F6(^)p Ga(;)15 b F6(\033)p
F4(\))p Gg(-fragment)27 b(consid-)277 5361 y(ered)f(abo)o(v)o(e,)g
(this)g(reduction)h(is)f(mapped)g(by)f F6(j)p 1783 5361
28 4 v 1801 5361 V 1819 5361 V 65 w(j)1871 5329 y Fu(n)1936
5361 y Gg(onto)h(an)f(identity)j(\(see)d(Lemma)g(3.2.7\).)34
b(But)24 b(in)277 5474 y(case)f Ga(M)33 b Gg(is)22 b(an)h
F6(_)826 5488 y Gc(L)879 5474 y Gg(-rule,)g(then)g F6(j)p
1300 5474 V 1318 5474 V 1336 5474 V 65 w(j)1388 5441
y Fu(n)1451 5474 y Gg(does)g(not)h(translate)g(\(3.3\))g(onto)f(an)g
(identity)-6 b(.)30 b(In)23 b(consequence,)p Black Black
eop end
%%Page: 80 92
TeXDict begin 80 91 bop Black -144 51 a Gb(80)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(the)30
b(correspondence)k(f)o(ails.)48 b(The)29 b(issues)i(are)f(best)g(e)o
(xplained)i(with)e(an)f(e)o(xample.)48 b(Consider)31
b(the)321 478 y(follo)n(wing)25 b(sequent)h(proof)e(\(where)g(for)g
(bre)n(vity)h(we)e(ha)n(v)o(e)h(omitted)h(all)e(labels\).)p
758 635 233 4 v 758 714 a Ga(A)p 846 702 11 41 v 857
684 46 5 v 97 w(A)p 1082 635 244 4 v 91 w(B)p 1175 702
11 41 v 1186 684 46 5 v 101 w(B)p 758 734 567 4 v 801
813 a(A;)15 b(B)p 1004 801 11 41 v 1014 782 46 5 v 102
w(A)p F6(^)o Ga(B)1367 752 y F6(^)1427 766 y Gc(R)p 1576
635 233 4 v 1576 714 a Ga(A)p 1664 702 11 41 v 1675 684
46 5 v 96 w(A)p 1899 635 244 4 v 91 w(B)p 1993 702 11
41 v 2004 684 46 5 v 101 w(B)p 1576 734 567 4 v 1619
813 a(A;)g(B)p 1821 801 11 41 v 1832 782 46 5 v 101 w(A)p
F6(^)p Ga(B)2184 752 y F6(^)2245 766 y Gc(R)p 801 850
1299 4 v 1089 929 a Ga(A)p F6(_)o Ga(B)5 b(;)15 b(B)5
b(;)15 b(A)p 1534 917 11 41 v 1544 899 46 5 v 97 w(A)p
F6(^)p Ga(B)2141 868 y F6(_)2202 882 y Gc(L)p 2393 653
233 4 v 2393 732 a Ga(A)p 2482 720 11 41 v 2492 701 46
5 v 97 w(A)p 2717 653 233 4 v 91 w(A)p 2805 720 11 41
v 2816 701 46 5 v 97 w(A)p 2393 752 557 4 v 2491 830
a(A)p 2579 818 11 41 v 2590 800 46 5 v 96 w(A)p F6(^)p
Ga(A)2991 770 y F6(^)3052 784 y Gc(R)p 2424 850 496 4
v 2424 929 a Ga(A)p F6(^)p Ga(B)p 2646 917 11 41 v 2657
899 46 5 v 100 w(A)p F6(^)p Ga(A)2961 864 y F6(^)3021
878 y Gc(L)3069 887 y FV(1)p 1089 967 1831 4 v 1645 1045
a Ga(A)p F6(_)p Ga(B)5 b(;)15 b(B)5 b(;)15 b(A)p 2090
1033 11 41 v 2100 1015 46 5 v 96 w(A)p F6(^)p Ga(A)2961
997 y Gg(Cut)p Black 3372 1045 a(\(3.4\))p Black 321
1204 a(T)-7 b(o)23 b(eliminate)i(the)f(cut,)f(we)g(need)h(to)g(apply)g
(the)g(rule)g(sho)n(wn)g(in)g(\(3.3\).)29 b(This)23 b(gi)n(v)o(es)h(us)
p 355 1502 233 4 v 355 1580 a Ga(A)p 443 1568 11 41 v
453 1550 46 5 v 96 w(A)p 678 1502 244 4 v 91 w(B)p 772
1568 11 41 v 782 1550 46 5 v 101 w(B)p 355 1600 567 4
v 398 1679 a(A;)15 b(B)p 600 1667 11 41 v 610 1649 46
5 v 101 w(A)p F6(^)p Ga(B)963 1618 y F6(^)1024 1633 y
Gc(R)p 1172 1403 233 4 v 1172 1482 a Ga(A)p 1261 1470
11 41 v 1271 1451 46 5 v 97 w(A)p 1496 1403 233 4 v 91
w(A)p 1584 1470 11 41 v 1595 1451 46 5 v 96 w(A)p 1172
1502 557 4 v 1270 1580 a(A)p 1358 1568 11 41 v 1369 1550
46 5 v 96 w(A)p F6(^)p Ga(A)1770 1520 y F6(^)1831 1534
y Gc(R)p 1203 1600 496 4 v 1203 1679 a Ga(A)p F6(^)o
Ga(B)p 1425 1667 11 41 v 1436 1649 46 5 v 101 w(A)p F6(^)p
Ga(A)1740 1614 y F6(^)1800 1628 y Gc(L)1848 1637 y FV(1)p
398 1717 1301 4 v 810 1795 a Ga(A;)g(B)p 1013 1783 11
41 v 1023 1765 46 5 v 102 w(A)p F6(^)o Ga(A)1740 1747
y Gg(Cut)p 1979 1502 233 4 v 1979 1580 a Ga(A)p 2068
1568 11 41 v 2078 1550 46 5 v 97 w(A)p 2303 1502 244
4 v 91 w(B)p 2397 1568 11 41 v 2407 1550 46 5 v 101 w(B)p
1979 1600 567 4 v 2022 1679 a(A;)g(B)p 2225 1667 11 41
v 2235 1649 46 5 v 102 w(A)p F6(^)p Ga(B)2588 1618 y
F6(^)2648 1633 y Gc(R)p 2797 1403 233 4 v 2797 1482 a
Ga(A)p 2885 1470 11 41 v 2896 1451 46 5 v 96 w(A)p 3121
1403 233 4 v 92 w(A)p 3209 1470 11 41 v 3219 1451 46
5 v 96 w(A)p 2797 1502 557 4 v 2894 1580 a(A)p 2983 1568
11 41 v 2993 1550 46 5 v 97 w(A)p F6(^)p Ga(A)3395 1520
y F6(^)3455 1534 y Gc(R)p 2827 1600 496 4 v 2827 1679
a Ga(A)p F6(^)p Ga(B)p 3050 1667 11 41 v 3060 1649 46
5 v 101 w(A)p F6(^)p Ga(A)3364 1614 y F6(^)3425 1628
y Gc(L)3473 1637 y FV(1)p 2022 1717 1301 4 v 2435 1795
a Ga(A;)g(B)p 2637 1783 11 41 v 2648 1765 46 5 v 101
w(A)p F6(^)p Ga(A)3364 1747 y Gg(Cut)p 810 1833 2101
4 v 1499 1912 a Ga(A)p F6(_)o Ga(B)5 b(;)15 b(B)5 b(;)15
b(A)p 1944 1900 11 41 v 1954 1881 46 5 v 97 w(A)p F6(^)o
Ga(B)2952 1851 y F6(_)3012 1865 y Gc(L)p Black 3372 2025
a Gg(\(3.5\))p Black 321 2154 a(where)33 b(tw)o(o)g(copies)h(of)f(the)g
(cut)h(ha)n(v)o(e)f(been)h(created.)58 b(Let)33 b(us)g(gi)n(v)o(e)g
(the)g(corresponding)k(natural)321 2267 y(deduction)27
b(proofs.)j(F)o(orming)23 b F6(j)p Gg(\(3.4\))r F6(j)1545
2234 y Fu(n)1608 2267 y Gg(we)g(ha)n(v)o(e)h(the)g(natural)h(deduction)
h(proof)p -104 2538 458 4 v -104 2612 a FU(A)p FT(_)q
FU(B)p 99 2600 10 38 v 109 2583 42 4 v 92 w(A)p FT(_)p
FU(B)p 409 2445 213 4 v 409 2518 a(A)p 490 2506 10 38
v 499 2490 42 4 v 88 w(A)p 691 2445 223 4 v 70 w(B)p
776 2506 10 38 v 786 2490 42 4 v 92 w(B)p 409 2538 504
4 v 441 2612 a(A;)14 b(B)p 626 2600 10 38 v 636 2583
42 4 v 93 w(A)p FT(^)p FU(B)927 2555 y FT(^)982 2568
y FS(I)p 1075 2445 213 4 v 1075 2518 a FU(A)p 1156 2506
10 38 v 1166 2490 42 4 v 89 w(A)p 1357 2445 223 4 v 69
w(B)p 1443 2506 10 38 v 1452 2490 42 4 v 92 w(B)p 1075
2538 504 4 v 1108 2612 a(A;)g(B)p 1293 2600 10 38 v 1302
2583 42 4 v 92 w(A)p FT(^)q FU(B)1593 2555 y FT(^)1649
2568 y FS(I)p -104 2648 1651 4 v 391 2721 a FU(A)p FT(_)q
FU(B)t(;)g(A;)g(B)p 798 2709 10 38 v 807 2692 42 4 v
92 w(A)p FT(^)q FU(B)1561 2665 y FT(_)1616 2677 y FS(E)p
391 2757 661 4 v 452 2830 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p
859 2818 10 38 v 868 2802 42 4 v 92 w(A)1093 2770 y FT(^)1149
2782 y FS(E)1198 2790 y FP(1)p 1714 2538 458 4 v 1714
2612 a FU(A)p FT(_)q FU(B)p 1918 2600 10 38 v 1927 2583
42 4 v 92 w(A)p FT(_)q FU(B)p 2227 2445 213 4 v 2227
2518 a(A)p 2308 2506 10 38 v 2317 2490 42 4 v 88 w(A)p
2509 2445 223 4 v 70 w(B)p 2594 2506 10 38 v 2604 2490
42 4 v 92 w(B)p 2227 2538 504 4 v 2260 2612 a(A;)g(B)p
2444 2600 10 38 v 2454 2583 42 4 v 92 w(A)p FT(^)p FU(B)2745
2555 y FT(^)2800 2568 y FS(I)p 2894 2445 213 4 v 2894
2518 a FU(A)p 2974 2506 10 38 v 2984 2490 42 4 v 88 w(A)p
3175 2445 223 4 v 69 w(B)p 3261 2506 10 38 v 3270 2490
42 4 v 92 w(B)p 2894 2538 504 4 v 2926 2612 a(A;)g(B)p
3111 2600 10 38 v 3120 2583 42 4 v 92 w(A)p FT(^)q FU(B)3411
2555 y FT(^)3467 2568 y FS(I)p 1714 2648 1651 4 v 2209
2721 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p 2616 2709 10
38 v 2625 2692 42 4 v 92 w(A)p FT(^)q FU(B)3379 2665
y FT(_)3434 2677 y FS(E)p 2209 2757 661 4 v 2271 2830
a FU(A)p FT(_)p FU(B)t(;)g(A;)g(B)p 2677 2818 10 38 v
2687 2802 42 4 v 93 w(A)2912 2770 y FT(^)2967 2782 y
FS(E)3016 2790 y FP(1)p 452 2866 2357 4 v 1303 2940 a
FU(A)p FT(_)p FU(B)t(;)g(A;)g(B)p 1709 2928 10 38 v 1719
2911 42 4 v 93 w(A)p FT(^)p FU(A)2850 2883 y FT(^)2906
2896 y FS(I)321 3153 y Gg(in)35 b(which)h(the)f F6(^)888
3167 y Gc(E)940 3176 y FV(1)979 3153 y Gg(-rules)h(can)f(be)g(permuted)
i(with)e(the)g F6(_)2280 3167 y Gc(E)2339 3153 y Gg(-rules.)65
b(This)34 b(gi)n(v)o(es)i(the)f(follo)n(wing)321 3266
y(proof.)p -104 3644 458 4 v -104 3717 a FU(A)p FT(_)q
FU(B)p 99 3705 10 38 v 109 3689 42 4 v 92 w(A)p FT(_)p
FU(B)p 409 3441 213 4 v 409 3515 a(A)p 490 3503 10 38
v 499 3486 42 4 v 88 w(A)p 691 3441 223 4 v 70 w(B)p
776 3503 10 38 v 786 3486 42 4 v 92 w(B)p 409 3535 504
4 v 441 3608 a(A;)14 b(B)p 626 3596 10 38 v 636 3579
42 4 v 93 w(A)p FT(^)p FU(B)927 3552 y FT(^)982 3564
y FS(I)p 441 3644 440 4 v 503 3717 a FU(A;)g(B)p 687
3705 10 38 v 697 3689 42 4 v 92 w(A)894 3657 y FT(^)950
3669 y FS(E)999 3677 y FP(1)p 1090 3441 213 4 v 1090
3515 a FU(A)p 1171 3503 10 38 v 1180 3486 42 4 v 88 w(A)p
1372 3441 223 4 v 70 w(B)p 1457 3503 10 38 v 1467 3486
42 4 v 92 w(B)p 1090 3535 504 4 v 1123 3608 a(A;)g(B)p
1307 3596 10 38 v 1317 3579 42 4 v 92 w(A)p FT(^)q FU(B)1608
3552 y FT(^)1663 3564 y FS(I)p 1123 3644 440 4 v 1184
3717 a FU(A;)g(B)p 1369 3705 10 38 v 1378 3689 42 4 v
92 w(A)1576 3657 y FT(^)1631 3669 y FS(E)1680 3677 y
FP(1)p -104 3754 1605 4 v 429 3827 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p
836 3815 10 38 v 845 3798 42 4 v 92 w(A)1514 3770 y FT(_)1570
3783 y FS(E)p 1744 3644 458 4 v 1744 3717 a FU(A)p FT(_)p
FU(B)p 1947 3705 10 38 v 1957 3689 42 4 v 93 w(A)p FT(_)p
FU(B)p 2257 3441 213 4 v 2257 3515 a(A)p 2337 3503 10
38 v 2347 3486 42 4 v 88 w(A)p 2538 3441 223 4 v 69 w(B)p
2624 3503 10 38 v 2633 3486 42 4 v 92 w(B)p 2257 3535
504 4 v 2289 3608 a(A;)g(B)p 2474 3596 10 38 v 2483 3579
42 4 v 92 w(A)p FT(^)q FU(B)2774 3552 y FT(^)2830 3564
y FS(I)p 2289 3644 440 4 v 2350 3717 a FU(A;)g(B)p 2535
3705 10 38 v 2545 3689 42 4 v 93 w(A)2742 3657 y FT(^)2797
3669 y FS(E)2846 3677 y FP(1)p 2938 3441 213 4 v 2938
3515 a FU(A)p 3019 3503 10 38 v 3028 3486 42 4 v 88 w(A)p
3220 3441 223 4 v 70 w(B)p 3305 3503 10 38 v 3315 3486
42 4 v 92 w(B)p 2938 3535 504 4 v 2970 3608 a(A;)g(B)p
3155 3596 10 38 v 3165 3579 42 4 v 93 w(A)p FT(^)p FU(B)3456
3552 y FT(^)3511 3564 y FS(I)p 2970 3644 440 4 v 3032
3717 a FU(A;)g(B)p 3216 3705 10 38 v 3226 3689 42 4 v
92 w(A)3423 3657 y FT(^)3479 3669 y FS(E)3528 3677 y
FP(1)p 1744 3754 1605 4 v 2277 3827 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p
2683 3815 10 38 v 2693 3798 42 4 v 92 w(A)3362 3770 y
FT(_)3417 3783 y FS(E)p 429 3863 2386 4 v 1294 3936 a
FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p 1701 3924 10 38 v 1710
3908 42 4 v 92 w(A)p FT(^)q FU(A)2857 3880 y FT(^)2912
3892 y FS(I)321 4156 y Gg(Here)24 b(we)e(are)i(stuck!)30
b(There)24 b(is)g(no)f(reduction)j(that)e(w)o(ould)g(gi)n(v)o(e)g
F6(j)p Gg(\(3.5\))r F6(j)2640 4123 y Fu(n)2680 4156 y
Gg(\227the)g(proof)h(belo)n(w)-6 b(.)p 85 4646 458 4
v 85 4720 a FU(A)p FT(_)q FU(B)p 288 4708 10 38 v 298
4691 42 4 v 92 w(A)p FT(_)p FU(B)p 626 4334 213 4 v 626
4408 a(A)p 706 4396 10 38 v 716 4379 42 4 v 88 w(A)p
921 4334 223 4 v 83 w(B)p 1007 4396 10 38 v 1016 4379
42 4 v 92 w(B)p 626 4427 518 4 v 665 4501 a(A;)14 b(B)p
850 4489 10 38 v 859 4472 42 4 v 92 w(A)p FT(^)q FU(B)1185
4444 y FT(^)1240 4457 y FS(I)p 665 4537 440 4 v 726 4610
a FU(A;)g(B)p 911 4598 10 38 v 920 4582 42 4 v 92 w(A)1145
4550 y FT(^)1201 4562 y FS(E)1250 4570 y FP(1)p 1369
4334 213 4 v 1369 4408 a FU(A)p 1450 4396 10 38 v 1459
4379 42 4 v 88 w(A)p 1665 4334 223 4 v 84 w(B)p 1750
4396 10 38 v 1760 4379 42 4 v 92 w(B)p 1369 4427 518
4 v 1408 4501 a(A;)g(B)p 1593 4489 10 38 v 1603 4472
42 4 v 93 w(A)p FT(^)p FU(B)1928 4444 y FT(^)1984 4457
y FS(I)p 1408 4537 440 4 v 1470 4610 a FU(A;)g(B)p 1654
4598 10 38 v 1664 4582 42 4 v 92 w(A)1889 4550 y FT(^)1944
4562 y FS(E)1993 4570 y FP(1)p 726 4646 1061 4 v 1039
4720 a FU(A;)g(B)p 1224 4708 10 38 v 1233 4691 42 4 v
92 w(A)p FT(^)q FU(A)1828 4663 y FT(^)1883 4676 y FS(I)p
2113 4334 213 4 v 2113 4408 a FU(A)p 2193 4396 10 38
v 2203 4379 42 4 v 88 w(A)p 2408 4334 223 4 v 83 w(B)p
2494 4396 10 38 v 2503 4379 42 4 v 92 w(B)p 2113 4427
518 4 v 2152 4501 a(A;)g(B)p 2337 4489 10 38 v 2346 4472
42 4 v 92 w(A)p FT(^)q FU(B)2672 4444 y FT(^)2727 4457
y FS(I)p 2152 4537 440 4 v 2213 4610 a FU(A;)g(B)p 2398
4598 10 38 v 2408 4582 42 4 v 93 w(A)2633 4550 y FT(^)2688
4562 y FS(E)2737 4570 y FP(1)p 2856 4334 213 4 v 2856
4408 a FU(A)p 2937 4396 10 38 v 2947 4379 42 4 v 88 w(A)p
3152 4334 223 4 v 84 w(B)p 3237 4396 10 38 v 3247 4379
42 4 v 92 w(B)p 2856 4427 518 4 v 2896 4501 a(A;)g(B)p
3080 4489 10 38 v 3090 4472 42 4 v 92 w(A)p FT(^)p FU(B)3415
4444 y FT(^)3471 4457 y FS(I)p 2896 4537 440 4 v 2957
4610 a FU(A;)g(B)p 3142 4598 10 38 v 3151 4582 42 4 v
92 w(A)3376 4550 y FT(^)3431 4562 y FS(E)3480 4570 y
FP(1)p 2213 4646 1061 4 v 2526 4720 a FU(A;)g(B)p 2711
4708 10 38 v 2721 4691 42 4 v 93 w(A)p FT(^)p FU(A)3315
4663 y FT(^)3370 4676 y FS(I)p 85 4756 2876 4 v 1195
4829 a FU(A)p FT(_)p FU(B)t(;)g(B)t(;)g(A)p 1601 4817
10 38 v 1611 4800 42 4 v 89 w(A)p FT(^)p FU(A)3002 4773
y FT(_)3057 4785 y FS(E)321 5043 y Gg(What)27 b(is)g(needed)h(is)e(a)h
(reduction)i(rule)e(which)g(permutes)h F6(^)2271 5057
y Gc(I)2336 5043 y Gg(with)f F6(_)2584 5057 y Gc(E)2644
5043 y Gg(.)37 b(On)26 b(the)h(le)n(v)o(el)g(of)g(lambda)321
5156 y(terms)d(the)g(corresponding)k(reduction)e(rule)e(is)f(as)h
(follo)n(ws.)p Black Black 706 5329 a F6(h)p Fp(case)o
F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
b F4(\))p Ga(;)15 b Fp(case)o F4(\()p Ga(P)s(;)g(\025)q(z)t(:S;)g(\025)
q(w)r(:T)e F4(\))p F6(i)1129 5477 y(\000)-32 b(\000)h(!)76
b Fp(case)n F4(\()p Ga(P)s(;)15 b(\025)q(x:)p F6(h)p
Ga(M)5 b(;)15 b(S)5 b F4([)p Ga(z)31 b F4(:=)25 b Ga(x)p
F4(])p F6(i)p Ga(;)15 b(\025)q(y)s(:)p F6(h)p Ga(N)5
b(;)15 b(T)e F4([)p Ga(w)29 b F4(:=)c Ga(y)s F4(])p F6(i)p
F4(\))p Black Black eop end
%%Page: 81 93
TeXDict begin 81 92 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
d(Deduction)2373 b(81)p 277 88 3691 4 v Black 277 365
a Gg(Since)21 b(the)h(reduction)i(\(3.3\))d(cannot)i(be)e(dispensed)j
(with)d(in)g(the)h(sequent)h(calculus,)g(we)e(ha)n(v)o(e)g(to)g(e)o(x-)
277 478 y(tend)g(the)g(natural)h(deduction)h(calculus)g(with)d
(commuting)i(reductions)i(of)c(the)h(kind)g(sho)n(wn)g(abo)o(v)o(e.)
3464 445 y F5(2)277 590 y Gg(As)33 b(can)h(be)f(easily)i(sho)n(wn,)h
(these)e(commuting)h(reductions)i(are)c(harmless)i(with)f(respect)h(to)
e(the)277 703 y(subformula)27 b(property)-6 b(.)36 b(W)-7
b(e)24 b(shall)i(do)f(the)g(e)o(xtension)i(in)e(the)g(ne)o(xt)h
(section)h(and)e(establish)i(the)f(cor)n(-)277 816 y(respondence)h(for)
d(classical)i(logic.)277 1117 y Ge(3.3)119 b(Classical)30
b(Natural)g(Deduction)277 1341 y Gg(Gentzen)22 b([1935])h(de\002ned)f
(the)f(classical)i(natural)g(deduction)g(calculus)g(NK)d(by)h(e)o
(xtending)i(NJ)e(with)277 1454 y(an)j(additional)i(axiom,)e(kno)n(wn)g
(as)f(the)h(e)o(xcluded)h(middle)g(axiom,)e(sho)n(wn)h(belo)n(w)-6
b(.)1740 1671 y Ga(B)20 b F6(_)15 b(:)p Ga(B)277 1842
y Gg(In)33 b(order)i(to)e(obtain)i(a)d(classical)k(natural)f(deduction)
h(calculus,)i(one)33 b(can,)j(alternati)n(v)o(ely)-6
b(,)39 b(add)33 b(to)277 1955 y(NJ)f(the)g(stability)i(axiom,)h
F6(::)p Ga(B)5 b F6(\033)n Ga(B)g Gg(,)33 b(an)f(instance)j(of)d
(Peirce')-5 b(s)33 b(la)o(w)-6 b(,)33 b F4(\(\()p Ga(B)5
b F6(\033?)p F4(\))p F6(\033)p Ga(B)g F4(\))p F6(\033)o
Ga(B)g Gg(,)33 b(or)f(an)277 2067 y(additional)40 b(inference)f(rule)f
(called)g(the)f(absurdity)j(rule.)69 b(All)36 b(these)i(calculi)h(are)e
(adequate)i(for)277 2180 y(classical)26 b(logic)e(in)f(terms)h(of)f
(pro)o(v)n(ability;)j(ho)n(we)n(v)o(er)l(,)e(from)f(a)g(proof)i
(theoretic)g(point)g(of)e(vie)n(w)g(the)o(y)277 2293
y(are)i(not)g(v)o(ery)g(ele)o(gant.)33 b(Let)23 b(us)i(\002rst)f
(mention)i(tw)o(o)e(shortcomings)k(remark)o(ed)e(by)f(Gentzen)g([1935,)
277 2406 y(P)o(ages)31 b(189\226190])i(and)f(Pra)o(witz)e([1971,)k(P)o
(age)c(251]:)45 b(the)31 b(inference)j(rules)e(for)f(ne)o(gation)h(do)f
(not)277 2519 y(f)o(all)25 b(into)g(the)f(general)i(pattern)g(of)e
(introduction)k(and)d(elimination)h(rules,)g(and)e(there)h(are)g
(problems)277 2632 y(concerning)32 b(the)d(subformula)i(property)-6
b(.)47 b(F)o(or)28 b(analysing)j(the)f(correspondence)j(question)e(a)d
(third)277 2745 y(shortcoming)h(is)e(particularly)j(anno)o(ying:)38
b(classical)29 b(sequent)f(proofs)g(can)f(only)g(be)g(encoded)i(into)
277 2858 y(NK)22 b(via)i(a)f(double)i(ne)o(gation)g(translation.)418
2987 y(Better)38 b(suited)h(for)f(handling)i(classical)g(logic)e(and)g
(much)g(more)g(con)l(v)o(enient)j(for)c(sho)n(wing)277
3100 y(the)f(correspondence)41 b(is)35 b(the)h(sequence-conclusi)q(on)
41 b(natural)d(deduction)g(calculus)3038 3067 y F5(3)3113
3100 y Gg(introduced)277 3213 y(by)28 b(Bori)5 b(\020)-35
b(ci)5 b(\264)-35 b(c)28 b([1985].)42 b(W)-7 b(e)27 b(shall)h
(reformulate)i(this)e(calculus)h(into)g(\223sequent-style\224.)45
b(F)o(or)26 b(this,)j(we)277 3326 y(shall)i(tak)o(e)g(sequents)i(of)d
(the)g(form)g F4(\000)p 1529 3314 11 41 v 1540 3296 46
5 v 97 w(\001)f Gg(where)h F4(\000)f Gg(and)i F4(\001)e
Gg(are)i(sets)f(of)g(\(label,formula\))k(pairs,)277 3439
y(analogous)24 b(to)e(the)f(left-)h(and)g(right-conte)o(xts)k
(introduced)e(for)e(sequent)h(calculi.)30 b(Thus)21 b(the)h(labels)g
(in)277 3552 y F4(\000)i Gg(are)g(referred)i(to)f(as)f(names)h(and)f
(in)h F4(\001)e Gg(as)h(co-names.)33 b(The)24 b(inference)j(rules)e(of)
f(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)26
b(calcu-)277 3665 y(lus,)21 b(as)f(usual)h(for)f(natural)h(deduction,)i
(come)d(in)g(pairs)h(introducing)i(a)c(connecti)n(v)o(e)k(and)d
(eliminating)277 3778 y(a)j(connecti)n(v)o(e.)31 b(F)o(or)23
b(instance)j(the)d(rules)i(introducing)i(and)d(eliminating)i
F6(^)c Gg(are:)p Black Black 673 3952 a F4(\000)p 750
3940 11 41 v 760 3921 46 5 v 96 w(\001)p Ga(;)15 b(a)i
F4(:)h Ga(B)95 b F4(\000)p 1291 3940 11 41 v 1302 3921
46 5 v 96 w(\001)p Ga(;)15 b(b)j F4(:)f Ga(C)p 673 3989
981 4 v 876 4068 a F4(\000)p 953 4056 11 41 v 964 4038
46 5 v 96 w(\001)p Ga(;)e(c)j F4(:)f Ga(B)5 b F6(^)p
Ga(C)1695 4008 y F6(^)1756 4022 y Gc(I)2268 3951 y F4(\000)p
2345 3939 11 41 v 2355 3920 46 5 v 96 w(\001)p Ga(;)15
b(a)i F4(:)h Ga(B)2714 3965 y F9(1)2753 3951 y F6(^)p
Ga(B)2883 3965 y F9(2)p 2268 3988 655 4 v 2363 4068 a
F4(\000)p 2440 4056 11 41 v 2450 4038 46 5 v 96 w(\001)p
Ga(;)d(b)i F4(:)h Ga(B)2800 4082 y Gc(i)2964 4001 y F6(^)3024
4016 y Gc(E)3076 4026 y FZ(i)277 4262 y Gg(Again,)39
b(rede)o(x)o(es)f(arise)f(when)f(a)g(connecti)n(v)o(e)j(is)d
(introduced)k(and)d(eliminated)h(afterw)o(ards.)69 b(An)277
4375 y(e)o(xample)24 b(is)1526 4456 y Ga(\031)1328 4535
y F4(\000)p 1405 4523 11 41 v 1416 4504 46 5 v 96 w(\001)p
Ga(;)15 b(a)j F4(:)f Ga(B)2050 4455 y(\031)2105 4422
y FX(0)1870 4535 y F4(\000)p 1947 4523 11 41 v 1957 4504
46 5 v 96 w(\001)p Ga(;)e(b)i F4(:)h Ga(C)p 1328 4572
981 4 v 1532 4651 a F4(\000)p 1609 4639 11 41 v 1619
4621 46 5 v 96 w(\001)p Ga(;)d(c)j F4(:)f Ga(B)5 b F6(^)o
Ga(C)2351 4590 y F6(^)2411 4605 y Gc(I)p 1532 4689 574
4 v 1594 4768 a F4(\000)p 1671 4756 11 41 v 1681 4738
46 5 v 96 w(\001)p Ga(;)15 b(d)j F4(:)f Ga(B)2147 4702
y F6(^)2208 4716 y Gc(E)2260 4725 y FV(1)277 4931 y Gg(which)24
b(reduces)h(to)f(the)g(proof)1878 4965 y(.)1878 4998
y(.)1878 5032 y(.)1665 5112 y F4(\000)p 1742 5100 11
41 v 1752 5082 46 5 v 96 w(\001)p Ga(;)15 b(d)j F4(:)f
Ga(B)p Black 277 5238 1290 4 v 383 5294 a F3(2)412 5326
y F2(While)22 b(this)g(rule)h(has)g(not)g(been)g(considered)h(for)f(a)g
(natural)f(deduction)j(calculus,)f(unpublished)g(w)o(ork)f(by)h(Dybjer)
277 5417 y(and)c(Ong)f(suggests)h(that)f(this)f(rule)h(comes)h(into)f
(play)g(when)h(considering)g(bicartesian)f(closed)h(cate)o(gories.)383
5478 y F3(3)412 5510 y F2(T)-6 b(o)17 b(be)h(consistent)h(with)e(our)h
(terminology)h(for)f(sequents,)g(we)g(should)h(refer)e(to)h(this)f
(natural)h(deduction)i(calculus)e(as)277 5601 y(sequence-succedent)k
(natural)d(deduction)i(calculus,)e(b)o(ut)g(we)f(shall)h(follo)n(w)g
(Bori)t(\020)-29 b(ci)t(\264)g(c')l(s)19 b(original)g(terminology)-5
b(.)p Black Black Black eop end
%%Page: 82 94
TeXDict begin 82 93 bop Black -144 51 a Gb(82)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(obtained)37
b(from)e Ga(\031)i Gg(by)e(renaming)h Ga(a)e Gg(to)h
Ga(d)p Gg(.)62 b(Ho)n(we)n(v)o(er)l(,)37 b(notice)g(that)e(in)g(case)g
(of)g(more)g(than)g(one)321 478 y(formula)h(in)g(the)f(succedent)j
(there)e(might)f(be)h(se)n(v)o(eral)g(inferences)i(in)d
(\223between\224)i(the)e(rule)h(that)321 590 y(introduces)27
b(a)c(connecti)n(v)o(e)j(and)e(the)g(rule)g(that)g(eliminates)h(it,)e
(as)h(indicated)i(belo)n(w)-6 b(.)1326 746 y F4(\000)1383
713 y FX(0)p 1426 734 11 41 v 1437 716 46 5 v 1502 746
a F4(\001)1578 713 y FX(0)1601 746 y Ga(;)15 b(a)j F4(:)f
Ga(B)96 b F4(\000)1971 713 y FX(0)p 2014 734 11 41 v
2025 716 46 5 v 2090 746 a F4(\001)2166 713 y FX(0)2189
746 y Ga(;)15 b(b)j F4(:)f Ga(C)p 1326 784 1074 4 v 1553
870 a F4(\000)1610 837 y FX(0)p 1653 858 11 41 v 1663
840 46 5 v 1729 870 a F4(\001)1805 837 y FX(0)1828 870
y Ga(;)e(c)j F4(:)f Ga(B)5 b F6(^)p Ga(C)2441 802 y F6(^)2502
816 y Gc(I)1851 914 y Gg(.)1851 947 y(.)1851 980 y(.)1851
1013 y(.)1576 1093 y F4(\000)p 1653 1081 11 41 v 1663
1063 46 5 v 96 w(\001)p Ga(;)15 b(c)j F4(:)f Ga(B)5 b
F6(^)o Ga(C)p 1576 1131 574 4 v 1638 1210 a F4(\000)p
1715 1198 11 41 v 1725 1180 46 5 v 96 w(\001)p Ga(;)15
b(d)j F4(:)f Ga(B)2191 1144 y F6(^)2252 1158 y Gc(E)2304
1167 y FV(1)321 1388 y Gg(In)i(order)h(to)f(apply)h(the)f(reduction)i
(rule)e(eliminating)i(the)e(rede)o(x,)i(we)d(ha)n(v)o(e)h(to)g(mo)o(v)o
(e)f(the)h(elimination)321 1501 y(rule)32 b(ne)o(xt)g(to)g(the)g
(introduction)j(rule.)53 b(This)32 b(means)g(already)h(in)e(the)h
(fragment)h(containing)i(only)321 1614 y(the)e F6(^)o
Gg(-connecti)n(v)o(e)i(we)c(need)i(commuting)g(reductions.)57
b(Cellucci)34 b([1992])f(ga)n(v)o(e)f(the)h(\002rst)e(set)i(of)321
1727 y(reduction)28 b(rules)e(for)f(Bori)5 b(\020)-35
b(ci)5 b(\264)-35 b(c')-5 b(s)26 b(calculus.)35 b(These)25
b(reductions)j(are)d(Gentzen-lik)o(e,)j(in)c(the)i(sense)g(of)321
1840 y(re)n(writing)20 b(neighbouring)j(inference)e(rules)f(only)-6
b(.)28 b(As)18 b(with)g(sequent)j(calculi,)g(a)d(set)h(of)g
(Gentzen-lik)o(e)321 1953 y(reduction)28 b(rules)e(that)f(is)g
(strongly)i(normalising)g(is)e(rather)h(dif)n(\002cult)g(to)f(\002nd)f
(\(we)h(illustrated)i(some)321 2065 y(of)j(the)g(dif)n(\002culties)i
(with)d(an)h(LK-proof)h(in)e(Example)h(2.1.3\).)48 b(Unlik)o(e)31
b(his)f(rules,)i(which)e(are)g F7(not)321 2178 y Gg(strongly)h
(normalising,)i(our)c(reduction)j(rules)e(will)e(be)h(similar)h(to)f
(the)g(\223global\224)i(reduction)h(rules)321 2291 y(introduced)39
b(for)c F4(\()p FY(T)t Ga(;)1049 2254 y Gc(cut)1018 2291
y F6(\000)-31 b(\000)f(!)p F4(\))35 b Gg(and)h(in)f(consequence)k(will)
c(be)g(strongly)j(normalising.)67 b(Restricted)321 2404
y(v)o(ersions)27 b(of)d(our)h(rules)g(were)g(studied)h(pre)n(viously)h
(in)e(connection)j(with)c Ga(\025\026)f Gg([P)o(arigot,)i(1992].)33
b(F)o(or)321 2517 y(space)28 b(reasons)h(we)d(shall)i(gi)n(v)o(e)f(the)
h(calculus)h(for)e(only)h(the)f(propositional)k(fragment)d(of)f
(classical)321 2630 y(logic.)i(Note)19 b(ho)n(we)n(v)o(er)g(that)h(all)
f(results)i(gi)n(v)o(en)f(belo)n(w)f(can)h(be)f(easily)i(e)o(xtended)g
(to)e(more)h(e)o(xpressi)n(v)o(e)321 2743 y(fragments.)462
2872 y(W)-7 b(e)20 b(alluded)j(in)d(Section)i(2.5)e(to)h(the)g(man)o(y)
f(v)n(ariations)k(of)c(de\002ning)i(sequent)h(calculi;)g(similarly)321
2985 y(there)31 b(are)g(man)o(y)f(v)n(ariants)i(of)e
(sequence-conclusio)q(n)36 b(natural)c(deduction)h(calculi.)50
b(T)-7 b(o)29 b(sho)n(w)h(the)321 3098 y(correspondence)40
b(we)34 b(shall)i(use)f(the)g(calculus)i(gi)n(v)o(en)f(in)f(Figure)g
(3.6.)63 b(The)34 b(notion)j(of)d(implicit)321 3211 y(contractions)i
(and)d(the)g(conte)o(xt)g(con)l(v)o(ention)j(can)d(be)f(adapted)i(to)f
(this)f(calculus)j(in)d(the)h(ob)o(vious)321 3324 y(w)o(ay)20
b(\(see)h(P)o(age)e(19\).)28 b(Whilst)21 b(our)f(introduction)k(rules)d
(are)f(rather)h(standard,)i(our)d(elimination)j(rules)321
3437 y(are)28 b(some)n(what)f(non-standard.)44 b(The)o(y)27
b(are)g(implicit)h(in)f(the)h(w)o(ork)f(by)g(Bori)5 b(\020)-35
b(ci)5 b(\264)-35 b(c)28 b([1985],)i(and)d(some)321 3550
y(of)e(them)g(appear)h(in)f F7(fr)m(ee)g(deduction)j
Gg(introduced)g(by)d(P)o(arigot)g([1991].)34 b(Ho)n(we)n(v)o(er)l(,)25
b(we)f(should)j(lik)o(e)321 3663 y(to)i(stress)h(the)f(point)g(that)h
(the)f(reasons)h(for)f(choosing)i(this)e(particular)i(set)e(of)g
(inference)i(rules)e(are)321 3776 y(entirely)24 b(pragmatic:)29
b(the)o(y)22 b(simplify)h(considerably)i(the)d(translations)i(between)f
(natural)g(deduction)321 3889 y(proofs)34 b(and)e(sequent)i(proofs.)56
b(Other)32 b(sets)h(of)f(inference)i(rules)f(can)f(also)h(be)f(used)h
(to)f(study)h(the)321 4001 y(correspondence,)28 b(although)e(the)e
(machinery)h(required)h(is)d(more)h(complicated.)462
4131 y(Recall)35 b(the)g(translation)j F6(j)p 1318 4131
28 4 v 1336 4131 V 1353 4131 V 65 w(j)1406 4098 y Fu(n)1480
4131 y Gg(from)d(intuitionistic)j(sequent)f(proofs)f(to)e
(intuitionistic)39 b(natu-)321 4244 y(ral)29 b(deduction)j(proofs)e
(\(Figure)g(3.4\).)44 b(There,)30 b(as)f(illustrated)j(belo)n(w)-6
b(,)30 b(we)e(applied)j(a)d(substitution)321 4357 y(operation)e(to)e
(translate)i(cuts.)1187 4554 y F6(j)p FL(Cut)p F4(\()1385
4542 y FX(h)1412 4554 y Ga(a)1460 4542 y FX(i)1488 4554
y Ga(M)10 b(;)1626 4542 y F9(\()1654 4554 y Ga(x)1706
4542 y F9(\))1733 4554 y Ga(N)g F4(\))p F6(j)1876 4516
y Fu(n)1958 4554 y F4(=)40 b F6(j)p Ga(N)10 b F6(j)2202
4516 y Fu(n)2243 4554 y F4([)p Ga(x)25 b F4(:=)h F6(j)p
Ga(M)10 b F6(j)2615 4516 y Fu(n)2656 4554 y F4(])321
4732 y Gg(In)24 b(consequence,)k(we)23 b(obtained)j(a)d(rather)j(weak)d
(correspondence:)35 b(whene)n(v)o(er)25 b Ga(x)e Gg(is)h(not)g(free)h
(in)e Ga(N)321 4844 y Gg(and)h(therefore)i(in)e F6(j)p
Ga(N)10 b F6(j)1053 4811 y Fu(n)1094 4844 y Gg(,)23 b(the)h
(cut-reductions)j(that)e Ga(M)33 b Gg(can)24 b(perform)g(are)g(mapped)h
(onto)f(identities.)321 4957 y(Consider)36 b(an)f(analogous)i
(translation)g(for)e(classical)h(sequent)h(proofs)f(\(denoted)g(by)f
F6(j)p 3184 4957 V 3202 4957 V 3219 4957 V 65 w(j)3272
4924 y Fu(N)3326 4957 y Gg(\),)h(and)321 5070 y(suppose)26
b(we)d(are)g(gi)n(v)o(en)h(the)g(term)g(corresponding)j(to)d(Lafont')-5
b(s)25 b(e)o(xample;)f(that)g(is)1614 5313 y FL(Cut)p
F4(\()1787 5301 y FX(h)1815 5313 y Ga(a)1863 5301 y FX(i)1890
5313 y Ga(M)10 b(;)2028 5301 y F9(\()2056 5313 y Ga(x)2108
5301 y F9(\))2135 5313 y Ga(N)g F4(\))p Black 1119 w
Gg(\(3.6\))p Black 321 5474 a(where)27 b Ga(a)f Gg(is)g(not)h(free)g
(in)f Ga(M)36 b Gg(and)27 b Ga(x)e Gg(not)i(free)g(in)f
Ga(N)10 b Gg(.)37 b(Clearly)-6 b(,)27 b(this)g(term)g(can)f(reduce)i
(to)f(either)g Ga(M)p Black Black eop end
%%Page: 83 95
TeXDict begin 83 94 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
d(Deduction)2373 b(83)p 277 88 3691 4 v Black Black 277
277 V 277 2068 4 1792 v 1773 369 676 4 v 1773 447 a Ga(x)17
b F4(:)h Ga(B)5 b(;)15 b F4(\000)p 2076 435 11 41 v 2086
417 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(B)615 709
y(x)f F4(:)h Ga(B)5 b(;)15 b F4(\000)p 918 697 11 41
v 928 679 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(C)p
615 746 674 4 v 660 826 a F4(\000)p 737 814 11 41 v 748
796 46 5 v 96 w(\001)p Ga(;)d(b)j F4(:)f Ga(B)5 b F6(\033)p
Ga(C)1331 764 y F6(\033)1401 778 y Gc(I)1946 710 y F4(\000)p
2023 698 11 41 v 2033 680 46 5 v 96 w(\001)p Ga(;)15
b(a)i F4(:)h Ga(B)5 b F6(\033)o Ga(C)97 b F4(\000)p 2706
698 11 41 v 2717 680 46 5 v 96 w(\001)p Ga(;)15 b(b)j
F4(:)f Ga(B)96 b(x)17 b F4(:)g Ga(C)q(;)e F4(\000)p 3457
698 11 41 v 3467 680 46 5 v 97 w(\001)p 1946 747 1664
4 v 2663 826 a(\000)p 2740 814 11 41 v 2750 796 46 5
v 96 w(\001)3650 765 y F6(\033)3721 779 y Gc(E)442 1088
y F4(\000)p 519 1076 11 41 v 529 1058 46 5 v 96 w(\001)p
Ga(;)g(a)i F4(:)h Ga(B)145 b F4(\000)p 1110 1076 11 41
v 1121 1058 46 5 v 97 w(\001)p Ga(;)15 b(b)i F4(:)g Ga(C)p
442 1126 1032 4 v 670 1205 a F4(\000)p 747 1193 11 41
v 758 1175 46 5 v 96 w(\001)p Ga(;)e(c)j F4(:)g Ga(B)5
b F6(^)o Ga(C)1514 1144 y F6(^)1575 1158 y Gc(I)2147
1088 y F4(\000)p 2224 1076 11 41 v 2234 1058 46 5 v 96
w(\001)p Ga(;)15 b(a)i F4(:)h Ga(B)2593 1102 y F9(1)2632
1088 y F6(^)p Ga(B)2762 1102 y F9(2)2917 1088 y Ga(x)f
F4(:)h Ga(B)3098 1102 y Gc(i)3126 1088 y Ga(;)d F4(\000)p
3243 1076 11 41 v 3254 1058 46 5 v 97 w(\001)p 2147 1126
1249 4 v 2657 1205 a(\000)p 2734 1193 11 41 v 2744 1175
46 5 v 96 w(\001)3437 1139 y F6(^)3497 1153 y Gc(E)3549
1163 y FZ(i)710 1466 y F4(\000)p 787 1454 11 41 v 797
1436 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(B)1156 1480
y Gc(i)p 624 1504 646 4 v 624 1583 a F4(\000)p 701 1571
11 41 v 711 1553 46 5 v 96 w(\001)p Ga(;)d(b)i F4(:)h
Ga(B)1061 1597 y F9(1)1100 1583 y F6(_)p Ga(B)1230 1597
y F9(2)1311 1517 y F6(_)1371 1531 y Gc(I)1402 1541 y
FZ(i)1951 1467 y F4(\000)p 2028 1455 11 41 v 2039 1437
46 5 v 96 w(\001)p Ga(;)d(a)j F4(:)f Ga(B)5 b F6(_)o
Ga(C)98 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 2927
1455 11 41 v 2938 1437 46 5 v 96 w(\001)91 b Ga(y)20
b F4(:)e Ga(C)q(;)d F4(\000)p 3461 1455 11 41 v 3472
1437 46 5 v 97 w(\001)p 1951 1505 1662 4 v 2668 1583
a(\000)p 2745 1571 11 41 v 2755 1553 46 5 v 96 w(\001)3655
1523 y F6(_)3715 1537 y Gc(E)730 1846 y Ga(x)i F4(:)h
Ga(B)5 b(;)15 b F4(\000)p 1033 1834 11 41 v 1043 1816
46 5 v 96 w(\001)p 702 1883 512 4 v 702 1962 a(\000)p
779 1950 11 41 v 789 1932 46 5 v 96 w(\001)p Ga(;)g(a)i
F4(:)h F6(:)p Ga(B)1254 1896 y F6(:)1315 1910 y Gc(I)2261
1846 y F4(\000)p 2338 1834 11 41 v 2348 1816 46 5 v 96
w(\001)p Ga(;)d(a)i F4(:)h F6(:)p Ga(B)95 b F4(\000)p
2940 1834 11 41 v 2950 1816 46 5 v 96 w(\001)p Ga(;)15
b(b)i F4(:)h Ga(B)p 2261 1883 1044 4 v 2668 1962 a F4(\000)p
2745 1950 11 41 v 2755 1932 46 5 v 96 w(\001)3346 1896
y F6(:)3407 1910 y Gc(E)p 3965 2068 4 1792 v 277 2071
3691 4 v Black 845 2225 a Gg(Figure)25 b(3.6:)k(Natural)24
b(deduction)i(calculus)g(for)e(classical)h(logic.)p Black
Black 277 2663 a(or)f Ga(N)10 b Gg(.)31 b(T)m(ranslating)26
b(this)f(cut-instance)j(to)c(a)g(natural)i(deduction)h(proof)e(using)h
(an)o(y)e(kind)h(of)g(substi-)277 2776 y(tution)h(operation)h(w)o(ould)
e(be)g(disastrous:)33 b(it)25 b(w)o(ould)g(result)g(into)g(a)g(f)o
(ailure)h(of)e(the)h(correspondence)277 2889 y(between)k(normalisation)
i(and)d(cut-elimination.)46 b(Gi)n(v)o(en)27 b F6(j)p
2184 2889 28 4 v 2202 2889 V 2220 2889 V 65 w(j)2272
2856 y Fu(N)2353 2889 y Gg(we)g(w)o(ould)h(translate)i(this)f(term)e
(as)277 3002 y(follo)n(ws)1071 3262 y F6(j)p FL(Cut)p
F4(\()1269 3250 y FX(h)1297 3262 y Ga(a)1345 3250 y FX(i)1372
3262 y Ga(M)10 b(;)1510 3250 y F9(\()1538 3262 y Ga(x)1590
3250 y F9(\))1618 3262 y Ga(N)g F4(\))p F6(j)1761 3225
y Fu(N)1856 3262 y F4(=)40 b F6(j)p Ga(N)10 b F6(j)2100
3225 y Fu(N)2154 3262 y F4([)p Ga(x)26 b F4(:=)2378 3250
y FX(h)2405 3262 y Ga(a)2453 3250 y FX(i)2481 3262 y
F6(j)p Ga(M)10 b F6(j)2629 3229 y Fu(N)2683 3262 y F4(])277
3522 y Gg(where,)23 b(because)i Ga(x)d Gg(not)h(free)g(in)g
F6(j)p Ga(N)10 b F6(j)1455 3489 y Fu(N)1509 3522 y Gg(,)22
b(the)h(substitution)j(v)n(anishes;)g(that)d(is)g(the)g(term)f(on)h
(the)g(right-)277 3635 y(hand)35 b(side)g(is)g(equi)n(v)n(alent)h(to)f
F6(j)p Ga(N)10 b F6(j)1407 3602 y Fu(N)1461 3635 y Gg(.)60
b(In)35 b(consequence,)40 b(we)34 b(w)o(ould)h(\223lose\224)g(the)g
(cut-reductions)277 3747 y(which)29 b(reduce)i(\(3.6\))e(to)g
Ga(M)10 b Gg(.)44 b(This)29 b(means)g(we)f(cannot)j(de\002ne)e
F6(j)p 2396 3747 V 2414 3747 V 2432 3747 V 65 w(j)2484
3714 y Fu(N)2566 3747 y Gg(using)h(a)f(substitution)j(oper)n(-)277
3860 y(ation.)48 b(W)-7 b(e)29 b(shall)h(remedy)h(this)f(problem)h(by)f
(introducing)j(the)d(follo)n(wing)h(\(symmetric\))g(e)o(xplicit)277
3973 y(substitution)c(rule)1191 4191 y F4(\000)1248 4205
y F9(1)p 1308 4179 11 41 v 1318 4161 46 5 v 1384 4191
a F4(\001)1460 4205 y F9(1)1499 4191 y Ga(;)15 b(a)i
F4(:)h Ga(B)95 b(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)2094
4205 y F9(2)p 2153 4179 11 41 v 2164 4161 46 5 v 2229
4191 a F4(\001)2305 4205 y F9(2)p 1191 4229 1154 4 v
1468 4307 a F4(\000)1525 4321 y F9(1)1564 4307 y Ga(;)g
F4(\000)1661 4321 y F9(2)p 1721 4295 11 41 v 1731 4277
46 5 v 1797 4307 a F4(\001)1873 4321 y F9(1)1912 4307
y Ga(;)g F4(\001)2028 4321 y F9(2)2386 4259 y Gg(Subst)277
4601 y(which)22 b(allo)n(ws)f(us)g(to)g(de\002ne)h(a)f(translation)j
F6(j)p 1702 4601 28 4 v 1720 4601 V 1737 4601 V 65 w(j)1790
4568 y Fu(N)1864 4601 y Gg(and)e(reduction)h(rules)g(so)e(that)g
F6(j)p Gg(\(3.6\))r F6(j)3059 4568 y Fu(N)3133 4601 y
Gg(can)h(match)277 4714 y F7(both)j Gg(reductions)i(of)d(\(3.6\).)31
b(Thus,)25 b(we)e(add)i(this)f(inference)j(rule)e(to)f(our)g(natural)i
(deduction)h(calcu-)277 4827 y(lus.)418 4966 y(In)g(the)h(follo)n(wing)
h(we)d(shall)i(de)n(v)o(elop)h(reduction)h(rules)e(for)g(our)f
(classical)j(natural)f(deduction)277 5079 y(calculus.)50
b(As)29 b(with)g(our)h(cut-elimination)k(rules,)e(these)e(reduction)j
(rules)d(will)g(be)g(de\002ned)g(using)277 5192 y(terms)24
b(annotated)i(to)d(proofs.)31 b(The)23 b(ra)o(w)f(terms)i(are)g
(de\002ned)g(belo)n(w)-6 b(.)p Black Black eop end
%%Page: 84 96
TeXDict begin 84 95 bop Black -144 51 a Gb(84)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(De\002nition)g
(3.3.1)g Gg(\(Ra)o(w)g(T)-6 b(erms\))p Gb(:)p Black 33
w Gg(The)24 b(set)f(of)h(ra)o(w)e(terms,)i F4(R)p Gg(,)e(is)i
(de\002ned)g(by)g(the)f(grammar)p Black Black 346 539
a Ga(M)5 b(;)15 b(N)5 b(;)15 b(P)113 b F4(::=)100 b FL(Id)p
F4(\()p Ga(x;)15 b(a)p F4(\))1220 b Gg(identity)816 652
y F6(j)148 b FL(And)1144 666 y Gc(I)1184 652 y F4(\()1219
640 y FX(h)1246 652 y Ga(a)r F4(:)r Ga(B)1397 640 y FX(i)1425
652 y Ga(M)10 b(;)1563 640 y FX(h)1591 652 y Ga(b)r F4(:)r
Ga(C)1731 640 y FX(i)1758 652 y Ga(N)g(;)15 b(c)p F4(\))536
b Gg(and-introduction)816 766 y F6(j)148 b FL(And)1144
729 y Gc(i)1144 789 y(E)1203 766 y F4(\()1238 754 y FX(h)1266
766 y Ga(a)r F4(:)r Ga(B)1412 780 y F9(1)1452 766 y F6(^)o
Ga(B)1581 780 y F9(2)1621 754 y FX(i)1648 766 y Ga(M)10
b(;)1786 754 y F9(\()1814 766 y Ga(x)17 b F4(:)h Ga(B)1995
780 y Gc(i)2023 754 y F9(\))2050 766 y Ga(N)10 b F4(\))323
b Gg(and)2621 733 y Gc(i)2650 766 y Gg(-elimination)147
b Ga(i)26 b F4(=)e(1)p Ga(;)15 b F4(2)816 881 y F6(j)148
b FL(Or)1088 844 y Gc(i)1088 904 y(I)1128 881 y F4(\()1163
869 y FX(h)1191 881 y Ga(a)1239 895 y Gc(i)1269 881 y
F4(:)r Ga(B)1365 895 y Gc(i)1394 869 y FX(i)1421 881
y Ga(M)10 b(;)15 b(b)p F4(\))858 b Gg(or)2566 848 y Gc(i)2595
881 y Gg(-introduction)173 b Ga(i)26 b F4(=)e(1)p Ga(;)15
b F4(2)816 994 y F6(j)148 b FL(Or)1088 1008 y Gc(E)1148
994 y F4(\()1183 982 y FX(h)1211 994 y Ga(a)r F4(:)r
Ga(B)5 b F6(_)o Ga(C)1494 982 y FX(i)1521 994 y Ga(M)10
b(;)1659 982 y F9(\()1687 994 y Ga(x)r F4(:)r Ga(B)1842
982 y F9(\))1869 994 y Ga(N)g(;)1992 982 y F9(\()2020
994 y Ga(y)5 b F4(:)r Ga(C)2169 982 y F9(\))2196 994
y Ga(P)13 b F4(\))189 b Gg(or)n(-elimination)816 1107
y F6(j)148 b FL(Imp)1134 1129 y Gc(I)1173 1107 y F4(\()1208
1095 y F9(\()1236 1107 y Ga(x)r F4(:)r Ga(B)1391 1095
y F9(\))p FX(h)1446 1107 y Ga(a)r F4(:)r Ga(C)1595 1095
y FX(i)1622 1107 y Ga(M)10 b(;)15 b(b)p F4(\))657 b Gg
(implication-introducti)q(on)816 1220 y F6(j)148 b FL(Imp)1134
1241 y Gc(E)1193 1220 y F4(\()1228 1208 y FX(h)1256 1220
y Ga(a)r F4(:)r Ga(B)5 b F6(\033)p Ga(C)1550 1208 y FX(i)1576
1220 y Ga(M)11 b(;)1715 1208 y FX(h)1742 1220 y Ga(b)r
F4(:)r Ga(C)1882 1208 y FX(i)1910 1220 y Ga(N)f(;)2033
1208 y F9(\()2060 1220 y Ga(x)r F4(:)r Ga(B)2215 1208
y F9(\))2243 1220 y Ga(P)j F4(\))142 b Gg(implication-elimination)816
1333 y F6(j)148 b FL(Not)1132 1347 y Gc(I)1172 1333 y
F4(\()1207 1321 y F9(\()1234 1333 y Ga(x)r F4(:)r Ga(B)1389
1321 y F9(\))1417 1333 y Ga(M)10 b(;)15 b(b)p F4(\))862
b Gg(ne)o(gation-introduction)816 1445 y F6(j)148 b FL(Not)1132
1459 y Gc(E)1191 1445 y F4(\()1226 1433 y FX(h)1254 1445
y Ga(a)r F4(:)r F6(:)p Ga(B)1466 1433 y FX(i)1493 1445
y Ga(M)10 b(;)1631 1433 y FX(h)1659 1445 y Ga(b)r F4(:)r
Ga(B)1801 1433 y FX(i)1828 1445 y Ga(N)g F4(\))545 b
Gg(ne)o(gation-elimination)816 1558 y F6(j)148 b FL(Subst)o
F4(\()1236 1546 y FX(h)1264 1558 y Ga(a)r F4(:)r Ga(B)1415
1546 y FX(i)1442 1558 y Ga(M)10 b(;)1580 1546 y F9(\()1608
1558 y Ga(x)r F4(:)r Ga(B)1763 1546 y F9(\))1791 1558
y Ga(N)f F4(\))583 b Gg(symmetric)24 b(substitution)321
1804 y(Henceforth)j(we)d(shall)i(omit)f(the)g(types)h(on)f(the)h
(binders,)h(pro)o(vided)f(the)o(y)g(are)f(clear)h(from)f(the)g(con-)321
1917 y(te)o(xt.)k(Con)l(v)o(ention)24 b(2.2.4)e(concerning)j(the)d
(Barendre)o(gt-style)j(naming)e(con)l(v)o(ention)i(e)o(xtends)e(to)f
(the)321 2029 y(terms)k(de\002ned)h(abo)o(v)o(e.)36 b(Gi)n(v)o(en)25
b(the)h(notions)i(of)d(free)h(names)h(and)f(co-names)h(for)f(terms)g
(of)f FY(R)p Gg(,)g(it)h(is)321 2142 y(routine)g(to)d(de\002ne)h
(analogous)i(notions)g(for)d(the)h(terms)g(of)f F4(R)p
Gg(.)462 2272 y(T)-7 b(o)27 b(annotate)j(terms)f(to)f(our)g(natural)h
(deduction)i(proofs)f(we)d(shall)i(replace)g(e)n(v)o(ery)g(sequent)h
(of)321 2385 y(the)h(form)f F4(\000)p 745 2373 11 41
v 755 2354 46 5 v 96 w(\001)f Gg(with)h(a)f(typing)j(judgement)g(of)e
(the)g(form)g F4(\000)2394 2373 y Gc(.)2449 2385 y Ga(M)2572
2373 y Gc(.)2627 2385 y F4(\001)f Gg(in)h(which)h F4(\000)e
Gg(and)h F4(\001)f Gg(are)321 2498 y(conte)o(xts)24 b(and)f
Ga(M)31 b Gg(is)22 b(a)f(term.)28 b(As)21 b(usual,)i(we)f(are)g
(interested)i(in)e(only)h(well-typed)h(terms,)e(i.e.,)f(those)321
2611 y(for)j(which)f(there)h(is)f(a)g(conte)o(xt)h F4(\000)f
Gg(and)g(a)g(conte)o(xt)h F4(\001)f Gg(such)h(that)f
F4(\000)2444 2599 y Gc(.)2499 2611 y Ga(M)2623 2599 y
Gc(.)2677 2611 y F4(\001)g Gg(is)f(deri)n(v)n(able)k(gi)n(v)o(en)d(the)
321 2723 y(rules)i(sho)n(wn)f(in)f(Figure)h(3.7.)29 b(The)23
b(set)g(of)h(well-typed)h(terms)f(is)g(de\002ned)g(as)f(follo)n(ws.)p
Black Black 380 2945 a F4(K)550 2893 y F5(def)558 2945
y F4(=)735 2844 y FK(n)821 2945 y Ga(M)966 2840 y FK(\014)966
2895 y(\014)966 2949 y(\014)1044 2945 y Ga(M)35 b F6(2)25
b F4(R)e Gg(and)h(well-typed)h(by)f(the)g(inference)h(rules)g(gi)n(v)o
(en)f(in)f(Figure)i(3.7)3427 2844 y FK(o)462 3161 y Gg(Our)f(inference)
i(rules)e(are)g(de\002ned)g(such)h(that)f(only)h(axioms)f(and)g
(introduction)j(rules)e(are)f(con-)321 3274 y(cerned)30
b(with)f(introducing)i(a)d(co-name;)33 b(elimination)e(rules,)f(on)f
(the)f(other)i(hand,)g(are)f(concerned)321 3387 y(with)24
b(only)g(eliminating)i(a)d(co-name.)30 b(This)23 b(is)h(e)o(xpressed)h
(in)f(the)g(follo)n(wing)h(de\002nition.)p Black 321
3575 a Gb(De\002nition)e(3.3.2:)p Black Black 458 3768
a F6(\017)p Black 46 w Gg(A)f(term)h Ga(M)33 b F7(intr)l(oduces)27
b Gg(the)c(co-name)i Ga(c)p Gg(,)e(if)g(and)h(only)h(if)e
Ga(M)33 b Gg(is)23 b(of)g(the)h(form:)p Black Black 576
3965 a FL(Id)q F4(\()p Ga(x;)15 b(c)p F4(\))p 899 3998
4 115 v 101 w FL(And)1105 3979 y Gc(I)1145 3965 y F4(\()1180
3953 y FX(h)1208 3965 y Ga(a)1256 3953 y FX(i)1283 3965
y Ga(S)5 b(;)1384 3953 y FX(h)1412 3965 y Ga(b)1451 3953
y FX(i)1479 3965 y Ga(T)12 b(;)j(c)p F4(\))p 1708 3998
V 101 w FL(Or)1858 3928 y Gc(i)1858 3988 y(I)1898 3965
y F4(\()1933 3953 y FX(h)1961 3965 y Ga(a)2009 3953 y
FX(i)2037 3965 y Ga(S)5 b(;)15 b(c)p F4(\))p 2261 3998
V 100 w FL(Imp)2457 3986 y Gc(I)2497 3965 y F4(\()2532
3953 y F9(\()2560 3965 y Ga(x)2612 3953 y F9(\))p FX(h)2666
3965 y Ga(a)2714 3953 y FX(i)2742 3965 y Ga(S)5 b(;)15
b(c)p F4(\))p 2966 3998 V 101 w FL(Not)3160 3979 y Gc(I)3200
3965 y F4(\()3235 3953 y F9(\()3263 3965 y Ga(x)3315
3953 y F9(\))3342 3965 y Ga(S)5 b(;)15 b(c)p F4(\))p
Black 458 4160 a F6(\017)p Black 46 w Gg(A)23 b(term)i
Ga(M)34 b F7(fr)m(eshly)26 b Gg(introduces)i(a)c(co-name,)i(if)f(and)g
(only)h(if)e(none)i(of)f(its)g(proper)h(subterms)549
4273 y(introduces)g(this)e(co-name.)p Black 458 4451
a F6(\017)p Black 46 w Gg(A)e(term)h Ga(M)33 b F7(eliminates)26
b Gg(the)d(co-name)i Ga(c)p Gg(,)e(if)g(and)h(only)h(if)e
Ga(M)33 b Gg(is)23 b(of)g(the)h(form:)p Black Black 390
4648 a FL(And)545 4611 y Gc(i)545 4671 y(E)604 4648 y
F4(\()639 4636 y FX(h)667 4648 y Ga(c)706 4636 y FX(i)734
4648 y Ga(S)5 b(;)835 4636 y F9(\()863 4648 y Ga(x)915
4636 y F9(\))942 4648 y Ga(T)13 b F4(\))p 1076 4681 V
69 w FL(Or)1212 4662 y Gc(E)1271 4648 y F4(\()1306 4636
y FX(h)1334 4648 y Ga(c)1373 4636 y FX(i)1401 4648 y
Ga(S)5 b(;)1502 4636 y F9(\()1530 4648 y Ga(x)1582 4636
y F9(\))1609 4648 y Ga(T)13 b(;)1715 4636 y F9(\()1743
4648 y Ga(y)1791 4636 y F9(\))1818 4648 y Ga(P)g F4(\))p
1957 4681 V 70 w FL(Imp)2138 4669 y Gc(E)2198 4648 y
F4(\()2233 4636 y FX(h)2260 4648 y Ga(c)2299 4636 y FX(i)2327
4648 y Ga(S)5 b(;)2428 4636 y FX(h)2456 4648 y Ga(b)2495
4636 y FX(i)2523 4648 y Ga(T)12 b(;)2628 4636 y F9(\()2656
4648 y Ga(x)2708 4636 y F9(\))2736 4648 y Ga(P)h F4(\))p
2875 4681 V 69 w FL(Not)3054 4662 y Gc(E)3114 4648 y
F4(\()3149 4636 y FX(h)3176 4648 y Ga(c)3215 4636 y FX(i)3243
4648 y Ga(S)5 b(;)3344 4636 y FX(h)3372 4648 y Ga(b)3411
4636 y FX(i)3438 4648 y Ga(T)13 b F4(\))462 4910 y Gg(Ne)o(xt)30
b(we)f(shall)i(gi)n(v)o(e)f(the)g(translation)j F6(j)p
1765 4910 28 4 v 1783 4910 V 1801 4910 V 65 w(j)1853
4877 y Fu(N)1907 4910 y Gg(,)e(which)f(maps)g(terms)g(of)g
FY(T)f Gg(to)h(terms)g(of)g F4(K)p Gg(,)g(and)321 5023
y(the)24 b(translation)i F6(j)p 888 5023 V 906 5023 V
923 5023 V 64 w(j)975 4990 y Fu(S)1041 5023 y Gg(for)e(the)f(other)h(w)
o(ay)f(around,)h(that)g(is)f(from)g(terms)g(of)g F4(K)f
Gg(to)h(terms)g(of)g FY(T)t Gg(.)h(The)o(y)321 5136 y(are)33
b(gi)n(v)o(en)f(in)g(Figures)h(3.8)f(and)g(3.9,)i(respecti)n(v)o(ely)-6
b(.)57 b(An)32 b(important)h(property)i(of)d(these)h(transla-)321
5249 y(tions)f(is)e(that)h(the)o(y)g(respect)h(typing)g(judgements.)53
b(The)30 b(proof)h(of)g(this)g(property)i(coincides)g(with)321
5361 y(sho)n(wing)28 b(the)g(soundness)i(and)d(completeness)j(of)d(our)
g(natural)i(deduction)h(calculus)f(with)e(respect)321
5474 y(to)d(pro)o(v)n(ability)i(in)d(classical)j(logic.)p
Black Black eop end
%%Page: 85 97
TeXDict begin 85 96 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
d(Deduction)2373 b(85)p 277 88 3691 4 v Black Black 277
1280 V 277 4182 4 2902 v 1599 1372 1024 4 v 1599 1457
a Ga(x)18 b F4(:)f Ga(B)5 b(;)15 b F4(\000)1907 1445
y Gc(.)1962 1457 y FL(Id)p F4(\()p Ga(x;)g(a)p F4(\))2271
1445 y Gc(.)2325 1457 y F4(\001)p Ga(;)g(a)j F4(:)f Ga(B)574
1707 y F4(\000)656 1695 y Gc(.)711 1707 y Ga(M)834 1695
y Gc(.)889 1707 y F4(\001)p Ga(;)e(a)i F4(:)h Ga(B)186
b F4(\000)1450 1695 y Gc(.)1505 1707 y Ga(N)1613 1695
y Gc(.)1668 1707 y F4(\001)p Ga(;)15 b(b)j F4(:)f Ga(C)p
564 1745 1402 4 v 564 1830 a F4(\000)646 1818 y Gc(.)701
1830 y FL(And)855 1844 y Gc(I)895 1830 y F4(\()930 1818
y FX(h)958 1830 y Ga(a)1006 1818 y FX(i)1033 1830 y Ga(M)10
b(;)1171 1818 y FX(h)1199 1830 y Ga(b)1238 1818 y FX(i)1266
1830 y Ga(N)g(;)15 b(c)p F4(\))1489 1818 y Gc(.)1544
1830 y F4(\001)p Ga(;)g(c)j F4(:)f Ga(B)5 b F6(^)o Ga(C)2006
1763 y F6(^)2067 1777 y Gc(I)2577 1695 y F4(\000)2660
1683 y Gc(.)2714 1695 y Ga(M)2838 1683 y Gc(.)2893 1695
y F4(\001)p Ga(;)15 b(a)i F4(:)h Ga(B)3186 1709 y Gc(i)p
2296 1732 1200 4 v 2296 1830 a F4(\000)2378 1818 y Gc(.)2433
1830 y FL(Or)2532 1793 y Gc(i)2532 1853 y(I)2572 1830
y F4(\()2607 1818 y FX(h)2635 1830 y Ga(a)2683 1818 y
FX(i)2710 1830 y Ga(M)10 b(;)15 b(b)p F4(\))2948 1818
y Gc(.)3003 1830 y F4(\001)p Ga(;)g(b)j F4(:)f Ga(B)3287
1844 y F9(1)3326 1830 y F6(_)p Ga(B)3456 1844 y F9(2)3537
1745 y F6(_)3598 1759 y Gc(I)3629 1769 y FZ(i)841 2079
y Ga(x)g F4(:)h Ga(B)5 b(;)15 b F4(\000)1149 2067 y Gc(.)1204
2079 y Ga(M)1327 2067 y Gc(.)1382 2079 y F4(\001)p Ga(;)g(a)i
F4(:)h Ga(C)p 614 2117 1290 4 v 614 2202 a F4(\000)696
2190 y Gc(.)751 2202 y FL(Imp)896 2223 y Gc(I)935 2202
y F4(\()970 2190 y F9(\()998 2202 y Ga(x)1050 2190 y
F9(\))q FX(h)1105 2202 y Ga(a)1153 2190 y FX(i)1181 2202
y Ga(M)10 b(;)15 b(b)p F4(\))1419 2190 y Gc(.)1474 2202
y F4(\001)p Ga(;)g(b)i F4(:)g Ga(B)5 b F6(\033)p Ga(C)1946
2134 y F6(\033)2016 2148 y Gc(I)2598 2079 y Ga(x)17 b
F4(:)h Ga(B)5 b(;)15 b F4(\000)2905 2067 y Gc(.)2960
2079 y Ga(M)3084 2067 y Gc(.)3139 2079 y F4(\001)p 2345
2117 1122 4 v 2345 2202 a(\000)2427 2190 y Gc(.)2482
2202 y FL(Not)2625 2216 y Gc(I)2665 2202 y F4(\()2700
2190 y F9(\()2728 2202 y Ga(x)2780 2190 y F9(\))2807
2202 y Ga(M)10 b(;)15 b(a)p F4(\))3054 2190 y Gc(.)3109
2202 y F4(\001)p Ga(;)g(a)i F4(:)h F6(:)p Ga(B)3509 2129
y F6(:)3570 2143 y Gc(I)1207 2451 y F4(\000)1289 2439
y Gc(.)1344 2451 y Ga(M)1468 2439 y Gc(.)1523 2451 y
F4(\001)p Ga(;)d(a)i F4(:)g Ga(B)1815 2465 y F9(1)1855
2451 y F6(^)o Ga(B)1984 2465 y F9(2)2206 2451 y Ga(x)g
F4(:)g Ga(B)2386 2465 y Gc(i)2414 2451 y Ga(;)e F4(\000)2537
2439 y Gc(.)2592 2451 y Ga(N)2700 2439 y Gc(.)2755 2451
y F4(\001)p 1207 2489 1624 4 v 1514 2586 a(\000)1597
2574 y Gc(.)1651 2586 y FL(And)1806 2549 y Gc(i)1806
2609 y(E)1866 2586 y F4(\()1901 2574 y FX(h)1928 2586
y Ga(a)1976 2574 y FX(i)2004 2586 y Ga(M)10 b(;)2142
2574 y F9(\()2170 2586 y Ga(x)2222 2574 y F9(\))2249
2586 y Ga(N)g F4(\))2393 2574 y Gc(.)2448 2586 y F4(\001)2872
2502 y F6(^)2933 2516 y Gc(E)2985 2526 y FZ(i)886 2836
y F4(\000)968 2824 y Gc(.)1023 2836 y Ga(M)1147 2824
y Gc(.)1202 2836 y F4(\001)p Ga(;)15 b(a)i F4(:)g Ga(B)5
b F6(_)p Ga(C)188 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2120
2824 y Gc(.)2175 2836 y Ga(N)2284 2824 y Gc(.)2338 2836
y F4(\001)182 b Ga(y)20 b F4(:)d Ga(C)q(;)e F4(\000)2892
2824 y Gc(.)2947 2836 y Ga(P)3043 2824 y Gc(.)3098 2836
y F4(\001)p 886 2873 2288 4 v 1446 2958 a(\000)1528 2946
y Gc(.)1583 2958 y FL(Or)1683 2972 y Gc(E)1742 2958 y
F4(\()1777 2946 y FX(h)1805 2958 y Ga(a)1853 2946 y FX(i)1880
2958 y Ga(M)c(;)2019 2946 y F9(\()2046 2958 y Ga(x)2098
2946 y F9(\))2126 2958 y Ga(N)f(;)2249 2946 y F9(\()2277
2958 y Ga(y)2325 2946 y F9(\))2352 2958 y Ga(P)j F4(\))2484
2946 y Gc(.)2538 2958 y F4(\001)3216 2891 y F6(_)3276
2905 y Gc(E)881 3208 y F4(\000)963 3196 y Gc(.)1018 3208
y Ga(M)1141 3196 y Gc(.)1196 3208 y F4(\001)p Ga(;)i(a)i
F4(:)h Ga(B)5 b F6(\033)o Ga(C)188 b F4(\000)1899 3196
y Gc(.)1954 3208 y Ga(N)2062 3196 y Gc(.)2117 3208 y
F4(\001)p Ga(;)15 b(b)j F4(:)f Ga(B)186 b(x)18 b F4(:)f
Ga(C)q(;)e F4(\000)2888 3196 y Gc(.)2943 3208 y Ga(P)3039
3196 y Gc(.)3094 3208 y F4(\001)p 881 3246 2290 4 v 1423
3331 a(\000)1505 3319 y Gc(.)1560 3331 y FL(Imp)1705
3353 y Gc(E)1764 3331 y F4(\()1799 3319 y FX(h)1827 3331
y Ga(a)1875 3319 y FX(i)1902 3331 y Ga(M)c(;)2041 3319
y FX(h)2068 3331 y Ga(b)2107 3319 y FX(i)2135 3331 y
Ga(N)f(;)2258 3319 y F9(\()2286 3331 y Ga(x)2338 3319
y F9(\))2365 3331 y Ga(P)j F4(\))2497 3319 y Gc(.)2552
3331 y F4(\001)3211 3264 y F6(\033)3282 3278 y Gc(E)1309
3581 y F4(\000)1391 3569 y Gc(.)1446 3581 y Ga(M)1569
3569 y Gc(.)1624 3581 y F4(\001)p Ga(;)i(a)i F4(:)h F6(:)p
Ga(B)186 b F4(\000)2246 3569 y Gc(.)2301 3581 y Ga(N)2409
3569 y Gc(.)2464 3581 y F4(\001)p Ga(;)15 b(b)i F4(:)g
Ga(B)p 1309 3619 1444 4 v 1538 3704 a F4(\000)1620 3692
y Gc(.)1675 3704 y FL(Not)1818 3718 y Gc(E)1877 3704
y F4(\()1912 3692 y FX(h)1940 3704 y Ga(a)1988 3692 y
FX(i)2016 3704 y Ga(M)10 b(;)2154 3692 y FX(h)2182 3704
y Ga(b)2221 3692 y FX(i)2248 3704 y Ga(N)g F4(\))2392
3692 y Gc(.)2447 3704 y F4(\001)2793 3632 y F6(:)2854
3646 y Gc(E)1213 3953 y F4(\000)1270 3967 y F9(1)1334
3941 y Gc(.)1389 3953 y Ga(M)1512 3941 y Gc(.)1567 3953
y F4(\001)1643 3967 y F9(1)1682 3953 y Ga(;)15 b(a)j
F4(:)g Ga(B)186 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2368
3967 y F9(2)2433 3941 y Gc(.)2488 3953 y Ga(N)2596 3941
y Gc(.)2651 3953 y F4(\001)2727 3967 y F9(2)p 1213 3991
1554 4 v 1300 4076 a F4(\000)1357 4090 y F9(1)1397 4076
y Ga(;)g F4(\000)1494 4090 y F9(2)1558 4064 y Gc(.)1613
4076 y FL(Subst)o F4(\()1860 4064 y FX(h)1888 4076 y
Ga(a)1936 4064 y FX(i)1964 4076 y Ga(M)10 b(;)2102 4064
y F9(\()2130 4076 y Ga(x)2182 4064 y F9(\))2209 4076
y Ga(N)g F4(\))2353 4064 y Gc(.)2408 4076 y F4(\001)2484
4090 y F9(1)2523 4076 y Ga(;)15 b F4(\001)2639 4090 y
F9(2)2808 4021 y Gg(Subst)p 3965 4182 4 2902 v 277 4185
3691 4 v Black 668 4338 a(Figure)24 b(3.7:)29 b(T)-6
b(erm)23 b(assignment)i(for)f(classical)i(natural)f(deduction)h
(proofs.)p Black Black Black Black eop end
%%Page: 86 98
TeXDict begin 86 97 bop Black -144 51 a Gb(86)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black -144 1278
V -144 4183 4 2905 v -41 1457 a Gg(\(1\))1043 b F6(j)p
FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))p F6(j)1439 1424
y Fu(S)1584 1405 y F5(def)1591 1457 y F4(=)106 b FL(Ax)p
F4(\()p Ga(x;)15 b(a)p F4(\))-41 1606 y Gg(\(2\))612
b F6(j)p FL(Subst)o F4(\()948 1594 y FX(h)976 1606 y
Ga(a)1024 1594 y FX(i)1052 1606 y Ga(M)10 b(;)1190 1594
y F9(\()1218 1606 y Ga(x)1270 1594 y F9(\))1297 1606
y Ga(N)g F4(\))p F6(j)1440 1573 y Fu(S)1584 1555 y F5(def)1591
1606 y F4(=)106 b FL(Cut)p F4(\()1941 1594 y FX(h)1969
1606 y Ga(a)2017 1594 y FX(i)2059 1606 y F6(j)p Ga(M)10
b F6(j)2207 1573 y Fu(S)2251 1606 y Ga(;)2291 1594 y
F9(\()2319 1606 y Ga(x)2371 1594 y F9(\))2414 1606 y
F6(j)p Ga(N)g F6(j)2547 1573 y Fu(S)2591 1606 y F4(\))-41
1804 y Gg(\(3\))563 b F6(j)p FL(And)807 1818 y Gc(I)847
1804 y F4(\()882 1792 y FX(h)909 1804 y Ga(a)957 1792
y FX(i)985 1804 y Ga(M)10 b(;)1123 1792 y FX(h)1151 1804
y Ga(b)1190 1792 y FX(i)1217 1804 y Ga(N)g(;)15 b(c)p
F4(\))p F6(j)1439 1771 y Fu(S)1584 1752 y F5(def)1591
1804 y F4(=)106 b FL(And)1923 1818 y Gc(R)1980 1804 y
F4(\()2015 1792 y FX(h)2043 1804 y Ga(a)2091 1792 y FX(i)2134
1804 y F6(j)p Ga(M)10 b F6(j)2282 1771 y Fu(S)2326 1804
y Ga(;)2366 1792 y FX(h)2394 1804 y Ga(b)2433 1792 y
FX(i)2475 1804 y F6(j)p Ga(N)g F6(j)2608 1771 y Fu(S)2652
1804 y Ga(;)15 b(c)p F4(\))-41 1954 y Gg(\(4\))836 b
F6(j)p FL(Or)1024 1917 y Gc(i)1024 1977 y(I)1064 1954
y F4(\()1099 1942 y FX(h)1127 1954 y Ga(a)1175 1942 y
FX(i)1202 1954 y Ga(M)11 b(;)k(b)p F4(\))p F6(j)1440
1921 y Fu(S)1584 1902 y F5(def)1591 1954 y F4(=)106 b
FL(Or)1867 1917 y Gc(i)1867 1977 y(R)1925 1954 y F4(\()1960
1942 y FX(h)1988 1954 y Ga(a)2036 1942 y FX(i)2078 1954
y F6(j)p Ga(M)10 b F6(j)2226 1921 y Fu(S)2270 1954 y
Ga(;)15 b(b)p F4(\))-41 2104 y Gg(\(5\))684 b F6(j)p
FL(Imp)917 2125 y Gc(I)957 2104 y F4(\()992 2092 y F9(\()1020
2104 y Ga(x)1072 2092 y F9(\))q FX(h)1127 2104 y Ga(a)1175
2092 y FX(i)1202 2104 y Ga(M)11 b(;)k(b)p F4(\))p F6(j)1440
2071 y Fu(S)1584 2052 y F5(def)1591 2104 y F4(=)106 b
FL(Imp)1912 2125 y Gc(R)1970 2104 y F4(\()2005 2092 y
F9(\()2033 2104 y Ga(x)2085 2092 y F9(\))p FX(h)2140
2104 y Ga(a)2188 2092 y FX(i)2230 2104 y F6(j)p Ga(M)10
b F6(j)2378 2071 y Fu(S)2422 2104 y Ga(;)15 b(b)p F4(\))-41
2254 y Gg(\(6\))779 b F6(j)p FL(Not)1011 2268 y Gc(I)1051
2254 y F4(\()1086 2242 y F9(\()1114 2254 y Ga(x)1166
2242 y F9(\))1193 2254 y Ga(M)11 b(;)k(a)p F4(\))p F6(j)1440
2221 y Fu(S)1584 2202 y F5(def)1591 2254 y F4(=)106 b
FL(Not)1911 2268 y Gc(R)1968 2254 y F4(\()2003 2242 y
F9(\()2031 2254 y Ga(x)2083 2242 y F9(\))2126 2254 y
F6(j)p Ga(M)10 b F6(j)2274 2221 y Fu(S)2318 2254 y Ga(;)15
b(a)p F4(\))-41 2451 y Gg(\(7\))430 b F6(j)p FL(And)674
2414 y Gc(i)674 2474 y(E)734 2451 y F4(\()769 2439 y
FX(h)797 2451 y Ga(a)845 2439 y FX(i)872 2451 y FL(Id)p
F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)1190 2439 y F9(\()1218
2451 y Ga(x)1270 2439 y F9(\))1297 2451 y Ga(N)10 b F4(\))p
F6(j)1440 2418 y Fu(S)1584 2399 y F5(def)1591 2451 y
F4(=)106 b FL(And)1923 2414 y Gc(i)1923 2474 y(L)1975
2451 y F4(\()2010 2439 y F9(\()2038 2451 y Ga(x)2090
2439 y F9(\))2132 2451 y F6(j)p Ga(N)10 b F6(j)2265 2418
y Fu(S)2309 2451 y Ga(;)15 b(z)t F4(\))-41 2601 y Gg(\(8\))272
b F6(j)p FL(Or)460 2615 y Gc(E)520 2601 y F4(\()555 2589
y FX(h)583 2601 y Ga(a)631 2589 y FX(i)658 2601 y FL(Id)p
F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)976 2589 y F9(\()1004
2601 y Ga(x)1056 2589 y F9(\))1083 2601 y Ga(N)10 b(;)1206
2589 y F9(\()1234 2601 y Ga(y)1282 2589 y F9(\))1309
2601 y Ga(P)j F4(\))p F6(j)1440 2568 y Fu(S)1584 2549
y F5(def)1591 2601 y F4(=)106 b FL(Or)1867 2615 y Gc(L)1919
2601 y F4(\()1954 2589 y F9(\()1982 2601 y Ga(x)2034
2589 y F9(\))2077 2601 y F6(j)p Ga(N)10 b F6(j)2210 2568
y Fu(S)2254 2601 y Ga(;)2294 2589 y F9(\()2321 2601 y
Ga(y)2369 2589 y F9(\))2412 2601 y F6(j)p Ga(P)j F6(j)2533
2568 y Fu(S)2577 2601 y Ga(;)i(z)t F4(\))-41 2751 y Gg(\(9\))235
b F6(j)p FL(Imp)469 2772 y Gc(E)529 2751 y F4(\()564
2739 y FX(h)591 2751 y Ga(a)639 2739 y FX(i)667 2751
y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))q Ga(;)984
2739 y FX(h)1012 2751 y Ga(b)1051 2739 y FX(i)1079 2751
y Ga(N)10 b(;)1202 2739 y F9(\()1230 2751 y Ga(x)1282
2739 y F9(\))1309 2751 y Ga(P)j F4(\))p F6(j)1440 2718
y Fu(S)1584 2699 y F5(def)1591 2751 y F4(=)106 b FL(Imp)1912
2772 y Gc(L)1965 2751 y F4(\()2000 2739 y FX(h)2027 2751
y Ga(b)2066 2739 y FX(i)2109 2751 y F6(j)p Ga(N)10 b
F6(j)2242 2718 y Fu(S)2286 2751 y Ga(;)2326 2739 y F9(\()2354
2751 y Ga(x)2406 2739 y F9(\))2448 2751 y F6(j)p Ga(P)j
F6(j)2569 2718 y Fu(S)2613 2751 y Ga(;)i(z)t F4(\))-41
2901 y Gg(\(10\))410 b F6(j)p FL(Not)687 2915 y Gc(E)747
2901 y F4(\()782 2889 y FX(h)810 2901 y Ga(a)858 2889
y FX(i)885 2901 y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))r
Ga(;)1203 2889 y FX(h)1231 2901 y Ga(b)1270 2889 y FX(i)1297
2901 y Ga(N)10 b F4(\))p F6(j)1440 2868 y Fu(S)1584 2849
y F5(def)1591 2901 y F4(=)106 b FL(Not)1911 2915 y Gc(L)1963
2901 y F4(\()1998 2889 y FX(h)2026 2901 y Ga(b)2065 2889
y FX(i)2107 2901 y F6(j)p Ga(N)10 b F6(j)2240 2868 y
Fu(S)2284 2901 y Ga(;)15 b(z)t F4(\))-41 3095 y Gb(Otherwise:)-41
3221 y Gg(\(11\))565 b F6(j)p FL(And)854 3184 y Gc(i)854
3244 y(E)913 3221 y F4(\()948 3209 y FX(h)976 3221 y
Ga(a)1024 3209 y FX(i)1052 3221 y Ga(M)10 b(;)1190 3209
y F9(\()1218 3221 y Ga(x)1270 3209 y F9(\))1297 3221
y Ga(N)g F4(\))p F6(j)1440 3188 y Fu(S)1584 3169 y F5(def)1591
3221 y F4(=)106 b FL(Cut)p F4(\()1941 3209 y FX(h)1969
3221 y Ga(a)2017 3209 y FX(i)2059 3221 y F6(j)p Ga(M)10
b F6(j)2207 3188 y Fu(S)2251 3221 y Ga(;)2291 3209 y
F9(\()2319 3221 y Ga(y)2367 3209 y F9(\))2394 3221 y
FL(And)2549 3184 y Gc(i)2549 3244 y(L)2601 3221 y F4(\()2636
3209 y F9(\()2664 3221 y Ga(x)2716 3209 y F9(\))2758
3221 y F6(j)p Ga(N)g F6(j)2891 3188 y Fu(S)2935 3221
y Ga(;)15 b(y)s F4(\))q(\))-41 3371 y Gg(\(12\))406 b
F6(j)p FL(Or)640 3385 y Gc(E)699 3371 y F4(\()734 3359
y FX(h)762 3371 y Ga(a)810 3359 y FX(i)838 3371 y Ga(M)10
b(;)976 3359 y F9(\()1004 3371 y Ga(x)1056 3359 y F9(\))1083
3371 y Ga(N)g(;)1206 3359 y F9(\()1234 3371 y Ga(y)1282
3359 y F9(\))1309 3371 y Ga(P)j F4(\))p F6(j)1440 3338
y Fu(S)1584 3319 y F5(def)1591 3371 y F4(=)106 b FL(Cut)p
F4(\()1941 3359 y FX(h)1969 3371 y Ga(a)2017 3359 y FX(i)2059
3371 y F6(j)p Ga(M)10 b F6(j)2207 3338 y Fu(S)2251 3371
y Ga(;)2291 3359 y F9(\()2319 3371 y Ga(z)2365 3359 y
F9(\))2393 3371 y FL(Or)2492 3385 y Gc(L)2544 3371 y
F4(\()2579 3359 y F9(\()2607 3371 y Ga(x)2659 3359 y
F9(\))2702 3371 y F6(j)p Ga(N)g F6(j)2835 3338 y Fu(S)2878
3371 y Ga(;)2918 3359 y F9(\()2946 3371 y Ga(y)2994 3359
y F9(\))3037 3371 y F6(j)p Ga(P)j F6(j)3158 3338 y Fu(S)3202
3371 y Ga(;)i(z)t F4(\))q(\))-41 3521 y Gg(\(13\))370
b F6(j)p FL(Imp)648 3543 y Gc(E)708 3521 y F4(\()743
3509 y FX(h)771 3521 y Ga(a)819 3509 y FX(i)846 3521
y Ga(M)10 b(;)984 3509 y FX(h)1012 3521 y Ga(b)1051 3509
y FX(i)1079 3521 y Ga(N)g(;)1202 3509 y F9(\()1230 3521
y Ga(x)1282 3509 y F9(\))1309 3521 y Ga(P)j F4(\))p F6(j)1440
3488 y Fu(S)1584 3469 y F5(def)1591 3521 y F4(=)106 b
FL(Cut)p F4(\()1941 3509 y FX(h)1969 3521 y Ga(a)2017
3509 y FX(i)2059 3521 y F6(j)p Ga(M)10 b F6(j)2207 3488
y Fu(S)2251 3521 y Ga(;)2291 3509 y F9(\()2319 3521 y
Ga(y)2367 3509 y F9(\))2394 3521 y FL(Imp)2539 3543 y
Gc(L)2591 3521 y F4(\()2626 3509 y FX(h)2654 3521 y Ga(b)2693
3509 y FX(i)2735 3521 y F6(j)p Ga(N)g F6(j)2868 3488
y Fu(S)2912 3521 y Ga(;)2952 3509 y F9(\()2980 3521 y
Ga(x)3032 3509 y F9(\))3075 3521 y F6(j)p Ga(P)j F6(j)3196
3488 y Fu(S)3239 3521 y Ga(;)i(y)s F4(\))q(\))-41 3671
y Gg(\(14\))590 b F6(j)p FL(Not)867 3685 y Gc(E)926 3671
y F4(\()961 3659 y FX(h)989 3671 y Ga(a)1037 3659 y FX(i)1065
3671 y Ga(M)10 b(;)1203 3659 y FX(h)1231 3671 y Ga(b)1270
3659 y FX(i)1297 3671 y Ga(N)g F4(\))p F6(j)1440 3638
y Fu(S)1584 3619 y F5(def)1591 3671 y F4(=)106 b FL(Cut)p
F4(\()1941 3659 y FX(h)1969 3671 y Ga(a)2017 3659 y FX(i)2059
3671 y F6(j)p Ga(M)10 b F6(j)2207 3638 y Fu(S)2251 3671
y Ga(;)2291 3659 y F9(\()2319 3671 y Ga(y)2367 3659 y
F9(\))2394 3671 y FL(Not)2537 3685 y Gc(L)2589 3671 y
F4(\()2624 3659 y FX(h)2652 3671 y Ga(b)2691 3659 y FX(i)2734
3671 y F6(j)p Ga(N)g F6(j)2867 3638 y Fu(S)2910 3671
y Ga(;)15 b(y)s F4(\))q(\))268 3912 y Gg(where)24 b(in)48
b(\(11\))h Ga(y)28 b F6(62)c Ga(F)13 b(N)d F4(\()1177
3900 y F9(\()1205 3912 y Ga(x)1257 3900 y F9(\))1285
3912 y F6(j)p Ga(N)g F6(j)1418 3879 y Fu(S)1462 3912
y F4(\))464 b Gg(\(12\))49 b Ga(z)30 b F6(62)24 b Ga(F)13
b(N)d F4(\()2506 3900 y F9(\()2534 3912 y Ga(x)2586 3900
y F9(\))2614 3912 y F6(j)p Ga(N)g F6(j)2747 3879 y Fu(S)2791
3912 y Ga(;)2831 3900 y F9(\()2858 3912 y Ga(y)2906 3900
y F9(\))2934 3912 y F6(j)p Ga(P)j F6(j)3055 3879 y Fu(S)3099
3912 y F4(\))631 4059 y Gg(\(13\))49 b Ga(y)28 b F6(62)c
Ga(F)13 b(N)d F4(\()1177 4047 y FX(h)1205 4059 y Ga(b)1244
4047 y FX(i)1272 4059 y F6(j)p Ga(N)g F6(j)1405 4026
y Fu(S)1449 4059 y Ga(;)1489 4047 y F9(\()1516 4059 y
Ga(x)1568 4047 y F9(\))1596 4059 y F6(j)p Ga(P)j F6(j)1717
4026 y Fu(S)1761 4059 y F4(\))165 b Gg(\(14\))49 b Ga(y)28
b F6(62)d Ga(F)13 b(N)d F4(\()2508 4047 y FX(h)2536 4059
y Ga(b)2575 4047 y FX(i)2602 4059 y F6(j)p Ga(N)g F6(j)2735
4026 y Fu(S)2779 4059 y F4(\))p 3543 4183 V -144 4186
3691 4 v Black 624 4340 a Gg(Figure)24 b(3.8:)29 b(T)m(ranslation)c
(from)f(natural)h(deduction)h(proofs)f(to)f(sequent)h(proofs.)p
Black Black Black Black eop end
%%Page: 87 99
TeXDict begin 87 98 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
d(Deduction)2373 b(87)p 277 88 3691 4 v Black Black 277
1275 V 277 4186 4 2911 v 442 1454 a Gg(\(1\))1231 b F6(j)p
FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))p F6(j)2140 1421
y Fu(N)2295 1402 y F5(def)2302 1454 y F4(=)107 b FL(Id)p
F4(\()p Ga(x;)15 b(a)p F4(\))442 1641 y Gg(\(2\))763
b F6(j)p FL(And)1490 1655 y Gc(R)1548 1641 y F4(\()1583
1629 y FX(h)1611 1641 y Ga(a)1659 1629 y FX(i)1686 1641
y Ga(M)10 b(;)1824 1629 y FX(h)1852 1641 y Ga(b)1891
1629 y FX(i)1919 1641 y Ga(N)f(;)15 b(c)p F4(\))p F6(j)2140
1608 y Fu(N)2295 1590 y F5(def)2302 1641 y F4(=)107 b
FL(And)2634 1655 y Gc(I)2674 1641 y F4(\()2709 1629 y
FX(h)2737 1641 y Ga(a)2785 1629 y FX(i)2828 1641 y F6(j)p
Ga(M)10 b F6(j)2976 1608 y Fu(N)3030 1641 y Ga(;)3070
1629 y FX(h)3098 1641 y Ga(b)3137 1629 y FX(i)3180 1641
y F6(j)p Ga(N)g F6(j)3313 1608 y Fu(N)3367 1641 y Ga(;)15
b(c)p F4(\))442 1791 y Gg(\(3\))1036 b F6(j)p FL(Or)1708
1754 y Gc(i)1708 1814 y(R)1765 1791 y F4(\()1800 1779
y FX(h)1828 1791 y Ga(a)1876 1779 y FX(i)1904 1791 y
Ga(M)10 b(;)15 b(b)p F4(\))p F6(j)2141 1758 y Fu(N)2295
1740 y F5(def)2302 1791 y F4(=)107 b FL(Or)2579 1754
y Gc(i)2579 1814 y(I)2619 1791 y F4(\()2654 1779 y FX(h)2682
1791 y Ga(a)2730 1779 y FX(i)2772 1791 y F6(j)p Ga(M)10
b F6(j)2920 1758 y Fu(N)2975 1791 y Ga(;)15 b(b)p F4(\))442
1941 y Gg(\(4\))884 b F6(j)p FL(Imp)1601 1963 y Gc(R)1659
1941 y F4(\()1694 1929 y F9(\()1721 1941 y Ga(x)1773
1929 y F9(\))q FX(h)1828 1941 y Ga(a)1876 1929 y FX(i)1904
1941 y Ga(M)10 b(;)15 b(b)p F4(\))p F6(j)2141 1908 y
Fu(N)2295 1890 y F5(def)2302 1941 y F4(=)107 b FL(Imp)2624
1963 y Gc(I)2664 1941 y F4(\()2699 1929 y F9(\()2727
1941 y Ga(x)2779 1929 y F9(\))p FX(h)2834 1941 y Ga(a)2882
1929 y FX(i)2925 1941 y F6(j)p Ga(M)10 b F6(j)3073 1908
y Fu(N)3127 1941 y Ga(;)15 b(b)p F4(\))442 2091 y Gg(\(5\))980
b F6(j)p FL(Not)1695 2105 y Gc(R)1752 2091 y F4(\()1787
2079 y F9(\()1815 2091 y Ga(x)1867 2079 y F9(\))1895
2091 y Ga(M)10 b(;)15 b(a)p F4(\))p F6(j)2141 2058 y
Fu(N)2295 2040 y F5(def)2302 2091 y F4(=)107 b FL(Not)2623
2105 y Gc(I)2662 2091 y F4(\()2697 2079 y F9(\()2725
2091 y Ga(x)2777 2079 y F9(\))2820 2091 y F6(j)p Ga(M)10
b F6(j)2968 2058 y Fu(N)3022 2091 y Ga(;)15 b(a)p F4(\))442
2288 y Gg(\(6\))974 b F6(j)p FL(And)1701 2252 y Gc(i)1701
2311 y(L)1753 2288 y F4(\()1788 2276 y F9(\()1815 2288
y Ga(x)1867 2276 y F9(\))1895 2288 y Ga(M)10 b(;)15 b(y)s
F4(\))p F6(j)2141 2255 y Fu(N)2295 2237 y F5(def)2302
2288 y F4(=)107 b FL(And)2634 2252 y Gc(i)2634 2311 y(E)2694
2288 y F4(\()2729 2276 y FX(h)2757 2288 y Ga(a)2805 2276
y FX(i)2832 2288 y FL(Id)q F4(\()p Ga(y)s(;)15 b(a)p
F4(\))q Ga(;)3152 2276 y F9(\()3179 2288 y Ga(x)3231
2276 y F9(\))3274 2288 y F6(j)p Ga(M)10 b F6(j)3422 2255
y Fu(N)3476 2288 y F4(\))442 2438 y Gg(\(7\))805 b F6(j)p
FL(Or)1476 2452 y Gc(L)1528 2438 y F4(\()1563 2426 y
F9(\()1591 2438 y Ga(x)1643 2426 y F9(\))1670 2438 y
Ga(M)10 b(;)1808 2426 y F9(\()1836 2438 y Ga(y)1884 2426
y F9(\))1912 2438 y Ga(N)g(;)15 b(z)t F4(\))p F6(j)2141
2405 y Fu(N)2295 2387 y F5(def)2302 2438 y F4(=)107 b
FL(Or)2579 2452 y Gc(E)2639 2438 y F4(\()2674 2426 y
FX(h)2701 2438 y Ga(a)2749 2426 y FX(i)2777 2438 y FL(Id)p
F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)3095 2426 y F9(\()3122
2438 y Ga(x)3174 2426 y F9(\))3217 2438 y F6(j)p Ga(M)10
b F6(j)3365 2405 y Fu(N)3420 2438 y Ga(;)3460 2426 y
F9(\()3487 2438 y Ga(y)3535 2426 y F9(\))3578 2438 y
F6(j)p Ga(N)g F6(j)3711 2405 y Fu(N)3765 2438 y F4(\))442
2588 y Gg(\(8\))758 b F6(j)p FL(Imp)1474 2610 y Gc(L)1526
2588 y F4(\()1561 2576 y FX(h)1589 2588 y Ga(a)1637 2576
y FX(i)1665 2588 y Ga(M)10 b(;)1803 2576 y F9(\()1831
2588 y Ga(x)1883 2576 y F9(\))1910 2588 y Ga(N)g(;)15
b(y)s F4(\))p F6(j)2141 2555 y Fu(N)2295 2537 y F5(def)2302
2588 y F4(=)107 b FL(Imp)2624 2610 y Gc(E)2684 2588 y
F4(\()2719 2576 y FX(h)2747 2588 y Ga(b)2786 2576 y FX(i)2813
2588 y FL(Id)p F4(\()p Ga(y)s(;)15 b(b)p F4(\))q Ga(;)3123
2576 y FX(h)3151 2588 y Ga(a)3199 2576 y FX(i)3242 2588
y F6(j)p Ga(M)10 b F6(j)3390 2555 y Fu(N)3444 2588 y
Ga(;)3484 2576 y F9(\()3512 2588 y Ga(x)3564 2576 y F9(\))3607
2588 y F6(j)p Ga(N)g F6(j)3740 2555 y Fu(N)3794 2588
y F4(\))442 2738 y Gg(\(9\))985 b F6(j)p FL(Not)1700
2752 y Gc(L)1752 2738 y F4(\()1787 2726 y FX(h)1815 2738
y Ga(a)1863 2726 y FX(i)1891 2738 y Ga(M)10 b(;)15 b(x)p
F4(\))p F6(j)2141 2705 y Fu(N)2295 2687 y F5(def)2302
2738 y F4(=)107 b FL(Not)2623 2752 y Gc(E)2682 2738 y
F4(\()2717 2726 y FX(h)2745 2738 y Ga(b)2784 2726 y FX(i)2811
2738 y FL(Id)q F4(\()p Ga(x;)15 b(b)p F4(\))q Ga(;)3126
2726 y FX(h)3154 2738 y Ga(a)3202 2726 y FX(i)3244 2738
y F6(j)p Ga(M)10 b F6(j)3392 2705 y Fu(N)3447 2738 y
F4(\))442 2935 y Gg(\(10\))387 b F6(j)p FL(Cut)p F4(\()1177
2923 y FX(h)1205 2935 y Ga(a)1253 2923 y FX(i)1280 2935
y Ga(M)11 b(;)1419 2923 y F9(\()1446 2935 y Ga(x)1498
2923 y F9(\))1526 2935 y FL(And)1680 2899 y Gc(i)1680
2959 y(L)1732 2935 y F4(\()1767 2923 y F9(\()1795 2935
y Ga(y)1843 2923 y F9(\))1871 2935 y Ga(N)f(;)15 b(x)p
F4(\)\))p F6(j)2141 2902 y Fu(N)2295 2884 y F5(def)2302
2935 y F4(=)107 b FL(And)2634 2899 y Gc(i)2634 2959 y(E)2694
2935 y F4(\()2729 2923 y FX(h)2757 2935 y Ga(a)2805 2923
y FX(i)2832 2935 y F6(j)p Ga(M)10 b F6(j)2980 2902 y
Fu(N)3035 2935 y Ga(;)3075 2923 y F9(\()3103 2935 y Ga(y)3151
2923 y F9(\))3178 2935 y F6(j)p Ga(N)g F6(j)3311 2902
y Fu(N)3365 2935 y F4(\))442 3085 y Gg(\(11\))230 b F6(j)p
FL(Cut)p F4(\()1020 3073 y FX(h)1048 3085 y Ga(a)1096
3073 y FX(i)1123 3085 y Ga(M)10 b(;)1261 3073 y F9(\()1289
3085 y Ga(x)1341 3073 y F9(\))1369 3085 y FL(Or)1468
3099 y Gc(L)1520 3085 y F4(\()1555 3073 y F9(\()1583
3085 y Ga(y)1631 3073 y F9(\))1658 3085 y Ga(N)g(;)1781
3073 y F9(\()1809 3085 y Ga(z)1855 3073 y F9(\))1883
3085 y Ga(P)j(;)i(x)p F4(\)\))p F6(j)2141 3052 y Fu(N)2295
3034 y F5(def)2302 3085 y F4(=)107 b FL(Or)2579 3099
y Gc(E)2639 3085 y F4(\()2674 3073 y FX(h)2701 3085 y
Ga(a)2749 3073 y FX(i)2777 3085 y F6(j)p Ga(M)10 b F6(j)2925
3052 y Fu(N)2980 3085 y Ga(;)3020 3073 y F9(\()3047 3085
y Ga(y)3095 3073 y F9(\))3123 3085 y F6(j)p Ga(N)g F6(j)3256
3052 y Fu(N)3310 3085 y Ga(;)3350 3073 y F9(\()3378 3085
y Ga(z)3424 3073 y F9(\))3452 3085 y F6(j)p Ga(P)j F6(j)3573
3052 y Fu(N)3627 3085 y F4(\))442 3235 y Gg(\(12\))191
b F6(j)p FL(Cut)p F4(\()981 3223 y FX(h)1009 3235 y Ga(a)1057
3223 y FX(i)1084 3235 y Ga(M)10 b(;)1222 3223 y F9(\()1250
3235 y Ga(x)1302 3223 y F9(\))1330 3235 y FL(Imp)1474
3257 y Gc(L)1526 3235 y F4(\()1561 3223 y FX(h)1589 3235
y Ga(b)1628 3223 y FX(i)1656 3235 y Ga(Q)o(;)1767 3223
y F9(\()1795 3235 y Ga(y)1843 3223 y F9(\))1871 3235
y Ga(N)g(;)15 b(x)p F4(\)\))p F6(j)2141 3202 y Fu(N)2295
3184 y F5(def)2302 3235 y F4(=)107 b FL(Imp)2624 3257
y Gc(E)2684 3235 y F4(\()2719 3223 y FX(h)2747 3235 y
Ga(a)2795 3223 y FX(i)2822 3235 y F6(j)p Ga(M)10 b F6(j)2970
3202 y Fu(N)3025 3235 y Ga(;)3065 3223 y FX(h)3093 3235
y Ga(b)3132 3223 y FX(i)3159 3235 y F6(j)p Ga(Q)p F6(j)3281
3202 y Fu(N)3335 3235 y Ga(;)3375 3223 y F9(\()3403 3235
y Ga(y)3451 3223 y F9(\))3479 3235 y F6(j)p Ga(N)g F6(j)3612
3202 y Fu(N)3666 3235 y F4(\))442 3385 y Gg(\(13\))419
b F6(j)p FL(Cut)p F4(\()1209 3373 y FX(h)1237 3385 y
Ga(a)1285 3373 y FX(i)1312 3385 y Ga(M)10 b(;)1450 3373
y F9(\()1478 3385 y Ga(x)1530 3373 y F9(\))1558 3385
y FL(Not)1700 3399 y Gc(L)1752 3385 y F4(\()1787 3373
y FX(h)1815 3385 y Ga(b)1854 3373 y FX(i)1882 3385 y
Ga(Q;)15 b(x)p F4(\)\))p F6(j)2141 3352 y Fu(N)2295 3334
y F5(def)2302 3385 y F4(=)107 b FL(Not)2623 3399 y Gc(E)2682
3385 y F4(\()2717 3373 y FX(h)2745 3385 y Ga(a)2793 3373
y FX(i)2820 3385 y F6(j)p Ga(M)10 b F6(j)2968 3352 y
Fu(N)3023 3385 y Ga(;)3063 3373 y FX(h)3091 3385 y Ga(b)3130
3373 y FX(i)3157 3385 y F6(j)p Ga(Q)p F6(j)3279 3352
y Fu(N)3334 3385 y F4(\))442 3579 y Gb(Otherwise:)442
3706 y Gg(\(14\))859 b F6(j)p FL(Cut)q F4(\()1650 3694
y FX(h)1677 3706 y Ga(a)1725 3694 y FX(i)1753 3706 y
Ga(M)10 b(;)1891 3694 y F9(\()1919 3706 y Ga(x)1971 3694
y F9(\))1998 3706 y Ga(N)g F4(\))p F6(j)2141 3673 y Fu(N)2295
3654 y F5(def)2302 3706 y F4(=)107 b FL(Subst)o F4(\()2727
3694 y FX(h)2755 3706 y Ga(a)2803 3694 y FX(i)2830 3706
y F6(j)p Ga(M)10 b F6(j)2978 3673 y Fu(N)3033 3706 y
Ga(;)3073 3694 y F9(\()3101 3706 y Ga(x)3153 3694 y F9(\))3180
3706 y F6(j)p Ga(N)g F6(j)3313 3673 y Fu(N)3368 3706
y F4(\))840 3923 y Gg(where)24 b(in)48 b(\(10\))74 b
Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()1779 3911 y F9(\()1807
3923 y Ga(y)1855 3911 y F9(\))1882 3923 y Ga(N)g F4(\))325
b Gg(\(11\))74 b Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()2901
3911 y F9(\()2929 3923 y Ga(y)2977 3911 y F9(\))3004
3923 y Ga(N)g(;)3127 3911 y F9(\()3155 3923 y Ga(z)3201
3911 y F9(\))3228 3923 y Ga(P)j F4(\))1203 4070 y Gg(\(12\))74
b Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()1779 4058 y F9(\()1807
4070 y Ga(y)1855 4058 y F9(\))1882 4070 y Ga(N)g(;)2005
4058 y FX(h)2033 4070 y Ga(b)2072 4058 y FX(i)2099 4070
y Ga(Q)p F4(\))119 b Gg(\(13\))74 b Ga(x)25 b F6(62)g
Ga(F)13 b(N)d F4(\()2901 4058 y FX(h)2929 4070 y Ga(b)2968
4058 y FX(i)2995 4070 y Ga(Q)p F4(\))p 3965 4186 V 277
4189 3691 4 v Black 579 4343 a Gg(Figure)24 b(3.9:)30
b(T)m(ranslation)25 b(from)f(sequent)h(proofs)g(to)f(natural)h
(deduction)h(proofs.)p Black Black Black Black eop end
%%Page: 88 100
TeXDict begin 88 99 bop Black -144 51 a Gb(88)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(Theor)n(em)h
(3.3.3)f Gg(\(Soundness)j(and)e(Completeness\))p Gb(:)p
Black Black 458 575 a F6(\017)p Black 46 w Gg(If)j Ga(M)44
b F6(2)33 b F4(K)27 b Gg(with)h(the)g(typing)h(judgement)h
F4(\000)2040 563 y Gc(.)2094 575 y Ga(M)2218 563 y Gc(.)2273
575 y F4(\001)o Gg(,)e(then)h F6(j)p Ga(M)10 b F6(j)2731
542 y Fu(S)2809 575 y F6(2)33 b FY(T)27 b Gg(with)h(the)g(typing)549
688 y(judgement)d F4(\000)1037 676 y Gc(.)1092 688 y
F6(j)p Ga(M)10 b F6(j)1240 655 y Fu(S)1309 676 y Gc(.)1364
688 y F4(\001)p Gg(.)p Black 458 873 a F6(\017)p Black
46 w Gg(If)27 b Ga(M)42 b F6(2)32 b FY(T)27 b Gg(with)g(the)h(typing)h
(judgement)g F4(\000)2020 861 y Gc(.)2075 873 y Ga(M)2199
861 y Gc(.)2253 873 y F4(\001)p Gg(,)f(then)g F6(j)p
Ga(M)10 b F6(j)2711 840 y Fu(N)2798 873 y F6(2)32 b F4(K)26
b Gg(with)h(the)h(typing)549 985 y(judgement)d F4(\000)1037
973 y Gc(.)1092 985 y F6(j)p Ga(M)10 b F6(j)1240 953
y Fu(N)1320 973 y Gc(.)1375 985 y F4(\001)p Gg(.)p Black
321 1223 a F7(Pr)l(oof.)p Black 46 w Gg(Both)24 b(by)g(routine)h
(induction)h(on)e(the)g(structure)h(of)f Ga(M)10 b Gg(.)p
3480 1223 4 62 v 3484 1165 55 4 v 3484 1223 V 3538 1223
4 62 v 462 1426 a(Before)19 b(we)e(can)i(attack)g(the)g(correspondence)
j(question)f(with)d(our)g(cut-elimination)k(procedure,)321
1539 y(we)g(ha)n(v)o(e)g(to)g(de\002ne)h(a)e(normalisation)26
b(procedure)e(for)f(the)f(natural)i(deduction)h(calculus.)30
b(Although)321 1651 y(we)25 b(shall)h(de\002ne)g(this)g(procedure)i
(using)e(terms,)g(the)g(corresponding)j(notion)e(of)f(a)e(normal)j
(term)e(is)321 1764 y(best)c(e)o(xplained)h(on)e(the)g(le)n(v)o(el)g
(of)g(proofs:)28 b(unlik)o(e)22 b(in)d(our)i(sequent)g(calculi)h(where)
e(it)f(is)h(immediately)321 1877 y(clear)32 b(what)f(is)g(meant)g(by)h
(a)e(normal)i(term)f(\(absence)i(of)e(the)g(cut-term)i(constructor\),)j
(things)c(are)321 1990 y(more)27 b(delicate)i(in)f(natural)g(deduction)
i(calculi,)f(as)e(already)i(seen)f(in)f(NJ.)f(T)-7 b(o)26
b(formally)j(de\002ne)e(the)321 2103 y(notion)e(of)f(a)f(normal)h
(natural)h(deduction)i(proof,)d(the)g(follo)n(wing)h(de\002nition)g
(will)e(be)h(useful.)p Black 321 2291 a Gb(De\002nition)e(3.3.4)g
Gg(\(Maximal)h(Se)o(gment\))p Gb(:)p Black 35 w Gg(A)e
F7(maximal)i(se)l(gment)h Gg(in)e(a)g(natural)i(deduction)h(proof)f(is)
321 2404 y(a)k(sequence)i(of)d(occurrences)k(of)d(a)f(labelled)j
(formula)e Ga(a)d F4(:)g Ga(B)5 b Gg(,)27 b(say)h F4(\()p
Ga(a)e F4(:)f Ga(B)5 b F4(\))2774 2418 y F9(1)2813 2404
y Ga(;)15 b(:)g(:)g(:)i(;)e F4(\()p Ga(a)25 b F4(:)g
Ga(B)5 b F4(\))3282 2418 y Gc(n)3329 2404 y Gg(,)28 b(such)321
2517 y(that)p Black 458 2714 a F6(\017)p Black 46 w Gg(the)34
b(\002rst)g(occurrence,)40 b F4(\()p Ga(a)23 b F4(:)f
Ga(B)5 b F4(\))1588 2728 y F9(1)1628 2714 y Gg(,)36 b(is)e(a)g
(labelled)i(formula)g(which)f(is)f(eliminated)i(and)f(not)549
2827 y(introduced)26 b(by)e(an)f(axiom.)p Black 458 2975
a F6(\017)p Black 46 w F4(\()p Ga(a)35 b F4(:)g Ga(B)5
b F4(\))836 2989 y Gc(i)p F9(+1)986 2975 y Gg(follo)n(ws)34
b F4(\()p Ga(a)h F4(:)g Ga(B)5 b F4(\))1576 2989 y Gc(i)1604
2975 y Gg(,)34 b(if)f Ga(a)i F4(:)g Ga(B)i Gg(occurs)d(in)f(a)g
(conclusion)j(and)e(premise)g(of)f(an)549 3088 y(inference)25
b(rule.)p Black 458 3237 a F6(\017)p Black 46 w Gg(the)h(last)h
(occurrence)i(of)e Ga(a)22 b F4(:)h Ga(B)30 b Gg(either)d(appears)h(in)
f(an)f(axiom)h(or)f(is)g(freshly)i(introduced)h(by)549
3350 y(an)23 b(introduction)k(rule.)321 3568 y(No)n(w)22
b(the)i(notion)h(of)f(a)f(normal)h(natural)h(deduction)i(proof)d(is)g
(as)f(follo)n(ws.)p Black 321 3756 a Gb(De\002nition)30
b(3.3.5)h Gg(\(Normal)f(Natural)i(Deduction)g(Proof\))p
Gb(:)p Black 35 w Gg(A)d F7(normal)j Gg(natural)g(deduction)h(proof)321
3869 y(contains)26 b(neither)f(a)e(maximal)h(se)o(gment)h(nor)e(an)h
(instance)i(of)d(Subst.)462 4123 y(As)30 b(mentioned)j(earlier)l(,)h
(we)c(can)h(easily)h(pro)o(v)o(e)g(that)f(normal)g(natural)i(deduction)
g(proofs)f(re-)321 4236 y(spect)k(the)f(subformula)i(property)-6
b(.)65 b(F)o(or)34 b(this)i(notice)g(that)f(all)g(elimination)i(rules)f
(must)f(ha)n(v)o(e)h(as)321 4348 y(leftmost)26 b(premise)f(an)g(axiom)g
(which)g(introduces)i(the)e(formula)g(that)g(is)g(eliminated.)33
b(F)o(or)24 b(e)o(xample)321 4461 y(the)g F6(_)516 4475
y Gc(E)575 4461 y Gg(-rule)h(in)e(a)g(normal)i(natural)g(deduction)h
(proof)f(must)e(be)h(of)f(the)h(form)p 476 4615 930 4
v 476 4694 a Ga(z)e F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15
b F4(\000)p 900 4682 11 41 v 911 4664 46 5 v 97 w(\001)p
Ga(;)g(a)j F4(:)f Ga(B)5 b F6(_)o Ga(C)98 b(x)17 b F4(:)g
Ga(B)5 b(;)15 b(z)22 b F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15
b F4(\000)p 2146 4682 11 41 v 2157 4664 46 5 v 97 w(\001)91
b Ga(y)20 b F4(:)d Ga(C)q(;)e(z)23 b F4(:)17 b Ga(B)5
b F6(_)o Ga(C)q(;)15 b F4(\000)p 3027 4682 11 41 v 3038
4664 46 5 v 97 w(\001)p 476 4732 2703 4 v 1540 4811 a
Ga(z)21 b F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)p
1964 4799 11 41 v 1974 4780 46 5 v 97 w(\001)3220 4750
y F6(_)3281 4764 y Gc(E)3366 4750 y Ga(:)321 5023 y Gg(Clearly)-6
b(,)33 b(this)f(instance)g(of)f F6(_)1293 5037 y Gc(E)1382
5023 y Gg(satis\002es)h(the)f(subformula)i(property)-6
b(.)52 b(Let)30 b(us)h(analyse)i(the)e(three)321 5136
y(other)i(types)g(of)f(instances)i(of)e(this)g(rule)h(and)f(sho)n(w)g
(in)f(each)i(case)f(that)h(the)o(y)f(cannot)h(occur)g(in)f(a)321
5249 y(normal)g(natural)h(deduction)h(proof.)53 b(First,)32
b(assume)g(the)g(leftmost)g(premise)g(is)f(an)h(axiom)f(which)321
5361 y(does)24 b(not)f(introduce)i Ga(a)p Gg(.)j(Then)23
b(we)e(ha)n(v)o(e)j(a)e(maximal)h(se)o(gment)h(of)e(length)i
F4(1)f Gg(\(\002rst)f(and)i(third)f(clause)p Black Black
eop end
%%Page: 89 101
TeXDict begin 89 100 bop Black 277 51 a Gb(3.3)23 b(Classical)j
(Natural)d(Deduction)2373 b(89)p 277 88 3691 4 v Black
277 365 a Gg(of)28 b(De\002nition)g(3.3.4\).)41 b(Second,)29
b(assume)g(the)f(leftmost)g(premise)h(is)e(an)h(introduction)j(rule.)41
b(Then)277 478 y(we)24 b(either)j(ha)n(v)o(e)e(a)g(maximal)g(se)o
(gment)h(of)f(length)h F4(1)p Gg(,)f(pro)o(vided)i(the)e(introduction)k
(rule)c(introduces)277 590 y(freshly)36 b(the)f(formula)h(that)f(is)g
(eliminated,)k(or)c(a)f(maximal)h(se)o(gment)g(of)g(length)h(greater)g
(than)g F4(1)277 703 y Gg(\(second)31 b(and)f(third)g(clause)h(of)e
(De\002nition)h(3.3.4\).)47 b(Third,)30 b(if)f(the)h(leftmost)h
(premise)f(is)f(an)g(elim-)277 816 y(ination)35 b(rule,)g(then)f(we)e
(ha)n(v)o(e)h(a)f(maximal)h(se)o(gment)h(of)f(length)h(greater)g(than)g
F4(1)e Gg(\(second)j(clause)277 929 y(of)d(De\002nition)h(3.3.4\).)55
b(So)32 b(in)g(all)g(three)h(cases)g(the)g(proof)g(w)o(ould)g(be)f
(non-normal.)57 b(Analogous)277 1042 y(remarks)24 b(apply)h(to)e(the)g
(other)h(elimination)i(rules.)j(Because)24 b(in)f(normal)h(natural)h
(deduction)h(proofs)277 1155 y(all)21 b(instances)j(of)c(introduction)
25 b(rules)d(satisfy)g(the)g(subformula)h(property)g(\(ob)o(vious)g(by)
e(inspection\))277 1268 y(and,)h(as)f(sho)n(wn)h(abo)o(v)o(e,)g(so)f
(do)h(all)f(instances)j(of)d(elimination)j(rules,)e(we)f(thus)h(ha)n(v)
o(e)g(sho)n(wn)f(that)h(the)277 1381 y(subformula)k(property)g(holds)e
(for)g(all)g(normal)g(natural)h(deduction)h(proofs.)418
1510 y(Ne)o(xt,)21 b(we)g(shall)h(introduce)h(reduction)h(rules)e(that)
g(transform)h(stepwise)f(a)f(non-normal)j(natural)277
1623 y(deduction)34 b(proof)f(into)f(a)f(normal)h(one.)52
b(W)-7 b(e)31 b(be)o(gin)h(with)f(the)h(reduction)i(rules)e(that)g
(eliminate)h(a)277 1736 y(maximal)24 b(se)o(gment)g(of)g(length)h
F4(1)p Gg(.)j(Consider)d(the)f(proof)958 1921 y F4(\000)p
1035 1909 11 41 v 1046 1891 46 5 v 96 w(\001)p Ga(;)15
b(a)j F4(:)f Ga(B)p 897 1959 574 4 v 897 2038 a F4(\000)p
974 2026 11 41 v 984 2008 46 5 v 96 w(\001)p Ga(;)e(b)i
F4(:)h Ga(B)5 b F6(_)o Ga(C)1512 1972 y F6(_)1572 1986
y Gc(I)1603 1995 y FV(1)1732 2038 y Ga(x)18 b F4(:)f
Ga(B)5 b(;)15 b F4(\000)p 2035 2026 11 41 v 2045 2008
46 5 v 96 w(\001)91 b Ga(y)20 b F4(:)d Ga(C)q(;)e F4(\000)p
2569 2026 11 41 v 2580 2008 46 5 v 97 w(\001)p 897 2076
1825 4 v 1694 2155 a(\000)p 1771 2143 11 41 v 1782 2125
46 5 v 96 w(\001)2762 2094 y F6(_)2823 2108 y Gc(E)277
2363 y Gg(where)26 b Ga(b)c F4(:)g Ga(B)5 b F6(_)o Ga(C)31
b Gg(forms)c(a)e(maximal)h(se)o(gment)h(of)f(length)h
F4(1)p Gg(,)f(pro)o(vided)i Ga(b)22 b F4(:)g Ga(B)5 b
F6(_)o Ga(C)31 b Gg(does)c(not)f(occur)277 2476 y(in)e(the)f(premise)i
(of)e F6(_)974 2490 y Gc(I)1005 2499 y FV(1)1043 2476
y Gg(.)28 b(This)c(proof)g(will)f(be)h(reduced)h(to)1245
2664 y F4(\000)p 1322 2652 11 41 v 1332 2634 46 5 v 96
w(\001)p Ga(;)15 b(a)i F4(:)h Ga(B)95 b(x)17 b F4(:)h
Ga(B)5 b(;)15 b F4(\000)p 2089 2652 11 41 v 2099 2634
46 5 v 96 w(\001)p 1245 2702 996 4 v 1628 2780 a(\000)p
1705 2768 11 41 v 1716 2750 46 5 v 96 w(\001)2282 2732
y Gg(Subst)26 b Ga(:)277 2988 y Gg(The)35 b(reduction)k(rules,)g
(denoted)f(by)1581 2951 y Gc(\014)1518 2988 y F6(\000)-32
b(\000)h(!)p Gg(,)38 b(eliminating)g(this)e(type)g(of)g(maximal)g(se)o
(gments)h(are)277 3101 y(de\002ned)24 b(belo)n(w)g(using)h(terms.)p
Black 277 3289 a Gb(De\002nition)e(3.3.6)g Gg(\(Beta-Reductions\))p
Gb(:)p Black Black Black 285 3472 a FL(And)439 3435 y
Gc(i)439 3495 y(E)499 3472 y F4(\()534 3460 y FX(h)562
3472 y Ga(c)601 3460 y FX(i)629 3472 y FL(And)783 3486
y Gc(I)823 3472 y F4(\()858 3460 y FX(h)886 3472 y Ga(a)934
3486 y F9(1)973 3460 y FX(i)1001 3472 y Ga(M)1089 3486
y F9(1)1128 3472 y Ga(;)1168 3460 y FX(h)1196 3472 y
Ga(a)1244 3486 y F9(2)1284 3460 y FX(i)1311 3472 y Ga(M)1399
3486 y F9(2)1439 3472 y Ga(;)15 b(c)p F4(\))q Ga(;)1594
3460 y F9(\()1622 3472 y Ga(x)1674 3460 y F9(\))1701
3472 y Ga(N)10 b F4(\))1907 3435 y Gc(\014)1843 3472
y F6(\000)-31 b(\000)f(!)24 b FL(Subst)o F4(\()2284 3460
y FX(h)2312 3472 y Ga(a)2360 3486 y Gc(i)2388 3460 y
FX(i)2416 3472 y Ga(M)2504 3486 y Gc(i)2532 3472 y Ga(;)2572
3460 y F9(\()2600 3472 y Ga(x)2652 3460 y F9(\))2679
3472 y Ga(N)10 b F4(\))1752 3620 y Gg(if)23 b FL(And)1985
3634 y Gc(I)2025 3620 y F4(\()2060 3608 y FX(h)2088 3620
y Ga(a)2136 3634 y F9(1)2175 3608 y FX(i)2203 3620 y
Ga(M)2291 3634 y F9(1)2330 3620 y Ga(;)2370 3608 y FX(h)2398
3620 y Ga(a)2446 3634 y F9(2)2485 3608 y FX(i)2513 3620
y Ga(M)2601 3634 y F9(2)2641 3620 y Ga(;)15 b(c)p F4(\))23
b Gg(freshly)j(introduces)g Ga(c)407 3820 y FL(Or)507
3834 y Gc(E)566 3820 y F4(\()601 3808 y FX(h)629 3820
y Ga(b)668 3808 y FX(i)696 3820 y FL(Or)795 3783 y Gc(i)795
3843 y(I)835 3820 y F4(\()870 3808 y FX(h)897 3820 y
Ga(a)945 3808 y FX(i)973 3820 y Ga(M)10 b(;)15 b(b)p
F4(\))q Ga(;)1226 3808 y F9(\()1254 3820 y Ga(x)1306
3834 y F9(1)1345 3808 y(\))1373 3820 y Ga(N)1446 3834
y F9(1)1485 3820 y Ga(;)1525 3808 y F9(\()1553 3820 y
Ga(x)1605 3834 y F9(2)1644 3808 y(\))1672 3820 y Ga(N)1745
3834 y F9(2)1784 3820 y F4(\))1907 3783 y Gc(\014)1843
3820 y F6(\000)-31 b(\000)f(!)24 b FL(Subst)o F4(\()2284
3808 y FX(h)2312 3820 y Ga(a)2360 3808 y FX(i)2387 3820
y Ga(M)11 b(;)2526 3808 y F9(\()2553 3820 y Ga(x)2605
3834 y Gc(i)2634 3808 y F9(\))2661 3820 y Ga(N)2734 3834
y Gc(i)2762 3820 y F4(\))1752 3970 y Gg(if)23 b FL(Or)1930
3933 y Gc(i)1930 3993 y(I)1969 3970 y F4(\()2004 3958
y FX(h)2032 3970 y Ga(a)2080 3958 y FX(i)2108 3970 y
Ga(M)10 b(;)15 b(b)p F4(\))23 b Gg(freshly)j(introduces)g
Ga(b)377 4168 y FL(Imp)521 4189 y Gc(E)581 4168 y F4(\()616
4156 y FX(h)644 4168 y Ga(b)683 4156 y FX(i)710 4168
y FL(Imp)855 4189 y Gc(I)894 4168 y F4(\()929 4156 y
F9(\()957 4168 y Ga(x)1009 4156 y F9(\))q FX(h)1064 4168
y Ga(a)1112 4156 y FX(i)1140 4168 y Ga(M)10 b(;)15 b(b)p
F4(\))p Ga(;)1392 4156 y FX(h)1420 4168 y Ga(c)1459 4156
y FX(i)1487 4168 y Ga(N)10 b(;)1610 4156 y F9(\()1638
4168 y Ga(y)1686 4156 y F9(\))1713 4168 y Ga(P)j F4(\))1907
4131 y Gc(\014)1843 4168 y F6(\000)-31 b(\000)f(!)24
b FL(Subst)o F4(\()2284 4156 y FX(h)2312 4168 y Ga(c)2351
4156 y FX(i)2379 4168 y Ga(N)10 b(;)2502 4156 y F9(\()2530
4168 y Ga(x)2582 4156 y F9(\))2609 4168 y FL(Subst)o
F4(\()2856 4156 y FX(h)2884 4168 y Ga(a)2932 4156 y FX(i)2959
4168 y Ga(M)g(;)3097 4156 y F9(\()3125 4168 y Ga(y)3173
4156 y F9(\))3201 4168 y Ga(P)j F4(\)\))48 b Gg(or)1907
4243 y Gc(\014)1843 4281 y F6(\000)-31 b(\000)f(!)24
b FL(Subst)o F4(\()2284 4269 y FX(h)2312 4281 y Ga(a)2360
4269 y FX(i)2387 4281 y FL(Subst)p F4(\()2635 4269 y
FX(h)2662 4281 y Ga(c)2701 4269 y FX(i)2729 4281 y Ga(N)10
b(;)2852 4269 y F9(\()2880 4281 y Ga(x)2932 4269 y F9(\))2959
4281 y Ga(M)g F4(\))q Ga(;)3133 4269 y F9(\()3161 4281
y Ga(y)3209 4269 y F9(\))3236 4281 y Ga(P)j F4(\))1752
4429 y Gg(if)23 b FL(Imp)1975 4451 y Gc(I)2015 4429 y
F4(\()2050 4417 y F9(\()2077 4429 y Ga(x)2129 4417 y
F9(\))q FX(h)2184 4429 y Ga(a)2232 4417 y FX(i)2260 4429
y Ga(M)10 b(;)15 b(b)p F4(\))23 b Gg(freshly)j(introduces)g
Ga(b)680 4627 y FL(Not)822 4641 y Gc(E)882 4627 y F4(\()917
4615 y FX(h)945 4627 y Ga(a)993 4615 y FX(i)1020 4627
y FL(Not)1163 4641 y Gc(I)1203 4627 y F4(\()1238 4615
y F9(\()1266 4627 y Ga(x)1318 4615 y F9(\))1345 4627
y Ga(M)10 b(;)15 b(a)p F4(\))q Ga(;)1607 4615 y FX(h)1635
4627 y Ga(b)1674 4615 y FX(i)1701 4627 y Ga(N)10 b F4(\))1907
4590 y Gc(\014)1843 4627 y F6(\000)-31 b(\000)f(!)24
b FL(Subst)o F4(\()2284 4615 y FX(h)2312 4627 y Ga(b)2351
4615 y FX(i)2378 4627 y Ga(N)10 b(;)2501 4615 y F9(\()2529
4627 y Ga(x)2581 4615 y F9(\))2609 4627 y Ga(M)g F4(\))1752
4775 y Gg(if)23 b FL(Not)1973 4789 y Gc(I)2013 4775 y
F4(\()2048 4763 y F9(\()2076 4775 y Ga(x)2128 4763 y
F9(\))2155 4775 y Ga(M)10 b(;)15 b(a)p F4(\))24 b Gg(freshly)h
(introduces)h Ga(a)p Black 277 5079 a Gb(Remark)33 b(3.3.7:)p
Black 34 w Gg(There)g(are)g(a)g(fe)n(w)f(subtleties)k(in)d(the)h(third)
g(rule.)58 b(As)32 b(with)h(the)g(cut-reduction)277 5192
y F6(\033)348 5206 y Gc(R)406 5192 y Ga(=)p F6(\033)522
5206 y Gc(L)574 5192 y Gg(,)24 b(there)i(are)f(tw)o(o)g(w)o(ays)g(to)g
(eliminate)i(an)e(introduction-eliminat)q(ion)31 b(pair)26
b F6(\033)3049 5206 y Gc(E)3109 5192 y Ga(=)p F6(\033)3225
5206 y Gc(I)3265 5192 y Gg(.)32 b(Con-)277 5305 y(sequently)-6
b(,)24 b(we)c(ha)n(v)o(e)h(tw)o(o)g(reduction)i(rules.)29
b(W)-7 b(e)20 b(need,)i(ho)n(we)n(v)o(er)l(,)f(to)g(observ)o(e)i(the)e
(side-conditions)277 5418 y Ga(x)k Gg(not)h(free)g(in)f
Ga(F)13 b(N)d F4(\()945 5406 y F9(\()973 5418 y Ga(y)1021
5406 y F9(\))1048 5418 y Ga(P)j F4(\))25 b Gg(\(\002rst)g(rule\))i(and)
f Ga(a)e Gg(not)i(free)g(in)g Ga(F)13 b(C)7 b F4(\()2381
5406 y FX(h)2408 5418 y Ga(c)2447 5406 y FX(i)2475 5418
y Ga(N)j F4(\))25 b Gg(\(second)i(rule\),)g(so)e(that)h(no)277
5531 y(name)20 b(or)f(co-name)i(capture)g(occurs.)29
b(This)19 b(can)h(al)o(w)o(ays)h(be)e(achie)n(v)o(ed)i(by)f(renaming)h
(some)f(binders.)p Black Black eop end
%%Page: 90 102
TeXDict begin 90 101 bop Black -144 51 a Gb(90)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 462 365 a Gg(T)-7
b(o)29 b(eliminate)j(all)e(other)g(maximal)h(se)o(gments,)h(we)d
(introduce)j(commuting)g(reductions.)50 b(Let)321 478
y(us)24 b(\002rst)f(gi)n(v)o(e)h(an)f(e)o(xample.)30
b(Consider)25 b(the)f(proof)957 659 y F4(\000)1014 626
y FX(0)p 1057 647 11 41 v 1068 629 46 5 v 1133 659 a
F4(\001)1209 626 y FX(0)1232 659 y Ga(;)15 b(a)j F4(:)f
Ga(B)96 b F4(\000)1602 626 y FX(0)p 1645 647 11 41 v
1656 629 46 5 v 1721 659 a F4(\001)1797 626 y FX(0)1820
659 y Ga(;)15 b(b)j F4(:)f Ga(C)p 957 696 1074 4 v 1184
783 a F4(\000)1241 750 y FX(0)p 1284 771 11 41 v 1294
753 46 5 v 1360 783 a F4(\001)1436 750 y FX(0)1459 783
y Ga(;)e(c)j F4(:)f Ga(B)5 b F6(^)p Ga(C)2072 715 y F6(^)2133
729 y Gc(I)1482 826 y Gg(.)1482 860 y(.)1482 893 y(.)1482
926 y(.)1207 1006 y F4(\000)p 1284 994 11 41 v 1294 976
46 5 v 96 w(\001)p Ga(;)15 b(c)j F4(:)f Ga(B)5 b F6(^)o
Ga(C)490 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 2566
994 11 41 v 2577 976 46 5 v 96 w(\001)p 1207 1043 1512
4 v 1848 1122 a(\000)p 1925 1110 11 41 v 1936 1092 46
5 v 96 w(\001)2760 1057 y F6(^)2820 1071 y Gc(E)2872
1080 y FV(1)321 1318 y Gg(where)24 b(the)g F6(^)761 1332
y Gc(E)813 1341 y FV(1)851 1318 y Gg(-rule)g(needs)h(to)f(be)f
(permuted)i(so)f(as)f(to)h(yield)g(the)g(proof)885 1497
y F4(\000)942 1464 y FX(\017)p 1002 1485 11 41 v 1012
1466 46 5 v 1078 1497 a F4(\001)1154 1464 y FX(\017)1193
1497 y Ga(;)15 b(a)j F4(:)f Ga(B)95 b F4(\000)1562 1464
y FX(\017)p 1622 1485 11 41 v 1632 1466 46 5 v 1698 1497
a F4(\001)1774 1464 y FX(\017)1813 1497 y Ga(;)15 b(b)j
F4(:)f Ga(C)p 885 1534 1139 4 v 1128 1614 a F4(\000)1185
1581 y FX(\017)p 1245 1602 11 41 v 1255 1584 46 5 v 1321
1614 a F4(\001)1397 1581 y FX(\017)1436 1614 y Ga(;)e(c)j
F4(:)f Ga(B)5 b F6(^)o Ga(C)2065 1552 y F6(^)2126 1566
y Gc(I)2257 1614 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2539
1581 y FX(\017)p 2599 1602 11 41 v 2609 1584 46 5 v 2675
1614 a F4(\001)2751 1581 y FX(\017)p 1128 1652 1662 4
v 1805 1732 a F4(\000)1862 1699 y FX(\017)p 1922 1720
11 41 v 1932 1701 46 5 v 1998 1732 a F4(\001)2074 1699
y FX(\017)2831 1665 y F6(^)2892 1679 y Gc(E)2944 1688
y FV(1)1948 1757 y Gg(.)1948 1791 y(.)1948 1824 y(.)1948
1857 y(.)1845 1937 y F4(\000)p 1922 1925 11 41 v 1932
1907 46 5 v 96 w(\001)321 2133 y Gg(Here)29 b F4(\000)583
2100 y FX(\017)650 2133 y Gg(stands)h(for)f(the)g(conte)o(xt)h
F4(\000)24 b F6([)g F4(\000)1695 2100 y FX(0)1745 2133
y Gg(\(similarly)31 b F4(\001)2203 2100 y FX(\017)2242
2133 y Gg(\).)44 b(W)-7 b(e)27 b(realise)k(this)e(kind)g(of)g
(operation)321 2246 y(using)c(a)e(proof)i(substitution)i(of)c(the)h
(form:)p Black Black 778 2446 a Ga(M)h Fs(^)q FL(And)1078
2410 y Gc(i)1078 2469 y(E)1138 2446 y F4(\()1173 2434
y FX(h)1201 2446 y Ga(a)1249 2434 y FX(i)p 1278 2446
28 4 v 1296 2446 V 1313 2446 V 1341 2446 a Ga(;)1381
2434 y F9(\()1409 2446 y Ga(x)1461 2434 y F9(\))1488
2446 y Ga(N)10 b F4(\))p Fs(_)396 b Ga(M)25 b Fs(^)p
FL(Imp)2324 2468 y Gc(E)2383 2446 y F4(\()2418 2434 y
FX(h)2446 2446 y Ga(a)2494 2434 y FX(i)p 2524 2446 V
2541 2446 V 2559 2446 V 2586 2446 a Ga(;)2626 2434 y
FX(h)2654 2446 y Ga(b)2693 2434 y FX(i)2721 2446 y Ga(N)10
b(;)2844 2434 y F9(\()2871 2446 y Ga(x)2923 2434 y F9(\))2951
2446 y Ga(P)j F4(\))p Fs(_)778 2559 y Ga(M)25 b Fs(^)q
FL(Or)1023 2573 y Gc(E)1083 2559 y F4(\()1118 2547 y
FX(h)1145 2559 y Ga(a)1193 2547 y FX(i)p 1223 2559 V
1241 2559 V 1258 2559 V 1285 2559 a Ga(;)1325 2547 y
F9(\()1353 2559 y Ga(x)1405 2547 y F9(\))1433 2559 y
Ga(N)10 b(;)1556 2547 y F9(\()1583 2559 y Ga(y)1631 2547
y F9(\))1659 2559 y Ga(P)j F4(\))p Fs(_)237 b Ga(M)25
b Fs(^)p FL(Not)2322 2573 y Gc(E)2382 2559 y F4(\()2417
2547 y FX(h)2445 2559 y Ga(a)2493 2547 y FX(i)p 2522
2559 V 2540 2559 V 2557 2559 V 2585 2559 a Ga(;)2625
2547 y FX(h)2652 2559 y Ga(b)2691 2547 y FX(i)2719 2559
y Ga(N)10 b F4(\))p Fs(_)321 2755 y Gg(The)32 b(idea)h(behind)h(this)f
(proof)g(substitution)j(is)c(to)g(mo)o(v)o(e)g(the)g(elimination)j
(rule)e(inside)g(the)g(term)321 2868 y Ga(M)42 b Gg(until)33
b(either)h(a)d(corresponding)37 b(introduction)f(rule)d(or)f(a)g
(corresponding)k(axiom)d(is)f(reached.)321 2981 y(In)c(these)g(tw)o(o)g
(cases)g(the)g(term)f Ga(M)37 b Gg(is)28 b(\223plugged\224)i(into)e
(the)g(place)h(of)e(the)h(bar)-5 b(.)41 b(If)27 b(there)i(is)e(no)h
(cor)n(-)321 3094 y(responding)i(introduction)g(rule)d(nor)g(a)f
(corresponding)31 b(axiom,)c(then)h(the)e(proof)i(substitution)i(just)
321 3207 y(v)n(anishes.)g(Figure)22 b(3.10)g(gi)n(v)o(es)g(the)f
(complete)i(de\002nition)g(of)f Ga(M)10 b Fs(^)p Ga(\033)s
Fs(_)q Gg(.)27 b(Our)21 b(commuting)i(reductions,)321
3320 y(denoted)j(by)810 3283 y Gc(\015)745 3320 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(are)i(then)g(de\002ned)h(as)e(follo)n(ws.)p
Black 321 3507 a Gb(De\002nition)g(3.3.8)g Gg(\(Commuting)i
(Reductions\))p Gb(:)p Black 572 3683 a FL(And)727 3646
y Gc(i)727 3706 y(E)786 3683 y F4(\()821 3671 y FX(h)849
3683 y Ga(a)897 3671 y FX(i)925 3683 y Ga(M)10 b(;)1063
3671 y F9(\()1091 3683 y Ga(x)1143 3671 y F9(\))1170
3683 y Ga(N)g F4(\))1436 3646 y Gc(\015)1371 3683 y F6(\000)-31
b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(And)1910 3646 y Gc(i)1910
3706 y(E)1969 3683 y F4(\()2004 3671 y FX(h)2032 3683
y Ga(a)2080 3671 y FX(i)p 2110 3683 V 2127 3683 V 2145
3683 V 2172 3683 a Ga(;)2212 3671 y F9(\()2240 3683 y
Ga(x)2292 3671 y F9(\))2319 3683 y Ga(N)g F4(\))p Fs(_)413
3795 y FL(Or)513 3809 y Gc(E)572 3795 y F4(\()607 3783
y FX(h)635 3795 y Ga(a)683 3783 y FX(i)711 3795 y Ga(M)g(;)849
3783 y F9(\()877 3795 y Ga(x)929 3783 y F9(\))956 3795
y Ga(N)g(;)1079 3783 y F9(\()1107 3795 y Ga(y)1155 3783
y F9(\))1182 3795 y Ga(P)j F4(\))1436 3758 y Gc(\015)1371
3795 y F6(\000)-31 b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(Or)1854
3809 y Gc(E)1914 3795 y F4(\()1949 3783 y FX(h)1977 3795
y Ga(a)2025 3783 y FX(i)p 2054 3795 V 2072 3795 V 2090
3795 V 2117 3795 a Ga(;)2157 3783 y F9(\()2185 3795 y
Ga(x)2237 3783 y F9(\))2264 3795 y Ga(N)g(;)2387 3783
y F9(\()2415 3795 y Ga(y)2463 3783 y F9(\))2490 3795
y Ga(P)j F4(\))p Fs(_)377 3906 y FL(Imp)522 3928 y Gc(E)581
3906 y F4(\()616 3894 y FX(h)644 3906 y Ga(a)692 3894
y FX(i)719 3906 y Ga(M)e(;)858 3894 y FX(h)885 3906 y
Ga(b)924 3894 y FX(i)952 3906 y Ga(N)f(;)1075 3894 y
F9(\()1103 3906 y Ga(x)1155 3894 y F9(\))1182 3906 y
Ga(P)j F4(\))1436 3869 y Gc(\015)1371 3906 y F6(\000)-31
b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(Imp)1900 3928 y Gc(E)1959
3906 y F4(\()1994 3894 y FX(h)2022 3906 y Ga(a)2070 3894
y FX(i)p 2100 3906 V 2117 3906 V 2135 3906 V 2162 3906
a Ga(;)2202 3894 y FX(h)2230 3906 y Ga(b)2269 3894 y
FX(i)2296 3906 y Ga(N)g(;)2419 3894 y F9(\()2447 3906
y Ga(x)2499 3894 y F9(\))2527 3906 y Ga(P)j F4(\))p Fs(_)597
4018 y FL(Not)740 4032 y Gc(E)799 4018 y F4(\()834 4006
y FX(h)862 4018 y Ga(a)910 4006 y FX(i)938 4018 y Ga(M)d(;)1076
4006 y FX(h)1104 4018 y Ga(b)1143 4006 y FX(i)1170 4018
y Ga(N)g F4(\))1436 3981 y Gc(\015)1371 4018 y F6(\000)-31
b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(Not)1898 4032 y Gc(E)1958
4018 y F4(\()1993 4006 y FX(h)2020 4018 y Ga(a)2068 4006
y FX(i)p 2098 4018 V 2115 4018 V 2133 4018 V 2160 4018
a Ga(;)2200 4006 y FX(h)2228 4018 y Ga(b)2267 4006 y
FX(i)2295 4018 y Ga(N)g F4(\))p Fs(_)2665 3615 y FK(9)2665
3696 y(>)2665 3724 y(>)2665 3751 y(=)2665 3915 y(>)2665
3942 y(>)2665 3969 y(;)2811 3799 y Gg(if)23 b Ga(M)33
b Gg(does)25 b(not)2811 3912 y(freshly)g(introduce)h
Ga(a)462 4275 y Gg(What)j(remains)h(is)e(to)h(de\002ne)g(reduction)i
(rules)e(eliminating)i(instances)g(of)e(Subst.)44 b(This)29
b(term)321 4388 y(constructor)e(w)o(as)c(introduced)k(in)c(order)h(to)g
(match)g(all)f(reductions)k(of)c(commuting)i(cuts,)f(in)f(partic-)321
4501 y(ular)e(the)g(ones)g(in)g(Lafont')-5 b(s)21 b(e)o(xample.)29
b(Therefore,)22 b(we)e(shall)h(de\002ne)g(the)f(reduction)j(rules)f
(for)e(Subst)321 4614 y(such)29 b(that)f(we)e(can)i(capture)i(the)d
(non-deterministic)33 b(beha)n(viour)d(of)d(commuting)i(cuts.)42
b(T)-7 b(o)26 b(do)i(so,)321 4727 y(we)23 b(introduce)j(another)f
(proof)g(substitution,)i(written)d(as)p Black Black 1238
4931 a Ga(M)10 b Fs(\()-7 b Ga(a)26 b F4(:=)1556 4919
y F9(\()1583 4931 y Ga(x)1635 4919 y F9(\))1663 4931
y Ga(N)r Fs(\))115 b Gg(or)f Ga(N)10 b Fs(\()-7 b Ga(x)25
b F4(:=)2381 4919 y FX(h)2408 4931 y Ga(a)2456 4919 y
FX(i)2484 4931 y Ga(M)s Fs(\))p Gg(.)321 5136 y(Figure)20
b(3.11)f(gi)n(v)o(es)g(its)g(complete)h(de\002nition,)h(which)e(is)g
(formulated)h(so)f(that,)h(gi)n(v)o(en)f(the)h(translation)321
5249 y F6(j)p 348 5249 V 366 5249 V 384 5249 V 65 w(j)436
5216 y Fu(N)490 5249 y Gg(,)k(there)i(is)e(a)h(perfect)h(match)f(with)g
(proof)g(substitutions)k(of)c(the)g(form)f F4([)p Ga(\033)s
F4(])p Gg(.)32 b(Consequently)-6 b(,)28 b(we)321 5361
y(ha)n(v)o(e)c(the)g(follo)n(wing)h(reduction)h(rule)e(for)g
FL(Subst)o Gg(.)p Black Black eop end
%%Page: 91 103
TeXDict begin 91 102 bop Black 277 51 a Gb(3.3)23 b(Classical)j
(Natural)d(Deduction)2373 b(91)p 277 88 3691 4 v Black
Black 277 476 V 277 4986 4 4510 v Black Black 489 631
a(Let)23 b Fs(^)q FO(\033)s Fs(_)g Gb(be)g(of)h(the)e(f)n(orm)i
Fs(^)p Fo(And)1566 594 y Fy(i)1566 659 y(E)1630 631 y
FD(\()1671 619 y Fz(h)1703 631 y FO(c)1750 619 y Fz(i)p
1781 631 28 4 v 1796 631 V 1811 631 V 1839 631 a FO(;)1885
619 y Fx(\()1917 631 y FO(x)1977 619 y Fx(\))2008 631
y FO(P)15 b FD(\))p Fs(_)p Gb(,)22 b(then:)1222 818 y
FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s
Fs(_)1660 767 y F5(def)1667 818 y F4(=)54 b FL(And)1946
781 y Gc(i)1946 841 y(E)2006 818 y F4(\()2041 806 y FX(h)2069
818 y Ga(c)2108 806 y FX(i)2135 818 y FL(Id)q F4(\()p
Ga(y)s(;)15 b(c)p F4(\))q Ga(;)2446 806 y F9(\()2474
818 y Ga(x)2526 806 y F9(\))2553 818 y Ga(P)e F4(\))970
b Gg(\(1\))729 1005 y FL(And)884 1019 y Gc(I)924 1005
y F4(\()959 993 y FX(h)986 1005 y Ga(a)1034 993 y FX(i)1062
1005 y Ga(M)10 b(;)1200 993 y FX(h)1228 1005 y Ga(b)1267
993 y FX(i)1294 1005 y Ga(N)g(;)15 b(c)p F4(\))p Fs(^)r
Ga(\033)s Fs(_)1660 954 y F5(def)1667 1005 y F4(=)54
b FL(And)1946 968 y Gc(i)1946 1028 y(E)2006 1005 y F4(\()2041
993 y FX(h)2069 1005 y Ga(c)2108 993 y FX(i)2135 1005
y FL(And)2290 1019 y Gc(I)2330 1005 y F4(\()2365 993
y FX(h)2393 1005 y Ga(a)2441 993 y FX(i)2468 1005 y Ga(M)10
b Fs(^)q Ga(\033)s Fs(_)q Ga(;)2727 993 y FX(h)2754 1005
y Ga(b)2793 993 y FX(i)2821 1005 y Ga(N)g Fs(^)p Ga(\033)s
Fs(_)q Ga(;)15 b(c)p F4(\))q Ga(;)3179 993 y F9(\()3207
1005 y Ga(x)3259 993 y F9(\))3286 1005 y Ga(P)e F4(\))237
b Gg(\(2\))489 1236 y Gb(Let)23 b Fs(^)q FO(\033)s Fs(_)g
Gb(be)g(of)h(the)e(f)n(orm)i Fs(^)p Fo(Or)1505 1250 y
Fy(E)1569 1236 y FD(\()1610 1224 y Fz(h)1641 1236 y FO(c)1688
1224 y Fz(i)p 1720 1236 V 1735 1236 V 1750 1236 V 1777
1236 a FO(;)1824 1224 y Fx(\()1856 1236 y FO(x)1916 1224
y Fx(\))1947 1236 y FO(P)14 b(;)2074 1224 y Fx(\()2105
1236 y FO(y)2162 1224 y Fx(\))2194 1236 y FO(Q)p FD(\))p
Fs(_)p Gb(,)23 b(then:)1222 1423 y FL(Id)p F4(\()p Ga(y)s(;)15
b(c)p F4(\))p Fs(^)r Ga(\033)s Fs(_)1660 1372 y F5(def)1667
1423 y F4(=)54 b FL(Or)1891 1437 y Gc(E)1951 1423 y F4(\()1986
1411 y FX(h)2013 1423 y Ga(c)2052 1411 y FX(i)2080 1423
y FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p F4(\))r Ga(;)2391
1411 y F9(\()2419 1423 y Ga(x)2471 1411 y F9(\))2498
1423 y Ga(P)e(;)2609 1411 y F9(\()2637 1423 y Ga(y)2685
1411 y F9(\))2712 1423 y Ga(Q)p F4(\))810 b Gg(\(3\))1002
1610 y FL(Or)1101 1573 y Gc(i)1101 1633 y(I)1141 1610
y F4(\()1176 1598 y FX(h)1204 1610 y Ga(a)1252 1598 y
FX(i)1279 1610 y Ga(M)10 b(;)15 b(c)p F4(\))p Fs(^)r
Ga(\033)s Fs(_)1660 1559 y F5(def)1667 1610 y F4(=)54
b FL(Or)1891 1624 y Gc(E)1951 1610 y F4(\()1986 1598
y FX(h)2013 1610 y Ga(c)2052 1598 y FX(i)2080 1610 y
FL(Or)2179 1573 y Gc(i)2179 1633 y(I)2219 1610 y F4(\()2254
1598 y FX(h)2282 1610 y Ga(a)2330 1598 y FX(i)2358 1610
y Ga(M)10 b Fs(^)p Ga(\033)s Fs(_)q Ga(;)15 b(c)p F4(\))q
Ga(;)2731 1598 y F9(\()2759 1610 y Ga(x)2811 1598 y F9(\))2838
1610 y Ga(P)e(;)2949 1598 y F9(\()2977 1610 y Ga(y)3025
1598 y F9(\))3052 1610 y Ga(Q)p F4(\))470 b Gg(\(4\))489
1841 y Gb(Let)23 b Fs(^)q FO(\033)s Fs(_)g Gb(be)g(of)h(the)e(f)n(orm)i
Fs(^)p Fo(Imp)1557 1863 y Fy(E)1622 1841 y FD(\()1663
1829 y Fz(h)1694 1841 y FO(c)1741 1829 y Fz(i)p 1772
1841 V 1787 1841 V 1803 1841 V 1830 1841 a FO(;)1876
1829 y Fz(h)1908 1841 y FO(b)1955 1829 y Fz(i)1987 1841
y FO(P)14 b(;)2114 1829 y Fx(\()2145 1841 y FO(x)2205
1829 y Fx(\))2237 1841 y FO(Q)p FD(\))p Fs(_)p Gb(,)22
b(then:)1222 2028 y FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p
F4(\))p Fs(^)r Ga(\033)s Fs(_)1660 1977 y F5(def)1667
2028 y F4(=)54 b FL(Imp)1936 2050 y Gc(E)1996 2028 y
F4(\()2031 2016 y FX(h)2059 2028 y Ga(c)2098 2016 y FX(i)2125
2028 y FL(Id)q F4(\()p Ga(y)s(;)15 b(c)p F4(\))q Ga(;)2436
2016 y FX(h)2464 2028 y Ga(b)2503 2016 y FX(i)2530 2028
y Ga(P)e(;)2641 2016 y F9(\()2669 2028 y Ga(x)2721 2016
y F9(\))2748 2028 y Ga(Q)p F4(\))774 b Gg(\(5\))850 2215
y FL(Imp)994 2237 y Gc(I)1034 2215 y F4(\()1069 2203
y F9(\()1097 2215 y Ga(x)1149 2203 y F9(\))p FX(h)1204
2215 y Ga(a)1252 2203 y FX(i)1279 2215 y Ga(M)10 b(;)15
b(c)p F4(\))p Fs(^)r Ga(\033)s Fs(_)1660 2164 y F5(def)1667
2215 y F4(=)54 b FL(Imp)1936 2237 y Gc(E)1996 2215 y
F4(\()2031 2203 y FX(h)2059 2215 y Ga(c)2098 2203 y FX(i)2125
2215 y FL(Imp)2270 2237 y Gc(I)2310 2215 y F4(\()2345
2203 y F9(\()2373 2215 y Ga(x)2425 2203 y F9(\))p FX(h)2479
2215 y Ga(a)2527 2203 y FX(i)2555 2215 y Ga(M)10 b Fs(^)p
Ga(\033)s Fs(_)q Ga(;)15 b(c)p F4(\))q Ga(;)2928 2203
y FX(h)2956 2215 y Ga(b)2995 2203 y FX(i)3023 2215 y
Ga(P)e(;)3134 2203 y F9(\()3161 2215 y Ga(x)3213 2203
y F9(\))3241 2215 y Ga(Q)p F4(\))281 b Gg(\(6\))489 2446
y Gb(Let)23 b Fs(^)q FO(\033)s Fs(_)g Gb(be)g(of)h(the)e(f)n(orm)i
Fs(^)p Fo(Not)1556 2460 y Fy(E)1621 2446 y FD(\()1662
2434 y Fz(h)1693 2446 y FO(c)1740 2434 y Fz(i)p 1771
2446 V 1786 2446 V 1802 2446 V 1829 2446 a FO(;)1875
2434 y Fz(h)1907 2446 y FO(b)1954 2434 y Fz(i)1986 2446
y FO(P)14 b FD(\))p Fs(_)p Gb(,)23 b(then:)1222 2633
y FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s
Fs(_)1660 2582 y F5(def)1667 2633 y F4(=)54 b FL(Not)1934
2647 y Gc(E)1994 2633 y F4(\()2029 2621 y FX(h)2057 2633
y Ga(c)2096 2621 y FX(i)2124 2633 y FL(Id)p F4(\()p Ga(y)s(;)15
b(c)p F4(\))q Ga(;)2434 2621 y FX(h)2462 2633 y Ga(b)2501
2621 y FX(i)2528 2633 y Ga(P)e F4(\))995 b Gg(\(7\))954
2820 y FL(Not)1097 2834 y Gc(I)1137 2820 y F4(\()1172
2808 y F9(\()1200 2820 y Ga(x)1252 2808 y F9(\))1279
2820 y Ga(M)10 b(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s
Fs(_)1660 2769 y F5(def)1667 2820 y F4(=)54 b FL(Not)1934
2834 y Gc(E)1994 2820 y F4(\()2029 2808 y FX(h)2057 2820
y Ga(c)2096 2808 y FX(i)2124 2820 y FL(Not)2266 2834
y Gc(I)2306 2820 y F4(\()2341 2808 y F9(\()2369 2820
y Ga(x)2421 2808 y F9(\))2448 2820 y Ga(M)10 b Fs(^)q
Ga(\033)s Fs(_)q Ga(;)15 b(c)p F4(\))q Ga(;)2822 2808
y FX(h)2850 2820 y Ga(b)2889 2808 y FX(i)2916 2820 y
Ga(P)e F4(\))607 b Gg(\(8\))489 3028 y Gb(Otherwise:)1213
3168 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))p Fs(^)r
Ga(\033)s Fs(_)1660 3116 y F5(def)1667 3168 y F4(=)54
b FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))729 3355 y FL(And)884
3369 y Gc(I)924 3355 y F4(\()959 3343 y FX(h)986 3355
y Ga(a)1034 3343 y FX(i)1062 3355 y Ga(M)10 b(;)1200
3343 y FX(h)1228 3355 y Ga(b)1267 3343 y FX(i)1294 3355
y Ga(N)g(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s Fs(_)1660
3303 y F5(def)1667 3355 y F4(=)54 b FL(And)1946 3369
y Gc(I)1986 3355 y F4(\()2021 3343 y FX(h)2049 3355 y
Ga(a)2097 3343 y FX(i)2140 3355 y Ga(M)10 b Fs(^)p Ga(\033)s
Fs(_)q Ga(;)2398 3343 y FX(h)2426 3355 y Ga(b)2465 3343
y FX(i)2507 3355 y Ga(N)g Fs(^)q Ga(\033)s Fs(_)p Ga(;)15
b(c)p F4(\))776 3542 y FL(And)931 3505 y Gc(i)931 3565
y(E)990 3542 y F4(\()1025 3530 y FX(h)1053 3542 y Ga(a)1101
3530 y FX(i)1129 3542 y Ga(M)10 b(;)1267 3530 y F9(\()1295
3542 y Ga(x)1347 3530 y F9(\))1374 3542 y Ga(N)g F4(\))p
Fs(^)q Ga(\033)s Fs(_)1660 3490 y F5(def)1667 3542 y
F4(=)54 b FL(And)1946 3505 y Gc(i)1946 3565 y(E)2006
3542 y F4(\()2041 3530 y FX(h)2069 3542 y Ga(a)2117 3530
y FX(i)2159 3542 y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)q
Ga(;)2418 3530 y F9(\()2445 3542 y Ga(x)2497 3530 y F9(\))2540
3542 y Ga(N)g Fs(^)p Ga(\033)s Fs(_)q F4(\))1002 3729
y FL(Or)1101 3692 y Gc(i)1101 3752 y(I)1141 3729 y F4(\()1176
3717 y FX(h)1204 3729 y Ga(a)1252 3717 y FX(i)1279 3729
y Ga(M)h(;)k(b)p F4(\))p Fs(^)q Ga(\033)s Fs(_)1660 3677
y F5(def)1667 3729 y F4(=)54 b FL(Or)1891 3692 y Gc(i)1891
3752 y(I)1931 3729 y F4(\()1966 3717 y FX(h)1994 3729
y Ga(a)2042 3717 y FX(i)2084 3729 y Ga(M)10 b Fs(^)q
Ga(\033)s Fs(_)q Ga(;)15 b(b)p F4(\))617 3916 y FL(Or)717
3930 y Gc(E)776 3916 y F4(\()811 3904 y FX(h)839 3916
y Ga(a)887 3904 y FX(i)915 3916 y Ga(M)10 b(;)1053 3904
y F9(\()1081 3916 y Ga(x)1133 3904 y F9(\))1160 3916
y Ga(N)g(;)1283 3904 y F9(\()1311 3916 y Ga(y)1359 3904
y F9(\))1386 3916 y Ga(P)j F4(\))p Fs(^)q Ga(\033)s Fs(_)1660
3864 y F5(def)1667 3916 y F4(=)54 b FL(Or)1891 3930 y
Gc(E)1951 3916 y F4(\()1986 3904 y FX(h)2013 3916 y Ga(a)2061
3904 y FX(i)2104 3916 y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)p
Ga(;)2362 3904 y F9(\()2390 3916 y Ga(x)2442 3904 y F9(\))2485
3916 y Ga(N)g Fs(^)p Ga(\033)s Fs(_)q Ga(;)2728 3904
y F9(\()2756 3916 y Ga(y)2804 3904 y F9(\))2846 3916
y Ga(P)j Fs(^)q Ga(\033)s Fs(_)p F4(\))850 4103 y FL(Imp)994
4125 y Gc(I)1034 4103 y F4(\()1069 4091 y F9(\()1097
4103 y Ga(x)1149 4091 y F9(\))q FX(h)1204 4103 y Ga(a)1252
4091 y FX(i)1279 4103 y Ga(M)e(;)k(b)p F4(\))p Fs(^)q
Ga(\033)s Fs(_)1660 4051 y F5(def)1667 4103 y F4(=)54
b FL(Imp)1936 4125 y Gc(I)1976 4103 y F4(\()2011 4091
y F9(\()2039 4103 y Ga(x)2091 4091 y F9(\))p FX(h)2146
4103 y Ga(a)2194 4091 y FX(i)2236 4103 y Ga(M)10 b Fs(^)q
Ga(\033)s Fs(_)q Ga(;)15 b(b)p F4(\))581 4290 y FL(Imp)725
4312 y Gc(E)785 4290 y F4(\()820 4278 y FX(h)848 4290
y Ga(a)896 4278 y FX(i)923 4290 y Ga(M)10 b(;)1061 4278
y FX(h)1089 4290 y Ga(b)1128 4278 y FX(i)1156 4290 y
Ga(N)g(;)1279 4278 y F9(\()1307 4290 y Ga(x)1359 4278
y F9(\))1386 4290 y Ga(P)j F4(\))p Fs(^)q Ga(\033)s Fs(_)1660
4238 y F5(def)1667 4290 y F4(=)54 b FL(Imp)1936 4312
y Gc(E)1996 4290 y F4(\()2031 4278 y FX(h)2059 4290 y
Ga(a)2107 4278 y FX(i)2149 4290 y Ga(M)10 b Fs(^)q Ga(\033)s
Fs(_)p Ga(;)2407 4278 y FX(h)2435 4290 y Ga(b)2474 4278
y FX(i)2517 4290 y Ga(N)g Fs(^)p Ga(\033)s Fs(_)q Ga(;)2760
4278 y F9(\()2788 4290 y Ga(x)2840 4278 y F9(\))2882
4290 y Ga(P)j Fs(^)q Ga(\033)s Fs(_)q F4(\))955 4477
y FL(Not)1097 4491 y Gc(I)1137 4477 y F4(\()1172 4465
y F9(\()1200 4477 y Ga(x)1252 4465 y F9(\))1279 4477
y Ga(M)e(;)k(b)p F4(\))p Fs(^)q Ga(\033)s Fs(_)1660 4425
y F5(def)1667 4477 y F4(=)54 b FL(Not)1934 4491 y Gc(I)1974
4477 y F4(\()2009 4465 y F9(\()2037 4477 y Ga(x)2089
4465 y F9(\))2132 4477 y Ga(M)10 b Fs(^)p Ga(\033)s Fs(_)q
Ga(;)15 b(b)p F4(\))801 4664 y FL(Not)944 4678 y Gc(E)1003
4664 y F4(\()1038 4652 y FX(h)1066 4664 y Ga(a)1114 4652
y FX(i)1142 4664 y Ga(M)10 b(;)1280 4652 y FX(h)1308
4664 y Ga(b)1347 4652 y FX(i)1374 4664 y Ga(N)g F4(\))p
Fs(^)q Ga(\033)s Fs(_)1660 4612 y F5(def)1667 4664 y
F4(=)54 b FL(Not)1934 4678 y Gc(E)1994 4664 y F4(\()2029
4652 y FX(h)2057 4664 y Ga(a)2105 4652 y FX(i)2147 4664
y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)q Ga(;)2406 4652 y
FX(h)2434 4664 y Ga(b)2473 4652 y FX(i)2515 4664 y Ga(N)g
Fs(^)q Ga(\033)s Fs(_)p F4(\))778 4851 y FL(Subst)o F4(\()1025
4839 y FX(h)1053 4851 y Ga(a)1101 4839 y FX(i)1129 4851
y Ga(M)g(;)1267 4839 y F9(\()1295 4851 y Ga(x)1347 4839
y F9(\))1374 4851 y Ga(N)g F4(\))p Fs(^)q Ga(\033)s Fs(_)1660
4799 y F5(def)1667 4851 y F4(=)54 b FL(Subst)o F4(\()2039
4839 y FX(h)2067 4851 y Ga(a)2115 4839 y FX(i)2157 4851
y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)q Ga(;)2416 4839 y
F9(\()2443 4851 y Ga(x)2495 4839 y F9(\))2538 4851 y
Ga(N)g Fs(^)p Ga(\033)s Fs(_)q F4(\))p 3965 4986 4 4510
v 277 4989 3691 4 v Black 916 5142 a Gg(Figure)24 b(3.10:)30
b(Proof)23 b(substitution)k(in)d(natural)h(deduction)h(I.)p
Black Black Black Black eop end
%%Page: 92 104
TeXDict begin 92 103 bop Black -144 51 a Gb(92)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black -144 934 V
-144 4528 4 3594 v 142 1085 a(Let)g Fs(\()p FO(\033)s
Fs(\))h Gb(be)f(of)g(the)g(f)n(orm)h Fs(\()-7 b FO(x)29
b FD(:=)1271 1073 y Fz(h)1303 1085 y FO(c)1350 1073 y
Fz(i)1381 1085 y FO(P)7 b Fs(\))q Gb(,)22 b(then:)767
1272 y FL(Id)q F4(\()p Ga(x;)15 b(a)p F4(\))p Fs(\()q
Ga(\033)s Fs(\))1218 1221 y F5(def)1225 1272 y F4(=)54
b Ga(P)13 b F4([)p Ga(c)d F6(7!)g Ga(a)p F4(])1465 b
Gg(\(1\))142 1480 y Gb(Let)23 b Fs(\()p FO(\033)s Fs(\))h
Gb(be)f(of)g(the)g(f)n(orm)h Fs(\()-7 b FO(c)29 b FD(:=)1258
1468 y Fx(\()1290 1480 y FO(x)1350 1468 y Fx(\))1381
1480 y FO(P)7 b Fs(\))q Gb(,)22 b(then:)776 1667 y FL(Id)p
F4(\()p Ga(x;)15 b(c)p F4(\))p Fs(\()r Ga(\033)s Fs(\))1218
1615 y F5(def)1225 1667 y F4(=)54 b Ga(P)13 b F4([)p
Ga(y)g F6(7!)d Ga(x)p F4(])1452 b Gg(\(2\))287 1854 y
FL(And)442 1868 y Gc(I)482 1854 y F4(\()517 1842 y FX(h)545
1854 y Ga(a)593 1842 y FX(i)620 1854 y Ga(M)10 b(;)758
1842 y FX(h)786 1854 y Ga(b)825 1842 y FX(i)853 1854
y Ga(N)g(;)15 b(c)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218
1802 y F5(def)1225 1854 y F4(=)54 b FL(Subst)o F4(\()1597
1842 y FX(h)1625 1854 y Ga(c)1664 1842 y FX(i)1692 1854
y FL(And)1846 1868 y Gc(I)1886 1854 y F4(\()1921 1842
y FX(h)1949 1854 y Ga(a)1997 1842 y FX(i)2025 1854 y
Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)2283 1842 y
FX(h)2311 1854 y Ga(b)2350 1842 y FX(i)2377 1854 y Ga(N)g
Fs(\()q Ga(\033)s Fs(\))p Ga(;)15 b(c)p F4(\))q Ga(;)2735
1842 y F9(\()2763 1854 y Ga(y)2811 1842 y F9(\))2838
1854 y Ga(P)e F4(\))190 b Gg(\(3\))560 2041 y FL(Or)659
2004 y Gc(i)659 2064 y(I)699 2041 y F4(\()734 2029 y
FX(h)762 2041 y Ga(a)810 2029 y FX(i)837 2041 y Ga(M)11
b(;)k(c)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218 1989 y
F5(def)1225 2041 y F4(=)54 b FL(Subst)o F4(\()1597 2029
y FX(h)1625 2041 y Ga(c)1664 2029 y FX(i)1692 2041 y
FL(Or)1791 2004 y Gc(i)1791 2064 y(I)1831 2041 y F4(\()1866
2029 y FX(h)1894 2041 y Ga(a)1942 2029 y FX(i)1969 2041
y Ga(M)10 b Fs(\()q Ga(\033)s Fs(\))q Ga(;)15 b(c)p F4(\))q
Ga(;)2343 2029 y F9(\()2370 2041 y Ga(y)2418 2029 y F9(\))2446
2041 y Ga(P)e F4(\))582 b Gg(\(4\))408 2228 y FL(Imp)552
2250 y Gc(I)592 2228 y F4(\()627 2216 y F9(\()655 2228
y Ga(x)707 2216 y F9(\))q FX(h)762 2228 y Ga(a)810 2216
y FX(i)837 2228 y Ga(M)11 b(;)k(c)p F4(\))p Fs(\()q Ga(\033)s
Fs(\))1218 2176 y F5(def)1225 2228 y F4(=)54 b FL(Subst)o
F4(\()1597 2216 y FX(h)1625 2228 y Ga(c)1664 2216 y FX(i)1692
2228 y FL(Imp)1836 2250 y Gc(I)1876 2228 y F4(\()1911
2216 y F9(\()1939 2228 y Ga(x)1991 2216 y F9(\))p FX(h)2046
2228 y Ga(a)2094 2216 y FX(i)2121 2228 y Ga(M)10 b Fs(\()q
Ga(\033)s Fs(\))q Ga(;)15 b(c)p F4(\))q Ga(;)2495 2216
y F9(\()2523 2228 y Ga(y)2571 2216 y F9(\))2598 2228
y Ga(P)e F4(\))430 b Gg(\(5\))513 2415 y FL(Not)655 2429
y Gc(I)695 2415 y F4(\()730 2403 y F9(\()758 2415 y Ga(x)810
2403 y F9(\))837 2415 y Ga(M)11 b(;)k(c)p F4(\))p Fs(\()q
Ga(\033)s Fs(\))1218 2363 y F5(def)1225 2415 y F4(=)54
b FL(Subst)o F4(\()1597 2403 y FX(h)1625 2415 y Ga(c)1664
2403 y FX(i)1692 2415 y FL(Not)1835 2429 y Gc(I)1874
2415 y F4(\()1909 2403 y F9(\()1937 2415 y Ga(x)1989
2403 y F9(\))2017 2415 y Ga(M)10 b Fs(\()p Ga(\033)s
Fs(\))q Ga(;)15 b(c)p F4(\))q Ga(;)2390 2403 y F9(\()2418
2415 y Ga(y)2466 2403 y F9(\))2493 2415 y Ga(P)e F4(\))535
b Gg(\(6\))142 2599 y Gb(Otherwise:)771 2738 y FL(Id)q
F4(\()p Ga(y)s(;)15 b(a)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218
2687 y F5(def)1225 2738 y F4(=)54 b FL(Id)p F4(\()p Ga(y)s(;)15
b(a)p F4(\))287 2925 y FL(And)442 2939 y Gc(I)482 2925
y F4(\()517 2913 y FX(h)545 2925 y Ga(a)593 2913 y FX(i)620
2925 y Ga(M)10 b(;)758 2913 y FX(h)786 2925 y Ga(b)825
2913 y FX(i)853 2925 y Ga(N)g(;)15 b(c)p F4(\))p Fs(\()q
Ga(\033)s Fs(\))1218 2874 y F5(def)1225 2925 y F4(=)54
b FL(And)1505 2939 y Gc(I)1545 2925 y F4(\()1580 2913
y FX(h)1607 2925 y Ga(a)1655 2913 y FX(i)1698 2925 y
Ga(M)10 b Fs(\()q Ga(\033)s Fs(\))p Ga(;)1956 2913 y
FX(h)1984 2925 y Ga(b)2023 2913 y FX(i)2066 2925 y Ga(N)g
Fs(\()p Ga(\033)s Fs(\))q Ga(;)15 b(c)p F4(\))335 3112
y FL(And)489 3076 y Gc(i)489 3136 y(E)549 3112 y F4(\()584
3100 y FX(h)612 3112 y Ga(a)660 3100 y FX(i)687 3112
y Ga(M)10 b(;)825 3100 y F9(\()853 3112 y Ga(x)905 3100
y F9(\))932 3112 y Ga(N)g F4(\))p Fs(\()q Ga(\033)s Fs(\))1218
3061 y F5(def)1225 3112 y F4(=)54 b FL(And)1505 3076
y Gc(i)1505 3136 y(E)1564 3112 y F4(\()1599 3100 y FX(h)1627
3112 y Ga(a)1675 3100 y FX(i)1718 3112 y Ga(M)10 b Fs(\()p
Ga(\033)s Fs(\))q Ga(;)1976 3100 y F9(\()2004 3112 y
Ga(x)2056 3100 y F9(\))2098 3112 y Ga(N)g Fs(\()q Ga(\033)s
Fs(\))p F4(\))560 3300 y FL(Or)660 3263 y Gc(i)660 3323
y(I)700 3300 y F4(\()735 3288 y FX(h)762 3300 y Ga(a)810
3288 y FX(i)838 3300 y Ga(M)g(;)15 b(b)p F4(\))p Fs(\()q
Ga(\033)s Fs(\))1218 3248 y F5(def)1225 3300 y F4(=)54
b FL(Or)1449 3263 y Gc(i)1449 3323 y(I)1489 3300 y F4(\()1524
3288 y FX(h)1552 3300 y Ga(a)1600 3288 y FX(i)1643 3300
y Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)15 b(b)p F4(\))176
3487 y FL(Or)275 3501 y Gc(E)335 3487 y F4(\()370 3475
y FX(h)397 3487 y Ga(a)445 3475 y FX(i)473 3487 y Ga(M)10
b(;)611 3475 y F9(\()639 3487 y Ga(x)691 3475 y F9(\))718
3487 y Ga(N)g(;)841 3475 y F9(\()869 3487 y Ga(y)917
3475 y F9(\))944 3487 y Ga(P)j F4(\))p Fs(\()q Ga(\033)s
Fs(\))1218 3435 y F5(def)1225 3487 y F4(=)54 b FL(Or)1449
3501 y Gc(E)1509 3487 y F4(\()1544 3475 y FX(h)1572 3487
y Ga(a)1620 3475 y FX(i)1662 3487 y Ga(M)10 b Fs(\()q
Ga(\033)s Fs(\))q Ga(;)1921 3475 y F9(\()1949 3487 y
Ga(x)2001 3475 y F9(\))2043 3487 y Ga(N)g Fs(\()p Ga(\033)s
Fs(\))q Ga(;)2286 3475 y F9(\()2314 3487 y Ga(y)2362
3475 y F9(\))2404 3487 y Ga(P)j Fs(\()q Ga(\033)s Fs(\))q
F4(\))408 3674 y FL(Imp)553 3695 y Gc(I)593 3674 y F4(\()628
3662 y F9(\()655 3674 y Ga(x)707 3662 y F9(\))q FX(h)762
3674 y Ga(a)810 3662 y FX(i)838 3674 y Ga(M)d(;)15 b(b)p
F4(\))p Fs(\()q Ga(\033)s Fs(\))1218 3622 y F5(def)1225
3674 y F4(=)54 b FL(Imp)1495 3695 y Gc(I)1535 3674 y
F4(\()1570 3662 y F9(\()1597 3674 y Ga(x)1649 3662 y
F9(\))q FX(h)1704 3674 y Ga(a)1752 3662 y FX(i)1795 3674
y Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)15 b(b)p F4(\))139
3861 y FL(Imp)284 3882 y Gc(E)343 3861 y F4(\()378 3849
y FX(h)406 3861 y Ga(a)454 3849 y FX(i)482 3861 y Ga(M)10
b(;)620 3849 y FX(h)648 3861 y Ga(b)687 3849 y FX(i)714
3861 y Ga(N)g(;)837 3849 y F9(\()865 3861 y Ga(x)917
3849 y F9(\))944 3861 y Ga(P)j F4(\))p Fs(\()q Ga(\033)s
Fs(\))1218 3809 y F5(def)1225 3861 y F4(=)54 b FL(Imp)1495
3882 y Gc(E)1554 3861 y F4(\()1589 3849 y FX(h)1617 3861
y Ga(a)1665 3849 y FX(i)1708 3861 y Ga(M)10 b Fs(\()p
Ga(\033)s Fs(\))q Ga(;)1966 3849 y FX(h)1994 3861 y Ga(b)2033
3849 y FX(i)2075 3861 y Ga(N)g Fs(\()q Ga(\033)s Fs(\))p
Ga(;)2318 3849 y F9(\()2346 3861 y Ga(x)2398 3849 y F9(\))2441
3861 y Ga(P)j Fs(\()p Ga(\033)s Fs(\))q F4(\))513 4048
y FL(Not)656 4062 y Gc(I)696 4048 y F4(\()731 4036 y
F9(\()758 4048 y Ga(x)810 4036 y F9(\))838 4048 y Ga(M)d(;)15
b(b)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218 3996 y F5(def)1225
4048 y F4(=)54 b FL(Not)1493 4062 y Gc(I)1533 4048 y
F4(\()1568 4036 y F9(\()1596 4048 y Ga(x)1648 4036 y
F9(\))1690 4048 y Ga(M)10 b Fs(\()q Ga(\033)s Fs(\))p
Ga(;)15 b(b)p F4(\))359 4235 y FL(Not)502 4249 y Gc(E)562
4235 y F4(\()597 4223 y FX(h)624 4235 y Ga(a)672 4223
y FX(i)700 4235 y Ga(M)10 b(;)838 4223 y FX(h)866 4235
y Ga(b)905 4223 y FX(i)932 4235 y Ga(N)g F4(\))p Fs(\()q
Ga(\033)s Fs(\))1218 4183 y F5(def)1225 4235 y F4(=)54
b FL(Not)1493 4249 y Gc(E)1552 4235 y F4(\()1587 4223
y FX(h)1615 4235 y Ga(a)1663 4223 y FX(i)1706 4235 y
Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)1964 4223 y
FX(h)1992 4235 y Ga(b)2031 4223 y FX(i)2074 4235 y Ga(N)g
Fs(\()p Ga(\033)s Fs(\))q F4(\))337 4422 y FL(Subst)o
F4(\()584 4410 y FX(h)612 4422 y Ga(a)660 4410 y FX(i)687
4422 y Ga(M)g(;)825 4410 y F9(\()853 4422 y Ga(x)905
4410 y F9(\))932 4422 y Ga(N)g F4(\))p Fs(\()q Ga(\033)s
Fs(\))1218 4370 y F5(def)1225 4422 y F4(=)54 b FL(Subst)o
F4(\()1597 4410 y FX(h)1625 4422 y Ga(a)1673 4410 y FX(i)1716
4422 y Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)1974
4410 y F9(\()2002 4422 y Ga(x)2054 4410 y F9(\))2096
4422 y Ga(N)g Fs(\()q Ga(\033)s Fs(\))p F4(\))p 3543
4528 V -144 4531 3691 4 v Black 945 4684 a Gg(Figure)24
b(3.11:)30 b(Proof)23 b(substitution)k(in)d(natural)h(deduction)h(II.)p
Black Black Black Black eop end
%%Page: 93 105
TeXDict begin 93 104 bop Black 277 51 a Gb(3.4)23 b(The)g(Corr)n
(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(II)814
b(93)p 277 88 3691 4 v Black Black 277 365 a(De\002nition)23
b(3.3.9)g Gg(\(Substitution)k(Elimination\))p Gb(:)p
Black Black Black 463 555 a FL(Subst)p F4(\()711 543
y FX(h)738 555 y Ga(a)786 543 y FX(i)814 555 y Ga(M)10
b(;)952 543 y F9(\()980 555 y Ga(x)1032 543 y F9(\))1059
555 y Ga(N)g F4(\))1341 518 y Gc(\033)1277 555 y F6(\000)-31
b(\000)f(!)100 b Ga(M)10 b Fs(\()-6 b Ga(a)25 b F4(:=)1865
543 y F9(\()1892 555 y Ga(x)1944 543 y F9(\))1972 555
y Ga(M)s Fs(\))48 b Gg(if)24 b Ga(M)32 b Gg(does)25 b(not)f(freshly)h
(introduce)h Ga(a)p Gg(,)c(or)1341 655 y Gc(\033)1277
692 y F6(\000)-31 b(\000)f(!)115 b Ga(N)10 b Fs(\()-7
b Ga(x)26 b F4(:=)1869 680 y FX(h)1896 692 y Ga(a)1944
680 y FX(i)1972 692 y Ga(M)s Fs(\))418 937 y Gg(T)-7
b(o)23 b(sum)g(up)g(the)h(discussion)i(about)f(the)f(reduction)i(rules)
e(let)f(us)h(combine)g(them)g(in)f(the)h(de\002ni-)277
1050 y(tion)g(of)g(a)f(normalisation)k(procedure)f(for)d(classical)j
(natural)f(deduction)i(proofs.)p Black 277 1237 a Gb(De\002nition)c
(3.3.10)h Gg(\(Normalisation)i(for)e(Classical)h(Natural)f(Deduction)h
(Proofs\))p Gb(:)p Black 277 1350 a Gg(The)d(normalisation)j(procedure)
f(for)e(classical)i(natural)g(deduction)g(proofs,)g F4(\(K)p
Ga(;)2942 1313 y Gc(\024)2877 1350 y F6(\000)-31 b(\000)f(!)p
F4(\))p Gg(,)22 b(is)g(a)f(reduc-)277 1463 y(tion)j(system)h(where:)p
Black 414 1666 a F6(\017)p Black 45 w F4(K)e Gg(is)g(the)h(set)g(of)f
(well-typed)j(terms,)d(and)p Black 414 1853 a F6(\017)p
Black 569 1816 a Gc(\024)504 1853 y F6(\000)-31 b(\000)g(!)18
b Gg(consists)k(of)d(beta-reductions,)25 b(commuting)c(reductions)h
(and)e(reductions)i(to)e(eliminate)504 1966 y(substitutions;)28
b(that)c(is)1511 2056 y Gc(\024)1446 2093 y F6(\000)-31
b(\000)f(!)1642 2042 y F5(def)1649 2093 y F4(=)1815 2056
y Gc(\014)1752 2093 y F6(\000)g(\000)h(!)25 b([)2098
2056 y Gc(\015)2033 2093 y F6(\000)-31 b(\000)f(!)26
b([)2378 2056 y Gc(\033)2314 2093 y F6(\000)-31 b(\000)g(!)50
b Ga(:)277 2347 y Gg(W)-7 b(e)23 b(should)i(lik)o(e)f(to)g(state)g
(that)1349 2310 y Gc(\024)1284 2347 y F6(\000)-31 b(\000)f(!)23
b Gg(respects)j(the)d(subject)j(reduction)g(property)-6
b(.)p Black 277 2535 a Gb(Pr)n(oposition)33 b(3.3.11)f
Gg(\(Subject)h(Reduction\))p Gb(:)p Black 60 w Gg(Suppose)h
Ga(M)50 b F6(2)40 b F4(K)31 b Gg(with)h(the)g(typing)h(judgement)277
2648 y F4(\000)359 2636 y Gc(.)414 2648 y Ga(M)537 2636
y Gc(.)592 2648 y F4(\001)23 b Gg(and)h Ga(M)1033 2611
y Gc(\024)968 2648 y F6(\000)-31 b(\000)g(!)25 b Ga(N)10
b Gg(,)22 b(then)i Ga(N)36 b F6(2)24 b F4(K)f Gg(with)g(the)h(typing)h
(judgement)h F4(\000)2821 2636 y Gc(.)2876 2648 y Ga(N)2984
2636 y Gc(.)3039 2648 y F4(\001)o Gg(.)p Black 277 2885
a F7(Pr)l(oof.)p Black 46 w Gg(Analogous)g(to)d(proof)i(of)e
(Proposition)j(2.2.10.)p 3436 2885 4 62 v 3440 2827 55
4 v 3440 2885 V 3494 2885 4 62 v 277 3089 a(As)19 b(mentioned)i
(earlier)l(,)h(the)e(reduction)1627 3052 y Gc(\024)1562
3089 y F6(\000)-31 b(\000)f(!)19 b Gg(is)g(complete)i(in)e(the)h(sense)
h(that)f(to)f(e)n(v)o(ery)h(non-normal)277 3202 y(natural)28
b(deduction)i(proof)e(a)e(reduction)j(rule)e(can)g(be)g(applied.)40
b(T)-7 b(o)25 b(sho)n(w)i(that)g(e)n(v)o(ery)g(non-normal)277
3315 y(natural)33 b(deduction)h(proof)f(can)f(be)f(reduced)j(to)d(a)g
(normal)h(one,)i(we)d(ha)n(v)o(e)h(to)f(sho)n(w)h(that)3305
3278 y Gc(\024)3241 3315 y F6(\000)-32 b(\000)h(!)31
b Gg(is)277 3428 y(terminating.)i(This)24 b(is)g(what)g(we)f(shall)i
(do)f(ne)o(xt)g(by)h(sho)n(wing)g(the)f(correspondence)29
b(between)3397 3391 y Gc(\024)3332 3428 y F6(\000)-31
b(\000)f(!)277 3541 y Gg(and)462 3503 y Gc(cut)431 3541
y F6(\000)h(\000)f(!)p Gg(.)277 3849 y Ge(3.4)119 b(The)48
b(Corr)n(espondence)i(between)f(Cut-Elimination)g(and)g(Nor)l(-)546
3999 y(malisation)29 b(II)277 4222 y Gg(In)h(this)g(section)i(we)d
(shall)h(sho)n(w)g(the)g(correspondence)35 b(between)30
b(normalisation)j(and)e(cut-elimi-)277 4335 y(nation)f(in)d(classical)j
(logic.)43 b(A)27 b(byproduct,)32 b(we)27 b(shall)i(sho)n(w)e(that)2500
4298 y Gc(\024)2435 4335 y F6(\000)-31 b(\000)f(!)27
b Gg(is)h(strongly)i(normalising.)277 4448 y(The)d(lengthy)i(part)f(in)
f(this)h(proof)h(is)e(to)g(establish)j(the)e(correspondence)k(between)c
(the)g(proof)h(sub-)277 4561 y(stitutions)d Fs(^)p 668
4561 28 4 v 685 4561 V 703 4561 V 65 w(_)q Gg(,)c Fs(\()p
843 4561 V 860 4561 V 878 4561 V 65 w(\))h Gg(and)h F4([)p
1141 4561 V 1159 4561 V 1177 4561 V 65 w(])p Gg(.)k(This)c(is)f(what)h
(we)e(shall)j(do)e(\002rst.)p Black 277 4749 a Gb(Lemma)g(3.4.1:)p
Black 34 w Gg(F)o(or)g(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25
b F4(K)p Gg(,)57 b F6(j)p Ga(M)10 b F6(j)1731 4716 y
Fu(S)1775 4749 y F4([)p Ga(a)26 b F4(:=)1995 4737 y F9(\()2023
4749 y Ga(x)2075 4737 y F9(\))2102 4749 y F6(j)p Ga(N)10
b F6(j)2235 4716 y Fu(S)2279 4749 y F4(])25 b F6(\021)g(j)p
Ga(M)10 b Fs(\()-6 b Ga(a)25 b F4(:=)2769 4737 y F9(\()2796
4749 y Ga(x)2848 4737 y F9(\))2875 4749 y Ga(N)s Fs(\))q
F6(j)3009 4716 y Fu(S)3052 4749 y Gg(.)p Black 277 4961
a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(induction)j(on)d(the)h
(structure)i(of)d Ga(M)33 b Gg(\(see)24 b(P)o(age)f(161\).)p
3436 4961 4 62 v 3440 4903 55 4 v 3440 4961 V 3494 4961
4 62 v Black 277 5149 a Gb(Lemma)g(3.4.2:)p Black 34
w Gg(F)o(or)g(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25 b
F4(K)p Gg(,)57 b F6(j)p Ga(M)10 b F6(j)1731 5116 y Fu(S)1775
5149 y F4([)p Ga(x)26 b F4(:=)1999 5137 y FX(h)2027 5149
y Ga(a)2075 5137 y FX(i)2102 5149 y F6(j)p Ga(N)10 b
F6(j)2235 5116 y Fu(S)2279 5149 y F4(])2360 5112 y Gc(cut)2329
5149 y F6(\000)-31 b(\000)g(!)2500 5116 y FX(\003)2564
5149 y F6(j)p Ga(M)10 b Fs(\()-6 b Ga(x)25 b F4(:=)2911
5137 y FX(h)2939 5149 y Ga(a)2987 5137 y FX(i)3014 5149
y Ga(N)s Fs(\))q F6(j)3148 5116 y Fu(S)3191 5149 y Gg(.)p
Black 277 5361 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(induction)j(on)d
(the)h(structure)i(of)d Ga(M)33 b Gg(\(see)24 b(P)o(age)f(161\).)p
3436 5361 V 3440 5303 55 4 v 3440 5361 V 3494 5361 4
62 v Black Black eop end
%%Page: 94 106
TeXDict begin 94 105 bop Black -144 51 a Gb(94)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(Lemma)f(3.4.3:)p
Black 34 w Gg(F)o(or)f(all)h Ga(M)5 b(;)15 b(N)5 b(;)15
b(P)s(;)g(Q)27 b F6(2)d F4(K)d Gg(with)h Ga(z)30 b F6(62)25
b Ga(F)13 b(N)d F4(\()2302 353 y F9(\()2330 365 y Ga(x)2382
353 y F9(\))2409 365 y F6(j)p Ga(N)g F6(j)2542 332 y
Fu(S)2586 365 y Ga(;)2626 353 y F9(\()2654 365 y Ga(y)2702
353 y F9(\))2729 365 y F6(j)p Ga(P)j F6(j)2850 332 y
Fu(S)2894 365 y Ga(;)2934 353 y FX(h)2962 365 y Ga(b)3001
353 y FX(i)3028 365 y F6(j)p Ga(Q)p F6(j)3150 332 y Fu(S)3194
365 y F4(\))22 b Gg(we)f(ha)n(v)o(e)p Black Black 840
637 a F6(j)p Ga(M)10 b F6(j)988 604 y Fu(S)1032 637 y
F4([)p Ga(a)26 b F4(:=)1252 625 y F9(\()1279 637 y Ga(z)1325
625 y F9(\))1353 637 y FL(And)1508 600 y Gc(i)1508 660
y(L)1560 637 y F4(\()1595 625 y F9(\()1623 637 y Ga(x)1675
625 y F9(\))1717 637 y F6(j)p Ga(N)10 b F6(j)1850 604
y Fu(S)1894 637 y Ga(;)15 b(z)t F4(\))q(])43 b F6(\021)f(j)p
Ga(M)10 b Fs(^)q FL(And)2507 600 y Gc(i)2507 660 y(E)2567
637 y F4(\()2602 625 y FX(h)2630 637 y Ga(a)2678 625
y FX(i)p 2707 637 28 4 v 2725 637 V 2743 637 V 2770 637
a Ga(;)2810 625 y F9(\()2838 637 y Ga(x)2890 625 y F9(\))2917
637 y Ga(N)g F4(\))p Fs(_)q F6(j)3093 604 y Fu(S)572
796 y F6(j)p Ga(M)g F6(j)720 763 y Fu(S)764 796 y F4([)p
Ga(a)26 b F4(:=)984 784 y F9(\()1012 796 y Ga(z)1058
784 y F9(\))1085 796 y FL(Or)1185 810 y Gc(L)1237 796
y F4(\()1272 784 y F9(\()1299 796 y Ga(x)1351 784 y F9(\))1394
796 y F6(j)p Ga(N)10 b F6(j)1527 763 y Fu(S)1571 796
y Ga(;)1611 784 y F9(\()1639 796 y Ga(y)1687 784 y F9(\))1729
796 y F6(j)p Ga(P)j F6(j)1850 763 y Fu(S)1894 796 y Ga(;)i(z)t
F4(\))q(])43 b F6(\021)f(j)p Ga(M)10 b Fs(^)q FL(Or)2452
810 y Gc(E)2512 796 y F4(\()2547 784 y FX(h)2574 796
y Ga(a)2622 784 y FX(i)p 2652 796 V 2670 796 V 2687 796
V 2714 796 a Ga(;)2754 784 y F9(\()2782 796 y Ga(x)2834
784 y F9(\))2862 796 y Ga(N)g(;)2985 784 y F9(\()3013
796 y Ga(y)3061 784 y F9(\))3088 796 y Ga(P)j F4(\))p
Fs(_)q F6(j)3252 763 y Fu(S)551 956 y F6(j)p Ga(M)d F6(j)699
923 y Fu(S)743 956 y F4([)p Ga(a)26 b F4(:=)963 944 y
F9(\()990 956 y Ga(z)1036 944 y F9(\))1064 956 y FL(Imp)1209
977 y Gc(L)1261 956 y F4(\()1296 944 y FX(h)1324 956
y Ga(b)1363 944 y FX(i)1405 956 y F6(j)p Ga(Q)p F6(j)1527
923 y Fu(S)1571 956 y Ga(;)1611 944 y F9(\()1639 956
y Ga(y)1687 944 y F9(\))1729 956 y F6(j)p Ga(P)13 b F6(j)1850
923 y Fu(S)1894 956 y Ga(;)i(z)t F4(\))q(])43 b F6(\021)f(j)p
Ga(M)10 b Fs(^)q FL(Imp)2497 977 y Gc(E)2557 956 y F4(\()2592
944 y FX(h)2620 956 y Ga(a)2668 944 y FX(i)p 2697 956
V 2715 956 V 2732 956 V 2760 956 a Ga(;)2800 944 y FX(h)2828
956 y Ga(b)2867 944 y FX(i)2894 956 y Ga(Q;)3006 944
y F9(\()3034 956 y Ga(y)3082 944 y F9(\))3109 956 y Ga(P)j
F4(\))p Fs(_)q F6(j)3273 923 y Fu(S)876 1115 y F6(j)p
Ga(M)d F6(j)1024 1082 y Fu(S)1068 1115 y F4([)p Ga(a)26
b F4(:=)1288 1103 y F9(\()1315 1115 y Ga(z)1361 1103
y F9(\))1389 1115 y FL(Not)1532 1129 y Gc(L)1584 1115
y F4(\()1619 1103 y FX(h)1647 1115 y Ga(b)1686 1103 y
FX(i)1728 1115 y F6(j)p Ga(Q)p F6(j)1850 1082 y Fu(S)1894
1115 y Ga(;)15 b(z)t F4(\))q(])43 b F6(\021)f(j)p Ga(M)10
b Fs(^)q FL(Not)2496 1129 y Gc(E)2555 1115 y F4(\()2590
1103 y FX(h)2618 1115 y Ga(a)2666 1103 y FX(i)p 2696
1115 V 2713 1115 V 2731 1115 V 2758 1115 a Ga(;)2798
1103 y FX(h)2826 1115 y Ga(b)2865 1103 y FX(i)2892 1115
y Ga(Q)p F4(\))p Fs(_)q F6(j)3057 1082 y Fu(S)p Black
321 1325 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e
(the)f(structure)j(of)e Ga(M)32 b Gg(\(see)25 b(P)o(age)e(162\).)p
3480 1325 4 62 v 3484 1267 55 4 v 3484 1325 V 3538 1325
4 62 v 321 1543 a(No)n(w)31 b(we)g(are)h(in)f(a)h(position)i(to)d(sho)n
(w)h(that)g(under)h F6(j)p 2057 1543 28 4 v 2075 1543
V 2093 1543 V 65 w(j)2145 1510 y Fu(S)2220 1543 y Gg(e)n(v)o(ery)f
(normalisation)j(reduction)f(maps)321 1656 y(onto)25
b(a)e(series)h(of)g(cut-reductions.)p Black 321 1844
a Gb(Theor)n(em)g(3.4.4:)p Black 34 w Gg(F)o(or)f(all)g
Ga(M)5 b(;)15 b(N)36 b F6(2)25 b F4(K)p Gg(,)d(if)h Ga(M)1913
1807 y Gc(\024)1848 1844 y F6(\000)-31 b(\000)f(!)25
b Ga(N)10 b Gg(,)23 b(then)h F6(j)p Ga(M)10 b F6(j)2499
1811 y Fu(S)2599 1807 y Gc(cut)2568 1844 y F6(\000)-31
b(\000)f(!)2738 1811 y F9(+)2823 1844 y F6(j)p Ga(N)10
b F6(j)2956 1811 y Fu(S)2999 1844 y Gg(.)p Black 321
2057 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e(the)f
(de\002nition)j(of)1856 2019 y Gc(\024)1791 2057 y F6(\000)-31
b(\000)f(!)23 b Gg(\(see)h(P)o(age)f(163\).)p 3480 2057
4 62 v 3484 1999 55 4 v 3484 2057 V 3538 2057 4 62 v
321 2275 a(Since)e(we)e(ha)n(v)o(e)i(sho)n(wn)f(that)1331
2238 y Gc(\024)1266 2275 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)24
b(can)c(be)g(simulated)i(by)2629 2238 y Gc(cut)2599 2275
y F6(\000)-32 b(\000)h(!)p Gg(,)20 b(we)f(e)o(xpect)i(that)g(e)n(v)o
(ery)386 2350 y Gc(\024)321 2388 y F6(\000)-31 b(\000)g(!)p
Gg(-reduction)26 b(sequence)g(terminates.)k(This)24 b(is)f(indeed)i
(the)f(case.)p Black 321 2575 a Gb(Theor)n(em)g(3.4.5:)p
Black 34 w Gg(The)f(reduction)j(system)f F4(\(K)p Ga(;)1958
2538 y Gc(\024)1893 2575 y F6(\000)-31 b(\000)f(!)p F4(\))23
b Gg(is)h(strongly)h(normalising.)p Black 321 2788 a
F7(Pr)l(oof)o(.)p Black 34 w Gg(By)i(Theorem)i(3.4.4)f(we)g(kno)n(w)g
(that)h(e)n(v)o(ery)g(reduction)h(sequence)h(of)2927
2751 y Gc(\024)2862 2788 y F6(\000)-31 b(\000)g(!)27
b Gg(maps)h(to)h(a)e(re-)321 2901 y(duction)f(sequence)g(of)1102
2864 y Gc(cut)1071 2901 y F6(\000)-31 b(\000)g(!)o Gg(.)29
b(Because)24 b F4(\()p FY(T)t Ga(;)1782 2864 y Gc(cut)1751
2901 y F6(\000)-31 b(\000)f(!)p F4(\))23 b Gg(is)h(strongly)i
(normalising,)f F4(\(K)p Ga(;)3075 2864 y Gc(\024)3010
2901 y F6(\000)-31 b(\000)f(!)p F4(\))23 b Gg(must)h(be,)321
3014 y(too.)p 3480 3014 V 3484 2955 55 4 v 3484 3014
V 3538 3014 4 62 v 462 3232 a(W)-7 b(e)19 b(proceed)i(with)e(sho)n
(wing)h(the)g(correspondence)k(in)19 b(the)h(opposite)h(direction.)30
b(First)19 b(we)g(sho)n(w)321 3344 y(the)31 b(correspondence)36
b(between)31 b(the)g(proof)h(substitutions\227again)k(this)31
b(in)l(v)n(olv)o(es)i(rather)f(lengthy)321 3457 y(calculations.)p
Black 321 3645 a Gb(Lemma)23 b(3.4.6:)p Black 34 w Gg(F)o(or)g(all)h
Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)t Gg(,)54 b F6(j)p
Ga(M)10 b F6(j)1762 3612 y Fu(N)1817 3645 y Fs(\()-7
b Ga(x)25 b F4(:=)2040 3633 y FX(h)2068 3645 y Ga(a)2116
3633 y FX(i)2143 3645 y F6(j)p Ga(N)10 b F6(j)2276 3612
y Fu(N)2324 3645 y Fs(\))25 b F6(\021)g(j)p Ga(M)10 b
F4([)p Ga(x)26 b F4(:=)2824 3633 y FX(h)2852 3645 y Ga(a)2900
3633 y FX(i)2927 3645 y Ga(N)10 b F4(])p F6(j)3060 3612
y Fu(N)3115 3645 y Gg(.)p Black 321 3858 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)23 b(induction)j(on)e(the)f(structure)j(of)e
Ga(M)32 b Gg(\(see)25 b(P)o(age)e(163\).)p 3480 3858
V 3484 3799 55 4 v 3484 3858 V 3538 3858 4 62 v Black
321 4045 a Gb(Lemma)g(3.4.7:)p Black 34 w Gg(F)o(or)g(all)h
Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)t Gg(,)19 b(if)k
Ga(N)32 b Gg(freshly)26 b(introduces)g Ga(x)d Gg(and)h(is)f(not)h(an)g
(axiom,)f(then)p Black Black 1213 4293 a F6(j)p Ga(M)10
b F6(j)1361 4260 y Fu(N)1416 4293 y Fs(^)p Ga(N)1521
4308 y Fu(N)1575 4293 y Fs(_)1772 4256 y Gc(\024)1708
4293 y F6(\000)-32 b(\000)h(!)1878 4260 y FX(\003)2017
4293 y F6(j)p Ga(M)10 b F4([)p Ga(a)26 b F4(:=)2360 4281
y F9(\()2387 4293 y Ga(x)2439 4281 y F9(\))2467 4293
y Ga(N)10 b F4(])p F6(j)2600 4260 y Fu(N)321 4755 y Gg(where)24
b Ga(N)639 4770 y Fu(N)718 4755 y F6(\021)814 4514 y
FK(8)814 4596 y(>)814 4623 y(>)814 4651 y(<)814 4814
y(>)814 4841 y(>)814 4869 y(:)937 4586 y FL(And)1091
4549 y Gc(i)1091 4609 y(E)1151 4586 y F4(\()1186 4574
y FX(h)1214 4586 y Ga(a)1262 4574 y FX(i)p 1291 4586
28 4 v 1309 4586 V 1326 4586 V 1354 4586 a Ga(;)1394
4574 y F9(\()1421 4586 y Ga(y)1469 4574 y F9(\))1497
4586 y F6(j)p Ga(P)13 b F6(j)1618 4553 y Fu(N)1672 4586
y F4(\))937 4699 y FL(Or)1036 4713 y Gc(E)1096 4699 y
F4(\()1131 4687 y FX(h)1158 4699 y Ga(a)1206 4687 y FX(i)p
1236 4699 V 1253 4699 V 1271 4699 V 1298 4699 a Ga(;)1338
4687 y F9(\()1366 4699 y Ga(y)1414 4687 y F9(\))1441
4699 y F6(j)p Ga(P)g F6(j)1562 4666 y Fu(N)1617 4699
y Ga(;)1657 4687 y F9(\()1685 4699 y Ga(z)1731 4687 y
F9(\))1758 4699 y F6(j)p Ga(Q)p F6(j)1880 4666 y Fu(N)1935
4699 y F4(\))937 4812 y FL(Imp)1081 4834 y Gc(E)1141
4812 y F4(\()1176 4800 y FX(h)1204 4812 y Ga(a)1252 4800
y FX(i)p 1281 4812 V 1299 4812 V 1316 4812 V 1344 4812
a Ga(;)1384 4800 y FX(h)1411 4812 y Ga(b)1450 4800 y
FX(i)1478 4812 y F6(j)p Ga(P)g F6(j)1599 4779 y Fu(N)1653
4812 y Ga(;)1693 4800 y F9(\()1721 4812 y Ga(y)1769 4800
y F9(\))1796 4812 y F6(j)p Ga(Q)p F6(j)1918 4779 y Fu(N)1973
4812 y F4(\))937 4925 y FL(Not)1079 4939 y Gc(E)1139
4925 y F4(\()1174 4913 y FX(h)1202 4925 y Ga(a)1250 4913
y FX(i)p 1279 4925 V 1297 4925 V 1314 4925 V 1342 4925
a Ga(;)1382 4913 y FX(h)1410 4925 y Ga(b)1449 4913 y
FX(i)1476 4925 y F6(j)p Ga(P)g F6(j)1597 4892 y Fu(N)1652
4925 y F4(\))2082 4755 y Gg(pro)o(vided)26 b Ga(N)35
b F6(\021)2631 4514 y FK(8)2631 4596 y(>)2631 4623 y(>)2631
4651 y(<)2631 4814 y(>)2631 4841 y(>)2631 4869 y(:)2753
4586 y FL(And)2908 4550 y Gc(i)2908 4609 y(L)2960 4586
y F4(\()2995 4574 y F9(\()3023 4586 y Ga(y)3071 4574
y F9(\))3098 4586 y Ga(P)13 b(;)i(x)p F4(\))2753 4699
y FL(Or)2853 4713 y Gc(L)2905 4699 y F4(\()2940 4687
y F9(\()2968 4699 y Ga(y)3016 4687 y F9(\))3043 4699
y Ga(P)e(;)3154 4687 y F9(\()3182 4699 y Ga(z)3228 4687
y F9(\))3255 4699 y Ga(Q;)i(x)p F4(\))2753 4812 y FL(Imp)2898
4834 y Gc(L)2950 4812 y F4(\()2985 4800 y FX(h)3013 4812
y Ga(b)3052 4800 y FX(i)3079 4812 y Ga(P)e(;)3190 4800
y F9(\()3218 4812 y Ga(y)3266 4800 y F9(\))3293 4812
y Ga(Q;)i(x)p F4(\))2753 4925 y FL(Not)2896 4939 y Gc(L)2948
4925 y F4(\()2983 4913 y FX(h)3011 4925 y Ga(b)3050 4913
y FX(i)3077 4925 y Ga(P)e(;)i(x)p F4(\))p Black 321 5154
a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e(the)f
(structure)j(of)e Ga(M)32 b Gg(\(see)25 b(P)o(age)e(164\).)p
3480 5154 4 62 v 3484 5096 55 4 v 3484 5154 V 3538 5154
4 62 v Black Black eop end
%%Page: 95 107
TeXDict begin 95 106 bop Black 277 51 a Gb(3.5)23 b(Notes)3248
b(95)p 277 88 3691 4 v Black Black 277 365 a(Lemma)20
b(3.4.8:)p Black 34 w Gg(F)o(or)h(all)g Ga(M)5 b(;)15
b(N)35 b F6(2)25 b FY(T)t Gg(,)16 b(pro)o(vided)23 b
Ga(N)31 b Gg(does)21 b(not)h(freshly)g(introduce)i Ga(x)p
Gg(,)c(e)o(xcept)i(where)277 478 y Ga(N)33 b Gg(is)23
b(an)h(axiom,)f(then)p Black Black 1115 672 a F6(j)p
Ga(M)10 b F4([)p Ga(a)26 b F4(:=)1458 660 y F9(\()1486
672 y Ga(x)1538 660 y F9(\))1565 672 y Ga(N)10 b F4(])p
F6(j)1698 639 y Fu(N)1778 672 y F6(\021)25 b(j)p Ga(M)10
b F6(j)2022 639 y Fu(N)2076 672 y Fs(\()-6 b Ga(a)25
b F4(:=)2296 660 y F9(\()2324 672 y Ga(x)2376 660 y F9(\))2403
672 y F6(j)p Ga(N)10 b F6(j)2536 639 y Fu(N)2584 672
y Fs(\))25 b Gg(.)p Black 277 884 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)e(induction)j(on)d(the)h(structure)i(of)d
Ga(M)33 b Gg(\(see)24 b(P)o(age)f(165\).)p 3436 884 4
62 v 3440 826 55 4 v 3440 884 V 3494 884 4 62 v 277 1088
a(The)g(correspondence)28 b(between)d(the)f(reduction)i(rules)e(is)g
(no)n(w)f(a)g(matter)h(of)f(simple)h(calculations.)p
Black 277 1276 a Gb(Theor)n(em)g(3.4.9:)p Black 34 w
Gg(F)o(or)f(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25 b FY(T)t
Gg(,)18 b(if)24 b Ga(M)1821 1239 y Gc(cut)1790 1276 y
F6(\000)-31 b(\000)f(!)25 b Ga(N)10 b Gg(,)23 b(then)h
F6(j)p Ga(M)10 b F6(j)2441 1243 y Fu(N)2586 1239 y Gc(\024)2521
1276 y F6(\000)-31 b(\000)f(!)2691 1243 y FX(\003)2756
1276 y F6(j)p Ga(N)10 b F6(j)2889 1243 y Fu(N)2943 1276
y Gg(.)p Black 277 1489 a F7(Pr)l(oof)o(.)p Black 34
w Gg(By)23 b(induction)j(on)d(the)h(de\002nition)h(of)1778
1452 y Gc(cut)1747 1489 y F6(\000)-31 b(\000)f(!)23 b
Gg(\(see)h(P)o(age)f(165\).)p 3436 1489 V 3440 1431 55
4 v 3440 1489 V 3494 1489 4 62 v 418 1693 a(T)-7 b(o)23
b(sum)g(up,)h(we)e(ha)n(v)o(e)j(sho)n(wn)f(in)f(this)h(section)i(the)e
(close)g(correspondence)29 b(between)24 b(normal-)277
1806 y(isation)k(and)f(cut-elimination)j(in)c(propositional)k
(classical)e(logic;)h(by)d(Theorems)h(3.4.4)g(and)f(3.4.9)277
1919 y(we)d(ha)n(v)o(e)h(the)g(correspondences)k(listed)d(belo)n(w)-6
b(.)p Black Black 1182 2113 a Ga(S)1411 2076 y Gc(\024)1310
2113 y F6(\000)-21 b(\000)h(\000)f(!)64 b Ga(T)1171 2477
y(S)1232 2439 y FX(0)1146 2295 y Fu(S)1191 2351 y F6(#)p
1211 2288 4 142 v 1353 2440 a Gc(cut)1281 2477 y F6(\000)-21
b(\000)g(\000)g(!)1522 2439 y F9(+)1605 2477 y Ga(T)1671
2439 y FX(0)1675 2295 y Fu(S)1628 2351 y F6(#)p 1648
2288 V 2116 2113 a Ga(M)2335 2076 y Gc(cut)2263 2113
y F6(\000)g(\000)g(\000)g(!)56 b Ga(N)2104 2477 y(M)2202
2439 y FX(0)2088 2295 y Fu(N)2144 2351 y F6(#)p 2164
2288 V 2358 2440 a Gc(\024)2258 2477 y F6(\000)-21 b(\000)h(\000)e(!)
2494 2439 y FX(\003)2561 2477 y Ga(N)2644 2439 y FX(0)2627
2295 y Fu(N)2580 2351 y F6(#)p 2600 2288 V 277 2674 a
Gg(These)23 b(correspondences)28 b(can)23 b(be)g(e)o(xtended)i(to)e
(\002rst-order)i(classical)g(logic)f(and)f(to)g(other)h(v)n(ariants)277
2787 y(of)g(sequence-conclusion)30 b(natural)25 b(deduction)h(calculi,)
f(b)n(ut)f(the)g(details)h(are)f(omitted.)277 3094 y
Ge(3.5)119 b(Notes)277 3318 y Gg(In)22 b(this)g(section,)h(we)e(shall)i
(\002rst)e(compare)i(our)f(w)o(ork)g(with)f(earlier)i(w)o(ork)f(by)g
(Ungar)g([1992],)h(which)277 3431 y(also)29 b(studies)h(the)f
(correspondence)k(between)c(cut-elimination)j(and)d(normalisation,)j
(and)d(second)277 3544 y(describe)f(brie\003y)e(the)g
Ga(\025\026)p Gg(-calculus)h(de)n(v)o(eloped)h(by)e(P)o(arigot)g
([1992].)36 b(W)-7 b(e)25 b(shall)h(sho)n(w)g(that)g(strong)277
3657 y(normalisation)39 b(for)c(\(propositional\))40
b Ga(\025\026)35 b Gg(can)h(be)f(inferred)j(by)d(a)g(simple)h
(translation)j(from)c(our)277 3769 y(strong)25 b(normalisation)i
(result,)d(b)n(ut)g(not)g F7(vice)g(ver)o(sa)p Gg(.)277
4033 y Fq(3.5.1)99 b(Comparison)22 b(with)h(Ungar')l(s)g(A)n(ppr)n
(oach)g(to)g(the)g(Corr)n(espondence)i(Question)277 4224
y Gg(While)e(Zuck)o(er)g([1974])h(ar)n(gued)g(that)f(in)f(the)h
F4(\()p F6(^)p Ga(;)15 b F6(\033)p Ga(;)g F6(_)p F4(\))p
Gg(-fragment)24 b(of)e(intuitionistic)27 b(logic)c(the)g(lack)277
4337 y(of)i(strong)h(normalisation)i(of)d(cut-elimination)j(is)d
(responsible)j(for)c(the)h(f)o(ailure)i(of)d(the)h(correspon-)277
4450 y(dence,)h(we)e(ha)n(v)o(e)i(sho)n(wn)f(that)h(in)f(f)o(act)g(the)
g(lack)h(of)f(certain)h(reduction)i(rules)d(in)g(NJ)f(is)h(responsible)
277 4563 y(\(we)j(\002x)o(ed)g(the)h(problem)g(with)f(strong)i
(normalisation,)j(b)n(ut)c(could)g(not)g(establish)i(the)d(correspon-)
277 4676 y(dence)38 b(using)f(NJ\).)f(Ungar)g(made)h(the)g(same)f
(observ)n(ation)2229 4643 y F5(4)2306 4676 y Gg(and)h(already)h(e)o
(xtended)g(the)f(corre-)277 4789 y(spondence)29 b(to)d(all)g(connecti)n
(v)o(es.)39 b(He)26 b(e)n(v)o(en)g(established)j(the)e(correspondence)j
(in)c(classical)j(logic.)277 4901 y(Ho)n(we)n(v)o(er)l(,)22
b(his)g(methods,)h(and)f(the)g(details)h(of)f(his)g(results,)h(are)f
(quite)h(dif)n(ferent)g(from)f(ours.)29 b(F)o(or)20 b(e)o(x-)277
5014 y(ample,)k(instead)i(of)e(allaying)i(the)f(problem)g(Zuck)o(er)g
(had)f(with)g(strong)i(normalisation,)h(he)d(sho)n(wed)p
Black 277 5092 1290 4 v 383 5147 a F3(4)412 5179 y F2(\223The)f
(problem)g(arises)g(with)f(the)h(con)m(v)o(ersion)h(steps)f(which)g
(allo)n(w)g(a)g(cut)g(rule)f(to)h(be)g(permuted)h(upw)o(ards)g(past)f
(an)277 5270 y(application)d(of)e Fr(9)p F2(-)h(or)f
Fr(_)p F2(-left)g(in)h(the)g(deri)n(v)n(ation)h(of)f(its)f(left-hand)h
(premise...[T]hese)f(do)h(not)g(in)g(general)h(correspond)g(to)277
5361 y(permutati)n(v)o(e)g(reductions)g(of)f(the)g(sort)f(prescribed)i
(by)g(Pra)o(witz)d(for)i(NJ.)-5 b(\224)19 b([Ungar,)f(1992,)i(P)o(age)f
(41])p Black Black Black eop end
%%Page: 96 108
TeXDict begin 96 107 bop Black -144 51 a Gb(96)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(the)29
b(correspondence)k(between)c(a)f(cut-elimination)j(procedure)g(and)e(a)
f(normalisation)j(procedure)321 478 y(that)20 b(are)g(both)h
F7(not)f Gg(strongly)h(normalising.)30 b(Also,)20 b(Ungar')-5
b(s)20 b(results)h(b)n(uild)g(upon)g(the)f(rather)h(compli-)321
590 y(cated)26 b(natural)h(deduction)h(calculus)f(introduced)h(by)d
(Shoesmith)h(and)f(Smile)o(y)f([1978].)35 b(Therefore)321
703 y(it)30 b(seemed)g(prudent)i(for)d(us)h(to)f(reconsider)k(the)d
(correspondence)k(between)d(cut-elimination)i(and)321
816 y(normalisation.)462 951 y(Let)d(us)g(brie\003y)g(study)h
(Shoesmith)g(and)f(Smile)o(y')-5 b(s)30 b(natural)i(deduction)g
(calculus,)i(which)c(w)o(as)321 1064 y(used)38 b(by)f(Ungar)-5
b(.)68 b(In)36 b(this)i(calculus,)k(the)36 b(inference)k(rules)d(for)g
F6(^)f Gg(and)h F6(\033)e Gg(are)i(the)g(same)g(as)g(in)321
1177 y(Gentzen')-5 b(s)26 b(NJ-calculus,)f(b)n(ut)f(the)g
F6(_)p Gg(-elimination)i(rule)e(is)f(the)h(form)1725
1388 y Ga(B)5 b F6(_)o Ga(C)p 1710 1408 236 4 v 1710
1486 a(B)95 b(C)1987 1426 y F6(_)2048 1440 y Gc(E)2133
1426 y Ga(:)321 1727 y Gg(Here)21 b Ga(B)k Gg(and)c Ga(C)26
b Gg(are)21 b(separate)i(conclusions.)32 b(Ha)n(ving)21
b(inferences)j(with)d(tw)o(o)f(separate)j(conclusions)321
1840 y(has)k(the)g(profound)i(ef)n(fect)f(that,)f(in)g(general,)i
(proofs)f(are)f(not)g(trees,)h(b)n(ut)f(graphs.)39 b(Here)27
b(is)f(a)g(proof)321 1953 y(\(written)f(schematically\))i(in)c(their)i
(natural)g(deduction)h(calculus.)p Black Black 1811 2201
a Ga(B)p 1714 2222 275 4 v 1714 2298 a(C)131 b(D)p 1714
2318 73 4 v 1910 2318 244 4 v 1714 2394 a(E)h(F)111 b(G)p
1714 2415 275 4 v 2082 2415 72 4 v 1807 2490 a(H)212
b(I)462 2736 y Gg(Since)23 b(proofs)g(are)f(no)n(w)g(graphs,)h(the)g
(calculus)h(of)e(Shoesmith)h(and)f(Smile)o(y)g(has)g(se)n(v)o(eral)h
(rather)321 2849 y(unpleasant)33 b(features.)49 b(F)o(or)28
b(e)o(xample,)k(if)e(one)g(applies)h(an)f(inference)i(rule,)f(one)f
(has)g(to)g(tak)o(e)g(into)321 2962 y(account)24 b(the)e(shape)h(of)e
(the)h(entire)h(proof.)29 b(By)21 b(this)h(we)f(mean)h(that)g(from)f(a)
h(proof)g(of)g Ga(B)j Gg(and)d(a)f(proof)321 3075 y(of)j
Ga(C)7 b Gg(,)22 b(one)j(cannot)g(immediately)h(construct)g(a)e(proof)h
(of)e Ga(B)5 b F6(^)o Ga(C)i Gg(,)23 b(because)j(the)e(proofs)h(of)f
Ga(B)k Gg(and)c Ga(C)321 3187 y Gg(must)g(not)g(ha)n(v)o(e)g(an)o(y)g
(subproof)h(in)f(common.)29 b(F)o(or)23 b(e)o(xample)h(the)g(deri)n(v)n
(ation)1750 3405 y Ga(B)5 b F6(_)o Ga(C)p 1735 3425 236
4 v 1735 3504 a(B)95 b(C)2012 3444 y F6(_)2073 3458 y
Gc(E)p 1735 3524 V 1750 3603 a Ga(B)5 b F6(^)o Ga(C)2012
3542 y F6(^)2073 3556 y Gc(I)321 3844 y Gg(is)25 b(not)h(allo)n(wed.)34
b(This)25 b(restriction)j(applies)f(to)e(all)h(inference)h(rules)f
(with)f(tw)o(o)g(premises.)35 b(Another)321 3956 y(unpleasant)26
b(feature)e(of)e(this)i(natural)g(deduction)h(calculus)g(concerns)g
(the)e(operation)i(of)d(proof)i(sub-)321 4069 y(stitution.)31
b(Consider)25 b(the)f(proof)p Black Black 1818 4318 a
Ga(B)92 b(C)1843 4366 y Gg(.)1843 4399 y(.)1843 4432
y(.)2003 4366 y(.)2003 4399 y(.)2003 4432 y(.)321 4633
y(with)24 b(tw)o(o)f(assumptions,)j Ga(B)h Gg(and)d Ga(C)7
b Gg(,)22 b(and)i(the)g(proof)1933 4772 y(.)1933 4805
y(.)1933 4838 y(.)1841 4918 y Ga(B)5 b F6(_)o Ga(C)p
1826 4938 V 1826 5016 a(B)95 b(C)2103 4956 y F6(_)2164
4970 y Gc(E)321 5249 y Gg(ending)27 b(with)e(tw)o(o)g(conclusions,)k
Ga(B)h Gg(and)25 b Ga(C)7 b Gg(.)33 b(Substituting)28
b(the)e(latter)g(proof)h(for)e(the)h(assumptions)p Black
Black eop end
%%Page: 97 109
TeXDict begin 97 108 bop Black 277 51 a Gb(3.5)23 b(Notes)3248
b(97)p 277 88 3691 4 v Black 277 365 a Ga(B)27 b Gg(and)d
Ga(C)30 b Gg(in)23 b(the)h(former)g(one)g(gi)n(v)o(es)g(the)g(proof)p
Black Black 1878 584 a(.)1878 618 y(.)1878 651 y(.)1787
730 y Ga(B)5 b F6(_)o Ga(C)p 1773 768 233 4 v 1773 843
a(B)92 b(C)1799 891 y Gg(.)1799 925 y(.)1799 958 y(.)1959
891 y(.)1959 925 y(.)1959 958 y(.)277 1240 y(The)24 b(graph-lik)o(e)k
(structure)f(of)d(proofs,)i(ho)n(we)n(v)o(er)l(,)g(causes)g(the)f
(de\002nition)h(of)f(this)g(substitution)j(op-)277 1352
y(eration)k(to)e(be)g(v)o(ery)g(complicated;)36 b(for)30
b(e)o(xample)h(a)e(simple)i(inducti)n(v)o(e)h(de\002nition)f(is)f
(impossible)277 1465 y(\(see)d([Ungar,)f(1992,)h(P)o(ages)f
(55\22676]\).)38 b(Moreo)o(v)o(er)l(,)27 b(it)f(seems)g(v)o(ery)h(dif)n
(\002cult)f(to)g(de\002ne)h(a)e(sequent-)277 1578 y(style)f
(formalisation)i(for)d(this)h(natural)h(deduction)g(calculus,)g(and)f
(it)f(is)g(highly)h(unlik)o(ely)i(that)d(terms)277 1691
y(can)32 b(be)f(annotated)j(to)e(its)f(proofs.)54 b(In)31
b(the)h(end,)h(we)e(found)i(that,)g(e)n(v)o(en)f(if)f(Shoesmith)h(and)g
(Smi-)277 1804 y(le)o(y')-5 b(s)27 b(multiple-conclusion)k(natural)d
(deduction)h(calculus)f(seems)e(to)g(be)g(better)h(suited)h(for)e
(classi-)277 1917 y(cal)e(proofs)h(\(the)o(y)g(do)f(not)g(ha)n(v)o(e)g
(to)g(be)g(encoded)i(via)e(a)f(double)j(ne)o(gation)f(translation)i(as)
d(in)f(NK\),)g(it)277 2030 y(is)g(a)h(v)o(ery)f(complicated)k
(calculus.)418 2163 y(Much)i(more)g(con)l(v)o(enient)j(is)c(the)h
(sequence-conclusi)q(on)35 b(natural)30 b(deduction)h(calculus)g
(intro-)277 2276 y(duced)41 b(by)e(Bori)5 b(\020)-35
b(ci)5 b(\264)-35 b(c)40 b([1985].)77 b(Our)39 b(w)o(ork)g(presented)j
(in)d(Section)h(3.3)f(b)n(uilds)i(upon)g(a)d(slightly)277
2388 y(modi\002ed)f(v)o(ersion)i(of)d(this)i(calculus.)70
b(W)-7 b(e)36 b(presented)k(for)d(the)g(corresponding)k(proofs)d(a)f
(term)277 2501 y(assignment,)24 b(which)e(is)g(similar)g(to)g(the)g
(term)f(assignment)j(for)e(our)g(sequent)i(proofs,)f(i.e.,)e(the)h
(terms)277 2614 y(include)31 b(tw)o(o)e(sorts)h(of)g(binders,)1362
2602 y F9(\()p 1392 2614 28 4 v 1409 2614 V 1427 2614
V 65 w(\))1510 2614 y Gg(and)1670 2602 y FX(h)p 1699
2614 V 1717 2614 V 1734 2614 V 65 w(i)1789 2614 y Gg(,)g(and)g(record)g
(precisely)i(which)e(formulae)g(are)g(dis-)277 2727 y(char)n(ged)e(and)
f(introduced)i(by)d(inferences.)39 b(A)25 b(dif)n(ferent)j(type)f(of)f
(term)f(assignment)k(for)d(Bori)5 b(\020)-35 b(ci)5 b(\264)-35
b(c')-5 b(s)277 2840 y(sequence-conclusi)q(on)30 b(natural)c(deduction)
i(calculus)e(w)o(as)e(gi)n(v)o(en)h(by)g(P)o(arigot)g([1992].)33
b(The)24 b(corre-)277 2953 y(sponding)i(term)e(calculus)h(w)o(as)e
(named)h Ga(\025)q(\026)p Gg(-calculus,)h(which)f(we)f(shall)h(study)h
(brie\003y)f(ne)o(xt.)277 3238 y Fq(3.5.2)99 b(P)o(arigot')l(s)25
b Fn(\025)o(\026)p Fq(-Calculus)277 3436 y Gg(The)39
b Ga(\025\026)p Gg(-calculus)i(can)f(be)f(seen)h(as)f(a)f(simple)i(e)o
(xtension)h(of)e(the)h(simply-typed)i(lambda)e(cal-)277
3549 y(culus.)64 b(The)34 b(e)o(xtension)j(is)e(such)h(that)f(via)g
(the)h(Curry-Ho)n(w)o(ard)g(correspondence)j Ga(\025\026)p
Gg(-terms)c(no)277 3662 y(longer)21 b(correspond)h(to)d(proofs)h(in)f
(Gentzen')-5 b(s)21 b(NJ-calculus,)h(b)n(ut)e(to)f(proofs)h(in)f(Bori)5
b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)21 b(sequence-)277
3774 y(conclusion)34 b(natural)e(deduction)h(calculus)g(\(see)e(P)o
(age)f(81\).)50 b(In)30 b(ef)n(fect,)j(P)o(arigot)e(ga)n(v)o(e)g(an)f
(ele)o(gant)277 3887 y(solution)j(to)d(the)h(problem)g(of)g(ho)n(w)e
(to)i(modify)g(simply-typed)i(lambda)f(terms)e(so)h(that)g(their)g
(sin-)277 4000 y(gle)f(type)h(is)f(generalised)j(to)d(a)f(sequence)k
(of)d(types.)49 b(The)29 b(technical)k(crux)d(of)g(P)o(arigot')-5
b(s)31 b(solution)277 4113 y(is)f(the)g(addition)h(of)f(tw)o(o)f(ne)n
(w)g(term)h(constructors)j(to)d(the)f(simply-typed)k(lambda)e
(calculus.)49 b(The)277 4226 y(corresponding)28 b(ra)o(w)23
b Ga(\025\026)p Gg(-terms)g(are)h(gi)n(v)o(en)g(by)g(the)g(grammar)p
Black Black 1187 4438 a Ga(M)5 b(;)15 b(N)110 b F4(::=)100
b Ga(x)412 b Gg(v)n(ariable)1551 4560 y F6(j)148 b Ga(\025x:M)246
b Gg(abstraction)1551 4682 y F6(j)148 b Ga(M)25 b(N)278
b Gg(application)1551 4805 y F6(j)148 b F4([)p Ga(a)p
F4(])p Ga(M)278 b Gg(passi)n(v)n(ate)1551 4927 y F6(j)148
b Ga(\026a:M)248 b Gg(acti)n(v)n(ate)277 5136 y(where)20
b Ga(x)e Gg(is)h(tak)o(en)h(from)f(a)g(set)h(of)f(v)n(ariables)i(and)f
Ga(a)e Gg(from)h(a)g(set)g(of)g Ga(\026)p Gg(-v)n(ariables.)30
b(As)18 b(a)h(consequence,)277 5249 y(he)k(could)i(consider)g(the)f
(sequence)h(of)f(conclusions)i(of)d(proofs)i(in)e(Bori)5
b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)25 b(calculus)g(as)e(a)g
(whole,)p Black Black eop end
%%Page: 98 110
TeXDict begin 98 109 bop Black -144 51 a Gb(98)2876 b(Natural)23
b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(b)n(ut)33
b(distinguishing)k(one)c(of)g(them)f(as)h F7(active)p
Gg(\227in)h(what)f(follo)n(ws)g(annotated)i(with)e(a)f(disc\227and)321
478 y(the)26 b(others)h(as)f F7(passive)p Gg(.)37 b(The)25
b(latter)h(are)g(signi\002ed)h(by)f(being)h(labelled)g(with)f
Ga(\026)p Gg(-v)n(ariables.)37 b(T)-7 b(yping)321 590
y(judgements)26 b(in)e Ga(\025\026)e Gg(ha)n(v)o(e)i(thus)h(the)e(form)
1672 822 y F4(\000)1754 810 y Gc(.)1809 822 y Ga(M)k
F4(:)18 b Ga(B)2041 789 y FX(\017)2080 822 y Ga(;)d F4(\001)321
1033 y Gg(where)24 b F4(\000)f Gg(is)g(a)g(set)h(of)f(\(v)n
(ariable,formula\))28 b(pairs)c(and)g F4(\001)f Gg(a)g(set)g(of)h(\()p
Ga(\026)p Gg(-v)n(ariable,formula\))j(pairs.)462 1163
y(Since)d Ga(\025\026)e Gg(is)h(a)g(natural)i(deduction)h(calculus,)f
(its)f(inference)h(rules)g(are)e(concerned)j(with)d(intro-)321
1276 y(ducing)g(or)e(eliminating)j(formulae)f(in)e(the)g(succedent.)31
b(Ho)n(we)n(v)o(er)l(,)21 b(the)o(y)h(are)f(restricted)j(so)d(that)h
(the)o(y)321 1389 y(act)g(on)h(acti)n(v)o(e)f(formulae)h(only)-6
b(,)23 b(as)f(can)h(be)f(seen)g(in)g(the)g(term)g(formation)i(rules)f
(for)f(abstraction)j(and)321 1502 y(application.)p Black
Black 516 1728 a Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)823
1716 y Gc(.)878 1728 y Ga(M)28 b F4(:)17 b Ga(C)1108
1695 y FX(\017)1147 1728 y Ga(;)e F4(\001)p 456 1766
867 4 v 456 1851 a(\000)538 1839 y Gc(.)593 1851 y Ga(\025x:M)28
b F4(:)17 b(\()p Ga(B)5 b F6(\033)p Ga(C)i F4(\))1168
1818 y FX(\017)1207 1851 y Ga(;)15 b F4(\001)1364 1783
y F6(\033)1435 1797 y Gc(I)1853 1728 y F4(\000)1935 1716
y Gc(.)1990 1728 y Ga(M)27 b F4(:)18 b(\()p Ga(B)5 b
F6(\033)o Ga(C)i F4(\))2434 1695 y FX(\017)2474 1728
y Ga(;)15 b F4(\001)91 b(\000)2763 1716 y Gc(.)2818 1728
y Ga(N)27 b F4(:)17 b Ga(B)3034 1695 y FX(\017)3073 1728
y Ga(;)e F4(\001)p 1853 1771 1337 4 v 2211 1851 a(\000)2293
1839 y Gc(.)2348 1851 y Ga(M)25 b(N)j F4(:)17 b Ga(C)2676
1818 y FX(\017)2715 1851 y Ga(;)e F4(\001)3231 1788 y
F6(\033)3302 1802 y Gc(E)3386 1788 y Ga(:)321 2085 y
Gg(The)32 b(formation)i(rules)f(for)f(the)g(ne)n(w)g(term)f
(constructors)36 b(are)c(called,)j(using)f(terminology)g(intro-)321
2198 y(duced)25 b(by)f(Bierman)g([1998],)g F7(passivate)i
Gg(and)e F7(activate)p Gg(.)31 b(The)o(y)23 b(are)h(as)g(follo)n(ws.)
2885 2165 y F5(5)p Black Black 1112 2420 a F4(\000)1194
2408 y Gc(.)1249 2420 y Ga(M)j F4(:)17 b Ga(B)1480 2387
y FX(\017)1519 2420 y Ga(;)e F4(\001)p 953 2458 842 4
v 953 2542 a(\000)1035 2530 y Gc(.)1090 2542 y F4([)p
Ga(a)p F4(])p Ga(M)28 b F4(:)17 b F6(?)1417 2509 y FX(\017)1456
2542 y Ga(;)e(a)j F4(:)f Ga(B)5 b(;)15 b F4(\001)2172
2425 y(\000)2254 2413 y Gc(.)2309 2425 y Ga(M)27 b F4(:)18
b F6(?)2538 2392 y FX(\017)2577 2425 y Ga(;)d(a)j F4(:)f
Ga(B)5 b(;)15 b F4(\001)p 2172 2463 743 4 v 2217 2542
a(\000)2299 2530 y Gc(.)2354 2542 y Ga(\026a:M)28 b F4(:)17
b Ga(B)2714 2509 y FX(\017)2753 2542 y Ga(;)e F4(\001)321
2777 y Gg(The)28 b(\002rst)g(rule)h(changes)i(the)e(status)g(of)g(the)f
(acti)n(v)o(e)h(formula)h(to)e(become)i(passi)n(v)o(e.)44
b(The)28 b(resulting)321 2890 y(term)i(has)h(then)g(the)f(acti)n(v)o(e)
h(type)g F6(?)p Gg(,)g(a)e(distinguished)35 b(atomic)c(formula.)49
b(The)30 b(other)h(rule)g(w)o(orks)321 3003 y(similar)l(,)25
b(b)n(ut)f(in)f(the)h(re)n(v)o(erse)h(direction.)462
3133 y(Before)f(passing)h(to)d(the)i(translations)i(between)e
Ga(\025\026)p Gg(-terms)f(and)g(terms)g(belonging)j(to)d
F4(K)p Gg(,)f(let)h(us)321 3245 y(brie\003y)30 b(comment)g(on)f(the)g
(syntactic)j(con)l(v)o(entions)g(in)e(both)f(systems.)47
b(It)29 b(seems)g(the)h(dif)n(ferences)321 3358 y(are)e(chie\003y)h(a)e
(matter)h(of)f(taste:)39 b(whereas)29 b(in)e Ga(\025\026)g
Gg(a)g(typing)i(judgement)h(has)e(only)h(a)e(single)i(acti)n(v)o(e)321
3471 y(formula,)34 b(and)d(therefore)i(it)e(does)h(not)f(need)h(to)e
(be)h(recorded)i(in)e(the)g(term,)h(e)o(xcept)g(of)f(course)i(in)321
3584 y(the)24 b(cases)g(where)g(another)h(formula)f(becomes)h(acti)n(v)
o(e;)f(in)f(our)h(term)f(calculus,)j(on)d(the)h(other)g(hand,)321
3697 y(all)k(formulae)h(in)f(the)g(succedent)i(are)e(acti)n(v)o(e,)h
(so)e(to)h(speak,)i(and)e(therefore)i(it)d(has)h(to)g(be)f(recorded)321
3810 y(e)o(xplicitly)36 b(which)e(formulae)h(are)f(dischar)n(ged)j(and)
d(introduced.)62 b(Clearly)-6 b(,)36 b(both)f(syntactic)h(con-)321
3923 y(v)o(entions)29 b(can)e(be)f(\223simulated\224)j(by)e(the)g
(other)-5 b(.)39 b(On)26 b(the)h(other)g(hand,)h(considering)i(the)d
(amount)h(of)321 4036 y(prolixity)-6 b(,)33 b(the)d(syntax)h(of)e
Ga(\025\026)f Gg(is)i(more)f(concise)i(in)e(the)h(a)n(v)o(erage)h
(case,)g(b)n(ut)f(less)g(so)f(in)h(the)f(w)o(orst)321
4149 y(case.)h(F)o(or)22 b(e)o(xample)j(in)e Ga(\025\026)g
Gg(we)f(can)i(form)g(the)g(term)1681 4380 y Ga(\026a:)p
F4([)p Ga(a)p F4(])p Ga(\026a:)p F4([)p Ga(a)p F4(])p
Ga(x)321 4615 y Gg(which)g(corresponds)j(to)d(the)f(term)h
FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))24 b Gg(in)f(our)h(calculus.)462
4744 y(Our)d(natural)j(deduction)g(calculus)f F4(K)e
Gg(is)g(a)g(slightly)j(modi\002ed)e(v)n(ariant)h(of)e(Bori)5
b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)23 b(sequence-)321
4857 y(conclusion)36 b(natural)f(deduction)h(calculus)f(\(see)f(Figure)
f(3.7\).)58 b(W)-7 b(e)32 b(made)h(the)g(modi\002cations)j(in)321
4970 y(order)24 b(to)e(f)o(acilitate)j(the)d(translation)k(with)c(our)h
(sequent)h(calculus)h FY(T)t Gg(.)e(It)f(may)h(be)f(therefore)j
(surpris-)321 5083 y(ing,)30 b(that)e(there)h(are)g(also)g(relati)n(v)o
(ely)h(simple)f(translations)i(for)d F4(K)f Gg(to)h(and)h(from)f(the)h
Ga(\025\026)p Gg(-calculus.)p Black 321 5161 1290 4 v
427 5217 a F3(5)456 5249 y F2(W)-6 b(e)18 b(use)i(the)e(con)m(v)o
(ention)j(introduced)f(by)g(Bierman)f([1998])h(where)f(all)f(terms)h
(ha)o(v)o(e)g(an)g(acti)n(v)o(e)g(type.)p Black Black
Black eop end
%%Page: 99 111
TeXDict begin 99 110 bop Black 277 51 a Gb(3.5)23 b(Notes)3248
b(99)p 277 88 3691 4 v Black 277 388 a Gg(The)23 b(translations)k(for)d
(both)g(directions)i(are)e(listed)h(belo)n(w)-6 b(.)p
Black Black 305 606 a F6(j)p 332 606 28 4 v 350 606 V
367 606 V 64 w(j)419 573 y Gc(\026)491 606 y F4(:)26
b(K)f F6(!)g Ga(\025\026)1219 734 y F6(j)p FL(Id)p F4(\()p
Ga(x;)15 b(a)p F4(\))p F6(j)1551 701 y Gc(\026)1699 683
y F5(def)1706 734 y F4(=)106 b([)p Ga(a)p F4(])p Ga(x)860
874 y F6(j)p FL(Imp)1029 896 y Gc(I)1069 874 y F4(\()1104
862 y F9(\()1132 874 y Ga(x)1184 862 y F9(\))p FX(h)1239
874 y Ga(a)1287 862 y FX(i)1314 874 y Ga(M)10 b(;)15
b(b)p F4(\))p F6(j)1551 841 y Gc(\026)1699 822 y F5(def)1706
874 y F4(=)106 b([)p Ga(b)p F4(]\()p Ga(\025)q(x:\026a:)p
F6(j)p Ga(M)10 b F6(j)2414 841 y Gc(\026)2462 874 y F4(\))591
1014 y F6(j)p FL(Imp)760 1035 y Gc(E)820 1014 y F4(\()855
1002 y FX(h)883 1014 y Ga(a)931 1002 y FX(i)958 1014
y Ga(M)g(;)1096 1002 y FX(h)1124 1014 y Ga(b)1163 1002
y FX(i)1191 1014 y Ga(N)g(;)1314 1002 y F9(\()1341 1014
y Ga(x)1393 1002 y F9(\))1421 1014 y Ga(P)j F4(\))p F6(j)1552
981 y Gc(\026)1699 962 y F5(def)1706 1014 y F4(=)106
b F6(j)p Ga(P)13 b F6(j)2004 981 y Gc(\026)2051 1014
y F4([)p Ga(x)26 b F4(:=)f(\()p Ga(\026a:)p F6(j)p Ga(M)10
b F6(j)2586 981 y Gc(\026)2634 1014 y F4(\))15 b(\()p
Ga(\026b:)p F6(j)p Ga(N)10 b F6(j)2971 981 y Gc(\026)3018
1014 y F4(\)])788 1153 y F6(j)p FL(Subst)o F4(\()1060
1141 y FX(h)1088 1153 y Ga(a)1136 1141 y FX(i)1164 1153
y Ga(M)g(;)1302 1141 y F9(\()1329 1153 y Ga(x)1381 1141
y F9(\))1409 1153 y Ga(N)g F4(\))p F6(j)1552 1120 y Gc(\026)1699
1102 y F5(def)1706 1153 y F4(=)106 b F6(j)p Ga(N)10 b
F6(j)2016 1120 y Gc(\026)2063 1153 y F4([)p Ga(x)26 b
F4(:=)f Ga(\026a:)p F6(j)p Ga(M)10 b F6(j)2563 1120 y
Gc(\026)2610 1153 y F4(])305 1314 y F6(j)p 332 1314 V
350 1314 V 367 1314 V 64 w(j)419 1281 y Gc(\024)490 1314
y F4(:)25 b Ga(\025\026)g F6(!)g F4(K)1452 1442 y F6(j)p
Ga(x)p F6(j)1554 1409 y Gc(\024)1554 1464 y(c)1699 1390
y F5(def)1706 1442 y F4(=)106 b FL(Id)p F4(\()p Ga(x;)15
b(c)p F4(\))1275 1581 y F6(j)p Ga(\025)q(x:M)10 b F6(j)1554
1548 y Gc(\024)1554 1604 y(c)1699 1530 y F5(def)1706
1581 y F4(=)106 b FL(Imp)2028 1603 y Gc(I)2067 1581 y
F4(\()2102 1569 y F9(\()2130 1581 y Ga(x)2182 1569 y
F9(\))q FX(h)2237 1581 y Ga(a)2285 1569 y FX(i)2313 1581
y F6(j)p Ga(M)10 b F6(j)2461 1548 y Gc(\024)2461 1604
y(a)2506 1581 y Ga(;)15 b(c)p F4(\))1323 1721 y F6(j)p
Ga(M)10 b(N)g F6(j)1554 1688 y Gc(\024)1554 1744 y(c)1699
1670 y F5(def)1706 1721 y F4(=)106 b FL(Imp)2028 1743
y Gc(E)2087 1721 y F4(\()2122 1709 y FX(h)2150 1721 y
Ga(a)2198 1709 y FX(i)2225 1721 y F6(j)p Ga(M)10 b F6(j)2373
1688 y Gc(\024)2373 1744 y(a)2419 1721 y Ga(;)2459 1709
y FX(h)2487 1721 y Ga(b)2526 1709 y FX(i)2553 1721 y
F6(j)p Ga(N)g F6(j)2686 1688 y Gc(\024)2686 1749 y(b)2731
1721 y Ga(;)2771 1709 y F9(\()2799 1721 y Ga(x)2851 1709
y F9(\))2879 1721 y FL(Id)p F4(\()p Ga(x;)15 b(c)p F4(\))q(\))1316
1861 y F6(j)p F4([)p Ga(c)p F4(])p Ga(M)10 b F6(j)1553
1828 y Gc(\024)1699 1809 y F5(def)1706 1861 y F4(=)106
b F6(j)p Ga(M)10 b F6(j)2031 1828 y Gc(\024)2031 1883
y(c)1278 2001 y F6(j)p Ga(\026a:M)g F6(j)1554 1968 y
Gc(\024)1554 2023 y(c)1699 1949 y F5(def)1706 2001 y
F4(=)106 b F6(j)p Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(c)p
F4(])p F6(j)2279 1968 y Gc(\024)277 2280 y Gg(Note)26
b(that)h(in)f(the)g(case)h(where)f(the)g Ga(\025\026)p
Gg(-term)g(has)h(an)f(acti)n(v)o(e)g(type)h(dif)n(ferent)h(from)e
F6(?)p Gg(,)f(the)i(clauses)277 2393 y(of)e F6(j)p 404
2393 V 422 2393 V 440 2393 V 65 w(j)492 2360 y Gc(\024)561
2393 y Gg(are)g(inde)o(x)o(ed)i(with)d(a)h(label.)34
b(It)25 b(is)g(easy)g(to)g(v)o(erify)h(that)g(these)g(translations)i
(respect)f(typing)277 2506 y(judgements.)p Black 277
2694 a Gb(Pr)n(oposition)e(3.5.1:)p Black Black 414 2921
a F6(\017)p Black 45 w Gg(If)g Ga(M)38 b F6(2)28 b F4(K)c
Gg(with)h(the)g(typing)i(judgement)g F4(\000)1967 2909
y Gc(.)2022 2921 y Ga(M)2145 2909 y Gc(.)2200 2921 y
F4(\001)p Gg(,)e(then)g F6(j)p Ga(M)10 b F6(j)2652 2888
y Gc(\026)2728 2921 y F6(2)27 b Ga(\025\026)e Gg(with)f(the)i(typing)
504 3034 y(judgement)g F4(\000)993 3022 y Gc(.)1048 3034
y F6(j)p Ga(M)10 b F6(j)1196 3001 y Gc(\026)1268 3022
y(.)1323 3034 y F6(?)1394 3001 y FX(\017)1433 3034 y
Ga(;)15 b F4(\001)q Gg(.)p Black 414 3232 a F6(\017)p
Black 45 w Gg(Assume)38 b Ga(c)g Gg(is)f(a)g(unique)j(label,)i(not)c
(occurring)i(an)o(ywhere)f(in)f Ga(M)10 b Gg(.)70 b(If)38
b Ga(M)62 b F6(2)51 b Ga(\025\026)37 b Gg(with)504 3345
y(the)30 b(typing)h(judgement)h F4(\000)1400 3333 y Gc(.)1455
3345 y Ga(M)1578 3333 y Gc(.)1633 3345 y Ga(B)1707 3312
y FX(\017)1746 3345 y Ga(;)15 b F4(\001)p Gg(,)30 b(then)h
F6(j)p Ga(M)10 b F6(j)2249 3312 y Gc(\024)2249 3368 y(c)2330
3345 y F6(2)36 b F4(K)29 b Gg(with)g(the)h(typing)h(judgement)504
3458 y F4(\000)586 3446 y Gc(.)641 3458 y F6(j)p Ga(M)10
b F6(j)789 3425 y Gc(\024)789 3481 y(c)860 3446 y(.)915
3458 y Ga(c)17 b F4(:)h Ga(B)5 b(;)15 b F4(\001)p Gg(.)49
b(If)31 b Ga(M)49 b F6(2)38 b Ga(\025\026)30 b Gg(with)g(the)h(typing)i
(judgement)g F4(\000)2832 3446 y Gc(.)2887 3458 y Ga(M)3010
3446 y Gc(.)3065 3458 y F6(?)3136 3425 y FX(\017)3175
3458 y Ga(;)15 b F4(\001)p Gg(,)32 b(then)504 3571 y
F6(j)p Ga(M)10 b F6(j)652 3538 y Gc(\024)723 3571 y F6(2)25
b F4(K)d Gg(with)i(the)g(typing)h(judgement)g F4(\000)1964
3559 y Gc(.)2019 3571 y F6(j)p Ga(M)10 b F6(j)2167 3538
y Gc(\024)2238 3559 y(.)2293 3571 y F4(\001)o Gg(.)p
Black 277 3809 a F7(Pr)l(oof.)p Black 46 w Gg(Both)24
b(cases)g(by)g(induction)i(on)e(the)g(structure)h(of)f
Ga(M)10 b Gg(.)p 3436 3809 4 62 v 3440 3751 55 4 v 3440
3809 V 3494 3809 4 62 v 418 4034 a(There)36 b(are)f(a)f(number)i(of)f
(reduction)j(rules)e(associated)i(with)d(the)g Ga(\025\026)p
Gg(-calculus,)40 b(which)35 b(we)277 4147 y(ho)n(we)n(v)o(er)21
b(omit)f(and)h(instead)h(refer)f(the)g(reader)h(to)e([P)o(arigot,)h
(1992])g(and)g([Bierman,)g(1998].)29 b(P)o(arigot)277
4259 y(pro)o(v)o(ed)c(for)e(the)h(corresponding)k(reduction)e(system)e
(the)g(follo)n(wing)h(tw)o(o)e(properties.)p Black 277
4447 a Gb(Theor)n(em)h(3.5.2)f Gg(\(P)o(arigot\))p Gb(:)p
Black 36 w Gg(The)g(reduction)j(system)e(of)f(the)h Ga(\025\026)p
Gg(-calculus)i(is:)p Black Black 579 4656 a(\(i\))101
b(strongly)26 b(normalising,)f(and)554 4792 y(\(ii\))101
b(con\003uent.)277 5046 y(Strong)26 b(normalisation)j(can,)e(for)f(e)o
(xample,)g(be)g(obtain)h(using)g F6(j)p 2341 5046 28
4 v 2359 5046 V 2377 5046 V 65 w(j)2429 5013 y Gc(\024)2499
5046 y Gg(and)f(appealing)i(to)e(our)g(strong)277 5159
y(normalisation)40 b(result)d(for)g F4(\(K)p Ga(;)1403
5122 y Gc(\024)1338 5159 y F6(\000)-31 b(\000)g(!)p F4(\))p
Gg(.)66 b(Unfortunately)40 b(this)d(method)g(does)g(not)g(e)o(xtend)h
(to)e(the)277 5272 y(second-order)29 b(v)o(ersion)e(of)e
Ga(\025\026)p Gg(,)f(for)h(which)h(P)o(arigot)f(sho)n(wed)h(strong)g
(normalisation)j(using)d(a)f(can-)277 5385 y(didates)g(method.)p
Black Black eop end
%%Page: 100 112
TeXDict begin 100 111 bop Black -144 51 a Gb(100)2831
b(Natural)23 b(Deduction)p -144 88 3691 4 v Black 462
388 a Gg(T)-7 b(o)26 b(conclude)k(the)d(discussion)j(about)e
Ga(\025\026)p Gg(,)e(let)i(us)e(consider)k(the)d(con\003uence)i
(property)g(of)e Ga(\025\026)p Gg(.)321 501 y(At)21 b(\002rst)f
(glance,)j(it)e(may)g(be)g(surprising)j(that)e Ga(\025\026)e
Gg(satis\002es)i(this)g(property)-6 b(,)24 b(b)n(ut)e(at)f(a)f(second)j
(it)e(is)g(less)321 614 y(so,)27 b(if)g(we)f(tak)o(e)h(into)g(account)i
(that)e(the)g(e)o(xplicit)h(substitution)i(operator)f(in)d
F4(K)g Gg(w)o(as)g(a)g(prerequisite)321 727 y(in)h(order)i(to)e(obtain)
h(a)f(correspondence)32 b(with)27 b(our)g(\(non-con\003uent\))k
(cut-elimination)g(procedure.)321 840 y(As)23 b(remark)o(ed)i(earlier)l
(,)g(translating)i(this)d(substitution)j(operator)e(as)1084
1080 y F6(j)p FL(Subst)p F4(\()1357 1068 y FX(h)1385
1080 y Ga(a)1433 1068 y FX(i)1460 1080 y Ga(M)10 b(;)1598
1068 y F9(\()1626 1080 y Ga(x)1678 1068 y F9(\))1705
1080 y Ga(N)g F4(\))p F6(j)1848 1043 y Gc(\026)1921 1029
y F5(def)1928 1080 y F4(=)32 b F6(j)p Ga(N)10 b F6(j)2164
1043 y Gc(\026)2211 1080 y F4([)p Ga(x)25 b F4(:=)h Ga(\026a:)p
F6(j)p Ga(M)10 b F6(j)2711 1043 y Gc(\026)2758 1080 y
F4(])321 1301 y Gg(then)26 b(all)f(reductions)j(that)e
Ga(M)34 b Gg(can)25 b(perform)h(are)g(\223lost\224)g(pro)o(vided)h
Ga(x)d Gg(is)h(not)g(free)h(in)f Ga(N)10 b Gg(.)32 b(Therefore)321
1414 y(the)j(reduction)j(system)d(of)g Ga(\025\026)e
Gg(is)i(more)g(restricted,)k(and)c(strong)h(normalisation)i(for)d
F4(\(K)p Ga(;)3406 1377 y Gc(\024)3341 1414 y F6(\000)-32
b(\000)h(!)p F4(\))321 1527 y Gg(cannot)22 b(be)f(inferred)h(from)f(P)o
(arigot')-5 b(s)21 b(strong)h(normalisation)i(result)e(\(using)g(the)e
(simple)i(translation)321 1640 y F6(j)p 348 1640 28 4
v 366 1640 V 384 1640 V 65 w(j)436 1607 y Gc(\026)483
1640 y Gg(\).)52 b(Gi)n(v)o(en)31 b(the)h(con\003uence)h(property)h(of)
d Ga(\025\026)p Gg(,)h(more)f(complicated)j(translations)h(that)d(w)o
(ould)321 1753 y(establish)26 b(strong)f(normalisation)i(for)d
F4(\(K)p Ga(;)1775 1716 y Gc(\024)1710 1753 y F6(\000)-31
b(\000)f(!)p F4(\))23 b Gg(seem)h(highly)h(unlik)o(ely)-6
b(.)p Black Black eop end
%%Page: 101 113
TeXDict begin 101 112 bop Black Black 277 1033 a F8(Chapter)44
b(4)277 1471 y Gf(A)-5 b(pplications)53 b(of)f(Cut-Elimination)p
Black Black 1140 1932 a Gd(It)24 b(is)h(reasonable)e(to)h(hope)f(that)h
(the)g(relationship)e(between)i(computation)d(and)1140
2032 y(mathematical)16 b(logic)g(will)i(be)f(as)g(fruitful)f(in)h(the)g
(ne)o(xt)f(century)g(as)i(that)f(between)1140 2131 y(analysis)j(and)g
(physics)f(in)i(the)f(last.)3009 2236 y(\227J.)h(McCarthy)1471
2336 y(in)f(A)h(Basis)g(for)f(a)g(Mathematical)g(Theory)e(of)i
(Computation,)e(1963.)277 2716 y Gg(T)-7 b(ypical)21
b(treatments)i(of)e(applications)j(of)d(cut-elimination)j(focus)e(on)f
(proof-theoretic)k(issues;)e(e.g.,)277 2829 y(subformula)29
b(property)-6 b(,)30 b(Herbrand)e(interpretations,)j(interpolation)g
(theorem,)d(numerical)h(bounds)277 2942 y(on)22 b(the)g
(cut-elimination)j(process.)30 b(W)-7 b(e,)21 b(ho)n(we)n(v)o(er)l(,)h
(shall)h(use)f(cut-elimination)j(for)d(e)o(xtracting)i(data)277
3055 y(from)c(a)f(particular)j(classical)f(proof)g(and)f(sho)n(w)f
(that)h(computation)j(in)c(a)g(simple,)i(non-deterministic)277
3168 y(language)30 b(can)f(be)f(simulated)h(by)f(cut-elimination)k(in)c
(a)f(fragment)j(of)d(classical)j(logic.)43 b(T)-7 b(o)27
b(study)277 3281 y(these)41 b(applications,)47 b(we)40
b(found)h(in)l(v)n(aluable)i(an)d(implementation)i(that)f(computes)h
(all)e(normal)277 3394 y(forms)32 b(reachable)j(from)d(a)f(classical)j
(proof.)55 b(Since)32 b(our)h(cut-elimination)i(procedures)g(are)e
(non-)277 3507 y(deterministic,)27 b(a)d(na)m(\250)-27
b(\021v)o(e)25 b(attempt)g(to)f(implement)h(them)f(is)g(rather)h
(laborious:)34 b(it)23 b(w)o(ould,)i(for)f(e)o(xam-)277
3620 y(ple,)k(require)h(backtracking.)44 b(W)-7 b(e)26
b(shall)i(therefore)i(describe)f(some)f(modi\002cations)h(we)e(can)g
(mak)o(e)277 3733 y(to)391 3696 y Gc(aux)371 3733 y F6(\000)-32
b(\000)h(!)23 b Gg(that)h(lead)g(to)f(a)g(simple)i(implementation,)h
(which)e(does)g(not)g(require)h(backtracking.)418 3868
y(Functional)j(programming)g(languages)h(seem)d(most)g(suitable)h(for)g
(implementing)h(our)e(reduc-)277 3981 y(tion)40 b(systems,)j(since)d
(the)o(y)f(ha)n(v)o(e)h(f)o(acilities)h(for)e(declaring)i(algebraic)g
(datatypes)h(and)d(pro)o(vide)277 4094 y(mechanisms)f(for)e(pattern)h
(matching.)68 b(In)36 b(ef)n(fect,)k(the)c(operations)j(de\002ned)d(on)
g(our)h(terms)f(can)277 4207 y(be)28 b(implemented)i(in)e(these)h
(languages)i(with)d(great)h(economy)g(of)f(e)o(xpression.)45
b(W)-7 b(e)27 b(ha)n(v)o(e)i(chosen)277 4320 y(OCaml)g(in)h(f)o(a)n(v)n
(our)j(of)d(other)h(functional)i(languages,)i(because)d(it)e(allo)n(ws)
g(pattern)i(cases)g(to)e(ha)n(v)o(e)277 4432 y(guards.)g(F)o(or)23
b(e)o(xample)h(to)g(declare)h(a)e(function)j(one)e(can)g(write)p
Black Black 1009 4684 a F1(function)96 b F7(pattern)1805
4698 y F9(1)1896 4684 y F1(when)52 b F7(cond)2343 4698
y F9(1)2384 4684 y F1(->)i F7(e)n(xpr)2706 4698 y F9(1)1391
4797 y F1(|)99 b Gg(.)14 b(.)g(.)1391 4910 y F1(|)99
b F7(pattern)1805 4924 y Gc(n)1903 4910 y F1(when)53
b F7(cond)2351 4924 y Gc(n)2399 4910 y F1(->)h F7(e)n(xpr)2721
4924 y Gc(n)277 5159 y Gg(where)31 b(for)g(a)g(pattern)h(case,)i(say)d
F7(e)n(xpr)1539 5173 y Gc(i)1569 5159 y Gg(,)g(to)g(be)g(selected)i
(the)e(pattern)i(e)o(xpression)g F7(pattern)3264 5173
y Gc(i)3325 5159 y Gg(must)277 5272 y(match)26 b(and)g(the)g(guard)h(e)
o(xpression)h F7(cond)1635 5286 y Gc(i)1690 5272 y Gg(must)e(e)n(v)n
(aluate)h(to)e F1(true)p Gg(.)33 b(This)25 b(is)h(e)o(xtremely)h
(helpful)277 5385 y(for)d(structuring)i(our)e(implementation.)p
Black Black eop end
%%Page: 102 114
TeXDict begin 102 113 bop Black -144 51 a Gb(102)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black 321 388 a Ge(4.1)119 b(Implementation)321
612 y Gg(In)33 b(this)g(section)i(we)d(shall)i(gi)n(v)o(e)f(details)h
(of)f(an)f(implementation,)38 b(which)33 b(computes)i(all)e(normal)321
725 y(forms)c(reachable)h(from)e(a)g(proof)h(by)1570
688 y Gc(aux)1550 725 y F6(\000)-32 b(\000)h(!)p Gg(.)41
b(Consider)30 b(\002rst)d(the)i(simply-typed)i(lambda)d(calculus)321
838 y(where)22 b(e)n(v)o(ery)f(term)g(has)g(only)h(a)f(single)h(normal)
g(form.)28 b(If)20 b(we)g(wish)h(to)g(compute)i(this)e(normal)h(form,)
321 951 y(it)i(is)g(suf)n(\002cient)h(to)f(implement)i(a)d(simple)i
(tail-recursi)n(v)o(e)i(e)n(v)n(aluation)g(function.)32
b(This)24 b(can)h(be)f(done)321 1063 y(in)34 b(a)e(fe)n(w)h(lines)h(of)
f(code.)59 b(Strong)34 b(normalisation)j(and)d(con\003uence)h(of)e
(beta-reduction)38 b(are)33 b(the)321 1176 y(fundamental)f(reasons)f
(why)d(the)h(code)h(of)f(this)g(e)n(v)n(aluation)j(function)f(is)e(so)g
(simple.)45 b(Con\003uence)321 1289 y(ensures)24 b(that)e(no)f(matter)h
(which)g(rede)o(x)g(we)f(choose)i(we)d(will)h(\002nd)g(only)i(one)f
(normal)g(form,)f(and)h(the)321 1402 y(e)n(v)n(aluation)k(function)g
(will)d(terminate)i(because)h(of)d(the)h(property)i(of)d(strong)i
(normalisation.)462 1532 y(Our)f(cut-elimination)k(procedures)f(are)e
(strongly)h(normalising,)h(b)n(ut)d F7(not)h Gg(con\003uent.)32
b(Depend-)321 1645 y(ing)k(on)g(which)h(rede)o(x)f(and)g(which)g
(reduction)j(rule)d(one)g(chooses,)41 b(one)36 b(may)g(recei)n(v)o(e)h
(dif)n(ferent)321 1757 y(normal)29 b(forms.)44 b(Thus)29
b(an)f(implementation)j(which)e(computes)h F7(all)f Gg(normal)g(forms)g
(reachable)h(by)352 1833 y Gc(cut)321 1870 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(for)i(e)o(xample,)g(is)f(non-tri)n(vial.)32
b(Suppose)24 b(in)g(the)g(proof)p Black Black 1302 2767
a @beginspecial 180 @llx 366 @lly 517 @urx 575 @ury 1516
@rwi @clip @setspecial
%%BeginDocument: pics/4.1.0.Choices.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.85 Copyright 1999 Radical Eye Software
%%Title: 4.1.0.Choices.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 612 792
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o 4.1.0.Choices.ps 4.1.0.Choices.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 1999.11.18:0526
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IE 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IE N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IE 256 array N 2 string 0 1 255{IE S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For copying restrictions, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For copying restrictions, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For copying restrictions, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 40258431 52099146 1000 600 600 (4.1.0.Choices.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmib10 12 1
/Fb 1 59 df<EA07E0EA1FF8EA3FFCEA7FFEA2B5FCA6EA7FFEA2EA3FFCEA1FF8EA07E010
10788F20>58 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmbx12 12 3
/Fc 3 52 df<EC03C01407141F147FEB03FF133FB6FCA413C3EA0003B3B3ADB712FCA526
4177C038>49 D<ECFFE0010F13FE013F6D7E90B612E0000315F82607FC0313FE3A0FE000
7FFFD81F806D138048C7000F13C0488001C015E001F07F00FF6E13F07F17F881A46C5A6C
5A6C5AC9FC17F05DA217E05D17C04B13804B1300A2ED1FFC4B5A5E4B5A4B5A4A90C7FC4A
5A4A5AEC0FF04A5AEC3F804AC7127814FE495A494814F8D907E014F0495A495A49C8FC01
7C140149140348B7FC4816E05A5A5A5A5AB8FC17C0A42D417BC038>I<ECFFF0010713FF
011F14C0017F14F049C66C7ED803F8EB3FFED807E06D7E81D80FF86D138013FE001F16C0
7FA66C5A6C4815806C485BC814005D5E4B5A4B5A4B5A4A5B020F1380902607FFFEC7FC15
F815FF16C090C713F0ED3FFCED0FFEEEFF80816F13C017E0A26F13F0A217F8A3EA0FC0EA
3FF0487EA2487EA217F0A25D17E06C5A494913C05BD83F80491380D81FF0491300D80FFE
EBFFFE6CB612F800015D6C6C14C0011F49C7FC010113E02D427BC038>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmbx12 17.28 3
/Fd 3 118 df<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC0131F4BB800F0
133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113C3020702C0
9138007FE74A91C9001FB5FC023F01FC16074A01F08291B54882490280824991CB7E4949
8449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A4A1A3F5AA3
48491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A1F6C1D80A2
6C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D4E5A6D6E17
1F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8020102F8ED
7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C16E0040716
80DC007F02F8C9FC050191CAFC626677E375>67 D<EC07E0A6140FA5141FA3143FA2147F
A214FF5BA25B5B5B5B137F48B5FC000F91B512FEB8FCA5D8001F01E0C8FCB3AFEF0FC0AC
171F6D6D1480A2173F6D16006F5B6D6D137E6D6D5B6DEBFF836EEBFFF86E5C020F14C002
035C9126003FFCC7FC325C7DDA3F>116 D<902607FFC0ED3FFEB60207B5FCA6C6EE0007
6D826D82B3B3A260A360A2607F60183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D
01FFEB3FE06D91B55A6E1500021F5C020314F8DA003F018002F0C7FC51427BC05A>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe cmmib10 17.28 2
/Fe 2 67 df<13FE3803FF80000F13E04813F04813F84813FCA2B512FEA96C13FCA26C13
F86C13F06C13E0000313803800FE00171775962E>58 D<037FBA12F892BC12C04A1BF81E
FF1FC08B6E1CF8DB000391C80001804CDD003F7F4E707F1D0720804C844E7014C0A34C1B
E04E82A35E4E5EA34C1BC06065208093B5FC4E5E2000535B5D4E4C5B535B535B4B6395CA
B55A0A035C5291C7FC4B4E13FC4D043F5B99B512E0090714804B4CB500FCC8FC94B912E0
9AC9FC1DE04B19FE777E05F8C914E00A3F13F84B060F7F4D707F767F8B4B72805F7680A2
92B5865FA35C5FA35C94CBFCA2644A645E64675C4C4D5C649CC7FC4A4F5B4C5F66525B4A
96B55A4C04035C515C091F5C4A4E91C8FC4C4BB55A081F14F8003FBD5A481CC09AC9FCBD
12F81CC06C50CAFC1B8073627AE17C>66 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 310.13472 139.41826 384.11203 227.62195 372.73111
284.52744 295.90836 301.59924 233.31241 213.39557 290.2179 139.41826
 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0 SLW 0  setgray
0 setlinecap stroke  grestore end


