--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Publications/Phd-Urban.ps Sat Oct 22 12:11:38 2011 +0100
@@ -0,0 +1,41736 @@
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.95a Copyright 2005 Radical Eye Software
+%%Title: Main.dvi
+%%Pages: 190
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 595 842
+%%DocumentFonts: Times-Roman Times-Bold Times-Italic Courier
+%%DocumentPaperSizes: a4
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips Main.dvi -o Main.ps
+%DVIPSParameters: dpi=600
+%DVIPSSource: TeX output 2007.03.05:0123
+%%BeginProcSet: tex.pro 0 0
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S
+/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy
+setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask
+restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: 8r.enc 0 0
+% File 8r.enc TeX Base 1 Encoding Revision 2.0 2002-10-30
+%
+% @@psencodingfile@{
+% author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry,
+% W. Schmidt, P. Lehman",
+% version = "2.0",
+% date = "30 October 2002",
+% filename = "8r.enc",
+% email = "tex-fonts@@tug.org",
+% docstring = "This is the encoding vector for Type1 and TrueType
+% fonts to be used with TeX. This file is part of the
+% PSNFSS bundle, version 9"
+% @}
+%
+% The idea is to have all the characters normally included in Type 1 fonts
+% available for typesetting. This is effectively the characters in Adobe
+% Standard encoding, ISO Latin 1, Windows ANSI including the euro symbol,
+% MacRoman, and some extra characters from Lucida.
+%
+% Character code assignments were made as follows:
+%
+% (1) the Windows ANSI characters are almost all in their Windows ANSI
+% positions, because some Windows users cannot easily reencode the
+% fonts, and it makes no difference on other systems. The only Windows
+% ANSI characters not available are those that make no sense for
+% typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
+% (173). quotesingle and grave are moved just because it's such an
+% irritation not having them in TeX positions.
+%
+% (2) Remaining characters are assigned arbitrarily to the lower part
+% of the range, avoiding 0, 10 and 13 in case we meet dumb software.
+%
+% (3) Y&Y Lucida Bright includes some extra text characters; in the
+% hopes that other PostScript fonts, perhaps created for public
+% consumption, will include them, they are included starting at 0x12.
+% These are /dotlessj /ff /ffi /ffl.
+%
+% (4) hyphen appears twice for compatibility with both ASCII and Windows.
+%
+% (5) /Euro was assigned to 128, as in Windows ANSI
+%
+% (6) Missing characters from MacRoman encoding incorporated as follows:
+%
+% PostScript MacRoman TeXBase1
+% -------------- -------------- --------------
+% /notequal 173 0x16
+% /infinity 176 0x17
+% /lessequal 178 0x18
+% /greaterequal 179 0x19
+% /partialdiff 182 0x1A
+% /summation 183 0x1B
+% /product 184 0x1C
+% /pi 185 0x1D
+% /integral 186 0x81
+% /Omega 189 0x8D
+% /radical 195 0x8E
+% /approxequal 197 0x8F
+% /Delta 198 0x9D
+% /lozenge 215 0x9E
+%
+/TeXBase1Encoding [
+% 0x00
+ /.notdef /dotaccent /fi /fl
+ /fraction /hungarumlaut /Lslash /lslash
+ /ogonek /ring /.notdef /breve
+ /minus /.notdef /Zcaron /zcaron
+% 0x10
+ /caron /dotlessi /dotlessj /ff
+ /ffi /ffl /notequal /infinity
+ /lessequal /greaterequal /partialdiff /summation
+ /product /pi /grave /quotesingle
+% 0x20
+ /space /exclam /quotedbl /numbersign
+ /dollar /percent /ampersand /quoteright
+ /parenleft /parenright /asterisk /plus
+ /comma /hyphen /period /slash
+% 0x30
+ /zero /one /two /three
+ /four /five /six /seven
+ /eight /nine /colon /semicolon
+ /less /equal /greater /question
+% 0x40
+ /at /A /B /C
+ /D /E /F /G
+ /H /I /J /K
+ /L /M /N /O
+% 0x50
+ /P /Q /R /S
+ /T /U /V /W
+ /X /Y /Z /bracketleft
+ /backslash /bracketright /asciicircum /underscore
+% 0x60
+ /quoteleft /a /b /c
+ /d /e /f /g
+ /h /i /j /k
+ /l /m /n /o
+% 0x70
+ /p /q /r /s
+ /t /u /v /w
+ /x /y /z /braceleft
+ /bar /braceright /asciitilde /.notdef
+% 0x80
+ /Euro /integral /quotesinglbase /florin
+ /quotedblbase /ellipsis /dagger /daggerdbl
+ /circumflex /perthousand /Scaron /guilsinglleft
+ /OE /Omega /radical /approxequal
+% 0x90
+ /.notdef /.notdef /.notdef /quotedblleft
+ /quotedblright /bullet /endash /emdash
+ /tilde /trademark /scaron /guilsinglright
+ /oe /Delta /lozenge /Ydieresis
+% 0xA0
+ /.notdef /exclamdown /cent /sterling
+ /currency /yen /brokenbar /section
+ /dieresis /copyright /ordfeminine /guillemotleft
+ /logicalnot /hyphen /registered /macron
+% 0xD0
+ /degree /plusminus /twosuperior /threesuperior
+ /acute /mu /paragraph /periodcentered
+ /cedilla /onesuperior /ordmasculine /guillemotright
+ /onequarter /onehalf /threequarters /questiondown
+% 0xC0
+ /Agrave /Aacute /Acircumflex /Atilde
+ /Adieresis /Aring /AE /Ccedilla
+ /Egrave /Eacute /Ecircumflex /Edieresis
+ /Igrave /Iacute /Icircumflex /Idieresis
+% 0xD0
+ /Eth /Ntilde /Ograve /Oacute
+ /Ocircumflex /Otilde /Odieresis /multiply
+ /Oslash /Ugrave /Uacute /Ucircumflex
+ /Udieresis /Yacute /Thorn /germandbls
+% 0xE0
+ /agrave /aacute /acircumflex /atilde
+ /adieresis /aring /ae /ccedilla
+ /egrave /eacute /ecircumflex /edieresis
+ /igrave /iacute /icircumflex /idieresis
+% 0xF0
+ /eth /ntilde /ograve /oacute
+ /ocircumflex /otilde /odieresis /divide
+ /oslash /ugrave /uacute /ucircumflex
+ /udieresis /yacute /thorn /ydieresis
+] def
+
+
+%%EndProcSet
+%%BeginProcSet: texps.pro 0 0
+%!
+TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
+index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
+exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]FontType 0
+ne{/Metrics exch def dict begin Encoding{exch dup type/integertype ne{
+pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get
+div def}ifelse}forall Metrics/Metrics currentdict end def}{{1 index type
+/nametype eq{exit}if exch pop}loop}ifelse[2 index currentdict end
+definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{dup
+sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll
+mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[
+exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}if}
+forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}def
+end
+
+%%EndProcSet
+%%BeginProcSet: special.pro 0 0
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/setpagedevice{pop}N/copypage{}N/p 3 def
+@MacSetUp}N/doclip{psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll
+newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto
+closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N
+/@beginspecial{SDict begin/SpecialSave save N gsave normalscale
+currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}
+N/@setspecial{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs
+neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate
+rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse
+scale llx neg lly neg TR}{rhiSeen{rhi ury lly sub div dup scale llx neg
+lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx
+ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N
+/setpagedevice{pop}N/copypage{}N newpath}N/@endspecial{count ocount sub{
+pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave
+restore end}N/@defspecial{SDict begin}N/@fedspecial{end}B/li{lineto}B
+/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1
+setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY
+moveto}N/ellipse{/endangle X/startangle X/yrad X/xrad X/savematrix
+matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc
+savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro 0 0
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39139632 55387786 1000 600 600 (Main.dvi)
+@start
+%DVIPSBitmapFont: Fa cmbx6 6 1
+/Fa 1 50 df<000E00003E0001FE00FFFE00FFFE00FEFE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE007FFFFE7FFFFE7FFFFE17217B
+A023>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmbsy10 10.95 3
+/Fb 3 95 df<7FFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFF
+FFFFFFFFFFF07FFFFFFFFFFFFFFFF03FFFFFFFFFFFFFFFC0000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000007FFFFFFFFFFFFFFFE0FFFFFF
+FFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF07FFFFF
+FFFFFFFFFFE0000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+0000000000003FFFFFFFFFFFFFFFC07FFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFF
+FFFFFFFFFFF0FFFFFFFFFFFFFFFFF07FFFFFFFFFFFFFFFE044327AAF51>17
+D<3FFFFFFFF80000007FFFFFFFFF000000FFFFFFFFFFE00000FFFFFFFFFFF800007FFFFF
+FFFFFE00003FFFFFFFFFFF0000000000000FFFC0000000000001FFE00000000000003FF0
+0000000000000FF800000000000007FC00000000000001FE00000000000000FF00000000
+0000007F000000000000003F800000000000001FC00000000000001FC00000000000000F
+E000000000000007E000000000000007F000000000000003F000000000000003F0000000
+00000003F800000000000001F800000000000001F800000000000001FC00000000000000
+FC00000000000000FC00000000000000FC00000000000000FC00000000000000FC000000
+00000000FC00000000000000FC00000000000000FC00000000000000FC00000000000000
+FC00000000000001FC00000000000001F800000000000001F800000000000003F8000000
+00000003F000000000000003F000000000000007F000000000000007E00000000000000F
+E00000000000001FC00000000000001FC00000000000003F800000000000007F00000000
+000000FF00000000000001FE00000000000007FC0000000000000FF80000000000003FF0
+000000000001FFE000000000000FFFC0003FFFFFFFFFFF00007FFFFFFFFFFE0000FFFFFF
+FFFFF80000FFFFFFFFFFE000007FFFFFFFFF0000003FFFFFFFF80000003E3E77B551>27
+D<0000001C000000000000003E000000000000007F000000000000007F00000000000000
+7F00000000000000FF80000000000000FF80000000000001FFC0000000000001FFC00000
+00000003FFE0000000000003F7E0000000000007F7F0000000000007E3F000000000000F
+E3F800000000000FC1F800000000001FC1FC00000000001F80FC00000000003F80FE0000
+0000003F007E00000000007F007F00000000007E003F0000000000FE003F8000000000FC
+001F8000000001FC001FC000000001F8000FC000000003F8000FE000000003F00007E000
+000007F00007F000000007E00003F00000000FE00003F80000000FC00001F80000001FC0
+0001FC0000001F800000FC0000003F800000FE0000003F0000007E0000007F0000007F00
+00007E0000003F000000FE0000003F800000FC0000001F800001FC0000001FC00001F800
+00000FC00003F80000000FE00003F000000007E00007F000000007F00007E000000003F0
+000FE000000003F8000FC000000001F8001FC000000001FC001F8000000000FC003F8000
+000000FE003F00000000007E007F00000000007F007E00000000003F00FE00000000003F
+80FC00000000001F80FC00000000001F80F800000000000F807800000000000700393A7A
+B746>94 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmex7 6 4
+/Fc 4 126 df<00001F800000FF800007FF80000FFF80003FFF80007FFF8000FFFF8003
+FFFF8007FFC00007FC00000FE000001F8000003F0000003E0000007C000000F8000000F0
+000000E00000001912818718>122 D<FC000000FF800000FFF00000FFF80000FFFE0000
+FFFF0000FFFF8000FFFFE00001FFF000001FF0000003F8000000FC0000007E0000003E00
+00001F0000000F8000000780000003801912808718>I<E0000000F0000000F80000007C
+0000003E0000003F0000001F8000000FE0000007FC000007FFC00003FFFF8000FFFF8000
+7FFF80003FFF80000FFF800007FF800000FF8000001F801912819118>I<000003800000
+078000000F8000001F0000003E0000007E000000FC000003F800001FF00001FFF000FFFF
+E000FFFF8000FFFF0000FFFE0000FFF80000FFF00000FF800000FC0000001912809118>
+I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fd cmmi5 5 5
+/Fd 5 90 df<70F8FCFC7C0C0C0C1818306040060D7A8413>59 D<03FFFC0003FFF80000
+3E0000003E0000003E0000003E0000007C0000007C0000007C0000007C000000F8000000
+F8000000F8000000F8000001F0000001F0000001F0000001F0000C03E0001803E0001803
+E0003803E0003007C0007007C000F007C001E007C00FE0FFFFFFC0FFFFFFC01E1C7C9B28
+>76 D<03FFFFE00003FFFFFC00003E003F00003E000F80003E0007C0003E0007C0007C00
+07C0007C0007C0007C0007C0007C000F8000F8001F0000F8003E0000F800F80000FFFFE0
+0001FFFFE00001F003F00001F000F80001F000F80003E000F80003E000F80003E000F800
+03E000F80007C001F00007C001F00007C001F03007C001F060FFFC00F8E0FFFC007FC000
+00001F00241D7C9B2B>82 D<00FFF80FFE00FFF80FFE000FC003E00007E003000007E006
+000003F00C000003F018000001F830000001F8E0000000FDC0000000FF800000007F0000
+00003F000000003F000000003F800000007F80000000EFC0000001CFC000000307E00000
+0607E000000C03F000001803F000003001F800006001F80001C000FC0007C000FE007FF0
+07FFE0FFF007FFE0271C7D9B2E>88 D<7FFC003FF0FFFC003FF007E0000F0007E0001C00
+03F000380003F000700001F800E00001F801C00000FC03800000FC070000007E0E000000
+7E1C0000003F380000003F700000001FE00000001FC00000000F800000000F000000001F
+000000001F000000001F000000001E000000003E000000003E000000003E000000003E00
+000007FFE0000007FFE00000241C7D9B22>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fe cmss8 5 5
+/Fe 5 121 df<03E0000FF8001FFC003E3E003C1E00780F00780F00700700F00780F007
+80F00780F00780F00780F00780F00780F00780F00780F00780F00780F00780F00780780F
+00780F00780F003C1E003E3E001FFC000FF80003E000111D7E9B16>48
+D<018003803F80FF80FF80C7800780078007800780078007800780078007800780078007
+800780078007800780078007800780FFFCFFFCFFFC0E1C7C9B16>I<07E0001FF8003FFC
+00783E00701F00E00F00E00780400780400780000780000780000780000F00000F00001E
+00003C0000780000F00001E00003C0000780000F00001C0000380000700000FFFF80FFFF
+80FFFF80111C7E9B16>I<07E0001FF8003FFC007C3E00F00F00600F00400F00000F0000
+0F00001E00001E00007C0007F80007F00007F800003E00000F00000F0000078000078000
+0780000780800780C00F00E00F00783E003FFC001FF80007E000111D7E9B16>I<7803C0
+3C07803E0F001E1E000F3E0007BC0003F80001F00001E00001F00003F80007B800071C00
+0F1E001E0F003C07807803C0F803E01312809114>120 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Ff cmss8 6 9
+/Ff 9 122 df<00F80007FF000FFF801FFFC01F8FC03E03E03C01E07C01F07C01F07800
+F07800F0F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800
+F8F800F8F800F8F800F87C01F07C01F07C01F03E03E03E03E01F8FC01FFFC00FFF8007FF
+0001FC0015237EA11A>48 D<00300000700003F000FFF000FFF000FDF00001F00001F000
+01F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F000
+01F00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F0007FFFC0
+7FFFC07FFFC012227CA11A>I<01F80007FF001FFF801FFFC03E0FE07803F07001F0F001
+F0F000F86000F82000F80000F80000F80000F80001F00001F00003E00003C00007C0000F
+80001F00003C0000F80001F00003E00007C0000F80001F00003C0000780000FFFFF8FFFF
+F8FFFFF8FFFFF815227EA11A>I<01FC0007FF000FFF801FFFC03F07E07C03E03801F010
+01F00001F00001F00001F00003E00007E0001FC003FF8003FF0003FF0003FF800007C000
+03E00001F00001F00000F80000F80000F80000F80000F88001F8C001F0F003F0FE07E07F
+FFC03FFF800FFF0001FC0015237EA11A>I<003E0000FF8001FF8003FF8007E18007C000
+0F80000F80000F80000F80000F80000F80000F80000F8000FFFC00FFFC00FFFC000F8000
+0F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8000
+0F80000F80000F80000F80000F80000F8000112480A310>102 D<007E01F800F9FF87FE
+00FBFF8FFE00FFFFDFFF00FF0FFC3F80FE07F81F80FC03F00F80FC03F00F80F803E00F80
+F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F8
+03E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F80F803E00F802117
+7C962A>109 D<007F00F9FF80FBFFC0FFFFE0FF07E0FE03F0FC01F0FC01F0F801F0F801
+F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801F0F801
+F0F801F014177D961B>I<7C00FC3E00F83F01F01F83E00F87E007C7C003EF8001FF0001
+FE0000FC00007C0000FC0000FE0001FF0003EF8007C7C00F83C00F83E01F01F03E00F87C
+00FCFC007E1716809518>120 D<F800F8FC00F87C01F07C01F03E01F03E03E03F03E01F
+03C01F07C00F87C00F8780078F8007CF8007CF0003CF0003CE0001CE0001DE0000DC0000
+FC0000F80000780000780000F00000F00000F00001E00001E00003C0007FC0007F80007F
+00007E000015217F9518>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fg cmti10 10 1
+/Fg 1 106 df<0001C00007E00007F0000FF0000FE00007E00003800000000000000000
+0000000000000000000000000000000000000000000000000000F00003FC00071E000E1F
+001C1F001C1F00381F00383F00703F00703F00707F00F07E00E07E00E0FE0000FC0000FC
+0001FC0001F80003F80003F80003F00007F00007E00007E0000FE0E00FC0E00FC1E01FC1
+C01F81C01F81C01F83801F03801F07001F07001F0E000F1C0007F80001E000143879B619
+>105 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fh cmsy5 5 1
+/Fh 1 49 df<038007C007C007C00F800F800F800F001F001E001E003E003C003C003800
+7800780070007000E000E0000A157D9612>48 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fi cmbx10 10 1
+/Fi 1 62 df<7FFFFFFFFFFFFFFCFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFF
+FFFE7FFFFFFFFFFFFFFC0000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000007FFFFFFFFFFFFFFCFFFFFFFFFFFF
+FFFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFE7FFFFFFFFFFFFFFC3F197BA04A>61
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fj cmmib10 14.4 2
+/Fj 2 35 df<00003FFFFFFFFFFFC00001FFFFFFFFFFFFE00007FFFFFFFFFFFFF0000FFF
+FFFFFFFFFFF0001FFFFFFFFFFFFFF8007FFFFFFFFFFFFFF800FFFFFFFFFFFFFFF001FFFF
+FFFFFFFFFFF003FFFFFFFFFFFFFFE007FFFFFFFFFFFFFFE007FFFFFFFFFFFFFFC00FFFFF
+FFFFFFFFFF001FFE0003FC000000003FE00003FC000000007F800003FC000000007F0000
+07F800000000FE000007F800000000FC000007F8000000000000000FF800000000000000
+0FF8000000000000000FF8000000000000001FF0000000000000001FF000000000000000
+3FF0000000000000003FF0000000000000003FF0000000000000007FF000000000000000
+7FF0000000000000007FE000000000000000FFE000000000000000FFE000000000000000
+FFE000000000000001FFE000000000000001FFE000000000000001FFC000000000000003
+FFC000000000000003FFC000000000000003FFC000000000000007FFC000000000000007
+FFC000000000000007FFC00000000000000FFF800000000000000FFF800000000000000F
+FF800000000000001FFF800000000000001FFF800000000000003FFF800000000000003F
+FF800000000000003FFF000000000000003FFF000000000000003FFE000000000000001F
+FC000000000000001FF8000000000000000FF0000000000000000180000000000045377D
+B43E>28 D<0000001FFF0000000001FFFFF00000000FFFFFFC0000003FFFFFFF000000FF
+FFFFFF800003FFFFFFFFC00007FFFFFFFFE0000FFFFFFFFFF0001FFFFFFFFFF0003FFFFF
+FFFFF0007FFF0007FFE000FFF00000FFE001FF8000007FC001FE0000001F8003FC000000
+000003F8000000000003F0000000000007F0000000000007E0000000000007E000000000
+0007E0000000000007E03FFF80000007F1FFFFC0000007FFFFFFE0000003FFFFFFF00000
+03FFFFFFF0000001FFF003F0000003FFF80FF0000007FFFFFFF0000007FFFFFFE000000F
+EFFFFFC000001FC3FFFF0000003F801FF80000003F0000000000007F0000000000007E00
+00000000007E000000000000FE000000000000FC000000000000FC000000000000FC0000
+00000000FC000000001C00FE000000003E00FE000000003E00FF00000000FC00FFC00000
+03FC007FFC00003FF8007FFFFFFFFFF8003FFFFFFFFFF0003FFFFFFFFFE0001FFFFFFFFF
+C0000FFFFFFFFF000007FFFFFFFE000003FFFFFFF8000000FFFFFFE00000001FFFFF8000
+000001FFF000000034397BB63F>34 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fk cmmib9 9 1
+/Fk 1 64 df<00000C00000000001C00000000001C00000000001C00000000003E000000
+00003E00000000003E00000000003E00000000003E00000000007F00000000007F000000
+00007F00000000007F00000000007F000000FF007F007F80FFFEFFBFFF807FFFFFFFFF00
+1FFFFFFFFC0007FFFFFFF00003FFFFFFE00000FFFFFF8000003FFFFE0000000FFFF80000
+0003FFE000000007FFF000000007FFF00000000FFFF80000000FFFF80000001FF7FC0000
+001FE3FC0000003FC1FE0000003F80FE0000007F007F0000007E003F000000FC001F8000
+00F8000F800000F00007800001E00003C00000C00001800029277FA52C>63
+D E
+%EndDVIPSBitmapFont
+/Fl 131[45 1[45 45 45 45 45 45 45 45 45 1[45 45 45 45
+45 2[45 45 45 45 45 45 45 45 45 1[45 1[45 1[45 4[45 3[45
+1[45 45 45 45 45 2[45 2[45 45 1[45 1[45 45 1[45 45 1[45
+8[45 45 2[45 45 45 45 45 45 45 1[45 38[{TeXBase1Encoding ReEncodeFont}
+53 74.7198 /Courier rf /Fm 134[50 50 2[50 50 50 50 1[50
+50 50 50 50 2[50 50 50 50 50 50 50 50 50 3[50 1[50 4[50
+3[50 1[50 3[50 2[50 2[50 3[50 50 20[50 2[50 50 5[50 34[{
+TeXBase1Encoding ReEncodeFont}34 83.022 /Courier rf
+%DVIPSBitmapFont: Fn cmmib10 12 2
+/Fn 2 23 df<0007FF0000000000000FFFE000000000000FFFF8000000000007FFFC0000
+00000000FFFE0000000000003FFE0000000000003FFF0000000000001FFF000000000000
+1FFF0000000000000FFF8000000000000FFF80000000000007FFC0000000000007FFC000
+0000000007FFE0000000000003FFE0000000000003FFE0000000000001FFF00000000000
+01FFF0000000000000FFF8000000000000FFF8000000000000FFFC0000000000007FFC00
+00000000007FFC0000000000003FFE0000000000003FFE0000000000001FFF0000000000
+001FFF0000000000001FFF8000000000000FFF8000000000000FFF80000000000007FFC0
+000000000007FFC0000000000003FFE0000000000003FFE0000000000003FFF000000000
+0001FFF0000000000001FFF0000000000001FFF8000000000003FFF800000000000FFFFC
+00000000001FFFFC00000000003FFFFE00000000007FBFFE0000000001FFBFFE00000000
+03FF1FFF0000000007FE1FFF000000000FFC0FFF800000001FF80FFF800000007FF00FFF
+80000000FFE007FFC0000001FFC007FFC0000003FF8003FFE000000FFF0003FFE000001F
+FE0001FFF000003FFC0001FFF000007FF80001FFF00001FFF00000FFF80003FFE00000FF
+F80007FFC000007FFC000FFF8000007FFC001FFF0000003FFE003FFE0000003FFE007FFC
+0000003FFE00FFF80000001FFF00FFF00000001FFF00FFE00000000FFF80FFE00000000F
+FF80FFC000000007FFC07F8000000003FFE03E0000000001FFC03B467BC443>21
+D<00003E00000000000000FF000000FC000001FF800001FE000003FF800003FE000003FF
+800007FF000003FF800007FF000007FF80000FFF000007FF80000FFE000007FF00000FFE
+000007FF00000FFE00000FFF00001FFE00000FFF00001FFC00000FFE00001FFC00000FFE
+00001FFC00001FFE00003FFC00001FFE00003FF800001FFC00003FF800001FFC00003FF8
+00003FFC00007FF800003FFC00007FF000003FF800007FF000003FF800007FF000007FF8
+0000FFF000007FF80000FFE000007FF00000FFE000007FF00000FFE00000FFF00001FFE0
+0000FFF00001FFC00000FFE00001FFC00000FFE00001FFC07801FFE00003FFC07C01FFE0
+0003FF80FC01FFE00003FF80F801FFC00003FF80F803FFC00003FF81F803FFC00007FF81
+F003FFE0000FFF01F003FFE0001FFF03F007FFE0003FFF03E007FFF0007FFF03E007FFF8
+01FDFF07C007FFFE0FF9FF8F800FFFFFFFF0FFFF800FFFFFFFC07FFF000FFFFFFF001FFE
+000FFE1FF80007F8001FFE0000000000001FFE0000000000001FFC0000000000001FFC00
+00000000003FFC0000000000003FFC0000000000003FF80000000000003FF80000000000
+007FF80000000000007FF80000000000007FF00000000000007FF0000000000000FFF000
+0000000000FFF0000000000000FFE0000000000000FFE0000000000000FFE00000000000
+00FFC00000000000007F800000000000003E000000000000003E427CAC47>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fo cmssbx10 10.95 11
+/Fo 11 117 df<000003FFF000000000000FFFFC00000000000FFFFC00000000001FFFFE
+00000000001FFFFE00000000003FFFFF00000000003FFFFF00000000003FFFFF00000000
+007FFFFF80000000007FFFFF80000000007FFFFF8000000000FFFFFFC000000000FFF7FF
+C000000000FFE7FFC000000001FFE7FFE000000001FFE7FFE000000001FFE3FFE0000000
+03FFC3FFF000000003FFC3FFF000000003FFC3FFF000000007FFC1FFF800000007FF81FF
+F800000007FF81FFF80000000FFF80FFFC0000000FFF00FFFC0000000FFF00FFFC000000
+1FFF007FFE0000001FFF007FFE0000001FFE007FFE0000003FFE003FFF0000003FFE003F
+FF0000003FFC003FFF0000007FFC003FFF8000007FFC001FFF800000FFF8001FFFC00000
+FFF8001FFFC00000FFF8000FFFC00001FFF0000FFFE00001FFF0000FFFE00001FFF00007
+FFE00003FFE00007FFF00003FFE00007FFF00003FFFFFFFFFFF00007FFFFFFFFFFF80007
+FFFFFFFFFFF80007FFFFFFFFFFF8000FFFFFFFFFFFFC000FFFFFFFFFFFFC000FFFFFFFFF
+FFFC001FFFFFFFFFFFFE001FFF000000FFFE001FFF0000007FFE003FFE0000007FFF003F
+FE0000007FFF003FFE0000003FFF007FFC0000003FFF807FFC0000003FFF807FFC000000
+1FFF80FFF80000001FFFC0FFF80000000FFFC0FFF00000000FFFC0FFF000000007FFC07F
+C000000003FF803A3F7CBE43>65 D<3FF87FF8FFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFF
+FCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFF
+FCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFF
+FCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFCFFFC7FF83FF80E3F78
+BE1E>73 D<3FFF00000007FC7FFFC0000007FCFFFFE000000FFEFFFFE000000FFEFFFFF0
+00000FFEFFFFF000000FFEFFFFF800000FFEFFFFF800000FFEFFFFFC00000FFEFFFFFC00
+000FFEFFFFFE00000FFEFFFFFE00000FFEFFEFFF00000FFEFFEFFF00000FFEFFE7FF8000
+0FFEFFE7FF80000FFEFFE3FFC0000FFEFFE3FFC0000FFEFFE1FFE0000FFEFFE1FFE0000F
+FEFFE0FFF0000FFEFFE0FFF0000FFEFFE07FF8000FFEFFE07FF8000FFEFFE03FFC000FFE
+FFE03FFC000FFEFFE01FFE000FFEFFE01FFE000FFEFFE00FFF000FFEFFE00FFF000FFEFF
+E007FF800FFEFFE003FF800FFEFFE003FFC00FFEFFE001FFE00FFEFFE001FFE00FFEFFE0
+00FFF00FFEFFE000FFF00FFEFFE0007FF80FFEFFE0007FF80FFEFFE0003FFC0FFEFFE000
+3FFC0FFEFFE0001FFE0FFEFFE0001FFE0FFEFFE0000FFF0FFEFFE0000FFF0FFEFFE00007
+FF8FFEFFE00007FF8FFEFFE00003FFCFFEFFE00003FFCFFEFFE00001FFEFFEFFE00001FF
+EFFEFFE00000FFFFFEFFE00000FFFFFEFFE000007FFFFEFFE000007FFFFEFFE000003FFF
+FEFFE000003FFFFEFFE000001FFFFEFFE000001FFFFEFFE000000FFFFEFFE000000FFFFE
+7FC0000007FFFC3FC0000001FFFC373F78BE48>78 D<000000FFF800000000001FFFFFC0
+00000000FFFFFFF800000003FFFFFFFE0000000FFFFFFFFF8000001FFFFFFFFFC000003F
+FFFFFFFFE000007FFFFFFFFFF00000FFFFC01FFFF80001FFFE0003FFFC0003FFF80000FF
+FE0007FFF000007FFF0007FFE000003FFF000FFFC000001FFF800FFF8000000FFF801FFF
+8000000FFFC01FFF00000007FFC03FFF00000007FFE03FFF00000007FFE03FFE00000003
+FFE07FFE00000003FFF07FFE00000003FFF07FFE00000003FFF07FFC00000001FFF07FFC
+00000001FFF07FFC00000001FFF0FFFC00000001FFF8FFFC00000001FFF8FFFC00000001
+FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC
+00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001
+FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF8FFFC00000001FFF87FFC
+00000001FFF07FFE00000003FFF07FFE00000003FFF07FFE00000003FFF07FFE00000003