@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 338.58746 113.81097 85.35823 113.81097  /Lineto /lineto
load def false Line  gsave 2.0 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 139.41826 139.41826 184.94283 213.39557 156.49008
284.52744 91.04869 301.59924 56.90549 256.07469 62.59595 199.1692 102.43004
139.41826  1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0
SLW 0  setgray 0 setlinecap stroke  grestore end
 
@endspecial 1167 2742 a Fe(:)27 b(:)g(:)p
1423 2730 16 62 v 1438 2702 66 7 v 209 w(B)62 b(:)28
b(:)f(:)566 b(:)27 b(:)h(:)54 b(B)p 2956 2730 16 62 v
2971 2702 66 7 v 217 w(:)27 b(:)h(:)3282 2849 y Fd(Cut)3552
2870 y Fc(1)1945 2942 y Fe(:)f(:)g(:)p 2201 2930 16 62
v 2216 2902 66 7 v 209 w(:)h(:)f(:)470 3755 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 136.57324 227.62195 71.13185 227.62195  /Lineto /lineto
load def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial 1628 1904 a Fd(Cut)1898 1926
y Fc(2)1237 1987 y Fb(::)p 1326 1975 12 43 v 1337 1956
49 5 v 110 w(::)1071 1846 y(::)p 1161 1834 12 43 v 1172
1815 49 5 v 111 w(::)45 b(::)p 1444 1834 12 43 v 1455
1815 49 5 v 111 w(::)470 3755 y @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 83.9355 240.42558 101.00732 258.92014 91.04869 278.83696 75.39958
275.99152 69.70912 257.4974 83.9355 240.42558  /currentpoint load stopped
pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave .5  setgray
fill grestore gsave 1.8 SLW 0  setgray 0 setlinecap stroke  grestore
end


@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 119.50143 240.42558 142.26372 264.6106 129.46007 278.83696 113.81097
275.99152 108.1205 257.4974 119.50143 240.42558  /currentpoint load
stopped pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave .5
 setgray fill grestore gsave 1.8 SLW 0  setgray 0 setlinecap stroke
 grestore end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 330.05199 213.39557 264.6106 213.39557  /Lineto /lineto
load def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial 3235 2022 a Fd(Cut)3505 2044
y Fc(3)2831 2106 y Fb(::)p 2920 2094 12 43 v 2932 2074
49 5 v 111 w(::)2666 1964 y(::)p 2755 1952 12 43 v 2766
1933 49 5 v 111 w(::)68 b(::)p 3062 1952 12 43 v 3073
1933 49 5 v 111 w(::)470 3755 y @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 275.99152 226.19922 284.52744 250.38422 275.99152 264.6106 261.76515
264.6106 254.65196 250.38422 275.99152 226.19922  /currentpoint load
stopped pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave .5
 setgray fill grestore gsave 1.8 SLW 0  setgray 0 setlinecap stroke
 grestore end


@endspecial @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 312.98018 226.19922 327.20654 233.31241 335.74245 250.38422 327.20654
261.76515 312.98018 261.76515 301.59924 250.38422 305.86699 236.15785
312.98018 226.19922  /currentpoint load stopped pop 1. 0.1 0.  /c ED
/b ED /a ED false OpenCurve  gsave .5  setgray fill grestore gsave
1.8 SLW 0  setgray 0 setlinecap stroke  grestore end
 