+FFF03FFF00000007FFE03FFF00000007FFE03FFF00000007FFE01FFF8000000FFFC01FFF
+8000000FFFC01FFFC000001FFFC00FFFE000003FFF800FFFE000003FFF8007FFF000007F
+FF0003FFFC0001FFFE0001FFFF0007FFFC0001FFFFC01FFFFC0000FFFFFFFFFFF800007F
+FFFFFFFFF000001FFFFFFFFFC000000FFFFFFFFF80000003FFFFFFFE00000000FFFFFFF8
+000000001FFFFFC00000000000FFF80000003D437BC048>I<00000003FF8000000003FF
+8000000007FFC000000007FFC000000007FFC000000007FFC000000007FFC000000007FF
+C000000007FFC000000007FFC000000007FFC000000007FFC000000007FFC000000007FF
+C000000007FFC000000007FFC000000007FFC000000007FFC000000007FFC000000007FF
+C00007FC07FFC0003FFF87FFC000FFFFE7FFC001FFFFF7FFC007FFFFFFFFC00FFFFFFFFF
+C00FFFFFFFFFC01FFFE03FFFC03FFF800FFFC03FFF0007FFC03FFE0007FFC07FFC0007FF
+C07FFC0007FFC07FFC0007FFC07FFC0007FFC0FFF80007FFC0FFF80007FFC0FFF80007FF
+C0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FF
+C0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC07FF80007FF
+C07FFC0007FFC07FFC0007FFC07FFC0007FFC03FFE0007FFC03FFE000FFFC03FFF001FFF
+C01FFFC07FFFC00FFFFFFFFFC00FFFFFFFFFC007FFFFFFFFC003FFFFF7FFC000FFFFC3FF
+80003FFF03FF800007F80000002A407DBE33>100 D<3FE001FF80001FF8007FE00FFFE0
+00FFFE00FFF03FFFF803FFFF80FFF07FFFFC07FFFFC0FFF0FFFFFE0FFFFFE0FFF1FFFFFF
+1FFFFFF0FFF3FFFFFF3FFFFFF0FFF7E03FFF7E03FFF0FFFFC01FFFFC01FFF8FFFF801FFF
+F801FFF8FFFF000FFFF000FFF8FFFE000FFFE000FFF8FFFC000FFFC000FFF8FFFC000FFF
+C000FFF8FFFC000FFFC000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
+8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
+8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
+8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
+8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
+8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF
+8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF8FFF8000FFF8000FFF87FF00007FF
+00007FF03FF00003FF00003FF0452B7BAA50>109 D<3FE001FF007FE00FFFE0FFF03FFF
+F0FFF07FFFF8FFF1FFFFFCFFF3FFFFFEFFF3FFFFFEFFF7E07FFEFFFF803FFFFFFF003FFF
+FFFF001FFFFFFE001FFFFFFC001FFFFFFC001FFFFFFC001FFFFFF8001FFFFFF8001FFFFF
+F8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8
+001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF800
+1FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001FFFFFF8001F
+FFFFF8001FFFFFF8001FFF7FF0000FFE3FF0000FFE282B7BAA33>I<0000FFE00000000F
+FFFE0000003FFFFF800000FFFFFFE00001FFFFFFF00003FFFFFFF80007FFFFFFFC000FFF
+C07FFE001FFF001FFF001FFE000FFF003FFE000FFF803FFC0007FF803FFC0007FF807FFC
+0007FFC07FF80003FFC07FF80003FFC07FF80003FFC0FFF80003FFE0FFF80003FFE0FFF8
+0003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF8
+0003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE0FFF80003FFE07FFC0007FFC07FFC
+0007FFC07FFC0007FFC03FFE000FFF803FFE000FFF803FFF001FFF801FFFC07FFF000FFF
+FFFFFE000FFFFFFFFE0007FFFFFFFC0003FFFFFFF80000FFFFFFE000007FFFFFC000000F
+FFFE00000001FFF000002B2D7DAB32>I<000003FE00003FF01FFF80007FF07FFFE000FF
+F9FFFFF800FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFE00FFFFFFFFFF00FFFF80FFFF00FF
+FC007FFF00FFF8003FFF80FFF8001FFF80FFF8001FFF80FFF8000FFF80FFF8000FFFC0FF
+F8000FFFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FF
+F80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FFF80007FFC0FF
+F80007FFC0FFF8000FFFC0FFF8000FFF80FFF8000FFF80FFF8001FFF80FFF8001FFF80FF
+F8003FFF00FFFC003FFF00FFFE007FFE00FFFF01FFFE00FFFFFFFFFC00FFFFFFFFF800FF
+FFFFFFF000FFFBFFFFE000FFF9FFFF8000FFF87FFE0000FFF81FF00000FFF800000000FF
+F800000000FFF800000000FFF800000000FFF800000000FFF800000000FFF800000000FF
+F800000000FFF800000000FFF800000000FFF800000000FFF800000000FFF800000000FF
+F800000000FFF8000000007FF0000000003FF0000000002A3D7BAA33>I<3FE003E07FE0
+0FE0FFF03FE0FFF07FE0FFF0FFE0FFF1FFE0FFF3FFE0FFF7FFE0FFF7FFE0FFFFFC00FFFF
+F000FFFFC000FFFF8000FFFF0000FFFE0000FFFE0000FFFC0000FFFC0000FFF80000FFF8
+0000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF8
+0000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF80000FFF8
+0000FFF80000FFF80000FFF800007FF000003FF000001B2B7BAA22>114
+D<00FF800001FF800003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC0
+0003FFC00003FFC00003FFC0003FFFFFF87FFFFFF8FFFFFFFCFFFFFFFCFFFFFFFC7FFFFF
+F87FFFFFF803FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC0
+0003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC0
+0003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFC00003FFE0
+0603FFE00E03FFF07E01FFFFFF01FFFFFF01FFFFFF00FFFFFF00FFFFFC007FFFF0003FFF
+80000FF80020377EB525>116 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fp cmtt10 10.95 12
+/Fp 12 121 df<007FF800000003FFFF00000007FFFFC000000FFFFFE000001FFFFFF000
+003FFFFFF800003FE01FFC00003FC003FE00003FC001FE00003FC000FF00001F80007F00
+000F00007F80000000003F80000000003F80000000003F80000000003F80000000FFFF80
+00000FFFFF8000007FFFFF800001FFFFFF800007FFFFFF80000FFFFFFF80001FFF803F80
+003FF8003F80007FE0003F80007F80003F8000FF00003F8000FE00003F8000FE00003F80
+00FE00003F8000FE00003F8000FE00007F8000FF00007F80007F8000FF80007FC003FF80
+003FF01FFFFF803FFFFFFFFFC01FFFFFFFFFC00FFFFFEFFFC003FFFF87FFC001FFFE01FF
+80003FE00000002A2A7BA830>97 D<0000FFE0000007FFFC00001FFFFE00007FFFFF0000
+FFFFFF8001FFFFFFC003FF807FC007FC003FC00FF8003FC01FF0003FC01FE0001F803FC0
+000F003F800000007F800000007F000000007F00000000FF00000000FE00000000FE0000
+0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FF000000
+007F000000007F000000007F800000003F800007C03FC0000FE01FE0000FE01FF0001FE0
+0FF8001FC007FE003FC007FFC0FF8003FFFFFF8000FFFFFF00007FFFFE00001FFFF80000
+07FFF0000001FF8000232A7AA830>99 D<000001FFE000000003FFF000000007FFF00000
+0007FFF000000003FFF000000001FFF00000000007F00000000007F00000000007F00000
+000007F00000000007F00000000007F00000000007F00000000007F00000000007F00000
+000007F0000003FE07F000001FFF87F000003FFFE7F00000FFFFFFF00001FFFFFFF00003
+FFFFFFF00007FF03FFF0000FFC00FFF0001FF0003FF0001FE0001FF0003FC0001FF0003F
+C0000FF0007F800007F0007F000007F0007F000007F000FF000007F000FF000007F000FE
+000007F000FE000007F000FE000007F000FE000007F000FE000007F000FE000007F000FE
+000007F000FE000007F000FF000007F0007F00000FF0007F00000FF0007F80000FF0003F
+80001FF0003FC0003FF0001FE0003FF0001FF0007FF0000FF801FFF00007FE07FFFFC003
+FFFFFFFFE001FFFFFFFFF000FFFFF7FFF0007FFFC7FFE0001FFF03FFC00007FC0000002C
+397DB730>I<0001FF00000007FFE000001FFFF800007FFFFC0000FFFFFE0001FFFFFF00
+03FF81FF8007FC007FC00FF8003FC01FE0001FE01FE0000FE03FC0000FF03F800007F07F
+800007F07F000007F07F000003F8FF000003F8FE000003F8FFFFFFFFF8FFFFFFFFF8FFFF
+FFFFF8FFFFFFFFF8FFFFFFFFF8FFFFFFFFF0FE00000000FF000000007F000000007F0000
+00007F800000003F800001F03FC00003F81FE00003F80FF00003F80FF80007F807FE001F
+F003FFC07FE001FFFFFFE000FFFFFFC0003FFFFF80001FFFFE000007FFF8000000FFC000
+252A7CA830>I<000000FF80000007FFE000001FFFF000003FFFF000007FFFF80000FFFF
+F80001FF87F80003FE07F80003FC03F00007F800C00007F000000007F000000007F00000
+0007F000000007F000000007F000000007F000000007F000003FFFFFFFC07FFFFFFFE0FF
+FFFFFFE0FFFFFFFFE0FFFFFFFFE07FFFFFFFC00007F000000007F000000007F000000007
+F000000007F000000007F000000007F000000007F000000007F000000007F000000007F0
+00000007F000000007F000000007F000000007F000000007F000000007F000000007F000
+000007F000000007F000000007F000000007F000000007F000000007F000000007F00000
+0007F000000007F000003FFFFFFE007FFFFFFF00FFFFFFFF80FFFFFFFF807FFFFFFF003F
+FFFFFE0025397DB830>I<0000E000000003F800000003F800000007FC00000007FC0000
+0007FC00000003F800000003F800000000E0000000000000000000000000000000000000
+00000000000000000000000000000000000000000000000000000000001FFFF800003FFF
+FC00007FFFFC00007FFFFC00003FFFFC00001FFFFC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
+000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FC00000001FC00000001FC00003FFFFFFFC07FFFFFFFE0FFFFFFFFE0FFFFFFFFE07FFF
+FFFFE03FFFFFFFC023397AB830>105 D<7FFFF80000FFFFFC0000FFFFFC0000FFFFFC00
+00FFFFFC00007FFFFC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
+000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00007FFFFFFFF0FFFFFFFFF8FFFFFFFFF8FFFFFFFFF8FF
+FFFFFFF87FFFFFFFF025387BB730>108 D<000001FE00003FFC0FFF80007FFE3FFFE000
+FFFEFFFFF000FFFFFFFFF8007FFFFFFFF8003FFFFE07FC0000FFF803FC0000FFE001FE00
+00FFC001FE0000FF8000FE0000FF8000FE0000FF0000FE0000FF0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE003FFFF81FFFF87FFFFC3FFFFCFFFFFE3FFFFEFFFFFE3FFFFE7FFFFC3FFFFC
+3FFFF81FFFF82F2880A730>110 D<00000007F8003FFF803FFF007FFFC0FFFF80FFFFC3
+FFFF80FFFFCFFFFFC07FFFDFFFFFC03FFFFFFC3FC0001FFFE03FC0001FFF801F80001FFF
+000F00001FFE000000001FFC000000001FF8000000001FF0000000001FF0000000001FE0
+000000001FE0000000001FE0000000001FE0000000001FC0000000001FC0000000001FC0
+000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0
+000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC0
+0000003FFFFFFC00007FFFFFFE0000FFFFFFFF0000FFFFFFFF00007FFFFFFE00003FFFFF
+FC00002A287EA730>114 D<001FFC1E0001FFFF9F0007FFFFFF000FFFFFFF001FFFFFFF
+003FFFFFFF007FF007FF007F8001FF00FE0000FF00FC00007F00FC00007F00FC00007F00
+FC00007F00FE00003E007F000000007FE00000003FFF0000001FFFFC00000FFFFF800007
+FFFFE00001FFFFF800007FFFFC000003FFFE0000000FFF00000000FF807C00007F80FE00
+001FC0FE00001FC0FE00000FC0FF00000FC0FF00000FC0FF80000FC0FF80001FC0FFC000
+3F80FFE0007F80FFFC03FF00FFFFFFFF00FFFFFFFE00FFFFFFFC00FCFFFFF000F83FFFC0
+00780FFE0000222A79A830>I<0007800000000FC00000001FC00000001FC00000001FC0
+0000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000003FFFFFFF
+E07FFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF07FFFFFFFE0001FC00000001FC00000
+001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000000
+1FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001F
+C00000001FC00000001FC000F8001FC001FC001FC001FC001FC001FC001FC001FC001FC0
+01FC001FE003FC000FE007F8000FF007F8000FFC1FF00007FFFFE00003FFFFC00003FFFF
+800001FFFF0000007FFC0000001FF00026337EB130>I<3FFF81FFFC007FFFC3FFFE00FF
+FFC3FFFF00FFFFC3FFFF007FFFC3FFFE003FFF81FFFC0000FE007F0000007F007F000000
+7F80FE0000003F81FC0000001FC3F80000000FE3F80000000FE7F000000007FFE0000000
+03FFC000000001FFC000000000FF8000000000FF00000000007E00000000007F00000000
+00FF0000000001FF8000000001FFC000000003F7E000000007E7E00000000FE3F0000000
+0FC1F80000001F81FC0000003F80FE0000007F007E0000007E007F000000FE003F800001
+FC001FC0007FFF80FFFF00FFFFC1FFFF80FFFFE3FFFF80FFFFE3FFFF80FFFFC1FFFF807F
+FF80FFFF0029277DA630>120 D E
+%EndDVIPSBitmapFont
+/Fq 134[50 1[72 1[55 33 39 44 1[55 50 55 83 28 2[28 55
+50 33 44 55 44 55 50 9[100 1[72 66 55 1[78 61 1[72 1[66
+78 4[61 66 72 72 66 72 1[50 7[50 1[50 50 50 50 50 2[25
+33 25 4[33 39[{TeXBase1Encoding ReEncodeFont}46 99.6264
+/Times-Bold rf
+%DVIPSBitmapFont: Fr cmsy9 9 5
+/Fr 5 107 df<7FFFFFFF80FFFFFFFFC0FFFFFFFFC07FFFFFFFC000000003C000000003
+C000000003C000000003C000000003C000000003C000000003C000000003C000000003C0
+00000003C000000003C000000003C000000003C000000003C000000003C000000003C000
+000003C000000003C000000003C000000003C03FFFFFFFC07FFFFFFFC07FFFFFFFC03FFF
+FFFFC000000003C000000003C000000003C000000003C000000003C000000003C0000000
+03C000000003C000000003C000000003C000000003C000000003C000000003C000000003
+C000000003C000000003C000000003C000000003C000000003C000000003C07FFFFFFFC0
+FFFFFFFFC0FFFFFFFFC07FFFFFFF8022347CB32B>57 D<600000000180F000000003C0F8
+00000007C0F800000007C07C0000000F807C0000000F803C0000000F003E0000001F003E
+0000001F001F0000003E001F0000003E000F8000007C000F8000007C0007800000780007
+C00000F80007C00000F80003E00001F00003E00001F00001F00003E00001F00003E00000
+F00003C00000F80007C00000F80007C000007C000F8000007C000F8000003E001F000000
+3E001F0000001E001E0000001F003E0000001F003E0000000F807C0000000F807C000000
+07C0F800000007C0F800000003C0F000000003E1F000000003E1F000000001F3E0000000
+01F3E000000000FFC000000000FFC0000000007F80000000007F80000000007F80000000
+003F00000000003F00000000001E00000000000C0000002A307CAD33>95
+D<000007E000003FE00000FE000003F8000007F000000FE000000FC000001FC000001F80
+00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
+00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
+00001F8000001F8000001F8000001F8000003F8000003F0000007E000000FC000003F800
+007FE00000FF0000007FE0000003F8000000FC0000007E0000003F0000003F8000001F80
+00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
+00001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F80
+00001F8000001F8000001F8000001F8000001FC000000FC000000FE0000007F0000003F8
+000000FE0000003FE0000007E01B4B7BB726>102 D<FC000000FFC0000007F0000001FC
+000000FE0000007F0000003F0000003F8000001F8000001F8000001F8000001F8000001F
+8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
+8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
+8000001FC000000FC0000007E0000003F0000001FC0000007FC000001FE000007FC00001
+FC000003F0000007E000000FC000001FC000001F8000001F8000001F8000001F8000001F
+8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
+8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F8000001F
+8000003F8000003F0000007F000000FE000001FC000007F00000FFC00000FC0000001B4B
+7BB726>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F060044B78B715>106 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fs bbold11 10.95 6
+/Fs 6 96 df<0001F80007FC001FFC007FF800FF0001FE0003FE0003FE0007DE0007DE00
+0F9E000F9E001F1E001F1E001E1E003E1E003E1E003C1E003C1E007C1E007C1E00781E00
+781E00781E00781E00781E00781E00F81E00F81E00F01E00F01E00F01E00F01E00F01E00
+F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00
+F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00
+F01E00F01E00F01E00F01E00F81E00F81E00781E00781E00781E00781E00781E00781E00
+7C1E007C1E003C1E003C1E003E1E003E1E001E1E001F1E001F1E000F9E000F9E0007DE00
+07DE0003FE0003FE0001FE0000FF00007FF8001FFC0007FC0001F8165B79C320>40
+D<7E0000FF8000FFE0007FF80003FC0001FE0001FF0001FF0001EF8001EF8001E7C001E7
+C001E3E001E3E001E1E001E1F001E1F001E0F001E0F001E0F801E0F801E07801E07801E0
+7801E07801E07801E07801E07C01E07C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E07C01E07C01E07801E07801E07801E07801E07801E07801E0F801E0
+F801E0F001E0F001E1F001E1F001E1E001E3E001E3E001E7C001E7C001EF8001EF8001FF
+0001FF0001FE0003FC007FF800FFE000FF80007E0000165B7EC320>I<7FFFF8FFFFFCFF
+FFFCFFFFF8F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F01E00F0
+1E00FFFFF8FFFFFCFFFFFC7FFFF8165B79C320>91 D<7FFFF8FFFFFCFFFFFC7FFFFC01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E0
+3C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C01E03C7FFFFCFFFF
+FCFFFFFC7FFFF8165B7EC320>93 D<00001800003C00007C00007C0000780000F80000F8
+0001F00001F00003E00003E00003C00007C00007C0000FC0000FC0000FC0001FC0001FC0
+003FC0003FC0003FC0007FC0007FC000FBC000FBC001F3C001F3C001E3C003E3C003E3C0
+07C3C007C3C00783C00F83C00F83C01F03C01F03C03E03C03E03C03C03C07C03C07C03C0
+F803C0F803C0F003C0F803C0F803C07C03C07C03C03C03C03E03C03E03C01F03C01F03C0
+0F83C00F83C00783C007C3C007C3C003E3C003E3C001E3C001F3C001F3C000FBC000FBC0
+007FC0007FC0003FC0003FC0003FC0001FC0001FC0000FC0000FC0000FC00007C00007C0
+0003C00003E00003E00001F00001F00000F80000F800007800007C00007C00003C000018
+165B79C320>I<600000F00000F80000F800007800007C00007C00003E00003E00001F00
+001F00000F00000F80000F80000FC0000FC0000FC0000FE0000FE0000FF0000FF0000FF0
+000FF8000FF8000F7C000F7C000F3E000F3E000F1E000F1F000F1F000F0F800F0F800F07
+800F07C00F07C00F03E00F03E00F01F00F01F00F00F00F00F80F00F80F007C0F007C0F00
+3C0F007C0F007C0F00F80F00F80F00F00F01F00F01F00F03E00F03E00F07C00F07C00F07
+800F0F800F0F800F1F000F1F000F1E000F3E000F3E000F7C000F7C000FF8000FF8000FF0
+000FF0000FF0000FE0000FE0000FC0000FC0000FC0000F80000F80000F00001F00001F00
+003E00003E00007C00007C0000780000F80000F80000F00000600000165B7EC320>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Ft cmss8 7 4
+/Ft 4 122 df<003F000001FFE00003FFF00007FFF8000FC0FC001F807E003F003F003E
+001F003C000F007C000F807C000F807C000F8078000780F80007C0F80007C0F80007C0F8
+0007C0F80007C0F80007C0F80007C0F80007C0F80007C0F80007C0F80007C0F80007C0F8
+0007C0F80007C0780007807C000F807C000F807C000F803E001F003E001F003F003F001F
+807E000FE1FC000FFFFC0003FFF00001FFE000007F80001A287EA61F>48
+D<003F00F8FFC0F9FFE0FBFFF0FF83F0FE01F8FE00F8FC00F8FC00F8F800F8F800F8F800
+F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800F8F800
+F8F800F8F800F8F800F8151B7B9A20>110 D<7C000FC03E001F803F001F001F803E000F
+807C0007C0F80003E0F80001F1F00000FBE000007FC000007F8000003F0000001F000000
+3F0000003F8000007FC00000F3E00001F1F00003E0F80007C0780007807C000F803E001F
+001F003E000F807C000FC0FC0007E01B1A80991C>120 D<F8000F80FC000F807C001F00
+7E001F003E003E003E003E001F003E001F007C001F807C000F8078000F80F80007C0F800
+07C0F00003C1F00003E1E00001E1E00001E3E00001F3C00000F3C00000F3800000738000
+0077800000370000003F0000003E0000001E0000001E0000003C0000003C000000380000
+007800000070000000F0000061F000007FE000007FC000007F8000007F00000019267F99
+1C>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fu cmss8 8 12
+/Fu 12 122 df<001F800000FFF00001FFF80007FFFE000FFFFF000FF0FF001FC03F801F
+801F803F000FC03F000FC07E0007E07E0007E07E0007E07C0003E07C0003E0FC0003F0FC
+0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC
+0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F07C0003E07E0007E07E0007E07E
+0007E07E0007E03F000FC03F000FC01F801F801FC03F800FF0FF000FFFFF0007FFFE0003
+FFFC0000FFF000003FC0001C2E7DAC23>48 D<000600000E00003E0001FE00FFFE00FFFE
+00FFFE00FE7E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E
+00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E
+00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E00007E007FFF
+FE7FFFFE7FFFFE7FFFFE172D7BAC23>I<007F800001FFF00007FFFC000FFFFE001FFFFF
+003F81FF803E003FC07C001FC078000FE0F8000FE0F00007E0700007F0600007F0200003
+F0000003F0000003F0000007F0000007F0000007E0000007E000000FC000001FC000001F
+8000003F0000007E000000FC000001F8000003F0000007E000000FC000001F8000007E00
+0000FC000001F8000003F0000007E000000FC000001F8000003E0000007C000000FFFFFF
+F0FFFFFFF0FFFFFFF0FFFFFFF0FFFFFFF01C2D7DAC23>I<FF800007E0FFC00007E0FFC0
+0007E0FFE00007E0FFE00007E0FDF00007E0FDF00007E0FCF80007E0FCF80007E0FCFC00
+07E0FC7C0007E0FC7E0007E0FC3E0007E0FC3F0007E0FC1F0007E0FC1F8007E0FC0F8007
+E0FC0FC007E0FC0FC007E0FC07E007E0FC07E007E0FC03F007E0FC03F007E0FC01F807E0
+FC01F807E0FC00FC07E0FC00FC07E0FC007E07E0FC007E07E0FC003E07E0FC003F07E0FC
+001F07E0FC001F87E0FC000F87E0FC000FC7E0FC0007C7E0FC0007E7E0FC0003E7E0FC00
+03E7E0FC0001F7E0FC0001F7E0FC0000FFE0FC0000FFE0FC00007FE0FC00007FE0FC0000
+3FE0232E79AD32>78 D<000FFC00007FFF8001FFFFE003FFFFF807FFFFF80FF807F81FC0
+00F03F8000303F0000103F0000007E0000007E0000007E0000007E0000007E0000007F00
+00003F8000003FC000003FF000001FFF00000FFFF00007FFFE0003FFFF0001FFFFC0007F
+FFE0000FFFF00000FFF800000FF8000003FC000001FC000000FC000000FE0000007E0000
+007E0000007E0000007E0000007E4000007E600000FC700000FCFC0001F8FF0007F8FFE0
+1FF07FFFFFE01FFFFFC007FFFF0001FFFE00001FF0001F307DAE27>83
+D<0003F8000FFE003FFE007FFE00FFFE00FE0601F80001F00003F00003F00003F00003F0
+0003F00003F00003F00003F00003F000FFFFE0FFFFE0FFFFE0FFFFE003F00003F00003F0
+0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F0
+0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F000172F
+7FAE16>102 D<FEFEFEFEFEFEFE000000000000000000007E7E7E7E7E7E7E7E7E7E7E7E
+7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E7E072F7CAE11>105 D<000FF000FF00FC3FFC
+03FFC0FCFFFE0FFFE0FDFFFF1FFFF0FFFFFFBFFFF8FFE07FFE07F8FF801FF801F8FF001F
+F001FCFE000FE000FCFE000FE000FCFE000FE000FCFC000FC000FCFC000FC000FCFC000F
+C000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000F
+C000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000F
+C000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FCFC000FC000FC2E1F7B
+9E39>109 D<000FE000FC3FF800FCFFFC00FDFFFE00FFFFFF00FFC0FF00FF803F00FF00
+3F80FE001F80FE001F80FE001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC00
+1F80FC001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC001F80FC00
+1F80FC001F80FC001F80FC001F80FC001F80FC001F80191F7B9E24>I<01FF0007FFE01F
+FFF83FFFFC7FFFFC7F00FCFE0038FC0008FC0000FC0000FC0000FE00007F80007FFC003F
+FF801FFFE00FFFF003FFF800FFFC0007FC0001FE0000FE00007E00007E00007E40007E70
+00FCFE01FCFFFFF8FFFFF87FFFF00FFFC001FF0017217E9F1B>115
+D<7E0000FC3F0001FC1F8003F81FC007F00FE007E007F00FC003F01F8001F83F0000FC7F
+00007E7E00003FFC00001FF800001FF000000FE0000007C000000FE000000FF000001FF8
+00003EFC00007C7E0000FC3F0001F81F8003F00F8003E00FC007E007E00FC003F01F8001
+F83F0001FC7F0000FEFE00007F201E809D21>120 D<FC0000FC7E0001F87E0001F87F00
+01F83F0003F03F8003F01F8007E01FC007E00FC007E00FC00FC007E00FC007E00F8007F0
+1F8003F01F0003F03F0001F83F0001F83E0000F83E0000FC7C00007C7C00007C7C00007C
+7800003EF800003EF000001EF000001EF000000FE000000FE0000007C0000007C0000007
+800000078000000F8000000F0000001F0000001E0000003E0000003E0000307C00003FF8
+00003FF800003FF000003FE000000FC000001E2C7F9D21>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fv cmr9 9 1
+/Fv 1 95 df<00200000700000F80001FC0003DE00078F000F07801E03C03C01E07800F0
+E00038400010150C78B326>94 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fw cmmi9 9 3
+/Fw 3 78 df<0000FFFFFF000003FFFFFF80000FFFFFFF80003FFFFFFF00007FFFFFFE00
+01FF03FC000003F800FC000007F000FE000007E0007E00000FC0007E00001FC0007E0000
+1F80003E00003F00007E00003F00007E00007F00007E00007E00007E00007E00007E0000
+7E0000FE0000FE0000FC0000FC0000FC0000FC0000FC0000FC0001F80000FC0001F80000
+FC0003F000007C0003E000007C0007E000007C000FC000003E001F8000003E003F000000
+1F007C0000000F81F800000003FFE0000000007F0000000029217E9F2C>27
+D<3C7EFFFFFFFF7E3C08087A8715>58 D<000FFFE00000000FFFC0000FFFE00000001FFF
+C0000FFFE00000003FFFC000003FE00000003FE00000003FE00000007FC00000003FE000
+0000DFC000000033F0000000DF8000000033F00000019F8000000073F00000033F800000
+0073F00000033F0000000063F00000063F0000000063F000000C3F00000000E3F000000C
+7F00000000E1F80000187E00000000C1F80000187E00000000C1F80000307E00000001C1
+F8000060FE00000001C1F8000060FC0000000181F80000C0FC0000000181F8000180FC00
+00000381F8000181FC0000000380FC000301F80000000300FC000301F80000000300FC00
+0601F80000000700FC000C03F80000000700FC000C03F00000000600FC001803F0000000
+0600FC003003F00000000E007E003007F00000000E007E006007E00000000C007E00C007
+E00000000C007E00C007E00000001C007E01800FE00000001C007E01800FC00000001800
+7E03000FC000000018007E06000FC000000038003F06001FC000000038003F0C001F8000
+000030003F18001F8000000030003F18001F8000000070003F30003F8000000070003F30
+003F0000000060003F60003F0000000060001FC0003F00000000E0001FC0007F00000000
+E0001F80007E00000001E0001F00007E00000007F0001F0000FE000000FFFF801E007FFF
+FC0000FFFF801C007FFFFC0000FFFF800C007FFFFC00004A337CB24A>77
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fx cmbx8 8 2
+/Fx 2 42 df<0000E00001E00007C0000F80001F00003E00007E0000FC0000F80001F800
+03F00003F00007E00007E0000FC0000FC0001FC0001F80003F80003F80003F00007F0000
+7F00007F00007F00007F0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000
+FE0000FE0000FE0000FE0000FE0000FE0000FE00007F00007F00007F00007F00007F0000
+3F00003F80003F80001F80001FC0000FC0000FC00007E00007E00003F00003F00001F800
+00F80000FC00007E00003E00001F00000F800007C00001E00000E0134378B120>40
+D<E00000F000007C00003E00001F00000F80000FC00007E00003E00003F00001F80001F8
+0000FC0000FC00007E00007E00007F00003F00003F80003F80001F80001FC0001FC0001F
+C0001FC0001FC0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000F
+E0000FE0000FE0000FE0000FE0000FE0001FC0001FC0001FC0001FC0001FC0001F80003F
+80003F80003F00007F00007E00007E0000FC0000FC0001F80001F80003F00003E00007E0
+000FC0000F80001F00003E00007C0000F00000E0000013437CB120>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fy cmmib8 8 8
+/Fy 8 117 df<00003000000000700000000070000000007000000000F800000000F800
+000000F800000000F800000000F800000000F800000001FC00000001FC00007801FC00F0
+FFF1FC7FF87FFFFFFFF03FFFFFFFE00FFFFFFF8003FFFFFE0000FFFFF800003FFFE00000
+1FFFC000000FFF8000000FFF8000001FFFC000001FFFC000003FDFE000003F8FE000007F
+07F000007E03F00000FC01F80000F800F80001F0007C0001E0003C0001C0001C00018000
+0C0025237EA129>63 D<001FFFFFFFFC00003FFFFFFFFF80003FFFFFFFFFE0001FFFFFFF
+FFF00000FFC0003FF80000FF80001FFC0000FF80000FFC0001FF80000FFE0001FF800007
+FE0001FF000007FE0001FF000007FE0003FF00000FFE0003FF00000FFC0003FE00000FFC
+0003FE00001FF80007FE00001FF80007FE00003FF00007FC00007FE00007FC0000FFC000
+0FFC0003FF00000FFC003FFC00000FFFFFFFF000000FFFFFFFFC00001FFFFFFFFF00001F
+F80001FF80001FF00000FFC0001FF000007FE0003FF000003FF0003FF000003FF0003FE0
+00003FF0003FE000003FF0007FE000003FF0007FE000003FF0007FC000003FF0007FC000
+007FF000FFC000007FE000FFC00000FFE000FF800001FFC000FF800001FF8001FF800007
+FF8001FF80000FFF0001FF00007FFC00FFFFFFFFFFF800FFFFFFFFFFE000FFFFFFFFFF80
+00FFFFFFFFF80000372E7CAD3D>66 D<001FFFFFFFFFF8003FFFFFFFFFF8003FFFFFFFFF
+F8001FFFFFFFFFF80000FFE0001FF80000FFC00007F80000FFC00001F80001FFC00001F8
+0001FFC00001F00001FF800000F00001FF800000F00003FF800000F00003FF800E00F000
+03FF001E00F00003FF001E00F00007FF003E00F00007FF003C00E00007FE007C00000007
+FE007C0000000FFE01FC0000000FFFFFF80000000FFFFFF80000000FFFFFF80000001FFF
+FFF80000001FFC03F00000001FF801F00000001FF801F00000003FF801F001C0003FF801
+E003C0003FF001E003C0003FF001E007C0007FF001C00780007FF000000F80007FE00000
+0F00007FE000001F0000FFE000001F0000FFE000003E0000FFC000007E0000FFC00000FC
+0001FFC00003FC0001FFC0000FF80001FF80007FF800FFFFFFFFFFF000FFFFFFFFFFF000
+FFFFFFFFFFF000FFFFFFFFFFE000352E7CAD39>69 D<001FFFFFE000003FFFFFF000003F
+FFFFF000001FFFFFE0000000FFE000000000FFC000000000FFC000000001FFC000000001
+FFC000000001FF8000000001FF8000000003FF8000000003FF8000000003FF0000000003
+FF0000000007FF0000000007FF0000000007FE0000000007FE000000000FFE000000000F
+FE000000000FFC000000000FFC000000001FFC000000001FFC000000001FF8000000001F
+F8000000003FF8000038003FF8000078003FF0000078003FF00000F8007FF00000F0007F
+F00001F0007FE00001F0007FE00003E000FFE00003E000FFE00007E000FFC0000FC000FF
+C0001FC001FFC0007F8001FFC000FF8001FF800FFF80FFFFFFFFFF00FFFFFFFFFF00FFFF
+FFFFFF00FFFFFFFFFE002D2E7CAD35>76 D<001FFFFFFFE00000003FFFFFFFFE0000003F
+FFFFFFFF8000001FFFFFFFFFE0000000FFE000FFF0000000FFC0003FF8000000FFC0001F
+FC000001FFC0000FFC000001FFC0000FFC000001FF80000FFE000001FF80000FFE000003
+FF80000FFE000003FF80001FFC000003FF00001FFC000003FF00001FFC000007FF00003F
+F8000007FF00003FF0000007FE00007FE0000007FE0000FFC000000FFE0003FF8000000F
+FE000FFE0000000FFFFFFFF80000000FFFFFFFC00000001FFFFFFFC00000001FFC007FE0
+0000001FF8003FF00000001FF8001FF80000003FF8000FF80000003FF8000FFC0000003F
+F0000FFC0000003FF0000FFC0000007FF0001FFC0000007FF0001FFC0000007FE0001FFC
+0000007FE0001FF8000000FFE0003FF8000000FFE0003FF8000000FFC0003FF8018000FF
+C0003FF803C001FFC0003FF807C001FFC0003FF8078001FF80003FF80F80FFFFFE001FFC
+0F00FFFFFE000FFC3E00FFFFFE0007FFFC00FFFFFE0003FFF80000000000007FE0003A2F
+7CAD3D>82 D<0000F00003F80007FC0007FC000FFC000FF8000FF80007F00003C0000000
+00000000000000000000000000000000000000FC0003FF0007FFC00F9FE01F0FE03E0FE0
+3C1FE0781FE0781FE0F83FE0F03FC0F07FC0007F80007F8000FF8000FF0001FF0001FE00
+01FE0003FE0003FC1F07FC1F07F81E07F83E0FF83C0FF07C0FF07807F0F807F1F003FFE0
+01FF80007E0018307EAE1D>105 D<0000FE01C00007FF8FC0001FFFFFC0007F83FFC001
+FE01FFC003FC00FFC007F8007F8007F8007F800FF0007F801FF000FF801FE000FF003FE0
+00FF003FE000FF007FE001FF007FC001FE007FC001FE007FC001FE00FFC003FE00FF8003
+FC00FF8003FC00FF8003FC00FF8007FC00FF0007F800FF0007F8007F0007F8007F000FF8
+007F801FF0003F807FF0001FC1FFF0000FFFFFF00003FFDFE00000FF1FE00000001FE000
+00003FE00000003FC00000003FC00000003FC00000007FC00000007F800000007F800000
+0FFFF800000FFFF800001FFFF800000FFFF000222C7D9E26>113
+D<00038000000FE000001FE000001FE000003FE000003FE000003FC000003FC000007FC0
+00007FC000007F8000007F800000FF80007FFFFF00FFFFFF00FFFFFF00FFFFFE0001FF00
+0001FE000001FE000003FE000003FE000003FC000003FC000007FC000007FC000007F800
+0007F800000FF800000FF800000FF000000FF000001FF00F801FF00F801FE00F001FE01F
+001FE03E001FE03C001FC07C001FE0F8000FE3F0000FFFC00003FF800000FC0000192C7E
+AA1E>116 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fz cmbsy8 8 4
+/Fz 4 106 df<001FF80000FFFF0003FFFFC007FFFFE00FFFFFF01FF00FF83F8001FC3F
+0000FC7E00007E7C00003E7C00003EFC00003FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FFC00003F7C00003E7C00003E7E00007E3F0000FC3F
+8001FC1FF00FF80FFFFFF007FFFFE003FFFFC000FFFF00001FF80020207C9F29>14
+D<001FF80000FFFF0003FFFFC007FFFFE00FFFFFF01FFFFFF83FFFFFFC3FFFFFFC7FFFFF
+FE7FFFFFFE7FFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+FFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFE7FFFFFFE7FFFFFFE3FFFFFFC3FFFFFFC1FFFFF
+F80FFFFFF007FFFFE003FFFFC000FFFF00001FF80020207C9F29>I<0001C00003E00003
+E00007E00007C0000FC0000F80000F80001F80001F00003F00003E00007E00007C0000FC
+0000F80001F80001F00001F00003F00003E00007E00007C0000FC0000F80001F80001F00
+003F00003E00003E00007E00007C0000FC0000F80000FC00007C00007E00003E00003E00
+003F00001F00001F80000F80000FC00007C00007E00003E00003F00001F00001F00001F8
+0000F80000FC00007C00007E00003E00003F00001F00001F80000F80000F80000FC00007
+C00007E00003E00003E00001C0134378B120>104 D<700000F80000F80000FC00007C00
+007E00003E00003E00003F00001F00001F80000F80000FC00007C00007E00003E00003F0
+0001F00001F00001F80000F80000FC00007C00007E00003E00003F00001F00001F80000F
+80000F80000FC00007C00007E00003E00007E00007C0000FC0000F80000F80001F80001F
+00003F00003E00007E00007C0000FC0000F80001F80001F00001F00003F00003E00007E0
+0007C0000FC0000F80001F80001F00003F00003E00003E00007E00007C0000FC0000F800
+00F8000070000013437CB120>I E
+%EndDVIPSBitmapFont
+/FA 177[54 6[58 1[50 69[{TeXBase1Encoding ReEncodeFont}3
+74.7198 /Times-Bold rf
+%DVIPSBitmapFont: FB stmary10 10.95 4
+/FB 4 78 df<FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC0F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F
+0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000F00F0000FFFFFFC0FFFF
+FFC0FFFFFFC0FFFFFFC01A5B77C325>74 D<FFFFFF80FFFFFF80FFFFFF80FFFFFF800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780007807800078078000780780007807800078078000780780007807800078
+078000780780FFFFFF80FFFFFF80FFFFFF80FFFFFF80195B7EC325>I<00003000007000
+00F00001F00003F00007F0000FF0001EF0003CF0003CF00078F000F8F000F0F001F0F001
+E0F003E0F003C0F007C0F00780F00F80F00F80F00F00F01F00F01F00F01F00F03E00F03E
+00F03E00F03E00F07E00F07C00F07C00F07C00F07C00F07C00F07C00F0FC00F0FC00F0F8
+00F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F800F0F8
+00F0F800F0FC00F0FC00F07C00F07C00F07C00F07C00F07C00F07C00F07E00F03E00F03E
+00F03E00F03E00F01F00F01F00F01F00F00F00F00F80F00F80F00780F007C0F003C0F003
+E0F001E0F001F0F000F0F000F8F00078F0003CF0003CF0001EF0000FF00007F00003F000
+01F00000F0000070000030145A77C323>I<C00000E00000F00000F80000FC0000FE0000
+FF0000F78000F3C000F3C000F1E000F1F000F0F000F0F800F07800F07C00F03C00F03E00
+F01E00F01F00F01F00F00F00F00F80F00F80F00F80F007C0F007C0F007C0F007C0F007E0
+F003E0F003E0F003E0F003E0F003E0F003E0F003F0F003F0F001F0F001F0F001F0F001F0
+F001F0F001F0F001F0F001F0F001F0F001F0F001F0F001F0F001F0F001F0F003F0F003F0
+F003E0F003E0F003E0F003E0F003E0F003E0F007E0F007C0F007C0F007C0F007C0F00F80
+F00F80F00F80F00F00F01F00F01F00F01E00F03E00F03C00F07C00F07800F0F800F0F000
+F1F000F1E000F3C000F3C000F78000FF0000FE0000FC0000F80000F00000E00000C00000
+145A7BC323>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FC cmsy6 6 10
+/FC 10 96 df<006000007000006000006000406020E06070F861F07E67E01FFF8007FE
+0000F00007FE001FFF807E67E0F861F0E060704060200060000060000070000060001415
+7B9620>3 D<00000001C000000007C00000001FC00000007F00000001FC00000007F000
+00001FC00000007F00000000FC00000003F00000000FC00000003F80000000FE00000003
+F80000000FE00000003F80000000FE00000000F800000000FE000000003F800000000FE0
+00000003F800000000FE000000003F800000000FC000000003F000000000FC000000007F
+000000001FC000000007F000000001FC000000007F000000001FC000000007C000000001
+C00000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000007FFFFFFF80FFFFFFFFC0FFFFFFFFC0222F7AA230>20
+D<7FFFF80000FFFFFF00007FFFFFC00000000FE000000001F00000000078000000003C00
+0000001E000000000E000000000F0000000007800000000380000000038000000003C000
+000001C000000001C000000001C000000001C000000001C000000001C000000001C00000
+0003C00000000380000000038000000007800000000F000000000E000000001E00000000
+3C000000007800000001F00000000FE0007FFFFFC000FFFFFF00007FFFF8000022237A9D
+30>27 D<000C0000000000000E0000000000001C0000000000001C0000000000003C0000
+00000000380000000000007800000000000070000000000000E0000000000001C0000000
+000003C000000000000F0000000000003FFFFFFFFFFFC0FFFFFFFFFFFFE03FFFFFFFFFFF
+C00F00000000000003C0000000000001C0000000000000E0000000000000700000000000
+0078000000000000380000000000003C0000000000001C0000000000001C000000000000
+0E0000000000000C0000000000331B7C993D>32 D<00000000060000000000000E000000
+0000000700000000000007000000000000078000000000000380000000000003C0000000
+000001C0000000000000E000000000000070000000000000780000000000001E007FFFFF
+FFFFFF80FFFFFFFFFFFFE07FFFFFFFFFFF8000000000001E000000000000780000000000
+0070000000000000E0000000000001C0000000000003C000000000000380000000000007
+80000000000007000000000000070000000000000E000000000000060000331B7C993D>
+I<01E003F003F003F003F007E007E007C00FC00FC00F800F801F001F001E001E003E003C
+003C007800780078007000F000E00060000C1A7E9B12>48 D<60000006E000000EF00000
+1E7000001C7000001C7800003C380000383C0000781C0000701E0000F00E0000E00E0000
+E00FFFFFE007FFFFC007FFFFC00380038003C0078001C0070001C0070001E00F0000E00E
+0000F01E0000701C0000783C000038380000383800003C7800001C7000001EF000000EE0
+00000FE0000007C0000007C0000007C00000038000000380001F247FA223>56
+D<FFFFFF80FFFFFF80FFFFFF800000038000000380000003800000038000000380000003
+80000003800000038000000380000003800000038000000380000003807FFFFF807FFFFF
+807FFFFF8000000380000003800000038000000380000003800000038000000380000003
+800000038000000380000003800000038000000380FFFFFF80FFFFFF80FFFFFF8019237C
+A223>I<000180000003C0000003C0000007E0000007E000000FF000000E7000001E7800
+001C3800003C3C0000381C0000781E0000700E0000F00F0000E0070001E0078001C00380
+03C003C0038001C0078001E0070000E00F0000F00E0000701E0000781C0000383C00003C
+3800001C7800001E7000000EF000000FE0000007E000000320207C9E2A>94
+D<E0000003E0000007F000000F7000000E7800001E3800001C3C00003C1C0000381E0000
+780E0000700F0000F0070000E0078001E0038001C003C003C001C0038001E0078000E007
+0000F00F0000700E0000781E0000381C00003C3C00001C3800001E7800000E7000000FF0
+000007E0000007E0000003C0000003C0000001800020207C9E2A>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FD cmbx10 10.95 6
+/FD 6 62 df<0000078000000F8000001F8000003E000000FE000001FC000003F8000003
+F0000007E000000FE000001FC000003F8000003F8000007F000000FF000000FE000001FE
+000003FC000003FC000007FC000007F8000007F800000FF800000FF000001FF000001FF0
+00001FF000003FE000003FE000003FE000003FE000007FE000007FC000007FC000007FC0
+00007FC000007FC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+00007FC000007FC000007FC000007FC000007FC000007FE000003FE000003FE000003FE0
+00003FE000001FF000001FF000001FF000000FF000000FF8000007F8000007F8000007FC
+000003FC000003FC000001FE000000FE000000FF0000007F0000003F8000003F8000001F
+C000000FE0000007E0000003F0000003F8000001FC000000FE0000003E0000001F800000
+0F8000000780195A77C329>40 D<70000000F80000007C0000003E0000003F8000001FC0
+00000FE0000007E0000003F0000003F8000001FC000000FE000000FE0000007F0000007F
+8000003F8000003FC000001FE000001FE000001FF000000FF000000FF000000FF8000007
+F8000007FC000007FC000007FC000003FE000003FE000003FE000003FE000003FF000001
+FF000001FF000001FF000001FF000001FF000001FF800001FF800001FF800001FF800001
+FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001
+FF800001FF800001FF800001FF000001FF000001FF000001FF000001FF000003FF000003
+FE000003FE000003FE000003FE000007FC000007FC000007FC000007F800000FF800000F
+F000000FF000001FF000001FE000001FE000003FC000003F8000007F8000007F000000FE
+000000FE000001FC000003F8000003F0000007E000000FE000001FC000003F8000003E00
+00007C000000F800000070000000195A7AC329>I<00000F000000003F000000007F0000
+0001FF0000000FFF000001FFFF0000FFFFFF0000FFFFFF0000FFFFFF0000FFF7FF0000FE
+07FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007
+FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF
+00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00
+000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF0000
+0007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF000000
+07FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007FF00000007
+FF00000007FF00007FFFFFFFF07FFFFFFFF07FFFFFFFF07FFFFFFFF07FFFFFFFF0243C78
+BB34>49 D<0003FF800000003FFFF8000000FFFFFE000003FFFFFF800007FFFFFFC0000F
+F80FFFE0001FC003FFF0003F8000FFF8007FC0007FFC007FE0003FFE00FFF0003FFE00FF
+F8001FFF00FFF8001FFF00FFF8000FFF80FFF8000FFF80FFF8000FFF80FFF8000FFF807F
+F0000FFF803FE0000FFF801FC0000FFF800700000FFF800000000FFF800000001FFF0000
+00001FFF000000001FFE000000003FFE000000003FFC000000007FF8000000007FF80000
+0000FFF000000000FFE000000001FFC000000003FF8000000007FE0000000007FC000000
+000FF8000000001FE0000000003FC0000000007F8000000000FF000F800001FC000F8000
+03F8000F800007F0001F00000FE0001F00001F80001F00003F00001F00007E00003F0000
+FC00003F0001FFFFFFFF0003FFFFFFFE0007FFFFFFFE000FFFFFFFFE001FFFFFFFFE003F
+FFFFFFFE007FFFFFFFFE00FFFFFFFFFE00FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFC00FF
+FFFFFFFC00293C7BBB34>I<0FC01FE03FF07FF8FFFCFFFCFFFCFFFCFFFCFFFC7FF83FF0
+1FE00FC00000000000000000000000000000000000000000000000000FC01FE03FF07FF8
+FFFCFFFCFFFCFFFCFFFCFFFC7FF83FF01FE00FC00E2879A71D>58
+D<7FFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFF
+F0FFFFFFFFFFFFFFFFF03FFFFFFFFFFFFFFFE00000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000003FFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFF
+F0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF0FFFFFFFFFFFFFFFFF07FFFFFFFFFFFFFFF
+E0441C7AA451>61 D E
+%EndDVIPSBitmapFont
+/FE 135[33 4[29 29 1[37 37 8[21 33 37 2[37 14[46 82[{
+TeXBase1Encoding ReEncodeFont}10 74.7198 /Times-Italic
+rf
+%DVIPSBitmapFont: FF cmss10 10 28
+/FF 28 122 df<0003F80000001FFF0000007FFFC00000FFFFE00001FFFFF00003FE0FF8
+0007F803FC000FF001FE000FE000FE001FC0007F001F80003F003F80003F803F80003F80
+3F00001F807F00001FC07F00001FC07F00001FC07E00000FC07E00000FC07E00000FC0FE
+00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00
+000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE0000
+0FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE07F00001FC07F00001FC07F00001F
+C07F00001FC07F00001FC03F80003F803F80003F803F80003F801FC0007F001FC0007F00
+0FE000FE000FF001FE0007F803FC0003FE0FF80001FFFFF00000FFFFE000007FFFC00000
+1FFF00000003F80000233A7DB72A>48 D<0000C0000001C0000007C000001FC00000FFC0
+00FFFFC000FFFFC000FFFFC000FFFFC000FF1FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC0007FFFFFF07FFFFFF07FFFFFF07FFFFFF07FFFFFF01C3879B72A>I<000007F8
+000000000007F800000000000FFC00000000000FFC00000000001FFE00000000001FFE00
+000000001F7E00000000003F7F00000000003E7F00000000003E7F00000000007E3F8000
+0000007E3F80000000007C3F8000000000FC3FC000000000FC1FC000000000FC1FC00000
+0001F81FE000000001F80FE000000003F80FF000000003F00FF000000003F00FF0000000
+07F007F800000007E007F800000007E007F80000000FE003FC0000000FC003FC0000000F
+C003FC0000001FC001FE0000001F8001FE0000003F8001FF0000003F8000FF0000003F00
+00FF0000007F0000FF8000007F00007F8000007E00007F800000FE00003FC00000FFFFFF
+FFC00000FFFFFFFFC00001FFFFFFFFE00001FFFFFFFFE00001FFFFFFFFE00003F800000F
+F00003F000000FF00007F000000FF80007F0000007F80007E0000007F8000FE0000007FC
+000FE0000003FC000FC0000003FC001FC0000003FE001FC0000001FE001F80000001FE00
+3F80000000FF003F80000000FF007F00000000FF807F000000007F807E000000007F80FE
+000000007FC0323A7EB937>65 D<000003FF800000003FFFF8000000FFFFFF000003FFFF
+FFC00007FFFFFFC0001FFFFFFFC0003FFE00FF80007FF0000F8000FFC000038001FF8000
+018001FF0000000003FE0000000007FC000000000FF8000000000FF0000000001FF00000
+00001FE0000000003FE0000000003FC0000000003FC0000000007F80000000007F800000
+00007F80000000007F8000000000FF0000000000FF0000000000FF0000000000FF000000
+0000FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF000000
+0000FF0000000000FF00000000007F80000000007F80000000007F80000000007F800000
+00003FC0000000003FC0000000003FE0000000001FE0000000001FF0000000000FF00000
+00000FF80000000007FC0000000003FE0000000001FF0000002001FF800000E000FFC000
+01E0007FF0000FE0003FFE007FE0001FFFFFFFE00007FFFFFFC00003FFFFFF000000FFFF
+FE0000003FFFF000000003FF80002B3C7BBA35>67 D<FFFFFFFFF0FFFFFFFFF0FFFFFFFF
+F0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FF00000000FF00000000FF00000000FF00000000
+FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
+00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
+000000FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FF00000000FF0000
+0000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF000000
+00FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000
+FF00000000FF00000000FF00000000FF00000000FF00000000FFFFFFFFFCFFFFFFFFFCFF
+FFFFFFFCFFFFFFFFFCFFFFFFFFFCFFFFFFFFFCFFFFFFFFFC263A78B932>69
+D<FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FF00000000
+FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
+00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
+000000FF00000000FF00000000FF00000000FF00000000FFFFFFFF00FFFFFFFF00FFFFFF
+FF00FFFFFFFF00FFFFFFFF00FF00000000FF00000000FF00000000FF00000000FF000000
+00FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000
+FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
+00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
+000000243A79B92F>I<FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF083A79B9
+17>73 D<FFE000001FC0FFE000001FC0FFF000001FC0FFF000001FC0FFF800001FC0FFF8
+00001FC0FEFC00001FC0FEFC00001FC0FE7E00001FC0FE7E00001FC0FE7F00001FC0FE3F
+00001FC0FE3F80001FC0FE1F80001FC0FE1F80001FC0FE0FC0001FC0FE0FC0001FC0FE0F
+E0001FC0FE07E0001FC0FE07F0001FC0FE03F0001FC0FE03F8001FC0FE01F8001FC0FE01
+FC001FC0FE00FC001FC0FE00FE001FC0FE00FE001FC0FE007F001FC0FE007F001FC0FE00
+3F801FC0FE003F801FC0FE001FC01FC0FE001FC01FC0FE000FC01FC0FE000FE01FC0FE00
+07E01FC0FE0007F01FC0FE0003F01FC0FE0003F81FC0FE0001F81FC0FE0001FC1FC0FE00
+00FC1FC0FE0000FC1FC0FE00007E1FC0FE00007E1FC0FE00007F1FC0FE00003F1FC0FE00
+003F9FC0FE00001F9FC0FE00001F9FC0FE00000FDFC0FE00000FDFC0FE000007FFC0FE00
+0007FFC0FE000003FFC0FE000003FFC0FE000001FFC0FE000001FFC02A3A78B93B>78
+D<000007F800000000007FFF8000000001FFFFE000000003FFFFF00000000FFFFFFC0000
+001FFC0FFE0000003FE001FF0000007F80007F800000FF00003FC00001FE00001FE00003
+FC00000FF00003F8000007F00007F8000007F8000FF0000003FC000FE0000001FC001FE0
+000001FE001FC0000000FE001FC0000000FE003FC0000000FF003F800000007F007F8000
+00007F807F800000007F807F800000007F807F000000003F807F000000003F80FF000000
+003FC0FF000000003FC0FF000000003FC0FF000000003FC0FF000000003FC0FF00000000
+3FC0FF000000003FC0FF000000003FC0FF000000003FC0FF000000003FC0FF000000003F
+C0FF000000003FC07F800000007F807F800000007F807F800000007F807F800000007F80
+7F800000007F803FC0000000FF003FC0000000FF003FE0000001FF001FE0000001FE001F
+E0000001FE000FF0000003FC000FF0000003FC0007F8000007F80003FC00000FF00003FE
+00001FF00001FE00001FE00000FF00003FC000007FC000FF8000003FE001FF0000001FFC
+0FFE0000000FFFFFFC00000007FFFFF800000001FFFFE0000000007FFF800000000007F8
+000000323E7BBB3D>I<001FF00000FFFC0003FFFF000FFFFF801FFFFFC01FE01FE01F00
+0FF01C0007F0180003F8100003F8000003F8000001FC000001FC000001FC000001FC0000
+01FC000001FC000001FC00003FFC000FFFFC00FFFFFC03FFFFFC0FFFFFFC1FFE01FC3FE0
+01FC7F8001FC7F0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0003FCFF0003FC7F80
+0FFC7FE03FFC3FFFFFFC1FFFFFFC0FFFF9FC07FFE1FC01FE00001E287DA628>97
+D<FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000
+FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE
+00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE01FC0000FE0F
+FF0000FE3FFFC000FEFFFFE000FFFFFFF000FFF03FF800FFC007F800FF8003FC00FF0001
+FC00FE0000FE00FE0000FE00FE00007F00FE00007F00FE00007F00FE00003F80FE00003F
+80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80
+FE00003F80FE00007F00FE00007F00FE00007F00FE0000FF00FE0000FE00FE0001FE00FF
+0001FC00FF8003FC00FFC00FF800FFF03FF000FFFFFFE000FEFFFFC000FE7FFF8000FE1F
+FE00000007F80000213B7AB92B>I<0003FE00001FFFC0007FFFE000FFFFF801FFFFFC03
+FC03FC07F8007C0FE000381FC000081FC000003F8000003F8000007F0000007F0000007F
+0000007E000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE
+000000FE0000007F0000007F0000007F0000003F8000003F8000003FC000021FC000060F
+E0001E07F0007E07FC03FE03FFFFFE00FFFFFC007FFFF0001FFFC00007FC001F287DA625
+>I<0000003F800000003F800000003F800000003F800000003F800000003F800000003F
+800000003F800000003F800000003F800000003F800000003F800000003F800000003F80
+0000003F800000003F800000003F800000003F800000003F800000003F80000FE03F8000
+3FFC3F8000FFFF3F8001FFFFBF8003FFFFFF8007FE07FF800FF801FF801FE000FF801FC0
+007F803FC0003F803F80003F807F80003F807F00003F807F00003F807F00003F80FE0000
+3F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F
+80FE00003F80FE00003F807F00003F807F00003F807F00003F803F80003F803F80007F80
+1FC0007F801FE000FF800FF003FF8007FE07FF8003FFFFBF8001FFFF3F8000FFFE3F8000
+7FF83F80000FE00000213B7DB92B>I<0007F800001FFE00007FFF8001FFFFC003FFFFE0
+07FC0FF00FF003F80FE001F81FC000FC1F80007C3F80007E3F00003E7F00003E7E00003E
+7E00001FFE00001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC000000FC000000
+FE000000FE0000007E0000007E0000007F0000003F0000003F8000001FC000001FE00002
+0FF0000E07F8003E03FE01FE01FFFFFE00FFFFFC007FFFF0001FFFC00003FE0020287EA6
+25>I<0000FF000007FFC0000FFFC0001FFFC0003FFFC0007F81C000FE004000FC000001
+F8000001F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
+F8000003F8000003F8000003F8000003F80000FFFFFC00FFFFFC00FFFFFC00FFFFFC00FF
+FFFC0003F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
+F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
+F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003F8000003
+F8000003F8000003F8000003F8000003F8000003F800001A3B7FBA19>I<FFFFFFFFFFFF
+FFFF0000000000000000000000007F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F
+7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F08397BB814>105 D<FE00000000FE00000000FE00
+000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
+0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000
+00FE00000000FE00000000FE00000000FE00000000FE0003FE00FE0007FC00FE000FF800
+FE001FF000FE003FE000FE007FC000FE00FF8000FE01FF0000FE03FE0000FE03FC0000FE
+07F80000FE0FF00000FE1FE00000FE3FC00000FE7F800000FEFFC00000FFFFE00000FFFF
+E00000FFFFF00000FFF7F80000FFE3F80000FFC1FC0000FF80FE0000FF00FF0000FE007F
+0000FE003F8000FE003FC000FE001FC000FE000FE000FE000FF000FE0007F000FE0003F8
+00FE0001FC00FE0001FE00FE0000FE00FE00007F00FE00007F80213A7AB929>107
+D<FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE
+FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE073A7AB914>I<0001FC0003F8
+00FE0FFF801FFF00FE1FFFC03FFF80FE7FFFE0FFFFC0FEFFFFF1FFFFE0FFF81FFBF03FF0
+FFE007FBC00FF0FFC003FF8007F0FF8003FF0007F8FF8001FF0003F8FF0001FE0003F8FF
+0001FE0003F8FF0001FE0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE00
+01FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001
+FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC
+0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC00
+03F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003F8FE0001FC0003
+F8FE0001FC0003F835267AA542>I<0001FC00FE0FFF80FE1FFFC0FE7FFFE0FEFFFFF0FF
+F81FF8FFE007F8FFC003F8FF8003FCFF8001FCFF0001FCFF0001FCFF0001FCFE0001FCFE
+0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
+0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
+0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FC1E267AA52B>I<0003FE000000
+0FFF8000003FFFE00000FFFFF80001FFFFFC0003FE03FE0007F800FF000FF0007F800FE0
+003F801FC0001FC03F80000FE03F80000FE03F000007E07F000007F07F000007F07E0000
+03F0FE000003F8FE000003F8FE000003F8FE000003F8FE000003F8FE000003F8FE000003
+F8FE000003F8FE000003F87F000007F07F000007F07F000007F03F80000FE03F80000FE0
+1FC0001FC01FE0003FC00FF0007F8007F800FF0003FE03FE0001FFFFFC0000FFFFF80000
+7FFFF000001FFFC0000003FE000025287EA62A>I<0001FC0000FE0FFF0000FE3FFFC000
+FEFFFFE000FFFFFFF000FFF03FF800FFC00FF800FF8003FC00FF0003FC00FE0001FE00FE
+0000FE00FE0000FF00FE00007F00FE00007F00FE00007F80FE00003F80FE00003F80FE00
+003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE00003F80FE0000
+7F00FE00007F00FE00007F00FE0000FF00FE0000FE00FE0001FE00FF0003FC00FF8007FC
+00FFC00FF800FFF03FF000FFFFFFE000FEFFFFC000FE7FFF8000FE1FFE0000FE07F80000
+FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE
+00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00
+00000021367AA52B>I<0000F0FC07F0FC0FF0FC3FF0FC7FF0FCFFF0FDFF00FDFC00FFF0
+00FFE000FFC000FFC000FF8000FF0000FF0000FF0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE000014267AA51C>114 D<007FE00001FFFC0007FFFF
+800FFFFFC01FFFFFC03FC03FC03F0007803F0001807E0000007E0000007E0000007E0000
+007F0000007F0000003F8000003FF000003FFF80001FFFF0000FFFFC0007FFFE0003FFFF
+0000FFFF80001FFF800000FFC000003FC000000FE000000FE0000007E0000007E0000007
+E0400007E0600007E078000FC0FE001FC0FFC07F80FFFFFF807FFFFF001FFFFE0003FFF8
+00007FC0001B287EA620>I<01FC000001FC000001FC000001FC000001FC000001FC0000
+01FC000001FC000001FC000001FC0000FFFFFF00FFFFFF00FFFFFF00FFFFFF00FFFFFF00
+01FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0000
+01FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0000
+01FC000001FC000001FC000001FC000001FC000001FC000001FC000001FE008001FE0180
+00FF07C000FFFFC000FFFFC0007FFF00003FFC00001FE0001A307FAE1E>I<FE0001FCFE
+0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
+0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
+0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE0001FCFE
+0003FCFE0003FCFE0007FCFF001FFC7F807FFC7FFFFFFC3FFFF9FC3FFFF1FC0FFFC1FC03
+FC00001E267AA42B>I<7F80000FE03F80001FC01FC0003FC01FE0007F800FF0007F0007