@endspecial Black
1918 5251 a Fa(1)p Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 321 2964 a(the)30 b(tw)o(o)g(upper)h(cuts)f(\(those)h
(with)f(suf)n(\002x)o(es)g(2)f(and)h(3\))g(are)g(instances)i(of)e
(Lafont')-5 b(s)30 b(e)o(xample)h(\(see)321 3077 y(P)o(age)20
b(4\).)28 b(Each)20 b(of)g(them)g(may)g(reduce)i(to)e(one)h(of)f(its)g
(subproofs.)31 b(Furthermore,)22 b(assume)f(the)g(lo)n(wer)321
3190 y(cut)k(is)f(a)g(commuting)h(cut,)g(which)f(may)g(reduce)i(to)e
(the)g(left)h(or)f(to)g(the)h(right.)31 b(Let)24 b(the)g(cut-formula,)
321 3303 y Ga(B)5 b Gg(,)37 b(of)e(this)h(cut)g(be)f(introduced)k(on)c
(both)h(sides)h(some)n(where)f(in)f(one)h(of)f(the)h(subproofs)i(of)d
(the)321 3416 y(corresponding)f(upper)c(cut,)h(then)f(which)g(normal)g
(form)f(we)f(recei)n(v)o(e)j(depends)g(on)e(the)h(reduction)321
3529 y(we)k(apply)h(for)f(the)g(tw)o(o)g(upper)h(cuts.)61
b(In)34 b(one)h(case)f(the)h(lo)n(wer)f(cut)g(will)g(e)n(v)o(entually)i
(become)f(a)321 3642 y(logical)f(cut,)h(and)e(in)f(another)i(it)e(will)
g(be)h(eliminated)h(in)e(a)g(single)i(step)f(because)h(the)f(subproofs)
321 3755 y(where)24 b Ga(B)j Gg(w)o(as)d(introduced)i(v)n(anished.)462
3884 y(Similarly)e(the)g(normal)g(forms)f(we)f(recei)n(v)o(e)i(by)g
(reducing)h(the)e(upper)i(cuts)f(depend)g(on)g(ho)n(w)e(we)321
3997 y(reduce)27 b(the)e(lo)n(wer)g(cut.)34 b(F)o(or)24
b(e)o(xample,)j(if)d(the)i(lo)n(wer)f(cut)g(is)g(reduced)i(to)e(the)h
(left)f(creating)j(se)n(v)o(eral)321 4110 y(copies)22
b(of)e(its)g(right)g(subproof,)j(then)e(we)e(recei)n(v)o(e)i(dif)n
(ferent)h(normal)e(forms)h(depending)h(on)f(whether)321
4223 y(we)i(reduce)i(the)f(upper)h(cut)e(\(Suf)n(\002x)g(3\))h(before)h
(reducing)h(the)d(lo)n(wer)h(cut)g(or)f(after)-5 b(.)462
4352 y(Since)26 b(we)f(do)h(not)h(yet)f(kno)n(w)f(which)i(choices)g
(lead)g(to)e(dif)n(ferent)j(normal)f(forms,)f(a)f(na)m(\250)-27
b(\021v)o(e)27 b(im-)321 4465 y(plementation)22 b(w)o(ould)e(ha)n(v)o
(e)g(to)f(e)o(xplore,)j(or)d(backtrack)j(o)o(v)o(er)l(,)e(all)f
(possible)j(choices.)29 b(This)19 b(could)i(be)321 4578
y(done)j(using)g(techniques)j(from)22 b(logic)j(programming,)f(for)g(e)
o(xample)g(the)f(proof)h(search)g(algorithms)321 4691
y(based)32 b(on)e(continuation)k(passing)e(\(see)f(for)f(instance)i
([Carlsson,)g(1984,)f(Urban,)f(1998]\).)50 b(These)321
4804 y(techniques)39 b(of)n(fer)d(ef)n(fecti)n(v)o(e)g(implementations)
j(for)c(our)h(cut-elimination)j(procedures,)i(b)n(ut)36
b(are)321 4917 y(substantially)d(more)c(complicated)i(than)f(the)f
(simple)g(e)n(v)n(aluation)j(function)f(of)d(the)i(simply-typed)321
5030 y(lambda)25 b(calculus.)462 5159 y(In)32 b(the)h(rest)f(of)g(this)
h(section)g(we)e(shall)i(de)n(v)o(elop)h(a)d(simple)i(implementation)i
(for)d(the)g(reduc-)321 5272 y(tion)39 b(system)g F4(\()p
FY(T)t Ga(;)943 5235 y Gc(aux)923 5272 y F6(\000)-32
b(\000)h(!)p F4(\))p Gg(.)72 b(Using)38 b(terminology)j(from)d(logic)h
(programming,)k(we)38 b(will)f(achie)n(v)o(e)321 5385
y(this)31 b(by)g(transforming)i(the)d(\223don')n(t)i(kno)n(w\224)f
(non-determinism)j(of)2548 5348 y Gc(aux)2528 5385 y
F6(\000)-32 b(\000)h(!)29 b Gg(into)i(\223don')n(t)h(care\224)g(non-)
321 5498 y(determinism.)44 b(In)27 b(the)i(end,)g(some)n(what)f
(surprisingly)-6 b(,)32 b(we)c(can)g(implement)h(a)e(completely)j
(deter)n(-)p Black Black eop end
%%Page: 103 115
TeXDict begin 103 114 bop Black 277 51 a Gb(4.1)23 b(Implementation)
2798 b(103)p 277 88 3691 4 v Black 277 388 a Gg(ministic)27
b(e)n(v)n(aluation)g(function,)h(which,)e(gi)n(v)o(en)g(a)f(proof,)i
(computes)g(all)e(normal)h(forms)g(reachable)277 501
y(by)411 464 y Gc(aux)391 501 y F6(\000)-31 b(\000)f(!)23
b Gg(without)h(the)g(need)g(of)g(backtracking.)418 631
y(First,)e(we)f(observ)o(e)i(that)f(a)f(leftmost-outermost)k(reduction)
f(strate)o(gy)g(is)d(suf)n(\002cient)i(to)e(compute)277
744 y(all)e(normal)h(forms.)28 b(This)18 b(reduction)k(strate)o(gy)f
(restricts)g(the)e(conte)o(xts)i(in)e(which)g(an)2978
707 y Gc(aux)2958 744 y F6(\000)-31 b(\000)g(!)p Gg(-reduction)277
857 y(may)23 b(be)g(performed)h(such)g(that)f(not)h(more)e(than)i(a)e
(single)j(rede)o(x)e(needs)h(to)f(be)g(considered:)32
b(there)24 b(is)277 970 y(either)k(none)g(\(in)f(the)g(case)h(of)f(a)f
(normal)i(form\),)g(or)e(only)i(one)f(leftmost-outermost)k(rede)o(x.)40
b(Some)277 1083 y(clauses)30 b(of)f(the)f(leftmost-outermost)33
b(reduction)e(strate)o(gy)-6 b(,)31 b(denoted)f(by)p
2686 1008 119 3 v 2686 1046 a Gc(aux)2666 1083 y F6(\000)-31
b(\000)f(!)p Gg(,)29 b(are)f(gi)n(v)o(en)h(in)g(Fig-)277
1196 y(ure)j(4.1.)53 b(T)-7 b(o)31 b(sho)n(w)g(that)h(all)g(normal)h
(forms)e(reachable)k(by)2300 1159 y Gc(aux)2279 1196
y F6(\000)-31 b(\000)g(!)30 b Gg(are)i(in)g(f)o(act)g(reachable)i(by)e
(the)277 1309 y(strate)o(gy)p 604 1234 V 604 1272 a Gc(aux)584
1309 y F6(\000)-32 b(\000)h(!)p Gg(,)20 b(we)g(shall)i(\002rst)e(\002x)
h(some)f(terminology)k(and)d(pro)o(v)o(e)h(a)e(lemma)h(sho)n(wing)g
(that)h(certain)277 1422 y(reductions)27 b(can)c(be)h(rearranged)i(in)e
(a)f(reduction)j(sequence.)p Black 277 1609 a Gb(T)-8
b(erminology)25 b(4.1.1:)p Black 34 w Gg(A)e(reduction)k(is)c(said)i
(to)f(be)g F7(bad)p Gg(,)g(denoted)i(by)2583 1572 y Gc(bad)2556
1609 y F6(\000)-31 b(\000)f(!)p Gg(,)23 b(if)h(and)g(only)h(if)f(it)g
(is)f(of)277 1722 y(the)28 b(form)639 1685 y Gc(aux)619
1722 y F6(\000)-31 b(\000)f(!)p Gg(,)28 b(b)n(ut)g(not)p
1145 1648 V 1145 1685 a Gc(aux)1125 1722 y F6(\000)-32
b(\000)h(!)p Gg(.)41 b(This)27 b(means)i(the)f(reduction)i(violates)g
(the)e(restrictions)j(imposed)277 1835 y(on)p 411 1760
V 411 1798 a Gc(aux)391 1835 y F6(\000)-31 b(\000)f(!)p
Gg(.)p Black 277 2073 a Gb(Lemma)23 b(4.1.2:)p Black
34 w Gg(F)o(or)g(e)n(v)o(ery)h(reduction)i(sequence)g(of)e(the)g(form)f
Ga(M)2454 2087 y F9(1)2547 2035 y Gc(bad)2519 2073 y
F6(\000)-31 b(\000)g(!)25 b Ga(M)2803 2087 y F9(2)p 2888
1998 V 2888 2035 a Gc(aux)2868 2073 y F6(\000)-31 b(\000)f(!)26
b Ga(M)3152 2087 y F9(3)3191 2073 y Gg(,)d(there)i(is)277
2185 y(a)e(reduction)j(sequence)g(of)e(the)f(form)h Ga(M)1582
2199 y F9(1)p 1667 2111 V 1667 2148 a Gc(aux)1647 2185
y F6(\000)-31 b(\000)f(!)25 b Ga(M)1940 2152 y FX(0)2009
2148 y Gc(aux)1989 2185 y F6(\000)-31 b(\000)f(!)2159
2152 y FX(\003)2224 2185 y Ga(M)2312 2199 y F9(3)2352
2185 y Gg(.)p Black 277 2398 a F7(Pr)l(oof)o(.)p Black
34 w Gg(By)23 b(induction)j(on)d(the)h(structure)i(of)d
Ga(M)1804 2412 y F9(1)1867 2398 y Gg(\(details)i(on)f(P)o(age)f(167\).)
p 3436 2398 4 62 v 3440 2340 55 4 v 3440 2398 V 3494
2398 4 62 v 277 2603 a(No)n(w)18 b(we)g(can)i(pro)o(v)o(e)f(that)h(e)n
(v)o(ery)g(normal)g(form)f(that)g(can)h(be)f(reached)i(by)2638
2566 y Gc(aux)2617 2603 y F6(\000)-31 b(\000)g(!)18 b
Gg(can)i(also)f(be)h(reached)277 2716 y(by)k(the)g(strate)o(gy)p
854 2641 119 3 v 854 2679 a Gc(aux)834 2716 y F6(\000)-31
b(\000)f(!)p Gg(.)p Black 277 2903 a Gb(Theor)n(em)24
b(4.1.3:)p Black 34 w Gg(F)o(or)f(all)g Ga(M)5 b(;)15
b(N)36 b F6(2)25 b FY(T)e Gg(with)g Ga(N)33 b Gg(being)24
b(a)f(normal)i(form,)p Black Black 927 3110 a(if)e Ga(M)1149
3073 y Gc(aux)1129 3110 y F6(\000)-32 b(\000)h(!)1299
3077 y FX(\003)1364 3110 y Ga(N)10 b Gg(,)22 b(then)i(there)h(is)e(a)g
(reduction)j Ga(M)p 2532 3035 V 2532 3073 a Gc(aux)2512
3110 y F6(\000)-32 b(\000)h(!)2682 3077 y FX(\003)2747
3110 y Ga(N)10 b Gg(.)p Black 277 3323 a F7(Pr)l(oof)o(.)p
Black 34 w Gg(By)32 b(induction)k(on)e(the)g(length)h(of)e(the)h
(reduction)i(sequence)f(of)2699 3285 y Gc(aux)2679 3323
y F6(\000)-32 b(\000)h(!)p Gg(,)35 b(which)f(by)f(Theo-)277
3435 y(rem)23 b(2.3.19)h(is)g(al)o(w)o(ays)g(\002nite)g(\(details)h(on)
f(P)o(age)f(167\).)p 3436 3435 4 62 v 3440 3377 55 4
v 3440 3435 V 3494 3435 4 62 v 277 3640 a(W)-7 b(e)23
b(ha)n(v)o(e)i(sho)n(wn)f(that)g(the)g(leftmost-outermost)k(reduction)f
(strate)o(gy)-6 b(,)p 2591 3566 119 3 v 2591 3603 a Gc(aux)2570
3640 y F6(\000)-31 b(\000)g(!)p Gg(,)23 b(does)h(not)h(restrict)g(the)
277 3753 y(collection)30 b(of)d(normal)h(forms)g(reachable)i(from)d(a)g
(classical)i(proof.)41 b(Ho)n(we)n(v)o(er)l(,)28 b(notice)h(that,)f(e)n
(v)o(en)277 3866 y(though)p 574 3791 V 574 3829 a Gc(aux)554
3866 y F6(\000)-32 b(\000)h(!)24 b Gg(is)g(a)h(strate)o(gy)-6
b(,)26 b(it)f(is)f(non-deterministic.)37 b(W)-7 b(e)24
b(can)h(identify)i(three)f(types)g(of)e(terms)h(as)277
3979 y(source)g(for)f(non-determinism.)p Black 373 4211
a(\(i\))p Black 46 w(There)19 b(are)f(tw)o(o)g(cut-reductions)k(that)d
(apply)g(to)f FL(Cut)p F4(\()2186 4199 y FX(h)2214 4211
y Ga(a)2262 4199 y FX(i)2289 4211 y FL(Ax)p F4(\()p Ga(x;)d(a)p
F4(\))q Ga(;)2643 4199 y F9(\()2671 4211 y Ga(y)2719
4199 y F9(\))2746 4211 y FL(Ax)o F4(\()p Ga(y)s(;)g(b)p
F4(\))q(\))p Gg(.)27 b(One)18 b(yields)504 4324 y FL(Ax)p
F4(\()p Ga(x;)d(a)p F4(\)[)p Ga(a)10 b F6(7!)g Ga(b)p
F4(])24 b Gg(and)g(the)g(other)h FL(Ax)o F4(\()p Ga(y)s(;)15
b(b)p F4(\)[)p Ga(y)e F6(7!)d Ga(x)p F4(])p Gg(.)p Black
348 4514 a(\(ii\))p Black 46 w(The)21 b(cut-reduction)k(for)c
(commuting)h(cuts)g(may)f(reduce)h(the)f(term)g FL(Cut)p
F4(\()2828 4502 y FX(h)2856 4514 y Ga(a)2904 4502 y FX(i)2931
4514 y Ga(M)11 b(;)3070 4502 y F9(\()3097 4514 y Ga(x)3149
4502 y F9(\))3177 4514 y Ga(N)f F4(\))20 b Gg(to)h(ei-)504
4627 y(ther)j Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)994
4615 y F9(\()1021 4627 y Ga(x)1073 4615 y F9(\))1101
4627 y Ga(N)p F6(g)c Gg(or)h Ga(N)5 b F6(f)-7 b Ga(x)26
b F4(:=)1654 4615 y F9(\()1681 4627 y Ga(a)1729 4615
y F9(\))1757 4627 y Ga(M)p F6(g)d Gg(pro)o(vided)h Ga(M)32
b Gg(and)23 b Ga(N)32 b Gg(do)23 b(not)g(freshly)h(introduce)504
4740 y Ga(a)f Gg(and)h Ga(x)p Gg(,)f(respecti)n(v)o(ely)-6
b(.)p Black 323 4930 a(\(iii\))p Black 46 w(F)o(or)32
b(logical)i(cuts)f(with)g(a)f(cut-formula)j(of)d(the)h(form)g
Ga(B)5 b F6(\033)o Ga(C)38 b Gg(we)32 b(ha)n(v)o(e)h(included)i(tw)o(o)
d(re-)504 5043 y(ductions)24 b(\(see)d(Figure)h(2.5\).)28
b(Thus)21 b FL(Cut)p F4(\()1826 5031 y FX(h)1853 5043
y Ga(b)1892 5031 y FX(i)1920 5043 y FL(Imp)2064 5065
y Gc(R)2122 5043 y F4(\()2157 5031 y F9(\()2185 5043
y Ga(x)2237 5031 y F9(\))p FX(h)2292 5043 y Ga(a)2340
5031 y FX(i)2367 5043 y Ga(M)10 b(;)15 b(b)p F4(\))q
Ga(;)2620 5031 y F9(\()2648 5043 y Ga(z)2694 5031 y F9(\))2722
5043 y FL(Imp)2866 5065 y Gc(L)2918 5043 y F4(\()2953
5031 y FX(h)2981 5043 y Ga(c)3020 5031 y FX(i)3048 5043
y Ga(N)10 b(;)3171 5031 y F9(\()3198 5043 y Ga(y)3246
5031 y F9(\))3274 5043 y Ga(P)j(;)i(z)t F4(\))q(\))504
5156 y Gg(reduces)26 b(to)d(either)682 5362 y FL(Cut)p
F4(\()855 5350 y FX(h)883 5362 y Ga(a)931 5350 y FX(i)959
5362 y FL(Cut)o F4(\()1131 5350 y FX(h)1159 5362 y Ga(c)1198
5350 y FX(i)1226 5362 y Ga(N)10 b(;)1349 5350 y F9(\()1377
5362 y Ga(x)1429 5350 y F9(\))1456 5362 y Ga(M)g F4(\))q
Ga(;)1630 5350 y F9(\()1658 5362 y Ga(y)1706 5350 y F9(\))1733
5362 y Ga(P)j F4(\))101 b Gg(or)h FL(Cut)p F4(\()2290
5350 y FX(h)2318 5362 y Ga(c)2357 5350 y FX(i)2384 5362
y Ga(N)10 b(;)2507 5350 y F9(\()2535 5362 y Ga(x)2587
5350 y F9(\))2615 5362 y FL(Cut)o F4(\()2787 5350 y FX(h)2815
5362 y Ga(a)2863 5350 y FX(i)2891 5362 y Ga(M)g(;)3029
5350 y F9(\()3057 5362 y Ga(y)3105 5350 y F9(\))3132
5362 y Ga(P)j F4(\)\))26 b Ga(:)p Black Black eop end
%%Page: 104 116
TeXDict begin 104 115 bop Black -144 51 a Gb(104)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black Black -144 300 V -144 1259 4 959 v 1112
429 a FU(M)1244 394 y FS(aux)1224 429 y FT(\000)-24 b(\000)f(!)23
b FU(N)55 b Gd(on)20 b(the)g(outermost)f(le)n(v)o(el)p
1112 450 1159 4 v 1503 535 a FU(M)p 1635 466 113 3 v
1635 500 a FS(aux)1616 535 y FT(\000)-25 b(\000)g(!)23
b FU(N)587 717 y(M)p 719 648 V 719 682 a FS(aux)699 717
y FT(\000)-24 b(\000)f(!)23 b FU(M)976 687 y FQ(0)p -46
737 1678 4 v -46 822 a FF(And)95 834 y FS(R)150 822 y
FG(\()182 810 y FQ(h)209 822 y FU(a)253 810 y FQ(i)279
822 y FU(M)9 b(;)406 810 y FQ(h)433 822 y FU(b)469 810
y FQ(i)495 822 y FU(N)g(;)14 b(c)p FG(\))p 719 753 113
3 v 719 787 a FS(aux)699 822 y FT(\000)-24 b(\000)f(!)23
b FF(And)1027 834 y FS(R)1082 822 y FG(\()1114 810 y
FQ(h)1141 822 y FU(a)1185 810 y FQ(i)1212 822 y FU(M)1302
792 y FQ(0)1324 822 y FU(;)1361 810 y FQ(h)1388 822 y
FU(b)1424 810 y FQ(i)1451 822 y FU(N)8 b(;)14 b(c)p FG(\))2073
716 y FU(M)32 b Gd(is)21 b(normal)220 b FU(N)p 2837 647
V 2837 681 a FS(aux)2818 716 y FT(\000)-25 b(\000)g(!)23
b FU(N)3080 686 y FQ(0)p 1750 737 1678 4 v 1750 822 a
FF(And)1891 834 y FS(R)1945 822 y FG(\()1977 810 y FQ(h)2004
822 y FU(a)2048 810 y FQ(i)2075 822 y FU(M)9 b(;)2202
810 y FQ(h)2229 822 y FU(b)2265 810 y FQ(i)2291 822 y
FU(N)g(;)14 b(c)p FG(\))p 2515 753 113 3 v 2515 787 a
FS(aux)2495 822 y FT(\000)-25 b(\000)h(!)23 b FF(And)2823
834 y FS(R)2877 822 y FG(\()2909 810 y FQ(h)2936 822
y FU(a)2980 810 y FQ(i)3007 822 y FU(M)9 b(;)3134 810
y FQ(h)3161 822 y FU(b)3197 810 y FQ(i)3223 822 y FU(N)3299
792 y FQ(0)3322 822 y FU(;)14 b(c)p FG(\))1484 1027 y
FU(M)p 1617 958 V 1617 992 a FS(aux)1597 1027 y FT(\000)-24
b(\000)f(!)23 b FU(M)1874 997 y FQ(0)p 1049 1047 1283
4 v 1049 1139 a FF(And)1190 1102 y FS(i)1190 1160 y(L)1240
1139 y FG(\()1272 1127 y FJ(\()1298 1139 y FU(x)1345
1127 y FJ(\))1372 1139 y FU(M)8 b(;)14 b(y)s FG(\))p
1617 1070 113 3 v 1617 1104 a FS(aux)1597 1139 y FT(\000)-24
b(\000)f(!)23 b FF(And)1925 1102 y FS(i)1925 1160 y(L)1975
1139 y FG(\()2007 1127 y FJ(\()2033 1139 y FU(x)2080
1127 y FJ(\))2106 1139 y FU(M)2196 1109 y FQ(0)2219 1139
y FU(;)14 b(y)s FG(\))p 3543 1259 4 959 v -144 1262 3691
4 v 321 1416 a Gg(Figure)23 b(4.1:)29 b(Excerpt)23 b(from)f(the)h
(reduction)i(system)e(for)f(the)h(leftmost-outermost)k(reduction)e
(strat-)321 1529 y(e)o(gy)f(of)593 1492 y Gc(aux)572
1529 y F6(\000)-31 b(\000)g(!)p Gg(.)p Black 321 1937
a(In)28 b(the)g(\002rst)g(case)g(it)f(is)h(not)g(dif)n(\002cult)h(to)f
(see)g(that)g(the)g(choice)h(does)g(not)f(matter:)38
b(both)29 b(rules)g(yield)321 2050 y(the)g(normal)h(form)f
FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(.)46 b(In)28
b(the)i(second)g(we)e(recei)n(v)o(e,)j(in)e(general,)j(dif)n(ferent)f
(normal)e(forms)321 2163 y(depending)36 b(on)d(which)h(choice)g(is)f
(made.)57 b(So)32 b(both)i(choices)h(need)f(to)f(be)g(e)o(xplored)i(in)
e(order)h(to)321 2276 y(compute)k(all)f(normal)h(forms)f(reachable)i
(from)e(a)f(proof.)70 b(Also)37 b(in)g(the)g(third)g(case)h(the)f
(choice)321 2388 y(matters)26 b(with)f(respect)i(to)e(the)h(reachable)h
(normal)f(forms,)g(as)f(illustrated)j(in)d(Figure)h(4.2.)33
b(If)25 b(we)f(do)321 2501 y(not)g(e)o(xplore)h(both)g(choices,)g(we)d
(may)i(\223lose\224)h(some)e(normal)h(forms.)462 2631
y(T)-7 b(o)30 b(a)n(v)n(oid)j(backtracking)i(o)o(v)o(er)c(the)g
(choices)i(in)e(Cases)h(\(ii\))f(and)g(\(iii\))h(we)e(add)i(the)f(ne)n
(w)g(term)321 2744 y(constructor)1719 2857 y FL(Mix)o
F4(\()p Ga(M)5 b(;)15 b(N)10 b F4(\))321 3015 y Gg(to)24
b(the)g(grammar)f(of)h(terms)g(and,)f(correspondingly)-6
b(,)29 b(add)24 b(the)g(rule)1330 3181 y F4(\000)1387
3195 y F9(1)1451 3169 y Gc(.)1506 3181 y Ga(M)1629 3169
y Gc(.)1684 3181 y F4(\001)1760 3195 y F9(1)1890 3181
y F4(\000)1947 3195 y F9(2)2012 3169 y Gc(.)2067 3181
y Ga(N)2175 3169 y Gc(.)2230 3181 y F4(\001)2306 3195
y F9(2)p 1290 3214 1095 4 v 1290 3299 a F4(\000)1347
3313 y F9(1)1386 3299 y Ga(;)15 b F4(\000)1483 3313 y
F9(2)1548 3287 y Gc(.)1603 3299 y FL(Mix)o F4(\()p Ga(M)5
b(;)15 b(N)10 b F4(\))2059 3287 y Gc(.)2114 3299 y F4(\001)2190
3313 y F9(1)2229 3299 y Ga(;)15 b F4(\001)2345 3313 y
F9(2)2426 3245 y Gg(Mix)321 3487 y(to)26 b(the)f(set)h(of)f(rules)h
(for)f(forming)i(typing)g(judgements.)36 b(W)-7 b(e)24
b(shall)i(denote)h(the)f(corresponding)j(set)321 3600
y(of)23 b(well-typed)i(terms)e(by)h FY(T)1229 3567 y
Gc(m)1291 3600 y Gg(.)k(There)23 b(are)g(no)g(reduction)j(rules)e(that)
f(apply)i(to)e(Mix,)f(b)n(ut)i(using)g(this)321 3713
y(ne)n(w)g(term)g(constructor)k(we)c(can)h(reformulate)h(the)f
(reductions)j(that)d(apply)g(in)g(Cases)g(\(ii\))f(and)h(\(iii\).)321
3826 y(The)e(ne)n(w)g(reductions)k(are)c(listed)i(belo)n(w)-6
b(.)p Black Black 371 4104 a FL(Cut)p F4(\()544 4092
y FX(h)572 4104 y Ga(a)620 4092 y FX(i)647 4104 y Ga(M)10
b(;)785 4092 y F9(\()813 4104 y Ga(x)865 4092 y F9(\))893
4104 y Ga(N)g F4(\))502 4227 y Gc(c)533 4203 y FC(000)462
4264 y F6(\000)-31 b(\000)f(!)100 b Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)1058 4252 y F9(\()1086 4264 y Ga(x)1138
4252 y F9(\))1165 4264 y Ga(N)q F6(g)142 b Gg(if)23 b
Ga(N)33 b Gg(freshly)25 b(introduces)h Ga(x)p Gg(,)d(b)n(ut)h
Ga(M)33 b Gg(does)24 b(not)g Ga(a)p Gg(,)53 b(or)502
4375 y Gc(c)533 4352 y FC(000)462 4412 y F6(\000)-31
b(\000)f(!)100 b Ga(N)5 b F6(f)-7 b Ga(x)26 b F4(:=)1047
4400 y FX(h)1074 4412 y Ga(a)1122 4400 y FX(i)1150 4412
y Ga(M)q F6(g)142 b Gg(if)23 b Ga(M)33 b Gg(freshly)25
b(introduces)h Ga(a)p Gg(,)d(b)n(ut)h Ga(N)33 b Gg(does)24
b(not)g Ga(x)p Gg(,)53 b(or)502 4524 y Gc(c)533 4500
y FC(000)462 4561 y F6(\000)-31 b(\000)f(!)100 b FL(Mix)o
F4(\()p Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1237 4549
y F9(\()1264 4561 y Ga(x)1316 4549 y F9(\))1344 4561
y Ga(N)p F6(g)15 b Ga(;)31 b(N)5 b F6(f)-7 b Ga(x)26
b F4(:=)1848 4549 y FX(h)1876 4561 y Ga(a)1924 4549 y
FX(i)1951 4561 y Ga(M)q F6(g)p F4(\))1426 4697 y Gg(if)d
Ga(M)33 b Gg(and)24 b Ga(N)32 b Gg(do)24 b(not,)g(respecti)n(v)o(ely)-6
b(,)26 b(freshly)f(introduce)h Ga(a)d Gg(and)h Ga(x)371
4928 y FL(Cut)p F4(\()544 4916 y FX(h)572 4928 y Ga(b)611
4916 y FX(i)638 4928 y FL(Imp)783 4950 y Gc(R)840 4928
y F4(\()875 4916 y F9(\()903 4928 y Ga(x)955 4916 y F9(\))q
FX(h)1010 4928 y Ga(a)1058 4916 y FX(i)1086 4928 y Ga(M)10
b(;)15 b(b)p F4(\))p Ga(;)1338 4916 y F9(\()1366 4928
y Ga(z)1412 4916 y F9(\))1440 4928 y FL(Imp)1584 4950
y Gc(L)1637 4928 y F4(\()1672 4916 y FX(h)1699 4928 y
Ga(c)1738 4916 y FX(i)1766 4928 y Ga(N)10 b(;)1889 4916
y F9(\()1917 4928 y Ga(y)1965 4916 y F9(\))1992 4928
y Ga(P)j(;)i(z)t F4(\))q(\))516 5040 y Gc(l)538 5016
y FC(00)462 5077 y F6(\000)-31 b(\000)f(!)100 b FL(Mix)o
F4(\()p FL(Cut)p F4(\()1083 5065 y FX(h)1111 5077 y Ga(a)1159
5065 y FX(i)1187 5077 y FL(Cut)o F4(\()1359 5065 y FX(h)1387
5077 y Ga(c)1426 5065 y FX(i)1454 5077 y Ga(N)10 b(;)1577
5065 y F9(\()1605 5077 y Ga(x)1657 5065 y F9(\))1684
5077 y Ga(M)g F4(\))q Ga(;)1858 5065 y F9(\()1886 5077
y Ga(y)1934 5065 y F9(\))1961 5077 y Ga(P)j F4(\))i Ga(;)31
b FL(Cut)p F4(\()2311 5065 y FX(h)2339 5077 y Ga(c)2378
5065 y FX(i)2405 5077 y Ga(N)10 b(;)2528 5065 y F9(\()2556
5077 y Ga(x)2608 5065 y F9(\))2636 5077 y FL(Cut)o F4(\()2808
5065 y FX(h)2836 5077 y Ga(a)2884 5065 y FX(i)2912 5077
y Ga(M)g(;)3050 5065 y F9(\()3078 5077 y Ga(y)3126 5065
y F9(\))3153 5077 y Ga(P)j F4(\)\)\))1426 5213 y Gg(if)23
b FL(Imp)1648 5235 y Gc(R)1706 5213 y F4(\()1741 5201
y F9(\()1769 5213 y Ga(x)1821 5201 y F9(\))p FX(h)1876
5213 y Ga(a)1924 5201 y FX(i)1951 5213 y Ga(M)10 b(;)15
b(b)p F4(\))24 b Gg(freshly)h(introduces)i Ga(b)22 b
Gg(and)1426 5326 y(if)h FL(Imp)1648 5348 y Gc(L)1701
5326 y F4(\()1736 5314 y FX(h)1763 5326 y Ga(c)1802 5314
y FX(i)1830 5326 y Ga(N)10 b(;)1953 5314 y F9(\()1981
5326 y Ga(y)2029 5314 y F9(\))2056 5326 y Ga(P)j(;)i(z)t
F4(\))24 b Gg(freshly)h(introduces)i Ga(z)p Black Black
eop end
%%Page: 105 117
TeXDict begin 105 116 bop Black 277 51 a Gb(4.1)23 b(Implementation)
2798 b(105)p 277 88 3691 4 v Black Black 277 1079 V 277
3771 4 2693 v Black Black 1270 1171 322 4 v 1270 1244
a FU(A;)14 b(B)p 1455 1232 10 38 v 1465 1216 42 4 v 93
w(B)p 1211 1280 440 4 v 1211 1354 a(A)p FT(^)q FU(A;)g(B)p
1514 1342 10 38 v 1523 1325 42 4 v 92 w(B)1692 1293 y
FT(^)1747 1305 y FS(L)1793 1313 y FP(2)p 1198 1390 467
4 v 1198 1463 a FU(A)p FT(^)p FU(A)p 1396 1451 10 38
v 1406 1434 42 4 v 88 w(B)t FT(\033)p FU(B)1706 1406
y FT(\033)1770 1418 y FS(R)p 1974 1203 223 4 v 1974 1276
a FU(B)p 2059 1264 10 38 v 2069 1248 42 4 v 92 w(B)p
1912 1296 345 4 v 1912 1370 a(B)t FT(^)q FU(B)p 2121
1358 10 38 v 2130 1341 42 4 v 92 w(B)2299 1309 y FT(^)2354
1322 y FS(L)2400 1330 y FP(1)p 2580 1203 223 4 v 2580
1276 a FU(B)p 2666 1264 10 38 v 2676 1248 42 4 v 93 w(B)p
2519 1296 345 4 v 2519 1370 a(B)p 2605 1358 10 38 v 2614
1341 42 4 v 92 w(B)t FT(_)q FU(B)2905 1309 y FT(_)2961
1322 y FS(R)3011 1330 y FP(1)p 1912 1390 952 4 v 2037
1463 a FU(B)t FT(\033)o FU(B)t(;)g(B)t FT(^)q FU(B)p
2481 1451 10 38 v 2490 1434 42 4 v 92 w(B)t FT(_)q FU(B)2905
1406 y FT(\033)2970 1418 y FS(L)p 1198 1499 1543 4 v
1627 1572 a FU(A)p FT(^)p FU(A;)g(B)t FT(^)q FU(B)p 2052
1560 10 38 v 2061 1544 42 4 v 92 w(B)t FT(_)q FU(B)2781
1527 y Gd(Cut)1247 1785 y FN(.)1511 b(&)p 400 2050 223
4 v 400 2123 a FU(B)p 485 2111 10 38 v 495 2095 42 4
v 92 w(B)p 338 2143 345 4 v 338 2217 a(B)t FT(^)q FU(B)p
546 2205 10 38 v 556 2188 42 4 v 92 w(B)711 2156 y FT(^)766
2169 y FS(L)812 2177 y FP(1)p 948 2034 322 4 v 948 2107
a FU(A;)14 b(B)p 1133 2095 10 38 v 1143 2079 42 4 v 93
w(B)p 890 2143 440 4 v 890 2217 a(A)p FT(^)p FU(A;)g(B)p
1192 2205 10 38 v 1202 2188 42 4 v 93 w(B)1356 2156 y
FT(^)1412 2169 y FS(L)1458 2177 y FP(2)p 338 2253 991
4 v 553 2326 a FU(A)p FT(^)p FU(A;)g(B)t FT(^)q FU(B)p
978 2314 10 38 v 987 2298 42 4 v 92 w(B)1356 2281 y Gd(Cut)p
1610 2160 223 4 v 1610 2233 a FU(B)p 1696 2221 10 38
v 1706 2204 42 4 v 92 w(B)p 1549 2253 345 4 v 1549 2326
a(B)p 1635 2314 10 38 v 1644 2298 42 4 v 92 w(B)t FT(_)q
FU(B)1922 2265 y FT(_)1977 2278 y FS(R)2027 2286 y FP(1)p
553 2362 1342 4 v 881 2436 a FU(A)p FT(^)q FU(A;)g(B)t
FT(^)q FU(B)p 1306 2424 10 38 v 1316 2407 42 4 v 92 w(B)t
FT(_)p FU(B)1922 2390 y Gd(Cut)p 2243 2160 223 4 v 2243
2233 a FU(B)p 2328 2221 10 38 v 2338 2204 42 4 v 92 w(B)p
2182 2253 345 4 v 2182 2326 a(B)t FT(^)p FU(B)p 2390
2314 10 38 v 2399 2298 42 4 v 92 w(B)2554 2265 y FT(^)2609
2278 y FS(L)2655 2286 y FP(1)p 2806 2034 322 4 v 2806
2107 a FU(A;)g(B)p 2990 2095 10 38 v 3000 2079 42 4 v
92 w(B)p 2747 2143 440 4 v 2747 2217 a(A)p FT(^)p FU(A;)g(B)p
3049 2205 10 38 v 3059 2188 42 4 v 93 w(B)3213 2156 y
FT(^)3269 2169 y FS(L)3315 2177 y FP(2)p 3454 2050 223
4 v 3454 2123 a FU(B)p 3539 2111 10 38 v 3549 2095 42
4 v 92 w(B)p 3392 2143 345 4 v 3392 2217 a(B)p 3478 2205
10 38 v 3488 2188 42 4 v 92 w(B)t FT(_)q FU(B)3765 2156
y FT(_)3820 2169 y FS(R)3870 2177 y FP(1)p 2747 2253
991 4 v 2961 2326 a FU(B)t(;)g(A)p FT(^)q FU(A)p 3264
2314 10 38 v 3273 2298 42 4 v 88 w(B)t FT(_)q FU(B)3765
2281 y Gd(Cut)p 2182 2362 1342 4 v 2510 2436 a FU(A)p
FT(^)q FU(A;)g(B)t FT(^)p FU(B)p 2935 2424 10 38 v 2945
2407 42 4 v 92 w(B)t FT(_)q FU(B)3550 2390 y Gd(Cut)1171
2648 y FN(#)1783 b(#)1186 2740 y FM(.)1186 2773 y(.)1186
2806 y(.)3029 2740 y(.)3029 2773 y(.)3029 2806 y(.)1171
2919 y FN(#)g(#)p 948 3168 322 4 v 948 3242 a FU(A;)14
b(B)p 1133 3230 10 38 v 1143 3213 42 4 v 93 w(B)p 890
3278 440 4 v 890 3351 a(A)p FT(^)p FU(A;)g(B)p 1192 3339
10 38 v 1202 3322 42 4 v 93 w(B)1370 3290 y FT(^)1426
3303 y FS(L)1472 3311 y FP(2)p 828 3387 562 4 v 828 3460
a FU(A)p FT(^)q FU(A;)g(B)t FT(^)q FU(B)p 1253 3448 10
38 v 1263 3432 42 4 v 92 w(B)1431 3400 y FT(^)1487 3412
y FS(L)1533 3420 y FP(1)p 767 3496 684 4 v 767 3570 a
FU(A)p FT(^)q FU(A;)g(B)t FT(^)p FU(B)p 1192 3558 10
38 v 1202 3541 42 4 v 93 w(B)t FT(_)p FU(B)1493 3509
y FT(_)1548 3522 y FS(R)1598 3530 y FP(1)p 2794 3168
322 4 v 2794 3242 a FU(A;)g(B)p 2979 3230 10 38 v 2988
3213 42 4 v 92 w(B)p 2735 3278 440 4 v 2735 3351 a(A)p
FT(^)q FU(A;)g(B)p 3038 3339 10 38 v 3047 3322 42 4 v
92 w(B)3216 3290 y FT(^)3271 3303 y FS(L)3317 3311 y
FP(2)p 2674 3387 562 4 v 2674 3460 a FU(A)p FT(^)q FU(A;)g(B)p
2976 3448 10 38 v 2986 3432 42 4 v 92 w(B)t FT(_)p FU(B)3277
3400 y FT(_)3332 3412 y FS(R)3382 3420 y FP(1)p 2613
3496 684 4 v 2613 3570 a FU(A)p FT(^)p FU(A;)g(B)t FT(^)q
FU(B)p 3038 3558 10 38 v 3047 3541 42 4 v 92 w(B)t FT(_)q
FU(B)3338 3509 y FT(^)3393 3522 y FS(L)3439 3530 y FP(1)p
3965 3771 4 2693 v 277 3774 3691 4 v 277 3928 a Gg(Figure)22
b(4.2:)29 b(The)21 b(cut)h(in)g(the)g(upper)g(proof)h(is)f(replaced)i
(by)e(tw)o(o)f(cuts)h(on)g(smaller)h(formulae.)29 b(There)277
4041 y(are)22 b(tw)o(o)f(possibilites)k(of)d(ho)n(w)f(to)h(nest)g(the)g
(resulting)i(cuts,)f(as)e(is)h(sho)n(wn)g(in)f(the)h(second)h(line.)29
b(From)277 4154 y(these)d(proofs)g(the)f(normal)h(forms)f(gi)n(v)o(en)g
(belo)n(w)g(can)g(be)g(reached.)35 b(The)24 b(normal)i(form)e(on)h(the)
g(left,)277 4267 y(ho)n(we)n(v)o(er)l(,)e(cannot)g(be)f(reached)h(from)
f(the)g(proof)h(in)f(the)g(second)h(line)g(on)e(the)i(right,)f(and)h
(the)f(normal)277 4380 y(form)f(on)h(the)f(right)i(not)e(from)h(the)f
(proof)i(in)e(the)h(second)h(line)e(on)h(the)g(left.)28
b(Thus)21 b(the)h(choice)h(of)e(ho)n(w)277 4493 y(to)28
b(nest)h(the)g(cuts)g(when)g(applying)h(a)e(logical)i(cut)f
F6(\033)1985 4507 y Gc(R)2042 4493 y Ga(=)p F6(\033)2159
4507 y Gc(L)2238 4493 y Gg(matters)g(with)g(respect)h(to)e(the)h
(normal)277 4606 y(forms)24 b(that)g(can)g(be)f(reached.)p
Black Black Black eop end
%%Page: 106 118
TeXDict begin 106 117 bop Black -144 51 a Gb(106)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black 321 388 a Gg(It)d(is)g(not)h(hard)g(to)f(see)g(that)h
(the)f(reformulation)k(does)d(not)f(af)n(fect)h(the)g(beha)n(viour)i
(of)d(cut-elimination)321 501 y(with)g(respect)i(to)f(strong)h
(normalisation.)31 b(The)21 b(corresponding)k(ne)n(w)c(strate)o(gy)i
(is)e(denoted)i(by)p 3366 427 119 3 v 3366 464 a Gc(aux)3496
441 y FC(0)3351 501 y F6(\000)-31 b(\000)f(!)p Gg(;)321
614 y(the)32 b(ne)n(w)f(reduction)j(system)e(is)g(denoted)h(by)f
F4(\()p FY(T)1928 581 y Gc(m)1991 614 y Ga(;)p 2046 539
V 2046 577 a Gc(aux)2176 554 y FC(0)2031 614 y F6(\000)-31
b(\000)g(!)o F4(\))p Gg(.)53 b(T)-7 b(o)30 b(ensure)j(that)f(we)f(do)h
(not)f(ha)n(v)o(e)i(to)321 727 y(e)o(xplore)25 b(an)o(y)f(choices)h(in)
f F4(\()p FY(T)1253 694 y Gc(m)1316 727 y Ga(;)p 1371
652 V 1371 690 a Gc(aux)1501 666 y FC(0)1356 727 y F6(\000)-31
b(\000)f(!)p F4(\))p Gg(,)23 b(we)g(sho)n(w)g(that)p
2122 652 V 2122 690 a Gc(aux)2252 666 y FC(0)2107 727
y F6(\000)-31 b(\000)g(!)22 b Gg(is)i(con\003uent.)p
Black 321 915 a Gb(Pr)n(oposition)h(4.1.4:)p Black 34
w Gg(The)e(reduction)p 1582 840 V 1582 878 a Gc(aux)1712
854 y FC(0)1567 915 y F6(\000)-31 b(\000)g(!)22 b Gg(is)i(con\003uent.)
p Black 321 1127 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)f(inspection)j
(of)e(the)f(reduction)k(rules:)j(the)24 b(only)g(critical)h(pair)f(is)f
(of)h(the)g(form)1399 1392 y FL(Cut)p F4(\()1572 1380
y FX(h)1600 1392 y Ga(a)1648 1380 y FX(i)1676 1392 y
FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)2029 1380
y F9(\()2057 1392 y Ga(y)2105 1380 y F9(\))2132 1392
y FL(Ax)p F4(\()p Ga(y)s(;)g(b)p F4(\))q(\))321 1637
y Gg(which)24 b(in)g(both)g(cases)h(reduces)g(to)e FL(Ax)p
F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(.)p 3480 1637 4 62
v 3484 1579 55 4 v 3484 1637 V 3538 1637 4 62 v 321 1848
a(Consequently)-6 b(,)24 b(it)c(does)h(not)g(matter)f(which)p
1758 1773 119 3 v 1758 1811 a Gc(aux)1887 1787 y FC(0)1743
1848 y F6(\000)-32 b(\000)h(!)p Gg(-reduction)23 b(we)c(apply:)29
b(we)19 b(recei)n(v)o(e)i(only)g(a)f(single)321 1961
y(normal)i(form,)g(which)f(of)h(course)h(in)e(general)i(contains)g
(instances)h(of)d FL(Mix)p Gg(.)27 b(This)21 b(normal)h(form)f(can)321
2074 y(be)28 b(seen)h(as)f(a)f(compact)i(encoding)i(of)c(the)i
(collection)h(of)e(all)g(normal)h(forms)f(reachable)i(by)p
3374 1999 V 3374 2037 a Gc(aux)3353 2074 y F6(\000)-31
b(\000)g(!)p Gg(,)321 2187 y(and)35 b(thus)h(also)f(by)997
2149 y Gc(aux)976 2187 y F6(\000)-31 b(\000)g(!)33 b
Gg(and)1376 2149 y Gc(cut)1345 2187 y F6(\000)-31 b(\000)g(!)p
Gg(.)61 b(In)34 b(order)i(to)e(distinguish)k(them)d(from)f(the)h
(normal)g(forms)321 2299 y(reachable,)30 b(for)c(e)o(xample,)i(in)e
F4(\()p FY(T)t Ga(;)p 1455 2225 V 1455 2262 a Gc(aux)1435
2299 y F6(\000)-31 b(\000)g(!)p F4(\))p Gg(,)26 b(we)g(shall)h
(henceforth)i(refer)f(to)e(the)h(normal)g(forms)g(with)321
2412 y(instances)h(of)c FL(Mix)g Gg(as)g F7(mix-normal)j(forms)p
Gg(.)33 b(An)24 b(\223unwinding\224)j(function)g(will)e(allo)n(w)g(us)g
(to)f(e)o(xtract)321 2525 y(the)g(collection)i(of)e(\223real\224)h
(normal)f(forms)g(from)f(a)g(mix-normal)i(form.)462 2661
y(Notice)j(that)f(the)g(\223trick\224)h(with)f(the)g(mix)g(term)f
(constructor)k(cannot)e(be)f(used)h(in)e F4(\()p FY(T)t
Ga(;)3245 2624 y Gc(aux)3225 2661 y F6(\000)-31 b(\000)g(!)p
F4(\))p Gg(:)35 b(if)321 2774 y(we)28 b(replace)803 2737
y Gc(c)834 2713 y FC(0)745 2774 y F6(\000)-32 b(\000)h(!)27
b Gg(with)1172 2737 y Gc(c)1203 2713 y FC(000)1131 2774
y F6(\000)-31 b(\000)g(!)27 b Gg(in)h F4(\()p FY(T)t
Ga(;)1580 2737 y Gc(aux)1560 2774 y F6(\000)-31 b(\000)f(!)p
F4(\))p Gg(,)29 b(we)e(do)h F7(not)h Gg(obtain)h(a)e(con\003uent)h
(reduction)i(system,)321 2887 y(as)24 b(demonstrated)i(in)e(the)g(e)o
(xample)g(belo)n(w)-6 b(.)p Black 321 3074 a Gb(Example)26
b(4.1.5:)p Black 34 w Gg(Suppose)i Ga(M)10 b Gg(,)26
b Ga(N)35 b Gg(and)27 b Ga(P)38 b Gg(are)27 b(cut-free)h(terms)e(and)h
(assume:)35 b(\(i\))26 b Ga(a)k F6(62)g Ga(F)13 b(C)7
b F4(\()p Ga(M)j F4(\))p Gg(,)321 3187 y(\(ii\))27 b
Ga(M)36 b Gg(freshly)28 b(introduces)h Ga(b)p Gg(,)d(\(iii\))h
Ga(y)33 b F6(62)d Ga(F)13 b(N)d F4(\()p Ga(P)j F4(\))27
b Gg(and)f(\(i)n(v\))h Ga(N)35 b Gg(freshly)28 b(introduces)i
Ga(x)p Gg(.)36 b(Consider)321 3300 y(then)25 b(the)e(follo)n(wing)i
(term)1330 3565 y FL(Cut)p F4(\()1503 3553 y FX(h)1531
3565 y Ga(b)1570 3553 y FX(i)1597 3565 y FL(Cut)p F4(\()1770
3553 y FX(h)1798 3565 y Ga(a)1846 3553 y FX(i)1874 3565
y Ga(M)10 b(;)2012 3553 y F9(\()2040 3565 y Ga(x)2092
3553 y F9(\))2119 3565 y Ga(N)g F4(\))p Ga(;)2277 3553
y F9(\()2305 3565 y Ga(y)2353 3553 y F9(\))2380 3565
y Ga(P)j F4(\))26 b Ga(:)321 3810 y Gg(Reducing)f(\002rst)f(the)f
(outer)i(cut,)f(we)e(recei)n(v)o(e)j(the)f(follo)n(wing)h(reduction)h
(sequence.)p Black Black 982 4064 a FL(Cut)p F4(\()1155
4052 y FX(h)1183 4064 y Ga(b)1222 4052 y FX(i)1249 4064
y FL(Cut)p F4(\()1422 4052 y FX(h)1450 4064 y Ga(a)1498
4052 y FX(i)1526 4064 y Ga(M)10 b(;)1664 4052 y F9(\()1692
4064 y Ga(x)1744 4052 y F9(\))1771 4064 y Ga(N)g F4(\))p
Ga(;)1929 4052 y F9(\()1957 4064 y Ga(y)2005 4052 y F9(\))2032
4064 y Ga(P)j F4(\))733 4140 y Gc(aux)712 4177 y F6(\000)-31
b(\000)g(!)99 b FL(Mix)p F4(\()p FL(Cut)p F4(\()1334
4165 y FX(h)1362 4177 y Ga(a)1410 4165 y FX(i)1437 4177
y FL(Cut)p F4(\()1610 4165 y FX(h)1638 4177 y Ga(b)1677
4165 y FX(i)1704 4177 y Ga(M)10 b(;)1842 4165 y F9(\()1870
4177 y Ga(y)1918 4165 y F9(\))1945 4177 y Ga(P)j F4(\))q
Ga(;)2092 4165 y F9(\()2120 4177 y Ga(x)2172 4165 y F9(\))2199
4177 y Ga(N)d F4(\))15 b Ga(;)31 b(P)13 b F4(\))123 b
Gg(by)24 b(\(ii\))g(and)g(\(iii\))733 4253 y Gc(aux)712
4290 y F6(\000)-31 b(\000)g(!)99 b FL(Mix)p F4(\()p FL(Cut)p
F4(\()1334 4278 y FX(h)1362 4290 y Ga(a)1410 4278 y FX(i)1437
4290 y Ga(P)13 b(;)1548 4278 y F9(\()1576 4290 y Ga(x)1628
4278 y F9(\))1655 4290 y Ga(N)d F4(\))15 b Ga(;)31 b(P)13
b F4(\))667 b Gg(by)24 b(\(ii\))g(and)g(\(iii\))733 4366
y Gc(aux)712 4403 y F6(\000)-31 b(\000)g(!)99 b FL(Mix)p
F4(\()p Ga(P)28 b(;)j(P)13 b F4(\))1208 b Gg(by)24 b(\(i\))g(and)g(\(i)
n(v\))321 4654 y(Reducing)h(the)f(inner)h(cut)f(\002rst,)f(we)f(recei)n
(v)o(e)j(a)e(slightly)i(dif)n(ferent)h(reduction)g(sequence.)p
Black Black 982 4908 a FL(Cut)p F4(\()1155 4896 y FX(h)1183
4908 y Ga(b)1222 4896 y FX(i)1249 4908 y FL(Cut)p F4(\()1422
4896 y FX(h)1450 4908 y Ga(a)1498 4896 y FX(i)1526 4908
y Ga(M)10 b(;)1664 4896 y F9(\()1692 4908 y Ga(x)1744
4896 y F9(\))1771 4908 y Ga(N)g F4(\))p Ga(;)1929 4896
y F9(\()1957 4908 y Ga(y)2005 4896 y F9(\))2032 4908
y Ga(P)j F4(\))733 4984 y Gc(aux)712 5021 y F6(\000)-31
b(\000)g(!)99 b FL(Cut)p F4(\()1155 5009 y FX(h)1183
5021 y Ga(b)1222 5009 y FX(i)1249 5021 y Ga(M)11 b(;)1388
5009 y F9(\()1415 5021 y Ga(y)1463 5009 y F9(\))1491
5021 y Ga(P)i F4(\))1020 b Gg(by)24 b(\(i\))g(and)g(\(i)n(v\))733
5097 y Gc(aux)712 5134 y F6(\000)-31 b(\000)g(!)99 b
Ga(P)1577 b Gg(by)24 b(\(ii\))g(and)g(\(iii\))321 5385
y(So)f(the)h(restrictions)j(imposed)d(by)g(the)g(strate)o(gy)h(are)f
(necessary)i(for)e(con\003uence.)p Black Black eop end
%%Page: 107 119
TeXDict begin 107 118 bop Black 277 51 a Gb(4.1)23 b(Implementation)
2798 b(107)p 277 88 3691 4 v Black 277 388 a Fq(4.1.1)99
b(The)26 b(Code)277 596 y Gg(Let)j(us)h(no)n(w)g(gi)n(v)o(e)g(some)g
(details)i(of)d(the)i(code.)49 b(Figure)30 b(4.3)g(sho)n(ws)g(the)g
(main)g(datatypes)j(imple-)277 709 y(menting)25 b(the)f(follo)n(wing)h
(design)g(decisions:)p Black 414 981 a F6(\017)p Black
45 w Gg(names,)f(co-names)h(and)f(v)n(ariables)i(are)e(implemented)h
(as)e(strings,)p Black 414 1202 a F6(\017)p Black 45
w Gg(in)30 b(e)n(v)o(ery)g(cut)f(we)g(record)i(e)o(xplicitly)g(the)f
(cut-formula)i(\(a)d(typing)i(algorithm)g(for)f(terms)g(is)504
1315 y(then)25 b(rather)f(simple,)g(b)n(ut)g(be)o(yond)h(the)f(scope)h
(of)e(this)h(thesis\),)h(and)p Black 414 1537 a F6(\017)p
Black 45 w Gg(there)k(are)f(four)g(syntactic)i(cate)o(gories)h(of)c
(terms:)38 b(terms,)29 b(named)f(terms,)h(co-named)g(terms)504
1650 y(and)24 b(double-bounded)29 b(terms.)277 1922 y(The)24
b(double-bounded)29 b(terms)c(implement)g(the)f(special)i(binding)g
(operation)h(in)d(terms)h(of)f(the)g(form)277 2034 y
FL(Imp)422 2056 y Gc(R)479 2034 y F4(\()514 2022 y F9(\()542
2034 y Ga(x)594 2022 y F9(\))p FX(h)649 2034 y Ga(a)697
2022 y FX(i)724 2034 y Ga(M)11 b(;)k(b)p F4(\))p Gg(.)27
b(Some)19 b(e)o(xamples)h(of)f(ho)n(w)g(these)i(datatypes)h(relate)e
(to)g(our)f(formal)h(de\002nitions)277 2147 y(are)k(gi)n(v)o(en)g(belo)
n(w)-6 b(.)p 277 2335 V 277 3745 4 1410 v Black Black
354 2496 a(Example)923 b(Code)354 2678 y(e)o(xpression)27
b FL(f)6 b F4(\()p FL(g)q F4(\()p FL(x)p F4(\)\))572
b Fm(F\("f",[F\("g",[Var\("x"\)]\)]\))354 2814 y Gg(formula)25
b F6(8)p FL(x)p Ga(:)p F4(\()p Ga(A)15 b F6(^)g Ga(B)5
b FL(x)p F4(\))471 b Fm(Forall\("x",And\(Atm\("A"\),Pre\("B",[Var\()o
("x"\)])o(\)\)\))354 2949 y Gg(term)24 b FL(And)698 2913
y Gc(i)698 2973 y(L)750 2949 y F4(\()785 2937 y F9(\()813
2949 y Ga(x)865 2937 y F9(\))893 2949 y Ga(M)10 b(;)15
b(y)s F4(\))485 b Fm(AndL\(t,m,"y"\))97 b Gg(where)24
b Fm(t)15 b F6(2)25 b(f)p Fm(I)p Gg(,)p Fm(II)p F6(g)e
Gg(and)2346 3085 y Fm(m)g Gg(is)g(the)h(code)h(of)2929
3073 y F9(\()2956 3085 y Ga(x)3008 3073 y F9(\))3036
3085 y Ga(M)354 3220 y Gg(term)f FL(Imp)688 3242 y Gc(R)746
3220 y F4(\()781 3208 y F9(\()809 3220 y Ga(x)861 3208
y F9(\))p FX(h)916 3220 y Ga(a)964 3208 y FX(i)991 3220
y Ga(M)10 b(;)15 b(b)p F4(\))396 b Fm(ImpR\(m,"b"\))197
b Gg(where)24 b Fm(m)f Gg(is)g(the)h(code)g(of)3174 3208
y F9(\()3201 3220 y Ga(x)3253 3208 y F9(\))q FX(h)3308
3220 y Ga(a)3356 3208 y FX(i)3384 3220 y Ga(M)364 3356
y Gg(named)g(term)819 3344 y F9(\()846 3356 y Ga(x)898
3344 y F9(\))926 3356 y Ga(M)579 b Fm(\("x",m\))364 3491
y Gg(co-named)25 b(term)935 3479 y FX(h)962 3491 y Ga(a)1010
3479 y FX(i)1038 3491 y Ga(M)467 b Fm(\("a",m\))364 3627
y Gg(double-bounded)29 b(term)1167 3615 y F9(\()1195
3627 y Ga(x)1247 3615 y F9(\))p FX(h)1302 3627 y Ga(a)1350
3615 y FX(i)1377 3627 y Ga(M)128 b Fm(\("x","a",m\))2216
3273 y FK(9)2216 3355 y(>)2216 3382 y(=)2216 3546 y(>)2216
3573 y(;)2360 3487 y Gg(where)23 b Fm(m)g Gg(is)g(the)h(code)h(of)e
Ga(M)p 3965 3745 V 277 3748 3691 4 v 277 3975 a Gg(Ne)o(xt)h(we)g(gi)n
(v)o(e)h(the)g(details)h(for)e(the)h(cut-reductions)k(and)c(the)g(e)n
(v)n(aluation)i(function.)34 b(The)o(y)24 b(call)h(six)277
4088 y(subsidiary)i(functions,)e F7(viz.)p Black Black
Black 414 4359 a F6(\017)p Black 45 w Fm(rename)p Gg(,)d(which)i
(handles)h(the)f(renaming)h(of)e(names)h(and)g(co-names,)p
Black 414 4581 a F6(\017)p Black 45 w Fm(substL)e Gg(and)i
Fm(substR)p Gg(,)d(which)j(perform)h(the)f(proof)g(substitution)j
F6(f)p 2732 4581 28 4 v 2750 4581 V 2768 4581 V 65 w(g)p
Gg(,)p Black 414 4803 a F6(\017)p Black 45 w Fm(is)p
609 4803 25 4 v 30 w(logical)p 989 4803 V 29 w(cut)p
Gg(,)21 b(which)j(determines)i(whether)e(a)g(term)f(is)g(a)g(logical)j
(cut,)d(and)p Black 414 5025 a F6(\017)p Black 45 w Fm(is)p
609 5025 V 30 w(fresh)p 889 5025 V 29 w(nm)f Gg(and)i
Fm(is)p 1294 5025 V 29 w(fresh)p 1573 5025 V 29 w(co)p
Gg(,)e(which)i(test)f(whether)i(a)e(name)g(or)g(co-name)i(is)e(freshly)
504 5137 y(introduced.)p Black Black eop end
%%Page: 108 120
TeXDict begin 108 119 bop Black -144 51 a Gb(108)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black Black 321 686 3226 4 v 321 4823 4 4138
v Black Black Black Black 372 924 a Fl(type)44 b(name)224
b(=)44 b(string;;)372 1015 y(type)g(coname)134 b(=)44
b(string;;)372 1107 y(type)g(variable)g(=)g(string;;)372
1289 y(type)g(tag)269 b(=)44 b(I)h(|)g(II;;)372 1472
y(type)f(expr)g(=)551 1563 y(Var)89 b(of)45 b(variable)462
1655 y(|)f(F)179 b(of)45 b(string)1224 1668 y(*)1313
1655 y(expr)g(list)372 1746 y(;;)372 1928 y(type)f(form)g(=)551
2020 y(Atm)314 b(of)44 b(string)462 2111 y(|)g(Pre)314
b(of)44 b(string)1448 2124 y(*)1538 2111 y(expr)g(list)462
2202 y(|)g(And)314 b(of)44 b(form)1358 2215 y(*)1448
2202 y(form)462 2294 y(|)g(Or)359 b(of)44 b(form)1358
2307 y(*)1448 2294 y(form)462 2385 y(|)g(Imp)314 b(of)44
b(form)1358 2398 y(*)1448 2385 y(form)462 2476 y(|)g(Neg)314
b(of)44 b(form)462 2568 y(|)g(Forall)179 b(of)44 b(variable)1538
2581 y(*)1627 2568 y(form)462 2659 y(|)g(Exists)179 b(of)44
b(variable)1538 2672 y(*)1627 2659 y(form)372 2750 y(;;)372
2933 y(type)g(term)g(=)551 3024 y(Ax)314 b(of)44 b(name)1403
3037 y(*)1538 3024 y(coname)462 3116 y(|)g(Cut)269 b(of)44
b(form)1403 3129 y(*)1538 3116 y(cterm)1851 3129 y(*)1986
3116 y(nterm)462 3207 y(|)g(NotL)224 b(of)44 b(cterm)1403
3220 y(*)1538 3207 y(name)462 3298 y(|)g(NotR)224 b(of)44
b(nterm)1403 3311 y(*)1538 3298 y(coname)462 3390 y(|)g(AndR)224
b(of)44 b(cterm)1403 3403 y(*)1538 3390 y(cterm)1851
3403 y(*)1986 3390 y(coname)462 3481 y(|)g(AndL)224 b(of)44
b(tag)1403 3494 y(*)1538 3481 y(nterm)1851 3494 y(*)1986
3481 y(name)462 3572 y(|)g(OrR)269 b(of)44 b(tag)1403
3585 y(*)1538 3572 y(cterm)1851 3585 y(*)1986 3572 y(coname)462
3664 y(|)g(OrL)269 b(of)44 b(nterm)1403 3677 y(*)1538
3664 y(nterm)1851 3677 y(*)1986 3664 y(name)462 3755
y(|)g(ImpR)224 b(of)44 b(ncterm)1403 3768 y(*)1538 3755
y(name)462 3846 y(|)g(ImpL)224 b(of)44 b(cterm)1403 3859
y(*)1538 3846 y(nterm)1851 3859 y(*)1986 3846 y(name)462
3938 y(|)g(ForallL)89 b(of)44 b(nterm)1403 3951 y(*)1538
3938 y(expr)1986 3951 y(*)2120 3938 y(name)462 4029 y(|)g(ForallR)89
b(of)44 b(cterm)1403 4042 y(*)1538 4029 y(variable)1986
4042 y(*)2120 4029 y(coname)462 4120 y(|)g(ExistsL)89
b(of)44 b(nterm)1403 4133 y(*)1538 4120 y(variable)1986
4133 y(*)2120 4120 y(name)462 4212 y(|)g(ExistsR)89 b(of)44
b(cterm)1403 4225 y(*)1538 4212 y(expr)1986 4225 y(*)2120
4212 y(coname)462 4303 y(|)g(Mix)269 b(of)44 b(term)1403
4316 y(*)1493 4303 y(term)372 4394 y(and)g(nterm)134
b(=)45 b(name)1313 4407 y(*)1403 4394 y(term)372 4486
y(and)f(cterm)134 b(=)45 b(coname)1313 4499 y(*)1403
4486 y(term)372 4577 y(and)f(ncterm)89 b(=)45 b(name)1313
4590 y(*)1403 4577 y(coname)1717 4590 y(*)1806 4577 y(term)372
4668 y(;;)p 3543 4823 V 321 4826 3226 4 v Black 1263
4980 a Gg(Figure)24 b(4.3:)29 b(Code)24 b(for)g(main)f(datatypes.)p
Black Black Black Black eop end
%%Page: 109 121
TeXDict begin 109 120 bop Black 277 51 a Gb(4.1)23 b(Implementation)
2798 b(109)p 277 88 3691 4 v Black 277 388 a Gg(Here)23
b(is)h(a)f(fragment)i(of)e(the)h(code)g(that)h(implements)g(the)e
(cut-reductions.)p Black Black Black Black 277 604 a
Fl(let)44 b(rec)h(aux_redu)e(term)h(=)367 695 y(match)g(term)g(with)456
878 y(Cut\(f,\(b,Ax\(x,a\)\),\(z,m\)\))636 969 y(when)g(\(b=a)g(&)h
(is_logical_cut)d(term\))636 1060 y(->)i(rename)g(m)h(z)f(x)367
1243 y(|)g(Cut\(Or\(f1,f2\),\(c,OrR\(t,\(a,m\),b\)\),\(z,OrL\(\(x)o
(1,n1\),)o(\(x2,n2)o(\),y\)\)\))636 1334 y(when)g(\(c=b)g(&)h(z=y)f(&)h
(is_logical_cut)d(term\))i(->)636 1426 y(if)g(t=I)h(then)f
(Cut\(f1,\(a,m\),\(x1,n1\)\))950 1517 y(else)g
(Cut\(f2,\(a,m\),\(x2,n2\)\))367 1700 y(|)g(Cut\(f,\(a,m\),\(x,n\)\))
636 1791 y(when)g(\(not)g(\(is_fresh_co)f(m)i(a\)\))f(&)h
(\(is_fresh_nm)d(n)j(x\))636 1882 y(->)f(substL)g(m)h(\(a,f\))f
(\(x,n\))367 2065 y(|)g(Cut\(f,\(a,m\),\(x,n\)\))636
2156 y(when)g(\(not)g(\(is_fresh_co)f(m)i(a\)\))f(&)h(\(not)f
(\(is_fresh_nm)f(n)h(x\)\))636 2248 y(->)g(Mix\(substL)f(m)i(\(a,f\))f
(\(x,n\),substR)f(n)i(\(x,f\))f(\(a,m\)\))367 2430 y(|)g(...)277
2522 y(;;)277 2759 y Gg(The)25 b(\002rst)f(pattern)j(case)f(is)e(for)i
(logical)g(cuts)g(with)f(axioms,)h(the)f(second)h(for)g(logical)g(cuts)
g F6(_)3264 2773 y Gc(R)3321 2759 y Ga(=)p F6(_)3427
2773 y Gc(L)3479 2759 y Gg(,)277 2872 y(the)f(third)g(is)f(for)h
(commuting)h(cuts)f(where)f(only)h(the)g(right)g(subproof)i(introduces)
g(the)e(cut-formula)277 2985 y(freshly)-6 b(,)25 b(and)f(the)f(last)h
(is)f(for)h(commuting)g(cuts)g(where)g(both)g(subproofs)i(do)d(not)h
(freshly)h(introduce)277 3098 y(the)f(cut-formula.)418
3229 y(As)e(mentioned)j(earlier)l(,)g(the)e(reason)i(for)e(restricting)
i F4(\()p FY(T)t Ga(;)2285 3192 y Gc(aux)2265 3229 y
F6(\000)-31 b(\000)g(!)o F4(\))23 b Gg(w)o(as)g(to)f(obtain)j(a)d
(simple)i(e)n(v)n(al-)277 3342 y(uation)e(function)h(that)f(computes)g
(all)f(normal)g(forms.)28 b(It)21 b(is)f(the)h(follo)n(wing)i
(tail-recursi)n(v)o(e)g(function.)p Black Black Black
Black 277 3557 a Fl(let)44 b(rec)h(eval)f(term)g(=)367
3649 y(match)g(term)g(with)546 3831 y(Cut\(f,m,n\))447
b(->)44 b(eval)g(\(aux_redu)g(\(Cut\(f,m,n\)\)\))456
3923 y(|)h(Ax\(x,a\))582 b(->)44 b(Ax\(x,a\))456 4014
y(|)h(NotL\(\(a,m\),x\))312 b(->)44 b(NotL\(\(a,eval)f(m\),x\))456
4105 y(|)i(AndR\(\(a,m\),\(b,n\),c\))d(->)i(AndR\(\(a,eval)f
(m\),\(b,eval)g(n\),c\))456 4196 y(|)i(...)456 4288 y(|)g
(ImpR\(\(x,a,m\),b\))222 b(->)44 b(ImpR\(\(x,a,eval)f(m\),b\))456
4379 y(|)i(Mix\(m,n\))537 b(->)44 b(Mix\(eval)g(m,eval)g(n\))277
4470 y(;;)277 4708 y Gg(This)32 b(e)n(v)n(aluation)j(function)g
(generates)g(for)d(e)n(v)o(ery)h(term)g(a)f(mix-normal)h(form.)56
b(From)31 b(this)i(mix-)277 4821 y(normal)23 b(form)e(the)h(collection)
j(of)c(the)h(\223real\224)h(normal)g(forms)f(can)g(be)g(e)o(xtracted)h
(using)g(the)f(unwind-)277 4933 y(ing)g(function)i(gi)n(v)o(en)f(belo)n
(w)-6 b(,)22 b(which)g(returns)i(the)e(normal)h(forms)f(as)g(a)f(list)h
(of)g(terms.)28 b(This)22 b(function)277 5046 y(calls)i(tw)o(o)g
(subsidiary)i(function:)31 b Fm(pair)p 1582 5046 25 4
v 30 w(up)p 1712 5046 V 29 w(lists)p Gg(,)21 b(which)j(returns)h(a)e
(list)h(that)g(contains)i(all)e(pos-)277 5159 y(sible)i(combinations)i
(of)d(forming)h(pairs)g(from)f(tw)o(o)g(lists,)g(and)h
Fm(map)p Gg(,)e(which)h(applies)i(a)d(function)j(to)277
5272 y(all)d(elements)h(of)e(a)g(gi)n(v)o(en)h(list.)p
Black Black eop end
%%Page: 110 122
TeXDict begin 110 121 bop Black -144 51 a Gb(110)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black Black Black Black Black 321 388 a Fl(let)45
b(rec)f(unwind)g(term)89 b(=)411 480 y(match)44 b(term)g(with)590
571 y(Ax\(x,a\))178 b(->)45 b([Ax\(x,a\)])501 662 y(|)f
(NotL\(\(a,m\),x\))1083 754 y(->)h(map)f(\(fun)g(m)h(->)g
(\(NotL\(\(a,m\),x\)\)\))d(\(unwind)h(m\))501 845 y(|)h
(AndR\(\(a,m\),\(b,n\),c\))1083 936 y(->)h(let)f(plist)g(=)h
(pair_up_lists)e(\(unwind)g(m\))i(\(unwind)e(n\))i(in)1218
1028 y(map)f(\(fun)g(\(m,n\))g(->)h(\(AndR\(\(a,m\),\(b,n\),c\)\)\))c
(plist)501 1119 y(|)j(...)501 1210 y(|)g(ImpR\(\(x,a,m\),b\))1083
1301 y(->)h(map)f(\(fun)g(m)h(->)g(\(ImpR\(\(x,a,m\),b\)\)\))c
(\(unwind)j(m\))501 1393 y(|)g(Mix\(m,n\))133 b(->)45
b(\(unwind)f(m\))g(@)h(\(unwind)e(n\))321 1484 y(;;)321
1726 y Gg(The)25 b(ne)o(xt)g(function)i(calculates)h(the)d(number)h(of)
e(normal)i(forms)f(encoded)i(in)e(a)f(mix-normal)j(form)321
1839 y(without)d(actually)g(e)o(xtracting)h(the)e(normal)g(forms.)29
b(This)22 b(function)j(is)d(useful)i(for)e(analysing)k(e)o(xam-)321
1952 y(ples.)p Black Black Black Black 321 2173 a Fl(let)45
b(rec)f(count)g(term)89 b(=)411 2264 y(match)44 b(term)g(with)590
2355 y(Ax\(x,a\))582 b(->)44 b(1)501 2447 y(|)g(NotL\(\(a,m\),x\))312
b(->)44 b(\(count)g(m\))501 2538 y(|)g(AndR\(\(a,m\),\(b,n\),c\))e(->)i
(\(count)g(m\))2070 2551 y(*)2159 2538 y(\(count)g(n\))501
2629 y(|)g(...)501 2720 y(|)g(ImpR\(\(x,a,m\),b\))222
b(->)44 b(\(count)g(m\))501 2812 y(|)g(Mix\(m,n\))537
b(->)44 b(\(count)g(m\))h(+)f(\(count)g(n\))321 2903
y(;;)462 3145 y Gg(W)-7 b(e)25 b(should)i(no)n(w)d(lik)o(e)i(to)f(e)o
(xamine)h(an)f(e)o(xample.)35 b(Consider)26 b(the)g(proof)g(in)f(which)
h(for)f(bre)n(vity)321 3258 y(all)f(names)g(and)g(co-names)h(are)f
(omitted.)p 584 3494 293 4 v 584 3568 a FU(A)p FF(a)p
704 3556 10 38 v 714 3539 42 4 v 88 w FU(A)p FF(a)p 959
3493 299 4 v 83 w FU(A)p FF(b)p 1082 3556 10 38 v 1092
3539 42 4 v 88 w FU(A)p FF(b)p 584 3588 674 4 v 623 3662
a FU(A)p FF(a)p FT(_)p FU(A)p FF(b)p 904 3650 10 38 v
914 3633 42 4 v 89 w FU(A)p FF(a)p FU(;)14 b(A)p FF(b)1257
3604 y FT(_)1312 3617 y FS(L)p 537 3698 768 4 v 537 3777
a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)p FU(A)p
FF(b)p FG(\))p 990 3765 10 38 v 1000 3748 42 4 v 89 w
FU(A)p FF(a)p FU(;)g(A)p FF(b)1304 3720 y FT(8)1351 3732
y FS(L)p 508 3817 825 4 v 508 3896 a FT(8)p FF(x)p FU(:)p
FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p
FG(\))p 1019 3884 10 38 v 1028 3868 42 4 v 89 w FU(A)p
FF(a)p FU(;)g(A)p FF(b)1332 3840 y FT(8)1379 3852 y FS(L)p
455 3937 931 4 v 455 4016 a FT(8)p FF(x)p FU(:)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p
966 4004 10 38 v 975 3987 42 4 v 88 w FU(A)p FF(b)p FU(;)g
FT(8)p FF(x)p FU(:A)p FF(x)1385 3960 y FT(8)1432 3972
y FS(R)p 403 4056 1036 4 v 403 4135 a FT(8)p FF(x)p FU(:)p
FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p
FG(\))p 913 4123 10 38 v 923 4107 42 4 v 89 w FT(8)p
FF(x)p FU(:A)p FF(x)p FU(;)g FT(8)p FF(y)q FU(:A)p FF(y)1438
4079 y FT(8)1485 4091 y FS(R)p 1637 3747 287 4 v 1637
3821 a FU(A)p FF(c)p 1754 3809 10 38 v 1764 3792 42 4
v 88 w FU(A)p FF(c)p 2006 3746 299 4 v 83 w FU(A)p FF(d)p
2130 3809 10 38 v 2139 3792 42 4 v 88 w FU(A)p FF(d)p
1637 3840 668 4 v 1676 3915 a FU(A)p FF(c)p FU(;)g(A)p
FF(d)p 1936 3903 10 38 v 1945 3886 42 4 v 88 w FU(A)p
FF(c)p FT(^)q FU(A)p FF(d)2304 3857 y FT(^)2360 3870
y FS(R)p 1622 3951 698 4 v 1622 4025 a FU(A)p FF(d)p
FU(;)g FT(8)p FF(x)p FU(:A)p FF(x)p 1990 4013 10 38 v
2000 3996 42 4 v 88 w FU(A)p FF(c)p FT(^)p FU(A)p FF(d)2319
3973 y FT(8)2366 3985 y FS(L)p 1622 4061 698 4 v 1693
4135 a FT(8)p FF(x)p FU(:A)p FF(x)p 1919 4123 10 38 v
1929 4107 42 4 v 88 w FU(A)p FF(c)p FT(^)p FU(A)p FF(d)2319
4080 y FT(8)2388 4050 y Fy(?)2366 4103 y FS(L)p 403 4176
1846 4 v 782 4255 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p
FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p 1293
4243 10 38 v 1302 4226 42 4 v 89 w FT(8)p FF(y)q FU(:A)p
FF(y)q FU(;)g(A)p FF(c)p FT(^)q FU(A)p FF(d)2248 4204
y Gd(Cut)p 2532 3867 287 4 v 2532 3940 a FU(A)p FF(e)p
2650 3928 10 38 v 2659 3911 42 4 v 88 w FU(A)p FF(e)p
2901 3866 275 4 v 83 w FU(A)p FF(f)p 3013 3928 10 38
v 3023 3911 42 4 v 95 w FU(A)p FF(f)p 2532 3960 645 4
v 2571 4034 a FU(A)p FF(e)p FU(;)g(A)p FF(f)p 2819 4022
10 38 v 2829 4006 42 4 v 95 w FU(A)p FF(e)p FT(^)p FU(A)p
FF(f)3176 3977 y FT(^)3232 3989 y FS(R)p 2516 4070 677
4 v 2516 4145 a FU(A)p FF(f)6 b FU(;)14 b FT(8)p FF(y)q
FU(:A)p FF(y)p 2875 4133 10 38 v 2884 4116 42 4 v 89
w FU(A)p FF(e)p FT(^)q FU(A)p FF(f)3192 4093 y FT(8)3239
4105 y FS(L)p 2516 4181 677 4 v 2581 4255 a FT(8)p FF(y)q
FU(:A)p FF(y)p 2810 4243 10 38 v 2819 4226 42 4 v 89
w FU(A)p FF(e)p FT(^)q FU(A)p FF(f)3192 4200 y FT(8)3261
4170 y Fy(?)3239 4223 y FS(L)p 782 4296 2346 4 v 1392
4374 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p
FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p 1903 4362 10 38 v
1912 4346 42 4 v 88 w FU(A)p FF(c)p FT(^)q FU(A)p FF(d)p
FU(;)g(A)p FF(e)p FT(^)p FU(A)p FF(f)3127 4323 y Gd(Cut)p
Black 3387 4374 a(\(4.1\))p Black 321 4708 a Gg(One)26
b(of)h(its)f(normal)i(forms)e(is)h(gi)n(v)o(en)g(in)f(Figure)h(4.4.)37
b(Ho)n(we)n(v)o(er)26 b(let)h(us)f(analyse)j(the)d(collection)k(of)321
4821 y(all)d(normal)g(forms)g(reachable)i(from)e(this)g(proof.)38
b(As)26 b(can)h(be)g(seen,)g(the)g(proof)h(contains)h(tw)o(o)d(cuts)321
4933 y(and)i(tw)o(o)f(implicit)i(contractions)i(\(in)c(the)h(inference)
i(rules)e(mark)o(ed)g(with)g(a)e(star\).)41 b(If)28 b(we)e(feed)i(the)
321 5046 y(corresponding)33 b(term)28 b(into)h(our)f(e)n(v)n(aluation)j
(function)f(and)f(count)g(all)g(normal)g(forms)f(that)h(can)g(be)321
5159 y(e)o(xtracted)34 b(from)d(the)h(corresponding)k(mix-normal)d
(form,)g(we)e(recei)n(v)o(e)h(the)g(number)g(1,618,912!)321
5272 y(Although)h(the)f(normal)g(forms)g(are)g(all)f(moderately)j
(small,)f(we)e(are)g(confronted)k(with)c(a)g(serious)321
5385 y(problem:)58 b(the)37 b(collection)j(of)d(normal)h(forms)f(does)h
(not)f(\002t)g(into)g(the)h(memory)f(of)g(an)g(a)n(v)o(erage)p
Black Black eop end
%%Page: 111 123
TeXDict begin 111 122 bop Black 277 51 a Gb(4.1)23 b(Implementation)
2798 b(111)p 277 88 3691 4 v Black 277 388 a Gg(computer)-5
b(.)636 355 y F5(1)726 388 y Gg(If)30 b(we)g(w)o(ant)h(to)g(analyse)i
(the)e(normal)g(forms)g(with)g(re)o(gard)h(to)e(their)i(computational)
277 501 y(content,)c(we)c(ha)n(v)o(e)i(to)g(alle)n(viate)h(this)f
(problem.)36 b(There)25 b(are)h(tw)o(o)f(reasons)i(for)f(this)g(\223e)o
(xplosion\224)i(in)277 614 y(the)c(number)g(of)g(normal)g(forms:)p
Black 414 836 a F6(\017)p Black 45 w Gg(First,)34 b(in)e(case)g(of)g
(commuting)h(cuts)g(whose)f(cut-formula)i(is)e(not)g(freshly)h
(introduced)i(on)504 949 y(either)i(side,)h(the)d(reduction)1533
911 y Gc(c)1564 888 y FC(0)1475 949 y F6(\000)-32 b(\000)h(!)34
b Gg(leads,)k(in)d(general,)40 b(to)34 b(dif)n(ferent)j(normal)f
(forms,)i(and)504 1061 y(thus)29 b(the)f(reduct)h(of)1218
1024 y Gc(c)1249 1001 y FC(000)1178 1061 y F6(\000)-31
b(\000)f(!)27 b Gg(includes)j(an)e(instance)i(of)e FL(Mix)o
Gg(.)40 b(In)28 b(some)g(cases,)i(ho)n(we)n(v)o(er)l(,)f(this)504
1174 y(reduction)37 b(does)e(not)g(generate)h(dif)n(ferent)g(normal)f
(forms.)62 b(Consider)l(,)38 b(for)d(e)o(xample,)i(the)504
1287 y(follo)n(wing)25 b(proof.)p 1075 1448 315 4 v 1075
1521 a FU(A)p 1155 1509 10 38 v 1165 1493 42 4 v 88 w(A;)14
b(C)p 1472 1448 311 4 v 89 w(C)q(;)g(A)p 1651 1509 10
38 v 1660 1493 42 4 v 89 w(A)p 1075 1557 708 4 v 1322
1631 a(A)p 1403 1619 10 38 v 1413 1602 42 4 v 89 w(A)1824
1585 y Gd(Cut)p 2027 1448 331 4 v 2027 1521 a FU(B)p
2113 1509 10 38 v 2122 1493 42 4 v 92 w(B)t(;)g(D)p 2440
1448 331 4 v 85 w(D)r(;)g(B)p 2634 1509 10 38 v 2643
1493 42 4 v 92 w(B)p 2027 1557 744 4 v 2288 1631 a(B)p
2373 1619 10 38 v 2383 1602 42 4 v 92 w(B)2812 1585 y
Gd(Cut)p 1322 1651 1188 4 v 1697 1724 a FU(A;)g(B)p 1881
1712 10 38 v 1891 1695 42 4 v 92 w(A)p FT(^)p FU(B)2551
1668 y FT(^)2607 1680 y FS(R)504 2063 y Gg(Our)32 b(e)n(v)n(aluation)i
(function)g(calculates)g(a)e(mix-normal)h(form)f(for)g(this)g(proof)h
(from)f(which)504 2176 y(four)25 b(normal)f(forms)g(can)g(be)f(e)o
(xtracted.)31 b(But)23 b(all)h(of)f(them)h(stand)g(for)g(the)g(proof)p
1646 2336 213 4 v 1646 2410 a FU(A)p 1726 2398 10 38
v 1736 2381 42 4 v 88 w(A)p 1941 2336 223 4 v 83 w(B)p
2027 2398 10 38 v 2036 2381 42 4 v 92 w(B)p 1646 2430
518 4 v 1685 2503 a(A;)14 b(B)p 1870 2491 10 38 v 1879
2474 42 4 v 92 w(A)p FT(^)q FU(B)2205 2446 y FT(^)2260
2459 y FS(R)2338 2446 y FU(:)504 2842 y Gg(W)-7 b(e)19
b(could)i(alle)n(viate)h(our)e(problem)h(by)e(letting)2051
2805 y Gc(c)2082 2781 y FC(000)2011 2842 y F6(\000)-32
b(\000)h(!)19 b Gg(only)h(reduce)i(to)d FL(Mix)o F4(\()p
Ga(M)5 b(;)15 b(N)10 b F4(\))20 b Gg(pro)o(vided)504
2955 y Ga(M)42 b F6(6\021)31 b Ga(N)10 b Gg(.)38 b(Ho)n(we)n(v)o(er)l
(,)28 b(in)e(the)i(e)o(xamples)g(we)e(analysed)j(this)f(did)f(not)g
(reduce)i(substantially)504 3067 y(the)24 b(number)h(of)e(normal)h
(forms.)p Black 414 3253 a F6(\017)p Black 45 w Gg(The)35
b(second)i(reason)f(is)f(more)g(subtle.)65 b(T)-7 b(o)34
b(e)o(xplain)i(the)g(issues)g(we)e(gi)n(v)o(e)i(the)f(reader)h(an)504
3365 y(e)o(xample.)30 b(Consider)25 b(the)f(proof)p 1535
3526 213 4 v 1535 3600 a FU(A)p 1616 3588 10 38 v 1625
3571 42 4 v 88 w(A)p 1474 3620 335 4 v 1474 3693 a(A)p
FT(^)p FU(B)p 1677 3681 10 38 v 1686 3664 42 4 v 92 w(A)1850
3642 y FT(^)1906 3612 y FJ(1)1906 3665 y FS(L)p 2099
3526 213 4 v 2099 3600 a FU(A)p 2179 3588 10 38 v 2189
3571 42 4 v 88 w(A)p 2038 3620 334 4 v 2038 3693 a(A)p
2119 3681 10 38 v 2129 3664 42 4 v 88 w(A)p FT(_)q FU(C)2413
3642 y FT(_)2468 3612 y FJ(1)2468 3665 y FS(R)p 1474
3713 898 4 v 1695 3786 a FU(A)p FT(^)p FU(B)p 1898 3774
10 38 v 1907 3757 42 4 v 92 w(A)p FT(_)q FU(C)2413 3741
y Gd(Cut)504 4125 y Gg(and)33 b(let)e(us)h(calculate)i(the)e(normal)h
(forms)f(reachable)i(from)d(this)i(proof\227we)f(recei)n(v)o(e)h(the)
504 4238 y(follo)n(wing)25 b(tw)o(o)f(proofs)p Black
Black 1355 4414 213 4 v 1355 4487 a FU(A)p 1436 4475
10 38 v 1445 4459 42 4 v 88 w(A)p 1295 4507 334 4 v 1295
4580 a(A)p 1375 4568 10 38 v 1385 4552 42 4 v 88 w(A)p
FT(_)q FU(C)1669 4529 y FT(_)1725 4499 y FJ(1)1725 4552
y FS(R)p 1233 4600 456 4 v 1233 4674 a FU(A)p FT(^)q
FU(B)p 1437 4662 10 38 v 1446 4645 42 4 v 92 w(A)p FT(_)q
FU(C)1731 4623 y FT(^)1786 4593 y FJ(1)1786 4646 y FS(L)1935
4603 y Gg(and)p 2288 4414 213 4 v 2288 4487 a FU(A)p
2368 4475 10 38 v 2378 4459 42 4 v 88 w(A)p 2226 4507
335 4 v 2226 4580 a(A)p FT(^)q FU(B)p 2430 4568 10 38
v 2439 4552 42 4 v 92 w(A)2603 4529 y FT(^)2658 4499
y FJ(1)2658 4552 y FS(L)p 2166 4600 456 4 v 2166 4674
a FU(A)p FT(^)q FU(B)p 2369 4662 10 38 v 2379 4645 42
4 v 92 w(A)p FT(_)p FU(C)2663 4623 y FT(_)2719 4593 y
FJ(1)2719 4646 y FS(R)504 4902 y Gg(which)30 b(dif)n(fer)h(only)g(in)e
(the)h(order)h(of)f(their)g(inferences)j(and)d(can)g(be)g(identi\002ed)
h(by)f(simple)504 5015 y(permutation)d(rules)d(introduced)j(by)d
(Kleene)g([1952b].)32 b(In)23 b(what)h(follo)n(ws,)g(we)f(shall)i
(restrict)504 5128 y(the)32 b(reduction)1061 5091 y Gc(c)1092
5067 y FC(000)1021 5128 y F6(\000)-32 b(\000)h(!)31 b
Gg(such)h(that)h(in)e(the)h(e)o(xamples)h(of)f(the)g(kind)h(abo)o(v)o
(e)f(only)g(one)h(normal)p Black 277 5206 1290 4 v 383
5262 a F3(1)412 5294 y F2(If)19 b(we)h(assume)h(that)f(e)n(v)o(ery)h
(normal)g(form)f(occupies)i(100)f(Bytes)f(of)g(memory)-5
b(,)21 b(which)g(is)e(an)i(optimistic)f(estimation)277
5385 y(for)f(the)g(smallest)g(of)f(these)i(normal)f(forms,)g(we)g(need)
g(a)g(computer)h(with)f(more)g(than)g(150)h(MByte)f(of)g(RAM.)p
Black Black Black eop end
%%Page: 112 124
TeXDict begin 112 123 bop Black -144 51 a Gb(112)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black Black 321 569 3226 4 v 321 4940 4 4371
v 1914 641 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1914 641 a 2146 -345 287 4 v 2146 -272 a
FU(A)p FF(c)p 2264 -284 10 38 v 2273 -301 42 4 v 88 w
FU(A)p FF(c)p 2515 -345 287 4 v 83 w FU(A)p FF(e)p 2633
-284 10 38 v 2642 -301 42 4 v 88 w FU(A)p FF(e)p 2146
-252 656 4 v 2185 -179 a FU(A)p FF(c)p FT(_)q FU(A)p
FF(e)p 2457 -191 10 38 v 2467 -207 42 4 v 88 w FU(A)p
FF(c)p FU(;)14 b(A)p FF(e)2802 -235 y FT(_)2857 -223
y FS(L)p 2097 -143 753 4 v 2097 -64 a FT(8)p FF(y)q FU(:)p
FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(e)p FG(\))p 2545
-76 10 38 v 2555 -92 42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p
FF(e)2850 -120 y FT(8)2897 -108 y FS(L)p 2066 -23 816
4 v 2066 56 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p
FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p 2577 44 10
38 v 2586 27 42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p FF(e)2881
-1 y FT(8)2928 11 y FS(L)p 3137 -347 299 4 v 3137 -273
a FU(A)p FF(d)p 3261 -285 10 38 v 3270 -302 42 4 v 88
w FU(A)p FF(d)p 3518 -346 287 4 v 83 w FU(A)p FF(e)p
3636 -285 10 38 v 3646 -302 42 4 v 89 w FU(A)p FF(e)p
3137 -253 668 4 v 3176 -179 a FU(A)p FF(d)p FT(_)q FU(A)p
FF(e)p 3455 -191 10 38 v 3464 -207 42 4 v 88 w FU(A)p
FF(d)p FU(;)g(A)p FF(e)3805 -236 y FT(_)3860 -224 y FS(L)p
3092 -143 759 4 v 3092 -64 a FT(8)p FF(y)q FU(:)p FG(\()p
FU(A)p FF(y)q FT(_)q FU(A)p FF(e)p FG(\))p 3539 -76 10
38 v 3549 -92 42 4 v 88 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3850
-120 y FT(8)3897 -108 y FS(L)p 3060 -23 822 4 v 3060
56 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p
FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p 3571 44 10 38 v 3580
27 42 4 v 88 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3882 -1
y FT(8)3929 11 y FS(L)p 2066 96 1816 4 v 2418 175 a FT(8)p
FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q
FU(A)p FF(x)p FG(\))p 2928 163 10 38 v 2938 147 42 4
v 89 w FU(A)p FF(e)p FU(;)g(A)p FF(e)p FU(;)g(A)p FF(c)p
FT(^)q FU(A)p FF(d)3882 113 y FT(^)3937 126 y FS(R)p
4157 -346 287 4 v 4157 -273 a FU(A)p FF(c)p 4275 -285
10 38 v 4284 -302 42 4 v 88 w FU(A)p FF(c)p 4526 -347
275 4 v 83 w FU(A)p FF(f)p 4638 -285 10 38 v 4648 -302
42 4 v 95 w FU(A)p FF(f)p 4157 -253 645 4 v 4197 -179
a FU(A)p FF(c)p FT(_)p FU(A)p FF(f)p 4463 -191 10 38
v 4472 -207 42 4 v 94 w FU(A)p FF(c)p FU(;)g(A)p FF(f)4801
-236 y FT(_)4857 -224 y FS(L)p 4109 -143 742 4 v 4109
-64 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q
FU(A)p FF(f)6 b FG(\))p 4551 -76 10 38 v 4560 -92 42
4 v 88 w FU(A)p FF(c)p FU(;)14 b(A)p FF(f)4850 -120 y
FT(8)4897 -108 y FS(L)p 4074 -23 810 4 v 4074 56 a FT(8)p
FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)r
FU(A)p FF(x)p FG(\))p 4585 44 10 38 v 4595 27 42 4 v
88 w FU(A)p FF(c)p FU(;)g(A)p FF(f)4884 -1 y FT(8)4931
11 y FS(L)p 5143 -347 299 4 v 5143 -273 a FU(A)p FF(d)p
5266 -285 10 38 v 5276 -302 42 4 v 88 w FU(A)p FF(d)p
5524 -347 275 4 v 83 w FU(A)p FF(f)p 5636 -285 10 38
v 5645 -302 42 4 v 94 w FU(A)p FF(f)p 5143 -253 657 4
v 5182 -179 a FU(A)p FF(d)p FT(_)p FU(A)p FF(f)p 5454
-191 10 38 v 5464 -207 42 4 v 95 w FU(A)p FF(d)p FU(;)g(A)p
FF(f)5799 -236 y FT(_)5854 -224 y FS(L)p 5097 -143 748
4 v 5097 -64 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
FT(_)q FU(A)p FF(f)6 b FG(\))p 5539 -76 10 38 v 5549
-92 42 4 v 89 w FU(A)p FF(d)p FU(;)14 b(A)p FF(f)5844
-120 y FT(8)5891 -108 y FS(L)p 5063 -23 816 4 v 5063
56 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p
FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p 5573 44 10 38 v 5583
27 42 4 v 89 w FU(A)p FF(d)p FU(;)g(A)p FF(f)5878 -1
y FT(8)5925 11 y FS(L)p 4074 96 1804 4 v 4426 175 a FT(8)p
FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q
FU(A)p FF(x)p FG(\))p 4937 163 10 38 v 4946 147 42 4
v 89 w FU(A)p FF(f)6 b FU(;)14 b(A)p FF(f)6 b FU(;)14
b(A)p FF(c)p FT(^)q FU(A)p FF(d)5878 113 y FT(^)5934
126 y FS(R)p 2418 216 3109 4 v 3277 295 a FT(8)p FF(x)p
FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p
FF(x)p FG(\))p 3787 283 10 38 v 3797 266 42 4 v 89 w
FU(A)p FF(e)p FU(;)g(A)p FF(f)6 b FU(;)14 b(A)p FF(c)p
FT(^)q FU(A)p FF(d)p FU(;)g(A)p FF(e)p FT(^)p FU(A)p
FF(f)5527 233 y FT(^)5582 245 y FS(R)2066 350 y FI(|)p
2103 350 1887 10 v 1887 w({z)p 4064 350 V 1887 w(})3998
429 y FS(X)p 2044 938 287 4 v 2044 1012 a FU(A)p FF(c)p
2161 1000 10 38 v 2171 983 42 4 v 88 w FU(A)p FF(c)p
2413 938 287 4 v 83 w FU(A)p FF(e)p 2531 1000 10 38 v
2540 983 42 4 v 88 w FU(A)p FF(e)p 2044 1032 656 4 v
2083 1105 a FU(A)p FF(c)p FT(_)q FU(A)p FF(e)p 2355 1093
10 38 v 2365 1076 42 4 v 88 w FU(A)p FF(c)p FU(;)g(A)p
FF(e)2699 1049 y FT(_)2755 1061 y FS(L)p 1995 1141 753
4 v 1995 1220 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
FT(_)q FU(A)p FF(e)p FG(\))p 2443 1208 10 38 v 2453 1191
42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p FF(e)2748 1164 y
FT(8)2795 1176 y FS(L)p 1964 1261 816 4 v 1964 1340 a
FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
FT(_)q FU(A)p FF(x)p FG(\))p 2474 1328 10 38 v 2484 1311
42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p FF(e)2779 1283 y
FT(8)2826 1295 y FS(L)p 3035 937 299 4 v 3035 1011 a
FU(A)p FF(d)p 3159 999 10 38 v 3168 982 42 4 v 88 w FU(A)p
FF(d)p 3416 938 287 4 v 83 w FU(A)p FF(e)p 3534 999 10
38 v 3543 982 42 4 v 88 w FU(A)p FF(e)p 3035 1031 668
4 v 3074 1105 a FU(A)p FF(d)p FT(_)q FU(A)p FF(e)p 3352
1093 10 38 v 3362 1076 42 4 v 88 w FU(A)p FF(d)p FU(;)g(A)p
FF(e)3702 1048 y FT(_)3758 1060 y FS(L)p 2989 1141 759
4 v 2989 1220 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
FT(_)q FU(A)p FF(e)p FG(\))p 3437 1208 10 38 v 3447 1191
42 4 v 89 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3748 1164 y
FT(8)3795 1176 y FS(L)p 2958 1261 822 4 v 2958 1340 a
FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
FT(_)q FU(A)p FF(x)p FG(\))p 3469 1328 10 38 v 3478 1311
42 4 v 89 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3779 1283 y
FT(8)3826 1295 y FS(L)p 1964 1380 1816 4 v 2384 1459
a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
FT(_)q FU(A)p FF(x)p FG(\))p 2894 1447 10 38 v 2904 1430
42 4 v 89 w FU(A)p FF(e)p FU(;)g(A)p FF(c)p FT(^)p FU(A)p
FF(d)3779 1397 y FT(^)3835 1410 y FS(R)4023 1166 y Gd(.)4023
1199 y(.)4023 1232 y(.)4023 1265 y(.)3995 1340 y FU(X)p
4259 818 287 4 v 4259 891 a(A)p FF(c)p 4377 879 10 38
v 4387 863 42 4 v 88 w FU(A)p FF(c)p 4629 817 275 4 v
84 w FU(A)p FF(f)p 4741 879 10 38 v 4750 863 42 4 v 94
w FU(A)p FF(f)p 4259 911 645 4 v 4299 985 a FU(A)p FF(c)p
FT(_)p FU(A)p FF(f)p 4565 973 10 38 v 4575 957 42 4 v
95 w FU(A)p FF(c)p FU(;)g(A)p FF(f)4903 928 y FT(_)4959
941 y FS(L)p 4211 1022 742 4 v 4211 1100 a FT(8)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(f)6 b FG(\))p
4653 1088 10 38 v 4663 1072 42 4 v 88 w FU(A)p FF(c)p
FU(;)14 b(A)p FF(f)4952 1044 y FT(8)4999 1056 y FS(L)p
4177 1141 810 4 v 4177 1220 a FT(8)p FF(x)p FU(:)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p
4687 1208 10 38 v 4697 1191 42 4 v 89 w FU(A)p FF(c)p
FU(;)g(A)p FF(f)4986 1164 y FT(8)5033 1176 y FS(L)p 5245
817 299 4 v 5245 891 a FU(A)p FF(d)p 5368 879 10 38 v
5378 863 42 4 v 88 w FU(A)p FF(d)p 5626 817 275 4 v 83
w FU(A)p FF(f)p 5738 879 10 38 v 5747 863 42 4 v 94 w
FU(A)p FF(f)p 5245 911 657 4 v 5284 985 a FU(A)p FF(d)p
FT(_)q FU(A)p FF(f)p 5556 973 10 38 v 5566 957 42 4 v
94 w FU(A)p FF(d)p FU(;)g(A)p FF(f)5901 928 y FT(_)5956
941 y FS(L)p 5199 1022 748 4 v 5199 1100 a FT(8)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(f)6 b FG(\))p
5641 1088 10 38 v 5651 1072 42 4 v 89 w FU(A)p FF(d)p
FU(;)14 b(A)p FF(f)5946 1044 y FT(8)5993 1056 y FS(L)p
5165 1141 816 4 v 5165 1220 a FT(8)p FF(x)p FU(:)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p
5676 1208 10 38 v 5685 1191 42 4 v 89 w FU(A)p FF(d)p
FU(;)g(A)p FF(f)5981 1164 y FT(8)6028 1176 y FS(L)p 4177
1261 1804 4 v 4528 1340 a FT(8)p FF(x)p FU(:)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p
5039 1328 10 38 v 5049 1311 42 4 v 89 w FU(A)p FF(f)6
b FU(;)14 b(A)p FF(f)6 b FU(;)14 b(A)p FF(c)p FT(^)q
FU(A)p FF(d)5981 1278 y FT(^)6036 1290 y FS(R)p 3972
1380 1657 4 v 4173 1459 a FT(8)p FF(x)p FU(:)p FF(y)q
FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p
4684 1447 10 38 v 4693 1430 42 4 v 89 w FU(A)p FF(f)6
b FU(;)14 b(A)p FF(c)p FT(^)q FU(A)p FF(d)p FU(;)g(A)p
FF(e)p FT(^)q FU(A)p FF(f)5629 1397 y FT(^)5684 1410
y FS(R)p 2384 1500 3045 4 v 3344 1579 a FT(8)p FF(x)p
FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p
FF(x)p FG(\))p 3854 1567 10 38 v 3864 1550 42 4 v 89
w FU(A)p FF(c)p FT(^)p FU(A)p FF(d)p FU(;)g(A)p FF(e)p
FT(^)q FU(A)p FF(f)5428 1517 y FT(^)5483 1529 y FS(R)6140
641 y
 currentpoint grestore moveto
 6140 641 a 3543 4940 4 4371 v 321 4943 3226 4 v
Black 812 5096 a Gg(Figure)24 b(4.4:)29 b(A)22 b(normal)j(form)e(of)h
(Proof)f(\(4.1\))h(sho)n(wn)g(on)g(P)o(age)f(110.)p Black
Black Black Black eop end
%%Page: 113 125
TeXDict begin 113 124 bop Black 277 51 a Gb(4.2)23 b(Non-Deterministic)
i(Computation:)k(Case)23 b(Study)1667 b(113)p 277 88
3691 4 v Black 504 388 a Gg(form)26 b(is)f(calculated.)38
b(W)-7 b(e)24 b(thus)j(restrict)g(the)f(collection)i(of)d(normal)i
(forms)e(reachable)j(from)504 501 y(a)h(classical)j(proof,)g(b)n(ut)e
(it)f(is)g(commonly)i(accepted)g(that)f(this)g(restriction)i(does)f
(not)f(af)n(fect)504 614 y(the)24 b(computational)j(content)f(of)d
(classical)j(proofs.)k(The)23 b(restriction)j(allo)n(ws)e(us)g(to)f
(consider)504 727 y(lar)n(ger)29 b(e)o(xamples)g(and)e(study)i(their)f
(computational)i(content.)42 b(\(A)26 b(similar)i(remark)g(applies)504
840 y(to)h(the)g(mix-instance)j(introduced)g(when)d(reducing)i(a)e
(logical)h(cut)f F6(\033)2782 854 y Gc(L)2834 840 y Ga(=)p
F6(\033)2950 854 y Gc(R)3008 840 y Gg(.)44 b(The)29 b(normal)504
953 y(forms)h(that)f(are)g(generated)j(by)d(e)o(xploring)i(both)f(w)o
(ays)f(of)g(nesting)i(the)e(cuts)h(in)f(the)g(reduct)504
1066 y(dif)n(fer)c(only)f(in)g(the)f(order)i(of)e(their)i(inference)h
(rules.\))277 1278 y(In)21 b(our)h(implementation)i(we)d(thus)h(modify)
g(the)f(code)h(for)g(commuting)g(cuts)g(whose)g(cut-formula)i(is)277
1391 y(not)d(freshly)g(introduced)j(on)c(either)h(side.)29
b(If)19 b(in)h(both)h(subterms)h(the)f(\(co-\)name)g(of)g(the)f
(cut-formula)277 1504 y(occurs)37 b(freely)g(just)g(once,)i(then)d(it)g
(is)g(not)g(hard)g(to)g(sho)n(w)f(that)i(the)f(normal)g(forms)g(we)f
(recei)n(v)o(e)277 1617 y(by)e(reducing)h(the)f(cut)f(e)o(xploring)j
(both)e(choices)h(can)f(be)f(identi\002ed)i(using)g(simple)f
(permutation)277 1730 y(rules.)47 b(Therefore)31 b(we)d(do)i(not)f(e)o
(xplore)i(both)f(choices;)k(instead)d(we)e(reduce)i(the)e(cut)h(by)f(a)
g(single)277 1843 y(substitution.)j(The)23 b(modi\002ed)h(code)h(is)e
(as)h(follo)n(ws.)p Black Black Black Black 277 2034
a Fl(let)44 b(rec)h(aux_redu)e(term)h(=)367 2125 y(match)g(term)g(with)
456 2217 y(...)367 2308 y(|)g(Cut\(f,\(a,m\),\(x,n\)\))636
2399 y(when)g(\(not)g(\(is_fresh_co)f(m)i(a\)\))f(&)h(\(not)f
(\(is_fresh_nm)f(n)h(x\)\))636 2490 y(->)g(if)h(\(free_occ_co)e(a)h(m)h
(=)g(1\))f(&)h(\(free_occ_na)e(x)h(n)h(=)g(1\))770 2582
y(then)f(substR)g(n)h(\(x,f\))f(\(a,m\))770 2673 y(else)g(Mix\(substL)g
(m)g(\(a,f\))g(\(x,n\),substR)f(n)i(\(x,f\))f(\(a,m\)\))367
2764 y(|)g(...)277 2856 y(;;)277 3068 y Gg(This)25 b(function)j(calls)f
Fm(free)p 1188 3068 25 4 v 29 w(occ)p 1367 3068 V 29
w(na)d Gg(and)i Fm(free)p 1876 3068 V 30 w(occ)p 2056
3068 V 29 w(co)p Gg(,)e(which)i(calculate)i(the)e(number)g(of)g(free)
277 3181 y(occurrences)h(of)c(a)g(name)h(and)g(co-name,)h(respecti)n(v)
o(ely)-6 b(.)418 3311 y(Returning)26 b(to)e(our)h(e)o(xample)g(proof)g
(gi)n(v)o(en)g(in)f(\(4.1\))h(we)e(\002nd)h(that)h(the)f(modi\002ed)h
(implementa-)277 3424 y(tion)c(returns)i(10)e(normal)g(forms,)g(one)h
(of)e(which)h(w)o(as)g(sho)n(wn)g(in)f(Figure)i(4.4.)27
b(Our)20 b(implementation)277 3537 y(is)k(no)n(w)g(streamlined)j
(enough)f(to)e(be)g(a)g(useful)i(tool)f(for)f(analysing)j(the)e
(computational)i(content)f(of)277 3649 y(bigger)f(classical)h(proofs.)
277 3956 y Ge(4.2)119 b(Non-Deterministic)31 b(Computation:)37
b(Case)30 b(Study)277 4179 y Gg(Hitherto)20 b(we)e(were)g(mainly)i
(concerned)h(with)e(the)f(proof)i(theory)g(of)f(classical)i(logic.)28
b(In)18 b(this)i(section)277 4292 y(and)j(the)h(ne)o(xt)f(we)f(shall)i
(study)g(ho)n(w)e(cut-elimination)27 b(relates)d(to)f(computation.)31
b(W)-7 b(e)22 b(started)i(in)f(the)277 4405 y(introduction)30
b(ar)n(guing)e(that)f(the)f(process)i(of)e(cut-elimination)k(in)c
(classical)i(logic)f(should)h(be)e(seen)277 4518 y(as)20
b(non-deterministic)25 b(computation.)30 b(W)-7 b(e)20
b(moti)n(v)n(ated)h(this)g(vie)n(wpoint)g(with)g(the)f(problems)i
(arising)277 4631 y(from)28 b(Lafont')-5 b(s)29 b(e)o(xample)g(\(see)g
(P)o(age)f(4\).)42 b(Ho)n(we)n(v)o(er)28 b(there)h(is)f(an)g(ob)o
(vious)i(question)g(whether)f(we)277 4744 y(can)34 b(support)h(this)e
(vie)n(wpoint)i(with)e(con)l(vincing)j(e)o(xamples.)59
b(First,)35 b(recall)f(that)g(via)f(the)h(Curry-)277
4857 y(Ho)n(w)o(ard)d(correspondence)36 b(reduction)e(can)e(be)f(seen)h
(as)f(a)g(form)g(of)g(computation)j(and)e(a)f(normal)277
4970 y(form)24 b(as)f(a)g(result)i(of)e(a)g(computation.)32
b(No)n(w)-6 b(,)22 b(consider)k(the)d(\(intuitionistic\))28
b(proof)p 1131 5109 233 4 v 1131 5188 a Ga(A)p 1219 5176
11 41 v 1230 5158 46 5 v 96 w(A)p 1454 5109 233 4 v 91
w(A)p 1543 5176 11 41 v 1553 5158 46 5 v 97 w(A)p 1131
5208 557 4 v 1228 5286 a(A)p F6(_)p Ga(A)p 1445 5274
11 41 v 1456 5256 46 5 v 97 w(A)1729 5226 y F6(_)1789
5240 y Gc(L)p 1932 5109 233 4 v 1932 5188 a Ga(A)p 2021
5176 11 41 v 2031 5158 46 5 v 97 w(A)p 2256 5109 233
4 v 91 w(A)p 2344 5176 11 41 v 2355 5158 46 5 v 96 w(A)p
1932 5208 557 4 v 2030 5286 a(A)p 2118 5274 11 41 v 2129
5256 46 5 v 96 w(A)p F6(^)p Ga(A)2530 5226 y F6(^)2591
5240 y Gc(R)p 1228 5306 1163 4 v 1565 5385 a Ga(A)p F6(_)o
Ga(A)p 1782 5373 11 41 v 1792 5355 46 5 v 97 w(A)p F6(^)p
Ga(A)2433 5337 y Gg(Cut)p Black Black eop end
%%Page: 114 126
TeXDict begin 114 125 bop Black -144 51 a Gb(114)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black 321 388 a Gg(which,)h(using)h(our)f(cut-elimination)j
(procedures,)g(can)d(be)f(reduced)j(to)d(one)h(of)g(the)g(follo)n(wing)
h(tw)o(o)321 501 y(normal)f(forms)p 394 762 233 4 v 394
841 a Ga(A)p 482 829 11 41 v 493 811 46 5 v 96 w(A)p
717 762 233 4 v 91 w(A)p 806 829 11 41 v 816 811 46 5
v 97 w(A)p 394 861 557 4 v 491 940 a(A)p F6(_)p Ga(A)p
708 928 11 41 v 719 909 46 5 v 97 w(A)961 879 y F6(_)1022
893 y Gc(L)p 1165 762 233 4 v 1165 841 a Ga(A)p 1253
829 11 41 v 1264 811 46 5 v 97 w(A)p 1489 762 233 4 v
91 w(A)p 1577 829 11 41 v 1587 811 46 5 v 96 w(A)p 1165
861 557 4 v 1262 940 a(A)p F6(_)p Ga(A)p 1480 928 11
41 v 1490 909 46 5 v 97 w(A)1732 879 y F6(_)1793 893
y Gc(L)p 491 959 1133 4 v 812 1038 a Ga(A)p F6(_)p Ga(A)p
1030 1026 11 41 v 1040 1008 46 5 v 97 w(A)p F6(^)p Ga(A)1635
978 y F6(^)1696 992 y Gc(R)p 2011 762 233 4 v 2011 841
a Ga(A)p 2100 829 11 41 v 2110 811 46 5 v 97 w(A)p 2335
762 233 4 v 91 w(A)p 2423 829 11 41 v 2434 811 46 5 v
96 w(A)p 2011 861 557 4 v 2109 940 a(A)p 2197 928 11
41 v 2208 909 46 5 v 96 w(A)p F6(^)p Ga(A)2579 879 y
F6(^)2639 893 y Gc(R)p 2788 762 233 4 v 2788 841 a Ga(A)p
2876 829 11 41 v 2887 811 46 5 v 96 w(A)p 3112 762 233
4 v 92 w(A)p 3200 829 11 41 v 3210 811 46 5 v 96 w(A)p
2788 861 557 4 v 2885 940 a(A)p 2974 928 11 41 v 2984
909 46 5 v 97 w(A)p F6(^)p Ga(A)3355 879 y F6(^)3416
893 y Gc(R)p 2109 959 1139 4 v 2433 1038 a Ga(A)p F6(_)o
Ga(A)p 2650 1026 11 41 v 2660 1008 46 5 v 97 w(A)p F6(^)p
Ga(A)3258 978 y F6(_)3319 992 y Gc(L)p Black 3372 1142
a Gg(\(4.2\))p Black 321 1275 a(The)g(main)g(feature)h(of)f(our)h
(cut-elimination)i(procedures)g(is)d(that)h(one)f(can)h
(non-deterministically)321 1388 y(choose)k(to)d(which)h(normal)h(form)e
(the)h(proof)h(can)f(be)g(reduced.)43 b(Consequently)-6
b(,)32 b(one)c(could)h(ar)n(gue)321 1501 y(that)34 b(via)g(the)g
(Curry-Ho)n(w)o(ard)h(correspondence)j(the)c(cut-elimination)j(process)
e(in)f(intuitionistic)321 1614 y(logic)29 b(corresponds)i(to)c
(non-deterministic)32 b(computation,)f(since)d(we)f(recei)n(v)o(e)h(tw)
o(o)f(dif)n(ferent)j(nor)n(-)321 1726 y(mal)c(forms)g(\(results\).)37
b(Ho)n(we)n(v)o(er)l(,)26 b(this)h(ar)n(gument)g(as)f(it)f(stands)j(is)
d(not)i(v)o(ery)f(strong:)35 b(one)26 b(recei)n(v)o(es)321
1839 y(se)n(v)o(eral)21 b(normal)g(forms)f(starting)h(from)f(the)g
(proof)h(abo)o(v)o(e,)g(b)n(ut)f(if)g(we)f(interpret)j(these)f(normal)f
(forms)321 1952 y(as)32 b(terms)f(in)h(the)g(simply-typed)i(lambda)e
(calculus,)k(we)30 b(\002nd)h(the)o(y)h(all)g(correspond)i(to)e(the)g
(same)321 2065 y(v)n(alue)c(and)g(computation)h(\(see)f(Example)f
(3.1.3\).)40 b(This)26 b(means)i(we)e(cannot)j(decide)f(whether)g(cut-)
321 2178 y(elimination)22 b(corresponds)h(to)c(non-deterministic)24
b(computation)e(just)e(by)f(looking)i(at)e(features)j(such)321
2291 y(as)i(size)g(and)g(shape)h(of)e(the)h(normal)g(forms.)462
2423 y(So)31 b(in)g(this)h(section)h(we)e(shall)h(present)h(a)e
(classical)j(proof)e(and)g(use)g(our)f(implementation)k(to)321
2536 y(compute)g(tw)o(o)f(of)f(its)h(normal)h(forms.)59
b(W)-7 b(e)33 b(shall)h(sho)n(w)g(that)g(the)g(tw)o(o)g(normal)g(forms)
g(dif)n(fer)h(in)321 2649 y(\223essential\224)e(features;)j(trying)31
b(to)f(identify)j(them)d(is)g(doomed)h(to)f(tri)n(viality)i(\(the)f
(notion)g(of)f(proof)321 2762 y(w)o(ould)f(coincide)h(with)d(the)h
(notion)h(of)f(pro)o(v)n(ability\).)44 b(The)27 b(classical)j(proof)f
(which)f(we)f(present)j(is)321 2875 y(adapted)35 b(from)e(w)o(ork)g
(presented)j(by)d(Barbanera)i(et)e(al.)f([1997],)37 b(b)n(ut)d
(originates)h(from)e(w)o(ork)g(by)321 2988 y(Stolzenber)n(g)27
b([Coquand,)e(1995,)f(Herbelin,)g(1995].)462 3120 y(Suppose)30
b(we)e(are)h(gi)n(v)o(en)g(an)g(in\002nite)g(tape)g(where)g(each)g
(cell)g(contains)i(either)f(a)e(`)p FL(0)p Gg(')h(or)f(a)h(`)p
FL(1)p Gg(',)321 3233 y(for)24 b(e)o(xample)p Black Black
1539 3370 790 4 v 1537 3483 4 113 v 1589 3449 a FL(1)p
1683 3483 V 100 w(0)p 1828 3483 V 100 w(0)p 1973 3483
V 100 w(1)p 2118 3483 V 100 w Gg(.)14 b(.)g(.)p 1539
3487 790 4 v 321 3666 a(F)o(or)24 b(the)h(sak)o(e)g(of)g(notational)i
(simplicity)-6 b(,)26 b(we)e(shall)i(in)e(what)h(follo)n(ws)g
(represent)i(a)d(tape)h(as)f(a)h(func-)321 3779 y(tion,)f(denoted)i(by)
d FL(f)6 b Gg(,)23 b(from)g(inte)o(gers)j(to)d(booleans.)31
b(Thus)24 b(we)e(kno)n(w)i(about)h(the)e(tape)i(that)1533
3992 y F6(8)p FL(x)p Ga(:)o F4(\()p FL(fx)h F4(=)e FL(0)15
b F6(_)h FL(fx)25 b F4(=)g FL(1)p F4(\))h Ga(:)p Black
1037 w Gg(\(4.3\))p Black 321 4205 a(This)21 b(is)h(a)e(\002rst-order)j
(formula)g(in)e(which)h F4(=)e Gg(is)h(a)g(predicate)i(standing)h(for)e
(`equality')h(between)g(tw)o(o)321 4318 y(booleans.)31
b(As)23 b(is)g(common,)g(we)g(write)g(this)h(predicate)i(symbol)e(in)f
(in\002x)g(notation.)31 b(Using)24 b(\(4.3\))g(as)321
4431 y(assumption,)i(we)d(are)g(going)i(to)f(pro)o(v)o(e)g(the)f
(proposition)1475 4644 y F6(9)p FL(n)p Ga(:)p FL(m)p
Ga(:)p F4(\()p FL(n)j Ga(<)e FL(m)16 b F6(^)f FL(fn)25
b F4(=)g FL(fm)p F4(\))p Black 979 w Gg(\(4.4\))p Black
321 4877 a(where)30 b Ga(<)f Gg(is)h(a)f(predicate,)34
b(written)c(again)h(in)e(in\002x)h(notation,)j(which)e(stands)g(for)f
(`less)g(than')h(be-)321 4990 y(tween)d(tw)o(o)f(inte)o(gers.)41
b(Later)l(,)29 b(we)d(shall)i(also)g(use)g F6(\024)p
Gg(,)f(which)h(stands)g(for)g(`less)g(than)g(or)f(equal)i(to'.)321
5103 y(The)c(proposition)k(just)c(gi)n(v)o(en)h(may)f(be)g(summarised)i
(in)e(English)h(as)f(on)g(e)n(v)o(ery)h(tape)f(there)i(are)e(tw)o(o)321
5216 y(cells)g(that)f(ha)n(v)o(e)g(the)g(same)f(content.)p
Black Black eop end
%%Page: 115 127
TeXDict begin 115 126 bop Black 277 51 a Gb(4.2)23 b(Non-Deterministic)
i(Computation:)k(Case)23 b(Study)1667 b(115)p 277 88
3691 4 v Black 418 388 a Gg(In)37 b(order)i(to)e(pro)o(v)o(e)g(the)h
(proposition,)43 b(we)37 b(need)h(some)f(principles)j(from)d
(arithmetic.)71 b(F)o(or)277 501 y(e)o(xample)24 b(the)g(principle)i
(of)e(transiti)n(vity)i(of)e(equality)-6 b(,)25 b(i.e.,)e(the)g
(implication)p Black Black 1210 680 a(if)48 b FL(fn)25
b F4(=)g FL(i)48 b Gg(and)h FL(fm)25 b F4(=)g FL(i)p
Gg(,)d(then)50 b FL(fn)25 b F4(=)g FL(fm)p Gg(.)277 860
y(W)-7 b(e)23 b(could)h(add)g(this)h(principle)g(to)f(classical)i
(logic)e(as)g(the)f(non-logical)k(axiom)p 1279 966 1221
4 v 1279 1050 a F4(\000)p 1357 1038 11 41 v 1367 1020
46 5 v 97 w(\001)p Ga(;)15 b F4(\()p FL(fy)26 b F4(=)f
FL(i)15 b F6(^)g FL(fx)25 b F4(=)g FL(i)p F4(\))15 b
F6(\033)g FL(fx)25 b F4(=)g FL(fy)277 1221 y Gg(or)f(as)f(the)h
(inference)i(rule)1214 1352 y F4(\000)p 1291 1340 11
41 v 1301 1322 46 5 v 96 w(\001)p Ga(;)15 b FL(fy)26
b F4(=)f FL(i)91 b F4(\000)p 1865 1340 11 41 v 1875 1322
46 5 v 96 w(\001)p Ga(;)15 b FL(fx)25 b F4(=)g FL(i)p
1214 1389 1057 4 v 1476 1469 a F4(\000)p 1553 1457 11
41 v 1564 1439 46 5 v 96 w(\001)p Ga(;)15 b FL(fx)25
b F4(=)g FL(fy)2311 1419 y Gg(T)m(rans)h Ga(:)277 1640
y Gg(Ho)n(we)n(v)o(er)k(we)g(shall)i(refrain)g(from)f(adding)i(either)f
(of)e(them,)j(because)g(it)d(w)o(ould)i(require)g(a)e(fresh)277
1753 y(cut-elimination)24 b(proof)e(\(cut-elimination)i(in)c(the)h
(presence)h(of)f(non-logical)i(axioms)e(or)g(additional)277
1866 y(inference)28 b(rules)e(is)g(non-tri)n(vial\).)37
b(Instead,)28 b(we)c(shall)j(represent)g(principles)i(of)c(arithmetic)i
(as)f(for)n(-)277 1979 y(mulae,)f(which)g(we)f(add)h(to)g(our)g
(assumptions.)35 b(T)m(ransiti)n(vity)-6 b(,)27 b(for)e(e)o(xample,)g
(is)g(represented)i(as)e(the)277 2092 y(formula)1237
2221 y F6(8)p FL(i)p Ga(:)p FL(x)p Ga(:)p FL(y)q Ga(:)p
F4(\(\()p FL(fy)i F4(=)e FL(i)15 b F6(^)g FL(fx)25 b
F4(=)f FL(i)p F4(\))15 b F6(\033)h FL(fx)25 b F4(=)f
FL(fy)q F4(\))i Ga(:)p Black 786 w Gg(\(4.5\))p Black
277 2396 a(Other)i(principles)h(we)e(need)h(concern)h(the)e(predicates)
j Ga(<)c Gg(and)i F6(\024)p Gg(.)39 b(The)26 b(corresponding)32
b(formulae)277 2509 y(are)1570 2664 y F6(8)p FL(x)p Ga(:)p
FL(y)q Ga(:)p F4(\()p FL(sx)25 b F6(\024)g FL(y)17 b
F6(\033)e FL(x)25 b Ga(<)g FL(y)q F4(\))p Black 953 w
Gg(\(4.6\))p Black 1570 2802 a F6(8)p FL(y)q Ga(:)p FL(x)p
Ga(:)p F4(\()p FL(x)h F6(\024)f FL(m)2027 2764 y Fu(x)p
Gc(;)p Fu(y)2117 2802 y F4(\))p Black 1176 w Gg(\(4.7\))p
Black 1570 2939 a F6(8)p FL(y)q Ga(:)p FL(x)p Ga(:)p
F4(\()p FL(y)i F6(\024)e FL(m)2028 2902 y Fu(x)p Gc(;)p
Fu(y)2118 2939 y F4(\))p Black 1175 w Gg(\(4.8\))p Black
277 3110 a(in)d(which)g FL(s)e Gg(denotes)k(the)e(successor)i(function)
g(and)e FL(m)2015 3077 y Fu(x)p Gc(;)p Fu(y)2126 3110
y Gg(denotes)i(the)e(maximum)f(function)j(of)e(tw)o(o)277
3223 y(inte)o(gers,)33 b FL(x)d Gg(and)h FL(y)q Gg(.)48
b(F)o(or)29 b(instance)k FL(m)1518 3190 y Fu(s0)p Gc(;)p
Fu(0)1669 3223 y Gg(is)45 b FL(s0)p Gg(.)j(In)31 b(the)f(sequel,)j(we)d
(shall)h(abbre)n(viate)48 b FL(s0)p Gg(,)e FL(ss0)p Gg(,)277
3336 y FL(sss0)23 b Gg(as)g FL(1)p Gg(,)g FL(2)g Gg(and)h
FL(3)p Gg(,)f(respecti)n(v)o(ely)-6 b(.)32 b(A)22 b(proof)j(of)e(the)h
(statement)41 b FL(0)10 b Ga(<)g FL(1)23 b Gg(is)g(then)i(as)e(follo)n
(ws.)924 3808 y Ga(\031)1016 3439 y FI(8)1016 3513 y(>)1016
3538 y(>)1016 3563 y(>)1016 3588 y(>)1016 3613 y(>)1016
3638 y(>)1016 3663 y(>)1016 3688 y(>)1016 3713 y(<)1016
3862 y(>)1016 3887 y(>)1016 3912 y(>)1016 3937 y(>)1016
3962 y(>)1016 3987 y(>)1016 4012 y(>)1016 4036 y(>)1016
4061 y(:)p 1420 3450 421 4 v 1420 3521 a FF(1)9 b FT(\024)g
FF(1)p 1604 3509 10 38 v 1614 3492 42 4 v 87 w(1)g FT(\024)g
FF(1)p 1289 3552 683 4 v 1275 3637 a FT(8)p FF(x)p FU(:)p
FG(\()p FF(x)g FT(\024)g FF(m)1602 3607 y Ft(x)p FS(;)p
Ft(0)1685 3637 y FG(\))p 1736 3625 10 38 v 1745 3608
42 4 v 88 w FF(1)g FT(\024)g FF(1)1985 3575 y FT(8)2032
3587 y FS(L)p 1237 3678 786 4 v 1237 3757 a FT(8)p FF(y)q
FU(:)p FF(x)p FU(:)p FG(\()p FF(x)24 b FT(\024)f FF(m)1655
3726 y Ft(x)p FS(;)p Ft(y)1736 3757 y FG(\))p 1787 3745
10 38 v 1797 3728 42 4 v 88 w FF(1)9 b FT(\024)g FF(1)2036
3700 y FT(8)2083 3712 y FS(L)p 2215 3686 421 4 v 2215
3757 a FF(0)g FU(<)g FF(1)p 2400 3745 10 38 v 2409 3728
42 4 v 87 w(0)g FU(<)g FF(1)p 1237 3797 1398 4 v 1327
3876 a(1)g FT(\024)g FF(1)p FT(\033)o FF(0)g FU(<)g FF(1)p
FU(;)14 b FT(8)p FF(y)q FU(:)p FF(x)p FU(:)o FG(\()p
FF(x)23 b FT(\024)g FF(m)2178 3846 y Ft(x)p FS(;)p Ft(y)2259
3876 y FG(\))p 2310 3864 10 38 v 2320 3848 42 4 v 89
w FF(0)9 b FU(<)g FF(1)2649 3813 y FT(\033)2714 3826
y FS(L)p 1249 3917 1374 4 v 1236 3996 a FT(8)p FF(y)q
FU(:)p FG(\()p FF(1)g FT(\024)g FF(y)q FT(\033)o FF(0)g
FU(<)g FF(y)q FG(\))p FU(;)14 b FT(8)p FF(y)q FU(:)p
FF(x)p FU(:)p FG(\()p FF(x)24 b FT(\024)e FF(m)2255 3966
y Ft(x)p FS(;)p Ft(y)2337 3996 y FG(\))p 2388 3984 10
38 v 2397 3967 42 4 v 88 w FF(0)9 b FU(<)g FF(1)2637
3939 y FT(8)2684 3951 y FS(L)p 1158 4036 1558 4 v 1158
4115 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FF(sx)23
b FT(\024)g FF(y)15 b FT(\033)e FF(x)24 b FU(<)e FF(y)q
FG(\))p FU(;)14 b FT(8)p FF(y)q FU(:)p FF(x)p FU(:)q
FG(\()p FF(x)24 b FT(\024)e FF(m)2347 4085 y Ft(x)p FS(;)p
Ft(y)2429 4115 y FG(\))p 2480 4103 10 38 v 2489 4087
42 4 v 88 w FF(0)9 b FU(<)g FF(1)2729 4059 y FT(8)2776
4071 y FS(L)277 4318 y Gg(There)30 b(are)g(se)n(v)o(eral)h(w)o(ays)g
(of)e(ho)n(w)h(to)g(formalise)h(a)f(proof)h(of)f FL(0)c
Ga(<)f FL(1)p Gg(;)33 b(it)c(will,)i(ho)n(we)n(v)o(er)l(,)h(become)277
4431 y(clear)d(later)g(on)f(why)g(we)f(ha)n(v)o(e)i(chosen)g(this)g
(particular)i(formalisation.)45 b(Before)29 b(we)e(proceed,)k(let)277
4544 y(us)24 b(introduce)i(some)d(abbre)n(viations)28
b(for)23 b(the)h(formulae)h(gi)n(v)o(en)f(in)g(\(4.3\))g(to)f(\(4.8\).)
p Black Black 700 4744 a Ga(A)833 4693 y F5(def)840 4744
y F4(=)66 b F6(8)p FL(x)p Ga(:)p F4(\()p FL(fx)25 b F4(=)g
FL(0)15 b F6(_)h FL(fx)24 b F4(=)h FL(1)p F4(\))693 b
Gg(assumption)103 b(\(4.3\))699 4884 y Ga(P)833 4832
y F5(def)840 4884 y F4(=)66 b F6(9)p FL(n)p Ga(:)p FL(m)p
Ga(:)p F4(\()p FL(n)26 b Ga(<)f FL(m)15 b F6(^)g FL(fn)25
b F4(=)g FL(fm)p F4(\))526 b Gg(proposition)104 b(\(4.4\))701
5024 y Ga(T)833 4972 y F5(def)840 5024 y F4(=)66 b F6(8)p
FL(i)p Ga(:)p FL(x)p Ga(:)p FL(y)q Ga(:)p F4(\(\()p FL(fy)27
b F4(=)e FL(i)15 b F6(^)g FL(fx)25 b F4(=)g FL(i)p F4(\))15
b F6(\033)g FL(fx)25 b F4(=)g FL(fy)q F4(\))189 b Gg(transiti)n(vity)
126 b(\(4.5\))704 5164 y Ga(S)833 5112 y F5(def)840 5164
y F4(=)66 b F6(8)p FL(x)p Ga(:)p FL(y)q Ga(:)p F4(\()p
FL(sx)26 b F6(\024)f FL(y)16 b F6(\033)f FL(x)25 b Ga(<)g
FL(y)q F4(\))639 b Gg(successor)169 b(\(4.6\))670 5303
y Ga(M)758 5317 y F9(1)833 5252 y F5(def)840 5303 y F4(=)66
b F6(8)p FL(y)q Ga(:)p FL(x)p Ga(:)p F4(\()p FL(x)26
b F6(\024)f FL(m)1434 5270 y Fu(x)p Gc(;)p Fu(y)1524
5303 y F4(\))862 b Gg(maximum)2789 5317 y F9(1)2935 5303
y Gg(\(4.7\))670 5443 y Ga(M)758 5457 y F9(2)833 5392
y F5(def)840 5443 y F4(=)66 b F6(8)p FL(y)q Ga(:)p FL(x)p
Ga(:)p F4(\()p FL(y)27 b F6(\024)e FL(m)1435 5410 y Fu(x)p
Gc(;)p Fu(y)1525 5443 y F4(\))861 b Gg(maximum)2789 5457
y F9(2)2935 5443 y Gg(\(4.8\))p Black Black eop end
%%Page: 116 128
TeXDict begin 116 127 bop Black -144 51 a Gb(116)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black 321 388 a Gg(The)f(sequent)j(that)e(we)f(are)g(going)i
(to)f(pro)o(v)o(e)g(is)p Black Black 421 561 a FT(8)p
FF(y)q FU(:)p FF(x)p FU(:)p FG(\()p FF(x)f FT(\024)g
FF(m)838 530 y Ft(x)p FS(;)p Ft(y)920 561 y FG(\))p Gd(,)d
FT(8)p FF(y)q FU(:)p FF(x)p FU(:)p FG(\()p FF(y)25 b
FT(\024)e FF(m)1412 530 y Ft(x)p FS(;)p Ft(y)1493 561
y FG(\))p Gd(,)e FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p
FF(sx)i FT(\024)g FF(y)15 b FT(\033)f FF(x)23 b FU(<)g
FF(y)q FG(\))p FU(;)421 660 y FT(8)p FF(i)p FU(:)p FF(x)p
FU(:)p FF(y)q FU(:)p FG(\(\()p FF(fy)i FG(=)e FF(i)14
b FT(^)f FF(fx)24 b FG(=)f FF(i)p FG(\))14 b FT(\033)f
FF(fx)24 b FG(=)f FF(fy)q FG(\))p Gd(,)421 760 y FT(8)p
FF(x)p FU(:)o FG(\()p FF(fx)h FG(=)f FF(0)14 b FT(_)f
FF(fx)24 b FG(=)f FF(1)p FG(\))p 2434 649 20 78 v 2454
614 87 8 v 2579 637 a F6(9)p FL(n)p Ga(:)p FL(m)p Ga(:)p
F4(\()p FL(n)i Ga(<)g FL(m)16 b F6(^)e FL(fn)25 b F4(=)g
FL(fm)p F4(\))321 935 y Gg(or)f(using)g(our)g(abbre)n(viations)1524
1047 y Ga(M)1612 1061 y F9(1)1652 1047 y Ga(;)15 b(M)1780
1061 y F9(2)1820 1047 y Ga(;)g(S;)g(T)8 b(;)15 b(A)p
2146 1035 11 41 v 2156 1017 46 5 v 97 w(P)38 b(:)p Black
1029 w Gg(\(4.9\))p Black 462 1221 a(W)-7 b(e)26 b(turn)h(no)n(w)f(to)h
(the)g(question)h(of)f(ho)n(w)f(one)h(might)g(pro)o(v)o(e)g(the)g
(sequent)h(just)f(gi)n(v)o(en.)38 b(As)26 b(one)321 1334
y(may)d(e)o(xpect,)i(there)f(are)f(se)n(v)o(eral)i(possibilities.)32
b(W)-7 b(e)23 b(\002rst)g(consider)i(proofs)g(that)f(\223perform\224)h
(a)e(case)321 1447 y(analysis;)37 b(by)31 b(this)h(we)e(mean)h(the)o(y)
g(consist)i(of)e(a)f(number)i(of)f(tests,)i(which)f(check)g(whether)g
(tw)o(o)321 1560 y(cells)25 b(on)e(a)g(gi)n(v)o(en)h(tape)h(ha)n(v)o(e)
f(the)g(same)f(content.)31 b(T)-7 b(ak)o(e)23 b(for)h(e)o(xample)g(the)
g(follo)n(wing)h(tape.)p Black Black 1539 1689 790 4
v 1537 1802 4 113 v 1589 1768 a FL(1)p 1683 1802 V 100
w(0)p 1828 1802 V 100 w(0)p 1973 1802 V 100 w(1)p 2118
1802 V 100 w Gg(.)14 b(.)g(.)p 1539 1806 790 4 v 321
1978 a(Here)25 b(the)g(test)g FL(f1)g F4(=)g FL(f2)h
F4(=)e FL(0)q Gg(,)g(or)g FL(f0)i F4(=)f FL(f3)g F4(=)g
FL(1)q Gg(,)e(is)i(suf)n(\002cient)h(to)e(sho)n(w)g Ga(P)37
b Gg(for)25 b(this)g(particular)i(tape.)321 2091 y(Ho)n(we)n(v)o(er)l
(,)c(both)i(tests)f(f)o(ail)g(for)g(the)g(tape)p Black
Black 1539 2220 V 1537 2333 4 113 v 1589 2299 a FL(1)p
1683 2333 V 100 w(1)p 1828 2333 V 100 w(0)p 1973 2333
V 100 w(0)p 2118 2333 V 100 w Gg(.)14 b(.)g(.)p 1539
2337 790 4 v 321 2509 a(Since)30 b(we)e(w)o(ant)h(to)g(sho)n(w)g
Ga(P)42 b Gg(for)29 b(all)g(tapes,)i(we)e(ha)n(v)o(e)h(to)f(do)g(some)g
(more)g(tests.)47 b(It)29 b(is)g(left)g(to)g(the)321
2622 y(reader)c(to)f(v)o(erify)g(that)g(the)g(follo)n(wing)h(tests)1340
2838 y FL(f0)g F4(=)g FL(f1)h F4(=)f FL(0)1340 2951 y(f0)g
F4(=)g FL(f2)h F4(=)f FL(0)1340 3064 y(f1)g F4(=)g FL(f2)h
F4(=)f FL(0)2093 2838 y(f0)h F4(=)f FL(f1)g F4(=)g FL(1)2093
2951 y(f0)h F4(=)f FL(f2)g F4(=)g FL(1)2093 3064 y(f1)h
F4(=)f FL(f2)g F4(=)g FL(1)p Black 3327 2951 a Gg(\(4.10\))p
Black 321 3230 a(guarantee)f(that)e(there)g(is)f(an)g
FL(n)f Gg(and)i FL(m)f Gg(such)h(that)f FL(n)26 b Ga(<)f
FL(m)20 b Gg(and)i FL(fn)j F4(=)g FL(fm)20 b Gg(for)h
F7(e)o(very)h Gg(tape.)29 b(Ob)o(viously)321 3343 y(the)e(collection)j
(of)c(tests)i(gi)n(v)o(en)f(abo)o(v)o(e)g(is)g(not)g(the)f(only)i(one)f
(to)g(establish)i(the)e(proposition)j(for)c(all)321 3456
y(tapes.)j(W)-7 b(e)20 b(could,)i(for)e(e)o(xample,)i(test)f(the)g
(13th,)g(101th)h(and)f(999th)h(cell,)f(instead)i(of)d(the)h(\002rst)f
(three.)321 3569 y(Also,)j(we)g(might)h(consider)l(,)i(as)d(we)g(shall)
i(see)e(later)l(,)i(more)e(than)i(just)f(three)g(cells.)462
3698 y(Let)g(us)f(sho)n(w)h(ho)n(w)f(a)g(test)i(translates)h(into)e(a)f
(sequent)j(proof.)k(Belo)n(w)24 b(we)e(gi)n(v)o(e)i(a)g(proof,)g(which)
321 3811 y(corresponds)j(to)d(the)g(test)39 b FL(f0)25
b F4(=)g FL(f1)h F4(=)f FL(0)p Gg(.)181 4806 y FU(\031)-12
4880 y(M)69 4892 y FJ(1)106 4880 y FU(;)14 b(S)p 217
4868 10 38 v 226 4851 42 4 v 92 w FF(0)-5 b FU(<)g FF(1)p
419 3998 471 4 v 419 4073 a(f1)10 b FG(=)f FF(0)p 629
4061 10 38 v 639 4044 42 4 v 87 w(f1)g FG(=)g FF(0)p
973 3998 471 4 v 82 w(f1)g FG(=)g FF(1)p 1183 4061 10
38 v 1193 4044 42 4 v 88 w(f1)g FG(=)g FF(1)p 419 4093
1025 4 v 459 4167 a(f1)g FG(=)g FF(0)p FT(_)p FF(f1)g
FG(=)g FF(1)p 915 4155 10 38 v 925 4138 42 4 v 87 w(f1)g
FG(=)g FF(0)p FU(;)14 b FF(f1)8 b FG(=)h FF(1)1444 4112
y FT(_)1499 4082 y Fz(\016)1499 4135 y FS(L)p 383 4203
1098 4 v 369 4282 a FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)h
FG(=)f FF(0)p FT(_)o FF(fx)h FG(=)f FF(1)p FG(\))p 991
4270 10 38 v 1001 4253 42 4 v 88 w FF(f1)g FG(=)g FF(0)p
FU(;)14 b FF(f1)8 b FG(=)h FF(1)1481 4223 y FT(8)1528
4193 y Fz(\016)1528 4246 y FS(L)p 1696 3998 471 4 v 1696
4073 a FF(f0)g FG(=)g FF(0)p 1906 4061 10 38 v 1915 4044
42 4 v 87 w(f0)g FG(=)g FF(0)p 2250 3998 471 4 v 83 w(f0)g
FG(=)g FF(1)p 2460 4061 10 38 v 2469 4044 42 4 v 87 w(f0)g
FG(=)g FF(1)p 1696 4093 1025 4 v 1735 4167 a(f0)g FG(=)g
FF(0)p FT(_)p FF(f0)g FG(=)g FF(1)p 2192 4155 10 38 v
2201 4138 42 4 v 87 w(f0)g FG(=)g FF(0)p FU(;)14 b FF(f0)9
b FG(=)g FF(1)2720 4112 y FT(_)2776 4082 y Fz(\016)2776
4135 y FS(L)p 1659 4203 1098 4 v 1646 4282 a FT(8)p FF(x)p
FU(:)p FG(\()p FF(fx)g FG(=)g FF(0)p FT(_)p FF(fx)h FG(=)f
FF(1)p FG(\))p 2268 4270 10 38 v 2277 4253 42 4 v 87
w FF(f0)g FG(=)g FF(0)p FU(;)14 b FF(f0)9 b FG(=)g FF(1)2757
4223 y FT(8)2804 4193 y Fz(\016)2804 4246 y FS(L)p 383
4322 2375 4 v 770 4401 a FT(8)p FF(x)p FU(:)p FG(\()p
FF(fx)g FG(=)g FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
1392 4389 10 38 v 1402 4373 42 4 v 87 w FF(f1)h FG(=)f
FF(0)p FT(^)o FF(f0)g FG(=)g FF(0)p FU(;)14 b FF(f1)9
b FG(=)g FF(1)p FU(;)14 b FF(f0)8 b FG(=)h FF(1)2743
4342 y FT(^)2798 4312 y Fz(\017)2798 4365 y FS(R)p 2936
4327 522 4 v 2936 4401 a FF(f0)g FG(=)g FF(f1)p 3171
4389 10 38 v 3181 4373 42 4 v 88 w(f0)g FG(=)g FF(f1)p
784 4442 2674 4 v 0.75 TeXcolorgray 0.75 TeXcolorgray
1034 4542 785 84 v 0.75 TeXcolorgray Black 1034 4521
a FG(\()p FF(f1)h FG(=)f FF(0)p FT(^)o FF(f0)h FG(=)f
FF(0)p FG(\))p FT(\033)o FF(f0)g FG(=)g FF(f1)p 0.75
TeXcolorgray Black FU(;)p FT(8)p FF(x)p FU(:)p FG(\()p
FF(fx)g FG(=)g FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
2464 4509 10 38 v 2473 4492 42 4 v 87 w FF(f0)g FG(=)g
FF(f1)p FU(;)14 b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8
b FG(=)h FF(1)3444 4462 y FT(\033)3508 4432 y Fz(\017)3508
4485 y FS(L)p 957 4562 2328 4 v 943 4640 a FT(8)p FF(y)q
FU(:)p FG(\(\()p FF(fy)i FG(=)e FF(0)p FT(^)p FF(f0)g
FG(=)g FF(0)p FG(\))p FT(\033)o FF(f0)g FG(=)g FF(fy)r
FG(\))p FU(;)p FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)h FG(=)f
FF(0)p FT(_)o FF(fx)h FG(=)f FF(1)p FG(\))p 2541 4628
10 38 v 2551 4612 42 4 v 88 w FF(f0)g FG(=)g FF(f1)p
FU(;)14 b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8 b
FG(=)h FF(1)3284 4581 y FT(8)3331 4551 y Fz(\017)3331
4604 y FS(L)p 929 4681 2383 4 v 916 4760 a FT(8)p FF(x)p
FU(:)p FF(y)q FU(:)p FG(\(\()p FF(fy)i FG(=)e FF(0)p
FT(^)p FF(fx)h FG(=)f FF(0)p FG(\))p FT(\033)o FF(fx)h
FG(=)f FF(fy)q FG(\))p FU(;)p FT(8)p FF(x)p FU(:)p FG(\()p
FF(fx)h FG(=)f FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
2569 4748 10 38 v 2578 4731 42 4 v 87 w FF(f0)g FG(=)g
FF(f1)p FU(;)14 b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8
b FG(=)h FF(1)3312 4701 y FT(8)3359 4671 y Fz(\017)3359
4724 y FS(L)p 929 4801 2383 4 v 1385 4880 a FU(T)e(;)14
b FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)9 b FG(=)g FF(0)p
FT(_)p FF(fx)g FG(=)g FF(1)p FG(\))p 2099 4868 10 38
v 2109 4851 42 4 v 88 w FF(f0)g FG(=)g FF(f1)p FU(;)14
b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8 b FG(=)h
FF(1)3312 4820 y FT(8)3359 4790 y Fz(\017)3359 4843 y
FS(L)p -12 4920 2855 4 v 427 4999 a FU(M)508 5011 y FJ(1)544
4999 y FU(;)14 b(S;)g(T)7 b(;)14 b FT(8)p FF(x)p FU(:)p
FG(\()p FF(fx)9 b FG(=)g FF(0)14 b FT(_)g FF(fx)9 b FG(=)g
FF(1)p FG(\))p 1411 4987 10 38 v 1421 4970 42 4 v 88
w FF(0)-5 b FU(<)g FF(1)14 b FT(^)f FF(f0)d FG(=)f FF(f1)o
FU(;)28 b FF(f1)9 b FG(=)g FF(1)p FU(;)27 b FF(f0)9 b
FG(=)g FF(1)2842 4941 y FT(^)2898 4911 y Fk(?)2898 4964
y FS(R)p 302 5040 2226 4 v 302 5119 a FU(M)383 5131 y
FJ(1)420 5119 y FU(;)14 b(S;)g(T)7 b(;)14 b FT(8)p FF(x)p
FU(:)p FG(\()p FF(fx)9 b FG(=)g FF(0)14 b FT(_)f FF(fx)d
FG(=)f FF(1)p FG(\))p 1287 5107 10 38 v 1297 5090 42
4 v 88 w FT(9)p FF(m)p FU(:)p FG(\()p FF(0)-5 b FU(<)g
FF(m)14 b FT(^)g FF(f0)9 b FG(=)g FF(fm)p FG(\))p FU(;)28
b FF(f1)9 b FG(=)g FF(1)p FU(;)27 b FF(f0)9 b FG(=)g
FF(1)2528 5061 y FT(9)2574 5031 y Fk(?)2574 5084 y FS(R)p
254 5159 2322 4 v 254 5238 a FU(M)335 5250 y FJ(1)372
5238 y FU(;)14 b(S;)g(T)7 b(;)14 b FT(8)p FF(x)p FU(:)p
FG(\()p FF(fx)9 b FG(=)g FF(0)14 b FT(_)f FF(fx)d FG(=)f
FF(1)p FG(\))590 5294 y FI(|)p 627 5294 241 10 v 241
w({z)p 942 5294 V 241 w(})874 5389 y FU(A)p 1253 5226
10 38 v 1262 5210 42 4 v 1336 5238 a FT(9)p FF(n)p FU(:)p
FF(m)p FU(:)p FG(\()p FF(n)-5 b FU(<)g FF(m)14 b FT(^)h
FF(fn)9 b FG(=)g FF(fm)p FG(\))1336 5294 y FI(|)p 1373
5294 304 10 v 304 w({z)p 1751 5294 V 304 w(})1682 5389
y FU(P)2092 5238 y(;)27 b FF(f1)10 b FG(=)f FF(1)p FU(;)27
b FF(f0)9 b FG(=)g FF(1)2576 5181 y FT(9)2622 5150 y
Fk(?)2622 5203 y FS(R)p Black Black eop end
%%Page: 117 129
TeXDict begin 117 128 bop Black 277 51 a Gb(4.2)23 b(Non-Deterministic)
i(Computation:)k(Case)23 b(Study)1667 b(117)p 277 88
3691 4 v Black 277 388 a Gg(In)27 b(this)h(proof,)i(the)d(inference)j
(rules)e(mark)o(ed)h(with)e(a)g(star)h(are)f(concerned)j(with)e(the)f
(proposition,)277 501 y Ga(P)13 b Gg(,)31 b(the)f(inference)i(rules)f
(mark)o(ed)g(with)f(a)f(circle)j(are)e(concerned)i(with)e(the)g
(assumption,)k Ga(A)p Gg(,)d(and)277 614 y(the)f(inference)j(rules)e
(mark)o(ed)g(with)f(a)f(disk)i(concern)h(the)e(formula)h(for)f
(transiti)n(vity)-6 b(,)35 b Ga(T)13 b Gg(.)47 b(Clearly)-6
b(,)277 727 y(the)29 b(order)h(of)f(the)g(inference)i(rules)e(is)g(not)
g(important)i(with)d(respect)j(to)d(which)h(test)h(is)e(made:)40
b(the)277 840 y(inference)29 b(rules)f(can)f(be)g(easily)h(rearranged.)
41 b(Ho)n(we)n(v)o(er)26 b(it)h(is)f(relati)n(v)o(ely)j(simple)e(to)g
(determine)h(in)277 953 y(an)o(y)d(proof)h(of)f(this)g(kind)h(which)f
(test)g(is)g(made:)32 b(one)25 b(only)h(has)f(to)g(\002nd)f(the)h
(place)h(where)f(the)g(proof)277 1066 y(deals)31 b(with)e(the)h
(transiti)n(vity)i(\(shaded)f(formula\).)48 b(So)29 b(in)g(the)h(proof)
g(gi)n(v)o(en)g(abo)o(v)o(e,)h(the)f(inference)277 1179
y(rule)p Black Black 1090 1360 a FU(:)14 b(:)g(:)p 1219
1348 10 38 v 1228 1331 42 4 v 101 w FF(f1)23 b FG(=)g
FF(0)14 b FT(^)f FF(f0)23 b FG(=)g FF(0)p FU(;)14 b(:)g(:)g(:)174
b FF(f1)9 b FG(=)g FF(f0)p 2354 1348 10 38 v 2363 1331
42 4 v 102 w FU(:)14 b(:)g(:)p 1090 1396 1445 4 v 1177
1474 a FG(\()p FF(f1)24 b FG(=)e FF(0)14 b FT(^)g FF(f0)23
b FG(=)f FF(0)p FG(\))14 b FT(\033)f FF(f0)23 b FG(=)g
FF(f1)p FU(;)14 b(:)g(:)g(:)p 2266 1462 10 38 v 2275
1446 42 4 v 115 w(:)g(:)g(:)2575 1412 y FT(\033)2640
1424 y FS(L)277 1701 y Gg(is)29 b(an)h(indicator)i(for)e(the)f(test)46
b FL(f0)25 b F4(=)g FL(f1)g F4(=)g FL(0)30 b Gg(being)g
(\223performed\224.)50 b(Note)29 b(that)h(the)g(tw)o(o)f(formulae)277
1814 y FL(f1)d F4(=)f FL(1)h Gg(and)g FL(f0)g F4(=)f
FL(0)p Gg(,)h(which)h(appear)h(in)e(the)h(endsequent,)j(are)c
F7(not)h Gg(part)g(of)f(the)h(test)42 b FL(f0)26 b F4(=)f
FL(f1)g F4(=)g FL(0)p Gg(,)277 1927 y(b)n(ut)30 b(ha)n(v)o(e)f(to)g(be)
g(used)h(in)f(other)h(tests.)46 b(T)-7 b(w)o(o)28 b(proofs)i(for)g(the)
f(sequent)i Ga(M)2682 1941 y F9(1)2722 1927 y Ga(;)15
b(M)2850 1941 y F9(2)2890 1927 y Ga(;)g(S;)g(T)8 b(;)15
b(A)p 3216 1915 11 41 v 3226 1897 46 5 v 97 w(P)41 b
Gg(are)277 2040 y(gi)n(v)o(en)34 b(in)f(Appendix)h(A.)56
b(Each)33 b(of)g(them)g(corresponds)j(to)d(a)g(particular)i(collection)
h(of)d(tests,)i(as)277 2153 y(indicated)26 b(belo)n(w)-6
b(.)p Black Black 672 2355 a(Proof)24 b(on)f(P)o(ages)h(132\226134)597
2516 y FL(f0)i F4(=)f FL(f1)g F4(=)g FL(0)597 2628 y(f1)h
F4(=)f FL(f2)g F4(=)g FL(0)597 2741 y(f0)h F4(=)f FL(f2)g
F4(=)g FL(0)597 2854 y(f1)h F4(=)f FL(f3)g F4(=)g FL(0)1202
2572 y(f0)h F4(=)f FL(f1)g F4(=)g FL(1)1202 2685 y(f2)h
F4(=)f FL(f3)g F4(=)g FL(1)1202 2798 y(f1)h F4(=)f FL(f2)g
F4(=)g FL(1)2217 2355 y Gg(Proof)f(on)g(P)o(ages)f(135\226140)2143
2572 y FL(f0)i F4(=)g FL(f1)h F4(=)f FL(0)2143 2685 y(f2)g
F4(=)g FL(f3)h F4(=)f FL(0)2143 2798 y(f1)g F4(=)g FL(f2)h
F4(=)f FL(0)2748 2516 y(f0)g F4(=)g FL(f1)h F4(=)f FL(1)2748
2628 y(f1)g F4(=)g FL(f2)h F4(=)f FL(1)2748 2741 y(f0)g
F4(=)g FL(f2)h F4(=)f FL(1)2748 2854 y(f1)g F4(=)g FL(f3)h
F4(=)f FL(1)418 3072 y Gg(No)n(w)d(we)h(return)i(to)e(the)g(question)j
(whether)f(cut-elimination)i(in)c(classical)i(logic)g(corresponds)277
3185 y(to)i(non-deterministic)k(computation:)39 b(the)27
b(preceding)i(discussion)h(suggests)f(the)e(follo)n(wing)h(intu-)277
3298 y(iti)n(v)o(e)c(criterion)i(for)d(deciding)j(whether)f(tw)o(o)e
(proofs)i(are)f(dif)n(ferent.)p Black Black 504 3525
a Gb(Criterion:)45 b Gg(Gi)n(v)o(en)30 b(tw)o(o)g(cut-free)j(proofs)f
(of)f(the)g(sequent)h Ga(M)2571 3539 y F9(1)2611 3525
y Ga(;)15 b(M)2739 3539 y F9(2)2779 3525 y Ga(;)g(S;)g(T)8
b(;)15 b(A)p 3105 3513 11 41 v 3116 3495 46 5 v 97 w(P)e
Gg(.)504 3638 y(These)24 b(proofs)h(are)f(said)g(to)g(be)f
F7(dif)n(fer)m(ent)p Gg(,)j(if)d(the)o(y)h(consist)h(of)f(dif)n(ferent)
h(tests.)277 3865 y(According)j(to)d(this)i(criterion,)h(the)e(tw)o(o)f
(proofs)i(gi)n(v)o(en)g(in)e(Appendix)j(A)c(are)i(dif)n(ferent,)i
(since)f(the)o(y)277 3978 y(consist)32 b(of)e(dif)n(ferent)i(tests.)50
b(Let)30 b(us)g(point)h(out)g(that)g(our)f(criterion)j(is)d(suf)n
(\002cient)i(for)e(tw)o(o)g(proofs)277 4091 y(being)25
b(dif)n(ferent,)g(b)n(ut)f(it)f(is)h(by)f(no)h(means)g(a)f(necessary)j
(one.)418 4220 y(In)g(the)g(rest)g(of)g(this)h(section)g(we)e(shall)i
(gi)n(v)o(e)f(a)f(proof)i(of)f(Sequent)h(\(4.9\),)g(whose)f(collection)
i(of)277 4333 y(normal)21 b(forms)g(includes)i(the)d(tw)o(o)g(proofs)i
(gi)n(v)o(en)f(in)g(Appendix)h(A.)k(This)21 b(proof)g(contains)i
(instances)277 4446 y(of)h(the)f(cut-rule)j(and)e(is)f(based)i(upon)f
(the)g(three)h(observ)n(ations)i(listed)d(belo)n(w:)p
Black 373 4673 a(\(i\))p Black 46 w(From)31 b(the)g(assumption,)k
Ga(A)p Gg(,)e(one)e(can)h(pro)o(v)o(e)f(that)h(there)g(are)g
(in\002nitely)g(man)o(y)f(`)p FL(0)p Gg(')-5 b(s)32 b(or)f(in-)504
4786 y(\002nitely)25 b(man)o(y)e(`)p FL(1)p Gg(')-5 b(s)24
b(on)g(the)g(tape.)p Black 348 4972 a(\(ii\))p Black
46 w(If)h(on)h(the)f(tape)h(there)h(are)e(in\002nitely)i(man)o(y)e(`)p
FL(0)p Gg(')-5 b(s,)26 b(then)g(there)g(are)g(tw)o(o)f(cells)h(with)f
(the)g(same)504 5085 y(content.)p Black 323 5272 a(\(iii\))p
Black 46 w(Similarly)-6 b(,)24 b(if)g(on)f(the)h(tape)g(there)g(are)g
(in\002nitely)h(man)o(y)e(`)p FL(1)p Gg(')-5 b(s,)24
b(then)g(there)h(are)e(tw)o(o)g(cells)i(with)504 5385
y(the)f(same)g(content.)p Black Black eop end
%%Page: 118 130
TeXDict begin 118 129 bop Black -144 51 a Gb(118)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black 321 388 a Gg(The)f(formulae)h(that)g(represent)h(the)e
(statements)i(\223there)f(are)g(in\002nitely)g(man)o(y)f(`)p
FL(0)p Gg(')-5 b(s\224)24 b(and)f(\223there)h(are)321
501 y(in\002nitely)h(man)o(y)f(`)p FL(1)p Gg(')-5 b(s\224)24
b(are)p Black Black 574 736 a F6(1)665 750 y F9(0)745
685 y F5(def)752 737 y F4(=)870 736 y F6(8)p FL(n)p Ga(:)p
F6(9)p FL(k)p Ga(:)p F4(\()p FL(n)i F6(\024)e FL(k)15
b F6(^)h FL(fk)25 b F4(=)g FL(0)q F4(\))118 b Gg(and)i
F6(1)2185 750 y F9(1)2264 685 y F5(def)2271 737 y F4(=)2390
736 y F6(8)p FL(n)p Ga(:)o F6(9)p FL(k)p Ga(:)p F4(\()p
FL(n)26 b F6(\024)f FL(k)15 b F6(^)g FL(fk)26 b F4(=)f
FL(1)p F4(\))h Gg(.)321 946 y(The)d(sequent)j(that)e(corresponds)j(to)c
(the)h(\002rst)f(observ)n(ation)k(is)1533 1179 y Ga(M)1621
1193 y F9(1)1661 1179 y Ga(;)15 b(M)1789 1193 y F9(2)1829
1179 y Ga(;)g(A)p 1957 1167 11 41 v 1968 1149 46 5 v
97 w F6(1)2125 1193 y F9(0)2164 1179 y Ga(;)g F6(1)2295
1193 y F9(1)321 1394 y Gg(for)27 b(which)f(a)g(proof,)h(denoted)h(by)f
Ga(\034)10 b Gg(,)25 b(is)h(gi)n(v)o(en)h(in)f(Figure)h(4.5.)36
b(The)25 b(sequent)j(that)f(corresponds)j(to)321 1506
y(the)24 b(observ)n(ations)j(stated)e(in)e(\(ii\))h(and)g(\(iii\))g(is)
1689 1737 y F6(1)1780 1751 y Gc(i)1808 1737 y Ga(;)15
b(S;)g(T)p 2031 1725 11 41 v 2042 1706 46 5 v 110 w(P)321
1951 y Gg(where)23 b Ga(i)i F6(2)g(f)p F4(0)p Ga(;)15
b F4(1)p F6(g)p Gg(.)30 b(A)21 b(proof)i(of)g(this)f(sequent,)j
(denoted)f(by)e Ga(")2321 1965 y Gc(i)2350 1951 y Gg(,)f(is)h(gi)n(v)o
(en)h(in)f(Figure)h(4.5,)f(too.)29 b(No)n(w)321 2063
y(we)23 b(can)h(use)g(the)g(cut-rule)h(for)f(forming)g(the)g(follo)n
(wing)h(proof)g(for)f(Sequent)g(4.9.)486 2690 y Ga(\033)582
2286 y FK(8)582 2368 y(>)582 2395 y(>)582 2422 y(>)582
2449 y(>)582 2477 y(>)582 2504 y(>)582 2531 y(>)582 2559
y(>)582 2586 y(<)582 2749 y(>)582 2777 y(>)582 2804 y(>)582
2831 y(>)582 2859 y(>)582 2886 y(>)582 2913 y(>)582 2940
y(>)582 2968 y(:)867 2710 y @beginspecial 179 @llx 477
@lly 318 @urx 605 @ury 639 @rwi @clip @setspecial
%%BeginDocument: pics/tau.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: tau.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o tau.ps tau.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.10:0010
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (tau.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi12 24.88 1
/Fb 1 29 df<033FBA12FE4ABCFC02071B805C143F5C91BDFC491C004963496349634901
80C700FCCBFCD93FFCC8FCD97FF04A5A14C0495A4848C81203485A495E485A484815075B
485A4D5A48C9FC127E171F5A485F1270CA123FA34D5AA317FFA295CCFCA25EA34C5AA316
07A25F160FA44C5AA3163FA25F167FA44C5AA35DA25F5DA44B5BA35DA294CDFC5DA44B5A
A45E5E6F5A6F5A615B7BD858>28 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 841 3165 a
 tx@Dict begin CP CP translate 0.65  0.65  scale NET  end
 841 3165 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 139.41826 139.41826 184.94283 213.39557 156.49008
284.52744 91.04869 301.59924 56.90549 256.07469 62.59595 199.1692 102.43004
139.41826  1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0
SLW 0  setgray 0 setlinecap stroke  grestore end
 
@endspecial 841 3165 a
 tx@Dict begin CP CP translate 1 0.65 div 1 0.65 div scale NET  end
 841 3165 a 1430 2028
a Fb(\034)p Black 1918 5251 a Fa(1)p Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 732 2788 a Ga(M)820 2802 y F9(1)860 2788
y Ga(;)15 b(M)988 2802 y F9(2)1028 2788 y Ga(;)g(A)p
1157 2776 11 41 v 1167 2758 46 5 v 97 w F6(1)1324 2802
y F9(0)1363 2788 y Ga(;)g F6(1)1494 2802 y F9(1)1625
2710 y @beginspecial 365 @llx 477 @lly 519 @urx 605 @ury
708 @rwi @clip @setspecial
%%BeginDocument: pics/eps0.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: eps0.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o eps0.ps eps0.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.10:0010
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (eps0.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 2
/Fa 2 50 df<14FF010713E090381F81F890383E007C01FC133F4848EB1F8049130F4848
EB07C04848EB03E0A2000F15F0491301001F15F8A2003F15FCA390C8FC4815FEA54815FF
B3A46C15FEA56D1301003F15FCA3001F15F8A26C6CEB03F0A36C6CEB07E0000315C06D13
0F6C6CEB1F806C6CEB3F00013E137C90381F81F8903807FFE0010090C7FC28447CC131>
48 D<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6FCA320
4278C131>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi12 24.88 1
/Fb 1 35 df<943801FFFC053FEBFFE00403B612FC041F15FF93B812C0030317F0030F83
033F17FE4B834AB526F8001F14804A49C712014A01E0EC003F021F90C9120FDA3FF81603
DA7FE004001300DAFF80177E4990CB123C02FC95C7FC495A495A5C495A5C131F91CEFCA3
5B133EA2133F7FA380130F806D7E6D6C90B512F8902601F80F14FE902600FE7F80027FB7
7E6E903880001FDA1FFCC748C9FC913A7FFFF80FFF91B75A902603FC7F5C902607F80714
F090280FE0000FF8CAFC494890CCFC49CEFC137E5B485A485A5B1207485A5B121F90CFFC
5A123E127E127CA312FC5AA57E1A181A3C7E007E197C007F61A26C6C4D5A6DEF07E06C6C
4D5A01F8173FD80FFEEFFF806C6C6C030790C8FC6C01F0ED3FFE6CD9FFC090380FFFF86C
91B75A6D5F6D17806D94C9FC010716FC010116E06D6C1580020F02F8CAFCDA007F90CBFC
51617BDC5F>34 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 1360 3165 a
 tx@Dict begin CP CP translate 0.65  0.65  scale NET  end
 1360 3165 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 310.13472 139.41826 384.11203 227.62195 372.73111
284.52744 312.98018 298.7538 241.84831 213.39557 290.2179 139.41826
 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0 SLW 0  setgray
0 setlinecap stroke  grestore end
 
@endspecial 1360 3165 a
 tx@Dict begin CP CP translate 1 0.65 div 1 0.65 div scale NET  end
 1360 3165 a 2995
2017 a Fb(")3090 2039 y Fa(0)p Black 1918 5251 a(1)p
Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 1670 2788 a F6(1)1761 2802 y F9(1)1800 2788
y Ga(;)g(S;)g(T)p 2023 2776 11 41 v 2034 2758 46 5 v
110 w(P)p 732 2826 1438 4 v 986 2905 a(M)1074 2919 y
F9(1)1114 2905 y Ga(;)g(M)1242 2919 y F9(2)1282 2905
y Ga(;)g(S;)g(T)8 b(;)15 b(A)p 1608 2893 11 41 v 1619
2875 46 5 v 97 w(P)s(;)g F6(1)1876 2919 y F9(0)2212 2856
y Gg(Cut)2434 2826 y @beginspecial 365 @llx 477 @lly
519 @urx 605 @ury 708 @rwi @clip @setspecial
%%BeginDocument: pics/eps1.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: eps1.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o eps1.ps eps1.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.10:0010
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (eps1.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi12 24.88 1
/Fb 1 35 df<943801FFFC053FEBFFE00403B612FC041F15FF93B812C0030317F0030F83
033F17FE4B834AB526F8001F14804A49C712014A01E0EC003F021F90C9120FDA3FF81603
DA7FE004001300DAFF80177E4990CB123C02FC95C7FC495A495A5C495A5C131F91CEFCA3
5B133EA2133F7FA380130F806D7E6D6C90B512F8902601F80F14FE902600FE7F80027FB7
7E6E903880001FDA1FFCC748C9FC913A7FFFF80FFF91B75A902603FC7F5C902607F80714
F090280FE0000FF8CAFC494890CCFC49CEFC137E5B485A485A5B1207485A5B121F90CFFC
5A123E127E127CA312FC5AA57E1A181A3C7E007E197C007F61A26C6C4D5A6DEF07E06C6C
4D5A01F8173FD80FFEEFFF806C6C6C030790C8FC6C01F0ED3FFE6CD9FFC090380FFFF86C
91B75A6D5F6D17806D94C9FC010716FC010116E06D6C1580020F02F8CAFCDA007F90CBFC
51617BDC5F>34 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 1360 3165 a
 tx@Dict begin CP CP translate 0.65  0.65  scale NET  end
 1360 3165 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 2.0 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 310.13472 139.41826 384.11203 227.62195 372.73111
284.52744 312.98018 298.7538 241.84831 213.39557 290.2179 139.41826
 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 2.0 SLW 0  setgray
0 setlinecap stroke  grestore end
 
@endspecial 1360 3165 a
 tx@Dict begin CP CP translate 1 0.65 div 1 0.65 div scale NET  end
 1360 3165 a 2995
2017 a Fb(")3090 2039 y Fa(1)p Black 1918 5251 a(1)p
Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 2479 2905 a F6(1)2570 2919 y F9(0)2609 2905
y Ga(;)g(S;)g(T)p 2832 2893 11 41 v 2843 2875 46 5 v
110 w(P)p 986 2942 1993 4 v 1598 3021 a(M)1686 3035 y
F9(1)1726 3021 y Ga(;)g(M)1854 3035 y F9(2)1894 3021
y Ga(;)g(S;)g(T)8 b(;)15 b(A)p 2220 3009 11 41 v 2231
2991 46 5 v 97 w(P)3021 2973 y Gg(Cut)p Black 3327 2690
a(\(4.11\))p Black 321 3240 a(If)33 b(we)f(feed)i(the)f(term)g(that)g
(corresponds)k(to)c(this)g(proof)h(into)g(the)f(e)n(v)n(aluation)j
(function)f(of)e(Sec-)321 3353 y(tion)f(4.1,)h(we)d(obtain)j(a)e
(collection)j(of)d(normal)h(forms.)53 b(As)30 b(mentioned)j(earlier)l
(,)i(this)d(collection)321 3466 y(includes)26 b(the)e(proofs)h(gi)n(v)o
(en)f(in)f(Appendix)j(A.)462 3595 y(Recall)h(the)f(point)h(we)f(made)g
(at)f(the)i(be)o(ginning)h(of)e(this)h(section,)h(where)e(we)f(ar)n
(gued)j(that)f(tw)o(o)321 3708 y(dif)n(ferent)38 b(normal)e(forms)f
(may)g(correspond)k(to)c(the)h(same)f(v)n(alue)h(and)g(the)g(same)f
(computation.)321 3821 y(This)30 b(point)h(does)g(not)g(apply)g(to)f
(the)g(tw)o(o)g(normal)h(forms)f(gi)n(v)o(en)h(in)f(Appendix)h(A;)i
(these)e(normal)321 3934 y(forms)19 b(dif)n(fer)g(in)g
(\223essential\224)i(features)g(\(identifying)h(them)c(w)o(ould)h
(result)h(into)f(the)g(\223inconsistenc)o(y\224)321 4047
y(described)26 b(in)e(the)g(introduction\).)462 4176
y(T)-7 b(o)27 b(sum)h(up,)g(let)g(us)g(tak)o(e)g(a)g(step)g(back)h(and)
f(analyse)h(a)f(more)g(global)h(picture.)43 b(Starting)29
b(from)321 4289 y(the)20 b(classical)j(proof,)e Ga(\033)s
Gg(,)f(we)f(can)h(using)h(our)f(cut-elimination)k(procedures)f(reach,)e
(amongst)g(others,)321 4402 y(one)34 b(of)f(the)g(tw)o(o)g(normal)g
(forms)h(gi)n(v)o(en)f(in)g(Appendix)i(A,)f(by)f(choosing)j
(non-deterministically)321 4515 y(which)26 b(reductions)i(we)c(apply)-6
b(.)35 b(This)25 b(will)g(enable)i(us)e(to)g(encode)i(an)e(erratic)i
(choice)g(operator)g(into)321 4628 y(classical)f(logic.)k(W)-7
b(e)22 b(shall)j(tak)o(e)f(up)g(this)g(point)g(in)g(the)g(ne)o(xt)g
(section.)321 4936 y Ge(4.3)119 b(A)31 b(Simple,)f(Non-Deterministic)h
(Pr)n(ogramming)e(Language)321 5159 y Gg(In)24 b(this)g(section)i(we)d
(address)i(the)f(question)i(of)e(what)g(is)f(the)h(computational)k
(meaning)d(of)e(classical)321 5272 y(logic.)42 b(Clearly)-6
b(,)29 b(there)g(are)e(numerous)j(w)o(ays)d(of)h(ho)n(w)f(to)g
(approach)j(an)e(answer)g(to)f(this)i(question.)321 5385
y(Ho)n(we)n(v)o(er)l(,)e(the)g(discussion)i(in)e(this)g(section)h(will)
e(be)h(restricted)h(to)f(only)g(one:)36 b(we)25 b(shall)j(present)g(a)
321 5498 y(small)21 b(programming)i(language,)g(whose)e(type)g
(annotations)j(correspond)g(to)c(some)h(sequent)h(proofs)p
Black Black eop end
%%Page: 119 131
TeXDict begin 119 130 bop Black 277 51 a Gb(4.3)23 b(A)g(Simple,)f
(Non-Deterministic)j(Pr)n(ogramming)f(Language)1327 b(119)p
277 88 3691 4 v Black Black 277 718 V 277 4791 4 4073
v 384 893 a Fj(\034)462 844 y F5(def)467 893 y Fi(=)p
378 1088 711 4 v 378 1183 a FF(n)421 1152 y FQ(0)453
1183 y FT(\024)9 b FF(m)593 1152 y Ft(n)p FS(;)p Ft(n)677
1127 y Fh(0)p 707 1171 10 38 v 717 1154 42 4 v 777 1183
a FF(n)820 1152 y FQ(0)852 1183 y FT(\024)g FF(m)992
1152 y Ft(n)p FS(;)p Ft(n)1076 1127 y Fh(0)p 326 1214
815 4 v 326 1309 a FT(8)p FF(x)p FU(:)p FF(n)477 1278
y FQ(0)508 1309 y FT(\024)g FF(m)648 1278 y Ft(x)p FS(;)p
Ft(n)728 1253 y Fh(0)p 760 1297 10 38 v 769 1280 42 4
v 829 1309 a FF(n)872 1278 y FQ(0)904 1309 y FT(\024)g
FF(m)1044 1278 y Ft(n)p FS(;)p Ft(n)1128 1253 y Fh(0)1140
1236 y FT(8)1187 1248 y FS(L)p 326 1340 815 4 v 474 1435
a FU(M)555 1447 y FJ(2)p 611 1423 10 38 v 620 1406 42
4 v 680 1435 a FF(n)723 1405 y FQ(0)756 1435 y FT(\024)g
FF(m)896 1405 y Ft(n)p FS(;)p Ft(n)980 1379 y Fh(0)1140
1362 y FT(8)1187 1374 y FS(L)p 1387 943 665 4 v 1387
1038 a FF(n)g FT(\024)g FF(m)1579 1007 y Ft(n)p FS(;)p
Ft(n)1663 982 y Fh(0)p 1694 1026 10 38 v 1704 1009 42
4 v 1764 1038 a FF(n)g FT(\024)g FF(m)1956 1007 y Ft(n)p
FS(;)p Ft(n)2040 982 y Fh(0)p 1292 1069 856 4 v 1292
1164 a FT(8)p FF(x)p FU(:)p FG(\()p FF(x)23 b FT(\024)f
FF(m)1646 1133 y Ft(x)p FS(;)p Ft(n)1726 1108 y Fh(0)1739
1164 y FG(\))p 1790 1152 10 38 v 1799 1135 42 4 v 88
w FF(n)9 b FT(\024)g FF(m)2051 1133 y Ft(n)p FS(;)p Ft(n)2135
1108 y Fh(0)2147 1091 y FT(8)2194 1103 y FS(L)p 1292
1204 856 4 v 1473 1299 a FU(M)1554 1311 y FJ(1)p 1609
1287 10 38 v 1618 1270 42 4 v 1678 1299 a FF(n)g FT(\024)g
FF(m)1870 1269 y Ft(n)p FS(;)p Ft(n)1954 1244 y Fh(0)2147
1227 y FT(8)2194 1239 y FS(L)p 2299 959 713 4 v 2299
1053 a FF(fm)2390 1023 y Ft(n)p FS(;)p Ft(n)2474 998
y Fh(0)2495 1053 y FG(=)g FF(0)p 2629 1041 10 38 v 2639
1025 42 4 v 88 w(fm)2790 1023 y Ft(n)p FS(;)p Ft(n)2874
998 y Fh(0)2896 1053 y FG(=)g FF(0)p 3094 959 713 4 v
82 w(fm)3185 1023 y Ft(n)p FS(;)p Ft(n)3269 998 y Fh(0)3291
1053 y FG(=)g FF(1)p 3424 1041 10 38 v 3434 1025 42 4
v 87 w(fm)3585 1023 y Ft(n)p FS(;)p Ft(n)3669 998 y Fh(0)3691
1053 y FG(=)g FF(1)p 2299 1073 1508 4 v 2338 1168 a(fm)2429
1138 y Ft(n)p FS(;)p Ft(n)2513 1113 y Fh(0)2535 1168
y FG(=)g FF(0)p FT(_)o FF(fm)2796 1138 y Ft(n)p FS(;)p
Ft(n)2880 1113 y Fh(0)2902 1168 y FG(=)g FF(1)p 3036
1156 10 38 v 3046 1140 42 4 v 88 w(fm)3197 1138 y Ft(n)p
FS(;)p Ft(n)3281 1113 y Fh(0)3302 1168 y FG(=)g FF(0)p
FU(;)14 b FF(fm)3546 1138 y Ft(n)p FS(;)p Ft(n)3630 1113
y Fh(0)3651 1168 y FG(=)9 b FF(1)3806 1090 y FT(_)3861
1103 y FS(L)p 2338 1204 1429 4 v 2376 1299 a FT(8)p FF(x)p
FU(:)p FG(\()p FF(fx)h FG(=)f FF(0)p FT(_)o FF(fx)h FG(=)f
FF(1)p FG(\))p 2998 1287 10 38 v 3008 1270 42 4 v 88
w FF(fm)3159 1269 y Ft(n)p FS(;)p Ft(n)3243 1244 y Fh(0)3264
1299 y FG(=)g FF(0)p FU(;)14 b FF(fm)3508 1269 y Ft(n)p
FS(;)p Ft(n)3592 1244 y Fh(0)3613 1299 y FG(=)9 b FF(1)3767
1227 y FT(8)3814 1239 y FS(L)p 1473 1340 2257 4 v 1675
1435 a FU(M)1756 1447 y FJ(1)1793 1435 y FU(;)14 b FT(8)p
FF(x)p FU(:)p FG(\()p FF(fx)c FG(=)f FF(0)p FT(_)o FF(fx)h
FG(=)f FF(1)p FG(\))p 2452 1423 10 38 v 2462 1406 42
4 v 88 w FF(n)g FT(\024)g FF(m)2714 1405 y Ft(n)p FS(;)p
Ft(n)2798 1379 y Fh(0)2810 1435 y FT(^)p FF(fm)2956 1405
y Ft(n)p FS(;)p Ft(n)3040 1379 y Fh(0)3062 1435 y FG(=)g
FF(0)p FU(;)14 b FF(fm)3306 1405 y Ft(n)p FS(;)p Ft(n)3390
1379 y Fh(0)3411 1435 y FG(=)9 b FF(1)3729 1357 y FT(^)3784
1369 y FS(R)p 474 1475 3052 4 v 814 1570 a FU(M)895 1582
y FJ(1)932 1570 y FU(;)14 b(M)1050 1582 y FJ(2)1087 1570
y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)9 b FG(=)g
FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p 1746 1558
10 38 v 1755 1542 42 4 v 87 w FF(n)g FT(\024)g FF(m)2007
1540 y Ft(n)p FS(;)p Ft(n)2091 1515 y Fh(0)2103 1570
y FT(^)q FF(fm)2250 1540 y Ft(n)p FS(;)p Ft(n)2334 1515
y Fh(0)2355 1570 y FG(=)g FF(0)p FU(;)14 b FF(n)2551
1540 y FQ(0)2583 1570 y FT(\024)9 b FF(m)2723 1540 y
Ft(n)p FS(;)p Ft(n)2807 1515 y Fh(0)2819 1570 y FT(^)p
FF(fm)2965 1540 y Ft(n)p FS(;)p Ft(n)3049 1515 y Fh(0)3071
1570 y FG(=)g FF(1)3526 1492 y FT(^)3582 1505 y FS(R)p
814 1611 2373 4 v 849 1706 a FU(M)930 1718 y FJ(1)966
1706 y FU(;)14 b(M)1084 1718 y FJ(2)1121 1706 y FU(;)g
FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)c FG(=)f FF(0)p FT(_)o
FF(fx)h FG(=)f FF(1)p FG(\))p 1780 1694 10 38 v 1790
1677 42 4 v 88 w FT(9)p FF(k)p FU(:)p FG(\()p FF(n)g
FT(\024)g FF(k)p FT(^)p FF(fk)g FG(=)g FF(0)p FG(\))p
FU(;)14 b FF(n)2517 1676 y FQ(0)2549 1706 y FT(\024)9
b FF(m)2689 1676 y Ft(n)p FS(;)p Ft(n)2773 1651 y Fh(0)2785
1706 y FT(^)p FF(fm)2931 1676 y Ft(n)p FS(;)p Ft(n)3015
1651 y Fh(0)3037 1706 y FG(=)g FF(1)3187 1633 y FT(9)3233
1645 y FS(R)p 848 1746 2305 4 v 848 1825 a FU(M)929 1837
y FJ(1)966 1825 y FU(;)14 b(M)1084 1837 y FJ(2)1121 1825
y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)9 b FG(=)g
FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p 1780 1813
10 38 v 1789 1797 42 4 v 87 w FT(9)p FF(k)p FU(:)p FG(\()p
FF(n)g FT(\024)g FF(k)p FT(^)p FF(fk)g FG(=)g FF(0)p
FG(\))p FU(;)14 b FT(9)p FF(k)2560 1795 y FQ(0)2583 1825
y FU(:)p FG(\()p FF(n)2681 1795 y FQ(0)2713 1825 y FT(\024)9
b FF(k)2828 1795 y FQ(0)2851 1825 y FT(^)q FF(fk)2973
1795 y FQ(0)3005 1825 y FG(=)g FF(1)p FG(\))3153 1769
y FT(9)3199 1781 y FS(R)p 792 1866 2417 4 v 792 1945
a FU(M)873 1957 y FJ(1)910 1945 y FU(;)14 b(M)1028 1957
y FJ(2)1064 1945 y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p
FF(fx)c FG(=)f FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
1724 1933 10 38 v 1733 1916 42 4 v 87 w FT(8)p FF(n)p
FU(:)p FT(9)p FF(k)p FU(:)p FG(\()p FF(n)g FT(\024)g
FF(k)p FT(^)o FF(fk)g FG(=)g FF(0)p FG(\))p FU(;)14 b
FT(9)p FF(k)2616 1915 y FQ(0)2639 1945 y FU(:)p FG(\()p
FF(n)2737 1915 y FQ(0)2770 1945 y FT(\024)9 b FF(k)2885
1915 y FQ(0)2907 1945 y FT(^)q FF(fk)3029 1915 y FQ(0)3061
1945 y FG(=)g FF(1)p FG(\))3209 1889 y FT(8)3256 1901
y FS(R)p 704 1986 2594 4 v 704 2069 a FU(M)785 2081 y
FJ(1)821 2069 y FU(;)14 b(M)939 2081 y FJ(2)976 2069
y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)c FG(=)f
FF(0)p FT(_)o FF(fx)h FG(=)f FF(1)p FG(\))1013 2125 y
FI(|)p 1050 2125 228 10 v 228 w({z)p 1352 2125 V 228
w(})1284 2220 y FU(A)p 1649 2057 10 38 v 1659 2040 42
4 v 1732 2069 a FT(8)p FF(n)p FU(:)p FT(9)p FF(k)p FU(:)p
FG(\()p FF(n)g FT(\024)g FF(k)p FT(^)o FF(fk)g FG(=)g
FF(0)p FG(\))1732 2125 y FI(|)p 1769 2125 275 10 v 275
w({z)p 2118 2125 V 275 w(})2022 2199 y FT(1)2105 2211
y FJ(0)2431 2069 y FU(;)28 b FT(8)p FF(n)2572 2035 y
FQ(0)2594 2069 y FU(:)p FT(9)p FF(k)2704 2035 y FQ(0)2727
2069 y FU(:)p FG(\()p FF(n)2825 2035 y FQ(0)2858 2069
y FT(\024)9 b FF(k)2973 2035 y FQ(0)2996 2069 y FT(^)p
FF(fk)3117 2035 y FQ(0)3149 2069 y FG(=)g FF(1)p FG(\))2482
2125 y FI(|)p 2519 2125 333 10 v 333 w({z)p 2926 2125
V 333 w(})2829 2199 y FT(1)2912 2211 y FJ(1)3297 2008
y FT(8)3344 2020 y FS(R)366 2588 y Fj(")429 2606 y FH(i)467
2539 y F5(def)472 2588 y Fi(=)p 504 2876 536 4 v 504
2945 a FF(sn)g FT(\024)g FF(m)p 746 2933 10 38 v 756
2917 42 4 v 88 w(sn)g FT(\024)g FF(m)p 1123 2880 472
4 v 83 w(n)g FU(<)g FF(m)p 1333 2933 10 38 v 1342 2917
42 4 v 87 w(n)g FU(<)g FF(m)p 504 2977 1091 4 v 539 3046
a(sn)g FT(\024)g FF(m)p FT(\033)o FF(n)g FU(<)g FF(m)p
FU(;)14 b FF(sn)9 b FT(\024)g FF(m)p 1298 3034 10 38
v 1308 3017 42 4 v 88 w(n)g FU(<)g FF(m)1608 2993 y FT(\033)1673
3005 y FS(L)p 479 3082 1141 4 v 479 3161 a FT(8)p FF(y)q
FU(:)p FG(\()p FF(sn)g FT(\024)g FF(y)q FT(\033)p FF(n)g
FU(<)g FF(y)q FG(\))p FU(;)14 b FF(sn)9 b FT(\024)g FF(m)p
1358 3149 10 38 v 1368 3132 42 4 v 88 w(n)g FU(<)g FF(m)1633
3105 y FT(8)1680 3117 y FS(L)p 479 3202 1141 4 v 751
3275 a FF(sn)g FT(\024)g FF(m)p FU(;)14 b(S)p 1086 3263
10 38 v 1095 3246 42 4 v 92 w FF(n)9 b FU(<)g FF(m)1633
3224 y FT(8)1680 3236 y FS(L)p 1812 2638 459 4 v 1812
2712 a FF(fn)h FG(=)f Fg(i)p 2016 2700 10 38 v 2025 2683
42 4 v 96 w FF(fn)h FG(=)f Fg(i)p 2354 2638 505 4 v 92
w FF(fm)g FG(=)g Fg(i)p 2580 2700 10 38 v 2590 2683 42
4 v 97 w FF(fm)g FG(=)g Fg(i)p 1812 2732 1046 4 v 1852
2806 a FF(fm)g FG(=)g Fg(i)f FU(;)14 b FF(fn)c FG(=)f
Fg(i)p 2300 2794 10 38 v 2310 2777 42 4 v 97 w FF(fn)g
FG(=)g Fg(i)f FT(^)r FF(fm)h FG(=)g Fg(i)2872 2749 y
FT(^)2927 2761 y FS(R)p 3065 2732 574 4 v 3065 2806 a
FF(fn)g FG(=)g FF(fm)p 3326 2794 10 38 v 3335 2777 42
4 v 88 w(fn)h FG(=)f FF(fm)p 1852 2842 1787 4 v 1936
2921 a FG(\()p FF(fn)g FG(=)g Fg(i)f FT(^)q FF(fm)i FG(=)f
Fg(i)f FG(\))p FT(\033)q FF(fn)h FG(=)g FF(fm)p FU(;)14
b FF(fm)c FG(=)f Fg(i)f FU(;)14 b FF(fn)c FG(=)f Fg(i)p
3242 2909 10 38 v 3251 2892 42 4 v 96 w FF(fn)h FG(=)f
FF(fm)3652 2858 y FT(\033)3716 2871 y FS(L)p 1876 2962
1739 4 v 1876 3041 a FT(8)p FF(y)q FU(:)p FG(\(\()p FF(fn)g
FG(=)g Fg(i)f FT(^)q FF(fy)j FG(=)e Fg(i)f FG(\))p FT(\033)q
FF(fn)h FG(=)g FF(fy)r FG(\))p FU(;)14 b FF(fm)c FG(=)f
Fg(i)f FU(;)14 b FF(fn)c FG(=)f Fg(i)p 3302 3029 10 38
v 3312 3012 42 4 v 96 w FF(fn)h FG(=)f FF(fm)3628 2984
y FT(8)3675 2996 y FS(L)p 1849 3081 1791 4 v 1849 3160
a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\(\()p FF(fx)i
FG(=)e Fg(i)f FT(^)q FF(fy)j FG(=)e Fg(i)f FG(\))p FT(\033)q
FF(fx)h FG(=)g FF(fy)r FG(\))p FU(;)14 b FF(fm)c FG(=)f
Fg(i)f FU(;)14 b FF(fn)c FG(=)f Fg(i)p 3328 3148 10 38
v 3338 3131 42 4 v 97 w FF(fn)g FG(=)g FF(fm)3654 3104
y FT(8)3701 3116 y FS(L)p 1849 3201 1791 4 v 2316 3275
a FF(fm)g FG(=)g Fg(i)f FU(;)14 b FF(fn)d FG(=)e Fg(i)f
FU(;)14 b(T)p 2862 3263 10 38 v 2871 3246 42 4 v 99 w
FF(fn)c FG(=)f FF(fm)3654 3223 y FT(8)3701 3235 y FS(L)p
751 3311 2423 4 v 1236 3385 a FF(fm)g FG(=)g Fg(i)f FU(;)14
b FF(sn)c FT(\024)f FF(m)p FU(;)14 b FF(fn)9 b FG(=)g
Fg(i)f FU(;)14 b(S;)g(T)p 2130 3373 10 38 v 2140 3357
42 4 v 99 w FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g
FF(fm)3188 3328 y FT(^)3243 3340 y FS(R)p 1226 3421 1473
4 v 1226 3496 a FF(fn)h FG(=)f Fg(i)f FU(;)14 b FF(sn)9
b FT(\024)g FF(m)p FT(^)q FF(fm)g FG(=)g Fg(i)f FU(;)14
b(S;)g(T)p 2139 3484 10 38 v 2149 3467 42 4 v 100 w FF(n)9
b FU(<)g FF(m)p FT(^)p FF(fn)g FG(=)g FF(fm)2712 3441
y FT(^)2768 3411 y FQ(0)2768 3464 y FS(L)p 1115 3532
1695 4 v 1115 3606 a FF(sn)g FT(\024)g FF(m)p FT(^)p
FF(fm)h FG(=)f Fg(i)f FU(;)14 b FF(0)9 b FT(\024)g FF(n)p
FT(^)p FF(fn)g FG(=)g Fg(i)f FU(;)14 b(S;)g(T)p 2251
3594 10 38 v 2260 3577 42 4 v 100 w FF(n)9 b FU(<)g FF(m)p
FT(^)p FF(fn)h FG(=)f FF(fm)2824 3544 y FT(^)2879 3557
y FS(L)2925 3565 y FP(2)p 1015 3642 1895 4 v 1015 3721
a FF(sn)g FT(\024)g FF(m)p FT(^)p FF(fm)h FG(=)f Fg(i)f
FU(;)14 b FF(0)9 b FT(\024)g FF(n)p FT(^)p FF(fn)h FG(=)f
Fg(i)f FU(;)14 b(S;)g(T)p 2151 3709 10 38 v 2160 3692
42 4 v 99 w FT(9)p FF(m)p FU(:)p FG(\()p FF(n)9 b FU(<)g
FF(m)p FT(^)q FF(fn)g FG(=)g FF(fm)p FG(\))2924 3665
y FT(9)2970 3677 y FS(R)p 982 3762 1961 4 v 982 3840
a FF(sn)g FT(\024)g FF(m)p FT(^)p FF(fm)h FG(=)f Fg(i)f
FU(;)14 b FF(0)9 b FT(\024)g FF(n)p FT(^)p FF(fn)h FG(=)f
Fg(i)f FU(;)14 b(S;)g(T)p 2118 3828 10 38 v 2127 3812
42 4 v 99 w FT(9)p FF(n)p FU(:)p FF(m)p FU(:)p FG(\()p
FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g FF(fm)p
FG(\))2957 3784 y FT(9)3003 3796 y FS(R)p 920 3881 2085
4 v 920 3960 a FT(9)p FF(k)p FU(:)p FG(\()p FF(sn)g FT(\024)g
FF(k)p FT(^)p FF(fk)g FG(=)g Fg(i)f FG(\))p FU(;)14 b
FF(0)9 b FT(\024)g FF(n)p FT(^)q FF(fn)g FG(=)g Fg(i)f
FU(;)14 b(S;)g(T)p 2180 3948 10 38 v 2189 3931 42 4 v
100 w FT(9)p FF(n)p FU(:)p FF(m)p FU(:)p FG(\()p FF(n)9
b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g FF(fm)p FG(\))3018
3904 y FT(9)3064 3916 y FS(L)p 880 4001 2165 4 v 880
4080 a FF(0)g FT(\024)g FF(n)p FT(^)p FF(fn)h FG(=)f
Fg(i)f FU(;)14 b FT(8)p FF(n)p FU(:)p FT(9)p FF(k)p FU(:)p
FG(\()p FF(n)9 b FT(\024)g FF(k)p FT(^)o FF(fk)g FG(=)g
Fg(i)f FG(\))p FU(;)14 b(S;)g(T)p 2220 4068 10 38 v 2229
4051 42 4 v 100 w FT(9)p FF(n)p FU(:)p FF(m)p FU(:)p
FG(\()p FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g
FF(fm)p FG(\))3059 4023 y FT(8)3106 4035 y FS(L)p 795
4120 2335 4 v 795 4199 a FT(9)p FF(k)p FU(:)p FG(\()p
FF(0)g FT(\024)g FF(k)p FT(^)p FF(fk)g FG(=)g Fg(i)f
FG(\))p FU(;)14 b FT(8)p FF(n)p FU(:)p FT(9)p FF(k)p
FU(:)p FG(\()p FF(n)9 b FT(\024)g FF(k)p FT(^)p FF(fk)g
FG(=)g Fg(i)f FG(\))p FU(;)14 b(S;)g(T)p 2305 4187 10
38 v 2314 4171 42 4 v 100 w FT(9)p FF(n)p FU(:)p FF(m)p
FU(:)p FG(\()p FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g
FG(=)g FF(fm)p FG(\))3143 4143 y FT(9)3189 4155 y FS(L)p
795 4240 2335 4 v 1096 4319 a FT(8)p FF(n)p FU(:)p FT(9)p
FF(k)p FU(:)p FG(\()p FF(n)g FT(\024)g FF(k)p FT(^)o
FF(fk)g FG(=)g Fg(i)g FG(\))1096 4374 y FI(|)p 1133 4374
271 10 v 271 w({z)p 1478 4374 V 271 w(})1386 4449 y FT(1)1469
4461 y FS(i)1787 4319 y FU(;)14 b(S;)g(T)p 1990 4307
10 38 v 2000 4290 42 4 v 113 w FT(9)p FF(n)p FU(:)p FF(m)p
FU(:)p FG(\()p FF(n)9 b FU(<)g FF(m)p FT(^)p FF(fn)h
FG(=)f FF(fm)p FG(\))2074 4374 y FI(|)p 2111 4374 304
10 v 304 w({z)p 2489 4374 V 304 w(})2419 4470 y FU(P)3143
4262 y FT(8)3190 4274 y FS(L)p Black Black 1844 4623
a Gd(where)20 b FU(i)i FT(2)i(f)p FF(0)p FU(;)14 b FF(1)n
FT(g)p 3965 4791 4 4073 v 277 4794 3691 4 v Black 1156
4948 a Gg(Figure)24 b(4.5:)29 b(The)24 b(sequent)h(proofs)g
Ga(\034)33 b Gg(and)24 b Ga(")2572 4962 y Gc(i)2600 4948
y Gg(.)p Black Black Black Black eop end
%%Page: 120 132
TeXDict begin 120 131 bop Black -144 51 a Gb(120)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black 321 388 a Gg(of)31 b(the)g F6(\033)p Gg(-fragment)i(of)e
(classical)i(logic)f(and)f(whose)h(computations)i(can)d(be)g(simulated)
i(by)e(cut-)321 501 y(elimination.)462 632 y(As)f(we)g(metioned)i(in)f
(the)g(introduction,)k(the)c(simply-typed)j(lambda)d(calculus)i(can)e
(be)g(seen)321 745 y(as)k(a)g(prototypical)k(programming)e(language)h
(in)d(which)g(program)i(e)o(x)o(ecution)g(\(beta-reduction\))321
858 y(is)30 b(a)f(form)h(of)g(sequential)i(computation.)51
b(In)30 b(Section)g(3.1,)h(we)e(sho)n(wed)i(that)f(this)g(programming)
321 971 y(language)37 b(gi)n(v)o(es)e(a)f(computational)k(meaning)e(to)
e(the)h F6(\033)p Gg(-fragment)h(of)e(intuitionistic)39
b(logic)c(\(we)321 1084 y(de\002ned)24 b(translations)h(between)f
(simply-typed)h(lambda)f(terms)e(and)h(proofs)h(in)e(this)h(fragment,)h
(and)321 1197 y(sho)n(wed)k(that)f(beta-reduction)k(and)c
(cut-elimination)j(can)d(simulate)h(each)f(other\).)40
b(Consequently)-6 b(,)321 1310 y(we)36 b(kno)n(w)h(that)g
(cut-elimination)k(captures)e(features)g(of)d(sequential)k
(computation.)71 b(The)37 b(main)321 1423 y(result)d(of)e(the)h
(preceding)i(section)f(w)o(as)e(that)g(cut-elimination)k(in)d
(classical)h(logic)f(captures)i(also)321 1535 y(features)28
b(of)e(non-deterministic)31 b(computation.)39 b(In)26
b(this)h(section)g(we)f(shall)h(combine)g(both)g(results)321
1648 y(by)e(e)o(xtending)h(the)e(simply-typed)k(lambda)d(calculus)h
(with)e(an)g(erratic)h(choice)h(operator)g(and)f(sho)n(w)321
1761 y(an)h(analogous)i(result)e(to)f(that)h(gi)n(v)o(en)g(in)f
(Proposition)j(3.2.4.)34 b(As)24 b(will)h(be)g(seen)h(shortly)-6
b(,)28 b(this)d(result)321 1874 y(requires)h(classical)g(logic:)k(the)
24 b(erratic)h(choice)g(operator)h(cannot)f(be)e(represented)k(in)d
(intuitionistic)321 1987 y(logic.)462 2118 y(Hereafter)l(,)f(we)d
(shall)i(refer)f(to)g(the)f(simply-typed)k(lambda)e(calculus)g(e)o
(xtended)h(with)d(an)h(erratic)321 2231 y(choice)27 b(operator)g(as)e
Ga(\025)1063 2245 y F9(+)1122 2231 y Gg(-calculus,)j(or)d
Ga(\025)1651 2245 y F9(+)1735 2231 y Gg(for)g(short.)35
b(Intuiti)n(v)o(ely)-6 b(,)28 b(a)c(term)h(of)g Ga(\025)2929
2245 y F9(+)3012 2231 y Gg(corresponds)k(to)321 2344
y(a)36 b(sequential)i(program,)i(which)c(e)o(x)o(ecuted)h(may)e
(produce)j(dif)n(ferent)f(results)h(\(see)e(for)g(e)o(xample)321
2457 y([Hennessy)26 b(and)e(Ashcroft,)g(1980]\).)31 b(The)23
b(ra)o(w)f(terms)i(of)f Ga(\025)2237 2471 y F9(+)2318
2457 y Gg(are)h(gi)n(v)o(en)g(by)g(the)g(grammar)p Black
Black 1179 2689 a Ga(M)5 b(;)15 b(N)110 b F4(::=)100
b Ga(x)429 b Gg(v)n(ariable)1543 2802 y F6(j)148 b Ga(\025x:M)263
b Gg(abstraction)1543 2914 y F6(j)148 b Ga(M)25 b(N)295
b Gg(application)1543 3027 y F6(j)148 b Ga(M)30 b F4(+)20
b Ga(N)199 b Gg(erratic)25 b(choice)321 3257 y(As)e(usual,)h(we)f(are)h
(interested)i(in)d(only)i(the)f(set)f(of)h(well-typed)h(terms)f(of)g
Ga(\025)2743 3271 y F9(+)2802 3257 y Gg(;)f(that)h(is)f(in)h(the)f(set)
p Black Black 499 3516 a F4(\003)562 3530 y F9(+)720
3464 y F5(def)728 3515 y F4(=)905 3414 y FK(n)991 3516
y Ga(M)1136 3411 y FK(\014)1136 3465 y(\014)1136 3520
y(\014)1214 3516 y F4(\000)1296 3504 y Gc(.)1351 3516
y Ga(M)k F4(:)17 b Ga(B)28 b Gg(is)23 b(deri)n(v)n(able)i(using)g(the)f
(rules)g(gi)n(v)o(en)g(in)g(Figure)g(4.6)3308 3414 y
FK(o)321 3770 y Gg(There)35 b(are)g(tw)o(o)g(reduction)i(rules)f
(associated)h(with)e Ga(\025)2126 3784 y F9(+)2185 3770
y Gg(:)51 b(one)35 b(is)g(the)g(beta-reduction)k(rule)c(\(see)321
3883 y(P)o(age)23 b(72\))h(and)g(the)g(other)h(is)p Black
Black 1427 4093 a Ga(M)30 b F4(+)20 b Ga(N)1880 4044
y FV(+)1818 4093 y F6(\000)-31 b(\000)g(!)99 b Ga(M)58
b Gg(or)49 b Ga(N)321 4303 y Gg(The)26 b(reduction)k(system)d(of)f
Ga(\025)1290 4317 y F9(+)1375 4303 y Gg(is)h(thus)g(de\002ned)g(as)g
F4(\(\003)2132 4317 y F9(+)2191 4303 y Ga(;)2272 4266
y Gc(\014)2315 4254 y FV(+)2232 4303 y F6(\000)-31 b(\000)f(!)p
F4(\))p Gg(,)27 b(where)2775 4266 y Gc(\014)2818 4254
y FV(+)2735 4303 y F6(\000)-32 b(\000)h(!)26 b Gg(consists)i(of)3409
4266 y Gc(\014)3346 4303 y F6(\000)-31 b(\000)f(!)p Gg(-)321
4416 y(reductions)29 b(and)942 4367 y FV(+)880 4416 y
F6(\000)-31 b(\000)g(!)p Gg(-reductions,)28 b(which)e(both)g(are)g
(assumed)h(to)e(be)g(closed)i(under)g(term)e(forma-)321
4529 y(tion.)462 4660 y(Recall)20 b(Lafont')-5 b(s)21
b(e)o(xample)g(gi)n(v)o(en)f(on)f(P)o(age)g(4,)h(and)g(consider)i(the)e
(term)f Ga(M)d F4(+)5 b Ga(N)10 b Gg(.)26 b(The)19 b(dynamic)321
4773 y(beha)n(viour)24 b(of)d(this)g(term)g(corresponds)j(e)o(xactly)f
(to)d(the)h(beha)n(viour)j(of)d(cut-elimination)k(in)20
b(Lafont')-5 b(s)321 4886 y(e)o(xample.)30 b(Thus)23
b(the)h(translation)j F6(j)p 1451 4886 28 4 v 1469 4886
V 1486 4886 V 65 w(j)1539 4853 y Fu(s)p FV(+)1642 4886
y F4(:)e(\003)1755 4900 y F9(+)1840 4886 y F6(!)g FY(T)e
Gg(is)g(as)h(follo)n(ws.)p Black Black 890 5147 a F6(j)p
Ga(x)p F6(j)992 5114 y Fu(s)p FV(+)992 5169 y Gc(c)1169
5095 y F5(def)1176 5147 y F4(=)107 b FL(Ax)o F4(\()p
Ga(x;)15 b(c)p F4(\))713 5287 y F6(j)p Ga(\025x:M)10
b F6(j)991 5254 y Fu(s)p FV(+)991 5309 y Gc(c)1169 5235
y F5(def)1176 5287 y F4(=)107 b FL(Imp)1498 5309 y Gc(R)1556
5287 y F4(\()1591 5275 y F9(\()1619 5287 y Ga(x)1671
5275 y F9(\))p FX(h)1726 5287 y Ga(a)1774 5275 y FX(i)1816
5287 y F6(j)p Ga(M)10 b F6(j)1964 5254 y Fu(s)p FV(+)1964
5309 y Gc(a)2043 5287 y Ga(;)15 b(c)p F4(\))735 5426
y F6(j)p Ga(M)36 b(N)10 b F6(j)992 5393 y Fu(s)p FV(+)992
5449 y Gc(c)1169 5375 y F5(def)1176 5426 y F4(=)107 b
F6(j)p Ga(M)10 b F6(j)1502 5393 y Fu(s)p FV(+)1502 5449
y Gc(a)1580 5426 y F4([)p Ga(a)26 b F4(:=)1800 5414 y
F9(\()1827 5426 y Ga(y)1875 5414 y F9(\))1903 5426 y
FL(Imp)2047 5448 y Gc(L)2099 5426 y F4(\()2134 5414 y
FX(h)2162 5426 y Ga(b)2201 5414 y FX(i)2229 5426 y F6(j)p
Ga(N)10 b F6(j)2362 5388 y Fu(s)p FV(+)2362 5456 y Gc(b)2440
5426 y Ga(;)2480 5414 y F9(\()2508 5426 y Ga(z)2554 5414
y F9(\))2581 5426 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p
F4(\))r Ga(;)g(y)s F4(\)])3124 5393 y F9(\(1\))649 5566
y F6(j)p Ga(M)31 b F4(+)20 b Ga(N)10 b F6(j)992 5533
y Fu(s)p FV(+)992 5589 y Gc(c)1169 5515 y F5(def)1176
5566 y F4(=)107 b FL(Cut)p F4(\()1527 5554 y FX(h)1555
5566 y Ga(a)1603 5554 y FX(i)1630 5566 y F6(j)p Ga(M)10
b F6(j)1778 5533 y Fu(s)p FV(+)1778 5589 y Gc(c)1856
5566 y Ga(;)1896 5554 y F9(\()1924 5566 y Ga(x)1976 5554
y F9(\))2004 5566 y F6(j)p Ga(N)g F6(j)2137 5533 y Fu(s)p
FV(+)2137 5589 y Gc(c)2215 5566 y F4(\))3124 5533 y F9(\(2\))p
Black Black eop end
%%Page: 121 133
TeXDict begin 121 132 bop Black 277 51 a Gb(4.3)23 b(A)g(Simple,)f
(Non-Deterministic)j(Pr)n(ogramming)f(Language)1327 b(121)p
277 88 3691 4 v Black Black 277 300 3226 4 v 277 1198
4 898 v 1439 392 548 4 v 1439 471 a Ga(x)17 b F4(:)g
Ga(B)5 b(;)15 b F4(\000)1746 459 y Gc(.)1801 471 y Ga(x)i
F4(:)h Ga(B)746 662 y(x)g F4(:)f Ga(B)5 b(;)15 b F4(\000)1054
650 y Gc(.)1109 662 y Ga(M)27 b F4(:)18 b Ga(C)p 722
699 641 4 v 722 779 a F4(\000)804 767 y Gc(.)859 779
y Ga(\025x:M)27 b F4(:)18 b Ga(B)5 b F6(\033)o Ga(C)1404
730 y Gg(Abs)1905 677 y F4(\000)1987 665 y Gc(.)2042
677 y Ga(M)27 b F4(:)18 b Ga(B)5 b F6(\033)o Ga(C)97
b F4(\000)2588 665 y Gc(.)2643 677 y Ga(N)27 b F4(:)18
b Ga(B)p 1905 700 955 4 v 2150 779 a F4(\000)2232 767
y Gc(.)2287 779 y Ga(M)25 b(N)i F4(:)18 b Ga(C)2901 721
y Gg(App)1427 993 y F4(\000)1510 981 y Gc(.)1564 993
y Ga(M)28 b F4(:)17 b Ga(B)96 b F4(\000)1969 981 y Gc(.)2024
993 y Ga(N)27 b F4(:)17 b Ga(B)p 1427 1013 813 4 v 1552
1092 a F4(\000)1634 1080 y Gc(.)1689 1092 y Ga(M)31 b
F4(+)20 b Ga(N)27 b F4(:)17 b Ga(B)2281 1036 y F4(+)p
3499 1198 4 898 v 277 1201 3226 4 v Black 1306 1369 a
Gg(Figure)24 b(4.6:)29 b(T)-7 b(yping)24 b(rules)g(for)g
Ga(\025)2392 1332 y F9(+)2451 1369 y Gg(.)p Black Black
277 1789 a(where)j(in)g F4(\(1\))h Ga(y)34 b F6(62)e
Ga(F)13 b(N)d F4(\()p F6(j)p Ga(N)g F6(j)1259 1751 y
Fu(s)p FV(+)1259 1818 y Gc(b)1338 1789 y F4(\))p Gg(,)27
b(and)g(in)g F4(\(2\))h Ga(a)j F6(62)h Ga(F)13 b(C)7
b F4(\()p F6(j)p Ga(M)j F6(j)2318 1756 y Fu(s)p FV(+)2318
1811 y Gc(a)2396 1789 y F4(\))27 b Gg(and)g Ga(x)32 b
F6(62)f Ga(F)13 b(N)d F4(\()p F6(j)p Ga(M)g F6(j)3128
1756 y Fu(s)p FV(+)3128 1811 y Gc(a)3207 1789 y F4(\))p
Gg(.)39 b(Ne)o(xt,)277 1902 y(we)23 b(w)o(ould)h(lik)o(e)g(to)g(sho)n
(w)f(that)h(this)g(reduction)i(respects)g(typing)f(judgements.)p
Black 277 2089 a Gb(Pr)n(oposition)g(4.3.1:)p Black 277
2202 a Gg(If)37 b Ga(M)60 b F6(2)49 b F4(\003)695 2216
y F9(+)790 2202 y Gg(with)37 b(the)g(typing)h(judgement)h
F4(\000)1905 2190 y Gc(.)1960 2202 y Ga(M)27 b F4(:)18
b Ga(B)t Gg(,)39 b(then)f F6(j)p Ga(M)10 b F6(j)2594
2169 y Fu(s)p FV(+)2594 2225 y Gc(a)2722 2202 y F6(2)49
b FY(T)36 b Gg(with)h(the)g(typing)277 2315 y(judgement)26
b F4(\000)766 2303 y Gc(.)821 2315 y F6(j)p Ga(M)10 b
F6(j)969 2282 y Fu(s)p FV(+)969 2338 y Gc(a)1072 2303
y(.)1127 2315 y Ga(a)17 b F4(:)h Ga(B)t Gg(.)p Black
277 2553 a F7(Pr)l(oof.)p Black 46 w Gg(By)23 b(routine)i(induction)i
(on)c(the)h(structure)i(of)d Ga(M)10 b Gg(.)p 3436 2553
4 62 v 3440 2495 55 4 v 3440 2553 V 3494 2553 4 62 v
277 2760 a(Finally)-6 b(,)24 b(we)f(can)h(pro)o(v)o(e)g(that)g
(cut-elimination)j(in)d FY(T)f Gg(can)g(simulate)i(normalisation)i(in)c
Ga(\025)3138 2774 y F9(+)3197 2760 y Gg(.)p Black 277
2947 a Gb(Theor)n(em)h(4.3.2:)p Black Black Black 504
3166 a Gg(If)g Ga(M)5 b(;)15 b(N)35 b F6(2)25 b F4(\003)978
3180 y F9(+)1060 3166 y Gg(and)f Ga(M)1378 3129 y Gc(\014)1421
3117 y FV(+)1337 3166 y F6(\000)-31 b(\000)g(!)25 b Ga(N)10
b Gg(,)22 b(then)j(for)e(all)h(co-names)h Ga(a)p Gg(,)e
F6(j)p Ga(M)10 b F6(j)2696 3133 y Fu(s)p FV(+)2696 3188
y Gc(a)2830 3129 y(cut)2799 3166 y F6(\000)-31 b(\000)g(!)2969
3133 y F9(+)3054 3166 y F6(j)p Ga(N)10 b F6(j)3187 3133
y Fu(s)p FV(+)3187 3188 y Gc(a)3265 3166 y Gg(.)p Black
277 3403 a F7(Pr)l(oof.)p Black 46 w Gg(Analogous)26
b(to)d(proof)i(of)e(Proposition)j(3.2.4.)p 3436 3403
V 3440 3345 55 4 v 3440 3403 V 3494 3403 4 62 v 418 3610
a(On)k(P)o(age)h(14)g(we)f(introduced)k(three)e(criteria)g(for)f
(designing)j(a)c(cut-elimination)35 b(procedure.)277
3723 y(Let)23 b(us)h(analyse)h(these)g(criteria)g(with)e(respect)i(to)f
(the)g(simulation)h(result)g(just)f(gi)n(v)o(en.)29 b(In)24
b(particular)l(,)277 3836 y(let)k(us)g(analyse)h(whether)g(we)e(w)o
(ould)h(ha)n(v)o(e,)h(gi)n(v)o(en)f(analogous)i(translations,)i
(obtained)e(the)e(simu-)277 3949 y(lation)d(result)g(with)f(an)g(e)o
(xisting)h(cut-elimination)j(procedure)e(for)e(classical)i(logic.)31
b(W)-7 b(e)23 b(analyse)i(in)277 4062 y(turn)f(three)h(procedures)h(by)
e(Gentzen)h([1935],)f(Dragalin)h([1988])g(and)f(Danos)g(et)f(al.)g
([1997].)p Black 414 4293 a F6(\017)p Black 45 w Gg(Gentzen')-5
b(s)39 b(original)f(cut-elimination)j(procedure)e(is)d(de\002ned)i(as)e
(innermost)i(reductions)504 4406 y(strate)o(gy)-6 b(.)35
b(Consequently)-6 b(,)28 b(we)c(w)o(ould)i(ha)n(v)o(e)g(obtained)h(the)
e(weak)o(er)h(result)g(saying)g(that)g(cut-)504 4519
y(elimination)38 b(can)d(simulate)i(only)e(a)g(reduction)j(strate)o(gy)
e(in)f Ga(\025)2582 4533 y F9(+)2641 4519 y Gg(.)63 b(Ho)n(we)n(v)o(er)
l(,)37 b(as)e(soon)h(as)504 4632 y(we)25 b(impose)h(an)f(innermost)j
(strate)o(gy)f(on)e(the)h(reductions)i(of)d Ga(\025)2539
4646 y F9(+)2598 4632 y Gg(,)g(we)f(\223lose\224)j(some)f(normal)504
4744 y(forms;)d(by)f(this)h(we)e(mean)h(that)g(gi)n(v)o(en)g(a)g(term)f
Ga(M)36 b F6(2)25 b F4(\003)2271 4758 y F9(+)2351 4744
y Gg(some)d(of)g(its)g(normal)g(forms)g(are)g(no)504
4857 y(longer)j(reachable.)p Black 414 5046 a F6(\017)p
Black 45 w Gg(Dragalin')-5 b(s)32 b(cut-elimination)j(procedure)e(is)d
(strongly)j(normalising,)i(and)c(thus)g(we)f(w)o(ould)504
5159 y(hope)g(that)g(this)g(procedure)i(is)d(able)g(to)g(simulate)i(e)n
(v)o(ery)e(reduction)j(in)d Ga(\025)2880 5173 y F9(+)2939
5159 y Gg(;)j(unfortunately)-6 b(,)504 5272 y(Dragalin)34
b(does)f(not)g(consider)i(rules)e(that)g(allo)n(w)g(cuts)g(to)f(be)h
(permuted)h(with)e(other)i(cuts.)504 5385 y(Ho)n(we)n(v)o(er)l(,)23
b(this,)h(as)g(remark)o(ed)h(in)e(Section)i(3.2,)e(is)g(necessary)j(to)
e(simulate)h(beta-reduction.)p Black Black eop end
%%Page: 122 134
TeXDict begin 122 133 bop Black -144 51 a Gb(122)2310
b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
3691 4 v Black Black 458 388 a F6(\017)p Black 46 w Gg(The)j
(cut-elimination)32 b(procedure)e(de)n(v)o(eloped)g(by)e(Danos)g(et.)g
(al.)f(for)h(LK)2950 355 y Gc(tq)3040 388 y Gg(allo)n(ws)g(cuts)h(to)
549 501 y(be)20 b(permuted)i(with)e(other)h(cuts)g(and)f(is)g(strongly)
j(normalising,)g(b)n(ut)e(e)n(v)o(ery)f(formula)i(requires)549
614 y(a)d(colour)i(annotation)i(predetermining)h(ho)n(w)19
b(commuting)j(cuts)e(are)g(reduced.)30 b(Notice,)21 b(ho)n(w-)549
727 y(e)n(v)o(er)l(,)k(that)h(there)g(is)g(no)f(possibility)j(of)e
(predetermining)i(the)e(beha)n(viour)i(of)d(a)g(term)g(with)h(an)549
840 y(erratic)e(choice.)31 b(So)22 b(also)j(in)e(this)h(case)g(an)g
(analogous)i(simulation)g(result)f(w)o(ould)f(f)o(ail.)321
1019 y(As)29 b(f)o(ar)g(as)g(I)g(ha)n(v)o(e)h(been)g(able)g(to)f
(ascertain,)k(no)c(other)h(cut-elimination)j(procedure)f(for)d
(classical)321 1132 y(logic)c(gi)n(v)o(es)f(a)f(simulation)j(result)e
(with)g Ga(\025)1669 1146 y F9(+)1728 1132 y Gg(.)462
1262 y(Clearly)-6 b(,)36 b(the)c(fragment)i(of)e(classical)i(logic)g
(into)f(which)f(we)g(translated)j F4(\003)2955 1276 y
F9(+)3045 1262 y Gg(is)e(v)o(ery)f(weak:)321 1374 y(no)e(ne)n(w)e
(sequents)k(are)e(deri)n(v)n(able)h(in)e(comparison)j(with)d
(intuitionistic)k(logic.)47 b(Important)31 b(future)321
1487 y(w)o(ork)h(is)f(to)g(e)o(xtend)i(suitably)h(the)d(programming)j
(language)g Ga(\025)2400 1501 y F9(+)2489 1487 y Gg(so)e(that)g(a)f
(simulation)i(result)g(is)321 1600 y(obtained)e(for)e(lar)n(ger)h
(fragments)g(of)e(classical)j(logic.)45 b(Good)28 b(candidates)k(for)c
(e)o(xtensions)k(are)c(the)321 1713 y(control)j(operators)g
F6(A)d Gg(and)h F6(C)5 b Gg(,)30 b(which)f(were)g(studied)h(pre)n
(viously)i(in)d(the)g(conte)o(xt)h(of)f Ga(\025\026)f
Gg(\(see)h(for)321 1826 y(e)o(xample)c([Bierman,)e(1998]\).)321
2127 y Ge(4.4)119 b(Notes)321 2351 y Gg(In)19 b(order)g(to)f(sho)n(w)g
(that)h(the)g(tw)o(o)f(normal)h(forms)f(gi)n(v)o(en)h(in)f(Appendix)i
(A)e(dif)n(fer)h(in)f(essential)j(features)321 2463 y(we)26
b(had)i(to)f(e)o(xtract)h(some)f(kind)h(of)f(data)h(from)e(them.)40
b(Kreisel)27 b([1958,)i(P)o(age)e(163])h(demonstrated)321
2576 y(that)f(e)o(xtracting)i(data)f(from)e(classical)j(proofs)f(is)e
F7(not)h Gg(possible)i(in)e(general.)39 b(But)26 b(it)h(is)f(kno)n(wn)h
(that)321 2689 y(data)c(can)f(al)o(w)o(ays)h(be)e(e)o(xtracted)j(in)e
(certain)h(fragments)h(of)e(classical)i(logic,)f(as)e(sho)n(wn)h(for)g
(instance)321 2802 y(by)h(Friedman)g([1978].)30 b(Our)21
b(e)o(xample)i(f)o(alls)h(into)f(such)g(a)f(fragment)h(of)f(classical)j
(logic,)e(and)g(so)f(the)321 2915 y(non-determinism,)k(which)e(we)e
(inferred)j(from)e(the)g(e)o(xistence)i(of)e(tw)o(o)f(dif)n(ferent)j
(normal)f(forms,)f(is)321 3028 y(independent)33 b(from)c(the)g(result)h
(by)f(Kreisel.)46 b(Let)28 b(us)h(conclude)i(this)f(chapter)g(with)f
(sho)n(wing)h(that)321 3141 y(the)24 b(colour)h(annotation)i
(introduced)f(in)e(LK)1744 3108 y Gc(tq)1829 3141 y Gg(completely)i
(hides)e(this)h(non-determinism.)321 3398 y Fq(4.4.1)99
b(A)25 b(Beautiful)h(Theory)g(f)n(or)e(the)i(Colours)f(in)g(LK)2392
3362 y Fy(tq)2466 3398 y Fq(,)g(Slain)g(by)g(A)g(F)n(act)321
3589 y Gg(The)c(cut-elimination)k(procedure)e(in)e(LK)1655
3556 y Gc(tq)1738 3589 y Gg(has)h(three)g(remarkable)h(properties:)31
b(it)21 b(is)f(strongly)k(nor)n(-)321 3702 y(malising,)g(con\003uent,)f
(and)f(there)h(is)f(a)f(strong)j(connection)g(to)e(linear)h(logic)g
(since)g(there)g(is)e(a)h(simple)321 3815 y(translation)35
b(between)e(LK)1192 3782 y Gc(tq)1255 3815 y Gg(-proofs)h(and)e(proof)i
(nets.)54 b(Furthermore,)36 b(cut-elimination)g(in)c(LK)3484
3782 y Gc(tq)321 3928 y Gg(has)i(a)e(similar)i(dynamic)g(beha)n(viour)h
(as)e(cut-elimination)k(in)c(proof)h(nets)f([Danos)h(et)e(al.,)h
(1997].)321 4041 y(P)o(articularly)j(interesting)h(is)d(the)g
(con\003uence)i(property)g(of)e(LK)2431 4008 y Gc(tq)2494
4041 y Gg(:)49 b(it)34 b(precludes)i(the)f(\223inconsis-)321
4154 y(tenc)o(y\224)h(described)i(in)d(the)g(introduction.)67
b(This)35 b(property)i(holds)f(in)f(LK)2750 4121 y Gc(tq)2847
4154 y Gg(because)i(the)e(colour)321 4267 y(annotations)27
b(constrain)f(the)e(cut-reductions)k(so)23 b(that)h(critical)i(pairs)e
(cannot)h(arise.)462 4396 y(Interestingly)-6 b(,)37 b(the)31
b(colour)i(annotation)h(in)d(LK)2012 4363 y Gc(tq)2105
4396 y Gg(acts)h(as)f(a)f(\223selector\224,)36 b(in)31
b(that)g(it)g(predeter)n(-)321 4509 y(mines)37 b(the)g(normal)g(form)f
(to)g(be)h(reached)h(by)e(cut-elimination.)71 b(Let)36
b(us)g(illustrate)j(this)e(point.)321 4622 y(Starting)e(from)f(a)f
(classical)j(proof)f(our)f(cut-elimination)k(procedures)f(gi)n(v)o(e,)f
(in)e(general,)j(rise)e(to)321 4735 y(se)n(v)o(eral)25
b(normal)f(forms,)g(as)f(sho)n(wn)h(belo)n(w)-6 b(.)p
Black Black 1435 5438 a @beginspecial 185 @llx 380 @lly
445 @urx 545 @ury 1196 @rwi @clip @setspecial
%%BeginDocument: pics/4.5.0.Possibilities.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: 4.5.0.Possibilities.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips 4.5.0.Possibilities.dvi -o
%+ 4.5.0.Possibilities.ps
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.05.11:0241
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (4.5.0.Possibilities.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmib10 14.4 1
/Fb 1 59 df<EA03F8EA0FFE487E4813804813C0A2B512E0A76C13C0A26C13806C13006C
5AEA03F81313779226>58 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmbx12 17.28 3
/Fc 3 118 df<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC0131F4BB800F0
133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113C3020702C0
9138007FE74A91C9001FB5FC023F01FC16074A01F08291B54882490280824991CB7E4949
8449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A4A1A3F5AA3
48491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A1F6C1D80A2
6C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D4E5A6D6E17
1F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8020102F8ED
7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C16E0040716
80DC007F02F8C9FC050191CAFC626677E375>67 D<EC07E0A6140FA5141FA3143FA2147F
A214FF5BA25B5B5B5B137F48B5FC000F91B512FEB8FCA5D8001F01E0C8FCB3AFEF0FC0AC
171F6D6D1480A2173F6D16006F5B6D6D137E6D6D5B6DEBFF836EEBFFF86E5C020F14C002
035C9126003FFCC7FC325C7DDA3F>116 D<902607FFC0ED3FFEB60207B5FCA6C6EE0007
6D826D82B3B3A260A360A2607F60183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D
01FFEB3FE06D91B55A6E1500021F5C020314F8DA003F018002F0C7FC51427BC05A>I
E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black 1013 4228 a @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 119.50143 240.42558 142.26372 264.6106 129.46007 278.83696 113.81097
275.99152 108.1205 257.4974 119.50143 240.42558  /currentpoint load
stopped pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave .5
 setgray fill grestore gsave 1.8 SLW 0  setgray 0 setlinecap stroke
 grestore end


@endspecial 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 213.39557 179.25237 156.49008 179.25237  /Lineto
/lineto load def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial
2273 2316 a Fc(Cut)1863 2393 y Fb(::)p 1970 2381 14 52
v 1983 2358 59 6 v 133 w(::)494 5055 y @beginspecial
@setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 83.9355 240.42558 101.00732 258.92014 91.04869 278.83696 75.39958
275.99152 69.70912 257.4974 83.9355 240.42558  /currentpoint load stopped
pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 1.8 SLW 0 
setgray 0 setlinecap stroke  grestore end
 
@endspecial 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 105.27505 76.82231 65.44139 76.82231  /Lineto /lineto
load def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke 
grestore end


@endspecial 1036 3220 a(::)p 1143 3208 14 52 v 1156
3185 59 6 v 133 w(::)-522 4937 y @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 275.99152 226.19922 284.52744 250.38422 275.99152 264.6106 261.76515
264.6106 254.65196 250.38422 275.99152 226.19922  /currentpoint load
stopped pop 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 1.8
SLW 0  setgray 0 setlinecap stroke  grestore end


@endspecial 470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 176.40692 76.82231 136.57324 76.82231  /Lineto /lineto
load def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial
1626 3220 a(::)p 1733 3208 14 52 v 1747 3185 59 6 v 134
w(::)234 4937 y @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  1.8 SLW 0  setgray 
/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
[ 312.98018 226.19922 327.20654 233.31241 335.74245 250.38422 327.20654
261.76515 312.98018 261.76515 301.59924 250.38422 305.86699 236.15785
312.98018 226.19922  /currentpoint load stopped pop 1. 0.1 0.  /c ED
/b ED /a ED false OpenCurve  gsave 1.8 SLW 0  setgray 0 setlinecap
stroke  grestore end
 
@endspecial
470 3755 a @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 304.44426 76.82231 264.6106 76.82231  /Lineto /lineto
load def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke 
grestore end
 
@endspecial 2689
3220 a(::)p 2796 3208 14 52 v 2810 3185 59 6 v 134 w(::)2303
3127 y(:::)470 3755 y @beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { BeginArrow 1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow
 } def [ 105.27505 133.7278 147.95418 153.64464  /Lineto /lineto load
def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial
@beginspecial @setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { BeginArrow 1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow
 } def [ 153.64464 133.7278 167.871 153.64464  /Lineto /lineto load
def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial @beginspecial
@setspecial
 tx@Dict begin STP newpath 1.8 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { BeginArrow 1.  1.  scale false 0.4 1.4 1.5 2. Arrow  EndArrow
 } def [ 270.30106 133.7278 227.62195 153.64464  /Lineto /lineto load
def false Line  gsave 1.8 SLW 0  setgray 0 setlinecap stroke  grestore
end
 
@endspecial Black 1918 5251 a Fa(1)p Black
eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial Black Black eop end
%%Page: 123 135
TeXDict begin 123 134 bop Black 277 51 a Gb(4.4)23 b(Notes)3202
b(123)p 277 88 3691 4 v Black 277 388 a Gg(In)32 b(contrast,)37
b(the)c(cut-elimination)j(procedure)f(in)d(LK)2078 355
y Gc(tq)2172 388 y Gg(gi)n(v)o(es)h(rise)g(to)f(only)i
F7(one)f Gg(normal)g(form.)277 501 y(Ho)n(we)n(v)o(er)l(,)e(by)f
(changing)i(the)e(colour)i(annotation,)i(we)29 b(can)h(obtain)h
(another)h(normal)e(forms.)48 b(An)277 614 y(appealing)39
b(e)o(xplanation)f(of)e(the)g(colour)h(annotations)j(w)o(ould)c(thus)g
(be)g(to)g(interpret)i(a)d(classical)277 727 y(proof)25
b(as)f(a)f(juxtaposition)28 b(of)23 b(a)h(collection)i(of)e
(\223programs\224)i(and)e(to)f(re)o(gard)i(the)f(colours)h(as)f(means)
277 840 y(of)g(selecting)h(one)f(of)g(these)g(\223programs\224.)418
969 y(Unfortunately)-6 b(,)28 b(this)d(e)o(xplanation)i(f)o(ades)f(in)e
(the)h(light)h(of)e(the)h(follo)n(wing)h(e)o(xample.)32
b(Consider)277 1082 y(the)24 b(cut-instance)1284 1454
y @beginspecial 179 @llx 477 @lly 318 @urx 605 @ury 472
@rwi @clip @setspecial
%%BeginDocument: pics/sigma.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: sigma.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o sigma.ps sigma.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.10:0010
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (sigma.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi12 24.88 1
/Fb 1 28 df<0507BAFC057F19800403BB12C0160F163F93BCFC15034B1B80031F1B004B
624B624AB5D8F80302C0C9FC4A912680007F7F4A01FCC7121F4A01F002077F4A01C0804A
496E7F4A48C9FC4A48707E5D4949163F4949834949161F495B92CAFC4985495A4A83137F
495AA2485BA2485BA2485B625A5CA25A91CBFC6248625BA21A7F007F625BA21AFF00FF62
5BA24F5BA263495FA24F5BA2634F90CAFCA24F5AA2007F4E5A62197F4F5A003F614E5B6D
4C5B001F96CBFC4E5A6C6C4C5A4E5A6C6C4C5A4E5A6C6C4C5A6C04035B6C6D4A90CCFC6D
6CEC1FFC6D6C4A5AD91FF8ECFFE0D90FFE01071380902707FFC03F90CDFC010190B512F8
6D6C14E0020F91CEFC020113F06A5B78D873>27 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black -3258 4866 a
 tx@Dict begin CP CP translate 1.71  1.71  scale NET  end
 -3258 4866 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.9 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 338.58746 170.71646 358.50473 213.39557 341.43292
233.31241 312.98018 227.62195 312.98018 192.05602 338.58746 170.71646
 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 0.9 SLW 0  setgray
0 setlinecap stroke  grestore end
 
@endspecial -3258 4866 a
 tx@Dict begin CP CP translate 1 1.71 div 1 1.71 div scale NET  end
 -3258 4866 a 1425
2028 a Fb(\033)p Black 1918 5251 a Fa(1)p Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 1096 1533 a Ga(M)1184 1547 y F9(1)1224 1533
y Ga(;)15 b(M)1352 1547 y F9(2)1392 1533 y Ga(;)g(S;)g(T)8
b(;)15 b(A)p 1718 1521 11 41 v 1728 1503 46 5 v 97 w(P)p
1956 1356 239 4 v 1956 1434 a(P)p 2047 1422 11 41 v 2058
1404 46 5 v 109 w(P)p 2285 1356 239 4 v 104 w(P)p 2376
1422 11 41 v 2387 1404 46 5 v 109 w(P)p 1956 1454 568
4 v 2055 1533 a(P)p 2146 1521 11 41 v 2156 1503 46 5
v 109 w(P)e F6(^)p Ga(P)2565 1472 y F6(^)2626 1487 y
Gc(R)p 1096 1571 1329 4 v 1310 1649 a Ga(M)1398 1663
y F9(1)1438 1649 y Ga(;)i(M)1566 1663 y F9(2)1606 1649
y Ga(;)g(S;)g(T)8 b(;)15 b(A)p 1932 1637 11 41 v 1942
1619 46 5 v 97 w(P)e F6(^)p Ga(P)2466 1601 y Gg(Cut)277
1816 y(where)22 b Ga(\033)i Gg(is)e(the)g(classical)i(proof)e(gi)n(v)o
(en)h(in)e(Section)i(4.2.)28 b(One)21 b(possibility)k(for)d
(eliminating)i(the)e(cut)277 1929 y(is)h(to)h(replace)h(the)f(axioms)g
(by)g(tw)o(o)f(instances)j(of)e Ga(\033)s Gg(,)e(as)i(illustrated)i(in)
d(the)h(follo)n(wing)h(proof.)1183 2411 y @beginspecial
179 @llx 477 @lly 318 @urx 605 @ury 472 @rwi @clip @setspecial
%%BeginDocument: pics/sigma.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: sigma.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o sigma.ps sigma.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.10:0010
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (sigma.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi12 24.88 1
/Fb 1 28 df<0507BAFC057F19800403BB12C0160F163F93BCFC15034B1B80031F1B004B
624B624AB5D8F80302C0C9FC4A912680007F7F4A01FCC7121F4A01F002077F4A01C0804A
496E7F4A48C9FC4A48707E5D4949163F4949834949161F495B92CAFC4985495A4A83137F
495AA2485BA2485BA2485B625A5CA25A91CBFC6248625BA21A7F007F625BA21AFF00FF62
5BA24F5BA263495FA24F5BA2634F90CAFCA24F5AA2007F4E5A62197F4F5A003F614E5B6D
4C5B001F96CBFC4E5A6C6C4C5A4E5A6C6C4C5A4E5A6C6C4C5A6C04035B6C6D4A90CCFC6D
6CEC1FFC6D6C4A5AD91FF8ECFFE0D90FFE01071380902707FFC03F90CDFC010190B512F8
6D6C14E0020F91CEFC020113F06A5B78D873>27 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black -3258 4866 a
 tx@Dict begin CP CP translate 1.71  1.71  scale NET  end
 -3258 4866 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.9 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 338.58746 170.71646 358.50473 213.39557 341.43292
233.31241 312.98018 227.62195 312.98018 192.05602 338.58746 170.71646
 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 0.9 SLW 0  setgray
0 setlinecap stroke  grestore end
 
@endspecial -3258 4866 a
 tx@Dict begin CP CP translate 1 1.71 div 1 1.71 div scale NET  end
 -3258 4866 a 1425
2028 a Fb(\033)p Black 1918 5251 a Fa(1)p Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 995 2490 a Ga(M)1083 2504 y F9(1)1123 2490
y Ga(;)15 b(M)1251 2504 y F9(2)1291 2490 y Ga(;)g(S;)g(T)8
b(;)15 b(A)p 1617 2478 11 41 v 1628 2460 46 5 v 97 w(P)2043
2411 y @beginspecial 179 @llx 477 @lly 318 @urx 605 @ury
472 @rwi @clip @setspecial
%%BeginDocument: pics/sigma.ps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
%%Title: sigma.dvi
%%Pages: 1
%%PageOrder: Ascend
%%BoundingBox: 0 0 596 842
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips -o sigma.ps sigma.dvi
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.03.10:0010
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: pstricks.pro
%!
% PostScript prologue for pstricks.tex.
% Version 97 patch 3, 98/06/01
% For distribution, see pstricks.tex.
%
/tx@Dict 200 dict def tx@Dict begin
/ADict 25 dict def
/CM { matrix currentmatrix } bind def
/SLW /setlinewidth load def
/CLW /currentlinewidth load def
/CP /currentpoint load def
/ED { exch def } bind def
/L /lineto load def
/T /translate load def
/TMatrix { } def
/RAngle { 0 } def
/Atan { /atan load stopped { pop pop 0 } if } def
/Div { dup 0 eq { pop } { div } ifelse } def
/NET { neg exch neg exch T } def
/Pyth { dup mul exch dup mul add sqrt } def
/PtoC { 2 copy cos mul 3 1 roll sin mul } def
/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
def
/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
/pathforall load stopped { pop pop pop pop } if z } def
/STP { .996264 dup scale } def
/STV { SDict begin normalscale end STP  } def
/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
0 } ifelse setdash stroke } def
/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
setlinecap stroke } def
/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
% DG/SR modification begin - Dec. 12, 1997 - Patch 2
%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
% DG/SR modification end
Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
% def
a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
pop pop } def
% DG/SR modification end
/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
exch 3 index sub exch Atan rotate newpath } def
/EndArrow { @mtrx setmatrix CP grestore end } def
/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
grestore } def
/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
CLW moveto } def
/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
CLW moveto } def
/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
def
/SD { 0 360 arc fill } def
/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
load } if ] cvx newpath 3 1 roll T exec } def
/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
cvi def } def
/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
ifelse { pop } repeat a } def
/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
and { pop pop /n n 1 sub def } if } def
/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
Lineto pop pop closepath } ifelse } def
/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
setmatrix } def
% DG modification begin - Jan. 15, 1997
%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
%setmatrix } def
/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
% DG/SR modification begin - Jun.  1, 1998 - Patch 3 (from Michael Vulis)
% setmatrix } def
setmatrix pop } def
% DG/SR modification end
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
def } def
/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
m mul neg def } def
/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
def
/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
/NC { CC x1 y1 x2 y2 x y curveto } def
/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
/NAC { x2 y2 x y curveto CC x1 y1 } def
/EAC { x2 y2 x y ArrowB curveto pop pop } def
/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
n { NC } repeat EOC } ifelse } def
/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
repeat closepath pop pop } ifelse } def
/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
def
/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
rotate matrix concatmatrix exch findfont exch makefont setfont } def
/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
x1 y1 lineto closepath } def
/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
ifelse } def
/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
pop pop Rect } { OvalFrame } ifelse } def
/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
ifelse } def
/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
def
/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
y0 x0 2 mul x1 sub y1 ] def } def
/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
w add def } repeat grestore gsave n 0 gt
% DG/SR modification begin - Nov. 7, 1997 - Patch 1
%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
% DG/SR modification end
{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
exch t L stroke /i i h add def } repeat grestore } def
/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
mul neg d } def
/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
/Rot { CP CP translate 3 -1 roll neg rotate NET  } def
/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
dup a add ] cvx def } def
/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
cvx def } def
/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
h1 abs h sub dup s mul abs } ifelse } def
/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
exch } def
/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
} if } ifelse } def
/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
/IfVisible true def } def
end
% END pstricks.pro

%%EndProcSet
%%BeginProcSet: pst-dots.pro
%!PS-Adobe-2.0
%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
%%Creation Date: May 7, 1993
10 dict dup begin
  /FontType 3 def
  /FontMatrix [ .001 0 0 .001 0 0 ] def
  /FontBBox [ 0 0 0 0 ] def
  /Encoding 256 array def
  0 1 255 { Encoding exch /.notdef put } for
  Encoding
    dup (b) 0 get /Bullet put
    dup (c) 0 get /Circle put
    dup (C) 0 get /BoldCircle put
    dup (u) 0 get /SolidTriangle put
    dup (t) 0 get /Triangle put
    dup (T) 0 get /BoldTriangle put
    dup (r) 0 get /SolidSquare put
    dup (s) 0 get /Square put
    dup (S) 0 get /BoldSquare put
    dup (q) 0 get /SolidPentagon put
    dup (p) 0 get /Pentagon put
    (P) 0 get /BoldPentagon put
  /Metrics 13 dict def
  Metrics begin
    /Bullet 1000 def
    /Circle 1000 def
    /BoldCircle 1000 def
    /SolidTriangle 1344 def
    /Triangle 1344 def
    /BoldTriangle 1344 def
    /SolidSquare 886 def
    /Square 886 def
    /BoldSquare 886 def
    /SolidPentagon 1093.2 def
    /Pentagon 1093.2 def
    /BoldPentagon 1093.2 def
    /.notdef 0 def
  end
  /BBoxes 13 dict def
  BBoxes begin
    /Circle { -550 -550 550 550 } def
    /BoldCircle /Circle load def
    /Bullet /Circle load def
    /Triangle { -571.5 -330 571.5 660 } def
    /BoldTriangle /Triangle load def
    /SolidTriangle /Triangle load def
    /Square { -450 -450 450 450 } def
    /BoldSquare /Square load def
    /SolidSquare /Square load def
    /Pentagon { -546.6 -465 546.6 574.7 } def
    /BoldPentagon /Pentagon load def
    /SolidPentagon /Pentagon load def
    /.notdef { 0 0 0 0 } def
  end
  /CharProcs 20 dict def
  CharProcs begin
    /Adjust {
      2 copy dtransform floor .5 add exch floor .5 add exch idtransform
      3 -1 roll div 3 1 roll exch div exch scale
    } def
    /CirclePath { 0 0 500 0 360 arc closepath } def
    /Bullet { 500 500 Adjust CirclePath fill } def
    /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
    /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
    /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
    /TrianglePath {
      0  660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
    } def
    /SolidTriangle { TrianglePath fill } def
    /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
    /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
    /SquarePath {
      -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
      closepath
    } def
    /SolidSquare { SquarePath fill } def
    /Square { SquarePath .89 .89 scale SquarePath eofill } def
    /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
    /PentagonPath {
      -337.8 -465   moveto
       337.8 -465   lineto
       546.6  177.6 lineto
         0    574.7 lineto
      -546.6  177.6 lineto
      closepath
    } def
    /SolidPentagon { PentagonPath fill } def
    /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
    /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
    /.notdef { } def
  end
  /BuildGlyph {
    exch
    begin
      Metrics 1 index get exec 0
      BBoxes 3 index get exec
      setcachedevice
      CharProcs begin load exec end
    end
  } def
  /BuildChar {
    1 index /Encoding get exch get
    1 index /BuildGlyph get exec
  } bind def
end
/PSTricksDotFont exch definefont pop
% END pst-dots.pro

%%EndProcSet
%%BeginProcSet: pst-node.pro
%!
% PostScript prologue for pst-node.tex.
% Version 97 patch 1, 97/05/09.
% For distribution, see pstricks.tex.
%
/tx@NodeDict 400 dict def tx@NodeDict begin
tx@Dict begin /T /translate load def end
/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
grestore } def
/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
} def
/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
Sin mul } def } def
/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
dup Sin mul Cos Div } ifelse } def
/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
/u ED /NodePos { GetRnodePos } def } def
/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
Cos mul exch Sin mul } def
/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
} ifelse } def
/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
sin def /NodePos { TriNodePos } def } def
/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
hh mul Atan dup cos ww mul exch sin hh mul } def
/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
{ 0 Dist Sin mul } ifelse } ifelse Do } def
/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
XYPos } ifelse } def
/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
roll sin mul sub exch } ifelse } def
/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
AddOffset yA add /yA1 ED xA add /xA1 ED } def
/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
AddOffset yB add /yB1 ED xB add /xB1 ED } def
/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
} ifelse } def
/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
} ifelse } def
/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
} repeat LPutLine cleartomark } def
/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
} def
/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd  } def
/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd 
} def
/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
} def
/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
/NAngle yyB yyA sub xxB xxA sub Atan def } def
/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd  } def
/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
VPosEnd  } def
/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
def grestore exec /LPutVar /SaveLPutVar load def } def
/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
LPutVar VPutLine } def LPutVar } def
/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
end } def
/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
ifelse } def
/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
def
/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
VPutLines } def } def
% DG/SR modification begin - May 9, 1997 - Patch 1
%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
% DG/SR modification end
} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
Div def /y ED /x ED } def
/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
tx@Dict begin false Polygon end } def
/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
LPutPos } def } def
/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
exch X sub neg exch moveto setmatrix CP grestore } def
/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
def } ifelse LPutCoor  } def
/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
def
/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
def
end
% END pst-node.pro

%%EndProcSet
%%BeginProcSet: pst-text.pro
%!
% PostScript header file pst-text.pro
% Version 97, 94/04/20
% For distribution, see pstricks.tex.