+F000FE0003F801FC0001FC03FC0001FE03F80000FF07F000007F0FE000003F9FC000001F
+DFC000000FFF8000000FFF00000007FE00000003FC00000001FC00000001FC00000003FE
+00000007FE0000000FFF0000000FDF8000001F9FC000003F0FE000007F07F00000FE03F0
+0000FC03F80001FC01FC0003F800FE0007F0007F000FF0007F000FE0003F801FC0001FC0
+3F80001FE07F80000FF0FF000007F8252580A426>120 D<FF00000FE07F00001FC07F00
+001FC03F80001FC03F80003F803FC0003F801FC0007F001FC0007F000FE0007F000FE000
+FE000FF000FE0007F000FC0007F001FC0003F801FC0003F801F80003FC03F80001FC03F8
+0001FC03F00000FE07F00000FE07E000007E07E000007E0FE000007F0FC000003F0FC000
+003F0FC000001F9F8000001F9F8000001F9F0000000F9F0000000F9F000000079E000000
+07DE00000007DE00000003FC00000003FC00000001F800000001F800000001F800000001
+F000000003F000000003E000000003E000000007E000000007C00000000FC00000000FC0
+0000001F800000201F800000383F0000003FFE0000003FFE0000003FFC0000003FF80000
+000FE000000023367FA426>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FG cmr10 10 8
+/FG 8 94 df<FFFFFFFFFFE0FFFFFFFFFFE0FFFFFFFFFFE001FF80003FE000FF000007E0
+00FF000003F000FF000001F000FF000000F000FF0000007000FF0000007000FF00000030
+00FF0000003000FF0000003000FF0000003000FF0000003800FF0000001800FF00000018
+00FF0000001800FF0000001800FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+01FFC0000000FFFFFFE00000FFFFFFE00000FFFFFFE000002D397DB834>0
+D<00000006000000000000000F000000000000000F000000000000001F80000000000000
+1F800000000000003FC00000000000003FC00000000000007FE00000000000007FE00000
+00000000DFF0000000000000DFF00000000000018FF80000000000018FF8000000000003
+07FC00000000000307FC00000000000603FE00000000000603FE00000000000E01FF0000
+0000000C01FF00000000001C00FF80000000001800FF800000000038007FC00000000030
+007FC00000000070003FE00000000060003FE000000000E0001FF000000000C0001FF000
+000001C0000FF80000000180000FF800000003800007FC00000003000007FC0000000700
+0003FE00000006000003FE0000000E000001FF0000000C000001FF0000001C000000FF80
+000018000000FF800000380000007FC00000300000007FC00000700000003FE000006000
+00003FE00000E00000001FF00000C00000001FF00000C00000000FF00001800000000FF8
+00018000000007F800030000000007FC00030000000003FC00060000000003FE00060000
+000001FE000C0000000001FF000C0000000000FF00180000000000FF801FFFFFFFFFFFFF
+803FFFFFFFFFFFFFC03FFFFFFFFFFFFFC07FFFFFFFFFFFFFE07FFFFFFFFFFFFFE0FFFFFF
+FFFFFFFFF0FFFFFFFFFFFFFFF03C3C7CBB45>I<0000600000E00001C000038000070000
+0E00001E00003C0000780000780000F00001E00001E00003C00003C00007C0000780000F
+80000F00000F00001F00001E00001E00003E00003E00003E00007C00007C00007C00007C
+00007C00007C0000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8
+0000F80000F80000F80000F80000F80000F80000F80000F800007C00007C00007C00007C
+00007C00007C00003E00003E00003E00001E00001E00001F00000F00000F00000F800007
+800007C00003C00003C00001E00001E00000F000007800007800003C00001E00000E0000
+07000003800001C00000E0000060135278BD20>40 D<C00000E000007000003800001C00
+000E00000F000007800003C00003C00001E00000F00000F000007800007800007C00003C
+00003E00001E00001E00001F00000F00000F00000F80000F80000F800007C00007C00007
+C00007C00007C00007C00003E00003E00003E00003E00003E00003E00003E00003E00003
+E00003E00003E00003E00003E00003E00003E00003E00003E00003E00007C00007C00007
+C00007C00007C00007C0000F80000F80000F80000F00000F00001F00001E00001E00003E
+00003C00007C0000780000780000F00000F00001E00003C00003C0000780000F00000E00
+001C0000380000700000E00000C0000013527CBD20>I<1C007F00FF80FF80FF80FF80FF
+807F001C0000000000000000000000000000000000000000000000000000000000000000
+00000000001C007F00FF80FF80FF80FF80FF807F001C00092479A317>58
+D<7FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF800000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000007FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFF
+FFFFFFFC7FFFFFFFFFFFF836167B9F41>61 D<FFF8FFF8FFF8FFF8F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000FFF8FF
+F8FFF8FFF80D5378BD17>91 D<FFF8FFF8FFF8FFF8007800780078007800780078007800
+780078007800780078007800780078007800780078007800780078007800780078007800
+780078007800780078007800780078007800780078007800780078007800780078007800
+780078007800780078007800780078007800780078007800780078007800780078007800
+780078007800780078007800780078007800780078007800780078FFF8FFF8FFF8FFF80D
+537FBD17>93 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FH cmmib10 10 2
+/FH 2 106 df<00000300000000000700000000000700000000000700000000000F8000
+0000000F80000000000F80000000000F80000000000F80000000001FC0000000001FC000
+0000001FC0000000001FC0000000001FC0000000001FC0000070003FE00070FFF03FE07F
+F8FFFFFFFFFFF83FFFFFFFFFE01FFFFFFFFFC007FFFFFFFF0001FFFFFFFC00007FFFFFF0
+00001FFFFFC0000007FFFF00000001FFFC00000001FFFC00000003FFFE00000003FFFE00
+000003FFFE00000007FFFF00000007FDFF0000000FF8FF8000000FF07F8000001FE03FC0
+00001FC01FC000003F800FE000003F0007E000007E0003F000007C0001F00000F0000078
+0000E0000038000040000010002D2B7FA930>63 D<00001E0000003F800000FF800000FF
+C00001FFC00001FF800001FF800001FF000000FE00000038000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000003F00
+0000FFE00001FFF00007C3F8000F83FC000F03FC001E03FC003E03FC003C07FC007C07FC
+00780FFC00780FF800F80FF800F01FF800001FF000003FF000003FE000003FE000007FE0
+00007FC000007FC00000FFC00000FF800001FF800001FF000001FF01E003FF01E003FE03
+E007FE03C007FC03C007FC078007FC078007F80F0007F81F0003F83E0003FC7C0001FFF8
+00007FE000001F80001B3C7EBA22>105 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FI cmex10 10 11
+/FI 11 126 df<000001F0000007F000000FF000003FF000007FF00001FFC00003FF8000
+07FF00000FFE00001FFC00003FF800007FF000007FE00000FFC00001FF800003FF800003
+FF000007FE000007FE00000FFC00000FFC00001FF800001FF800003FF800003FF000003F
+F000007FF000007FE000007FE000007FE000007FE00000FFE00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC000001C4B607E4A>56 D<F8000000FE000000FF
+800000FFC00000FFF000003FF800001FFC00000FFE000003FF000001FF800000FFC00000
+7FE000003FF000003FF800001FFC00000FFC000007FE000007FF000003FF000003FF8000
+01FF800001FFC00000FFC00000FFC000007FE000007FE000007FE000003FF000003FF000
+003FF000003FF000003FF800001FF800001FF800001FF800001FF800001FF800001FF800
+001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
+001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
+001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
+001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800
+001FF81D4B737E4A>I<FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+0000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC0
+0000FFE000007FE000007FE000007FE000007FE000007FF000003FF000003FF000003FF8
+00001FF800001FF800000FFC00000FFC000007FE000007FE000003FF000003FF800001FF
+800000FFC000007FE000007FF000003FF800001FFC00000FFE000007FF000003FF800001
+FFC000007FF000003FF000000FF0000007F0000001F01C4B60804A>I<00001FF800001F
+F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
+F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
+F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
+F800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001F
+F800001FF800001FF800001FF800001FF800001FF800003FF800003FF000003FF000003F
+F000003FF000007FE000007FE000007FE00000FFC00000FFC00001FFC00001FF800003FF
+800003FF000007FF000007FE00000FFC00001FFC00003FF800003FF000007FE00000FFC0
+0001FF800003FF00000FFE00001FFC00003FF80000FFF00000FFC00000FF800000FE0000
+00F80000001D4B73804A>I<00001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800003FF800003FF000003FF000003FF000003FF000007FE000007FE000007FE0
+00007FC00000FFC00000FFC00001FF800001FF800001FF000003FF000003FE000007FE00
+000FFC00000FF800001FF800003FF000003FE000007FC00000FF800001FF000003FE0000
+07FC00000FF800001FF000007FE00000FF800000FF000000FC000000FF000000FF800000
+7FE000001FF000000FF8000007FC000003FE000001FF000000FF8000007FC000003FE000
+003FF000001FF800000FF800000FFC000007FE000003FE000003FF000001FF000001FF80
+0001FF800000FFC00000FFC000007FC000007FE000007FE000007FE000003FF000003FF0
+00003FF000003FF000003FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF800001FF8
+00001FF81D9773804A>I<FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC000007FE000007FE000007FE000007FE000007FE000003FF000003FF000003F
+F000001FF800001FF800000FF800000FFC00000FFC000007FE000003FE000003FF000001
+FF000001FF800000FF8000007FC000003FE000003FF000001FF000000FF8000007FC0000
+03FE000001FF000000FF8000003FE000001FF0000007F0000003F0000007F000001FF000
+003FE00000FF800001FF000003FE000007FC00000FF800001FF000003FF000003FE00000
+7FC00000FF800001FF800001FF000003FF000003FE000007FE00000FFC00000FFC00000F
+F800001FF800001FF800003FF000003FF000003FF000007FE000007FE000007FE000007F
+E000007FE00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00000FF
+C000001C9760804A>I<FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0
+FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC00A1B60804A>I<00
+0000007F800000000FFF800000007FFF80000001FFFF8000000FFFFF8000003FFFFF8000
+007FFFFF800001FFFFFF800007FFFFFF80000FFFFFFF80001FFFFF0000003FFFE0000000
+FFFF00000001FFF800000003FFE000000003FF8000000007FE000000000FFC000000001F
+F0000000003FE0000000003FC0000000007F8000000000FF0000000000FF0000000000FE
+0000000000FC0000000000F80000000000291B838925>122 D<FF0000000000FFF80000
+0000FFFF00000000FFFFC0000000FFFFF8000000FFFFFE000000FFFFFF000000FFFFFFC0
+0000FFFFFFF00000FFFFFFF80000007FFFFC00000003FFFE000000007FFF800000000FFF
+C000000003FFE000000000FFE0000000003FF0000000001FF80000000007FC0000000003
+FE0000000001FE0000000000FF00000000007F80000000007F80000000003F8000000000
+1F80000000000F80291B818925>I<F80000000000FC0000000000FE0000000000FF0000
+000000FF00000000007F80000000003FC0000000003FE0000000001FF0000000000FFC00
+00000007FE0000000003FF8000000003FFE000000001FFF800000000FFFF000000003FFF
+E00000001FFFFF0000000FFFFFFF800007FFFFFF800001FFFFFF8000007FFFFF8000003F
+FFFF8000000FFFFF80000001FFFF800000007FFF800000000FFF80000000007F80291B83
+9A25>I<000000000F80000000001F80000000003F80000000007F80000000007F800000
+0000FF0000000001FE0000000003FE0000000007FC000000001FF8000000003FF0000000
+00FFE000000003FFE00000000FFFC00000007FFF80000003FFFE0000007FFFFC0000FFFF
+FFF80000FFFFFFF00000FFFFFFC00000FFFFFF000000FFFFFE000000FFFFF8000000FFFF
+C0000000FFFF00000000FFF800000000FF0000000000291B819A25>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FJ cmr7 7 6
+/FJ 6 51 df<0006000C00180030006000E001C00380038007000F000E001E001E001C00
+3C003C003C0078007800780078007800F800F000F000F000F000F000F000F000F000F000
+F000F000F800780078007800780078003C003C003C001C001E001E000E000F0007000380
+038001C000E0006000300018000C00060F3B7AAB1A>40 D<C0006000300018000C000E00
+07000380038001C001E000E000F000F00070007800780078003C003C003C003C003C003E
+001E001E001E001E001E001E001E001E001E001E001E003E003C003C003C003C003C0078
+00780078007000F000F000E001E001C00380038007000E000C00180030006000C0000F3B
+7DAB1A>I<00000E00000000000E00000000000E00000000000E00000000000E00000000
+000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
+000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
+000E00000000000E00000000000E000000FFFFFFFFFFE0FFFFFFFFFFE0FFFFFFFFFFE000
+000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
+000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
+000E00000000000E00000000000E00000000000E00000000000E00000000000E00000000
+000E00000000000E0000002B2B7DA333>43 D<003F800001FFF00003E0F80007803C000F
+001E001E000F003E000F803E000F803C0007807C0007C07C0007C07C0007C07C0007C0FC
+0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC0007E0FC
+0007E0FC0007E0FC0007E0FC0007E0FC0007E07C0007C07C0007C07C0007C03E000F803E
+000F803E000F801F001F000F001E0007803C0003E0F80001FFF000003F80001B277EA521
+>48 D<00380000780001F8001FF800FEF800E0F80000F80000F80000F80000F80000F800
+00F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F800
+00F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F800
+01FC00FFFFF8FFFFF815267BA521>I<00FF000003FFE0000E03F0001800F80030007C00
+60007E0078003F00FC003F00FE001F80FE001F80FE001F80FE001F807C001F8000001F80
+00001F0000003F0000003E0000007E0000007C000000F8000001F0000003E0000003C000
+00078000000E0000001C0000003800000070018000E00180018001800300030006000300
+0C0003001FFFFF003FFFFF007FFFFE00FFFFFE00FFFFFE0019267DA521>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FK cmex10 10.95 14
+/FK 14 112 df<F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0043B73811E>
+12 D<0000000000780000000001F80000000007F8000000001FF8000000007FE0000000
+00FF8000000003FF0000000007FC000000000FF8000000001FF0000000003FE000000000
+7FC000000000FF8000000000FF0000000001FE0000000003FE0000000003FC0000000007
+FC0000000007F8000000000FF8000000000FF0000000000FF0000000000FF0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000003FE0000000003FC0000000003FC0000000007F
+C0000000007F80000000007F8000000000FF0000000000FF0000000001FE0000000003FE
+0000000003FC0000000007F8000000000FF0000000001FE0000000003FC0000000007F80
+00000000FF0000000001FE0000000007F8000000000FF0000000003FC000000000FF0000
+000000FC0000000000FC0000000000FF00000000003FC0000000000FF00000000007F800
+00000001FE0000000000FF00000000007F80000000003FC0000000001FE0000000000FF0
+0000000007F80000000003FC0000000003FE0000000001FE0000000000FF0000000000FF
+00000000007F80000000007F80000000007FC0000000003FC0000000003FC0000000003F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000001FE0000000001FE0000000001F
+E0000000001FE0000000001FE0000000001FE0000000000FF0000000000FF0000000000F
+F0000000000FF80000000007F80000000007FC0000000003FC0000000003FE0000000001
+FE0000000000FF0000000000FF80000000007FC0000000003FE0000000001FF000000000
+0FF80000000007FC0000000003FF0000000000FF80000000007FE0000000001FF8000000
+0007F80000000001F80000000000782DDA758344>26 D[<F80000000000FE0000000000
+FF8000000000FFC000000000FFE0000000003FF8000000001FFC0000000007FE00000000
+03FF0000000001FF8000000000FFC0000000007FE0000000003FF0000000001FF0000000
+001FF8000000000FFC0000000007FC0000000007FE0000000003FE0000000003FF000000
+0001FF0000000001FF8000000000FF8000000000FF8000000000FFC0000000007FC00000
+00007FC0000000007FC0000000007FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FF0000000001FF0000000001FF00000
+00001FF0000000001FF8000000000FF8000000000FF8000000000FFC0000000007FC0000
+000007FC0000000003FE0000000003FE0000000001FF0000000001FF0000000000FF8000
+0000007FC0000000007FC0000000003FE0000000001FF0000000000FF80000000007FC00
+00000003FE0000000001FF0000000000FF80000000007FC0000000003FF0000000000FF8
+0000000007FC0000000001FC0000000001FC0000000007FC000000000FF8000000003FF0
+000000007FC000000000FF8000000001FF0000000003FE0000000007FC000000000FF800
+0000001FF0000000003FE0000000007FC0000000007FC000000000FF8000000001FF0000
+000001FF0000000003FE0000000003FE0000000007FC0000000007FC000000000FFC0000
+00000FF8000000000FF8000000001FF8000000001FF0000000001FF0000000001FF00000
+00003FF0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000003FE0000000003FE0000000003FE0000000003FE0000000003FE00000
+00003FE0000000007FE0000000007FC0000000007FC0000000007FC000000000FFC00000
+0000FF8000000000FF8000000001FF8000000001FF0000000003FF0000000003FE000000
+0007FE0000000007FC000000000FFC000000001FF8000000001FF0000000003FF0000000
+007FE000000000FFC000000001FF8000000003FF0000000007FE000000001FFC00000000
+3FF800000000FFE000000000FFC000000000FF8000000000FE0000000000F80000000000
+>46 272 115 131 73 41 D<0000007C000001FC000003FC00000FFC00001FFC00007FF8
+0000FFE00001FFC00003FF800007FF00000FFE00001FFC00003FF800007FF000007FE000
+00FFE00001FFC00001FF800003FF800007FF000007FF00000FFE00000FFE00000FFC0000
+1FFC00001FFC00003FF800003FF800003FF800007FF800007FF000007FF000007FF00000
+7FF00000FFF00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE000001E525D7E51>56 D<F8000000FE000000FF800000
+FFC00000FFF000003FF800001FFC00000FFE000007FF000001FFC00000FFC000007FE000
+007FF000003FF800001FFC00000FFE00000FFE000007FF000003FF800003FF800001FFC0
+0001FFC00000FFE00000FFE000007FF000007FF000007FF800003FF800003FF800003FF8
+00001FFC00001FFC00001FFC00001FFC00001FFE00000FFE00000FFE00000FFE00000FFE
+00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
+00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
+00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
+00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE
+00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE1F52717E51>I<FF
+E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
+E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
+E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
+E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
+E00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FF
+E00000FFE00000FFF000007FF000007FF000007FF000007FF000007FF800003FF800003F
+F800003FF800001FFC00001FFC00000FFC00000FFE00000FFE000007FF000007FF000003
+FF800001FF800001FFC00000FFE000007FE000007FF000003FF800001FFC00000FFE0000
+07FF000003FF800001FFC00000FFE000007FF800001FFC00000FFC000003FC000001FC00
+00007C1E525D8051>I<00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
+0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
+0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
+0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
+0FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE0000
+0FFE00000FFE00000FFE00000FFE00000FFE00001FFE00001FFC00001FFC00001FFC0000
+1FFC00003FF800003FF800003FF800007FF800007FF000007FF00000FFE00000FFE00001
+FFC00001FFC00003FF800003FF800007FF00000FFE00000FFE00001FFC00003FF800007F
+F000007FE00000FFC00001FFC00007FF00000FFE00001FFC00003FF80000FFF00000FFC0
+0000FF800000FE000000F80000001F52718051>I<00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00001F
+FC00001FFC00001FFC00001FFC00001FFC00003FF800003FF800003FF800003FF000007F
+F000007FF000007FE00000FFE00000FFC00001FFC00001FF800003FF800003FF000007FE
+000007FE00000FFC00001FF800001FF800003FF000007FE00000FFC00001FF800001FF00
+0003FE00000FFC00001FF800003FE000007FC00000FF000000FE000000FE000000FF0000
+007FC000003FE000001FF800000FFC000003FE000001FF000001FF800000FFC000007FE0
+00003FF000001FF800001FF800000FFC000007FE000007FE000003FF000003FF800001FF
+800001FFC00000FFC00000FFE000007FE000007FF000007FF000003FF000003FF800003F
+F800003FF800001FFC00001FFC00001FFC00001FFC00001FFC00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000F
+FE1FA6718051>I<FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE000007FF000007FF000007FF000007FF00000
+7FF000003FF800003FF800003FF800001FF800001FFC00001FFC00000FFC00000FFE0000
+07FE000007FE000003FF000003FF000001FF800001FF800000FFC000007FE000007FE000
+003FF000001FF800000FF8000007FC000007FE000003FF000001FF8000007FC000003FE0
+00001FF000000FF8000003FC000001FC000001FC000003FC00000FF800001FF000003FE0
+00007FC00001FF800003FF000007FE000007FC00000FF800001FF800003FF000007FE000
+007FE00000FFC00001FF800001FF800003FF000003FF000007FE000007FE00000FFE0000
+0FFC00001FFC00001FFC00001FF800003FF800003FF800003FF800007FF000007FF00000
+7FF000007FF000007FF00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000FFE00000
+FFE00000FFE00000FFE00000FFE00000FFE00000FFE000001EA65D8051>I<FFE0FFE0FF
+E0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FF
+E0FFE0FFE0FFE0FFE0FFE0FFE0FFE0FFE00B1D5D8051>I<7C0000000000001F007C0000
+000000001F00FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FE0000000000003F80FE0000
+000000003F80FE0000000000003F80FE0000000000003F80FF0000000000007F80FF0000
+000000007F807F0000000000007F007F800000000000FF007F800000000000FF003F8000
+00000000FE003FC00000000001FE003FC00000000001FE001FE00000000003FC001FF000
+00000007FC000FF00000000007F8000FF8000000000FF80007FC000000001FF00003FE00
+0000003FE00001FF80000000FFC00001FFC0000001FFC00000FFF0000007FF8000007FF8
+00000FFF0000003FFF00007FFE0000001FFFF007FFFC00000007FFFFFFFFF000000003FF
+FFFFFFE000000000FFFFFFFF80000000007FFFFFFF00000000000FFFFFF8000000000001
+FFFFC00000000000001FFC00000000415B7B7F4C>83 D<3C0000000000000000000F007E
+0000000000000000001F80FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF0000000000000000003FC0FF0000000000000000003FC0FF
+0000000000000000003FC0FF8000000000000000007FC07F8000000000000000007F807F
+8000000000000000007F807F8000000000000000007F807F8000000000000000007F807F
+C00000000000000000FF803FC00000000000000000FF003FE00000000000000001FF003F
+E00000000000000001FF001FF00000000000000003FE001FF00000000000000003FE000F
+F80000000000000007FC000FF80000000000000007FC0007FC000000000000000FF80007
+FC000000000000000FF80003FE000000000000001FF00003FF000000000000003FF00001
+FF800000000000007FE00001FFC0000000000000FFE00000FFE0000000000001FFC00000
+7FF0000000000003FF8000003FF8000000000007FF0000001FFC00000000000FFE000000
+0FFF00000000003FFC00000007FF80000000007FF800000003FFE000000001FFF0000000
+01FFF800000007FFE000000000FFFE0000001FFFC0000000007FFFC00000FFFF80000000
+003FFFFE001FFFFF00000000000FFFFFFFFFFFFC000000000007FFFFFFFFFFF800000000
+0001FFFFFFFFFFE00000000000007FFFFFFFFF800000000000001FFFFFFFFE0000000000
+000003FFFFFFF000000000000000007FFFFF80000000000000000003FFF000000000005A
+7F7B7F65>91 D<000000003C00000001FC00000007FC0000001FFC0000007FF0000000FF
+C0000001FF00000007FC0000000FF80000001FF00000001FE00000003FC00000007F8000
+00007F00000000FF00000000FE00000001FE00000001FE00000001FC00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
+000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000003FC00000003F800000003F800000007F800000007F00000000FF00000000FE0
+0000001FE00000003FC00000007F80000000FF00000001FE00000003FC00000007F00000
+001FE00000007F80000000FE00000000F800000000FE000000007F800000001FE0000000
+07F000000003FC00000001FE00000000FF000000007F800000003FC00000001FE0000000
+0FE00000000FF000000007F000000007F800000003F800000003F800000003FC00000001
+FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
+000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FE00000001FE00000000FE00000000FF000000007F00
+0000007F800000003FC00000001FE00000001FF00000000FF800000007FC00000001FF00
+000000FFC00000007FF00000001FFC00000007FC00000001FC000000003C26A375833D>
+110 D<F000000000FE00000000FF80000000FFC00000003FF00000000FF800000003FE00
+000001FF00000000FF800000003FC00000001FE00000001FE00000000FF000000007F000
+000007F800000003F800000003FC00000003FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
+000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FE00000000FE00000000FE00000000FF000000007F000000007F800000003F80000000
+1FC00000001FE00000000FF000000007F800000003FC00000000FF000000007F80000000
+1FE00000000FF800000003FC00000000FC00000003FC0000000FF80000001FE00000007F
+80000000FF00000003FC00000007F80000000FF00000001FE00000001FC00000003F8000
+00007F800000007F00000000FF00000000FE00000000FE00000001FE00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC
+00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00
+000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC0000
+0001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC000000
+01FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001FC00000001
+FC00000001FC00000003FC00000003FC00000003F800000007F800000007F00000000FF0
+0000001FE00000001FE00000003FC0000000FF80000001FF00000003FE0000000FF80000
+003FF0000000FFC0000000FF80000000FE00000000F00000000026A375833D>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FL cmss10 10.95 32
+/FL 32 123 df<0003FC0000000FFF0000003FFFC00000FFFFF00001FFFFF80003FFFFFC
+0003FE07FC0007F801FE000FF000FF000FE0007F001FC0003F801FC0003F801F80001F80
+3F80001FC03F80001FC03F00000FC07F00000FE07F00000FE07F00000FE07F00000FE07E
+000007E07E000007E0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE00
+0007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE0000
+07F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007
+F0FE000007F07F00000FE07F00000FE07F00000FE07F00000FE07F00000FE03F80001FC0
+3F80001FC03F80001FC03FC0003FC01FC0003F801FE0007F800FE0007F000FF000FF0007
+F801FE0003FE07FC0003FFFFFC0001FFFFF80000FFFFF000003FFFC000001FFF80000003
+FC000024407CBD2D>48 D<0000C0000001C0000007C000000FC000007FC00007FFC000FF
+FFC000FFFFC000FFFFC000FFFFC000FF9FC000F81FC000001FC000001FC000001FC00000
+1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
+1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
+1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
+1FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC00000
+1FC000001FC000001FC000001FC000001FC000FFFFFFF8FFFFFFF8FFFFFFF8FFFFFFF8FF
+FFFFF8FFFFFFF81D3E78BD2D>I<000FF80000003FFF000000FFFFC00001FFFFF00003FF
+FFF80007FFFFFC000FF01FFE001FC003FF003F8000FF803F00007F807F00003FC07E0000
+3FC07E00001FE0FE00001FE0FC00000FE07C00000FF03C00000FF03800000FF018000007
+F008000007F000000007F000000007F00000000FF00000000FF00000000FE00000000FE0
+0000001FE00000001FC00000003FC00000003F800000007F00000000FF00000000FE0000
+0001FC00000003F800000007F00000000FE00000001FC00000003F800000007F00000000
+FE00000001FC00000003F800000007F00000000FE00000001FC00000003F800000007F00