/tx@TextPathDict 40 dict def
tx@TextPathDict begin

% Syntax:  <dist> PathPosition -
% Function: Searches for position of currentpath distance <dist> from
%           beginning. Sets (X,Y)=position, and Angle=tangent.
/PathPosition
{ /targetdist exch def
  /pathdist 0 def
  /continue true def
  /X { newx } def /Y { newy } def /Angle 0 def
  gsave
    flattenpath
    { movetoproc }  { linetoproc } { } { firstx firsty linetoproc }
    /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
  grestore
} def

/movetoproc { continue { @movetoproc } { pop pop } ifelse } def

/@movetoproc
{ /newy exch def /newx exch def
  /firstx newx def /firsty newy def
} def

/linetoproc { continue { @linetoproc } { pop pop } ifelse } def

/@linetoproc
{
  /oldx newx def /oldy newy def
  /newy exch def /newx exch def
  /dx newx oldx sub def
  /dy newy oldy sub def
  /dist dx dup mul dy dup mul add sqrt def
  /pathdist pathdist dist add def
  pathdist targetdist ge
  { pathdist targetdist sub dist div dup
    dy mul neg newy add /Y exch def
    dx mul neg newx add /X exch def
    /Angle dy dx atan def
    /continue false def
  } if
} def

/TextPathShow
{ /String exch def
  /CharCount 0 def
  String length
  { String CharCount 1 getinterval ShowChar
    /CharCount CharCount 1 add def
  } repeat
} def

% Syntax: <pathlength> <position> InitTextPath -
/InitTextPath
{ gsave
    currentpoint /Y exch def /X exch def
    exch X Hoffset sub sub mul
    Voffset Hoffset sub add
    neg X add /Hoffset exch def
    /Voffset Y def
  grestore
} def

/Transform
{ PathPosition
  dup
  Angle cos mul Y add exch
  Angle sin mul neg X add exch
  translate
  Angle rotate
} def

/ShowChar
{ /Char exch def
  gsave
    Char end stringwidth
    tx@TextPathDict begin
    2 div /Sy exch def 2 div /Sx exch def
    currentpoint
    Voffset sub Sy add exch
    Hoffset sub Sx add
    Transform
    Sx neg Sy neg moveto
    Char end tx@TextPathSavedShow
    tx@TextPathDict begin
  grestore
  Sx 2 mul Sy 2 mul rmoveto
} def

end
% END pst-text.pro

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 39158280 55380996 1000 600 600 (sigma.dvi)
@start
%DVIPSBitmapFont: Fa cmr12 12 1
/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
FCA3204278C131>49 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmmi12 24.88 1
/Fb 1 28 df<0507BAFC057F19800403BB12C0160F163F93BCFC15034B1B80031F1B004B
624B624AB5D8F80302C0C9FC4A912680007F7F4A01FCC7121F4A01F002077F4A01C0804A
496E7F4A48C9FC4A48707E5D4949163F4949834949161F495B92CAFC4985495A4A83137F
495AA2485BA2485BA2485B625A5CA25A91CBFC6248625BA21A7F007F625BA21AFF00FF62
5BA24F5BA263495FA24F5BA2634F90CAFCA24F5AA2007F4E5A62197F4F5A003F614E5B6D
4C5B001F96CBFC4E5A6C6C4C5A4E5A6C6C4C5A4E5A6C6C4C5A6C04035B6C6D4A90CCFC6D
6CEC1FFC6D6C4A5AD91FF8ECFFE0D90FFE01071380902707FFC03F90CDFC010190B512F8
6D6C14E0020F91CEFC020113F06A5B78D873>27 D E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin
%%PaperSize: A4

%%EndSetup
%%Page: 1 1
1 0 bop Black Black -3258 4866 a
 tx@Dict begin CP CP translate 1.71  1.71  scale NET  end
 -3258 4866 a @beginspecial
@setspecial
 tx@Dict begin STP newpath 0.9 SLW 0  setgray  /ArrowA { moveto } def
/ArrowB { } def [ 338.58746 170.71646 358.50473 213.39557 341.43292
233.31241 312.98018 227.62195 312.98018 192.05602 338.58746 170.71646
 1. 0.1 0.  /c ED /b ED /a ED false OpenCurve  gsave 0.9 SLW 0  setgray
0 setlinecap stroke  grestore end
 
@endspecial -3258 4866 a
 tx@Dict begin CP CP translate 1 1.71 div 1 1.71 div scale NET  end
 -3258 4866 a 1425
2028 a Fb(\033)p Black 1918 5251 a Fa(1)p Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