+000000FC00000001F800000003F000000007E00000000FC00000001F800000003F000000
+007FFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0FFFFFFFFF0
+243E7CBD2D>I<0007FC0000003FFF800000FFFFE00001FFFFF00007FFFFFC000FFC07FE
+001FF001FE003FC000FF003F80007F807F00003F803E00003FC03C00003FC01C00001FC0
+1800001FC00800001FC00000001FC00000003FC00000003FC00000003F800000003F8000
+00007F800000007F00000000FF00000001FE00000003FE0000000FFC0000007FF800001F
+FFF000001FFFE000001FFF8000001FFF8000001FFFE000001FFFF800000007FC00000001
+FE00000000FF000000007F800000003FC00000003FC00000001FE00000001FE00000000F
+E00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF0
+4000000FF06000001FE06000001FE0F000003FE0F800003FC0FE00007FC07F0000FF803F
+C001FF001FF807FE000FFFFFFE0007FFFFF80003FFFFF00000FFFFE000003FFF80000007
+FC000024407CBD2D>I<000001FE000000000003FF000000000003FF000000000003FF00
+0000000007FF800000000007FF800000000007FF80000000000FDFC0000000000F9FC000
+0000001F9FE0000000001F8FE0000000001F8FE0000000003F0FF0000000003F0FF00000
+00003F07F0000000007E07F8000000007E07F8000000007E03F800000000FC03FC000000
+00FC03FC00000001FC01FE00000001F801FE00000001F801FE00000003F800FF00000003
+F000FF00000003F000FF00000007F0007F80000007E0007F8000000FE0003FC000000FE0
+003FC000000FC0003FC000001FC0001FE000001F80001FE000001F80001FE000003F8000
+0FF000003F00000FF000007F00000FF800007F000007F800007E000007F80000FFFFFFFF
+FC0000FFFFFFFFFC0000FFFFFFFFFC0001FFFFFFFFFE0001FFFFFFFFFE0003F8000001FF
+0003F8000000FF0003F0000000FF0007F0000000FF8007F00000007F8007E00000007F80
+0FE00000003FC00FC00000003FC01FC00000003FE01FC00000001FE01F800000001FE03F
+800000001FF03F800000000FF03F000000000FF07F0000000007F87F0000000007F8FE00
+00000007FCFE0000000003FCFC0000000003FC363F7DBE3D>65 D<000000FFF00000000F
+FFFF8000003FFFFFF00000FFFFFFFC0003FFFFFFFC0007FFFFFFFC000FFF803FF8001FFC
+0003F8003FF00000F8007FC000003800FF8000001801FF0000000003FE0000000007FC00
+00000007F8000000000FF8000000000FF0000000001FF0000000001FE0000000003FE000
+0000003FC0000000003FC0000000007F80000000007F80000000007F80000000007F8000
+000000FF8000000000FF0000000000FF0000000000FF0000000000FF0000000000FF0000
+000000FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF0000
+000000FF80000000007F80000000007F80000000007F80000000007F80000000003FC000
+0000003FC0000000003FE0000000001FE0000000001FF0000000000FF0000000000FF800
+00000007F80000000007FC0000000003FE0000000001FF0000000400FF8000000C007FC0
+00003C003FF000007C001FFC0001FE000FFF801FFE0007FFFFFFFE0003FFFFFFFC0000FF
+FFFFF000003FFFFFC000000FFFFF00000000FFF0002F417ABF3A>67
+D<FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF00FFFFFFFFFF
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFC
+00FFFFFFFFFC00FFFFFFFFFC00FFFFFFFFFC00FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FFFFFFFFFF80FFFFFFFFFF80FFFFFFFFFF80FFFFFFFFFF
+80FFFFFFFFFF80FFFFFFFFFF80FFFFFFFFFF80293F78BE36>69 D<FFFFFFFFFEFFFFFFFF
+FEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFF00000000FF00000000FF00000000
+FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
+00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
+000000FF00000000FF00000000FF00000000FF00000000FFFFFFFFE0FFFFFFFFE0FFFFFF
+FFE0FFFFFFFFE0FFFFFFFFE0FFFFFFFFE0FF00000000FF00000000FF00000000FF000000
+00FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000
+FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF
+00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00000000FF00
+000000FF00000000FF00000000FF00000000273F78BE34>I<FFFFFFFFFFFFFFFFFFFFFF
+FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF083F78BE19>73 D<FFE0000000003FF8FFE00000
+00003FF8FFE0000000003FF8FFF0000000007FF8FFF0000000007FF8FFF800000000FFF8
+FFF800000000FFF8FEF800000000FBF8FEFC00000001FBF8FEFC00000001FBF8FE7E0000
+0003F3F8FE7E00000003F3F8FE7E00000003F3F8FE3F00000007E3F8FE3F00000007E3F8
+FE3F00000007E3F8FE1F8000000FC3F8FE1F8000000FC3F8FE1FC000001FC3F8FE0FC000
+001F83F8FE0FC000001F83F8FE0FE000003F83F8FE07E000003F03F8FE07E000003F03F8
+FE07F000007F03F8FE03F000007E03F8FE03F80000FE03F8FE03F80000FE03F8FE01F800
+00FC03F8FE01FC0001FC03F8FE01FC0001FC03F8FE00FC0001F803F8FE00FE0003F803F8
+FE007E0003F003F8FE007F0007F003F8FE007F0007F003F8FE003F0007E003F8FE003F80
+0FE003F8FE003F800FE003F8FE001F800FC003F8FE001FC01FC003F8FE000FC01F8003F8
+FE000FC01F8003F8FE000FE03F8003F8FE0007E03F0003F8FE0007E03F0003F8FE0007F0
+7F0003F8FE0003F07E0003F8FE0003F07E0003F8FE0001F8FC0003F8FE0001F8FC0003F8
+FE0001F8FC0003F8FE0000FDF80003F8FE0000FDF80003F8FE0000FFF80003F8FE00007F
+F00003F8FE00007FF00003F8FE00003FE00003F8FE00003FE00003F8FE00003FE00003F8
+FE00001FC00003F8FE000000000003F8FE000000000003F83D3F77BE50>77
+D<FFF0000000FEFFF0000000FEFFF8000000FEFFF8000000FEFFFC000000FEFFFC000000
+FEFFFE000000FEFEFE000000FEFE7F000000FEFE7F000000FEFE7F800000FEFE3F800000
+FEFE3FC00000FEFE1FC00000FEFE1FE00000FEFE0FE00000FEFE0FF00000FEFE07F00000
+FEFE07F80000FEFE03F80000FEFE03FC0000FEFE01FC0000FEFE01FE0000FEFE00FE0000
+FEFE00FF0000FEFE007F0000FEFE007F8000FEFE003F8000FEFE003FC000FEFE001FC000
+FEFE001FE000FEFE000FE000FEFE000FF000FEFE0007F000FEFE0007F800FEFE0003F800
+FEFE0003FC00FEFE0001FC00FEFE0001FE00FEFE0000FE00FEFE0000FF00FEFE00007F00
+FEFE00007F80FEFE00003F80FEFE00003FC0FEFE00001FC0FEFE00001FE0FEFE00000FE0
+FEFE00000FF0FEFE000007F0FEFE000007F8FEFE000003F8FEFE000003FCFEFE000001FC
+FEFE000001FCFEFE000000FEFEFE000000FFFEFE0000007FFEFE0000007FFEFE0000003F
+FEFE0000003FFEFE0000001FFEFE0000001FFE2F3F78BE40>I<000001FF80000000000F
+FFF0000000007FFFFE00000000FFFFFF00000003FFFFFFC0000007FFFFFFE000001FFF00
+FFF800003FF8001FFC00007FE00007FE00007FC00003FE0000FF800001FF0001FF000000
+FF8003FE0000007FC003FC0000003FC007F80000001FE00FF00000000FF00FF00000000F
+F01FE000000007F81FE000000007F81FC000000003F83FC000000003FC3FC000000003FC
+3F8000000001FC7F8000000001FE7F8000000001FE7F8000000001FE7F0000000000FEFF
+0000000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF00
+00000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF0000000000FFFF0000
+000000FFFF0000000000FFFF8000000001FF7F8000000001FE7F8000000001FE7F800000
+0001FE7F8000000001FE7FC000000003FE3FC000000003FC3FC000000003FC3FE0000000
+07FC1FE000000007F81FF00000000FF80FF00000000FF00FF80000001FF007FC0000003F
+E007FC0000003FE003FE0000007FC001FF000000FF8000FF800001FF0000FFC00003FF00
+007FF0000FFE00003FF8001FFC00001FFF00FFF8000007FFFFFFE0000003FFFFFFC00000
+00FFFFFF000000007FFFFE000000000FFFF00000000001FF80000038437BC043>I<0000
+FFF000000007FFFF0000001FFFFFC000007FFFFFF80000FFFFFFFC0001FFFFFFFC0003FF
+803FFC0007FC0007F8000FF80001F8001FE0000078001FC0000038003FC0000018003F80
+000000003F80000000007F00000000007F00000000007F00000000007F00000000007F00
+000000007F00000000007F80000000007F80000000003FC0000000003FE0000000003FF0
+000000001FF8000000000FFE000000000FFFC000000007FFFC00000003FFFFC0000001FF
+FFF8000000FFFFFE0000003FFFFF8000000FFFFFC0000003FFFFE00000003FFFF0000000
+03FFF8000000007FFC000000000FFC0000000007FE0000000001FE0000000001FF000000
+0000FF00000000007F00000000007F80000000003F80000000003F80000000003F800000
+00003F80000000003F80000000003F80000000003F80000000007F00600000007F007000
+00007F0078000000FE007C000001FE007F000003FC00FFC00007FC00FFF0001FF800FFFF
+007FF0007FFFFFFFE0001FFFFFFFC00007FFFFFF000001FFFFFE0000003FFFF800000001
+FFC0000029437CC033>83 D<000FF80000FFFF0003FFFF800FFFFFE01FFFFFF01FFFFFF0
+1FF00FF81F8003FC1E0001FC180001FE100000FE000000FF0000007F0000007F0000007F
+0000007F0000007F0000007F0000007F00007FFF000FFFFF007FFFFF01FFFFFF07FFFFFF
+0FFFF07F3FFC007F3FC0007F7F00007FFE00007FFC00007FFC00007FFC00007FFC0000FF
+FE0000FFFE0001FF7F8007FF7FE01FFF3FFFFFFF3FFFFFFF1FFFFF7F0FFFFC7F07FFF07F
+01FF0000202B7CA92C>97 D<FE00000000FE00000000FE00000000FE00000000FE000000
+00FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000
+FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE
+00000000FE00000000FE00000000FE00FF0000FE07FFE000FE1FFFF000FE7FFFF800FFFF
+FFFC00FFFFFFFE00FFF80FFF00FFE001FF00FF8000FF80FF00007FC0FF00003FC0FE0000
+1FC0FE00001FE0FE00000FE0FE00000FE0FE00000FE0FE000007F0FE000007F0FE000007
+F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0
+FE00000FE0FE00000FE0FE00000FE0FE00001FE0FE00003FC0FF00003FC0FF80007F80FF
+8000FF80FFE003FF00FFF81FFE00FFFFFFFC00FEFFFFF800FE7FFFF000FE3FFFE000FE0F
+FF80000001FE0000244079BE2F>I<00000007F000000007F000000007F000000007F000
+000007F000000007F000000007F000000007F000000007F000000007F000000007F00000
+0007F000000007F000000007F000000007F000000007F000000007F000000007F0000000
+07F000000007F000000007F000000007F00007F807F0003FFF07F0007FFFC7F001FFFFF7
+F003FFFFFFF007FFFFFFF007FF80FFF00FFC003FF01FF0001FF01FE0000FF03FC00007F0
+3FC00007F07F800007F07F000007F07F000007F07F000007F0FE000007F0FE000007F0FE
+000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE00
+0007F07F000007F07F000007F07F000007F07F800007F03F80000FF03FC0000FF01FE000
+1FF01FF0003FF00FF8007FF00FFF01FFF007FFFFFFF003FFFFF7F001FFFFE7F000FFFF87
+F0003FFE07F0000FF0000024407DBE2F>100 D<00001FF00000FFFC0001FFFC0007FFFC
+000FFFFC000FFFFC001FE03C003F8004003F0000007F0000007E000000FE000000FE0000
+00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
+00FE000000FE0000FFFFFF00FFFFFF00FFFFFF00FFFFFF00FFFFFF00FFFFFF0000FE0000
+00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
+00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
+00FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE0000
+00FE000000FE000000FE000000FE000000FE000000FE00001E407FBF1C>102
+D<0003FC003F00000FFF03FF00003FFFDFFF00007FFFFFFF8000FFFFFFFF8001FFFFFFFF
+8001FE07FC000003F801FC000007F000FE000007E0007E000007E0007E00000FC0003F00
+000FC0003F00000FC0003F00000FC0003F00000FC0003F00000FC0003F00000FC0003F00
+000FC0003F000007E0007E000007E0007E000007F000FE000003F801FC000001FE07F800
+0003FFFFF8000003FFFFF0000007FFFFE0000007FFFFC0000007CFFF0000000FC3FC0000
+000F80000000000FC0000000000FC00000000007C00000000007E00000000007FFFFF000
+0003FFFFFF000003FFFFFFC00007FFFFFFE0000FFFFFFFF8001FFFFFFFF8003FE0001FFC
+007F800003FE007F000001FE007F000000FF00FE0000007F00FE0000007F00FE0000007F
+00FE0000007F00FE0000007F00FF000000FF007F800001FE007FC00003FE003FF0000FFC
+001FFE007FF8000FFFFFFFF00007FFFFFFE00003FFFFFFC00000FFFFFF0000001FFFF800
+000003FFC00000293D7EA82D>I<FFFFFFFFFFFFFFFF0000000000000000000000000000
+007F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F7F
+7F7F7F7F7F083F7ABE16>105 D<FE00000000FE00000000FE00000000FE00000000FE00
+000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
+0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000
+00FE00000000FE00000000FE00000000FE00000000FE0000FF80FE0001FF00FE0003FE00
+FE0007FC00FE000FF800FE001FF000FE003FE000FE007FC000FE00FF8000FE01FF0000FE
+03FE0000FE07FC0000FE0FF80000FE0FF00000FE1FE00000FE3FC00000FE7FE00000FEFF
+E00000FFFFF00000FFFFF80000FFFBF80000FFF1FC0000FFE0FE0000FFC0FF0000FF807F
+0000FF003F8000FE003FC000FC001FC000FC000FE000FC000FF000FC0007F000FC0003F8
+00FC0003FC00FC0001FC00FC0000FE00FC00007F00FC00007F80FC00003F80FC00001FC0
+FC00001FE0233F79BE2C>107 D<FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE
+FEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE
+FEFEFEFEFE073F79BE16>I<FC01FF0000FF8000FC07FFC003FFE000FC1FFFF00FFFF800
+FC7FFFF83FFFFC00FCFFFFFC7FFFFE00FDFFFFFCFFFFFE00FFF80FFFFC07FF00FFE003FF
+F001FF00FFC001FFE000FF00FF8000FFC0007F80FF8000FFC0007F80FF00007F80003F80
+FF00007F80003F80FF00007F80003F80FE00007F00003F80FE00007F00003F80FE00007F
+00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80
+FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F
+00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80
+FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F
+00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80FE00007F00003F80
+FE00007F00003F80FE00007F00003F80392979A848>I<FC01FF00FC07FFC0FC1FFFF0FC
+7FFFF8FCFFFFFCFDFFFFFCFFF80FFEFFE003FEFFC001FEFF8000FFFF8000FFFF00007FFF
+00007FFF00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE
+00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE
+00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE
+00007FFE00007F202979A82F>I<0001FE0000000FFFC000003FFFF000007FFFF80000FF
+FFFC0003FFFFFF0003FF03FF0007F8007F800FF0003FC01FE0001FE01FC0000FE03F8000
+07F03F800007F03F000003F07F000003F87F000003F87E000001F8FE000001FCFE000001
+FCFE000001FCFE000001FCFE000001FCFE000001FCFE000001FCFE000001FCFE000001FC
+FF000003FC7F000003F87F000003F87F000003F83F800007F03FC0000FF03FC0000FF01F
+E0001FE00FF0003FC00FFC00FFC007FF03FF8003FFFFFF0001FFFFFE0000FFFFFC00003F
+FFF000000FFFC0000001FE0000262B7DA92D>I<0000FF0000FE07FFE000FE1FFFF000FE
+7FFFF800FFFFFFFC00FFFFFFFE00FFF80FFF00FFE003FF00FF8000FF80FF00007FC0FF00
+003FC0FE00003FC0FE00001FE0FE00001FE0FE00000FE0FE00000FE0FE00000FF0FE0000
+07F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007F0FE000007
+F0FE00000FF0FE00000FE0FE00000FE0FE00001FE0FE00001FE0FE00003FC0FF00007FC0
+FF8000FF80FF8001FF80FFE003FF00FFF81FFE00FFFFFFFC00FEFFFFF800FE7FFFF000FE
+3FFFE000FE0FFF8000FE01FE0000FE00000000FE00000000FE00000000FE00000000FE00
+000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
+0000FE00000000FE00000000FE00000000FE00000000FE00000000243B79A82F>I<FC00
+7CFC03FCFC0FFCFC1FFCFC3FFCFC7FFCFCFFC0FDFE00FFF800FFF000FFE000FFC000FFC0
+00FF8000FF8000FF0000FF0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00
+00FE0000FE0000FE0000FE0000162979A81F>114 D<001FF80000FFFF8003FFFFE007FF
+FFF80FFFFFF81FFFFFF83FE00FF03F8000F07F8000307F0000007F0000007F0000007F00
+00007F0000007F8000003FC000003FF000001FFF00001FFFF0000FFFFE0007FFFF0001FF
+FFC000FFFFE0001FFFF00001FFF000001FF8000007F8000003FC000003FC000001FC0000
+01FC000001FC400001FC700001FC780003F87E0007F8FFE01FF8FFFFFFF0FFFFFFE07FFF
+FFC01FFFFF8003FFFE00003FF0001E2B7EA923>I<00FC000000FC000000FC000000FC00
+0000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0000FFFFFF
+C0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC000FC000000FC000000FC000000FC00
+0000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC00
+0000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC00
+0000FC000000FC000000FC000000FC000000FE002000FE00E0007F03E0007FFFF0007FFF
+F0003FFFF0003FFFC0001FFF000007F0001C357EB321>I<FE00007FFE00007FFE00007F
+FE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007F
+FE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007F
+FE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007FFE00007F
+FE0000FFFE0000FFFE0001FFFF0003FF7F000FFF7FC03FFF7FFFFFFF3FFFFE7F1FFFFC7F
+0FFFE07F03FF0000202979A72F>I<7F800001FE003F800001FC001FC00003F8000FE000
+07F8000FF0000FF00007F8001FE00003FC001FC00001FC003F800000FE007F0000007F00
+FF0000003F81FE0000003FC1FC0000001FE3F80000000FE7F000000007FFE000000003FF
+E000000001FFC000000000FF8000000000FF00000000007E0000000000FF0000000001FF
+8000000001FFC000000003FFE000000007E7F00000000FE3F80000001FC1F80000003F80
+FC0000003F00FE0000007F007F000000FE003F800001FC001FC00003F8001FE00007F800
+0FE00007F00007F0000FE00003F8001FC00001FC003FC00001FE007F800000FF00FF0000
+007F80292880A72A>120 D<FF000000FE7F000001FC7F800001FC3F800003F83FC00003
+F81FC00003F81FC00007F01FE00007F00FE0000FE00FF0000FE007F0000FE007F0001FC0
+03F8001FC003F8001F8001FC003F8001FC003F8001FC007F0000FE007F0000FE007E0000
+7F00FE00007F00FE00003F00FC00003F81FC00003F81F800001F81F800001FC1F800000F
+C3F000000FC3F0000007E3E0000007E7E0000007E7E0000003E7C0000003E7C0000001F7
+80000001F780000000FF80000000FF00000000FF000000007E000000007E000000007E00
+0000007C000000007C00000000FC00000000F800000001F800000001F000000001F00000
+0003F000000003E000000007E000000007C00000200FC000003C1F8000003FFF0000003F
+FF0000003FFE0000003FFC00000007F0000000273B7FA72A>I<7FFFFFFF807FFFFFFF80
+7FFFFFFF807FFFFFFF807FFFFFFF807FFFFFFF00000001FE00000003FC00000007FC0000
+000FF80000000FF00000001FE00000003FC00000007FC00000007F80000000FF00000001
+FE00000003FE00000007FC00000007F80000000FF00000001FF00000003FE00000003FC0
+0000007F80000000FF00000001FF00000001FE00000003FC00000007F80000000FF80000
+001FF00000001FE00000003FC00000007FFFFFFF80FFFFFFFF80FFFFFFFF80FFFFFFFF80
+FFFFFFFF80FFFFFFFF8021287DA728>I E
+%EndDVIPSBitmapFont
+/FM 209[30 46[{TeXBase1Encoding ReEncodeFont}1 119.552
+/Times-Roman rf
+%DVIPSBitmapFont: FN cmsy10 14.4 3
+/FN 3 47 df<000000380000000000007C0000000000007C0000000000007C0000000000
+007C0000000000007C0000000000007C0000000000007C0000000000007C000000000000
+7C0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C
+0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C00
+00000000007C0000000000007C0000000000007C0000000000007C0000000000007C0000
+000000007C0000000000007C0000000000007C0000000000007C0000000000007C000000
+0000007C0000000000007C0000000000007C0000000000007C0000000000007C00000000
+00007C0000000000007C0000000000007C0000000000007C0000000000007C0000000000
+007C0000000000007C0000000000007C0000000000007C0000000000007C000000000000
+7C0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C
+0000000000007C0000000000007C0000000000007C0000000000007C0000000000007C00
+00000000007C0000000000007C0000000000007C0000000000007C0000000000007C0000
+000000007C0000000000007C0000000000007C0000000000007C0000000000007C000000
+0000007C0000000000007C0000000000007C0000000000007C0000000000007C00000000
+00007C000000E000007C00000EFC00007C00007EFF80007C0003FEFFE0007C000FFEFFF8
+007C003FFE3FFC007C007FF807FE007C00FFC000FF807C03FE00003FC07C07F800001FE0
+7C0FF0000007F07C1FC0000003F87C3F80000001FC7C7F000000007E7CFC000000007E7C
+FC000000003F7DF8000000001FFFF0000000000FFFE00000000007FFC00000000007FFC0
+0000000003FF800000000003FF800000000001FF000000000001FF000000000000FE0000
+00000000FE0000000000007C0000000000007C0000000000007C0000000000007C000000
+00000038000000000000380000000000003800000000000018000000376A7ED23C>35
+D<7000000000000000000000000000F800000000000000000000000000FC000000000000
+00000000000000FE000000000000000000000000007F000000000000000000000000003F
+800000000000000000000000001FC00000000000000000000000000FE000000000000000
+000000000007F000000000000000000000000003F800000000000000000000000001FC00
+000000000000000000000000FE000000000000000000000000007F000000000000000000
+000000003F800000000000000000000000001FC00000000000000000000000000FE00000
+0000000000000000000007F000000000000000000000000003F800000000000000000000
+000001FC00000000000000000000000000FE000000000000000000000000007F00000000
+0000000000000000003F800000000000000000000000001FC00000000000000000000000
+000FE000000000000000000000000007F000000000000000000000000003F80000000000
+0000000000000001FC00000000000000000000000000FE00000000000000000000000000
+7F000000000000000000000000003F800000000000000000000000001FC0000000000000
+0000000000000FE000000000000000000000000007F000000000000000000000000003F8
+00000000000000000000000001FC00000000000000000000000000FE0000000000000000
+00000000007F000000000000000000000000003F800000000000000000000000001FC000
+00000000000000000000000FE000000000000000000000000007F0000000000000000000
+00000003F800000000000000000000000001FC00000000000000000000000000FE000000
+000000000000000000007F000000000000000000000000003F8000000000000000000000
+00001FC00000000000000000000000000FE000000000000000000000000007F000000000
+000000000000000003F800000000000000000000000001FC000000000000000000000000
+00FE000000000000000000000000007F000000000000000000000000003F800000000000
+000000000000001FC00000000000000000000000000FE000000000000000000000000007
+F000000000000000000000000003F800000000000000000000000001FC00000000000000
+000000000000FE000000000000000000000000007F000000000000000000000000003F80
+0000000040000000000000001FC000000000E0000000000000000FE000000001F0000000
+0000000007F000000003F00000000000000003F800000003F00000000000000001FC0000
+0007E00000000000000000FE00000007C000000000000000007F0000000FC00000000000
+0000003F8000000F8000000000000000001FC000001F8000000000000000000FE000001F
+00000000000000000007F000001F00000000000000000003F800003F0000000000000000
+0001FC00003E00000000000000000000FE00003E000000000000000000007F00007E0000
+00000000000000003F80007C000000000000000000001FC0007C00000000000000000000
+0FE0007C0000000000000000000007F0007C0000000000000000000003F8007C00000000
+00000000000001FC00F80000000000000000000000FE00F800000000000000000000007F
+00F800000000000000000000003F80F800000000000000000000001FC0F8000000000000
+00000000000FE0F8000000000000000000000007F0F8000000000000000000000003F8F8
+000000000000000000000001FCF8000000000000000000000000FE7C0000000000000000
+000000007F7C0000000000000000000000003FFC0000000000000000000000001FFC0000
+000000000000000000000FFC00000000000000000000003FE7FE00000000000000000000
+0FFFFFFE000000000000000000007FFFFFFE00000000000000000003FFFFFFFF00000000
+00000000000FFFFFFFFF0000000000000000003FFFC01FFF000000000000000000FFF800
+00FF800000000000000001FFC000001F800000000000000003FE00000003800000000000
+000007F800000000000000000000000003E000000000000000000000000001C000000000
+006C6C79D178>38 D<00000000000000000000000000E000000000000000000000000001
+F000000000000000000000000003F000000000000000000000000007F000000000000000
+00000000000FE00000000000000000000000001FC00000000000000000000000003F8000
+00000000000000000000007F00000000000000000000000000FE00000000000000000000
+000001FC00000000000000000000000003F800000000000000000000000007F000000000
+00000000000000000FE00000000000000000000000001FC0000000000000000000000000
+3F800000000000000000000000007F00000000000000000000000000FE00000000000000
+000000000001FC00000000000000000000000003F800000000000000000000000007F000
+00000000000000000000000FE00000000000000000000000001FC0000000000000000000
+0000003F800000000000000000000000007F00000000000000000000000000FE00000000
+000000000000000001FC00000000000000000000000003F8000000000000000000000000
+07F00000000000000000000000000FE00000000000000000000000001FC0000000000000
+0000000000003F800000000000000000000000007F00000000000000000000000000FE00
+000000000000000000000001FC00000000000000000000000003F8000000000000000000
+00000007F00000000000000000000000000FE00000000000000000000000001FC0000000
+0000000000000000003F800000000000000000000000007F000000000000000000000000
+00FE00000000000000000000000001FC00000000000000000000000003F8000000000000
+00000000000007F00000000000000000000000000FE00000000000000000000000001FC0
+0000000000000000000000003F800000000000000000000000007F000000000000000000
+00000000FE00000000000000000000000001FC00000000000000000000000003F8000000
+00000000000000000007F00000000000000000000000000FE00000000000000000000000
+001FC00000000000000000000000003F800000000000000000000000007F000000000000
+00000000000000FE00000000000000000000000001FC00000000000000000000000003F8
+00000000000000000000000007F00000000000000000000000000FE00000000000000020
+000000001FC00000000000000070000000003F8000000000000000F8000000007F000000
+0000000000FC00000000FE0000000000000000FC00000001FC00000000000000007E0000
+0003F800000000000000003E00000007F000000000000000003F0000000FE00000000000
+0000001F0000001FC000000000000000001F8000003F8000000000000000000F8000007F
+0000000000000000000F800000FE0000000000000000000FC00001FC0000000000000000
+0007C00003F800000000000000000007C00007F000000000000000000007E0000FE00000
+0000000000000003E0001FC000000000000000000003E0003F8000000000000000000003
+E0007F0000000000000000000003E000FE0000000000000000000003E001FC0000000000
+000000000001F003F80000000000000000000001F007F00000000000000000000001F00F
+E00000000000000000000001F01FC00000000000000000000001F03F8000000000000000
+00000001F07F000000000000000000000001F0FE000000000000000000000001F1FC0000
+00000000000000000001F3F8000000000000000000000003E7F000000000000000000000
+0003EFE0000000000000000000000003FFC0000000000000000000000003FF8000000000
+0000000000000003FF00000000000000000000000007FE7FC00000000000000000000007
+FFFFFF0000000000000000000007FFFFFFE00000000000000000000FFFFFFFFC00000000
+00000000000FFFFFFFFF0000000000000000000FFF803FFFC000000000000000001FF000
+01FFF000000000000000001F8000003FF800000000000000000C00000007FC0000000000
+0000000000000001FE000000000000000000000000007C00000000000000000000000000
+3800000000000000006C6C7CD178>46 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FO cmmib10 10.95 15
+/FO 15 122 df<000007FFFFFFFE0000003FFFFFFFFF000001FFFFFFFFFF800007FFFFFF
+FFFF80000FFFFFFFFFFF80001FFFFFFFFFFF80007FFFFFFFFFFF0000FFFFFFFFFFFE0001
+FFFFFFFFFFFC0001FFF807FFC0000003FFC000FFE0000007FF00007FE000000FFE00007F
+E000000FFC00007FE000001FF800003FE000001FF800003FE000003FF000003FE000003F
+F000007FE000007FF000007FE000007FE000007FE000007FE000007FE000007FE00000FF
+E00000FFE00000FFC00000FFC00000FFC00000FFC00000FFC00000FFC00001FF800000FF
+C00001FF800000FF800001FF800000FF800003FF000000FF800003FE000000FF800007FE
+0000007FC0000FFC0000007FC0000FF80000003FC0001FF00000003FE0007FE00000001F
+F001FFC00000000FFC07FF8000000007FFFFFE0000000003FFFFF80000000000FFFFE000
+000000000FFE000000000039297CA73E>27 D<0FC01FE03FF07FF8FFFCFFFCFFFCFFFEFF
+FEFFFE7FFE3FFE1FFE0FDE001E001E003E003C003C007C0078007800F801F001F003E007