%%EndDocument
 @endspecial 1855 2490 a(M)1943 2504 y F9(1)1983 2490
y Ga(;)g(M)2111 2504 y F9(2)2151 2490 y Ga(;)g(S;)g(T)8
b(;)15 b(A)p 2477 2478 11 41 v 2488 2460 46 5 v 97 w(P)p
995 2527 1629 4 v 1359 2606 a(M)1447 2620 y F9(1)1487
2606 y Ga(;)g(M)1615 2620 y F9(2)1655 2606 y Ga(;)g(S;)g(T)8
b(;)15 b(A)p 1981 2594 11 41 v 1992 2576 46 5 v 97 w(P)e
F6(^)p Ga(P)2666 2546 y F6(^)2726 2560 y Gc(R)277 2810
y Gg(No)n(w)20 b(let)h(one)g(cop)o(y)h(of)f Ga(\033)i
Gg(reduce)g(to)e(the)g(\002rst)g(normal)g(form)g(sho)n(wn)g(in)g
(Appendix)i(A)d(and)h(the)g(other)277 2923 y(to)27 b(the)h(second)h
(normal)f(form.)41 b(Barbanera)29 b(et)e(al.)g([1997])i(sho)n(wed)f
(that)g(this)g(particular)i(dynamic)277 3036 y(beha)n(viour)j(of)d
(cut-elimination)k(cannot)d(be)f(achie)n(v)o(ed)i(using)f(a)e
(cut-elimination)34 b(procedure)f(that)277 3149 y(depends)28
b(on)e(colour)h(annotations\227the)j(normal)c(form)g(outlined)i(abo)o
(v)o(e)e(is)g(not)g(reachable.)37 b(Ho)n(w-)277 3262
y(e)n(v)o(er)l(,)23 b(using)h(our)f(intuiti)n(v)o(e)h(interpretation)j
(gi)n(v)o(en)c(in)g(Section)g(4.2,)g(this)g(normal)g(form)g
(corresponds)277 3375 y(to)33 b(a)g(pair)h(of)f(case)h(analyses.)60
b(T)-7 b(aking)34 b(into)g(account)h(that)f(we)f(obtained)i(strongly)h
(normalising)277 3488 y(cut-elimination)e(procedures)f
F7(not)f Gg(depending)h(on)d(colour)i(annotations,)i(we)c(re)o(gard)g
(the)h(colours)277 3601 y(of)e(Danos)g(et)f(al.)g([1997])i(as)e(a)g
(restriction)k(that)d(simpli\002es)g(the)g(task)g(of)g(pro)o(ving)h
(the)f(strong)h(nor)n(-)277 3714 y(malisation)24 b(property)g(\(it)e
(enabled)i(them)e(to)g(appeal)i(to)e(the)g(strong)i(normalisation)h
(proof)e(for)f(proof)277 3827 y(nets\).)p Black Black
eop end
%%Page: 124 136
TeXDict begin 124 135 bop Black Black Black Black eop
end
%%Page: 125 137
TeXDict begin 125 136 bop Black Black 277 1029 a F8(Chapter)44
b(5)277 1462 y Gf(Conclusion)p Black Black Black Black
1294 1882 a Gd(...it)21 b(used)e(to)i(be)f(said)g(that)h(classical)g
(proof)d(theory)h(does)h(not)g(really)g(e)o(xist.)2893
2082 y(\227J.)h(M.)f(E.)h(Hyland)2234 2182 y(in)f(Proof)f(Theory)g(in)h
(the)h(Abstract,)e(2000.)277 2526 y Gg(The)32 b(theme)g(running)j
(through)f(this)f(thesis)g(w)o(as)f(that)h(non-determinism)i(should)f
(be)e(seen)h(as)f(an)277 2639 y F7(intrinsic)d Gg(property)g(of)d
(classical)j(logic.)39 b(In)26 b(ef)n(fect,)i(we)e(departed)j(from)d
(the)h(traditional)j(doctrine,)277 2752 y(pre)n(v)n(ailing)g(in)e
(intuitionistic)k(and)c(linear)h(logic,)g(that)g(considers)h
(cut-elimination)i(as)27 b(an)h(equality)277 2865 y(preserving)39
b(operation)g(on)d(proofs.)67 b(A)35 b(pleasing)j(consequence)i(of)c
(our)g(point)h(of)f(vie)n(w)g(is)g(that)277 2978 y(the)c
(\223inconsistenc)o(y\224)k(problem)d(arising)h(from)e(Lafont')-5
b(s)33 b(e)o(xample)f(\(see)g(P)o(age)g(4\))g(is)f(completely)277
3090 y(bypassed.)418 3222 y(T)-7 b(o)24 b(support)j(our)e(point)g(of)g
(vie)n(w)-6 b(,)24 b(we)g(reconsidered)29 b(the)c(proof)g(theory)i(of)d
(classical)j(logic)f(and)277 3335 y(de)n(v)o(eloped)f(se)n(v)o(eral)f
(strongly)h(normalising)h(cut-elimination)h(procedures)f(\(Chapter)e
(2\).)k(One)23 b(fea-)277 3447 y(ture)31 b(recurring)i(in)d(all)g
(these)i(procedures)h(is)d(that)h(a)f(subderi)n(v)n(ation)j(of)e(a)f
(commuting)h(cut)g(has)f(to)277 3560 y(be)j(permuted)i(directly)g(to)e
(the)h(place)g(or)f(places)h(where)g(the)f(cut-formula)j(is)d
(introduced.)61 b(This)277 3673 y(feature)26 b(w)o(as)e(tak)o(en)i
(from)e(the)h(strongly)h(normalising)h(cut-elimination)i(procedure)e
(de)n(v)o(eloped)f(by)277 3786 y(Danos)f(et)f(al.)h([1997])h(for)e(LK)
1252 3753 y Gc(tq)1315 3786 y Gg(;)h(ho)n(we)n(v)o(er)l(,)g(we)e(sho)n
(wed)j(that)f(their)g(colour)h(annotation,)i(a)c(restric-)277
3899 y(tion)i(the)o(y)f(imposed,)h(is)f(not)g(necessary)i(to)e(ensure)h
(strong)h(normalisation.)35 b(In)25 b(f)o(act,)h(no)f(additional)277
4012 y(information)30 b(to)d(guide)i(the)f(re)n(write)g(system)g(is)f
(required)j(at)d(all)h(for)f(strong)i(normalisation.)44
b(As)27 b(a)277 4125 y(pleasing)f(consequence,)i(more)23
b(normal)i(forms)f(are)g(often)h(reachable)h(from)e(classical)i(proofs)
g(con-)277 4238 y(taining)g(cuts)f(\(see)f(Figure)h(2.1)f(for)g(an)g(e)
o(xample\).)32 b(Owing)24 b(to)g(the)g(smaller)h(number)g(of)f
(constraints)277 4351 y(of)k(our)g(cut-elimination)k(procedures,)f
(strong)e(normalisation)i(cannot)f(be)e(pro)o(v)o(ed)g(by)g
(translating)277 4464 y(e)n(v)o(ery)h(cut-reduction)j(onto)d(a)f
(series)i(of)e(cut-reductions)k(of)d(proof-nets,)j(as)c(w)o(as)g(done)h
(for)g(LK)3417 4431 y Gc(tq)3479 4464 y Gg(.)277 4577
y(F)o(ortunately)-6 b(,)23 b(the)d(use)h(of)f(term)g(annotations)j(for)
d(sequent)i(proofs)g(enabled)g(us)e(to)g(adapt)h(proof)g(tech-)277
4689 y(niques)26 b(from)e(term)g(re)n(writing)h([Barbanera)h(and)f
(Berardi,)f(1994,)h(Bloo)f(and)h(Geuv)o(ers,)g(1999],)g(and)277
4802 y(thus)f(we)f(were)g(able)i(to)e(gi)n(v)o(e)h(direct)g(proofs)h
(for)f(strong)h(normalisation.)418 4933 y(Another)31
b(pleasing)i(feature)e(of)f(our)h(cut-elimination)j(procedures)f(is)c
(that)i(via)f(simple)h(trans-)277 5046 y(lations)38 b(the)o(y)f(imply)g
(strong)h(normalisation)i(of)d(beta-reduction)k(in)36
b(the)h(simply-typed)j(lambda)277 5159 y(calculus)26
b(\(Chapter)f(3\).)j(This)23 b(w)o(as)h(achie)n(v)o(ed)h(by)e
(considering)k(reduction)f(rules)f(that)f(allo)n(w)f(cuts)h(to)277
5272 y(be)d(permuted)i(with)f(other)g(cuts.)29 b(If)21
b(these)h(reduction)i(rules)e(are)g(de\002ned)g(na)m(\250)-27
b(\021v)o(ely)-6 b(,)23 b(the)o(y)f(cause)g(loops)277
5385 y(and)27 b(thereby)i(break)f(the)f(strong)h(normalisation)i
(property)-6 b(.)41 b(W)-7 b(e)26 b(ho)n(we)n(v)o(er)h(retained)i(this)
e(property)277 5498 y(by)i(introducing)j(syntactic)g(means)d(\(e.g.,)h
(labelled)h(cuts\))f(which)f(pre)n(v)o(ent)h(interference)i(between)p
Black Black eop end
%%Page: 126 138
TeXDict begin 126 137 bop Black -144 51 a Gb(126)3121
b(Conclusion)p -144 88 3691 4 v Black 321 388 a Gg(these)28
b(rules)g(and)g(rules)g(that)f(simply)h(permute)g(a)e(cut)i(upw)o(ards)
g(in)f(a)f(proof.)41 b(Because)28 b(of)f(the)g(gen-)321
501 y(erality)i(of)e(our)g(cut-elimination)k(procedures,)g(we)26
b(could)i(answer)g(the)g(correspondence)j(question)321
614 y(between)20 b(cut-elimination)i(and)c(normalisation)k(positi)n(v)o
(ely)e(for)f(all)f(connecti)n(v)o(es)j(in)d(classical)j(logic.)321
727 y(This)j(result)g(impro)o(v)o(es)h(upon)f(w)o(ork)g(presented)i(by)
e(Zuck)o(er)g([1974].)462 856 y(In)33 b(Chapter)g(4)f(we)g(studied)i
(applications)i(of)c(cut-elimination.)59 b(F)o(or)31
b(one)i(of)f(our)h(cut-elimi-)321 969 y(nation)28 b(procedures)h(we)c
(presented)k(an)d(implementation,)k(which)c(we)g(emplo)o(yed)i(to)e
(calculate)i(for)321 1082 y(a)22 b(particular)i(classical)g(proof)g(tw)
o(o)d(cut-free)j(proofs.)30 b(W)-7 b(e)21 b(sho)n(wed)h(that)h(these)g
(tw)o(o)e(proofs)j(dif)n(fer)f(in)321 1195 y(essential)28
b(features)f(and)e(therefore)j(should)f(not)e(be)g(identi\002ed.)36
b(Consequently)-6 b(,)28 b(in)d(classical)j(logic)321
1308 y(the)c(process)g(of)f(cut-elimination)k(corresponds)g(to)c
(non-deterministic)k(computation.)k(In)23 b(the)h(light)321
1421 y(of)h(this)g(result,)g(we)f(proposed)i(a)e(dif)n(ferent)j(and)d
(more)h(positi)n(v)o(e)h(reading)g(for)e(Lafont')-5 b(s)26
b(e)o(xample:)32 b(it)321 1534 y(is)23 b(an)g(erratic)i(choice)f
(operator)l(,)h(which,)f(for)f(e)o(xample,)h(has)f(an)g(intuiti)n(v)o
(e)i(computational)h(meaning)321 1647 y(in)h(concurrenc)o(y)i(theory)-6
b(.)39 b(W)-7 b(e)26 b(demonstrated)j(that)e(if)g(one)g(adds)g(Lafont')
-5 b(s)28 b(e)o(xample)f(to)f(the)h(impli-)321 1760 y(cational)h
(fragment)e(of)f(intuitionistic)k(logic,)e(then)f(this)g(fragment)g
(can)g(simulate)g(reduction)i(in)d(the)321 1873 y(simply-typed)i
(lambda)d(calculus)i(enriched)g(with)d(the)h(erratic)h(choice)g
(operator)-5 b(.)462 2002 y(It)38 b(is)g(hoped)h(that)f(the)g(reader)i
(will)d(no)n(w)g(be)h(con)l(vinced)j(of)d(the)g(point)h(of)f(vie)n(w)f
(that)i(non-)321 2115 y(determinism)31 b F7(is)e Gg(an)f(intrinsic)j
(feature)g(of)e(classical)i(logic.)45 b(This)29 b(point)h(of)f(vie)n(w)
f(w)o(as)h(\002rst)f(tak)o(en)321 2228 y(by)f(Barbanera)h(and)e
(Berardi)h([1994],)i(and)d(later)h(analysed)i(from)d(a)g(programming)i
(point)g(of)e(vie)n(w)321 2341 y(by)21 b(Barbanera)h(et)e(al.)f
([1997];)1282 2308 y F5(1)1346 2341 y Gg(it)h(w)o(as)g(also)h(hinted)g
(at)f(by)h(Coquand)g([1995])h(and)f(Herbelin)g([1995],)321
2454 y(and)i(more)f(recently)h(suggested)i(by)d(Girard)g([2001,)i(P)o
(age)d(88])h(and)h(adv)n(ocated)i(by)d(Hyland)g([2000].)321
2761 y Ge(5.1)119 b(Further)31 b(W)-9 b(ork)321 2985
y Gg(There)25 b(are)f(man)o(y)g(areas)h(for)f(further)i(w)o(ork.)31
b(W)-7 b(e)23 b(list)h(some)h(of)f(them)g(belo)n(w)-6
b(,)24 b(roughly)i(in)e(the)h(order)321 3098 y(as)f(the)o(y)g(appear)h
(in)e(the)h(thesis.)462 3227 y(Pleasant)35 b(though)g(our)f(strong)h
(normalisation)i(result)d(for)g(cut-elimination)j(is,)f(it)d(is)g(not)h
(the)321 3340 y(strongest)f(result)e(we)e(could)i(hoped)h(for:)42
b(our)30 b(strong)i(normalisation)h(theorems)e(say)f(little)h(about)321
3453 y(strong)c(normalisation)g(of)e(cut-elimination)k(in)24
b(second-order)29 b(classical)e(logic.)33 b(Clearly)-6
b(,)25 b(it)g(w)o(ould)321 3566 y(be)i(nice)g(to)f(ha)n(v)o(e)h(the)f
(stronger)j(result:)36 b(for)26 b(e)o(xample)h(it)f(can)h(sa)n(v)o(e)g
(lengthy)h(strong)f(normalisation)321 3679 y(proofs)h(from)e(\002rst)g
(principles)j(for)d(other)h(term)f(re)n(write)g(systems)i(\(see)e
([Benton,)h(1995]\).)38 b(T)-7 b(o)25 b(gi)n(v)o(e)321
3792 y(a)36 b(proof)g(of)g(the)g(stronger)i(result,)i(one)c(has)g(to)g
(e)o(xtend)g(the)g(notion)i(of)d(symmetric)i(reducibility)321
3904 y(candidates)c(using)d(what)f(is)g(by)h(Gallier)g([1990])g
(referred)i(to)d(as)g(\223Girard')-5 b(s)31 b(trick\224.)47
b(W)-7 b(e)28 b(ha)n(v)o(e)i(not)321 4017 y(check)o(ed)f(whether)f
(this)g(e)o(xtension)h(is)e(possible)i(gi)n(v)o(en)f(the)f(\002x)o(ed)g
(point)h(operation)h(we)e(emplo)o(yed)321 4130 y(in)d(the)g
(propositional)j(and)d(\002rst-order)h(case.)462 4260
y(There)h(are)g(se)n(v)o(eral)g(possibilities)j(of)c(ho)n(w)g(to)h(e)o
(xtend)g(our)g(sequent)h(calculus)h(in)d(order)i(to)e(cap-)321
4373 y(ture,)f(for)g(e)o(xample,)g(features)h(of)f(recursi)n(v)o(e)h
(computation.)32 b(One)23 b(is)g(to)h(add)g(the)f(induction)k(rule)1150
4566 y Ga(B)5 b F4([)p FL(x)25 b F4(:=)g FL(y)q F4(])p
Ga(;)15 b F4(\000)p 1623 4554 11 41 v 1634 4536 46 5
v 97 w(\001)p Ga(;)g(B)5 b F4([)p FL(x)25 b F4(:=)h FL(y)21
b F4(+)f FL(1)p F4(])p 1150 4608 1178 4 v 1232 4693 a
Ga(B)5 b F4([)p FL(x)25 b F4(:=)h FL(0)p F4(])p Ga(;)15
b F4(\000)p 1708 4681 11 41 v 1718 4663 46 5 v 97 w(\001)p
Ga(;)g(B)5 b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])2369
4639 y Gg(Induction)321 4903 y(where)i FL(y)g Gg(is)g(an)f(eigen)l(v)n
(ariable)31 b(not)c(occurring)i(else)n(where)f(in)f(the)f(premise,)j
(and)e FL(t)e Gg(is)i(an)f(arbitrary)321 5016 y(e)o(xpression.)48
b(Another)30 b(is)f(to)g(allo)n(w)g(non-logical)j(axioms)e(of)f(the)g
(form)p 2699 4937 246 4 v 29 w Ga(C)p 2790 5004 11 41
v 2801 4986 46 5 v 103 w(D)r Gg(.)45 b(In)28 b(general,)k(the)321
5129 y(latter)21 b(means)e(that)h(some)f(cuts)h(cannot)h(be)e
(eliminated.)29 b(T)-7 b(o)18 b(a)n(v)n(oid)j(this)f(problem)g(one)g
(has)g(to)f(impose)p Black 321 5206 1290 4 v 427 5262
a F3(1)456 5294 y F2(The)k(main)g(technical)g(no)o(v)o(elty)g(in)g
(this)g(thesis)f(is)h(that)f(we)h(sho)n(wed)h(the)f(non-determinism)h
(using)f(a)g(standard)h(for)o(-)321 5385 y(mulation)c(of)f(classical)f
(logic;)h(for)g(this)g(we)g(had)g(to)g(e)o(xtend)h(their)e(results)h
(in)g(order)g(to)g(deal)g(with)g(all)f(connecti)n(v)o(es.)p
Black Black Black eop end
%%Page: 127 139
TeXDict begin 127 138 bop Black 277 51 a Gb(5.1)23 b(Further)g(W)-7
b(ork)2867 b(127)p 277 88 3691 4 v Black 277 388 a Gg(suitable)33
b(constraints)h(on)e(the)f(form)g(of)g(the)g(non-logical)k(axioms.)52
b(Both)31 b(e)o(xtensions)j(ha)n(v)o(e)e(been)277 501
y(in)l(v)o(estigated)23 b(in)c(an)g(intuitionistic)k(setting)e(by)f
(McDo)n(well)f(and)h(Miller)g([2000],)h(and)f(the)o(y)g(seem)f(not)277
614 y(to)g(pose)g(an)o(y)g(dif)n(\002culties)h(with)f(respect)h(to)f
(our)g(strong)h(normalisation)h(proof)f(based)g(on)f(candidates.)418
751 y(W)-7 b(e)34 b(designed)i(our)f(cut-elimination)j(procedures)f(so)
d(that)h(restrictions)i(imposed)f(in)e(earlier)277 864
y(cut-elimination)h(procedures)f(are)d(remo)o(v)o(ed,)i(b)n(ut)e
(without)h(breaking)i(the)d(strong)h(normalisation)277
977 y(property)-6 b(.)46 b(F)o(or)27 b(e)o(xample,)j(we)e(sho)n(wed)h
(that)g(the)g(colour)h(annotations)h(of)e(LK)2827 944
y Gc(tq)2917 977 y Gg(are)f(not)h(required)277 1090 y(for)c(strong)g
(normalisation.)35 b(But,)24 b(we)f(k)o(ept)i(one)g(restriction)i(of)d
(LK)2465 1057 y Gc(tq)2528 1090 y Gg(:)30 b(commuting)c(cuts)f(can)g
(only)277 1202 y(be)j(permuted)i(into)e(one)h(direction)h(and)f(not)f
(into)h(alternating)i(ones.)43 b(One)27 b(side)i(ef)n(fect)g(of)f(this)
g(re-)277 1315 y(striction)d(is)d(that)h(some)f(normal)h(forms)g(are)g
(not)f(reachable,)j(which)e(w)o(ould)g(ho)n(we)n(v)o(er)f(be)h
(reachable)277 1428 y(using)28 b(a)e(completely)i(unrestricted)i(\(and)
d(thus)g(not)g(strongly)h(normalising\))i(cut-elimination)g(pro-)277
1541 y(cedure.)36 b(Consider)27 b(again)g(the)f(in\002nite)g(reduction)
i(sequence)g(outlined)g(in)d(Example)h(2.1.3.)35 b(Start-)277
1654 y(ing)30 b(from)f(the)g(\002rst)g(proof,)j(one)d(can)h(reach)g
(the)g(normal)g(form)f(gi)n(v)o(en)h(in)f(Figure)h(5.1,)g(b)n(ut)g(we)e
(are)277 1767 y(not)33 b(a)o(w)o(are)f(of)g(an)o(y)g(strongly)j
(normalising)f(cut-elimination)i(procedure)f(with)d(which)h(we)e(could)
277 1880 y(reach)36 b(it.)581 1847 y F5(2)679 1880 y
Gg(The)e(only)h(normal)g(forms)g(that)g(can)f(be)h(reached)h(using)f
(our)g(strongly)i(normalising)277 1993 y(cut-elimination)27
b(procedures)g(are)p Black Black 289 2193 213 4 v 289
2267 a FU(A)p 369 2255 10 38 v 379 2238 42 4 v 88 w(A)p
584 2193 213 4 v 83 w(A)p 665 2255 10 38 v 674 2238 42
4 v 88 w(A)p 289 2287 509 4 v 328 2360 a(A)p FT(_)q FU(A)p
526 2348 10 38 v 536 2331 42 4 v 88 w(A;)14 b(A)811 2303
y FT(_)866 2316 y FS(L)p 328 2396 430 4 v 378 2469 a
FU(A)p FT(_)p FU(A)p 576 2457 10 38 v 586 2441 42 4 v
88 w(A)799 2418 y Gd(Contr)989 2430 y FS(R)p 1098 2193
213 4 v 1098 2267 a FU(A)p 1178 2255 10 38 v 1188 2238
42 4 v 88 w(A)p 1393 2193 213 4 v 83 w(A)p 1474 2255
10 38 v 1484 2238 42 4 v 89 w(A)p 1098 2287 509 4 v 1137
2360 a(A)p FT(_)q FU(A)p 1335 2348 10 38 v 1345 2331
42 4 v 88 w(A;)g(A)1620 2303 y FT(_)1675 2316 y FS(L)p
1137 2396 430 4 v 1187 2469 a FU(A)p FT(_)p FU(A)p 1385
2457 10 38 v 1395 2441 42 4 v 89 w(A)1608 2418 y Gd(Contr)1798
2430 y FS(R)p 378 2489 1140 4 v 615 2563 a FU(A)p FT(_)q
FU(A;)g(A)p FT(_)p FU(A)p 1030 2551 10 38 v 1040 2534
42 4 v 89 w(A)p FT(^)p FU(A)1531 2506 y FT(^)1586 2519
y FS(R)p 615 2599 665 4 v 723 2672 a FU(A)p FT(_)q FU(A)p
922 2660 10 38 v 931 2643 42 4 v 88 w(A)p FT(^)q FU(A)1321
2621 y Gd(Contr)1511 2633 y FS(L)p 1937 2193 213 4 v
1937 2267 a FU(A)p 2018 2255 10 38 v 2028 2238 42 4 v
89 w(A)p 2233 2193 213 4 v 83 w(A)p 2314 2255 10 38 v
2323 2238 42 4 v 88 w(A)p 1937 2287 509 4 v 1977 2360
a(A;)g(A)p 2157 2348 10 38 v 2166 2331 42 4 v 88 w(A)p
FT(^)q FU(A)2459 2303 y FT(^)2514 2316 y FS(R)p 1977
2396 430 4 v 2026 2469 a FU(A)p 2107 2457 10 38 v 2117
2441 42 4 v 88 w(A)p FT(^)q FU(A)2447 2418 y Gd(Contr)2637
2430 y FS(L)p 2742 2193 213 4 v 2742 2267 a FU(A)p 2822
2255 10 38 v 2832 2238 42 4 v 88 w(A)p 3037 2193 213
4 v 83 w(A)p 3118 2255 10 38 v 3127 2238 42 4 v 88 w(A)p
2742 2287 509 4 v 2781 2360 a(A;)g(A)p 2961 2348 10 38
v 2970 2331 42 4 v 88 w(A)p FT(^)q FU(A)3263 2303 y FT(^)3319
2316 y FS(R)p 2781 2396 430 4 v 2831 2469 a FU(A)p 2911
2457 10 38 v 2921 2441 42 4 v 88 w(A)p FT(^)p FU(A)3252
2418 y Gd(Contr)3442 2430 y FS(L)p 2026 2489 1135 4 v
2261 2563 a FU(A)p FT(_)q FU(A)p 2460 2551 10 38 v 2469
2534 42 4 v 88 w(A)p FT(^)q FU(A;)g(A)p FT(^)p FU(A)3175
2506 y FT(_)3230 2519 y FS(L)p 2261 2599 665 4 v 2370
2672 a FU(A)p FT(_)p FU(A)p 2568 2660 10 38 v 2577 2643
42 4 v 88 w(A)p FT(^)q FU(A)2967 2621 y Gd(Contr)3157
2633 y FS(R)277 2925 y Gg(W)-7 b(e)23 b(\002nd)h(it)f(is)h(highly)i
(desirable)g(to)e(ha)n(v)o(e)g(a)g(con)l(vincing)j(e)o(xplanation)g
(for)d(what)g(it)g(means)g(compu-)277 3038 y(tationally)i(that)e(the)g
(normal)g(form)f(gi)n(v)o(en)h(in)f(Figure)h(5.1)f(is)g(not)h
(reachable)h(using)g(our)f(procedures.)277 3151 y(Because)30
b(there)f(are)g(some)f(similarities)j(between)e(the)g(tw)o(o)f(normal)h
(forms)g(gi)n(v)o(en)g(abo)o(v)o(e)g(and)g(the)277 3264
y(one)c(in)g(Figure)h(5.1,)f(an)f(appealing)k(e)o(xplanation)g(w)o
(ould)d(be)g(that)h(using)g(our)f(cut-elimination)k(pro-)277
3376 y(cedure)f(only)f(\223essential\224)i(normal)e(forms)g(can)f(be)h
(reached.)39 b(Ho)n(we)n(v)o(er)25 b(at)h(present,)j(this)e(is)f(only)h
(a)277 3489 y(v)n(ague)e(hope.)418 3626 y(In)39 b(Section)h(4.1)f(we)g
(de)n(v)o(eloped)i(an)e(implementation)j(of)d(the)h(cut-elimination)j
(procedure)277 3739 y F4(\()p FY(T)t Ga(;)430 3702 y
Gc(aux)410 3739 y F6(\000)-31 b(\000)f(!)p F4(\))36 b
Gg(in)h(OCaml.)66 b(A)36 b(more)g(suitable)j(programming)f(language)h
(for)e(this)g(kind)g(of)g(imple-)277 3852 y(mentations)25
b(has)f(been)g(recently)h(proposed)h(by)d(Pitts)g(and)g(Gabbay)h
([2000].)31 b(In)23 b(this)g(programming)277 3965 y(language,)29
b(named)e(FreshML,)f(one)h(does)g(not)g(ha)n(v)o(e)g(to)g(deal)g(e)o
(xplicitly)i(with)d(alpha-con)l(v)o(ersions,)277 4078
y(and)j(thus)g(one)g(can)g(write)g(much)f(clearer)i(code)f(reminiscent)
i(of)e(the)f(simple)i(de\002nitions)g(we)e(pre-)277 4191
y(sented)f(in)f(this)g(thesis.)36 b(As)25 b(soon)i(as)e(there)i(is)e(a)
g(w)o(orking)i(prototype)i(a)n(v)n(ailable)e(for)f(FreshML,)f(we)277
4304 y(hope)g(to)e(pro)o(vide)i(a)e(simpli\002ed)i(implementation)h(of)
e F4(\()p FY(T)t Ga(;)2164 4267 y Gc(aux)2143 4304 y
F6(\000)-31 b(\000)g(!)p F4(\))p Gg(.)418 4440 y(Grif)n(\002n)34
b([1990])j(noted)f(a)e(correspondence)39 b(between)d(classical)h(logic)
f(and)f(functional)j(pro-)277 4553 y(gramming)21 b(languages)j(with)c
(control)i(operators.)30 b(This)20 b(observ)n(ation)k(has)c(been)i(e)o
(xploited)g(in)f(man)o(y)277 4666 y(w)o(orks,)34 b(for)e(e)o(xample)g
([Murthy,)g(1990,)g(Ber)n(ger)h(et)e(al.,)g(2000],)k(where)c(programs)j
(are)d(e)o(xtracted)277 4779 y(from)h(classical)j(proofs)f(via)e
(double)i(ne)o(gation)g(translations.)59 b(An)31 b(interesting)36
b(twist)c(of)g(this)h(ap-)277 4892 y(proach)25 b(has)f(been)g(studied)h
(by)e(Coquand)i([1995])g(and)e(Herbelin)i([1995].)30
b(The)o(y)23 b(analyse)i(a)e(v)n(ariant)277 5005 y(of)31
b(the)g(classical)j(proof)e(gi)n(v)o(en)f(in)g(Section)h(4.2)f(and)h(e)
o(xtract)g(tw)o(o)e(dif)n(ferent)j(programs)g(by)e(using)p
Black 277 5115 1290 4 v 383 5171 a F3(2)412 5202 y F2(The)e(strongly)h
(normalising)g(cut-elimination)g(procedure)h(seems)f(not)g(to)f(be)h
(meaningful,)j(where)c(one)i(can)e(do)277 5294 y(\002nitely)23
b(man)o(y)g(steps)h(\223ho)n(we)n(v)o(er)g(one)g(w)o(ants\224,)g(and)g
(then)f(annotate)h(colours)g(and)g(reduce)g(the)f(proof)g(according)i
(to)e(the)277 5385 y(cut-elimination)c(procedure)i(of)e(LK)1251
5353 y FZ(tq)1308 5385 y F2(.)p Black Black Black eop
end
%%Page: 128 140
TeXDict begin 128 139 bop Black -144 51 a Gb(128)3121
b(Conclusion)p -144 88 3691 4 v Black Black 321 300 3226
4 v 321 1438 4 1139 v 646 607 233 4 v 646 686 a Ga(A)p
734 674 11 41 v 745 656 46 5 v 96 w(A)p 969 607 233 4
v 91 w(A)p 1058 674 11 41 v 1068 656 46 5 v 97 w(A)p
646 706 557 4 v 689 785 a(A;)15 b(A)p 886 773 11 41 v
896 754 46 5 v 97 w(A)p F6(^)p Ga(A)1243 724 y F6(^)1304
738 y Gc(R)p 689 822 471 4 v 743 901 a Ga(A)p 831 889
11 41 v 842 871 46 5 v 97 w(A)p F6(^)o Ga(A)1200 846
y Gg(Contr)1406 860 y Gc(L)p 1601 607 233 4 v 1601 686
a Ga(A)p 1689 674 11 41 v 1700 656 46 5 v 97 w(A)p 1925
392 233 4 v 1925 471 a(A)p 2013 459 11 41 v 2023 441
46 5 v 96 w(A)p 2248 392 233 4 v 91 w(A)p 2337 459 11
41 v 2347 441 46 5 v 97 w(A)p 1925 491 557 4 v 1968 570
a(A;)g(A)p 2165 558 11 41 v 2175 539 46 5 v 97 w(A)p
F6(^)p Ga(A)2522 509 y F6(^)2583 523 y Gc(R)p 1968 607
471 4 v 2022 686 a Ga(A)p 2110 674 11 41 v 2121 656 46
5 v 97 w(A)p F6(^)o Ga(A)2479 631 y Gg(Contr)2685 645
y Gc(L)p 1601 706 783 4 v 1693 785 a Ga(A)p F6(_)p Ga(A)p
1910 773 11 41 v 1920 754 46 5 v 96 w(A;)g(A)p F6(^)p
Ga(A)2425 724 y F6(_)2486 738 y Gc(L)p 2829 706 233 4
v 2829 785 a Ga(A)p 2918 773 11 41 v 2928 754 46 5 v
97 w(A)p 1693 822 1370 4 v 1959 901 a(A;)g(A)p F6(_)q
Ga(A)p 2285 889 11 41 v 2296 871 46 5 v 96 w(A)p F6(^)p
Ga(A;)g(A)p F6(^)p Ga(A)3104 840 y F6(^)3164 855 y Gc(R)p
743 939 2053 4 v 1168 1017 a Ga(A)p F6(_)p Ga(A;)g(A)p
F6(_)p Ga(A)p 1623 1005 11 41 v 1633 987 46 5 v 97 w(A)p
F6(^)p Ga(A;)g(A)p F6(^)p Ga(A;)g(A)p F6(^)p Ga(A)2837
957 y F6(_)2898 971 y Gc(L)p 1168 1055 1203 4 v 1287
1134 a Ga(A)p F6(_)p Ga(A)p 1504 1122 11 41 v 1514 1103
46 5 v 96 w(A)p F6(^)p Ga(A;)g(A)p F6(^)p Ga(A;)g(A)p
F6(^)q Ga(A)2412 1079 y Gg(Contr)2618 1093 y Gc(L)p 1287
1171 966 4 v 1406 1250 a Ga(A)p F6(_)o Ga(A)p 1623 1238
11 41 v 1633 1220 46 5 v 97 w(A)p F6(^)p Ga(A;)g(A)p
F6(^)p Ga(A)2293 1195 y Gg(Contr)2499 1209 y Gc(R)p 1406
1288 728 4 v 1524 1366 a Ga(A)p F6(_)p Ga(A)p 1741 1354
11 41 v 1752 1336 46 5 v 96 w(A)p F6(^)p Ga(A)2175 1312
y Gg(Contr)2381 1326 y Gc(R)p 3543 1438 4 1139 v 321
1441 3226 4 v 321 1595 a Gg(Figure)21 b(5.1:)28 b(A)19
b(normal)i(form)f(of)h(the)f(LK-proof)h(gi)n(v)o(en)g(in)f(Example)h
(2.1.3,)g(P)o(age)f(15.)28 b(This)20 b(normal)321 1708
y(form)25 b(is)f(reachable)j(only)f(if)e(commuting)i(cuts)f(can)g
(\223change\224)i(the)e(direction)i(into)e(which)g(the)o(y)g(are)321
1821 y(permuted.)p Black 321 2226 a(tw)o(o)30 b(dif)n(ferent)i(double)g
(ne)o(gation)g(translations.)52 b(W)-7 b(e)29 b(conjecture)k(that)e
(double)h(ne)o(gation)g(transla-)321 2339 y(tions)21
b(correspond)i(to)d(particular)j(strate)o(gies)f(of)e(cut-elimination.)
32 b(This)19 b(conjecture)k(does)e(not)g(seem)321 2452
y(dif)n(\002cult)k(to)e(v)o(erify)-6 b(,)24 b(b)n(ut)g(the)g(details)h
(remain)g(future)f(w)o(ork.)462 2581 y(Important)36 b(future)f(w)o(ork)
f(is)g(to)g(reconsider)j(the)d(proof)h(theory)h(of)e(classical)i(logic)
f(in)f(a)f(set-)321 2694 y(ting)23 b(where)f(proofs)h(are)f
(identi\002ed)h(up)f(to)f F7(Kleene)i(permutations)h
Gg([Kleene,)f(1952b],)g(analogous)i(to)321 2807 y(proof)j(nets)f(for)f
(linear)h(logic)h([Girard,)e(1987a].)39 b(One)26 b(practical)i(reason)g
(for)f(this)f(identi\002cation)k(is)321 2920 y(the)d(huge)h(number)f
(of)f(normal)i(forms)f(we)e(found)j(by)f(feeding)h(the)f(classical)i
(proof)e(gi)n(v)o(en)g(in)g(Sec-)321 3033 y(tion)22 b(4.2)e(into)h(our)
g(implementation.)31 b(W)-7 b(e)20 b(conjecture)j(man)o(y)e(of)f(these)
i(normal)f(forms)g(are)g(equal)g(up)321 3146 y(to)i(Kleene)h
(permutations.)31 b(In)23 b(our)h(implementation)i(we)c(introduced)k
(some)d F7(ad)h(hoc)f Gg(assumptions,)321 3259 y(which)29
b(reduced)g(the)g(number)f(of)g(normal)h(forms)f(some)n(what,)h(b)n(ut)
g(we)e(felt)h(that)g(we)f(did)i(not)f(ha)n(v)o(e)321
3372 y(much)f(control)h(o)o(v)o(er)e(the)h(cut-elimination)j(process.)
39 b(Identi\002cation)29 b(up)d(to)h(Kleene)g(permutations)321
3485 y(might)e(alle)n(viate)i(this)e(problem.)34 b(Unfortunately)-6
b(,)28 b(syntactic)f(methods)f(\(e.g.)e(additional)k(reduction)321
3597 y(rules\))g(to)f(achie)n(v)o(e)g(this)h(identi\002cation)h(are)e
(rather)h(dif)n(\002cult)f(to)g(obtain)h([Schwichtenber)n(g,)i(1999].)
321 3710 y(So)g(one)g(might)h(ha)n(v)o(e)g(to)f(resort)i(to)e
(semantical)i(methods,)h(as)d(proposed)j(by)d(Hyland)h([2000],)i(in-)
321 3823 y(stead.)462 3953 y(The)d(most)f(interesting)k(future)d(w)o
(ork)g(concerns)i(the)e(computational)j(interpretation)g(of)d(clas-)321
4066 y(sical)h(proofs.)48 b(In)30 b(Section)g(4.3)g(we)f(ga)n(v)o(e)g
(an)h(encoding)i(into)e(classical)i(logic)f(of)e(a)h(simply-typed)321
4179 y(lambda)g(calculus)h(enriched)g(with)d(an)h(erratic)h(choice)h
(operator)-5 b(.)46 b(This)29 b(result)h(should)g(be)f(seen)h(as)321
4291 y(proof)d(of)e(concept:)36 b(it)25 b(barely)i(scratches)h(at)d
(the)h(surf)o(ace)h(of)f(what)f(can)h(be)g(encoded)h(into)f(classical)
321 4404 y(logic.)k(F)o(or)22 b(e)o(xample,)h(we)f(did)h(not)h
(consider)h(an)d(encoding)k(of)c(a)h(\(weak\))g(form)g(of)g
(communication)321 4517 y(into)h(classical)i(logic)f(using)f
(quanti\002ers.)31 b(F)o(or)23 b(e)o(xample)h(the)g(cut-instance)1140
4695 y Ga(:)15 b(:)g(:)p 1281 4683 11 41 v 1292 4664
46 5 v 128 w(:)g(:)g(:)h(;)f(B)5 b FL(a)p 1082 4732 628
4 v 1082 4812 a Ga(:)15 b(:)g(:)p 1223 4800 11 41 v 1234
4782 46 5 v 128 w(:)g(:)g(:)h(;)f F6(8)p FL(x)p Ga(:B)5
b FL(x)1751 4757 y F6(8)1802 4771 y Gc(R)2064 4695 y
Ga(B)g FL(t)p Ga(;)15 b(:)g(:)g(:)p 2352 4683 11 41 v
2363 4664 46 5 v 127 w(:)g(:)g(:)p 2001 4732 613 4 v
2001 4812 a F6(8)p FL(x)p Ga(:B)5 b FL(x)p Ga(;)15 b(:)g(:)g(:)p
2415 4800 11 41 v 2426 4782 46 5 v 127 w(:)g(:)g(:)2654
4757 y F6(8)2705 4771 y Gc(L)p 1082 4850 1531 4 v 1678
4919 a Ga(:)g(:)g(:)p 1819 4907 11 41 v 1830 4889 46
5 v 128 w(:)g(:)g(:)2654 4880 y Gg(Cut)321 5119 y(which)24
b(reduces)i(to)1284 5278 y Ga(:)15 b(:)g(:)p 1425 5266
11 41 v 1435 5248 46 5 v 127 w(:)g(:)g(:)i(;)e(B)5 b
FL(t)141 b Ga(B)5 b FL(t)p Ga(;)15 b(:)g(:)g(:)p 2214
5266 11 41 v 2224 5248 46 5 v 127 w(:)g(:)g(:)p 1284
5316 1128 4 v 1678 5385 a(:)g(:)g(:)p 1819 5373 11 41
v 1830 5355 46 5 v 128 w(:)g(:)g(:)2453 5346 y Gg(Cut)p
Black Black eop end
%%Page: 129 141
TeXDict begin 129 140 bop Black 277 51 a Gb(5.1)23 b(Further)g(W)-7
b(ork)2867 b(129)p 277 88 3691 4 v Black 277 388 a Gg(can)30
b(be)f(understood)k(as)c(communicating)j(the)e(e)o(xpression)i
FL(t)c Gg(from)h(the)h(proof)g(on)g(the)f(right-hand)277
501 y(side)34 b(to)f(the)g(one)h(on)f(the)g(left-hand)i(side.)58
b(Using)34 b(multiple)g(quanti\002ers,)j(one)d(can)f(also)h(encode)277
614 y(certain)25 b(dependencies)j(between)c(communications,)j(as)c
(illustrated)k(with)c(the)h(cut-instance)948 813 y Ga(:)15
b(:)g(:)p 1090 801 11 41 v 1100 783 46 5 v 128 w(:)g(:)g(:)h(;)f(B)20
b FL(a)15 b(t)1523 827 y Fu(1)p 890 851 730 4 v 890 930
a Ga(:)g(:)g(:)p 1032 918 11 41 v 1042 900 46 5 v 128
w(:)g(:)g(:)h(;)f F6(8)p FL(x)p Ga(:B)20 b FL(x)15 b(t)1581
944 y Fu(1)1662 875 y F6(8)1713 889 y Gc(R)p 845 968
820 4 v 845 1048 a Ga(:)g(:)g(:)p 987 1036 11 41 v 997
1018 46 5 v 128 w(:)g(:)g(:)h(;)f F6(9)p FL(y)q Ga(:)p
F6(8)p FL(x)p Ga(:B)20 b FL(x)15 b(y)1707 993 y F6(9)1758
1007 y Gc(R)2058 813 y Ga(B)k FL(t)2179 827 y Fu(2)2234
813 y FL(b)p Ga(;)c(:)g(:)g(:)p 2462 801 11 41 v 2473
783 46 5 v 128 w(:)g(:)g(:)p 2014 851 690 4 v 2014 930
a F6(8)p FL(x)p Ga(:B)k FL(x)c(b)p Ga(;)g(:)g(:)g(:)p
2506 918 11 41 v 2517 900 46 5 v 128 w(:)g(:)g(:)2745
875 y F6(8)2796 889 y Gc(L)p 1956 968 805 4 v 1956 1048
a F6(9)p FL(y)q Ga(:)p F6(8)p FL(x)p Ga(:B)20 b FL(x)15
b(y)q Ga(;)g(:)g(:)g(:)p 2564 1036 11 41 v 2574 1018
46 5 v 128 w(:)g(:)g(:)2803 993 y F6(9)2854 1007 y Gc(L)p
845 1085 1916 4 v 1634 1155 a Ga(:)g(:)g(:)p 1775 1143
11 41 v 1786 1124 46 5 v 128 w(:)g(:)g(:)2803 1116 y
Gg(Cut)277 1375 y(which)20 b(reduces)i(so)e(that)g(\002rst)g
FL(t)1264 1389 y Fu(1)1322 1375 y Gg(is)g(communicated)i(to)e(the)g
(proof)h(on)f(the)g(right-hand)j(side)d(and)h(then)277
1488 y FL(t)310 1502 y Fu(2)367 1488 y Gg(to)e(the)g(one)h(on)f(the)g
(left-hand)i(side.)28 b(Our)18 b(cut-elimination)23 b(procedures)f(pro)
o(vide)e(a)f(frame)n(w)o(ork)g(to)277 1601 y(study)24
b(this)e(idea)h(further)-5 b(.)30 b(In)22 b(terms)h(of)f(a)g
(computational)j(interpretation,)h(most)d(unclear)l(,)h(ho)n(we)n(v)o
(er)l(,)277 1714 y(are)g(cut-instances)j(whose)d(cut-formula)i(is)d
(contracted)k(on)c(both)i(sides.)978 1944 y Ga(:)15 b(:)g(:)p
1120 1932 11 41 v 1130 1913 46 5 v 128 w(:)g(:)g(:)h(;)f(C)q(;)g(C)p
978 1981 573 4 v 1032 2060 a(:)g(:)g(:)p 1173 2048 11
41 v 1183 2030 46 5 v 127 w(:)g(:)g(:)h(;)f(C)1592 2005
y Gg(Contr)1798 2019 y Gc(R)1948 1944 y Ga(C)q(;)g(C)q(;)g(:)g(:)g(:)p
2303 1932 11 41 v 2314 1913 46 5 v 129 w(:)g(:)g(:)p
1948 1981 553 4 v 2001 2060 a(C)q(;)g(:)g(:)g(:)p 2250
2048 11 41 v 2260 2030 46 5 v 129 w(:)g(:)g(:)2542 2005
y Gg(Contr)2748 2019 y Gc(L)p 1032 2097 1416 4 v 1570
2167 a Ga(:)g(:)g(:)p 1711 2155 11 41 v 1722 2137 46
5 v 128 w(:)g(:)g(:)2488 2128 y Gg(Cut)p Black Black
eop end
%%Page: 130 142
TeXDict begin 130 141 bop Black Black Black Black eop
end
%%Page: 131 143
TeXDict begin 131 142 bop Black Black 277 1027 a F8(A)l(ppendix)43
b(A)277 1459 y Gf(Experimental)52 b(Data)277 1920 y Gg(In)20
b(this)g(appendix)j(we)c(shall)i(gi)n(v)o(e)f(tw)o(o)f(normal)i(forms)f
(for)g(the)g(proof,)i Ga(\033)s Gg(,)d(gi)n(v)o(en)i(on)f(P)o(age)f
(118.)28 b(Both)277 2020 y(normal)c(forms)g(pro)o(v)o(e,)f(by)g
(analysing)j(some)e(cases,)g(Sequent)g(\(4.9\))g(sho)n(wn)f(on)h(P)o
(age)e(116.)30 b(T)-7 b(o)22 b(\002nd)277 2119 y(which)i(cases)h(are)e
(analysed,)j(one)e(has)g(to)f(look)i(for)e(proof)i(fragments)g(of)f
(the)f(follo)n(wing)i(form.)1811 2218 y Gd(.)1811 2251
y(.)1811 2284 y(.)1811 2317 y(.)1113 2397 y FU(:)14 b(:)g(:)g(;)g
FG(\()p FF(f1)23 b FG(=)f FF(1)14 b FT(^)g FF(f0)23 b
FG(=)f FF(1)p FG(\))14 b FT(\033)f FF(f0)23 b FG(=)g
FF(f1)p FU(;)14 b(:)g(:)g(:)p 2349 2385 10 38 v 2358
2369 42 4 v 115 w(:)g(:)g(:)p 1028 2438 1586 4 v 1028
2517 a(:)g(:)g(:)g(;)g FT(8)p FF(y)q FU(:)p FG(\(\()p
FF(fy)25 b FG(=)e FF(1)14 b FT(^)f FF(f1)23 b FG(=)g
FF(1)p FG(\))14 b FT(\033)f FF(f0)23 b FG(=)f FF(fy)r
FG(\))p FU(;)14 b(:)g(:)g(:)p 2433 2505 10 38 v 2443
2488 42 4 v 116 w(:)g(:)g(:)2655 2461 y FT(8)2702 2473
y FS(L)p 1001 2558 1641 4 v 1001 2636 a FU(:)g(:)g(:)g(;)g
FT(8)p FF(x)p FU(:)p FF(y)p FU(:)p FG(\(\()p FF(fy)26
b FG(=)c FF(1)14 b FT(^)g FF(fx)24 b FG(=)e FF(1)p FG(\))14
b FT(\033)f FF(fx)24 b FG(=)f FF(fy)r FG(\))p FU(;)14
b(:)g(:)g(:)p 2461 2624 10 38 v 2470 2608 42 4 v 115
w(:)g(:)g(:)2683 2580 y FT(8)2730 2592 y FS(L)p 1001
2677 1641 4 v 1001 2756 a FU(:)g(:)g(:)g(;)g FT(8)p FF(i)p
FU(:)p FF(x)p FU(:)p FF(y)p FU(:)p FG(\(\()p FF(fy)26
b FG(=)d FF(i)14 b FT(^)f FF(fx)24 b FG(=)f FF(i)p FG(\))14
b FT(\033)f FF(fx)24 b FG(=)f FF(fy)q FG(\))p FU(;)14
b(:)g(:)g(:)p 2461 2744 10 38 v 2470 2727 42 4 v 116
w(:)g(:)g(:)2683 2700 y FT(8)2730 2712 y FS(L)277 3044
y Gg(This)27 b(particular)i(proof)e(fragment)h(indicates)h(that)f(the)f
(case)g FL(f0)k F4(=)g FL(f1)g F4(=)g(1)26 b Gg(is)g(analysed.)41
b(The)26 b(\002rst)277 3157 y(normal)e(form)g(\(P)o(ages)g
(132\226134\))i(analyses)f(the)f(cases)p Black Black
803 3335 a FL(f0)i F4(=)f FL(f1)g F4(=)g FL(0)100 b(f1)26
b F4(=)f FL(f2)g F4(=)g FL(0)237 b(f0)25 b F4(=)g FL(f1)h
F4(=)f FL(1)100 b(f2)25 b F4(=)g FL(f3)h F4(=)f FL(1)803
3448 y(f0)h F4(=)f FL(f2)g F4(=)g FL(0)100 b(f1)26 b
F4(=)f FL(f3)g F4(=)g FL(0)237 b(f1)25 b F4(=)g FL(f2)h
F4(=)f FL(1)277 3623 y Gg(and)f(the)g(second)h(\(P)o(ages)f
(135\226140\))i(the)e(cases)p Black Black 803 3801 a
FL(f0)i F4(=)f FL(f1)g F4(=)g FL(0)100 b(f2)26 b F4(=)f
FL(f3)g F4(=)g FL(0)237 b(f0)25 b F4(=)g FL(f1)h F4(=)f
FL(1)100 b(f1)25 b F4(=)g FL(f2)h F4(=)f FL(1)803 3914
y(f1)h F4(=)f FL(f2)g F4(=)g FL(0)771 b(f0)25 b F4(=)g
FL(f2)h F4(=)f FL(1)100 b(f1)25 b F4(=)g FL(f3)h F4(=)f
FL(1)277 4090 y Gg(W)-7 b(e)23 b(tak)o(e)i(this)f(as)g(e)n(vidence)i
(that)f(both)g(normal)f(forms)h(are)f(\223essentially\224)k(dif)n
(ferent)e(\(see)e(the)g(crite-)277 4203 y(rion)h(gi)n(v)o(en)g(on)f(P)o
(age)g(117\).)31 b(Because)25 b(of)g(their)g(size,)f(the)h(tw)o(o)e
(normal)i(forms)g(are)f(spread)i(o)o(v)o(er)e(the)277
4316 y(follo)n(wing)h(nine)f(\002gures.)414 4462 y(1)164
b(First)23 b(normal)h(form)g(and)g(Subproof)h Ga(X)1882
4476 y F9(6)1922 4462 y Gg(.)59 b(.)46 b(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)
g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43
w(132)p Black 414 4592 a(2)164 b(Subproofs)25 b Ga(X)1094
4606 y F9(1)1157 4592 y Gg(and)f Ga(X)1386 4606 y F9(2)1425
4592 y Gg(.)79 b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g
(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 43 w(133)p Black 414 4721 a(3)164 b(Subproofs)25
b Ga(X)1094 4735 y F9(3)1134 4721 y Gg(,)d Ga(X)1254
4735 y F9(4)1317 4721 y Gg(and)i Ga(X)1546 4735 y F9(5)1585
4721 y Gg(.)55 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f
(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
43 w(134)p Black 414 4851 a(4)164 b(Second)24 b(normal)g(form)g(and)g
(Subproof)h Ga(Y)1961 4865 y F9(8)2000 4851 y Gg(.)50
b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
h(.)f(.)p Black 43 w(135)p Black 414 4980 a(5)164 b(Subproofs)25
b Ga(Y)1072 4994 y F9(6)1134 4980 y Gg(and)f Ga(Y)1341
4994 y F9(7)1380 4980 y Gg(.)56 b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h
(.)f(.)p Black 43 w(136)p Black 414 5110 a(6)164 b(Subproofs)25
b Ga(Y)1072 5124 y F9(4)1134 5110 y Gg(and)f Ga(Y)1341
5124 y F9(5)1380 5110 y Gg(.)56 b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h
(.)f(.)p Black 43 w(137)p Black 414 5239 a(7)164 b(Subproofs)25
b Ga(Y)1072 5253 y F9(1)1111 5239 y Gg(,)e Ga(Y)1210
5253 y F9(2)1272 5239 y Gg(and)h Ga(Y)1479 5253 y F9(3)1518
5239 y Gg(.)54 b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h
(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
Black 43 w(138)p Black 414 5369 a(8)164 b(Subproofs)25
b Ga(Y)1072 5383 y F9(12)1169 5369 y Gg(and)f Ga(Y)1376
5383 y F9(13)1451 5369 y Gg(.)53 b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h
(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
f(.)p Black 43 w(139)p Black 414 5498 a(9)164 b(Subproofs)25
b Ga(Y)1072 5512 y F9(9)1111 5498 y Gg(,)e Ga(Y)1210
5512 y F9(10)1307 5498 y Gg(and)h Ga(Y)1514 5512 y F9(11)1588
5498 y Gg(.)52 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f
(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
43 w(140)p Black Black Black eop end
%%Page: 132 144
TeXDict begin 132 143 bop Black -144 51 a Gb(132)2816
b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1927 465
a 2583 -821 247 4 v 2583 -769 a Ff(3)l FC(\024)l Ff(3)p
2691 -781 6 23 v 2697 -791 25 3 v 61 w(3)l FC(\024)l
Ff(3)p 2490 -739 433 4 v 2479 -675 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(3)l FC(\024)l Ff(m)2689 -696 y Fe(x)p Fd(;)p
Fe(3)2746 -675 y FV(\))p 2784 -687 6 23 v 2790 -697 25
3 v 59 w Ff(3)l FC(\024)l Ff(3)2922 -728 y FC(8)2957
-717 y Fd(L)p 2490 -642 433 4 v 2585 -591 a FZ(M)2643
-581 y FP(2)p 2689 -603 6 23 v 2695 -613 25 3 v 2734
-591 a Ff(3)l FC(\024)l Ff(3)2922 -631 y FC(8)2957 -620
y Fd(L)p 3050 -641 247 4 v 3050 -591 a Ff(2)l FZ(<)l
Ff(3)p 3158 -603 6 23 v 3164 -613 25 3 v 61 w(2)l FZ(<)l
Ff(3)p 2585 -561 713 4 v 2687 -509 a(3)l FC(\024)l Ff(3)p
FC(\033)q Ff(2)l FZ(<)l Ff(3)p FZ(;)13 b(M)3010 -499
y FP(2)p 3056 -521 6 23 v 3062 -531 25 3 v 3101 -509
a Ff(2)l FZ(<)l Ff(3)3296 -552 y FC(\033)3344 -540 y
Fd(L)p 2630 -479 622 4 v 2619 -425 a FC(8)p Ff(y)q FZ(:)p
FV(\()p Ff(3)l FC(\024)l Ff(y)q FC(\033)r Ff(2)l FZ(<)l
Ff(y)q FV(\))p FZ(;)f(M)3067 -415 y FP(2)p 3113 -437
6 23 v 3119 -447 25 3 v 3158 -425 a Ff(2)l FZ(<)l Ff(3)3251
-467 y FC(8)3286 -456 y Fd(L)p 2630 -393 622 4 v 2784
-342 a FZ(M)2842 -332 y FP(2)2875 -342 y FZ(;)e(S)p 2959
-354 6 23 v 2964 -364 25 3 v 61 w Ff(2)l FZ(<)l Ff(3)3251
-381 y FC(8)3286 -370 y Fd(L)4423 -835 y F3(.)4423 -802
y(.)4423 -769 y(.)4423 -736 y(.)4388 -684 y FZ(X)4438
-674 y FP(2)p 4538 -736 351 4 v 4538 -684 a Ff(f2)e FV(=)f
Ff(f3)p 4698 -696 6 23 v 4704 -706 25 3 v 59 w(f2)h FV(=)f
Ff(f3)p 3514 -655 2232 4 v 3514 -601 a FV(\()p Ff(f3)h
FV(=)f Ff(1)p FC(^)o Ff(f2)h FV(=)f Ff(1)p FV(\))p FC(\033)p
Ff(f2)h FV(=)f Ff(f3)p FZ(;)k(M)4145 -591 y FP(1)4177
-601 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4774 -613 6 23 v 4780 -623 25 3 v 68 w Ff(f2)d FV(=)g
Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g
Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e FV(=)f
Ff(f2)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5745 -646 y FC(\033)5793
-635 y Fd(L)p 3457 -569 2346 4 v 3447 -515 a FC(8)p Ff(y)q
FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(1)p FC(^)p Ff(f2)g
FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(f2)h FV(=)f Ff(fy)q
FV(\))p FZ(;)k(M)4202 -505 y FP(1)4234 -515 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o
Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4831
-527 6 23 v 4837 -537 25 3 v 68 w Ff(f2)d FV(=)g Ff(f3)q
FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
FZ(;)k Ff(f1)d FV(=)f Ff(1)5802 -557 y FC(8)5837 -546
y Fd(L)p 3438 -482 2385 4 v 3427 -428 a FC(8)p Ff(x)p
FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(1)p
FC(^)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(fx)h
FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)4221 -418 y FP(1)4253
-428 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
4850 -440 6 23 v 4856 -450 25 3 v 67 w Ff(f2)d FV(=)f
Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
Ff(f2)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5821 -471 y FC(8)5856
-460 y Fd(L)p 3438 -396 2385 4 v 3800 -342 a FZ(M)3858
-332 y FP(1)3891 -342 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4488 -354 6 23 v 4493 -364 25 3 v
67 w Ff(f2)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5821
-384 y FC(8)5856 -373 y Fd(L)p 2784 -310 2676 4 v 3165
-256 a FZ(M)3223 -246 y FP(1)3255 -256 y FZ(;)k(M)3343
-246 y FP(2)3375 -256 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 3972 -268 6 23 v 3978 -277 25 3 v
68 w Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)e FV(=)f Ff(f2)p
FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)d FV(=)g Ff(f3)q
FZ(;)j Ff(f1)e FV(=)f Ff(1)5459 -301 y FC(^)5500 -290
y Fd(R)p 3083 -223 2079 4 v 3083 -169 a FZ(M)3141 -159
y FP(1)3173 -169 y FZ(;)j(M)3260 -159 y FP(2)3293 -169
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
3890 -181 6 23 v 3895 -191 25 3 v 57 w FC(9)p Ff(m)p
FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)q Ff(f1)c FV(=)g
Ff(fm)p FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
FV(=)f Ff(f2)p FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d
FV(=)f Ff(f3)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5160 -212 y
FC(9)5195 -201 y Fd(R)p 3059 -137 2127 4 v 3059 -83 a
FZ(M)3117 -73 y FP(1)3149 -83 y FZ(;)j(M)3236 -73 y FP(2)3269
-83 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
3866 -95 6 23 v 3871 -105 25 3 v 67 w Ff(1)l FZ(<)l Ff(2)p
FC(^)r Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(2)l FZ(<)l Ff(3)p
FC(^)r Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(f1)e FV(=)f Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5184
-125 y FC(9)5219 -114 y Fd(R)p 2976 -51 2292 4 v 2976
3 a FZ(M)3034 13 y FP(1)3067 3 y FZ(;)j(M)3154 13 y FP(2)3186
3 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
3783 -9 6 23 v 3789 -18 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)p Ff(f1)d FV(=)f Ff(fm)p
FV(\))p FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)e FV(=)f
Ff(f3)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5267 -39 y FC(9)5302 -28
y Fd(R)p 2976 36 2292 4 v 3214 90 a FZ(M)3272 100 y FP(1)3304
90 y FZ(;)k(M)3392 100 y FP(2)3424 90 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4021 78 6 23
v 4027 68 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e
FV(=)f Ff(f3)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p FZ(;)p FC(9)p
Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p
FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5267 48 y FC(9)5302
59 y Fd(R)p 3132 122 1981 4 v 3132 176 a FZ(M)3190 186
y FP(1)3222 176 y FZ(;)k(M)3310 186 y FP(2)3342 176 y
FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p
FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
3939 164 6 23 v 3945 154 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(2)l FZ(<)l Ff(m)p FC(^)q Ff(f2)e FV(=)f Ff(fm)o
FV(\))p FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)g FV(=)g Ff(fm)p FV(\))5111 134 y FC(9)5146 145
y Fd(R)p 3132 209 1981 4 v 3369 262 a FZ(M)3427 272 y
FP(1)3460 262 y FZ(;)j(M)3547 272 y FP(2)3579 262 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p
Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4176
250 6 23 v 4182 241 25 3 v 67 w Ff(f1)d FV(=)f Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))5111
220 y FC(9)5146 231 y Fd(R)6003 112 y F3(.)6003 145 y(.)6003
178 y(.)6003 211 y(.)5968 262 y FZ(X)6018 272 y FP(5)p
3369 295 2699 4 v 3880 349 a FZ(M)3938 359 y FP(1)3971
349 y FZ(;)j(M)4058 359 y FP(2)4090 349 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4687 337 6 23
v 4693 327 25 3 v 67 w Ff(f1)d FV(=)f Ff(1)p FC(^)p Ff(f0)g
FV(=)g Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p
FV(\))6067 303 y FC(^)6108 314 y Fd(R)2490 393 y Fc(|)p
2514 393 1785 8 v 1785 w({z)p 4347 393 V 1785 w(})4283
455 y Fd(X)4329 467 y FP(6)p 2567 627 247 4 v 2567 678
a Ff(1)l FC(\024)l Ff(1)p 2675 666 6 23 v 2680 656 25
3 v 61 w(1)l FC(\024)l Ff(1)p 2474 708 433 4 v 2463 773
a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(m)2673
752 y Fe(x)p Fd(;)p Fe(1)2730 773 y FV(\))p 2768 761
6 23 v 2774 751 25 3 v 59 w Ff(1)l FC(\024)l Ff(1)2906
720 y FC(8)2941 731 y Fd(L)p 2474 805 433 4 v 2569 857
a FZ(M)2627 867 y FP(2)p 2673 845 6 23 v 2679 835 25
3 v 2718 857 a Ff(1)l FC(\024)l Ff(1)2906 817 y FC(8)2941
828 y Fd(L)p 3034 806 247 4 v 3034 857 a Ff(0)l FZ(<)l
Ff(1)p 3142 845 6 23 v 3148 835 25 3 v 61 w(0)l FZ(<)l
Ff(1)p 2569 887 713 4 v 2671 939 a(1)l FC(\024)l Ff(1)p
FC(\033)q Ff(0)l FZ(<)l Ff(1)p FZ(;)13 b(M)2994 949 y
FP(2)p 3040 927 6 23 v 3046 917 25 3 v 3085 939 a Ff(0)l
FZ(<)l Ff(1)3280 896 y FC(\033)3328 907 y Fd(L)p 2614
969 622 4 v 2603 1023 a FC(8)p Ff(y)q FZ(:)p FV(\()p
Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l Ff(y)q
FV(\))p FZ(;)f(M)3051 1033 y FP(2)p 3097 1011 6 23 v
3103 1001 25 3 v 3142 1023 a Ff(0)l FZ(<)l Ff(1)3235
980 y FC(8)3270 991 y Fd(L)p 2614 1055 622 4 v 2768 1106
a FZ(M)2826 1116 y FP(2)2858 1106 y FZ(;)f(S)p 2942 1094
6 23 v 2948 1084 25 3 v 61 w Ff(0)l FZ(<)l Ff(1)3235
1067 y FC(8)3270 1078 y Fd(L)4338 612 y F3(.)4338 646
y(.)4338 679 y(.)4338 712 y(.)4303 763 y FZ(X)4353 773
y FP(6)p 4453 712 351 4 v 4453 763 a Ff(f0)d FV(=)f Ff(f1)p
4613 751 6 23 v 4619 741 25 3 v 59 w(f0)h FV(=)f Ff(f1)p
3498 793 2094 4 v 3498 847 a FV(\()p Ff(f1)h FV(=)f Ff(1)p
FC(^)o Ff(f0)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(f0)h
FV(=)f Ff(f1)p FZ(;)k(M)4129 857 y FP(1)4161 847 y FZ(;)f(M)4248
857 y FP(2)4281 847 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4878 835 6 23 v 4883 825 25 3 v 67
w Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)p FV(\))5591 802 y FC(\033)5639 813 y Fd(L)p
3441 879 2208 4 v 3430 933 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p
Ff(fy)i FV(=)e Ff(1)p FC(^)o Ff(f0)h FV(=)f Ff(1)p FV(\))p
FC(\033)p Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)4185
943 y FP(1)4218 933 y FZ(;)g(M)4305 943 y FP(2)4337 933
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4934 921 6 23 v 4940 911 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5648
891 y FC(8)5683 902 y Fd(L)p 3421 965 2247 4 v 3411 1019
a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(1)p FC(^)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)p FV(\))p FZ(;)k(M)4205 1029 y FP(1)4237
1019 y FZ(;)g(M)4325 1029 y FP(2)4357 1019 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4954 1007 6
23 v 4960 998 25 3 v 68 w Ff(f0)e FV(=)f Ff(f1)p FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5667 977 y
FC(8)5702 988 y Fd(L)p 3421 1052 2247 4 v 3784 1106 a
FZ(M)3842 1116 y FP(1)3874 1106 y FZ(;)k(M)3962 1116
y FP(2)3994 1106 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)g(T)p 4591 1094 6 23 v 4597 1084 25 3 v
67 w Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)o FV(\))5667 1064 y FC(8)5702 1075 y Fd(L)p
2768 1138 2538 4 v 3209 1192 a FZ(M)3267 1202 y FP(1)3299
1192 y FZ(;)j(M)3386 1202 y FP(2)3419 1192 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4016 1180 6
23 v 4021 1170 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r
Ff(f0)c FV(=)g Ff(f1)q FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p
FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g
Ff(fm)p FV(\))5304 1146 y FC(^)5346 1158 y Fd(R)p 3126
1225 1821 4 v 3126 1278 a FZ(M)3184 1288 y FP(1)3217
1278 y FZ(;)j(M)3304 1288 y FP(2)3336 1278 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3933 1266 6
23 v 3939 1257 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p FV(\()p
Ff(0)l FZ(<)l Ff(m)p FC(^)p Ff(f0)d FV(=)f Ff(fm)p FV(\))p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))4946
1236 y FC(9)4981 1247 y Fd(R)p 3126 1311 1821 4 v 3364
1365 a FZ(M)3422 1375 y FP(1)3454 1365 y FZ(;)k(M)3542
1375 y FP(2)3574 1365 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4171 1353 6 23 v 4177 1343 25 3 v
57 w FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)e FV(=)f Ff(fm)p FV(\))4946
1323 y FC(9)4981 1334 y Fd(R)2026 1612 y Gc(M)2094 1621
y FV(1)2148 1612 y F9(=)20 b FX(8)p Fu(y)q Gc(:)p Fu(x)p
Gc(:)m F9(\()p Fu(x)8 b FX(\024)g Fu(m)2555 1588 y Ff(x)p
FZ(;)p Ff(y)2626 1612 y F9(\))101 b Gc(T)30 b F9(=)19
b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p
Fu(fy)i F9(=)e Fu(i)p FX(^)p Fu(fx)g F9(=)g Fu(i)p F9(\))12
b FX(\033)g Fu(fx)19 b F9(=)g Fu(fy)p F9(\))2026 1738
y Gc(M)2094 1747 y FV(2)2148 1738 y F9(=)h FX(8)p Fu(y)q
Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(y)9 b FX(\024)f Fu(m)2556
1714 y Ff(x)p FZ(;)p Ff(y)2627 1738 y F9(\))100 b Gc(S)23
b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6506
465 y
 currentpoint grestore moveto
 6506 465 a 3543 5116 4 4724 v 321 5119 3226 4 v
Black 1093 5273 a Gg(Figure)25 b(1:)j(First)c(normal)g(form)g(and)g
(Subproof)h Ga(X)2712 5287 y F9(6)2751 5273 y Gg(.)p
Black Black eop end
%%Page: 133 145
TeXDict begin 133 144 bop Black 3831 51 a Gb(133)p 277
88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
v 1882 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1882 465 a 2677 -559 247 4 v 2677 -507 a
Ff(2)l FC(\024)l Ff(2)p 2785 -519 6 23 v 2791 -529 25
3 v 61 w(2)l FC(\024)l Ff(2)p 2585 -477 431 4 v 2574
-412 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(x)l FC(\024)l
Ff(m)2782 -433 y Fe(x)p Fd(;)p Fe(0)2839 -412 y FV(\))p
2877 -424 6 23 v 2883 -434 25 3 v 59 w Ff(2)l FC(\024)l
Ff(2)3015 -466 y FC(8)3050 -455 y Fd(L)p 2585 -380 431
4 v 2679 -329 a FZ(M)2737 -319 y FP(1)p 2783 -341 6 23
v 2789 -350 25 3 v 2828 -329 a Ff(2)l FC(\024)l Ff(2)3015
-368 y FC(8)3050 -357 y Fd(L)p 3143 -379 247 4 v 3143
-329 a Ff(1)l FZ(<)l Ff(2)p 3251 -341 6 23 v 3257 -350
25 3 v 61 w(1)l FZ(<)l Ff(2)p 2679 -299 712 4 v 2780
-247 a(2)l FC(\024)l Ff(2)p FC(\033)r Ff(1)l FZ(<)l Ff(2)p
FZ(;)12 b(M)3103 -237 y FP(1)p 3150 -259 6 23 v 3155
-269 25 3 v 3195 -247 a Ff(1)l FZ(<)l Ff(2)3389 -289
y FC(\033)3437 -278 y Fd(L)p 2723 -217 622 4 v 2713 -163
a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(y)q
FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)3160
-153 y FP(1)p 3207 -175 6 23 v 3212 -185 25 3 v 3251
-163 a Ff(1)l FZ(<)l Ff(2)3344 -205 y FC(8)3379 -194
y Fd(L)p 2723 -131 622 4 v 2878 -80 a FZ(M)2936 -70 y
FP(1)2968 -80 y FZ(;)f(S)p 3052 -92 6 23 v 3058 -102
25 3 v 61 w Ff(1)l FZ(<)l Ff(2)3344 -119 y FC(8)3379
-108 y Fd(L)p 3567 -717 319 4 v 3567 -666 a Ff(f2)d FV(=)f
Ff(0)p 3711 -678 6 23 v 3717 -688 25 3 v 59 w(f2)h FV(=)f
Ff(0)p 3936 -717 319 4 v 50 w(f2)h FV(=)f Ff(1)p 4080
-678 6 23 v 4086 -688 25 3 v 59 w(f2)g FV(=)g Ff(1)p
3567 -646 687 4 v 3586 -595 a(f2)h FV(=)f Ff(0)p FC(_)p
Ff(f2)g FV(=)g Ff(1)p 3902 -607 6 23 v 3907 -617 25 3
v 59 w(f2)h FV(=)f Ff(0)p FZ(;)k Ff(f2)c FV(=)g Ff(1)4254
-638 y FC(_)4295 -627 y Fd(L)p 3531 -565 761 4 v 3520
-511 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 3957 -523 6 23 v
3963 -533 25 3 v 59 w Ff(f2)h FV(=)f Ff(0)p FZ(;)k Ff(f2)c
FV(=)g Ff(1)4290 -554 y FC(8)4325 -543 y Fd(L)p 4456
-717 319 4 v 4456 -666 a Ff(f1)h FV(=)f Ff(0)p 4600 -678
6 23 v 4606 -688 25 3 v 59 w(f1)h FV(=)f Ff(0)p 4824
-717 319 4 v 49 w(f1)h FV(=)f Ff(1)p 4968 -678 6 23 v
4974 -688 25 3 v 59 w(f1)h FV(=)f Ff(1)p 4456 -646 687
4 v 4475 -595 a(f1)h FV(=)f Ff(0)p FC(_)o Ff(f1)h FV(=)f
Ff(1)p 4790 -607 6 23 v 4796 -617 25 3 v 59 w(f1)h FV(=)f
Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5142 -638 y FC(_)5184
-627 y Fd(L)p 4419 -565 761 4 v 4409 -511 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p 4846 -523 6 23 v 4852 -533 25 3 v 59 w
Ff(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5179
-554 y FC(8)5214 -543 y Fd(L)p 3531 -479 1650 4 v 3799
-425 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 4236 -437 6 23 v
4242 -447 25 3 v 59 w Ff(f2)h FV(=)f Ff(0)p FC(^)p Ff(f1)g
FV(=)g Ff(0)p FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(f1)e
FV(=)f Ff(1)5179 -471 y FC(^)5221 -460 y Fd(R)p 5317
-476 351 4 v 5317 -425 a Ff(f1)h FV(=)f Ff(f2)p 5478
-437 6 23 v 5483 -447 25 3 v 59 w(f1)h FV(=)f Ff(f2)p
3810 -393 1859 4 v 3984 -339 a FV(\()p Ff(f2)h FV(=)f
Ff(0)p FC(^)p Ff(f1)g FV(=)g Ff(0)p FV(\))p FC(\033)q
Ff(f1)g FV(=)g Ff(f2)q FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
4984 -351 6 23 v 4990 -361 25 3 v 59 w Ff(f1)g FV(=)g
Ff(f2)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g
Ff(1)5667 -384 y FC(\033)5715 -373 y Fd(L)p 3928 -306
1623 4 v 3917 -252 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
FV(=)f Ff(0)p FC(^)p Ff(f1)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f1)g FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
FV(\))p 5041 -264 6 23 v 5047 -274 25 3 v 59 w Ff(f1)g
FV(=)g Ff(f2)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)j Ff(f1)e
FV(=)f Ff(1)5549 -295 y FC(8)5584 -284 y Fd(L)p 3908
-220 1662 4 v 3897 -166 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)p Ff(fx)g
FV(=)g Ff(0)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 5060 -178
6 23 v 5066 -188 25 3 v 59 w Ff(f1)h FV(=)f Ff(f2)p FZ(;)k
Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5569
-208 y FC(8)5604 -197 y Fd(L)p 3908 -134 1662 4 v 4223
-80 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(T)p 4735
-92 6 23 v 4740 -102 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p
FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5569
-122 y FC(8)5604 -111 y Fd(L)p 2878 -47 2367 4 v 3395
7 a FZ(M)3453 17 y FP(1)3485 7 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g
Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4082 -5 6 23 v 4088
-15 25 3 v 67 w Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f1)e FV(=)f
Ff(1)5243 -39 y FC(^)5285 -28 y Fd(R)2585 51 y Fc(|)p
2609 51 1540 8 v 1540 w({z)p 4197 51 V 1540 w(})4133
113 y Fd(X)4179 125 y FP(1)p 2549 485 247 4 v 2549 537
a Ff(2)l FC(\024)l Ff(3)p 2657 525 6 23 v 2663 515 25
3 v 61 w(2)l FC(\024)l Ff(3)p 2457 567 431 4 v 2447 632
a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)2655
611 y Fe(x)p Fd(;)p Fe(3)2711 632 y FV(\))p 2749 620
6 23 v 2755 610 25 3 v 59 w Ff(2)l FC(\024)l Ff(3)2887
578 y FC(8)2922 589 y Fd(L)p 2457 664 431 4 v 2551 715
a FZ(M)2609 725 y FP(1)p 2656 703 6 23 v 2661 694 25
3 v 2700 715 a Ff(2)l FC(\024)l Ff(3)2887 676 y FC(8)2922
687 y Fd(L)p 3016 665 247 4 v 3016 715 a Ff(1)l FZ(<)l
Ff(3)p 3124 703 6 23 v 3130 694 25 3 v 61 w(1)l FZ(<)l
Ff(3)p 2551 745 712 4 v 2653 797 a(2)l FC(\024)l Ff(3)p
FC(\033)r Ff(1)l FZ(<)l Ff(3)p FZ(;)12 b(M)2976 807 y
FP(1)p 3022 785 6 23 v 3028 775 25 3 v 3067 797 a Ff(1)l
FZ(<)l Ff(3)3261 755 y FC(\033)3309 766 y Fd(L)p 2596
827 622 4 v 2585 881 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l
FC(\024)l Ff(y)q FC(\033)r Ff(1)l FZ(<)l Ff(y)q FV(\))p
FZ(;)g(M)3033 891 y FP(1)p 3079 869 6 23 v 3085 859 25
3 v 3124 881 a Ff(1)l FZ(<)l Ff(3)3217 839 y FC(8)3252
850 y Fd(L)p 2596 913 622 4 v 2750 964 a FZ(M)2808 974
y FP(1)2841 964 y FZ(;)e(S)p 2925 952 6 23 v 2930 942
25 3 v 61 w Ff(1)l FZ(<)l Ff(3)3217 925 y FC(8)3252 936
y Fd(L)p 3440 327 319 4 v 3440 378 a Ff(f3)e FV(=)f Ff(0)p
3584 366 6 23 v 3590 356 25 3 v 59 w(f3)g FV(=)g Ff(0)p
3808 327 319 4 v 50 w(f3)h FV(=)f Ff(1)p 3952 366 6 23
v 3958 356 25 3 v 59 w(f3)h FV(=)f Ff(1)p 3440 398 687
4 v 3459 449 a(f3)h FV(=)f Ff(0)p FC(_)o Ff(f3)h FV(=)f
Ff(1)p 3774 437 6 23 v 3780 427 25 3 v 59 w(f3)h FV(=)f
Ff(0)p FZ(;)j Ff(f3)e FV(=)f Ff(1)4126 406 y FC(_)4168
417 y Fd(L)p 3403 479 761 4 v 3392 532 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
Ff(1)p FV(\))p 3830 520 6 23 v 3836 511 25 3 v 59 w Ff(f3)g
FV(=)g Ff(0)p FZ(;)k Ff(f3)d FV(=)f Ff(1)4163 490 y FC(8)4198
501 y Fd(L)p 4329 327 319 4 v 4329 378 a Ff(f1)g FV(=)g
Ff(0)p 4473 366 6 23 v 4478 356 25 3 v 59 w(f1)h FV(=)f
Ff(0)p 4697 327 319 4 v 50 w(f1)h FV(=)f Ff(1)p 4841
366 6 23 v 4847 356 25 3 v 59 w(f1)g FV(=)g Ff(1)p 4329
398 687 4 v 4347 449 a(f1)h FV(=)f Ff(0)p FC(_)p Ff(f1)g
FV(=)g Ff(1)p 4663 437 6 23 v 4668 427 25 3 v 60 w(f1)g
FV(=)g Ff(0)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5015 406 y FC(_)5056
417 y Fd(L)p 4292 479 761 4 v 4281 532 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g
Ff(1)p FV(\))p 4719 520 6 23 v 4724 511 25 3 v 59 w Ff(f1)h
FV(=)f Ff(0)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5052 490 y FC(8)5087
501 y Fd(L)p 3403 565 1650 4 v 3671 619 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
Ff(1)p FV(\))p 4109 607 6 23 v 4115 597 25 3 v 59 w Ff(f3)g
FV(=)g Ff(0)p FC(^)p Ff(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f3)e
FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5052 573 y FC(^)5093
584 y Fd(R)p 5190 568 351 4 v 5190 619 a Ff(f1)h FV(=)f
Ff(f3)p 5350 607 6 23 v 5356 597 25 3 v 59 w(f1)g FV(=)g
Ff(f3)p 3682 651 1859 4 v 3857 705 a FV(\()p Ff(f3)h
FV(=)f Ff(0)p FC(^)o Ff(f1)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f1)h FV(=)f Ff(f3)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
4856 693 6 23 v 4862 683 25 3 v 59 w Ff(f1)h FV(=)f Ff(f3)p
FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5540
660 y FC(\033)5588 671 y Fd(L)p 3800 738 1623 4 v 3789
792 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
FC(^)o Ff(f1)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(f1)h
FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
4913 780 6 23 v 4919 770 25 3 v 59 w Ff(f1)h FV(=)f Ff(f3)p
FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5422
749 y FC(8)5457 760 y Fd(L)p 3780 824 1662 4 v 3770 878
a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)p FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
FV(\))p 4933 866 6 23 v 4939 856 25 3 v 59 w Ff(f1)g
FV(=)g Ff(f3)q FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c
FV(=)g Ff(1)5441 836 y FC(8)5476 847 y Fd(L)p 3780 910
1662 4 v 4096 964 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(T)p
4607 952 6 23 v 4613 942 25 3 v 68 w Ff(f1)e FV(=)f Ff(f3)p
FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5441
922 y FC(8)5476 933 y Fd(L)p 2750 997 2367 4 v 3267 1051
a FZ(M)3325 1061 y FP(1)3358 1051 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3955 1039 6 23 v 3960
1029 25 3 v 67 w Ff(f3)d FV(=)f Ff(1)p FZ(;)k Ff(1)l
FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(f1)c
FV(=)g Ff(1)5116 1005 y FC(^)5157 1016 y Fd(R)5734 900
y F3(.)5734 933 y(.)5734 966 y(.)5734 999 y(.)5699 1051
y FZ(X)5749 1061 y FP(1)p 3267 1083 2532 4 v 3626 1137
a FZ(M)3684 1147 y FP(1)3716 1137 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4313 1125 6 23 v 4319
1115 25 3 v 67 w Ff(f3)d FV(=)f Ff(1)p FC(^)p Ff(f2)g
FV(=)g Ff(1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d
FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
FV(=)f Ff(f2)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5798 1091 y
FC(^)5840 1102 y Fd(R)2457 1182 y Fc(|)p 2481 1182 1667
8 v 1667 w({z)p 4196 1182 V 1667 w(})4133 1243 y Fd(X)4179
1255 y FP(2)1982 1492 y Gc(M)2050 1501 y FV(1)2104 1492
y F9(=)19 b FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
Fu(x)8 b FX(\024)g Fu(m)2511 1469 y Ff(x)p FZ(;)p Ff(y)2582
1492 y F9(\))101 b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p
Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h
F9(=)g Fu(i)p FX(^)p Fu(fx)e F9(=)i Fu(i)p F9(\))12 b
FX(\033)g Fu(fx)18 b F9(=)i Fu(fy)p F9(\))1982 1618 y
Gc(M)2050 1627 y FV(2)2104 1618 y F9(=)f FX(8)p Fu(y)q
Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(y)9 b FX(\024)f Fu(m)2512
1595 y Ff(x)p FZ(;)p Ff(y)2583 1618 y F9(\))100 b Gc(S)23
b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6462
465 y
 currentpoint grestore moveto
 6462 465 a 3499 5116 4 4724 v 277 5119 3226 4 v
Black 1297 5273 a Gg(Figure)25 b(2:)j(Subproofs)e Ga(X)2128
5287 y F9(1)2190 5273 y Gg(and)e Ga(X)2419 5287 y F9(2)2459
5273 y Gg(.)p Black Black eop end
%%Page: 134 146
TeXDict begin 134 145 bop Black -144 51 a Gb(134)2816
b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
321 383 V 321 5012 4 4630 v 2159 408 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 2159 408 a 3367
-1151 247 4 v 3367 -1100 a Ff(1)l FC(\024)l Ff(1)p 3475
-1112 6 23 v 3481 -1122 25 3 v 61 w(1)l FC(\024)l Ff(1)p
3275 -1070 431 4 v 3265 -1005 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(x)l FC(\024)l Ff(m)3473 -1026 y Fe(x)p Fd(;)p
Fe(0)3529 -1005 y FV(\))p 3567 -1017 6 23 v 3573 -1027
25 3 v 59 w Ff(1)l FC(\024)l Ff(1)3705 -1058 y FC(8)3740
-1047 y Fd(L)p 3275 -973 431 4 v 3369 -921 a FZ(M)3427
-911 y FP(1)p 3474 -933 6 23 v 3479 -943 25 3 v 3518
-921 a Ff(1)l FC(\024)l Ff(1)3705 -961 y FC(8)3740 -950
y Fd(L)p 3834 -972 247 4 v 3834 -921 a Ff(0)l FZ(<)l
Ff(1)p 3942 -933 6 23 v 3947 -943 25 3 v 60 w(0)l FZ(<)l
Ff(1)p 3369 -891 712 4 v 3471 -840 a(1)l FC(\024)l Ff(1)p
FC(\033)q Ff(0)l FZ(<)l Ff(1)p FZ(;)13 b(M)3794 -830
y FP(1)p 3840 -852 6 23 v 3846 -861 25 3 v 3885 -840
a Ff(0)l FZ(<)l Ff(1)4079 -882 y FC(\033)4127 -871 y
Fd(L)p 3414 -810 622 4 v 3403 -756 a FC(8)p Ff(y)q FZ(:)p
FV(\()p Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l
Ff(y)q FV(\))p FZ(;)f(M)3851 -746 y FP(1)p 3897 -768
6 23 v 3903 -777 25 3 v 3942 -756 a Ff(0)l FZ(<)l Ff(1)4035
-798 y FC(8)4070 -787 y Fd(L)p 3414 -723 622 4 v 3568
-672 a FZ(M)3626 -662 y FP(1)3659 -672 y FZ(;)e(S)p 3743
-684 6 23 v 3748 -694 25 3 v 61 w Ff(0)l FZ(<)l Ff(1)4035
-712 y FC(8)4070 -701 y Fd(L)p 4258 -1310 319 4 v 4258
-1259 a Ff(f1)e FV(=)f Ff(0)p 4402 -1271 6 23 v 4408
-1281 25 3 v 59 w(f1)g FV(=)g Ff(0)p 4626 -1310 319 4
v 50 w(f1)h FV(=)f Ff(1)p 4770 -1271 6 23 v 4776 -1281
25 3 v 59 w(f1)h FV(=)f Ff(1)p 4258 -1239 687 4 v 4277
-1188 a(f1)g FV(=)g Ff(0)p FC(_)p Ff(f1)h FV(=)f Ff(1)p
4592 -1200 6 23 v 4598 -1210 25 3 v 59 w(f1)h FV(=)f
Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)4944 -1231 y FC(_)4985
-1219 y Fd(L)p 4221 -1158 761 4 v 4210 -1104 a FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p 4648 -1116 6 23 v 4654 -1126 25
3 v 59 w Ff(f1)g FV(=)g Ff(0)p FZ(;)k Ff(f1)d FV(=)f
Ff(1)4981 -1146 y FC(8)5016 -1135 y Fd(L)p 5146 -1310
319 4 v 5146 -1259 a Ff(f0)h FV(=)f Ff(0)p 5290 -1271
6 23 v 5296 -1281 25 3 v 59 w(f0)h FV(=)f Ff(0)p 5515
-1310 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5659 -1271 6 23
v 5665 -1281 25 3 v 59 w(f0)g FV(=)g Ff(1)p 5146 -1239
687 4 v 5165 -1188 a(f0)h FV(=)f Ff(0)p FC(_)p Ff(f0)g
FV(=)g Ff(1)p 5481 -1200 6 23 v 5486 -1210 25 3 v 59
w(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5833
-1231 y FC(_)5874 -1219 y Fd(L)p 5110 -1158 761 4 v 5099
-1104 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 5536 -1116 6 23
v 5542 -1126 25 3 v 59 w Ff(f0)h FV(=)f Ff(0)p FZ(;)k
Ff(f0)c FV(=)g Ff(1)5869 -1146 y FC(8)5904 -1135 y Fd(L)p
4221 -1072 1650 4 v 4489 -1018 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
FV(\))p 4927 -1030 6 23 v 4933 -1040 25 3 v 59 w Ff(f1)g
FV(=)g Ff(0)p FC(^)p Ff(f0)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e
FV(=)f Ff(1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5869 -1063 y
FC(^)5911 -1052 y Fd(R)p 6008 -1069 351 4 v 6008 -1018
a Ff(f0)g FV(=)g Ff(f1)p 6168 -1030 6 23 v 6174 -1040
25 3 v 60 w(f0)g FV(=)g Ff(f1)p 4500 -985 1859 4 v 4675
-931 a FV(\()p Ff(f1)h FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f
Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(f1)p FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o
Ff(fx)h FV(=)f Ff(1)p FV(\))p 5674 -943 6 23 v 5680 -953
25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p FZ(;)k Ff(f1)c FV(=)g
Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)6358 -976 y FC(\033)6406
-965 y Fd(L)p 4618 -899 1623 4 v 4607 -845 a FC(8)p Ff(y)q
FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)o Ff(f0)h
FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(fy)q
FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 5731 -857
6 23 v 5737 -867 25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p FZ(;)k
Ff(f1)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)6240
-887 y FC(8)6275 -876 y Fd(L)p 4598 -813 1662 4 v 4588
-759 a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
FV(=)f Ff(0)p FC(^)p Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(fx)g FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
FV(\))p 5751 -771 6 23 v 5757 -781 25 3 v 59 w Ff(f0)g
FV(=)g Ff(f1)q FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)j Ff(f0)e
FV(=)f Ff(1)6259 -801 y FC(8)6294 -790 y Fd(L)p 4598
-726 1662 4 v 4914 -672 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(T)p 5425 -684 6 23 v 5431 -694 25 3 v 68 w Ff(f0)e
FV(=)f Ff(f1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c
FV(=)g Ff(1)6259 -715 y FC(8)6294 -704 y Fd(L)p 3568
-640 2367 4 v 4085 -586 a FZ(M)4143 -576 y FP(1)4176
-586 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)g FV(=)g
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4773 -598 6 23 v 4778 -608 25 3 v 67 w Ff(f1)d FV(=)f
Ff(1)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5934 -632 y FC(^)5975
-621 y Fd(R)3275 -541 y Fc(|)p 3299 -541 1540 8 v 1540
w({z)p 4887 -541 V 1540 w(})4823 -480 y Fd(X)4869 -468
y FP(3)p 2885 -224 247 4 v 2885 -172 a Ff(1)l FC(\024)l
Ff(2)p 2993 -184 6 23 v 2999 -194 25 3 v 61 w(1)l FC(\024)l
Ff(2)p 2793 -142 431 4 v 2783 -77 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(x)l FC(\024)l Ff(m)2991 -98 y Fe(x)p Fd(;)p
Fe(2)3047 -77 y FV(\))p 3086 -89 6 23 v 3091 -99 25 3
v 59 w Ff(1)l FC(\024)l Ff(2)3223 -130 y FC(8)3258 -119
y Fd(L)p 2793 -45 431 4 v 2887 7 a FZ(M)2945 17 y FP(1)p
2992 -5 6 23 v 2997 -15 25 3 v 3036 7 a Ff(1)l FC(\024)l
Ff(2)3223 -33 y FC(8)3258 -22 y Fd(L)p 3352 -44 247 4
v 3352 7 a Ff(0)l FZ(<)l Ff(2)p 3460 -5 6 23 v 3466 -15
25 3 v 61 w(0)l FZ(<)l Ff(2)p 2887 37 712 4 v 2989 88
a(1)l FC(\024)l Ff(2)p FC(\033)r Ff(0)l FZ(<)l Ff(2)p
FZ(;)12 b(M)3312 98 y FP(1)p 3358 76 6 23 v 3364 66 25
3 v 3403 88 a Ff(0)l FZ(<)l Ff(2)3598 46 y FC(\033)3646
57 y Fd(L)p 2932 118 622 4 v 2921 172 a FC(8)p Ff(y)q
FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l
FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)3369 182 y FP(1)p 3415
160 6 23 v 3421 150 25 3 v 3460 172 a Ff(0)l FZ(<)l Ff(2)3553
130 y FC(8)3588 141 y Fd(L)p 2932 205 622 4 v 3086 255
a FZ(M)3144 265 y FP(1)3177 255 y FZ(;)e(S)p 3261 243
6 23 v 3266 233 25 3 v 61 w Ff(0)l FZ(<)l Ff(2)3553 216
y FC(8)3588 227 y Fd(L)p 3776 -382 319 4 v 3776 -331
a Ff(f2)e FV(=)f Ff(0)p 3920 -343 6 23 v 3926 -353 25
3 v 59 w(f2)h FV(=)f Ff(0)p 4144 -382 319 4 v 49 w(f2)h
FV(=)f Ff(1)p 4288 -343 6 23 v 4294 -353 25 3 v 59 w(f2)h
FV(=)f Ff(1)p 3776 -311 687 4 v 3795 -260 a(f2)h FV(=)f
Ff(0)p FC(_)o Ff(f2)h FV(=)f Ff(1)p 4110 -272 6 23 v
4116 -282 25 3 v 59 w(f2)h FV(=)f Ff(0)p FZ(;)j Ff(f2)e
FV(=)f Ff(1)4462 -303 y FC(_)4504 -292 y Fd(L)p 3739
-230 761 4 v 3729 -176 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
4166 -188 6 23 v 4172 -198 25 3 v 59 w Ff(f2)h FV(=)f
Ff(0)p FZ(;)j Ff(f2)e FV(=)f Ff(1)4499 -219 y FC(8)4534
-208 y Fd(L)p 4665 -382 319 4 v 4665 -331 a Ff(f0)g FV(=)g
Ff(0)p 4809 -343 6 23 v 4814 -353 25 3 v 59 w(f0)h FV(=)f
Ff(0)p 5033 -382 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5177
-343 6 23 v 5183 -353 25 3 v 59 w(f0)h FV(=)f Ff(1)p
4665 -311 687 4 v 4684 -260 a(f0)g FV(=)g Ff(0)p FC(_)p
Ff(f0)h FV(=)f Ff(1)p 4999 -272 6 23 v 5005 -282 25 3
v 59 w(f0)g FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5351
-303 y FC(_)5392 -292 y Fd(L)p 4628 -230 761 4 v 4617
-176 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 5055 -188 6 23 v
5060 -198 25 3 v 59 w Ff(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c
FV(=)g Ff(1)5388 -219 y FC(8)5423 -208 y Fd(L)p 3739
-144 1650 4 v 4007 -90 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
4445 -102 6 23 v 4451 -112 25 3 v 59 w Ff(f2)g FV(=)g
Ff(0)p FC(^)p Ff(f0)h FV(=)f Ff(0)p FZ(;)j Ff(f2)e FV(=)f
Ff(1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5388 -136 y FC(^)5429
-125 y Fd(R)p 5526 -141 351 4 v 5526 -90 a Ff(f0)h FV(=)f
Ff(f2)p 5686 -102 6 23 v 5692 -112 25 3 v 59 w(f0)h FV(=)f
Ff(f2)p 4018 -58 1859 4 v 4193 -4 a FV(\()p Ff(f2)h FV(=)f
Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f0)h FV(=)f Ff(f2)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
5192 -16 6 23 v 5198 -26 25 3 v 59 w Ff(f0)h FV(=)f Ff(f2)p
FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5876
-49 y FC(\033)5924 -37 y Fd(L)p 4136 29 1623 4 v 4126
83 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(0)p
FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p Ff(f0)h
FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
5249 71 6 23 v 5255 61 25 3 v 59 w Ff(f0)h FV(=)f Ff(f2)p
FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5758
40 y FC(8)5793 51 y Fd(L)p 4117 115 1662 4 v 4106 169
a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
FV(\))p 5269 157 6 23 v 5275 147 25 3 v 59 w Ff(f0)g
FV(=)g Ff(f2)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c
FV(=)g Ff(1)5777 127 y FC(8)5812 138 y Fd(L)p 4117 201
1662 4 v 4432 255 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(T)p
4943 243 6 23 v 4949 233 25 3 v 67 w Ff(f0)d FV(=)f Ff(f2)p
FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5777
213 y FC(8)5812 224 y Fd(L)p 3086 288 2367 4 v 3603 342
a FZ(M)3661 352 y FP(1)3694 342 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4291 330 6 23 v 4297
320 25 3 v 68 w Ff(f2)d FV(=)g Ff(1)p FZ(;)k Ff(0)l FZ(<)l
Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g
Ff(1)5452 296 y FC(^)5493 307 y Fd(R)6070 191 y F3(.)6070
224 y(.)6070 257 y(.)6070 290 y(.)6035 342 y FZ(X)6085
352 y FP(3)p 3603 374 2532 4 v 3962 428 a FZ(M)4020 438
y FP(1)4052 428 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4649 416 6 23 v 4655 406 25 3 v 67
w Ff(f2)d FV(=)f Ff(1)p FC(^)p Ff(f1)g FV(=)g Ff(1)p
FZ(;)k Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p
FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)k Ff(f0)c FV(=)g Ff(1)6134 382 y FC(^)6176 394 y
Fd(R)2793 473 y Fc(|)p 2817 473 1667 8 v 1667 w({z)p
4532 473 V 1667 w(})4469 534 y Fd(X)4515 546 y FP(4)p
2660 648 247 4 v 2660 699 a Ff(2)l FC(\024)l Ff(2)p 2768
687 6 23 v 2773 678 25 3 v 61 w(2)l FC(\024)l Ff(2)p
2567 729 433 4 v 2556 794 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(2)l FC(\024)l Ff(m)2766 773 y Fe(x)p Fd(;)p Fe(2)2823
794 y FV(\))p 2861 782 6 23 v 2867 772 25 3 v 59 w Ff(2)l
FC(\024)l Ff(2)2999 741 y FC(8)3034 752 y Fd(L)p 2567
827 433 4 v 2662 878 a FZ(M)2720 888 y FP(2)p 2766 866
6 23 v 2772 856 25 3 v 2811 878 a Ff(2)l FC(\024)l Ff(2)2999
838 y FC(8)3034 849 y Fd(L)p 3127 827 247 4 v 3127 878
a Ff(1)l FZ(<)l Ff(2)p 3235 866 6 23 v 3241 856 25 3
v 61 w(1)l FZ(<)l Ff(2)p 2662 908 713 4 v 2764 960 a(2)l
FC(\024)l Ff(2)p FC(\033)q Ff(1)l FZ(<)l Ff(2)p FZ(;)13
b(M)3087 970 y FP(2)p 3133 948 6 23 v 3139 938 25 3 v
3178 960 a Ff(1)l FZ(<)l Ff(2)3373 917 y FC(\033)3421
928 y Fd(L)p 2707 990 622 4 v 2696 1044 a FC(8)p Ff(y)q
FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(y)q FC(\033)r Ff(1)l
FZ(<)l Ff(y)q FV(\))p FZ(;)f(M)3144 1054 y FP(2)p 3190
1032 6 23 v 3196 1022 25 3 v 3235 1044 a Ff(1)l FZ(<)l
Ff(2)3328 1001 y FC(8)3363 1012 y Fd(L)p 2707 1076 622
4 v 2861 1127 a FZ(M)2919 1137 y FP(2)2951 1127 y FZ(;)f(S)p
3035 1115 6 23 v 3041 1105 25 3 v 61 w Ff(1)l FZ(<)l
Ff(2)3328 1088 y FC(8)3363 1099 y Fd(L)4500 634 y F3(.)4500
667 y(.)4500 700 y(.)4500 733 y(.)4465 784 y FZ(X)4515
794 y FP(4)p 4615 733 351 4 v 4615 784 a Ff(f1)d FV(=)f
Ff(f2)p 4775 772 6 23 v 4781 763 25 3 v 59 w(f1)h FV(=)f
Ff(f2)p 3591 814 2232 4 v 3591 868 a FV(\()p Ff(f2)h
FV(=)f Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p
Ff(f1)h FV(=)f Ff(f2)p FZ(;)k(M)4222 878 y FP(1)4254
868 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4851 856 6 23 v 4857 846 25 3 v 68 w Ff(f1)d FV(=)g Ff(f2)q
FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)k Ff(f0)d FV(=)f Ff(1)5822 823 y FC(\033)5870 834
y Fd(L)p 3534 900 2346 4 v 3523 954 a FC(8)p Ff(y)q FZ(:)p
FV(\(\()p Ff(fy)i FV(=)e Ff(1)p FC(^)o Ff(f1)h FV(=)f
Ff(1)p FV(\))p FC(\033)p Ff(f1)h FV(=)f Ff(fy)q FV(\))p
FZ(;)j(M)4278 964 y FP(1)4311 954 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4908 942 6 23 v 4913
932 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l
FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l
FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c
FV(=)g Ff(1)5879 912 y FC(8)5914 923 y Fd(L)p 3514 987
2385 4 v 3504 1041 a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p
FV(\(\()p Ff(fy)i FV(=)e Ff(1)p FC(^)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)p FV(\))p
FZ(;)k(M)4298 1051 y FP(1)4330 1041 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g
Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4927 1029 6 23 v 4933
1019 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l
FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)j Ff(0)l
FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(f0)e
FV(=)f Ff(1)5898 998 y FC(8)5933 1009 y Fd(L)p 3514 1073
2385 4 v 3877 1127 a FZ(M)3935 1137 y FP(1)3967 1127
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4565 1115 6 23 v 4570 1105 25 3 v 67 w Ff(f1)d FV(=)f
Ff(f2)p FZ(;)k Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f
Ff(f2)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5898 1085 y FC(8)5933
1096 y Fd(L)p 2861 1159 2676 4 v 3242 1213 a FZ(M)3300
1223 y FP(1)3332 1213 y FZ(;)j(M)3419 1223 y FP(2)3452
1213 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4049 1201 6 23 v 4054 1191 25 3 v 68 w Ff(0)l FZ(<)l
Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)j Ff(0)l FZ(<)l
Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f
Ff(1)5535 1168 y FC(^)5577 1179 y Fd(R)p 3159 1246 2079
4 v 3159 1300 a FZ(M)3217 1310 y FP(1)3250 1300 y FZ(;)j(M)3337
1310 y FP(2)3369 1300 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 3966 1288 6 23 v 3972 1278 25 3 v
57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(0)l FZ(<)l Ff(m)p
FC(^)q Ff(f0)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)e FV(=)f Ff(f2)p FZ(;)j Ff(f0)e FV(=)f
Ff(1)5237 1257 y FC(9)5272 1268 y Fd(R)p 3135 1332 2127
4 v 3135 1386 a FZ(M)3193 1396 y FP(1)3226 1386 y FZ(;)j(M)3313
1396 y FP(2)3345 1386 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 3943 1374 6 23 v 3948 1364 25 3 v
67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c FV(=)g Ff(f1)q
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e FV(=)f Ff(f2)p
FZ(;)k Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
FV(=)g Ff(fm)p FV(\))5261 1344 y FC(9)5296 1355 y Fd(R)p
3053 1418 2292 4 v 3053 1472 a FZ(M)3111 1482 y FP(1)3143
1472 y FZ(;)k(M)3231 1482 y FP(2)3263 1472 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3860 1460 6
23 v 3866 1450 25 3 v 56 w FC(9)p Ff(m)p FZ(:)p FV(\()p
Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)d FV(=)f Ff(fm)p FV(\))p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)o FV(\))5343 1430 y FC(9)5378 1441 y Fd(R)p
3053 1505 2292 4 v 3291 1559 a FZ(M)3349 1569 y FP(1)3381
1559 y FZ(;)k(M)3469 1569 y FP(2)3501 1559 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4098 1547 6
23 v 4104 1537 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p FC(^)q
Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5343 1516
y FC(9)5378 1527 y Fd(R)p 3209 1591 1981 4 v 3209 1645
a FZ(M)3267 1655 y FP(1)3299 1645 y FZ(;)j(M)3386 1655
y FP(2)3419 1645 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4016 1633 6 23 v 4021 1623 25 3 v
57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p
FC(^)q Ff(f1)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(f0)d
FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
FV(\))5188 1603 y FC(9)5223 1614 y Fd(R)p 3209 1677 1981
4 v 3446 1731 a FZ(M)3504 1741 y FP(1)3537 1731 y FZ(;)j(M)3624
1741 y FP(2)3656 1731 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)g(T)p 4253 1719 6 23 v 4259 1709 25 3 v
67 w Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
FV(=)g Ff(fm)p FV(\))5188 1689 y FC(9)5223 1700 y Fd(R)2567
1776 y Fc(|)p 2591 1776 1658 8 v 1658 w({z)p 4297 1776
V 1658 w(})4233 1838 y Fd(X)4279 1850 y FP(5)2259 1970
y Gc(M)2327 1979 y FV(1)2381 1970 y F9(=)19 b FX(8)p
Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(x)8 b FX(\024)g
Fu(m)2788 1947 y Ff(x)p FZ(;)p Ff(y)2859 1970 y F9(\))101
b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p
Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h F9(=)g Fu(i)p FX(^)p
Fu(fx)f F9(=)g Fu(i)p F9(\))12 b FX(\033)g Fu(fx)18 b
F9(=)i Fu(fy)p F9(\))2259 2097 y Gc(M)2327 2106 y FV(2)2381
2097 y F9(=)f FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
Fu(y)9 b FX(\024)f Fu(m)2789 2073 y Ff(x)p FZ(;)p Ff(y)2860
2097 y F9(\))100 b Gc(S)23 b F9(=)d FX(8)p Fu(x)p Gc(:)p
Fu(y)q Gc(:)m F9(\()p Fu(sx)8 b FX(\024)g Fu(y)k FX(\033)g
Fu(x)c Gc(<)g Fu(y)q F9(\))6739 408 y
 currentpoint grestore moveto
 6739 408 a 4009
5012 4 4630 v 321 5015 3691 4 v Black 1262 5283 a Gg(Figure)24
b(3:)29 b(Subproofs)c Ga(X)2092 5297 y F9(3)2132 5283
y Gg(,)d Ga(X)2252 5297 y F9(4)2315 5283 y Gg(and)i Ga(X)2544
5297 y F9(5)2583 5283 y Gg(.)p Black Black eop end
%%Page: 135 147
TeXDict begin 135 146 bop Black 3831 51 a Gb(135)p 277
88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
v 1882 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1882 465 a 2724 -868 247 4 v 2724 -816 a
Ff(2)l FC(\024)l Ff(2)p 2832 -828 6 23 v 2837 -838 25
3 v 60 w(2)l FC(\024)l Ff(2)p 3020 -867 247 4 v 52 w(1)l
FZ(<)l Ff(2)p 3128 -828 6 23 v 3134 -838 25 3 v 61 w(1)l
FZ(<)l Ff(2)p 2724 -786 543 4 v 2739 -734 a(2)l FC(\024)l
Ff(2)p FC(\033)r Ff(1)l FZ(<)l Ff(2)p FZ(;)12 b Ff(2)l
FC(\024)l Ff(2)p 3112 -746 6 23 v 3118 -756 25 3 v 61
w(1)l FZ(<)l Ff(2)3266 -777 y FC(\033)3314 -766 y Fd(L)p
2682 -704 626 4 v 2672 -650 a FC(8)p Ff(y)q FZ(:)p FV(\()p
Ff(2)l FC(\024)l Ff(y)q FC(\033)q Ff(1)l FZ(<)l Ff(y)q
FV(\))p FZ(;)g Ff(2)l FC(\024)l Ff(2)p 3169 -662 6 23
v 3175 -672 25 3 v 61 w(1)l FZ(<)l Ff(2)3307 -693 y FC(8)3342
-682 y Fd(L)p 2682 -618 626 4 v 2837 -566 a Ff(2)l FC(\024)l
Ff(2)p FZ(;)g(S)p 3015 -578 6 23 v 3020 -588 25 3 v 61
w Ff(1)l FZ(<)l Ff(2)3307 -606 y FC(8)3342 -595 y Fd(L)p
3448 -1029 319 4 v 3448 -977 a Ff(f2)c FV(=)f Ff(0)p
3592 -989 6 23 v 3598 -999 25 3 v 59 w(f2)h FV(=)f Ff(0)p
3817 -1029 319 4 v 50 w(f1)g FV(=)g Ff(0)p 3961 -989
6 23 v 3966 -999 25 3 v 59 w(f1)h FV(=)f Ff(0)p 3448
-958 687 4 v 3467 -906 a(f2)h FV(=)f Ff(0)p FZ(;)k Ff(f1)c
FV(=)g Ff(0)p 3770 -918 6 23 v 3776 -928 25 3 v 59 w(f2)h
FV(=)f Ff(0)p FC(^)p Ff(f1)g FV(=)g Ff(0)4134 -949 y
FC(^)4176 -938 y Fd(R)p 4273 -958 351 4 v 4273 -906 a
Ff(f1)g FV(=)g Ff(f2)p 4433 -918 6 23 v 4439 -928 25
3 v 60 w(f1)g FV(=)g Ff(f2)p 3467 -877 1157 4 v 3512
-823 a FV(\()p Ff(f2)h FV(=)f Ff(0)p FC(^)o Ff(f1)h FV(=)f
Ff(0)p FV(\))p FC(\033)p Ff(f1)h FV(=)f Ff(f2)p FZ(;)k
Ff(f2)c FV(=)g Ff(0)p FZ(;)k Ff(f1)d FV(=)f Ff(0)p 4388
-835 6 23 v 4394 -845 25 3 v 59 w(f1)g FV(=)g Ff(f2)4623
-868 y FC(\033)4671 -856 y Fd(L)p 3455 -790 1181 4 v
3445 -736 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
Ff(0)p FC(^)p Ff(f1)g FV(=)g Ff(0)p FV(\))p FC(\033)p
Ff(f1)h FV(=)f Ff(fy)q FV(\))p FZ(;)k Ff(f2)c FV(=)g
Ff(0)p FZ(;)k Ff(f1)d FV(=)f Ff(0)p 4445 -748 6 23 v
4451 -758 25 3 v 59 w(f1)g FV(=)g Ff(f2)4635 -779 y FC(8)4670
-768 y Fd(L)p 3436 -704 1220 4 v 3425 -650 a FC(8)p Ff(x)p
FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h
FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f2)e FV(=)f Ff(0)p FZ(;)j
Ff(f1)e FV(=)f Ff(0)p 4464 -662 6 23 v 4470 -672 25 3
v 59 w(f1)h FV(=)f Ff(f2)4654 -692 y FC(8)4689 -681 y
Fd(L)p 3436 -618 1220 4 v 3761 -566 a Ff(f2)h FV(=)f
Ff(0)p FZ(;)k Ff(f1)c FV(=)g Ff(0)p FZ(;)k(T)p 4139 -578
6 23 v 4144 -588 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)4654
-606 y FC(8)4689 -595 y Fd(L)p 2837 -537 1493 4 v 3136
-485 a Ff(f2)h FV(=)f Ff(0)p FZ(;)k Ff(2)l FC(\024)l
Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p
3704 -497 6 23 v 3709 -507 25 3 v 68 w Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)4329 -528 y FC(^)4370
-517 y Fd(R)4829 -636 y F3(.)4829 -603 y(.)4829 -569
y(.)4829 -536 y(.)4801 -485 y FZ(Y)4837 -475 y FP(7)p
2660 -455 2705 4 v 2660 -401 a Ff(f2)g FV(=)g Ff(0)p
FC(_)p Ff(f2)h FV(=)f Ff(1)p FZ(;)j Ff(2)l FC(\024)l
Ff(2)p FZ(;)j Ff(1)l FC(\024)l Ff(2)p FZ(;)f Ff(f1)c
FV(=)f Ff(0)p FZ(;)j(M)3454 -391 y FP(1)3487 -401 y FZ(;)g(M)3574
-391 y FP(2)3606 -401 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4203 -413 6 23 v 4209 -423 25 3 v
67 w Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q
FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5363
-447 y FC(_)5404 -435 y Fd(L)p 2660 -369 2705 4 v 2825
-315 a Ff(2)l FC(\024)l Ff(2)p FZ(;)12 b Ff(1)l FC(\024)l
Ff(2)p FZ(;)h Ff(f1)7 b FV(=)g Ff(0)p FZ(;)k(M)3289 -305
y FP(1)3321 -315 y FZ(;)g(M)3409 -305 y FP(2)3441 -315
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4038 -327 6 23 v 4044 -337 25 3 v 68 w Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l
Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5363 -357 y FC(8)5398 -346
y Fd(L)p 2733 -282 2558 4 v 2722 -218 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)2930 -238 y Fe(x)p
Fd(;)p Fe(1)2987 -218 y FV(\))p FZ(;)j Ff(1)l FC(\024)l
Ff(2)p FZ(;)j Ff(f1)7 b FV(=)g Ff(0)p FZ(;)k(M)3381 -208
y FP(1)3413 -218 y FZ(;)g(M)3501 -208 y FP(2)3533 -218
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
4130 -230 6 23 v 4136 -239 25 3 v 67 w Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l
Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5290 -271 y FC(8)5325 -260
y Fd(L)p 2733 -185 2558 4 v 2887 -131 a Ff(1)l FC(\024)l
Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f Ff(0)p FZ(;)j(M)3227
-121 y FP(1)3260 -131 y FZ(;)g(M)3347 -121 y FP(2)3379
-131 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
3976 -143 6 23 v 3982 -153 25 3 v 67 w Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l
Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)p FV(\))5290 -173 y FC(8)5325 -162
y Fd(L)p 2794 -99 2437 4 v 2783 -34 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(1)l FC(\024)l Ff(m)2993 -55 y Fe(x)p Fd(;)p
Fe(1)3050 -34 y FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(0)p
FZ(;)j(M)3320 -24 y FP(1)3353 -34 y FZ(;)g(M)3440 -24
y FP(2)3473 -34 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4070 -46 6 23 v 4075 -56 25 3 v 67
w Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q
FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5229
-87 y FC(8)5264 -76 y Fd(L)p 2794 -2 2437 4 v 2948 52
a Ff(f1)h FV(=)f Ff(0)p FZ(;)k(M)3166 62 y FP(1)3198
52 y FZ(;)f(M)3285 62 y FP(2)3318 52 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3915 40 6 23
v 3920 30 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
FV(=)f Ff(f2)p FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d
FV(=)g Ff(f2)q FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
FV(\))5229 10 y FC(8)5264 21 y Fd(L)2660 97 y Fc(|)p
2684 97 1347 8 v 1347 w({z)p 4079 97 V 1347 w(})4021
159 y Fd(Y)4055 171 y FP(8)p 2140 531 247 4 v 2140 583
a Ff(1)l FC(\024)l Ff(1)p 2248 571 6 23 v 2253 561 25
3 v 60 w(1)l FC(\024)l Ff(1)p 2047 613 433 4 v 2036 678
a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(m)2246
657 y Fe(x)p Fd(;)p Fe(1)2303 678 y FV(\))p 2341 666
6 23 v 2347 656 25 3 v 59 w Ff(1)l FC(\024)l Ff(1)2478
624 y FC(8)2513 635 y Fd(L)p 2047 710 433 4 v 2142 761
a FZ(M)2200 771 y FP(2)p 2246 749 6 23 v 2252 740 25
3 v 2291 761 a Ff(1)l FC(\024)l Ff(1)2478 722 y FC(8)2513
733 y Fd(L)p 2607 711 247 4 v 2607 761 a Ff(0)l FZ(<)l
Ff(1)p 2715 749 6 23 v 2721 740 25 3 v 61 w(0)l FZ(<)l
Ff(1)p 2142 791 713 4 v 2244 843 a(1)l FC(\024)l Ff(1)p
FC(\033)q Ff(0)l FZ(<)l Ff(1)p FZ(;)13 b(M)2567 853 y
FP(2)p 2613 831 6 23 v 2619 821 25 3 v 2658 843 a Ff(0)l
FZ(<)l Ff(1)2853 801 y FC(\033)2901 812 y Fd(L)p 2187
873 622 4 v 2176 927 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l
FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l Ff(y)q FV(\))p
FZ(;)f(M)2624 937 y FP(2)p 2670 915 6 23 v 2676 905 25
3 v 2715 927 a Ff(0)l FZ(<)l Ff(1)2808 885 y FC(8)2843
896 y Fd(L)p 2187 959 622 4 v 2341 1010 a FZ(M)2399 1020
y FP(2)2431 1010 y FZ(;)f(S)p 2515 998 6 23 v 2521 988
25 3 v 61 w Ff(0)l FZ(<)l Ff(1)2808 971 y FC(8)2843 982
y Fd(L)4033 258 y F3(.)4033 291 y(.)4033 324 y(.)4033
357 y(.)4005 409 y FZ(Y)4041 419 y FP(8)p 4141 357 319
4 v 4141 409 a Ff(f1)c FV(=)g Ff(1)p 4285 397 6 23 v
4290 387 25 3 v 59 w(f1)h FV(=)f Ff(1)p 2994 438 2458
4 v 2994 492 a(f1)h FV(=)f Ff(0)p FC(_)p Ff(f1)g FV(=)g
Ff(1)p FZ(;)k(M)3383 502 y FP(1)3415 492 y FZ(;)g(M)3503
502 y FP(2)3535 492 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)g(T)p 4132 480 6 23 v 4138 470 25 3 v 67
w Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r
Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q
Ff(f0)e FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p
FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f
Ff(fm)p FV(\))5451 446 y FC(_)5492 458 y Fd(L)p 2994
525 2458 4 v 3160 578 a FZ(M)3218 588 y FP(1)3250 578
y FZ(;)k(M)3338 588 y FP(2)3370 578 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 3967 566 6 23 v 3973
557 25 3 v 68 w Ff(f1)d FV(=)g Ff(1)p FZ(;)k Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l
Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5451 536 y FC(8)5486 547
y Fd(L)5646 428 y F3(.)5646 461 y(.)5646 494 y(.)5646
527 y(.)5604 578 y FZ(Y)5640 588 y FP(13)p 3160 611 2559
4 v 3290 665 a FZ(M)3348 675 y FP(1)3380 665 y FZ(;)k(M)3468
675 y FP(2)3500 665 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4097 653 6 23 v 4103 643 25 3 v 68
w Ff(f1)e FV(=)f Ff(1)p FC(^)o Ff(f0)h FV(=)f Ff(1)p
FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5717
619 y FC(^)5759 630 y Fd(R)p 5856 614 351 4 v 5856 665
a Ff(f0)g FV(=)g Ff(f1)p 6016 653 6 23 v 6021 643 25
3 v 60 w(f0)g FV(=)g Ff(f1)p 3290 697 2917 4 v 3390 751
a FV(\()p Ff(f1)h FV(=)f Ff(1)p FC(^)p Ff(f0)h FV(=)f
Ff(1)p FV(\))p FC(\033)p Ff(f0)g FV(=)g Ff(f1)q FZ(;)j(M)4021
761 y FP(1)4053 751 y FZ(;)h(M)4141 761 y FP(2)4173 751
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
4770 739 6 23 v 4776 729 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)e FV(=)f Ff(f2)p
FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))6206
706 y FC(\033)6254 717 y Fd(L)p 3334 784 2830 4 v 3323
838 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(1)p
FC(^)p Ff(f0)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(f0)h
FV(=)f Ff(fy)p FV(\))p FZ(;)k(M)4078 848 y FP(1)4110
838 y FZ(;)g(M)4198 848 y FP(2)4230 838 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4827 826 6 23
v 4833 816 25 3 v 68 w Ff(f0)e FV(=)f Ff(f1)p FZ(;)j
Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j
Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)p Ff(fn)h FV(=)f Ff(fm)p FV(\))6162 795 y
FC(8)6197 806 y Fd(L)p 3314 870 2869 4 v 3303 924 a FC(8)p
Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e
Ff(1)p FC(^)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)k(M)4098 934 y FP(1)4130
924 y FZ(;)f(M)4217 934 y FP(2)4250 924 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4847 912 6 23
v 4852 902 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k
Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))6182 882 y
FC(8)6217 893 y Fd(L)p 3314 956 2869 4 v 3677 1010 a
FZ(M)3735 1020 y FP(1)3767 1010 y FZ(;)k(M)3855 1020
y FP(2)3887 1010 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4484 998 6 23 v 4490 988 25 3 v 68
w Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p
FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l Ff(2)p
FC(^)q Ff(f0)e FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)p FV(\))6182 968 y FC(8)6217 979 y Fd(L)p
2341 1043 3479 4 v 2941 1097 a FZ(M)2999 1107 y FP(1)3032
1097 y FZ(;)j(M)3119 1107 y FP(2)3151 1097 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3748 1085 6
23 v 3754 1075 25 3 v 67 w Ff(1)l FZ(<)l Ff(2)p FC(^)r
Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q
Ff(f0)e FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q
Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p
FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f
Ff(fm)p FV(\))5819 1051 y FC(^)5860 1062 y Fd(R)p 2859
1129 2443 4 v 2859 1183 a FZ(M)2917 1193 y FP(1)2949
1183 y FZ(;)k(M)3037 1193 y FP(2)3069 1183 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3666 1171 6
23 v 3672 1161 25 3 v 56 w FC(9)p Ff(m)p FZ(:)p FV(\()p
Ff(1)l FZ(<)l Ff(m)p FC(^)q Ff(f1)d FV(=)f Ff(fm)p FV(\))p
FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q
FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5301
1141 y FC(9)5336 1152 y Fd(R)p 2859 1215 2443 4 v 3097
1269 a FZ(M)3155 1279 y FP(1)3187 1269 y FZ(;)k(M)3275
1279 y FP(2)3307 1269 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 3904 1257 6 23 v 3910 1247 25 3 v
68 w Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)e FV(=)f Ff(f1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5301
1227 y FC(9)5336 1238 y Fd(R)p 3015 1302 2132 4 v 3015
1356 a FZ(M)3073 1366 y FP(1)3105 1356 y FZ(;)j(M)3192
1366 y FP(2)3225 1356 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 3822 1344 6 23 v 3827 1334 25 3 v
57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(0)l FZ(<)l Ff(m)p
FC(^)q Ff(f0)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5145 1313 y FC(9)5180 1324
y Fd(R)p 3015 1388 2132 4 v 3252 1442 a FZ(M)3310 1452
y FP(1)3342 1442 y FZ(;)k(M)3430 1452 y FP(2)3462 1442
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
4059 1430 6 23 v 4065 1420 25 3 v 67 w Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)p FV(\))5145 1400 y FC(9)5180 1411
y Fd(R)p 3170 1474 1821 4 v 3170 1528 a FZ(M)3228 1538
y FP(1)3260 1528 y FZ(;)k(M)3348 1538 y FP(2)3380 1528
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
3977 1516 6 23 v 3983 1506 25 3 v 57 w FC(9)p Ff(m)p
FZ(:)p FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)e FV(=)f
Ff(fm)p FV(\))p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
FV(\))4990 1486 y FC(9)5025 1497 y Fd(R)p 3170 1561 1821
4 v 3408 1615 a FZ(M)3466 1625 y FP(1)3498 1615 y FZ(;)j(M)3585
1625 y FP(2)3618 1615 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4215 1603 6 23 v 4220 1593 25 3 v
57 w FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)c FV(=)g Ff(fm)p FV(\))4990
1572 y FC(9)5025 1583 y Fd(R)1982 1803 y Gc(M)2050 1812
y FV(1)2104 1803 y F9(=)19 b FX(8)p Fu(y)q Gc(:)p Fu(x)p
Gc(:)n F9(\()p Fu(x)8 b FX(\024)g Fu(m)2511 1780 y Ff(x)p
FZ(;)p Ff(y)2582 1803 y F9(\))101 b Gc(T)30 b F9(=)19
b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p
Fu(fy)h F9(=)g Fu(i)p FX(^)p Fu(fx)e F9(=)i Fu(i)p F9(\))12
b FX(\033)g Fu(fx)18 b F9(=)i Fu(fy)p F9(\))1982 1930
y Gc(M)2050 1939 y FV(2)2104 1930 y F9(=)f FX(8)p Fu(y)q
Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(y)9 b FX(\024)f Fu(m)2512
1906 y Ff(x)p FZ(;)p Ff(y)2583 1930 y F9(\))100 b Gc(S)23
b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6462
465 y
 currentpoint grestore moveto
 6462 465 a 3499 5116 4 4724 v 277 5119 3226 4 v
Black 1010 5273 a Gg(Figure)24 b(4:)29 b(Second)24 b(normal)h(form)e
(and)h(Subproof)h Ga(Y)2707 5287 y F9(8)2746 5273 y Gg(.)p
Black Black eop end
%%Page: 136 148
TeXDict begin 136 147 bop Black -144 51 a Gb(136)2816
b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1927 465
a 2969 -802 247 4 v 2969 -750 a Ff(1)l FC(\024)l Ff(1)p
3077 -762 6 23 v 3082 -772 25 3 v 60 w(1)l FC(\024)l
Ff(1)p 3265 -801 247 4 v 52 w(0)l FZ(<)l Ff(1)p 3373
-762 6 23 v 3379 -772 25 3 v 61 w(0)l FZ(<)l Ff(1)p 2969
-720 543 4 v 2984 -669 a(1)l FC(\024)l Ff(1)p FC(\033)r
Ff(0)l FZ(<)l Ff(1)p FZ(;)12 b Ff(1)l FC(\024)l Ff(1)p
3357 -681 6 23 v 3363 -691 25 3 v 61 w(0)l FZ(<)l Ff(1)3511
-711 y FC(\033)3559 -700 y Fd(L)p 2927 -639 626 4 v 2917
-585 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l FC(\024)l
Ff(y)q FC(\033)q Ff(0)l FZ(<)l Ff(y)q FV(\))p FZ(;)g
Ff(1)l FC(\024)l Ff(1)p 3414 -597 6 23 v 3420 -607 25
3 v 61 w(0)l FZ(<)l Ff(1)3552 -627 y FC(8)3587 -616 y
Fd(L)p 2927 -552 626 4 v 3082 -501 a Ff(1)l FC(\024)l
Ff(1)p FZ(;)g(S)p 3260 -513 6 23 v 3265 -523 25 3 v 61
w Ff(0)l FZ(<)l Ff(1)3552 -541 y FC(8)3587 -530 y Fd(L)p
3693 -963 319 4 v 3693 -912 a Ff(f1)c FV(=)f Ff(0)p 3837
-924 6 23 v 3843 -934 25 3 v 59 w(f1)h FV(=)f Ff(0)p
4062 -963 319 4 v 50 w(f0)g FV(=)g Ff(0)p 4206 -924 6
23 v 4211 -934 25 3 v 59 w(f0)h FV(=)f Ff(0)p 3693 -892
687 4 v 3712 -841 a(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f0)e
FV(=)f Ff(0)p 4015 -853 6 23 v 4021 -862 25 3 v 59 w(f1)h
FV(=)f Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)4379 -884 y
FC(^)4421 -872 y Fd(R)p 4518 -892 351 4 v 4518 -841 a
Ff(f0)g FV(=)g Ff(f1)p 4678 -853 6 23 v 4684 -862 25
3 v 60 w(f0)g FV(=)g Ff(f1)p 3712 -811 1157 4 v 3757
-757 a FV(\()p Ff(f1)h FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f
Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(f1)p FZ(;)k
Ff(f1)c FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4633
-769 6 23 v 4639 -779 25 3 v 59 w(f0)g FV(=)g Ff(f1)4868
-802 y FC(\033)4916 -791 y Fd(L)p 3700 -725 1181 4 v
3690 -671 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p
Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f1)e FV(=)f
Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4690 -683 6 23 v
4696 -693 25 3 v 59 w(f0)g FV(=)g Ff(f1)4880 -713 y FC(8)4915
-702 y Fd(L)p 3681 -638 1220 4 v 3670 -584 a FC(8)p Ff(x)p
FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h
FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(0)p FZ(;)j
Ff(f0)e FV(=)f Ff(0)p 4709 -596 6 23 v 4715 -606 25 3
v 59 w(f0)h FV(=)f Ff(f1)4899 -627 y FC(8)4934 -616 y
Fd(L)p 3681 -552 1220 4 v 4006 -501 a Ff(f1)h FV(=)f
Ff(0)p FZ(;)k Ff(f0)c FV(=)g Ff(0)p FZ(;)k(T)p 4384 -513
6 23 v 4389 -523 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)4899
-540 y FC(8)4934 -529 y Fd(L)p 3082 -471 1493 4 v 3381
-419 a Ff(f1)h FV(=)f Ff(0)p FZ(;)k Ff(1)l FC(\024)l
Ff(1)p FZ(;)h Ff(f0)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p
3949 -431 6 23 v 3954 -441 25 3 v 67 w Ff(0)l FZ(<)l
Ff(1)p FC(^)r Ff(f0)d FV(=)f Ff(f1)4573 -462 y FC(^)4615
-451 y Fd(R)5074 -570 y F3(.)5074 -537 y(.)5074 -504
y(.)5074 -470 y(.)5046 -419 y FZ(Y)5082 -409 y FP(5)p
2887 -389 2741 4 v 2887 -335 a Ff(f1)g FV(=)g Ff(0)p
FC(_)p Ff(f1)h FV(=)f Ff(1)p FZ(;)j Ff(1)l FC(\024)l
Ff(1)p FZ(;)j Ff(f0)7 b FV(=)g Ff(0)p FZ(;)k(M)3558 -325
y FP(1)3590 -335 y FZ(;)g(M)3678 -325 y FP(2)3710 -335
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4307 -347 6 23 v 4313 -357 25 3 v 68 w Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g
Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5626
-381 y FC(_)5667 -370 y Fd(L)p 2887 -303 2741 4 v 3052
-249 a Ff(1)l FC(\024)l Ff(1)p FZ(;)12 b Ff(f0)c FV(=)f
Ff(0)p FZ(;)k(M)3393 -239 y FP(1)3425 -249 y FZ(;)f(M)3512
-239 y FP(2)3545 -249 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4142 -261 6 23 v 4147 -271 25 3 v
67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)f Ff(f1)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
FV(=)g Ff(fm)p FV(\))5626 -291 y FC(8)5661 -280 y Fd(L)p
2960 -216 2594 4 v 2949 -152 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(x)l FC(\024)l Ff(m)3157 -173 y Fe(x)p Fd(;)p Fe(0)3214
-152 y FV(\))p FZ(;)j Ff(f0)e FV(=)f Ff(0)p FZ(;)k(M)3485
-142 y FP(1)3517 -152 y FZ(;)f(M)3604 -142 y FP(2)3637
-152 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4234 -164 6 23 v 4240 -174 25 3 v 68 w Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f
Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))5552
-205 y FC(8)5587 -194 y Fd(L)p 2960 -119 2594 4 v 3114
-65 a Ff(f0)g FV(=)g Ff(0)p FZ(;)k(M)3331 -55 y FP(1)3363
-65 y FZ(;)g(M)3451 -55 y FP(2)3483 -65 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4080 -77 6 23
v 4086 -87 25 3 v 68 w Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)e
FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p FZ(;)p FC(9)p
Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p
FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5552 -108 y FC(8)5587
-97 y Fd(L)2887 -21 y Fc(|)p 2911 -21 1365 8 v 1365 w({z)p
4324 -21 V 1365 w(})4266 41 y Fd(Y)4300 53 y FP(6)p 2180
995 247 4 v 2180 1047 a Ff(1)l FC(\024)l Ff(2)p 2288
1035 6 23 v 2294 1025 25 3 v 61 w(1)l FC(\024)l Ff(2)p
2476 996 247 4 v 51 w(0)l FZ(<)l Ff(2)p 2584 1035 6 23
v 2590 1025 25 3 v 61 w(0)l FZ(<)l Ff(2)p 2180 1077 543
4 v 2196 1128 a(1)l FC(\024)l Ff(2)p FC(\033)q Ff(0)l
FZ(<)l Ff(2)p FZ(;)13 b Ff(1)l FC(\024)l Ff(2)p 2569
1116 6 23 v 2574 1106 25 3 v 60 w(0)l FZ(<)l Ff(2)2722
1086 y FC(\033)2770 1097 y Fd(L)p 2139 1158 626 4 v 2128
1212 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l FC(\024)l
Ff(y)q FC(\033)r Ff(0)l FZ(<)l Ff(y)q FV(\))p FZ(;)f
Ff(1)l FC(\024)l Ff(2)p 2626 1200 6 23 v 2631 1190 25
3 v 60 w(0)l FZ(<)l Ff(2)2763 1170 y FC(8)2798 1181 y
Fd(L)p 2139 1244 626 4 v 2293 1296 a Ff(1)l FC(\024)l
Ff(2)p FZ(;)h(S)p 2471 1284 6 23 v 2477 1274 25 3 v 61
w Ff(0)l FZ(<)l Ff(2)2763 1256 y FC(8)2798 1267 y Fd(L)p
2892 813 319 4 v 2892 864 a Ff(f2)8 b FV(=)f Ff(1)p 3036
852 6 23 v 3042 842 25 3 v 59 w(f2)g FV(=)g Ff(1)4299
198 y F3(.)4299 231 y(.)4299 265 y(.)4299 298 y(.)4270
349 y FZ(Y)4306 359 y FP(6)p 4407 298 319 4 v 4407 349
a Ff(f0)g FV(=)g Ff(1)p 4551 337 6 23 v 4556 327 25 3
v 59 w(f0)h FV(=)f Ff(1)p 3260 379 2458 4 v 3260 433
a(f0)h FV(=)f Ff(0)p FC(_)p Ff(f0)g FV(=)g Ff(1)p FZ(;)k(M)3649
443 y FP(1)3681 433 y FZ(;)g(M)3769 443 y FP(2)3801 433
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4398 421 6 23 v 4404 411 25 3 v 68 w Ff(0)l FZ(<)l Ff(1)p
FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5717
387 y FC(_)5758 398 y Fd(L)p 3260 465 2458 4 v 3426 519
a FZ(M)3484 529 y FP(1)3516 519 y FZ(;)j(M)3603 529 y
FP(2)3636 519 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4233 507 6 23 v 4238 497 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p
FC(^)r Ff(f0)d FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l Ff(2)p
FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5717
477 y FC(8)5752 488 y Fd(L)p 3343 551 2292 4 v 3343 605
a FZ(M)3401 615 y FP(1)3434 605 y FZ(;)j(M)3521 615 y
FP(2)3553 605 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e
FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4150 593 6 23 v 4156 583 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)c FV(=)g Ff(fm)p
FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)p FV(\))5634 563 y FC(9)5669 574
y Fd(R)p 3343 638 2292 4 v 3581 692 a FZ(M)3639 702 y
FP(1)3671 692 y FZ(;)k(M)3759 702 y FP(2)3791 692 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p
Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4388
680 6 23 v 4394 670 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5634
649 y FC(9)5669 660 y Fd(R)p 3499 724 1981 4 v 3499 778
a FZ(M)3557 788 y FP(1)3589 778 y FZ(;)k(M)3677 788 y
FP(2)3709 778 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4306 766 6 23 v 4312 756 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)q Ff(f1)e FV(=)f Ff(fm)p
FV(\))p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)g FV(=)g Ff(fm)p FV(\))5478 736 y FC(9)5513 747
y Fd(R)p 3499 810 1981 4 v 3736 864 a FZ(M)3794 874 y
FP(1)3827 864 y FZ(;)j(M)3914 874 y FP(2)3947 864 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p
Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4544
852 6 23 v 4549 842 25 3 v 67 w Ff(f0)d FV(=)f Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))5478
822 y FC(9)5513 833 y Fd(R)p 2892 897 2350 4 v 3149 951
a Ff(f2)h FV(=)f Ff(1)p FZ(;)j(M)3366 961 y FP(1)3398
951 y FZ(;)h(M)3486 961 y FP(2)3518 951 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4115 939 6 23
v 4121 929 25 3 v 67 w Ff(f2)d FV(=)f Ff(1)p FC(^)o Ff(f0)h
FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p
FV(\))5241 905 y FC(^)5282 916 y Fd(R)p 5852 899 351
4 v 5852 951 a Ff(f0)h FV(=)f Ff(f2)p 6012 939 6 23 v
6018 929 25 3 v 59 w(f0)h FV(=)f Ff(f2)p 3149 983 3054
4 v 3549 1037 a FV(\()p Ff(f2)h FV(=)f Ff(1)p FC(^)p
Ff(f0)g FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(f0)h FV(=)f
Ff(f2)p FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j(M)4339 1047
y FP(1)4371 1037 y FZ(;)h(M)4459 1047 y FP(2)4491 1037
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
5088 1025 6 23 v 5094 1015 25 3 v 67 w Ff(f0)d FV(=)f
Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))6202
992 y FC(\033)6250 1003 y Fd(L)p 3492 1069 2367 4 v 3482
1123 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
Ff(1)p FC(^)p Ff(f0)h FV(=)f Ff(1)p FV(\))p FC(\033)p
Ff(f0)g FV(=)g Ff(fy)q FV(\))p FZ(;)k Ff(f2)c FV(=)g
Ff(1)p FZ(;)k(M)4396 1133 y FP(1)4428 1123 y FZ(;)g(M)4516
1133 y FP(2)4548 1123 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)g(T)p 5145 1111 6 23 v 5151 1101 25 3 v
67 w Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
FV(=)g Ff(fm)p FV(\))5858 1081 y FC(8)5893 1092 y Fd(L)p
3473 1156 2407 4 v 3462 1210 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(1)p FC(^)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
FV(\))p FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k(M)4416 1220
y FP(1)4448 1210 y FZ(;)f(M)4535 1220 y FP(2)4568 1210
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
5165 1198 6 23 v 5170 1188 25 3 v 68 w Ff(f0)c FV(=)g
Ff(f2)q FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
Ff(n)l FZ(<)l Ff(m)p FC(^)p Ff(fn)h FV(=)f Ff(fm)p FV(\))5878
1167 y FC(8)5913 1178 y Fd(L)p 3473 1242 2407 4 v 3836
1296 a Ff(f2)g FV(=)g Ff(1)p FZ(;)k(M)4053 1306 y FP(1)4085
1296 y FZ(;)g(M)4173 1306 y FP(2)4205 1296 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4802 1284 6
23 v 4808 1274 25 3 v 68 w Ff(f0)d FV(=)g Ff(f2)q FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5878 1254
y FC(8)5913 1265 y Fd(L)p 2293 1328 3223 4 v 2935 1382
a Ff(f2)h FV(=)f Ff(1)p FZ(;)j Ff(1)l FC(\024)l Ff(2)p
FZ(;)j(M)3276 1392 y FP(1)3308 1382 y FZ(;)e(M)3396 1392
y FP(2)3428 1382 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4025 1370 6 23 v 4031 1360 25 3 v
68 w Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5515
1337 y FC(^)5557 1348 y Fd(R)2139 1427 y Fc(|)p 2163
1427 2030 8 v 2030 w({z)p 4241 1427 V 2030 w(})4183 1489
y Fd(Y)4217 1501 y FP(7)2026 1738 y Gc(M)2094 1747 y
FV(1)2148 1738 y F9(=)20 b FX(8)p Fu(y)q Gc(:)p Fu(x)p
Gc(:)m F9(\()p Fu(x)8 b FX(\024)g Fu(m)2555 1714 y Ff(x)p
FZ(;)p Ff(y)2626 1738 y F9(\))101 b Gc(T)30 b F9(=)19
b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p
Fu(fy)i F9(=)e Fu(i)p FX(^)p Fu(fx)g F9(=)g Fu(i)p F9(\))12
b FX(\033)g Fu(fx)19 b F9(=)g Fu(fy)p F9(\))2026 1864
y Gc(M)2094 1873 y FV(2)2148 1864 y F9(=)h FX(8)p Fu(y)q
Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(y)9 b FX(\024)f Fu(m)2556
1840 y Ff(x)p FZ(;)p Ff(y)2627 1864 y F9(\))100 b Gc(S)23
b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6506
465 y
 currentpoint grestore moveto
 6506 465 a 3543 5116 4 4724 v 321 5119 3226 4 v
Black 1364 5273 a Gg(Figure)24 b(5:)29 b(Subproofs)d
Ga(Y)2173 5287 y F9(6)2235 5273 y Gg(and)e Ga(Y)2442
5287 y F9(7)2481 5273 y Gg(.)p Black Black eop end
%%Page: 137 149
TeXDict begin 137 148 bop Black 3831 51 a Gb(137)p 277
88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
v 1882 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1882 465 a 2724 -693 247 4 v 2724 -641 a
Ff(1)l FC(\024)l Ff(1)p 2832 -653 6 23 v 2837 -663 25
3 v 60 w(1)l FC(\024)l Ff(1)p 3020 -692 247 4 v 52 w(0)l
FZ(<)l Ff(1)p 3128 -653 6 23 v 3134 -663 25 3 v 61 w(0)l
FZ(<)l Ff(1)p 2724 -611 543 4 v 2739 -559 a(1)l FC(\024)l
Ff(1)p FC(\033)r Ff(0)l FZ(<)l Ff(1)p FZ(;)12 b Ff(1)l
FC(\024)l Ff(1)p 3112 -571 6 23 v 3118 -581 25 3 v 61
w(0)l FZ(<)l Ff(1)3266 -602 y FC(\033)3314 -591 y Fd(L)p
2682 -529 626 4 v 2672 -475 a FC(8)p Ff(y)q FZ(:)p FV(\()p
Ff(1)l FC(\024)l Ff(y)q FC(\033)q Ff(0)l FZ(<)l Ff(y)q
FV(\))p FZ(;)g Ff(1)l FC(\024)l Ff(1)p 3169 -487 6 23
v 3175 -497 25 3 v 61 w(0)l FZ(<)l Ff(1)3307 -518 y FC(8)3342
-507 y Fd(L)p 2682 -443 626 4 v 2837 -392 a Ff(1)l FC(\024)l
Ff(1)p FZ(;)g(S)p 3015 -404 6 23 v 3020 -413 25 3 v 61
w Ff(0)l FZ(<)l Ff(1)3307 -431 y FC(8)3342 -420 y Fd(L)p
3448 -854 319 4 v 3448 -802 a Ff(f1)c FV(=)f Ff(0)p 3592
-814 6 23 v 3598 -824 25 3 v 59 w(f1)h FV(=)f Ff(0)p
3817 -854 319 4 v 50 w(f0)g FV(=)g Ff(0)p 3961 -814 6
23 v 3966 -824 25 3 v 59 w(f0)h FV(=)f Ff(0)p 3448 -783
687 4 v 3467 -731 a(f1)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c
FV(=)g Ff(0)p 3770 -743 6 23 v 3776 -753 25 3 v 59 w(f1)h
FV(=)f Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)4134 -774 y
FC(^)4176 -763 y Fd(R)p 4273 -783 351 4 v 4273 -731 a
Ff(f0)g FV(=)g Ff(f1)p 4433 -743 6 23 v 4439 -753 25
3 v 60 w(f0)g FV(=)g Ff(f1)p 3467 -702 1157 4 v 3512
-648 a FV(\()p Ff(f1)h FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f
Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(f1)p FZ(;)k
Ff(f1)c FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4388
-660 6 23 v 4394 -670 25 3 v 59 w(f0)g FV(=)g Ff(f1)4623
-693 y FC(\033)4671 -681 y Fd(L)p 3455 -615 1181 4 v
3445 -561 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p
Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)k Ff(f1)c FV(=)g
Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4445 -573 6 23 v
4451 -583 25 3 v 59 w(f0)g FV(=)g Ff(f1)4635 -604 y FC(8)4670
-593 y Fd(L)p 3436 -529 1220 4 v 3425 -475 a FC(8)p Ff(x)p
FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h
FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(0)p FZ(;)j
Ff(f0)e FV(=)f Ff(0)p 4464 -487 6 23 v 4470 -497 25 3
v 59 w(f0)h FV(=)f Ff(f1)4654 -517 y FC(8)4689 -506 y
Fd(L)p 3436 -443 1220 4 v 3761 -392 a Ff(f1)h FV(=)f
Ff(0)p FZ(;)k Ff(f0)c FV(=)g Ff(0)p FZ(;)k(T)p 4139 -404
6 23 v 4144 -413 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)4654
-431 y FC(8)4689 -420 y Fd(L)p 2837 -362 1493 4 v 3136
-310 a Ff(f1)h FV(=)f Ff(0)p FZ(;)k Ff(1)l FC(\024)l
Ff(1)p FZ(;)h Ff(f0)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p
3704 -322 6 23 v 3709 -332 25 3 v 68 w Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)4329 -353 y FC(^)4370
-342 y Fd(R)4829 -461 y F3(.)4829 -428 y(.)4829 -394
y(.)4829 -361 y(.)4801 -310 y FZ(Y)4837 -300 y FP(3)p
2425 -280 3175 4 v 2425 -226 a Ff(f1)g FV(=)g Ff(0)p
FC(_)p Ff(f1)h FV(=)f Ff(1)p FZ(;)j Ff(1)l FC(\024)l
Ff(1)p FZ(;)j Ff(f0)7 b FV(=)g Ff(0)p FZ(;)k Ff(2)l FC(\024)l
Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3379 -216
y FP(1)3411 -226 y FZ(;)f(M)3498 -216 y FP(2)3531 -226
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4128 -238 6 23 v 4133 -248 25 3 v 67 w Ff(0)l FZ(<)l
Ff(1)p FC(^)r Ff(f0)d FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l
Ff(3)p FC(^)r Ff(f1)d FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)p
Ff(fn)h FV(=)f Ff(fm)p FV(\))5598 -272 y FC(_)5639 -261
y Fd(L)p 2425 -194 3175 4 v 2590 -140 a Ff(1)l FC(\024)l
Ff(1)p FZ(;)12 b Ff(f0)c FV(=)f Ff(0)p FZ(;)k Ff(2)l
FC(\024)l Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3213
-130 y FP(1)3246 -140 y FZ(;)g(M)3333 -130 y FP(2)3365
-140 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
3962 -152 6 23 v 3968 -162 25 3 v 67 w Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l
Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5598 -182 y FC(8)5633 -171
y Fd(L)p 2498 -107 3028 4 v 2487 -43 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)2695 -63 y Fe(x)p
Fd(;)p Fe(0)2752 -43 y FV(\))p FZ(;)j Ff(f0)e FV(=)f
Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)j(M)3305 -33 y FP(1)3338 -43 y FZ(;)g(M)3425
-33 y FP(2)3457 -43 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4054 -55 6 23 v 4060 -64 25 3 v 67
w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c FV(=)g Ff(f1)q
FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5525
-96 y FC(8)5560 -85 y Fd(L)p 2498 -10 3028 4 v 2652 44
a Ff(f0)g FV(=)g Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p
FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3152 54 y FP(1)3184
44 y FZ(;)f(M)3271 54 y FP(2)3304 44 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3901 32 6 23
v 3906 22 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c
FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d
FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e
FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p
FV(\))5525 2 y FC(8)5560 13 y Fd(L)2425 88 y Fc(|)p 2449
88 1582 8 v 1582 w({z)p 4079 88 V 1582 w(})4021 150 y
Fd(Y)4055 162 y FP(4)4057 424 y F3(.)4057 457 y(.)4057
490 y(.)4057 523 y(.)4029 575 y FZ(Y)4065 585 y FP(4)p
4165 523 319 4 v 4165 575 a Ff(f0)h FV(=)f Ff(1)p 4309
563 6 23 v 4315 553 25 3 v 59 w(f0)h FV(=)f Ff(1)p 2722
604 3051 4 v 2722 658 a(f0)h FV(=)f Ff(0)p FC(_)p Ff(f0)g
FV(=)g Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)k(M)3394 668 y FP(1)3426 658 y FZ(;)g(M)3514
668 y FP(2)3546 658 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4143 646 6 23 v 4149 636 25 3 v 68
w Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p
FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)o FV(\))5772 612 y FC(_)5814 623 y Fd(L)p
2722 690 3051 4 v 2888 744 a Ff(2)l FC(\024)l Ff(2)p
FZ(;)12 b Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3228 754 y FP(1)3261
744 y FZ(;)g(M)3348 754 y FP(2)3381 744 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3978 732 6 23
v 3983 722 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c
FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d
FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e
FV(=)f Ff(f2)p FZ(;)k Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p
Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p
FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5772 702 y FC(8)5807
713 y Fd(L)p 2806 777 2885 4 v 2806 831 a Ff(2)l FC(\024)l
Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3146
841 y FP(1)3178 831 y FZ(;)h(M)3266 841 y FP(2)3298 831
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
3895 819 6 23 v 3901 809 25 3 v 56 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)d FV(=)f Ff(fm)p
FV(\))p FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g
Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g
Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)g FV(=)g Ff(fm)p FV(\))5689 788 y FC(9)5724 799
y Fd(R)p 2806 863 2885 4 v 3043 917 a Ff(2)l FC(\024)l
Ff(2)p FZ(;)13 b Ff(f1)7 b FV(=)g Ff(1)p FZ(;)k(M)3384
927 y FP(1)3416 917 y FZ(;)g(M)3504 927 y FP(2)3536 917
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4133 905 6 23 v 4139 895 25 3 v 68 w Ff(1)l FZ(<)l Ff(3)p
FC(^)q Ff(f1)e FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5689
875 y FC(9)5724 886 y Fd(R)p 2961 949 2574 4 v 2961 1003
a Ff(2)l FC(\024)l Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f Ff(1)p
FZ(;)k(M)3302 1013 y FP(1)3334 1003 y FZ(;)f(M)3421 1013
y FP(2)3454 1003 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4051 991 6 23 v 4056 981 25 3 v 57
w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)q
Ff(f1)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5534
961 y FC(9)5569 972 y Fd(R)p 2961 1036 2574 4 v 3199
1090 a Ff(2)l FC(\024)l Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f
Ff(1)p FZ(;)j(M)3539 1100 y FP(1)3572 1090 y FZ(;)g(M)3659
1100 y FP(2)3691 1090 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4288 1078 6 23 v 4294 1068 25 3 v
67 w Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q
FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
FV(=)g Ff(fm)p FV(\))5534 1047 y FC(9)5569 1058 y Fd(R)p
3106 1122 2285 4 v 3095 1187 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(2)l FC(\024)l Ff(m)3305 1166 y Fe(x)p Fd(;)p Fe(2)3362
1187 y FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)j(M)3632
1197 y FP(1)3665 1187 y FZ(;)g(M)3752 1197 y FP(2)3784
1187 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4382 1175 6 23 v 4387 1165 25 3 v 67 w Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f
Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5389
1134 y FC(8)5424 1145 y Fd(L)p 3106 1219 2285 4 v 3260
1273 a Ff(f1)h FV(=)f Ff(1)p FZ(;)k(M)3478 1283 y FP(1)3510
1273 y FZ(;)f(M)3597 1283 y FP(2)3630 1273 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4227 1261 6
23 v 4232 1251 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p FC(^)q
Ff(f1)d FV(=)f Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5389 1231
y FC(8)5424 1242 y Fd(L)2722 1318 y Fc(|)p 2746 1318
1520 8 v 1520 w({z)p 4314 1318 V 1520 w(})4257 1379 y
Fd(Y)4291 1391 y FP(5)1982 1629 y Gc(M)2050 1638 y FV(1)2104
1629 y F9(=)19 b FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
Fu(x)8 b FX(\024)g Fu(m)2511 1605 y Ff(x)p FZ(;)p Ff(y)2582
1629 y F9(\))101 b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p
Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h
F9(=)g Fu(i)p FX(^)p Fu(fx)e F9(=)i Fu(i)p F9(\))12 b
FX(\033)g Fu(fx)18 b F9(=)i Fu(fy)p F9(\))1982 1755 y
Gc(M)2050 1764 y FV(2)2104 1755 y F9(=)f FX(8)p Fu(y)q
Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(y)9 b FX(\024)f Fu(m)2512
1731 y Ff(x)p FZ(;)p Ff(y)2583 1755 y F9(\))100 b Gc(S)23
b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6462
465 y
 currentpoint grestore moveto
 6462 465 a 3499 5116 4 4724 v 277 5119 3226 4 v
Black 1320 5273 a Gg(Figure)24 b(6:)29 b(Subproofs)c
Ga(Y)2128 5287 y F9(4)2190 5273 y Gg(and)f Ga(Y)2397
5287 y F9(5)2437 5273 y Gg(.)p Black Black eop end
%%Page: 138 150
TeXDict begin 138 149 bop Black -144 51 a Gb(138)2816
b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1927 465
a 2094 -771 247 4 v 2094 -719 a Ff(2)l FC(\024)l Ff(3)p
2202 -731 6 23 v 2207 -741 25 3 v 61 w(2)l FC(\024)l
Ff(3)p 2390 -770 247 4 v 51 w(1)l FZ(<)l Ff(3)p 2498
-731 6 23 v 2504 -741 25 3 v 61 w(1)l FZ(<)l Ff(3)p 2094
-689 543 4 v 2109 -637 a(2)l FC(\024)l Ff(3)p FC(\033)r
Ff(1)l FZ(<)l Ff(3)p FZ(;)13 b Ff(2)l FC(\024)l Ff(3)p
2483 -649 6 23 v 2488 -659 25 3 v 60 w(1)l FZ(<)l Ff(3)2636
-680 y FC(\033)2684 -669 y Fd(L)p 2053 -607 626 4 v 2042
-554 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l
Ff(y)q FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)f
Ff(2)l FC(\024)l Ff(3)p 2539 -566 6 23 v 2545 -575 25
3 v 61 w(1)l FZ(<)l Ff(3)2677 -596 y FC(8)2712 -585 y
Fd(L)p 2053 -521 626 4 v 2207 -470 a Ff(2)l FC(\024)l
Ff(3)p FZ(;)g(S)p 2385 -482 6 23 v 2391 -491 25 3 v 62
w Ff(1)l FZ(<)l Ff(3)2677 -509 y FC(8)2712 -498 y Fd(L)p
2819 -932 319 4 v 2819 -881 a Ff(f3)7 b FV(=)g Ff(1)p
2962 -893 6 23 v 2968 -902 25 3 v 59 w(f3)h FV(=)f Ff(1)p
3187 -932 319 4 v 50 w(f1)h FV(=)f Ff(1)p 3331 -893 6
23 v 3337 -902 25 3 v 59 w(f1)g FV(=)g Ff(1)p 2819 -861
687 4 v 2837 -809 a(f3)h FV(=)f Ff(1)p FZ(;)k Ff(f1)c
FV(=)g Ff(1)p 3141 -821 6 23 v 3146 -831 25 3 v 59 w(f3)h
FV(=)f Ff(1)p FC(^)p Ff(f1)h FV(=)f Ff(1)3505 -852 y
FC(^)3546 -841 y Fd(R)p 3643 -861 351 4 v 3643 -809 a
Ff(f1)h FV(=)f Ff(f3)p 3803 -821 6 23 v 3809 -831 25
3 v 59 w(f1)g FV(=)g Ff(f3)p 2837 -780 1157 4 v 2882
-726 a FV(\()p Ff(f3)h FV(=)f Ff(1)p FC(^)p Ff(f1)g FV(=)g
Ff(1)p FV(\))p FC(\033)p Ff(f1)h FV(=)f Ff(f3)p FZ(;)k
Ff(f3)d FV(=)f Ff(1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p 3758
-738 6 23 v 3764 -748 25 3 v 59 w(f1)h FV(=)f Ff(f3)3993
-771 y FC(\033)4041 -760 y Fd(L)p 2825 -693 1181 4 v
2815 -639 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
Ff(1)p FC(^)p Ff(f1)g FV(=)g Ff(1)p FV(\))p FC(\033)q
Ff(f1)g FV(=)g Ff(fy)q FV(\))p FZ(;)k Ff(f3)c FV(=)g
Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)p 3815 -651 6 23 v
3821 -661 25 3 v 59 w(f1)h FV(=)f Ff(f3)4005 -682 y FC(8)4040
-671 y Fd(L)p 2806 -607 1220 4 v 2795 -553 a FC(8)p Ff(x)p
FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(1)p
FC(^)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(fx)h
FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)k
Ff(f1)c FV(=)g Ff(1)p 3835 -565 6 23 v 3840 -575 25 3
v 59 w(f1)h FV(=)f Ff(f3)4024 -595 y FC(8)4059 -584 y
Fd(L)p 2806 -521 1220 4 v 3132 -470 a Ff(f3)g FV(=)g
Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j(T)p 3509 -482
6 23 v 3515 -491 25 3 v 68 w Ff(f1)d FV(=)g Ff(f3)4024
-509 y FC(8)4059 -498 y Fd(L)p 2207 -440 1493 4 v 2507
-388 a Ff(f3)g FV(=)g Ff(1)p FZ(;)k Ff(2)l FC(\024)l
Ff(3)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(S)o(;)f(T)p
3074 -400 6 23 v 3080 -410 25 3 v 68 w Ff(1)l FZ(<)l
Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)3699 -431 y FC(^)3740
-420 y Fd(R)2053 -346 y Fc(|)p 2077 -346 978 8 v 978
w({z)p 3103 -346 V 978 w(})3045 -284 y Fd(Y)3079 -272
y FP(1)p 4370 -771 247 4 v 4370 -719 a Ff(2)l FC(\024)l
Ff(2)p 4478 -731 6 23 v 4484 -741 25 3 v 61 w(2)l FC(\024)l
Ff(2)p 4667 -770 247 4 v 52 w(1)l FZ(<)l Ff(2)p 4775
-731 6 23 v 4780 -741 25 3 v 60 w(1)l FZ(<)l Ff(2)p 4370
-689 543 4 v 4386 -637 a(2)l FC(\024)l Ff(2)p FC(\033)r
Ff(1)l FZ(<)l Ff(2)p FZ(;)12 b Ff(2)l FC(\024)l Ff(2)p
4759 -649 6 23 v 4765 -659 25 3 v 61 w(1)l FZ(<)l Ff(2)4912
-680 y FC(\033)4960 -669 y Fd(L)p 4329 -607 626 4 v 4318
-554 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l
Ff(y)q FC(\033)r Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g
Ff(2)l FC(\024)l Ff(2)p 4816 -566 6 23 v 4822 -575 25
3 v 61 w(1)l FZ(<)l Ff(2)4954 -596 y FC(8)4989 -585 y
Fd(L)p 4329 -521 626 4 v 4484 -470 a Ff(2)l FC(\024)l
Ff(2)p FZ(;)g(S)p 4661 -482 6 23 v 4667 -491 25 3 v 61
w Ff(1)l FZ(<)l Ff(2)4954 -509 y FC(8)4989 -498 y Fd(L)p
5095 -932 319 4 v 5095 -881 a Ff(f2)c FV(=)f Ff(1)p 5239
-893 6 23 v 5245 -902 25 3 v 59 w(f2)g FV(=)g Ff(1)p
5463 -932 319 4 v 50 w(f1)h FV(=)f Ff(1)p 5607 -893 6
23 v 5613 -902 25 3 v 59 w(f1)h FV(=)f Ff(1)p 5095 -861
687 4 v 5114 -809 a(f2)h FV(=)f Ff(1)p FZ(;)j Ff(f1)e
FV(=)f Ff(1)p 5417 -821 6 23 v 5423 -831 25 3 v 59 w(f2)h
FV(=)f Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)5781 -852 y
FC(^)5823 -841 y Fd(R)p 5919 -861 351 4 v 5919 -809 a
Ff(f1)h FV(=)f Ff(f2)p 6079 -821 6 23 v 6085 -831 25
3 v 59 w(f1)h FV(=)f Ff(f2)p 5114 -780 1157 4 v 5159
-726 a FV(\()p Ff(f2)g FV(=)g Ff(1)p FC(^)p Ff(f1)h FV(=)f
Ff(1)p FV(\))p FC(\033)p Ff(f1)g FV(=)g Ff(f2)q FZ(;)j
Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p 6035
-738 6 23 v 6040 -748 25 3 v 59 w(f1)h FV(=)f Ff(f2)6269
-771 y FC(\033)6317 -760 y Fd(L)p 5102 -693 1181 4 v
5091 -639 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e
Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p
Ff(f1)h FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f2)e FV(=)f
Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p 6092 -651 6 23 v
6097 -661 25 3 v 59 w(f1)h FV(=)f Ff(f2)6281 -682 y FC(8)6316
-671 y Fd(L)p 5082 -607 1220 4 v 5072 -553 a FC(8)p Ff(x)p
FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(1)p
FC(^)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(fx)g
FV(=)g Ff(fy)q FV(\))p FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k
Ff(f1)d FV(=)f Ff(1)p 6111 -565 6 23 v 6117 -575 25 3
v 59 w(f1)h FV(=)f Ff(f2)6301 -595 y FC(8)6336 -584 y
Fd(L)p 5082 -521 1220 4 v 5408 -470 a Ff(f2)h FV(=)f
Ff(1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k(T)p 5785 -482
6 23 v 5791 -491 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)6301
-509 y FC(8)6336 -498 y Fd(L)p 4484 -440 1493 4 v 4783
-388 a Ff(f2)h FV(=)f Ff(1)p FZ(;)j Ff(2)l FC(\024)l
Ff(2)p FZ(;)j Ff(f1)7 b FV(=)g Ff(1)p FZ(;)k(S)o(;)g(T)p
5350 -400 6 23 v 5356 -410 25 3 v 67 w Ff(1)l FZ(<)l
Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)5975 -431 y FC(^)6017
-420 y Fd(R)4329 -346 y Fc(|)p 4353 -346 978 8 v 978
w({z)p 5379 -346 V 978 w(})5321 -284 y Fd(Y)5355 -272
y FP(2)p 2823 91 247 4 v 2823 142 a Ff(3)l FC(\024)l
Ff(3)p 2931 130 6 23 v 2936 120 25 3 v 60 w(3)l FC(\024)l
Ff(3)p 3119 92 247 4 v 52 w(2)l FZ(<)l Ff(3)p 3227 130
6 23 v 3233 120 25 3 v 61 w(2)l FZ(<)l Ff(3)p 2823 172
543 4 v 2838 224 a(3)l FC(\024)l Ff(3)p FC(\033)r Ff(2)l
FZ(<)l Ff(3)p FZ(;)12 b Ff(3)l FC(\024)l Ff(3)p 3211
212 6 23 v 3217 202 25 3 v 61 w(2)l FZ(<)l Ff(3)3365
181 y FC(\033)3413 193 y Fd(L)p 2781 254 626 4 v 2771
308 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(3)l FC(\024)l Ff(y)q
FC(\033)q Ff(2)l FZ(<)l Ff(y)q FV(\))p FZ(;)g Ff(3)l
FC(\024)l Ff(3)p 3268 296 6 23 v 3274 286 25 3 v 61 w(2)l
FZ(<)l Ff(3)3406 266 y FC(8)3441 277 y Fd(L)p 2781 340
626 4 v 2936 392 a Ff(3)l FC(\024)l Ff(3)p FZ(;)g(S)p
3114 380 6 23 v 3119 370 25 3 v 61 w Ff(2)l FZ(<)l Ff(3)3406
352 y FC(8)3441 363 y Fd(L)p 3547 -70 319 4 v 3547 -19
a Ff(f3)c FV(=)f Ff(0)p 3691 -31 6 23 v 3697 -41 25 3
v 59 w(f3)h FV(=)f Ff(0)p 3916 -70 319 4 v 50 w(f2)g
FV(=)g Ff(0)p 4060 -31 6 23 v 4065 -41 25 3 v 59 w(f2)h
FV(=)f Ff(0)p 3547 1 687 4 v 3566 52 a(f3)h FV(=)f Ff(0)p
FZ(;)k Ff(f2)c FV(=)g Ff(0)p 3869 40 6 23 v 3875 30 25
3 v 59 w(f3)h FV(=)f Ff(0)p FC(^)p Ff(f2)g FV(=)g Ff(0)4233
9 y FC(^)4275 20 y Fd(R)p 4372 1 351 4 v 4372 52 a Ff(f2)g
FV(=)g Ff(f3)p 4532 40 6 23 v 4538 30 25 3 v 60 w(f2)g
FV(=)g Ff(f3)p 3566 82 1157 4 v 3611 136 a FV(\()p Ff(f3)h
FV(=)f Ff(0)p FC(^)o Ff(f2)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f2)h FV(=)f Ff(f3)p FZ(;)k Ff(f3)c FV(=)g Ff(0)p FZ(;)k
Ff(f2)d FV(=)f Ff(0)p 4487 124 6 23 v 4493 114 25 3 v
59 w(f2)g FV(=)g Ff(f3)4722 91 y FC(\033)4770 102 y Fd(L)p
3554 168 1181 4 v 3544 222 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p
Ff(fy)h FV(=)f Ff(0)p FC(^)p Ff(f2)g FV(=)g Ff(0)p FV(\))p
FC(\033)p Ff(f2)h FV(=)f Ff(fy)q FV(\))p FZ(;)k Ff(f3)c
FV(=)g Ff(0)p FZ(;)k Ff(f2)d FV(=)f Ff(0)p 4544 210 6
23 v 4550 200 25 3 v 59 w(f2)g FV(=)g Ff(f3)4734 180
y FC(8)4769 191 y Fd(L)p 3535 254 1220 4 v 3524 308 a
FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f3)e FV(=)f
Ff(0)p FZ(;)j Ff(f2)e FV(=)f Ff(0)p 4563 296 6 23 v 4569
286 25 3 v 59 w(f2)h FV(=)f Ff(f3)4753 266 y FC(8)4788
277 y Fd(L)p 3535 341 1220 4 v 3860 392 a Ff(f3)h FV(=)f
Ff(0)p FZ(;)k Ff(f2)c FV(=)g Ff(0)p FZ(;)k(T)p 4238 380
6 23 v 4243 370 25 3 v 67 w Ff(f2)d FV(=)f Ff(f3)4753
352 y FC(8)4788 363 y Fd(L)p 2936 422 1493 4 v 3235 473
a Ff(f3)h FV(=)f Ff(0)p FZ(;)k Ff(3)l FC(\024)l Ff(3)p
FZ(;)h Ff(f2)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p 3803
461 6 23 v 3808 451 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p
FC(^)q Ff(f2)d FV(=)f Ff(f3)4428 430 y FC(^)4469 441
y Fd(R)4928 323 y F3(.)4928 356 y(.)4928 389 y(.)4928
422 y(.)4900 473 y FZ(Y)4936 483 y FP(1)p 3235 503 1751
4 v 3282 555 a Ff(f3)g FV(=)g Ff(0)p FC(_)p Ff(f3)h FV(=)f
Ff(1)p FZ(;)j Ff(3)l FC(\024)l Ff(3)p FZ(;)j Ff(f2)7
b FV(=)g Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h
Ff(f1)c FV(=)f Ff(1)p FZ(;)k(S)o(;)f(T)p 4303 543 6 23
v 4309 533 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e
FV(=)f Ff(f3)p FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)e
FV(=)f Ff(f3)4985 512 y FC(_)5027 523 y Fd(L)p 3226 585
1770 4 v 3226 639 a Ff(3)l FC(\024)l Ff(3)p FZ(;)12 b
Ff(f2)c FV(=)f Ff(0)p FZ(;)j Ff(2)l FC(\024)l Ff(3)p
FZ(;)j Ff(f1)7 b FV(=)g Ff(1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
FV(\))p FZ(;)j(S)o(;)h(T)p 4359 627 6 23 v 4364 617 25
3 v 67 w Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)c FV(=)g Ff(f3)q
FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g Ff(f3)4995
597 y FC(8)5030 608 y Fd(L)p 3134 671 1954 4 v 3123 736
a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)3331
715 y Fe(x)p Fd(;)p Fe(2)3388 736 y FV(\))p FZ(;)j Ff(f2)e
FV(=)f Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4451 724 6 23 v 4456 714 25 3 v 67 w Ff(2)l FZ(<)l Ff(3)p
FC(^)r Ff(f2)d FV(=)f Ff(f3)p FZ(;)j Ff(1)l FZ(<)l Ff(3)p
FC(^)r Ff(f1)d FV(=)g Ff(f3)5087 683 y FC(8)5122 694
y Fd(L)p 3134 768 1954 4 v 3228 822 a Ff(f2)g FV(=)g
Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)k(M)3728 832 y FP(1)3760 822 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o
Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4357
810 6 23 v 4363 800 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p
FC(^)q Ff(f2)e FV(=)f Ff(f3)p FZ(;)j Ff(1)l FZ(<)l Ff(3)p
FC(^)r Ff(f1)e FV(=)f Ff(f3)5087 780 y FC(8)5122 791
y Fd(L)5261 672 y F3(.)5261 705 y(.)5261 738 y(.)5261
771 y(.)5233 822 y FZ(Y)5269 832 y FP(2)p 3008 855 2532
4 v 3008 909 a Ff(f2)h FV(=)f Ff(0)p FC(_)o Ff(f2)h FV(=)f
Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)j Ff(2)l FC(\024)l Ff(2)p FZ(;)j Ff(f1)7
b FV(=)g Ff(1)p FZ(;)k(M)3962 919 y FP(1)3994 909 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p
Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4591
897 6 23 v 4597 887 25 3 v 67 w Ff(2)l FZ(<)l Ff(3)p
FC(^)q Ff(f2)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)d FV(=)f Ff(f2)5538 863 y FC(_)5580 874
y Fd(L)p 3008 941 2532 4 v 3173 995 a Ff(2)l FC(\024)l
Ff(3)p FZ(;)13 b Ff(f1)7 b FV(=)g Ff(1)p FZ(;)k Ff(2)l
FC(\024)l Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3797
1005 y FP(1)3829 995 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4426 983 6 23 v 4432 973 25 3 v 68
w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e FV(=)f Ff(f3)p
FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)5538
953 y FC(8)5573 964 y Fd(L)p 3091 1027 2365 4 v 3091
1081 a Ff(2)l FC(\024)l Ff(3)p FZ(;)12 b Ff(f1)c FV(=)f
Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)j(M)3714 1091 y FP(1)3747 1081 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p
Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4344
1069 6 23 v 4349 1060 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(2)l FZ(<)l Ff(m)p FC(^)q Ff(f2)c FV(=)g Ff(fm)p
FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
Ff(f2)5455 1039 y FC(9)5490 1050 y Fd(R)p 3067 1114 2413
4 v 3067 1168 a Ff(2)l FC(\024)l Ff(3)p FZ(;)12 b Ff(f1)c
FV(=)f Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
FV(=)f Ff(1)p FZ(;)j(M)3690 1178 y FP(1)3723 1168 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o
Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4320
1156 6 23 v 4325 1146 25 3 v 67 w Ff(1)l FZ(<)l Ff(3)p
FC(^)r Ff(f1)c FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p
FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
FV(=)g Ff(fm)p FV(\))5479 1125 y FC(9)5514 1136 y Fd(R)p
2974 1200 2600 4 v 2963 1265 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(2)l FC(\024)l Ff(m)3173 1244 y Fe(x)p Fd(;)p Fe(2)3230
1265 y FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(2)l
FC(\024)l Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3783
1275 y FP(1)3816 1265 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4413 1253 6 23 v 4418 1243 25 3 v
68 w Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5572
1212 y FC(8)5607 1223 y Fd(L)p 2974 1297 2600 4 v 3069
1351 a Ff(f1)g FV(=)g Ff(1)p FZ(;)k Ff(2)l FC(\024)l
Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3569 1361
y FP(1)3601 1351 y FZ(;)g(M)3689 1361 y FP(2)3721 1351
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4318 1339 6 23 v 4324 1329 25 3 v 68 w Ff(1)l FZ(<)l
Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)g FV(=)g Ff(fm)p FV(\))5572 1309 y FC(8)5607 1320
y Fd(L)2781 1396 y Fc(|)p 2805 1396 1387 8 v 1387 w({z)p
4240 1396 V 1387 w(})4183 1457 y Fd(Y)4217 1469 y FP(3)2026
1707 y Gc(M)2094 1716 y FV(1)2148 1707 y F9(=)20 b FX(8)p
Fu(y)q Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(x)8 b FX(\024)g
Fu(m)2555 1683 y Ff(x)p FZ(;)p Ff(y)2626 1707 y F9(\))101
b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p
Fu(y)q Gc(:)m F9(\(\()p Fu(fy)i F9(=)e Fu(i)p FX(^)p
Fu(fx)g F9(=)g Fu(i)p F9(\))12 b FX(\033)g Fu(fx)19 b
F9(=)g Fu(fy)p F9(\))2026 1833 y Gc(M)2094 1842 y FV(2)2148
1833 y F9(=)h FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)m F9(\()p
Fu(y)9 b FX(\024)f Fu(m)2556 1809 y Ff(x)p FZ(;)p Ff(y)2627
1833 y F9(\))100 b Gc(S)23 b F9(=)d FX(8)p Fu(x)p Gc(:)p
Fu(y)q Gc(:)m F9(\()p Fu(sx)8 b FX(\024)g Fu(y)k FX(\033)g
Fu(x)c Gc(<)g Fu(y)q F9(\))6506 465 y
 currentpoint grestore moveto
 6506 465 a 3543
5116 4 4724 v 321 5119 3226 4 v Black 1295 5273 a Gg(Figure)24
b(7:)29 b(Subproofs)d Ga(Y)2104 5287 y F9(1)2143 5273
y Gg(,)c Ga(Y)2241 5287 y F9(2)2303 5273 y Gg(and)i Ga(Y)2510
5287 y F9(3)2550 5273 y Gg(.)p Black Black eop end
%%Page: 139 151
TeXDict begin 139 150 bop Black 3831 51 a Gb(139)p 277
88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
v 1882 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1882 465 a 2799 -418 a F3(.)2799 -384 y(.)2799
-351 y(.)2799 -318 y(.)2757 -267 y FZ(Y)2793 -257 y FP(11)p
3014 -832 247 4 v 3014 -780 a Ff(1)l FC(\024)l Ff(1)p
3121 -792 6 23 v 3127 -802 25 3 v 60 w(1)l FC(\024)l
Ff(1)p 2921 -750 431 4 v 2911 -686 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(x)l FC(\024)l Ff(m)3119 -707 y Fe(x)p Fd(;)p
Fe(0)3175 -686 y FV(\))p 3214 -698 6 23 v 3219 -708 25
3 v 59 w Ff(1)l FC(\024)l Ff(1)3351 -739 y FC(8)3386
-728 y Fd(L)p 2921 -653 431 4 v 3015 -602 a FZ(M)3073
-592 y FP(1)p 3120 -614 6 23 v 3125 -624 25 3 v 3164
-602 a Ff(1)l FC(\024)l Ff(1)3351 -642 y FC(8)3386 -631
y Fd(L)p 3480 -653 247 4 v 3480 -602 a Ff(0)l FZ(<)l
Ff(1)p 3588 -614 6 23 v 3594 -624 25 3 v 61 w(0)l FZ(<)l
Ff(1)p 3015 -572 712 4 v 3117 -520 a(1)l FC(\024)l Ff(1)p
FC(\033)r Ff(0)l FZ(<)l Ff(1)p FZ(;)12 b(M)3440 -510
y FP(1)p 3486 -532 6 23 v 3492 -542 25 3 v 3531 -520
a Ff(0)l FZ(<)l Ff(1)3726 -563 y FC(\033)3774 -552 y
Fd(L)p 3060 -490 622 4 v 3049 -436 a FC(8)p Ff(y)q FZ(:)p
FV(\()p Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l
Ff(y)q FV(\))p FZ(;)g(M)3497 -426 y FP(1)p 3543 -448
6 23 v 3549 -458 25 3 v 3588 -436 a Ff(0)l FZ(<)l Ff(1)3681
-479 y FC(8)3716 -468 y Fd(L)p 3060 -404 622 4 v 3214
-353 a FZ(M)3272 -343 y FP(1)3305 -353 y FZ(;)e(S)p 3389
-365 6 23 v 3394 -375 25 3 v 61 w Ff(0)l FZ(<)l Ff(1)3681
-392 y FC(8)3716 -381 y Fd(L)p 3904 -991 319 4 v 3904
-939 a Ff(f1)e FV(=)f Ff(0)p 4048 -951 6 23 v 4054 -961
25 3 v 59 w(f1)h FV(=)f Ff(0)p 4272 -991 319 4 v 49 w(f1)h
FV(=)f Ff(1)p 4416 -951 6 23 v 4422 -961 25 3 v 59 w(f1)h
FV(=)f Ff(1)p 3904 -920 687 4 v 3923 -868 a(f1)h FV(=)f
Ff(0)p FC(_)o Ff(f1)h FV(=)f Ff(1)p 4238 -880 6 23 v
4244 -890 25 3 v 59 w(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e
FV(=)f Ff(1)4590 -911 y FC(_)4632 -900 y Fd(L)p 3867
-839 761 4 v 3857 -785 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
4294 -797 6 23 v 4300 -807 25 3 v 59 w Ff(f1)h FV(=)f
Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)4627 -827 y FC(8)4662
-816 y Fd(L)p 4793 -991 319 4 v 4793 -939 a Ff(f0)g FV(=)g
Ff(0)p 4937 -951 6 23 v 4942 -961 25 3 v 59 w(f0)h FV(=)f
Ff(0)p 5161 -991 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5305
-951 6 23 v 5311 -961 25 3 v 59 w(f0)h FV(=)f Ff(1)p
4793 -920 687 4 v 4812 -868 a(f0)g FV(=)g Ff(0)p FC(_)p
Ff(f0)h FV(=)f Ff(1)p 5127 -880 6 23 v 5133 -890 25 3
v 59 w(f0)g FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5479
-911 y FC(_)5520 -900 y Fd(L)p 4756 -839 761 4 v 4745
-785 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 5183 -797 6 23 v
5188 -807 25 3 v 59 w Ff(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c
FV(=)g Ff(1)5516 -827 y FC(8)5551 -816 y Fd(L)p 3867
-752 1650 4 v 4136 -698 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
4573 -710 6 23 v 4579 -720 25 3 v 59 w Ff(f1)g FV(=)g
Ff(0)p FC(^)p Ff(f0)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e FV(=)f
Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5516 -744 y FC(^)5557
-733 y Fd(R)p 5654 -750 351 4 v 5654 -698 a Ff(f0)h FV(=)f
Ff(f1)p 5814 -710 6 23 v 5820 -720 25 3 v 59 w(f0)h FV(=)f
Ff(f1)p 4146 -666 1859 4 v 4321 -612 a FV(\()p Ff(f1)h
FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f0)h FV(=)f Ff(f1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
5321 -624 6 23 v 5326 -634 25 3 v 59 w Ff(f0)h FV(=)f
Ff(f1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(f0)e FV(=)f
Ff(1)6004 -657 y FC(\033)6052 -646 y Fd(L)p 4264 -580
1623 4 v 4254 -526 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
FV(=)f Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p
Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p
FV(\))p 5377 -538 6 23 v 5383 -548 25 3 v 59 w Ff(f0)h
FV(=)f Ff(f1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d
FV(=)f Ff(1)5886 -568 y FC(8)5921 -557 y Fd(L)p 4245
-493 1662 4 v 4234 -439 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)o Ff(fx)h
FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)g FV(=)g
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p 5397 -451
6 23 v 5403 -461 25 3 v 59 w Ff(f0)g FV(=)g Ff(f1)q FZ(;)j
Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5906
-482 y FC(8)5941 -471 y Fd(L)p 4245 -407 1662 4 v 4560
-353 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(T)p 5071
-365 6 23 v 5077 -375 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5906
-395 y FC(8)5941 -384 y Fd(L)p 3214 -321 2367 4 v 3732
-267 a FZ(M)3790 -257 y FP(1)3822 -267 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4419 -279 6
23 v 4425 -289 25 3 v 68 w Ff(f1)d FV(=)g Ff(1)p FZ(;)k
Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
Ff(f0)c FV(=)g Ff(1)5580 -312 y FC(^)5621 -301 y Fd(R)p
2624 -234 2556 4 v 2624 -180 a FZ(M)2682 -170 y FP(1)2714
-180 y FZ(;)j(M)2801 -170 y FP(2)2834 -180 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3431 -192 6
23 v 3436 -202 25 3 v 67 w Ff(f2)d FV(=)f Ff(1)p FC(^)p
Ff(f1)h FV(=)f Ff(1)p FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r
Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)q
Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q
Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q
Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5178
-226 y FC(^)5220 -215 y Fd(R)2624 -136 y Fc(|)p 2648
-136 1689 8 v 1689 w({z)p 4385 -136 V 1689 w(})4312 -74
y Fd(Y)4346 -62 y FP(12)p 2164 39 247 4 v 2164 91 a Ff(2)l
FC(\024)l Ff(2)p 2272 79 6 23 v 2278 69 25 3 v 61 w(2)l
FC(\024)l Ff(2)p 2071 121 433 4 v 2061 186 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(m)2271 165 y Fe(x)p
Fd(;)p Fe(2)2327 186 y FV(\))p 2365 174 6 23 v 2371 164
25 3 v 59 w Ff(2)l FC(\024)l Ff(2)2503 133 y FC(8)2538
144 y Fd(L)p 2071 218 433 4 v 2166 270 a FZ(M)2224 280
y FP(2)p 2270 258 6 23 v 2276 248 25 3 v 2315 270 a Ff(2)l
FC(\024)l Ff(2)2503 230 y FC(8)2538 241 y Fd(L)p 2632
219 247 4 v 2632 270 a Ff(1)l FZ(<)l Ff(2)p 2740 258
6 23 v 2745 248 25 3 v 60 w(1)l FZ(<)l Ff(2)p 2166 300
713 4 v 2268 351 a(2)l FC(\024)l Ff(2)p FC(\033)r Ff(1)l
FZ(<)l Ff(2)p FZ(;)12 b(M)2591 361 y FP(2)p 2638 339
6 23 v 2643 329 25 3 v 2682 351 a Ff(1)l FZ(<)l Ff(2)2877
309 y FC(\033)2925 320 y Fd(L)p 2211 381 622 4 v 2201
435 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(y)q
FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)2648
445 y FP(2)p 2695 423 6 23 v 2700 413 25 3 v 2739 435
a Ff(1)l FZ(<)l Ff(2)2832 393 y FC(8)2867 404 y Fd(L)p
2211 468 622 4 v 2366 519 a FZ(M)2424 529 y FP(2)2456
519 y FZ(;)f(S)p 2540 507 6 23 v 2546 497 25 3 v 61 w
Ff(1)l FZ(<)l Ff(2)2832 479 y FC(8)2867 490 y Fd(L)4375
25 y F3(.)4375 58 y(.)4375 92 y(.)4375 125 y(.)4333 176
y FZ(Y)4369 186 y FP(12)p 4498 125 351 4 v 4498 176 a
Ff(f1)c FV(=)g Ff(f2)p 4658 164 6 23 v 4663 154 25 3
v 59 w(f1)h FV(=)f Ff(f2)p 3095 206 2974 4 v 3095 259
a FV(\()p Ff(f2)h FV(=)f Ff(1)p FC(^)p Ff(f1)g FV(=)g
Ff(1)p FV(\))p FC(\033)q Ff(f1)g FV(=)g Ff(f2)q FZ(;)j(M)3726
269 y FP(1)3758 259 y FZ(;)h(M)3846 269 y FP(2)3878 259
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
4475 247 6 23 v 4481 238 25 3 v 68 w Ff(f1)e FV(=)f Ff(f2)p
FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)d FV(=)g Ff(f3)q
FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q
FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)k Ff(f0)d FV(=)f Ff(1)6068 215 y FC(\033)6116 226
y Fd(L)p 3039 292 3087 4 v 3028 346 a FC(8)p Ff(y)q FZ(:)p
FV(\(\()p Ff(fy)h FV(=)f Ff(1)p FC(^)p Ff(f1)h FV(=)f
Ff(1)p FV(\))p FC(\033)p Ff(f1)g FV(=)g Ff(fy)q FV(\))p
FZ(;)k(M)3783 356 y FP(1)3815 346 y FZ(;)g(M)3903 356
y FP(2)3935 346 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4532 334 6 23 v 4538 324 25 3 v 68
w Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(2)l FZ(<)l Ff(3)p
FC(^)r Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(0)l FZ(<)l Ff(1)p
FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p
FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)6125
304 y FC(8)6160 315 y Fd(L)p 3019 378 3127 4 v 3008 432
a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(1)p FC(^)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)3802 442 y FP(1)3835
432 y FZ(;)g(M)3922 442 y FP(2)3955 432 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4552 420 6 23
v 4557 410 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p FZ(;)k
Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p FZ(;)k
Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)j
Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j
Ff(f0)e FV(=)f Ff(1)6144 390 y FC(8)6179 401 y Fd(L)p
3019 465 3127 4 v 3382 519 a FZ(M)3440 529 y FP(1)3472
519 y FZ(;)j(M)3559 529 y FP(2)3592 519 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4189 507 6 23
v 4195 497 25 3 v 68 w Ff(f1)d FV(=)g Ff(f2)q FZ(;)j
Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e FV(=)f Ff(f3)p FZ(;)k
Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k
Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)j
Ff(f0)e FV(=)f Ff(1)6144 476 y FC(8)6179 487 y Fd(L)p
2366 551 3417 4 v 2806 605 a FZ(M)2864 615 y FP(1)2896
605 y FZ(;)k(M)2984 615 y FP(2)3016 605 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 3613 593 6 23
v 3619 583 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e
FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d
FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d
FV(=)f Ff(f3)p FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d
FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d
FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)5781 559 y
FC(^)5823 570 y Fd(R)p 2724 637 2701 4 v 2724 691 a FZ(M)2782
701 y FP(1)2814 691 y FZ(;)k(M)2902 701 y FP(2)2934 691
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
3531 679 6 23 v 3537 669 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(2)l FZ(<)l Ff(m)p FC(^)q Ff(f2)e FV(=)f Ff(fm)o
FV(\))p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)5423 649 y FC(9)5458
660 y Fd(R)p 2700 724 2749 4 v 2700 778 a FZ(M)2758 788
y FP(1)2790 778 y FZ(;)k(M)2878 788 y FP(2)2910 778 y
FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p
FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
3507 766 6 23 v 3513 756 25 3 v 68 w Ff(0)l FZ(<)l Ff(1)p
FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)j Ff(0)l FZ(<)l Ff(1)p
FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p
FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5447
735 y FC(9)5482 746 y Fd(R)p 2618 810 2913 4 v 2618 864
a FZ(M)2676 874 y FP(1)2708 864 y FZ(;)j(M)2795 874 y
FP(2)2828 864 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
3425 852 6 23 v 3430 842 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)c FV(=)g Ff(fm)p
FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
Ff(f1)p FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)e FV(=)f
Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
Ff(fn)h FV(=)f Ff(fm)o FV(\))5530 822 y FC(9)5565 833
y Fd(R)p 2618 896 2913 4 v 2855 950 a FZ(M)2913 960 y
FP(1)2946 950 y FZ(;)j(M)3033 960 y FP(2)3065 950 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p
Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3662
938 6 23 v 3668 928 25 3 v 67 w Ff(1)l FZ(<)l Ff(3)p
FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p
FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5530
908 y FC(9)5565 919 y Fd(R)p 2773 983 2603 4 v 2773 1037
a FZ(M)2831 1047 y FP(1)2863 1037 y FZ(;)k(M)2951 1047
y FP(2)2983 1037 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 3580 1025 6 23 v 3586 1015 25 3 v
57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p
FC(^)q Ff(f1)e FV(=)f Ff(fm)p FV(\))p FZ(;)j Ff(0)l FZ(<)l
Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l
Ff(2)p FC(^)q Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(f0)d FV(=)f
Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5374
994 y FC(9)5409 1005 y Fd(R)p 2773 1069 2603 4 v 3011
1123 a FZ(M)3069 1133 y FP(1)3101 1123 y FZ(;)j(M)3188
1133 y FP(2)3221 1123 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 3818 1111 6 23 v 3823 1101 25 3 v
68 w Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)o FV(\))5374 1081 y FC(9)5409 1092 y Fd(R)p
2928 1155 2292 4 v 2928 1209 a FZ(M)2986 1219 y FP(1)3019
1209 y FZ(;)j(M)3106 1219 y FP(2)3138 1209 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h
FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3735 1197 6
23 v 3741 1187 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p FV(\()p
Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)c FV(=)g Ff(fm)p FV(\))p
FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)p FV(\))5219 1167 y FC(9)5254 1178 y Fd(R)p
2928 1242 2292 4 v 3166 1296 a FZ(M)3224 1306 y FP(1)3256
1296 y FZ(;)k(M)3344 1306 y FP(2)3376 1296 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3973 1284 6
23 v 3979 1274 25 3 v 67 w Ff(1)l FZ(<)l Ff(2)p FC(^)q
Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)d FV(=)f Ff(1)p FZ(;)p
FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5219 1253
y FC(9)5254 1264 y Fd(R)p 3084 1328 1981 4 v 3084 1382
a FZ(M)3142 1392 y FP(1)3174 1382 y FZ(;)k(M)3262 1392
y FP(2)3294 1382 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 3891 1370 6 23 v 3897 1360 25 3 v
57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p
FC(^)q Ff(f1)e FV(=)f Ff(fm)p FV(\))p FZ(;)j Ff(f0)e
FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
FV(\))5063 1340 y FC(9)5098 1351 y Fd(R)p 3084 1414 1981
4 v 3322 1468 a FZ(M)3380 1478 y FP(1)3412 1468 y FZ(;)j(M)3499
1478 y FP(2)3532 1468 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)j(S)o(;)h(T)p 4129 1456 6 23 v 4134 1446 25 3 v
67 w Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
FV(=)f Ff(fm)p FV(\))5063 1426 y FC(9)5098 1437 y Fd(R)2071
1513 y Fc(|)p 2095 1513 2028 8 v 2028 w({z)p 4171 1513
V 2028 w(})4100 1574 y Fd(Y)4134 1586 y FP(13)1982 1765
y Gc(M)2050 1774 y FV(1)2104 1765 y F9(=)19 b FX(8)p
Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(x)8 b FX(\024)g
Fu(m)2511 1742 y Ff(x)p FZ(;)p Ff(y)2582 1765 y F9(\))101
b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p
Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h F9(=)g Fu(i)p FX(^)p
Fu(fx)e F9(=)i Fu(i)p F9(\))12 b FX(\033)g Fu(fx)18 b
F9(=)i Fu(fy)p F9(\))1982 1892 y Gc(M)2050 1901 y FV(2)2104
1892 y F9(=)f FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
Fu(y)9 b FX(\024)f Fu(m)2512 1868 y Ff(x)p FZ(;)p Ff(y)2583
1892 y F9(\))100 b Gc(S)23 b F9(=)d FX(8)p Fu(x)p Gc(:)p
Fu(y)q Gc(:)m F9(\()p Fu(sx)8 b FX(\024)g Fu(y)k FX(\033)g
Fu(x)c Gc(<)g Fu(y)q F9(\))6462 465 y
 currentpoint grestore moveto
 6462 465 a 3499
5116 4 4724 v 277 5119 3226 4 v Black 1285 5273 a Gg(Figure)24
b(8:)29 b(Subproofs)c Ga(Y)2093 5287 y F9(12)2190 5273
y Gg(and)f Ga(Y)2397 5287 y F9(13)2472 5273 y Gg(.)p
Black Black eop end
%%Page: 140 152
TeXDict begin 140 151 bop Black -144 51 a Gb(140)2816
b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
 gsave currentpoint currentpoint translate -90 neg rotate neg exch
neg exch translate
 1927 465
a 2283 -864 247 4 v 2283 -813 a Ff(3)l FC(\024)l Ff(3)p
2391 -825 6 23 v 2396 -835 25 3 v 61 w(3)l FC(\024)l
Ff(3)p 2191 -783 431 4 v 2180 -718 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(x)l FC(\024)l Ff(m)2388 -739 y Fe(x)p Fd(;)p
Fe(2)2445 -718 y FV(\))p 2483 -730 6 23 v 2489 -740 25
3 v 59 w Ff(3)l FC(\024)l Ff(3)2621 -771 y FC(8)2656
-760 y Fd(L)p 2191 -686 431 4 v 2285 -634 a FZ(M)2343
-624 y FP(1)p 2389 -646 6 23 v 2395 -656 25 3 v 2434
-634 a Ff(3)l FC(\024)l Ff(3)2621 -674 y FC(8)2656 -663
y Fd(L)p 2749 -685 247 4 v 2749 -634 a Ff(2)l FZ(<)l
Ff(3)p 2857 -646 6 23 v 2863 -656 25 3 v 61 w(2)l FZ(<)l
Ff(3)p 2285 -604 712 4 v 2386 -552 a(3)l FC(\024)l Ff(3)p
FC(\033)r Ff(2)l FZ(<)l Ff(3)p FZ(;)12 b(M)2709 -542
y FP(1)p 2756 -564 6 23 v 2761 -574 25 3 v 2800 -552
a Ff(2)l FZ(<)l Ff(3)2995 -595 y FC(\033)3043 -584 y
Fd(L)p 2329 -522 622 4 v 2319 -468 a FC(8)p Ff(y)q FZ(:)p
FV(\()p Ff(3)l FC(\024)l Ff(y)q FC(\033)q Ff(2)l FZ(<)l
Ff(y)q FV(\))p FZ(;)g(M)2766 -458 y FP(1)p 2813 -480
6 23 v 2818 -490 25 3 v 2857 -468 a Ff(2)l FZ(<)l Ff(3)2950
-511 y FC(8)2985 -500 y Fd(L)p 2329 -436 622 4 v 2484
-385 a FZ(M)2542 -375 y FP(1)2574 -385 y FZ(;)f(S)p 2658
-397 6 23 v 2664 -407 25 3 v 61 w Ff(2)l FZ(<)l Ff(3)2950
-424 y FC(8)2985 -413 y Fd(L)p 3173 -1023 319 4 v 3173
-972 a Ff(f3)d FV(=)f Ff(0)p 3317 -984 6 23 v 3323 -994
25 3 v 59 w(f3)h FV(=)f Ff(0)p 3542 -1023 319 4 v 50
w(f3)g FV(=)g Ff(1)p 3686 -984 6 23 v 3691 -994 25 3
v 60 w(f3)g FV(=)g Ff(1)p 3173 -952 687 4 v 3192 -900
a(f3)h FV(=)f Ff(0)p FC(_)p Ff(f3)g FV(=)g Ff(1)p 3508
-912 6 23 v 3513 -922 25 3 v 59 w(f3)h FV(=)f Ff(0)p
FZ(;)k Ff(f3)c FV(=)g Ff(1)3859 -943 y FC(_)3901 -932
y Fd(L)p 3136 -871 761 4 v 3126 -817 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p 3563 -829 6 23 v 3569 -839 25 3 v 59 w
Ff(f3)h FV(=)f Ff(0)p FZ(;)j Ff(f3)e FV(=)f Ff(1)3896
-859 y FC(8)3931 -848 y Fd(L)p 4062 -1023 319 4 v 4062
-972 a Ff(f2)h FV(=)f Ff(0)p 4206 -984 6 23 v 4212 -994
25 3 v 59 w(f2)g FV(=)g Ff(0)p 4430 -1023 319 4 v 50
w(f2)h FV(=)f Ff(1)p 4574 -984 6 23 v 4580 -994 25 3
v 59 w(f2)h FV(=)f Ff(1)p 4062 -952 687 4 v 4081 -900
a(f2)h FV(=)f Ff(0)p FC(_)o Ff(f2)h FV(=)f Ff(1)p 4396
-912 6 23 v 4402 -922 25 3 v 59 w(f2)h FV(=)f Ff(0)p
FZ(;)j Ff(f2)e FV(=)f Ff(1)4748 -943 y FC(_)4790 -932
y Fd(L)p 4025 -871 761 4 v 4014 -817 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
Ff(1)p FV(\))p 4452 -829 6 23 v 4458 -839 25 3 v 59 w
Ff(f2)g FV(=)g Ff(0)p FZ(;)k Ff(f2)d FV(=)f Ff(1)4785
-859 y FC(8)4820 -848 y Fd(L)p 3136 -785 1650 4 v 3405
-731 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 3842 -743 6 23 v
3848 -752 25 3 v 59 w Ff(f3)h FV(=)f Ff(0)p FC(^)o Ff(f2)h
FV(=)f Ff(0)p FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f2)d
FV(=)f Ff(1)4785 -776 y FC(^)4826 -765 y Fd(R)p 4923
-782 351 4 v 4923 -731 a Ff(f2)h FV(=)f Ff(f3)p 5083
-743 6 23 v 5089 -752 25 3 v 59 w(f2)h FV(=)f Ff(f3)p
3415 -698 1859 4 v 3590 -644 a FV(\()p Ff(f3)h FV(=)f
Ff(0)p FC(^)p Ff(f2)g FV(=)g Ff(0)p FV(\))p FC(\033)p
Ff(f2)h FV(=)f Ff(f3)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
4590 -656 6 23 v 4596 -666 25 3 v 59 w Ff(f2)g FV(=)g
Ff(f3)q FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)j Ff(f2)e FV(=)f
Ff(1)5273 -689 y FC(\033)5321 -678 y Fd(L)p 3533 -612
1623 4 v 3523 -558 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
FV(=)f Ff(0)p FC(^)p Ff(f2)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f2)g FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p
FV(\))p 4647 -570 6 23 v 4652 -580 25 3 v 59 w Ff(f2)h
FV(=)f Ff(f3)p FZ(;)k Ff(f3)d FV(=)f Ff(1)p FZ(;)j Ff(f2)e
FV(=)f Ff(1)5155 -600 y FC(8)5190 -589 y Fd(L)p 3514
-526 1662 4 v 3503 -472 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)p Ff(fx)g
FV(=)g Ff(0)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 4666 -484
6 23 v 4672 -493 25 3 v 59 w Ff(f2)h FV(=)f Ff(f3)p FZ(;)k
Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f2)d FV(=)f Ff(1)5175
-514 y FC(8)5210 -503 y Fd(L)p 3514 -439 1662 4 v 3829
-385 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(T)p 4340
-397 6 23 v 4346 -407 25 3 v 67 w Ff(f2)d FV(=)f Ff(f3)p
FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f2)d FV(=)f Ff(1)5175
-427 y FC(8)5210 -416 y Fd(L)p 2484 -353 2367 4 v 3001
-299 a FZ(M)3059 -289 y FP(1)3091 -299 y FZ(;)p FC(8)p
Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g
FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 3688 -311 6
23 v 3694 -321 25 3 v 68 w Ff(f3)e FV(=)f Ff(1)p FZ(;)j
Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q
Ff(f2)d FV(=)f Ff(f3)4849 -345 y FC(^)4891 -333 y Fd(R)2191
-254 y Fc(|)p 2215 -254 1540 8 v 1540 w({z)p 3803 -254
V 1540 w(})3745 -193 y Fd(Y)3779 -181 y FP(9)2786 478
y F3(.)2786 511 y(.)2786 544 y(.)2786 578 y(.)2758 629
y FZ(Y)2794 639 y FP(9)p 2986 64 247 4 v 2986 115 a Ff(1)l
FC(\024)l Ff(1)p 3094 103 6 23 v 3099 93 25 3 v 60 w(1)l
FC(\024)l Ff(1)p 2894 145 431 4 v 2883 210 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)3091 189 y Fe(x)p
Fd(;)p Fe(0)3148 210 y FV(\))p 3186 198 6 23 v 3191 188
25 3 v 58 w Ff(1)l FC(\024)l Ff(1)3323 157 y FC(8)3358
168 y Fd(L)p 2894 242 431 4 v 2987 294 a FZ(M)3045 304
y FP(1)p 3092 282 6 23 v 3098 272 25 3 v 3137 294 a Ff(1)l
FC(\024)l Ff(1)3323 254 y FC(8)3358 265 y Fd(L)p 3452
243 247 4 v 3452 294 a Ff(0)l FZ(<)l Ff(1)p 3560 282
6 23 v 3566 272 25 3 v 61 w(0)l FZ(<)l Ff(1)p 2987 324
712 4 v 3089 375 a(1)l FC(\024)l Ff(1)p FC(\033)r Ff(0)l
FZ(<)l Ff(1)p FZ(;)12 b(M)3412 385 y FP(1)p 3459 363
6 23 v 3464 353 25 3 v 3503 375 a Ff(0)l FZ(<)l Ff(1)3698
333 y FC(\033)3746 344 y Fd(L)p 3032 405 622 4 v 3021
459 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(y)q
FC(\033)r Ff(0)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)3469
469 y FP(1)p 3515 447 6 23 v 3521 437 25 3 v 3560 459
a Ff(0)l FZ(<)l Ff(1)3653 417 y FC(8)3688 428 y Fd(L)p
3032 492 622 4 v 3187 543 a FZ(M)3245 553 y FP(1)3277
543 y FZ(;)e(S)p 3361 531 6 23 v 3367 521 25 3 v 62 w
Ff(0)l FZ(<)l Ff(1)3653 503 y FC(8)3688 514 y Fd(L)p
3876 -95 319 4 v 3876 -44 a Ff(f1)e FV(=)f Ff(0)p 4020
-56 6 23 v 4026 -66 25 3 v 59 w(f1)h FV(=)f Ff(0)p 4245
-95 319 4 v 50 w(f1)g FV(=)g Ff(1)p 4389 -56 6 23 v 4394
-66 25 3 v 59 w(f1)h FV(=)f Ff(1)p 3876 -24 687 4 v 3895
27 a(f1)h FV(=)f Ff(0)p FC(_)o Ff(f1)h FV(=)f Ff(1)p
4210 15 6 23 v 4216 5 25 3 v 59 w(f1)h FV(=)f Ff(0)p
FZ(;)k Ff(f1)c FV(=)g Ff(1)4562 -16 y FC(_)4604 -5 y
Fd(L)p 3839 57 761 4 v 3829 111 a FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p
FV(\))p 4266 99 6 23 v 4272 89 25 3 v 59 w Ff(f1)h FV(=)f
Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)4599 69 y FC(8)4634
80 y Fd(L)p 4765 -95 319 4 v 4765 -44 a Ff(f0)h FV(=)f
Ff(0)p 4909 -56 6 23 v 4915 -66 25 3 v 59 w(f0)g FV(=)g
Ff(0)p 5133 -95 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5277
-56 6 23 v 5283 -66 25 3 v 59 w(f0)h FV(=)f Ff(1)p 4765
-24 687 4 v 4784 27 a(f0)g FV(=)g Ff(0)p FC(_)p Ff(f0)h
FV(=)f Ff(1)p 5099 15 6 23 v 5105 5 25 3 v 59 w(f0)g
FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5451 -16 y FC(_)5492
-5 y Fd(L)p 4728 57 761 4 v 4717 111 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
Ff(1)p FV(\))p 5155 99 6 23 v 5161 89 25 3 v 59 w Ff(f0)g
FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5488 69 y FC(8)5523
80 y Fd(L)p 3839 143 1650 4 v 4108 197 a FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p 4545 185 6 23 v 4551 175 25 3 v 59 w Ff(f1)h
FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f1)c
FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5488 151 y FC(^)5529
163 y Fd(R)p 5626 146 351 4 v 5626 197 a Ff(f0)h FV(=)f
Ff(f1)p 5786 185 6 23 v 5792 175 25 3 v 59 w(f0)h FV(=)f
Ff(f1)p 4118 230 1859 4 v 4293 284 a FV(\()p Ff(f1)h
FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(f0)h FV(=)f Ff(f1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
5293 272 6 23 v 5298 262 25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p
FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(f0)e FV(=)f Ff(1)5976
239 y FC(\033)6024 250 y Fd(L)p 4236 316 1623 4 v 4226
370 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(0)p
FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)q Ff(f0)g
FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
5350 358 6 23 v 5355 348 25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p
FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(f0)e FV(=)f Ff(1)5858
328 y FC(8)5893 339 y Fd(L)p 4217 402 1662 4 v 4206 456
a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p
FV(\))p 5369 444 6 23 v 5375 434 25 3 v 59 w Ff(f0)h
FV(=)f Ff(f1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c
FV(=)g Ff(1)5878 414 y FC(8)5913 425 y Fd(L)p 4217 489
1662 4 v 4532 543 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(T)p
5043 531 6 23 v 5049 521 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
FZ(;)k Ff(f1)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5878
500 y FC(8)5913 511 y Fd(L)p 3187 575 2367 4 v 3704 629
a FZ(M)3762 639 y FP(1)3794 629 y FZ(;)p FC(8)p Ff(x)p
FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4391 617 6 23 v 4397
607 25 3 v 68 w Ff(f1)d FV(=)g Ff(1)p FZ(;)k Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)d FV(=)f
Ff(1)5552 583 y FC(^)5593 594 y Fd(R)p 2740 661 2296
4 v 2901 715 a FZ(M)2959 725 y FP(1)2991 715 y FZ(;)p
FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p
Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3588
703 6 23 v 3594 693 25 3 v 67 w Ff(f3)d FV(=)f Ff(1)p
FC(^)o Ff(f1)h FV(=)f Ff(1)p FZ(;)k Ff(f2)c FV(=)g Ff(1)p
FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p
FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)k Ff(f0)c FV(=)g Ff(1)5035 669 y FC(^)5076 681 y
Fd(R)2740 760 y Fc(|)p 2764 760 1617 8 v 1617 w({z)p
4429 760 V 1617 w(})4356 821 y Fd(Y)4390 833 y FP(10)p
2500 935 247 4 v 2500 987 a Ff(2)l FC(\024)l Ff(3)p 2607
975 6 23 v 2613 965 25 3 v 60 w(2)l FC(\024)l Ff(3)p
2406 1017 433 4 v 2396 1081 a FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(2)l FC(\024)l Ff(m)2606 1061 y Fe(x)p Fd(;)p Fe(2)2662
1081 y FV(\))p 2701 1069 6 23 v 2706 1060 25 3 v 59 w
Ff(2)l FC(\024)l Ff(3)2838 1028 y FC(8)2873 1039 y Fd(L)p
2406 1114 433 4 v 2501 1165 a FZ(M)2559 1175 y FP(2)p
2606 1153 6 23 v 2611 1143 25 3 v 2650 1165 a Ff(2)l
FC(\024)l Ff(3)2838 1125 y FC(8)2873 1136 y Fd(L)p 2967
1115 247 4 v 2967 1165 a Ff(1)l FZ(<)l Ff(3)p 3075 1153
6 23 v 3081 1143 25 3 v 61 w(1)l FZ(<)l Ff(3)p 2501 1195
713 4 v 2603 1247 a(2)l FC(\024)l Ff(3)p FC(\033)r Ff(1)l
FZ(<)l Ff(3)p FZ(;)12 b(M)2926 1257 y FP(2)p 2973 1235
6 23 v 2979 1225 25 3 v 3018 1247 a Ff(1)l FZ(<)l Ff(3)3213
1204 y FC(\033)3261 1216 y Fd(L)p 2546 1277 622 4 v 2536
1331 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l
Ff(y)q FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)2983
1341 y FP(2)p 3030 1319 6 23 v 3035 1309 25 3 v 3075
1331 a Ff(1)l FZ(<)l Ff(3)3167 1289 y FC(8)3202 1300
y Fd(L)p 2546 1363 622 4 v 2701 1414 a FZ(M)2759 1424
y FP(2)2791 1414 y FZ(;)f(S)p 2875 1402 6 23 v 2881 1392
25 3 v 61 w Ff(1)l FZ(<)l Ff(3)3167 1375 y FC(8)3202
1386 y Fd(L)4420 921 y F3(.)4420 954 y(.)4420 987 y(.)4420
1020 y(.)4377 1072 y FZ(Y)4413 1082 y FP(10)p 4542 1020
351 4 v 4542 1072 a Ff(f1)c FV(=)g Ff(f3)p 4702 1060
6 23 v 4708 1050 25 3 v 60 w(f1)g FV(=)g Ff(f3)p 3431
1101 2392 4 v 3431 1155 a FV(\()p Ff(f3)g FV(=)g Ff(1)p
FC(^)p Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(f1)g
FV(=)g Ff(f3)q FZ(;)j(M)4061 1165 y FP(1)4094 1155 y
FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p
FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4691 1143 6 23 v 4696 1133 25 3 v 67 w Ff(f1)d FV(=)f
Ff(f3)p FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(2)l FZ(<)l
Ff(3)p FC(^)r Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(f0)d FV(=)f
Ff(1)5821 1110 y FC(\033)5869 1121 y Fd(L)p 3374 1187
2505 4 v 3363 1241 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
FV(=)e Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p
Ff(f1)h FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)4118 1251 y FP(1)4150
1241 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
4747 1229 6 23 v 4753 1220 25 3 v 67 w Ff(f1)d FV(=)f
Ff(f3)p FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(2)l FZ(<)l
Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l
Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c FV(=)g
Ff(1)5878 1199 y FC(8)5913 1210 y Fd(L)p 3354 1274 2544
4 v 3344 1328 a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p
Ff(fy)h FV(=)f Ff(1)p FC(^)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
FC(\033)p Ff(fx)g FV(=)g Ff(fy)q FV(\))p FZ(;)k(M)4138
1338 y FP(1)4170 1328 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
FZ(;)k(S)o(;)f(T)p 4767 1316 6 23 v 4773 1306 25 3 v
68 w Ff(f1)d FV(=)g Ff(f3)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p
FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p
FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)j Ff(f0)e FV(=)f Ff(1)5897 1285 y FC(8)5932 1296
y Fd(L)p 3354 1360 2544 4 v 3717 1414 a FZ(M)3775 1424
y FP(1)3807 1414 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
FZ(;)k(S)o(;)g(T)p 4404 1402 6 23 v 4410 1392 25 3 v
67 w Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(f2)c FV(=)g Ff(1)p
FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p
FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
FZ(;)k Ff(f0)c FV(=)g Ff(1)5897 1372 y FC(8)5932 1383
y Fd(L)p 2701 1446 2835 4 v 3081 1500 a FZ(M)3139 1510
y FP(1)3172 1500 y FZ(;)j(M)3259 1510 y FP(2)3291 1500
y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
3888 1488 6 23 v 3894 1479 25 3 v 67 w Ff(f2)d FV(=)f
Ff(1)p FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f
Ff(f3)p FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g
Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g
Ff(f3)q FZ(;)j Ff(f0)e FV(=)f Ff(1)5534 1455 y FC(^)5576
1466 y Fd(R)2406 1545 y Fc(|)p 2430 1545 1737 8 v 1737
w({z)p 4215 1545 V 1737 w(})4144 1607 y Fd(Y)4178 1619
y FP(11)2026 1798 y Gc(M)2094 1807 y FV(1)2148 1798 y
F9(=)20 b FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)m F9(\()p
Fu(x)8 b FX(\024)g Fu(m)2555 1774 y Ff(x)p FZ(;)p Ff(y)2626
1798 y F9(\))101 b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p
Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p Fu(fy)i
F9(=)e Fu(i)p FX(^)p Fu(fx)g F9(=)g Fu(i)p F9(\))12 b
FX(\033)g Fu(fx)19 b F9(=)g Fu(fy)p F9(\))2026 1924 y
Gc(M)2094 1933 y FV(2)2148 1924 y F9(=)h FX(8)p Fu(y)q
Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(y)9 b FX(\024)f Fu(m)2556
1900 y Ff(x)p FZ(;)p Ff(y)2627 1924 y F9(\))100 b Gc(S)23
b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6506
465 y
 currentpoint grestore moveto
 6506 465 a 3543 5116 4 4724 v 321 5119 3226 4 v
Black 1260 5273 a Gg(Figure)24 b(9:)29 b(Subproofs)c
Ga(Y)2068 5287 y F9(9)2108 5273 y Gg(,)d Ga(Y)2206 5287
y F9(10)2303 5273 y Gg(and)i Ga(Y)2510 5287 y F9(11)2585
5273 y Gg(.)p Black Black eop end
%%Page: 141 153
TeXDict begin 141 152 bop Black Black 277 1027 a F8(A)l(ppendix)43
b(B)277 1459 y Gf(Details)53 b(f)-5 b(or)51 b(some)h(Pr)l(oofs)277
1957 y Ge(B.1)119 b(Pr)n(oofs)29 b(of)g(Chapter)i(2)277
2181 y Gg(In)24 b(this)h(section)h(we)d(are)h(mainly)h(concerned)i
(with)d(pro)o(ving)i(strong)f(normalisation)j(for)c F4(\()p
FY(T)t Ga(;)3305 2144 y Gc(cut)3274 2181 y F6(\000)-31
b(\000)f(!)p F4(\))p Gg(,)277 2294 y F4(\()p FY(T)t Ga(;)430
2257 y Gc(aux)410 2294 y F6(\000)h(\000)f(!)p F4(\))23
b Gg(and)h F4(\()p FY(T)888 2261 y FX($)959 2294 y Ga(;)1042
2257 y Gc(l)q(oc)1000 2294 y F6(\000)-31 b(\000)f(!)p
F4(\))p Gg(.)p Black 277 2450 a Gb(Pr)n(oof)24 b(of)g(Pr)n(oposition)g
(2.2.10.)p Black 35 w Gg(One)f(case)h(is)f(as)h(follo)n(ws.)p
Black 277 2639 a Gb(Case)p Black 46 w Ga(M)60 b F6(\021)50
b FL(Cut)p F4(\()951 2627 y FX(h)979 2639 y Ga(a)1027
2627 y FX(i)1054 2639 y Ga(S)5 b(;)1155 2627 y F9(\()1183
2639 y Ga(x)1235 2627 y F9(\))1262 2639 y Ga(T)13 b F4(\))p
Gg(:)56 b(Suppose)38 b F4(\000)1845 2653 y F9(1)1909
2627 y Gc(.)1964 2639 y Ga(S)2050 2627 y Gc(.)2105 2639
y F4(\001)2181 2653 y F9(1)2256 2639 y Gg(and)g Ga(x)17
b F4(:)g Ga(B)5 b(;)15 b F4(\000)2706 2653 y F9(2)2771
2627 y Gc(.)2826 2639 y Ga(T)2917 2627 y Gc(.)2972 2639
y F4(\001)3048 2653 y F9(2)3123 2639 y Gg(are)37 b(typing)504
2751 y(judgements)27 b(for)e Ga(S)j Gg(and)d Ga(T)13
b Gg(,)23 b(respecti)n(v)o(ely)-6 b(.)35 b(Furthermore,)26
b(assume)f(that)g Ga(a)e Gg(is)i(not)f(free)h(in)f Ga(S)5
b Gg(.)504 2864 y(By)23 b(the)h(inference)i(rules)e(we)f(ha)n(v)o(e)h
(for)g(the)g(term)f Ga(M)33 b Gg(the)24 b(typing)h(judgement)1353
3050 y F4(\000)1410 3064 y F9(1)1450 3050 y Ga(;)15 b
F4(\000)1547 3064 y F9(2)1611 3038 y Gc(.)1666 3050 y
FL(Cut)p F4(\()1839 3038 y FX(h)1867 3050 y Ga(a)1915
3038 y FX(i)1943 3050 y Ga(S)t(;)2043 3038 y F9(\()2071
3050 y Ga(x)2123 3038 y F9(\))2151 3050 y Ga(T)d F4(\))2277
3038 y Gc(.)2332 3050 y F4(\001)2408 3064 y F9(1)2447
3050 y Ga(;)j F4(\001)2563 3064 y F9(2)2628 3050 y Ga(:)504
3235 y Gg(Let)25 b FL(Cut)p F4(\()823 3223 y FX(h)851
3235 y Ga(a)899 3223 y FX(i)926 3235 y Ga(S)5 b(;)1027
3223 y F9(\()1055 3235 y Ga(x)1107 3223 y F9(\))1135
3235 y Ga(T)12 b F4(\))25 b Gg(reduce)i(to)f Ga(S)5 b
F4([)p Ga(a)29 b F4(:=)1911 3223 y F9(\()1938 3235 y
Ga(x)1990 3223 y F9(\))2018 3235 y Ga(T)13 b F4(])p Gg(,)25
b(which,)h(because)h(we)e(assumed)i(that)f Ga(a)f Gg(is)504
3348 y(not)g(free)g(in)f Ga(S)5 b Gg(,)24 b(is)g(equi)n(v)n(alent)j(to)
d Ga(S)5 b Gg(.)31 b(From)24 b(our)g(assumption)j(that)e
F4(\000)2722 3362 y F9(1)2787 3336 y Gc(.)2842 3348 y
Ga(S)2928 3336 y Gc(.)2983 3348 y F4(\001)3059 3362 y
F9(1)3122 3348 y Gg(is)f(a)g(typing)504 3461 y(judgement)f(for)e
Ga(S)5 b Gg(,)20 b(we)g(ha)n(v)o(e)h(by)g(Lemma)e(2.2.9)i(that)g
F4(\000)2275 3475 y F9(1)2314 3461 y Ga(;)15 b F4(\000)2411
3475 y F9(2)2476 3449 y Gc(.)2531 3461 y Ga(S)2617 3449
y Gc(.)2672 3461 y F4(\001)2748 3475 y F9(1)2787 3461
y Ga(;)g F4(\001)2903 3475 y F9(2)2963 3461 y Gg(is)20
b(also)i(a)e(typing)504 3574 y(judgement)26 b(for)e Ga(S)5
b Gg(.)28 b(Thus)23 b(we)g(are)h(done.)p 3436 3574 4
62 v 3440 3516 55 4 v 3440 3574 V 3494 3574 4 62 v Black
277 3811 a Gb(Pr)n(oof)j(of)g(Lemma)f(2.3.1.)p Black
34 w Gg(The)g(only)h(case)h(that)f(is)g(non-tri)n(vial)i(is)e(where)g
Ga(M)36 b Gg(is)26 b(an)h(axiom)g(\(since)277 3924 y(axioms)d
(introduce)j(tw)o(o)c(labels\).)p Black 277 4113 a Gb(Case)h
Ga(M)35 b F6(\021)25 b FL(Ax)p F4(\()p Ga(x;)15 b(b)p
F4(\))p Gb(:)p Black 37 w Gg(Suppose)22 b F6(f)p Ga(\033)s
F6(g)f Gg(and)g F6(f)p Ga(\034)10 b F6(g)21 b Gg(are)g(of)f(the)h(form)
15 b F6(f)-7 b Ga(x)27 b F4(:=)2669 4101 y FX(h)2696
4113 y Ga(a)2744 4101 y FX(i)2772 4113 y Ga(P)s F6(g)21
b Gg(and)15 b F6(f)-7 b Ga(b)27 b F4(:=)3269 4101 y F9(\()3296
4113 y Ga(y)3344 4101 y F9(\))3372 4113 y Ga(Q)-10 b
F6(g)p Gg(,)504 4226 y(respecti)n(v)o(ely)k(.)31 b(W)-7
b(e)20 b(analyse)i(in)f(turn)g(the)g(cases)h FL(Ax)o
F4(\()p Ga(x;)15 b(b)p F4(\))p F6(f)p Ga(\033)s F6(g)-15
b(f)p Ga(\034)10 b F6(g)23 b Gg(and)e FL(Ax)o F4(\()p
Ga(x;)15 b(b)p F4(\))p F6(f)p Ga(\034)10 b F6(g)-15 b(f)p
Ga(\033)s F6(f)p Ga(\034)10 b F6(gg)p Gg(.)p Black Black
728 4433 a Ga(M)g F6(f)p Ga(\033)s F6(gf)p Ga(\034)g
F6(g)32 b(\021)e FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))-5
b F6(f)e Ga(x)27 b F4(:=)1781 4421 y FX(h)1808 4433 y
Ga(a)1856 4421 y FX(i)1884 4433 y Ga(P)s F6(g)-5 b(f)e
Ga(b)26 b F4(:=)2210 4421 y F9(\()2237 4433 y Ga(y)2285
4421 y F9(\))2312 4433 y Ga(Q)-9 b F6(g)1143 4570 y F4(=)30
b FL(Cut)p F4(\()1417 4558 y FX(h)1445 4570 y Ga(a)1493
4558 y FX(i)1520 4570 y Ga(P)13 b(;)1631 4558 y F9(\()1659
4570 y Ga(x)1711 4558 y F9(\))1738 4570 y FL(Ax)p F4(\()p
Ga(x;)i(b)p F4(\))q(\))-5 b F6(f)e Ga(b)26 b F4(:=)2297
4558 y F9(\()2325 4570 y Ga(y)2373 4558 y F9(\))2400
4570 y Ga(Q)-9 b F6(g)1143 4706 y F4(=)30 b FL(Cut)p
F4(\()1417 4694 y FX(h)1445 4706 y Ga(a)1493 4694 y FX(i)1520
4706 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)1810 4694 y
F9(\()1838 4706 y Ga(y)1886 4694 y F9(\))1913 4706 y
Ga(Q)-10 b F6(g)q Ga(;)2061 4694 y F9(\()2089 4706 y
Ga(y)2137 4694 y F9(\))2164 4706 y Ga(Q)p F4(\))587 4937
y Ga(M)10 b F6(f)p Ga(\034)g F6(gf)p Ga(\033)s F6(f)p
Ga(\034)g F6(gg)33 b(\021)d FL(Ax)o F4(\()p Ga(x;)15
b(b)p F4(\))-5 b F6(f)e Ga(b)27 b F4(:=)1768 4925 y F9(\()1795
4937 y Ga(y)1843 4925 y F9(\))1870 4937 y Ga(Q)-9 b F6(g)k(f)e
Ga(x)26 b F4(:=)2210 4925 y FX(h)2238 4937 y Ga(a)2286
4925 y FX(i)2313 4937 y Ga(P)8 b F6(f)-7 b Ga(b)26 b
F4(:=)2603 4925 y F9(\()2631 4937 y Ga(y)2679 4925 y
F9(\))2706 4937 y Ga(Q)-10 b F6(g)i(g)1143 5074 y F4(=)30
b FL(Cut)p F4(\()1417 5062 y FX(h)1445 5074 y Ga(b)1484
5062 y FX(i)1511 5074 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p
F4(\))q Ga(;)1856 5062 y F9(\()1883 5074 y Ga(y)1931
5062 y F9(\))1959 5074 y Ga(Q)p F4(\))-5 b F6(f)e Ga(x)26
b F4(:=)2298 5062 y FX(h)2326 5074 y Ga(a)2374 5062 y
FX(i)2401 5074 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)2691
5062 y F9(\()2719 5074 y Ga(y)2767 5062 y F9(\))2794
5074 y Ga(Q)-10 b F6(g)h(g)1143 5210 y F4(=)30 b FL(Cut)p
F4(\()1417 5198 y FX(h)1445 5210 y Ga(a)1493 5198 y FX(i)1520
5210 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)1810 5198 y
F9(\()1838 5210 y Ga(y)1886 5198 y F9(\))1913 5210 y
Ga(Q)-10 b F6(g)q Ga(;)2061 5198 y F9(\()2089 5210 y
Ga(y)2137 5198 y F9(\))2164 5210 y Ga(Q)-5 b F6(f)e Ga(x)26
b F4(:=)2468 5198 y FX(h)2495 5210 y Ga(a)2543 5198 y
FX(i)2571 5210 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)2861
5198 y F9(\()2888 5210 y Ga(y)2936 5198 y F9(\))2964
5210 y Ga(Q)-10 b F6(g)h(g)q F4(\))1136 5291 y FV(\()p
FC(\003)p FV(\))1143 5374 y F6(\021)30 b FL(Cut)p F4(\()1417
5362 y FX(h)1445 5374 y Ga(a)1493 5362 y FX(i)1520 5374
y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)1810 5362 y F9(\()1838
5374 y Ga(y)1886 5362 y F9(\))1913 5374 y Ga(Q)-10 b
F6(g)q Ga(;)2061 5362 y F9(\()2089 5374 y Ga(y)2137 5362
y F9(\))2164 5374 y Ga(Q)p F4(\))1060 5505 y F9(\()p
FX(\003)p F9(\))1177 5538 y Gg(because)26 b(by)e(assumption)h
Ga(x)h F6(62)e Ga(F)13 b(N)d F4(\()2390 5526 y F9(\()2418
5538 y Ga(y)2466 5526 y F9(\))2494 5538 y Ga(Q)o F4(\))p
3436 5645 V 3440 5587 55 4 v 3440 5645 V 3494 5645 4
62 v Black Black eop end
%%Page: 142 154
TeXDict begin 142 153 bop Black -144 51 a Gb(142)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 388 a(Pr)n(oof)h(of)f(Lemma)f(2.3.11.)p
Black 35 w Gg(W)-7 b(e)23 b(illustrate)j(the)f(proof)g(with)f(tw)o(o)g
(cases.)31 b(Some)n(what)24 b(surprisingly)-6 b(,)321
501 y(it)24 b(is)f(possible)j(that)e Ga(M)10 b F6(f)p
Ga(\033)s F6(g)26 b(\021)f Ga(M)1421 468 y FX(0)1445
501 y F6(f)p Ga(\033)s F6(g)p Gg(,)e(as)h(sho)n(wn)f(in)h(the)g
(\002rst)f(case.)p Black 321 762 a Gb(Case)h Ga(M)35
b F6(\021)25 b FL(Cut)p F4(\()923 750 y FX(h)951 762
y Ga(a)999 750 y FX(i)1026 762 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(a)p F4(\))q Ga(;)1376 750 y F9(\()1404 762 y Ga(x)1456
750 y F9(\))1483 762 y Ga(S)5 b F4(\))p Gb(:)p Black
46 w Gg(Let)25 b Ga(S)k Gg(freshly)e(introduce)h Ga(x)c
Gg(and)h(suppose)j F6(f)p Ga(\033)s F6(g)d Gg(is)g(of)g(the)549
875 y(form)31 b F6(f)-7 b Ga(y)53 b F4(:=)1037 863 y
FX(h)1064 875 y Ga(c)1103 863 y FX(i)1131 875 y Ga(T)s
F6(g)p Gg(.)67 b(Furthermore,)42 b(assume)37 b Ga(M)2309
838 y Gc(aux)2289 875 y F6(\000)-31 b(\000)f(!)50 b Ga(M)2607
842 y FX(0)2666 875 y Gg(with)36 b Ga(M)2961 842 y FX(0)3033
875 y F6(\021)49 b Ga(S)5 b F4([)p Ga(x)35 b F6(7!)f
Ga(y)s F4(])p Gg(.)549 988 y(Ob)o(viously)-6 b(,)27 b(we)f(ha)n(v)o(e)g
Ga(M)1391 955 y FX(0)1414 988 y F6(f)p Ga(\033)s F6(g)31
b(\021)e Ga(S)5 b F4([)p Ga(x)14 b F6(7!)g Ga(y)s F4(])-5
b F6(f)e Ga(y)34 b F4(:=)2258 976 y FX(h)2285 988 y Ga(c)2324
976 y FX(i)2352 988 y Ga(T)s F6(g)p Gg(.)i(In)25 b(the)h(follo)n(wing)i
(calculation,)549 1101 y(the)23 b(equi)n(v)n(alence)k(\(`0'-case\))f
(occurs)f(if)e Ga(S)q F6(f)-7 b Ga(y)28 b F4(:=)2138
1089 y FX(h)2165 1101 y Ga(c)2204 1089 y FX(i)2232 1101
y Ga(T)s F6(g)c Gg(freshly)h(introduces)h Ga(x)p Gg(.)p
Black Black 1059 1394 a Ga(M)10 b F6(f)p Ga(\033)s F6(g)206
b(\021)e FL(Cut)p F4(\()1956 1382 y FX(h)1983 1394 y
Ga(a)2031 1382 y FX(i)2059 1394 y FL(Ax)o F4(\()p Ga(y)s(;)15
b(a)p F4(\))q Ga(;)2408 1382 y F9(\()2436 1394 y Ga(x)2488
1382 y F9(\))2516 1394 y Ga(S)5 b F4(\))-5 b F6(f)e Ga(y)29
b F4(:=)2840 1382 y FX(h)2867 1394 y Ga(c)2906 1382 y
FX(i)2934 1394 y Ga(T)s F6(g)1508 1531 y F4(=)204 b FL(Cut)p
F4(\()1956 1519 y FX(h)1983 1531 y Ga(c)2022 1519 y FX(i)2050
1531 y Ga(T)13 b(;)2156 1519 y F9(\()2184 1531 y Ga(x)2236
1519 y F9(\))2263 1531 y Ga(S)q F6(f)-7 b Ga(y)28 b F4(:=)2552
1519 y FX(h)2580 1531 y Ga(c)2619 1519 y FX(i)2646 1531
y Ga(T)t F6(g)p F4(\))1423 1634 y Gc(aux)1403 1671 y
F6(\000)-31 b(\000)f(!)1573 1638 y F9(0)p Gc(=)p F9(1)1783
1671 y Ga(S)q F6(f)-7 b Ga(y)27 b F4(:=)2072 1659 y FX(h)2099
1671 y Ga(c)2138 1659 y FX(i)2166 1671 y Ga(T)s F6(g)-5
b(f)e Ga(x)26 b F4(:=)2500 1659 y FX(h)2527 1671 y Ga(c)2566
1659 y FX(i)2594 1671 y Ga(T)s F6(g)1501 1752 y FV(\()p
FC(\003)p FV(\))1508 1835 y F6(\021)204 b Ga(S)5 b F4([)p
Ga(x)10 b F6(7!)g Ga(y)s F4(])-5 b F6(f)e Ga(y)29 b F4(:=)2333
1823 y FX(h)2360 1835 y Ga(c)2399 1823 y FX(i)2427 1835
y Ga(T)t F6(g)792 1951 y F9(\()p FX(\003)p F9(\))986
1984 y Gg(because)d(by)d(Barendre)o(gt-style)28 b(naming)c(con)l(v)o
(ention)j Ga(x)e F6(62)g Ga(F)13 b(N)d F4(\()3107 1972
y FX(h)3135 1984 y Ga(c)3174 1972 y FX(i)3201 1984 y
Ga(T)j F4(\))p Black 321 2278 a Gb(Case)24 b Ga(M)35
b F6(\021)25 b FL(Cut)p F4(\()923 2266 y FX(h)951 2278
y Ga(a)999 2266 y FX(i)1026 2278 y Ga(S)5 b(;)1127 2266
y F9(\()1155 2278 y Ga(x)1207 2266 y F9(\))1235 2278
y Ga(T)12 b F4(\))p Gb(:)p Black 46 w Gg(Suppose)35 b(the)e(term)g
Ga(S)38 b Gg(does)c(not)g(freshly)g(introduce)i Ga(a)d
Gg(and)g(as-)549 2391 y(sume)23 b Ga(M)907 2354 y Gc(aux)887
2391 y F6(\000)-32 b(\000)h(!)25 b Ga(M)1180 2358 y FX(0)1226
2391 y Gg(with)f Ga(M)1509 2358 y FX(0)1557 2391 y F6(\021)h
Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1942 2379 y FX(h)1970
2391 y Ga(x)2022 2379 y FX(i)2049 2391 y Ga(T)s F6(g)p
Gg(.)p Black Black 1111 2685 a Ga(M)10 b F6(f)p Ga(\033)s
F6(g)151 b(\021)e FL(Cut)p F4(\()1898 2673 y FX(h)1926
2685 y Ga(a)1974 2673 y FX(i)2001 2685 y Ga(S)5 b(;)2102
2673 y F9(\()2130 2685 y Ga(x)2182 2673 y F9(\))2210
2685 y Ga(T)12 b F4(\))p F6(f)p Ga(\033)s F6(g)1505 2821
y F4(=)149 b FL(Cut)p F4(\()1898 2809 y FX(h)1926 2821
y Ga(a)1974 2809 y FX(i)2001 2821 y Ga(S)5 b F6(f)p Ga(\033)s
F6(g)q Ga(;)2248 2809 y F9(\()2276 2821 y Ga(x)2328 2809
y F9(\))2356 2821 y Ga(T)13 b F6(f)p Ga(\033)s F6(g)q
F4(\))1476 2921 y Gc(aux)1455 2958 y F6(\000)-31 b(\000)g(!)99
b Ga(S)5 b F6(f)p Ga(\033)s F6(g)-5 b(f)e Ga(a)27 b F4(:=)2160
2946 y F9(\()2188 2958 y Ga(x)2240 2946 y F9(\))2267
2958 y Ga(T)13 b F6(f)p Ga(\033)s F6(g)-8 b(g)1498 3038
y FV(\()p FC(\003)p FV(\))1505 3122 y F6(\021)149 b Ga(S)q
F6(f)-7 b Ga(a)25 b F4(:=)2014 3110 y FX(h)2042 3122
y Ga(x)2094 3110 y FX(i)2121 3122 y Ga(T)s F6(gf)p Ga(\033)s
F6(g)290 3274 y F9(\()p FX(\003)p F9(\))408 3307 y Gg(by)e(Barendre)o
(gt-style)28 b(naming)c(con)l(v)o(ention)j Ga(a)e F6(62)g
Ga(F)13 b(C)7 b F4(\()p Ga(dom)p F4(\()p F6(f)p Ga(\033)s
F6(g)p F4(\)\))25 b Gg(and)f(hence)h(by)e(Lem.)f(2.3.1)p
3480 3460 4 62 v 3484 3402 55 4 v 3484 3460 V 3538 3460
4 62 v Black 321 3673 a Gb(Pr)n(oof)j(of)g(Lemma)e(2.3.12.)p
Black 34 w Gg(From)h(Lemma)f(2.3.6\(i\),)i(it)g(follo)n(ws)g(that)g(if)
2708 3661 y FX(h)2735 3673 y Ga(a)r F4(:)r Ga(B)2886
3661 y FX(i)2913 3673 y Ga(M)37 b F6(2)27 b FB(J)p F6(h)p
Ga(B)5 b F6(i)p FB(K)o Gg(,)24 b(then)321 3774 y FX(h)349
3786 y Ga(a)r F4(:)r Ga(B)500 3774 y FX(i)527 3786 y
Ga(M)45 b F6(2)35 b FW(N)t(E)t(G)916 3804 y FX(h)p Gc(B)s
FX(i)1033 3786 y F4(\()p FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)p F4(\))p Gg(.)43 b(So)27 b(depending)32 b(on)c(the)h(structure)h
(of)f Ga(B)j Gg(we)c(need)h(to)f(analyse)i(all)321 3898
y(possible)36 b(sets)f(\(generated)h(by)e(the)g(set)g(operators\))j
(where)2297 3886 y FX(h)2324 3898 y Ga(a)r F4(:)r Ga(B)2475
3886 y FX(i)2502 3898 y Ga(M)44 b Gg(may)33 b(be)h(member)g(in.)59
b(Six)321 4011 y(cases)25 b(are)f(gi)n(v)o(en)g(for)f(\(i\);)h(the)g
(ar)n(guments)i(for)e(\(ii\))f(are)h(similar)g(and)g(omitted.)p
Black 321 4312 a Gb(Case)p Black 49 w FW(A)t(X)t(I)t(O)t(M)t(S)866
4330 y FX(h)p Gc(B)s FX(i)983 4312 y Gg(:)1036 4300 y
FX(h)1064 4312 y Ga(a)r F4(:)r Ga(B)1215 4300 y FX(i)1242
4312 y Ga(M)33 b Gg(cannot)25 b(be)f(in)h FW(A)t(X)t(I)t(O)t(M)t(S)2142
4330 y FX(h)p Gc(B)s FX(i)2282 4312 y Gg(because)h(axioms)e(do)g(not)g
(reduce.)p Black 321 4556 a Gb(Case)p Black 49 w FW(B)t(I)t(N)t(D)t(I)t
(N)t(G)891 4575 y FX(h)p Gc(B)s FX(i)1008 4556 y F4(\()p
FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)o F4(\))q Gg(:)549
4748 y(\(1\))754 4736 y FX(h)782 4748 y Ga(a)r F4(:)r
Ga(B)933 4736 y FX(i)960 4748 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t
(I)t(N)t(G)1506 4767 y FX(h)p Gc(B)s FX(i)1623 4748 y
F4(\()p FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)p F4(\))23
b Gg(and)h Ga(M)2232 4711 y Gc(aux)2211 4748 y F6(\000)-31
b(\000)g(!)25 b Ga(M)2505 4715 y FX(0)3019 4748 y Gg(by)e(assumption)
549 4867 y(\(2\))100 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1080
4855 y F9(\()1108 4867 y Ga(x)r F4(:)r Ga(B)1263 4855
y F9(\))1290 4867 y Ga(P)t F6(g)f(2)g Ga(S)5 b(N)1642
4881 y Gc(aux)1787 4867 y Gg(for)24 b(all)2030 4855 y
F9(\()2057 4867 y Ga(x)r F4(:)r Ga(B)2212 4855 y F9(\))2239
4867 y Ga(P)39 b F6(2)24 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)220 b Gg(by)24 b(De\002nition)h(2.3.3)549 4986 y(\(3\))100
b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1080 4974 y F9(\()1108
4986 y Ga(x)r F4(:)r Ga(B)1263 4974 y F9(\))1290 4986
y Ga(P)t F6(g)1443 4948 y Gc(aux)1422 4986 y F6(\000)-31
b(\000)g(!)1593 4953 y F9(0)p Gc(=)p F9(1)1728 4986 y
Ga(M)1826 4953 y FX(0)1845 4986 y F6(f)-7 b Ga(a)25 b
F4(:=)2077 4974 y F9(\()2105 4986 y Ga(x)r F4(:)r Ga(B)2260
4974 y F9(\))2287 4986 y Ga(P)t F6(g)511 b Gg(by)24 b(Lemma)e(2.3.11)
549 5104 y(\(4\))100 b Ga(M)852 5071 y FX(0)871 5104
y F6(f)-7 b Ga(a)26 b F4(:=)1104 5092 y F9(\()1131 5104
y Ga(x)r F4(:)r Ga(B)1286 5092 y F9(\))1313 5104 y Ga(P)t
F6(g)g(2)f Ga(S)5 b(N)1666 5118 y Gc(aux)1811 5104 y
Gg(for)23 b(all)2053 5092 y F9(\()2080 5104 y Ga(x)r
F4(:)r Ga(B)2235 5092 y F9(\))2263 5104 y Ga(P)38 b F6(2)25
b FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)381 b Gg(by)24
b(\(2\))f(and)h(\(3\))549 5223 y(\(5\))754 5211 y FX(h)782
5223 y Ga(a)r F4(:)r Ga(B)933 5211 y FX(i)960 5223 y
Ga(M)1058 5190 y FX(0)1107 5223 y F6(2)j FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
1530 5241 y FX(h)p Gc(B)s FX(i)1646 5223 y F4(\()p FB(J)p
F4(\()p Ga(B)5 b F4(\))q FB(K)o F4(\))925 b Gg(by)24
b(De\002nition)h(2.3.3)549 5341 y(\(6\))754 5329 y FX(h)782
5341 y Ga(a)r F4(:)r Ga(B)933 5329 y FX(i)960 5341 y
Ga(M)1058 5308 y FX(0)1107 5341 y F6(2)g FB(J)p F6(h)p
Ga(B)5 b F6(i)o FB(K)1449 b Gg(by)24 b(De\002nition)h(2.3.4)p
Black Black eop end
%%Page: 143 155
TeXDict begin 143 154 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(143)p 277 88 3691 4 v Black Black
277 388 a(Case)p Black 48 w FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)911
407 y FX(h:)p Gc(C)5 b FX(i)1075 388 y F4(\()p FB(J)p
F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))p Gg(,)23 b Ga(B)29
b F6(\021)c(:)p Ga(C)7 b Gg(:)504 544 y(\(1\))101 b Ga(M)35
b F6(\021)25 b FL(Not)1072 558 y Gc(R)1130 544 y F4(\()1165
532 y F9(\()1193 544 y Ga(x)1245 532 y F9(\))1272 544
y Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)48 b Ga(M)1625 511
y FX(0)1674 544 y F6(\021)25 b FL(Not)1913 558 y Gc(R)1970
544 y F4(\()2005 532 y F9(\()2033 544 y Ga(x)2085 532
y F9(\))2113 544 y Ga(S)2174 511 y FX(0)2197 544 y Ga(;)15
b(a)p F4(\))p Gg(,)48 b Ga(S)2498 507 y Gc(aux)2478 544
y F6(\000)-32 b(\000)h(!)25 b Ga(S)2734 511 y FX(0)2780
544 y Gg(and)710 650 y FX(h)737 662 y Ga(a)r F4(:)r F6(:)p
Ga(C)947 650 y FX(i)974 662 y Ga(M)36 b F6(2)27 b FW(N)t(O)q(T)t(R)t(I)
t(G)t(H)t(T)1586 681 y FX(h:)p Gc(C)5 b FX(i)1749 662
y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))939
b Gg(by)24 b(assumption)504 781 y(\(2\))101 b Ga(M)33
b Gg(freshly)25 b(introduces)h Ga(a)d Gg(and)1732 769
y F9(\()1760 781 y Ga(x)r F4(:)r Ga(C)1913 769 y F9(\))1940
781 y Ga(S)30 b F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F4(\))p
FB(K)487 b Gg(by)24 b(De\002nition)g(2.3.3)504 899 y(\(3\))101
b Ga(M)808 866 y FX(0)854 899 y Gg(freshly)25 b(introduces)i
Ga(a)1327 b Gg(by)24 b(Lemma)e(2.3.8)504 1018 y(\(4\))710
1006 y F9(\()737 1018 y Ga(x)r F4(:)r Ga(C)890 1006 y
F9(\))918 1018 y Ga(S)979 985 y FX(0)1027 1018 y F6(2)j
FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)1716 b Gg(by)24
b(induction)504 1136 y(\(5\))710 1124 y FX(h)737 1136
y Ga(a)r F4(:)r F6(:)p Ga(C)947 1124 y FX(i)974 1136
y Ga(M)1072 1103 y FX(0)1121 1136 y F6(2)j FW(N)t(O)q(T)t(R)t(I)t(G)t
(H)t(T)1609 1155 y FX(h:)p Gc(C)5 b FX(i)1773 1136 y
F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o F4(\))323
b Gg(by)24 b(\(3\),)f(\(4\))h(and)g(De\002nition)g(2.3.3)504
1255 y(\(6\))710 1243 y FX(h)737 1255 y Ga(a)r F4(:)r
F6(:)p Ga(C)947 1243 y FX(i)974 1255 y Ga(M)1072 1222
y FX(0)1121 1255 y F6(2)h FB(J)p F6(h:)p Ga(C)7 b F6(i)o
FB(K)1332 b Gg(by)24 b(De\002nition)g(2.3.4)p Black 277
1425 a Gb(Case)p Black 48 w FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)923
1444 y FX(h)p Gc(C)5 b FX(^)s Gc(D)r FX(i)1146 1425 y
F4(\()p FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b
FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)23 b
Ga(B)29 b F6(\021)c Ga(C)7 b F6(^)o Ga(D)s Gg(:)504 1581
y(\(1\))101 b Ga(M)35 b F6(\021)25 b FL(And)1084 1595
y Gc(R)1142 1581 y F4(\()1177 1569 y FX(h)1204 1581 y
Ga(d)1251 1569 y FX(i)1279 1581 y Ga(S)5 b(;)1380 1569
y FX(h)1408 1581 y Ga(e)1450 1569 y FX(i)1478 1581 y
Ga(T)13 b(;)i(a)p F4(\))p Gg(,)48 b Ga(M)1836 1548 y
FX(0)1885 1581 y F6(\021)25 b FL(And)2135 1595 y Gc(R)2193
1581 y F4(\()2228 1569 y FX(h)2256 1581 y Ga(d)2303 1569
y FX(i)2330 1581 y Ga(S)2391 1548 y FX(0)2415 1581 y
Ga(;)2455 1569 y FX(h)2483 1581 y Ga(e)2525 1569 y FX(i)2552
1581 y Ga(T)2618 1548 y FX(0)2641 1581 y Ga(;)15 b(a)p
F4(\))24 b Gg(and)710 1687 y FX(h)737 1699 y Ga(a)r F4(:)r
Ga(C)7 b F6(^)p Ga(D)1025 1687 y FX(i)1052 1699 y Ga(M)36
b F6(2)26 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1675 1718
y FX(h)p Gc(C)5 b FX(^)s Gc(D)r FX(i)1898 1699 y F4(\()p
FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p
Ga(D)s F6(i)p FB(K)p F4(\))528 b Gg(by)24 b(assumption)504
1818 y(\(2\))101 b Ga(S)816 1781 y Gc(aux)796 1818 y
F6(\000)-31 b(\000)g(!)25 b Ga(S)1053 1785 y FX(0)1099
1818 y Gg(and)f Ga(T)38 b F6(\021)25 b Ga(T)1506 1785
y FX(0)1552 1818 y Gg(\(the)f(other)g(case)g(being)h(similar\))306
b(ne)n(w)23 b(assumption)504 1936 y(\(3\))101 b Ga(M)33
b Gg(freshly)25 b(introduces)h Ga(a)p Gg(,)1601 1924
y FX(h)1628 1936 y Ga(d)r F4(:)r Ga(C)1776 1924 y FX(i)1804
1936 y Ga(S)k F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(i)p
FB(K)22 b Gg(and)2368 1924 y FX(h)2396 1936 y Ga(e)r
F4(:)r Ga(D)2545 1924 y FX(i)2573 1936 y Ga(T)38 b F6(2)24
b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)53 b Gg(by)24 b(Def.)e(2.3.3)504
2055 y(\(4\))101 b Ga(M)808 2022 y FX(0)854 2055 y Gg(freshly)25
b(introduces)i Ga(a)1327 b Gg(by)24 b(Lemma)e(2.3.8)504
2173 y(\(5\))710 2161 y FX(h)737 2173 y Ga(d)r F4(:)r
Ga(C)885 2161 y FX(i)913 2173 y Ga(S)974 2140 y FX(0)1023
2173 y F6(2)i FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)1721
b Gg(by)24 b(induction)504 2292 y(\(6\))710 2280 y FX(h)737
2292 y Ga(a)r F4(:)r Ga(C)7 b F6(^)p Ga(D)1025 2280 y
FX(i)1052 2292 y Ga(M)1150 2259 y FX(0)1199 2292 y F6(2)27
b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1699 2310 y FX(h)p
Gc(C)5 b FX(^)r Gc(D)r FX(i)1921 2292 y F4(\()p FB(J)p
F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p Ga(D)s
F6(i)q FB(K)o F4(\))122 b Gg(by)23 b(\(4\),)h(\(5\))g(and)g(Def.)e
(2.3.3)504 2411 y(\(7\))710 2399 y FX(h)737 2411 y Ga(a)r
F4(:)r Ga(C)7 b F6(^)p Ga(D)1025 2399 y FX(i)1052 2411
y Ga(M)1150 2378 y FX(0)1199 2411 y F6(2)25 b FB(J)p
F6(h)p Ga(C)7 b F6(^)o Ga(D)s F6(i)p FB(K)1176 b Gg(by)24
b(De\002nition)g(2.3.4)p Black 277 2589 a Gb(Case)p Black
48 w FW(O)t(R)t(R)t(I)t(G)t(H)t(T)862 2556 y Gc(i)862
2621 y FX(h)p Gc(C)939 2630 y FV(1)976 2621 y FX(_)p
Gc(C)1073 2630 y FV(2)1108 2621 y FX(i)1140 2589 y F4(\()p
FB(J)p F6(h)p Ga(C)1312 2603 y Gc(i)1340 2589 y F6(i)q
FB(K)o F4(\))q Gg(,)e Ga(B)30 b F6(\021)25 b Ga(C)1753
2603 y F9(1)1792 2589 y F6(_)p Ga(C)1918 2603 y F9(2)1957
2589 y Gg(,)e F4(\()p Ga(i)j F4(=)f(1)p Ga(;)15 b F4(2\))p
Gg(:)504 2758 y(\(1\))101 b Ga(M)35 b F6(\021)25 b FL(Or)1029
2721 y Gc(i)1029 2781 y(R)1086 2758 y F4(\()1121 2746
y FX(h)1149 2758 y Ga(d)1196 2746 y FX(i)1224 2758 y
Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)48 b Ga(M)1577 2725
y FX(0)1626 2758 y F6(\021)25 b FL(Or)1821 2721 y Gc(i)1821
2781 y(R)1879 2758 y F4(\()1914 2746 y FX(h)1942 2758
y Ga(d)1989 2746 y FX(i)2016 2758 y Ga(S)2077 2725 y
FX(0)2101 2758 y Ga(;)15 b(a)p F4(\))p Gg(,)48 b Ga(S)2402
2721 y Gc(aux)2382 2758 y F6(\000)-32 b(\000)h(!)25 b
Ga(S)2638 2725 y FX(0)2684 2758 y Gg(and)710 2864 y FX(h)737
2876 y Ga(a)r F4(:)r Ga(C)879 2890 y F9(1)919 2876 y
F6(_)p Ga(C)1045 2890 y F9(2)1084 2864 y FX(i)1112 2876
y Ga(M)35 b F6(2)27 b FW(O)t(R)t(R)t(I)t(G)t(H)t(T)1674
2843 y Gc(i)1674 2908 y FX(h)p Gc(C)1751 2917 y FV(1)1788
2908 y FX(_)p Gc(C)1885 2917 y FV(2)1920 2908 y FX(i)1951
2876 y F4(\()p FB(J)p F6(h)p Ga(C)2123 2890 y Gc(i)2152
2876 y F6(i)p FB(K)p F4(\))715 b Gg(by)24 b(assumption)504
3007 y(\(2\))101 b Ga(M)33 b Gg(freshly)25 b(introduces)h
Ga(a)d Gg(and)1732 2995 y FX(h)1760 3007 y Ga(d)r F4(:)r
Ga(C)1901 3021 y Gc(i)1930 2995 y FX(i)1957 3007 y Ga(S)30
b F6(2)25 b FB(J)p F6(h)p Ga(C)2266 3021 y Gc(i)2294
3007 y F6(i)q FB(K)448 b Gg(by)24 b(De\002nition)g(2.3.3)504
3126 y(\(3\))101 b Ga(M)808 3093 y FX(0)854 3126 y Gg(freshly)25
b(introduces)i Ga(a)1327 b Gg(by)24 b(Lemma)e(2.3.8)504
3244 y(\(4\))710 3232 y FX(h)737 3244 y Ga(d)r F4(:)r
Ga(C)878 3258 y Gc(i)907 3232 y FX(i)935 3244 y Ga(S)996
3211 y FX(0)1044 3244 y F6(2)j FB(J)p F6(h)p Ga(C)1267
3258 y Gc(i)1295 3244 y F6(i)q FB(K)1677 b Gg(by)24 b(induction)504
3363 y(\(5\))710 3351 y FX(h)737 3363 y Ga(a)r F4(:)r
Ga(C)879 3377 y F9(1)919 3363 y F6(_)p Ga(C)1045 3377
y F9(2)1084 3351 y FX(i)1112 3363 y Ga(M)1210 3330 y
FX(0)1258 3363 y F6(2)j FW(O)t(R)t(R)t(I)t(G)t(H)t(T)1697
3330 y Gc(i)1697 3394 y FX(h)p Gc(C)1774 3403 y FV(1)1811
3394 y FX(^)p Gc(C)1908 3403 y FV(2)1943 3394 y FX(i)1975
3363 y F4(\()p FB(J)p F6(h)p Ga(C)2147 3377 y Gc(i)2175
3363 y F6(i)q FB(K)o F4(\))99 b Gg(by)24 b(\(3\),)f(\(4\))h(and)g
(De\002nition)g(2.3.3)504 3494 y(\(6\))710 3482 y FX(h)737
3494 y Ga(a)r F4(:)r Ga(C)879 3508 y F9(1)919 3494 y
F6(_)p Ga(C)1045 3508 y F9(2)1084 3482 y FX(i)1112 3494
y Ga(M)1210 3461 y FX(0)1258 3494 y F6(2)h FB(J)p F6(h)p
Ga(C)1481 3508 y F9(1)1521 3494 y F6(_)o Ga(C)1646 3508
y F9(2)1686 3494 y F6(i)p FB(K)1057 b Gg(by)24 b(De\002nition)g(2.3.4)p
Black 277 3709 a Gb(Case)p Black 48 w FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)
893 3727 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)1126
3709 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)p F4(\))p Gg(,)22
b Ga(B)30 b F6(\021)25 b Ga(C)7 b F6(\033)o Ga(D)s Gg(:)504
3864 y(\(1\))101 b Ga(M)35 b F6(\021)25 b FL(Imp)1074
3886 y Gc(R)1132 3864 y F4(\()1167 3852 y F9(\()1194
3864 y Ga(x)1246 3852 y F9(\))q FX(h)1301 3864 y Ga(d)1348
3852 y FX(i)1376 3864 y Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)48
b Ga(M)1729 3831 y FX(0)1778 3864 y F6(\021)25 b FL(Imp)2018
3886 y Gc(R)2076 3864 y F4(\()2111 3852 y F9(\()2139
3864 y Ga(x)2191 3852 y F9(\))p FX(h)2246 3864 y Ga(d)2293
3852 y FX(i)2321 3864 y Ga(S)2382 3831 y FX(0)2405 3864
y Ga(;)15 b(a)p F4(\))p Gg(,)48 b Ga(S)2706 3827 y Gc(aux)2686
3864 y F6(\000)-32 b(\000)h(!)25 b Ga(S)2942 3831 y FX(0)2988
3864 y Gg(and)710 3971 y FX(h)737 3983 y Ga(a)r F4(:)r
Ga(C)7 b F6(\033)p Ga(D)1035 3971 y FX(i)1062 3983 y
Ga(M)36 b F6(2)26 b FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)1655
4001 y FX(h)p Gc(C)5 b FX(\033)t Gc(C)g FX(i)1883 3983
y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))543 b Gg(by)24
b(assumption)504 4101 y(\(2\))101 b Ga(M)33 b Gg(freshly)25
b(introduces)h Ga(a)p Gg(,)710 4208 y FX(h)737 4220 y
Ga(d)r F4(:)r Ga(D)891 4208 y FX(i)919 4220 y Ga(S)q
F6(f)-7 b Ga(x)25 b F4(:=)1212 4208 y FX(h)1240 4220
y Ga(e)r F4(:)r Ga(C)1383 4208 y FX(i)1410 4220 y Ga(Q)-9
b F6(g)26 b(2)e FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)e Gg(for)i(all)2116
4208 y FX(h)2144 4220 y Ga(e)r F4(:)r Ga(C)2287 4208
y FX(i)2314 4220 y Ga(Q)h F6(2)g FB(J)p F6(h)p Ga(C)7
b F6(i)p FB(K)p Gg(,)22 b(and)710 4326 y F9(\()737 4338
y Ga(x)r F4(:)r Ga(C)890 4326 y F9(\))918 4338 y Ga(S)p
F6(f)-7 b Ga(d)26 b F4(:=)1206 4326 y F9(\()1234 4338
y Ga(z)6 b F4(:)r Ga(D)1387 4326 y F9(\))1414 4338 y
Ga(P)t F6(g)26 b(2)e FB(J)p F4(\()p Ga(C)7 b F4(\))p
FB(K)23 b Gg(for)g(all)2113 4326 y F9(\()2140 4338 y
Ga(z)6 b F4(:)r Ga(D)2293 4326 y F9(\))2321 4338 y Ga(P)39
b F6(2)24 b FB(J)p F4(\()p Ga(D)s F4(\))p FB(K)90 b Gg(by)24
b(De\002nition)g(2.3.3)504 4457 y(\(3\))101 b Ga(M)808
4424 y FX(0)854 4457 y Gg(freshly)25 b(introduces)i Ga(a)1327
b Gg(by)24 b(Lemma)e(2.3.8)504 4576 y(\(4\))101 b Ga(S)q
F6(f)-7 b Ga(x)25 b F4(:=)1003 4564 y FX(h)1031 4576
y Ga(e)r F4(:)r Ga(C)1174 4564 y FX(i)1201 4576 y Ga(Q)-9
b F6(g)1354 4538 y Gc(aux)1334 4576 y F6(\000)-31 b(\000)g(!)1504
4543 y F9(0)p Gc(=)p F9(1)1640 4576 y Ga(S)1701 4543
y FX(0)1719 4576 y F6(f)-7 b Ga(x)26 b F4(:=)1956 4564
y FX(h)1984 4576 y Ga(e)r F4(:)r Ga(C)2127 4564 y FX(i)2154
4576 y Ga(Q)-9 b F6(g)p Gg(,)710 4694 y Ga(S)q F6(f)i
Ga(d)25 b F4(:=)998 4682 y F9(\()1026 4694 y Ga(z)6 b
F4(:)r Ga(D)1179 4682 y F9(\))1207 4694 y Ga(P)s F6(g)1359
4657 y Gc(aux)1339 4694 y F6(\000)-31 b(\000)f(!)1509
4661 y F9(0)p Gc(=)p F9(1)1644 4694 y Ga(S)1705 4661
y FX(0)1724 4694 y F6(f)-7 b Ga(d)26 b F4(:=)1956 4682
y F9(\()1984 4694 y Ga(z)6 b F4(:)r Ga(D)2137 4682 y
F9(\))2164 4694 y Ga(P)t F6(g)590 b Gg(by)23 b(Lemma)g(2.3.11)504
4813 y(\(5\))710 4801 y FX(h)737 4813 y Ga(d)r F4(:)r
Ga(D)891 4801 y FX(i)919 4813 y Ga(S)980 4780 y FX(0)999
4813 y F6(f)-7 b Ga(x)25 b F4(:=)1236 4801 y FX(h)1263
4813 y Ga(e)r F4(:)r Ga(C)1406 4801 y FX(i)1434 4813
y Ga(Q)-10 b F6(g)26 b(2)f FB(J)p F6(h)p Ga(D)s F6(i)p
FB(K)d Gg(for)i(all)2140 4801 y FX(h)2167 4813 y Ga(e)r
F4(:)r Ga(C)2310 4801 y FX(i)2338 4813 y Ga(Q)h F6(2)g
FB(J)p F6(h)p Ga(C)7 b F6(i)o FB(K)p Gg(,)710 4919 y
F9(\()737 4931 y Ga(x)r F4(:)r Ga(C)890 4919 y F9(\))918
4931 y Ga(S)979 4898 y FX(0)997 4931 y F6(f)-7 b Ga(d)26
b F4(:=)1229 4919 y F9(\()1257 4931 y Ga(z)6 b F4(:)r
Ga(D)1410 4919 y F9(\))1438 4931 y Ga(P)s F6(g)26 b(2)f
FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)22 b Gg(for)i(all)2136
4919 y F9(\()2164 4931 y Ga(z)6 b F4(:)r Ga(D)2317 4919
y F9(\))2345 4931 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(D)s F4(\))p FB(K)1598 5050 y Gg(by)f(\(2\))f(and)h(\(4\):)30
b(`0'-case)25 b(tri)n(vial,)g(`1'-case)g(by)f(induction)504
5168 y(\(6\))710 5156 y FX(h)737 5168 y Ga(a)r F4(:)r
Ga(C)7 b F6(\033)p Ga(D)1035 5156 y FX(i)1062 5168 y
Ga(M)1160 5135 y FX(0)1209 5168 y F6(2)27 b FW(I)t(M)t(P)t(R)t(I)t(G)t
(H)t(T)1679 5187 y FX(h)p Gc(C)5 b FX(\033)t Gc(C)g FX(i)1906
5168 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))137 b Gg(by)23
b(\(3\),)h(\(5\))g(and)g(Def.)e(2.3.3)504 5287 y(\(7\))710
5275 y FX(h)737 5287 y Ga(a)r F4(:)r Ga(C)7 b F6(\033)p
Ga(D)1035 5275 y FX(i)1062 5287 y Ga(M)1160 5254 y FX(0)1209
5287 y F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(\033)o Ga(D)s
F6(i)p FB(K)1156 b Gg(by)24 b(De\002nition)g(2.3.4)p
3436 5392 4 62 v 3440 5334 55 4 v 3440 5392 V 3494 5392
4 62 v Black Black eop end
%%Page: 144 156
TeXDict begin 144 155 bop Black -144 51 a Gb(144)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 388 a(Pr)n(oof)34 b(of)e(Lemma)g(2.3.13.)p
Black 34 w Gg(Analogous)j(to)d(the)h(proof)h(of)f(the)g(preceding)i
(lemma,)f(we)e(need)i(to)321 501 y(analyse)c(all)f(possible)h(sets)f
(where)1479 489 y FX(h)1506 501 y Ga(a)r F4(:)r Ga(B)1657
489 y FX(i)1685 501 y Ga(M)37 b Gg(may)28 b(be)h(member)f(in.)43
b(Six)28 b(cases)h(are)g(gi)n(v)o(en)g(for)f(\(i\);)321
614 y(the)c(ar)n(guments)i(for)e(\(ii\))f(are)h(similar)g(and)g
(omitted.)p Black 321 793 a Gb(Case)p Black 49 w FW(A)t(X)t(I)t(O)t(M)t
(S)866 812 y FX(h)p Gc(B)s FX(i)983 793 y Gg(:)k(In)c(this)g(case)g
Ga(M)33 b Gg(is)23 b(an)h(axiom)g(and)g(therefore)i(strongly)f
(normalising.)p Black 321 964 a Gb(Case)p Black 49 w
FW(B)t(I)t(N)t(D)t(I)t(N)t(G)891 983 y FX(h)p Gc(B)s
FX(i)1008 964 y F4(\()p FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)o F4(\))q Gg(:)549 1120 y(\(1\))754 1108 y FX(h)782
1120 y Ga(a)r F4(:)r Ga(B)933 1108 y FX(i)960 1120 y
Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1506
1138 y FX(h)p Gc(B)s FX(i)1623 1120 y F4(\()p FB(J)p
F4(\()p Ga(B)5 b F4(\))p FB(K)p F4(\))1108 b Gg(by)23
b(assumption)549 1238 y(\(2\))100 b Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)1080 1226 y F9(\()1108 1238 y Ga(x)r
F4(:)r Ga(B)1263 1226 y F9(\))1290 1238 y Ga(P)t F6(g)f(2)g
Ga(S)5 b(N)1642 1252 y Gc(aux)1787 1238 y Gg(for)24 b(all)2030
1226 y F9(\()2057 1238 y Ga(x)r F4(:)r Ga(B)2212 1226
y F9(\))2239 1238 y Ga(P)39 b F6(2)24 b FB(J)p F4(\()p
Ga(B)5 b F4(\))p FB(K)220 b Gg(by)24 b(De\002nition)h(2.3.3)549
1357 y(\(3\))754 1345 y F9(\()782 1357 y Ga(x)r F4(:)r
Ga(B)937 1345 y F9(\))964 1357 y FL(Ax)o F4(\()p Ga(x;)15
b(a)p F4(\))27 b F6(2)e FB(J)p F4(\()p Ga(B)5 b F4(\))o
FB(K)1233 b Gg(by)24 b(Lemma)e(2.3.6\(ii\))549 1475 y(\(4\))100
b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1080 1463 y F9(\()1108
1475 y Ga(x)r F4(:)r Ga(B)1263 1463 y F9(\))1290 1475
y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))-9 b F6(g)26 b(2)f
Ga(S)5 b(N)1885 1489 y Gc(aux)2493 1475 y Gg(by)23 b(\(2\),)h(\(3\))f
(and)h Ga(P)39 b F6(\021)25 b FL(Ax)o F4(\()p Ga(x;)15
b(a)p F4(\))549 1594 y Gg(\(5\))100 b Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)1080 1582 y F9(\()1108 1594 y Ga(x)r
F4(:)r Ga(B)1263 1582 y F9(\))1290 1594 y FL(Ax)p F4(\()p
Ga(x;)15 b(a)p F4(\))-9 b F6(g)1685 1557 y Gc(aux)1665
1594 y F6(\000)-31 b(\000)f(!)1835 1561 y FX(\003)1900
1594 y Ga(M)962 b Gg(by)24 b(Lemma)f(2.3.9)549 1713 y(\(6\))100
b Ga(M)36 b F6(2)24 b Ga(S)5 b(N)1097 1727 y Gc(aux)3044
1713 y Gg(by)24 b(\(4\))f(and)h(\(5\))p Black 321 1883
a Gb(Case)p Black 49 w FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)956
1901 y FX(h:)p Gc(C)5 b FX(i)1119 1883 y F4(\()p FB(J)p
F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))p Gg(,)23 b Ga(B)30
b F6(\021)25 b(:)p Ga(C)7 b Gg(:)549 2038 y(\(1\))100
b Ga(M)36 b F6(\021)25 b FL(Not)1116 2052 y Gc(R)1174
2038 y F4(\()1209 2026 y F9(\()1237 2038 y Ga(x)1289
2026 y F9(\))1316 2038 y Ga(S)5 b(;)15 b(a)p F4(\))p
Gg(,)754 2145 y FX(h)782 2157 y Ga(a)r F4(:)r F6(:)p
Ga(C)992 2145 y FX(i)1019 2157 y Ga(M)35 b F6(2)27 b
FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)1630 2175 y FX(h:)p
Gc(C)5 b FX(i)1793 2157 y F4(\()p FB(J)p F4(\()p Ga(C)i
F4(\))q FB(K)o F4(\))940 b Gg(by)23 b(assumption)549
2275 y(\(2\))754 2263 y F9(\()782 2275 y Ga(x)r F4(:)r
Ga(C)935 2263 y F9(\))962 2275 y Ga(S)30 b F6(2)25 b
FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)1509 b Gg(by)24
b(De\002nition)h(2.3.3)549 2394 y(\(3\))100 b Ga(S)30
b F6(2)25 b Ga(S)5 b(N)1060 2408 y Gc(aux)3089 2394 y
Gg(by)24 b(induction)549 2512 y(\(4\))100 b FL(Not)897
2526 y Gc(R)955 2512 y F4(\()990 2500 y F9(\()1017 2512
y Ga(x)1069 2500 y F9(\))1097 2512 y Ga(S)5 b(;)15 b(a)p
F4(\))26 b F6(2)f Ga(S)5 b(N)1527 2526 y Gc(aux)3327
2512 y Gg(by)23 b(\(3\))p Black 321 2683 a Gb(Case)p
Black 49 w FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)968 2701
y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1190 2683 y F4(\()p
FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p
Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)23 b Ga(B)30 b F6(\021)25
b Ga(C)7 b F6(^)o Ga(D)s Gg(:)549 2838 y(\(1\))100 b
Ga(M)36 b F6(\021)25 b FL(And)1128 2852 y Gc(R)1186 2838
y F4(\()1221 2826 y FX(h)1249 2838 y Ga(d)1296 2826 y
FX(i)1323 2838 y Ga(S)5 b(;)1424 2826 y FX(h)1452 2838
y Ga(e)1494 2826 y FX(i)1522 2838 y Ga(T)13 b(;)i(a)p
F4(\))p Gg(,)754 2945 y FX(h)782 2957 y Ga(a)r F4(:)r
Ga(C)7 b F6(^)o Ga(D)1069 2945 y FX(i)1096 2957 y Ga(M)36
b F6(2)27 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1720 2975
y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1942 2957 y F4(\()p
FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p
Ga(D)s F6(i)p FB(K)p F4(\))529 b Gg(by)23 b(assumption)549
3075 y(\(2\))754 3063 y FX(h)782 3075 y Ga(d)r F4(:)r
Ga(C)930 3063 y FX(i)957 3075 y Ga(S)30 b F6(2)25 b FB(J)p
F6(h)p Ga(C)7 b F6(i)p FB(K)22 b Gg(and)1521 3063 y FX(h)1549
3075 y Ga(e)r F4(:)r Ga(D)1698 3063 y FX(i)1726 3075
y Ga(T)38 b F6(2)25 b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)734
b Gg(by)24 b(De\002nition)h(2.3.3)549 3194 y(\(3\))100
b Ga(S;)15 b(T)39 b F6(2)24 b Ga(S)5 b(N)1161 3208 y
Gc(aux)3089 3194 y Gg(by)24 b(induction)549 3312 y(\(4\))100
b FL(And)909 3326 y Gc(R)966 3312 y F4(\()1001 3300 y
FX(h)1029 3312 y Ga(d)1076 3300 y FX(i)1104 3312 y Ga(S)5
b(;)1205 3300 y FX(h)1233 3312 y Ga(e)1275 3300 y FX(i)1303
3312 y Ga(T)12 b(;)j(a)p F4(\))26 b F6(2)f Ga(S)5 b(N)1737
3326 y Gc(aux)3327 3312 y Gg(by)23 b(\(3\))p Black 321
3491 a Gb(Case)p Black 49 w FW(O)t(R)t(R)t(I)t(G)t(H)t(T)907
3458 y Gc(i)907 3523 y FX(h)p Gc(C)984 3532 y FV(1)1021
3523 y FX(_)p Gc(C)1118 3532 y FV(2)1152 3523 y FX(i)1184
3491 y F4(\()p FB(J)p F6(h)p Ga(C)1356 3505 y Gc(i)1385
3491 y F6(i)p FB(K)p F4(\))p Gg(,)f Ga(B)30 b F6(\021)25
b Ga(C)1797 3505 y F9(1)1836 3491 y F6(_)p Ga(C)1962
3505 y F9(2)2001 3491 y Gg(,)e F4(\()p Ga(i)j F4(=)f(1)p
Ga(;)15 b F4(2\))p Gg(:)549 3659 y(\(1\))100 b Ga(M)36
b F6(\021)25 b FL(Or)1073 3623 y Gc(i)1073 3683 y(R)1130
3659 y F4(\()1165 3647 y FX(h)1193 3659 y Ga(d)1240 3647
y FX(i)1268 3659 y Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)754
3766 y FX(h)782 3778 y Ga(a)r F4(:)r Ga(C)924 3792 y
F9(1)963 3778 y F6(_)p Ga(C)1089 3792 y F9(2)1128 3766
y FX(i)1156 3778 y Ga(M)35 b F6(2)27 b FW(O)t(R)t(R)t(I)t(G)t(H)t(T)
1718 3745 y Gc(i)1718 3809 y FX(h)p Gc(C)1795 3818 y
FV(1)1832 3809 y FX(_)p Gc(C)1929 3818 y FV(2)1964 3809
y FX(i)1996 3778 y F4(\()p FB(J)p F6(h)p Ga(C)2168 3792
y Gc(i)2196 3778 y F6(i)p FB(K)p F4(\))716 b Gg(by)23
b(assumption)549 3909 y(\(2\))754 3897 y FX(h)782 3909
y Ga(d)r F4(:)r Ga(C)923 3923 y Gc(i)951 3897 y FX(i)979
3909 y Ga(S)30 b F6(2)25 b FB(J)p F6(h)p Ga(C)1288 3923
y Gc(i)1316 3909 y F6(i)p FB(K)1471 b Gg(by)24 b(De\002nition)h(2.3.3)
549 4028 y(\(3\))100 b Ga(S)30 b F6(2)25 b Ga(S)5 b(N)1060
4042 y Gc(aux)3089 4028 y Gg(by)24 b(induction)549 4146
y(\(4\))100 b FL(Or)853 4109 y Gc(i)853 4169 y(R)911
4146 y F4(\()946 4134 y FX(h)974 4146 y Ga(d)1021 4134
y FX(i)1049 4146 y Ga(S)5 b(;)15 b(a)p F4(\))26 b F6(2)f
Ga(S)5 b(N)1479 4160 y Gc(aux)3327 4146 y Gg(by)23 b(\(3\))p
Black 321 4316 a Gb(Case)p Black 49 w FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)
938 4335 y FX(h)p Gc(C)5 b FX(\033)s Gc(D)r FX(i)1170
4316 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)23
b Ga(B)29 b F6(\021)c Ga(C)7 b F6(\033)o Ga(D)s Gg(:)549
4472 y(\(1\))100 b Ga(M)36 b F6(\021)25 b FL(Imp)1118
4494 y Gc(R)1176 4472 y F4(\()1211 4460 y F9(\()1238
4472 y Ga(x)1290 4460 y F9(\))q FX(h)1345 4472 y Ga(d)1392
4460 y FX(i)1420 4472 y Ga(S)5 b(;)15 b(a)p F4(\))p Ga(;)754
4578 y FX(h)782 4590 y Ga(a)r F4(:)r Ga(C)7 b F6(\033)o
Ga(D)1079 4578 y FX(i)1106 4590 y Ga(M)36 b F6(2)27 b
FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)1700 4609 y FX(h)p Gc(C)5
b FX(\033)s Gc(C)g FX(i)1927 4590 y F4(\()p FB(J)p F4(\()p
Ga(C)i F4(\))p FB(K)p Ga(;)15 b FB(J)p F6(h)p Ga(D)s
F6(i)p FB(K)p F4(\))544 b Gg(by)23 b(assumption)549 4709
y(\(2\))754 4697 y F9(\()782 4709 y Ga(x)r F4(:)r Ga(C)935
4697 y F9(\))962 4709 y Ga(S)p F6(f)-7 b Ga(d)26 b F4(:=)1250
4697 y F9(\()1278 4709 y Ga(z)6 b F4(:)r Ga(D)1431 4697
y F9(\))1459 4709 y Ga(P)s F6(g)26 b(2)f FB(J)p F4(\()p
Ga(C)7 b F4(\))o FB(K)23 b Gg(for)h(all)2157 4697 y F9(\()2185
4709 y Ga(z)6 b F4(:)r Ga(D)2338 4697 y F9(\))2365 4709
y Ga(P)39 b F6(2)25 b FB(J)p F4(\()p Ga(D)s F4(\))p FB(K)89
b Gg(by)24 b(De\002nition)h(2.3.3)549 4827 y(\(3\))754
4815 y F9(\()782 4827 y Ga(z)6 b F4(:)r Ga(D)935 4815
y F9(\))962 4827 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(d)p
F4(\))27 b F6(2)e FB(J)p F4(\()p Ga(D)s F4(\))p FB(K)1236
b Gg(by)24 b(Lemma)e(2.3.6\(ii\))549 4946 y(\(4\))754
4934 y F9(\()782 4946 y Ga(x)r F4(:)r Ga(C)935 4934 y
F9(\))962 4946 y Ga(S)q F6(f)-7 b Ga(d)25 b F4(:=)1250
4934 y F9(\()1278 4946 y Ga(z)6 b F4(:)r Ga(D)1431 4934
y F9(\))1459 4946 y FL(Ax)o F4(\()p Ga(z)t(;)15 b(d)p
F4(\))-8 b F6(g)26 b(2)f FB(J)p F4(\()p Ga(C)7 b F4(\))p
FB(K)370 b Gg(by)24 b(\(2\),)f(\(3\))h(and)g Ga(P)38
b F6(\021)25 b FL(Ax)p F4(\()p Ga(z)t(;)15 b(d)p F4(\))549
5064 y Gg(\(5\))100 b Ga(S)q F6(f)-7 b Ga(d)25 b F4(:=)1043
5052 y F9(\()1070 5064 y Ga(z)6 b F4(:)r Ga(D)1223 5052
y F9(\))1251 5064 y FL(Ax)o F4(\()p Ga(z)t(;)15 b(d)p
F4(\))-7 b F6(g)25 b(2)g Ga(S)5 b(N)1839 5078 y Gc(aux)3089
5064 y Gg(by)24 b(induction)549 5183 y(\(6\))100 b Ga(S)q
F6(f)-7 b Ga(d)25 b F4(:=)1043 5171 y F9(\()1070 5183
y Ga(z)6 b F4(:)r Ga(D)1223 5171 y F9(\))1251 5183 y
FL(Ax)o F4(\()p Ga(z)t(;)15 b(d)p F4(\))-7 b F6(g)1640
5146 y Gc(aux)1619 5183 y F6(\000)-31 b(\000)g(!)1790
5150 y FX(\003)1854 5183 y Ga(S)1040 b Gg(by)24 b(Lemma)f(2.3.9)549
5302 y(\(7\))100 b Ga(S)30 b F6(2)25 b Ga(S)5 b(N)1060
5316 y Gc(aux)3044 5302 y Gg(by)24 b(\(5\))f(and)h(\(6\))549
5420 y(\(8\))100 b FL(Imp)899 5442 y Gc(R)956 5420 y
F4(\()991 5408 y F9(\()1019 5420 y Ga(x)1071 5408 y F9(\))q
FX(h)1126 5420 y Ga(d)1173 5408 y FX(i)1201 5420 y Ga(S)5
b(;)15 b(a)p F4(\))26 b F6(2)f Ga(S)5 b(N)1631 5434 y
Gc(aux)3327 5420 y Gg(by)23 b(\(7\))p 3480 5525 4 62
v 3484 5467 55 4 v 3484 5525 V 3538 5525 4 62 v Black
Black eop end
%%Page: 145 157
TeXDict begin 145 156 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(145)p 277 88 3691 4 v Black Black
277 388 a(Pr)n(oof)28 b(of)g(Lemma)e(2.3.14.)p Black
34 w Gg(The)h(induction)j(proceeds)g(o)o(v)o(er)e(the)f(le)o
(xicographically)33 b(ordered)c(in-)277 501 y(duction)d(v)n(alue)e
F4(\()p Ga(\016)n(;)15 b(\026;)g(\027)6 b F4(\))24 b
Gg(assigned)i(to)e(each)g(term)f(of)h(the)f(form)h FL(Cut)p
F4(\()2521 489 y FX(h)2548 501 y Ga(a)r F4(:)r Ga(B)2699
489 y FX(i)2727 501 y Ga(M)10 b(;)2865 489 y F9(\()2893
501 y Ga(x)r F4(:)r Ga(B)3048 489 y F9(\))3075 501 y
Ga(N)g F4(\))p Gg(;)23 b Ga(\016)k Gg(is)c(the)277 614
y(de)o(gree)i(of)e(the)g(cut-formula)j Ga(B)5 b Gg(,)22
b(and)h Ga(\026)g Gg(and)g Ga(\027)29 b Gg(are)23 b(the)h(longest)h
(reduction)h(sequences)g(\(relati)n(v)o(e)e(to)297 690
y Gc(aux)277 727 y F6(\000)-31 b(\000)f(!)p Gg(\))27
b(starting)j(from)d Ga(M)37 b Gg(and)28 b Ga(N)10 b Gg(,)28
b(respecti)n(v)o(ely)-6 b(.)43 b(By)27 b(assumption)j(both)f
Ga(\026)d Gg(and)i Ga(\027)33 b Gg(are)27 b(\002nite.)41
b(W)-7 b(e)277 840 y(shall)34 b(sho)n(w)e(that)h(e)n(v)o(ery)g
(immediate)h(reduct)f(to)g(which)g FL(Cut)p F4(\()2304
828 y FX(h)2332 840 y Ga(a)2380 828 y FX(i)2407 840 y
Ga(M)10 b(;)2545 828 y F9(\()2573 840 y Ga(x)2625 828
y F9(\))2652 840 y Ga(N)g F4(\))32 b Gg(reduces)j(is)d(strongly)277
953 y(normalising.)277 1086 y(First,)23 b(we)g(shall)h(gi)n(v)o(e)g
(one)g(case)g(where)g(an)g(inner)g(reduction)i(occurs.)p
Black 277 1333 a Gb(Inner)d(Reduction:)p Black 504 1474
a Gg(\(1\))101 b FL(Cut)p F4(\()883 1462 y FX(h)911 1474
y Ga(a)959 1462 y FX(i)986 1474 y Ga(M)10 b(;)1124 1462
y F9(\()1152 1474 y Ga(x)1204 1462 y F9(\))1232 1474
y Ga(N)g F4(\))1395 1437 y Gc(aux)1375 1474 y F6(\000)-31
b(\000)f(!)26 b FL(Cut)o F4(\()1743 1462 y FX(h)1771
1474 y Ga(a)1819 1462 y FX(i)1847 1474 y Ga(M)1945 1441
y FX(0)1968 1474 y Ga(;)2008 1462 y F9(\()2036 1474 y
Ga(x)2088 1462 y F9(\))2115 1474 y Ga(N)10 b F4(\))p
Ga(;)710 1586 y FX(h)737 1598 y Ga(a)r F4(:)r Ga(B)888
1586 y FX(i)916 1598 y Ga(M)35 b F6(2)25 b FB(J)p F6(h)p
Ga(B)5 b F6(i)p FB(K)22 b Gg(and)1519 1586 y F9(\()1547
1598 y Ga(x)r F4(:)r Ga(B)1702 1586 y F9(\))1729 1598
y Ga(N)35 b F6(2)25 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)833 b Gg(by)24 b(assumption)504 1723 y(\(2\))101
b Ga(M)854 1685 y Gc(aux)833 1723 y F6(\000)-31 b(\000)g(!)25
b Ga(M)1127 1690 y FX(0)3283 1723 y Gg(by)e(\(1\))504
1847 y(\(3\))710 1835 y FX(h)737 1847 y Ga(a)r F4(:)r
Ga(B)888 1835 y FX(i)916 1847 y Ga(M)1014 1814 y FX(0)1062
1847 y F6(2)i FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)1495
b Gg(by)23 b(Lemma)g(2.3.12)504 1971 y(\(4\))101 b Ga(M)808
1938 y FX(0)857 1971 y F6(2)25 b Ga(S)5 b(N)1077 1985
y Gc(aux)2861 1971 y Gg(by)23 b(Lemma)g(2.3.13)504 2095
y(\(5\))101 b FL(Cut)p F4(\()883 2083 y FX(h)911 2095
y Ga(a)959 2083 y FX(i)986 2095 y Ga(M)1084 2062 y FX(0)1108
2095 y Ga(;)1148 2083 y F9(\()1175 2095 y Ga(x)1227 2083
y F9(\))1255 2095 y Ga(N)10 b F4(\))25 b F6(2)g Ga(S)5
b(N)1618 2109 y Gc(aux)3022 2095 y Gg(by)24 b(induction,)915
2219 y(the)g(de)o(gree)h(of)e(the)h(cut-formula)i(is)d(equal)i(in)e
(both)i(terms,)e(b)n(ut)h Ga(l)r F4(\()p Ga(M)3124 2186
y FX(0)3148 2219 y F4(\))h Ga(<)g(l)r F4(\()p Ga(M)10
b F4(\))277 2461 y Gg(Ne)o(xt,)23 b(we)g(shall)h(gi)n(v)o(e)g(one)g
(case)g(where)g(a)f(commuting)i(reduction)h(occurs)f(on)e(the)h(top-le)
n(v)o(el.)p Black 277 2708 a Gb(Commuting)e(Reduction:)p
Black 504 2852 a Gg(\(1\))101 b FL(Cut)p F4(\()883 2840
y FX(h)911 2852 y Ga(a)959 2840 y FX(i)986 2852 y Ga(M)10
b(;)1124 2840 y F9(\()1152 2852 y Ga(x)1204 2840 y F9(\))1232
2852 y Ga(N)g F4(\))1434 2815 y Gc(c)1465 2791 y FC(0)1375
2852 y F6(\000)-31 b(\000)f(!)26 b Ga(M)5 b F6(f)-7 b
Ga(a)26 b F4(:=)1897 2840 y F9(\()1924 2852 y Ga(x)1976
2840 y F9(\))2004 2852 y Ga(N)p F6(g)d Gg(and)2299 2840
y FX(h)2327 2852 y Ga(a)r F4(:)r Ga(B)2478 2840 y FX(i)2505
2852 y Ga(M)36 b F6(2)24 b FB(J)p F6(h)p Ga(B)5 b F6(i)p
FB(K)42 b Gg(by)24 b(assumption)504 3007 y(W)-7 b(e)28
b(kno)n(w)h(that)h(only)f(the)h(commuting)g(reduction)h(is)e
(applicable,)k(if)28 b Ga(M)39 b Gg(does)29 b(not)h(freshly)504
3120 y(introduce)f Ga(a)p Gg(.)34 b(This)25 b(implies)i(that)f(there)g
(are)g(only)g(tw)o(o)g(possibilities)j(for)2897 3108
y FX(h)2924 3120 y Ga(a)r F4(:)r Ga(B)3075 3108 y FX(i)3102
3120 y Ga(M)35 b Gg(to)26 b(be)f(in)504 3233 y FB(J)p
F6(h)p Ga(B)5 b F6(i)p FB(K)p Gg(:)28 b(it)c(can)f(be)h(in)h
FW(A)t(X)t(I)t(O)t(M)t(S)1511 3252 y FX(h)p Gc(B)s FX(i)1652
3233 y Gg(or)e(in)i FW(B)t(I)t(N)t(D)t(I)t(N)t(G)2180
3252 y FX(h)p Gc(B)s FX(i)2297 3233 y F4(\()p FB(J)p
F4(\()p Ga(B)5 b F4(\))q FB(K)o F4(\))q Gg(.)504 3391
y(In)27 b(the)g(\002rst)g(case)g Ga(M)36 b Gg(is)27 b(an)f(axiom)i
(that)f(does)h(not)f(introduce)i Ga(a)p Gg(.)38 b(Thus)26
b Ga(M)5 b F6(f)-7 b Ga(a)33 b F4(:=)3190 3379 y F9(\()3217
3391 y Ga(x)3269 3379 y F9(\))3297 3391 y Ga(N)p F6(g)27
b Gg(is)504 3503 y(equi)n(v)n(alent)f(to)e Ga(M)10 b
Gg(,)22 b(which)i(we)f(kno)n(w)g(by)h(assumption)i(is)d(strongly)j
(normalising.)504 3661 y(The)d(proof)i(for)f(the)g(second)h(case)f(is)f
(as)h(follo)n(ws.)p Black Black 504 3935 a(\(2\))710
3923 y FX(h)737 3935 y Ga(a)r F4(:)r Ga(B)888 3923 y
FX(i)916 3935 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1462
3953 y FX(h)p Gc(B)s FX(i)1579 3935 y F4(\()p FB(J)p
F4(\()p Ga(B)5 b F4(\))p FB(K)p F4(\))1049 b Gg(ne)n(w)23
b(assumption)504 4059 y(\(3\))101 b Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)1036 4047 y F9(\()1064 4059 y Ga(y)5
b F4(:)r Ga(B)1215 4047 y F9(\))1242 4059 y Ga(P)s F6(g)26
b(2)f Ga(S)5 b(N)1594 4073 y Gc(aux)1739 4059 y Gg(for)24
b(all)1981 4047 y F9(\()2009 4059 y Ga(y)5 b F4(:)r Ga(B)2160
4047 y F9(\))2187 4059 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(B)5 b F4(\))p FB(K)228 b Gg(by)24 b(De\002nition)g(2.3.3)504
4183 y(\(4\))710 4171 y F9(\()737 4183 y Ga(x)r F4(:)r
Ga(B)892 4171 y F9(\))920 4183 y Ga(N)35 b F6(2)25 b
FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)1642 b Gg(by)24
b(assumption)504 4307 y(\(5\))101 b Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)1036 4295 y F9(\()1064 4307 y Ga(x)r
F4(:)r Ga(B)1219 4295 y F9(\))1246 4307 y Ga(N)p F6(g)g(2)f
Ga(S)5 b(N)1610 4321 y Gc(aux)2470 4307 y Gg(by)23 b(\(3\),)h(\(4\))f
(and)3017 4295 y F9(\()3045 4307 y Ga(y)3093 4295 y F9(\))3120
4307 y Ga(P)38 b F6(\021)3312 4295 y F9(\()3340 4307
y Ga(x)3392 4295 y F9(\))3419 4307 y Ga(N)277 4573 y
Gg(It)d(remains)i(to)e(check)i(for)f(e)n(v)o(ery)g(logical)h
(cut-reduction)j(rule)c(that)g(the)g(immediate)g(reducts)h(of)277
4686 y FL(Cut)p F4(\()450 4674 y FX(h)478 4686 y Ga(a)526
4674 y FX(i)553 4686 y Ga(M)10 b(;)691 4674 y F9(\()719
4686 y Ga(x)771 4674 y F9(\))799 4686 y Ga(N)g F4(\))34
b Gg(are)h(strongly)i(normalising.)65 b(W)-7 b(e)34 b(shall)i(gi)n(v)o
(e)f(three)g(cases)h(to)f(illustrate)i(the)277 4799 y(proof.)29
b(The)20 b(dif)n(\002cult)h(case)g(is)g(the)f(logical)j(reduction)g
F6(\033)2078 4813 y Gc(R)2136 4799 y Ga(=)p F6(\033)2252
4813 y Gc(L)2304 4799 y Gg(,)d(because)j(both)e(immediate)h(reducts)277
4912 y(ha)n(v)o(e)i(tw)o(o)f(nested)i(cuts.)p Black 277
5159 a Gb(Logical)g(Reduction)d(with)h(Axioms:)p Black
47 w FL(Cut)o F4(\()1745 5147 y FX(h)1773 5159 y Ga(a)1821
5147 y FX(i)1849 5159 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p
F4(\))q Ga(;)2198 5147 y F9(\()2226 5159 y Ga(x)2278
5147 y F9(\))2306 5159 y Ga(N)9 b F4(\))24 b Gg(reduces)h(to)39
b Ga(N)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])16 b Gg(.)28
b(By)23 b(as-)504 5272 y(sumption)h(we)d(kno)n(w)h(that)g
Ga(N)31 b Gg(is)21 b(strongly)j(normalising,)h(and)d(therefore)i
Ga(N)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])22 b Gg(must)f(be)504
5385 y(strongly)26 b(normalising.)p Black Black eop end
%%Page: 146 158
TeXDict begin 146 157 bop Black -144 51 a Gb(146)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 388 a(Logical)h(Reduction)e Fb(^)1123
402 y Fy(R)1189 388 y FO(=)p Fb(^)1311 402 y Fy(L)1364
410 y Fa(1)1407 388 y Gb(,)f FO(B)34 b Fb(\021)29 b FO(C)6
b Fb(^)p FO(D)s Gb(:)p Black 549 546 a Gg(\(1\))100 b
FL(Cut)p F4(\()927 534 y FX(h)955 546 y Ga(c)994 534
y FX(i)1022 546 y Ga(M)10 b(;)1160 534 y F9(\()1188 546
y Ga(y)1236 534 y F9(\))1263 546 y Ga(N)g F4(\))1481
509 y Gc(l)1406 546 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
F4(\()1775 534 y FX(h)1803 546 y Ga(a)1851 534 y FX(i)1878
546 y Ga(S)5 b(;)1979 534 y F9(\()2007 546 y Ga(x)2059
534 y F9(\))2086 546 y Ga(U)10 b F4(\))p Gg(,)754 670
y Ga(M)36 b F6(\021)25 b FL(And)1128 684 y Gc(R)1186
670 y F4(\()1221 658 y FX(h)1249 670 y Ga(a)1297 658
y FX(i)1324 670 y Ga(S)5 b(;)1425 658 y FX(h)1453 670
y Ga(b)1492 658 y FX(i)1519 670 y Ga(T)13 b(;)i(c)p F4(\))p
Gg(,)49 b Ga(N)35 b F6(\021)25 b FL(And)2130 633 y F9(1)2130
693 y Gc(L)2182 670 y F4(\()2217 658 y F9(\()2245 670
y Ga(x)2297 658 y F9(\))2324 670 y Ga(U)10 b(;)15 b(y)s
F4(\))p Gg(,)754 794 y Ga(M)33 b Gg(and)24 b Ga(N)33
b Gg(freshly)25 b(introduce)h Ga(c)d Gg(and)h Ga(y)s
Gg(,)e(respecti)n(v)o(ely)-6 b(,)754 906 y FX(h)782 918
y Ga(c)r F4(:)r Ga(C)7 b F6(^)o Ga(D)1060 906 y FX(i)1088
918 y Ga(M)35 b F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(^)o
Ga(D)s F6(i)p FB(K)22 b Gg(and)1827 906 y F9(\()1855
918 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o Ga(D)2142 906 y F9(\))2169
918 y Ga(N)36 b F6(2)24 b FB(J)p F4(\()p Ga(C)7 b F6(^)o
Ga(D)s F4(\))q FB(K)301 b Gg(by)23 b(assumption)549 1066
y(Since)g Ga(M)33 b Gg(and)24 b Ga(N)33 b Gg(are)24 b(not)f(axioms,)i
(it)e(follo)n(ws)h(from)f(Lemma)g(2.3.6\(i\))h(that)549
1213 y FX(h)576 1225 y Ga(c)r F4(:)r Ga(C)7 b F6(^)p
Ga(D)855 1213 y FX(i)882 1225 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t
(I)t(N)t(G)1428 1243 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r
FX(i)1651 1225 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(^)o
Ga(D)s F4(\))p FB(K)p F4(\))46 b F6([)h FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t
(T)2641 1243 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)2863
1225 y F4(\()p FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))549 1348 y
F9(\()576 1360 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o Ga(D)863
1348 y F9(\))891 1360 y Ga(N)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t
(G)1422 1379 y F9(\()p Gc(C)5 b FX(^)q Gc(D)r F9(\))1644
1360 y F4(\()p FB(J)p F6(h)p Ga(C)i F6(^)o Ga(D)s F6(i)p
FB(K)p F4(\))46 b F6([)h FW(A)t(N)t(D)t(L)t(E)t(F)t(T)2579
1327 y F9(1)2579 1391 y(\()p Gc(C)5 b FX(^)t Gc(D)r F9(\))2804
1360 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o F4(\))549
1518 y Gg(No)n(w)27 b(our)h(ar)n(gument)j(splits)e(into)h(tw)o(o)e
(cases)h(depending)i(on)e(whether)g(at)g(least)g(one)g(of)f(the)549
1619 y FX(h)576 1631 y Ga(c)r F4(:)r Ga(C)7 b F6(^)p
Ga(D)855 1619 y FX(i)882 1631 y Ga(M)35 b Gg(and)1161
1619 y F9(\()1189 1631 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o
Ga(D)1476 1619 y F9(\))1503 1631 y Ga(N)35 b Gg(belong)27
b(to)h FW(B)t(I)t(N)t(D)t(I)t(N)t(G)r Gg(.)35 b(Let)25
b(us)h(assume)2919 1619 y FX(h)2946 1631 y Ga(c)r F4(:)r
Ga(C)7 b F6(^)p Ga(D)3225 1619 y FX(i)3252 1631 y Ga(M)35
b Gg(is)26 b(an)549 1744 y(element)e(in)i FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
1290 1762 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1512 1744
y F4(\()p FB(J)p F4(\()p Ga(C)i F6(^)o Ga(D)s F4(\))q
FB(K)o F4(\))p Gg(.)549 1914 y(\(2.1\))822 1902 y FX(h)850
1914 y Ga(c)r F4(:)r Ga(C)g F6(^)p Ga(D)1129 1902 y FX(i)1156
1914 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1702
1932 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1924 1914 y
F4(\()p FB(J)p F4(\()p Ga(C)i F6(^)p Ga(D)s F4(\))p FB(K)p
F4(\))611 b Gg(ne)n(w)23 b(assumption)549 2038 y(\(2.2\))100
b Ga(M)5 b F6(f)-7 b Ga(c)27 b F4(:=)1140 2026 y F9(\()1167
2038 y Ga(z)1213 2026 y F9(\))1241 2038 y Ga(P)t F6(g)e(2)g
Ga(S)5 b(N)1593 2052 y Gc(aux)1738 2038 y Gg(for)24 b(all)1981
2026 y F9(\()2008 2038 y Ga(z)6 b F4(:)r Ga(C)h F6(^)p
Ga(D)2294 2026 y F9(\))2321 2038 y Ga(P)38 b F6(2)25
b FB(J)p F4(\()p Ga(C)7 b F6(^)o Ga(D)s F4(\))p FB(K)212
b Gg(by)24 b(Def.)f(2.3.3)549 2162 y(\(2.3\))100 b Ga(M)5
b F6(f)-7 b Ga(c)27 b F4(:=)1140 2150 y F9(\()1167 2162
y Ga(y)1215 2150 y F9(\))1243 2162 y Ga(N)p F6(g)f(2)f
Ga(S)5 b(N)1607 2176 y Gc(aux)2451 2162 y Gg(by)24 b(\(1\),)f(\(2.2\))h
(and)3067 2150 y F9(\()3095 2162 y Ga(z)3141 2150 y F9(\))3168
2162 y Ga(P)39 b F6(\021)3361 2150 y F9(\()3388 2162
y Ga(y)3436 2150 y F9(\))3463 2162 y Ga(N)549 2286 y
Gg(\(2.4\))100 b(The)23 b(follo)n(wing)i(calculation)i(sho)n(ws)d(that)
g FL(Cut)p F4(\()2362 2274 y FX(h)2390 2286 y Ga(c)2429
2274 y FX(i)2456 2286 y Ga(M)10 b(;)2594 2274 y F9(\()2622
2286 y Ga(y)2670 2274 y F9(\))2698 2286 y Ga(N)g F4(\))25
b F6(2)g Ga(S)5 b(N)3061 2300 y Gc(aux)3183 2286 y Gg(.)p
Black Black 643 2458 a Ga(M)g F6(f)-7 b Ga(c)27 b F4(:=)961
2446 y F9(\()988 2458 y Ga(y)1036 2446 y F9(\))1064 2458
y Ga(N)p F6(g)k(\021)f FL(And)1468 2472 y Gc(R)1526 2458
y F4(\()1561 2446 y FX(h)1589 2458 y Ga(a)1637 2446 y
FX(i)1664 2458 y Ga(S)5 b(;)1765 2446 y FX(h)1793 2458
y Ga(b)1832 2446 y FX(i)1860 2458 y Ga(T)12 b(;)j(c)p
F4(\))-5 b F6(f)e Ga(c)28 b F4(:=)2260 2446 y F9(\()2287
2458 y Ga(y)2335 2446 y F9(\))2363 2458 y Ga(N)p F6(g)1213
2594 y F4(=)i FL(Cut)p F4(\()1487 2582 y FX(h)1514 2594
y Ga(c)1553 2582 y FX(i)1581 2594 y FL(And)1736 2608
y Gc(R)1793 2594 y F4(\()1828 2582 y FX(h)1856 2594 y
Ga(a)1904 2582 y FX(i)1932 2594 y Ga(S)q F6(f)-7 b Ga(c)25
b F4(:=)2212 2582 y F9(\()2240 2594 y Ga(y)2288 2582
y F9(\))2315 2594 y Ga(N)p F6(g)q Ga(;)2474 2582 y FX(h)2502
2594 y Ga(b)2541 2582 y FX(i)2568 2594 y Ga(T)8 b F6(f)-7
b Ga(c)26 b F4(:=)2853 2582 y F9(\()2881 2594 y Ga(y)2929
2582 y F9(\))2956 2594 y Ga(N)q F6(g)p Ga(;)15 b(c)p
F4(\))q Ga(;)3230 2582 y F9(\()3258 2594 y Ga(y)3306
2582 y F9(\))3333 2594 y Ga(N)10 b F4(\))1206 2675 y
FV(\()p FC(\003)p FV(\))1213 2758 y F6(\021)30 b FL(Cut)p
F4(\()1487 2746 y FX(h)1514 2758 y Ga(c)1553 2746 y FX(i)1581
2758 y FL(And)1736 2772 y Gc(R)1793 2758 y F4(\()1828
2746 y FX(h)1856 2758 y Ga(a)1904 2746 y FX(i)1932 2758
y Ga(S)5 b(;)2033 2746 y FX(h)2061 2758 y Ga(b)2100 2746
y FX(i)2127 2758 y Ga(T)13 b(;)i(c)p F4(\))q Ga(;)2348
2746 y F9(\()2376 2758 y Ga(y)2424 2746 y F9(\))2451
2758 y Ga(N)10 b F4(\))1213 2895 y F6(\021)30 b FL(Cut)p
F4(\()1487 2883 y FX(h)1514 2895 y Ga(c)1553 2883 y FX(i)1581
2895 y Ga(M)10 b(;)1719 2883 y F9(\()1747 2895 y Ga(y)1795
2883 y F9(\))1822 2895 y Ga(N)g F4(\))1106 3002 y F9(\()p
FX(\003)p F9(\))1314 3035 y Gg(because)25 b Ga(M)33 b
Gg(freshly)25 b(introduces)i Ga(c)p Gg(.)549 3192 y(If)h
FL(Cut)p F4(\()810 3180 y FX(h)838 3192 y Ga(c)877 3180
y FX(i)905 3192 y Ga(M)10 b(;)1043 3180 y F9(\()1071
3192 y Ga(y)1119 3180 y F9(\))1146 3192 y Ga(N)g F4(\))29
b Gg(is)g(strongly)i(normalising,)i(then)d(its)f(reduct)h
FL(Cut)p F4(\()2922 3180 y FX(h)2950 3192 y Ga(a)2998
3180 y FX(i)3026 3192 y Ga(S)5 b(;)3127 3180 y F9(\()3154
3192 y Ga(x)3206 3180 y F9(\))3234 3192 y Ga(U)10 b F4(\))29
b Gg(must)549 3305 y(be)d(strongly)j(normalising)h(too.)38
b(In)27 b(case)1906 3293 y F9(\()1933 3305 y Ga(y)5 b
F4(:)r Ga(C)i F6(^)o Ga(D)2220 3293 y F9(\))2247 3305
y Ga(N)36 b Gg(is)27 b(in)i FW(B)t(I)t(N)t(D)t(I)t(N)t(G)2877
3324 y F9(\()p Gc(C)5 b FX(^)r Gc(D)r F9(\))3099 3305
y F4(\()p FB(J)p F6(h)p Ga(C)i F6(^)o Ga(D)s F6(i)q FB(K)o
F4(\))q Gg(,)549 3418 y(we)22 b(reason)j(analogous.)549
3571 y(If)c(neither)902 3559 y FX(h)930 3571 y Ga(c)r
F4(:)r Ga(C)7 b F6(^)p Ga(D)1209 3559 y FX(i)1236 3571
y Ga(M)30 b Gg(nor)1496 3559 y F9(\()1523 3571 y Ga(y)5
b F4(:)r Ga(C)i F6(^)p Ga(D)1811 3559 y F9(\))1838 3571
y Ga(N)30 b Gg(are)21 b(in)j FW(B)t(I)t(N)t(D)t(I)t(N)t(G)r
Gg(,)e(then)g(we)e(proceed)j(as)e(follo)n(ws.)549 3725
y(\(3.1\))822 3713 y FX(h)850 3725 y Ga(c)r F4(:)r Ga(C)7
b F6(^)p Ga(D)1129 3713 y FX(i)1156 3725 y Ga(M)35 b
F6(2)27 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1779 3744
y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)2002 3725 y F4(\()p
FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)o Ga(;)15 b FB(J)p F6(h)p
Ga(D)s F6(i)q FB(K)o F4(\))q Gg(,)822 3838 y F9(\()850
3850 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o Ga(D)1137 3838 y
F9(\))1164 3850 y Ga(N)36 b F6(2)26 b FW(A)t(N)t(D)t(L)t(E)t(F)t(T)1717
3817 y F9(1)1717 3881 y(\()p Gc(C)5 b FX(^)t Gc(D)r F9(\))1942
3850 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))732
b Gg(ne)n(w)23 b(assumption)549 3984 y(\(3.2\))822 3972
y FX(h)850 3984 y Ga(a)17 b F4(:)h Ga(C)1030 3972 y FX(i)1056
3984 y Ga(S)31 b F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(i)o
FB(K)23 b Gg(and)1621 3972 y F9(\()1648 3984 y Ga(x)17
b F4(:)h Ga(C)1832 3972 y F9(\))1859 3984 y Ga(U)35 b
F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)601 b
Gg(by)24 b(De\002nition)h(2.3.3)549 4109 y(\(3.3\))100
b Ga(S;)15 b(U)36 b F6(2)25 b Ga(S)5 b(N)1236 4123 y
Gc(aux)2905 4109 y Gg(by)24 b(Lemma)e(2.3.13)549 4233
y(\(3.4\))100 b FL(Cut)p F4(\()995 4221 y FX(h)1023 4233
y Ga(a)r F4(:)r Ga(C)1172 4221 y FX(i)1199 4233 y Ga(S)5
b(;)1300 4221 y F9(\()1328 4233 y Ga(x)r F4(:)r Ga(C)1481
4221 y F9(\))1508 4233 y Ga(U)10 b F4(\))26 b F6(2)f
Ga(S)5 b(N)1861 4247 y Gc(aux)2250 4233 y Gg(by)24 b(induction)i(\(the)
e(de)o(gree)h(decreased\))p Black 321 4426 a Gb(Logical)g(Reduction)e
Fb(\033)1135 4440 y Fy(R)1200 4426 y FO(=)p Fb(\033)1334
4440 y Fy(L)1391 4426 y Gb(,)g FO(B)33 b Fb(\021)d FO(C)6
b Fb(\033)p FO(D)s Gb(:)p Black 549 4583 a Gg(\(1\))100
b Ga(M)36 b F6(\021)25 b FL(Imp)1118 4605 y Gc(R)1176
4583 y F4(\()1211 4571 y F9(\()1238 4583 y Ga(x)1290
4571 y F9(\))q FX(h)1345 4583 y Ga(a)1393 4571 y FX(i)1421
4583 y Ga(S)5 b(;)15 b(b)p F4(\))p Gg(,)23 b Ga(N)60
b F6(\021)25 b FL(Imp)2016 4605 y Gc(L)2068 4583 y F4(\()2103
4571 y FX(h)2131 4583 y Ga(c)2170 4571 y FX(i)2198 4583
y Ga(T)12 b(;)2303 4571 y F9(\()2331 4583 y Ga(y)2379
4571 y F9(\))2407 4583 y Ga(U)d(;)15 b(z)t F4(\))p Gg(,)754
4708 y Ga(M)33 b Gg(and)24 b Ga(N)33 b Gg(freshly)25
b(introduce)h Ga(b)d Gg(and)h Ga(z)t Gg(,)e(respecti)n(v)o(ely)-6
b(,)754 4820 y FX(h)782 4832 y Ga(c)r F4(:)r Ga(C)7 b
F6(\033)p Ga(D)1071 4820 y FX(i)1098 4832 y Ga(M)35 b
F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(\033)o Ga(D)s F6(i)p
FB(K)23 b Gg(and)1848 4820 y F9(\()1875 4832 y Ga(y)5
b F4(:)r Ga(C)i F6(\033)o Ga(D)2172 4820 y F9(\))2200
4832 y Ga(N)35 b F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F6(\033)o
Ga(D)s F4(\))p FB(K)261 b Gg(by)23 b(assumption)549 4985
y(The)g(term)g FL(Cut)p F4(\()1075 4973 y FX(h)1103 4985
y Ga(b)1142 4973 y FX(i)1169 4985 y Ga(M)10 b(;)1307
4973 y F9(\()1335 4985 y Ga(z)1381 4973 y F9(\))1409
4985 y Ga(N)g F4(\))23 b Gg(reduces)i(to)f(either:)p
Black Black 757 5216 a FL(Cut)p F4(\()930 5204 y FX(h)958
5216 y Ga(a)1006 5204 y FX(i)1059 5216 y FL(Cut)p F4(\()1232
5204 y FX(h)1259 5216 y Ga(c)1298 5204 y FX(i)1326 5216
y Ga(T)13 b(;)1432 5204 y F9(\()1460 5216 y Ga(x)1512
5204 y F9(\))1539 5216 y Ga(S)5 b F4(\))q Ga(;)1676 5204
y F9(\()1703 5216 y Ga(y)1751 5204 y F9(\))1779 5216
y Ga(U)10 b F4(\))100 b Gg(or)g FL(Cut)p F4(\()2334 5204
y FX(h)2362 5216 y Ga(c)2401 5204 y FX(i)2428 5216 y
Ga(T)13 b(;)2534 5204 y F9(\()2562 5216 y Ga(x)2614 5204
y F9(\))2667 5216 y FL(Cut)p F4(\()2840 5204 y FX(h)2867
5216 y Ga(a)2915 5204 y FX(i)2943 5216 y Ga(S)5 b(;)3044
5204 y F9(\()3072 5216 y Ga(y)3120 5204 y F9(\))3147
5216 y Ga(U)10 b F4(\)\))26 b Gg(.)p Black Black eop
end
%%Page: 147 159
TeXDict begin 147 158 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(147)p 277 88 3691 4 v Black 504 388
a Gg(W)-7 b(e)34 b(ha)n(v)o(e)i(to)e(sho)n(w)h(that)g(both)h(reducts)g
(are)f(strongly)i(normalising.)65 b(W)-7 b(e)34 b(shall)h(gi)n(v)o(e)g
(the)504 501 y(details)25 b(for)f(the)g(\002rst)f(case.)504
659 y(Since)h Ga(M)33 b Gg(and)24 b Ga(N)33 b Gg(are)23
b(not)h(axioms,)g(it)g(follo)n(ws)g(from)f(Lemma)g(2.3.6\(i\))h(that)
504 812 y FX(h)532 824 y Ga(b)r F4(:)r Ga(C)7 b F6(\033)o
Ga(D)820 812 y FX(i)848 824 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)
t(N)t(G)1394 842 y FX(h)p Gc(C)5 b FX(\033)r Gc(D)r FX(i)1624
824 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(\033)p Ga(D)s
F4(\))p FB(K)o F4(\))46 b F6([)h FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)2594
842 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)2826 824
y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))q FB(K)o Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)o F4(\))504 947 y
F9(\()532 959 y Ga(z)6 b F4(:)r Ga(C)h F6(\033)p Ga(D)828
947 y F9(\))855 959 y Ga(N)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
1386 978 y F9(\()p Gc(C)5 b FX(\033)r Gc(D)r F9(\))1616
959 y F4(\()p FB(J)p F6(h)p Ga(C)i F6(\033)p Ga(D)s F6(i)p
FB(K)o F4(\))46 b F6([)h FW(I)t(M)t(P)t(L)t(E)t(F)t(T)2531
978 y F9(\()p Gc(C)5 b FX(\033)h Gc(D)r F9(\))2766 959
y F4(\()p FB(J)p F6(h)p Ga(C)h F6(i)p FB(K)o Ga(;)15
b FB(J)p F4(\()p Ga(D)s F4(\))q FB(K)o F4(\))504 1115
y Gg(Again)35 b(the)g(proof)h(splits)g(into)g(tw)o(o)e(cases)i
(depending)i(on)d(whether)h(the)f(co-named)i(term)504
1216 y FX(h)532 1228 y Ga(b)17 b F4(:)g Ga(C)7 b F6(\033)p
Ga(D)851 1216 y FX(i)878 1228 y Ga(M)38 b Gg(or)28 b(the)g(named)h
(term)1709 1216 y F9(\()1737 1228 y Ga(z)21 b F4(:)d
Ga(C)7 b F6(\033)o Ga(D)2063 1216 y F9(\))2090 1228 y
Ga(N)38 b Gg(belong)30 b(to)g FW(B)t(I)t(N)t(D)t(I)t(N)t(G)r
Gg(.)44 b(Let)27 b(us)i(assume)504 1329 y FX(h)532 1341
y Ga(b)r F4(:)r Ga(C)7 b F6(\033)o Ga(D)820 1329 y FX(i)848
1341 y Ga(M)32 b Gg(is)24 b(an)f(element)i(in)g FW(B)t(I)t(N)t(D)t(I)t
(N)t(G)1901 1360 y FX(h)p Gc(C)5 b FX(\033)r Gc(D)r FX(i)2132
1341 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(\033)o Ga(D)s
F4(\))p FB(K)p F4(\))p Gg(.)504 1517 y(\(2.1\))778 1505
y FX(h)806 1517 y Ga(b)r F4(:)r Ga(C)g F6(\033)o Ga(D)1094
1505 y FX(i)1121 1517 y Ga(M)36 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t
(G)1668 1535 y FX(h)p Gc(C)5 b FX(\033)q Gc(D)r FX(i)1898
1517 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(\033)o Ga(D)s
F4(\))q FB(K)o F4(\))584 b Gg(ne)n(w)23 b(assumption)504
1641 y(\(2.2\))101 b Ga(M)5 b F6(f)-7 b Ga(b)26 b F4(:=)1095
1629 y F9(\()1123 1641 y Ga(v)1170 1629 y F9(\))1198
1641 y Ga(P)s F6(g)g(2)f Ga(S)5 b(N)1550 1655 y Gc(aux)1695
1641 y Gg(for)23 b(all)1937 1629 y F9(\()1965 1641 y
Ga(v)5 b F4(:)r Ga(C)i F6(\033)o Ga(D)2261 1629 y F9(\))2289
1641 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F6(\033)o
Ga(D)s F4(\))p FB(K)190 b Gg(by)24 b(Def.)e(2.3.3)504
1765 y(\(2.3\))101 b Ga(M)5 b F6(f)-7 b Ga(b)26 b F4(:=)1095
1753 y F9(\()1123 1765 y Ga(z)1169 1753 y F9(\))1197
1765 y Ga(N)p F6(g)g(2)f Ga(S)5 b(N)1561 1779 y Gc(aux)2408
1765 y Gg(by)23 b(\(1\),)h(\(2.2\))g(and)3024 1753 y
F9(\()3051 1765 y Ga(v)3098 1753 y F9(\))3126 1765 y
Ga(P)38 b F6(\021)3318 1753 y F9(\()3345 1765 y Ga(z)3391
1753 y F9(\))3419 1765 y Ga(N)504 1889 y Gg(\(2.4\))101
b(The)23 b(follo)n(wing)i(calculation)i(sho)n(ws)d(that)g
FL(Cut)p F4(\()2318 1877 y FX(h)2345 1889 y Ga(c)2384
1877 y FX(i)2412 1889 y Ga(M)10 b(;)2550 1877 y F9(\()2578
1889 y Ga(z)2624 1877 y F9(\))2652 1889 y Ga(N)g F4(\))25
b F6(2)g Ga(S)5 b(N)3015 1903 y Gc(aux)3138 1889 y Gg(.)p
Black Black 874 2104 a Ga(M)g F6(f)-7 b Ga(b)26 b F4(:=)1192
2092 y F9(\()1219 2104 y Ga(z)1265 2092 y F9(\))1293
2104 y Ga(N)p F6(g)31 b(\021)f FL(Imp)1687 2125 y Gc(R)1745
2104 y F4(\()1780 2092 y F9(\()1808 2104 y Ga(x)1860
2092 y F9(\))p FX(h)1915 2104 y Ga(a)1963 2092 y FX(i)1990
2104 y Ga(S)5 b(;)15 b(b)p F4(\))-5 b F6(f)e Ga(b)27
b F4(:=)2385 2092 y F9(\()2413 2104 y Ga(z)2459 2092
y F9(\))2486 2104 y Ga(N)q F6(g)1442 2240 y F4(=)j FL(Cut)p
F4(\()1716 2228 y FX(h)1744 2240 y Ga(b)1783 2228 y FX(i)1810
2240 y FL(Imp)1954 2262 y Gc(R)2012 2240 y F4(\()2047
2228 y F9(\()2075 2240 y Ga(x)2127 2228 y F9(\))p FX(h)2182
2240 y Ga(a)2230 2228 y FX(i)2257 2240 y Ga(S)q F6(f)-7
b Ga(b)25 b F4(:=)2537 2228 y F9(\()2565 2240 y Ga(z)2611
2228 y F9(\))2639 2240 y Ga(N)p F6(g)q Ga(;)15 b(b)p
F4(\))p Ga(;)2912 2228 y F9(\()2940 2240 y Ga(z)2986
2228 y F9(\))3014 2240 y Ga(N)10 b F4(\))1435 2320 y
FV(\()p FC(\003)p FV(\))1442 2404 y F6(\021)30 b FL(Cut)p
F4(\()1716 2392 y FX(h)1744 2404 y Ga(b)1783 2392 y FX(i)1810
2404 y FL(Imp)1954 2426 y Gc(R)2012 2404 y F4(\()2047
2392 y F9(\()2075 2404 y Ga(x)2127 2392 y F9(\))p FX(h)2182
2404 y Ga(a)2230 2392 y FX(i)2257 2404 y Ga(S)5 b(;)15
b(b)p F4(\))q Ga(;)2473 2392 y F9(\()2501 2404 y Ga(z)2547
2392 y F9(\))2575 2404 y Ga(N)10 b F4(\))1442 2541 y
F6(\021)30 b FL(Cut)p F4(\()1716 2529 y FX(h)1744 2541
y Ga(b)1783 2529 y FX(i)1810 2541 y Ga(M)10 b(;)1948
2529 y F9(\()1976 2541 y Ga(z)2022 2529 y F9(\))2050
2541 y Ga(N)g F4(\))1336 2672 y F9(\()p FX(\003)p F9(\))1543
2705 y Gg(because)25 b Ga(M)33 b Gg(freshly)25 b(introduces)i
Ga(b)p Gg(.)504 2905 y(Therefore)37 b(we)e(kno)n(w)g(that)h(the)f(term)
g FL(Cut)p F4(\()1962 2893 y FX(h)1990 2905 y Ga(b)2029
2893 y FX(i)2056 2905 y Ga(M)11 b(;)2195 2893 y F9(\()2222
2905 y Ga(z)2268 2893 y F9(\))2296 2905 y Ga(N)f F4(\))35
b Gg(is)g(strongly)i(normalising,)k(and)504 3018 y(hence)26
b(its)e(reduct)i FL(Cut)p F4(\()1273 3006 y FX(h)1300
3018 y Ga(a)1348 3006 y FX(i)1401 3018 y FL(Cut)p F4(\()1574
3006 y FX(h)1602 3018 y Ga(c)1641 3006 y FX(i)1669 3018
y Ga(T)12 b(;)1774 3006 y F9(\()1802 3018 y Ga(x)1854
3006 y F9(\))1882 3018 y Ga(S)5 b F4(\))p Ga(;)2018 3006
y F9(\()2046 3018 y Ga(y)2094 3006 y F9(\))2121 3018
y Ga(U)10 b F4(\))24 b Gg(must)g(be)g(strongly)j(normalising,)f(too.)
504 3130 y(In)34 b(f)o(act)h(both)g(reducts)g(must)f(be)g(strongly)j
(normalising.)62 b(The)34 b(case)g(where)3069 3118 y
F9(\()3096 3130 y Ga(z)6 b F4(:)r Ga(C)h F6(\033)p Ga(D)3392
3118 y F9(\))3419 3130 y Ga(N)504 3243 y Gg(belongs)26
b(to)f FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1240 3262 y F9(\()p
Gc(C)5 b FX(\033)r Gc(D)r F9(\))1471 3243 y F4(\()p FB(J)p
F6(h)p Ga(C)i F6(\033)o Ga(D)s F6(i)p FB(K)p F4(\))23
b Gg(is)g(similar)-5 b(.)504 3401 y(W)e(e)34 b(no)n(w)f(ha)n(v)o(e)i
(to)f(sho)n(w)g(that)h(the)g(reduct)g(is)f(strongly)j(normalising)g(in)
d(the)g(case)h(where)504 3502 y FX(h)532 3514 y Ga(b)17
b F4(:)g Ga(C)7 b F6(\033)p Ga(D)851 3502 y FX(i)878
3514 y Ga(M)45 b Gg(and)1178 3502 y F9(\()1205 3514 y
Ga(z)22 b F4(:)17 b Ga(C)7 b F6(\033)o Ga(D)1531 3502
y F9(\))1558 3514 y Ga(N)46 b Gg(belong)37 b(to)h FW(I)t(M)t(P)t(R)t(I)
t(G)t(H)t(T)2449 3533 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r
FX(i)2681 3514 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))q
FB(K)o Ga(;)15 b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)o F4(\))36
b Gg(and)g(to)506 3627 y FW(I)t(M)t(P)t(L)t(E)t(F)t(T)833
3646 y F9(\()p Gc(C)6 b FX(\033)f Gc(D)r F9(\))1068 3627
y F4(\()p FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)o Ga(;)15
b FB(J)p F4(\()p Ga(D)s F4(\))q FB(K)p F4(\))p Gg(,)22
b(respecti)n(v)o(ely)-6 b(.)504 3785 y(W)f(e)23 b(\002rst)g(sho)n(w)h
(that)g(the)f(inner)i(cut)f(of)f(the)h(reduct)h(is)e(strongly)j
(normalising.)504 3945 y(\(3.1\))778 3933 y FX(h)806
3945 y Ga(b)17 b F4(:)g Ga(C)7 b F6(\033)o Ga(D)1124
3933 y FX(i)1152 3945 y Ga(M)35 b F6(2)27 b FW(I)t(M)t(P)t(R)t(I)t(G)t
(H)t(T)1745 3964 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)1977
3945 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)778
4058 y F9(\()806 4070 y Ga(z)21 b F4(:)d Ga(C)7 b F6(\033)o
Ga(D)1132 4058 y F9(\))1159 4070 y Ga(N)35 b F6(2)27
b FW(I)t(M)t(P)t(L)t(E)t(F)t(T)1682 4088 y F9(\()p Gc(C)5
b FX(\033)h Gc(D)r F9(\))1916 4070 y F4(\()p FB(J)p F6(h)p
Ga(C)h F6(i)p FB(K)p Ga(;)15 b FB(J)p F4(\()p Ga(D)s
F4(\))q FB(K)o F4(\))452 b Gg(ne)n(w)23 b(assumption)504
4194 y(\(3.2\))778 4182 y F9(\()806 4194 y Ga(x)17 b
F4(:)g Ga(C)989 4182 y F9(\))1016 4194 y Ga(S)q F6(f)-7
b Ga(a)25 b F4(:=)1305 4182 y F9(\()1333 4194 y Ga(v)5
b F4(:)r Ga(D)1487 4182 y F9(\))1515 4194 y Ga(P)s F6(g)26
b(2)f FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)22 b Gg(for)i(all)2213
4182 y F9(\()2241 4194 y Ga(v)5 b F4(:)r Ga(D)2395 4182
y F9(\))2423 4194 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(D)s F4(\))p FB(K)o Gg(,)778 4306 y FX(h)806 4318 y
Ga(c)r F4(:)r Ga(C)946 4306 y FX(i)973 4318 y Ga(T)38
b F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)1449 b
Gg(by)24 b(De\002nition)g(2.3.3)504 4442 y(\(3.3\))101
b Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1067 4430 y F9(\()1095
4442 y Ga(v)5 b F4(:)r Ga(D)1249 4430 y F9(\))1277 4442
y Ga(P)s F6(g)p Ga(;)15 b(T)39 b F6(2)25 b Ga(S)5 b(N)1735
4456 y Gc(aux)2861 4442 y Gg(by)23 b(Lemma)g(2.3.13)504
4567 y(\(3.4\))101 b FL(Cut)p F4(\()951 4555 y FX(h)979
4567 y Ga(c)1018 4555 y FX(i)1046 4567 y Ga(T)12 b(;)1151
4555 y F9(\()1179 4567 y Ga(x)1231 4555 y F9(\))1259
4567 y Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1548 4555 y F9(\()1575
4567 y Ga(v)5 b F4(:)r Ga(D)1729 4555 y F9(\))1757 4567
y Ga(P)t F6(g)p F4(\))26 b F6(2)f Ga(S)5 b(N)2145 4581
y Gc(aux)2411 4567 y Gg(by)23 b(ind.)h(\(the)g(de)o(gree)h(decreased\))
504 4719 y(As)j(stated)h(in)f(Remark)g(2.2.7,)h(we)e(require)i(that)g
Ga(a)e Gg(is)h(not)g(free)h(in)2671 4707 y FX(h)2699
4719 y Ga(c)2738 4707 y FX(i)2766 4719 y Ga(T)12 b Gg(,)28
b(and)h(therefore)h(we)504 4832 y(may)24 b(mo)o(v)o(e)f(the)g
(substitution)28 b(on)23 b(the)h(top-le)n(v)o(el.)30
b(Thus)24 b(we)f(ha)n(v)o(e)h(that)796 5048 y FL(Cut)p
F4(\()969 5036 y FX(h)997 5048 y Ga(c)1036 5036 y FX(i)1064
5048 y Ga(T)12 b(;)1169 5036 y F9(\()1197 5048 y Ga(x)1249
5036 y F9(\))1277 5048 y Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1566
5036 y F9(\()1593 5048 y Ga(v)5 b F4(:)r Ga(D)1747 5036
y F9(\))1775 5048 y Ga(P)t F6(g)p F4(\))26 b F6(\021)f
FL(Cut)p F4(\()2212 5036 y FX(h)2239 5048 y Ga(c)2278
5036 y FX(i)2306 5048 y Ga(T)13 b(;)2412 5036 y F9(\()2440
5048 y Ga(x)2492 5036 y F9(\))2519 5048 y Ga(S)5 b F4(\))-5
b F6(f)e Ga(a)26 b F4(:=)2844 5036 y F9(\()2871 5048
y Ga(v)5 b F4(:)r Ga(D)3025 5036 y F9(\))3053 5048 y
Ga(P)s F6(g)26 b Ga(:)522 5269 y Gg(\(3.5\))100 b FL(Cut)p
F4(\()968 5257 y FX(h)996 5269 y Ga(c)1035 5257 y FX(i)1063
5269 y Ga(T)13 b(;)1169 5257 y F9(\()1197 5269 y Ga(x)1249
5257 y F9(\))1276 5269 y Ga(S)5 b F4(\))-5 b F6(f)e Ga(a)26
b F4(:=)1600 5257 y F9(\()1628 5269 y Ga(v)5 b F4(:)r
Ga(D)1782 5257 y F9(\))1810 5269 y Ga(P)s F6(g)26 b(2)f
Ga(S)5 b(N)2162 5283 y Gc(aux)2307 5269 y Gg(for)24 b(all)2549
5257 y F9(\()2577 5269 y Ga(v)5 b F4(:)r Ga(D)2731 5257
y F9(\))2759 5269 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(D)s F4(\))p FB(K)69 b Gg(by)23 b(\(3.4\))522 5394
y(\(3.6\))795 5382 y FX(h)823 5394 y Ga(a)r F4(:)r Ga(D)978
5382 y FX(i)1006 5394 y FL(Cut)o F4(\()1178 5382 y FX(h)1206
5394 y Ga(c)1245 5382 y FX(i)1273 5394 y Ga(T)13 b(;)1379
5382 y F9(\()1407 5394 y Ga(x)1459 5382 y F9(\))1486
5394 y Ga(S)5 b F4(\))26 b F6(2)e FB(J)p F6(h)p Ga(D)s
F6(i)q FB(K)917 b Gg(by)23 b(De\002nition)i(2.3.3)p Black
Black eop end
%%Page: 148 160
TeXDict begin 148 159 bop Black -144 51 a Gb(148)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 549 388 a Gg(No)n(w)e(we)g(sho)n(w)i(that)g(the)g(outer)g
(cut)g(is)f(strongly)j(normalising.)549 592 y(\(3.7\))822
580 y F9(\()850 592 y Ga(y)5 b F4(:)r Ga(D)1005 580 y
F9(\))1032 592 y Ga(U)35 b F6(2)25 b FB(J)p F4(\()p Ga(D)s
F4(\))p FB(K)1072 b Gg(by)23 b(\(3.1\))h(and)g(De\002nition)h(2.3.3)549
716 y(\(3.8\))100 b FL(Cut)p F4(\()995 704 y FX(h)1023
716 y Ga(c)1062 704 y FX(i)1090 716 y Ga(T)13 b(;)1196
704 y F9(\()1223 716 y Ga(x)1275 704 y F9(\))1303 716
y Ga(S)5 b F4(\))p Ga(;)15 b(U)36 b F6(2)25 b Ga(S)5
b(N)1757 730 y Gc(aux)2905 716 y Gg(by)24 b(Lemma)e(2.3.13)549
840 y(\(3.9\))100 b FL(Cut)p F4(\()995 828 y FX(h)1023
840 y Ga(a)1071 828 y FX(i)1099 840 y FL(Cut)o F4(\()1271
828 y FX(h)1299 840 y Ga(c)1338 828 y FX(i)1366 840 y
Ga(T)13 b(;)1472 828 y F9(\()1500 840 y Ga(x)1552 828
y F9(\))1579 840 y Ga(S)5 b F4(\))p Ga(;)1715 828 y F9(\()1743
840 y Ga(y)1791 828 y F9(\))1818 840 y Ga(U)10 b F4(\))26
b F6(2)f Ga(S)5 b(N)2171 854 y Gc(aux)2455 840 y Gg(by)23
b(ind.)h(\(the)g(de)o(gree)h(decreased\))549 986 y(W)-7
b(e)22 b(reason)j(analogous)i(in)c(the)h(case)g(where)1035
1249 y FL(Cut)p F4(\()1208 1237 y FX(h)1236 1249 y Ga(b)1275
1237 y FX(i)1302 1249 y Ga(M)10 b(;)1440 1237 y F9(\()1468
1249 y Ga(z)1514 1237 y F9(\))1542 1249 y Ga(N)g F4(\))1759
1212 y Gc(l)1685 1249 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
F4(\()2054 1237 y FX(h)2081 1249 y Ga(c)2120 1237 y FX(i)2148
1249 y Ga(T)13 b(;)2254 1237 y F9(\()2282 1249 y Ga(x)2334
1237 y F9(\))2387 1249 y FL(Cut)o F4(\()2559 1237 y FX(h)2587
1249 y Ga(a)2635 1237 y FX(i)2663 1249 y Ga(S)5 b(;)2764
1237 y F9(\()2792 1249 y Ga(y)2840 1237 y F9(\))2867
1249 y Ga(U)10 b F4(\)\))26 b Ga(:)321 1492 y Gg(W)-7
b(e)23 b(ha)n(v)o(e)h(sho)n(wn)f(that)h(all)f(immediate)i(reducts)g(of)
e FL(Cut)p F4(\()2146 1480 y FX(h)2174 1492 y Ga(a)2222
1480 y FX(i)2249 1492 y Ga(M)10 b(;)2387 1480 y F9(\()2415
1492 y Ga(x)2467 1480 y F9(\))2494 1492 y Ga(N)g F4(\))23
b Gg(are)h(strongly)h(normalising.)321 1605 y(Consequently)-6
b(,)27 b FL(Cut)p F4(\()1034 1593 y FX(h)1062 1605 y
Ga(a)1110 1593 y FX(i)1137 1605 y Ga(M)10 b(;)1275 1593
y F9(\()1303 1605 y Ga(x)1355 1593 y F9(\))1382 1605
y Ga(N)g F4(\))23 b Gg(must)h(be)g(strongly)h(normalising.)31
b(Thus)24 b(we)f(are)g(done.)p 3480 1605 4 62 v 3484
1547 55 4 v 3484 1605 V 3538 1605 4 62 v Black 321 1818
a Gb(Pr)n(oof)h(of)f(Lemma)e(2.3.18.)p Black 35 w Gg(W)-7
b(e)22 b(shall)h(gi)n(v)o(e)g(\002)n(v)o(e)f(representati)n(v)o(e)k
(cases,)e(in)f(which)g(the)g(e)o(xpression)326 1931 y
F4(^)-50 b Ga(\033)t(;)15 b F6(f)p Ga(\033)s F6(g)24
b Gg(will)f(stand)i(for)e(the)h(set)29 b F4(^)-50 b Ga(\033)23
b F6([)d(f)p Ga(\033)s F6(g)k Gg(with)f F6(f)p Ga(\033)s
F6(g)k(62)i F4(^)-50 b Ga(\033)t Gg(.)p Black 321 2162
a Gb(Case)24 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))p
Gb(:)p Black 47 w Gg(W)-7 b(e)27 b(ha)n(v)o(e)h(to)f(pro)o(v)o(e)h
(that)g FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))39 b(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)34 b F4(:=)2440 2150
y FX(h)2468 2162 y Ga(b)2507 2150 y FX(i)2534 2162 y
Ga(P)t F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)34 b F4(:=)2924
2150 y F9(\()2951 2162 y Ga(y)2999 2150 y F9(\))3027
2162 y Ga(Q)-10 b F6(g)27 b Gg(is)g(strongly)549 2275
y(normalising)f(for)d(arbitrary)j(\(co-\)named)g(terms)2137
2263 y FX(h)2164 2275 y Ga(b)r F4(:)r Ga(B)2306 2263
y FX(i)2333 2275 y Ga(P)39 b F6(2)24 b FB(J)p F6(h)p
Ga(B)5 b F6(i)p FB(K)23 b Gg(and)2910 2263 y F9(\()2937
2275 y Ga(y)5 b F4(:)r Ga(B)3088 2263 y F9(\))3115 2275
y Ga(Q)25 b F6(2)g FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)p
Gg(.)549 2428 y(\(1\))48 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p
F4(\))32 b(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)26
b F4(:=)1368 2416 y FX(h)1396 2428 y Ga(b)1435 2416 y
FX(i)1462 2428 y Ga(P)t F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27
b F4(:=)1838 2416 y F9(\()1865 2428 y Ga(y)1913 2416
y F9(\))1941 2428 y Ga(Q)-10 b F6(g)26 b F4(=)f FL(Cut)p
F4(\()2343 2416 y FX(h)2370 2428 y Ga(b)2409 2416 y FX(i)2437
2428 y Ga(P)13 b(;)2548 2416 y F9(\()2576 2428 y Ga(y)2624
2416 y F9(\))2651 2428 y Ga(Q)p F4(\))239 b Gg(by)24
b(Def.)e(of)i F6(f)p 3438 2428 28 4 v 3456 2428 V 3474
2428 V 65 w(g)549 2549 y Gg(\(2\))702 2537 y FX(h)729
2549 y Ga(b)r F4(:)r Ga(B)871 2537 y FX(i)899 2549 y
Ga(P)38 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)22
b Gg(and)1475 2537 y F9(\()1502 2549 y Ga(y)5 b F4(:)r
Ga(B)1653 2537 y F9(\))1680 2549 y Ga(Q)26 b F6(2)e FB(J)p
F4(\()p Ga(B)5 b F4(\))p FB(K)938 b Gg(by)23 b(assumption)549
2670 y(\(3\))48 b Ga(P)38 b F6(2)25 b Ga(S)5 b(N)1018
2684 y Gc(aux)1163 2670 y Gg(and)24 b Ga(Q)h F6(2)g Ga(S)5
b(N)1634 2684 y Gc(aux)2905 2670 y Gg(by)24 b(Lemma)e(2.3.13)549
2791 y(\(4\))48 b FL(Cut)p F4(\()875 2779 y FX(h)903
2791 y Ga(b)942 2779 y FX(i)969 2791 y Ga(P)13 b(;)1080
2779 y F9(\()1108 2791 y Ga(y)1156 2779 y F9(\))1183
2791 y Ga(Q)p F4(\))26 b F6(2)e Ga(S)5 b(N)1535 2805
y Gc(aux)2905 2791 y Gg(by)24 b(Lemma)e(2.3.14)549 2912
y(\(5\))48 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))32
b(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)26 b F4(:=)1368
2900 y FX(h)1396 2912 y Ga(b)1435 2900 y FX(i)1462 2912
y Ga(P)t F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27 b F4(:=)1838
2900 y F9(\()1865 2912 y Ga(y)1913 2900 y F9(\))1941
2912 y Ga(Q)-10 b F6(g)26 b(2)f Ga(S)5 b(N)2294 2926
y Gc(aux)3044 2912 y Gg(by)24 b(\(1\))f(and)h(\(4\))p
Black 321 3148 a Gb(Case)g FL(And)685 3162 y Gc(R)743
3148 y F4(\()778 3136 y FX(h)806 3148 y Ga(a)854 3136
y FX(i)881 3148 y Ga(M)11 b(;)1020 3136 y FX(h)1047 3148
y Ga(b)1086 3136 y FX(i)1114 3148 y Ga(N)f(;)15 b(c)p
F4(\))p Gb(:)p Black 47 w Gg(W)-7 b(e)24 b(ha)n(v)o(e)i(to)f(pro)o(v)o
(e)h(that)g FL(And)2363 3162 y Gc(R)2421 3148 y F4(\()2456
3136 y FX(h)2484 3148 y Ga(a)2532 3136 y FX(i)2559 3148
y Ga(M)10 b(;)2697 3136 y FX(h)2725 3148 y Ga(b)2764
3136 y FX(i)2792 3148 y Ga(N)f(;)15 b(c)p F4(\))35 b(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)30 b F4(:=)3339 3136
y F9(\()3367 3148 y Ga(z)3413 3136 y F9(\))3441 3148
y Ga(R)-9 b F6(g)549 3261 y Gg(is)23 b(strongly)j(normalising)g(for)d
(an)h(arbitrary)i(named)e(term)2437 3249 y F9(\()2465
3261 y Ga(z)6 b F4(:)r Ga(B)f F6(^)o Ga(C)2746 3249 y
F9(\))2773 3261 y Ga(R)26 b F6(2)f FB(J)p F4(\()p Ga(B)5
b F6(^)o Ga(C)i F4(\))p FB(K)p Gg(.)549 3414 y(\(1\))48
b FL(And)856 3428 y Gc(R)914 3414 y F4(\()949 3402 y
FX(h)977 3414 y Ga(a)1025 3402 y FX(i)1052 3414 y Ga(M)10
b(;)1190 3402 y FX(h)1218 3414 y Ga(b)1257 3402 y FX(i)1285
3414 y Ga(N)g(;)15 b(c)p F4(\))21 b(^)-51 b Ga(\033)t(;)10
b F6(f)-7 b Ga(c)10 b F4(:=)1781 3402 y F9(\()1810 3414
y Ga(z)1856 3402 y F9(\))1884 3414 y Ga(R)-9 b F6(g)26
b F4(=)702 3535 y FL(Cut)p F4(\()875 3523 y FX(h)903
3535 y Ga(c)942 3523 y FX(i)969 3535 y FL(And)1124 3549
y Gc(R)1182 3535 y F4(\()1217 3523 y FX(h)1244 3535 y
Ga(a)1292 3523 y FX(i)1345 3535 y Ga(M)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1758 3523
y F9(\()1786 3535 y Ga(z)1832 3523 y F9(\))1859 3535
y Ga(R)-8 b F6(g)p Ga(;)2005 3523 y FX(h)2033 3535 y
Ga(b)2072 3523 y FX(i)2125 3535 y Ga(N)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)2523 3523
y F9(\()2550 3535 y Ga(z)2596 3523 y F9(\))2624 3535
y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p F4(\))q Ga(;)2885 3523
y F9(\()2913 3535 y Ga(z)2959 3523 y F9(\))2986 3535
y Ga(R)q F4(\))35 b Gg(Def.)23 b(of)8 b F6(f)p 3438 3535
V 3456 3535 V 3474 3535 V 65 w(g)549 3656 y Gg(\(2\))48
b Ga(M)40 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27
b F4(:=)1140 3644 y F9(\()1168 3656 y Ga(z)1214 3644
y F9(\))1241 3656 y Ga(R)-8 b F6(g)p Ga(;)10 b F6(f)-7
b Ga(a)26 b F4(:=)1616 3644 y F9(\()1643 3656 y Ga(y)1691
3644 y F9(\))1718 3656 y Ga(P)t F6(g)g(2)f Ga(S)5 b(N)2071
3670 y Gc(aux)2216 3656 y Gg(for)23 b(arbitrary)2680
3644 y F9(\()2707 3656 y Ga(y)5 b F4(:)r Ga(B)2858 3644
y F9(\))2886 3656 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(B)5 b F4(\))o FB(K)p Gg(,)702 3777 y Ga(N)40 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1125 3765
y F9(\()1153 3777 y Ga(z)1199 3765 y F9(\))1226 3777
y Ga(R)-8 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(b)26 b F4(:=)1592
3765 y F9(\()1619 3777 y Ga(x)1671 3765 y F9(\))1698
3777 y Ga(Q)-9 b F6(g)25 b(2)g Ga(S)5 b(N)2051 3791 y
Gc(aux)2196 3777 y Gg(for)24 b(arbitrary)2661 3765 y
F9(\()2688 3777 y Ga(x)r F4(:)r Ga(C)2841 3765 y F9(\))2868
3777 y Ga(Q)i F6(2)e FB(J)p F4(\()p Ga(C)7 b F4(\))p
FB(K)3089 3898 y Gg(by)24 b(induction)549 4018 y(\(3\))48
b F4(\()p Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
b Ga(c)27 b F4(:=)1150 4006 y F9(\()1178 4018 y Ga(z)1224
4006 y F9(\))1252 4018 y Ga(R)-9 b F6(g)p F4(\))k F6(f)e
Ga(a)27 b F4(:=)1621 4006 y F9(\()1648 4018 y Ga(y)1696
4006 y F9(\))1723 4018 y Ga(P)t F6(g)f(2)f Ga(S)5 b(N)2076
4032 y Gc(aux)2198 4018 y Gg(,)702 4139 y F4(\()p Ga(N)15
b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1135
4127 y F9(\()1163 4139 y Ga(z)1209 4127 y F9(\))1236
4139 y Ga(R)-8 b F6(g)p F4(\))j F6(f)e Ga(b)26 b F4(:=)1597
4127 y F9(\()1624 4139 y Ga(x)1676 4127 y F9(\))1703
4139 y Ga(Q)-9 b F6(g)26 b(2)e Ga(S)5 b(N)2056 4153 y
Gc(aux)3044 4139 y Gg(by)24 b(\(2\))f(and)h(sss)549 4260
y(\(4\))702 4248 y FX(h)729 4260 y Ga(a)r F4(:)r Ga(B)880
4248 y FX(i)908 4260 y F4(\()p Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(c)27 b F4(:=)1356 4248 y F9(\()1384 4260
y Ga(z)1430 4248 y F9(\))1457 4260 y Ga(R)-8 b F6(g)p
F4(\))26 b F6(2)e FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)p
Gg(,)702 4369 y FX(h)729 4381 y Ga(b)r F4(:)r Ga(C)869
4369 y FX(i)897 4381 y F4(\()p Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(c)27 b F4(:=)1330 4369 y F9(\()1357 4381
y Ga(z)1403 4369 y F9(\))1431 4381 y Ga(R)-9 b F6(g)p
F4(\))26 b F6(2)f FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)960
b Gg(by)24 b(De\002nition)h(2.3.3)549 4502 y(\(5\))48
b FL(And)856 4516 y Gc(R)914 4502 y F4(\()949 4490 y
FX(h)977 4502 y Ga(a)1025 4490 y FX(i)1052 4502 y Ga(M)15
b F4(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(c)26 b F4(:=)1466
4490 y F9(\()1493 4502 y Ga(z)1539 4490 y F9(\))1567
4502 y Ga(R)-9 b F6(g)p Ga(;)1712 4490 y FX(h)1740 4502
y Ga(b)1779 4490 y FX(i)1807 4502 y Ga(N)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)2205 4490
y F9(\()2232 4502 y Ga(z)2278 4490 y F9(\))2306 4502
y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p F4(\))23 b Gg(freshly)j(introduces)g
Ga(c)62 b Gg(by)23 b(\(1\))549 4622 y(\(6\))702 4610
y FX(h)729 4622 y Ga(c)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1004
4610 y FX(i)1031 4622 y FL(And)1186 4636 y Gc(R)1243
4622 y F4(\()1278 4610 y FX(h)1306 4622 y Ga(a)1354 4610
y FX(i)1382 4622 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(c)26 b F4(:=)1795 4610 y F9(\()1822 4622
y Ga(z)1868 4610 y F9(\))1896 4622 y Ga(R)-9 b F6(g)q
Ga(;)2042 4610 y FX(h)2069 4622 y Ga(b)2108 4610 y FX(i)2136
4622 y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
b Ga(c)27 b F4(:=)2534 4610 y F9(\()2561 4622 y Ga(z)2607
4610 y F9(\))2635 4622 y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p
F4(\))26 b F6(2)f FB(J)p F6(h)p Ga(B)5 b F6(^)o Ga(C)i
F6(i)p FB(K)2425 4743 y Gg(by)24 b(\(4\),)f(\(5\))h(and)g(De\002nition)
h(2.3.3)549 4864 y(\(7\))48 b FL(And)856 4878 y Gc(R)914
4864 y F4(\()949 4852 y FX(h)977 4864 y Ga(a)1025 4852
y FX(i)1052 4864 y Ga(M)15 b F4(^)-50 b Ga(\033)t(;)10
b F6(f)-7 b Ga(c)26 b F4(:=)1466 4852 y F9(\()1493 4864
y Ga(z)1539 4852 y F9(\))1567 4864 y Ga(R)-9 b F6(g)p
Ga(;)1712 4852 y FX(h)1740 4864 y Ga(b)1779 4852 y FX(i)1807
4864 y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
b Ga(c)27 b F4(:=)2205 4852 y F9(\()2232 4864 y Ga(z)2278
4852 y F9(\))2306 4864 y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p
F4(\))26 b F6(2)f Ga(S)5 b(N)2772 4878 y Gc(aux)2894
4864 y Gg(,)702 4985 y Ga(R)26 b F6(2)f Ga(S)5 b(N)1017
4999 y Gc(aux)2905 4985 y Gg(by)24 b(Lemma)e(2.3.13)549
5106 y(\(8\))48 b FL(Cut)p F4(\()875 5094 y FX(h)903
5106 y Ga(c)942 5094 y FX(i)969 5106 y FL(And)1124 5120
y Gc(R)1182 5106 y F4(\()1217 5094 y FX(h)1244 5106 y
Ga(a)1292 5094 y FX(i)1320 5106 y Ga(M)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1733 5094
y F9(\()1760 5106 y Ga(z)1806 5094 y F9(\))1834 5106
y Ga(R)-9 b F6(g)q Ga(;)1980 5094 y FX(h)2008 5106 y
Ga(b)2047 5094 y FX(i)2074 5106 y Ga(N)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)2472 5094
y F9(\()2500 5106 y Ga(z)2546 5094 y F9(\))2573 5106
y Ga(R)-8 b F6(g)p Ga(;)15 b(c)p F4(\))q Ga(;)2834 5094
y F9(\()2862 5106 y Ga(z)2908 5094 y F9(\))2936 5106
y Ga(R)q F4(\))25 b F6(2)g Ga(S)5 b(N)3286 5120 y Gc(aux)2905
5226 y Gg(by)24 b(Lemma)e(2.3.14)549 5347 y(\(9\))48
b FL(And)856 5361 y Gc(R)914 5347 y F4(\()949 5335 y
FX(h)977 5347 y Ga(a)1025 5335 y FX(i)1052 5347 y Ga(M)10
b(;)1190 5335 y FX(h)1218 5347 y Ga(b)1257 5335 y FX(i)1285
5347 y Ga(N)g(;)15 b(c)p F4(\))31 b(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(c)27 b F4(:=)1823 5335 y F9(\()1851 5347
y Ga(z)1897 5335 y F9(\))1924 5347 y Ga(R)-8 b F6(g)25
b(2)g Ga(S)5 b(N)2275 5361 y Gc(aux)3044 5347 y Gg(by)24
b(\(1\))f(and)h(\(8\))p Black Black eop end
%%Page: 149 161
TeXDict begin 149 160 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(149)p 277 88 3691 4 v Black Black
277 388 a(Case)24 b FL(And)641 351 y Gc(i)641 411 y(L)693
388 y F4(\()728 376 y F9(\()756 388 y Ga(x)808 376 y
F9(\))836 388 y Ga(M)10 b(;)15 b(y)s F4(\))23 b(\()p
Ga(i)j F4(=)f(1)p Ga(;)15 b F4(2\))p Gb(:)p Black 47
w Gg(W)-7 b(e)28 b(ha)n(v)o(e)h(to)f(pro)o(v)o(e)h(that)g
FL(And)2502 351 y Gc(i)2502 411 y(L)2554 388 y F4(\()2589
376 y F9(\()2616 388 y Ga(x)2668 376 y F9(\))2696 388
y Ga(M)10 b(;)15 b(y)s F4(\))40 b(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(y)38 b F4(:=)3293 376 y FX(h)3321 388
y Ga(a)3369 376 y FX(i)3396 388 y Ga(R)-8 b F6(g)504
501 y Gg(is)21 b(strongly)h(normalising)h(for)e(an)f(arbitrary)i
(co-named)g(term)2484 489 y FX(h)2511 501 y Ga(a)r F4(:)r
Ga(C)2653 515 y F9(1)2693 501 y F6(^)o Ga(C)2818 515
y F9(2)2858 489 y FX(i)2885 501 y Ga(R)k F6(2)f FB(J)p
F6(h)p Ga(C)3203 515 y F9(1)3242 501 y F6(^)p Ga(C)3368
515 y F9(2)3407 501 y F6(i)q FB(K)o Gg(.)504 733 y(\(1\))49
b FL(And)812 696 y Gc(i)812 756 y(L)864 733 y F4(\()899
721 y F9(\()927 733 y Ga(x)979 721 y F9(\))1007 733 y
Ga(M)10 b(;)15 b(y)s F4(\))20 b(^)-50 b Ga(\033)t(;)10
b F6(f)-7 b Ga(y)29 b F4(:=)1567 721 y FX(h)1594 733
y Ga(a)1642 721 y FX(i)1670 733 y Ga(R)-9 b F6(g)26 b
F4(=)658 850 y FL(Cut)p F4(\()831 838 y FX(h)858 850
y Ga(a)906 838 y FX(i)934 850 y Ga(R)q(;)1044 838 y F9(\()1071
850 y Ga(y)1119 838 y F9(\))1147 850 y FL(And)1301 813
y Gc(i)1301 873 y(L)1353 850 y F4(\()1388 838 y F9(\()1416
850 y Ga(x)1468 838 y F9(\))1496 850 y Ga(M)k F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(y)29 b F4(:=)1932 838
y FX(h)1960 850 y Ga(a)2008 838 y FX(i)2035 850 y Ga(R)-8
b F6(g)p Ga(;)15 b(y)s F4(\))q(\))443 b Gg(by)24 b(De\002nition)g(of)g
F6(f)p 3394 850 28 4 v 3412 850 V 3429 850 V 65 w(g)504
968 y Gg(\(2\))49 b Ga(M)40 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(y)29 b F4(:=)1105 956 y FX(h)1132 968
y Ga(a)1180 956 y FX(i)1208 968 y Ga(R)-9 b F6(g)p Ga(;)10
b F6(f)-7 b Ga(x)26 b F4(:=)1586 956 y FX(h)1613 968
y Ga(b)1652 956 y FX(i)1680 968 y Ga(P)s F6(g)g(2)f Ga(S)5
b(N)2032 982 y Gc(aux)2177 968 y Gg(for)23 b(arbitrary)2641
956 y FX(h)2669 968 y Ga(b)r F4(:)r Ga(C)2802 982 y Gc(i)2830
956 y FX(i)2858 968 y Ga(P)38 b F6(2)25 b FB(J)p F6(h)p
Ga(C)3177 982 y Gc(i)3205 968 y F6(i)p FB(K)3045 1085
y Gg(by)f(induction)504 1202 y(\(3\))49 b F4(\()p Ga(M)40
b F4(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(y)29 b F4(:=)1140
1190 y FX(h)1167 1202 y Ga(a)1215 1190 y FX(i)1243 1202
y Ga(R)-9 b F6(g)p F4(\))k F6(f)e Ga(x)27 b F4(:=)1616
1190 y FX(h)1643 1202 y Ga(b)1682 1190 y FX(i)1710 1202
y Ga(P)s F6(g)f(2)f Ga(S)5 b(N)2062 1216 y Gc(aux)3000
1202 y Gg(by)23 b(\(2\))h(and)g(sss)504 1320 y(\(4\))658
1308 y F9(\()685 1320 y Ga(x)r F4(:)r Ga(C)831 1334 y
Gc(i)860 1308 y F9(\))887 1320 y F4(\()p Ga(M)15 b F4(^)-50
b Ga(\033)t(;)10 b F6(f)-7 b Ga(y)29 b F4(:=)1344 1308
y FX(h)1371 1320 y Ga(a)1419 1308 y FX(i)1447 1320 y
Ga(R)-9 b F6(g)p F4(\))26 b F6(2)f FB(J)p F4(\()p Ga(C)1836
1334 y Gc(i)1864 1320 y F4(\))q FB(K)878 b Gg(by)24 b(De\002nition)g
(2.3.3)504 1437 y(\(5\))49 b FL(And)812 1400 y Gc(i)812
1460 y(L)864 1437 y F4(\()899 1425 y F9(\()927 1437 y
Ga(x)979 1425 y F9(\))1007 1437 y Ga(M)30 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(y)13 b F4(:=)1412 1425
y FX(h)1440 1437 y Ga(a)1488 1425 y FX(i)1516 1437 y
Ga(R)-9 b F6(g)q Ga(;)15 b(y)s F4(\))23 b Gg(freshly)i(introduces)i
Ga(y)793 b Gg(by)23 b(\(1\))504 1555 y(\(6\))658 1543
y F9(\()685 1555 y Ga(y)5 b F4(:)r Ga(C)827 1569 y F9(1)867
1555 y F6(^)o Ga(C)992 1569 y F9(2)1032 1543 y(\))1059
1555 y FL(And)1214 1518 y Gc(i)1214 1578 y(L)1266 1555
y F4(\()1301 1543 y F9(\()1329 1555 y Ga(x)1381 1543
y F9(\))1408 1555 y Ga(M)30 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(y)13 b F4(:=)1813 1543 y FX(h)1842 1555
y Ga(a)1890 1543 y FX(i)1917 1555 y Ga(R)-8 b F6(g)p
Ga(;)15 b(y)s F4(\))26 b F6(2)f FB(J)p F4(\()p Ga(C)2395
1569 y F9(1)2434 1555 y F6(^)p Ga(C)2560 1569 y F9(2)2599
1555 y F4(\))q FB(K)2591 1672 y Gg(by)e(\(4\),)h(\(5\))g(and)g(Def.)e
(2.3.3)504 1790 y(\(7\))49 b FL(And)812 1753 y Gc(i)812
1813 y(L)864 1790 y F4(\()899 1778 y F9(\()927 1790 y
Ga(x)979 1778 y F9(\))1007 1790 y Ga(M)30 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(y)13 b F4(:=)1412 1778
y FX(h)1440 1790 y Ga(a)1488 1778 y FX(i)1516 1790 y
Ga(R)-9 b F6(g)q Ga(;)15 b(y)s F4(\))p Ga(;)41 b(R)26
b F6(2)f Ga(S)5 b(N)2126 1804 y Gc(aux)2861 1790 y Gg(by)23
b(Lemma)g(2.3.13)504 1907 y(\(8\))49 b FL(Cut)p F4(\()831
1895 y FX(h)858 1907 y Ga(a)906 1895 y FX(i)934 1907
y Ga(R)q(;)1044 1895 y F9(\()1071 1907 y Ga(y)1119 1895
y F9(\))1147 1907 y FL(And)1301 1870 y Gc(i)1301 1930
y(L)1353 1907 y F4(\()1388 1895 y F9(\()1416 1907 y Ga(x)1468
1895 y F9(\))1496 1907 y Ga(M)30 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(y)13 b F4(:=)1901 1895 y FX(h)1930 1907
y Ga(a)1978 1895 y FX(i)2005 1907 y Ga(R)-9 b F6(g)q
Ga(;)15 b(y)s F4(\)\))26 b F6(2)f Ga(S)5 b(N)2515 1921
y Gc(aux)2861 1907 y Gg(by)23 b(Lemma)g(2.3.14)504 2024
y(\(9\))49 b FL(And)812 1988 y Gc(i)812 2047 y(L)864
2024 y F4(\()899 2012 y F9(\()927 2024 y Ga(x)979 2012
y F9(\))1007 2024 y Ga(M)10 b(;)15 b(y)s F4(\))20 b(^)-50
b Ga(\033)t(;)10 b F6(f)-7 b Ga(y)13 b F4(:=)1536 2012
y FX(h)1564 2024 y Ga(a)1612 2012 y FX(i)1640 2024 y
Ga(R)-9 b F6(g)26 b(2)e Ga(S)5 b(N)1990 2038 y Gc(aux)3000
2024 y Gg(by)23 b(\(1\))h(and)g(\(8\))p Black 277 2420
a Gb(Case)g FL(Imp)631 2442 y Gc(R)689 2420 y F4(\()724
2408 y F9(\()752 2420 y Ga(x)804 2408 y F9(\))p FX(h)858
2420 y Ga(a)906 2408 y FX(i)934 2420 y Ga(M)10 b(;)15
b(b)p F4(\))p Gb(:)p Black 47 w Gg(W)-7 b(e)36 b(pro)o(v)o(e)h(that)g
FL(Imp)1935 2442 y Gc(R)1992 2420 y F4(\()2027 2408 y
F9(\()2055 2420 y Ga(x)2107 2408 y F9(\))q FX(h)2162
2420 y Ga(a)2210 2408 y FX(i)2238 2420 y Ga(M)10 b(;)15
b(b)p F4(\))55 b(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(b)51
b F4(:=)2865 2408 y F9(\()2892 2420 y Ga(z)2938 2408
y F9(\))2966 2420 y Ga(R)-9 b F6(g)36 b Gg(is)h(strongly)504
2533 y(normalising)26 b(for)e(an)g(arbitrary)h(named)g(term)1989
2521 y F9(\()2016 2533 y Ga(z)6 b F4(:)r Ga(B)f F6(\033)p
Ga(C)2308 2521 y F9(\))2335 2533 y Ga(R)24 b Gg(that)g(belongs)h(to)f
FB(J)p F4(\()p Ga(B)5 b F6(\033)o Ga(C)i F4(\))p FB(K)o
Gg(.)504 2765 y(\(1\))49 b FL(Imp)802 2787 y Gc(R)860
2765 y F4(\()895 2753 y F9(\()923 2765 y Ga(x)975 2753
y F9(\))p FX(h)1029 2765 y Ga(a)1077 2753 y FX(i)1105
2765 y Ga(M)10 b(;)15 b(b)p F4(\))31 b(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(b)27 b F4(:=)1658 2753 y F9(\()1685 2765
y Ga(z)1731 2753 y F9(\))1759 2765 y Ga(R)-9 b F6(g)26
b F4(=)658 2884 y FL(Cut)p F4(\()831 2872 y FX(h)858
2884 y Ga(c)897 2872 y FX(i)925 2884 y FL(Imp)1070 2906
y Gc(R)1127 2884 y F4(\()1162 2872 y F9(\()1190 2884
y Ga(x)1242 2872 y F9(\))p FX(h)1297 2884 y Ga(a)1345
2872 y FX(i)1372 2884 y Ga(M)15 b F4(^)-50 b Ga(\033)t(;)10
b F6(f)-7 b Ga(b)26 b F4(:=)1785 2872 y F9(\()1813 2884
y Ga(z)1859 2872 y F9(\))1886 2884 y Ga(R)-8 b F6(g)p
Ga(;)15 b(b)p F4(\))q Ga(;)2147 2872 y F9(\()2175 2884
y Ga(z)2221 2872 y F9(\))2248 2884 y Ga(R)q F4(\))390
b Gg(by)24 b(De\002nition)g(of)g F6(f)p 3394 2884 V 3412
2884 V 3429 2884 V 65 w(g)504 3002 y Gg(\(2\))49 b Ga(M)40
b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1096
2990 y F9(\()1123 3002 y Ga(z)1169 2990 y F9(\))1197
3002 y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27 b
F4(:=)1571 2990 y F9(\()1599 3002 y Ga(y)1647 2990 y
F9(\))1674 3002 y Ga(P)s F6(g)p Ga(;)10 b F6(f)-7 b Ga(x)27
b F4(:=)2053 2990 y FX(h)2081 3002 y Ga(c)2120 2990 y
FX(i)2148 3002 y Ga(Q)-10 b F6(g)26 b(2)f Ga(S)5 b(N)2501
3016 y Gc(aux)658 3121 y Gg(for)23 b(arbitrary)1122 3109
y F9(\()1150 3121 y Ga(y)5 b F4(:)r Ga(B)1301 3109 y
F9(\))1328 3121 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
Ga(B)5 b F4(\))p FB(K)22 b Gg(and)1904 3109 y FX(h)1931
3121 y Ga(c)r F4(:)r Ga(C)2071 3109 y FX(i)2099 3121
y Ga(Q)j F6(2)g FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)547
b Gg(by)24 b(induction)504 3239 y(\(3\))49 b F4(\()p
Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27
b F4(:=)1106 3227 y F9(\()1133 3239 y Ga(z)1179 3227
y F9(\))1207 3239 y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7
b Ga(x)27 b F4(:=)1585 3227 y FX(h)1613 3239 y Ga(c)1652
3227 y FX(i)1679 3239 y Ga(Q)-9 b F6(g)p F4(\))k F6(f)e
Ga(a)27 b F4(:=)2051 3227 y F9(\()2078 3239 y Ga(y)2126
3227 y F9(\))2154 3239 y Ga(P)s F6(g)f(2)f Ga(S)5 b(N)2506
3253 y Gc(aux)2628 3239 y Gg(,)658 3358 y F4(\()p Ga(M)15
b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1106
3346 y F9(\()1133 3358 y Ga(z)1179 3346 y F9(\))1207
3358 y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27 b
F4(:=)1581 3346 y F9(\()1609 3358 y Ga(y)1657 3346 y
F9(\))1684 3358 y Ga(P)t F6(g)p F4(\))-5 b F6(f)e Ga(x)26
b F4(:=)2058 3346 y FX(h)2086 3358 y Ga(c)2125 3346 y
FX(i)2153 3358 y Ga(Q)-10 b F6(g)26 b(2)f Ga(S)5 b(N)2506
3372 y Gc(aux)3000 3358 y Gg(by)23 b(\(2\))h(and)g(sss)504
3476 y(\(4\))658 3464 y FX(h)685 3476 y Ga(a)r F4(:)r
Ga(B)836 3464 y FX(i)889 3476 y Ga(M)15 b F4(^)-50 b
Ga(\033)s(;)10 b F6(f)-7 b Ga(b)26 b F4(:=)1302 3464
y F9(\()1329 3476 y Ga(z)1375 3464 y F9(\))1403 3476
y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(x)27 b F4(:=)1781
3464 y FX(h)1808 3476 y Ga(c)1847 3464 y FX(i)1875 3476
y Ga(Q)-9 b F6(g)25 b(2)g FB(J)p F6(h)p Ga(B)5 b F6(i)p
FB(K)658 3583 y F9(\()685 3595 y Ga(x)r F4(:)r Ga(C)838
3583 y F9(\))891 3595 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(b)26 b F4(:=)1303 3583 y F9(\()1331 3595
y Ga(z)1377 3583 y F9(\))1405 3595 y Ga(R)-9 b F6(g)p
Ga(;)10 b F6(f)-7 b Ga(a)27 b F4(:=)1779 3583 y F9(\()1806
3595 y Ga(y)1854 3583 y F9(\))1882 3595 y Ga(P)s F6(g)f(2)f
FB(J)p F4(\()p Ga(C)7 b F4(\))o FB(K)500 b Gg(by)24 b(De\002nition)g
(2.3.3)504 3714 y(\(5\))49 b FL(Imp)802 3735 y Gc(R)860
3714 y F4(\()895 3702 y F9(\()923 3714 y Ga(x)975 3702
y F9(\))p FX(h)1029 3714 y Ga(a)1077 3702 y FX(i)1105
3714 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
b Ga(b)27 b F4(:=)1518 3702 y F9(\()1545 3714 y Ga(z)1591
3702 y F9(\))1619 3714 y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p
F4(\))23 b Gg(freshly)i(introduces)i Ga(b)705 b Gg(by)23
b(\(1\))504 3832 y(\(6\))658 3820 y FX(h)685 3832 y Ga(b)r
F4(:)r Ga(B)5 b F6(\033)p Ga(C)970 3820 y FX(i)997 3832
y FL(Imp)1141 3854 y Gc(R)1199 3832 y F4(\()1234 3820
y F9(\()1262 3832 y Ga(x)1314 3820 y F9(\))p FX(h)1368
3832 y Ga(a)1416 3820 y FX(i)1444 3832 y Ga(M)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1857 3820
y F9(\()1884 3832 y Ga(z)1930 3820 y F9(\))1958 3832
y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p F4(\))26 b F6(2)e FB(J)p
F6(h)p Ga(B)5 b F6(\033)p Ga(C)i F6(i)p FB(K)2250 3951
y Gg(by)23 b(\(4\))h(and)g(\(5\))g(and)g(De\002nition)g(2.3.3)504
4069 y(\(7\))49 b FL(Imp)802 4091 y Gc(R)860 4069 y F4(\()895
4057 y F9(\()923 4069 y Ga(x)975 4057 y F9(\))p FX(h)1029
4069 y Ga(a)1077 4057 y FX(i)1105 4069 y Ga(M)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1518 4057
y F9(\()1545 4069 y Ga(z)1591 4057 y F9(\))1619 4069
y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p F4(\))p Ga(;)41 b(R)26
b F6(2)f Ga(S)5 b(N)2220 4083 y Gc(aux)2861 4069 y Gg(by)23
b(Lemma)g(2.3.13)504 4188 y(\(8\))49 b FL(Cut)p F4(\()831
4176 y FX(h)858 4188 y Ga(b)897 4176 y FX(i)925 4188
y FL(Imp)1069 4210 y Gc(R)1127 4188 y F4(\()1162 4176
y F9(\()1190 4188 y Ga(x)1242 4176 y F9(\))p FX(h)1297
4188 y Ga(a)1345 4176 y FX(i)1372 4188 y Ga(M)15 b F4(^)-50
b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1785 4176
y F9(\()1812 4188 y Ga(z)1858 4176 y F9(\))1886 4188
y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p F4(\))q Ga(;)2147 4176
y F9(\()2174 4188 y Ga(z)2220 4176 y F9(\))2248 4188
y Ga(R)q F4(\))25 b F6(2)g Ga(S)5 b(N)2598 4202 y Gc(aux)2861
4188 y Gg(by)23 b(Lemma)g(2.3.14)504 4306 y(\(9\))49
b FL(Imp)802 4328 y Gc(R)860 4306 y F4(\()895 4294 y
F9(\()923 4306 y Ga(x)975 4294 y F9(\))p FX(h)1029 4306
y Ga(a)1077 4294 y FX(i)1105 4306 y Ga(M)10 b(;)15 b(b)p
F4(\))31 b(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27
b F4(:=)1658 4294 y F9(\()1685 4306 y Ga(z)1731 4294
y F9(\))1759 4306 y Ga(R)-9 b F6(g)26 b(2)f Ga(S)5 b(N)2110
4320 y Gc(aux)3000 4306 y Gg(by)23 b(\(1\))h(and)g(\(8\))p
Black 277 4702 a Gb(Case)g FL(Cut)p F4(\()660 4690 y
FX(h)687 4702 y Ga(a)735 4690 y FX(i)763 4702 y Ga(M)10
b(;)901 4690 y F9(\()929 4702 y Ga(x)981 4690 y F9(\))1008
4702 y Ga(N)g F4(\))p Gb(:)p Black 46 w Gg(Since)20 b(we)f(introduced)k
(in)d(the)g(de\002nition)i(of)e F6(f)p 2686 4702 V 2704
4702 V 2722 4702 V 65 w(g)f Gg(tw)o(o)h(special)i(clauses)504
4815 y(for)i(cuts)g(with)g(an)f(axiom)h(as)g(immediate)g(subterm,)h(we)
d(ha)n(v)o(e)i(to)g(distinguish)j(tw)o(o)c(cases.)504
5046 y Gb(Subcase)h(I:)h Ga(M)34 b Gg(is)25 b(an)f(axiom)h(that)h
(freshly)g(introduces)i(the)d(label)g(of)g(the)g(cut-formula)i(\(the)
504 5159 y(case)35 b(where)g Ga(N)43 b Gg(is)34 b(such)h(an)f(axiom)h
(is)f(similar\).)61 b(W)-7 b(e)33 b(ha)n(v)o(e)i(to)f(sho)n(w)g(that)h
(for)f(arbitrary)504 5260 y FX(h)532 5272 y Ga(b)r F4(:)r
Ga(B)674 5260 y FX(i)701 5272 y Ga(R)h F6(2)g FB(J)p
F6(h)p Ga(B)5 b F6(i)o FB(K)28 b Gg(the)h(term)f FL(Cut)p
F4(\()1652 5260 y FX(h)1680 5272 y Ga(a)1728 5260 y FX(i)1755
5272 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)2109
5260 y F9(\()2137 5272 y Ga(y)2185 5260 y F9(\))2212
5272 y Ga(N)10 b F4(\))40 b(^)-50 b Ga(\033)s(;)10 b
F6(f)-7 b Ga(x)36 b F4(:=)2711 5260 y FX(h)2738 5272
y Ga(b)2777 5260 y FX(i)2805 5272 y Ga(R)-9 b F6(g)28
b Gg(is)h(strongly)i(nor)n(-)504 5385 y(malising.)p Black
Black eop end
%%Page: 150 162
TeXDict begin 150 161 bop Black -144 51 a Gb(150)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 549 380 a Gg(\(1\))48 b FL(Cut)p F4(\()875
368 y FX(h)903 380 y Ga(a)951 368 y FX(i)978 380 y FL(Ax)p
F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)1332 368 y F9(\()1359
380 y Ga(y)1407 368 y F9(\))1435 380 y Ga(N)10 b F4(\))30
b(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(x)26 b F4(:=)1906
368 y FX(h)1933 380 y Ga(b)1972 368 y FX(i)2000 380 y
Ga(R)-9 b F6(g)26 b F4(=)702 498 y FL(Cut)p F4(\()875
486 y FX(h)903 498 y Ga(b)942 486 y FX(i)969 498 y Ga(R)q(;)1079
486 y F9(\()1107 498 y Ga(y)1155 486 y F9(\))1207 498
y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)26
b F4(:=)1618 486 y FX(h)1645 498 y Ga(b)1684 486 y FX(i)1712
498 y Ga(R)-9 b F6(g)p F4(\))935 b Gg(by)24 b(De\002nition)g(of)g
F6(f)p 3438 498 28 4 v 3456 498 V 3474 498 V 65 w(g)549
617 y Gg(\(2\))48 b Ga(N)40 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(x)26 b F4(:=)1138 605 y FX(h)1165 617
y Ga(b)1204 605 y FX(i)1232 617 y Ga(R)-9 b F6(g)p Ga(;)10
b F6(f)-7 b Ga(y)29 b F4(:=)1606 605 y FX(h)1633 617
y Ga(c)1672 605 y FX(i)1700 617 y Ga(P)s F6(g)d(2)f Ga(S)5
b(N)2052 631 y Gc(aux)2197 617 y Gg(for)24 b(arbitrary)2661
605 y FX(h)2689 617 y Ga(c)r F4(:)r Ga(B)2831 605 y FX(i)2859
617 y Ga(P)38 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)o
FB(K)3089 736 y Gg(by)24 b(induction)549 854 y(\(3\))48
b F4(\()p Ga(N)40 b F4(^)-50 b Ga(\033)t(;)10 b F6(f)-7
b Ga(x)26 b F4(:=)1173 842 y FX(h)1201 854 y Ga(b)1240
842 y FX(i)1267 854 y Ga(R)-9 b F6(g)p F4(\))k F6(f)e
Ga(y)30 b F4(:=)1636 842 y FX(h)1663 854 y Ga(c)1702
842 y FX(i)1730 854 y Ga(P)t F6(g)25 b(2)g Ga(S)5 b(N)2082
868 y Gc(aux)3044 854 y Gg(by)24 b(\(2\))f(and)h(sss)549
973 y(\(4\))702 961 y F9(\()729 973 y Ga(y)5 b F4(:)18
b Ga(B)896 961 y F9(\))948 973 y Ga(N)d F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(x)26 b F4(:=)1358 961 y FX(h)1386 973
y Ga(b)1425 961 y FX(i)1452 973 y Ga(R)-8 b F6(g)25 b(2)g
FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)972 b Gg(by)24 b(De\002nition)h
(2.3.3)549 1091 y(\(5\))48 b Ga(N)40 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(x)26 b F4(:=)1138 1079 y FX(h)1165 1091
y Ga(b)1204 1079 y FX(i)1232 1091 y Ga(R)-9 b F6(g)26
b(2)e Ga(S)5 b(N)1582 1105 y Gc(aux)1727 1091 y Gg(and)24
b Ga(R)i F6(2)f Ga(S)5 b(N)2196 1105 y Gc(aux)2905 1091
y Gg(by)24 b(Lemma)e(2.3.13)549 1210 y(\(6\))48 b FL(Cut)p
F4(\()875 1198 y FX(h)903 1210 y Ga(b)942 1198 y FX(i)969
1210 y Ga(R)q(;)1079 1198 y F9(\()1107 1210 y Ga(y)1155
1198 y F9(\))1207 1210 y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(x)26 b F4(:=)1618 1198 y FX(h)1645 1210
y Ga(b)1684 1198 y FX(i)1712 1210 y Ga(R)-9 b F6(g)p
F4(\))26 b F6(2)f Ga(S)5 b(N)2098 1224 y Gc(aux)2905
1210 y Gg(by)24 b(Lemma)e(2.3.14)549 1328 y(\(7\))48