+C00F801F803F001E000C000F20798D1D>59 D<000000001C000000003E000000007E0000
+00007E00000000FE00000000FC00000001FC00000001F800000001F800000003F8000000
+03F000000003F000000007F000000007E00000000FE00000000FC00000000FC00000001F
+C00000001F800000003F800000003F000000003F000000007F000000007E00000000FE00
+000000FC00000000FC00000001FC00000001F800000001F800000003F800000003F00000
+0007F000000007E000000007E00000000FE00000000FC00000001FC00000001F80000000
+1F800000003F800000003F000000007F000000007E000000007E00000000FE00000000FC
+00000000FC00000001FC00000001F800000003F800000003F000000003F000000007F000
+000007E00000000FE00000000FC00000000FC00000001FC00000001F800000003F800000
+003F000000003F000000007F000000007E000000007E00000000FE00000000FC00000001
+FC00000001F800000001F800000003F800000003F000000007F000000007E000000007E0
+0000000FE00000000FC00000001FC00000001F800000001F800000003F800000003F0000
+00003F000000007F000000007E00000000FE00000000FC00000000FC00000000F8000000
+007800000000275B7AC334>61 D<00000180000000000380000000000380000000000380
+0000000007C00000000007C00000000007C00000000007C00000000007C0000000000FE0
+000000000FE0000000000FE0000000000FE0000000000FE0000000001FF0000000001FF0
+0000E0001FF0000EFFE01FF00FFEFFFFFFFFFFFE7FFFFFFFFFFC1FFFFFFFFFF007FFFFFF
+FFC003FFFFFFFF8000FFFFFFFE00003FFFFFF800000FFFFFE0000003FFFF80000001FFFF
+00000001FFFF00000001FFFF00000003FFFF80000003FFFF80000007FFFFC0000007FEFF
+C000000FFC7FE000000FF83FE000000FF01FE000001FE00FF000001FC007F000003F8003
+F800003F0001F800007E0000FC00007C00007C0000F000001E0000E000000E0000400000
+04002F2E7EAD34>63 D<0001FFFFFFFFFFF0000003FFFFFFFFFFFE000003FFFFFFFFFFFF
+C00003FFFFFFFFFFFFE00003FFFFFFFFFFFFF8000001FFE00001FFFC000001FFE000007F
+FC000003FFE000003FFE000003FFE000003FFE000003FFC000001FFF000003FFC000001F
+FF000007FFC000001FFF000007FFC000001FFF000007FF8000001FFF000007FF8000001F
+FF00000FFF8000001FFF00000FFF8000003FFE00000FFF0000003FFE00000FFF0000003F
+FE00001FFF0000007FFC00001FFF0000007FF800001FFE000000FFF800001FFE000001FF
+F000003FFE000003FFE000003FFE000007FFC000003FFC00000FFF8000003FFC00003FFE
+0000007FFC0003FFF80000007FFFFFFFFFE00000007FFFFFFFFF000000007FFFFFFFFFE0
+000000FFFFFFFFFFFC000000FFF800003FFE000000FFF000000FFF000000FFF0000007FF
+800001FFF0000007FFC00001FFF0000003FFE00001FFE0000003FFE00001FFE0000003FF
+E00003FFE0000003FFF00003FFE0000003FFF00003FFC0000003FFF00003FFC0000003FF
+F00007FFC0000003FFF00007FFC0000003FFE00007FF80000003FFE00007FF80000007FF
+E0000FFF80000007FFC0000FFF8000000FFFC0000FFF0000000FFF80000FFF0000001FFF
+80001FFF0000001FFF00001FFF0000003FFE00001FFE0000007FFE00001FFE000001FFFC
+00003FFE000003FFF800003FFE00001FFFE0007FFFFFFFFFFFFFC000FFFFFFFFFFFFFF00
+00FFFFFFFFFFFFFC0000FFFFFFFFFFFFE00000FFFFFFFFFFFE000000483E7CBD4F>66
+D<0000000007FFC0000E00000000FFFFFC001F00000007FFFFFF003E0000003FFFFFFF80
+FE000000FFFFFFFFE1FE000003FFFF803FF3FE00000FFFF80007FFFC00001FFFC00001FF
+FC00007FFF000000FFFC0000FFFC0000007FFC0001FFF00000003FF80003FFE00000001F
+F8000FFFC00000001FF8001FFF000000000FF8001FFF000000000FF0003FFE000000000F
+F0007FFC0000000007F000FFF80000000007F001FFF80000000007E001FFF00000000007
+E003FFE00000000007E007FFE00000000007E007FFC00000000007C00FFFC00000000007
+C00FFFC00000000007C01FFF800000000007801FFF800000000000003FFF000000000000
+003FFF000000000000003FFF000000000000007FFF000000000000007FFE000000000000
+007FFE000000000000007FFE00000000000000FFFE00000000000000FFFC000000000000
+00FFFC00000000000000FFFC00000000000000FFFC00000000000000FFF8000000000000
+00FFF800000000000000FFF800000000007800FFF80000000000F800FFF80000000000F8
+00FFF80000000000F800FFF80000000001F800FFF80000000001F000FFF80000000003F0
+00FFF80000000003E0007FF80000000007E0007FFC000000000FC0003FFC000000001F80
+003FFC000000001F80001FFE000000003F00001FFF000000007E00000FFF00000001FC00
+0007FF80000003F8000003FFE000000FF0000001FFF000003FE0000000FFFE0000FF8000
+00007FFFE00FFF000000003FFFFFFFFC000000000FFFFFFFF00000000003FFFFFFC00000
+0000007FFFFE00000000000003FFE00000000048427BBF4A>I<0001FFFFFFFFFFF00000
+0003FFFFFFFFFFFF00000003FFFFFFFFFFFFC0000003FFFFFFFFFFFFF0000003FFFFFFFF
+FFFFFC00000001FFE00003FFFE00000001FFE000007FFF00000003FFE000001FFF800000
+03FFE0000007FFC0000003FFC0000003FFC0000003FFC0000001FFE0000007FFC0000001
+FFF0000007FFC0000000FFF0000007FF80000000FFF0000007FF800000007FF800000FFF
+800000007FF800000FFF800000007FF800000FFF000000007FF800000FFF000000007FFC
+00001FFF000000007FFC00001FFF000000007FFC00001FFE000000007FFC00001FFE0000
+00007FFC00003FFE000000007FFC00003FFE000000007FFC00003FFC000000007FFC0000
+3FFC00000000FFFC00007FFC00000000FFF800007FFC00000000FFF800007FF800000000
+FFF800007FF800000001FFF80000FFF800000001FFF80000FFF800000001FFF00000FFF0
+00000001FFF00000FFF000000003FFF00001FFF000000003FFE00001FFF000000003FFE0
+0001FFE000000007FFE00001FFE000000007FFC00003FFE000000007FFC00003FFE00000
+000FFF800003FFC00000000FFF800003FFC00000000FFF000007FFC00000001FFF000007
+FFC00000001FFE000007FF800000003FFC000007FF800000007FFC00000FFF800000007F
+F800000FFF80000000FFF000000FFF00000001FFE000000FFF00000003FFC000001FFF00
+000007FF8000001FFF0000000FFF0000001FFE0000003FFE0000001FFE000000FFFC0000
+003FFE000007FFF00000003FFE00007FFFE000007FFFFFFFFFFFFF800000FFFFFFFFFFFF
+FE000000FFFFFFFFFFFFF0000000FFFFFFFFFFFF80000000FFFFFFFFFFF0000000004E3E
+7CBD55>I<0001FFFFFFFFFFC0000003FFFFFFFFFFFC000003FFFFFFFFFFFF000003FFFF
+FFFFFFFFC00001FFFFFFFFFFFFE0000001FFE00007FFF0000001FFE00001FFF8000003FF
+E000007FFC000003FFE000003FFC000003FFC000003FFE000003FFC000003FFE000007FF
+C000003FFE000007FFC000003FFE000007FF8000003FFF000007FF8000003FFF00000FFF
+8000003FFE00000FFF8000007FFE00000FFF0000007FFE00000FFF0000007FFE00001FFF
+0000007FFE00001FFF000000FFFC00001FFE000000FFFC00001FFE000000FFF800003FFE
+000001FFF800003FFE000001FFF000003FFC000003FFE000003FFC000003FFC000007FFC
+000007FF8000007FFC00001FFF0000007FF800003FFE0000007FF80003FFFC000000FFFF
+FFFFFFF0000000FFFFFFFFFFC0000000FFFFFFFFFF00000000FFFFFFFFF000000001FFF8
+00000000000001FFF800000000000001FFF000000000000001FFF000000000000003FFF0
+00000000000003FFF000000000000003FFE000000000000003FFE000000000000007FFE0
+00000000000007FFE000000000000007FFC000000000000007FFC00000000000000FFFC0
+0000000000000FFFC00000000000000FFF800000000000000FFF800000000000001FFF80
+0000000000001FFF800000000000001FFF000000000000001FFF000000000000003FFF00
+0000000000003FFF0000000000007FFFFFFF0000000000FFFFFFFF0000000000FFFFFFFF
+0000000000FFFFFFFF0000000000FFFFFFFE0000000000483E7CBD42>80
+D<000000000FFF80000000000000FFFFFC000000000007FFFFFF00000000003FFFFFFFC0
+00000000FFFC03FFF000000003FFC0007FF80000000FFF00001FFC0000001FFC00000FFE
+0000007FF8000007FF000000FFE0000003FF800001FFC0000001FFC00003FF80000001FF
+C00007FF00000001FFE0000FFE00000000FFE0001FFE00000000FFF0003FFC00000000FF
+F0003FF800000000FFF0007FF8000000007FF000FFF0000000007FF800FFF0000000007F
+F801FFE0000000007FF803FFE0000000007FF803FFC0000000007FF807FFC0000000007F
+F807FF8000000000FFF80FFF8000000000FFF80FFF8000000000FFF80FFF0000000000FF
+F81FFF0000000000FFF81FFF0000000000FFF03FFE0000000001FFF03FFE0000000001FF
+F03FFE0000000001FFF03FFE0000000001FFF07FFC0000000003FFE07FFC0000000003FF
+E07FFC0000000003FFE07FFC0000000003FFC07FFC0000000007FFC07FF80000000007FF
+C0FFF80000000007FF80FFF8000000000FFF80FFF8000000000FFF00FFF8000000001FFF
+00FFF8000000001FFE007FF8000000001FFE007FF8000000003FFC007FF8000000003FF8
+007FF8000000007FF8007FF800000000FFF0007FF8001F8000FFE0003FF800FFE001FFC0
+003FFC01FFF003FFC0001FFC03FFF807FF80001FFC07F0FC0FFF00000FFE0FC03E1FFE00
+000FFE0F003E3FF8000007FF1F001F7FF0000003FF9F001FFFE0000001FFFE001FFF8000
+0000FFFF001FFF000000007FFF80FFFC000000001FFFFFFFF00010000007FFFFFFC00038
+000000FFFFFFE000380000000FFF8FE0007800000000000FF000F000000000000FFC07F0
+00000000000FFFFFF000000000000FFFFFE000000000000FFFFFE000000000000FFFFFC0
+00000000000FFFFFC000000000000FFFFF8000000000000FFFFF8000000000000FFFFF00
+000000000007FFFE00000000000007FFFC00000000000003FFF800000000000003FFF000
+000000000001FFC0000000000000007F00000045527CBF4F>I<000FF800000007FFF800
+00000FFFF80000000FFFF80000000FFFF800000007FFF8000000003FF0000000003FF000
+0000007FF0000000007FF0000000007FE0000000007FE000000000FFE000000000FFE000
+000000FFC000000000FFC000000001FFC000000001FFC000000001FF8000000001FF8000
+000003FF8000000003FF8000000003FF07FE000003FF3FFFC00007FFFFFFE00007FFFFFF
+F80007FFFC1FFC0007FFE007FE000FFFC003FE000FFF0003FF000FFE0001FF800FFC0001
+FF801FFC0001FF801FFC0001FFC01FF80001FFC01FF80001FFC03FF80003FFC03FF80003
+FFC03FF00003FFC03FF00003FFC07FF00007FFC07FF00007FF807FE00007FF807FE00007
+FF807FE0000FFF80FFE0000FFF00FFC0000FFF00FFC0000FFF00FFC0001FFE00FFC0001F
+FE00FFC0001FFC00FF80003FFC00FF80003FF8007F80007FF0007FC0007FE0007FC000FF
+E0003FC001FFC0003FE003FF80001FF007FE00000FF83FFC000007FFFFF8000003FFFFE0
+000000FFFF800000001FF80000002A407CBE2F>98 D<000001FFC00000001FFFF0000000
+FFFFFC000003FFFFFE000007FFC0FF00001FFE007F00003FF800FF80007FF001FF8000FF
+E003FF8001FFC003FF8003FF8003FF8007FF0003FF0007FF0003FF000FFE0003FE001FFE
+0001FC001FFE0000F0003FFC000000003FFC000000003FFC000000007FFC000000007FF8
+000000007FF8000000007FF800000000FFF800000000FFF000000000FFF000000000FFF0
+00000000FFF000000000FFF0000000007FE0000000007FE0000003007FF0000007807FF0
+00000FC03FF000001FC01FF800007F801FF80001FF000FFC0007FE0007FF807FFC0003FF
+FFFFF00000FFFFFFC000003FFFFE00000007FFE000002A2A7DA82F>I<00000F8000003F
+C000007FE00000FFE00000FFE00000FFE00000FFE00000FFC00000FF8000007F0000003E
+000000000000000000000000000000000000000000000000000000000000000000000000
+00000000000000000000000000003F800000FFE00001FFF80003FFFC0007E3FC000F83FE
+001F03FE003F03FE003E03FE007E07FE007C07FE00FC07FE00F80FFE00F80FFC00F81FFC
+00F01FF800001FF800003FF800003FF000007FF000007FE000007FE00000FFE00000FFC0
+0001FFC00001FF800001FF80F003FF81F003FF01F007FF01F007FE03F007FE03E007FE07
+E007FC07C007FC0FC007FC0F8007FC1F0003FC7E0003FFFC0001FFF800007FF000001FC0
+001C417DBF25>105 D<00001FFC000000FFFF800001FFFFC00007FFFFE0000FF80FF000
+1FC003F8003F8007F8003F000FF8007E001FF8007E001FF8007E001FF800FE001FF000FE
+001FF000FF000FE000FFE0078000FFFF000000FFFFF000007FFFFC00007FFFFE00003FFF
+FF00001FFFFF80000FFFFFC00007FFFFE00000FFFFE0000007FFE00300007FE01FC0001F
+E03FE0000FE07FF0000FE07FF00007E0FFF0000FE0FFE0000FC0FFE0000FC0FFE0001F80
+FFC0001F807F00007F007F0000FE003FE007FC001FFFFFF8000FFFFFE00003FFFF800000
+7FFC0000252A7BA830>115 D<0001FF0007F000000FFFC01FFE00003FFFF07FFF00007F
+FFF8FFFF8000FF07FDFC3FC001F803FFF01FC003F003FFE03FE007E001FFC07FE00FC001
+FFC0FFE01F8001FF80FFE01F0003FF80FFE03F0003FF81FFC03E0003FF01FFC03E0003FF
+00FF803E0007FF007F003C0007FE003E00000007FE000000000007FE00000000000FFE00
+000000000FFC00000000000FFC00000000000FFC00000000001FFC00000000001FF80000
+0000001FF800000000001FF80000000F803FF80007801FC03FF0000F803FE03FF0000F80
+7FF03FF0000F807FF07FF0001F80FFE07FF0001F00FFE07FE0003F00FFE0FFE0007E00FF
+C0FFE000FC00FF81FFF001F8007F03FFF007F0007F0FEFFC1FE0003FFFC7FFFFC0001FFF
+83FFFF80000FFF00FFFE000003FC001FF00000332A7DA83C>120
+D<003F800000000000FFE000003E0001FFF800007F0003FFFC0000FF8007E3FC0001FF80
+0F83FE0001FF801F03FE0003FF803F03FE0003FF003E03FE0003FF007E07FE0003FF007C
+07FE0007FF00FC07FE0007FE00F80FFE0007FE00F80FFC0007FE00F81FFC000FFE00F01F
+F8000FFC00001FF8000FFC00003FF8000FFC00003FF0001FFC00003FF0001FF800007FF0
+001FF800007FE0001FF800007FE0003FF80000FFE0003FF00000FFC0003FF00000FFC000
+3FF00000FFC0007FF00001FFC0007FE00001FF80007FE00001FF80007FE00001FF8000FF
+E00001FF8000FFC00001FF8000FFC00000FF8001FFC00000FF8003FFC00000FFC007FF80
+00007FC01FFF8000003FF07FFF8000001FFFFFFF8000000FFFFFFF00000007FFFBFF0000
+0000FFC3FF000000000007FF000000000007FE000000400007FE000003F0000FFE000007
+F8000FFC00000FFC001FF800001FFC003FF800001FFC003FF000001FFC007FE000001FF8
+00FFC000001FF801FF8000001FF003FF0000001FE00FFE0000000FF03FF800000007FFFF
+F000000003FFFFC000000001FFFE00000000003FF000000000313C7DA836>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FP cmr5 5 10
+/FP 10 58 df<01FC0007FF000F07801C01C03800E03800E07800F0700070700070F000
+78F00078F00078F00078F00078F00078F00078F00078F00078F00078F000787000707000
+707800F03800E03800E01C01C00F078007FF0001FC00151D7D9B1C>48
+D<00600001E0000FE000FFE000F1E00001E00001E00001E00001E00001E00001E00001E0
+0001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E0
+0001E00001E0007FFF807FFF80111C7B9B1C>I<03FC000FFF003C0FC07003E07801F0FC
+00F0FC00F8FC00F8FC00787800780000F80000F00000F00001E00003C0000780000F0000
+1C0000380000E00001C0180380180600180C00383FFFF07FFFF0FFFFF0FFFFF0151C7D9B
+1C>I<01FC000FFF801E07C03001E07C01F07C00F07E00F07C01F03801E00003E00007C0
+001F8003FE0003FC000007800003C00001E00000F00000F83000F87800F8FC00F8FC00F8
+FC00F07801F07003E03C07C00FFF0003FC00151D7D9B1C>I<0001C00003C00007C0000F
+C0000FC0001BC00033C00073C000E3C001C3C00383C00303C00603C00C03C01C03C03803
+C07003C0E003C0FFFFFEFFFFFE0003C00003C00003C00003C00003C00003C0007FFE007F
+FE171C7E9B1C>I<1C00E01FFFE01FFFC01FFF001FFC0018000018000018000018000018
+000018FC001BFF001F07C01C01E01801E01800F00000F00000F80000F87000F8F800F8F8
+00F8F800F0F801F06001E07003C03C0F800FFF0003F800151D7D9B1C>I<003F8000FFC0
+03C0E00700F00E01F01C01F03800E038000078000070000070FF00F3FF80F601C0F400E0
+F800F0F80070F00078F00078F00078F000787000787000787800703800703800E01C01C0
+0F038007FF0001FC00151D7D9B1C>I<6000007FFFF87FFFF87FFFF07FFFE0E000C0C000
+C0C00180C00300000600000C0000180000180000300000700000700000F00000E00001E0
+0001E00001E00001E00003E00003E00003E00003E00003E00003E00001C000151D7C9B1C
+>I<01FC0007FF801E03C03800E03000707000707000707800707E00707F00E03FC1C01F
+F7800FFE0003FF0007FF800F7FE03C1FE07807F07001F8E000F8E00078E00038E00038E0
+00307000703800E01E03C00FFF0001FC00151D7D9B1C>I<01FC0007FF000F07801C01C0
+3800E07800E07000F0F00070F00070F00078F00078F00078F000787000F87800F8380178
+1C03780FFE7807F8780000700000F00000E03800E07C01C07C0380780700381E001FFC00
+07F000151D7D9B1C>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FQ cmsy7 7 11
+/FQ 11 106 df<FFFFFFFFFEFFFFFFFFFEFFFFFFFFFE27037A8F34>0
+D<7FFFFF0000FFFFFFE0007FFFFFF800000001FE000000003F000000000F8000000003C0
+00000001E000000000F0000000007000000000780000000038000000003C000000001C00
+0000001C000000001E000000000E000000000E000000000E000000000E000000000E0000
+00000E000000000E000000001E000000001C000000001C000000003C0000000038000000
+0078000000007000000000F000000001E000000003C00000000F800000003F00000001FE
+007FFFFFF800FFFFFFE0007FFFFF000027277AA134>27 D<00E001F003F803F803F807F0
+07F007F007E007E00FE00FC00FC00FC01F801F801F001F003F003E003E003E007C007C00
+7C007800F800F800F00010000D1E7D9F13>48 D<6000000060E0000000E0F0000001E070
+000001C070000001C078000003C038000003803C000007801C000007001E00000F000E00
+000E000E00000E000F00001E0007FFFFFC0007FFFFFC0003FFFFF80003C000780001C000
+700001C000700001E000F00000E000E00000F001E000007001C000007001C000007803C0
+000038038000003C078000001C070000001E0F0000000E0E0000000E0E0000000F1E0000
+00071C00000007BC00000003B800000003F800000001F000000001F000000001F0000000
+00E000000000E0000023297FA726>56 D<FFFFFFF8FFFFFFF8FFFFFFF800000038000000
+380000003800000038000000380000003800000038000000380000003800000038000000
+38000000380000003800000038000000383FFFFFF87FFFFFF87FFFFFF800000038000000
+380000003800000038000000380000003800000038000000380000003800000038000000
+380000003800000038000000380000003800000038FFFFFFF8FFFFFFF8FFFFFFF81D287C
+A726>I<FFFFFFFFF0FFFFFFFFF0FFFFFFFFF00000000070000000007000000000700000
+000070000000007000000000700000000070000000007000000000700000000070000000
+00700000000070000000007024107C942D>I<00000600000000000E00000000000E0000
+0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
+0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
+0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
+0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
+0000000E00000000000E00000000000E00000000000E00000000000E00000000000E0000
+0000000E00000000000E00000000000E00000000000E0000007FFFFFFFFFE0FFFFFFFFFF
+E07FFFFFFFFFE02B287CA734>63 D<00006000000000F000000000F000000001F8000000
+01F800000003FC000000039C000000079E000000070E0000000F0F0000000E070000001E
+078000001C038000003C03C000003801C000007801E000007000E00000F000F00000E000
+700001E000780001C000380003C0003C000380001C000780001E000700000E000F00000F
+000E000007001E000007801C000003803C000003C038000001C078000001E070000000E0
+F0000000F0E000000070E00000003024247CA22D>94 D<E000000030E000000070F00000
+00F070000000E078000001E038000001C03C000003C01C000003801E000007800E000007
+000F00000F000700000E000780001E000380001C0003C0003C0001C000380001E0007800
+00E000700000F000F000007000E000007801E000003801C000003C03C000001C03800000
+1E078000000E070000000F0F000000070E000000079E000000039C00000003FC00000001
+F800000001F800000000F000000000F00000000060000024247CA22D>I<0006000E001E
+001C001C003C00380078007000F000E001E001C001C003C00380078007000F000E000E00
+1E001C003C003800780070007000F000E000F00070007000780038003C001C001E000E00
+0E000F0007000780038003C001C001C001E000E000F0007000780038003C001C001C001E
+000E00060F3B79AB1B>104 D<E000E000F00070007000780038003C001C001E000E000E
+00070007000780038003C001C001E000E000E000F0007000780038003C001C001C001E00
+0E001E001C001C003C00380078007000F000E000E001E001C003C00380078007000F000F
+000E001E001C003C003800780070007000F000E000E0000F3B7CAB1B>I
+E
+%EndDVIPSBitmapFont
+/FR 136[60 1[46 28 32 37 2[42 46 4[23 46 2[37 21[65 11[60
+8[28 58[{TeXBase1Encoding ReEncodeFont}13 83.022 /Times-Bold
+rf
+%DVIPSBitmapFont: FS cmmi7 7 18
+/FS 18 121 df<000300000000000000078000000000000007000000000000000F000000
+000000001E000000000000001E000000000000003C000000000000007800000000000000
+F800000000000001F000000000000003E000000000000007C00000000000000F80000000
+0000001F000000000000007FFFFFFFFFFFFF80FFFFFFFFFFFFFF80FFFFFFFFFFFFFF8039
+117C9D42>40 D<00000000006000000000000000F0000000000000007000000000000000
+78000000000000003C000000000000003C000000000000001E000000000000000F000000
+000000000F8000000000000007C000000000000003E000000000000001F0000000000000
+00F8000000000000007C00FFFFFFFFFFFFFF00FFFFFFFFFFFFFF80FFFFFFFFFFFFFF8039
+117C9D42>42 D<60000000F8000000FC000000FF000000EFC00000E7F00000E1F80000E0
+7E0000E01F8000E00FC000E003F000E000FC00E0007F00E0001F80E00007E0E00001F8E0
+0000F8E00001F8E00007E0E0001F80E0007F00E000FC00E003F000E00FC000E01F8000E0
+7E0000E1F80000E7F00000EFC00000FF000000FC000000F8000000600000001D217E9E22
+>46 D<387CFEFEFE7C3807077A8614>58 D<387CFEFFFF7F3B0303030606060C18387020
+08127A8614>I<003FFFFFF800003FFFFFFF000001FC001FC00001F80007E00001F80003
+F00003F80001F00003F80001F00003F00001F80003F00001F80007F00001F80007F00001
+F00007E00003F00007E00003E0000FE00007E0000FE0000FC0000FC0001F80000FC0007E
+00001FC001FC00001FFFFFF000001FFFFFF000001F8001FC00003F80007E00003F80003F
+00003F00001F80003F00000F80007F00000FC0007F00000FC0007E00000FC0007E00000F
+C000FE00000FC000FE00001F8000FC00001F8000FC00003F0001FC00003E0001FC0000FE
+0001F80001F80001F80003F00003F8001FC000FFFFFFFF0000FFFFFFF800002D287DA732
+>66 D<000001FF000800000FFFE01800007F80F0380001F80018700003E0000CF0000F80
+0007F0001F000003F0003E000003E0007C000003E000F8000001E001F0000001E003E000
+0001C007C0000001C00FC0000001C00F80000001C01F80000001801F00000001803F0000
+0000003F00000000007E00000000007E00000000007E00000000007E00000000007C0000
+000000FC0000000000FC0000000000FC00000006007C0000000C007C0000000C007C0000
+000C007C00000018007E00000030003E00000030003E00000060001F000000C0000F8000
+01800007800003000003E0000E000001F00038000000FE01F00000003FFFC000000007FC
+0000002D2A7DA830>I<003FFFFFFFFC003FFFFFFFFC0001FC0001FC0001F800007C0001
+F800003C0003F80000380003F80000180003F00000180003F00000180007F00000180007
+F00000180007E000C0180007E000C018000FE001C000000FE0018000000FC0018000000F
+C0038000001FC00F8000001FFFFF0000001FFFFF0000001F800F0000003F80070000003F
+80060000003F00060000003F00060000007F000E00E0007F000C00C0007E000000C0007E
+000001C000FE0000038000FE0000038000FC0000070000FC0000070001FC00000E0001FC
+00001E0001F800003C0001F80000FC0003F80007F800FFFFFFFFF800FFFFFFFFF0002E28
+7DA731>69 D<003FFFF0003FFFF00001FC000001F8000001F8000003F8000003F8000003
+F0000003F0000007F0000007F0000007E0000007E000000FE000000FE000000FC000000F
+C000001FC000001FC000001F8000001F8000003F8000003F8000003F0000003F0000007F
+0000007F0000007E0000007E000000FE000000FE000000FC000000FC000001FC000001FC
+000001F8000001F8000003F80000FFFFC000FFFFC0001C287DA71D>73
+D<003FFFF800003FFFF8000001FC00000001F800000001F800000003F800000003F80000
+0003F000000003F000000007F000000007F000000007E000000007E00000000FE0000000
+0FE00000000FC00000000FC00000001FC00000001FC00000001F800000001F800000003F
+800000003F800000003F000000003F000000007F00001C007F000018007E000018007E00
+003800FE00003000FE00007000FC00006000FC0000E001FC0001E001FC0003C001F80007
+C001F8000F8003F8007F80FFFFFFFF80FFFFFFFF0026287DA72E>76
+D<003FFFFFE000003FFFFFFC000001FC007F000001F8000F800001F80007C00003F80007
+E00003F80003E00003F00003E00003F00003F00007F00003F00007F00007E00007E00007
+E00007E00007E0000FE0000FC0000FE0000F80000FC0001F00000FC0003E00001FC000F8
+00001FC007F000001FFFFF8000001FFFFF8000003F800FE000003F8003F000003F0003F8
+00003F0001F800007F0001F800007F0001F800007E0001F800007E0001F80000FE0003F8
+0000FE0003F80000FC0003F00000FC0003F00001FC0003F00801FC0003F01801F80003E0
+1801F80003E03803F80003F070FFFFC001F0E0FFFFC000FFC0000000003F002D297DA732
+>82 D<003FFFE00FFFC0003FFFE00FFFC00001FF0001FC000000FE0001F0000000FE0001
+C00000007F0003800000007F0007000000003F000E000000003F801C000000001F803800
+0000001FC070000000001FC0E0000000000FE1C0000000000FE3800000000007F7000000
+000007FE000000000003FC000000000003F8000000000001FC000000000001FC00000000
+0001FE000000000003FE0000000000077F00000000000E7F00000000001C3F0000000000
+183F8000000000301F8000000000601FC000000000C01FC000000001800FE00000000300
+0FE0000000060007F00000000C0007F0000000380003F8000000700003F8000000F00001
+FC000001E00001FC00000FF00003FE0000FFFC001FFFE000FFFC001FFFE00032287DA736
+>88 D<001F8000007FC00000F0E70003C03F0007803F000F001F000F001F001E001F003E
+003E003C003E007C003E007C003E00F8007C00F8007C00F8007C00F8007C00F000F800F0
+00F830F000F830F000F830F001F060F001F0607803F060780EF0C03C1CF9801FF07F8007
+C01E001C1B7C9924>97 D<000E00001F00003F00003F00003E00001C0000000000000000
+000000000000000000000000000003E00007F0000C7800187C00307C00307C00607C0060
+F800C0F800C0F80001F00001F00001F00003E00003E00007C00007C00007C1800F81800F
+81801F03001F03001F06000F0C000F1C0007F00003E00011287DA617>105
+D<07801FC007E0000FE07FF01FF80018F0E0F8783C0030F1807CE03E0030FB007D801E00
+60FE003F001E0060FC003F001E0060F8003E001E00C1F8007C003E00C1F0007C003E0001
+F0007C003E0001F0007C003E0003E000F8007C0003E000F8007C0003E000F8007C0003E0
+00F800F80007C001F000F80007C001F000F83007C001F001F03007C001F001F0300F8003
+E003E0600F8003E003E0600F8003E003E0C00F8003E001E1801F0007C001E3801F0007C0
+00FF000E000380007C00341B7D993B>109 D<07801FC0000FE07FF00018F0E0F80030F1
+807C0030FB007C0060FE003C0060FC003C0060F8003C00C1F8007C00C1F0007C0001F000
+7C0001F0007C0003E000F80003E000F80003E000F80003E001F00007C001F00007C001F0
+6007C003E06007C003E0600F8007C0C00F8007C0C00F8007C1800F8003C3001F0003C700
+1F0001FE000E0000F800231B7D9929>I<03E000000007F00038000C78007C00187C007C
+00307C00F800307C00F800607C00F80060F800F800C0F801F000C0F801F00001F001F000
+01F001F00001F003E00003E003E00003E003E00003E003E00007C007C00007C007C18007
+C007C18007C007C18007C00F830007C00F830003C01F830003E037860001F0E7CE0000FF
+C3FC00003F00F000211B7D9927>117 D<007C03C001FF0FF007079C300E03B0780C03F0
+F81803E1F83003E1F83003E1F06007C0E06007C0000007C0000007C000000F8000000F80
+00000F8000000F8000001F0000001F0030381F00307C1F0060FC3E0060FC3E00C0F87E00
+C0F06F038070C707003F83FE001F01F8001D1B7D9926>120 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FT cmsy10 10 18
+/FT 18 107 df<7FFFFFFFFFFF80FFFFFFFFFFFFC0FFFFFFFFFFFFC07FFFFFFFFFFF8032
+04799641>0 D<001FF00000FFFE0001FFFF0007FFFFC00FFFFFE01FFFFFF03FFFFFF83F
+FFFFF87FFFFFFC7FFFFFFC7FFFFFFCFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFEFFFFFFFEFF
+FFFFFEFFFFFFFEFFFFFFFEFFFFFFFE7FFFFFFC7FFFFFFC7FFFFFFC3FFFFFF83FFFFFF81F
+FFFFF00FFFFFE007FFFFC001FFFF0000FFFE00001FF0001F1F7BA42A>15
+D<00000000000180000000000007C000000000001FC000000000007F800000000001FF00
+0000000007FC00000000001FF000000000007FC00000000001FF000000000007FC000000
+00001FF000000000007FC00000000001FF000000000007FC00000000001FF00000000000
+7FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001FF00
+0000000007FC00000000003FF000000000007FC00000000000FF000000000000FE000000
+0000007F8000000000003FE000000000000FF8000000000003FE000000000000FF800000
+0000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000
+0000000FF8000000000003FE000000000000FF8000000000003FE000000000000FF80000
+00000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE0000
+00000000FF8000000000003FC000000000000FC000000000000380000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+00000000000000000000000000000000007FFFFFFFFFFF80FFFFFFFFFFFFC0FFFFFFFFFF
+FFC07FFFFFFFFFFF80324479B441>20 D<7FFFFFFC000000FFFFFFFFC00000FFFFFFFFF0
+00007FFFFFFFFC000000000007FE0000000000007F8000000000001FC0000000000007E0
+000000000003F0000000000001F8000000000000FC0000000000007C0000000000003E00
+00000000003E0000000000001F0000000000001F0000000000000F8000000000000F8000
+000000000780000000000007C0000000000007C0000000000003C0000000000003C00000
+00000003C0000000000003C0000000000003C0000000000003C0000000000003C0000000
+000003C0000000000007C0000000000007C00000000000078000000000000F8000000000
+000F8000000000001F0000000000001F0000000000003E0000000000003E000000000000
+7C000000000000FC000000000001F8000000000003F0000000000007E000000000001FC0
+00000000007F800000000007FE00007FFFFFFFFC0000FFFFFFFFF00000FFFFFFFFC00000
+7FFFFFFC000000323279AD41>27 D<0000000000001E00000000000000001E0000000000
+0000001E00000000000000001E00000000000000001F00000000000000000F0000000000
+0000000F00000000000000000F800000000000000007800000000000000007C000000000
+00000003E00000000000000003E00000000000000001F00000000000000000F800000000
+00000000FC00000000000000007E00000000000000003F00000000000000001F80000000
+000000000FC00000000000000007F07FFFFFFFFFFFFFFFFCFFFFFFFFFFFFFFFFFFFFFFFF
+FFFFFFFFFFFF7FFFFFFFFFFFFFFFFC0000000000000007F0000000000000000FC0000000
+000000001F80000000000000003F00000000000000007E0000000000000000FC00000000
+00000000F80000000000000001F00000000000000003E00000000000000003E000000000
+00000007C0000000000000000780000000000000000F80000000000000000F0000000000
+0000000F00000000000000001F00000000000000001E00000000000000001E0000000000
+0000001E00000000000000001E0000482C7BAA53>33 D<000FF000000007F000003FFE00
+00003FFE0000FFFF800000FFFF0003FFFFC00003F807C007F07FF00007C001E00F801FF8
+000F8000F00F0007FC003E0000701E0003FE007C0000383C0001FF007800001C380000FF
+80F000001C7000007FC1F000000E7000003FE3E000000E6000001FF3C00000066000001F
+F780000006E000000FFF80000007C0000007FF00000003C0000003FE00000003C0000003
+FE00000003C0000001FF00000003C0000000FF80000003C00000007FC0000003C0000000
+7FC0000003C0000000FFE0000003E0000001FFF000000760000001EFF800000660000003
+CFF800000670000007C7FC00000E7000000F83FE00000E3800000F01FF00001C3800001E
+00FF80003C1C00003E007FC000780E00007C003FE000F00F0001F0001FF801F0078003E0
+000FFE0FE003E01FC00003FFFFC000FFFF000001FFFF00007FFC0000007FFC00000FE000
+00000FF00048267BA453>49 D<00001FFFFE0000FFFFFF0003FFFFFF000FFFFFFE001FF0
+0000007F80000000FE00000001F800000003F000000007E00000000FC00000000F800000
+001F000000001F000000003E000000003E000000007C000000007C000000007800000000
+F800000000F800000000F000000000F000000000FFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFF
+FFFFFFFEF000000000F000000000F800000000F80000000078000000007C000000007C00
+0000003E000000003E000000001F000000001F000000000F800000000FC000000007E000
+000003F000000001F800000000FE000000007F800000001FF00000000FFFFFFE0003FFFF
+FF0000FFFFFF00001FFFFE283279AD37>I<600000000018F0000000003CF8000000007C
+F8000000007C7800000000787C00000000F87C00000000F83C00000000F03E00000001F0
+3E00000001F01F00000003E01F00000003E00F00000003C00F80000007C00F80000007C0
+07800000078007C000000F8007C000000F8003E000001F0003E000001F0001FFFFFFFE00
+01FFFFFFFE0001FFFFFFFE0000FFFFFFFC0000F800007C0000F800007C00007C0000F800
+007C0000F800003C0000F000003E0001F000003E0001F000001E0001E000001F0003E000
+001F0003E000000F8007C000000F8007C0000007800780000007C00F80000007C00F8000
+0003C00F00000003E01F00000003E01F00000001F03E00000001F03E00000000F03C0000
+0000F87C00000000F87C000000007878000000007CF8000000007CF8000000003FF00000
+00003FF0000000001FE0000000001FE0000000001FE0000000000FC0000000000FC00000
+00000FC000000000078000000000030000002E3C80B92F>56 D<7FFFFFFFF0FFFFFFFFF8
+FFFFFFFFF87FFFFFFFF80000000078000000007800000000780000000078000000007800
+000000780000000078000000007800000000780000000078000000007800000000780000
+000078000000007800000000780000000078000000007800000000780000000078000000
+00780000000078000000007800000000783FFFFFFFF87FFFFFFFF87FFFFFFFF83FFFFFFF
+F80000000078000000007800000000780000000078000000007800000000780000000078
+000000007800000000780000000078000000007800000000780000000078000000007800
+000000780000000078000000007800000000780000000078000000007800000000780000
+00007800000000787FFFFFFFF8FFFFFFFFF8FFFFFFFFF87FFFFFFFF0253A7CB92E>I<7F
+FFFFFFFFF8FFFFFFFFFFFCFFFFFFFFFFFC7FFFFFFFFFFC00000000003C00000000003C00
+000000003C00000000003C00000000003C00000000003C00000000003C00000000003C00
+000000003C00000000003C00000000003C00000000003C00000000003C00000000003C00
+000000003C00000000003C00000000003C00000000003C0000000000182E177C9D37>I<
+000000300000000000007800000000000078000000000000780000000000007800000000
+000078000000000000780000000000007800000000000078000000000000780000000000
+007800000000000078000000000000780000000000007800000000000078000000000000
+780000000000007800000000000078000000000000780000000000007800000000000078
+000000000000780000000000007800000000000078000000000000780000000000007800
+000000000078000000000000780000000000007800000000000078000000000000780000
+000000007800000000000078000000000000780000000000007800000000000078000000
+000000780000000000007800000000000078000000000000780000000000007800000000
+000078000000000000780000000000007800000000000078000000000000780000000000
+00780000000000007800000000000078000000000000780000007FFFFFFFFFFFF8FFFFFF
+FFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF836367BB541>63 D<00000300000000000780
+000000000FC0000000000FC0000000001FE0000000001FE0000000001FE0000000003FF0
+000000003FF0000000007CF8000000007CF800000000F87C00000000F87C00000000F03C
+00000001F03E00000001F03E00000003E01F00000003E01F00000007C00F80000007C00F
+8000000F8007C000000F8007C000000F0003C000001F0003E000001F0003E000003E0001
+F000003E0001F000007C0000F800007C0000F80000780000780000F800007C0000F80000
+7C0001F000003E0001F000003E0003E000001F0003E000001F0007C000000F8007C00000
+0F800780000007800F80000007C00F80000007C01F00000003E01F00000003E03E000000
+01F03E00000001F03C00000000F07C00000000F87C00000000F8F8000000007CF8000000
+007CF0000000003C6000000000182E347CB137>94 D<600000000018F0000000003CF800
+0000007CF8000000007C7C00000000F87C00000000F83C00000000F03E00000001F03E00
+000001F01F00000003E01F00000003E00F80000007C00F80000007C007800000078007C0
+00000F8007C000000F8003E000001F0003E000001F0001F000003E0001F000003E0000F8
+00007C0000F800007C00007800007800007C0000F800007C0000F800003E0001F000003E
+0001F000001F0003E000001F0003E000000F0003C000000F8007C000000F8007C0000007
+C00F80000007C00F80000003E01F00000003E01F00000001F03E00000001F03E00000000
+F03C00000000F87C00000000F87C000000007CF8000000007CF8000000003FF000000000
+3FF0000000001FE0000000001FE0000000001FE0000000000FC0000000000FC000000000
+078000000000030000002E347CB137>I<000001F800000FF800003F800000FC000001F8
+000003F0000007E0000007E000000FE000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000001FC000001F8000003F8000007F000000FE000003F800007FE000
+00FF0000007FE0000003F8000000FE0000007F0000003F8000001F8000001FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FE0000007E0000007E0
+000003F0000001F8000000FC0000003F8000000FF8000001F81D537ABD2A>102
+D<FC000000FFC0000007F0000001FC0000007E0000003F0000003F8000001F8000001FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FE0000007E0
+000007F0000003F8000001FC0000007E0000001FF0000007F800001FF000007E000001FC
+000003F8000007F0000007E000000FE000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0
+00000FC000000FC000001FC000001F8000003F8000003F0000007E000001FC000007F000
+00FFC00000FC0000001D537ABD2A>I<0000C00001E00003E00003E00003C00007C00007
+C0000780000F80000F80001F00001F00001E00003E00003E00007C00007C0000780000F8
+0000F80001F00001F00001E00003E00003E00003C00007C00007C0000F80000F80000F00
+001F00001F00003E00003E00003C00007C00007C0000780000F80000F80000F80000F800
+007800007C00007C00003C00003E00003E00001F00001F00000F00000F80000F800007C0
+0007C00003C00003E00003E00001E00001F00001F00000F80000F800007800007C00007C
+00003E00003E00001E00001F00001F00000F80000F800007800007C00007C00003C00003
+E00003E00001E00000C0135278BD20>I<600000F00000F80000F800007800007C00007C
+00003C00003E00003E00001F00001F00000F00000F80000F800007C00007C00003C00003
+E00003E00001F00001F00000F00000F80000F800007800007C00007C00003E00003E0000
+1E00001F00001F00000F80000F800007800007C00007C00003C00003E00003E00003E000
+03E00003C00007C00007C0000780000F80000F80001F00001F00001E00003E00003E0000
+7C00007C0000780000F80000F80000F00001F00001F00003E00003E00003C00007C00007
+C0000F80000F80000F00001F00001F00003E00003E00003C00007C00007C0000780000F8
+0000F80000F0000060000013527CBD20>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F060045377BD17>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FU cmmi10 10 30
+/FU 30 123 df<003FFFFFFFE000FFFFFFFFF001FFFFFFFFF007FFFFFFFFF007FFFFFFFF
+E00F80700600001E00600E00003C00600C00003800E00C00007000C00C0000E000C01C00
+00C001C01C00000001C01C00000001801C00000003803800000003803800000007803800
+00000700380000000700380000000F00380000000F00780000001E007C0000001E007C00
+00001E007C0000003E007C0000003C007C0000007C007C0000007C007E000000FC007E00
+0000F8007E000001F8007E000001F8007F000003F8007F000003F0003F000003F0003F00
+0003F0003F000001C0001C00002C257EA32F>25 D<00007FFFFFC00003FFFFFFE0000FFF
+FFFFE0001FFFFFFFE0007FFFFFFFC000FF81FE000001FC007E000003F8003F000007F000
+3F000007E0001F00000FC0001F80001F80001F80001F80001F80003F00001F80003F0000
+1F80007E00001F80007E00001F80007E00003F8000FE00003F0000FC00003F0000FC0000
+3F0000FC00007F0000FC00007E0000F800007E0000F80000FC0000F80000FC0000F80001
+F80000F80001F80000F80003F000007C0007E000007C0007C000003C000F8000003E003F
+0000001F007C0000000F81F800000003FFE0000000007F000000002B257DA32F>27
+D<1C007F00FF80FF80FF80FF80FF807F001C000909798817>58 D<1C007F00FF80FF80FF
+C0FFC0FFC07FC01CC000C000C000C000C001C00180018003800300070006000E001C0038
+00700060000A19798817>I<0000000000038000000000000FC000000000003FC0000000
+0000FF800000000003FE00000000000FF800000000003FE00000000000FF800000000003
+FE00000000000FF800000000003FE00000000000FF800000000003FE00000000000FF800
+000000003FE00000000000FF800000000003FE00000000000FF800000000003FE0000000
+0000FF800000000003FE00000000000FF800000000003FE000000000007F800000000000
+FE000000000000FE0000000000007F8000000000003FE000000000000FF8000000000003
+FE000000000000FF8000000000003FE000000000000FF8000000000003FE000000000000
+FF8000000000003FE000000000000FF8000000000003FE000000000000FF800000000000
+3FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000000000
+0FF8000000000003FE000000000000FF8000000000003FC000000000000FC00000000000
+0380323279AD41>I<00000C00000000000C00000000000C00000000000C00000000000C
+00000000001E00000000001E00000000001E00000000001E00000000001E00000000001E
+00000000001E00000000001E00000000003F00000000003F000000FC003F000FC07FF03F
+03FF801FFFBF7FFE0003FFFFFFF00000FFFFFFC000003FFFFF0000000FFFFC00000003FF
+F000000000FFC000000001FFE000000001FFE000000003FFF000000003FFF000000007F3
+F800000007E1F80000000FC0FC0000000F807C0000001F003E0000003E001F0000003C00
+0F000000780007800000700003800000E00001C00000C00000C0000080000040002A2880
+A82A>63 D<00000000006000000000000070000000000000F0000000000001F000000000
+0001F0000000000003F0000000000003F0000000000007F000000000000FF00000000000
+0FF000000000001FF800000000001FF8000000000033F8000000000073F8000000000063
+F80000000000C3F80000000000C3F8000000000183F8000000000183F8000000000303F8
+000000000603F8000000000603FC000000000C03FC000000000C01FC000000001801FC00
+0000003001FC000000003001FC000000006001FC000000006001FC00000000C001FC0000
+0001C001FC000000018001FC000000030001FE000000030001FE000000060000FE000000
+0E0000FE0000000C0000FE000000180000FE0000001FFFFFFE0000003FFFFFFE0000003F
+FFFFFE000000600000FE000000C00000FE000000C00000FF000001800000FF0000018000
+007F0000030000007F0000060000007F0000060000007F00000C0000007F00000C000000
+7F0000180000007F0000380000007F0000700000007F0000F00000007F8001F80000007F
+8007F8000000FF80FFFF80003FFFFFFFFF80007FFFFFFFFF80007FFFFF383C7DBB3E>65
+D<0003FFFFFFFF80000007FFFFFFFFF0000007FFFFFFFFFC00000007F80003FE00000007
+F00000FF00000007F000007F8000000FF000003FC000000FF000001FC000000FE000001F
+E000000FE000001FE000001FE000001FE000001FE000001FE000001FC000001FE000001F
+C000001FE000003FC000001FE000003FC000001FC000003F8000003FC000003F8000003F
+8000007F8000007F8000007F8000007F0000007F000000FE0000007F000001FC000000FF
+000003F8000000FF00000FF0000000FE00001FC0000000FE0000FF00000001FFFFFFFC00
+000001FFFFFFF800000001FC0000FF00000001FC00003FC0000003FC00000FE0000003FC
+000007F0000003F8000007F0000003F8000003F8000007F8000003F8000007F8000003FC
+000007F0000001FC000007F0000001FC00000FF0000001FC00000FF0000003FC00000FE0
+000003FC00000FE0000003FC00001FE0000003FC00001FE0000007F800001FC0000007F8
+00001FC000000FF000003FC000000FF000003FC000001FE000003F8000003FC000003F80
+00007F8000007F800000FF0000007F800001FE0000007F000007FC000000FF00003FF000
+00FFFFFFFFFFC00000FFFFFFFFFF000000FFFFFFFFF80000003B397DB83F>I<00000000
+FF8001C00000000FFFE001C00000007FFFF80380000001FF807E0780000007F8000F0F80
+00001FE000079F8000003F800003BF000000FF000001FF000001FC000000FF000003F800
+0000FF000007F00000007E00000FE00000007E00001FC00000007E00003F800000003E00
+007F800000003C0000FF000000003C0000FE000000003C0001FE000000003C0003FC0000
+0000380003F800000000380007F80000000038000FF00000000038000FF0000000003000
+1FF00000000030001FE00000000000001FE00000000000003FC00000000000003FC00000
+000000003FC00000000000007FC00000000000007F800000000000007F80000000000000
+7F80000000000000FF80000000000000FF00000000000000FF00000000000000FF000000
+00000000FF00000000000000FF00000000030000FF00000000030000FF00000000070000
+FF00000000060000FF000000000600007F000000000E00007F000000000C00007F000000
+001C00007F000000003800003F800000003800003F800000007000001F80000000E00000
+1FC0000001C000000FE00000038000000FE000000780000007F000000E00000003F80000
+3C00000001FC00007800000000FF0001F0000000003FE00FC0000000000FFFFF00000000
+0003FFFC0000000000007FC0000000003A3D7CBA3B>I<0003FFFFFFFF00000007FFFFFF
+FFE0000007FFFFFFFFF800000007F80007FE00000007F00000FF00000007F000003F8000
+000FF000001FC000000FF000000FC000000FE000000FE000000FE0000007F000001FE000
+0003F000001FE0000003F000001FC0000003F800001FC0000001F800003FC0000001F800
+003FC0000001FC00003F80000001FC00003F80000001FC00007F80000001FC00007F8000
+0001FC00007F00000001FC00007F00000001FC0000FF00000001FC0000FF00000003FC00
+00FE00000003FC0000FE00000003FC0001FE00000003FC0001FE00000003F80001FC0000
+0007F80001FC00000007F80003FC00000007F80003FC00000007F00003F80000000FF000
+03F80000000FF00007F80000000FE00007F80000001FE00007F00000001FC00007F00000
+001FC0000FF00000003F80000FF00000003F80000FE00000007F00000FE00000007E0000
+1FE0000000FE00001FE0000001FC00001FC0000001F800001FC0000003F000003FC00000
+07E000003FC000000FC000003F8000001F8000003F8000007F0000007F800000FE000000
+7F800003FC0000007F00000FF0000000FF00007FC00000FFFFFFFFFF000000FFFFFFFFFC
+000000FFFFFFFFC00000003E397DB845>I<0003FFFFFFFFFFF00007FFFFFFFFFFF00007
+FFFFFFFFFFF0000007F800003FF0000007F0000007F0000007F0000003E000000FF00000
+01E000000FF0000000E000000FE0000000E000000FE0000000E000001FE0000000E00000
+1FE0000000E000001FC0000000E000001FC0000000C000003FC0000000C000003FC00000
+00C000003F80003000C000003F80003000C000007F80007000C000007F80007000000000
+7F000060000000007F0000E000000000FF0000E000000000FF0001E000000000FE0003C0
+00000000FE000FC000000001FFFFFFC000000001FFFFFFC000000001FFFFFF8000000001
+FC000F8000000003FC00078000000003FC00078000000003F800030000000003F8000300
+00000007F800070000000007F800070003000007F000060003000007F00006000700000F
+F00006000600000FF00000000600000FE00000000E00000FE00000000C00001FE0000000
+1C00001FE00000001800001FC00000003800001FC00000003800003FC00000007000003F
+C0000000F000003F80000001E000003F80000001E000007F80000007E000007F8000000F
+C000007F0000003FC00000FF000003FF8000FFFFFFFFFFFF8000FFFFFFFFFFFF8000FFFF
+FFFFFFFF00003C397DB83D>I<0003FFFFFFFFFFE00007FFFFFFFFFFE00007FFFFFFFFFF
+E0000007F800003FE0000007F000000FE0000007F0000003C000000FF0000003C000000F
+F0000001C000000FE0000001C000000FE0000001C000001FE0000001C000001FE0000001
+C000001FC0000001C000001FC00000018000003FC00000018000003FC00000018000003F
+800000018000003F800060018000007F8000E0018000007F8000E0000000007F0000C000
+0000007F0000C000000000FF0001C000000000FF0001C000000000FE00038000000000FE
+00078000000001FE001F8000000001FFFFFF8000000001FFFFFF0000000001FFFFFF0000
+000003FC001F0000000003FC000F0000000003F8000E0000000003F8000E0000000007F8
+000E0000000007F8000E0000000007F0000C0000000007F0000C000000000FF0001C0000
+00000FF0001C000000000FE00000000000000FE00000000000001FE00000000000001FE0
+0000000000001FC00000000000001FC00000000000003FC00000000000003FC000000000
+00003F800000000000003F800000000000007F800000000000007F800000000000007F00
+000000000000FF800000000000FFFFFFC000000000FFFFFFC000000000FFFFFFC0000000
+003B397DB835>I<00000000FF8000E00000000FFFF000E00000007FFFFC01C0000001FF
+803E03C0000007FC000F07C000000FE000038FC000003FC00001DF8000007F000000FF80
+0001FE000000FF800003F80000007F800007F00000003F00000FE00000003F00001FC000
+00003F00003F800000001F00007F800000001E0000FF000000001E0000FE000000001E00
+01FE000000001E0003FC000000001C0003F8000000001C0007F8000000001C000FF00000
+00001C000FF00000000018001FF00000000018001FE00000000000001FE0000000000000
+3FC00000000000003FC00000000000003FC00000000000007FC00000000000007F800000
+000000007F800000000000007F80000000000000FF80000000000000FF00000000000000
+FF0000007FFFFE00FF000000FFFFFE00FF000000FFFFFE00FF000000007FC000FF000000
+003F8000FF000000007F8000FF000000007F0000FF000000007F00007F000000007F0000
+7F00000000FF00007F00000000FE00007F80000000FE00003F80000000FE00003F800000
+01FE00001FC0000001FE00001FC0000001FC00000FE0000003FC00000FF0000007FC0000
+07F0000007FC000003FC00001EF8000001FE00003CF80000007F8000F0780000003FF007
+E0780000000FFFFF803000000003FFFE0000000000003FE0000000003B3D7DBA41>I<00
+03FFF8000000003FFF800007FFF8000000007FFF800007FFFC000000007FFF80000007FC
+00000000FF8000000006FC00000001BF0000000006FC00000001BF000000000EFC000000
+037F000000000EFC000000037E000000000CFC000000067E000000000CFC0000000C7E00
+0000001C7E0000000CFE000000001C7E00000018FC00000000187E00000030FC00000000
+187E00000030FC00000000387E00000061FC00000000387E00000061F800000000307E00
+0000C1F800000000307E00000181F800000000703F00000183F800000000703F00000303
+F000000000603F00000603F000000000603F00000603F000000000E03F00000C07F00000
+0000E03F00000C07E000000000C03F00001807E000000000C03F00003007E000000001C0
+1F8000300FE000000001C01F8000600FC000000001801F8000C00FC000000001801F8000
+C00FC000000003801F8001801FC000000003801F8003001F8000000003001F8003001F80
+00000003000FC006001F8000000007000FC006003F8000000007000FC00C003F00000000
+06000FC018003F0000000006000FC018003F000000000E000FC030007F000000000E000F
+C060007E000000000C000FC060007E000000000C0007E0C0007E000000001C0007E0C000
+FE000000001C0007E18000FC00000000180007E30000FC00000000180007E30000FC0000
+0000380007E60001FC00000000380007EC0001F800000000300007EC0001F80000000030
+0003F80001F800000000700003F80003F800000000700003F00003F000000000F00003E0
+0003F000000007FC0003E00007F8000000FFFFE003C007FFFFF00000FFFFE0038007FFFF
+F00000FFFFE0018007FFFFF0000051397CB851>77 D<0003FFF800001FFFF80007FFFC00
+003FFFF80007FFFC00003FFFF8000007FC000001FF00000007FE0000007C00000006FE00
+0000780000000EFF000000700000000E7F000000700000000C7F800000600000000C7F80
+0000600000001C3F800000E00000001C3FC00000C0000000181FC00000C0000000181FE0
+0000C0000000381FE00001C0000000380FF0000180000000300FF00001800000003007F0
+0001800000007007F80003800000007003F80003000000006003FC0003000000006003FC
+000300000000E001FC000700000000E001FE000600000000C000FE000600000000C000FF
+000600000001C0007F000E00000001C0007F800C0000000180007F800C0000000180003F
+800C0000000380003FC01C0000000380001FC0180000000300001FE0180000000300000F
+E0180000000700000FF0380000000700000FF03000000006000007F03000000006000007
+F8300000000E000003F8700000000E000003FC600000000C000003FC600000000C000001
+FE600000001C000001FEE00000001C000000FEC000000018000000FFC000000018000000
+7FC0000000380000007FC0000000380000007F80000000300000003F8000000030000000
+3F80000000700000001F80000000700000001F00000000F00000000F00000007FC000000
+0F000000FFFFE000000F000000FFFFE0000006000000FFFFE000000600000045397DB843
+>I<0003FFFFFFFF00000007FFFFFFFFE0000007FFFFFFFFF800000007F80007FC000000
+07F00000FE00000007F000007F0000000FF000003F8000000FF000001FC000000FE00000
+1FC000000FE000001FC000001FE000001FE000001FE000001FE000001FC000001FE00000
+1FC000001FE000003FC000001FE000003FC000003FC000003F8000003FC000003F800000
+3FC000007F8000007F8000007F8000007F8000007F0000007F0000007F000000FE000000
+FF000001FC000000FF000001F8000000FE000007F0000000FE00000FE0000001FE00003F
+C0000001FE0001FF00000001FFFFFFFC00000001FFFFFFE000000003FC00000000000003
+FC00000000000003F800000000000003F800000000000007F800000000000007F8000000
+00000007F000000000000007F00000000000000FF00000000000000FF00000000000000F
+E00000000000000FE00000000000001FE00000000000001FE00000000000001FC0000000
+0000001FC00000000000003FC00000000000003FC00000000000003F800000000000003F
+800000000000007F800000000000007F800000000000007F00000000000000FF80000000
+0000FFFFFF0000000000FFFFFF0000000000FFFFFF00000000003B397DB835>80
+D<00000001FF00000000001FFFF000000000FE01FC00000003F0007E00000007C0001F80
+00001F80000FC000003E000007E00000FC000003F00001F8000003F00003F0000001F800
+07E0000001F8000FC0000000FC001F80000000FC003F80000000FE007F00000000FE00FE
+00000000FE00FE000000007F01FC000000007F03FC000000007F03F8000000007F07F800
+0000007F07F0000000007F0FF0000000007F0FE000000000FF1FE000000000FF1FE00000
+0000FF3FC000000000FF3FC000000000FF3FC000000000FF7F8000000001FE7F80000000
+01FE7F8000000001FE7F8000000001FEFF0000000003FCFF0000000003FCFF0000000003
+FCFF0000000007F8FF0000000007F8FF0000000007F0FF000000000FF0FF000000000FE0
+FF000000001FE0FF000000001FC0FF000000003F807F000000003F807F000000007F007F
+00000000FE007F0007C000FC003F001FF001F8003F80383803F8001F80701C07F0001F80
+E00C0FE0000FC0C00C1F800007E1C00E3F000007E1800E7E000003F18007F8000001F980
+07F00000007FC00FC00000003FE07F0003000007FFFE0003000000FF8F0007000000000F
+0006000000000F000E000000000F001E000000000F803C000000000F807C000000000FC1
+F8000000000FFFF8000000000FFFF0000000000FFFF0000000000FFFE0000000000FFFC0
+0000000007FF800000000003FE000000000000F80000384B7CBA42>I<0000001FE00380
+000000FFFC0300000003FFFE070000000FE01F8F0000003F0007DF0000007E0001FE0000
+00F80000FE000001F00000FE000003E000007E000003E000007C000007C000003C00000F
+8000003C00000F8000003C00001F8000003800001F0000003800001F0000003800001F00
+00003800003F0000003000003F0000003000003F8000003000003F8000000000003FC000
+000000003FE000000000001FF000000000001FFE00000000001FFFE0000000000FFFFE00
+00000007FFFFC000000003FFFFF000000001FFFFF800000000FFFFFC000000001FFFFE00
+00000003FFFF00000000003FFF000000000003FF800000000000FF8000000000007F8000
+000000003F8000000000001F8000000000001F8000000000001F80000C0000001F80000C
+0000000F80000C0000000F80001C0000001F80001C0000001F00001C0000001F00001C00
+00001F00003C0000003E00003C0000003E00003C0000007C00003E000000F800007E0000
+00F800007F000001F000007F800003E000007FC0000FC00000F9F0001F800000F0FE00FE
+000000E03FFFF8000000E00FFFE0000000C001FF00000000313D7CBA33>83
+D<03FFFFFFFFFFFE03FFFFFFFFFFFE07FFFFFFFFFFFE07F8003FC001FE07C0003F80007E
+0F80003F80003C0F00007F80001C1E00007F80001C1C00007F00001C1C00007F00001C38
+0000FF00001C380000FF00001C300000FE00001C700000FE000018600001FE000018E000
+01FE000018C00001FC000018C00001FC000018C00003FC000018000003FC000000000003
+F8000000000003F8000000000007F8000000000007F8000000000007F0000000000007F0
+00000000000FF000000000000FF000000000000FE000000000000FE000000000001FE000
+000000001FE000000000001FC000000000001FC000000000003FC000000000003FC00000
+0000003F8000000000003F8000000000007F8000000000007F8000000000007F00000000
+00007F000000000000FF000000000000FF000000000000FE000000000000FE0000000000
+01FE000000000001FE000000000001FC000000000001FC000000000003FC000000000003
+FC000000000003F800000000000FFC000000003FFFFFFF0000007FFFFFFF0000007FFFFF
+FF00000037397EB831>I<0001FFFFF8007FFFF00001FFFFF800FFFFF00001FFFFF800FF
+FFE0000003FF80000FFC00000003FE00000FE000000001FE0000078000000001FE00000F
+0000000000FF00000E0000000000FF00001C00000000007F00003800000000007F800070
+00000000007F8000E000000000003FC001C000000000003FC0038000000000001FC00300
+00000000001FE0060000000000001FE00C0000000000000FF0180000000000000FF03000
+000000000007F06000000000000007F8C000000000000007F9C000000000000003FF8000
+000000000003FF0000000000000001FE0000000000000001FE0000000000000001FE0000
+000000000000FF0000000000000000FF0000000000000000FF0000000000000001FF8000
+0000000000037F80000000000000063FC00000000000000E3FC00000000000001C1FE000
+0000000000381FE0000000000000700FE0000000000000E00FF0000000000000C00FF000