b FL(Cut)p F4(\()875 1316 y FX(h)903 1328 y Ga(a)951
1316 y FX(i)978 1328 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
F4(\))q Ga(;)1332 1316 y F9(\()1359 1328 y Ga(y)1407
1316 y F9(\))1435 1328 y Ga(N)10 b F4(\))30 b(^)-50 b
Ga(\033)t(;)10 b F6(f)-7 b Ga(x)26 b F4(:=)1906 1316
y FX(h)1933 1328 y Ga(b)1972 1316 y FX(i)2000 1328 y
Ga(R)-9 b F6(g)26 b(2)f Ga(S)5 b(N)2351 1342 y Gc(aux)3044
1328 y Gg(by)24 b(\(1\))f(and)h(\(6\))549 1511 y Gb(Subcase)29
b(II:)h Ga(M)39 b Gg(and)30 b Ga(N)39 b Gg(are)29 b(not)h(axioms)h
(that)f(freshly)i(introduce)g(the)e(label)g(of)g(the)g(cut-)549
1624 y(formula.)f(W)-7 b(e)23 b(ha)n(v)o(e)h(to)g(pro)o(v)o(e)g(that)g
FL(Cut)p F4(\()1873 1612 y FX(h)1900 1624 y Ga(a)1948
1612 y FX(i)1976 1624 y Ga(M)10 b(;)2114 1612 y F9(\()2142
1624 y Ga(x)2194 1612 y F9(\))2221 1624 y Ga(N)g F4(\))21
b(^)-51 b Ga(\033)27 b Gg(is)c(strongly)j(normalising.)549
1767 y(\(1\))48 b FL(Cut)p F4(\()875 1755 y FX(h)903
1767 y Ga(a)951 1755 y FX(i)978 1767 y Ga(M)10 b(;)1116
1755 y F9(\()1144 1767 y Ga(x)1196 1755 y F9(\))1223
1767 y Ga(N)g F4(\))31 b(^)-50 b Ga(\033)28 b F4(=)d
FL(Cut)p F4(\()1716 1755 y FX(h)1744 1767 y Ga(a)1792
1755 y FX(i)1820 1767 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)2013
1755 y F9(\()2041 1767 y Ga(x)2093 1755 y F9(\))2120
1767 y Ga(N)15 b F4(^)-50 b Ga(\033)s F4(\))494 b Gg(by)24
b(De\002nition)g(of)g F6(f)p 3438 1767 V 3456 1767 V
3474 1767 V 65 w(g)549 1886 y Gg(\(2\))48 b Ga(M)40 b
F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(a)27 b F4(:=)1149
1874 y F9(\()1176 1886 y Ga(y)1224 1874 y F9(\))1252
1886 y Ga(S)-5 b F6(g)26 b(2)f Ga(S)5 b(N)1594 1900 y
Gc(aux)1739 1886 y Gg(for)23 b(arbitrary)2203 1874 y
F9(\()2231 1886 y Ga(y)5 b F4(:)r Ga(B)2382 1874 y F9(\))2409
1886 y Ga(S)30 b F6(2)25 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)o Gg(,)702 2004 y Ga(N)40 b F4(^)-50 b Ga(\033)s(;)10
b F6(f)-7 b Ga(x)26 b F4(:=)1138 1992 y FX(h)1165 2004
y Ga(b)1204 1992 y FX(i)1232 2004 y Ga(T)s F6(g)g(2)e
Ga(S)5 b(N)1578 2018 y Gc(aux)1723 2004 y Gg(for)24 b(arbitrary)2188
1992 y FX(h)2215 2004 y Ga(b)r F4(:)r Ga(B)2357 1992
y FX(i)2385 2004 y Ga(T)38 b F6(2)25 b FB(J)p F6(h)p
Ga(B)5 b F6(i)o FB(K)310 b Gg(by)24 b(induction)549 2123
y(\(3\))48 b F4(\()p Ga(M)15 b F4(^)-50 b Ga(\033)s F4(\))-5
b F6(f)e Ga(a)27 b F4(:=)1154 2111 y F9(\()1181 2123
y Ga(y)1229 2111 y F9(\))1257 2123 y Ga(S)-5 b F6(g)26
b(2)f Ga(S)5 b(N)1599 2137 y Gc(aux)1744 2123 y Gg(and)24
b F4(\()p Ga(N)15 b F4(^)-50 b Ga(\033)s F4(\))-5 b F6(f)e
Ga(x)27 b F4(:=)2339 2111 y FX(h)2366 2123 y Ga(b)2405
2111 y FX(i)2433 2123 y Ga(T)s F6(g)f(2)f Ga(S)5 b(N)2780
2137 y Gc(aux)3044 2123 y Gg(by)24 b(\(2\))f(and)h(sss)549
2241 y(\(4\))702 2229 y FX(h)729 2241 y Ga(a)r F4(:)r
Ga(B)880 2229 y FX(i)933 2241 y Ga(M)15 b F4(^)-50 b
Ga(\033)28 b F6(2)d FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)22
b Gg(and)1591 2229 y F9(\()1619 2241 y Ga(x)r F4(:)r
Ga(B)1774 2229 y F9(\))1826 2241 y Ga(N)15 b F4(^)-50
b Ga(\033)29 b F6(2)c FB(J)p F4(\()p Ga(B)5 b F4(\))p
FB(K)565 b Gg(by)24 b(De\002nition)h(2.3.3)549 2360 y(\(5\))48
b Ga(M)15 b F4(^)-50 b Ga(\033)28 b F6(2)d Ga(S)5 b(N)1100
2374 y Gc(aux)1245 2360 y Gg(and)24 b Ga(N)15 b F4(^)-50
b Ga(\033)29 b F6(2)24 b Ga(S)5 b(N)1782 2374 y Gc(aux)2905
2360 y Gg(by)24 b(Lemma)e(2.3.13)549 2478 y(\(6\))48
b FL(Cut)p F4(\()875 2466 y FX(h)903 2478 y Ga(a)951
2466 y FX(i)1003 2478 y Ga(M)15 b F4(^)-50 b Ga(\033)t(;)1197
2466 y F9(\()1224 2478 y Ga(x)1276 2466 y F9(\))1329
2478 y Ga(N)15 b F4(^)-50 b Ga(\033)s F4(\))26 b F6(2)f
Ga(S)5 b(N)1748 2492 y Gc(aux)2905 2478 y Gg(by)24 b(Lemma)e(2.3.14)549
2597 y(\(7\))48 b FL(Cut)p F4(\()875 2585 y FX(h)903
2597 y Ga(a)951 2585 y FX(i)978 2597 y Ga(M)10 b(;)1116
2585 y F9(\()1144 2597 y Ga(x)1196 2585 y F9(\))1223
2597 y Ga(N)g F4(\))31 b(^)-50 b Ga(\033)28 b F6(2)d
Ga(S)5 b(N)1667 2611 y Gc(aux)3044 2597 y Gg(by)24 b(\(1\))f(and)h
(\(6\))p 3480 2684 4 62 v 3484 2626 55 4 v 3484 2684
V 3538 2684 4 62 v Black 321 2922 a Gb(Pr)n(oof)j(of)g(Lemma)e(2.3.20.)
p Black 34 w Gg(The)h(non-tri)n(vial)j(cases)f(are)e(where)h(the)g
(de\002nitions)h(of)e F6(f)p 3140 2922 28 4 v 3159 2922
V 3176 2922 V 65 w(g)g Gg(and)h F4([)p 3458 2922 V 3476
2922 V 3494 2922 V 65 w(])321 3034 y Gg(dif)n(fer;)e(tw)o(o)e(of)h
(them)f(are)h(listed)h(belo)n(w)-6 b(.)p Black 321 3197
a Gb(Case)24 b Ga(M)35 b F6(\021)25 b FL(Ax)p F4(\()p
Ga(y)s(;)15 b(a)p F4(\))p Gb(:)p Black 46 w Gg(Consider)25
b(the)f(substitutions:)p Black Black 792 3369 a Ga(M)5
b F6(f)-7 b Ga(a)26 b F4(:=)1119 3357 y F9(\()1146 3369
y Ga(x)1198 3357 y F9(\))1225 3369 y Ga(N)q F6(g)51 b(\021)f
FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))-5 b F6(f)e Ga(a)27
b F4(:=)2054 3357 y F9(\()2081 3369 y Ga(x)2133 3357
y F9(\))2161 3369 y Ga(N)p F6(g)51 b F4(=)f FL(Cut)p
F4(\()2624 3357 y FX(h)2652 3369 y Ga(a)2700 3357 y FX(i)2727
3369 y FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q Ga(;)3077
3357 y F9(\()3105 3369 y Ga(x)3157 3357 y F9(\))3184
3369 y Ga(N)10 b F4(\))792 3494 y Ga(M)g F4([)p Ga(a)26
b F4(:=)1110 3482 y F9(\()1138 3494 y Ga(x)1190 3482
y F9(\))1217 3494 y Ga(N)10 b F4(])66 b F6(\021)50 b
FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)26 b
F4(:=)2041 3482 y F9(\()2069 3494 y Ga(x)2121 3482 y
F9(\))2148 3494 y Ga(N)10 b F4(])81 b(=)50 b Ga(N)10
b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])549 3661 y Gg(W)-7
b(e)31 b(ha)n(v)o(e)i(tw)o(o)g(cases)g(depending)j(on)c(whether)i
Ga(N)41 b Gg(freshly)35 b(introduces)g Ga(x)p Gg(.)55
b(If)32 b Ga(N)42 b Gg(freshly)549 3774 y(introduces)30
b Ga(x)p Gg(,)e(then)h FL(Cut)p F4(\()1414 3762 y FX(h)1442
3774 y Ga(a)1490 3762 y FX(i)1517 3774 y FL(Ax)p F4(\()p
Ga(y)s(;)15 b(a)p F4(\))q Ga(;)1867 3762 y F9(\()1895
3774 y Ga(x)1947 3762 y F9(\))1974 3774 y Ga(N)10 b F4(\))2146
3737 y Gc(aux)2126 3774 y F6(\000)-31 b(\000)f(!)34 b
Ga(N)10 b F4([)p Ga(x)18 b F6(7!)g Ga(y)s F4(])27 b Gg(by)i(a)e
(logical)j(reduction;)549 3887 y(in)23 b(the)h(other)g(case)773
4041 y FL(Cut)p F4(\()946 4029 y FX(h)974 4041 y Ga(a)1022
4029 y FX(i)1050 4041 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p
F4(\))q Ga(;)1399 4029 y F9(\()1427 4041 y Ga(x)1479
4029 y F9(\))1506 4041 y Ga(N)10 b F4(\))1670 4004 y
Gc(aux)1650 4041 y F6(\000)-31 b(\000)f(!)25 b Ga(N)5
b F6(f)-7 b Ga(x)26 b F4(:=)2160 4029 y FX(h)2188 4041
y Ga(a)2236 4029 y FX(i)2263 4041 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(a)p F4(\))-8 b F6(g)2689 4004 y Gc(aux)2659 4041 y
F6(\000)-27 b(\000)f(!)2618 4101 y F5(\(by)17 b(2.3.9\))2837
4003 y FX(\003)2927 4041 y Ga(N)10 b F4([)p Ga(x)g F6(7!)g
Ga(y)s F4(])25 b Ga(:)549 4243 y Gg(Thus)e(we)g(ha)n(v)o(e)h(that)g
FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)26 b
F4(:=)1761 4231 y F9(\()1789 4243 y Ga(x)1841 4231 y
F9(\))1868 4243 y Ga(N)10 b F4(])2022 4206 y Gc(aux)2002
4243 y F6(\000)-32 b(\000)h(!)2172 4210 y FX(\003)2237
4243 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))-5 b F6(f)e
Ga(a)27 b F4(:=)2774 4231 y F9(\()2802 4243 y Ga(x)2854
4231 y F9(\))2881 4243 y Ga(N)q F6(g)p Gg(.)p Black 321
4414 a Gb(Case)d Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()923
4402 y FX(h)951 4414 y Ga(b)990 4402 y FX(i)1017 4414
y Ga(P)13 b(;)1128 4402 y F9(\()1156 4414 y Ga(y)1204
4402 y F9(\))1231 4414 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p
F4(\))q(\))p Gb(:)p Black 46 w Gg(Consider)25 b(the)f(substitutions:)p
Black Black 674 4586 a Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1001
4574 y F9(\()1028 4586 y Ga(x)1080 4574 y F9(\))1108
4586 y Ga(N)p F6(g)189 b(\021)f FL(Cut)p F4(\()1847 4574
y FX(h)1875 4586 y Ga(b)1914 4574 y FX(i)1941 4586 y
Ga(P)13 b(;)2052 4574 y F9(\()2080 4586 y Ga(y)2128 4574
y F9(\))2155 4586 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p F4(\))q(\))-5
b F6(f)e Ga(a)26 b F4(:=)2729 4574 y F9(\()2756 4586
y Ga(x)2808 4574 y F9(\))2835 4586 y Ga(N)q F6(g)1415
4723 y F4(=)188 b FL(Cut)p F4(\()1847 4711 y FX(h)1875
4723 y Ga(b)1914 4711 y FX(i)1967 4723 y Ga(P)8 b F6(f)-7
b Ga(a)26 b F4(:=)2266 4711 y F9(\()2293 4723 y Ga(x)2345
4711 y F9(\))2373 4723 y Ga(N)p F6(g)q Ga(;)2532 4711
y F9(\()2559 4723 y Ga(x)2611 4711 y F9(\))2639 4723
y Ga(N)10 b F4(\))1372 4822 y Gc(aux)1326 4859 y F6(\000)-37
b(\000)-20 b(\000)-38 b(!)1332 4920 y F5(\(by)17 b(IH\))1535
4826 y FX(\003)1674 4859 y FL(Cut)p F4(\()1847 4847 y
FX(h)1875 4859 y Ga(b)1914 4847 y FX(i)1967 4859 y Ga(P)c
F4([)p Ga(a)25 b F4(:=)2257 4847 y F9(\()2285 4859 y
Ga(x)2337 4847 y F9(\))2364 4859 y Ga(N)10 b F4(])p Ga(;)2512
4847 y F9(\()2540 4859 y Ga(x)2592 4847 y F9(\))2620
4859 y Ga(N)g F4(\))694 5022 y Ga(M)g F4([)p Ga(a)25
b F4(:=)1011 5010 y F9(\()1039 5022 y Ga(x)1091 5010
y F9(\))1118 5022 y Ga(N)10 b F4(])189 b F6(\021)f FL(Cut)p
F4(\()1847 5010 y FX(h)1875 5022 y Ga(b)1914 5010 y FX(i)1941
5022 y Ga(P)13 b(;)2052 5010 y F9(\()2080 5022 y Ga(y)2128
5010 y F9(\))2155 5022 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p
F4(\))q(\)[)p Ga(a)26 b F4(:=)2720 5010 y F9(\()2748
5022 y Ga(x)2800 5010 y F9(\))2827 5022 y Ga(N)10 b F4(])1415
5159 y(=)188 b FL(Cut)p F4(\()1847 5147 y FX(h)1875 5159
y Ga(b)1914 5147 y FX(i)1967 5159 y Ga(P)13 b F4([)p
Ga(a)25 b F4(:=)2257 5147 y F9(\()2285 5159 y Ga(x)2337
5147 y F9(\))2364 5159 y Ga(N)10 b F4(])p Ga(;)2512 5147
y F9(\()2540 5159 y Ga(y)2588 5147 y F9(\))2641 5159
y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)27
b F4(:=)3170 5147 y F9(\()3198 5159 y Ga(x)3250 5147
y F9(\))3277 5159 y Ga(N)10 b F4(]\))1415 5295 y(=)188
b FL(Cut)p F4(\()1847 5283 y FX(h)1875 5295 y Ga(b)1914
5283 y FX(i)1967 5295 y Ga(P)13 b F4([)p Ga(a)25 b F4(:=)2257
5283 y F9(\()2285 5295 y Ga(x)2337 5283 y F9(\))2364
5295 y Ga(N)10 b F4(])p Ga(;)2512 5283 y F9(\()2540 5295
y Ga(y)2588 5283 y F9(\))2641 5295 y Ga(N)g F4([)p Ga(x)g
F6(7!)g Ga(y)s F4(]\))1408 5352 y FV(\()p FC(\003)p FV(\))1415
5436 y F6(\021)188 b FL(Cut)p F4(\()1847 5424 y FX(h)1875
5436 y Ga(b)1914 5424 y FX(i)1967 5436 y Ga(P)13 b F4([)p
Ga(a)25 b F4(:=)2257 5424 y F9(\()2285 5436 y Ga(x)2337
5424 y F9(\))2364 5436 y Ga(N)10 b F4(])p Ga(;)2512 5424
y F9(\()2540 5436 y Ga(x)2592 5424 y F9(\))2620 5436
y Ga(N)g F4(\))510 5528 y F9(\()p FX(\003)p F9(\))674
5561 y Gg(because)25 b(by)f(the)g(Barendre)o(gt-style)j(naming)d(con)l
(v)o(ention)j Ga(y)f Gg(cannot)f(be)e(free)h(in)3278
5549 y F9(\()3305 5561 y Ga(x)3357 5549 y F9(\))3385
5561 y Ga(N)10 b Gg(.)p 3480 5699 4 62 v 3484 5641 55
4 v 3484 5699 V 3538 5699 4 62 v Black Black eop end
%%Page: 151 163
TeXDict begin 151 162 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(151)p 277 88 3691 4 v Black Black
277 388 a(Pr)n(oof)24 b(of)g(Lemma)e(2.3.21.)p Black
35 w Gg(W)-7 b(e)22 b(shall)j(analyse)g(all)f(possible)h(cases)g(of)
2627 351 y Gc(cut)2596 388 y F6(\000)-31 b(\000)g(!)p
Gg(-reductions.)p Black 277 589 a Gb(Inner)23 b(Reduction:)p
Black 46 w Gg(Gi)n(v)o(en)i(that)g Ga(M)1553 552 y Gc(cut)1522
589 y F6(\000)-32 b(\000)h(!)28 b Ga(N)10 b Gg(,)25 b(there)h(is)f(a)f
(proper)j(subterm)f(in)f Ga(M)10 b Gg(,)25 b(say)h Ga(S)5
b Gg(,)24 b(which)504 702 y(reduces)g(to)e Ga(S)956 669
y FX(0)979 702 y Gg(.)27 b(This)22 b(term)g Ga(S)1461
669 y FX(0)1505 702 y Gg(is)g(a)f(subterm)i(of)f Ga(N)10
b Gg(.)27 b(W)-7 b(e)21 b(kno)n(w)h(by)g(induction)i(that)f
Ga(S)3293 665 y Gc(aux)3273 702 y F6(\000)-31 b(\000)f(!)3443
669 y F9(+)504 815 y Ga(S)565 782 y FX(0)611 815 y Gg(and)24
b(by)g(conte)o(xt)h(closure)g(that)f Ga(M)1756 778 y
Gc(aux)1736 815 y F6(\000)-31 b(\000)f(!)1906 782 y F9(+)1990
815 y Ga(N)10 b Gg(.)p Black 277 1002 a Gb(Logical)25
b(Reduction:)p Black 45 w Gg(This)e(case)g(is)g(ob)o(vious,)h(because)g
(both)2362 965 y Gc(cut)2331 1002 y F6(\000)-31 b(\000)f(!)22
b Gg(and)2696 965 y Gc(aux)2676 1002 y F6(\000)-31 b(\000)f(!)22
b Gg(perform)h(the)g(same)504 1115 y(logical)j(reductions.)p
Black 277 1301 a Gb(Commuting)c(Reduction:)p Black 46
w Gg(Suppose)36 b Ga(M)1796 1264 y Gc(c)1726 1301 y F6(\000)-31
b(\000)f(!)47 b Ga(N)d Gg(with)34 b Ga(M)57 b F6(\021)46
b FL(Cut)p F4(\()2690 1289 y FX(h)2718 1301 y Ga(a)2766
1289 y FX(i)2793 1301 y Ga(S)5 b(;)2894 1289 y F9(\()2922
1301 y Ga(x)2974 1289 y F9(\))3001 1301 y Ga(T)13 b F4(\))35
b Gg(and)g Ga(N)56 b F6(\021)504 1414 y Ga(S)5 b F4([)p
Ga(a)29 b F4(:=)792 1402 y F9(\()819 1414 y Ga(x)871
1402 y F9(\))899 1414 y Ga(T)12 b F4(])p Gg(,)25 b(then)i(we)d(kno)n(w)
h(that)h Ga(M)1920 1377 y Gc(c)1951 1353 y FC(0)1861
1414 y F6(\000)-31 b(\000)f(!)29 b Ga(S)q F6(f)-7 b Ga(a)28
b F4(:=)2356 1402 y F9(\()2383 1414 y Ga(x)2435 1402
y F9(\))2462 1414 y Ga(T)t F6(g)p Gg(.)34 b(From)24 b(Lemma)g(2.3.20)i
(we)504 1527 y(ha)n(v)o(e)g(that)g Ga(S)q F6(f)-7 b Ga(a)29
b F4(:=)1155 1515 y F9(\()1182 1527 y Ga(x)1234 1515
y F9(\))1262 1527 y Ga(T)s F6(g)1412 1490 y Gc(aux)1392
1527 y F6(\000)-31 b(\000)f(!)1562 1494 y FX(\003)1631
1527 y Ga(N)34 b Gg(and)26 b(therefore)i Ga(M)2394 1490
y Gc(aux)2374 1527 y F6(\000)-32 b(\000)h(!)2544 1494
y F9(+)2632 1527 y Ga(N)10 b Gg(.)33 b(The)25 b(symmetric)i(case)504
1640 y(is)d(analogous.)p 3436 1640 4 62 v 3440 1582 55
4 v 3440 1640 V 3494 1640 4 62 v Black 277 1852 a Gb(Pr)n(oof)g(of)g
(Lemma)e(2.6.4.)p Black 34 w Gg(The)h(follo)n(wing)i(measure)g(reduces)
g(in)f(e)n(v)o(ery)2716 1815 y Gc(x)2651 1852 y F6(\000)-32
b(\000)h(!)p Gg(-reduction.)p Black Black 749 2020 a
Fs([)p FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))p Fs(])1161
1969 y F5(def)1168 2020 y F4(=)39 b(1)498 2164 y Fs([)q
FL(Not)673 2178 y Gc(R)731 2164 y F4(\()766 2152 y F9(\()794
2164 y Ga(x)846 2152 y F9(\))873 2164 y Ga(M)10 b(;)15
b(a)p F4(\))p Fs(])1161 2112 y F5(def)1168 2164 y F4(=)39
b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)282 2307 y Fs([)p
FL(And)469 2321 y Gc(R)526 2307 y F4(\()561 2295 y FX(h)589
2307 y Ga(a)637 2295 y FX(i)665 2307 y Ga(M)10 b(;)803
2295 y FX(h)831 2307 y Ga(b)870 2295 y FX(i)897 2307
y Ga(N)g(;)15 b(c)p F4(\))p Fs(])1161 2255 y F5(def)1168
2307 y F4(=)39 b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f Fs([)p
Ga(N)10 b Fs(])21 b F4(+)f(1)554 2450 y Fs([)q FL(Or)686
2413 y Gc(i)686 2473 y(R)744 2450 y F4(\()779 2438 y
FX(h)807 2450 y Ga(a)855 2438 y FX(i)882 2450 y Ga(M)10
b(;)15 b(b)p F4(\))p Fs(])1161 2398 y F5(def)1168 2450
y F4(=)39 b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)402 2593
y Fs([)q FL(Imp)579 2615 y Gc(R)637 2593 y F4(\()672
2581 y F9(\()700 2593 y Ga(x)752 2581 y F9(\))p FX(h)807
2593 y Ga(a)855 2581 y FX(i)882 2593 y Ga(M)10 b(;)15
b(b)p F4(\))p Fs(])1161 2542 y F5(def)1168 2593 y F4(=)39
b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)421 2760 y Fs([)p
FL(Cut)532 2713 y FC(!)593 2760 y F4(\()628 2748 y FX(h)656
2760 y Ga(a)704 2748 y FX(i)731 2760 y Ga(M)11 b(;)870
2748 y F9(\()897 2760 y Ga(x)949 2748 y F9(\))977 2760
y Ga(N)f F4(\))p Fs(])1161 2708 y F5(def)1168 2760 y
F4(=)39 b(\()p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1\))h
F6(\001)f F4(\(4)p Fs([)r Ga(N)10 b Fs(])20 b F4(+)g(1\))2231
2020 y Fs([)q FL(Cut)o F4(\()2436 2008 y FX(h)2464 2020
y Ga(a)2512 2008 y FX(i)2540 2020 y Ga(M)10 b(;)2678
2008 y F9(\()2706 2020 y Ga(x)2758 2008 y F9(\))2785
2020 y Ga(N)g F4(\))p Fs(])2969 1969 y F5(def)2976 2020
y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f Fs([)p
Ga(N)10 b Fs(])21 b F4(+)f(1)2312 2164 y Fs([)p FL(Not)2487
2178 y Gc(L)2539 2164 y F4(\()2574 2152 y FX(h)2602 2164
y Ga(a)2650 2152 y FX(i)2678 2164 y Ga(M)10 b(;)15 b(x)p
F4(\))p Fs(])2969 2112 y F5(def)2976 2164 y F4(=)40 b
Fs([)p Ga(M)10 b Fs(])21 b F4(+)f(1)2300 2307 y Fs([)q
FL(And)2487 2270 y Gc(i)2487 2330 y(L)2540 2307 y F4(\()2575
2295 y F9(\()2602 2307 y Ga(x)2654 2295 y F9(\))2682
2307 y Ga(M)10 b(;)15 b(y)s F4(\))p Fs(])2969 2255 y
F5(def)2976 2307 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21
b F4(+)f(1)2131 2450 y Fs([)q FL(Or)2263 2464 y Gc(L)2315
2450 y F4(\()2350 2438 y F9(\()2378 2450 y Ga(x)2430
2438 y F9(\))2457 2450 y Ga(M)10 b(;)2595 2438 y F9(\()2623
2450 y Ga(y)2671 2438 y F9(\))2698 2450 y Ga(N)g(;)15
b(z)t F4(\))p Fs(])2969 2398 y F5(def)2976 2450 y F4(=)40
b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f Fs([)p Ga(N)10 b
Fs(])21 b F4(+)f(1)2084 2593 y Fs([)q FL(Imp)2261 2615
y Gc(L)2313 2593 y F4(\()2348 2581 y FX(h)2376 2593 y
Ga(a)2424 2581 y FX(i)2452 2593 y Ga(M)10 b(;)2590 2581
y F9(\()2617 2593 y Ga(x)2669 2581 y F9(\))2697 2593
y Ga(N)g(;)15 b(y)s F4(\))p Fs(])2969 2542 y F5(def)2976
2593 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f Fs([)p
Ga(N)10 b Fs(])21 b F4(+)f(1)2229 2760 y Fs([)q FL(Cut)2341
2713 y FC( )2401 2760 y F4(\()2436 2748 y FX(h)2464 2760
y Ga(a)2512 2748 y FX(i)2540 2760 y Ga(M)10 b(;)2678
2748 y F9(\()2706 2760 y Ga(x)2758 2748 y F9(\))2785
2760 y Ga(N)g F4(\))p Fs(])2969 2708 y F5(def)2976 2760
y F4(=)40 b(\(4)p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1\))h
F6(\001)f F4(\()p Fs([)q Ga(N)10 b Fs(])21 b F4(+)f(1\))p
3436 2912 V 3440 2854 55 4 v 3440 2912 V 3494 2912 4
62 v Black 277 3124 a Gb(Pr)n(oof)k(of)e(Lemma)g(2.6.10.)p
Black 34 w Gg(The)h(calculation)i(for)e(\(i\))g(is)g(as)f(follo)n(ws,)i
(where)f F4(\()p F6(\003)p F4(\))g Gg(is)f(by)h(con\003uence)277
3237 y(of)441 3200 y Gc(x)376 3237 y F6(\000)-32 b(\000)h(!)p
Gg(.)483 3465 y F6(j)p FL(Cut)587 3417 y FC( )648 3465
y F4(\()683 3453 y FX(h)711 3465 y Ga(a)759 3453 y FX(i)786
3465 y Ga(M)10 b(;)924 3453 y F9(\()952 3465 y Ga(x)1004
3453 y F9(\))1032 3465 y Ga(N)g F4(\))p F6(j)1175 3479
y Gc(x)1244 3381 y FV(\()p FC(\003)p FV(\))1251 3465
y F6(\021)31 b(j)p FL(Cut)1458 3417 y FC( )1518 3465
y F4(\()1553 3453 y FX(h)1581 3465 y Ga(a)1629 3453 y
FX(i)1672 3465 y F6(j)p Ga(M)10 b F6(j)1820 3479 y Gc(x)1864
3465 y Ga(;)1904 3453 y F9(\()1932 3465 y Ga(x)1984 3453
y F9(\))2027 3465 y F6(j)p Ga(N)g F6(j)2160 3479 y Gc(x)2204
3465 y F4(\))p F6(j)2264 3479 y Gc(x)2334 3381 y FV(\(2)p
FZ(:)p FV(6)p FZ(:)p FV(9\))2389 3465 y F6(\021)80 b(j)p
Ga(M)10 b F6(j)2688 3479 y Gc(x)2728 3465 y F6(f)-7 b
Ga(a)26 b F4(:=)2961 3453 y F9(\()2988 3465 y Ga(x)3040
3453 y F9(\))3083 3465 y F6(j)p Ga(N)10 b F6(j)3216 3479
y Gc(x)3251 3465 y F6(g)p 3436 3665 V 3440 3607 55 4
v 3440 3665 V 3494 3665 4 62 v Black 277 3878 a Gb(Pr)n(oof)24
b(of)g(Lemma)e(2.6.11.)p Black 35 w Gg(W)-7 b(e)22 b(shall)j(analyse)g
(same)f(cases)g(of)2413 3841 y Gc(l)q(oc)2372 3878 y
F6(\000)-32 b(\000)h(!)p Gg(-reductions.)p Black 277
4079 a Gb(Inner)23 b(Reduction:)p Black 46 w Gg(W)-7
b(e)22 b(gi)n(v)o(e)i(tw)o(o)f(cases.)504 4231 y Ga(M)36
b F6(\021)25 b FL(And)878 4245 y Gc(R)936 4231 y F4(\()971
4219 y FX(h)999 4231 y Ga(a)1047 4219 y FX(i)1074 4231
y Ga(S)5 b(;)1175 4219 y FX(h)1203 4231 y Ga(x)1255 4219
y FX(i)1283 4231 y Ga(T)12 b(;)j(b)p F4(\))24 b Gg(and)g
Ga(N)35 b F6(\021)25 b FL(And)1998 4245 y Gc(R)2056 4231
y F4(\()2091 4219 y FX(h)2119 4231 y Ga(a)2167 4219 y
FX(i)2194 4231 y Ga(S)2255 4198 y FX(0)2279 4231 y Ga(;)2319
4219 y FX(h)2347 4231 y Ga(x)2399 4219 y FX(i)2426 4231
y Ga(T)13 b(;)i(b)p F4(\))504 4355 y Gg(\(1\))101 b Ga(S)838
4318 y Gc(l)q(oc)796 4355 y F6(\000)-31 b(\000)g(!)25
b Ga(S)1053 4322 y FX(0)2974 4355 y Gg(by)f(assumption)504
4479 y(\(2\))101 b F6(j)p Ga(M)10 b F6(j)858 4493 y Gc(x)928
4479 y F6(\021)25 b FL(And)1178 4493 y Gc(R)1236 4479
y F4(\()1271 4467 y FX(h)1299 4479 y Ga(a)1347 4467 y
FX(i)1374 4479 y F6(j)p Ga(S)5 b F6(j)1485 4493 y Gc(x)1530
4479 y Ga(;)1570 4467 y FX(h)1597 4479 y Ga(x)1649 4467
y FX(i)1677 4479 y F6(j)p Ga(T)13 b F6(j)1793 4493 y
Gc(x)1837 4479 y Ga(;)i(b)p F4(\))955 b Gg(by)24 b(Lemma)e(2.6.7)504
4603 y(\(3\))101 b FL(And)865 4617 y Gc(R)922 4603 y
F4(\()957 4591 y FX(h)985 4603 y Ga(a)1033 4591 y FX(i)1061
4603 y F6(j)p Ga(S)5 b F6(j)1172 4617 y Gc(x)1216 4603
y Ga(;)1256 4591 y FX(h)1284 4603 y Ga(x)1336 4591 y
FX(i)1363 4603 y F6(j)p Ga(T)13 b F6(j)1479 4617 y Gc(x)1523
4603 y Ga(;)i(b)p F4(\))1684 4566 y Gc(aux)1663 4603
y F6(\000)-31 b(\000)g(!)1834 4570 y FX(\003)1898 4603
y FL(And)2053 4617 y Gc(R)2111 4603 y F4(\()2146 4591
y FX(h)2173 4603 y Ga(a)2221 4591 y FX(i)2249 4603 y
F6(j)p Ga(S)2335 4570 y FX(0)2358 4603 y F6(j)2383 4617
y Gc(x)2428 4603 y Ga(;)2468 4591 y FX(h)2495 4603 y
Ga(x)2547 4591 y FX(i)2575 4603 y F6(j)p Ga(T)13 b F6(j)2691
4617 y Gc(x)2735 4603 y Ga(;)i(b)p F4(\))196 b Gg(by)24
b(induction)504 4727 y(\(4\))101 b FL(And)865 4741 y
Gc(R)922 4727 y F4(\()957 4715 y FX(h)985 4727 y Ga(a)1033
4715 y FX(i)1061 4727 y F6(j)p Ga(S)1147 4694 y FX(0)1170
4727 y F6(j)1195 4741 y Gc(x)1239 4727 y Ga(;)1279 4715
y FX(h)1307 4727 y Ga(x)1359 4715 y FX(i)1386 4727 y
F6(j)p Ga(T)13 b F6(j)1502 4741 y Gc(x)1547 4727 y Ga(;)i(b)p
F4(\))26 b F6(\021)f(j)p Ga(N)10 b F6(j)1916 4741 y Gc(x)2906
4727 y Gg(by)24 b(Lemma)e(2.6.7)504 4897 y Ga(M)36 b
F6(\021)25 b FL(Cut)803 4849 y FC( )863 4897 y F4(\()898
4885 y FX(h)926 4897 y Ga(a)974 4885 y FX(i)1002 4897
y Ga(S)5 b(;)1103 4885 y F9(\()1131 4897 y Ga(x)1183
4885 y F9(\))1210 4897 y Ga(T)13 b F4(\))23 b Gg(and)h
Ga(N)35 b F6(\021)25 b FL(Cut)1771 4849 y FC( )1832 4897
y F4(\()1867 4885 y FX(h)1894 4897 y Ga(a)1942 4885 y
FX(i)1970 4897 y Ga(S)2031 4864 y FX(0)2054 4897 y Ga(;)2094
4885 y F9(\()2122 4897 y Ga(x)2174 4885 y F9(\))2201
4897 y Ga(T)13 b F4(\))504 5021 y Gg(\(1\))101 b Ga(S)838
4984 y Gc(l)q(oc)796 5021 y F6(\000)-31 b(\000)g(!)25
b Ga(S)1053 4988 y FX(0)2974 5021 y Gg(by)f(assumption)504
5145 y(\(2\))101 b F6(j)p Ga(M)10 b F6(j)858 5159 y Gc(x)928
5145 y F6(\021)25 b(j)p Ga(S)5 b F6(j)1135 5159 y Gc(x)1174
5145 y F6(f)-7 b Ga(a)26 b F4(:=)1407 5133 y F9(\()1435
5145 y Ga(x)1487 5133 y F9(\))1529 5145 y F6(j)p Ga(T)13
b F6(j)1645 5159 y Gc(x)1680 5145 y F6(g)1136 b Gg(by)23
b(Lemma)g(2.6.10)504 5269 y(\(3\))101 b F6(j)p Ga(S)5
b F6(j)821 5283 y Gc(x)861 5269 y F6(f)-7 b Ga(a)25 b
F4(:=)1094 5257 y F9(\()1121 5269 y Ga(x)1173 5257 y
F9(\))1216 5269 y F6(j)p Ga(T)13 b F6(j)1332 5283 y Gc(x)1366
5269 y F6(g)1457 5232 y Gc(aux)1437 5269 y F6(\000)-31
b(\000)f(!)1607 5236 y FX(\003)1672 5269 y F6(j)p Ga(S)1758
5236 y FX(0)1781 5269 y F6(j)1806 5283 y Gc(x)1846 5269
y F6(f)-7 b Ga(a)25 b F4(:=)2079 5257 y F9(\()2106 5269
y Ga(x)2158 5257 y F9(\))2201 5269 y F6(j)p Ga(T)13 b
F6(j)2317 5283 y Gc(x)2351 5269 y F6(g)56 b Gg(by)23
b(induction)k(and)d(Lem)e(2.3.11)504 5394 y(\(4\))101
b F6(j)p Ga(S)796 5361 y FX(0)820 5394 y F6(j)845 5408
y Gc(x)884 5394 y F6(f)-7 b Ga(a)26 b F4(:=)1117 5382
y F9(\()1144 5394 y Ga(x)1196 5382 y F9(\))1239 5394
y F6(j)p Ga(T)13 b F6(j)1355 5408 y Gc(x)1390 5394 y
F6(g)25 b(\021)g(j)p Ga(N)10 b F6(j)1689 5408 y Gc(x)2861
5394 y Gg(by)23 b(Lemma)g(2.6.10)p Black Black eop end
%%Page: 152 164
TeXDict begin 152 163 bop Black -144 51 a Gb(152)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 388 a(Commuting)f(Reduction:)p Black
45 w Gg(W)-7 b(e)23 b(gi)n(v)o(e)h(one)g(case.)549 562
y Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()941 550 y FX(h)969
562 y Ga(a)1017 550 y FX(i)1044 562 y Ga(S)5 b(;)1145
550 y F9(\()1173 562 y Ga(x)1225 550 y F9(\))1252 562
y Ga(T)13 b F4(\))23 b Gg(and)h Ga(N)35 b F6(\021)25
b FL(Cut)1813 515 y FC( )1874 562 y F4(\()1909 550 y
FX(h)1937 562 y Ga(a)1985 550 y FX(i)2012 562 y Ga(S)5
b(;)2113 550 y F9(\()2141 562 y Ga(x)2193 550 y F9(\))2221
562 y Ga(T)12 b F4(\))549 686 y Gg(\(1\))100 b F6(j)p
Ga(M)10 b F6(j)902 700 y Gc(x)972 686 y F6(\021)25 b
FL(Cut)p F4(\()1241 674 y FX(h)1269 686 y Ga(a)1317 674
y FX(i)1344 686 y F6(j)p Ga(S)5 b F6(j)1455 700 y Gc(x)1499
686 y Ga(;)1539 674 y F9(\()1567 686 y Ga(x)1619 674
y F9(\))1647 686 y F6(j)p Ga(T)13 b F6(j)1763 700 y Gc(x)1807
686 y F4(\))1108 b Gg(by)24 b(Lemma)f(2.6.7)549 810 y(\(2\))100
b FL(Cut)p F4(\()927 798 y FX(h)955 810 y Ga(a)1003 798
y FX(i)1030 810 y F6(j)p Ga(S)5 b F6(j)1141 824 y Gc(x)1186
810 y Ga(;)1226 798 y F9(\()1254 810 y Ga(x)1306 798
y F9(\))1333 810 y F6(j)p Ga(T)13 b F6(j)1449 824 y Gc(x)1493
810 y F4(\))1574 773 y Gc(aux)1554 810 y F6(\000)-31
b(\000)f(!)1724 777 y F9(0)p Gc(=)p F9(1)1859 810 y F6(j)p
Ga(S)5 b F6(j)1970 824 y Gc(x)2010 810 y F6(f)-7 b Ga(a)26
b F4(:=)2243 798 y F9(\()2270 810 y Ga(x)2322 798 y F9(\))2365
810 y F6(j)p Ga(T)13 b F6(j)2481 824 y Gc(x)2515 810
y F6(g)2219 935 y Gg(`0'-case:)31 b(if)24 b F6(j)p Ga(S)5
b F6(j)2755 949 y Gc(x)2822 935 y Gg(freshly)25 b(introduces)h
Ga(a)549 1059 y Gg(\(3\))100 b F6(j)p Ga(S)5 b F6(j)865
1073 y Gc(x)905 1059 y F6(f)-7 b Ga(a)26 b F4(:=)1138
1047 y F9(\()1165 1059 y Ga(x)1217 1047 y F9(\))1260
1059 y F6(j)p Ga(T)13 b F6(j)1376 1073 y Gc(x)1410 1059
y F6(g)26 b(\021)f(j)p Ga(N)10 b F6(j)1710 1073 y Gc(x)2905
1059 y Gg(by)24 b(Lemma)e(2.6.10)p Black 321 1290 a Gb(Labelled)h(Cut)g
(Reduction:)p Black 45 w Gg(T)m(ri)n(vial,)h(because)h(if)f
Ga(M)2161 1253 y Gc(x)2096 1290 y F6(\000)-32 b(\000)h(!)-5
b Ga(N)10 b Gg(,)22 b(we)h(ha)n(v)o(e)h F6(j)p Ga(M)10
b F6(j)2857 1304 y Gc(x)2927 1290 y F6(\021)25 b(j)p
Ga(N)10 b F6(j)3156 1304 y Gc(x)3200 1290 y Gg(.)p Black
321 1521 a Gb(Logical)25 b(Reduction:)p Black 46 w Gg(Routine)f
(calculation)j(using)e(Lemma)d(2.6.7.)p Black 321 1751
a Gb(Garbage)i(Reduction:)p Black 46 w Gg(T)-7 b(ak)o(e)22
b(for)h(e)o(xample)h Ga(M)35 b F6(\021)25 b FL(Cut)2107
1704 y FC( )2168 1751 y F4(\()2203 1739 y FX(h)2231 1751
y Ga(a)2279 1739 y FX(i)2306 1751 y Ga(S)5 b(;)2407 1739
y F9(\()2435 1751 y Ga(x)2487 1739 y F9(\))2514 1751
y Ga(T)13 b F4(\))22 b Gg(with)h Ga(a)e Gg(not)i(free)h(in)e
Ga(S)5 b Gg(,)22 b(then)549 1864 y(by)h(Lemma)g(2.6.10)h
F6(j)p Ga(M)10 b F6(j)1361 1878 y Gc(x)1430 1864 y F6(\021)25
b(j)p Ga(N)10 b F6(j)1659 1878 y Gc(x)1704 1864 y Gg(.)p
3480 1864 4 62 v 3484 1806 55 4 v 3484 1864 V 3538 1864
4 62 v Black 321 2077 a Gb(Pr)n(oof)33 b(of)f(Lemma)g(2.6.16.)p
Black 34 w Gg(W)-7 b(e)31 b(shall)i(analyse)h(in)f(detail)g(one)g(case)
g(where)f(an)3068 2040 y Gc(x)3002 2077 y F6(\000)-31
b(\000)g(!)p Gg(-reduction)321 2190 y(occurs)25 b(on)f(the)g(top-le)n
(v)o(el.)30 b(Suppose)p Black Black 1051 2431 a Ga(M)20
b F6(\021)10 b FL(Cut)1318 2383 y FC( )1379 2431 y F4(\()1414
2419 y FX(h)1442 2431 y Ga(a)1490 2419 y FX(i)1518 2431
y FL(Not)1660 2445 y Gc(R)1718 2431 y F4(\()1753 2419
y F9(\()1781 2431 y Ga(x)1833 2419 y F9(\))1860 2431
y Ga(S)5 b(;)15 b(a)p F4(\))q Ga(;)2085 2419 y F9(\()2113
2431 y Ga(y)2161 2419 y F9(\))2188 2431 y Ga(T)e F4(\))48
b Gg(and)1051 2567 y Ga(N)20 b F6(\021)10 b FL(Cut)o
F4(\()1397 2555 y FX(h)1425 2567 y Ga(a)1473 2555 y FX(i)1501
2567 y FL(Not)1643 2581 y Gc(R)1701 2567 y F4(\()1736
2555 y F9(\()1764 2567 y Ga(x)1816 2555 y F9(\))1843
2567 y FL(Cut)1922 2520 y FC( )1983 2567 y F4(\()2018
2555 y FX(h)2046 2567 y Ga(a)2094 2555 y FX(i)2121 2567
y Ga(S)5 b(;)2222 2555 y F9(\()2250 2567 y Ga(y)2298
2555 y F9(\))2325 2567 y Ga(T)13 b F4(\))p Ga(;)i(a)p
F4(\))q Ga(;)2590 2555 y F9(\()2618 2567 y Ga(y)2666
2555 y F9(\))2693 2567 y Ga(T)e F4(\))p Gg(.)321 2806
y(Hence)24 b(we)f(ha)n(v)o(e)h Ga(M)1085 2769 y Gc(x)1019
2806 y F6(\000)-31 b(\000)g(!)25 b Ga(N)10 b Gg(.)28
b(The)23 b(subterms)i(of)e Ga(N)33 b Gg(are:)p Black
Black 944 3064 a(\(1\))101 b(all)23 b(subterms)i(of)f
Ga(S)j Gg(and)d Ga(T)13 b Gg(,)944 3177 y(\(2\))101 b
FL(Cut)1228 3130 y FC( )1289 3177 y F4(\()1324 3165 y
FX(h)1352 3177 y Ga(a)1400 3165 y FX(i)1428 3177 y Ga(S)5
b(;)1529 3165 y F9(\()1556 3177 y Ga(y)1604 3165 y F9(\))1632
3177 y Ga(T)12 b F4(\))p Gg(,)944 3290 y(\(3\))101 b
FL(Not)1292 3304 y Gc(R)1350 3290 y F4(\()1385 3278 y
F9(\()1413 3290 y Ga(x)1465 3278 y F9(\))1492 3290 y
FL(Cut)1571 3243 y FC( )1632 3290 y F4(\()1667 3278 y
FX(h)1695 3290 y Ga(a)1743 3278 y FX(i)1770 3290 y Ga(S)5
b(;)1871 3278 y F9(\()1899 3290 y Ga(y)1947 3278 y F9(\))1974
3290 y Ga(T)13 b F4(\))p Ga(;)i(a)p F4(\))24 b Gg(and)944
3403 y(\(4\))101 b Ga(N)35 b F6(\021)25 b FL(Cut)p F4(\()1527
3391 y FX(h)1554 3403 y Ga(a)1602 3391 y FX(i)1630 3403
y FL(Not)1773 3417 y Gc(R)1830 3403 y F4(\()1865 3391
y F9(\()1893 3403 y Ga(x)1945 3391 y F9(\))1972 3403
y FL(Cut)2051 3355 y FC( )2112 3403 y F4(\()2147 3391
y FX(h)2175 3403 y Ga(a)2223 3391 y FX(i)2250 3403 y
Ga(S)5 b(;)2351 3391 y F9(\()2379 3403 y Ga(y)2427 3391
y F9(\))2455 3403 y Ga(T)12 b F4(\))q Ga(;)j(a)p F4(\))p
Ga(;)2719 3391 y F9(\()2747 3403 y Ga(y)2795 3391 y F9(\))2823
3403 y Ga(T)d F4(\))321 3677 y Gg(W)-7 b(e)33 b(ha)n(v)o(e)i(to)e(sho)n
(w)h(that)g(their)h Ga(x)p Gg(-normal)g(form)e(is)h(an)g(element)h(in)e
Ga(S)5 b(N)2723 3691 y Gc(aux)2846 3677 y Gg(.)58 b(Case)34
b(\(1\))g(follo)n(ws)321 3790 y(by)28 b(assumption:)40
b(the)27 b Ga(x)p Gg(-normal)i(form)e(of)h(e)n(v)o(ery)g(subterm)g(of)g
Ga(M)37 b Gg(is)27 b(an)g(element)i(in)e Ga(S)5 b(N)3242
3804 y Gc(aux)3365 3790 y Gg(,)27 b(and)321 3903 y(therefore)j(the)e
Ga(x)p Gg(-normal)g(form)g(of)f(e)n(v)o(ery)h(subterm)g(of)g
Ga(S)j Gg(and)d Ga(T)40 b Gg(must)27 b(be)h(in)f Ga(S)5
b(N)3018 3917 y Gc(aux)3140 3903 y Gg(,)28 b(too.)41
b(Case)321 4016 y(\(4\))20 b(follo)n(ws)h(by)f(Lemma)f(2.6.11,)i(which)
f(says)h(that)f F6(j)p Ga(M)10 b F6(j)2133 4030 y Gc(x)2223
3978 y(aux)2203 4016 y F6(\000)-31 b(\000)f(!)2373 3983
y FX(\003)2438 4016 y F6(j)p Ga(N)10 b F6(j)2571 4030
y Gc(x)2615 4016 y Gg(,)20 b(and)g(thus)h F6(j)p Ga(N)10
b F6(j)3112 4030 y Gc(x)3181 4016 y F6(2)25 b Ga(S)5
b(N)3401 4030 y Gc(aux)3524 4016 y Gg(.)321 4128 y(By)23
b(Lemma)g(2.6.7)g(we)g(ha)n(v)o(e)h(the)g(identities)p
Black Black 1140 4370 a F6(j)p FL(Cut)p F4(\()1338 4358
y FX(h)1366 4370 y Ga(a)1414 4358 y FX(i)1441 4370 y
FL(Not)1584 4384 y Gc(R)1641 4370 y F4(\()1676 4358 y
F9(\()1704 4370 y Ga(x)1756 4358 y F9(\))1784 4370 y
FL(Cut)1862 4322 y FC( )1923 4370 y F4(\()1958 4358 y
FX(h)1986 4370 y Ga(a)2034 4358 y FX(i)2062 4370 y Ga(S)5
b(;)2163 4358 y F9(\()2190 4370 y Ga(y)2238 4358 y F9(\))2266
4370 y Ga(T)12 b F4(\))q Ga(;)j(a)p F4(\))q Ga(;)2531
4358 y F9(\()2558 4370 y Ga(y)2606 4358 y F9(\))2634
4370 y Ga(T)e F4(\))p F6(j)2760 4384 y Gc(x)969 4483
y F6(\021)100 b FL(Cut)o F4(\()1312 4471 y FX(h)1340
4483 y Ga(a)1388 4471 y FX(i)1416 4483 y F6(j)p FL(Not)1584
4497 y Gc(R)1641 4483 y F4(\()1676 4471 y F9(\()1704
4483 y Ga(x)1756 4471 y F9(\))1784 4483 y FL(Cut)1862
4435 y FC( )1923 4483 y F4(\()1958 4471 y FX(h)1986 4483
y Ga(a)2034 4471 y FX(i)2062 4483 y Ga(S)5 b(;)2163 4471
y F9(\()2190 4483 y Ga(y)2238 4471 y F9(\))2266 4483
y Ga(T)12 b F4(\))q Ga(;)j(a)p F4(\))p F6(j)2515 4497
y Gc(x)2560 4483 y Ga(;)2600 4471 y F9(\()2628 4483 y
Ga(y)2676 4471 y F9(\))2703 4483 y F6(j)p Ga(T)e F6(j)2819
4497 y Gc(x)2863 4483 y F4(\))969 4595 y F6(\021)100
b FL(Cut)o F4(\()1312 4583 y FX(h)1340 4595 y Ga(a)1388
4583 y FX(i)1416 4595 y FL(Not)1558 4609 y Gc(R)1616
4595 y F4(\()1651 4583 y F9(\()1679 4595 y Ga(x)1731
4583 y F9(\))1758 4595 y F6(j)p FL(Cut)1862 4548 y FC( )1923
4595 y F4(\()1958 4583 y FX(h)1986 4595 y Ga(a)2034 4583
y FX(i)2062 4595 y Ga(S)5 b(;)2163 4583 y F9(\()2190
4595 y Ga(y)2238 4583 y F9(\))2266 4595 y Ga(T)12 b F4(\))p
F6(j)2391 4609 y Gc(x)2436 4595 y Ga(;)j(a)p F4(\))q
Ga(;)2600 4583 y F9(\()2628 4595 y Ga(y)2676 4583 y F9(\))2703
4595 y F6(j)p Ga(T)e F6(j)2819 4609 y Gc(x)2863 4595
y F4(\))321 4834 y Gg(and)24 b(therefore)i(the)e Ga(x)p
Gg(-normal)g(form)g(of)f(\(2\))h(and)g(\(3\))g(are)g(in)f
Ga(S)5 b(N)2393 4848 y Gc(aux)2515 4834 y Gg(;)23 b(so)h(we)e(are)i
(done.)p 3480 4834 V 3484 4776 55 4 v 3484 4834 V 3538
4834 4 62 v Black 321 5046 a Gb(Pr)n(oof)34 b(of)f(Lemma)f(2.6.20.)p
Black 34 w Gg(F)o(or)g(e)n(v)o(ery)h(reduction)j(we)c(ha)n(v)o(e)h(to)g
(do)g(check)h(whether)g(the)f(corre-)321 5159 y(sponding)27
b(terms)e(are)g(ordered)h(decreasingly)i(according)g(to)c(de\002nition)
i(of)f Ga(>)2843 5126 y Gc(r)r(po)2950 5159 y Gg(.)31
b(Since)25 b(there)g(are)321 5272 y(man)o(y)19 b(cases,)i(we)e(shall)h
(present)h(only)f(a)f(fe)n(w)f(representati)n(v)o(e)23
b(of)c(them.)27 b(W)-7 b(e)19 b(write)g(rpo)h(as)f(shorthand)321
5385 y(for)24 b(De\002nition)g(2.6.12.)p Black Black
eop end
%%Page: 153 165
TeXDict begin 153 164 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(153)p 277 88 3691 4 v Black Black
277 388 a(Inner)23 b(Reduction:)p Black 46 w Gg(W)-7
b(e)22 b(gi)n(v)o(e)i(one)g(case.)504 533 y Ga(M)36 b
F6(\021)25 b FL(Cut)p F4(\()897 521 y FX(h)924 533 y
Ga(a)972 521 y FX(i)1000 533 y Ga(S)5 b(;)1101 521 y
F9(\()1129 533 y Ga(x)1181 521 y F9(\))1208 533 y Ga(T)13
b F4(\))1376 496 y Gc(l)q(oc)1334 533 y F6(\000)-31 b(\000)g(!)25
b FL(Cut)p F4(\()1703 521 y FX(h)1731 533 y Ga(a)1779
521 y FX(i)1806 533 y Ga(S)1867 500 y FX(0)1890 533 y
Ga(;)1930 521 y F9(\()1958 533 y Ga(x)2010 521 y F9(\))2038
533 y Ga(T)12 b F4(\))26 b F6(\021)f Ga(N)504 646 y Gg(\(1\))101
b Ga(S)838 608 y Gc(l)q(oc)796 646 y F6(\000)-31 b(\000)g(!)25
b Ga(S)1053 613 y FX(0)1099 646 y Gg(and)f Ga(S)p 1253
661 61 4 v 30 w(>)1410 613 y Gc(r)r(po)1543 646 y Ga(S)1604
613 y FX(0)p 1543 661 85 4 v 2454 646 a Gg(by)g(assumption)i(and)e
(induction)504 758 y(\(2\))101 b Ga(M)p 710 773 99 4
v 35 w F4(=)25 b Ga(S)p 929 773 61 4 v 26 w F6(\001)1036
772 y Gc(m)1123 758 y Ga(T)p 1123 773 66 4 v 60 w Gg(and)50
b Ga(N)p 1416 773 83 4 v 35 w F4(=)25 b Ga(S)1681 725
y FX(0)p 1620 773 85 4 v 1724 758 a F6(\001)1749 772
y Gc(n)1817 758 y Ga(T)p 1817 773 66 4 v 900 w Gg(by)e(De\002nition)i
(2.6.17)504 871 y(\(3\))101 b Ga(m)25 b F6(\025)g Ga(n)1809
b Gg(by)24 b(Lemma)e(2.6.19\(i\))504 984 y(\(4\))101
b Ga(S)p 710 999 61 4 v 25 w F6(\001)816 998 y Gc(m)903
984 y Ga(T)p 903 999 66 4 v 38 w(>)1065 951 y Gc(r)r(po)1198
984 y Ga(S)1259 951 y FX(0)p 1198 999 85 4 v 1330 984
a Gg(and)49 b Ga(S)p 1509 999 61 4 v 25 w F6(\001)1615
998 y Gc(m)1703 984 y Ga(T)p 1703 999 66 4 v 38 w(>)1865
951 y Gc(r)r(po)1997 984 y Ga(T)p 1997 999 V 849 w Gg(by)23
b(\(1\))h(and)g(rpo\(i\))504 1097 y(\(5\))101 b F6(f)-24
b(j)p Ga(S)p 756 1112 61 4 v 6 w(;)15 b(T)p 858 1112
66 4 v 13 w F6(j)-24 b(g)27 b Ga(>)1068 1053 y Gc(r)r(po)1068
1127 y(mul)q(t)1247 1097 y F6(f)-24 b(j)p Ga(S)1354 1064
y FX(0)p 1293 1112 85 4 v 1379 1097 a Ga(;)15 b(T)p 1419
1112 66 4 v 13 w F6(j)-24 b(g)1368 b Gg(by)23 b(\(1\))h(and)g(rpo\(i\))
504 1210 y(\(6\))101 b Ga(M)p 710 1225 99 4 v 35 w(>)904
1177 y Gc(r)r(po)1037 1210 y Ga(N)p 1037 1225 83 4 v
1180 w Gg(if)23 b Ga(m)i F4(=)g Ga(n)p Gg(,)d(then)i(by)g(\(5\))g(and)g
(rpo\(iii\))2315 1323 y(if)f Ga(m)i(>)g(n)p Gg(,)d(then)j(by)e(\(4\))h
(and)g(rpo\(ii\))p Black 277 1503 a Gb(Labelled)f(Cut)f(Reduction:)p
Black 46 w Gg(W)-7 b(e)23 b(gi)n(v)o(e)g(\002)n(v)o(e)g(typical)i
(cases.)504 1655 y Ga(M)36 b F6(\021)22 b FL(Cut)800
1608 y FC( )861 1655 y F4(\()896 1643 y FX(h)924 1655
y Ga(c)963 1643 y FX(i)990 1655 y FL(And)1145 1669 y
Gc(R)1203 1655 y F4(\()1238 1643 y FX(h)1266 1655 y Ga(a)1314
1643 y FX(i)1341 1655 y Ga(S)5 b(;)1442 1643 y FX(h)1470
1655 y Ga(b)1509 1643 y FX(i)1536 1655 y Ga(T)13 b(;)i(c)p
F4(\))q Ga(;)1757 1643 y F9(\()1785 1655 y Ga(x)1837
1643 y F9(\))1864 1655 y Ga(U)10 b F4(\))782 1742 y Gc(x)717
1779 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o F4(\()1085
1767 y FX(h)1113 1779 y Ga(c)1152 1767 y FX(i)1180 1779
y FL(And)1335 1793 y Gc(R)1392 1779 y F4(\()1427 1767
y FX(h)1455 1779 y Ga(a)1503 1767 y FX(i)1531 1779 y
FL(Cut)1609 1732 y FC( )1670 1779 y F4(\()1705 1767 y
FX(h)1733 1779 y Ga(c)1772 1767 y FX(i)1800 1779 y Ga(S)5
b(;)1901 1767 y F9(\()1929 1779 y Ga(x)1981 1767 y F9(\))2008
1779 y Ga(U)10 b F4(\))p Ga(;)2155 1767 y FX(h)2183 1779
y Ga(b)2222 1767 y FX(i)2250 1779 y FL(Cut)2329 1732
y FC( )2389 1779 y F4(\()2424 1767 y FX(h)2452 1779 y
Ga(c)2491 1767 y FX(i)2519 1779 y Ga(T)j(;)2625 1767
y F9(\()2653 1779 y Ga(x)2705 1767 y F9(\))2732 1779
y Ga(U)d F4(\))p Ga(;)15 b(c)p F4(\))q Ga(;)2994 1767
y F9(\()3022 1779 y Ga(x)3074 1767 y F9(\))3102 1779
y Ga(U)10 b F4(\))25 b F6(\021)g Ga(N)504 1903 y Gg(\(1\))146
b Ga(M)p 755 1918 99 4 v 36 w F4(=)25 b FB(L)p Ga(S)p
1010 1918 61 4 v 5 w(;)15 b(T)p 1111 1918 66 4 v 13 w
FB(M)g F6(h)p Ga(U)p 1262 1918 72 4 v 11 w F6(i)1370
1917 y Gc(m)1485 1903 y Gg(and)49 b Ga(N)p 1664 1918
83 4 v 36 w F4(=)24 b FB(L)p Ga(S)p 1903 1918 61 4 v
6 w F6(h)p Ga(U)p 2000 1918 72 4 v 10 w F6(i)2107 1917
y Gc(r)2145 1903 y Ga(;)15 b(T)p 2185 1918 66 4 v 14
w F6(h)p Ga(U)p 2287 1918 72 4 v 10 w F6(i)2394 1917
y Gc(s)2431 1903 y FB(M)21 b F6(\001)2512 1917 y Gc(t)2562
1903 y Ga(U)p 2562 1918 V 146 w Gg(by)i(De\002nition)i(2.6.17)504
2027 y(\(2\))146 b Ga(m)26 b F6(\025)f Ga(t;)15 b(r)m(;)g(s)1551
b Gg(by)23 b(Lemma)g(2.6.19\(i,ii\))504 2152 y(\(3\))p
758 2152 28 4 v 775 2152 V 793 2152 V 211 w F6(h)p 857
2152 V 875 2152 V 893 2152 V 65 w(i)955 2166 y Gc(m)1047
2152 y F6(\035)p 1165 2152 V 1183 2152 V 1201 2152 V
110 w(\001)1273 2166 y Gc(t)p 1325 2152 V 1343 2152 V
1360 2152 V 2487 2152 a Gg(by)h(\(2\))f(and)h(De\002nition)h(2.6.14)504
2276 y(\(4\))146 b FB(L)p Ga(S)p 790 2291 61 4 v 6 w(;)15
b(T)p 892 2291 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1028
2291 72 4 v 11 w F6(i)1136 2290 y Gc(m)1228 2276 y Ga(>)1299
2243 y Gc(r)r(po)1431 2276 y Ga(S)p 1431 2291 61 4 v
53 w Gg(and)50 b FB(L)p Ga(S)p 1755 2291 V 5 w(;)15 b(T)p
1856 2291 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1992 2291
72 4 v 11 w F6(i)2100 2290 y Gc(m)2192 2276 y Ga(>)2263
2243 y Gc(r)r(po)2396 2276 y Ga(U)p 2396 2291 V 724 w
Gg(by)23 b(rpo\(i\))504 2400 y(\(5\))146 b F6(f)-24 b(j)p
FB(L)p Ga(S)p 836 2415 61 4 v 7 w(;)15 b(T)p 939 2415
66 4 v 13 w FB(M)p Ga(;)g(U)p 1080 2415 72 4 v 11 w F6(j)-24
b(g)26 b Ga(>)1296 2356 y Gc(r)r(po)1296 2429 y(mul)q(t)1476
2400 y F6(f)-24 b(j)p Ga(S)p 1522 2415 61 4 v 6 w(;)15
b(U)p 1624 2415 72 4 v 10 w F6(j)-24 b(g)1440 b Gg(by)23
b(rpo\(i\))504 2524 y(\(6\))146 b FB(L)p Ga(S)p 790 2539
61 4 v 6 w(;)15 b(T)p 892 2539 66 4 v 13 w FB(M)p F6(h)p
Ga(U)p 1028 2539 72 4 v 11 w F6(i)1136 2538 y Gc(m)1228
2524 y Ga(>)1299 2491 y Gc(r)r(po)1431 2524 y Ga(S)p
1431 2539 61 4 v 5 w F6(h)p Ga(U)p 1527 2539 72 4 v 11
w F6(i)1635 2538 y Gc(r)2301 2524 y Gg(if)23 b Ga(m)i
F4(=)g Ga(r)s Gg(,)d(then)i(by)g(\(5\))g(and)g(rpo\(iii\))2326
2648 y(if)f Ga(m)i(>)g(r)s Gg(,)d(then)j(by)e(\(4\))h(and)g(rpo\(ii\))
504 2773 y(\(7\))146 b FB(L)p Ga(S)p 790 2788 61 4 v
6 w(;)15 b(T)p 892 2788 66 4 v 13 w FB(M)p F6(h)p Ga(U)p
1028 2788 72 4 v 11 w F6(i)1136 2787 y Gc(m)1228 2773
y Ga(>)1299 2740 y Gc(r)r(po)1431 2773 y Ga(T)p 1431
2788 66 4 v 13 w F6(h)p Ga(U)p 1532 2788 72 4 v 10 w
F6(i)1639 2787 y Gc(s)2775 2773 y Gg(analogous)26 b(to)e(\(4,5,6\))504
2897 y(\(8\))146 b FB(L)p Ga(S)p 790 2912 61 4 v 6 w(;)15
b(T)p 892 2912 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1028
2912 72 4 v 11 w F6(i)1136 2911 y Gc(m)1228 2897 y Ga(>)1299
2864 y Gc(r)r(po)1431 2897 y FB(L)p Ga(S)p 1466 2912
61 4 v 6 w F6(h)p Ga(U)p 1563 2912 72 4 v 10 w F6(i)1670
2911 y Gc(r)1708 2897 y Ga(;)g(T)p 1748 2912 66 4 v 14
w F6(h)p Ga(U)p 1850 2912 72 4 v 10 w F6(i)1957 2911
y Gc(s)1994 2897 y FB(M)776 b Gg(by)24 b(\(6,7\))g(and)g(rpo\(ii\))504
3021 y(\(9\))146 b FB(L)p Ga(S)p 790 3036 61 4 v 6 w(;)15
b(T)p 892 3036 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1028
3036 72 4 v 11 w F6(i)1136 3035 y Gc(m)1228 3021 y Ga(>)1299
2988 y Gc(r)r(po)1431 3021 y Ga(U)p 1431 3036 V 1689
w Gg(by)23 b(rpo\(i\))504 3145 y(\(10\))101 b Ga(M)p
755 3160 99 4 v 36 w(>)950 3112 y Gc(r)r(po)1082 3145
y Ga(N)p 1082 3160 83 4 v 1582 w Gg(by)24 b(\(3,8,9\))g(and)g
(rpo\(ii\))504 3386 y Ga(M)36 b F6(\021)25 b FL(Cut)803
3339 y FC( )863 3386 y F4(\()898 3374 y FX(h)926 3386
y Ga(d)973 3374 y FX(i)1001 3386 y FL(And)1156 3400 y
Gc(R)1213 3386 y F4(\()1248 3374 y FX(h)1276 3386 y Ga(a)1324
3374 y FX(i)1352 3386 y Ga(S)5 b(;)1453 3374 y FX(h)1480
3386 y Ga(b)1519 3374 y FX(i)1547 3386 y Ga(T)13 b(;)i(c)p
F4(\))q Ga(;)1768 3374 y F9(\()1796 3386 y Ga(x)1848
3374 y F9(\))1875 3386 y Ga(U)10 b F4(\))782 3473 y Gc(x)717
3510 y F6(\000)-31 b(\000)f(!)26 b FL(And)1067 3524 y
Gc(R)1125 3510 y F4(\()1160 3498 y FX(h)1188 3510 y Ga(a)1236
3498 y FX(i)1263 3510 y FL(Cut)1342 3463 y FC( )1403
3510 y F4(\()1438 3498 y FX(h)1466 3510 y Ga(d)1513 3498
y FX(i)1540 3510 y Ga(S)5 b(;)1641 3498 y F9(\()1669
3510 y Ga(x)1721 3498 y F9(\))1749 3510 y Ga(U)10 b F4(\))p
Ga(;)1896 3498 y FX(h)1924 3510 y Ga(b)1963 3498 y FX(i)1990
3510 y FL(Cut)2069 3463 y FC( )2130 3510 y F4(\()2165
3498 y FX(h)2193 3510 y Ga(d)2240 3498 y FX(i)2267 3510
y Ga(T)j(;)2373 3498 y F9(\()2401 3510 y Ga(x)2453 3498
y F9(\))2480 3510 y Ga(U)d F4(\))q Ga(;)15 b(c)p F4(\))26
b F6(\021)f Ga(N)504 3634 y Gg(\(1\))101 b Ga(M)p 710
3649 99 4 v 35 w F4(=)25 b FB(L)p Ga(S)p 964 3649 61
4 v 6 w(;)15 b(T)p 1066 3649 66 4 v 13 w FB(M)g F6(h)p
Ga(U)p 1217 3649 72 4 v 11 w F6(i)1325 3648 y Gc(m)1440
3634 y Gg(and)49 b Ga(N)p 1619 3649 83 4 v 35 w F4(=)25
b FB(L)p Ga(S)p 1858 3649 61 4 v 5 w F6(h)p Ga(U)p 1954
3649 72 4 v 11 w F6(i)2062 3648 y Gc(r)2100 3634 y Ga(;)15
b(T)p 2140 3649 66 4 v 13 w F6(h)p Ga(U)p 2241 3649 72
4 v 10 w F6(i)2348 3648 y Gc(s)2386 3634 y FB(M)349 b
Gg(by)23 b(De\002nition)i(2.6.17)504 3759 y(\(2\))101
b Ga(m)25 b F6(\025)g Ga(r)m(;)15 b(s)1670 b Gg(by)23
b(Lemma)g(2.6.19\(i,ii\))504 3883 y(\(3\))101 b FB(L)p
Ga(S)p 745 3898 61 4 v 5 w(;)15 b(T)p 846 3898 66 4 v
14 w FB(M)p F6(h)p Ga(U)p 983 3898 72 4 v 10 w F6(i)1090
3897 y Gc(m)1182 3883 y Ga(>)1253 3850 y Gc(r)r(po)1386
3883 y Ga(S)p 1386 3898 61 4 v 53 w Gg(and)49 b FB(L)p
Ga(S)p 1709 3898 V 5 w(;)15 b(T)p 1810 3898 66 4 v 14
w FB(M)p F6(h)p Ga(U)p 1947 3898 72 4 v 10 w F6(i)2054
3897 y Gc(m)2147 3883 y Ga(>)2218 3850 y Gc(r)r(po)2350
3883 y Ga(U)p 2350 3898 V 770 w Gg(by)23 b(rpo\(i\))504
4007 y(\(4\))101 b F6(f)-24 b(j)p FB(L)p Ga(S)p 791 4022
61 4 v 6 w(;)15 b(T)p 893 4022 66 4 v 14 w FB(M)p Ga(;)g(U)p
1035 4022 72 4 v 10 w F6(j)-24 b(g)27 b Ga(>)1251 3963
y Gc(r)r(po)1251 4036 y(mul)q(t)1430 4007 y F6(f)-24
b(j)p Ga(S)p 1476 4022 61 4 v 6 w(;)15 b(U)p 1578 4022
72 4 v 11 w F6(j)-24 b(g)1485 b Gg(by)23 b(rpo\(i\))504
4131 y(\(5\))101 b FB(L)p Ga(S)p 745 4146 61 4 v 5 w(;)15
b(T)p 846 4146 66 4 v 14 w FB(M)p F6(h)p Ga(U)p 983 4146
72 4 v 10 w F6(i)1090 4145 y Gc(m)1182 4131 y Ga(>)1253
4098 y Gc(r)r(po)1386 4131 y Ga(S)p 1386 4146 61 4 v
5 w F6(h)p Ga(U)p 1482 4146 72 4 v 10 w F6(i)1589 4145
y Gc(r)2301 4131 y Gg(if)23 b Ga(m)i F4(=)g Ga(r)s Gg(,)d(then)i(by)g
(\(4\))g(and)g(rpo\(iii\))2326 4255 y(if)f Ga(m)i(>)g(r)s
Gg(,)d(then)j(by)e(\(3\))h(and)g(rpo\(ii\))504 4380 y(\(6\))101
b FB(L)p Ga(S)p 745 4395 61 4 v 5 w(;)15 b(T)p 846 4395
66 4 v 14 w FB(M)p F6(h)p Ga(U)p 983 4395 72 4 v 10 w
F6(i)1090 4394 y Gc(m)1182 4380 y Ga(>)1253 4347 y Gc(r)r(po)1386
4380 y Ga(T)p 1386 4395 66 4 v 13 w F6(h)p Ga(U)p 1487
4395 72 4 v 10 w F6(i)1594 4394 y Gc(s)2775 4380 y Gg(analogous)26
b(to)e(\(3,4,5\))504 4504 y(\(7\))101 b Ga(M)p 710 4519
99 4 v 35 w(>)904 4471 y Gc(r)r(po)1037 4504 y Ga(N)p
1037 4519 83 4 v 1695 w Gg(by)24 b(\(5,6\))g(and)g(rpo\(ii\))504
4745 y Ga(M)36 b F6(\021)25 b FL(Cut)803 4697 y FC( )863
4745 y F4(\()898 4733 y FX(h)926 4745 y Ga(a)974 4733
y FX(i)1002 4745 y FL(Cut)p F4(\()1175 4733 y FX(h)1202
4745 y Ga(b)1241 4733 y FX(i)1269 4745 y Ga(S)5 b(;)1370
4733 y F9(\()1398 4745 y Ga(x)1450 4733 y F9(\))1477
4745 y Ga(T)13 b F4(\))p Ga(;)1618 4733 y F9(\()1646
4745 y Ga(y)1694 4733 y F9(\))1721 4745 y Ga(U)d F4(\))782
4832 y Gc(x)717 4869 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o
F4(\()1085 4857 y FX(h)1113 4869 y Ga(b)1152 4857 y FX(i)1180
4869 y FL(Cut)1258 4821 y FC( )1319 4869 y F4(\()1354
4857 y FX(h)1382 4869 y Ga(a)1430 4857 y FX(i)1458 4869
y Ga(S)5 b(;)1559 4857 y F9(\()1586 4869 y Ga(y)1634
4857 y F9(\))1662 4869 y Ga(U)10 b F4(\))p Ga(;)1809
4857 y F9(\()1837 4869 y Ga(x)1889 4857 y F9(\))1916
4869 y FL(Cut)1995 4821 y FC( )2056 4869 y F4(\()2091
4857 y FX(h)2119 4869 y Ga(a)2167 4857 y FX(i)2194 4869
y Ga(T)j(;)2300 4857 y F9(\()2328 4869 y Ga(y)2376 4857
y F9(\))2403 4869 y Ga(U)d F4(\))q(\))25 b F6(\021)g
Ga(N)504 4993 y Gg(\(1\))101 b Ga(M)p 710 5008 99 4 v
35 w F4(=)25 b(\()p Ga(S)p 964 5008 61 4 v 26 w F6(\001)1071
5007 y Gc(m)1158 4993 y Ga(T)p 1158 5008 66 4 v 13 w
F4(\))p F6(h)p Ga(U)p 1294 5008 72 4 v 10 w F6(i)1401
5007 y Gc(n)1497 4993 y Gg(and)49 b Ga(N)p 1676 5008
83 4 v 35 w F4(=)25 b Ga(S)p 1880 5008 61 4 v 5 w F6(h)p
Ga(U)p 1976 5008 72 4 v 10 w F6(i)2083 5007 y Gc(r)2142
4993 y F6(\001)2167 5007 y Gc(s)2224 4993 y Ga(T)p 2224
5008 66 4 v 13 w F6(h)p Ga(U)p 2325 5008 72 4 v 10 w
F6(i)2432 5007 y Gc(t)2770 4993 y Gg(by)e(De\002nition)i(2.6.17)504
5117 y(\(2\))101 b Ga(n)25 b F6(\025)g Ga(s;)15 b(r)m(;)g(t)1622
b Gg(by)23 b(Lemma)g(2.6.19\(i,ii\))504 5241 y(\(3\))p
712 5241 28 4 v 730 5241 V 747 5241 V 166 w F6(h)p 812
5241 V 830 5241 V 847 5241 V 64 w(i)909 5255 y Gc(n)982
5241 y F6(\035)p 1100 5241 V 1118 5241 V 1135 5241 V
110 w(\001)1208 5255 y Gc(s)p 1267 5241 V 1285 5241 V
1302 5241 V 2487 5241 a Gg(by)h(\(2\))f(and)h(De\002nition)h(2.6.14)p
Black Black eop end
%%Page: 154 166
TeXDict begin 154 165 bop Black -144 51 a Gb(154)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 549 384 a Gg(\(4\))100 b F4(\()p Ga(S)p 789
399 61 4 v 26 w F6(\001)896 398 y Gc(m)983 384 y Ga(T)p
983 399 66 4 v 13 w F4(\))p F6(h)p Ga(U)p 1119 399 72
4 v 10 w F6(i)1226 398 y Gc(n)1299 384 y Ga(>)1370 351
y Gc(r)r(po)1502 384 y Ga(S)p 1502 399 61 4 v 53 w Gg(and)50
b F4(\()p Ga(S)p 1826 399 V 25 w F6(\001)1932 398 y Gc(m)2019
384 y Ga(T)p 2019 399 66 4 v 13 w F4(\))p F6(h)p Ga(U)p
2155 399 72 4 v 11 w F6(i)2263 398 y Gc(n)2335 384 y
Ga(>)2406 351 y Gc(r)r(po)2539 384 y Ga(U)p 2539 399
V 625 w Gg(by)23 b(rpo\(i\))549 508 y(\(5\))100 b F6(f)-24
b(j)p F4(\()p Ga(S)p 835 523 61 4 v 27 w F6(\001)943
522 y Gc(m)1030 508 y Ga(T)p 1030 523 66 4 v 13 w F4(\))p
Ga(;)15 b(U)p 1171 523 72 4 v 10 w F6(j)-24 b(g)27 b
Ga(>)1387 464 y Gc(r)r(po)1387 537 y(mul)q(t)1566 508
y F6(f)-24 b(j)p Ga(S)p 1612 523 61 4 v 6 w(;)15 b(U)p
1714 523 72 4 v 11 w F6(j)-24 b(g)1393 b Gg(by)23 b(rpo\(i\))549
632 y(\(6\))100 b F4(\()p Ga(S)p 789 647 61 4 v 26 w
F6(\001)896 646 y Gc(m)983 632 y Ga(T)p 983 647 66 4
v 13 w F4(\))p F6(h)p Ga(U)p 1119 647 72 4 v 10 w F6(i)1226
646 y Gc(n)1299 632 y Ga(>)1370 599 y Gc(r)r(po)1502
632 y Ga(S)p 1502 647 61 4 v 5 w F6(h)p Ga(U)p 1598 647
72 4 v 11 w F6(i)1706 646 y Gc(r)2370 632 y Gg(if)23
b Ga(n)i F4(=)g Ga(r)s Gg(,)d(then)i(by)g(\(5\))g(and)g(rpo\(iii\))2395
756 y(if)g Ga(n)g(>)h(r)s Gg(,)d(then)j(by)e(\(4\))h(and)g(rpo\(ii\))
549 881 y(\(7\))100 b F4(\()p Ga(S)p 789 896 61 4 v 26
w F6(\001)896 895 y Gc(m)983 881 y Ga(T)p 983 896 66
4 v 13 w F4(\))p F6(h)p Ga(U)p 1119 896 72 4 v 10 w F6(i)1226
895 y Gc(n)1299 881 y Ga(>)1370 848 y Gc(r)r(po)1502
881 y Ga(T)p 1502 896 66 4 v 13 w F6(h)p Ga(U)p 1603
896 72 4 v 10 w F6(i)1710 895 y Gc(t)2819 881 y Gg(analogous)27
b(to)c(\(4,5,6\))549 1005 y(\(8\))100 b Ga(M)p 754 1020
99 4 v 36 w(>)949 972 y Gc(r)r(po)1081 1005 y Ga(N)p
1081 1020 83 4 v 1627 w Gg(by)24 b(\(3,6,7\))g(and)g(rpo\(ii\))549
1294 y Ga(M)35 b F6(\021)25 b FL(Cut)847 1247 y FC( )908
1294 y F4(\()943 1282 y FX(h)970 1294 y Ga(a)1018 1282
y FX(i)1046 1294 y FL(Cut)p F4(\()1219 1282 y FX(h)1247
1294 y Ga(b)1286 1282 y FX(i)1313 1294 y Ga(S)5 b(;)1414
1282 y F9(\()1442 1294 y Ga(x)1494 1282 y F9(\))1521
1294 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))q(\))p Ga(;)1910
1282 y F9(\()1938 1294 y Ga(y)1986 1282 y F9(\))2013
1294 y Ga(U)10 b F4(\))826 1381 y Gc(x)761 1418 y F6(\000)-31
b(\000)g(!)25 b FL(Cut)p F4(\()1130 1406 y FX(h)1157
1418 y Ga(b)1196 1406 y FX(i)1224 1418 y FL(Cut)1303
1371 y FC( )1364 1418 y F4(\()1399 1406 y FX(h)1426 1418
y Ga(a)1474 1406 y FX(i)1502 1418 y Ga(S)5 b(;)1603 1406
y F9(\()1631 1418 y Ga(y)1679 1406 y F9(\))1706 1418
y Ga(U)10 b F4(\))p Ga(;)1853 1406 y F9(\()1881 1418
y Ga(y)1929 1406 y F9(\))1956 1418 y Ga(U)g F4(\))26
b F6(\021)f Ga(N)549 1543 y Gg(\(1\))100 b Ga(M)p 754
1558 99 4 v 36 w F4(=)25 b(\()p Ga(S)p 1009 1558 61 4
v 25 w F6(\001)1115 1557 y Gc(m)1202 1543 y Ga(?)p F4(\))p
F6(h)p Ga(U)p 1317 1558 72 4 v 11 w F6(i)1425 1557 y
Gc(n)1521 1543 y Gg(and)49 b Ga(N)p 1700 1558 83 4 v
35 w F4(=)25 b Ga(S)p 1904 1558 61 4 v 5 w F6(h)p Ga(U)p
2000 1558 72 4 v 10 w F6(i)2107 1557 y Gc(r)2166 1543
y F6(\001)2191 1557 y Gc(s)2248 1543 y Ga(U)p 2248 1558
V 504 w Gg(by)f(De\002nition)g(2.6.17)549 1667 y(\(2\))100
b Ga(n)25 b F6(\025)g Ga(s;)15 b(r)1692 b Gg(by)24 b(Lemma)e
(2.6.19\(i,ii\))549 1791 y(\(3\))p 756 1791 28 4 v 774
1791 V 791 1791 V 165 w F6(h)p 856 1791 V 874 1791 V
891 1791 V 65 w(i)954 1805 y Gc(n)1026 1791 y F6(\035)p
1144 1791 V 1162 1791 V 1180 1791 V 110 w(\001)1252 1805
y Gc(s)p 1311 1791 V 1329 1791 V 1347 1791 V 2531 1791
a Gg(by)i(\(2\))g(and)g(De\002nition)g(2.6.14)549 1915
y(\(4\))100 b F4(\()p Ga(S)p 789 1930 61 4 v 26 w F6(\001)896
1929 y Gc(m)983 1915 y Ga(?)p F4(\))p F6(h)p Ga(U)p 1098
1930 72 4 v 11 w F6(i)1206 1929 y Gc(n)1278 1915 y Ga(>)1349
1882 y Gc(r)r(po)1482 1915 y Ga(S)p 1482 1930 61 4 v
53 w Gg(and)49 b F4(\()p Ga(S)p 1805 1930 V 26 w F6(\001)1912
1929 y Gc(m)1999 1915 y Ga(?)p F4(\))p F6(h)p Ga(U)p
2114 1930 72 4 v 11 w F6(i)2222 1929 y Gc(n)2295 1915
y Ga(>)2366 1882 y Gc(r)r(po)2498 1915 y Ga(U)p 2498
1930 V 666 w Gg(by)23 b(rpo\(i\))549 2040 y(\(5\))100
b F6(f)-24 b(j)p F4(\()p Ga(S)p 835 2055 61 4 v 27 w
F6(\001)943 2054 y Gc(m)1030 2040 y Ga(?)p F4(\))p Ga(;)15
b(U)p 1150 2055 72 4 v 11 w F6(j)-24 b(g)26 b Ga(>)1366
1995 y Gc(r)r(po)1366 2069 y(mul)q(t)1546 2040 y F6(f)-24
b(j)p Ga(S)p 1592 2055 61 4 v 6 w(;)15 b(U)p 1694 2055
72 4 v 11 w F6(j)-24 b(g)1413 b Gg(by)23 b(rpo\(i\))549
2164 y(\(6\))100 b F4(\()p Ga(S)p 789 2179 61 4 v 26
w F6(\001)896 2178 y Gc(m)983 2164 y Ga(?)p F4(\))p F6(h)p
Ga(U)p 1098 2179 72 4 v 11 w F6(i)1206 2178 y Gc(n)1278
2164 y Ga(>)1349 2131 y Gc(r)r(po)1482 2164 y Ga(S)p
1482 2179 61 4 v 5 w F6(h)p Ga(U)p 1578 2179 72 4 v 10
w F6(i)1685 2178 y Gc(r)2370 2164 y Gg(if)23 b Ga(n)i
F4(=)g Ga(r)s Gg(,)d(then)i(by)g(\(5\))g(and)g(rpo\(iii\))2395
2288 y(if)g Ga(n)g(>)h(r)s Gg(,)d(then)j(by)e(\(4\))h(and)g(rpo\(ii\))
549 2412 y(\(7\))100 b Ga(M)p 754 2427 99 4 v 36 w(>)949
2379 y Gc(r)r(po)1081 2412 y Ga(N)p 1081 2427 83 4 v
1627 w Gg(by)24 b(\(3,4,6\))g(and)g(rpo\(ii\))549 2702
y Ga(M)35 b F6(\021)25 b FL(Cut)847 2654 y FC( )908 2702
y F4(\()943 2690 y FX(h)970 2702 y Ga(a)1018 2690 y FX(i)1046
2702 y FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))r Ga(;)1400
2690 y F9(\()1427 2702 y Ga(y)1475 2690 y F9(\))1503
2702 y Ga(S)5 b F4(\))1690 2664 y Gc(x)1624 2702 y F6(\000)-31
b(\000)g(!)25 b FL(Cut)p F4(\()1993 2690 y FX(h)2020
2702 y Ga(a)2068 2690 y FX(i)2096 2702 y FL(Ax)o F4(\()p
Ga(x;)15 b(a)p F4(\))r Ga(;)2450 2690 y F9(\()2477 2702
y Ga(y)2525 2690 y F9(\))2553 2702 y Ga(S)5 b F4(\))25
b F6(\021)g Ga(N)549 2826 y Gg(\(1\))100 b Ga(M)p 754
2841 99 4 v 36 w F4(=)25 b Ga(?)15 b F6(h)p Ga(S)p 1069
2841 61 4 v 5 w F6(i)1165 2840 y Gc(m)1280 2826 y Gg(and)50
b Ga(N)p 1460 2841 83 4 v 35 w F4(=)25 b Ga(?)20 b F6(\001)1754
2840 y Gc(n)1822 2826 y Ga(S)p 1822 2841 61 4 v 936 w
Gg(by)k(De\002nition)g(2.6.17)549 2950 y(\(2\))100 b
Ga(m)25 b F6(\025)g Ga(n)1809 b Gg(by)24 b(Lemma)e(2.6.19\(i\))549
3074 y(\(3\))p 756 3074 28 4 v 774 3074 V 791 3074 V
165 w F6(h)p 856 3074 V 874 3074 V 891 3074 V 65 w(i)954
3088 y Gc(m)1046 3074 y F6(\035)p 1164 3074 V 1182 3074
V 1199 3074 V 110 w(\001)1272 3088 y Gc(n)p 1341 3074
V 1359 3074 V 1376 3074 V 2531 3074 a Gg(by)i(\(2\))g(and)g
(De\002nition)g(2.6.14)549 3198 y(\(4\))100 b Ga(?)15
b F6(h)p Ga(S)p 849 3213 61 4 v 6 w F6(i)946 3212 y Gc(m)1038
3198 y Ga(>)1109 3165 y Gc(r)r(po)1242 3198 y Ga(?)48
b Gg(and)i Ga(?)15 b F6(h)p Ga(S)p 1610 3213 V 6 w F6(i)1707
3212 y Gc(m)1799 3198 y Ga(>)1870 3165 y Gc(r)r(po)2002
3198 y Ga(S)p 2002 3213 V 1168 w Gg(by)23 b(rpo\(i\))549
3323 y(\(5\))100 b Ga(M)p 754 3338 99 4 v 36 w(>)949
3290 y Gc(r)r(po)1081 3323 y Ga(N)p 1081 3338 83 4 v
1696 w Gg(by)23 b(\(3,4\))h(and)g(rpo\(ii\))p Black 321
3603 a Gb(Commuting)f(Reduction:)p Black 45 w Gg(One)h(case)g(is)f(as)h
(follo)n(ws.)549 3803 y Ga(M)35 b F6(\021)25 b FL(Cut)p
F4(\()941 3791 y FX(h)969 3803 y Ga(a)1017 3791 y FX(i)1044
3803 y Ga(S)5 b(;)1145 3791 y F9(\()1173 3803 y Ga(x)1225
3791 y F9(\))1252 3803 y Ga(T)13 b F4(\))1428 3766 y
Gc(c)1459 3742 y FC(00)1379 3803 y F6(\000)-32 b(\000)h(!)25
b FL(Cut)1653 3755 y FC( )1714 3803 y F4(\()1749 3791
y FX(h)1777 3803 y Ga(a)1825 3791 y FX(i)1852 3803 y
Ga(S)5 b(;)1953 3791 y F9(\()1981 3803 y Ga(x)2033 3791
y F9(\))2060 3803 y Ga(T)13 b F4(\))26 b F6(\021)f Ga(N)549
3927 y Gg(\(1\))100 b Ga(M)p 754 3942 99 4 v 36 w F4(=)25
b Ga(S)p 974 3942 61 4 v 25 w F6(\001)1080 3941 y Gc(m)1167
3927 y Ga(T)p 1167 3942 66 4 v 60 w Gg(and)50 b Ga(N)p
1460 3942 83 4 v 35 w F4(=)25 b Ga(S)p 1664 3942 61 4
v 5 w F6(h)p Ga(T)p 1760 3942 66 4 v 13 w F6(i)1861 3941
y Gc(n)2814 3927 y Gg(by)f(De\002nition)g(2.6.17)549
4051 y(\(2\))100 b Ga(m)25 b(>)g(n)1759 b Gg(by)23 b(Lemma)g
(2.6.19\(iii\))549 4175 y(\(3\))p 756 4175 28 4 v 774
4175 V 791 4175 V 185 w F6(\001)864 4189 y Gc(m)p 953
4175 V 971 4175 V 988 4175 V 1041 4175 a F6(\035)p 1159
4175 V 1177 4175 V 1194 4175 V 89 w(h)p 1258 4175 V 1277
4175 V 1294 4175 V 65 w(i)1356 4189 y Gc(n)2531 4175
y Gg(by)h(\(2\))g(and)g(De\002nition)g(2.6.14)549 4299
y(\(4\))100 b Ga(S)p 754 4314 61 4 v 25 w F6(\001)860
4313 y Gc(m)947 4299 y Ga(T)p 947 4314 66 4 v 38 w(>)1109
4266 y Gc(r)r(po)1242 4299 y Ga(S)p 1242 4314 61 4 v
53 w Gg(and)49 b Ga(S)p 1530 4314 V 25 w F6(\001)1636
4313 y Gc(m)1723 4299 y Ga(T)p 1723 4314 66 4 v 38 w(>)1885
4266 y Gc(r)r(po)2018 4299 y Ga(T)p 2018 4314 V 1155
w Gg(by)23 b(rpo\(i\))549 4424 y(\(5\))100 b Ga(M)p 754
4439 99 4 v 36 w(>)949 4391 y Gc(r)r(po)1081 4424 y Ga(N)p
1081 4439 83 4 v 1696 w Gg(by)23 b(\(3,4\))h(and)g(rpo\(ii\))p
Black 321 4704 a Gb(Logical)h(Reduction:)p Black 46 w
Gg(W)-7 b(e)22 b(tackle)j(three)g(representati)n(v)o(e)i(cases.)549
4905 y Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()941 4893
y FX(h)969 4905 y Ga(a)1017 4893 y FX(i)1044 4905 y FL(Ax)p
F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)1398 4893 y F9(\()1426
4905 y Ga(y)1474 4893 y F9(\))1501 4905 y Ga(S)5 b F4(\))1697
4868 y Gc(l)1622 4905 y F6(\000)-31 b(\000)g(!)25 b Ga(S)5
b F4([)p Ga(y)13 b F6(7!)d Ga(x)p F4(])26 b F6(\021)f
Ga(N)549 5029 y Gg(\(1\))100 b Ga(M)p 754 5044 99 4 v
36 w F4(=)25 b Ga(?)20 b F6(\001)1064 5043 y Gc(n)1132
5029 y Ga(S)p 1132 5044 61 4 v 53 w Gg(and)49 b Ga(N)p
1420 5044 83 4 v 35 w F4(=)25 b Ga(S)p 1624 5044 61 4
v 1134 w Gg(by)f(De\002nition)g(2.6.17)549 5153 y(\(2\))100
b Ga(M)p 754 5168 99 4 v 36 w(>)949 5120 y Gc(r)r(po)1081
5153 y Ga(N)p 1081 5168 83 4 v 1764 w Gg(by)23 b(\(1\))h(and)g
(rpo\(ii\))p Black Black eop end
%%Page: 155 167
TeXDict begin 155 166 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
(Chapter)f(2)2639 b(155)p 277 88 3691 4 v Black 504 384
a Ga(M)36 b F6(\021)25 b FL(Cut)p F4(\()897 372 y FX(h)924
384 y Ga(c)963 372 y FX(i)991 384 y FL(And)1146 398 y
Gc(R)1203 384 y F4(\()1238 372 y FX(h)1266 384 y Ga(a)1314
372 y FX(i)1342 384 y Ga(S)5 b(;)1443 372 y FX(h)1471
384 y Ga(b)1510 372 y FX(i)1537 384 y Ga(T)13 b(;)i(c)p
F4(\))q Ga(;)1758 372 y F9(\()1786 384 y Ga(y)1834 372
y F9(\))1861 384 y FL(And)2016 347 y F9(1)2016 407 y
Gc(L)2068 384 y F4(\()2103 372 y F9(\()2130 384 y Ga(x)2182
372 y F9(\))2210 384 y Ga(U)10 b(;)15 b(y)s F4(\)\))2540
347 y Gc(l)2466 384 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o
F4(\()2834 372 y FX(h)2862 384 y Ga(a)2910 372 y FX(i)2938
384 y Ga(S)5 b(;)3039 372 y F9(\()3067 384 y Ga(x)3119
372 y F9(\))3146 384 y Ga(U)10 b F4(\))26 b F6(\021)f
Ga(N)504 508 y Gg(\(1\))101 b Ga(M)p 710 523 99 4 v 35
w F4(=)25 b FB(L)p Ga(S)p 964 523 61 4 v 6 w(;)15 b(T)p
1066 523 66 4 v 13 w FB(M)20 b F6(\001)1212 522 y Gc(m)1299
508 y FB(L)p Ga(U)p 1334 523 72 4 v 11 w FB(M)j Gg(and)h
Ga(N)p 1619 523 83 4 v 35 w F4(=)h Ga(S)p 1823 523 61
4 v 25 w F6(\001)1929 522 y Gc(n)1997 508 y Ga(U)p 1997
523 72 4 v 711 w Gg(by)e(De\002nition)i(2.6.17)504 632
y(\(2\))101 b Ga(m)25 b(>)g(n)1758 b Gg(by)24 b(Lemma)f(2.6.19\(iii\))
504 756 y(\(3\))101 b FB(L)p Ga(S)p 745 771 61 4 v 5
w(;)15 b(T)p 846 771 66 4 v 14 w FB(M)20 b F6(\001)993
770 y Gc(m)1080 756 y FB(L)p Ga(U)p 1115 771 72 4 v 10
w FB(M)26 b Ga(>)1319 723 y Gc(r)r(po)1452 756 y Ga(S)p
1452 771 61 4 v 53 w Gg(,)47 b FB(L)p Ga(S)p 1666 771
V 6 w(;)15 b(T)p 1768 771 66 4 v 13 w FB(M)20 b F6(\001)1914
770 y Gc(m)2001 756 y FB(L)p Ga(U)p 2036 771 72 4 v 11
w FB(M)25 b Ga(>)2240 723 y Gc(r)r(po)2373 756 y Ga(U)p
2373 771 V 747 w Gg(by)e(rpo\(i\))504 881 y(\(4\))101
b Ga(M)p 710 896 99 4 v 35 w(>)904 848 y Gc(r)r(po)1037
881 y Ga(N)p 1037 896 83 4 v 1695 w Gg(by)24 b(\(2,3\))g(and)g
(rpo\(ii\))504 1116 y Ga(M)36 b F6(\021)25 b FL(Cut)p
F4(\()897 1104 y FX(h)924 1116 y Ga(b)963 1104 y FX(i)991
1116 y FL(Imp)1135 1138 y Gc(R)1193 1116 y F4(\()1228
1104 y F9(\()1256 1116 y Ga(x)1308 1104 y F9(\))p FX(h)1363
1116 y Ga(a)1411 1104 y FX(i)1438 1116 y Ga(S)5 b(;)15
b(b)p F4(\))q Ga(;)1654 1104 y F9(\()1682 1116 y Ga(z)1728
1104 y F9(\))1755 1116 y FL(Imp)1900 1138 y Gc(L)1952
1116 y F4(\()1987 1104 y FX(h)2015 1116 y Ga(c)2054 1104
y FX(i)2082 1116 y Ga(T)d(;)2187 1104 y F9(\()2215 1116
y Ga(y)2263 1104 y F9(\))2291 1116 y Ga(U)e(;)15 b(z)t
F4(\))q(\))791 1203 y Gc(l)717 1240 y F6(\000)-31 b(\000)f(!)26
b FL(Cut)o F4(\()1085 1228 y FX(h)1113 1240 y Ga(a)1161
1228 y FX(i)1189 1240 y FL(Cut)p F4(\()1362 1228 y FX(h)1389
1240 y Ga(c)1428 1228 y FX(i)1456 1240 y Ga(T)13 b(;)1562
1228 y F9(\()1590 1240 y Ga(x)1642 1228 y F9(\))1669
1240 y Ga(S)5 b F4(\))p Ga(;)1805 1228 y F9(\()1833 1240
y Ga(y)1881 1228 y F9(\))1909 1240 y Ga(U)10 b F4(\))25
b F6(\021)g Ga(N)504 1364 y Gg(\(1\))101 b Ga(M)p 710
1379 99 4 v 35 w F4(=)25 b FB(L)p Ga(S)p 964 1379 61
4 v 6 w FB(M)20 b F6(\001)1106 1378 y Gc(m)1193 1364
y FB(L)p Ga(T)p 1228 1379 66 4 v 13 w(;)15 b(U)p 1334
1379 72 4 v 11 w FB(M)23 b Gg(and)h Ga(N)p 1619 1379
83 4 v 35 w F4(=)h(\()p Ga(T)p 1858 1379 66 4 v 33 w
F6(\001)1969 1378 y Gc(s)2027 1364 y Ga(S)p 2027 1379
61 4 v 5 w F4(\))20 b F6(\001)2168 1378 y Gc(t)2218 1364
y Ga(U)p 2218 1379 72 4 v 490 w Gg(by)j(De\002nition)i(2.6.17)504
1488 y(\(2\))101 b Ga(m)25 b(>)g(s;)15 b(t)1624 b Gg(by)24
b(Lemma)e(2.6.19\(iii,ii\))504 1613 y(\(3\))101 b FB(L)p
Ga(S)p 745 1628 61 4 v 5 w FB(M)21 b F6(\001)887 1627
y Gc(m)974 1613 y FB(L)p Ga(T)p 1009 1628 66 4 v 13 w(;)15
b(U)p 1115 1628 72 4 v 10 w FB(M)26 b Ga(>)1319 1580
y Gc(r)r(po)1452 1613 y Ga(S)p 1452 1628 61 4 v 53 w
Gg(,)47 b FB(L)p Ga(S)p 1666 1628 V 6 w FB(M)20 b F6(\001)1808
1627 y Gc(m)1895 1613 y FB(L)p Ga(T)p 1930 1628 66 4
v 13 w(;)15 b(U)p 2036 1628 72 4 v 11 w FB(M)25 b Ga(>)2240
1580 y Gc(r)r(po)2373 1613 y Ga(T)p 2373 1628 66 4 v
756 w Gg(by)e(rpo\(i\))504 1737 y(\(4\))101 b FB(L)p
Ga(S)p 745 1752 61 4 v 5 w FB(M)21 b F6(\001)887 1751
y Gc(m)974 1737 y FB(L)p Ga(T)p 1009 1752 66 4 v 13 w(;)15
b(U)p 1115 1752 72 4 v 10 w FB(M)26 b Ga(>)1319 1704
y Gc(r)r(po)1452 1737 y Ga(T)p 1452 1752 66 4 v 33 w
F6(\001)1563 1751 y Gc(s)1620 1737 y Ga(S)p 1620 1752
61 4 v 1129 w Gg(by)e(\(2,3\))g(and)g(rpo\(ii\))504 1861
y(\(5\))101 b FB(L)p Ga(S)p 745 1876 V 5 w FB(M)21 b
F6(\001)887 1875 y Gc(m)974 1861 y FB(L)p Ga(T)p 1009
1876 66 4 v 13 w(;)15 b(U)p 1115 1876 72 4 v 10 w FB(M)26
b Ga(>)1319 1828 y Gc(r)r(po)1452 1861 y Ga(U)p 1452
1876 V 1170 w Gg(by)e(De\002nition)g(2.6.12\(i\))504
1985 y(\(6\))101 b Ga(M)p 710 2000 99 4 v 35 w(>)904
1952 y Gc(r)r(po)1037 1985 y Ga(N)p 1037 2000 83 4 v
1627 w Gg(by)24 b(\(2,4,5\))g(and)g(rpo\(ii\))p Black
277 2157 a Gb(Garbage)g(Reduction:)p Black 46 w Gg(Finally)-6
b(,)23 b(we)e(gi)n(v)o(e)h(one)h(case)g(where)f(a)g(garbage)h
(reduction)i(is)d(performed.)504 2303 y Ga(M)36 b F6(\021)25
b FL(Cut)803 2256 y FC( )863 2303 y F4(\()898 2291 y
FX(h)926 2303 y Ga(a)974 2291 y FX(i)1002 2303 y Ga(S)5
b(;)1103 2291 y F9(\()1131 2303 y Ga(x)1183 2291 y F9(\))1210
2303 y Ga(T)13 b F4(\))1388 2266 y Gc(g)r(c)1336 2303
y F6(\000)-31 b(\000)g(!)25 b Ga(S)30 b F6(\021)25 b
Ga(N)504 2427 y Gg(\(1\))101 b Ga(M)p 710 2442 99 4 v
35 w F4(=)25 b Ga(S)p 929 2442 61 4 v 5 w F6(h)p Ga(T)p
1025 2442 66 4 v 13 w F6(i)1126 2441 y Gc(m)1241 2427
y Gg(and)50 b Ga(N)p 1421 2442 83 4 v 35 w F4(=)25 b
Ga(S)p 1625 2442 61 4 v 1089 w Gg(by)e(De\002nition)i(2.6.17)504
2552 y(\(2\))101 b Ga(M)p 710 2567 99 4 v 35 w(>)904
2519 y Gc(r)r(po)1037 2552 y Ga(N)p 1037 2567 83 4 v
1789 w Gg(by)23 b(\(1\))h(and)g(rpo\(i\))p 3436 2659
4 62 v 3440 2600 55 4 v 3440 2659 V 3494 2659 4 62 v
Black 277 2871 a Gb(Pr)n(oof)k(of)g(Lemma)f(2.6.22.)p
Black 34 w Gg(W)-7 b(e)27 b(gi)n(v)o(e)g(the)h(details)h(of)f(ho)n(w)f
(to)g(replace)j FL(Cut)2707 2824 y FC( )2767 2871 y Gg(-instances.)44
b(Suppose)277 2984 y FL(Cut)356 2937 y FC( )417 2984
y F4(\()452 2972 y FX(h)480 2984 y Ga(a)528 2972 y FX(i)555
2984 y Ga(S)5 b(;)656 2972 y F9(\()684 2984 y Ga(x)736
2972 y F9(\))763 2984 y Ga(T)13 b F4(\))23 b Gg(is)h(a)f(subterm)h(of)g
Ga(M)33 b Gg(with)23 b(the)h(typing)h(judgement)1271
3151 y F4(\000)1328 3165 y F9(1)1393 3139 y Gc(.)1448
3151 y Ga(S)1534 3139 y Gc(.)1589 3151 y F4(\001)1665
3165 y F9(1)1845 3151 y F4(\000)1902 3165 y F9(2)1967
3139 y Gc(.)2022 3151 y Ga(T)2113 3139 y Gc(.)2168 3151
y F4(\001)2244 3165 y F9(2)p 1151 3184 1252 4 v 1151
3269 a F4(\000)1208 3283 y F9(1)1248 3269 y Ga(;)15 b
F4(\000)1345 3283 y F9(2)1410 3257 y Gc(.)1464 3269 y
FL(Cut)1543 3222 y FC( )1604 3269 y F4(\()1639 3257 y
FX(h)1667 3269 y Ga(a)1715 3257 y FX(i)1742 3269 y Ga(S)5
b(;)1843 3257 y F9(\()1871 3269 y Ga(x)1923 3257 y F9(\))1951
3269 y Ga(T)12 b F4(\))2077 3257 y Gc(.)2132 3269 y F4(\001)2208
3283 y F9(1)2247 3269 y Ga(;)j F4(\001)2363 3283 y F9(2)2444
3217 y Gg(Cut)2516 3170 y FC( )2603 3217 y Ga(:)277 3456
y Gg(Our)23 b(ar)n(gument)j(splits)e(into)h(tw)o(o)e(cases:)p
Black 414 3650 a F6(\017)p Black 45 w Gg(If)35 b(the)g(subterm)h
Ga(S)j Gg(does)c(not)h(freshly)g(introduce)h Ga(a)p Gg(,)g(then)e(we)f
(replace)j FL(Cut)2994 3603 y FC( )3055 3650 y F4(\()3090
3638 y FX(h)3117 3650 y Ga(a)3165 3638 y FX(i)3193 3650
y Ga(S)5 b(;)3294 3638 y F9(\()3322 3650 y Ga(x)3374
3638 y F9(\))3401 3650 y Ga(T)13 b F4(\))504 3763 y Gg(simply)31
b(by)f FL(Cut)p F4(\()1074 3751 y FX(h)1102 3763 y Ga(a)1150
3751 y FX(i)1177 3763 y Ga(S)5 b(;)1278 3751 y F9(\()1306
3763 y Ga(x)1358 3751 y F9(\))1385 3763 y Ga(T)13 b F4(\))29
b Gg(\(both)i(terms)f(ha)n(v)o(e)h(the)f(same)g(typing)h(judgement\).)
50 b(In)30 b(this)504 3876 y(case)25 b(we)d(ha)n(v)o(e)i
FL(Cut)p F4(\()1176 3864 y FX(h)1204 3876 y Ga(a)1252
3864 y FX(i)1280 3876 y Ga(S)5 b(;)1381 3864 y F9(\()1409
3876 y Ga(x)1461 3864 y F9(\))1488 3876 y Ga(T)13 b F4(\))1664
3839 y Gc(c)1695 3816 y FC(00)1614 3876 y F6(\000)-31
b(\000)g(!)25 b FL(Cut)1889 3829 y FC( )1949 3876 y F4(\()1984
3864 y FX(h)2012 3876 y Ga(a)2060 3864 y FX(i)2088 3876
y Ga(S)5 b(;)2189 3864 y F9(\()2217 3876 y Ga(x)2269
3864 y F9(\))2296 3876 y Ga(T)13 b F4(\))p Gg(.)p Black
414 4052 a F6(\017)p Black 45 w Gg(The)24 b(more)g(interesting)k(case)c
(is)h(where)f Ga(S)k Gg(freshly)e(introduces)h Ga(a)p
Gg(.)j(Here)24 b(we)g(cannot)i(simply)504 4165 y(replace)e
FL(Cut)867 4118 y FC( )948 4165 y Gg(with)e FL(Cut)p
Gg(,)f(because)j(there)e(is)g(no)g(reduction)i(that)e(gi)n(v)o(es)h
Ga(N)2899 4128 y Gc(l)q(oc)2857 4165 y F6(\000)-31 b(\000)f(!)3027
4132 y F9(+)3111 4165 y Ga(M)10 b Gg(.)28 b(There-)504
4278 y(fore)k(we)e(replace)j FL(Cut)1189 4231 y FC( )1250
4278 y F4(\()1285 4266 y FX(h)1312 4278 y Ga(a)1360 4266
y FX(i)1388 4278 y Ga(S)5 b(;)1489 4266 y F9(\()1517
4278 y Ga(x)1569 4266 y F9(\))1596 4278 y Ga(T)13 b F4(\))30
b Gg(by)i FL(Cut)p F4(\()2022 4266 y FX(h)2049 4278 y
Ga(a)2097 4266 y FX(i)2125 4278 y FL(Cut)p F4(\()2298
4266 y FX(h)2325 4278 y Ga(b)2364 4266 y FX(i)2392 4278
y Ga(S)5 b(;)2493 4266 y F9(\()2521 4278 y Ga(y)2569
4266 y F9(\))2596 4278 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(c)p F4(\))q(\))p Ga(;)2972 4266 y F9(\()3000 4278 y
Ga(x)3052 4266 y F9(\))3079 4278 y Ga(T)e F4(\))31 b
Gg(where)g Ga(b)504 4391 y Gg(and)i Ga(c)f Gg(are)h(fresh)g(co-names)h
(that)f(do)g(not)f(occur)i(an)o(ywhere)f(else.)56 b(On)32
b(the)h(le)n(v)o(el)f(of)h(type)504 4504 y(deri)n(v)n(ations)27
b(this)d(means)g(that)g(an)f(instance)j(of)d(the)h(form)1410
4652 y F4(\000)1467 4666 y F9(1)1532 4640 y Gc(.)1587
4652 y Ga(S)1673 4640 y Gc(.)1728 4652 y F4(\001)1804
4666 y F9(1)1984 4652 y F4(\000)2041 4666 y F9(2)2106
4640 y Gc(.)2161 4652 y Ga(T)2252 4640 y Gc(.)2307 4652
y F4(\001)2383 4666 y F9(2)p 1290 4686 V 1290 4770 a
F4(\000)1347 4784 y F9(1)1387 4770 y Ga(;)15 b F4(\000)1484
4784 y F9(2)1548 4758 y Gc(.)1603 4770 y FL(Cut)1682
4723 y FC( )1743 4770 y F4(\()1778 4758 y FX(h)1806 4770
y Ga(a)1854 4758 y FX(i)1881 4770 y Ga(S)5 b(;)1982 4758
y F9(\()2010 4770 y Ga(x)2062 4758 y F9(\))2090 4770
y Ga(T)12 b F4(\))2216 4758 y Gc(.)2271 4770 y F4(\001)2347
4784 y F9(1)2386 4770 y Ga(;)j F4(\001)2502 4784 y F9(2)2583
4718 y Gg(Cut)2655 4671 y FC( )504 4940 y Gg(is)24 b(replaced)h(by)782
5130 y F4(\000)839 5144 y F9(1)903 5118 y Gc(.)958 5130
y Ga(S)1044 5118 y Gc(.)1099 5130 y F4(\001)1175 5144
y F9(1)1215 5130 y Ga(;)15 b(b)i F4(:)h Ga(B)p 1518 5045
815 4 v 95 w(y)i F4(:)d Ga(B)1724 5118 y Gc(.)1779 5130
y FL(Ax)p F4(\()p Ga(y)s(;)e(c)p F4(\))2105 5118 y Gc(.)2160
5130 y Ga(c)j F4(:)f Ga(B)p 782 5173 1551 4 v 861 5258
a F4(\000)918 5272 y F9(1)983 5246 y Gc(.)1038 5258 y
FL(Cut)o F4(\()1210 5246 y FX(h)1238 5258 y Ga(b)1277
5246 y FX(i)1305 5258 y Ga(S)5 b(;)1406 5246 y F9(\()1434
5258 y Ga(y)1482 5246 y F9(\))1509 5258 y FL(Ax)o F4(\()p
Ga(y)s(;)15 b(c)p F4(\))r(\))1870 5246 y Gc(.)1925 5258
y F4(\001)2001 5272 y F9(1)2040 5258 y Ga(;)g(c)j F4(:)g
Ga(B)2374 5203 y Gg(Cut)2596 5258 y F4(\000)2653 5272
y F9(2)2718 5246 y Gc(.)2773 5258 y Ga(T)2864 5246 y
Gc(.)2919 5258 y F4(\001)2995 5272 y F9(2)p 843 5300
2209 4 v 843 5385 a F4(\000)900 5399 y F9(1)939 5385
y Ga(;)d F4(\000)1036 5399 y F9(2)1101 5373 y Gc(.)1156
5385 y FL(Cut)p F4(\()1329 5373 y FX(h)1357 5385 y Ga(a)1405
5373 y FX(i)1432 5385 y FL(Cut)p F4(\()1605 5373 y FX(h)1633
5385 y Ga(b)1672 5373 y FX(i)1699 5385 y Ga(S)5 b(;)1800
5373 y F9(\()1828 5385 y Ga(y)1876 5373 y F9(\))1904
5385 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(c)p F4(\))q(\))q
Ga(;)2280 5373 y F9(\()2308 5385 y Ga(x)2360 5373 y F9(\))2387
5385 y Ga(T)e F4(\))2513 5373 y Gc(.)2568 5385 y F4(\001)2644
5399 y F9(1)2683 5385 y Ga(;)i F4(\001)2799 5399 y F9(2)2839
5385 y Ga(;)g(c)j F4(:)f Ga(B)3093 5331 y Gg(Cut)p Black
Black eop end
%%Page: 156 168
TeXDict begin 156 167 bop Black -144 51 a Gb(156)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 549 388 a Gg(It)j(is)g(routine)i(to)e(v)o(erify)h(that)g(the)
f(ne)n(w)g(cut-instances)k(are)c(all)h(well-typed.)41
b(No)n(w)26 b(we)h(sho)n(w)549 501 y(ho)n(w)35 b(the)h(ne)n(w)f(term)h
(can)g(reduce.)67 b(Because)37 b FL(Cut)p F4(\()2272
489 y FX(h)2299 501 y Ga(b)2338 489 y FX(i)2366 501 y
Ga(S)5 b(;)2467 489 y F9(\()2495 501 y Ga(y)2543 489
y F9(\))2570 501 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(c)p
F4(\))r(\))35 b Gg(does)i(not)f(freshly)549 614 y(introduce)26
b Ga(a)p Gg(,)c(we)h(can)h(\002rst)f(perform)i(a)e(commuting)i
(reduction)604 768 y FL(Cut)p F4(\()777 756 y FX(h)805
768 y Ga(a)853 756 y FX(i)880 768 y FL(Cut)p F4(\()1053
756 y FX(h)1081 768 y Ga(b)1120 756 y FX(i)1148 768 y
Ga(S)5 b(;)1249 756 y F9(\()1276 768 y Ga(y)1324 756
y F9(\))1352 768 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(c)p
F4(\))q(\))q Ga(;)1728 756 y F9(\()1756 768 y Ga(x)1808
756 y F9(\))1835 768 y Ga(T)e F4(\))2011 731 y Gc(c)2042
708 y FC(00)1961 768 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)2236
721 y FC( )2297 768 y F4(\()2332 756 y FX(h)2359 768
y Ga(a)2407 756 y FX(i)2435 768 y FL(Cut)p F4(\()2608
756 y FX(h)2636 768 y Ga(b)2675 756 y FX(i)2702 768 y
Ga(S)5 b(;)2803 756 y F9(\()2831 768 y Ga(y)2879 756
y F9(\))2906 768 y FL(Ax)p F4(\()p Ga(y)s(;)15 b(c)p
F4(\))q(\))p Ga(;)3282 756 y F9(\()3310 768 y Ga(x)3362
756 y F9(\))3390 768 y Ga(T)d F4(\))549 923 y Gg(and)19
b(subsequently)24 b(we)18 b(can)i(remo)o(v)o(e)g(the)g(cut)f(on)h(the)f
(axiom)h(by)g(a)2712 886 y Gc(c)2743 862 y FC(00)2663
923 y F6(\000)-31 b(\000)f(!)p Gg(-reduction)22 b(follo)n(wed)549
1036 y(by)h(a)777 999 y Gc(g)r(c)725 1036 y F6(\000)-31
b(\000)g(!)p Gg(-reduction.)p Black Black 1515 1205 a
FL(Cut)1593 1158 y FC( )1654 1205 y F4(\()1689 1193 y
FX(h)1717 1205 y Ga(a)1765 1193 y FX(i)1793 1205 y FL(Cut)o
F4(\()1965 1193 y FX(h)1993 1205 y Ga(b)2032 1193 y FX(i)2060
1205 y Ga(S)5 b(;)2161 1193 y F9(\()2189 1205 y Ga(y)2237
1193 y F9(\))2264 1205 y FL(Ax)o F4(\()p Ga(y)s(;)15
b(c)p F4(\))r(\))p Ga(;)2640 1193 y F9(\()2668 1205 y
Ga(x)2720 1193 y F9(\))2747 1205 y Ga(T)e F4(\))1294
1293 y Gc(c)1325 1269 y FC(00)1245 1330 y F6(\000)-32
b(\000)h(!)100 b FL(Cut)1593 1283 y FC( )1654 1330 y
F4(\()1689 1318 y FX(h)1717 1330 y Ga(a)1765 1318 y FX(i)1793
1330 y FL(Cut)1871 1283 y FC( )1932 1330 y F4(\()1967
1318 y FX(h)1995 1330 y Ga(b)2034 1318 y FX(i)2062 1330
y Ga(S)5 b(;)2163 1318 y F9(\()2190 1330 y Ga(y)2238
1318 y F9(\))2266 1330 y FL(Ax)o F4(\()p Ga(y)s(;)15
b(c)p F4(\))q(\))q Ga(;)2642 1318 y F9(\()2670 1330 y
Ga(x)2722 1318 y F9(\))2749 1330 y Ga(T)e F4(\))1297
1417 y Gc(g)r(c)1245 1455 y F6(\000)-32 b(\000)h(!)100
b FL(Cut)1593 1407 y FC( )1654 1455 y F4(\()1689 1443
y FX(h)1717 1455 y Ga(a)1765 1443 y FX(i)1793 1455 y
Ga(S)5 b(;)1894 1443 y F9(\()1921 1455 y Ga(x)1973 1443
y F9(\))2001 1455 y Ga(T)13 b F4(\))549 1621 y Gg(Thus)23
b(we)g(are)h(done.)p 3480 1621 4 62 v 3484 1563 55 4
v 3484 1621 V 3538 1621 4 62 v 321 1922 a Ge(B.2)119
b(Pr)n(oofs)29 b(of)g(Chapter)i(3)321 2146 y Gg(In)25
b(this)g(section)i(we)c(are)i(mainly)h(concerned)h(with)e(translations)
j(between)d(natural)i(deduction)g(cal-)321 2258 y(culi)d(and)g(sequent)
i(calculi.)k(First)24 b(let)f(us)h(gi)n(v)o(e)f(tw)o(o)h(f)o(acts,)g
(which)g(will)f(be)g(useful)i(later)-5 b(.)p Black 321
2479 a Gb(F)n(act)23 b(B.2.1:)p Black Black 417 2655
a Gg(\(i\))p Black 47 w FL(Cut)o F4(\()721 2643 y FX(h)749
2655 y Ga(a)797 2643 y FX(i)825 2655 y Ga(T)13 b(;)931
2643 y F9(\()958 2655 y Ga(x)1010 2643 y F9(\))1038 2655
y Ga(S)5 b F4(\))1198 2618 y Gc(int)1159 2655 y F6(\000)-31
b(\000)g(!)1330 2622 y FX(\003)1394 2655 y Ga(T)13 b
F4([)p Ga(a)26 b F4(:=)1680 2643 y F9(\()1707 2655 y
Ga(x)1759 2643 y F9(\))1787 2655 y Ga(S)5 b F4(])p Black
392 2797 a Gg(\(ii\))p Black 47 w FL(Cut)o F4(\()721
2785 y FX(h)749 2797 y Ga(a)797 2785 y FX(i)825 2797
y Ga(T)13 b(;)931 2785 y F9(\()958 2797 y Ga(x)1010 2785
y F9(\))1038 2797 y Ga(S)5 b F4(\))1198 2760 y Gc(int)1159
2797 y F6(\000)-31 b(\000)g(!)1330 2764 y FX(\003)1394
2797 y Ga(S)5 b F4([)p Ga(x)26 b F4(:=)1679 2785 y FX(h)1706
2797 y Ga(a)1754 2785 y FX(i)1782 2797 y Ga(T)13 b F4(])p
Black 321 3010 a F7(Pr)l(oof)o(.)p Black 34 w Gg(W)-7
b(e)22 b(gi)n(v)o(e)g(the)h(details)h(for)f(\(i\).)29
b(If)22 b Ga(T)34 b Gg(does)24 b(not)f(freshly)h(introduce)h
Ga(a)p Gg(,)d(then)h(by)g(a)f(commuting)321 3123 y(reduction)29
b FL(Cut)p F4(\()863 3111 y FX(h)891 3123 y Ga(a)939
3111 y FX(i)967 3123 y Ga(T)12 b(;)1072 3111 y F9(\()1100
3123 y Ga(x)1152 3111 y F9(\))1180 3123 y Ga(S)5 b F4(\))1346
3085 y Gc(int)1307 3123 y F6(\000)-32 b(\000)h(!)31 b
Ga(T)13 b F4([)p Ga(a)30 b F4(:=)1804 3111 y F9(\()1831
3123 y Ga(x)1883 3111 y F9(\))1911 3123 y Ga(S)5 b F4(])p
Gg(.)37 b(Otherwise,)28 b(if)e Ga(T)38 b Gg(freshly)28
b(introduces)i Ga(a)p Gg(,)c(b)n(ut)321 3235 y(is)31
b(not)g(an)f(axiom,)i(then)g FL(Cut)p F4(\()1314 3223
y FX(h)1341 3235 y Ga(a)1389 3223 y FX(i)1417 3235 y
Ga(T)13 b(;)1523 3223 y F9(\()1550 3235 y Ga(x)1602 3223
y F9(\))1630 3235 y Ga(S)5 b F4(\))38 b F6(\021)g Ga(T)13
b F4([)p Ga(a)38 b F4(:=)2185 3223 y F9(\()2212 3235
y Ga(x)2264 3223 y F9(\))2291 3235 y Ga(S)5 b F4(])p
Gg(;)34 b(if)c Ga(T)43 b Gg(is)30 b(an)h(axiom,)h(for)f(e)o(xample)321
3348 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))p Gg(,)24
b(then)920 3503 y FL(Cut)p F4(\()1093 3491 y FX(h)1120
3503 y Ga(a)1168 3491 y FX(i)1196 3503 y Ga(T)13 b(;)1302
3491 y F9(\()1330 3503 y Ga(x)1382 3491 y F9(\))1409
3503 y Ga(S)5 b F4(\))1569 3466 y Gc(int)1531 3503 y
F6(\000)-32 b(\000)h(!)1701 3465 y F9(+)1785 3503 y Ga(S)5
b F4([)p Ga(x)10 b F6(7!)g Ga(z)t F4(])26 b(=)f FL(Ax)p
F4(\()p Ga(z)t(;)15 b(a)p F4(\)[)p Ga(a)27 b F4(:=)2755
3491 y F9(\()2782 3503 y Ga(x)2834 3491 y F9(\))2862
3503 y Ga(S)5 b F4(])321 3657 y Gg(by)34 b(a)f(logical)i(reduction)h
(or)d(by)g(a)g(commuting)i(reduction)h(and)e(Lemma)e(2.2.11.)58
b(Thus)34 b(we)e(are)321 3770 y(done.)p 3480 3770 V 3484
3712 55 4 v 3484 3770 V 3538 3770 4 62 v Black 321 3958
a Gb(Pr)n(oof)24 b(of)g(Lemma)f(3.2.1.)p Black 33 w Gg(The)g(dif)n
(\002cult)i(case)f(is)f(as)h(follo)n(ws.)p Black Black
1196 4096 a FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\)[)p Ga(a)27
b F4(:=)1729 4084 y F9(\()1756 4096 y Ga(y)1804 4084
y F9(\))1832 4096 y Ga(S)5 b F4(][)p Ga(x)25 b F4(:=)2142
4084 y FX(h)2169 4096 y Ga(b)2208 4084 y FX(i)2235 4096
y Ga(T)13 b F4(])1078 4209 y(=)47 b Ga(S)5 b F4([)p Ga(y)13
b F6(7!)d Ga(x)p F4(][)p Ga(x)25 b F4(:=)1742 4197 y
FX(h)1769 4209 y Ga(b)1808 4197 y FX(i)1836 4209 y Ga(T)12
b F4(])1078 4322 y F6(\021)47 b Ga(S)5 b F4([)p Ga(y)28
b F4(:=)1476 4310 y FX(h)1504 4322 y Ga(b)1543 4310 y
FX(i)1570 4322 y Ga(T)13 b F4(][)p Ga(x)25 b F4(:=)1885
4310 y FX(h)1912 4322 y Ga(b)1951 4310 y FX(i)1979 4322
y Ga(T)12 b F4(])1078 4439 y(=)47 b FL(Cut)o F4(\()1368
4427 y FX(h)1396 4439 y Ga(b)1435 4427 y FX(i)1463 4439
y Ga(T)12 b(;)1568 4427 y F9(\()1596 4439 y Ga(y)1644
4427 y F9(\))1672 4439 y Ga(S)5 b F4(\)[)p Ga(x)25 b
F4(:=)1992 4427 y FX(h)2019 4439 y Ga(b)2058 4427 y FX(i)2085
4439 y Ga(T)13 b F4(])2835 4406 y F9(\(1\))1078 4552
y F4(=)47 b FL(Cut)o F4(\()1368 4540 y FX(h)1396 4552
y Ga(b)1435 4540 y FX(i)1463 4552 y Ga(T)12 b(;)1568
4540 y F9(\()1596 4552 y Ga(y)1644 4540 y F9(\))1672
4552 y Ga(S)5 b F4([)p Ga(x)25 b F4(:=)1956 4540 y FX(h)1984
4552 y Ga(b)2023 4540 y FX(i)2050 4552 y Ga(T)13 b F4(]\))978
4631 y Gc(int)939 4668 y F6(\000)-32 b(\000)h(!)1109
4635 y FX(\003)1196 4668 y Ga(T)13 b F4([)p Ga(b)25 b
F4(:=)1472 4656 y F9(\()1499 4668 y Ga(y)1547 4656 y
F9(\))1575 4668 y Ga(S)5 b F4([)p Ga(x)25 b F4(:=)1859
4656 y FX(h)1887 4668 y Ga(b)1926 4656 y FX(i)1953 4668
y Ga(T)13 b F4(]])2835 4635 y F9(\(2\))1078 4785 y F6(\021)47
b Ga(T)13 b F4([)p Ga(b)d F6(7!)g Ga(a)p F4(][)p Ga(a)26
b F4(:=)1730 4773 y F9(\()1757 4785 y Ga(y)1805 4773
y F9(\))1832 4785 y Ga(S)5 b F4([)p Ga(x)26 b F4(:=)2117
4773 y FX(h)2145 4785 y Ga(b)2184 4773 y FX(i)2211 4785
y Ga(T)13 b F4(]])2835 4752 y F9(\(3\))1078 4898 y F4(=)47
b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\)[)p Ga(x)27 b F4(:=)1733
4886 y FX(h)1760 4898 y Ga(b)1799 4886 y FX(i)1827 4898
y Ga(T)13 b F4(][)p Ga(a)25 b F4(:=)2138 4886 y F9(\()2165
4898 y Ga(y)2213 4886 y F9(\))2240 4898 y Ga(S)5 b F4([)p
Ga(x)26 b F4(:=)2525 4886 y FX(h)2552 4898 y Ga(b)2591
4886 y FX(i)2619 4898 y Ga(T)13 b F4(]])p Black Black
790 5056 a F9(\(1\))984 5089 y Gg(by)24 b(assumption)i
Ga(S)h Gg(freshly)e(introduces)i Ga(y)e Gg(and)f(is)g(not)g(an)f(axiom)
790 5173 y F9(\(2\))984 5206 y Gg(by)h(F)o(act)f(B.2.1)790
5289 y F9(\(3\))984 5322 y Gg(by)h(assumption)i Ga(a)f
F6(62)g Ga(F)13 b(C)7 b F4(\()1872 5310 y FX(h)1899 5322
y Ga(b)1938 5310 y FX(i)1966 5322 y Ga(T)12 b F4(\))p
3480 5492 V 3484 5434 55 4 v 3484 5492 V 3538 5492 4
62 v Black Black eop end
%%Page: 157 169
TeXDict begin 157 168 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
(Chapter)f(3)2639 b(157)p 277 88 3691 4 v Black Black
277 388 a(Pr)n(oof)28 b(of)e(Lemma)g(3.2.3.)p Black 34
w Gg(If)h Ga(M)36 b Gg(is)27 b(a)f(v)n(ariable,)j(then)f(the)f(lemma)f
(is)h(by)g(routine)i(calculation.)41 b(In)277 501 y(case)27
b Ga(M)36 b Gg(corresponds)30 b(to)d(a)f(term)g(gi)n(v)o(en)h(in)f
(Lemma)g(3.2.2,)h(then)g F6(j)p Ga(M)10 b F6(j)2588 468
y Fu(s)2588 524 y Gc(a)2656 501 y Gg(cannot)28 b(introduce)h
Ga(x)d Gg(and)277 614 y(hence)f(the)e(substitution)k(is)c(mo)o(v)o(ed)h
(inside)h(the)e(subterm\(s\).)31 b(In)23 b(consequence,)k(one)d(can)f
(apply)i(the)277 727 y(induction)30 b(hypothesis.)41
b(Otherwise,)28 b(the)f(top-le)n(v)o(el)h(term)f(constructor)j(of)c
Ga(M)36 b Gg(corresponds)31 b(to)26 b(an)277 840 y(elimination)g(rule,)
e(for)g(which)f(we)g(illustrate)j(the)e(lemma)f(with)g(one)h(case.)p
Black 277 1044 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25
b Ga(S)20 b(T)13 b Gg(:)582 1174 y F6(j)p Ga(S)20 b(T)13
b F6(j)774 1141 y Fu(s)774 1196 y Gc(a)816 1174 y F4([)p
Ga(\033)s F4(])1659 b Gg(with)24 b F4([)p Ga(\033)s F4(])i
F6(\021)f F4([)p Ga(x)g F4(:=)3215 1162 y FX(h)3243 1174
y Ga(b)3282 1162 y FX(i)3309 1174 y F6(j)p Ga(N)10 b
F6(j)3442 1141 y Fu(s)3442 1201 y Gc(b)3477 1174 y F4(])439
1298 y(=)72 b F6(j)p Ga(S)5 b F6(j)693 1265 y Fu(s)693
1320 y Gc(c)728 1298 y F4([)p Ga(c)26 b F4(:=)939 1286
y F9(\()967 1298 y Ga(y)1015 1286 y F9(\))1042 1298 y
FL(Imp)1186 1320 y Gc(L)1238 1298 y F4(\()1273 1286 y
FX(h)1301 1298 y Ga(d)1348 1286 y FX(i)1376 1298 y F6(j)p
Ga(T)13 b F6(j)1492 1265 y Fu(s)1492 1326 y Gc(d)1533
1298 y Ga(;)1573 1286 y F9(\()1601 1298 y Ga(z)1647 1286
y F9(\))1674 1298 y FL(Ax)p F4(\()p Ga(z)t(;)i(a)p F4(\))q
Ga(;)g(y)s F4(\))q(][)p Ga(\033)s F4(])779 b Gg(by)24
b(\(6\))f(of)h F6(j)p 3383 1298 28 4 v 3401 1298 V 3418
1298 V 65 w(j)3471 1265 y Fu(s)378 1385 y Gc(int)339
1422 y F6(\000)-31 b(\000)f(!)519 1389 y FX(\003)582
1422 y F6(j)p Ga(S)5 b F6(j)693 1389 y Fu(s)693 1445
y Gc(c)728 1422 y F4([)p Ga(\033)s F4(][)p Ga(c)27 b
F4(:=)1045 1410 y F9(\()1072 1422 y Ga(y)1120 1410 y
F9(\))1148 1422 y FL(Imp)1292 1444 y Gc(L)1344 1422 y
F4(\()1379 1410 y FX(h)1407 1422 y Ga(d)1454 1410 y FX(i)1482
1422 y F6(j)p Ga(T)13 b F6(j)1598 1389 y Fu(s)1598 1450
y Gc(d)1638 1422 y Ga(;)1678 1410 y F9(\()1706 1422 y
Ga(z)1752 1410 y F9(\))1780 1422 y FL(Ax)o F4(\()p Ga(z)t(;)i(a)p
F4(\))r Ga(;)g(y)s F4(\)[)p Ga(\033)s F4(]])565 b Gg(by)24
b(Lemma)e(3.2.1)439 1546 y F4(=)72 b F6(j)p Ga(S)5 b
F6(j)693 1513 y Fu(s)693 1569 y Gc(c)728 1546 y F4([)p
Ga(\033)s F4(][)p Ga(c)27 b F4(:=)1045 1534 y F9(\()1072
1546 y Ga(y)1120 1534 y F9(\))1148 1546 y FL(Imp)1292
1568 y Gc(L)1344 1546 y F4(\()1379 1534 y FX(h)1407 1546
y Ga(d)1454 1534 y FX(i)1482 1546 y F6(j)p Ga(T)13 b
F6(j)1598 1513 y Fu(s)1598 1574 y Gc(d)1638 1546 y F4([)p
Ga(\033)s F4(])q Ga(;)1784 1534 y F9(\()1812 1546 y Ga(z)1858
1534 y F9(\))1886 1546 y FL(Ax)o F4(\()p Ga(z)t(;)i(a)p
F4(\))r Ga(;)g(y)s F4(\)])378 1633 y Gc(int)339 1671
y F6(\000)-31 b(\000)f(!)519 1638 y FX(\003)582 1671
y F6(j)p Ga(S)5 b F4([)p Ga(x)26 b F4(:=)f Ga(N)10 b
F4(])p F6(j)1025 1638 y Fu(s)1025 1693 y Gc(c)1060 1671
y F4([)p Ga(c)26 b F4(:=)1271 1659 y F9(\()1298 1671
y Ga(y)1346 1659 y F9(\))1374 1671 y FL(Imp)1518 1692
y Gc(L)1570 1671 y F4(\()1605 1659 y FX(h)1633 1671 y
Ga(d)1680 1659 y FX(i)1708 1671 y F6(j)p Ga(T)13 b F4([)p
Ga(x)25 b F4(:=)g Ga(N)10 b F4(])p F6(j)2155 1638 y Fu(s)2155
1698 y Gc(d)2196 1671 y Ga(;)2236 1659 y F9(\()2264 1671
y Ga(z)2310 1659 y F9(\))2338 1671 y FL(Ax)p F4(\()p
Ga(z)t(;)15 b(a)p F4(\))q Ga(;)g(y)s F4(\))q(])498 b
Gg(by)23 b(IH)439 1795 y F4(=)72 b F6(j)p Ga(S)5 b F4([)p
Ga(x)26 b F4(:=)f Ga(N)10 b F4(])25 b Ga(T)13 b F4([)p
Ga(x)25 b F4(:=)h Ga(N)10 b F4(])p F6(j)1448 1762 y Fu(s)1448
1817 y Gc(a)3015 1795 y Gg(by)24 b(\(6\))f(of)h F6(j)p
3383 1795 V 3401 1795 V 3418 1795 V 65 w(j)3471 1762
y Fu(s)439 1919 y F6(\021)72 b(j)p F4(\()p Ga(S)21 b(T)13
b F4(\)[)p Ga(x)25 b F4(:=)g Ga(N)10 b F4(])p F6(j)1176
1886 y Fu(s)1176 1941 y Gc(a)p 3436 2026 4 62 v 3440
1968 55 4 v 3440 2026 V 3494 2026 4 62 v Black 277 2238
a Gb(Pr)n(oof)32 b(of)f(Pr)n(oposition)i(3.2.4.)p Black
33 w Gg(W)-7 b(e)31 b(shall)h(be)o(gin)g(by)f(gi)n(ving)i(in)e(turn)h
(the)f(details)i(where)f(a)e(beta-)277 2351 y(reduction)c(occurs)f(on)f
(the)g(top-le)n(v)o(el.)p Black 277 2555 a Gb(Case)p
Black 46 w Ga(M)36 b F6(\021)25 b F4(\()p Ga(\025x:S)5
b F4(\))15 b Ga(T)1160 2518 y Gc(\014)1097 2555 y F6(\000)-31
b(\000)f(!)25 b Ga(S)5 b F4([)p Ga(x)26 b F4(:=)f Ga(T)13
b F4(])25 b F6(\021)g Ga(M)1887 2522 y FX(0)1911 2555
y Gg(:)315 2706 y(\(i\))201 b F6(j)p F4(\()p Ga(\025)q(x:S)5
b F4(\))15 b Ga(T)e F6(j)994 2673 y Fu(s)994 2729 y Gc(c)439
2830 y F4(=)91 b FL(Imp)746 2852 y Gc(R)804 2830 y F4(\()839
2818 y F9(\()866 2830 y Ga(x)918 2818 y F9(\))q FX(h)973
2830 y Ga(a)1021 2818 y FX(i)1049 2830 y F6(j)p Ga(S)5
b F6(j)1160 2797 y Fu(s)1160 2853 y Gc(a)1202 2830 y
Ga(;)15 b(b)p F4(\)[)p Ga(b)26 b F4(:=)1527 2818 y F9(\()1555
2830 y Ga(y)1603 2818 y F9(\))1630 2830 y FL(Imp)1774
2852 y Gc(L)1827 2830 y F4(\()1862 2818 y FX(h)1889 2830
y Ga(d)1936 2818 y FX(i)1964 2830 y F6(j)p Ga(T)13 b
F6(j)2080 2797 y Fu(s)2080 2858 y Gc(d)2121 2830 y Ga(;)2161
2818 y F9(\()2189 2830 y Ga(z)2235 2818 y F9(\))2262
2830 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))r Ga(;)g(y)s
F4(\)])237 b Gg(by)24 b(\(2,6\))f(of)h F6(j)p 3383 2830
28 4 v 3401 2830 V 3418 2830 V 65 w(j)3471 2797 y Fu(s)439
2955 y F4(=)91 b FL(Cut)p F4(\()774 2943 y FX(h)802 2955
y Ga(b)841 2943 y FX(i)869 2955 y FL(Imp)1013 2976 y
Gc(R)1071 2955 y F4(\()1106 2943 y F9(\()1133 2955 y
Ga(x)1185 2943 y F9(\))q FX(h)1240 2955 y Ga(a)1288 2943
y FX(i)1316 2955 y F6(j)p Ga(S)5 b F6(j)1427 2922 y Fu(s)1427
2977 y Gc(a)1469 2955 y Ga(;)15 b(b)p F4(\))q Ga(;)1624
2943 y F9(\()1652 2955 y Ga(y)1700 2943 y F9(\))1727
2955 y FL(Imp)1871 2976 y Gc(L)1923 2955 y F4(\()1958
2943 y FX(h)1986 2955 y Ga(d)2033 2943 y FX(i)2061 2955
y F6(j)p Ga(T)e F6(j)2177 2922 y Fu(s)2177 2982 y Gc(d)2218
2955 y Ga(;)2258 2943 y F9(\()2286 2955 y Ga(z)2332 2943
y F9(\))2359 2955 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))r
Ga(;)g(y)s F4(\)\))178 b Gg(by)23 b(Lem.)f(3.2.2)378
3042 y Gc(int)339 3079 y F6(\000)-31 b(\000)f(!)92 b
FL(Cut)p F4(\()774 3067 y FX(h)802 3079 y Ga(a)850 3067
y FX(i)878 3079 y FL(Cut)o F4(\()1050 3067 y FX(h)1078
3079 y Ga(d)1125 3067 y FX(i)1153 3079 y F6(j)p Ga(T)13
b F6(j)1269 3046 y Fu(s)1269 3107 y Gc(d)1310 3079 y
Ga(;)1350 3067 y F9(\()1378 3079 y Ga(x)1430 3067 y F9(\))1457
3079 y F6(j)p Ga(S)5 b F6(j)1568 3046 y Fu(s)1568 3101
y Gc(a)1610 3079 y F4(\))p Ga(;)1685 3067 y F9(\()1713
3079 y Ga(z)1759 3067 y F9(\))1787 3079 y FL(Ax)p F4(\()p
Ga(z)t(;)15 b(c)p F4(\))q(\))53 b Ga(y)26 b Gg(is)d(freshly)j
(introduced)g(by)e(\(6\))f(of)h F6(j)p 3383 3079 V 3401
3079 V 3418 3079 V 65 w(j)3471 3046 y Fu(s)378 3166 y
Gc(int)339 3203 y F6(\000)-31 b(\000)f(!)519 3170 y F9(+)601
3203 y FL(Cut)p F4(\()774 3191 y FX(h)802 3203 y Ga(d)849
3191 y FX(i)877 3203 y F6(j)p Ga(T)13 b F6(j)993 3170
y Fu(s)993 3231 y Gc(d)1034 3203 y Ga(;)1074 3191 y F9(\()1101
3203 y Ga(x)1153 3191 y F9(\))1181 3203 y F6(j)p Ga(S)5
b F6(j)1292 3170 y Fu(s)1292 3226 y Gc(a)1334 3203 y
F4(\)[)p Ga(a)10 b F6(7!)g Ga(c)p F4(])476 b Gg(by)24
b(a)f(comm.)g(reduction)j(and)e(Lem.)e(2.2.11)439 3327
y F6(\021)91 b FL(Cut)p F4(\()774 3315 y FX(h)802 3327
y Ga(d)849 3315 y FX(i)877 3327 y F6(j)p Ga(T)13 b F6(j)993
3294 y Fu(s)993 3355 y Gc(d)1034 3327 y Ga(;)1074 3315
y F9(\()1101 3327 y Ga(x)1153 3315 y F9(\))1181 3327
y F6(j)p Ga(S)5 b F6(j)1292 3294 y Fu(s)1292 3350 y Gc(c)1327
3327 y F4(\))880 b Ga(a)25 b F6(62)g Ga(F)13 b(C)7 b
F4(\()2579 3315 y FX(h)2607 3327 y Ga(d)2654 3315 y FX(i)2681
3327 y F6(j)p Ga(T)13 b F6(j)2797 3294 y Fu(s)2797 3355
y Gc(d)2838 3327 y F4(\))23 b Gg(by)h(Remark)f(2.2.7)378
3414 y Gc(int)339 3451 y F6(\000)-31 b(\000)f(!)519 3418
y FX(\003)601 3451 y F6(j)p Ga(S)5 b F6(j)712 3418 y
Fu(s)712 3474 y Gc(c)748 3451 y F4([)p Ga(x)25 b F4(:=)971
3439 y FX(h)999 3451 y Ga(d)1046 3439 y FX(i)1073 3451
y F6(j)p Ga(T)13 b F6(j)1189 3418 y Fu(s)1189 3479 y
Gc(d)1230 3451 y F4(])1759 b Gg(by)23 b(F)o(act)g(B.2.1)378
3539 y Gc(int)339 3576 y F6(\000)-31 b(\000)f(!)519 3543
y FX(\003)601 3576 y F6(j)p Ga(S)5 b F4([)p Ga(x)26 b
F4(:=)f Ga(T)13 b F4(])p F6(j)1027 3543 y Fu(s)1027 3598
y Gc(c)2906 3576 y Gg(by)24 b(Lemma)e(3.2.3)315 3741
y(\(ii\))157 b F6(j)p F4(\()p Ga(\025x:S)5 b F4(\))15
b Ga(T)e F6(j)974 3708 y Fu(s)974 3764 y Gc(c)1010 3741
y F4([)p Ga(\033)s F4(])1554 b Gg(with)23 b F4([)p Ga(\033)s
F4(])j F6(\021)f F4([)p Ga(c)h F4(:=)3291 3729 y F9(\()3319
3741 y Ga(y)3367 3729 y F9(\))3394 3741 y Ga(N)10 b F4(])439
3866 y(=)72 b FL(Imp)726 3887 y Gc(R)784 3866 y F4(\()819
3854 y F9(\()847 3866 y Ga(x)899 3854 y F9(\))p FX(h)954
3866 y Ga(c)993 3854 y FX(i)1020 3866 y F6(j)p Ga(S)5
b F6(j)1131 3833 y Fu(s)1131 3888 y Gc(c)1167 3866 y
Ga(;)15 b(a)p F4(\)[)p Ga(a)26 b F4(:=)1510 3854 y F9(\()1538
3866 y Ga(z)1584 3854 y F9(\))1611 3866 y FL(Imp)1756
3887 y Gc(L)1808 3866 y F4(\()1843 3854 y FX(h)1871 3866
y Ga(b)1910 3854 y FX(i)1937 3866 y F6(j)p Ga(T)13 b
F6(j)2053 3833 y Fu(s)2053 3893 y Gc(b)2088 3866 y Ga(;)2128
3854 y F9(\()2156 3866 y Ga(x)2208 3854 y F9(\))2235
3866 y FL(Ax)p F4(\()p Ga(x;)i(c)p F4(\))q Ga(;)g(z)t
F4(\))q(][)p Ga(\033)s F4(])155 b Gg(by)24 b(\(2,6\))f(of)h
F6(j)p 3383 3866 V 3401 3866 V 3418 3866 V 65 w(j)3471
3833 y Fu(s)439 3990 y F4(=)72 b FL(Cut)p F4(\()755 3978
y FX(h)782 3990 y Ga(a)830 3978 y FX(i)858 3990 y FL(Imp)1002
4012 y Gc(R)1060 3990 y F4(\()1095 3978 y F9(\()1123
3990 y Ga(x)1175 3978 y F9(\))p FX(h)1230 3990 y Ga(c)1269
3978 y FX(i)1297 3990 y F6(j)p Ga(S)5 b F6(j)1408 3957
y Fu(s)1408 4012 y Gc(c)1443 3990 y Ga(;)15 b(a)p F4(\))q
Ga(;)1607 3978 y F9(\()1634 3990 y Ga(z)1680 3978 y F9(\))1708
3990 y FL(Imp)1853 4012 y Gc(L)1905 3990 y F4(\()1940
3978 y FX(h)1968 3990 y Ga(b)2007 3978 y FX(i)2034 3990
y F6(j)p Ga(T)e F6(j)2150 3957 y Fu(s)2150 4017 y Gc(b)2185
3990 y Ga(;)2225 3978 y F9(\()2252 3990 y Ga(x)2304 3978
y F9(\))2332 3990 y FL(Ax)o F4(\()p Ga(x;)i(c)p F4(\))r
Ga(;)g(z)t F4(\))q(\)[)p Ga(\033)s F4(])96 b Gg(by)23
b(Lem.)f(3.2.2)439 4114 y F4(=)72 b FL(Cut)p F4(\()755
4102 y FX(h)782 4114 y Ga(a)830 4102 y FX(i)858 4114
y FL(Imp)1002 4136 y Gc(R)1060 4114 y F4(\()1095 4102
y F9(\()1123 4114 y Ga(x)1175 4102 y F9(\))p FX(h)1230
4114 y Ga(c)1269 4102 y FX(i)1297 4114 y F6(j)p Ga(S)5
b F6(j)1408 4081 y Fu(s)1408 4136 y Gc(c)1443 4114 y
Ga(;)15 b(a)p F4(\))q Ga(;)1607 4102 y F9(\()1634 4114
y Ga(z)1680 4102 y F9(\))1708 4114 y FL(Imp)1853 4136
y Gc(L)1905 4114 y F4(\()1940 4102 y FX(h)1968 4114 y
Ga(b)2007 4102 y FX(i)2034 4114 y F6(j)p Ga(T)e F6(j)2150
4081 y Fu(s)2150 4142 y Gc(b)2185 4114 y Ga(;)2225 4102
y F9(\()2252 4114 y Ga(y)2300 4102 y F9(\))2328 4114
y Ga(N)d(;)15 b(z)t F4(\))q(\))45 b Ga(c)26 b F6(62)f
Ga(F)13 b(C)7 b F4(\()2942 4102 y FX(h)2969 4114 y Ga(b)3008
4102 y FX(i)3035 4114 y F6(j)p Ga(T)13 b F6(j)3151 4081
y Fu(s)3151 4142 y Gc(b)3186 4114 y Ga(;)3226 4102 y
FX(h)3254 4114 y Ga(c)3293 4102 y FX(i)3321 4114 y F6(j)p
Ga(S)5 b F6(j)3432 4081 y Fu(s)3432 4136 y Gc(c)3467
4114 y F4(\))378 4201 y Gc(int)339 4238 y F6(\000)-31
b(\000)f(!)73 b FL(Cut)p F4(\()755 4226 y FX(h)782 4238
y Ga(b)821 4226 y FX(i)849 4238 y F6(j)p Ga(T)13 b F6(j)965
4205 y Fu(s)965 4266 y Gc(b)1000 4238 y Ga(;)1040 4226
y F9(\()1067 4238 y Ga(x)1119 4226 y F9(\))1147 4238
y FL(Cut)p F4(\()1320 4226 y FX(h)1347 4238 y Ga(c)1386
4226 y FX(i)1414 4238 y F6(j)p Ga(S)5 b F6(j)1525 4205
y Fu(s)1525 4261 y Gc(c)1560 4238 y Ga(;)1600 4226 y
F9(\()1628 4238 y Ga(y)1676 4226 y F9(\))1704 4238 y
Ga(N)10 b F4(\)\))319 b Ga(z)27 b Gg(is)c(freshly)j(introduced)g(by)e
(\(6\))f(of)h F6(j)p 3383 4238 V 3401 4238 V 3418 4238
V 65 w(j)3471 4205 y Fu(s)378 4325 y Gc(int)339 4362
y F6(\000)-31 b(\000)f(!)73 b FL(Cut)p F4(\()755 4350
y FX(h)782 4362 y Ga(c)821 4350 y FX(i)849 4362 y F6(j)p
Ga(S)5 b F6(j)960 4329 y Fu(s)960 4385 y Gc(c)995 4362
y Ga(;)1035 4350 y F9(\()1063 4362 y Ga(y)1111 4350 y
F9(\))1139 4362 y Ga(N)10 b F4(\)[)p Ga(x)25 b F4(:=)1481
4350 y FX(h)1508 4362 y Ga(b)1547 4350 y FX(i)1574 4362
y F6(j)p Ga(T)13 b F6(j)1690 4329 y Fu(s)1690 4390 y
Gc(b)1725 4362 y F4(])439 4487 y(=)72 b FL(Cut)p F4(\()755
4475 y FX(h)782 4487 y Ga(c)821 4475 y FX(i)849 4487
y F6(j)p Ga(S)5 b F6(j)960 4454 y Fu(s)960 4509 y Gc(c)995
4487 y F4([)p Ga(x)26 b F4(:=)1219 4475 y FX(h)1247 4487
y Ga(b)1286 4475 y FX(i)1313 4487 y F6(j)p Ga(T)13 b
F6(j)1429 4454 y Fu(s)1429 4514 y Gc(b)1464 4487 y F4(])p
Ga(;)1529 4475 y F9(\()1557 4487 y Ga(y)1605 4475 y F9(\))1632
4487 y Ga(N)d F4(\))550 b Ga(x)25 b F6(62)g Ga(F)13 b(N)d
F4(\()2652 4475 y F9(\()2680 4487 y Ga(y)2728 4475 y
F9(\))2755 4487 y Ga(N)g F4(\))23 b Gg(by)h(Remark)f(2.2.7)378
4574 y Gc(int)339 4611 y F6(\000)-31 b(\000)f(!)519 4578
y FX(\003)582 4611 y FL(Cut)p F4(\()755 4599 y FX(h)782
4611 y Ga(c)821 4599 y FX(i)849 4611 y F6(j)p Ga(S)5
b F4([)p Ga(x)26 b F4(:=)f Ga(T)13 b F4(])p F6(j)1275
4578 y Fu(s)1275 4633 y Gc(c)1310 4611 y Ga(;)1350 4599
y F9(\()1378 4611 y Ga(y)1426 4599 y F9(\))1453 4611
y Ga(N)d F4(\))1335 b Gg(by)24 b(Lemma)e(3.2.3)378 4698
y Gc(int)339 4735 y F6(\000)-31 b(\000)f(!)519 4702 y
FX(\003)582 4735 y F6(j)p Ga(S)5 b F4([)p Ga(x)26 b F4(:=)f
Ga(T)13 b F4(])p F6(j)1008 4702 y Fu(s)1008 4757 y Gc(c)1043
4735 y F4([)p Ga(\033)s F4(])1866 b Gg(by)23 b(F)o(act)g(B.2.1)277
4933 y(W)-7 b(e)21 b(omit)g(the)g(other)i(base)f(cases)g(and)g(proceed)
h(with)e(the)g(details)i(for)f(inner)g(reductions.)31
b(In)21 b(case)h Ga(M)277 5046 y Gg(corresponds)29 b(to)d(a)f(term)g
(gi)n(v)o(en)i(in)e(Lemma)g(3.2.2,)h(\(i\))f(and)i(\(ii\))e(are)h(by)g
(routine)h(calculation)i(using)277 5159 y(the)f(induction)j(hypothesis)
g(\(note)d(in)g(\(ii\))h F6(j)p Ga(M)10 b F6(j)1800 5126
y Fu(s)1800 5182 y Gc(c)1835 5159 y F4([)p Ga(c)34 b
F4(:=)2062 5147 y F9(\()2090 5159 y Ga(x)2142 5147 y
F9(\))2169 5159 y Ga(N)10 b F4(])27 b Gg(e)o(xpands)j(to)e(a)f(cut\).)
43 b(W)-7 b(e)27 b(are)h(left)g(to)277 5272 y(check)d(the)f(cases)h
(where)f(the)g(top-le)n(v)o(el)h(term)f(constructor)j(of)c
Ga(M)33 b Gg(corresponds)28 b(to)23 b(an)h(elimination)277
5385 y(rule.)p Black Black eop end
%%Page: 158 170
TeXDict begin 158 169 bop Black -144 51 a Gb(158)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 388 a(Case)p Black 47 w Ga(M)35 b
F6(\021)25 b Ga(S)20 b(T)1004 351 y Gc(\014)940 388 y
F6(\000)-31 b(\000)f(!)26 b Ga(S)1197 355 y FX(0)1235
388 y Ga(T)38 b F6(\021)25 b Ga(M)1520 355 y FX(0)1566
388 y Gg(with)e Ga(S)1900 351 y Gc(\014)1837 388 y F6(\000)-32
b(\000)h(!)25 b Ga(S)2093 355 y FX(0)2116 388 y Gg(:)549
539 y(By)k(IH)g(we)g(ha)n(v)o(e)h F6(j)p Ga(S)5 b F6(j)1252
506 y Fu(s)1252 562 y Gc(c)1363 502 y(int)1324 539 y
F6(\000)-31 b(\000)g(!)1494 506 y F9(+)1590 539 y F6(j)p
Ga(S)5 b F6(j)1701 506 y Fu(s)1701 562 y Gc(c)1766 539
y Gg(and)30 b F6(j)p Ga(S)5 b F6(j)2037 506 y Fu(s)2037
562 y Gc(c)2072 539 y F4([)p Ga(c)38 b F4(:=)2306 527
y F9(\()2334 539 y Ga(y)2382 527 y F9(\))2409 539 y Ga(P)13
b F4(])2581 502 y Gc(int)2542 539 y F6(\000)-31 b(\000)g(!)2713
506 y F9(+)2808 539 y F6(j)p Ga(S)2894 506 y FX(0)2918
539 y F6(j)2943 506 y Fu(s)2943 562 y Gc(c)2978 539 y
F4([)p Ga(c)37 b F4(:=)3212 527 y F9(\()3240 539 y Ga(y)3288
527 y F9(\))3315 539 y Ga(P)13 b F4(])29 b Gg(for)549
652 y(an)o(y)22 b(substitution)j(where)d Ga(P)35 b Gg(freshly)23
b(introduces)i Ga(y)f Gg(and)e(is)g(not)g(an)g(axiom.)29
b(T)-7 b(ak)o(e)3174 640 y F9(\()3201 652 y Ga(y)3249
640 y F9(\))3276 652 y Ga(P)35 b Gg(to)22 b(be)549 753
y F9(\()576 765 y Ga(y)624 753 y F9(\))651 765 y FL(Imp)796
787 y Gc(L)848 765 y F4(\()883 753 y FX(h)911 765 y Ga(b)950
753 y FX(i)977 765 y F6(j)p Ga(T)13 b F6(j)1093 732 y
Fu(s)1093 793 y Gc(b)1128 765 y Ga(;)1168 753 y F9(\()1196
765 y Ga(z)1242 753 y F9(\))1269 765 y FL(Ax)p F4(\()p
Ga(z)t(;)i(c)p F4(\))r Ga(;)g(y)s F4(\))p Gg(,)23 b(then)h(we)f(ha)n(v)
o(e)h(the)g(follo)n(wing)h(reduction.)360 926 y(\(i\))201
b F6(j)p Ga(S)20 b(T)13 b F6(j)838 893 y Fu(s)838 949
y Gc(c)483 1051 y F4(=)92 b F6(j)p Ga(S)5 b F6(j)757
1018 y Fu(s)757 1073 y Gc(a)799 1051 y F4([)p Ga(a)25
b F4(:=)1018 1039 y F9(\()1046 1051 y Ga(y)1094 1039
y F9(\))1121 1051 y FL(Imp)1266 1072 y Gc(L)1318 1051
y F4(\()1353 1039 y FX(h)1381 1051 y Ga(b)1420 1039 y
FX(i)1447 1051 y F6(j)p Ga(T)13 b F6(j)1563 1018 y Fu(s)1563
1078 y Gc(b)1598 1051 y Ga(;)1638 1039 y F9(\()1665 1051
y Ga(z)1711 1039 y F9(\))1739 1051 y FL(Ax)p F4(\()p
Ga(z)t(;)i(c)p F4(\))q Ga(;)g(y)s F4(\))q(])872 b Gg(by)24
b(\(6\))g(of)f F6(j)p 3427 1051 28 4 v 3445 1051 V 3463
1051 V 65 w(j)3515 1018 y Fu(s)422 1138 y Gc(int)383
1175 y F6(\000)-31 b(\000)g(!)563 1142 y F9(+)646 1175
y F6(j)p Ga(S)732 1142 y FX(0)755 1175 y F6(j)780 1142
y Fu(s)780 1197 y Gc(a)822 1175 y F4([)p Ga(a)26 b F4(:=)1042
1163 y F9(\()1069 1175 y Ga(y)1117 1163 y F9(\))1144
1175 y FL(Imp)1289 1197 y Gc(L)1341 1175 y F4(\()1376
1163 y FX(h)1404 1175 y Ga(b)1443 1163 y FX(i)1470 1175
y F6(j)p Ga(T)13 b F6(j)1586 1142 y Fu(s)1586 1203 y
Gc(b)1621 1175 y Ga(;)1661 1163 y F9(\()1689 1175 y Ga(z)1735
1163 y F9(\))1762 1175 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p
F4(\))r Ga(;)g(y)s F4(\)])1127 b Gg(by)23 b(IH)483 1299
y F4(=)92 b F6(j)p Ga(S)732 1266 y FX(0)770 1299 y Ga(T)13
b F6(j)861 1266 y Fu(s)861 1322 y Gc(c)3059 1299 y Gg(by)24
b(\(6\))g(of)f F6(j)p 3427 1299 V 3445 1299 V 3463 1299
V 65 w(j)3515 1266 y Fu(s)549 1451 y Gg(In)g(\(ii\))h(we)f(tak)o(e)1083
1439 y F9(\()1110 1451 y Ga(y)1158 1439 y F9(\))1186
1451 y Ga(P)35 b Gg(to)24 b(be)1481 1439 y F9(\()1509
1451 y Ga(z)1555 1439 y F9(\))1582 1451 y FL(Imp)1727
1473 y Gc(L)1779 1451 y F4(\()1814 1439 y FX(h)1842 1451
y Ga(b)1881 1439 y FX(i)1908 1451 y F6(j)p Ga(T)13 b
F6(j)2024 1418 y Fu(s)2024 1479 y Gc(b)2059 1451 y Ga(;)2099
1439 y F9(\()2127 1451 y Ga(u)2179 1439 y F9(\))2206
1451 y FL(Ax)p F4(\()p Ga(u;)i(c)p F4(\))q Ga(;)g(z)t
F4(\))q([)p Ga(c)26 b F4(:=)2844 1439 y F9(\()2872 1451
y Ga(y)2920 1439 y F9(\))2947 1451 y Ga(N)10 b F4(])p
Gg(.)360 1612 y(\(ii\))176 b F6(j)p Ga(S)20 b(T)13 b
F6(j)838 1579 y Fu(s)838 1635 y Gc(c)873 1612 y F4([)p
Ga(c)26 b F4(:=)1084 1600 y F9(\()1111 1612 y Ga(y)1159
1600 y F9(\))1186 1612 y Ga(N)10 b F4(])483 1736 y(=)92
b F6(j)p Ga(S)5 b F6(j)757 1704 y Fu(s)757 1759 y Gc(a)799
1736 y F4([)p Ga(a)25 b F4(:=)1018 1724 y F9(\()1046
1736 y Ga(z)1092 1724 y F9(\))1120 1736 y FL(Imp)1264
1758 y Gc(L)1316 1736 y F4(\()1351 1724 y FX(h)1379 1736
y Ga(b)1418 1724 y FX(i)1445 1736 y F6(j)p Ga(T)13 b
F6(j)1561 1704 y Fu(s)1561 1764 y Gc(b)1596 1736 y Ga(;)1636
1724 y F9(\()1664 1736 y Ga(u)1716 1724 y F9(\))1743
1736 y FL(Ax)p F4(\()p Ga(u;)i(c)p F4(\))q Ga(;)g(z)t
F4(\))q(][)p Ga(c)27 b F4(:=)2407 1724 y F9(\()2434 1736
y Ga(y)2482 1724 y F9(\))2509 1736 y Ga(N)10 b F4(])442
b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 1736 V 3445 1736
V 3463 1736 V 65 w(j)3515 1704 y Fu(s)483 1861 y F6(\021)92
b(j)p Ga(S)5 b F6(j)757 1828 y Fu(s)757 1883 y Gc(a)799
1861 y F4([)p Ga(a)25 b F4(:=)1018 1849 y F9(\()1046
1861 y Ga(z)1092 1849 y F9(\))1120 1861 y FL(Imp)1264
1883 y Gc(L)1316 1861 y F4(\()1351 1849 y FX(h)1379 1861
y Ga(b)1418 1849 y FX(i)1445 1861 y F6(j)p Ga(T)13 b
F6(j)1561 1828 y Fu(s)1561 1888 y Gc(b)1596 1861 y Ga(;)1636
1849 y F9(\()1664 1861 y Ga(u)1716 1849 y F9(\))1743
1861 y FL(Ax)p F4(\()p Ga(u;)i(c)p F4(\))q Ga(;)g(z)t
F4(\))q([)p Ga(c)26 b F4(:=)2382 1849 y F9(\()2409 1861
y Ga(y)2457 1849 y F9(\))2484 1861 y Ga(N)10 b F4(]])422
1948 y Gc(int)383 1985 y F6(\000)-31 b(\000)g(!)563 1952
y F9(+)646 1985 y F6(j)p Ga(S)732 1952 y FX(0)755 1985
y F6(j)780 1952 y Fu(s)780 2007 y Gc(a)822 1985 y F4([)p
Ga(a)26 b F4(:=)1042 1973 y F9(\()1069 1985 y Ga(z)1115
1973 y F9(\))1143 1985 y FL(Imp)1287 2007 y Gc(L)1340
1985 y F4(\()1375 1973 y FX(h)1402 1985 y Ga(b)1441 1973
y FX(i)1469 1985 y F6(j)p Ga(T)13 b F6(j)1585 1952 y
Fu(s)1585 2013 y Gc(b)1619 1985 y Ga(;)1659 1973 y F9(\()1687
1985 y Ga(u)1739 1973 y F9(\))1767 1985 y FL(Ax)o F4(\()p
Ga(u;)i(c)p F4(\))r Ga(;)g(z)t F4(\))q([)p Ga(c)26 b
F4(:=)2405 1973 y F9(\()2432 1985 y Ga(y)2480 1973 y
F9(\))2508 1985 y Ga(N)9 b F4(]])697 b Gg(by)23 b(IH)483
2109 y F6(\021)92 b(j)p Ga(S)732 2076 y FX(0)755 2109
y F6(j)780 2076 y Fu(s)780 2132 y Gc(a)822 2109 y F4([)p
Ga(a)26 b F4(:=)1042 2097 y F9(\()1069 2109 y Ga(z)1115
2097 y F9(\))1143 2109 y FL(Imp)1287 2131 y Gc(L)1340
2109 y F4(\()1375 2097 y FX(h)1402 2109 y Ga(b)1441 2097
y FX(i)1469 2109 y F6(j)p Ga(T)13 b F6(j)1585 2076 y
Fu(s)1585 2137 y Gc(b)1619 2109 y Ga(;)1659 2097 y F9(\()1687
2109 y Ga(u)1739 2097 y F9(\))1767 2109 y FL(Ax)o F4(\()p
Ga(u;)i(c)p F4(\))r Ga(;)g(z)t F4(\))q(][)p Ga(c)26 b
F4(:=)2430 2097 y F9(\()2458 2109 y Ga(y)2506 2097 y
F9(\))2533 2109 y Ga(N)10 b F4(])483 2233 y(=)92 b F6(j)p
Ga(S)732 2200 y FX(0)770 2233 y Ga(T)13 b F6(j)861 2200
y Fu(s)861 2256 y Gc(c)896 2233 y F4([)p Ga(c)26 b F4(:=)1107
2221 y F9(\()1134 2233 y Ga(y)1182 2221 y F9(\))1210
2233 y Ga(N)10 b F4(])1741 b Gg(by)24 b(\(6\))g(of)f
F6(j)p 3427 2233 V 3445 2233 V 3463 2233 V 65 w(j)3515
2200 y Fu(s)p Black 321 2425 a Gb(Case)p Black 47 w Ga(M)35
b F6(\021)25 b Ga(S)20 b(T)1004 2388 y Gc(\014)940 2425
y F6(\000)-31 b(\000)f(!)26 b Ga(S)20 b(T)1278 2392 y
FX(0)1326 2425 y F6(\021)25 b Ga(M)1520 2392 y FX(0)1566
2425 y Gg(with)e Ga(T)1905 2388 y Gc(\014)1841 2425 y
F6(\000)-31 b(\000)g(!)25 b Ga(T)2103 2392 y FX(0)2126
2425 y Gg(:)549 2577 y(By)j(IH)g(we)g(ha)n(v)o(e)i F6(j)p
Ga(T)13 b F6(j)1254 2544 y Fu(s)1254 2599 y Gc(c)1363
2539 y(int)1324 2577 y F6(\000)-31 b(\000)f(!)1494 2544
y F9(+)1588 2577 y F6(j)p Ga(T)13 b F6(j)1704 2544 y
Fu(s)1704 2599 y Gc(c)1768 2577 y Gg(and)29 b F6(j)p
Ga(T)13 b F6(j)2043 2544 y Fu(s)2043 2599 y Gc(c)2078
2577 y F4([)p Ga(c)36 b F4(:=)2309 2565 y F9(\()2336
2577 y Ga(y)2384 2565 y F9(\))2412 2577 y Ga(P)13 b F4(])2582
2539 y Gc(int)2543 2577 y F6(\000)-31 b(\000)g(!)2714
2544 y F9(+)2808 2577 y F6(j)p Ga(T)2899 2544 y FX(0)2922
2577 y F6(j)2947 2544 y Fu(s)2947 2599 y Gc(c)2982 2577
y F4([)p Ga(c)36 b F4(:=)3213 2565 y F9(\()3241 2577
y Ga(y)3289 2565 y F9(\))3316 2577 y Ga(P)13 b F4(])28
b Gg(for)549 2689 y(an)o(y)23 b(substitution)k(where)d
Ga(P)36 b Gg(freshly)25 b(introduces)h Ga(y)g Gg(and)e(is)f(not)h(an)g
(axiom.)360 2843 y(\(i\))201 b F6(j)p Ga(S)20 b(T)13
b F6(j)838 2810 y Fu(s)838 2865 y Gc(c)483 2967 y F4(=)92
b F6(j)p Ga(S)5 b F6(j)757 2934 y Fu(s)757 2989 y Gc(a)799
2967 y F4([)p Ga(a)25 b F4(:=)1018 2955 y F9(\()1046
2967 y Ga(y)1094 2955 y F9(\))1121 2967 y FL(Imp)1266
2989 y Gc(L)1318 2967 y F4(\()1353 2955 y FX(h)1381 2967
y Ga(b)1420 2955 y FX(i)1447 2967 y F6(j)p Ga(T)13 b
F6(j)1563 2934 y Fu(s)1563 2994 y Gc(b)1598 2967 y Ga(;)1638
2955 y F9(\()1665 2967 y Ga(z)1711 2955 y F9(\))1739
2967 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))q Ga(;)g(y)s
F4(\))q(])872 b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 2967
V 3445 2967 V 3463 2967 V 65 w(j)3515 2934 y Fu(s)422
3054 y Gc(int)383 3091 y F6(\000)-31 b(\000)g(!)563 3058
y F9(+)646 3091 y F6(j)p Ga(S)5 b F6(j)757 3058 y Fu(s)757
3113 y Gc(a)799 3091 y F4([)p Ga(a)25 b F4(:=)1018 3079
y F9(\()1046 3091 y Ga(y)1094 3079 y F9(\))1121 3091
y FL(Imp)1266 3113 y Gc(L)1318 3091 y F4(\()1353 3079
y FX(h)1381 3091 y Ga(b)1420 3079 y FX(i)1447 3091 y
F6(j)p Ga(T)1538 3058 y FX(0)1561 3091 y F6(j)1586 3058
y Fu(s)1586 3119 y Gc(b)1621 3091 y Ga(;)1661 3079 y
F9(\()1689 3091 y Ga(z)1735 3079 y F9(\))1762 3091 y
FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))r Ga(;)g(y)s
F4(\)])1127 b Gg(by)23 b(IH)483 3215 y F4(=)92 b F6(j)p
Ga(S)20 b(T)813 3182 y FX(0)836 3215 y F6(j)861 3182
y Fu(s)861 3238 y Gc(c)3059 3215 y Gg(by)k(\(6\))g(of)f
F6(j)p 3427 3215 V 3445 3215 V 3463 3215 V 65 w(j)3515
3182 y Fu(s)360 3386 y Gg(\(ii\))176 b F6(j)p Ga(S)20
b(T)13 b F6(j)838 3353 y Fu(s)838 3408 y Gc(c)873 3386
y F4([)p Ga(c)26 b F4(:=)1084 3374 y F9(\()1111 3386
y Ga(y)1159 3374 y F9(\))1186 3386 y Ga(N)10 b F4(])483
3510 y(=)92 b F6(j)p Ga(S)5 b F6(j)757 3477 y Fu(s)757
3533 y Gc(a)799 3510 y F4([)p Ga(a)25 b F4(:=)1018 3498
y F9(\()1046 3510 y Ga(y)1094 3498 y F9(\))1121 3510
y FL(Imp)1266 3532 y Gc(L)1318 3510 y F4(\()1353 3498
y FX(h)1381 3510 y Ga(b)1420 3498 y FX(i)1447 3510 y
F6(j)p Ga(T)13 b F6(j)1563 3477 y Fu(s)1563 3538 y Gc(b)1598
3510 y Ga(;)1638 3498 y F9(\()1665 3510 y Ga(z)1711 3498
y F9(\))1739 3510 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))q
Ga(;)g(y)s F4(\))q(][)p Ga(c)26 b F4(:=)2398 3498 y F9(\()2426
3510 y Ga(y)2474 3498 y F9(\))2501 3510 y Ga(N)10 b F4(])450
b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 3510 V 3445 3510
V 3463 3510 V 65 w(j)3515 3477 y Fu(s)483 3634 y F6(\021)92
b(j)p Ga(S)5 b F6(j)757 3601 y Fu(s)757 3657 y Gc(a)799
3634 y F4([)p Ga(a)25 b F4(:=)1018 3622 y F9(\()1046
3634 y Ga(y)1094 3622 y F9(\))1121 3634 y FL(Imp)1266
3656 y Gc(L)1318 3634 y F4(\()1353 3622 y FX(h)1381 3634
y Ga(b)1420 3622 y FX(i)1447 3634 y F6(j)p Ga(T)13 b
F6(j)1563 3601 y Fu(s)1563 3662 y Gc(b)1598 3634 y Ga(;)1638
3622 y F9(\()1665 3634 y Ga(z)1711 3622 y F9(\))1739
3634 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))q Ga(;)g(y)s
F4(\))q([)p Ga(c)26 b F4(:=)2373 3622 y F9(\()2401 3634
y Ga(y)2449 3622 y F9(\))2476 3634 y Ga(N)10 b F4(]])422
3722 y Gc(int)383 3759 y F6(\000)-31 b(\000)g(!)563 3726
y F9(+)646 3759 y F6(j)p Ga(S)5 b F6(j)757 3726 y Fu(s)757
3781 y Gc(a)799 3759 y F4([)p Ga(a)25 b F4(:=)1018 3747
y F9(\()1046 3759 y Ga(y)1094 3747 y F9(\))1121 3759
y FL(Imp)1266 3780 y Gc(L)1318 3759 y F4(\()1353 3747
y FX(h)1381 3759 y Ga(b)1420 3747 y FX(i)1447 3759 y
F6(j)p Ga(T)1538 3726 y FX(0)1561 3759 y F6(j)1586 3726
y Fu(s)1586 3786 y Gc(b)1621 3759 y Ga(;)1661 3747 y
F9(\()1689 3759 y Ga(z)1735 3747 y F9(\))1762 3759 y
FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))r Ga(;)g(y)s
F4(\)[)p Ga(c)26 b F4(:=)2396 3747 y F9(\()2424 3759
y Ga(y)2472 3747 y F9(\))2499 3759 y Ga(N)10 b F4(]])705
b Gg(by)23 b(IH)483 3883 y F6(\021)92 b(j)p Ga(S)5 b
F6(j)757 3850 y Fu(s)757 3905 y Gc(a)799 3883 y F4([)p
Ga(a)25 b F4(:=)1018 3871 y F9(\()1046 3883 y Ga(y)1094
3871 y F9(\))1121 3883 y FL(Imp)1266 3905 y Gc(L)1318
3883 y F4(\()1353 3871 y FX(h)1381 3883 y Ga(b)1420 3871
y FX(i)1447 3883 y F6(j)p Ga(T)1538 3850 y FX(0)1561
3883 y F6(j)1586 3850 y Fu(s)1586 3910 y Gc(b)1621 3883
y Ga(;)1661 3871 y F9(\()1689 3883 y Ga(z)1735 3871 y
F9(\))1762 3883 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))r
Ga(;)g(y)s F4(\)][)p Ga(c)26 b F4(:=)2422 3871 y F9(\()2449
3883 y Ga(y)2497 3871 y F9(\))2524 3883 y Ga(N)10 b F4(])483
4007 y(=)92 b F6(j)p Ga(S)20 b(T)813 3974 y FX(0)836
4007 y F6(j)861 3974 y Fu(s)861 4029 y Gc(c)896 4007
y F4([)p Ga(c)26 b F4(:=)1107 3995 y F9(\()1134 4007
y Ga(y)1182 3995 y F9(\))1210 4007 y Ga(N)10 b F4(])1741
b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 4007 V 3445 4007
V 3463 4007 V 65 w(j)3515 3974 y Fu(s)p 3480 4114 4 62
v 3484 4056 55 4 v 3484 4114 V 3538 4114 4 62 v Black
321 4351 a Gb(Pr)n(oof)29 b(of)g(Pr)n(oposition)h(3.2.5.)p
Black 33 w Gg(By)e(induction)j(on)e(the)g(de\002nition)h(of)2689
4314 y Gc(\015)2624 4351 y F6(\000)-32 b(\000)h(!)p Gg(.)43
b(Here)28 b(the)h(induction)321 4464 y(steps)c(are)f(tri)n(vial.)29
b(W)-7 b(e)23 b(illustrate)j(the)e(proof)g(with)g(one)g(base)g(case.)p
Black 321 4670 a Gb(Case)p Black 47 w Fp(case)n F4(\()p
Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
b F4(\))31 b Ga(Q)1582 4633 y Gc(\015)1517 4670 y F6(\000)-32
b(\000)h(!)25 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p
F4(\()p Ga(M)26 b(Q)p F4(\))p Ga(;)15 b(\025y)s(:)p F4(\()p
Ga(N)26 b(Q)p F4(\)\))p Gg(:)487 4827 y F6(j)p Fp(case)o
F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
b F4(\))15 b Ga(Q)p F6(j)1460 4794 y Fu(s)1460 4849 y
Gc(c)3059 4827 y Gg(by)24 b(\(6\))g(of)f F6(j)p 3427
4827 28 4 v 3445 4827 V 3463 4827 V 65 w(j)3515 4794
y Fu(s)383 4951 y F4(=)33 b F6(j)p Fp(case)o F4(\()p
Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
b F4(\))p F6(j)1373 4918 y Fu(s)1373 4973 y Gc(a)1430
4951 y F4([)p Ga(\033)s F4(])205 b Gg(with)24 b F4([)p
Ga(\033)s F4(])i F6(\021)f F4([)p Ga(a)g F4(:=)2371 4939
y F9(\()2399 4951 y Ga(y)2447 4939 y F9(\))2474 4951
y FL(Imp)2619 4973 y Gc(L)2671 4951 y F4(\()2706 4939
y FX(h)2733 4951 y Ga(b)2772 4939 y FX(i)2800 4951 y
F6(j)p Ga(Q)p F6(j)2922 4918 y Fu(s)2922 4978 y Gc(b)2957
4951 y Ga(;)2997 4939 y F9(\()3025 4951 y Ga(z)3071 4939
y F9(\))3098 4951 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p
F4(\))q Ga(;)g(y)s F4(\))q(])383 5075 y(=)33 b F6(j)p
Ga(P)13 b F6(j)608 5042 y Fu(s)608 5103 y Gc(d)664 5075
y F4([)p Ga(d)26 b F4(:=)883 5063 y F9(\()911 5075 y
Ga(u)963 5063 y F9(\))990 5075 y FL(Or)1089 5089 y Gc(L)1141
5075 y F4(\()1176 5063 y F9(\()1204 5075 y Ga(x)1256
5063 y F9(\))1284 5075 y F6(j)p Ga(M)10 b F6(j)1432 5042
y Fu(s)1432 5097 y Gc(a)1474 5075 y Ga(;)1514 5063 y
F9(\()1542 5075 y Ga(y)1590 5063 y F9(\))1617 5075 y
F6(j)p Ga(N)g F6(j)1750 5042 y Fu(s)1750 5097 y Gc(a)1792
5075 y Ga(;)15 b(u)p F4(\))q(])g([)p Ga(\033)s F4(])994
b Gg(by)24 b(\(9\))g(of)f F6(j)p 3427 5075 V 3445 5075
V 3463 5075 V 65 w(j)3515 5042 y Fu(s)383 5199 y F6(\021)33
b(j)p Ga(P)13 b F6(j)608 5166 y Fu(s)608 5227 y Gc(d)664
5199 y F4([)p Ga(d)26 b F4(:=)883 5187 y F9(\()911 5199
y Ga(u)963 5187 y F9(\))990 5199 y FL(Or)1089 5213 y
Gc(L)1141 5199 y F4(\()1176 5187 y F9(\()1204 5199 y
Ga(x)1256 5187 y F9(\))1299 5199 y F6(j)p Ga(M)10 b F6(j)1447
5166 y Fu(s)1447 5222 y Gc(a)1489 5199 y F4([)p Ga(\033)s
F4(])q Ga(;)1635 5187 y F9(\()1663 5199 y Ga(y)1711 5187
y F9(\))1753 5199 y F6(j)p Ga(N)g F6(j)1886 5166 y Fu(s)1886
5222 y Gc(a)1928 5199 y F4([)p Ga(\033)s F4(])q Ga(;)15
b(u)p F4(\))q(])383 5323 y(=)33 b F6(j)p Ga(P)13 b F6(j)608
5290 y Fu(s)608 5351 y Gc(d)664 5323 y F4([)p Ga(d)26
b F4(:=)883 5311 y F9(\()911 5323 y Ga(u)963 5311 y F9(\))990
5323 y FL(Or)1089 5337 y Gc(L)1141 5323 y F4(\()1176
5311 y F9(\()1204 5323 y Ga(x)1256 5311 y F9(\))1284
5323 y F6(j)p Ga(M)f(Q)p F6(j)1519 5290 y Fu(s)1519 5346
y Gc(c)1554 5323 y Ga(;)1594 5311 y F9(\()1622 5323 y
Ga(y)1670 5311 y F9(\))1697 5323 y F6(j)p Ga(N)g(Q)p
F6(j)1917 5290 y Fu(s)1917 5346 y Gc(c)1952 5323 y Ga(;)15
b(u)p F4(\))q(])954 b Gg(by)24 b(\(6\))g(of)f F6(j)p
3427 5323 V 3445 5323 V 3463 5323 V 65 w(j)3515 5290
y Fu(s)383 5448 y F4(=)33 b F6(j)p Fp(case)o F4(\()p
Ga(P)s(;)15 b(\025)q(x:)p F4(\()p Ga(M)26 b(Q)p F4(\))p
Ga(;)15 b(\025y)s(:)p F4(\()p Ga(N)26 b(Q)p F4(\)\))p
F6(j)1693 5415 y Fu(s)1693 5470 y Gc(c)3059 5448 y Gg(by)e(\(9\))g(of)f
F6(j)p 3427 5448 V 3445 5448 V 3463 5448 V 65 w(j)3515
5415 y Fu(s)p 3480 5554 4 62 v 3484 5496 55 4 v 3484
5554 V 3538 5554 4 62 v Black Black eop end
%%Page: 159 171
TeXDict begin 159 170 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
(Chapter)f(3)2639 b(159)p 277 88 3691 4 v Black Black
277 388 a(Pr)n(oof)24 b(of)g(Theor)n(em)f(3.2.6.)p Black
34 w Gg(The)g(follo)n(wing)i(measure)g(reduces)g(in)f(e)n(v)o(ery)2770
351 y Gc(\015)2705 388 y F6(\000)-32 b(\000)h(!)p Gg(-reduction.)p
Black Black 613 541 a Fs([)p Ga(x)p Fs(])763 489 y F5(def)770
541 y F4(=)40 b(1)436 680 y Fs([)q Ga(\025x:M)10 b Fs(])763
629 y F5(def)770 680 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21
b F4(+)f(1)378 820 y Fs([)p F6(h)p Ga(M)5 b(;)15 b(N)10
b F6(i)p Fs(])763 769 y F5(def)770 820 y F4(=)40 b Fs([)p
Ga(M)10 b Fs(])21 b F4(+)f Fs([)p Ga(N)10 b Fs(])21 b
F4(+)f(1)353 960 y Fs([)p Fp(inl)o F4(\()p Ga(M)10 b
F4(\))p Fs(])763 908 y F5(def)770 960 y F4(=)40 b Fs([)p
Ga(M)10 b Fs(])21 b F4(+)f(1)353 1100 y Fs([)p Fp(inr)o
F4(\()p Ga(M)10 b F4(\))p Fs(])763 1048 y F5(def)770
1100 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f(1)2193
646 y Fs([)q Ga(M)25 b(N)10 b Fs(])2487 594 y F5(def)2494
646 y F4(=)40 b Fs([)q Ga(M)10 b Fs(])21 b F6(\003)f
F4(\()p Fs([)q Ga(N)10 b Fs(])21 b F4(+)f(1\))2077 786
y Fs([)q Fp(fst)o F4(\()p Ga(M)10 b F4(\))p Fs(])2487
734 y F5(def)2494 786 y F4(=)40 b(3)p Fs([)q Ga(M)10
b Fs(])21 b F4(+)f(1)2077 925 y Fs([)q Fp(snd)o F4(\()p
Ga(M)10 b F4(\))p Fs(])2487 874 y F5(def)2494 925 y F4(=)40
b(3)p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)1554 1065 y
Fs([)p Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15
b(\025y)s(:N)10 b F4(\))p Fs(])2487 1014 y F5(def)2494
1065 y F4(=)40 b Fs([)q Ga(P)13 b Fs(])20 b F6(\003)h
F4(\()p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f Fs([)p Ga(N)10
b Fs(])21 b F4(+)f(1\))p 3436 1191 4 62 v 3440 1133 55
4 v 3440 1191 V 3494 1191 4 62 v Black 277 1404 a Gb(Pr)n(oof)30
b(of)f(Lemma)f(3.2.7.)p Black 34 w Gg(Both)h(by)g(induction)i(on)e(the)
h(structure)h(of)e Ga(M)10 b Gg(.)44 b(W)-7 b(e)28 b(\002rst)h(tackle)h
(three)277 1517 y(cases)25 b(of)e(\(i\).)p Black 277
1701 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25 b FL(Ax)o
F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(:)658 1848 y F6(j)p
FL(Ax)p F4(\()p Ga(x;)g(b)p F4(\)[)p Ga(x)26 b F4(:=)1212
1836 y FX(h)1239 1848 y Ga(a)1287 1836 y FX(i)1314 1848
y Ga(N)10 b F4(])p F6(j)1447 1815 y Fu(n)554 1966 y F4(=)33
b F6(j)p Ga(N)10 b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p
F6(j)1039 1933 y Fu(n)554 2085 y F6(\021)33 b(j)p Ga(N)10
b F6(j)791 2052 y Fu(n)554 2204 y F6(\021)33 b Ga(x)p
F4([)p Ga(x)25 b F4(:=)h F6(j)p Ga(N)10 b F6(j)1067 2171
y Fu(n)1108 2204 y F4(])554 2322 y(=)33 b F6(j)p FL(Ax)p
F4(\()p Ga(x;)15 b(b)p F4(\))p F6(j)1012 2289 y Fu(n)1054
2322 y F4([)p Ga(x)25 b F4(:=)g F6(j)p Ga(N)10 b F6(j)1410
2289 y Fu(n)1451 2322 y F4(])1530 b Gg(by)23 b(\(1\))h(of)g
F6(j)p 3374 2322 28 4 v 3391 2322 V 3409 2322 V 64 w(j)3461
2289 y Fu(n)p Black 277 2501 a Gb(Case)p Black 46 w Ga(M)58
b F6(\021)47 b FL(Imp)918 2523 y Gc(L)970 2501 y F4(\()1005
2489 y FX(h)1033 2501 y Ga(b)1072 2489 y FX(i)1099 2501
y Ga(S)5 b(;)1200 2489 y F9(\()1228 2501 y Ga(y)1276
2489 y F9(\))1303 2501 y Ga(T)13 b(;)i(z)t F4(\))p Gg(:)53
b(Let)35 b F4([)p Ga(\033)s F4(])h Gg(and)g F4([)p Ga(\033)s
F4(])2136 2468 y Fu(n)2212 2501 y Gg(be)f F4([)p Ga(x)48
b F4(:=)2600 2489 y FX(h)2628 2501 y Ga(a)2676 2489 y
FX(i)2703 2501 y Ga(N)10 b F4(])35 b Gg(and)h F4([)p
Ga(x)48 b F4(:=)f F6(j)p Ga(N)10 b F6(j)3413 2468 y Fu(n)3454
2501 y F4(])p Gg(,)504 2614 y(respecti)n(v)o(ely)-6 b(.)658
2772 y F6(j)p FL(Imp)828 2794 y Gc(L)880 2772 y F4(\()915
2760 y FX(h)943 2772 y Ga(b)982 2760 y FX(i)1009 2772
y Ga(S)5 b(;)1110 2760 y F9(\()1138 2772 y Ga(y)1186
2760 y F9(\))1213 2772 y Ga(T)13 b(;)i(z)t F4(\)[)p Ga(\033)s
F4(])p F6(j)1530 2739 y Fu(n)554 2890 y F4(=)33 b F6(j)p
FL(Imp)828 2912 y Gc(L)880 2890 y F4(\()915 2878 y FX(h)943
2890 y Ga(b)982 2878 y FX(i)1024 2890 y Ga(S)5 b F4([)p
Ga(\033)s F4(])q Ga(;)1231 2878 y F9(\()1259 2890 y Ga(y)1307
2878 y F9(\))1349 2890 y Ga(T)13 b F4([)p Ga(\033)s F4(])q
Ga(;)i(z)t F4(\))p F6(j)1667 2857 y Fu(n)554 3009 y F4(=)33
b F6(j)p Ga(T)13 b F4([)p Ga(\033)s F4(])p F6(j)879 2976
y Fu(n)921 3009 y F4([)p Ga(y)28 b F4(:=)d Ga(z)20 b
F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1418 2976
y Fu(n)1459 3009 y F4(])1476 b Gg(by)24 b(\(10\))g(of)g
F6(j)p 3374 3009 V 3391 3009 V 3409 3009 V 64 w(j)3461
2976 y Fu(n)554 3128 y F6(\021)33 b(j)p Ga(T)13 b F6(j)774
3095 y Fu(n)815 3128 y F4([)p Ga(\033)s F4(])920 3095
y Fu(n)961 3128 y F4([)p Ga(y)28 b F4(:=)e Ga(z)19 b
F6(j)p Ga(S)5 b F6(j)1353 3095 y Fu(n)1394 3128 y F4([)p
Ga(\033)s F4(])1499 3095 y Fu(n)1541 3128 y F4(])1727
b Gg(by)23 b(IH)554 3246 y F6(\021)33 b(j)p Ga(T)13 b
F6(j)774 3213 y Fu(n)815 3246 y F4([)p Ga(y)28 b F4(:=)d
Ga(z)20 b F6(j)p Ga(S)5 b F6(j)1207 3213 y Fu(n)1248
3246 y F4(][)p Ga(\033)s F4(])1378 3213 y Fu(n)554 3365
y F4(=)33 b F6(j)p FL(Imp)828 3386 y Gc(L)880 3365 y
F4(\()915 3353 y FX(h)943 3365 y Ga(b)982 3353 y FX(i)1009
3365 y Ga(S)5 b(;)1110 3353 y F9(\()1138 3365 y Ga(y)1186
3353 y F9(\))1213 3365 y Ga(T)13 b(;)i(z)t F4(\))p F6(j)1425
3332 y Fu(n)1467 3365 y F4([)p Ga(\033)s F4(])1572 3332
y Fu(n)2960 3365 y Gg(by)24 b(\(10\))g(of)g F6(j)p 3374
3365 V 3391 3365 V 3409 3365 V 64 w(j)3461 3332 y Fu(n)p
Black 277 3543 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25
b FL(Imp)873 3565 y Gc(L)925 3543 y F4(\()960 3531 y
FX(h)988 3543 y Ga(b)1027 3531 y FX(i)1055 3543 y Ga(S)5
b(;)1156 3531 y F9(\()1183 3543 y Ga(y)1231 3531 y F9(\))1259
3543 y Ga(T)12 b(;)j(x)p F4(\))p Gg(:)30 b(Again,)23
b(let)g F4([)p Ga(\033)s F4(])g Gg(and)h F4([)p Ga(\033)s
F4(])2273 3510 y Fu(n)2337 3543 y Gg(be)f F4([)p Ga(x)j
F4(:=)2669 3531 y FX(h)2696 3543 y Ga(a)2744 3531 y FX(i)2772
3543 y Ga(N)10 b F4(])23 b Gg(and)g F4([)p Ga(x)j F4(:=)f
F6(j)p Ga(N)10 b F6(j)3413 3510 y Fu(n)3454 3543 y F4(])p
Gg(,)504 3656 y(respecti)n(v)o(ely)-6 b(.)658 3814 y
F6(j)p FL(Imp)828 3836 y Gc(L)880 3814 y F4(\()915 3802
y FX(h)943 3814 y Ga(b)982 3802 y FX(i)1009 3814 y Ga(S)5
b(;)1110 3802 y F9(\()1138 3814 y Ga(y)1186 3802 y F9(\))1213
3814 y Ga(T)13 b(;)i(x)p F4(\)[)p Ga(\033)s F4(])p F6(j)1536
3781 y Fu(n)554 3933 y F4(=)33 b F6(j)p FL(Cut)p F4(\()856
3921 y FX(h)884 3933 y Ga(a)932 3921 y FX(i)959 3933
y Ga(N)10 b(;)1082 3921 y F9(\()1110 3933 y Ga(x)1162
3921 y F9(\))1190 3933 y FL(Imp)1334 3955 y Gc(L)1386
3933 y F4(\()1421 3921 y FX(h)1449 3933 y Ga(b)1488 3921
y FX(i)1531 3933 y Ga(S)5 b F4([)p Ga(\033)s F4(])p Ga(;)1737
3921 y F9(\()1765 3933 y Ga(y)1813 3921 y F9(\))1856
3933 y Ga(T)13 b F4([)p Ga(\033)s F4(])p Ga(;)i(x)p F4(\))q(\))p
F6(j)2215 3900 y Fu(n)554 4051 y F4(=)33 b F6(j)p Ga(T)13
b F4([)p Ga(\033)s F4(])p F6(j)879 4018 y Fu(n)921 4051
y F4([)p Ga(y)28 b F4(:=)d Ga(x)15 b F6(j)p Ga(S)5 b
F4([)p Ga(\033)s F4(])p F6(j)1423 4018 y Fu(n)1465 4051
y F4(][)p Ga(x)26 b F4(:=)f F6(j)p Ga(N)10 b F6(j)1847
4018 y Fu(n)1888 4051 y F4(])979 b Gg(by)24 b(\(2,10\))g(of)g
F6(j)p 3374 4051 V 3391 4051 V 3409 4051 V 64 w(j)3461
4018 y Fu(n)554 4170 y F4(=)33 b F6(j)p Ga(T)13 b F4([)p
Ga(\033)s F4(])p F6(j)879 4137 y Fu(n)921 4170 y F4([)p
Ga(y)28 b F4(:=)d F6(j)p Ga(N)10 b F6(j)1273 4137 y Fu(n)1344
4170 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1560
4137 y Fu(n)1602 4170 y F4(])936 b Ga(x)26 b F6(62)e
Ga(F)13 b(V)21 b F4(\()p F6(j)p Ga(T)13 b F4([)p Ga(\033)s
F4(])p F6(j)3127 4137 y Fu(n)3169 4170 y Ga(;)i F6(j)p
Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)3425 4137 y Fu(n)3467
4170 y F4(\))554 4289 y F6(\021)33 b(j)p Ga(T)13 b F6(j)774
4256 y Fu(n)815 4289 y F4([)p Ga(\033)s F4(])920 4256
y Fu(n)961 4289 y F4([)p Ga(y)28 b F4(:=)e F6(j)p Ga(N)10
b F6(j)1314 4256 y Fu(n)1385 4289 y F6(j)p Ga(S)5 b F6(j)1496
4256 y Fu(n)1537 4289 y F4([)p Ga(\033)s F4(])1642 4256
y Fu(n)1683 4289 y F4(])1585 b Gg(by)23 b(IH)554 4407
y F6(\021)33 b(j)p Ga(T)13 b F6(j)774 4374 y Fu(n)815
4407 y F4([)p Ga(y)28 b F4(:=)d Ga(x)15 b F6(j)p Ga(S)5
b F6(j)1212 4374 y Fu(n)1254 4407 y F4(][)p Ga(\033)s
F4(])1384 4374 y Fu(n)554 4526 y F4(=)33 b F6(j)p FL(Imp)828
4547 y Gc(L)880 4526 y F4(\()915 4514 y FX(h)943 4526
y Ga(b)982 4514 y FX(i)1009 4526 y Ga(S)5 b(;)1110 4514
y F9(\()1138 4526 y Ga(y)1186 4514 y F9(\))1213 4526
y Ga(T)13 b(;)i(x)p F4(\))p F6(j)1431 4493 y Fu(n)1473
4526 y F4([)p Ga(\033)s F4(])1578 4493 y Fu(n)2960 4526
y Gg(by)24 b(\(10\))g(of)g F6(j)p 3374 4526 V 3391 4526
V 3409 4526 V 64 w(j)3461 4493 y Fu(n)277 4709 y Gg(W)-7
b(e)23 b(proceed)i(with)f(three)g(cases)h(of)e(\(ii\).)29
b(Notice)24 b(that)g Ga(a)i F6(2)e Ga(F)13 b(C)7 b F4(\()p
Ga(M)j F4(\))p Gg(.)p Black 277 4892 a Gb(Case)p Black
46 w Ga(M)36 b F6(\021)25 b FL(Ax)o F4(\()p Ga(x;)15
b(a)p F4(\))p Gg(:)658 5040 y F6(j)p FL(Ax)p F4(\()p
Ga(y)s(;)g(a)p F4(\)[)p Ga(a)26 b F4(:=)1213 5028 y F9(\()1240
5040 y Ga(x)1292 5028 y F9(\))1319 5040 y Ga(N)10 b F4(])p
F6(j)1452 5007 y Fu(n)554 5158 y F4(=)33 b F6(j)p Ga(N)10
b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])p F6(j)1052 5125
y Fu(n)554 5277 y F6(\021)33 b(j)p Ga(N)10 b F6(j)791
5244 y Fu(n)832 5277 y F4([)p Ga(x)26 b F4(:=)f Ga(y)s
F4(])554 5395 y(=)33 b F6(j)p Ga(N)10 b F6(j)791 5362
y Fu(n)832 5395 y F4([)p Ga(x)26 b F4(:=)f F6(j)p FL(Ax)p
F4(\()p Ga(y)s(;)15 b(a)p F4(\))p F6(j)1415 5362 y Fu(n)1456
5395 y F4(])1525 b Gg(by)23 b(\(1\))h(of)g F6(j)p 3374
5395 V 3391 5395 V 3409 5395 V 64 w(j)3461 5362 y Fu(n)p
Black Black eop end
%%Page: 160 172
TeXDict begin 160 171 bop Black -144 51 a Gb(160)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 388 a(Case)p Black 47 w Ga(M)35 b
F6(\021)25 b FL(And)927 402 y Gc(R)985 388 y F4(\()1020
376 y FX(h)1048 388 y Ga(c)1087 376 y FX(i)1115 388 y
Ga(S)5 b(;)1216 376 y FX(h)1244 388 y Ga(d)1291 376 y
FX(i)1318 388 y Ga(T)13 b(;)i(a)p F4(\))p Gg(:)29 b(Notice)24
b(that)h Ga(M)32 b Gg(has)24 b(to)g(freshly)h(introduce)h
Ga(a)p Gg(.)702 550 y F6(j)p FL(And)882 564 y Gc(R)940
550 y F4(\()975 538 y FX(h)1002 550 y Ga(c)1041 538 y
FX(i)1069 550 y Ga(S)5 b(;)1170 538 y FX(h)1198 550 y
Ga(d)1245 538 y FX(i)1273 550 y Ga(T)13 b(;)i(a)p F4(\)[)p
Ga(a)26 b F4(:=)1682 538 y F9(\()1710 550 y Ga(x)1762
538 y F9(\))1789 550 y Ga(N)10 b F4(])p F6(j)1922 517
y Fu(n)598 668 y F4(=)33 b F6(j)p FL(Cut)p F4(\()900
656 y FX(h)928 668 y Ga(a)976 656 y FX(i)1004 668 y Ga(M)10
b(;)1142 656 y F9(\()1170 668 y Ga(x)1222 656 y F9(\))1249
668 y Ga(N)g F4(\))p F6(j)1392 635 y Fu(n)598 787 y F4(=)33
b F6(j)p Ga(N)10 b F6(j)835 754 y Fu(n)876 787 y F4([)p
Ga(x)26 b F4(:=)f F6(j)p Ga(M)10 b F6(j)1248 754 y Fu(n)1289
787 y F4(])1736 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3418
787 28 4 v 3436 787 V 3453 787 V 64 w(j)3505 754 y Fu(n)p
Black 321 957 a Gb(Case)p Black 47 w Ga(M)35 b F6(\021)25
b FL(Cut)p F4(\()946 945 y FX(h)974 957 y Ga(c)1013 945
y FX(i)1040 957 y Ga(S)5 b(;)1141 945 y F9(\()1169 957
y Ga(y)1217 945 y F9(\))1244 957 y Ga(T)13 b F4(\))p
Gg(:)702 1118 y F6(j)p FL(Cut)p F4(\()900 1106 y FX(h)928
1118 y Ga(c)967 1106 y FX(i)995 1118 y Ga(S)5 b(;)1096
1106 y F9(\()1124 1118 y Ga(y)1172 1106 y F9(\))1199
1118 y Ga(T)13 b F4(\)[)p Ga(a)26 b F4(:=)1520 1106 y
F9(\()1547 1118 y Ga(x)1599 1106 y F9(\))1627 1118 y
Ga(N)10 b F4(])p F6(j)1760 1085 y Fu(n)598 1237 y F4(=)33
b F6(j)p FL(Cut)p F4(\()900 1225 y FX(h)928 1237 y Ga(c)967
1225 y FX(i)995 1237 y Ga(S)5 b(;)1096 1225 y F9(\()1124
1237 y Ga(y)1172 1225 y F9(\))1214 1237 y Ga(T)13 b F4([)p
Ga(a)25 b F4(:=)1500 1225 y F9(\()1527 1237 y Ga(x)1579
1225 y F9(\))1607 1237 y Ga(N)9 b F4(])q(\))p F6(j)1775
1204 y Fu(n)2250 1237 y Ga(a)25 b F6(62)g Ga(F)13 b(C)7
b F4(\()2587 1225 y FX(h)2614 1237 y Ga(c)2653 1225 y
FX(i)2681 1237 y Ga(S)e F4(\))23 b Gg(because)j Ga(M)35
b F6(2)25 b FY(J)3366 1204 y F9(\()p FX(\033)p Gc(;)p
FX(^)p F9(\))598 1355 y F6(\021)33 b(j)p Ga(T)13 b F4([)p
Ga(a)26 b F4(:=)1013 1343 y F9(\()1040 1355 y Ga(x)1092
1343 y F9(\))1120 1355 y Ga(N)10 b F4(])p F6(j)1253 1322
y Fu(n)1294 1355 y F4([)p Ga(y)28 b F4(:=)d F6(j)p Ga(S)5
b F6(j)1624 1322 y Fu(n)1665 1355 y F4(])1360 b Gg(by)24
b(\(2\))f(of)h F6(j)p 3418 1355 V 3436 1355 V 3453 1355
V 64 w(j)3505 1322 y Fu(n)598 1474 y F4(=)33 b F6(j)p
Ga(N)10 b F6(j)835 1441 y Fu(n)876 1474 y F4([)p Ga(x)26
b F4(:=)f F6(j)p Ga(T)13 b F6(j)1216 1441 y Fu(n)1257
1474 y F4(][)p Ga(y)28 b F4(:=)e F6(j)p Ga(S)5 b F6(j)1613
1441 y Fu(n)1654 1474 y F4(])1658 b Gg(by)23 b(IH)598
1592 y F6(\021)33 b(j)p Ga(N)10 b F6(j)835 1559 y Fu(n)876
1592 y F4([)p Ga(x)26 b F4(:=)f F6(j)p Ga(T)13 b F6(j)1216
1559 y Fu(n)1257 1592 y F4([)p Ga(y)28 b F4(:=)d F6(j)p
Ga(S)5 b F6(j)1587 1559 y Fu(n)1628 1592 y F4(]])1043
b Ga(y)29 b F6(62)24 b Ga(F)13 b(N)d F4(\()3069 1580
y F9(\()3097 1592 y Ga(x)3149 1580 y F9(\))3177 1592
y Ga(N)g F4(\))23 b Gg(by)g F4([)p 3458 1592 V 3476 1592
V 3494 1592 V 65 w(])598 1711 y(=)33 b F6(j)p Ga(N)10
b F6(j)835 1678 y Fu(n)876 1711 y F4([)p Ga(x)26 b F4(:=)f
F6(j)p FL(Cut)p F4(\()1298 1699 y FX(h)1326 1711 y Ga(c)1365
1699 y FX(i)1393 1711 y Ga(S)5 b(;)1494 1699 y F9(\()1521
1711 y Ga(y)1569 1699 y F9(\))1597 1711 y Ga(T)12 b F4(\))p
F6(j)1722 1678 y Fu(n)1764 1711 y F4(])1261 b Gg(by)24
b(\(2\))f(of)h F6(j)p 3418 1711 V 3436 1711 V 3453 1711
V 64 w(j)3505 1678 y Fu(n)p 3480 1816 4 62 v 3484 1758
55 4 v 3484 1816 V 3538 1816 4 62 v Black 321 2029 a
Gb(Pr)n(oof)k(of)f(Pr)n(oposition)h(3.2.8.)p Black 34
w Gg(The)e(inducti)n(v)o(e)j(steps)f(are)g(quite)g(routine;)j
(therefore)e(we)d(gi)n(v)o(e)h(the)321 2142 y(calculations)g(for)d
(four)g(base)g(cases)h(only)-6 b(.)p Black 321 2304 a
Gb(Logical)25 b(Cut)d(with)h(Axiom:)p Black 549 2417
a FL(Cut)o F4(\()721 2405 y FX(h)749 2417 y Ga(a)797
2405 y FX(i)825 2417 y Ga(M)10 b(;)963 2405 y F9(\()991
2417 y Ga(x)1043 2405 y F9(\))1070 2417 y FL(Ax)p F4(\()p
Ga(x;)15 b(b)p F4(\))q(\))1474 2380 y Gc(int)1435 2417
y F6(\000)-31 b(\000)g(!)25 b Ga(M)10 b F4([)p Ga(a)g
F6(7!)g Ga(b)p F4(])808 2564 y F6(j)p FL(Cut)p F4(\()1006
2552 y FX(h)1034 2564 y Ga(a)1082 2552 y FX(i)1110 2564
y Ga(M)g(;)1248 2552 y F9(\()1276 2564 y Ga(x)1328 2552
y F9(\))1355 2564 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\))q(\))p
F6(j)1720 2531 y Fu(n)686 2688 y F4(=)51 b Ga(x)p F4([)p
Ga(x)26 b F4(:=)f F6(j)p Ga(M)10 b F6(j)1232 2655 y Fu(n)1273
2688 y F4(])1684 b Gg(by)23 b(\(1,2\))h(of)g F6(j)p 3418
2688 28 4 v 3436 2688 V 3453 2688 V 64 w(j)3505 2655
y Fu(n)686 2813 y F4(=)51 b F6(j)p Ga(M)10 b F6(j)956
2780 y Fu(n)686 2937 y F6(\021)51 b(j)p Ga(M)10 b F4([)p
Ga(a)g F6(7!)g Ga(b)p F4(])p F6(j)1204 2904 y Fu(n)p
Black 321 3109 a Gb(Logical)25 b(Cut)d Fb(^)871 3123
y Fy(R)936 3109 y FO(=)p Fb(^)1058 3123 y Fy(L)1111 3131
y Fa(1)1154 3109 y Gb(:)p Black 549 3238 a FL(Cut)o F4(\()721
3226 y FX(h)749 3238 y Ga(c)788 3226 y FX(i)816 3238
y FL(And)971 3252 y Gc(R)1028 3238 y F4(\()1063 3226
y FX(h)1091 3238 y Ga(a)1139 3226 y FX(i)1167 3238 y
Ga(M)10 b(;)1305 3226 y FX(h)1333 3238 y Ga(b)1372 3226
y FX(i)1399 3238 y Ga(N)g(;)15 b(c)p F4(\))q Ga(;)1637
3226 y F9(\()1665 3238 y Ga(y)1713 3226 y F9(\))1740
3238 y FL(And)1895 3201 y F9(1)1895 3261 y Gc(L)1947
3238 y F4(\()1982 3226 y F9(\()2010 3238 y Ga(x)2062
3226 y F9(\))2089 3238 y Ga(P)e(;)i(y)s F4(\))q(\))2383
3201 y Gc(int)2344 3238 y F6(\000)-31 b(\000)g(!)25 b
FL(Cut)p F4(\()2713 3226 y FX(h)2740 3238 y Ga(a)2788
3226 y FX(i)2816 3238 y Ga(M)10 b(;)2954 3226 y F9(\()2982
3238 y Ga(x)3034 3226 y F9(\))3061 3238 y Ga(P)j F4(\))810
3385 y F6(j)p FL(Cut)p F4(\()1008 3373 y FX(h)1036 3385
y Ga(c)1075 3373 y FX(i)1103 3385 y FL(And)1257 3399
y Gc(R)1315 3385 y F4(\()1350 3373 y FX(h)1378 3385 y
Ga(a)1426 3373 y FX(i)1454 3385 y Ga(M)d(;)1592 3373
y FX(h)1619 3385 y Ga(b)1658 3373 y FX(i)1686 3385 y
Ga(N)g(;)15 b(c)p F4(\))q Ga(;)1924 3373 y F9(\()1952
3385 y Ga(y)2000 3373 y F9(\))2027 3385 y FL(And)2182
3349 y F9(1)2182 3409 y Gc(L)2234 3385 y F4(\()2269 3373
y F9(\()2297 3385 y Ga(x)2349 3373 y F9(\))2376 3385
y Ga(P)e(;)i(y)s F4(\))q(\))p F6(j)2631 3352 y Fu(n)648
3510 y F4(=)91 b F6(j)p Ga(P)13 b F6(j)931 3477 y Fu(n)972
3510 y F4([)p Ga(x)26 b F4(:=)f Fp(fst)o F4(\()p Ga(y)s
F4(\)][)p Ga(y)k F4(:=)d F6(hj)p Ga(M)10 b F6(j)1886
3477 y Fu(n)1927 3510 y Ga(;)15 b F6(j)p Ga(N)10 b F6(j)2100
3477 y Fu(n)2142 3510 y F6(i)p F4(])712 b Gg(by)23 b(\(2,3,7\))h(of)g
F6(j)p 3418 3510 V 3436 3510 V 3453 3510 V 64 w(j)3505
3477 y Fu(n)648 3634 y F6(\021)91 b(j)p Ga(P)13 b F6(j)931
3601 y Fu(n)972 3634 y F4([)p Ga(x)26 b F4(:=)f Fp(fst)o
F4(\()p F6(hj)p Ga(M)10 b F6(j)1557 3601 y Fu(n)1599
3634 y Ga(;)15 b F6(j)p Ga(N)10 b F6(j)1772 3601 y Fu(n)1814
3634 y F6(i)p F4(\)])250 b Ga(y)28 b F6(62)d Ga(F)13
b(V)20 b F4(\()p F6(j)p Ga(P)13 b F6(j)2618 3601 y Fu(n)2659
3634 y F4(\))24 b Gg(by)f(logical)i(cut)f F6(^)3296 3648
y Gc(R)3354 3634 y Ga(=)p F6(^)3460 3648 y Gc(L)3508
3657 y FV(1)621 3721 y Gc(\023)549 3758 y F6(\000)-32
b(\000)h(!)728 3725 y FX(\003)810 3758 y F6(j)p Ga(P)13
b F6(j)931 3725 y Fu(n)972 3758 y F4([)p Ga(x)26 b F4(:=)f
F6(j)p Ga(M)10 b F6(j)1344 3725 y Fu(n)1385 3758 y F4(])648
3882 y(=)91 b F6(j)p FL(Cut)p F4(\()1008 3870 y FX(h)1036
3882 y Ga(a)1084 3870 y FX(i)1112 3882 y Ga(M)10 b(;)1250
3870 y F9(\()1278 3882 y Ga(x)1330 3870 y F9(\))1357
3882 y Ga(P)j F4(\))p F6(j)1488 3849 y Fu(n)3050 3882
y Gg(by)24 b(\(2\))f(of)h F6(j)p 3418 3882 V 3436 3882
V 3453 3882 V 64 w(j)3505 3849 y Fu(n)p Black 321 4054
a Gb(Logical)h(Cut)d Fb(\033)882 4068 y Fy(R)948 4054
y FO(=)p Fb(\033)1081 4068 y Fy(L)1139 4054 y Gb(:)p
Black 598 4181 a FL(Cut)p F4(\()771 4169 y FX(h)799 4181
y Ga(b)838 4169 y FX(i)866 4181 y FL(Imp)1010 4203 y
Gc(R)1068 4181 y F4(\()1103 4169 y F9(\()1130 4181 y
Ga(x)1182 4169 y F9(\))q FX(h)1237 4181 y Ga(a)1285 4169
y FX(i)1313 4181 y Ga(M)10 b(;)15 b(b)p F4(\))q Ga(;)1566
4169 y F9(\()1594 4181 y Ga(z)1640 4169 y F9(\))1667
4181 y FL(Imp)1812 4203 y Gc(L)1864 4181 y F4(\()1899
4169 y FX(h)1927 4181 y Ga(c)1966 4169 y FX(i)1993 4181
y Ga(P)e(;)2104 4169 y F9(\()2132 4181 y Ga(y)2180 4169
y F9(\))2208 4181 y Ga(Q)o(;)i(z)t F4(\))q(\))728 4257
y Gc(int)689 4294 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
F4(\()1058 4282 y FX(h)1085 4294 y Ga(a)1133 4282 y FX(i)1161
4294 y FL(Cut)p F4(\()1334 4282 y FX(h)1362 4294 y Ga(c)1401
4282 y FX(i)1428 4294 y Ga(P)13 b(;)1539 4282 y F9(\()1567
4294 y Ga(x)1619 4282 y F9(\))1647 4294 y Ga(M)d F4(\))p
Ga(;)1820 4282 y F9(\()1848 4294 y Ga(y)1896 4282 y F9(\))1923
4294 y Ga(Q)p F4(\))74 b Gg(or)728 4370 y Gc(int)689
4407 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p F4(\()1058
4395 y FX(h)1085 4407 y Ga(c)1124 4395 y FX(i)1152 4407
y Ga(P)13 b(;)1263 4395 y F9(\()1291 4407 y Ga(x)1343
4395 y F9(\))1371 4407 y FL(Cut)o F4(\()1543 4395 y FX(h)1571
4407 y Ga(a)1619 4395 y FX(i)1647 4407 y Ga(M)d(;)1785
4395 y F9(\()1813 4407 y Ga(y)1861 4395 y F9(\))1888
4407 y Ga(Q)p F4(\)\))598 4561 y Gg(F)o(or)23 b(the)h(\002rst)f(reduct)
i(we)e(ha)n(v)o(e:)810 4679 y F6(j)p FL(Cut)p F4(\()1008
4667 y FX(h)1036 4679 y Ga(b)1075 4667 y FX(i)1103 4679
y FL(Imp)1247 4701 y Gc(R)1305 4679 y F4(\()1340 4667
y F9(\()1368 4679 y Ga(x)1420 4667 y F9(\))p FX(h)1474
4679 y Ga(a)1522 4667 y FX(i)1550 4679 y Ga(M)10 b(;)15
b(b)p F4(\))q Ga(;)1803 4667 y F9(\()1831 4679 y Ga(z)1877
4667 y F9(\))1904 4679 y FL(Imp)2049 4701 y Gc(L)2101
4679 y F4(\()2136 4667 y FX(h)2164 4679 y Ga(c)2203 4667
y FX(i)2231 4679 y Ga(P)e(;)2342 4667 y F9(\()2369 4679
y Ga(y)2417 4667 y F9(\))2445 4679 y Ga(Q;)i(z)t F4(\))q(\))p
F6(j)2699 4646 y Fu(n)648 4798 y F4(=)91 b F6(j)p Ga(Q)p
F6(j)932 4765 y Fu(n)973 4798 y F4([)p Ga(y)29 b F4(:=)c(\()p
Ga(z)45 b F6(j)p Ga(P)13 b F6(j)1436 4765 y Fu(n)1477
4798 y F4(\)][)p Ga(z)30 b F4(:=)25 b Ga(\025x:)p F6(j)p
Ga(M)10 b F6(j)2033 4765 y Fu(n)2075 4798 y F4(])768
b Gg(by)24 b(\(2,6,10\))g(of)g F6(j)p 3418 4798 V 3436
4798 V 3453 4798 V 64 w(j)3505 4765 y Fu(n)648 4917 y
F6(\021)91 b(j)p Ga(Q)p F6(j)932 4884 y Fu(n)973 4917
y F4([)p Ga(y)29 b F4(:=)c(\()p Ga(\025x:)p F6(j)p Ga(M)10
b F6(j)1506 4884 y Fu(n)1548 4917 y F4(\))40 b F6(j)p
Ga(P)13 b F6(j)1744 4884 y Fu(n)1785 4917 y F4(])481
b Gg(by)23 b(logical)j(cut)d Ga(z)30 b F6(62)25 b Ga(F)13
b(V)20 b F4(\()p F6(j)p Ga(Q)p F6(j)3267 4884 y Fu(n)3308
4917 y Ga(;)15 b F6(j)p Ga(P)e F6(j)3469 4884 y Fu(n)3511
4917 y F4(\))621 4998 y Gc(\023)549 5035 y F6(\000)-32
b(\000)h(!)728 5002 y FX(\003)810 5035 y F6(j)p Ga(Q)p
F6(j)932 5002 y Fu(n)973 5035 y F4([)p Ga(y)29 b F4(:=)c
F6(j)p Ga(M)10 b F6(j)1341 5002 y Fu(n)1382 5035 y F4([)p
Ga(x)25 b F4(:=)h F6(j)p Ga(P)13 b F6(j)1727 5002 y Fu(n)1768
5035 y F4(]])648 5154 y(=)91 b F6(j)p FL(Cut)p F4(\()1008
5142 y FX(h)1036 5154 y Ga(a)1084 5142 y FX(i)1112 5154
y FL(Cut)p F4(\()1285 5142 y FX(h)1312 5154 y Ga(c)1351
5142 y FX(i)1379 5154 y Ga(P)13 b(;)1490 5142 y F9(\()1518
5154 y Ga(x)1570 5142 y F9(\))1597 5154 y Ga(M)d F4(\))q
Ga(;)1771 5142 y F9(\()1799 5154 y Ga(y)1847 5142 y F9(\))1874
5154 y Ga(Q)p F4(\))p F6(j)2006 5121 y Fu(n)3050 5154
y Gg(by)24 b(\(2\))f(of)h F6(j)p 3418 5154 V 3436 5154
V 3453 5154 V 64 w(j)3505 5121 y Fu(n)598 5319 y Gg(F)o(or)f(the)h
(other)g(reduct)h(we)e(ha)n(v)o(e:)810 5438 y F6(j)p
FL(Cut)p F4(\()1008 5426 y FX(h)1036 5438 y Ga(c)1075
5426 y FX(i)1103 5438 y Ga(P)13 b(;)1214 5426 y F9(\()1242
5438 y Ga(x)1294 5426 y F9(\))1321 5438 y FL(Cut)p F4(\()1494
5426 y FX(h)1522 5438 y Ga(a)1570 5426 y FX(i)1597 5438
y Ga(M)d(;)1735 5426 y F9(\()1763 5438 y Ga(y)1811 5426
y F9(\))1839 5438 y Ga(Q)o F4(\))q(\))p F6(j)2006 5405
y Fu(n)648 5557 y F4(=)91 b F6(j)p Ga(Q)p F6(j)932 5524
y Fu(n)973 5557 y F4([)p Ga(y)29 b F4(:=)c F6(j)p Ga(M)10
b F6(j)1341 5524 y Fu(n)1382 5557 y F4(][)p Ga(x)26 b
F4(:=)f F6(j)p Ga(P)13 b F6(j)1752 5524 y Fu(n)1793 5557
y F4(])1232 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3418 5557
V 3436 5557 V 3453 5557 V 64 w(j)3505 5524 y Fu(n)648
5675 y F6(\021)91 b(j)p Ga(Q)p F6(j)932 5642 y Fu(n)973
5675 y F4([)p Ga(y)29 b F4(:=)c F6(j)p Ga(M)10 b F6(j)1341
5642 y Fu(n)1382 5675 y F4([)p Ga(x)25 b F4(:=)h F6(j)p
Ga(P)13 b F6(j)1727 5642 y Fu(n)1768 5675 y F4(]])559
b Ga(x)25 b F6(62)g Ga(F)13 b(V)20 b F4(\()p F6(j)p Ga(Q)p
F6(j)2841 5642 y Fu(n)2882 5675 y F4(\))j Gg(by)h(Remark)g(2.2.7)p
Black Black eop end
%%Page: 161 173
TeXDict begin 161 172 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
(Chapter)f(3)2639 b(161)p 277 88 3691 4 v Black Black
277 388 a(Commuting)22 b(Cut:)p Black 554 525 a FL(Cut)p
F4(\()727 513 y FX(h)755 525 y Ga(a)803 513 y FX(i)830
525 y Ga(M)11 b(;)969 513 y F9(\()996 525 y Ga(x)1048
513 y F9(\))1076 525 y Ga(N)f F4(\))1333 488 y Gc(int)1294
525 y F6(\000)-32 b(\000)h(!)100 b Ga(M)10 b F4([)p Ga(a)25
b F4(:=)1881 513 y F9(\()1909 525 y Ga(x)1961 513 y F9(\))1988
525 y Ga(N)10 b F4(])74 b Gg(or)1333 601 y Gc(int)1294
638 y F6(\000)-32 b(\000)h(!)100 b Ga(N)10 b F4([)p Ga(x)25
b F4(:=)1870 626 y FX(h)1898 638 y Ga(a)1946 626 y FX(i)1973
638 y Ga(M)10 b F4(])556 872 y F6(j)p FL(Cut)q F4(\()755
860 y FX(h)782 872 y Ga(a)830 860 y FX(i)858 872 y Ga(M)g(;)996
860 y F9(\()1024 872 y Ga(x)1076 860 y F9(\))1103 872
y Ga(N)g F4(\))p F6(j)1246 839 y Fu(n)1313 872 y F4(=)25
b F6(j)p Ga(N)10 b F6(j)1542 839 y Fu(n)1583 872 y F4([)p
Ga(x)25 b F4(:=)g F6(j)p Ga(M)10 b F6(j)1954 839 y Fu(n)1995
872 y F4(])49 b F6(\021)2190 743 y FK(\032)2258 813 y
F6(j)p Ga(M)10 b F4([)p Ga(a)26 b F4(:=)2601 801 y F9(\()2629
813 y Ga(x)2681 801 y F9(\))2708 813 y Ga(N)10 b F4(])p
F6(j)2841 780 y Fu(n)2258 932 y F6(j)p Ga(N)g F4([)p
Ga(x)26 b F4(:=)2590 920 y FX(h)2617 932 y Ga(a)2665
920 y FX(i)2693 932 y Ga(M)10 b F4(])p F6(j)2841 899
y Fu(n)2995 872 y Gg(by)23 b(Lem.)f(3.2.7)p 3436 1048
4 62 v 3440 990 55 4 v 3440 1048 V 3494 1048 4 62 v Black
277 1260 a Gb(Pr)n(oof)30 b(of)f(Lemma)g(3.4.1.)p Black
33 w Gg(First)h(we)e(notice)j(that)f(whene)n(v)o(er)g
F6(j)p Ga(M)10 b F6(j)2461 1227 y Fu(S)2533 1260 y Gg(does)30
b(not)g(introduce)i Ga(a)p Gg(,)e(then)277 1373 y(the)d(substitution)j
F4([)p 891 1373 28 4 v 909 1373 V 926 1373 V 64 w(])c
Gg(is)g(pushed)i(inside)g(the)f(subterms)h(and)e(the)h(lemma)f(is)g(by)
h(routine)h(induction)277 1486 y(and)h(calculation.)47
b(So)28 b(we)g(are)h(left)g(with)f(the)h(cases)h(where)e
F6(j)p Ga(M)10 b F6(j)2392 1453 y Fu(S)2464 1486 y Gg(introduces)32
b Ga(a)p Gg(.)43 b(If)28 b Ga(M)38 b Gg(is)29 b(of)f(the)277
1599 y(form)c FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))p
Gg(,)23 b(we)g(reason)i(as)e(follo)n(ws.)p Black 277
1860 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25 b FL(Id)p
F4(\()p Ga(y)s(;)15 b(a)p F4(\))675 2024 y F6(j)p FL(Id)p
F4(\()p Ga(y)s(;)g(a)p F4(\))p F6(j)1003 1991 y Fu(S)1048
2024 y F4([)p Ga(a)25 b F4(:=)1268 2012 y F9(\()1295
2024 y Ga(x)1347 2012 y F9(\))1374 2024 y F6(j)p Ga(N)10
b F6(j)1507 1991 y Fu(S)1551 2024 y F4(])504 2142 y(=)100
b FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)27
b F4(:=)1204 2130 y F9(\()1231 2142 y Ga(x)1283 2130
y F9(\))1311 2142 y F6(j)p Ga(N)10 b F6(j)1444 2109 y
Fu(S)1488 2142 y F4(])1490 b Gg(by)24 b(\(1\))f(of)h
F6(j)p 3371 2142 V 3389 2142 V 3406 2142 V 65 w(j)3459
2109 y Fu(S)504 2261 y F4(=)100 b F6(j)p Ga(N)10 b F6(j)808
2228 y Fu(S)852 2261 y F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])504
2379 y F6(\021)100 b(j)p Ga(N)10 b F4([)p Ga(x)g F6(7!)g
Ga(y)s F4(])p F6(j)1069 2346 y Fu(S)504 2498 y F4(=)100
b F6(j)p FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))p Fs(\()-5
b Ga(a)25 b F4(:=)1199 2486 y F9(\()1227 2498 y Ga(x)1279
2486 y F9(\))1306 2498 y Ga(N)s Fs(\))p F6(j)1439 2465
y Fu(S)3032 2498 y Gg(by)f(\(2\))f(of)h Fs(\()p 3407
2498 V 3425 2498 V 3442 2498 V 65 w(\))277 2769 y Gg(F)o(or)j(the)g
(other)i(cases)f(we)e(illustrate)k(the)e(calculations)j(with)c(one)h(e)
o(xample.)41 b(Let)26 b F4([)p Ga(\033)s F4(])3041 2736
y Fu(S)3112 2769 y Gg(and)i Fs(\()p Ga(\033)s Fs(\))f
Gg(be)277 2882 y F4([)p Ga(a)f F4(:=)497 2870 y F9(\()524
2882 y Ga(x)576 2870 y F9(\))604 2882 y F6(j)p Ga(N)10
b F6(j)737 2849 y Fu(S)781 2882 y F4(])23 b Gg(and)h
Fs(\()-7 b Ga(a)25 b F4(:=)1202 2870 y F9(\()1230 2882
y Ga(x)1282 2870 y F9(\))1309 2882 y Ga(N)s Fs(\))q Gg(,)d(respecti)n
(v)o(ely)-6 b(.)p Black 277 3142 a Gb(Case)p Black 46
w Ga(M)36 b F6(\021)25 b FL(And)883 3156 y Gc(I)923 3142
y F4(\()958 3130 y FX(h)986 3142 y Ga(c)1025 3130 y FX(i)1053
3142 y Ga(S)5 b(;)1154 3130 y FX(h)1182 3142 y Ga(b)1221
3130 y FX(i)1248 3142 y Ga(T)13 b(;)i(a)p F4(\))675 3306
y F6(j)p FL(And)855 3320 y Gc(I)894 3306 y F4(\()929
3294 y FX(h)957 3306 y Ga(c)996 3294 y FX(i)1024 3306
y Ga(S)5 b(;)1125 3294 y FX(h)1153 3306 y Ga(b)1192 3294
y FX(i)1219 3306 y Ga(T)13 b(;)i(a)p F4(\))p F6(j)1433
3273 y Fu(S)1478 3306 y F4([)p Ga(\033)s F4(])1583 3273
y Fu(S)504 3425 y F4(=)100 b FL(And)829 3439 y Gc(R)887
3425 y F4(\()922 3413 y FX(h)950 3425 y Ga(c)989 3413
y FX(i)1017 3425 y F6(j)p Ga(S)5 b F6(j)1128 3392 y Fu(S)1171
3425 y Ga(;)1211 3413 y FX(h)1239 3425 y Ga(b)1278 3413
y FX(i)1306 3425 y F6(j)p Ga(T)13 b F6(j)1422 3392 y
Fu(S)1465 3425 y Ga(;)i(a)p F4(\)[)p Ga(\033)s F4(])1693
3392 y Fu(S)3003 3425 y Gg(by)24 b(\(3\))f(of)h F6(j)p
3371 3425 V 3389 3425 V 3406 3425 V 65 w(j)3459 3392
y Fu(S)504 3543 y F4(=)100 b FL(Cut)p F4(\()848 3531
y FX(h)875 3543 y Ga(a)923 3531 y FX(i)951 3543 y FL(And)1105
3557 y Gc(R)1163 3543 y F4(\()1198 3531 y FX(h)1226 3543
y Ga(c)1265 3531 y FX(i)1293 3543 y F6(j)p Ga(S)5 b F6(j)1404
3510 y Fu(S)1448 3543 y F4([)p Ga(\033)s F4(])1553 3510
y Fu(S)1597 3543 y Ga(;)1637 3531 y FX(h)1665 3543 y
Ga(b)1704 3531 y FX(i)1731 3543 y F6(j)p Ga(T)13 b F6(j)1847
3510 y Fu(S)1891 3543 y F4([)p Ga(\033)s F4(])1996 3510
y Fu(S)2040 3543 y Ga(;)i(a)p F4(\))p Ga(;)2203 3531
y F9(\()2231 3543 y Ga(x)2283 3531 y F9(\))2311 3543
y F6(j)p Ga(N)10 b F6(j)2444 3510 y Fu(S)2488 3543 y
F4(\))504 3662 y F6(\021)100 b FL(Cut)p F4(\()848 3650
y FX(h)875 3662 y Ga(a)923 3650 y FX(i)951 3662 y FL(And)1105
3676 y Gc(R)1163 3662 y F4(\()1198 3650 y FX(h)1226 3662
y Ga(c)1265 3650 y FX(i)1293 3662 y F6(j)p Ga(S)5 b Fs(\()p
Ga(\033)s Fs(\))q F6(j)1524 3629 y Fu(S)1568 3662 y Ga(;)1608
3650 y FX(h)1636 3662 y Ga(b)1675 3650 y FX(i)1702 3662
y F6(j)p Ga(T)13 b Fs(\()q Ga(\033)s Fs(\))p F6(j)1938
3629 y Fu(S)1982 3662 y Ga(;)i(a)p F4(\))q Ga(;)2146
3650 y F9(\()2173 3662 y Ga(x)2225 3650 y F9(\))2253
3662 y F6(j)p Ga(N)10 b F6(j)2386 3629 y Fu(S)2430 3662
y F4(\))828 b Gg(by)23 b(IH)504 3780 y F4(=)100 b F6(j)p
FL(Subst)o F4(\()947 3768 y FX(h)975 3780 y Ga(a)1023
3768 y FX(i)1050 3780 y FL(And)1205 3794 y Gc(I)1245
3780 y F4(\()1280 3768 y FX(h)1308 3780 y Ga(c)1347 3768
y FX(i)1374 3780 y Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q
Ga(;)1596 3768 y FX(h)1623 3780 y Ga(b)1662 3768 y FX(i)1690
3780 y Ga(T)13 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)i(a)p
F4(\))q Ga(;)2040 3768 y F9(\()2067 3780 y Ga(x)2119
3768 y F9(\))2147 3780 y Ga(N)10 b F4(\))p F6(j)2290
3747 y Fu(S)2935 3780 y Gg(by)23 b(\(2,3\))h(of)g F6(j)p
3371 3780 V 3389 3780 V 3406 3780 V 65 w(j)3459 3747
y Fu(S)504 3899 y F4(=)100 b F6(j)p FL(And)855 3913 y
Gc(I)894 3899 y F4(\()929 3887 y FX(h)957 3899 y Ga(c)996
3887 y FX(i)1024 3899 y Ga(S)5 b(;)1125 3887 y FX(h)1153
3899 y Ga(b)1192 3887 y FX(i)1219 3899 y Ga(T)13 b(;)i(a)p
F4(\))p Fs(\()q Ga(\033)s Fs(\))q F6(j)1554 3866 y Fu(S)3032
3899 y Gg(by)24 b(\(3\))f(of)h Fs(\()p 3407 3899 V 3425
3899 V 3442 3899 V 65 w(\))p 3436 4004 4 62 v 3440 3946
55 4 v 3440 4004 V 3494 4004 4 62 v Black 277 4217 a
Gb(Pr)n(oof)c(of)f(Lemma)f(3.4.2.)p Black 33 w Gg(Again,)i(whene)n(v)o
(er)g F6(j)p Ga(M)10 b F6(j)1938 4184 y Fu(S)2000 4217
y Gg(does)19 b(not)h(introduce)h Ga(x)p Gg(,)e(then)h(the)f
(substitution)277 4330 y F4([)p 304 4330 28 4 v 322 4330
V 340 4330 V 65 w(])24 b Gg(is)h(pushed)i(inside)g(the)e(subterms)i
(and)e(the)h(lemma)e(is)h(by)g(routine)i(induction)h(and)e
(calculation.)277 4443 y(So)g(we)f(are)i(left)g(with)f(the)h(cases)g
(where)g F6(j)p Ga(M)10 b F6(j)1751 4410 y Fu(S)1820
4443 y Gg(introduces)30 b Ga(x)p Gg(.)36 b(If)26 b Ga(M)36
b Gg(is)26 b(of)h(the)f(form)h FL(Id)p F4(\()p Ga(x;)15
b(b)p F4(\))p Gg(,)27 b(we)277 4555 y(reason)e(as)f(follo)n(ws.)p
Black 277 4785 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25
b FL(Id)p F4(\()p Ga(x;)15 b(b)p F4(\))675 4945 y F6(j)p
FL(Id)p F4(\()p Ga(x;)g(b)p F4(\))p F6(j)998 4912 y Fu(S)1043
4945 y F4([)p Ga(x)25 b F4(:=)1267 4933 y FX(h)1294 4945
y Ga(a)1342 4933 y FX(i)1370 4945 y F6(j)p Ga(N)10 b
F6(j)1503 4912 y Fu(S)1546 4945 y F4(])504 5058 y(=)100
b FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\)[)p Ga(x)27 b F4(:=)1203
5046 y FX(h)1230 5058 y Ga(a)1278 5046 y FX(i)1306 5058
y F6(j)p Ga(N)10 b F6(j)1439 5025 y Fu(S)1483 5058 y
F4(])1495 b Gg(by)24 b(\(1\))f(of)h F6(j)p 3371 5058
V 3389 5058 V 3406 5058 V 65 w(j)3459 5025 y Fu(S)504
5171 y F4(=)100 b F6(j)p Ga(N)10 b F6(j)808 5138 y Fu(S)852
5171 y F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])504 5284 y F6(\021)100
b(j)p Ga(N)10 b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p F6(j)1056
5251 y Fu(S)504 5397 y F4(=)100 b F6(j)p FL(Id)p F4(\()p
Ga(x;)15 b(b)p F4(\))p Fs(\()-5 b Ga(x)25 b F4(:=)1198
5385 y FX(h)1226 5397 y Ga(a)1274 5385 y FX(i)1301 5397
y Ga(N)s Fs(\))p F6(j)1434 5364 y Fu(S)3032 5397 y Gg(by)f(\(1\))f(of)h
Fs(\()p 3407 5397 V 3425 5397 V 3442 5397 V 65 w(\))p
Black Black eop end
%%Page: 162 174
TeXDict begin 162 173 bop Black -144 51 a Gb(162)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 321 388 a Gg(The)e(only)g(other)h(cases)g(which)f(need)h(to)e
(be)h(considered)j(are)d(where)g F6(j)p Ga(M)10 b F6(j)2659
355 y Fu(S)2724 388 y Gg(introduces)24 b Ga(x)d Gg(and)i(is)e(not)321
501 y(an)30 b(axiom.)49 b(W)-7 b(e)29 b(illustrate)j(the)e
(calculations)k(with)c Ga(M)47 b F6(\021)37 b FL(And)2421
464 y Gc(i)2421 524 y(E)2481 501 y F4(\()2516 489 y FX(h)2544
501 y Ga(b)2583 489 y FX(i)2610 501 y FL(Id)p F4(\()p
Ga(x;)15 b(b)p F4(\))q Ga(;)2924 489 y F9(\()2952 501
y Ga(y)3000 489 y F9(\))3028 501 y Ga(S)5 b F4(\))p Gg(.)47
b(There)30 b(are)321 614 y(tw)o(o)23 b(subcases)i(depending)h(on)d
(whether)h Ga(N)32 b Gg(is)22 b(an)h(axiom)h(that)f(introduces)j
Ga(a)p Gg(.)i(Let)22 b F4([)p Ga(\033)s F4(])3099 581
y Fu(S)3165 614 y Gg(and)h Fs(\()q Ga(\033)s Fs(\))g
Gg(be)321 727 y F4([)p Ga(x)j F4(:=)545 715 y FX(h)572
727 y Ga(a)620 715 y FX(i)648 727 y F6(j)p Ga(N)10 b
F6(j)781 694 y Fu(S)825 727 y F4(])23 b Gg(and)h Fs(\()-7
b Ga(x)25 b F4(:=)1251 715 y FX(h)1278 727 y Ga(a)1326
715 y FX(i)1353 727 y Ga(N)s Fs(\))q Gg(,)d(respecti)n(v)o(ely)-6
b(.)p Black 321 931 a Gb(Subcase)p Black 46 w Ga(M)35
b F6(\021)25 b FL(And)1054 894 y Gc(i)1054 954 y(E)1113
931 y F4(\()1148 919 y FX(h)1176 931 y Ga(b)1215 919
y FX(i)1243 931 y FL(Id)p F4(\()p Ga(x;)15 b(b)p F4(\))q
Ga(;)1557 919 y F9(\()1585 931 y Ga(y)1633 919 y F9(\))1660
931 y Ga(S)5 b F4(\))23 b Gg(and)h Ga(N)35 b F6(\021)25
b FL(Id)q F4(\()p Ga(z)t(;)15 b(a)p F4(\))794 1076 y
F6(j)p FL(And)973 1039 y Gc(i)973 1099 y(E)1033 1076
y F4(\()1068 1064 y FX(h)1096 1076 y Ga(b)1135 1064 y
FX(i)1162 1076 y FL(Id)q F4(\()p Ga(x;)g(b)p F4(\))q
Ga(;)1477 1064 y F9(\()1504 1076 y Ga(y)1552 1064 y F9(\))1580
1076 y Ga(S)5 b F4(\))p F6(j)1701 1043 y Fu(S)1745 1076
y F4([)p Ga(\033)s F4(])1850 1043 y Fu(S)648 1190 y F4(=)75
b FL(And)948 1154 y Gc(i)948 1214 y(L)1000 1190 y F4(\()1035
1178 y F9(\()1063 1190 y Ga(y)1111 1178 y F9(\))1138
1190 y F6(j)p Ga(S)5 b F6(j)1249 1157 y Fu(S)1293 1190
y Ga(;)15 b(x)p F4(\)[)p Ga(\033)s F4(])1525 1157 y Fu(S)3047
1190 y Gg(by)24 b(\(7\))f(of)h F6(j)p 3415 1190 28 4
v 3433 1190 V 3450 1190 V 65 w(j)3503 1157 y Fu(S)648
1305 y F4(=)75 b FL(Cut)p F4(\()967 1293 y FX(h)994 1305
y Ga(a)1042 1293 y FX(i)1070 1305 y F6(j)p FL(Id)p F4(\()p
Ga(z)t(;)15 b(a)p F4(\))p F6(j)1396 1272 y Fu(S)1441
1305 y Ga(;)1481 1293 y F9(\()1509 1305 y Ga(x)1561 1293
y F9(\))1589 1305 y FL(And)1743 1268 y Gc(i)1743 1328
y(L)1795 1305 y F4(\()1830 1293 y F9(\()1858 1305 y Ga(y)1906
1293 y F9(\))1933 1305 y F6(j)p Ga(S)5 b F6(j)2044 1272
y Fu(S)2088 1305 y F4([)p Ga(\033)s F4(])2193 1272 y
Fu(S)2237 1305 y Ga(;)15 b(x)p F4(\))q(\))619 b Gg(by)23
b(assumption)579 1383 y Gc(cut)549 1420 y F6(\000)-32
b(\000)h(!)731 1387 y FX(\003)794 1420 y FL(Cut)p F4(\()967
1408 y FX(h)994 1420 y Ga(a)1042 1408 y FX(i)1070 1420
y F6(j)p FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))p F6(j)1396
1387 y Fu(S)1441 1420 y Ga(;)1481 1408 y F9(\()1509 1420
y Ga(x)1561 1408 y F9(\))1589 1420 y FL(And)1743 1383
y Gc(i)1743 1443 y(L)1795 1420 y F4(\()1830 1408 y F9(\()1858
1420 y Ga(y)1906 1408 y F9(\))1933 1420 y F6(j)p Ga(S)5
b Fs(\()q Ga(\033)s Fs(\))q F6(j)2165 1387 y Fu(S)2208
1420 y Ga(;)15 b(x)p F4(\))q(\))966 b Gg(by)23 b(IH)579
1497 y Gc(cut)549 1534 y F6(\000)-32 b(\000)h(!)75 b
FL(And)948 1497 y Gc(i)948 1557 y(L)1000 1534 y F4(\()1035
1522 y F9(\()1063 1534 y Ga(y)1111 1522 y F9(\))1138
1534 y F6(j)p Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q F6(j)1370
1501 y Fu(S)1413 1534 y Ga(;)15 b(x)p F4(\)[)p Ga(x)10
b F6(7!)g Ga(z)t F4(])648 1649 y F6(\021)75 b FL(And)948
1612 y Gc(i)948 1672 y(L)1000 1649 y F4(\()1035 1637
y F9(\()1063 1649 y Ga(y)1111 1637 y F9(\))1138 1649
y F6(j)p Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q F6(j)1370
1616 y Fu(S)1413 1649 y Ga(;)15 b(z)t F4(\))1350 b Ga(x)25
b F6(62)g Ga(F)13 b(N)d F4(\()p F6(j)p Ga(S)5 b Fs(\()q
Ga(\033)s Fs(\))p F6(j)3467 1616 y Fu(S)3511 1649 y F4(\))648
1764 y(=)75 b F6(j)p FL(And)973 1727 y Gc(i)973 1787
y(E)1033 1764 y F4(\()1068 1752 y FX(h)1096 1764 y Ga(a)1144
1752 y FX(i)1171 1764 y FL(Id)q F4(\()p Ga(z)t(;)15 b(a)p
F4(\))q Ga(;)1489 1752 y F9(\()1517 1764 y Ga(y)1565
1752 y F9(\))1592 1764 y Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))p
F4(\))p F6(j)1833 1731 y Fu(S)3047 1764 y Gg(by)24 b(\(7\))f(of)h
F6(j)p 3415 1764 V 3433 1764 V 3450 1764 V 65 w(j)3503
1731 y Fu(S)648 1878 y F4(=)75 b F6(j)p FL(And)973 1841
y Gc(i)973 1901 y(E)1033 1878 y F4(\()1068 1866 y FX(h)1096
1878 y Ga(b)1135 1866 y FX(i)1162 1878 y FL(Id)q F4(\()p
Ga(x;)15 b(b)p F4(\))q Ga(;)1477 1866 y F9(\()1504 1878
y Ga(y)1552 1866 y F9(\))1580 1878 y Ga(S)5 b F4(\))p
Fs(\()q Ga(\033)s Fs(\))p F6(j)1821 1845 y Fu(S)321 2073
y Gg(Otherwise)25 b(the)e(lemma)h(follo)n(ws)g(by)f(the)h(calculation)j
(gi)n(v)o(en)d(belo)n(w)-6 b(.)p Black 321 2277 a Gb(Subcase)p
Black 46 w Ga(M)35 b F6(\021)25 b FL(And)1054 2240 y
Gc(i)1054 2300 y(E)1113 2277 y F4(\()1148 2265 y FX(h)1176
2277 y Ga(b)1215 2265 y FX(i)1243 2277 y FL(Id)p F4(\()p
Ga(x;)15 b(b)p F4(\))q Ga(;)1557 2265 y F9(\()1585 2277
y Ga(y)1633 2265 y F9(\))1660 2277 y Ga(S)5 b F4(\))23
b Gg(and)h Ga(N)35 b F6(6\021)25 b FL(Id)q F4(\()p Ga(z)t(;)15
b(a)p F4(\))794 2422 y F6(j)p FL(And)973 2385 y Gc(i)973
2445 y(E)1033 2422 y F4(\()1068 2410 y FX(h)1096 2422
y Ga(b)1135 2410 y FX(i)1162 2422 y FL(Id)q F4(\()p Ga(x;)g(b)p
F4(\))q Ga(;)1477 2410 y F9(\()1504 2422 y Ga(y)1552
2410 y F9(\))1580 2422 y Ga(S)5 b F4(\))p F6(j)1701 2389
y Fu(S)1745 2422 y F4([)p Ga(\033)s F4(])1850 2389 y
Fu(S)648 2536 y F4(=)75 b FL(And)948 2500 y Gc(i)948
2560 y(L)1000 2536 y F4(\()1035 2524 y F9(\()1063 2536
y Ga(y)1111 2524 y F9(\))1138 2536 y F6(j)p Ga(S)5 b
F6(j)1249 2503 y Fu(S)1293 2536 y Ga(;)15 b(x)p F4(\)[)p
Ga(\033)s F4(])1525 2503 y Fu(S)3047 2536 y Gg(by)24
b(\(7\))f(of)h F6(j)p 3415 2536 V 3433 2536 V 3450 2536
V 65 w(j)3503 2503 y Fu(S)648 2651 y F4(=)75 b FL(Cut)p
F4(\()967 2639 y FX(h)994 2651 y Ga(a)1042 2639 y FX(i)1070
2651 y F6(j)p Ga(N)10 b F6(j)1203 2618 y Fu(S)1247 2651
y Ga(;)1287 2639 y F9(\()1315 2651 y Ga(x)1367 2639 y
F9(\))1394 2651 y FL(And)1548 2614 y Gc(i)1548 2674 y(L)1601
2651 y F4(\()1636 2639 y F9(\()1663 2651 y Ga(y)1711
2639 y F9(\))1739 2651 y F6(j)p Ga(S)5 b F6(j)1850 2618
y Fu(S)1894 2651 y F4([)p Ga(\033)s F4(])1999 2618 y
Fu(S)2043 2651 y Ga(;)15 b(x)p F4(\)\))814 b Gg(by)23
b(assumption)579 2729 y Gc(cut)549 2766 y F6(\000)-32
b(\000)h(!)731 2733 y FX(\003)794 2766 y FL(Cut)p F4(\()967
2754 y FX(h)994 2766 y Ga(a)1042 2754 y FX(i)1070 2766
y F6(j)p Ga(N)10 b F6(j)1203 2733 y Fu(S)1247 2766 y
Ga(;)1287 2754 y F9(\()1315 2766 y Ga(x)1367 2754 y F9(\))1394
2766 y FL(And)1548 2729 y Gc(i)1548 2789 y(L)1601 2766
y F4(\()1636 2754 y F9(\()1663 2766 y Ga(y)1711 2754
y F9(\))1739 2766 y F6(j)p Ga(S)5 b Fs(\()p Ga(\033)s
Fs(\))q F6(j)1970 2733 y Fu(S)2014 2766 y Ga(;)15 b(x)p
F4(\)\))1161 b Gg(by)23 b(IH)648 2880 y F4(=)75 b F6(j)p
FL(And)973 2843 y Gc(i)973 2903 y(E)1033 2880 y F4(\()1068
2868 y FX(h)1096 2880 y Ga(a)1144 2868 y FX(i)1171 2880
y Ga(N)10 b(;)1294 2868 y F9(\()1322 2880 y Ga(y)1370
2868 y F9(\))1397 2880 y Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q
F4(\))p F6(j)1639 2847 y Fu(S)3002 2880 y Gg(by)23 b(\(11\))h(of)g
F6(j)p 3415 2880 V 3433 2880 V 3450 2880 V 65 w(j)3503
2847 y Fu(S)648 2995 y F4(=)75 b F6(j)p FL(And)973 2958
y Gc(i)973 3018 y(E)1033 2995 y F4(\()1068 2983 y FX(h)1096
2995 y Ga(b)1135 2983 y FX(i)1162 2995 y FL(Id)q F4(\()p
Ga(x;)15 b(b)p F4(\))q Ga(;)1477 2983 y F9(\()1504 2995
y Ga(y)1552 2983 y F9(\))1580 2995 y Ga(S)5 b F4(\))p
Fs(\()q Ga(\033)s Fs(\))p F6(j)1821 2962 y Fu(S)p 3480
3098 4 62 v 3484 3040 55 4 v 3484 3098 V 3538 3098 4
62 v Black 321 3311 a Gb(Pr)n(oof)21 b(of)f(Lemma)f(3.4.3.)p
Black 34 w Gg(As)g(in)h(Lemma)g(3.4.1,)g(the)g(dif)n(\002cult)h(cases)h
(are)e(where)g F6(j)p Ga(M)10 b F6(j)3104 3278 y Fu(S)3168
3311 y Gg(introduces)321 3424 y Ga(a)p Gg(.)58 b(W)-7
b(e)32 b(illustrate)k(the)e(calculations)j(with)c(tw)o(o)g(e)o
(xamples.)59 b(Let)33 b Fs(^)p Ga(\033)s Fs(_)h Gg(and)g
F4([)p Ga(\033)s F4(])2923 3391 y Fu(S)2999 3424 y Gg(be)g(of)f(the)h
(form)321 3537 y Fs(^)q FL(And)508 3500 y Gc(i)508 3560
y(E)568 3537 y F4(\()603 3525 y FX(h)631 3537 y Ga(a)679
3525 y FX(i)p 708 3537 28 4 v 726 3537 V 743 3537 V 771
3537 a Ga(;)811 3525 y F9(\()839 3537 y Ga(x)891 3525
y F9(\))918 3537 y Ga(N)10 b F4(\))p Fs(_)23 b Gg(and)h
F4([)p Ga(a)i F4(:=)1465 3525 y F9(\()1493 3537 y Ga(z)1539
3525 y F9(\))1566 3537 y FL(And)1721 3500 y Gc(i)1721
3560 y(L)1773 3537 y F4(\()1808 3525 y F9(\()1836 3537
y Ga(x)1888 3525 y F9(\))1915 3537 y F6(j)p Ga(N)10 b
F6(j)2048 3504 y Fu(S)2092 3537 y Ga(;)15 b(z)t F4(\))q(])p
Gg(,)23 b(respecti)n(v)o(ely)-6 b(.)p Black 321 3740
a Gb(Case)p Black 47 w Ga(M)35 b F6(\021)25 b FL(Id)p
F4(\()p Ga(y)s(;)15 b(a)p F4(\))662 3887 y F6(j)p FL(Id)p
F4(\()p Ga(y)s(;)g(a)p F4(\))p F6(j)990 3854 y Fu(S)1035
3887 y F4([)p Ga(\033)s F4(])1140 3854 y Fu(S)549 4006
y F4(=)42 b FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p
Ga(a)27 b F4(:=)1191 3994 y F9(\()1219 4006 y Ga(z)1265
3994 y F9(\))1292 4006 y FL(And)1447 3969 y Gc(i)1447
4029 y(L)1499 4006 y F4(\()1534 3994 y F9(\()1562 4006
y Ga(x)1614 3994 y F9(\))1641 4006 y F6(j)p Ga(N)10 b
F6(j)1774 3973 y Fu(S)1818 4006 y Ga(;)15 b(z)t F4(\))q(])1082
b Gg(by)24 b(\(1\))f(of)h F6(j)p 3415 4006 V 3433 4006
V 3450 4006 V 65 w(j)3503 3973 y Fu(S)549 4125 y F4(=)42
b FL(And)816 4088 y Gc(i)816 4148 y(L)869 4125 y F4(\()904
4113 y F9(\()931 4125 y Ga(x)983 4113 y F9(\))1011 4125
y F6(j)p Ga(N)10 b F6(j)1144 4092 y Fu(S)1188 4125 y
Ga(;)15 b(y)s F4(\))1019 b Gg(by)24 b(assumption)i Ga(z)j
F6(62)c Ga(F)13 b(N)d F4(\()3227 4113 y F9(\()3255 4125
y Ga(x)3307 4113 y F9(\))3334 4125 y F6(j)p Ga(N)g F6(j)3467
4092 y Fu(S)3511 4125 y F4(\))549 4243 y(=)42 b F6(j)p
FL(And)842 4206 y Gc(i)842 4266 y(E)901 4243 y F4(\()936
4231 y FX(h)964 4243 y Ga(a)1012 4231 y FX(i)1039 4243
y FL(Id)q F4(\()p Ga(y)s(;)15 b(a)p F4(\))q Ga(;)1359
4231 y F9(\()1387 4243 y Ga(x)1439 4231 y F9(\))1466
4243 y Ga(N)10 b F4(\))p F6(j)1609 4210 y Fu(S)549 4362
y F4(=)42 b F6(j)p FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p
F4(\))p Fs(^)r Ga(\033)s Fs(_)p F6(j)1111 4329 y Fu(S)3076
4362 y Gg(by)24 b(\(1\))f(of)h Fs(^)p 3451 4362 V 3469
4362 V 3487 4362 V 65 w(_)p Black 321 4540 a Gb(Case)p
Black 47 w Ga(M)35 b F6(\021)25 b FL(And)927 4554 y Gc(I)967
4540 y F4(\()1002 4528 y FX(h)1030 4540 y Ga(c)1069 4528
y FX(i)1097 4540 y Ga(S)5 b(;)1198 4528 y FX(h)1226 4540
y Ga(d)1273 4528 y FX(i)1301 4540 y Ga(T)12 b(;)j(a)p
F4(\))662 4687 y F6(j)p FL(And)842 4701 y Gc(I)882 4687
y F4(\()917 4675 y FX(h)944 4687 y Ga(c)983 4675 y FX(i)1011
4687 y F6(j)p Ga(S)5 b F6(j)1122 4654 y Fu(S)1166 4687
y Ga(;)1206 4675 y FX(h)1234 4687 y Ga(d)1281 4675 y
FX(i)1309 4687 y F6(j)p Ga(T)13 b F6(j)1425 4654 y Fu(S)1468
4687 y Ga(;)i(a)p F4(\))p F6(j)1616 4654 y Fu(S)1661
4687 y F4([)p Ga(\033)s F4(])1766 4654 y Fu(S)549 4806
y F4(=)42 b FL(And)816 4820 y Gc(R)874 4806 y F4(\()909
4794 y FX(h)937 4806 y Ga(c)976 4794 y FX(i)1004 4806
y F6(j)p Ga(S)5 b F6(j)1115 4773 y Fu(S)1158 4806 y Ga(;)1198
4794 y FX(h)1226 4806 y Ga(d)1273 4794 y FX(i)1301 4806
y F6(j)p Ga(T)13 b F6(j)1417 4773 y Fu(S)1461 4806 y
Ga(;)i(a)p F4(\)[)p Ga(\033)s F4(])1689 4773 y Fu(S)3047
4806 y Gg(by)24 b(\(3\))f(of)h F6(j)p 3415 4806 V 3433
4806 V 3450 4806 V 65 w(j)3503 4773 y Fu(S)549 4924 y
F4(=)42 b FL(Cut)p F4(\()835 4912 y FX(h)862 4924 y Ga(a)910
4912 y FX(i)938 4924 y FL(And)1093 4938 y Gc(R)1150 4924
y F4(\()1185 4912 y FX(h)1213 4924 y Ga(c)1252 4912 y
FX(i)1280 4924 y F6(j)p Ga(S)5 b F6(j)1391 4891 y Fu(S)1435
4924 y F4([)p Ga(\033)s F4(])1540 4891 y Fu(S)1584 4924
y Ga(;)1624 4912 y FX(h)1652 4924 y Ga(d)1699 4912 y
FX(i)1726 4924 y F6(j)p Ga(T)13 b F6(j)1842 4891 y Fu(S)1886
4924 y F4([)p Ga(\033)s F4(])1991 4891 y Fu(S)2035 4924
y Ga(;)i(a)p F4(\))q Ga(;)2199 4912 y F9(\()2227 4924
y Ga(z)2273 4912 y F9(\))2300 4924 y FL(And)2455 4887
y Gc(i)2455 4947 y(L)2507 4924 y F4(\()2542 4912 y F9(\()2570
4924 y Ga(x)2622 4912 y F9(\))2649 4924 y F6(j)p Ga(N)10
b F6(j)2782 4891 y Fu(S)2826 4924 y Ga(;)15 b(z)t F4(\))q(\))549
5043 y F6(\021)42 b FL(Cut)p F4(\()835 5031 y FX(h)862
5043 y Ga(a)910 5031 y FX(i)938 5043 y FL(And)1093 5057
y Gc(R)1150 5043 y F4(\()1185 5031 y FX(h)1213 5043 y
Ga(c)1252 5031 y FX(i)1280 5043 y F6(j)p Ga(S)5 b Fs(^)q
Ga(\033)s Fs(_)p F6(j)1511 5010 y Fu(S)1555 5043 y Ga(;)1595
5031 y FX(h)1623 5043 y Ga(d)1670 5031 y FX(i)1697 5043
y F6(j)p Ga(T)13 b Fs(^)q Ga(\033)s Fs(_)q F6(j)1934
5010 y Fu(S)1977 5043 y Ga(;)i(a)p F4(\))q Ga(;)2141
5031 y F9(\()2169 5043 y Ga(z)2215 5031 y F9(\))2243
5043 y FL(And)2397 5006 y Gc(i)2397 5066 y(L)2449 5043
y F4(\()2484 5031 y F9(\()2512 5043 y Ga(x)2564 5031
y F9(\))2591 5043 y F6(j)p Ga(N)10 b F6(j)2724 5010 y
Fu(S)2768 5043 y Ga(;)15 b(z)t F4(\))q(\))412 b Gg(by)23
b(IH)549 5161 y F4(=)42 b F6(j)p FL(And)842 5124 y Gc(i)842
5184 y(E)901 5161 y F4(\()936 5149 y FX(h)964 5161 y
Ga(a)1012 5149 y FX(i)1039 5161 y FL(And)1194 5175 y
Gc(I)1234 5161 y F4(\()1269 5149 y FX(h)1297 5161 y Ga(c)1336
5149 y FX(i)1364 5161 y Ga(S)5 b Fs(^)p Ga(\033)s Fs(_)q
Ga(;)1585 5149 y FX(h)1613 5161 y Ga(d)1660 5149 y FX(i)1687
5161 y Ga(T)13 b Fs(^)p Ga(\033)s Fs(_)q Ga(;)i(a)p F4(\))q
Ga(;)2037 5149 y F9(\()2065 5161 y Ga(x)2117 5149 y F9(\))2144
5161 y Ga(N)10 b F4(\))p F6(j)2287 5128 y Fu(S)2933 5161
y Gg(by)24 b(\(2,11\))g(of)g F6(j)p 3415 5161 V 3433
5161 V 3450 5161 V 65 w(j)3503 5128 y Fu(S)549 5280 y
F4(=)42 b F6(j)p FL(And)842 5294 y Gc(I)882 5280 y F4(\()917
5268 y FX(h)944 5280 y Ga(c)983 5268 y FX(i)1011 5280
y Ga(S)5 b(;)1112 5268 y FX(h)1140 5280 y Ga(d)1187 5268
y FX(i)1215 5280 y Ga(T)12 b(;)j(a)p F4(\))p Fs(^)r Ga(\033)s
Fs(_)p F6(j)1549 5247 y Fu(S)3076 5280 y Gg(by)24 b(\(2\))f(of)h
Fs(^)p 3451 5280 V 3469 5280 V 3487 5280 V 65 w(_)p 3480
5385 4 62 v 3484 5327 55 4 v 3484 5385 V 3538 5385 4
62 v Black Black eop end
%%Page: 163 175
TeXDict begin 163 174 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
(Chapter)f(3)2639 b(163)p 277 88 3691 4 v Black Black
277 388 a(Pr)n(oof)24 b(of)g(Theor)n(em)f(3.4.4.)p Black
34 w Gg(W)-7 b(e)23 b(gi)n(v)o(e)g(some)h(illustrati)n(v)o(e)i(e)o
(xamples.)p Black 277 612 a Gb(Beta-Reduction:)p Black
410 748 a FL(Imp)554 770 y Gc(E)614 748 y F4(\()649 736
y FX(h)677 748 y Ga(b)716 736 y FX(i)743 748 y FL(Imp)888
770 y Gc(I)928 748 y F4(\()963 736 y F9(\()990 748 y
Ga(x)1042 736 y F9(\))q FX(h)1097 748 y Ga(a)1145 736
y FX(i)1173 748 y Ga(M)10 b(;)15 b(b)p F4(\))q Ga(;)1426
736 y FX(h)1453 748 y Ga(c)1492 736 y FX(i)1520 748 y
Ga(N)10 b(;)1643 736 y F9(\()1671 748 y Ga(y)1719 736
y F9(\))1746 748 y Ga(P)j F4(\))1940 711 y Gc(\014)1876
748 y F6(\000)-31 b(\000)g(!)23 b FL(Subst)o F4(\()2317
736 y FX(h)2345 748 y Ga(c)2384 736 y FX(i)2412 748 y
Ga(N)10 b(;)2535 736 y F9(\()2563 748 y Ga(x)2615 736
y F9(\))2642 748 y FL(Subst)o F4(\()2889 736 y FX(h)2917
748 y Ga(a)2965 736 y FX(i)2992 748 y Ga(M)h(;)3131 736
y F9(\()3158 748 y Ga(y)3206 736 y F9(\))3234 748 y Ga(P)i
F4(\)\))698 920 y F6(j)p FL(Imp)868 942 y Gc(E)928 920
y F4(\()963 908 y FX(h)990 920 y Ga(b)1029 908 y FX(i)1057
920 y FL(Imp)1201 942 y Gc(I)1241 920 y F4(\()1276 908
y F9(\()1304 920 y Ga(x)1356 908 y F9(\))p FX(h)1411
920 y Ga(a)1459 908 y FX(i)1486 920 y Ga(M)d(;)15 b(b)p
F4(\))q Ga(;)1739 908 y FX(h)1767 920 y Ga(c)1806 908
y FX(i)1834 920 y Ga(N)10 b(;)1957 908 y F9(\()1985 920
y Ga(y)2033 908 y F9(\))2060 920 y Ga(P)j F4(\))p F6(j)2191
887 y Fu(S)604 1039 y F4(=)23 b FL(Cut)p F4(\()871 1027
y FX(h)899 1039 y Ga(b)938 1027 y FX(i)965 1039 y FL(Imp)1110
1061 y Gc(R)1168 1039 y F4(\()1203 1027 y F9(\()1230
1039 y Ga(x)1282 1027 y F9(\))q FX(h)1337 1039 y Ga(a)1385
1027 y FX(i)1413 1039 y F6(j)p Ga(M)10 b F6(j)1561 1006
y Fu(S)1605 1039 y Ga(;)15 b(b)p F4(\))p Ga(;)1759 1027
y F9(\()1787 1039 y Ga(z)1833 1027 y F9(\))1861 1039
y FL(Imp)2005 1061 y Gc(L)2058 1039 y F4(\()2093 1027
y FX(h)2120 1039 y Ga(c)2159 1027 y FX(i)2187 1039 y
F6(j)p Ga(N)10 b F6(j)2320 1006 y Fu(S)2364 1039 y Ga(;)2404
1027 y F9(\()2432 1039 y Ga(y)2480 1027 y F9(\))2507
1039 y F6(j)p Ga(P)j F6(j)2628 1006 y Fu(S)2672 1039
y Ga(;)i(z)t F4(\))q(\))60 b Gg(by)24 b(\(5,13\))g(of)g
F6(j)p 3371 1039 28 4 v 3389 1039 V 3406 1039 V 65 w(j)3459
1006 y Fu(S)535 1120 y Gc(cut)504 1157 y F6(\000)-31
b(\000)g(!)23 b FL(Cut)p F4(\()871 1145 y FX(h)899 1157
y Ga(c)938 1145 y FX(i)966 1157 y F6(j)p Ga(N)10 b F6(j)1099
1124 y Fu(S)1143 1157 y Ga(;)1183 1145 y F9(\()1210 1157
y Ga(x)1262 1145 y F9(\))1290 1157 y FL(Cut)p F4(\()1463
1145 y FX(h)1490 1157 y Ga(a)1538 1145 y FX(i)1566 1157
y F6(j)p Ga(M)g F6(j)1714 1124 y Fu(S)1758 1157 y Ga(;)1798
1145 y F9(\()1826 1157 y Ga(y)1874 1145 y F9(\))1901
1157 y F6(j)p Ga(P)j F6(j)2022 1124 y Fu(S)2066 1157
y F4(\)\))1575 1276 y Ga(z)27 b Gg(is)d(freshly)h(introduced)i(by)c
(side-condition)28 b(\(13\))c(of)g F6(j)p 3371 1276 V
3389 1276 V 3406 1276 V 65 w(j)3459 1243 y Fu(S)2232
1394 y Gg(and)g Ga(b)f Gg(is)h(freshly)h(introduced)h(by)3396
1357 y Gc(\014)3332 1394 y F6(\000)-31 b(\000)f(!)604
1513 y F4(=)23 b F6(j)p FL(Subst)p F4(\()971 1501 y FX(h)998
1513 y Ga(c)1037 1501 y FX(i)1065 1513 y Ga(N)10 b(;)1188
1501 y F9(\()1216 1513 y Ga(x)1268 1501 y F9(\))1295
1513 y FL(Subst)p F4(\()1543 1501 y FX(h)1570 1513 y
Ga(a)1618 1501 y FX(i)1646 1513 y Ga(M)g(;)1784 1501
y F9(\()1812 1513 y Ga(y)1860 1501 y F9(\))1887 1513
y Ga(P)j F4(\)\))p F6(j)2053 1480 y Fu(S)3003 1513 y
Gg(by)24 b(\(2\))f(of)h F6(j)p 3371 1513 V 3389 1513
V 3406 1513 V 65 w(j)3459 1480 y Fu(S)p Black 277 1713
a Gb(Commuting)e(Reduction:)p Black 504 1850 a FL(And)659
1813 y Gc(i)659 1873 y(E)719 1850 y F4(\()754 1838 y
FX(h)781 1850 y Ga(a)829 1838 y FX(i)857 1850 y Ga(M)10
b(;)995 1838 y F9(\()1023 1850 y Ga(x)1075 1838 y F9(\))1102
1850 y Ga(N)g F4(\))1311 1813 y Gc(\015)1246 1850 y F6(\000)-31
b(\000)f(!)25 b Ga(M)10 b Fs(^)q FL(And)1726 1813 y Gc(i)1726
1873 y(E)1786 1850 y F4(\()1821 1838 y FX(h)1849 1850
y Ga(a)1897 1838 y FX(i)p 1926 1850 V 1944 1850 V 1962
1850 V 1989 1850 a Ga(;)2029 1838 y F9(\()2057 1850 y
Ga(x)2109 1838 y F9(\))2136 1850 y Ga(N)g F4(\))p Fs(_)717
2011 y F6(j)p FL(And)897 1974 y Gc(i)897 2034 y(E)957
2011 y F4(\()992 1999 y FX(h)1019 2011 y Ga(a)1067 1999
y FX(i)1095 2011 y Ga(M)g(;)1233 1999 y F9(\()1261 2011
y Ga(x)1313 1999 y F9(\))1340 2011 y Ga(N)g F4(\))p F6(j)1483
1978 y Fu(S)604 2130 y F4(=)42 b FL(Cut)p F4(\()890 2118
y FX(h)918 2130 y Ga(a)966 2118 y FX(i)993 2130 y F6(j)p
Ga(M)10 b F6(j)1141 2097 y Fu(S)1185 2130 y Ga(;)1225
2118 y F9(\()1253 2130 y Ga(z)1299 2118 y F9(\))1327
2130 y FL(And)1481 2093 y Gc(i)1481 2153 y(L)1534 2130
y F4(\()1569 2118 y F9(\()1596 2130 y Ga(x)1648 2118
y F9(\))1676 2130 y F6(j)p Ga(N)g F6(j)1809 2097 y Fu(S)1853
2130 y Ga(;)15 b(z)t F4(\))q(\))947 b Gg(by)24 b(\(11\))g(of)g
F6(j)p 3371 2130 V 3389 2130 V 3406 2130 V 65 w(j)3459
2097 y Fu(S)535 2211 y Gc(cut)504 2248 y F6(\000)-31
b(\000)g(!)42 b(j)p Ga(M)10 b F6(j)865 2215 y Fu(S)909
2248 y F4([)p Ga(a)26 b F4(:=)1129 2236 y F9(\()1156
2248 y Ga(z)1202 2236 y F9(\))1230 2248 y FL(And)1385
2211 y Gc(i)1385 2271 y(L)1437 2248 y F4(\()1472 2236
y F9(\()1500 2248 y Ga(x)1552 2236 y F9(\))1579 2248
y F6(j)p Ga(N)10 b F6(j)1712 2215 y Fu(S)1756 2248 y
Ga(;)15 b(z)t F4(\))q(])335 b Ga(a)23 b Gg(is)h(not)g(freshly)h
(introduced)h(by)3397 2211 y Gc(\015)3332 2248 y F6(\000)-31
b(\000)f(!)604 2367 y(\021)42 b(j)p Ga(M)10 b Fs(^)q
FL(And)1028 2330 y Gc(i)1028 2390 y(E)1087 2367 y F4(\()1122
2355 y FX(h)1150 2367 y Ga(a)1198 2355 y FX(i)p 1228
2367 V 1245 2367 V 1263 2367 V 1290 2367 a Ga(;)1330
2355 y F9(\()1358 2367 y Ga(x)1410 2355 y F9(\))1437
2367 y Ga(N)g F4(\))p Fs(_)q F6(j)1613 2334 y Fu(S)2906
2367 y Gg(by)24 b(Lemma)e(3.4.3)p Black 277 2567 a Gb(Substitution)h
(Elimination:)p Black 504 2704 a FL(Subst)p F4(\()752
2692 y FX(h)779 2704 y Ga(a)827 2692 y FX(i)855 2704
y Ga(M)10 b(;)993 2692 y F9(\()1021 2704 y Ga(x)1073
2692 y F9(\))1100 2704 y Ga(N)g F4(\))1382 2667 y Gc(\033)1318
2704 y F6(\000)-31 b(\000)f(!)100 b Ga(M)10 b Fs(\()-7
b Ga(a)26 b F4(:=)1906 2692 y F9(\()1933 2704 y Ga(x)1985
2692 y F9(\))2013 2704 y Ga(N)s Fs(\))717 2880 y F6(j)p
FL(Subst)p F4(\()990 2868 y FX(h)1017 2880 y Ga(a)1065
2868 y FX(i)1093 2880 y Ga(M)10 b(;)1231 2868 y F9(\()1259
2880 y Ga(x)1311 2868 y F9(\))1338 2880 y Ga(N)g F4(\))p
F6(j)1481 2847 y Fu(S)604 3004 y F4(=)42 b FL(Cut)p F4(\()890
2992 y FX(h)918 3004 y Ga(a)966 2992 y FX(i)993 3004
y F6(j)p Ga(M)10 b F6(j)1141 2971 y Fu(S)1185 3004 y
Ga(;)1225 2992 y F9(\()1253 3004 y Ga(x)1305 2992 y F9(\))1333
3004 y F6(j)p Ga(N)g F6(j)1466 2971 y Fu(S)1509 3004
y F4(\))1459 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3371 3004
V 3389 3004 V 3406 3004 V 65 w(j)3459 2971 y Fu(S)535
3091 y Gc(cut)504 3128 y F6(\000)-31 b(\000)g(!)42 b(j)p
Ga(M)10 b F6(j)865 3095 y Fu(S)909 3128 y F4([)p Ga(a)26
b F4(:=)1129 3116 y F9(\()1156 3128 y Ga(x)1208 3116
y F9(\))1236 3128 y F6(j)p Ga(N)10 b F6(j)1369 3095 y
Fu(S)1413 3128 y F4(])800 b Ga(a)23 b Gg(is)h(not)g(freshly)h
(introduced)h(by)3396 3091 y Gc(\033)3332 3128 y F6(\000)-31
b(\000)f(!)604 3252 y(\021)42 b(j)p Ga(M)10 b Fs(\()-6
b Ga(a)25 b F4(:=)1060 3240 y F9(\()1088 3252 y Ga(x)1140
3240 y F9(\))1167 3252 y Ga(N)s Fs(\))q F6(j)1301 3219
y Fu(S)2906 3252 y Gg(by)f(Lemma)e(3.4.1)504 3424 y FL(Subst)p
F4(\()752 3412 y FX(h)779 3424 y Ga(a)827 3412 y FX(i)855
3424 y Ga(M)10 b(;)993 3412 y F9(\()1021 3424 y Ga(x)1073
3412 y F9(\))1100 3424 y Ga(N)g F4(\))1382 3387 y Gc(\033)1318
3424 y F6(\000)-31 b(\000)f(!)100 b Ga(N)10 b Fs(\()-7
b Ga(x)26 b F4(:=)1895 3412 y FX(h)1922 3424 y Ga(a)1970
3412 y FX(i)1998 3424 y Ga(M)s Fs(\))741 3600 y F6(j)p
FL(Subst)p F4(\()1014 3588 y FX(h)1042 3600 y Ga(a)1090
3588 y FX(i)1117 3600 y Ga(M)10 b(;)1255 3588 y F9(\()1283
3600 y Ga(x)1335 3588 y F9(\))1362 3600 y Ga(N)g F4(\))p
F6(j)1505 3567 y Fu(S)628 3724 y F4(=)42 b FL(Cut)p F4(\()914
3712 y FX(h)942 3724 y Ga(a)990 3712 y FX(i)1018 3724
y F6(j)p Ga(M)10 b F6(j)1166 3691 y Fu(S)1210 3724 y
Ga(;)1250 3712 y F9(\()1277 3724 y Ga(x)1329 3712 y F9(\))1357
3724 y F6(j)p Ga(N)g F6(j)1490 3691 y Fu(S)1534 3724
y F4(\))1434 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3371 3724
V 3389 3724 V 3406 3724 V 65 w(j)3459 3691 y Fu(S)559
3811 y Gc(cut)529 3848 y F6(\000)-32 b(\000)h(!)42 b(j)p
Ga(N)10 b F6(j)874 3815 y Fu(S)918 3848 y F4([)p Ga(x)26
b F4(:=)1142 3836 y FX(h)1169 3848 y Ga(a)1217 3836 y
FX(i)1245 3848 y F6(j)p Ga(M)10 b F6(j)1393 3815 y Fu(S)1437
3848 y F4(])773 b Ga(x)22 b Gg(is)i(not)g(freshly)h(introduced)h(by)
3396 3811 y Gc(\033)3332 3848 y F6(\000)-31 b(\000)f(!)550
3936 y Gc(cut)520 3973 y F6(\000)g(\000)h(!)690 3940
y FX(\003)741 3973 y F6(j)p Ga(N)10 b Fs(\()-6 b Ga(x)25
b F4(:=)1073 3961 y FX(h)1101 3973 y Ga(a)1149 3961 y
FX(i)1176 3973 y Ga(M)s Fs(\))q F6(j)1325 3940 y Fu(S)2906
3973 y Gg(by)f(Lemma)e(3.4.2)p Black 277 4175 a Gb(Inner)h(Reduction:)p
Black 46 w Gg(The)38 b(non-tri)n(vial)k(cases)d(are)g(where)g
Ga(M)49 b Gg(is)38 b(translated)k(using)e(the)f(clauses)504
4288 y(\(11\)\226\(14\))26 b(of)e F6(j)p 1001 4288 V
1019 4288 V 1036 4288 V 65 w(j)1089 4255 y Fu(S)1132
4288 y Gg(,)f(while)h Ga(N)32 b Gg(using)25 b(\(7\)\226\(10\).)31
b(W)-7 b(e)22 b(gi)n(v)o(e)i(one)g(case.)504 4447 y FL(And)659
4411 y Gc(i)659 4471 y(E)719 4447 y F4(\()754 4435 y
FX(h)781 4447 y Ga(a)829 4435 y FX(i)857 4447 y Ga(S)5
b(;)958 4435 y F9(\()986 4447 y Ga(x)1038 4435 y F9(\))1065
4447 y Ga(T)13 b F4(\))1256 4410 y Gc(\024)1191 4447
y F6(\000)-31 b(\000)g(!)25 b FL(And)1541 4411 y Gc(i)1541
4471 y(E)1601 4447 y F4(\()1636 4435 y FX(h)1664 4447
y Ga(a)1712 4435 y FX(i)1739 4447 y Ga(S)1800 4414 y
FX(0)1824 4447 y Ga(;)1864 4435 y F9(\()1891 4447 y Ga(x)1943
4435 y F9(\))1971 4447 y Ga(T)13 b F4(\))23 b Gg(with)g
Ga(S)2340 4414 y FX(0)2389 4447 y F6(\021)i FL(Id)p F4(\()p
Ga(y)s(;)15 b(a)p F4(\))741 4609 y F6(j)p FL(And)921
4572 y Gc(i)921 4632 y(E)981 4609 y F4(\()1016 4597 y
FX(h)1044 4609 y Ga(a)1092 4597 y FX(i)1119 4609 y Ga(S)5
b(;)1220 4597 y F9(\()1248 4609 y Ga(x)1300 4597 y F9(\))1327
4609 y Ga(T)13 b F4(\))p F6(j)1453 4576 y Fu(S)628 4727
y F4(=)42 b FL(Cut)p F4(\()914 4715 y FX(h)942 4727 y
Ga(a)990 4715 y FX(i)1018 4727 y F6(j)p Ga(S)5 b F6(j)1129
4694 y Fu(S)1172 4727 y Ga(;)1212 4715 y F9(\()1240 4727
y Ga(z)1286 4715 y F9(\))1314 4727 y FL(And)1469 4691
y Gc(i)1469 4750 y(L)1521 4727 y F4(\()1556 4715 y F9(\()1584
4727 y Ga(x)1636 4715 y F9(\))1663 4727 y F6(j)p Ga(T)13
b F6(j)1779 4694 y Fu(S)1823 4727 y Ga(;)i(z)t F4(\))q(\))977
b Gg(by)24 b(\(11\))g(of)g F6(j)p 3371 4727 V 3389 4727
V 3406 4727 V 65 w(j)3459 4694 y Fu(S)550 4809 y Gc(cut)520
4846 y F6(\000)-32 b(\000)h(!)690 4813 y FX(\003)741
4846 y FL(Cut)p F4(\()914 4834 y FX(h)942 4846 y Ga(a)990
4834 y FX(i)1018 4846 y F6(j)p Ga(S)1104 4813 y FX(0)1127
4846 y F6(j)1152 4813 y Fu(S)1196 4846 y Ga(;)1236 4834
y F9(\()1264 4846 y Ga(z)1310 4834 y F9(\))1337 4846
y FL(And)1492 4809 y Gc(i)1492 4869 y(L)1544 4846 y F4(\()1579
4834 y F9(\()1607 4846 y Ga(x)1659 4834 y F9(\))1686
4846 y F6(j)p Ga(T)13 b F6(j)1802 4813 y Fu(S)1846 4846
y Ga(;)i(z)t F4(\))q(\))1290 b Gg(by)23 b(IH)559 4927
y Gc(cut)529 4964 y F6(\000)-32 b(\000)h(!)42 b FL(And)896
4928 y Gc(i)896 4988 y(L)948 4964 y F4(\()983 4952 y
F9(\()1011 4964 y Ga(x)1063 4952 y F9(\))1090 4964 y
F6(j)p Ga(T)13 b F6(j)1206 4931 y Fu(S)1250 4964 y Ga(;)i(z)t
F4(\)[)p Ga(z)f F6(7!)c Ga(y)s F4(])628 5083 y F6(\021)42
b FL(And)896 5046 y Gc(i)896 5106 y(L)948 5083 y F4(\()983
5071 y F9(\()1011 5083 y Ga(x)1063 5071 y F9(\))1090
5083 y F6(j)p Ga(T)13 b F6(j)1206 5050 y Fu(S)1250 5083
y Ga(;)i(y)s F4(\))1020 b Ga(z)30 b F6(62)24 b Ga(F)13
b(N)d F4(\()p F6(j)p Ga(T)j F6(j)2855 5050 y Fu(S)2899
5083 y F4(\))23 b Gg(by)h(\(11\))g(of)g F6(j)p 3371 5083
V 3389 5083 V 3406 5083 V 65 w(j)3459 5050 y Fu(S)628
5202 y F4(=)42 b F6(j)p FL(And)921 5165 y Gc(i)921 5225
y(E)981 5202 y F4(\()1016 5190 y FX(h)1044 5202 y Ga(a)1092
5190 y FX(i)1119 5202 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p
F4(\))q Ga(;)1438 5190 y F9(\()1466 5202 y Ga(x)1518
5190 y F9(\))1546 5202 y Ga(T)d F4(\))p F6(j)1671 5169
y Fu(S)1741 5202 y F6(\021)25 b(j)p Ga(N)10 b F6(j)1970
5169 y Fu(S)3003 5202 y Gg(by)24 b(\(7\))f(of)h F6(j)p
3371 5202 V 3389 5202 V 3406 5202 V 65 w(j)3459 5169
y Fu(S)p 3436 5307 4 62 v 3440 5249 55 4 v 3440 5307
V 3494 5307 4 62 v Black Black eop end
%%Page: 164 176
TeXDict begin 164 175 bop Black -144 51 a Gb(164)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black Black 321 412 a(Pr)n(oof)i(of)f(Lemma)f(3.4.6.)p
Black 34 w Gg(The)h(cases)h(corresponding)j(to)c(the)g(clauses)i
(\(1\)\226\(5\))g(and)f(\(14\))f(of)g F6(j)p 3404 412
28 4 v 3422 412 V 3440 412 V 65 w(j)3492 379 y Fu(N)321
525 y Gg(are)j(routine.)43 b(Belo)n(w)27 b(we)f(gi)n(v)o(e)i(the)g
(details)h(for)f(the)g(clauses)h(\(6\))f(and)g(\(10\).)41
b(Let)27 b F4([)p Ga(\033)s F4(])h Gg(and)g Fs(\()p Ga(\033)s
Fs(\))3380 483 y Fu(N)3461 525 y Gg(be)321 638 y F4([)p
Ga(x)e F4(:=)545 626 y FX(h)572 638 y Ga(a)620 626 y
FX(i)648 638 y Ga(N)10 b F4(])23 b Gg(and)h Fs(\()-7
b Ga(x)25 b F4(:=)1157 626 y FX(h)1184 638 y Ga(a)1232
626 y FX(i)1260 638 y F6(j)p Ga(N)10 b F6(j)1393 605
y Fu(N)1440 638 y Fs(\))p Gg(,)23 b(respecti)n(v)o(ely)-6
b(.)p Black 321 907 a Gb(Case)p Black 47 w Ga(M)35 b
F6(\021)25 b FL(And)927 870 y Gc(i)927 930 y(L)980 907
y F4(\()1015 895 y F9(\()1042 907 y Ga(y)1090 895 y F9(\))1118
907 y Ga(S)5 b(;)15 b(x)p F4(\))674 1074 y F6(j)p FL(And)853
1038 y Gc(i)853 1098 y(L)906 1074 y F4(\()941 1062 y
F9(\()968 1074 y Ga(y)1016 1062 y F9(\))1044 1074 y Ga(S)5
b(;)15 b(x)p F4(\)[)p Ga(\033)s F4(])p F6(j)1362 1042
y Fu(N)549 1193 y F4(=)54 b F6(j)p FL(Cut)p F4(\()872
1181 y FX(h)900 1193 y Ga(a)948 1181 y FX(i)975 1193
y Ga(N)10 b(;)1098 1181 y F9(\()1126 1193 y Ga(x)1178
1181 y F9(\))1205 1193 y FL(And)1360 1156 y Gc(i)1360
1216 y(L)1412 1193 y F4(\()1447 1181 y F9(\()1475 1193
y Ga(y)1523 1181 y F9(\))1550 1193 y Ga(S)5 b F4([)p
Ga(\033)s F4(])q Ga(;)15 b(x)p F4(\)\))p F6(j)1904 1160
y Fu(N)549 1312 y F4(=)54 b FL(And)828 1275 y Gc(i)828
1335 y(E)888 1312 y F4(\()923 1300 y FX(h)951 1312 y
Ga(a)999 1300 y FX(i)1026 1312 y F6(j)p Ga(N)10 b F6(j)1159
1279 y Fu(N)1213 1312 y Ga(;)1253 1300 y F9(\()1281 1312
y Ga(y)1329 1300 y F9(\))1357 1312 y F6(j)p Ga(S)5 b
F4([)p Ga(\033)s F4(])p F6(j)1573 1279 y Fu(N)1628 1312
y F4(\))1328 b Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 1312
V 3422 1312 V 3440 1312 V 65 w(j)3492 1279 y Fu(N)549
1435 y F6(\021)54 b FL(And)828 1398 y Gc(i)828 1458 y(E)888
1435 y F4(\()923 1423 y FX(h)951 1435 y Ga(a)999 1423
y FX(i)1026 1435 y F6(j)p Ga(N)10 b F6(j)1159 1402 y
Fu(N)1213 1435 y Ga(;)1253 1423 y F9(\()1281 1435 y Ga(y)1329
1423 y F9(\))1357 1435 y F6(j)p Ga(S)5 b F6(j)1468 1402
y Fu(N)1522 1435 y Fs(\()q Ga(\033)s Fs(\))1642 1393
y Fu(N)1696 1435 y F4(\))1606 b Gg(by)23 b(IH)549 1559
y F6(\021)54 b FL(And)828 1522 y Gc(i)828 1582 y(E)888
1559 y F4(\()923 1547 y FX(h)951 1559 y Ga(a)999 1547
y FX(i)1026 1559 y FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))p
Fs(\()r Ga(\033)s Fs(\))1430 1517 y Fu(N)1483 1559 y
Ga(;)1523 1547 y F9(\()1551 1559 y Ga(y)1599 1547 y F9(\))1627
1559 y F6(j)p Ga(S)5 b F6(j)1738 1526 y Fu(N)1792 1559
y Fs(\()q Ga(\033)s Fs(\))1912 1517 y Fu(N)1966 1559
y F4(\))549 1682 y(=)54 b FL(And)828 1646 y Gc(i)828
1705 y(E)888 1682 y F4(\()923 1670 y FX(h)951 1682 y
Ga(a)999 1670 y FX(i)1026 1682 y FL(Id)p F4(\()p Ga(x;)15
b(a)p F4(\))q Ga(;)1349 1670 y F9(\()1377 1682 y Ga(y)1425
1670 y F9(\))1453 1682 y F6(j)p Ga(S)5 b F6(j)1564 1649
y Fu(N)1618 1682 y F4(\))p Fs(\()q Ga(\033)s Fs(\))1773
1640 y Fu(N)549 1806 y F4(=)54 b F6(j)p FL(And)853 1769
y Gc(i)853 1829 y(L)906 1806 y F4(\()941 1794 y F9(\()968
1806 y Ga(y)1016 1794 y F9(\))1044 1806 y Ga(S)5 b(;)15
b(x)p F4(\))p F6(j)1257 1773 y Fu(N)1312 1806 y Fs(\()p
Ga(\033)s Fs(\))1432 1764 y Fu(N)3036 1806 y Gg(by)24
b(\(6\))g(of)f F6(j)p 3404 1806 V 3422 1806 V 3440 1806
V 65 w(j)3492 1773 y Fu(N)p Black 321 2037 a Gb(Case)p
Black 47 w Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()946
2025 y FX(h)974 2037 y Ga(b)1013 2025 y FX(i)1040 2037
y Ga(S)5 b(;)1141 2025 y F9(\()1169 2037 y Ga(y)1217
2025 y F9(\))1244 2037 y FL(And)1399 2000 y Gc(i)1399
2060 y(L)1451 2037 y F4(\()1486 2025 y F9(\()1514 2037
y Ga(z)1560 2025 y F9(\))1587 2037 y Ga(T)13 b(;)i(y)s
F4(\))q(\))674 2205 y F6(j)p FL(Cut)p F4(\()872 2193
y FX(h)900 2205 y Ga(b)939 2193 y FX(i)966 2205 y Ga(S)5
b(;)1067 2193 y F9(\()1095 2205 y Ga(y)1143 2193 y F9(\))1170
2205 y FL(And)1325 2168 y Gc(i)1325 2228 y(L)1377 2205
y F4(\()1412 2193 y F9(\()1440 2205 y Ga(z)1486 2193
y F9(\))1513 2205 y Ga(T)13 b(;)i(y)s F4(\))q(\)[)p Ga(\033)s
F4(])p F6(j)1868 2172 y Fu(N)549 2324 y F4(=)54 b F6(j)p
FL(Cut)p F4(\()872 2312 y FX(h)900 2324 y Ga(b)939 2312
y FX(i)966 2324 y Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1173
2312 y F9(\()1201 2324 y Ga(y)1249 2312 y F9(\))1276
2324 y FL(And)1430 2287 y Gc(i)1430 2347 y(L)1483 2324
y F4(\()1518 2312 y F9(\()1545 2324 y Ga(z)1591 2312
y F9(\))1619 2324 y Ga(T)13 b F4([)p Ga(\033)s F4(])q
Ga(;)i(y)s F4(\)\))p F6(j)1974 2291 y Fu(N)549 2442 y
F4(=)54 b FL(And)828 2405 y Gc(i)828 2465 y(E)888 2442
y F4(\()923 2430 y FX(h)951 2442 y Ga(b)990 2430 y FX(i)1017
2442 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1233
2409 y Fu(N)1288 2442 y Ga(;)1328 2430 y F9(\()1356 2442
y Ga(z)1402 2430 y F9(\))1430 2442 y F6(j)p Ga(T)13 b
F4([)p Ga(\033)s F4(])p F6(j)1651 2409 y Fu(N)1706 2442
y F4(\))1250 b Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 2442
V 3422 2442 V 3440 2442 V 65 w(j)3492 2409 y Fu(N)549
2566 y F6(\021)54 b FL(And)828 2529 y Gc(i)828 2589 y(E)888
2566 y F4(\()923 2554 y FX(h)951 2566 y Ga(b)990 2554
y FX(i)1017 2566 y F6(j)p Ga(S)5 b F6(j)1128 2533 y Fu(N)1182
2566 y Fs(\()q Ga(\033)s Fs(\))1303 2524 y Fu(N)1357
2566 y Ga(;)1397 2554 y F9(\()1424 2566 y Ga(z)1470 2554
y F9(\))1498 2566 y F6(j)p Ga(T)13 b F6(j)1614 2533 y
Fu(N)1668 2566 y Fs(\()q Ga(\033)s Fs(\))1788 2524 y
Fu(N)1842 2566 y F4(\))1460 b Gg(by)23 b(IH)549 2689
y F4(=)54 b FL(And)828 2652 y Gc(i)828 2712 y(E)888 2689
y F4(\()923 2677 y FX(h)951 2689 y Ga(b)990 2677 y FX(i)1017
2689 y F6(j)p Ga(S)5 b F6(j)1128 2656 y Fu(N)1182 2689
y Ga(;)1222 2677 y F9(\()1250 2689 y Ga(z)1296 2677 y
F9(\))1324 2689 y F6(j)p Ga(T)13 b F6(j)1440 2656 y Fu(N)1494
2689 y F4(\))p Fs(\()q Ga(\033)s Fs(\))1650 2647 y Fu(N)549
2813 y F4(=)54 b F6(j)p FL(Cut)p F4(\()872 2801 y FX(h)900
2813 y Ga(b)939 2801 y FX(i)966 2813 y Ga(S)5 b(;)1067
2801 y F9(\()1095 2813 y Ga(y)1143 2801 y F9(\))1170
2813 y FL(And)1325 2776 y Gc(i)1325 2836 y(L)1377 2813
y F4(\()1412 2801 y F9(\()1440 2813 y Ga(z)1486 2801
y F9(\))1513 2813 y Ga(T)13 b(;)i(y)s F4(\))q(\))p F6(j)1763
2780 y Fu(N)1817 2813 y Fs(\()q Ga(\033)s Fs(\))1937
2771 y Fu(N)2991 2813 y Gg(by)24 b(\(10\))g(of)f F6(j)p
3404 2813 V 3422 2813 V 3440 2813 V 65 w(j)3492 2780
y Fu(N)p 3480 2918 4 62 v 3484 2860 55 4 v 3484 2918
V 3538 2918 4 62 v Black 321 3131 a Gb(Pr)n(oof)32 b(of)g(Lemma)e
(3.4.7.)p Black 34 w Gg(There)i(are)f(23)h(cases)g(to)f(be)h
(considered,)k(three)c(of)g(which)f(are)h(gi)n(v)o(en)321
3244 y(belo)n(w)-6 b(.)76 b(W)-7 b(e)38 b(assume)i(that)f
F4([)p Ga(\033)s F4(])g Gg(and)h Fs(^)p Ga(\033)s Fs(_)1704
3202 y Fu(N)1796 3244 y Gg(are)g(of)f(the)g(form)g F4([)p
Ga(a)54 b F4(:=)2701 3232 y F9(\()2729 3244 y Ga(x)2781
3232 y F9(\))2808 3244 y FL(And)2963 3207 y Gc(i)2963
3267 y(L)3015 3244 y F4(\()3050 3232 y F9(\()3078 3244
y Ga(y)3126 3232 y F9(\))3153 3244 y Ga(P)13 b(;)i(x)p
F4(\))q(])38 b Gg(and)321 3356 y Fs(^)q FL(And)508 3320
y Gc(i)508 3380 y(E)568 3356 y F4(\()603 3344 y FX(h)631
3356 y Ga(a)679 3344 y FX(i)p 708 3356 28 4 v 726 3356
V 743 3356 V 771 3356 a Ga(;)811 3344 y F9(\()839 3356
y Ga(y)887 3344 y F9(\))914 3356 y F6(j)p Ga(P)13 b F6(j)1035
3323 y Fu(N)1089 3356 y F4(\))p Fs(_)q Gg(,)23 b(respecti)n(v)o(ely)-6
b(.)p Black 321 3593 a Gb(Case)p Black 47 w Ga(M)35 b
F6(\021)25 b FL(And)927 3607 y Gc(R)985 3593 y F4(\()1020
3581 y FX(h)1048 3593 y Ga(d)1095 3581 y FX(i)1123 3593
y Ga(S)5 b(;)1224 3581 y FX(h)1252 3593 y Ga(e)1294 3581
y FX(i)1321 3593 y Ga(T)13 b(;)i(a)p F4(\))813 3765 y
F6(j)p FL(And)992 3779 y Gc(R)1050 3765 y F4(\()1085
3753 y FX(h)1113 3765 y Ga(d)1160 3753 y FX(i)1188 3765
y Ga(S)5 b(;)1289 3753 y FX(h)1316 3765 y Ga(e)1358 3753
y FX(i)1386 3765 y Ga(T)13 b(;)i(a)p F4(\))p F6(j)1600
3732 y Fu(N)1655 3765 y Fs(^)q Ga(\033)s Fs(_)1775 3723
y Fu(N)648 3890 y F4(=)94 b FL(And)967 3904 y Gc(I)1007
3890 y F4(\()1042 3878 y FX(h)1070 3890 y Ga(d)1117 3878
y FX(i)1145 3890 y F6(j)p Ga(S)5 b F6(j)1256 3857 y Fu(N)1310
3890 y Ga(;)1350 3878 y FX(h)1378 3890 y Ga(e)1420 3878
y FX(i)1448 3890 y F6(j)p Ga(T)13 b F6(j)1564 3857 y
Fu(N)1618 3890 y Ga(;)i(a)p F4(\))p Fs(^)q Ga(\033)s
Fs(_)1862 3848 y Fu(N)3036 3890 y Gg(by)24 b(\(2\))g(of)f
F6(j)p 3404 3890 V 3422 3890 V 3440 3890 V 65 w(j)3492
3857 y Fu(N)648 4016 y F4(=)94 b FL(And)967 3979 y Gc(i)967
4039 y(E)1027 4016 y F4(\()1062 4004 y FX(h)1090 4016
y Ga(a)1138 4004 y FX(i)1165 4016 y FL(And)1320 4030
y Gc(I)1360 4016 y F4(\()1395 4004 y FX(h)1422 4016 y
Ga(d)1469 4004 y FX(i)1497 4016 y F6(j)p Ga(S)5 b F6(j)1608
3983 y Fu(N)1663 4016 y Fs(^)p Ga(\033)s Fs(_)1783 3974
y Fu(N)1837 4016 y Ga(;)1877 4004 y FX(h)1904 4016 y
Ga(e)1946 4004 y FX(i)1974 4016 y F6(j)p Ga(T)13 b F6(j)2090
3983 y Fu(N)2144 4016 y Fs(^)q Ga(\033)s Fs(_)2265 3974
y Fu(N)2319 4016 y Ga(;)i(a)p F4(\))p Ga(;)2482 4004
y F9(\()2510 4016 y Ga(y)2558 4004 y F9(\))2585 4016
y F6(j)p Ga(P)e F6(j)2706 3983 y Fu(N)2761 4016 y F4(\))280
b Gg(by)24 b(\(2\))f(of)h Fs(^)p 3451 4016 V 3469 4016
V 3487 4016 V 65 w(_)613 4103 y Gc(\024)549 4140 y F6(\000)-32
b(\000)h(!)731 4107 y FX(\003)813 4140 y FL(And)967 4103
y Gc(i)967 4163 y(E)1027 4140 y F4(\()1062 4128 y FX(h)1090
4140 y Ga(a)1138 4128 y FX(i)1165 4140 y FL(And)1320
4154 y Gc(I)1360 4140 y F4(\()1395 4128 y FX(h)1422 4140
y Ga(d)1469 4128 y FX(i)1497 4140 y F6(j)p Ga(S)5 b F4([)p
Ga(\033)s F4(])p F6(j)1713 4107 y Fu(N)1768 4140 y Ga(;)1808
4128 y FX(h)1836 4140 y Ga(e)1878 4128 y FX(i)1906 4140
y F6(j)p Ga(T)13 b F4([)p Ga(\033)s F4(])p F6(j)2127
4107 y Fu(N)2182 4140 y Ga(;)i(a)p F4(\))q Ga(;)2346
4128 y F9(\()2373 4140 y Ga(y)2421 4128 y F9(\))2449
4140 y F6(j)p Ga(P)e F6(j)2570 4107 y Fu(N)2624 4140
y F4(\))678 b Gg(by)23 b(IH)648 4264 y F4(=)94 b F6(j)p
FL(Cut)p F4(\()1011 4252 y FX(h)1039 4264 y Ga(a)1087
4252 y FX(i)1114 4264 y FL(And)1269 4278 y Gc(R)1326
4264 y F4(\()1361 4252 y FX(h)1389 4264 y Ga(d)1436 4252
y FX(i)1464 4264 y Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1671
4252 y FX(h)1698 4264 y Ga(e)1740 4252 y FX(i)1768 4264
y Ga(T)13 b F4([)p Ga(\033)s F4(])q Ga(;)i(a)p F4(\))p
Ga(;)2103 4252 y F9(\()2131 4264 y Ga(x)2183 4252 y F9(\))2211
4264 y FL(And)2365 4227 y Gc(i)2365 4287 y(L)2417 4264
y F4(\()2452 4252 y F9(\()2480 4264 y Ga(y)2528 4252
y F9(\))2555 4264 y Ga(P)e(;)i(x)p F4(\))q(\))p F6(j)2814
4231 y Fu(N)2923 4264 y Gg(by)23 b(\(2,10\))i(of)e F6(j)p
3404 4264 V 3422 4264 V 3440 4264 V 65 w(j)3492 4231
y Fu(N)648 4388 y F4(=)94 b F6(j)p FL(And)992 4402 y
Gc(R)1050 4388 y F4(\()1085 4376 y FX(h)1113 4388 y Ga(d)1160
4376 y FX(i)1188 4388 y Ga(S)5 b(;)1289 4376 y FX(h)1316
4388 y Ga(e)1358 4376 y FX(i)1386 4388 y Ga(T)13 b(;)i(a)p
F4(\)[)p Ga(\033)s F4(])p F6(j)1705 4355 y Fu(N)p Black
321 4621 a Gb(Case)p Black 47 w Ga(M)35 b F6(\021)25
b FL(Cut)p F4(\()946 4609 y FX(h)974 4621 y Ga(b)1013
4609 y FX(i)1040 4621 y Ga(S)5 b(;)1141 4609 y F9(\()1169
4621 y Ga(z)1215 4609 y F9(\))1243 4621 y FL(And)1397
4584 y Gc(i)1397 4644 y(L)1449 4621 y F4(\()1484 4609
y F9(\()1512 4621 y Ga(u)1564 4609 y F9(\))1592 4621
y Ga(T)12 b(;)j(z)t F4(\))q(\))813 4794 y F6(j)p FL(Cut)p
F4(\()1011 4782 y FX(h)1039 4794 y Ga(b)1078 4782 y FX(i)1105
4794 y Ga(S)5 b(;)1206 4782 y F9(\()1234 4794 y Ga(z)1280
4782 y F9(\))1308 4794 y FL(And)1462 4757 y Gc(i)1462
4817 y(L)1514 4794 y F4(\()1549 4782 y F9(\()1577 4794
y Ga(u)1629 4782 y F9(\))1657 4794 y Ga(T)12 b(;)j(z)t
F4(\))q(\))p F6(j)1904 4761 y Fu(N)1959 4794 y Fs(^)p
Ga(\033)s Fs(_)2079 4752 y Fu(N)648 4919 y F4(=)94 b
FL(And)967 4882 y Gc(i)967 4942 y(E)1027 4919 y F4(\()1062
4907 y FX(h)1090 4919 y Ga(b)1129 4907 y FX(i)1156 4919
y F6(j)p Ga(S)5 b F6(j)1267 4886 y Fu(N)1321 4919 y Ga(;)1361
4907 y F9(\()1389 4919 y Ga(u)1441 4907 y F9(\))1469
4919 y F6(j)p Ga(T)13 b F6(j)1585 4886 y Fu(N)1639 4919
y F4(\))p Fs(^)q Ga(\033)s Fs(_)1794 4877 y Fu(N)2991
4919 y Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 4919 V 3422
4919 V 3440 4919 V 65 w(j)3492 4886 y Fu(N)648 5045 y
F4(=)94 b FL(And)967 5008 y Gc(i)967 5068 y(E)1027 5045
y F4(\()1062 5033 y FX(h)1090 5045 y Ga(b)1129 5033 y
FX(i)1156 5045 y F6(j)p Ga(S)5 b F6(j)1267 5012 y Fu(N)1321
5045 y Fs(^)q Ga(\033)s Fs(_)1442 5003 y Fu(N)1496 5045
y Ga(;)1536 5033 y F9(\()1563 5045 y Ga(u)1615 5033 y
F9(\))1643 5045 y F6(j)p Ga(T)13 b F6(j)1759 5012 y Fu(N)1813
5045 y Fs(^)q Ga(\033)s Fs(_)1933 5003 y Fu(N)1987 5045
y F4(\))613 5132 y Gc(\024)549 5169 y F6(\000)-32 b(\000)h(!)731
5136 y FX(\003)813 5169 y FL(And)967 5132 y Gc(i)967
5192 y(E)1027 5169 y F4(\()1062 5157 y FX(h)1090 5169
y Ga(b)1129 5157 y FX(i)1156 5169 y F6(j)p Ga(S)5 b F4([)p
Ga(\033)s F4(])p F6(j)1372 5136 y Fu(N)1427 5169 y Ga(;)1467
5157 y F9(\()1495 5169 y Ga(u)1547 5157 y F9(\))1574
5169 y F6(j)p Ga(T)13 b F4([)p Ga(\033)s F4(])p F6(j)1795
5136 y Fu(N)1850 5169 y F4(\))1452 b Gg(by)23 b(IH)648
5293 y F4(=)94 b F6(j)p FL(Cut)p F4(\()1011 5281 y FX(h)1039
5293 y Ga(b)1078 5281 y FX(i)1105 5293 y Ga(S)5 b F4([)p
Ga(\033)s F4(])q Ga(;)1312 5281 y F9(\()1340 5293 y Ga(z)1386
5281 y F9(\))1413 5293 y FL(And)1568 5256 y Gc(i)1568
5316 y(L)1620 5293 y F4(\()1655 5281 y F9(\()1683 5293
y Ga(u)1735 5281 y F9(\))1762 5293 y Ga(T)13 b F4([)p
Ga(\033)s F4(])q Ga(;)i(z)t F4(\))q(\))p F6(j)2116 5260
y Fu(N)2991 5293 y Gg(by)24 b(\(10\))g(of)f F6(j)p 3404
5293 V 3422 5293 V 3440 5293 V 65 w(j)3492 5260 y Fu(N)648
5417 y F4(=)94 b F6(j)p FL(Cut)p F4(\()1011 5405 y FX(h)1039
5417 y Ga(b)1078 5405 y FX(i)1105 5417 y Ga(S)5 b(;)1206
5405 y F9(\()1234 5417 y Ga(z)1280 5405 y F9(\))1308
5417 y FL(And)1462 5380 y Gc(i)1462 5440 y(L)1514 5417
y F4(\()1549 5405 y F9(\()1577 5417 y Ga(u)1629 5405
y F9(\))1657 5417 y Ga(T)12 b(;)j(z)t F4(\))q(\)[)p Ga(\033)s
F4(])p F6(j)2009 5384 y Fu(N)p Black Black eop end
%%Page: 165 177
TeXDict begin 165 176 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
(Chapter)f(3)2639 b(165)p 277 88 3691 4 v Black Black
277 412 a(Case)p Black 46 w Ga(M)36 b F6(\021)25 b FL(Cut)p
F4(\()902 400 y FX(h)929 412 y Ga(b)968 400 y FX(i)996
412 y Ga(S)5 b(;)1097 400 y F9(\()1125 412 y Ga(z)1171
400 y F9(\))1198 412 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(a)p
F4(\))q(\))768 596 y F6(j)p FL(Cut)q F4(\()967 584 y
FX(h)994 596 y Ga(b)1033 584 y FX(i)1061 596 y Ga(S)5
b(;)1162 584 y F9(\()1190 596 y Ga(z)1236 584 y F9(\))1263
596 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))q(\))p
F6(j)1631 563 y Fu(N)1686 596 y Fs(^)p Ga(\033)s Fs(_)1806
554 y Fu(N)604 722 y F4(=)93 b FL(Subst)p F4(\()1016
710 y FX(h)1043 722 y Ga(b)1082 710 y FX(i)1110 722 y
F6(j)p Ga(S)5 b F6(j)1221 689 y Fu(N)1275 722 y Ga(;)1315
710 y F9(\()1343 722 y Ga(z)1389 710 y F9(\))1417 722
y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))q(\))p Fs(^)q
Ga(\033)s Fs(_)1850 680 y Fu(N)2879 722 y Gg(by)23 b(\(1,14\))i(of)e
F6(j)p 3360 722 28 4 v 3378 722 V 3396 722 V 65 w(j)3448
689 y Fu(N)604 847 y F4(=)93 b FL(Subst)p F4(\()1016
835 y FX(h)1043 847 y Ga(b)1082 835 y FX(i)1110 847 y
F6(j)p Ga(S)5 b F6(j)1221 814 y Fu(N)1275 847 y Fs(^)q
Ga(\033)s Fs(_)1395 805 y Fu(N)1449 847 y Ga(;)1489 835
y F9(\()1517 847 y Ga(z)1563 835 y F9(\))1591 847 y FL(And)1745
810 y Gc(i)1745 870 y(E)1805 847 y F4(\()1840 835 y FX(h)1868
847 y Ga(a)1916 835 y FX(i)1943 847 y FL(Id)q F4(\()p
Ga(z)t(;)15 b(a)p F4(\))q Ga(;)2261 835 y F9(\()2289
847 y Ga(y)2337 835 y F9(\))2364 847 y F6(j)p Ga(P)e
F6(j)2485 814 y Fu(N)2540 847 y F4(\)\))422 b Gg(by)24
b(\(1\))f(of)h Fs(^)p 3407 847 V 3425 847 V 3442 847
V 65 w(_)569 934 y Gc(\024)504 971 y F6(\000)-31 b(\000)g(!)686
938 y FX(\003)768 971 y FL(Subst)p F4(\()1016 959 y FX(h)1043
971 y Ga(b)1082 959 y FX(i)1110 971 y F6(j)p Ga(S)5 b
F4([)p Ga(\033)s F4(])p F6(j)1326 938 y Fu(N)1381 971
y Ga(;)1421 959 y F9(\()1449 971 y Ga(z)1495 959 y F9(\))1523
971 y FL(And)1677 934 y Gc(i)1677 994 y(E)1737 971 y
F4(\()1772 959 y FX(h)1799 971 y Ga(a)1847 959 y FX(i)1875
971 y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)2193
959 y F9(\()2220 971 y Ga(y)2268 959 y F9(\))2296 971
y F6(j)p Ga(P)e F6(j)2417 938 y Fu(N)2471 971 y F4(\))q(\))751
b Gg(by)23 b(IH)569 1058 y Gc(\024)504 1095 y F6(\000)-31
b(\000)g(!)93 b FL(And)923 1058 y Gc(i)923 1118 y(E)983
1095 y F4(\()1018 1083 y FX(h)1045 1095 y Ga(b)1084 1083
y FX(i)1112 1095 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p
F6(j)1328 1062 y Fu(N)1383 1095 y Ga(;)1423 1083 y F9(\()1451
1095 y Ga(y)1499 1083 y F9(\))1526 1095 y F6(j)p Ga(P)13
b F6(j)1647 1062 y Fu(N)1702 1095 y F4(\))839 b Ga(z)30
b F6(62)24 b Ga(F)13 b(N)d F4(\()2922 1083 y F9(\()2950
1095 y Ga(y)2998 1083 y F9(\))3026 1095 y F6(j)p Ga(P)j
F6(j)3147 1062 y Fu(N)3201 1095 y F4(\))23 b Gg(by)h
Fs(^)p 3407 1095 V 3425 1095 V 3442 1095 V 65 w(_)604
1220 y F4(=)93 b F6(j)p FL(Cut)q F4(\()967 1208 y FX(h)994
1220 y Ga(b)1033 1208 y FX(i)1061 1220 y Ga(S)5 b F4([)p
Ga(\033)s F4(])q Ga(;)1268 1208 y F9(\()1295 1220 y Ga(x)1347
1208 y F9(\))1375 1220 y FL(And)1529 1183 y Gc(i)1529
1243 y(L)1581 1220 y F4(\()1616 1208 y F9(\()1644 1220
y Ga(y)1692 1208 y F9(\))1720 1220 y Ga(P)13 b(;)i(x)p
F4(\)\))p F6(j)1978 1187 y Fu(N)2947 1220 y Gg(by)24
b(\(10\))g(of)f F6(j)p 3360 1220 V 3378 1220 V 3396 1220
V 65 w(j)3448 1187 y Fu(N)604 1344 y F4(=)93 b F6(j)p
FL(Cut)q F4(\()967 1332 y FX(h)994 1344 y Ga(b)1033 1332
y FX(i)1061 1344 y Ga(S)5 b(;)1162 1332 y F9(\()1190
1344 y Ga(z)1236 1332 y F9(\))1263 1344 y FL(Ax)p F4(\()p
Ga(z)t(;)15 b(a)p F4(\))q(\)[)p Ga(\033)s F4(])p F6(j)1736
1311 y Fu(N)p 3436 1451 4 62 v 3440 1393 55 4 v 3440
1451 V 3494 1451 4 62 v Black 277 1663 a Gb(Pr)n(oof)20
b(of)e(Lemma)g(3.4.8.)p Black 34 w Gg(Let)g F4([)p Ga(\033)s
F4(])h Gg(and)g Fs(\()q Ga(\033)s Fs(\))1690 1621 y Fu(N)1762
1663 y Gg(be)g F4([)p Ga(a)26 b F4(:=)2086 1651 y F9(\()2114
1663 y Ga(x)2166 1651 y F9(\))2193 1663 y Ga(N)10 b F4(])18
b Gg(and)h Fs(\()-6 b Ga(a)25 b F4(:=)2688 1651 y F9(\()2716
1663 y Ga(x)2768 1651 y F9(\))2795 1663 y F6(j)p Ga(N)10
b F6(j)2928 1630 y Fu(N)2976 1663 y Fs(\))p Gg(,)19 b(respecti)n(v)o
(ely)-6 b(.)277 1776 y(There)24 b(are)g(20)f(cases)i(to)e(be)h
(considered,)i(tw)o(o)d(of)h(which)g(are)f(gi)n(v)o(en)h(belo)n(w)-6
b(.)p Black 277 2075 a Gb(Case)p Black 46 w Ga(M)36 b
F6(\021)25 b FL(And)883 2089 y Gc(R)941 2075 y F4(\()976
2063 y FX(h)1004 2075 y Ga(c)1043 2063 y FX(i)1071 2075
y Ga(S)5 b(;)1172 2063 y FX(h)1199 2075 y Ga(d)1246 2063
y FX(i)1274 2075 y Ga(T)13 b(;)i(a)p F4(\))535 2259 y
F6(j)p FL(And)715 2273 y Gc(R)772 2259 y F4(\()807 2247
y FX(h)835 2259 y Ga(d)882 2247 y FX(i)910 2259 y Ga(S)5
b(;)1011 2247 y FX(h)1039 2259 y Ga(e)1081 2247 y FX(i)1109
2259 y Ga(T)12 b(;)j(a)p F4(\)[)p Ga(\033)s F4(])p F6(j)1427
2226 y Fu(N)410 2383 y F4(=)54 b F6(j)p FL(Cut)p F4(\()733
2371 y FX(h)761 2383 y Ga(a)809 2371 y FX(i)836 2383
y FL(And)991 2397 y Gc(R)1049 2383 y F4(\()1084 2371
y FX(h)1111 2383 y Ga(d)1158 2371 y FX(i)1186 2383 y
Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1393 2371 y FX(h)1421
2383 y Ga(e)1463 2371 y FX(i)1491 2383 y Ga(T)13 b F4([)p
Ga(\033)s F4(])p Ga(;)i(a)p F4(\))q Ga(;)1826 2371 y
F9(\()1854 2383 y Ga(x)1906 2371 y F9(\))1933 2383 y
Ga(N)10 b F4(\))p F6(j)2076 2350 y Fu(N)2177 2383 y Gg(by)23
b(ass.)h(\(10\22613\))h(of)f F6(j)p 2883 2383 28 4 v
2901 2383 V 2918 2383 V 65 w(j)2971 2350 y Fu(N)3048
2383 y Gg(do)f(not)h(apply)410 2507 y F4(=)54 b FL(Subst)o
F4(\()782 2495 y FX(h)810 2507 y Ga(a)858 2495 y FX(i)885
2507 y FL(And)1040 2521 y Gc(I)1080 2507 y F4(\()1115
2495 y FX(h)1143 2507 y Ga(d)1190 2495 y FX(i)1217 2507
y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1433 2474
y Fu(N)1489 2507 y Ga(;)1529 2495 y FX(h)1556 2507 y
Ga(e)1598 2495 y FX(i)1626 2507 y F6(j)p Ga(T)13 b F4([)p
Ga(\033)s F4(])p F6(j)1847 2474 y Fu(N)1902 2507 y Ga(;)i(a)p
F4(\))q Ga(;)2066 2495 y F9(\()2094 2507 y Ga(x)2146
2495 y F9(\))2173 2507 y F6(j)p Ga(N)10 b F6(j)2306 2474
y Fu(N)2361 2507 y F4(\))483 b Gg(by)23 b(\(2,14\))i(of)e
F6(j)p 3360 2507 V 3378 2507 V 3396 2507 V 65 w(j)3448
2474 y Fu(N)410 2632 y F6(\021)54 b FL(Subst)o F4(\()782
2620 y FX(h)810 2632 y Ga(a)858 2620 y FX(i)885 2632
y FL(And)1040 2646 y Gc(I)1080 2632 y F4(\()1115 2620
y FX(h)1143 2632 y Ga(d)1190 2620 y FX(i)1217 2632 y
F6(j)p Ga(S)5 b F6(j)1328 2599 y Fu(N)1383 2632 y Fs(\()p
Ga(\033)s Fs(\))1503 2591 y Fu(N)1557 2632 y Ga(;)1597
2620 y FX(h)1625 2632 y Ga(e)1667 2620 y FX(i)1695 2632
y F6(j)p Ga(T)13 b F6(j)1811 2599 y Fu(N)1865 2632 y
Fs(\()p Ga(\033)s Fs(\))1985 2591 y Fu(N)2039 2632 y
Ga(;)i(a)p F4(\))q Ga(;)2203 2620 y F9(\()2231 2632 y
Ga(x)2283 2620 y F9(\))2310 2632 y F6(j)p Ga(N)10 b F6(j)2443
2599 y Fu(N)2497 2632 y F4(\))761 b Gg(by)23 b(IH)410
2758 y F4(=)54 b FL(And)690 2772 y Gc(I)729 2758 y F4(\()764
2746 y FX(h)792 2758 y Ga(d)839 2746 y FX(i)867 2758
y F6(j)p Ga(S)5 b F6(j)978 2725 y Fu(N)1032 2758 y Ga(;)1072
2746 y FX(h)1100 2758 y Ga(e)1142 2746 y FX(i)1170 2758
y F6(j)p Ga(T)13 b F6(j)1286 2725 y Fu(N)1340 2758 y
Ga(;)i(a)p F4(\))p Fs(\()r Ga(\033)s Fs(\))1584 2716
y Fu(N)3032 2758 y Gg(by)24 b(\(3\))f(of)h Fs(\()p 3407
2758 V 3425 2758 V 3442 2758 V 65 w(\))410 2883 y F4(=)54
b F6(j)p FL(And)715 2897 y Gc(R)772 2883 y F4(\()807
2871 y FX(h)835 2883 y Ga(d)882 2871 y FX(i)910 2883
y Ga(S)5 b(;)1011 2871 y FX(h)1039 2883 y Ga(e)1081 2871
y FX(i)1109 2883 y Ga(T)12 b(;)j(a)p F4(\))p F6(j)1322
2850 y Fu(N)1377 2883 y Fs(\()q Ga(\033)s Fs(\))1498
2841 y Fu(N)2992 2883 y Gg(by)24 b(\(2\))g(of)f F6(j)p
3360 2883 V 3378 2883 V 3396 2883 V 65 w(j)3448 2850
y Fu(N)p Black 277 3128 a Gb(Case)p Black 46 w Ga(M)36
b F6(\021)25 b FL(Cut)p F4(\()902 3116 y FX(h)929 3128
y Ga(b)968 3116 y FX(i)996 3128 y Ga(S)5 b(;)1097 3116
y F9(\()1125 3128 y Ga(y)1173 3116 y F9(\))1200 3128
y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(\))535 3311
y F6(j)p FL(Cut)p F4(\()733 3299 y FX(h)761 3311 y Ga(b)800
3299 y FX(i)827 3311 y Ga(S)5 b(;)928 3299 y F9(\()956
3311 y Ga(y)1004 3299 y F9(\))1031 3311 y FL(Ax)p F4(\()p
Ga(y)s(;)15 b(a)p F4(\))q(\)[)p Ga(\033)s F4(])p F6(j)1506
3278 y Fu(N)410 3435 y F4(=)54 b F6(j)p FL(Cut)p F4(\()733
3423 y FX(h)761 3435 y Ga(b)800 3423 y FX(i)827 3435
y Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1034 3423 y F9(\()1062
3435 y Ga(y)1110 3423 y F9(\))1137 3435 y Ga(N)10 b F4([)p
Ga(x)g F6(7!)g Ga(y)s F4(])q(\))p F6(j)1542 3402 y Fu(N)1942
3435 y Gg(by)23 b(assumtion)j(\(10\22613\))f(of)f F6(j)p
2883 3435 V 2901 3435 V 2918 3435 V 65 w(j)2971 3402
y Fu(N)3048 3435 y Gg(do)f(not)h(apply)410 3559 y F4(=)54
b FL(Subst)o F4(\()782 3547 y FX(h)810 3559 y Ga(b)849
3547 y FX(i)876 3559 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s
F4(])p F6(j)1092 3526 y Fu(N)1148 3559 y Ga(;)1188 3547
y F9(\()1215 3559 y Ga(y)1263 3547 y F9(\))1291 3559
y F6(j)p Ga(N)10 b F6(j)1424 3526 y Fu(N)1478 3559 y
F4([)p Ga(x)g F6(7!)g Ga(y)s F4(]\))1173 b Gg(by)24 b(\(14\))g(of)f
F6(j)p 3360 3559 V 3378 3559 V 3396 3559 V 65 w(j)3448
3526 y Fu(N)410 3685 y F6(\021)54 b FL(Subst)o F4(\()782
3673 y FX(h)810 3685 y Ga(b)849 3673 y FX(i)876 3685
y F6(j)p Ga(S)5 b F6(j)987 3652 y Fu(N)1042 3685 y Fs(\()p
Ga(\033)s Fs(\))1162 3643 y Fu(N)1216 3685 y Ga(;)1256
3673 y F9(\()1284 3685 y Ga(y)1332 3673 y F9(\))1359
3685 y F6(j)p Ga(N)10 b F6(j)1492 3652 y Fu(N)1546 3685
y F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])q(\))1450 b Gg(by)23
b(IH)410 3810 y F4(=)54 b FL(Subst)o F4(\()782 3798 y
FX(h)810 3810 y Ga(b)849 3798 y FX(i)876 3810 y F6(j)p
Ga(S)5 b F6(j)987 3777 y Fu(N)1042 3810 y Fs(\()p Ga(\033)s
Fs(\))1162 3768 y Fu(N)1216 3810 y Ga(;)1256 3798 y F9(\()1284
3810 y Ga(y)1332 3798 y F9(\))1359 3810 y FL(Id)p F4(\()p
Ga(y)s(;)15 b(a)p F4(\))p Fs(\()r Ga(\033)s Fs(\))1758
3768 y Fu(N)1812 3810 y F4(\))410 3935 y(=)54 b FL(Subst)o
F4(\()782 3923 y FX(h)810 3935 y Ga(b)849 3923 y FX(i)876
3935 y F6(j)p Ga(S)5 b F6(j)987 3902 y Fu(N)1042 3935
y Ga(;)1082 3923 y F9(\()1110 3935 y Ga(y)1158 3923 y
F9(\))1185 3935 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(\))p
Fs(\()q Ga(\033)s Fs(\))1620 3893 y Fu(N)410 4061 y F4(=)54
b F6(j)p FL(Cut)p F4(\()733 4049 y FX(h)761 4061 y Ga(b)800
4049 y FX(i)827 4061 y Ga(S)5 b(;)928 4049 y F9(\()956
4061 y Ga(y)1004 4049 y F9(\))1031 4061 y FL(Ax)p F4(\()p
Ga(y)s(;)15 b(a)p F4(\))q(\))p F6(j)1401 4028 y Fu(N)1456
4061 y Fs(\()p Ga(\033)s Fs(\))1576 4019 y Fu(N)2879
4061 y Gg(by)23 b(\(1,14\))i(of)e F6(j)p 3360 4061 V
3378 4061 V 3396 4061 V 65 w(j)3448 4028 y Fu(N)p 3436
4233 4 62 v 3440 4175 55 4 v 3440 4233 V 3494 4233 4
62 v Black 277 4445 a Gb(Pr)n(oof)h(of)g(Theor)n(em)f(3.4.9.)p
Black 34 w Gg(W)-7 b(e)23 b(\002rst)g(gi)n(v)o(e)h(the)f(calculations)k
(for)d(some)g(base)g(cases.)p Black 277 4706 a Gb(Logical)h(Cut)d(with)
g(Axiom:)p Black 504 4861 a Ga(M)36 b F6(\021)25 b FL(Cut)p
F4(\()897 4849 y FX(h)924 4861 y Ga(a)972 4849 y FX(i)1000
4861 y Ga(S)5 b(;)1101 4849 y F9(\()1129 4861 y Ga(y)1177
4849 y F9(\))1204 4861 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(b)p F4(\)\))1596 4824 y Gc(cut)1565 4861 y F6(\000)-31
b(\000)f(!)26 b Ga(S)5 b F4([)p Ga(a)10 b F6(7!)g Ga(b)p
F4(])26 b F6(\021)e Ga(N)727 5045 y F6(j)p FL(Cut)p F4(\()925
5033 y FX(h)953 5045 y Ga(a)1001 5033 y FX(i)1028 5045
y Ga(M)10 b(;)1166 5033 y F9(\()1194 5045 y Ga(y)1242
5033 y F9(\))1269 5045 y FL(Ax)p F4(\()p Ga(y)s(;)15
b(b)p F4(\))q(\))p F6(j)1630 5012 y Fu(N)604 5169 y F4(=)52
b FL(Subst)o F4(\()974 5157 y FX(h)1002 5169 y Ga(a)1050
5157 y FX(i)1077 5169 y F6(j)p Ga(S)5 b F6(j)1188 5136
y Fu(N)1242 5169 y Ga(;)1282 5157 y F9(\()1310 5169 y
Ga(y)1358 5157 y F9(\))1386 5169 y FL(Id)p F4(\()p Ga(y)s(;)15
b(b)p F4(\))q(\))1188 b Gg(by)23 b(\(1,14\))i(of)e F6(j)p
3360 5169 28 4 v 3378 5169 V 3396 5169 V 65 w(j)3448
5136 y Fu(N)569 5256 y Gc(\024)504 5293 y F6(\000)-31
b(\000)g(!)52 b(j)p Ga(S)5 b F6(j)838 5260 y Fu(N)892
5293 y F4([)p Ga(a)10 b F6(7!)g Ga(b)p F4(])604 5417
y F6(\021)52 b(j)p Ga(S)5 b F4([)p Ga(a)10 b F6(7!)g
Ga(b)p F4(])p F6(j)1086 5384 y Fu(N)p Black Black eop
end
%%Page: 166 178
TeXDict begin 166 177 bop Black -144 51 a Gb(166)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 549 412 a Ga(M)41 b F6(\021)31 b FL(Cut)o F4(\()952
400 y FX(h)980 412 y Ga(a)1028 400 y FX(i)1056 412 y
FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))q Ga(;)1405 400
y F9(\()1433 412 y Ga(x)1485 400 y F9(\))1513 412 y Ga(S)5
b F4(\))1671 375 y Gc(cut)1640 412 y F6(\000)-31 b(\000)f(!)31
b Ga(S)5 b F4([)p Ga(x)16 b F6(7!)g Ga(y)s F4(])32 b
F6(\021)e Ga(N)36 b Gg(and)27 b(one)g(of)g(the)g(clauses)i
(\(10\22613\))549 525 y(of)23 b F6(j)p 674 525 28 4 v
692 525 V 710 525 V 65 w(j)762 492 y Fu(N)839 525 y Gg(applies)i(to)e
Ga(M)10 b Gg(,)23 b(for)h(e)o(xample)g(\(10\):)772 678
y F6(j)p FL(Cut)p F4(\()970 666 y FX(h)998 678 y Ga(a)1046
666 y FX(i)1074 678 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p
F4(\))q Ga(;)1423 666 y F9(\()1451 678 y Ga(x)1503 666
y F9(\))1530 678 y Ga(S)5 b F4(\))p F6(j)1651 645 y Fu(N)650
803 y F4(=)51 b FL(And)927 766 y Gc(i)927 826 y(E)986
803 y F4(\()1021 791 y FX(h)1049 803 y Ga(a)1097 791
y FX(i)1125 803 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q
Ga(;)1444 791 y F9(\()1472 803 y Ga(x)1524 791 y F9(\))1551
803 y F6(j)p Ga(S)5 b F6(j)1662 770 y Fu(N)1717 803 y
F4(\))1171 b Gg(by)23 b(\(1,10\))i(of)e F6(j)p 3404 803
V 3422 803 V 3440 803 V 65 w(j)3492 770 y Fu(N)650 927
y F6(\021)51 b(j)p Ga(N)10 b F6(j)905 894 y Fu(N)p Black
321 1112 a Gb(Logical)25 b(Cut)d Fb(^)871 1126 y Fy(R)936
1112 y FO(=)p Fb(^)1058 1126 y Fy(L)1111 1134 y Fa(1)1154
1112 y Gb(:)p Black 549 1267 a Ga(M)35 b F6(\021)25 b
FL(Cut)p F4(\()941 1255 y FX(h)969 1267 y Ga(c)1008 1255
y FX(i)1035 1267 y FL(And)1190 1281 y Gc(R)1248 1267
y F4(\()1283 1255 y FX(h)1310 1267 y Ga(a)1358 1255 y
FX(i)1386 1267 y Ga(S)5 b(;)1487 1255 y FX(h)1515 1267
y Ga(b)1554 1255 y FX(i)1581 1267 y Ga(T)13 b(;)i(c)p
F4(\))q Ga(;)1802 1255 y F9(\()1830 1267 y Ga(y)1878
1255 y F9(\))1905 1267 y FL(And)2060 1231 y F9(1)2060
1291 y Gc(L)2112 1267 y F4(\()2147 1255 y F9(\()2175
1267 y Ga(x)2227 1255 y F9(\))2254 1267 y Ga(P)e(;)i(y)s
F4(\))q(\))2540 1230 y Gc(cut)2509 1267 y F6(\000)-31
b(\000)g(!)25 b FL(Cut)p F4(\()2878 1255 y FX(h)2905
1267 y Ga(a)2953 1255 y FX(i)2981 1267 y Ga(S)5 b(;)3082
1255 y F9(\()3110 1267 y Ga(x)3162 1255 y F9(\))3189
1267 y Ga(P)13 b F4(\))26 b F6(\021)f Ga(N)771 1421 y
F6(j)p FL(Cut)p F4(\()969 1409 y FX(h)997 1421 y Ga(c)1036
1409 y FX(i)1064 1421 y FL(And)1218 1435 y Gc(R)1276
1421 y F4(\()1311 1409 y FX(h)1339 1421 y Ga(a)1387 1409
y FX(i)1414 1421 y Ga(S)5 b(;)1515 1409 y FX(h)1543 1421
y Ga(b)1582 1409 y FX(i)1609 1421 y Ga(T)13 b(;)i(c)p
F4(\))q Ga(;)1830 1409 y F9(\()1858 1421 y Ga(y)1906
1409 y F9(\))1933 1421 y FL(And)2088 1385 y F9(1)2088
1445 y Gc(L)2140 1421 y F4(\()2175 1409 y F9(\()2203
1421 y Ga(x)2255 1409 y F9(\))2282 1421 y Ga(P)e(;)i(y)s
F4(\))q(\))p F6(j)2537 1388 y Fu(N)648 1546 y F4(=)52
b FL(And)925 1509 y Gc(i)925 1569 y(E)985 1546 y F4(\()1020
1534 y FX(h)1048 1546 y Ga(c)1087 1534 y FX(i)1115 1546
y FL(And)1269 1560 y Gc(I)1309 1546 y F4(\()1344 1534
y FX(h)1372 1546 y Ga(a)1420 1534 y FX(i)1447 1546 y
F6(j)p Ga(S)5 b F6(j)1558 1513 y Fu(N)1613 1546 y Ga(;)1653
1534 y FX(h)1681 1546 y Ga(b)1720 1534 y FX(i)1747 1546
y F6(j)p Ga(T)13 b F6(j)1863 1513 y Fu(N)1917 1546 y
Ga(;)i(c)p F4(\))q Ga(;)2072 1534 y F9(\()2100 1546 y
Ga(x)2152 1534 y F9(\))2180 1546 y F6(j)p Ga(P)e F6(j)2301
1513 y Fu(N)2355 1546 y F4(\))533 b Gg(by)23 b(\(2,10\))i(of)e
F6(j)p 3404 1546 V 3422 1546 V 3440 1546 V 65 w(j)3492
1513 y Fu(N)613 1633 y Gc(\024)549 1670 y F6(\000)-32
b(\000)h(!)52 b FL(Subst)o F4(\()1018 1658 y FX(h)1046
1670 y Ga(a)1094 1658 y FX(i)1121 1670 y F6(j)p Ga(S)5
b F6(j)1232 1637 y Fu(N)1287 1670 y Ga(;)1327 1658 y
F9(\()1355 1670 y Ga(x)1407 1658 y F9(\))1434 1670 y
F6(j)p Ga(P)13 b F6(j)1555 1637 y Fu(N)1609 1670 y F4(\))786
b Ga(c)23 b Gg(is)h(freshly)h(introduced)h(by)3407 1633
y Gc(cut)3376 1670 y F6(\000)-31 b(\000)f(!)549 1813
y Gg(No)n(w)28 b(we)h(ha)n(v)o(e)i(tw)o(o)f(subcases)i(depending)h(on)d
(whether)h Ga(P)42 b Gg(freshly)32 b(introduces)h Ga(x)p
Gg(,)d(b)n(ut)h(is)549 1926 y(not)23 b(an)h(axiom.)29
b(In)24 b(this)g(case)g(we)f(reason)i(as)e(follo)n(ws.)580
2181 y FL(Subst)o F4(\()827 2169 y FX(h)855 2181 y Ga(a)903
2169 y FX(i)930 2181 y F6(j)p Ga(S)5 b F6(j)1041 2148
y Fu(N)1096 2181 y Ga(;)1136 2169 y F9(\()1164 2181 y
Ga(x)1216 2169 y F9(\))1243 2181 y F6(j)p Ga(P)13 b F6(j)1364
2148 y Fu(N)1418 2181 y F4(\))1544 2144 y Gc(\024)1479
2181 y F6(\000)-31 b(\000)f(!)26 b(j)p Ga(P)13 b F6(j)1796
2143 y Fu(N)1850 2181 y Fs(\()-7 b Ga(x)26 b F4(:=)2074
2169 y FX(h)2101 2181 y Ga(a)2149 2169 y FX(i)2177 2181
y F6(j)p Ga(S)5 b F6(j)2288 2148 y Fu(N)2335 2181 y Fs(\))2393
2112 y F9(\(3)p Gc(:)p F9(4)p Gc(:)p F9(6\))2457 2181
y F6(\021)90 b(j)p Ga(P)13 b F4([)p Ga(x)26 b F4(:=)2938
2169 y FX(h)2965 2181 y Ga(a)3013 2169 y FX(i)3041 2181
y Ga(S)5 b F4(])p F6(j)3152 2143 y Fu(N)3232 2181 y F6(\021)25
b(j)p Ga(N)10 b F6(j)3461 2143 y Fu(N)549 2411 y Gg(Otherwise)24
b(by)g(\(14\))g(of)f F6(j)p 1358 2411 V 1376 2411 V 1394
2411 V 65 w(j)1446 2378 y Fu(N)1500 2411 y Gg(:)1048
2663 y FL(Subst)o F4(\()1295 2651 y FX(h)1323 2663 y
Ga(a)1371 2651 y FX(i)1398 2663 y F6(j)p Ga(S)5 b F6(j)1509
2630 y Fu(N)1564 2663 y Ga(;)1604 2651 y F9(\()1632 2663
y Ga(x)1684 2651 y F9(\))1711 2663 y F6(j)p Ga(P)13 b
F6(j)1832 2630 y Fu(N)1887 2663 y F4(\))25 b(=)g F6(j)p
FL(Cut)p F4(\()2241 2651 y FX(h)2269 2663 y Ga(a)2317
2651 y FX(i)2345 2663 y Ga(S)5 b(;)2446 2651 y F9(\()2473
2663 y Ga(x)2525 2651 y F9(\))2553 2663 y Ga(P)13 b F4(\))p
F6(j)2684 2626 y Fu(N)2764 2663 y F6(\021)25 b(j)p Ga(N)10
b F6(j)2993 2626 y Fu(N)p Black 321 2893 a Gb(Logical)25
b(Cut)d Fb(\033)882 2907 y Fy(R)948 2893 y FO(=)p Fb(\033)1081
2907 y Fy(L)1139 2893 y Gb(:)p Black 598 3046 a Ga(M)36
b F6(\021)f FL(Cut)p F4(\()1001 3034 y FX(h)1029 3046
y Ga(b)1068 3034 y FX(i)1095 3046 y FL(Imp)1239 3068
y Gc(R)1297 3046 y F4(\()1332 3034 y F9(\()1360 3046
y Ga(x)1412 3034 y F9(\))p FX(h)1467 3046 y Ga(a)1515
3034 y FX(i)1542 3046 y Ga(S)5 b(;)15 b(b)p F4(\))q Ga(;)1758
3034 y F9(\()1786 3046 y Ga(z)1832 3034 y F9(\))1860
3046 y FL(Imp)2004 3068 y Gc(L)2056 3046 y F4(\()2091
3034 y FX(h)2119 3046 y Ga(c)2158 3034 y FX(i)2186 3046
y Ga(T)e(;)2292 3034 y F9(\()2319 3046 y Ga(y)2367 3034
y F9(\))2395 3046 y Ga(P)g(;)i(z)t F4(\))q(\))859 3122
y Gc(cut)828 3159 y F6(\000)-31 b(\000)f(!)25 b FL(Cut)p
F4(\()1196 3147 y FX(h)1224 3159 y Ga(c)1263 3147 y FX(i)1291
3159 y Ga(T)13 b(;)1397 3147 y F9(\()1424 3159 y Ga(x)1476
3147 y F9(\))1504 3159 y FL(Cut)p F4(\()1677 3147 y FX(h)1705
3159 y Ga(a)1753 3147 y FX(i)1780 3159 y Ga(S)5 b(;)1881
3147 y F9(\()1909 3159 y Ga(y)1957 3147 y F9(\))1984
3159 y Ga(P)13 b F4(\)\))26 b F6(\021)f Ga(N)771 3324
y F6(j)p FL(Cut)p F4(\()969 3312 y FX(h)997 3324 y Ga(b)1036
3312 y FX(i)1063 3324 y FL(Imp)1208 3346 y Gc(R)1265
3324 y F4(\()1300 3312 y F9(\()1328 3324 y Ga(x)1380
3312 y F9(\))q FX(h)1435 3324 y Ga(a)1483 3312 y FX(i)1510
3324 y Ga(S)5 b(;)15 b(b)p F4(\))q Ga(;)1726 3312 y F9(\()1754
3324 y Ga(z)1800 3312 y F9(\))1828 3324 y FL(Imp)1972
3346 y Gc(L)2024 3324 y F4(\()2059 3312 y FX(h)2087 3324
y Ga(c)2126 3312 y FX(i)2154 3324 y Ga(T)e(;)2260 3312
y F9(\()2288 3324 y Ga(y)2336 3312 y F9(\))2363 3324
y Ga(P)g(;)i(z)t F4(\))q(\))p F6(j)2616 3291 y Fu(N)648
3448 y F4(=)52 b FL(Imp)915 3470 y Gc(E)975 3448 y F4(\()1010
3436 y FX(h)1038 3448 y Ga(b)1077 3436 y FX(i)1104 3448
y FL(Imp)1249 3470 y Gc(I)1288 3448 y F4(\()1323 3436
y F9(\()1351 3448 y Ga(x)1403 3436 y F9(\))q FX(h)1458
3448 y Ga(a)1506 3436 y FX(i)1534 3448 y F6(j)p Ga(S)5
b F6(j)1645 3415 y Fu(N)1699 3448 y Ga(;)15 b(b)p F4(\))q
Ga(;)1854 3436 y FX(h)1882 3448 y Ga(c)1921 3436 y FX(i)1948
3448 y F6(j)p Ga(T)e F6(j)2064 3415 y Fu(N)2119 3448
y Ga(;)2159 3436 y F9(\()2187 3448 y Ga(y)2235 3436 y
F9(\))2262 3448 y F6(j)p Ga(P)g F6(j)2383 3415 y Fu(N)2437
3448 y F4(\))451 b Gg(by)23 b(\(4,12\))i(of)e F6(j)p
3404 3448 V 3422 3448 V 3440 3448 V 65 w(j)3492 3415
y Fu(N)613 3535 y Gc(\024)549 3572 y F6(\000)-32 b(\000)h(!)52
b FL(Subst)o F4(\()1018 3560 y FX(h)1046 3572 y Ga(c)1085
3560 y FX(i)1113 3572 y F6(j)p Ga(N)10 b F6(j)1246 3539
y Fu(N)1300 3572 y Ga(;)1340 3560 y F9(\()1368 3572 y
Ga(x)1420 3560 y F9(\))1447 3572 y FL(Subst)o F4(\()1694
3560 y FX(h)1722 3572 y Ga(a)1770 3560 y FX(i)1798 3572
y F6(j)p Ga(M)g F6(j)1946 3539 y Fu(N)2000 3572 y Ga(;)2040
3560 y F9(\()2068 3572 y Ga(y)2116 3560 y F9(\))2143
3572 y F6(j)p Ga(P)j F6(j)2264 3539 y Fu(N)2319 3572
y F4(\)\))42 b Ga(b)22 b Gg(is)i(freshly)h(introduced)h(by)3407
3535 y Gc(cut)3376 3572 y F6(\000)-31 b(\000)f(!)549
3715 y Gg(Again)33 b(we)g(ha)n(v)o(e)h(tw)o(o)f(subcases)j(depending)g
(on)e(whether)g Ga(P)46 b Gg(freshly)35 b(introduces)h
Ga(x)p Gg(,)f(b)n(ut)549 3828 y(is)f(not)h(an)g(axiom.)62
b(In)35 b(this)g(case,)j(we)33 b(reason)j(analogous)i(as)c(in)h(the)g
(case)g(gi)n(v)o(en)g(abo)o(v)o(e.)549 3941 y(Otherwise)24
b(by)g(\(14\))g(of)f F6(j)p 1358 3941 V 1376 3941 V 1394
3941 V 65 w(j)1446 3908 y Fu(N)1500 3941 y Gg(:)p Black
Black 1323 4154 a FL(Subst)o F4(\()1570 4142 y FX(h)1598
4154 y Ga(c)1637 4142 y FX(i)1665 4154 y F6(j)p Ga(N)10
b F6(j)1798 4121 y Fu(N)1852 4154 y Ga(;)1892 4142 y
F9(\()1920 4154 y Ga(x)1972 4142 y F9(\))2000 4154 y
FL(Subst)o F4(\()2247 4142 y FX(h)2275 4154 y Ga(a)2323
4142 y FX(i)2350 4154 y F6(j)p Ga(M)g F6(j)2498 4121
y Fu(N)2553 4154 y Ga(;)2593 4142 y F9(\()2621 4154 y
Ga(y)2669 4142 y F9(\))2696 4154 y F6(j)p Ga(P)j F6(j)2817
4121 y Fu(N)2871 4154 y F4(\))q(\))1153 4267 y(=)99 b
F6(j)p FL(Cut)p F4(\()1521 4255 y FX(h)1549 4267 y Ga(c)1588
4255 y FX(i)1616 4267 y Ga(N)10 b(;)1739 4255 y F9(\()1767
4267 y Ga(x)1819 4255 y F9(\))1846 4267 y FL(Cut)p F4(\()2019
4255 y FX(h)2047 4267 y Ga(a)2095 4255 y FX(i)2122 4267
y Ga(M)g(;)2260 4255 y F9(\()2288 4267 y Ga(y)2336 4255
y F9(\))2364 4267 y Ga(P)j F4(\)\))p F6(j)2530 4234 y
Fu(N)2610 4267 y F6(\021)25 b(j)p Ga(N)10 b F6(j)2839
4234 y Fu(N)p Black 321 4474 a Gb(Commuting)23 b(Cut:)p
Black 549 4629 a Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()941
4617 y FX(h)969 4629 y Ga(a)1017 4617 y FX(i)1044 4629
y Ga(S)5 b(;)1145 4617 y F9(\()1173 4629 y Ga(x)1225
4617 y F9(\))1252 4629 y Ga(T)13 b F4(\))1409 4592 y
Gc(cut)1379 4629 y F6(\000)-32 b(\000)h(!)25 b Ga(S)5
b F4([)p Ga(a)26 b F4(:=)1855 4617 y F9(\()1882 4629
y Ga(x)1934 4617 y F9(\))1962 4629 y Ga(T)13 b F4(])25
b F6(\021)g Ga(N)549 4778 y Gg(If)33 b(one)g(of)h(the)f(clauses)i
(\(10\22613\))h(applies)f(to)e Ga(M)10 b Gg(,)35 b(then)f(we)e(ha)n(v)o
(e)i(for)g(e)o(xample)g(for)f Ga(T)57 b F6(\021)549 4890
y FL(And)703 4854 y Gc(i)703 4914 y(L)755 4890 y F4(\()790
4878 y F9(\()818 4890 y Ga(y)866 4878 y F9(\))893 4890
y Ga(P)13 b(;)i(x)p F4(\))810 5045 y F6(j)p FL(Cut)p
F4(\()1008 5033 y FX(h)1036 5045 y Ga(a)1084 5033 y FX(i)1112
5045 y Ga(S)5 b(;)1213 5033 y F9(\()1240 5045 y Ga(x)1292
5033 y F9(\))1320 5045 y FL(And)1474 5008 y Gc(i)1474
5068 y(L)1527 5045 y F4(\()1562 5033 y F9(\()1589 5045
y Ga(y)1637 5033 y F9(\))1665 5045 y Ga(P)13 b(;)i(x)p
F4(\)\))p F6(j)1923 5012 y Fu(N)648 5169 y F4(=)91 b
FL(And)965 5132 y Gc(i)965 5192 y(E)1024 5169 y F4(\()1059
5157 y FX(h)1087 5169 y Ga(a)1135 5157 y FX(i)1163 5169
y F6(j)p Ga(S)5 b F6(j)1274 5136 y Fu(N)1328 5169 y Ga(;)1368
5157 y F9(\()1396 5169 y Ga(y)1444 5157 y F9(\))1471
5169 y F6(j)p Ga(P)13 b F6(j)1592 5136 y Fu(N)1647 5169
y F4(\))1309 b Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 5169
V 3422 5169 V 3440 5169 V 65 w(j)3492 5136 y Fu(N)613
5256 y Gc(\024)549 5293 y F6(\000)-32 b(\000)h(!)91 b(j)p
Ga(S)5 b F6(j)921 5260 y Fu(N)976 5293 y Fs(^)p FL(And)1163
5256 y Gc(i)1163 5316 y(E)1222 5293 y F4(\()1257 5281
y FX(h)1285 5293 y Ga(a)1333 5281 y FX(i)p 1363 5293
V 1380 5293 V 1398 5293 V 1425 5293 a Ga(;)1465 5281
y F9(\()1493 5293 y Ga(y)1541 5281 y F9(\))1568 5293
y F6(j)p Ga(P)13 b F6(j)1689 5260 y Fu(N)1744 5293 y
F4(\))p Fs(_)613 5380 y Gc(\024)549 5417 y F6(\000)-32
b(\000)h(!)728 5384 y FX(\003)810 5417 y F6(j)p Ga(S)5
b F4([)p Ga(a)26 b F4(:=)1116 5405 y F9(\()1144 5417
y Ga(x)1196 5405 y F9(\))1223 5417 y Ga(T)13 b F4(])p
F6(j)1339 5384 y Fu(N)1419 5417 y F6(\021)25 b(j)p Ga(N)10
b F6(j)1648 5384 y Fu(N)2950 5417 y Gg(by)24 b(Lemma)f(3.4.7)p
Black Black eop end
%%Page: 167 179
TeXDict begin 167 178 bop Black 277 51 a Gb(B.3)23 b(Pr)n(oofs)h(of)g
(Chapter)f(4)2639 b(167)p 277 88 3691 4 v Black 504 412
a Gg(Otherwise)25 b(we)d(ha)n(v)o(e)727 545 y F6(j)p
FL(Cut)p F4(\()925 533 y FX(h)953 545 y Ga(a)1001 533
y FX(i)1028 545 y Ga(S)5 b(;)1129 533 y F9(\()1157 545
y Ga(x)1209 533 y F9(\))1236 545 y Ga(T)13 b F4(\))p
F6(j)1362 512 y Fu(N)604 670 y F4(=)52 b FL(Subst)o F4(\()974
658 y FX(h)1002 670 y Ga(a)1050 658 y FX(i)1077 670 y
F6(j)p Ga(S)5 b F6(j)1188 637 y Fu(N)1242 670 y Ga(;)1282
658 y F9(\()1310 670 y Ga(x)1362 658 y F9(\))1390 670
y F6(j)p Ga(T)13 b F6(j)1506 637 y Fu(N)1560 670 y F4(\))1352
b Gg(by)24 b(\(14\))g(of)f F6(j)p 3360 670 28 4 v 3378
670 V 3396 670 V 65 w(j)3448 637 y Fu(N)569 757 y Gc(\024)504
794 y F6(\000)-31 b(\000)g(!)52 b(j)p Ga(S)5 b F6(j)838
761 y Fu(N)892 794 y Fs(\()-7 b Ga(a)26 b F4(:=)1112
782 y F9(\()1139 794 y Ga(x)1191 782 y F9(\))1219 794
y F6(j)p Ga(T)13 b F6(j)1335 761 y Fu(N)1382 794 y Fs(\))604
918 y F6(\021)52 b(j)p Ga(S)5 b F4([)p Ga(a)25 b F4(:=)1033
906 y F9(\()1060 918 y Ga(x)1112 906 y F9(\))1139 918
y Ga(T)13 b F4(])p F6(j)1255 885 y Fu(N)2906 918 y Gg(by)24
b(Lemma)e(3.4.8)504 1080 y Ga(M)36 b F6(\021)25 b FL(Cut)p
F4(\()897 1068 y FX(h)924 1080 y Ga(a)972 1068 y FX(i)1000
1080 y Ga(S)5 b(;)1101 1068 y F9(\()1129 1080 y Ga(x)1181
1068 y F9(\))1208 1080 y Ga(T)13 b F4(\))1365 1042 y
Gc(cut)1334 1079 y F6(\000)-31 b(\000)g(!)1530 1080 y
Ga(T)13 b F4([)p Ga(x)25 b F4(:=)1819 1068 y FX(h)1847
1080 y Ga(a)1895 1068 y FX(i)1922 1080 y Ga(S)5 b F4(])26
b F6(\021)f Ga(N)727 1246 y F6(j)p FL(Cut)p F4(\()925
1234 y FX(h)953 1246 y Ga(a)1001 1234 y FX(i)1028 1246
y Ga(S)5 b(;)1129 1234 y F9(\()1157 1246 y Ga(x)1209
1234 y F9(\))1236 1246 y Ga(T)13 b F4(\))p F6(j)1362
1213 y Fu(N)604 1370 y F4(=)52 b FL(Subst)o F4(\()974
1358 y FX(h)1002 1370 y Ga(a)1050 1358 y FX(i)1077 1370
y F6(j)p Ga(S)5 b F6(j)1188 1337 y Fu(N)1242 1370 y Ga(;)1282
1358 y F9(\()1310 1370 y Ga(x)1362 1358 y F9(\))1390
1370 y F6(j)p Ga(T)13 b F6(j)1506 1337 y Fu(N)1560 1370
y F4(\))1352 b Gg(by)24 b(\(14\))g(of)f F6(j)p 3360 1370
V 3378 1370 V 3396 1370 V 65 w(j)3448 1337 y Fu(N)569
1457 y Gc(\024)504 1494 y F6(\000)-31 b(\000)g(!)52 b(j)p
Ga(T)13 b F6(j)843 1461 y Fu(N)897 1494 y Fs(\()-7 b
Ga(x)25 b F4(:=)1121 1482 y FX(h)1148 1494 y Ga(a)1196
1482 y FX(i)1224 1494 y F6(j)p Ga(S)5 b F6(j)1335 1461
y Fu(N)1382 1494 y Fs(\))604 1618 y F6(\021)52 b(j)p
Ga(T)13 b F4([)p Ga(x)25 b F4(:=)1041 1606 y FX(h)1069
1618 y Ga(a)1117 1606 y FX(i)1144 1618 y Ga(S)5 b F4(])p
F6(j)1255 1585 y Fu(N)1335 1618 y F6(\021)25 b(j)p Ga(N)10
b F6(j)1564 1585 y Fu(N)2906 1618 y Gg(by)24 b(Lemma)e(3.4.6)p
Black 277 1800 a Gb(Inner)h(Reduction:)p Black 46 w Gg(The)d(inner)i
(reductions)i(are)d(by)g(simple)g(induction)j(ar)n(guments)f(e)o(xcept)
f(where)504 1913 y Ga(M)38 b Gg(is)28 b(translated)j(by)e(clause)g
(\(14\))g(of)g F6(j)p 1782 1913 V 1800 1913 V 1817 1913
V 65 w(j)1870 1880 y Fu(N)1951 1913 y Gg(and)g Ga(N)38
b Gg(by)28 b(one)h(of)f(the)h(clauses)h(\(10\22613\).)45
b(W)-7 b(e)504 2026 y(gi)n(v)o(e)24 b(the)g(details)h(for)f(one)g(such)
g(case.)29 b(Suppose)c Ga(y)h Gg(is)d(free)h(in)2496
2014 y F9(\()2523 2026 y Ga(x)2575 2014 y F9(\))2602
2026 y Ga(T)13 b Gg(,)23 b(b)n(ut)h(not)g(in)3083 2014
y F9(\()3111 2026 y Ga(x)3163 2014 y F9(\))3190 2026
y Ga(T)3256 1993 y FX(0)3279 2026 y Gg(.)504 2176 y Ga(M)36
b F6(\021)25 b FL(Cut)p F4(\()897 2164 y FX(h)924 2176
y Ga(c)963 2164 y FX(i)991 2176 y Ga(S)5 b(;)1092 2164
y F9(\()1120 2176 y Ga(y)1168 2164 y F9(\))1195 2176
y FL(And)1350 2139 y Gc(i)1350 2199 y(L)1402 2176 y F4(\()1437
2164 y F9(\()1465 2176 y Ga(x)1517 2164 y F9(\))1544
2176 y Ga(T)13 b(;)i(y)s F4(\))q(\))1825 2139 y Gc(cut)1794
2176 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)p F4(\()2163
2164 y FX(h)2190 2176 y Ga(c)2229 2164 y FX(i)2257 2176
y Ga(S)5 b(;)2358 2164 y F9(\()2386 2176 y Ga(y)2434
2164 y F9(\))2461 2176 y FL(And)2616 2139 y Gc(i)2616
2199 y(L)2668 2176 y F4(\()2703 2164 y F9(\()2731 2176
y Ga(x)2783 2164 y F9(\))2810 2176 y Ga(T)2876 2143 y
FX(0)2899 2176 y Ga(;)15 b(y)s F4(\))q(\))25 b F6(\021)g
Ga(N)766 2331 y F6(j)p FL(Cut)p F4(\()964 2319 y FX(h)992
2331 y Ga(c)1031 2319 y FX(i)1059 2331 y Ga(S)5 b(;)1160
2319 y F9(\()1188 2331 y Ga(y)1236 2319 y F9(\))1263
2331 y FL(And)1417 2294 y Gc(i)1417 2354 y(L)1470 2331
y F4(\()1505 2319 y F9(\()1532 2331 y Ga(x)1584 2319
y F9(\))1612 2331 y Ga(T)13 b(;)i(y)s F4(\)\))p F6(j)1861
2298 y Fu(N)604 2455 y F4(=)91 b FL(Subst)o F4(\()1013
2443 y FX(h)1041 2455 y Ga(c)1080 2443 y FX(i)1108 2455
y F6(j)p Ga(S)5 b F6(j)1219 2422 y Fu(N)1273 2455 y Ga(;)1313
2443 y F9(\()1341 2455 y Ga(y)1389 2443 y F9(\))1416
2455 y FL(And)1571 2418 y Gc(i)1571 2478 y(E)1630 2455
y F4(\()1665 2443 y FX(h)1693 2455 y Ga(a)1741 2443 y
FX(i)1769 2455 y FL(Id)p F4(\()p Ga(a;)15 b(y)s F4(\))q
Ga(;)2088 2443 y F9(\()2116 2455 y Ga(x)2168 2443 y F9(\))2195
2455 y F6(j)p Ga(T)e F6(j)2311 2422 y Fu(N)2365 2455
y F4(\))q(\))443 b Gg(by)23 b(\(6,14\))i(of)e F6(j)p
3360 2455 V 3378 2455 V 3396 2455 V 65 w(j)3448 2422
y Fu(N)569 2542 y Gc(\024)504 2580 y F6(\000)-31 b(\000)g(!)684
2547 y FX(\003)766 2580 y FL(Subst)o F4(\()1013 2568
y FX(h)1041 2580 y Ga(c)1080 2568 y FX(i)1108 2580 y
F6(j)p Ga(S)5 b F6(j)1219 2547 y Fu(N)1273 2580 y Ga(;)1313
2568 y F9(\()1341 2580 y Ga(y)1389 2568 y F9(\))1416
2580 y FL(And)1571 2543 y Gc(i)1571 2603 y(E)1630 2580
y F4(\()1665 2568 y FX(h)1693 2580 y Ga(a)1741 2568 y
FX(i)1769 2580 y FL(Id)p F4(\()p Ga(a;)15 b(y)s F4(\))q
Ga(;)2088 2568 y F9(\()2116 2580 y Ga(x)2168 2568 y F9(\))2195
2580 y F6(j)p Ga(T)2286 2547 y FX(0)2310 2580 y F6(j)2335
2547 y Fu(N)2389 2580 y F4(\)\))834 b Gg(by)23 b(IH)569
2667 y Gc(\024)504 2704 y F6(\000)-31 b(\000)g(!)91 b
FL(And)921 2667 y Gc(i)921 2727 y(E)980 2704 y F4(\()1015
2692 y FX(h)1043 2704 y Ga(a)1091 2692 y FX(i)1118 2704
y FL(Id)q F4(\()p Ga(a;)15 b(y)s F4(\))q Ga(;)1438 2692
y F9(\()1466 2704 y Ga(x)1518 2692 y F9(\))1545 2704
y F6(j)p Ga(T)1636 2671 y FX(0)1659 2704 y F6(j)1684
2671 y Fu(N)1738 2704 y F4(\))p Fs(\()-6 b Ga(y)28 b
F4(:=)1993 2692 y FX(h)2021 2704 y Ga(c)2060 2692 y FX(i)2088
2704 y F6(j)p Ga(S)5 b F6(j)2199 2671 y Fu(N)2246 2704
y Fs(\))604 2828 y F4(=)91 b FL(And)921 2791 y Gc(i)921
2851 y(E)980 2828 y F4(\()1015 2816 y FX(h)1043 2828
y Ga(c)1082 2816 y FX(i)1110 2828 y F6(j)p Ga(S)5 b F6(j)1221
2795 y Fu(N)1275 2828 y Ga(;)1315 2816 y F9(\()1343 2828
y Ga(x)1395 2816 y F9(\))1422 2828 y F6(j)p Ga(T)1513
2795 y FX(0)1537 2828 y F6(j)1562 2795 y Fu(N)1616 2828
y F4(\))721 b Gg(by)24 b(assumption)i Ga(y)i F6(62)d
Ga(F)13 b(N)d F4(\()3271 2816 y F9(\()3298 2828 y Ga(x)3350
2816 y F9(\))3378 2828 y Ga(T)3444 2795 y FX(0)3467 2828
y F4(\))604 2952 y(=)91 b F6(j)p FL(Cut)p F4(\()964 2940
y FX(h)992 2952 y Ga(c)1031 2940 y FX(i)1059 2952 y Ga(S)5
b(;)1160 2940 y F9(\()1188 2952 y Ga(y)1236 2940 y F9(\))1263
2952 y FL(And)1417 2915 y Gc(i)1417 2975 y(L)1470 2952
y F4(\()1505 2940 y F9(\()1532 2952 y Ga(x)1584 2940
y F9(\))1612 2952 y Ga(T)1678 2919 y FX(0)1701 2952 y
Ga(;)15 b(y)s F4(\)\))p F6(j)1884 2919 y Fu(N)1964 2952
y F6(\021)25 b(j)p Ga(N)10 b F6(j)2193 2919 y Fu(N)2947
2952 y Gg(by)24 b(\(10\))g(of)f F6(j)p 3360 2952 V 3378
2952 V 3396 2952 V 65 w(j)3448 2919 y Fu(N)p 3436 3059
4 62 v 3440 3001 55 4 v 3440 3059 V 3494 3059 4 62 v
277 3368 a Ge(B.3)119 b(Pr)n(oofs)29 b(of)g(Chapter)i(4)277
3591 y Gg(In)i(this)h(section)h(we)e(pro)o(v)o(e)h(that)g(a)e
(leftmost-outermost)38 b(reduction)e(strate)o(gy)f(of)3004
3554 y Gc(aux)2984 3591 y F6(\000)-31 b(\000)f(!)33 b
Gg(does)h(not)277 3704 y(restrict)25 b(the)f(collection)i(of)e
(cut-free)h(proofs)g(reachable)h(from)e(a)f(gi)n(v)o(en)h(proof.)p
Black 277 3842 a Gb(Pr)n(oof)i(of)e(Lemma)g(4.1.2.)p
Black 34 w Gg(By)g(induction)k(on)d(the)g(structure)i(of)e
Ga(M)2454 3856 y F9(1)2494 3842 y Gg(.)32 b(W)-7 b(e)24
b(analyse)i(four)g(represen-)277 3955 y(tati)n(v)o(e)e(cases.)p
Black 414 4157 a F6(\017)p Black 45 w Gg(Suppose)h(we)e(ha)n(v)o(e)h
(the)g(term)f(with)h(the)f(reduction)k(sequence)649 4415
y FL(And)804 4429 y Gc(R)861 4415 y F4(\()896 4403 y
FX(h)924 4415 y Ga(a)972 4403 y FX(i)1000 4415 y Ga(M)10
b(;)1138 4403 y FX(h)1166 4415 y Ga(b)1205 4403 y FX(i)1232
4415 y Ga(N)g(;)15 b(c)p F4(\))1483 4378 y Gc(bad)1455
4415 y F6(\000)-31 b(\000)g(!)25 b FL(And)1805 4429 y
Gc(R)1863 4415 y F4(\()1898 4403 y FX(h)1926 4415 y Ga(a)1974
4403 y FX(i)2001 4415 y Ga(M)11 b(;)2140 4403 y FX(h)2167
4415 y Ga(b)2206 4403 y FX(i)2234 4415 y Ga(S)5 b(;)15
b(c)p F4(\))p 2455 4340 119 3 v 2455 4378 a Gc(aux)2435
4415 y F6(\000)-31 b(\000)g(!)25 b FL(And)2785 4429 y
Gc(R)2843 4415 y F4(\()2878 4403 y FX(h)2906 4415 y Ga(a)2954
4403 y FX(i)2981 4415 y Ga(T)13 b(;)3087 4403 y FX(h)3115
4415 y Ga(b)3154 4403 y FX(i)3181 4415 y Ga(S)5 b(;)15
b(c)p F4(\))504 4654 y Gg(where)31 b(a)e(reduction)j(is)e(performed)i
(in)e(the)g(right)h(subterm,)h(although)g(the)e(left)h(subterm)g(is)504
4766 y(not)24 b(yet)g(normal.)30 b(In)23 b(this)h(case)g(we)f
(transform)i(the)f(reduction)i(sequence)g(into)629 5025
y FL(And)784 5039 y Gc(R)841 5025 y F4(\()876 5013 y
FX(h)904 5025 y Ga(a)952 5013 y FX(i)980 5025 y Ga(M)10
b(;)1118 5013 y FX(h)1146 5025 y Ga(b)1185 5013 y FX(i)1212
5025 y Ga(N)g(;)15 b(c)p F4(\))p 1456 4950 V 1456 4988
a Gc(aux)1435 5025 y F6(\000)-31 b(\000)g(!)25 b FL(And)1785
5039 y Gc(R)1843 5025 y F4(\()1878 5013 y FX(h)1906 5025
y Ga(a)1954 5013 y FX(i)1981 5025 y Ga(T)13 b(;)2087
5013 y FX(h)2115 5025 y Ga(b)2154 5013 y FX(i)2181 5025
y Ga(N)d(;)15 b(c)p F4(\))2425 4988 y Gc(aux)2405 5025
y F6(\000)-31 b(\000)f(!)25 b FL(And)2755 5039 y Gc(R)2813
5025 y F4(\()2848 5013 y FX(h)2875 5025 y Ga(a)2923 5013
y FX(i)2951 5025 y Ga(T)13 b(;)3057 5013 y FX(h)3084
5025 y Ga(b)3123 5013 y FX(i)3151 5025 y Ga(S)5 b(;)15
b(c)p F4(\))26 b Ga(:)p Black 414 5263 a F6(\017)p Black
45 w Gg(Suppose)f(we)e(ha)n(v)o(e)h(a)f(term)h(with)f(the)h(reduction)i
(sequence)646 5522 y FL(And)800 5536 y Gc(R)858 5522
y F4(\()893 5510 y FX(h)921 5522 y Ga(a)969 5510 y FX(i)996
5522 y Ga(M)10 b(;)1134 5510 y FX(h)1162 5522 y Ga(b)1201
5510 y FX(i)1229 5522 y Ga(N)g(;)15 b(c)p F4(\))1479
5485 y Gc(bad)1452 5522 y F6(\000)-31 b(\000)f(!)26 b
FL(And)1802 5536 y Gc(R)1860 5522 y F4(\()1895 5510 y
FX(h)1923 5522 y Ga(a)1971 5510 y FX(i)1998 5522 y Ga(S)5
b(;)2099 5510 y FX(h)2127 5522 y Ga(b)2166 5510 y FX(i)2193
5522 y Ga(N)10 b(;)15 b(c)p F4(\))p 2437 5447 V 2437
5485 a Gc(aux)2417 5522 y F6(\000)-32 b(\000)h(!)25 b
FL(And)2767 5536 y Gc(R)2824 5522 y F4(\()2859 5510 y
FX(h)2887 5522 y Ga(a)2935 5510 y FX(i)2963 5522 y Ga(T)12
b(;)3068 5510 y FX(h)3096 5522 y Ga(b)3135 5510 y FX(i)3163
5522 y Ga(N)e(;)15 b(c)p F4(\))p Black Black eop end
%%Page: 168 180
TeXDict begin 168 179 bop Black -144 51 a Gb(168)2658
b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
4 v Black 549 412 a Gg(where)30 b(\002rst)g(a)g(bad)h(reduction)h(is)f
(performed)h(in)e(the)g(left)h(subterm)g(and)g(then)g(a)f(reduction)549
525 y(in)d(the)h(same)f(term)g(which)h(respects)h(the)f(constraints)i
(of)e(the)f(strate)o(gy)-6 b(.)42 b(Thus)28 b(we)e(ha)n(v)o(e)i(the)549
638 y(reduction)21 b(sequence)g Ga(M)1411 601 y Gc(bad)1384
638 y F6(\000)-31 b(\000)f(!)25 b Ga(S)p 1686 563 119
3 v 1686 601 a Gc(aux)1666 638 y F6(\000)-32 b(\000)h(!)25
b Ga(T)13 b Gg(.)26 b(By)18 b(induction)j(hypothesis)g(there)f(is)e(a)g
(reduction)549 751 y Ga(M)p 692 676 V 692 714 a Gc(aux)672
751 y F6(\000)-31 b(\000)f(!)25 b Ga(R)983 714 y Gc(aux)962
751 y F6(\000)-31 b(\000)g(!)1133 718 y FX(\003)1197
751 y Ga(T)13 b Gg(,)23 b(from)g(which)h(we)f(obtain)i(the)e(reduction)
k(sequence)641 954 y FL(And)795 968 y Gc(R)853 954 y
F4(\()888 942 y FX(h)916 954 y Ga(a)964 942 y FX(i)991
954 y Ga(M)10 b(;)1129 942 y FX(h)1157 954 y Ga(b)1196
942 y FX(i)1224 954 y Ga(N)f(;)15 b(c)p F4(\))p 1467
879 V 1467 917 a Gc(aux)1447 954 y F6(\000)-31 b(\000)f(!)25
b FL(And)1797 968 y Gc(R)1855 954 y F4(\()1890 942 y
FX(h)1917 954 y Ga(a)1965 942 y FX(i)1993 954 y Ga(R)q(;)2103
942 y FX(h)2130 954 y Ga(b)2169 942 y FX(i)2197 954 y
Ga(N)10 b(;)15 b(c)p F4(\))2440 917 y Gc(aux)2420 954
y F6(\000)-31 b(\000)g(!)2590 916 y FX(\003)2655 954
y FL(And)2810 968 y Gc(R)2867 954 y F4(\()2902 942 y
FX(h)2930 954 y Ga(a)2978 942 y FX(i)3006 954 y Ga(T)12
b(;)3111 942 y FX(h)3139 954 y Ga(b)3178 942 y FX(i)3206
954 y Ga(N)e(;)15 b(c)p F4(\))26 b Ga(:)p Black 458 1137
a F6(\017)p Black 46 w Gg(Suppose)e(we)f(ha)n(v)o(e)h(a)f(term)h(with)f
(the)h(reduction)i(sequence)933 1340 y FL(Cut)p F4(\()1106
1328 y FX(h)1133 1340 y Ga(a)1181 1328 y FX(i)1209 1340
y Ga(M)10 b(;)1347 1328 y F9(\()1375 1340 y Ga(x)1427
1328 y F9(\))1454 1340 y Ga(N)g F4(\))1625 1303 y Gc(bad)1598
1340 y F6(\000)-31 b(\000)f(!)25 b FL(Cut)p F4(\()1966
1328 y FX(h)1994 1340 y Ga(a)2042 1328 y FX(i)2070 1340
y Ga(M)10 b(;)2208 1328 y F9(\()2236 1340 y Ga(x)2288
1328 y F9(\))2315 1340 y Ga(S)5 b F4(\))p 2457 1266 V
2457 1303 a Gc(aux)2437 1340 y F6(\000)-32 b(\000)h(!)25
b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2958 1328 y F9(\()2986
1340 y Ga(x)3038 1328 y F9(\))3065 1340 y Ga(S)l F6(g)549
1524 y Gg(which)d(we)g(may)g(transform)j(into)946 1727
y FL(Cut)p F4(\()1119 1715 y FX(h)1147 1727 y Ga(a)1195
1715 y FX(i)1222 1727 y Ga(M)10 b(;)1360 1715 y F9(\()1388
1727 y Ga(x)1440 1715 y F9(\))1468 1727 y Ga(N)f F4(\))p
1631 1652 V 1631 1690 a Gc(aux)1611 1727 y F6(\000)-31
b(\000)f(!)26 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2133
1715 y F9(\()2160 1727 y Ga(x)2212 1715 y F9(\))2240
1727 y Ga(N)p F6(g)2404 1690 y Gc(aux)2384 1727 y F6(\000)-31
b(\000)f(!)2554 1690 y FX(\003)2619 1727 y Ga(M)5 b F6(f)-7
b Ga(a)26 b F4(:=)2945 1715 y F9(\()2973 1727 y Ga(x)3025
1715 y F9(\))3052 1727 y Ga(S)-5 b F6(g)549 1911 y Gg(using)24
b(the)g(f)o(act)g(that)g(if)g Ga(N)1426 1873 y Gc(aux)1406
1911 y F6(\000)-31 b(\000)f(!)25 b Ga(S)j Gg(then)c Ga(M)5
b F6(f)-7 b Ga(a)26 b F4(:=)2191 1899 y F9(\()2218 1911
y Ga(x)2270 1899 y F9(\))2297 1911 y Ga(N)q F6(g)2462
1873 y Gc(aux)2442 1911 y F6(\000)-32 b(\000)h(!)2612
1878 y FX(\003)2677 1911 y Ga(M)5 b F6(f)-7 b Ga(a)26
b F4(:=)3003 1899 y F9(\()3030 1911 y Ga(x)3082 1899
y F9(\))3110 1911 y Ga(S)-5 b F6(g)p Gg(.)p Black 458
2082 a F6(\017)p Black 46 w Gg(Suppose)24 b(we)f(ha)n(v)o(e)h(a)f(term)
h(with)f(reduction)j(sequence)948 2285 y FL(Cut)p F4(\()1121
2273 y FX(h)1149 2285 y Ga(a)1197 2273 y FX(i)1224 2285
y Ga(M)10 b(;)1362 2273 y F9(\()1390 2285 y Ga(x)1442
2273 y F9(\))1469 2285 y Ga(N)g F4(\))1640 2248 y Gc(bad)1613
2285 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o F4(\()1981
2273 y FX(h)2009 2285 y Ga(a)2057 2273 y FX(i)2085 2285
y Ga(S)5 b(;)2186 2273 y F9(\()2214 2285 y Ga(x)2266
2273 y F9(\))2293 2285 y Ga(N)10 b F4(\))p 2457 2210
V 2457 2248 a Gc(aux)2437 2285 y F6(\000)-32 b(\000)h(!)25
b Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)2921 2273 y F9(\()2949
2285 y Ga(x)3001 2273 y F9(\))3028 2285 y Ga(N)p F6(g)549
2468 y Gg(which)e(we)g(may)g(transform)j(into)954 2671
y FL(Cut)o F4(\()1126 2659 y FX(h)1154 2671 y Ga(a)1202
2659 y FX(i)1230 2671 y Ga(M)10 b(;)1368 2659 y F9(\()1396
2671 y Ga(x)1448 2659 y F9(\))1475 2671 y Ga(N)g F4(\))p
1639 2597 V 1639 2634 a Gc(aux)1619 2671 y F6(\000)-32
b(\000)h(!)25 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2140
2659 y F9(\()2168 2671 y Ga(x)2220 2659 y F9(\))2247
2671 y Ga(N)q F6(g)2412 2634 y Gc(aux)2391 2671 y F6(\000)-31
b(\000)g(!)2562 2634 y FX(\003)2626 2671 y Ga(S)q F6(f)-7
b Ga(a)25 b F4(:=)2916 2659 y F9(\()2943 2671 y Ga(x)2995
2659 y F9(\))3022 2671 y Ga(N)q F6(g)549 2855 y Gg(using)f(Lemma)f
(2.3.11.)p 3480 2855 4 62 v 3484 2797 55 4 v 3484 2855
V 3538 2855 4 62 v Black 321 3092 a Gb(Pr)n(oof)31 b(of)f(Theor)n(em)f
(4.1.3.)p Black 34 w Gg(W)l(ithout)i(loss)g(of)f(generality)i(we)d(may)
h(assume)g(that)h(the)f(reduction)321 3205 y(sequence)k
Ga(M)828 3168 y Gc(aux)808 3205 y F6(\000)-31 b(\000)f(!)978
3172 y FX(\003)1043 3205 y Ga(N)40 b Gg(is)31 b(of)g(the)g(form)g
Ga(M)p 1858 3131 119 3 v 1858 3168 a Gc(aux)1838 3205
y F6(\000)-32 b(\000)h(!)2008 3172 y FX(\003)2086 3205
y Ga(M)2174 3219 y Gc(i)2262 3168 y(aux)2242 3205 y F6(\000)f(\000)h(!)
2412 3172 y FX(\003)2490 3205 y Ga(N)40 b Gg(where)31
b(either)i Ga(M)3181 3219 y Gc(i)3248 3205 y F6(\021)39
b Ga(N)h Gg(or)321 3318 y Ga(M)409 3332 y Gc(i)508 3281
y(bad)481 3318 y F6(\000)-31 b(\000)f(!)43 b Ga(M)782
3332 y Gc(i)p F9(+1)901 3318 y Gg(.)57 b(The)33 b(proof)h(then)g
(proceeds)h(by)f(induction)i(on)d(the)h(number)g(of)f(steps)h(of)f(the)
321 3431 y(longest)28 b(reduction)g(sequence)g(starting)g(from)e
Ga(M)1923 3445 y Gc(i)1951 3431 y Gg(,)g(i.e.,)f(on)j
FW(M)t(A)t(X)t(R)t(E)t(D)2617 3445 y Gc(aux)2739 3431
y F4(\()p Ga(M)2862 3445 y Gc(i)2891 3431 y F4(\))p Gg(.)35
b(Since)26 b(we)f(pro)o(v)o(e)321 3544 y(the)30 b(theorem)g(for)f
(terms)h(belonging)i(to)d FY(T)t Gg(,)c(we)k(kno)n(w)g(their)h(longest)
h(reduction)h(sequences)g(must)321 3657 y(be)24 b(\002nite.)p
Black 458 3836 a F6(\017)p Black 46 w Gg(If)g FW(M)t(A)t(X)t(R)t(E)t(D)
974 3850 y Gc(aux)1096 3836 y F4(\()p Ga(M)1219 3850
y Gc(i)1247 3836 y F4(\))i(=)f(0)p Gg(,)e(then)g Ga(M)p
1817 3761 V 1817 3799 a Gc(aux)1797 3836 y F6(\000)-31
b(\000)f(!)1967 3803 y FX(\003)2032 3836 y Ga(M)2120
3850 y Gc(i)2173 3836 y F6(\021)25 b Ga(N)33 b Gg(is)22
b(a)h(sequence)j(which)d(respects)i(the)549 3949 y(restrictions)h
(imposed)f(on)p 1440 3874 V 1440 3912 a Gc(aux)1420 3949
y F6(\000)-31 b(\000)f(!)p Gg(.)p Black 458 4120 a F6(\017)p
Black 46 w Gg(If)28 b FW(M)t(A)t(X)t(R)t(E)t(D)977 4134
y Gc(aux)1099 4120 y F4(\()p Ga(M)1222 4134 y Gc(i)1251
4120 y F4(\))j Ga(>)g F4(0)p Gg(,)c(we)f(\002rst)g(observ)o(e)i(that)f
(the)g(last)g(reduction)i(leading)g(to)d(a)h(nor)n(-)549
4233 y(mal)e(form)h(must)g(be)g(a)f(reduction)j(of)e(the)g(form)p
2117 4158 V 2117 4196 a Gc(aux)2097 4233 y F6(\000)-31
b(\000)f(!)p Gg(.)35 b(Therefore)28 b(the)e(reduction)i(sequence)549
4346 y Ga(M)637 4360 y Gc(i)724 4309 y(aux)703 4346 y
F6(\000)-31 b(\000)g(!)874 4313 y FX(\003)951 4346 y
Ga(N)40 b Gg(contains)33 b(at)d(least)i(one)p 1870 4271
V 1870 4309 a Gc(aux)1850 4346 y F6(\000)-31 b(\000)f(!)p
Gg(.)49 b(Let)30 b Ga(M)2331 4360 y Gc(j)2398 4346 y
Gg(be)g(the)h(leftmost)h(term)f(in)f(this)h(se-)549 4459
y(quence)e(from)e(which)h(a)f(reduction)p 1742 4384 V
1742 4422 a Gc(aux)1722 4459 y F6(\000)-32 b(\000)h(!)26
b Gg(is)i(performed.)42 b(Hence)28 b(the)f(reduction)j(sequence)549
4572 y Ga(M)637 4586 y Gc(i)723 4535 y(aux)702 4572 y
F6(\000)-31 b(\000)g(!)873 4539 y FX(\003)949 4572 y
Ga(N)40 b Gg(is)30 b(of)g(the)g(form)g Ga(M)1691 4586
y Gc(i)1784 4535 y(bad)1757 4572 y F6(\000)-32 b(\000)h(!)1927
4539 y F9(+)2023 4572 y Ga(M)2111 4586 y Gc(j)p 2206
4497 V 2206 4535 a(aux)2185 4572 y F6(\000)g(\000)g(!)37
b Ga(M)2481 4586 y Gc(j)t F9(+1)2666 4535 y Gc(aux)2645
4572 y F6(\000)-31 b(\000)g(!)2816 4539 y FX(\003)2892
4572 y Ga(N)10 b Gg(.)48 b(By)29 b(iterati)n(v)o(ely)549
4685 y(applying)i(Lemma)d(4.1.2,)j(we)d(can)i(mo)o(v)o(e)f(the)g
(reduction)p 2484 4610 V 2484 4647 a Gc(aux)2464 4685
y F6(\000)-31 b(\000)f(!)29 b Gg(ne)o(xt)g(to)h Ga(M)3034
4699 y Gc(i)3090 4685 y Gg(and)g(obtain)h(a)549 4797
y(reduction)26 b(sequence)g(of)d(the)h(form)1384 5001
y Ga(M)1472 5015 y Gc(i)p 1546 4926 V 1546 4964 a(aux)1525
5001 y F6(\000)-31 b(\000)g(!)25 b Ga(M)1819 4963 y FX(0)1888
4964 y Gc(aux)1868 5001 y F6(\000)-32 b(\000)h(!)2038
4963 y FX(\003)2103 5001 y Ga(M)2191 5015 y Gc(j)t F9(+1)2363
4964 y Gc(aux)2343 5001 y F6(\000)f(\000)h(!)2513 4963
y FX(\003)2578 5001 y Ga(N)35 b(:)p Black Black eop end
%%Page: 169 181
TeXDict begin 169 180 bop Black 277 51 a Gb(B.3)23 b(Pr)n(oofs)h(of)g
(Chapter)f(4)2639 b(169)p 277 88 3691 4 v Black 504 412
a Gg(W)l(ithout)26 b(loss)e(of)g(generality)i(we)d(may)h(assume)g(the)h
(sequence)h Ga(M)2659 379 y FX(0)2728 375 y Gc(aux)2708
412 y F6(\000)-31 b(\000)f(!)2878 379 y FX(\003)2943
412 y Ga(M)3031 426 y Gc(j)t F9(+1)3204 375 y Gc(aux)3184
412 y F6(\000)h(\000)f(!)3354 379 y FX(\003)3419 412
y Ga(N)504 525 y Gg(is)24 b(of)f(the)h(form)1575 767
y Ga(M)1673 730 y FX(0)p 1742 693 119 3 v 50 w Gc(aux)1722
767 y F6(\000)-31 b(\000)f(!)1892 730 y FX(\003)1957
767 y Ga(M)2045 782 y Gc(k)2133 730 y(aux)2113 767 y
F6(\000)h(\000)g(!)2283 730 y FX(\003)2348 767 y Ga(N)504
1009 y Gg(where)34 b(either)g Ga(M)1086 1024 y Gc(k)1173
1009 y F6(\021)43 b Ga(N)f Gg(or)33 b Ga(M)1598 1024
y Gc(k)1712 972 y(bad)1685 1009 y F6(\000)-32 b(\000)h(!)43
b Ga(M)1986 1024 y Gc(k)r F9(+1)2119 1009 y Gg(.)57 b(This)34
b(means)f Ga(M)2746 1024 y Gc(k)2822 1009 y Gg(is)g(the)g(\002rst)g
(term)g(in)504 1122 y(this)22 b(reduction)i(sequence)g(from)e(which)f
(a)g(bad)h(reduction)i(is)e(performed.)30 b(Clearly)-6
b(,)22 b(we)f(ha)n(v)o(e)506 1235 y FW(M)t(A)t(X)t(R)t(E)t(D)846
1249 y Gc(aux)969 1235 y F4(\()p Ga(M)1092 1249 y Gc(i)1120
1235 y F4(\))50 b Ga(>)i FW(M)t(A)t(X)t(R)t(E)t(D)1668
1249 y Gc(aux)1790 1235 y F4(\()p Ga(M)1923 1202 y FX(0)1947
1235 y F4(\))e F6(\025)h FW(M)t(A)t(X)t(R)t(E)t(D)2494
1249 y Gc(aux)2616 1235 y F4(\()p Ga(M)2739 1250 y Gc(k)2782
1235 y F4(\))p Gg(,)40 b(and)d(thus)g(we)f(can)504 1348
y(apply)27 b(the)f(induction)j(hypothesis)f(which)e(gi)n(v)o(es)g(us)g
(a)f(reduction)k(sequence)f Ga(M)3105 1315 y FX(0)p 3178
1273 V 3178 1311 a Gc(aux)3157 1348 y F6(\000)-31 b(\000)g(!)3328
1315 y FX(\003)3396 1348 y Ga(N)10 b Gg(.)504 1461 y(W)-7
b(e)23 b(conclude)j(this)e(case)g(with)g(the)f(reduction)j(sequence)
1398 1722 y Ga(M)p 1542 1647 V 1542 1685 a Gc(aux)1521
1722 y F6(\000)-31 b(\000)g(!)1692 1684 y FX(\003)1756
1722 y Ga(M)1844 1736 y Gc(i)p 1918 1647 V 1918 1685
a(aux)1898 1722 y F6(\000)g(\000)f(!)25 b Ga(M)2191 1684
y FX(0)p 2260 1647 V 2260 1685 a Gc(aux)2240 1722 y F6(\000)-31
b(\000)f(!)2410 1684 y FX(\003)2475 1722 y Ga(N)35 b(:)504
1964 y Gg(Thus)24 b(we)f(are)g(done.)p 3436 1964 4 62
v 3440 1905 55 4 v 3440 1964 V 3494 1964 4 62 v Black
Black eop end
%%Page: 170 182
TeXDict begin 170 181 bop Black Black Black Black eop
end
%%Page: 171 183
TeXDict begin 171 182 bop Black Black 277 1093 a Gf(Bibliograph)m(y)p
Black Black 277 1388 a Gg(Abramsk)o(y)-6 b(,)27 b(S.)d([1993].)43
b(Computational)28 b(Interpretations)i(of)c(Linear)g(Logic.)41
b F7(Theor)m(etical)28 b(Com-)368 1501 y(puter)d(Science)p
Gg(,)g(111\(1\2262\):3\22657.)p Black Black 277 1637
a(Baader)l(,)j(F)-7 b(.)25 b(and)i(Nipk)o(o)n(w)-6 b(,)27
b(T)-7 b(.)25 b([1998].)44 b F7(Term)26 b(Re)o(writing)h(and)g(All)f
(That)p Gg(.)42 b(Cambridge)28 b(Uni)n(v)o(ersity)368
1750 y(Press.)p Black Black 277 1885 a(Barbanera,)38
b(F)-7 b(.)32 b(and)j(Berardi,)i(S.)32 b([1994].)68 b(A)33
b(Symmetric)h(Lambda)g(Calculus)h(for)f(\223Classical\224)368
1998 y(Program)i(Extraction.)75 b(In)35 b F7(Theor)m(etical)j(Aspects)f
(of)f(Computer)g(Softwar)m(e)p Gg(,)k(v)n(olume)d(789)f(of)368
2111 y F7(LNCS)p Gg(,)22 b(pages)i(495\226515.)i(Springer)f(V)-10
b(erlag.)p Black Black 277 2246 a(Barbanera,)27 b(F)-7
b(.,)23 b(Berardi,)i(S.,)f(and)h(Schi)n(v)n(alocchi,)i(M.)c([1997].)39
b(\223Classical\224)27 b(Programming-with-)368 2359 y(Proofs)e(in)f
Ga(\025)776 2326 y Gc(sy)r(m)913 2359 y Gg(:)30 b(An)24
b(Analysis)i(of)e(Non-Con\003uence.)39 b(In)24 b F7(Theor)m(etical)j
(Aspects)e(of)g(Computer)368 2472 y(Softwar)m(e)p Gg(,)f(v)n(olume)h
(1281)g(of)e F7(LNCS)p Gg(,)f(pages)i(365\226390.)i(Springer)f(V)-10
b(erlag.)p Black Black 277 2608 a(Barendre)o(gt,)27 b(H.)d([1981].)40
b F7(The)25 b(Lambda)g(Calculus:)34 b(Its)26 b(Syntax)g(and)g
(Semantics)p Gg(,)h(v)n(olume)g(103)e(of)368 2721 y F7(Studies)g(in)f
(Lo)o(gic)g(and)g(the)g(F)-10 b(oundations)26 b(of)e(Mathematics)p
Gg(.)35 b(North-Holland.)p Black Black 277 2856 a(Barendre)o(gt,)30
b(H.)c(and)h(Ghilezan,)j(S.)25 b([2000].)47 b(Theoretical)30
b(Pearls:)37 b(Lambda)27 b(Terms)g(for)h(Natural)368
2969 y(Deduction,)35 b(Sequent)e(Calculus)f(and)g(Cut)f(Elimination.)60
b F7(J)n(ournal)33 b(of)e(Functional)j(Pr)l(o)o(gr)o(am-)368
3082 y(ming)p Gg(,)23 b(10\(1\):121\226134.)p Black Black
277 3218 a(Benton,)34 b(P)-10 b(.)29 b(N.)g([1995].)59
b(Strong)32 b(Normalisation)h(for)e(the)h(Linear)f(Term)f(Calculus.)59
b F7(J)n(ournal)32 b(of)368 3331 y(Functional)26 b(Pr)l(o)o(gr)o
(amming)p Gg(,)e(5\(1\):65\22680.)p Black Black 277 3466
a(Benton,)j(P)-10 b(.)24 b(N.,)g(Bierman,)i(G.)e(M.,)g(de)i(P)o(ai)n(v)
n(a,)f(V)-12 b(.)24 b(C.)g(V)-12 b(.,)25 b(and)g(Hyland,)i(J.)e(M.)f
(E.)g([1993].)41 b(A)24 b(Term)368 3579 y(Calculus)30
b(for)f(Intuitionistic)j(Linear)d(Logic.)49 b(In)29 b
F7(T)-7 b(yped)29 b(Lambda)f(Calculi)i(and)f(Applications)p
Gg(,)368 3692 y(v)n(olume)c(664)f(of)f F7(LNCS)p Gg(,)f(pages)j
(75\22690.)f(Springer)n(-V)-10 b(erlag.)p Black Black
277 3828 a(Ber)n(ger)l(,)29 b(U.,)e(Buchholz,)j(W)-8
b(.,)26 b(and)i(Schwichtenber)n(g,)j(H.)26 b([2000].)47
b(Re\002ned)28 b(Program)f(Extraction)368 3941 y(from)c(Classical)i
(Proofs.)34 b F7(Annals)25 b(of)e(Pur)m(e)g(and)h(Applied)h(Lo)o(gic)p
Gg(.)33 b(T)-7 b(o)23 b(appear)-5 b(.)p Black Black 277
4076 a(Bierman,)33 b(G.)d(M.)g([1998].)58 b(A)30 b(Computational)k
(Interpretation)h(of)c(the)g Ga(\025\026)p Gg(-calculus.)60
b(In)31 b F7(Math-)368 4189 y(ematical)j(F)-10 b(oundations)36
b(of)c(Computer)i(Science)p Gg(,)i(v)n(olume)e(1450)f(of)g
F7(LNCS)p Gg(,)d(pages)k(336\226345.)368 4302 y(Springer)n(-V)-10
b(erlag.)p Black Black 277 4437 a(Bierman,)30 b(G.)d(M.)g([1999].)50
b(A)27 b(Classical)j(Linear)e Ga(\025)p Gg(-calculus.)51
b F7(Theor)m(etical)31 b(Computer)e(Science)p Gg(,)368
4550 y(227\(1\2262\):43\22678.)p Black Black 277 4686
a(Bittar)l(,)i(E.)c(T)-7 b(.)28 b([1999].)51 b(Strong)30
b(Normalisation)h(Proofs)f(for)f(Cut-Elimination)i(in)d(Gentzen')-5
b(s)31 b(Se-)368 4799 y(quent)25 b(Calculi.)34 b(In)23
b F7(Lo)o(gic,)h(Alg)o(ebr)o(a)g(and)g(Computer)g(Science)p
Gg(,)h(v)n(olume)g(46)f(of)f F7(Banac)o(h-Center)368
4912 y(Publications)p Gg(,)j(pages)f(179\226225.)p Black
Black 277 5047 a(Bloo,)e(R.)e([1997].)33 b F7(Pr)m(eservation)25
b(of)e(T)-8 b(ermination)24 b(for)f(Explicit)h(Substitution)p
Gg(.)35 b(PhD)21 b(thesis,)j(Eind-)368 5160 y(ho)o(v)o(en)g(Uni)n(v)o
(ersity)h(of)f(T)-6 b(echnology)g(.)p Black Black 277
5296 a(Bloo,)24 b(R.)f(and)h(Geuv)o(ers,)h(H.)e([1999].)36
b(Explicit)25 b(Substitution:)33 b(On)24 b(the)g(Edge)g(of)g(Strong)h
(Normali-)368 5409 y(sation.)35 b F7(Theor)m(etical)25
b(Computer)g(Science)p Gg(,)g(211\(1\2262\):375\226395.)p
Black Black eop end
%%Page: 172 184
TeXDict begin 172 183 bop Black -144 51 a Gb(172)3046
b(Bibliograph)o(y)p -144 88 3691 4 v Black Black Black
321 412 a Gg(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c,)26
b(B.)e(R.)g([1985].)40 b(On)24 b(Sequence-Conclusion)30
b(Natural)c(Deduction)h(Systems.)39 b F7(J)n(ournal)27
b(of)412 525 y(Philosophical)g(Lo)o(gic)p Gg(,)d(14\(4\):359\226377.)p
Black Black 321 671 a(Buss,)30 b(S.)d(R.,)h(editor)i([1998].)51
b F7(Handbook)30 b(of)f(Pr)l(oof)g(Theory)p Gg(,)h(v)n(olume)g(137)f
(of)f F7(Studies)j(in)d(Lo)o(gic)412 784 y(and)c(the)g(F)-10
b(oundations)27 b(of)c(Mathematics)p Gg(.)35 b(North-Holland.)p
Black Black 321 929 a(Carlsson,)25 b(M.)e([1984].)36
b(On)24 b(Implementing)i(Prolog)e(in)g(Functional)i(Programming.)36
b F7(Ne)o(w)23 b(Gener)n(-)412 1042 y(ation)i(Computing)p
Gg(,)f(2\(4\):347\226359.)p Black Black 321 1188 a(Cellucci,)29
b(C.)c([1992].)46 b(Existential)29 b(Instantiation)h(and)d
(Normalization)j(in)c(Sequent)i(Natural)g(De-)412 1301
y(duction.)35 b F7(Annals)25 b(of)e(Pur)m(e)g(and)h(Applied)h(Lo)o(gic)
p Gg(,)e(58:111\226148.)p Black Black 321 1447 a(Cichon,)k(E.)e(A.,)g
(Rusino)n(witch,)j(M.,)d(and)h(Selhab,)h(S.)d([1996].)43
b(Cut-Elimination)28 b(and)f(Re)n(writing:)412 1560 y(Termination)e
(Proofs.)34 b(T)-6 b(echnical)25 b(Report.)p Black Black
321 1706 a(Coquand,)j(T)-7 b(.)24 b([1995].)42 b(A)25
b(Semantics)i(of)f(Evidence)h(of)e(Classical)j(Arithmetic.)41
b F7(J)n(ournal)28 b(of)e(Sym-)412 1819 y(bolic)f(Lo)o(gic)p
Gg(,)e(60\(1\):325\226337.)p Black Black 321 1965 a(Curry)-6
b(,)26 b(H.)d(B.)g(and)j(Fe)o(ys,)e(R.)g([1958].)39 b
F7(Combinatory)27 b(Lo)o(gic)p Gg(,)e(v)n(olume)h(1)e(of)h
F7(Studies)i(in)e(Lo)o(gic)g(and)412 2077 y(the)f(F)-10
b(oundations)27 b(of)c(Mathematics)p Gg(.)35 b(North-Holland.)p
Black Black 321 2223 a(Danos,)27 b(V)-12 b(.,)25 b(Joinet,)j(J.-B.,)d
(and)i(Schellinx,)h(H.)c([1997].)43 b(A)25 b(Ne)n(w)g(Deconstructi)n(v)
o(e)k(Logic:)34 b(Linear)412 2336 y(Logic.)g F7(J)n(ournal)25
b(of)e(Symbolic)i(Lo)o(gic)p Gg(,)f(62\(3\):755\226807.)p
Black Black 321 2482 a(Da)n(v)o(e)o(y)-6 b(,)23 b(B.)f(A.)f(and)i
(Priestle)o(y)-6 b(,)24 b(H.)e(A.)f([1990].)34 b F7(Intr)l(oduction)26
b(to)d(Lattices)h(and)f(Or)m(der)p Gg(.)32 b(Cambridge)412
2595 y(Uni)n(v)o(ersity)25 b(Press.)p Black Black 321
2741 a(de)i(Bruijn,)h(N.)d(G.)g([1980].)45 b(A)26 b(Surv)o(e)o(y)h(of)f
(the)h(Automath)h(Project.)44 b(In)27 b F7(To)e(H.)h(B.)f(Curry:)36
b(Essays)412 2854 y(on)27 b(Combinatory)j(Lo)o(gic,)e(Lambda)f
(Calculus)i(and)e(Formalism)p Gg(,)h(pages)h(580\226606.)g(Academic)412
2967 y(Press.)p Black Black 321 3113 a(Dersho)n(witz,)i(N.)d([1982].)52
b(Orderings)31 b(for)e(Term)f(Re)n(writing)i(Systems.)51
b F7(Theor)m(etical)31 b(Computer)412 3226 y(Science)p
Gg(,)25 b(17:279\226301.)p Black Black 321 3371 a(Dragalin,)31
b(A.)d(G.)g([1988].)52 b F7(Mathematical)32 b(Intuitionism:)43
b(Intr)l(oduction)32 b(to)d(Pr)l(oof)h(Theory)p Gg(,)h(v)n(ol-)412
3484 y(ume)26 b(67)h(of)f F7(T)-5 b(r)o(anslations)29
b(of)d(Mathematical)j(Mono)o(gr)o(aphs)p Gg(.)45 b(American)27
b(Mathematical)h(Soci-)412 3597 y(ety)-6 b(.)p Black
Black 321 3743 a(Dyckhof)n(f,)40 b(R.)34 b(and)i(Pinto,)j(L.)34
b([1998].)74 b(Cut-Elimination)38 b(and)e(a)f(Permutation-Free)j
(Sequent)412 3856 y(Calculus)25 b(for)f(Intuitionistic)j(Logic.)34
b F7(Studia)25 b(Lo)o(gica)p Gg(,)f(60\(1\):107\226118.)p
Black Black 321 4002 a(Friedman,)h(H.)e([1978].)36 b(Classically)27
b(and)d(Intuitionistically)30 b(Pro)o(v)n(able)24 b(Recursi)n(v)o(e)i
(Functions.)37 b(In)412 4115 y F7(Higher)24 b(Set)g(Theory)p
Gg(,)g(v)n(olume)h(669)f(of)f F7(LNM)p Gg(,)f(pages)j(21\22627.)f
(Springer)n(-V)-10 b(erlag.)p Black Black 321 4261 a(Gabbay)k(,)31
b(M.)d(J.)g(and)i(Pitts,)g(A.)d(M.)h([1999].)52 b(A)28
b(Ne)n(w)f(Approach)k(to)d(Abstract)j(Syntax)e(In)l(v)n(olving)412
4374 y(Binders.)e(In)19 b F7(Lo)o(gic)i(in)e(Computer)i(Science)p
Gg(,)h(pages)f(214\226224.)h(IEEE)c(Computer)j(Society)g(Press.)p
Black Black 321 4519 a(Gallier)l(,)36 b(J.)c([1990].)65
b(On)33 b(Girard')-5 b(s)34 b(\223Candidats)h(de)e(Reductibilit)5
b(\264)-35 b(e\224.)66 b(In)33 b F7(Lo)o(gic)g(and)h(Computer)412
4632 y(Science)p Gg(,)25 b(pages)g(123\226203.)h(Academic)e(Press.)p
Black Black 321 4778 a(Gallier)l(,)31 b(J.)c([1993].)50
b(Constructi)n(v)o(e)31 b(Logics.)d(Part)g(I:)g(A)f(Tutorial)j(on)e
(Proof)h(Systems)f(and)h(Typed)412 4891 y Ga(\025)p Gg(-calculi.)35
b F7(Theor)m(etical)26 b(Computer)e(Science)p Gg(,)h
(110\(2\):249\226239.)p Black Black 321 5037 a(Gentzen,)c(G.)c([1935].)
25 b(Untersuchungen)30 b(\250)-38 b(uber)20 b(das)f(logische)i
(Schlie\337en)f(I)e(and)i(II.)i F7(Mathematisc)o(he)412
5150 y(Zeitsc)o(hrift)p Gg(,)j(39:176\226210,)i(405\226431.)p
Black Black 321 5296 a(Gentzen,)g(G.)c([1936].)40 b(Die)25
b(Widerspruchsfreiheit)31 b(der)25 b(reinen)i(Zahlentheorie.)41
b F7(Mathematisc)o(he)412 5409 y(Annalen)p Gg(,)25 b(112:493\226565.)p
Black Black eop end
%%Page: 173 185
TeXDict begin 173 184 bop Black 277 51 a Gb(Bibliograph)o(y)3046
b(173)p 277 88 3691 4 v Black Black Black 277 412 a Gg(Gentzen,)24
b(G.)e([1969].)34 b F7(The)23 b(Collected)i(Paper)o(s)f(of)f(Gerhar)m
(d)h(Gentzen)p Gg(.)34 b(Studies)24 b(in)f(Logic)g(and)h(the)368
525 y(F)o(oundations)29 b(of)d(Mathematics.)i(North-Holland.)45
b(English)28 b(translation)h(of)e(Gentzen')-5 b(s)28
b(papers)368 638 y(edided)d(by)f(M.)e(E.)g(Szabo.)p Black
Black 277 777 a(Girard,)47 b(J.-Y)-12 b(.)41 b([1972].)95
b F7(Interpr)1407 778 y(\264)1402 777 y(etation)46 b(Functionelle)f(et)
d(Elimination)h(des)g(Coupur)m(es)g(dans)368 890 y(l'Arithm)680
891 y(\264)675 890 y(etique)26 b(d'Or)m(dr)m(e)e(Sup)1375
891 y(\264)1370 890 y(erieur)m(e)p Gg(.)36 b(PhD)22 b(thesis,)j(Uni)n
(v)o(ersit)5 b(\264)-35 b(e)25 b(P)o(aris)e(VII.)p Black
Black 277 1030 a(Girard,)h(J.-Y)-12 b(.)23 b([1987a].)35
b(Linear)24 b(Logic.)33 b F7(Theor)m(etical)26 b(Computer)e(Science)p
Gg(,)h(50\(1\):1\226102.)p Black Black 277 1169 a(Girard,)31
b(J.-Y)-12 b(.)29 b([1987b].)53 b F7(Pr)l(oof)30 b(Theory)g(and)g(Lo)o
(gical)g(Comple)n(xity)p Gg(.)54 b(Studies)30 b(in)f(Proof)h(Theory)-6
b(.)368 1282 y(Bibliopolis.)p Black Black 277 1422 a(Girard,)29
b(J.-Y)-12 b(.)26 b([1991].)47 b(A)26 b(Ne)n(w)g(Constructi)n(v)o(e)j
(Logic:)37 b(Classical)29 b(Logic.)46 b F7(Mathematical)29
b(Struc-)368 1535 y(tur)m(es)24 b(in)g(Computer)g(Science)p
Gg(,)h(1\(3\):255\226296.)p Black Black 277 1674 a(Girard,)44
b(J.-Y)-12 b(.)39 b([2001].)85 b(Locus)40 b(Solum.)84
b F7(Mathematical)42 b(Structur)m(es)g(in)d(Computer)i(Science)p
Gg(,)368 1787 y(11:301\226506.)p Black Black 277 1927
a(Girard,)22 b(J.-Y)-12 b(.,)20 b(Lafont,)h(Y)-12 b(.,)20
b(and)i(T)-7 b(aylor)l(,)21 b(P)-10 b(.)19 b([1989].)29
b F7(Pr)l(oofs)21 b(and)h(Types)p Gg(,)f(v)n(olume)h(7)e(of)h
F7(Cambridg)o(e)368 2040 y(T)-5 b(r)o(acts)24 b(in)f(Theor)m(etical)j
(Computer)e(Science)p Gg(.)35 b(Cambridge)25 b(Uni)n(v)o(ersity)g
(Press.)p Black Black 277 2179 a(Grif)n(\002n,)k(T)-7
b(.)27 b([1990].)51 b(A)27 b(Formulae-as-Types)k(Notion)f(of)e
(Control.)50 b(In)28 b F7(Principles)j(of)d(Pr)l(o)o(gr)o(am-)368
2292 y(ming)c(Langua)o(g)o(es)p Gg(,)h(pages)g(47\22658.)g(A)l(CM)d
(Press.)p Black Black 277 2432 a(Hennessy)-6 b(,)31 b(M.)c(C.)g(B.)g
(and)i(Ashcroft,)h(E.)d(A.)g([1980].)50 b(A)27 b(Mathematical)k
(Semantics)e(for)f(a)g(Non-)368 2545 y(Deterministic)e(Typed)e
Ga(\025)p Gg(-calculus.)35 b F7(Theor)m(etical)26 b(Computer)e(Science)
p Gg(,)h(11\(3\):227\226245.)p Black Black 277 2684 a(Herbelin,)31
b(H.)c([1994].)50 b(A)28 b Ga(\025)p Gg(-calculus)j(Structure)f
(Isomorphic)g(to)f(Sequent)g(Calculus)h(Structure.)368
2797 y(In)23 b F7(Computer)i(Science)g(Lo)o(gic)p Gg(,)f(v)n(olume)g
(933)h(of)e F7(LNCS)p Gg(,)f(pages)i(67\22675.)h(Springer)g(V)-10
b(erlag.)p Black Black 277 2937 a(Herbelin,)22 b(H.)e([1995].)28
b F7(S)1088 2938 y(\264)1083 2937 y(equents)23 b(qu'on)f(Calcule:)29
b(De)20 b(l'Interpr)2394 2938 y(\264)2389 2937 y(etation)26
b(du)21 b(Calcul)g(des)g(S)3229 2938 y(\264)3224 2937
y(equents)368 3050 y(comme)34 b(Calcul)h(de)f Ga(\025)p
F7(-termes)h(et)f(comme)g(Calcul)h(de)g(Str)o(at)2378
3051 y(\264)2373 3050 y(egies)h(Ga)o(gnantes)p Gg(.)70
b(PhD)33 b(thesis,)368 3163 y(Uni)n(v)o(ersit)5 b(\264)-35
b(e)25 b(P)o(aris)e(VII.)p Black Black 277 3302 a(Hindle)o(y)-6
b(,)30 b(J.)d(R.)g([1969].)50 b(The)27 b(Principal)j(Type)e(Scheme)g
(of)g(an)g(Object)h(in)f(Combinatory)i(Logic.)368 3415
y F7(T)-5 b(r)o(ansactions)26 b(of)e(the)f(American)i(Mathematical)g
(Society)p Gg(,)g(146:29\22640.)p Black Black 277 3555
a(Ho)n(w)o(ard,)55 b(W)-8 b(.)47 b(A.)h([1980].)115 b(The)49
b(Formulae-as-Types)j(Notion)d(of)g(Construction.)117
b(In)49 b F7(To)368 3668 y(H.)25 b(B.)h(Curry:)36 b(Essays)27
b(on)g(Combinatory)i(Lo)o(gic,)f(Lambda)f(Calculus)h(and)f(F)-10
b(ormalism)p Gg(,)28 b(pages)368 3781 y(479\226490.)e(Academic)e(Press)
g(\(the)g(paper)g(w)o(as)f(written)i(in)e(1969\).)p Black
Black 277 3920 a(Hyland,)f(J.)d(M.)h(E.)f([2000].)28
b(Proof)20 b(Theory)h(in)g(the)g(Abstract.)27 b F7(Annals)21
b(of)g(Pur)m(e)f(and)h(Applied)g(Lo)o(gic)p Gg(.)368
4033 y(T)-7 b(o)23 b(appear)-5 b(.)p Black Black 277
4173 a(Joinet,)31 b(J.-B.,)d(Schellinx,)j(H.,)c(and)i(T)-7
b(ortora)29 b(de)f(F)o(alco,)h(L.)e([1998].)50 b(SN)27
b(and)h(CR)f(for)h(Free-Style)368 4286 y(LK)490 4253
y Gc(tq)553 4286 y Gg(:)e(Linear)19 b(Decorations)j(and)d(Simulation)h
(of)f(Normalisation.)26 b(Preprint)20 b(No.)e(1067,)j(Utrecht)368
4399 y(Uni)n(v)o(ersity)-6 b(,)25 b(Department)g(of)e(Mathematics.)p
Black Black 277 4538 a(Kleene,)h(S.)e(C.)g([1952a].)35
b F7(Intr)l(oduction)27 b(to)d(Metamathematics)p Gg(.)36
b(North-Holland.)p Black Black 277 4678 a(Kleene,)k(S.)34
b(C.)h([1952b].)76 b(Permutability)38 b(of)e(Inferences)j(in)d
(Gentzen')-5 b(s)38 b(Calculi)f(LK)e(and)i(LJ.)368 4791
y F7(Memoir)o(s)24 b(of)f(the)h(American)g(Mathematical)i(Society)p
Gg(,)f(10:1\22626.)p Black Black 277 4930 a(Kreisel,)31
b(G.)c([1958].)52 b(Mathematical)31 b(Signi\002cance)f(of)f(Consistenc)
o(y)i(Proofs.)51 b F7(J)n(ournal)31 b(of)d(Sym-)368 5043
y(bolic)d(Lo)o(gic)p Gg(,)e(23\(2\):155\226182.)p Black
Black 277 5183 a(Kreisel,)f(G.)e([1971].)30 b(A)21 b(Surv)o(e)o(y)g(of)
g(Proof)h(Theory)g(II.)28 b(In)21 b F7(Pr)l(oceedings)j(of)e(the)f(2nd)
h(Scandinavian)368 5296 y(Lo)o(gic)g(Symposium)p Gg(,)i(v)n(olume)f(63)
f(of)f F7(Studies)j(in)e(Lo)o(gic)g(and)h(the)f(F)-10
b(oundations)25 b(of)d(Mathematics)p Gg(,)368 5409 y(pages)j
(109\226170.)g(North-Holland.)p Black Black eop end
%%Page: 174 186
TeXDict begin 174 185 bop Black -144 51 a Gb(174)3046
b(Bibliograph)o(y)p -144 88 3691 4 v Black Black Black
321 412 a Gg(Lambek,)39 b(J.)c(and)h(Scott,)j(P)-10 b(.)34
b(J.)h([1988].)74 b F7(Intr)l(oduction)39 b(to)d(Higher)g(Or)m(der)g
(Cate)l(gorical)i(Lo)o(gic)p Gg(,)412 525 y(v)n(olume)g(7)f(of)g
F7(Cambridg)o(e)h(Studies)h(in)e(Advanced)i(Mathematics)p
Gg(.)78 b(Cambridge)38 b(Uni)n(v)o(ersity)412 638 y(Press.)p
Black Black 321 788 a(Lei)n(v)n(ant,)26 b(D.)f([1979].)41
b(Assumption)27 b(Classes)f(in)g(Natural)g(Deduction.)42
b F7(Zeitsc)o(hrift)27 b(f)3084 789 y(\250)3077 788 y(ur)f(mathema-)412
901 y(tisc)o(he)f(Lo)o(gik)p Gg(,)e(25:1\2264.)p Black
Black 321 1051 a(McDo)n(well,)29 b(R.)e(and)i(Miller)l(,)i(D.)c
([2000].)50 b(Cut-Elimination)31 b(for)d(a)g(Logic)h(with)f
(De\002nitions)i(and)412 1164 y(Induction.)36 b F7(Theor)m(etical)26
b(Computer)e(Science)p Gg(,)h(232\(1\2262\):91\226119.)p
Black Black 321 1314 a(Melli)5 b(\036)-35 b(es,)22 b(P)-10
b(.)19 b(A.)h([1995].)28 b(Typed)22 b(Lambda)f(Calculi)g(with)g
(Explicit)h(Substitutions)h(May)e(Not)f(T)-6 b(ermi-)412
1426 y(nate.)23 b(In)18 b F7(T)-7 b(yped)18 b(Lambda)h(Calculi)g(and)g
(Applications)p Gg(,)j(v)n(olume)d(902)g(of)f F7(LNCS)p
Gg(,)e(pages)j(328\226334.)412 1539 y(Springer)25 b(V)-10
b(erlag.)p Black Black 321 1689 a(Milner)l(,)28 b(R.)d([1978].)43
b(A)25 b(Theory)i(of)f(Type)g(Polymorphism)i(in)e(Programming.)43
b F7(J)n(ournal)28 b(of)e(Com-)412 1802 y(puter)f(and)f(System)g
(Sciences)p Gg(,)i(17:348\226375.)p Black Black 321 1952
a(Mitchell,)h(J.)e(C.)f([1996].)42 b F7(F)-10 b(oundations)28
b(for)e(Pr)l(o)o(gr)o(amming)h(Langua)o(g)o(es)p Gg(.)42
b(F)o(oundations)28 b(of)d(Com-)412 2065 y(puting.)g(MIT)d(Press.)p
Black Black 321 2215 a(Murthy)-6 b(,)21 b(C.)c(R.)h([1990].)25
b F7(Extr)o(acting)20 b(Constructive)i(Content)e(fr)l(om)f(Classical)i
(Pr)l(oofs)p Gg(.)j(PhD)18 b(thesis,)412 2328 y(Cornell)25
b(Uni)n(v)o(ersity)-6 b(.)p Black Black 321 2478 a(P)o(arigot,)28
b(M.)e([1991].)45 b(Free)26 b(Deduction:)38 b(An)26 b(Analysis)i(of)f
(\223Computation\224)j(in)c(Classical)j(Logic.)412 2591
y(In)22 b F7(Confer)m(ence)i(on)f(Lo)o(gic)f(Pr)l(o)o(gr)o(amming)p
Gg(,)h(v)n(olume)g(592)g(of)f F7(LNCS)p Gg(,)f(pages)i(361\226380.)h
(Springer)412 2704 y(V)-10 b(erlag.)p Black Black 321
2854 a(P)o(arigot,)32 b(M.)c([1992].)54 b Ga(\025\026)p
Gg(-calculus:)43 b(An)29 b(Algorithmic)i(Interpretation)j(of)29
b(Classical)i(Logic.)53 b(In)412 2967 y F7(Lo)o(gic)24
b(Pr)l(o)o(gr)o(amming)g(and)f(A)n(utomated)i(Deduction)p
Gg(,)g(v)n(olume)f(624)g(of)f F7(LNCS)p Gg(,)e(pages)j(190\226201.)412
3080 y(Springer)h(V)-10 b(erlag.)p Black Black 321 3230
a(Pfenning,)33 b(F)-7 b(.)29 b([1995].)56 b(Structural)32
b(Cut-Elimination.)57 b(In)30 b F7(Lo)o(gic)h(in)f(Computer)h(Science)p
Gg(,)i(pages)412 3343 y(156\226166.)26 b(IEEE)21 b(Computer)k(Society)
-6 b(.)p Black Black 321 3493 a(Pitts,)31 b(A.)d(M.)h(and)h(Gabbay)-6
b(,)31 b(M.)e(J.)g([2000].)54 b(A)28 b(Metalanguage)33
b(for)d(Programming)g(with)g(Bound)412 3605 y(Names)23
b(Modulo)h(Renaming.)34 b(In)23 b F7(Mathematics)i(of)e(Pr)l(o)o(gr)o
(am)g(Construction)p Gg(,)j(v)n(olume)e(1837)h(of)412
3718 y F7(LNCS)p Gg(,)d(pages)j(230\226255.)g(Springer)g(V)-10
b(erlag.)p Black Black 321 3868 a(Pottinger)l(,)25 b(G.)d([1977].)35
b(Normalisation)26 b(as)d(Homomorphic)i(Image)f(of)f(Cut-Elimination.)
36 b F7(Annals)412 3981 y(of)24 b(Mathematical)h(Lo)o(gic)p
Gg(,)f(12:323\226357.)p Black Black 321 4131 a(Pra)o(witz,)j(D.)e
([1965].)44 b F7(Natur)o(al)28 b(Deduction:)37 b(A)25
b(Pr)l(oof-Theor)m(etical)30 b(Study)p Gg(.)44 b(Almquist)27
b(and)g(W)l(ik-)412 4244 y(sell.)p Black Black 321 4394
a(Pra)o(witz,)e(D.)f([1971].)41 b(Ideas)27 b(and)f(Results)g(of)f
(Proof)h(Theory)-6 b(.)40 b(In)25 b F7(Pr)l(oceedings)j(of)e(the)f(2nd)
h(Scan-)412 4507 y(dinavian)39 b(Lo)o(gic)d(Symposium)p
Gg(,)41 b(v)n(olume)c(63)f(of)g F7(Studies)i(in)e(Lo)o(gic)h(and)g(the)
f(F)-10 b(oundations)40 b(of)412 4620 y(Mathematics)p
Gg(,)25 b(pages)g(235\226307.)h(North-Holland.)p Black
Black 321 4770 a(Re)o(ynolds,)33 b(J.)d(C.)f([1974].)57
b(T)-7 b(o)n(w)o(ards)30 b(a)g(Theory)h(of)f(Type)h(Structure.)56
b(In)31 b F7(Colloque)h(s)3180 4771 y(\210)3173 4770
y(ur)e(la)h(Pr)l(o-)412 4883 y(gr)o(ammation)p Gg(,)25
b(v)n(olume)f(19)g(of)f F7(LNCS)p Gg(,)f(pages)j(408\226425.)h
(Springer)e(V)-10 b(erlag.)p Black Black 321 5033 a(Rose,)26
b(K.)f(H.)f([1996].)42 b(Explicit)27 b(Substitution:)36
b(Tutorial)27 b(&)e(Surv)o(e)o(y)-6 b(.)40 b(T)-6 b(echnical)28
b(report,)f(BRICS,)412 5146 y(Department)e(of)f(Computer)g(Science,)g
(Uni)n(v)o(ersity)h(of)e(Aarhus.)p Black Black 321 5296
a(Schellinx,)f(H.)c([1994].)27 b F7(The)19 b(Noble)h(Art)f(of)g(Linear)
h(Decor)o(ating)p Gg(.)27 b(PhD)19 b(thesis,)i(Institute)h(for)e
(Logic,)412 5409 y(Language)25 b(and)f(Computation,)i(Uni)n(v)o(ersity)
f(of)e(Amsterdam.)34 b(ILLC)21 b(dissertation)27 b(series.)p
Black Black eop end
%%Page: 175 187
TeXDict begin 175 186 bop Black 277 51 a Gb(Bibliograph)o(y)3046
b(175)p 277 88 3691 4 v Black Black Black 277 412 a Gg(Sch)8
b(\250)-38 b(utte,)25 b(K.)e([1960].)38 b F7(Be)o(weistheorie)p
Gg(,)26 b(v)n(olume)g(103)f(of)f F7(Die)g(Grundlehr)m(en)j(der)e
(mathematisc)o(hen)368 525 y(W)-5 b(issensc)o(haften)27
b(in)c(Einzeldar)o(stellung)o(en)q Gg(.)38 b(Springer)25
b(V)-10 b(erlag.)p Black Black 277 665 a(Schwichtenber)n(g,)42
b(H.)34 b([1999].)74 b(Termination)37 b(of)f(Permutati)n(v)o(e)g(Con)l
(v)o(ersions)j(in)c(Intuitionistic)368 778 y(Gentzen)25
b(Calculi.)34 b F7(Theor)m(etical)25 b(Computer)g(Science)p
Gg(,)g(212\(1\2262\):247\226260.)p Black Black 277 918
a(Shoesmith,)f(D.)e(and)i(Smile)o(y)-6 b(,)23 b(T)-7
b(.)22 b([1978].)35 b F7(Multiple-Conclusion)28 b(Lo)o(gic)p
Gg(.)33 b(Cambridge)25 b(Uni)n(v)o(ersity)368 1031 y(Press.)p
Black Black 277 1172 a(T)-7 b(ak)o(euti,)26 b(G.)d([1975].)39
b F7(Pr)l(oof)25 b(Theory)p Gg(,)h(v)n(olume)g(81)f(of)g
F7(Studies)i(in)d(Lo)o(gic)i(and)f(the)g(F)-10 b(oundations)28
b(of)368 1285 y(Mathematics)p Gg(.)35 b(North-Holland.)p
Black Black 277 1425 a(T)m(roelstra,)24 b(A.)e(S.)f(and)j
(Schwichtenber)n(g,)i(H.)c([1996].)34 b F7(Basic)23 b(Pr)l(oof)g
(Theory)p Gg(,)h(v)n(olume)g(43)f(of)g F7(Cam-)368 1538
y(bridg)o(e)i(T)-5 b(r)o(acts)24 b(in)f(Theor)m(etical)j(Computer)e
(Science)p Gg(.)35 b(Cambridge)25 b(Uni)n(v)o(ersity)g(Press.)p
Black Black 277 1678 a(Ungar)l(,)36 b(A.)d(M.)f([1992].)67
b F7(Normalisation,)39 b(Cut-Elimination)d(and)e(the)g(Theory)g(of)g
(Pr)l(oofs)p Gg(,)j(v)n(ol-)368 1791 y(ume)23 b(28)h(of)f
F7(CLSI)g(Lectur)m(e)h(Notes)p Gg(.)34 b(Center)24 b(for)f(the)h(Study)
g(of)g(Language)h(and)f(Information.)p Black Black 277
1932 a(Urban,)i(C.)e([1998].)40 b(Implementation)28 b(of)d(Proof)g
(Search)h(in)f(the)h(Imperati)n(v)o(e)g(Programming)h(Lan-)368
2045 y(guage)k(Pizza.)51 b(In)29 b F7(A)n(utomated)i(Reasoning)g(with)e
(Analytic)h(T)-8 b(ableaux)30 b(and)g(Related)g(Methods)p
Gg(,)368 2157 y(v)n(olume)25 b(1397)f(of)g F7(LN)n(AI)p
Gg(,)d(pages)j(313\226319.)i(Springer)n(-V)-10 b(erlag.)p
Black Black 277 2298 a(W)j(adler)l(,)37 b(P)-10 b(.)33
b([1990].)68 b(Linear)34 b(Types)h(can)f(Change)h(the)f(World!)94
b(In)34 b F7(W)-8 b(orking)35 b(Confer)m(ence)h(on)368
2411 y(Pr)l(o)o(gr)o(amming)24 b(Concepts)i(and)e(Methods)p
Gg(,)g(pages)h(561\226581.)h(North-Holland.)p Black Black
277 2551 a(Zuck)o(er)l(,)39 b(J.)34 b([1974].)71 b(The)35
b(Correspondence)k(Between)c(Cut-Elimination)i(and)e(Normalisation.)368
2664 y F7(Annals)24 b(of)g(Mathematical)h(Lo)o(gic)p
Gg(,)f(7:1\226112.)p Black Black eop end
%%Page: 176 188
TeXDict begin 176 187 bop Black Black Black 321 875 a
Gf(Index)p Black 321 1251 a Gb(Reductions)342 1327 y
Gc(aux)321 1365 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(32)p
342 1403 119 3 v 342 1441 a Gc(aux)321 1478 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(103)p 336 1517 V 336 1554 a Gc(aux)466
1531 y FC(0)321 1592 y F6(\000)-31 b(\000)g(!)p Gg(,)22
b(106)385 1668 y Gc(\014)321 1705 y F6(\000)-31 b(\000)g(!)p
Gg(,)22 b(72,)h(89)391 1781 y Gc(c)321 1819 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(29)380 1895 y Gc(c)411 1871 y
FC(0)321 1932 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(32)371
2008 y Gc(c)402 1985 y FC(00)321 2046 y F6(\000)-31 b(\000)g(!)p
Gg(,)22 b(49)362 2122 y Gc(c)393 2098 y FC(000)321 2159
y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(104)352 2235 y Gc(cut)321
2272 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(28,)h(43)386
2349 y Gc(\015)321 2386 y F6(\000)-31 b(\000)g(!)p Gg(,)22
b(72,)h(90)373 2462 y Gc(g)r(c)321 2499 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(49)360 2576 y Gc(int)321 2613
y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(47)394 2689 y Gc(\023)321
2726 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(73,)h(93)386
2803 y Gc(\024)321 2840 y F6(\000)-31 b(\000)g(!)p Gg(,)22
b(93)396 2916 y Gc(l)321 2953 y F6(\000)-31 b(\000)g(!)p
Gg(,)22 b(29)384 3030 y Gc(l)406 3006 y FC(0)321 3067
y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(49)375 3143 y Gc(l)397
3120 y FC(00)321 3180 y F6(\000)-31 b(\000)g(!)p Gg(,)22
b(104)363 3257 y Gc(l)q(oc)321 3294 y F6(\000)-31 b(\000)g(!)p
Gg(,)22 b(51)385 3370 y Gc(\033)321 3407 y F6(\000)-31
b(\000)g(!)p Gg(,)22 b(93)334 3484 y Gc(sy)r(m)321 3521
y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(62)387 3597 y Gc(x)321
3634 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(50)321 3841
y Gb(T)-7 b(ranslations)321 3954 y F6(j)p 348 3954 28
4 v 366 3954 V 384 3954 V 65 w(j)436 3921 y Gc(\024)481
3954 y Gg(,)23 b(99)321 4068 y F6(j)p 348 4068 V 366
4068 V 384 4068 V 65 w(j)436 4035 y Gc(\026)483 4068
y Gg(,)f(99)321 4181 y F6(j)p 348 4181 V 366 4181 V 384
4181 V 65 w(j)436 4148 y Fu(n)477 4181 y Gg(,)g(71)321
4295 y F6(j)p 348 4295 V 366 4295 V 384 4295 V 65 w(j)436
4262 y Fu(N)490 4295 y Gg(,)h(87)321 4408 y F6(j)p 348
4408 V 366 4408 V 384 4408 V 65 w(j)436 4375 y Fu(s)468
4408 y Gg(,)f(71)321 4522 y F6(j)p 348 4522 V 366 4522
V 384 4522 V 65 w(j)436 4489 y Fu(s)p FV(+)514 4522 y
Gg(,)h(120)321 4635 y F6(j)p 348 4635 V 366 4635 V 384
4635 V 65 w(j)436 4602 y Fu(S)480 4635 y Gg(,)f(86)321
4749 y F6(j)p 348 4749 V 366 4749 V 384 4749 V 65 w(j)436
4716 y Fu(Sym)568 4749 y Gg(,)h(63)321 4862 y F6(j)p
348 4862 V 366 4862 V 384 4862 V 65 w(j)436 4876 y Gc(x)480
4862 y Gg(,)g(53)321 5068 y Gb(T)-8 b(erm)23 b(Calculi)321
5182 y FY(H)q Gg(,)e(55)321 5295 y FY(I)p Gg(,)i(47)321
5409 y F4(K)p Gg(,)f(84)p Black Black 2079 1251 a F4(\003)p
Gg(,)h(69)2079 1364 y F4(\003)2142 1378 y F9(+)2201 1364
y Gg(,)g(120)2079 1477 y FY(R)p Gg(,)f(21)2079 1590 y
F4(R)p Gg(,)g(84)2079 1703 y FY(T)t Gg(,)d(22)2079 1816
y FY(T)2136 1834 y F9(\()p Gc(B)s F9(\))2248 1816 y Gg(,)j(23)2079
1929 y FY(T)2136 1947 y FX(h)p Gc(B)s FX(i)2248 1929
y Gg(,)g(23)2079 2041 y FY(T)2140 2008 y FX($)2211 2041
y Gg(,)g(49)2079 2154 y FY(T)2140 2121 y FX($)2136 2177
y Gc(<)p FX(1)2262 2154 y Gg(,)h(55)2079 2347 y Gb(Symbols)2079
2460 y Ga(>)2150 2427 y Gc(r)r(po)2257 2460 y Gg(,)g(54)2081
2573 y FW(M)t(A)t(X)t(R)t(E)t(D)r Gg(,)h(12)2079 2765
y Gb(A)2079 2878 y Gg(Abramsk)o(y)-6 b(,)24 b(5,)f(21)2079
2991 y(antecedent,)j(10)2079 3184 y Gb(B)2079 3297 y
Gg(Barbanera,)i(6,)e(8,)g(9,)h(19,)f(31,)h(61,)f(114,)h(123,)2411
3410 y(125,)d(126)2079 3522 y(Barendre)o(gt,)h(21,)e(24,)h(78)2079
3635 y(Barendre)o(gt-style)f(naming)c(con)l(v)o(ention,)k(24,)2411
3748 y(30)2079 3861 y(Benton,)h(2,)f(126)2079 3974 y(Bierman,)h(5,)f
(98,)g(99,)g(122)2079 4087 y(Bloo,)g(51,)h(54,)f(125)2079
4200 y(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c,)24 b(65,)g(81,)f(82,)g
(97)2079 4393 y Gb(C)2079 4505 y Gg(co-name,)i(19,)e(22,)g(84)2079
4618 y(conte)o(xt,)i(19)2245 4731 y(-con)l(v)o(ention,)i(19)2079
4844 y(Coquand,)e(114,)f(126,)f(127)2079 4957 y(Curry-Ho)n(w)o(ard)i
(correspondence,)j(1)2079 5070 y(cut)2245 5183 y(commuting,)d(12)2245
5296 y(labelled,)g(48)2245 5409 y(logical,)g(12,)e(26,)h(43,)f(45)p
Black Black eop end
%%Page: 177 189
TeXDict begin 177 188 bop Black 277 51 a Gb(Index)3332
b(177)p 277 88 3691 4 v Black 277 412 a Gg(cut-elimination,)27
b(12,)c(28,)h(32,)f(43,)h(47,)f(51)277 612 y Gb(D)277
725 y Gg(Danos,)h(4,)f(5,)g(9,)g(15,)g(16,)g(121\226123)277
838 y(Dragalin,)h(6,)f(9,)g(15,)g(59,)h(121)277 952 y(Dyckhof)n(f,)h
(16)277 1152 y Gb(E)277 1265 y Gg(e)o(xpression,)h(41)277
1465 y Gb(F)277 1579 y Gg(formula)443 1692 y(coloured,)g(16)443
1805 y(cut-,)e(11)443 1918 y(main,)f(10,)h(22)277 2118
y Gb(G)277 2231 y Gg(G3a,)f(19)277 2345 y(G3c,)g(19)277
2458 y(Gallier)l(,)h(15,)g(24,)f(41,)g(126)277 2571 y(Gentzen,)h(3,)f
(10,)h(24,)f(65,)g(66,)h(74,)f(81,)h(121)277 2684 y(Gentzen-Sch)8
b(\250)-38 b(utte)27 b(system,)d(46)277 2797 y(Girard,)33
b(2,)e(4\2266,)i(14,)f(17,)h(24,)f(31,)g(72,)g(126,)609
2910 y(128)277 3023 y(Grif)n(\002n,)23 b(2,)g(127)277
3224 y Gb(H)277 3337 y Gg(Hauptsatz,)i(9)277 3450 y(Herbelin,)g(15,)e
(16,)g(78,)h(114,)g(126,)f(127)277 3563 y(Hyland,)h(126,)g(128)277
3763 y Gb(I)277 3877 y Gg(implicit)h(contractions,)i(19)277
3990 y(inconsistenc)o(y)-6 b(,)27 b F7(see)d Gg(Lafont')-5
b(s)25 b(e)o(xample)277 4103 y(inference)h(rule,)e F7(see)g
Gg(cut)443 4216 y(logical,)h(3,)e(10,)g(44)443 4329 y(structural,)j(3,)
d(11)277 4529 y Gb(K)277 4643 y Gg(Kleene,)h(19,)f(43,)h(111,)g(128)277
4756 y(Kreisel,)g(4,)f(73,)g(122)277 4956 y Gb(L)277
5069 y Ga(\025\026)p Gg(,)f(5,)h(97\226100)277 5182 y
Ga(\025)330 5146 y Gc(S)t(y)r(m)481 5182 y Gg(,)f(61)277
5296 y Ga(\025)p F1(x)p Gg(,)g(48,)i(78)277 5409 y(Lafont')-5
b(s)25 b(e)o(xample,)f(4)p Black Black 2035 412 a(LJ,)e(11)2035
525 y(LK,)g(9)2035 638 y(LK)2157 605 y Gc(tq)2220 638
y Gg(,)g(16,)h(122)2035 831 y Gb(M)2035 944 y Gg(maximal)h(se)o(gment,)
g(88)2035 1057 y(Melli)5 b(\036)-35 b(es,)24 b(48,)f(52)2035
1249 y Gb(N)2035 1362 y Gg(name,)g(19,)h(22)2035 1475
y(NJ,)e(67)2035 1588 y(NK,)g(81)2035 1701 y(normal)i(form,)f(12)2201
1814 y Ga(x)p Gg(-,)g(53)2201 1927 y(mix-,)g(106)2035
2040 y(normalisation,)j(73,)e(93)2035 2233 y Gb(P)2035
2346 y Gg(P)o(arigot,)g(5,)f(7,)f(65,)i(82,)f(95,)h(97,)f(99)2035
2459 y(Pitts,)g(24,)g(127)2035 2572 y(Pottinger)l(,)i(3,)e(21,)g(73,)h
(74)2035 2684 y(Pra)o(witz,)f(3,)g(38,)g(65,)g(66,)h(73,)f(77,)g(81)
2035 2797 y(proof)i(substitution,)h(25,)e(27,)f(57,)g(91,)h(92)2201
2910 y(auxiliary)-6 b(,)26 b(33,)d(58)2035 3023 y(pure-v)n(ariable)k
(con)l(v)o(ention,)f(43)2035 3216 y Gb(R)2035 3329 y
Gg(recursi)n(v)o(e)f(path)f(ordering,)i(54)2035 3442
y(rede)o(x,)e(12)2035 3555 y(reducibility)j(candidate,)f(36)2035
3668 y(reduction)g(system,)e(12)2035 3861 y Gb(S)2035
3974 y Gg(Schellinx,)h(5,)e(17)2035 4087 y(Schwichtenber)n(g,)j(6,)d
(19,)h(43,)f(128)2035 4200 y(sequent,)i(10,)e(19)2035
4312 y(strong)k(normalisation,)h(12,)e(31,)f(40,)h(41,)g(44,)2367
4425 y(47,)d(56,)h(57,)f(77,)g(94)2035 4538 y(subformula)j(property)-6
b(,)25 b(11)2035 4651 y(subject)g(reduction,)h(30,)d(51,)h(73,)f(93)
2035 4764 y(substitution,)k F7(see)d Gg(proof)g(substitution)2201
4877 y(safe,)g(38)2201 4990 y(simultaneous,)i(39)2035
5103 y(succedent,)g(10)2035 5296 y Gb(T)2035 5409 y Gg(term,)d(21,)g
(42,)h(69)p Black Black eop end
%%Page: 178 190
TeXDict begin 178 189 bop Black -144 51 a Gb(178)3333
b(Index)p -144 88 3691 4 v Black 487 412 a Gg(co-named,)25
b(23)487 525 y(labelled,)h(49)487 638 y(named,)e(23)487
751 y(well-typed,)i(22)321 864 y(typing)f(judgement,)h(22,)d(48,)g(69,)
h(84)321 1059 y Gb(U)321 1172 y Gg(Ungar)l(,)g(7,)f(23,)g(75,)g(95,)h
(97)321 1368 y Gb(V)321 1481 y Gg(v)n(ariable,)h(41,)f(66)321
1677 y Gb(W)321 1790 y Gg(weak)g(normalisation,)i(14)321
1986 y Gb(Z)321 2099 y Gg(Zuck)o(er)l(,)f(3,)e(60,)g(73,)g(74,)h(95,)f
(126)p Black Black Black Black eop end
%%Trailer

userdict /end-hook known{end-hook}if
%%EOF