+00000000018007F80000000000030007F80000000000060003F800000000000C0003FC00
+00000000180003FC0000000000300001FE0000000000700001FE0000000000E00000FE00
+00000001C00000FF0000000003800000FF00000000070000007F800000000E0000007F80
+0000001E0000003F800000007E0000007FC0000003FF000000FFE000007FFFE0001FFFFF
+C000FFFFE0001FFFFFC000FFFFE0001FFFFF800044397EB845>88
+D<FFFFFC00003FFFE0FFFFFC00003FFFE0FFFFFC00003FFFE003FF00000007FC0001FF00
+000003E00000FF00000003C00000FF00000007800000FF000000070000007F8000000E00
+00007F8000001C0000007F800000380000003FC00000300000003FC00000600000003FC0
+0000C00000001FE00001800000001FE00003000000000FE00007000000000FF0000E0000
+00000FF0000C0000000007F000180000000007F800300000000007F800600000000003FC
+00C00000000003FC01C00000000003FC03800000000001FE03000000000001FE06000000
+000001FE0C000000000000FF18000000000000FF30000000000000FF700000000000007F
+E00000000000007FC00000000000007F800000000000003F000000000000007F00000000
+0000007F000000000000007F000000000000007E00000000000000FE00000000000000FE
+00000000000000FE00000000000000FC00000000000001FC00000000000001FC00000000
+000001FC00000000000001F800000000000003F800000000000003F800000000000003F8
+00000000000003F000000000000007F000000000000007F00000000000000FF000000000
+000FFFFFF0000000000FFFFFF0000000000FFFFFE0000000003B397DB830>I<00007E00
+000003FF8000000FC1C380001F00EFC0007E007FC000FC003FC001F8003FC003F0001F80
+07F0001F8007E0001F800FE0003F801FC0003F001FC0003F003F80003F003F80007F007F
+80007E007F00007E007F00007E007F0000FE00FF0000FC00FE0000FC00FE0000FC00FE00
+01FC00FE0001F800FC0001F80CFC0001F80CFC0003F80CFC0003F01CFC0003F018FC0007
+F0187C0007F0387E000FF0303E001FF0303E007BF0701F00E1F0E00F83C0F9C003FF007F
+8000FC001F0026267DA42C>97 D<003F00001FFF00001FFF00001FFF0000007F0000007E
+0000007E0000007E000000FE000000FC000000FC000000FC000001FC000001F8000001F8
+000001F8000003F8000003F0000003F0000003F0000007F0000007E0FC0007E3FF0007E7
+07C00FFE03E00FF801F00FF001F80FE000F81FC000F81FC000FC1F8000FC1F8000FC3F80
+00FC3F0000FC3F0000FC3F0001FC7F0001FC7E0001FC7E0001FC7E0003FCFE0003FCFC00
+03F8FC0003F8FC0007F8FC0007F0F80007F0F8000FE0F8000FE0F8000FC0F8001F80F800
+3F8078003F007C007E007C00FC003C01F8001E03F0000F07C00007FF000001FC00001E3B
+7CB924>I<00003FC00001FFF00007E03C000F800E003F0007007E001F00FC007F01F800
+FF03F000FF07E000FF0FE000FF0FC000FE1FC000383F8000003F8000007F8000007F0000
+007F0000007F000000FF000000FE000000FE000000FE000000FE000000FC000000FC0000
+00FC000000FC000003FC0000077E0000067E00000E3E00003C3F0000701F0000E00F8007
+C007C03F0001FFF800003FC00020267DA424>I<000000003F0000001FFF0000001FFF00
+00001FFF000000007F000000007E000000007E00000000FE00000000FE00000000FC0000
+0000FC00000001FC00000001FC00000001F800000001F800000003F800000003F8000000
+03F000000003F000000007F000000007F000007E07E00003FF87E0000FC1CFE0001F00EF
+E0007E007FC000FC003FC001F8003FC003F0001FC007F0001F8007E0001F800FE0003F80
+1FC0003F801FC0003F003F80003F003F80007F007F80007F007F00007E007F00007E007F
+0000FE00FF0000FE00FE0000FC00FE0000FC00FE0001FC00FE0001FC00FC0001F80CFC00
+01F80CFC0003F80CFC0003F81CFC0003F018FC0007F0187C0007F0387E000FF0303E001F
+F0303E007BF0701F00E1F0E00F83C0F9C003FF007F8000FC001F00283B7DB92B>I<0000
+E00003F80003F80007F80007F80007F80007F00001C00000000000000000000000000000
+0000000000000000000000000000000000000000F80003FE00070F000E0F801C0F80180F
+80380F80300F80701F80601F80603F80E03F00C03F00C07F00007E00007E0000FE0000FC
+0001FC0001FC0001F80003F80003F00003F00007F01807E01807E0380FE0300FC0300FC0
+700F80600F80E00F80C00F81C00F838007870003FE0000F80015397EB71D>105
+D<00F80003C003FE0007E0070F000FE00E0F800FF01C0F800FF0180F800FF0380F8007F0
+300F8003F0701F8001F0601F8001F0601F8000F0E03F8000E0C03F0000E0C07F0000E000
+7E0000E0007E0000C000FE0000C000FC0000C000FC0001C001FC00018001F800018001F8
+00038001F800030003F800030003F000070003F000060003F0000E0003F0000C0003F000
+1C0003F000180003F000380003F000700001F000E00001F801C00000FC038000007E0F00
+00001FFE00000007F0000024267EA428>118 D<0007E001F000001FF807FC0000783E0E
+0F0000E01F1C1F0001C01F383F8003800FF07F8003000FE0FF8007000FE0FF800E000FC0
+FF000C000FC07E000C001FC03C001C001F80000018001F80000018001F80000000003F80
+000000003F80000000003F00000000003F00000000007F00000000007F00000000007E00
+000000007E0000000000FE0000000000FE0000000000FC000C000000FC000C000001FC00
+1C001E01FC0018003F01F80018007F81F80038007F83F8007000FF83F8006000FF07F800
+E000FE0E7C01C0007C1C7C03800078383E0F00001FF00FFC000007C003F0000029267EA4
+2F>120 D<00F800000003FE000070070F0000F80E0F8001F81C0F8001F8180F8001F838
+0F8003F8300F8003F0701F8003F0601F8003F0603F8007F0E03F0007E0C03F0007E0C07F
+0007E0007E000FE0007E000FC000FE000FC000FC000FC000FC001FC001FC001F8001F800
+1F8001F8001F8001F8003F8003F8003F0003F0003F0003F0003F0003F0007F0003F0007E
+0003F0007E0003F0007E0003F000FE0003F000FC0003F001FC0001F003FC0000F807FC00
+007C1FF800003FF9F800000FE1F800000003F800000003F000000003F0000E0007F0003F
+8007E0007F800FC0007F800FC0007F801F80007F801F00007F003E00007C007C00007000
+F800003801F000001E07C000000FFF00000001FC00000025367EA429>I<0001E0006000
+0FF800E0001FFC00C0003FFE01C0007FFF038000FFFF070000F81FFF0001E003FE0001C0
+001C0001800038000180007000000000E000000001C0000000038000000007000000000E
+000000001C000000003800000000F000000001E0000000038000000007000000000E0000
+00001C0000000038000300007000030000E000070001C00006000380000E000700001C00
+0FFC007C001FFF81F8001E0FFFF8003807FFF0007003FFE0006003FFC000E001FF0000C0
+007C000023267DA427>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FV cmr6 6 8
+/FV 8 62 df<000C0038007000E001C00380030007000E000E001C001C00380038003800
+7800700070007000F000F000F000F000F000F000F000F000F000F000F000700070007000
+78003800380038001C001C000E000E0007000300038001C000E000700038000C0E317AA4
+18>40 D<C000700038001C000E0007000300038001C001C000E000E00070007000700078
+003800380038003C003C003C003C003C003C003C003C003C003C003C0038003800380078
+00700070007000E000E001C001C00380030007000E001C0038007000C0000E317CA418>
+I<0000380000000038000000003800000000380000000038000000003800000000380000
+000038000000003800000000380000000038000000003800000000380000000038000000
+00380000000038000000003800000000380000FFFFFFFFFEFFFFFFFFFEFFFFFFFFFE0000
+380000000038000000003800000000380000000038000000003800000000380000000038
+000000003800000000380000000038000000003800000000380000000038000000003800
+0000003800000000380000000038000027277C9F2F>43 D<00E00001E00007E000FFE000
+F9E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E000
+01E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E00001E000
+01E00001E00003F000FFFFC0FFFFC012217AA01E>49 D<01FC0007FF801C0FC03003E060
+01F06000F8F800F8FC00FCFC00FCFC007C78007C3000FC0000FC0000F80000F80001F000
+03E00003C0000780000F00001E0000380000700000E00001C00C03800C0600180C001818
+00183FFFF87FFFF8FFFFF0FFFFF016217CA01E>I<000FC0007FF001F03803C01807803C
+0F007C1E007C1C00383C00003C00007C0000780000787FC0F9FFE0FB80F0FE0038FE003C
+FC001EFC001EF8001FF8001FF8001FF8001F78001F78001F78001F3C001E3C001E1C003C
+1E00380F00700781E001FFC0007F0018227DA01E>54 D<00FE0003FFC00781E00E00701C
+00783C003878003C78003CF8001EF8001EF8001EF8001FF8001FF8001FF8001F78003F78
+003F3C007F1C007F0F01DF07FF9F03FE1E00001E00001E00003E00003C1C00383E00783E
+00703C00E01801C01C07800FFE0003F80018227DA01E>57 D<FFFFFFFFFEFFFFFFFFFEFF
+FFFFFFFE0000000000000000000000000000000000000000000000000000000000000000
+00000000000000000000000000FFFFFFFFFEFFFFFFFFFEFFFFFFFFFE270F7C932F>61
+D E
+%EndDVIPSBitmapFont
+/FW 167[53 3[44 40 49 1[40 53 53 65 44 2[24 53 53 40
+44 53 1[49 53 65[{TeXBase1Encoding ReEncodeFont}17 72.7272
+/Times-Roman rf
+%DVIPSBitmapFont: FX cmsy8 8 14
+/FX 14 106 df<000C0000001E0000001E0000001E0000001E0000001E0000601E018078
+1E0780FC0C0FC07F0C3F803F8C7F0007CCF80001FFE000007F8000001E0000007F800001
+FFE00007CCF8003F8C7F007F0C3F80FC0C0FC0781E0780601E0180001E0000001E000000
+1E0000001E0000001E0000000C00001A1D7C9E23>3 D<007F800001FFE00007FFF8000F
+FFFC001FFFFE003FFFFF003FFFFF007FFFFF807FFFFF80FFFFFFC0FFFFFFC0FFFFFFC0FF
+FFFFC0FFFFFFC0FFFFFFC0FFFFFFC0FFFFFFC07FFFFF807FFFFF803FFFFF003FFFFF001F
+FFFE000FFFFC0007FFF80001FFE000007F80001A1A7C9D23>15 D<0000000001C0000000
+0007C0000000001FC0000000007F0000000001FC0000000007F0000000001FC000000000
+7F0000000001FC0000000007F0000000000FC0000000003F0000000000FC0000000003F8
+000000000FE0000000003F8000000000FE0000000003F8000000000FE0000000003F8000
+000000FE0000000000F80000000000FE00000000003F80000000000FE00000000003F800
+00000000FE00000000003F80000000000FE00000000003F80000000000FC00000000003F
+00000000000FC00000000007F00000000001FC00000000007F00000000001FC000000000
+07F00000000001FC00000000007F00000000001FC00000000007C00000000001C0000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+0000007FFFFFFFFF80FFFFFFFFFFC0FFFFFFFFFFC02A3B7AAB37>20
+D<7FFFFFC00000FFFFFFF800007FFFFFFE00000000007F80000000000FC00000000003E0
+0000000000F000000000007800000000003C00000000001E00000000000E00000000000F
+000000000007000000000007800000000003800000000003800000000003C00000000001
+C00000000001C00000000001C00000000001C00000000001C00000000001C00000000001
+C00000000001C00000000001C00000000003C00000000003800000000003800000000007
+80000000000700000000000F00000000000E00000000001E00000000003C000000000078
+0000000000F00000000003E0000000000FC0000000007F80007FFFFFFE0000FFFFFFF800
+007FFFFFC000002A2B7AA537>27 D<0001C000000E00000001C000000E00000001C00000
+0E00000003C000000F000000038000000700000007800000078000000700000003800000
+0F00000003C000000E00000001C000001E00000001E000003C00000000F0000078000000
+00780000F8000000007C0001F0000000003E0003C0000000000F000F800000000007C07F
+FFFFFFFFFFFFF8FFFFFFFFFFFFFFFC7FFFFFFFFFFFFFF80F800000000007C003C0000000
+000F0001F0000000003E0000F8000000007C000078000000007800003C00000000F00000
+1E00000001E000000E00000001C000000F00000003C00000070000000380000007800000
+07800000038000000700000003C000000F00000001C000000E00000001C000000E000000
+01C000000E00003E237CA147>36 D<007800FE01FE01FE01FE03FE03FC03FC03FC07F807
+F807F807F007F00FE00FE00FE00FC01FC01F801F801F803F003F003F003E007E007C007C
+007C00F800F800F800F0000F227EA413>48 D<003F80000007F00000FFF000003FFC0003
+FFFC0000FFFF0007FFFF0001F807800F80FF8007C001C01E003FC00F8000E03C001FE01F
+00007038000FF03E000030700007F83C000038700003FC78000018600001FEF0000018E0
+0000FFE000001CC000007FE000000CC000007FC000000CC000003FC000000CC000001FE0
+00000CC000000FF000000CC000000FF800000CC000001FF800000CE000001FFC00001C60
+00003DFE00001860000078FF000038700000F07F800038300001F03FC00070380003E01F
+E000F01C0007C00FF001E00E000F8007FC07C007807E0003FFFF8003FFFC0000FFFF0000
+FFF000003FFC00003F80000007F0003E1F7C9D47>I<6000000006E00000000EF0000000
+1E700000001C700000001C780000003C38000000383C000000781C000000701C00000070
+1E000000F00E000000E00F000001E007000001C007800003C003FFFFFF8003FFFFFF8003
+FFFFFF8001C000070001E0000F0000E0000E0000E0000E0000F0001E000070001C000078
+003C0000380038000038003800003C007800001C007000001E00F000000E00E000000E00
+E000000F01E000000701C000000783C00000038380000003C780000001C700000001C700
+000001EF00000000EE00000000FE000000007C000000007C000000007C00000000380000
+0000380000272F80AD28>56 D<FFFFFFFFFCFFFFFFFFFCFFFFFFFFFC000000001C000000
+001C000000001C000000001C000000001C000000001C000000001C000000001C00000000
+1C000000001C000000001C000000001C000000001C000000001C000000001C0000000008
+26137C972F>58 D<00000180000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+00000000038000000000038000007FFFFFFFFFFEFFFFFFFFFFFE7FFFFFFFFFFE2F2E7CAD
+38>63 D<0000300000000078000000007800000000FC00000000FC00000001FE00000001
+CE00000001CE00000003CF0000000387000000078780000007038000000F03C000000E01
+C000001E01E000001C00E000003C00F00000380070000078007800007000380000700038
+0000F0003C0000E0001C0001E0001E0001C0000E0003C0000F0003800007000780000780
+07000003800F000003C00E000001C01E000001E01C000000E01C000000E03C000000F038
+0000007078000000787000000038F00000003CE00000001CE00000000C26297CA72F>94
+D<E00000000CE00000001CF00000003C7000000038780000007838000000703C000000F0
+1C000000E01C000000E01E000001E00E000001C00F000003C00700000380078000078003
+8000070003C0000F0001C0000E0001E0001E0000E0001C0000F0003C0000700038000070
+00380000780078000038007000003C00F000001C00E000001E01E000000E01C000000F03
+C0000007038000000787800000038700000003CF00000001CE00000001CE00000001FE00
+000000FC00000000FC000000007800000000780000000030000026297CA72F>I<000300
+07000F000E000E001E001C003C003800380078007000F000E000E001E001C003C0038007
+80070007000F000E001E001C001C003C003800780070007000F000E000F0007000700078
+0038003C001C001C001E000E000F00070007000780038003C001C001E000E000E000F000
+70007800380038003C001C001E000E000E000F0007000310437AB11B>104
+D<E000E000F00070007000780038003C001C001C001E000E000F00070007000780038003
+C001C001E000E000E000F00070007800380038003C001C001E000E000E000F0007000F00
+0E000E001E001C003C003800380078007000F000E000E001E001C003C003800780070007
+000F000E001E001C001C003C003800780070007000F000E000E00010437CB11B>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FY eusm10 10.95 7
+/FY 7 85 df<0000000000003F8000000000000003FF000000000000000FFE0000000000
+00003FFE000000000000007CFC00000000000000F07C00000000000001E07C0000000000
+0003C07C00000000000007807C00000000000007807C0000000000000F007C0000000000
+001E007C0000000000001E007C0000000000003E007C0000000000003C007C0000000000
+007C007C00000000000078007C000000000000F8007C000000000000F0007C0000000000
+01F0007C000000000001F0007C000000000003E0007C000000000003E0007C0000000000
+07E0007C000000000007C0007C00000000000FC0007C00000000000FC0007C0000000000
+1F80007C00000000001F80007C00000000001F80007C00000000003F00007C0000000000
+3F00007C00000000007F00007C00000000007E00007C00000000007E00007C0000000000
+FE00007C0000000000FC00007C0000000001FFFFFFFC0000000001FFFFFFFC0000000001
+FFFFFFFC0000000003FFFFFFFC0000000003FFFFFFFC0000000007F000007C0000000007
+E000007C0000000007E000007C000000000FC000007C000000000FC000007C000000001F
+8000007C000000001F8000007C000000001F0000007E000000003E0000007E000038003E
+0000007E00007E007C0000007E0000FE007C0000007E0000FE00F80000007E0020FE00F8
+0000007F00F0FE01F00000007F01E0FE03E00000007F8780FE07C00000007FFF007F0FC0
+0000007FFE007FFF800000003FFC003FFE000000003FF0001FFC000000001FE00007E000
+0000000F8000444081BE46>65 D<00001FFFF00000000FC00001FFFFF00000003FE0000F
+FFFFE0000000FFF0003FFFFF80000001FFF0007FE03F00000003FFF000FC003F00000007
+87F001F0003F0000000E01E003E0003F0000001C00C007C0003F0000003C00000F80003F
+0000003800000F80003F0000007800001F00003F0000007000001F00003F000000F00000
+3F00003F000000F000003F00003F000000E000003F00003F000001E000003F00003F0000
+01E000003F00003F000003E000003F80003F000003E000003F80003F000003C000003F80
+003F000003C000001F80003F000007C000001F80003F000007C000000F00003F000007C0
+00000400003F000007C000000000003F00000FC000000000003F00000FC000000000003F
+00000F8000000000003FFFFFFF8000000000003FFFFFFF8000000000003FFFFFFF800000
+0000003E00001F8000000000003E00001F8000000000003E00001F8000000000003E0000
+0F8000000000003E00000F8000000000003E00000F8000000000003E00000F8000000000
+003E00000F8000000000003C00000F8000000000007C00000F8000000000007C00000F80
+00000000007C00000F8000000000007C00000F8000000000007800000F80000000000078
+00000F8000000000007800000F800000000000F800000F800000000000F000000F800000
+000000F000000FC00000000000E000000FC00000000001E0000007C00000000001C00000
+07C00000380003C0000007C00000FC000380000007E00180FE000700000007E00380FE00
+0E00000003F00700FF001C00000003F00F00FF803800000003F81E00FFC0F000000001FC
+3C007FFFE000000000FFFC003FFF8000000000FFF8001FFE00000000007FE00007F00000
+0000001F80004C407DBE52>72 D<00003FFFC00007FFFF80003FFFFE0000FF01F00003F8
+01F00007C001F0000F8001F0001F0001F0003E0001F0007E0001F0007C0001F0007C0001
+F000FC0001F000FC0001F000FC0001F000FE0001F000FE0001F000FE0001F0007E0001F0
+007C0001F0003C0001F000000001F000000001F000000001F000000001F000000001F000
+000001F000000001F000000001F000000001F000000001F000000001F000000001F00000
+0001F000000001F000000001F000000001F000000001F000000001F000000001F0000000
+01F000000001F000000001E000000001E000000003E000000003E000000003E000000003
+C000000003C000000007C0000000078000000007800000000F000078000F0000FC001E00
+00FC001E0000FC003C0000FE00780000FE00F000007F03E000007FFFC000003FFF800000
+1FFE00000003F800000022407EBE27>I<0000001FFE000001FFF800000FFFC000007FFF
+800001FF1F800003F81F80000FC01F80001F801F80003E001F80007C001F8000F8001F80
+01F8001F8003F0001F8003F0001F8007E0001F8007E0001F800FE0001F800FE0001F800F
+E0001F800FE0001F800FE0001F800FE0001F800FC0001F8007C0001F800100001F800000
+001F800000001F800000001F800000001F800000001F800000001F800000003F80000000
+FF80000003FF8000000FDF8000001F1F8000007C1F800000F01F800003E01F800007801F
+80000F001F80001E001F80003C001F800078001F800070001F8000E0001F8001C0001F80
+03C0000F800380000F800700000F800F00000F800E00000F001E00000F001C00000F003C
+00001F003C00001F003C00001E007800001E007800001E007800003E00F800003C00F800
+003C00F800007800F800007800F80000F000F80000E000FC0001E000FC0003C0007E000F
+80007F001E00003FC07C00003FFFF800001FFFE000000FFF80000001FE000000274B7DBE
+2E>I<000000010000000000000007000000000000001F0000000000000FFFFFE0000000
+00FFFFFFFE00000003FFFFFFFFC000000FF83F007FE000003F803F0007F800007E003F00
+01F80000FC003F0001FC0001F0003F0000FE0003E0003F00007E0007C0003F00007E000F
+C0003F00007F000F80003F00003F001F80003F00003F001F80003F00003F001F80003F00
+003F003F80003F00003F003F80003F00003F003F80003F00003F003FC0003F00003F003F
+C0003F00003F003FC0003F00003E001FC0003F00007E001F80003F00007E000F00003F00
+007C000000003F0000FC000000003F0000F8000000003F0001F0000000003F0003E00000
+00003F0007C0000000003F000F80000000003F003F00000000003F00FC00000000003FFF
+F000000000003FFF8000000000003FFF8000000000003F0FC000000000003F0FC0000000
+00003F0FE000000000003E07E000000000003E07E000000000003E03F000000000003E03
+F000000000003C01F800000000003C01F800000000003C01F800000000007C00FC000000
+00007800FC000000000078007E000000000078007E000000000070007F0000000000F000
+3F0000000000E0003F8000000001E0001FC0003C0001C0001FC0087C0003C0001FE00CFE
+000380000FF018FF000700000FF818FF000E000007FC707F803C000007FFF07FC0F80000
+03FFE03FFFF0000001FFE01FFFC0000000FFC00FFF000000007F8003F8000000003E003E
+437EC142>82 D<00007FF0000007FFFE00001FFFFF80007F807FC000FC000FE001F80007
+E003E00003F003E00003F007C00001F007C00001F00F800001F00F800001F00F800003F0
+0F800003E00F800007C00FC0001F800FC000FF000FC000100007E000000007F000000007
+F800000003FC00000003FE00000001FF00000000FFC00000007FF00000003FFC0000001F
+FF00000007FFC0000001FFF00000007FFC0000001FFE00000007FF80000001FFC0000000
+7FE00000003FF00000000FF800000007F800FF0003FC07FFC001FC0FFFE000FC1F07F000
+FE3E07F000FE7C03F0007E7803F0007E7801E0007EF800C0007EF80000007EF80000007E
+F80000007CF80000007CF80000007CF8000000FCFC000000F8FC000001F87E000001F07E
+000003E07F000007C03F80000F801FE0003F000FF0007E0007FC03F80003FFFFE00000FF
+FF8000001FF8000027417CBF31>I<0001FE0000000080000FFFF0000001C0007FFFFE00
+00038000FFFFFFE000078001FFFFFFFE000F0007C01FFFFFE01E000F0001FFFFFFFE000E
+00003FFFFFFC001E000007FFFFF8003C000007FFFFF0003C000007E7FFE0007C000007E0
+3F800078000007E000000078000007E0000000FC000007E0000000FC000007E0000000FE
+000007E0000000FE000007E0000000FF000007E0000000FF800007E00000007F800007E0
+0000007F800007E00000003F000007E00000001E000007E000000000000007E000000000
+000007E000000000000007E000000000000007E000000000000007E000000000000007E0
+00000000000007E000000000000007E000000000000007E000000000000007E000000000
+000007E000000000000007E000000000000007E000000000000007E000000000000007E0
+00000000000007E000000000000007E000000000000007E000000000000007E000000000
+000007C000000000000007C000000000000007C000000000000007C000000000000007C0
+0000000000000F800000000000000F800000000000000F800000000038000F8000000000
+7E000F0000000000FE000F0000000000FE001E0000000000FE001E0000000000FE003C00
+00000000FE003C0000000000FE007800000000007F00F000000000007F83E00000000000
+3FFF8000000000001FFE00000000000007F800000000003A407EBE39>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: FZ cmmi6 6 11
+/FZ 11 117 df<78FCFCFCFC7806067A8513>58 D<78FCFCFEFE7E0606060C0C1C183060
+4007107A8513>I<00000001C000000007C00000001FC00000007F00000001FC00000007
+F00000001FC00000007F00000000FC00000003F00000000FC00000003F80000000FE0000
+0003F80000000FE00000003F80000000FE00000000F800000000FE000000003F80000000
+0FE000000003F800000000FE000000003F800000000FC000000003F000000000FC000000
+007F000000001FC000000007F000000001FC000000007F000000001FC000000007C00000
+0001C022237A9D30>I<00FFE000000FFE00FFE000001FFC0007E000001F800007E00000
+3780000DE000006F00000CF000006F00000CF00000CF00000CF000018F000018F000019E
+000018F000031E0000187800061E0000187800061E00003078000C3C0000307800183C00
+00307800303C0000307800303C0000603C0060780000603C00C0780000603C00C0780000
+603C0180780000C03C0300F00000C01E0300F00000C01E0600F00000C01E0C00F0000180
+1E0C01E00001801E1801E00001800F3001E00001800F6001E00003000F6003C00003000F
+C003C00003000F8003C0000F80078007C000FFF80700FFFE00FFF00600FFFC0037227CA1
+3A>77 D<0000FE030007FFC6000F01EE003C007E0070003E00E0001C00C0001C01C0001C
+01C0001C03C0001803C0001803C0000003E0000003F0000001FE000000FFE000007FFE00
+003FFF00000FFF800000FFC000000FE0000003E0000001E0000000F0000000F0300000E0
+300000E0300000E0300001C0700001C078000380780007007E000E00E7807C00C3FFF000
+807F800020247CA226>83 D<1FFFFFFFFC1FFFFFFFFC1F003E007C3C003E001C38007C00
+1C30007C001C70007C001860007C00186000F80018C000F80018C000F80018C000F80018
+0001F000000001F000000001F000000001F000000003E000000003E000000003E0000000
+03E000000007C000000007C000000007C000000007C00000000F800000000F800000000F
+800000000F800000001F000000001F000000001F000000003F0000001FFFFE00001FFFFC
+000026227DA124>I<007FFF007FFC007FFF007FFC0003F8001F800001F8001E000001F8
+0018000000FC0030000000FC00600000007E00C00000007E01800000003F03000000003F
+06000000001F8C000000001FB8000000000FF0000000000FE00000000007E00000000007
+E00000000007F0000000000FF0000000001DF80000000038F80000000070FC00000000E0
+7C00000001C07E00000003803E00000007003F0000000E001F80000018001F8000003000
+0FC0000060000FC00001E00007E00007E00007E0007FF8003FFF00FFF8007FFF002E227E
+A132>88 D<FFFE0003FF80FFFC0007FF8007E00000F80007E00000E00003F00001800003
+F00003000001F80006000001F8000C000000FC0018000000FC00380000007E0070000000
+7E00E00000003F01C00000003F03800000001F87000000001F8E000000001F9C00000000
+0FF8000000000FF00000000007E00000000007C00000000007C00000000007C000000000
+0780000000000F80000000000F80000000000F80000000000F00000000001F0000000000
+1F00000000001F00000000003F0000000007FFF000000007FFF000000029227DA124>I<
+0038007C007C00780070000000000000000000000000000007801FC038E030E060F0C1E0
+C1E0C1E003C003C003C0078007800F000F040F061E0C1E0C1E181C181E700FE007800F23
+7DA116>105 D<001F0200FF8601E0CE03807E07007C0F003C1E003C3E003C3C00787C00
+787C00787C0078F800F0F800F0F800F0F800F0F801E07801E07803E03807E01C1FC00FFB
+C007E3C00003C0000780000780000780000780000F00000F0000FFF001FFF017207E951C
+>113 D<00300000780000F00000F00000F00000F00001E00001E00001E00001E00003C0
+00FFFF80FFFF8003C0000780000780000780000780000F00000F00000F00000F00001E00
+001E00001E01001E01803C03003C06003C06003C0C001C38000FF00007C00011217D9F18
+>116 D E
+%EndDVIPSBitmapFont
+/F0 133[32 4[42 23 32 2[42 14[42 24[60 72[{
+TeXBase1Encoding ReEncodeFont}7 83.022 /Times-Italic
+rf /F1 131[55 3[55 55 1[55 55 1[55 2[55 55 4[55 55 1[55
+55 1[55 36[55 16[55 45[{TeXBase1Encoding ReEncodeFont}15
+90.9091 /Courier rf /F2 75[25 31[33 33 24[33 37 37 54
+37 37 21 29 25 37 37 37 37 58 21 37 21 21 37 37 25 33
+37 33 37 33 3[25 1[25 46 2[71 1[54 46 1[50 1[42 54 54
+66 46 54 29 25 1[54 42 46 54 1[50 54 5[21 1[37 37 37
+1[37 37 1[37 37 37 1[19 25 19 4[25 22[25 13[42 2[{
+TeXBase1Encoding ReEncodeFont}65 74.7198 /Times-Roman
+rf /F3 199[25 25 25 25 25 25 25 25 2[12 46[{
+TeXBase1Encoding ReEncodeFont}9 49.8132 /Times-Roman
+rf
+%DVIPSBitmapFont: F4 cmr10 10.95 20
+/F4 20 95 df<FFFFFFFFFFFE00FFFFFFFFFFFE00FFFFFFFFFFFE0001FFC0000FFE0000
+7F800001FE00007F8000007F00007F8000003F00007F8000001F00007F8000001F00007F
+8000000F00007F8000000F00007F8000000700007F8000000700007F8000000700007F80
+00000700007F8000000700007F8000000380007F8000000380007F8000000380007F8000
+000380007F8000000380007F8000000000007F8000000000007F8000000000007F800000
+0000007F8000000000007F8000000000007F8000000000007F8000000000007F80000000
+00007F8000000000007F8000000000007F8000000000007F8000000000007F8000000000
+007F8000000000007F8000000000007F8000000000007F8000000000007F800000000000
+7F8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F
+8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F80
+00000000007F8000000000007F8000000000007F8000000000007F8000000000007F8000
+000000007F8000000000007F800000000001FFE000000000FFFFFFF8000000FFFFFFF800
+0000FFFFFFF8000000313E7DBD39>0 D<00000000E00000000000000001F00000000000
+000001F00000000000000003F80000000000000003F80000000000000007FC0000000000
+000007FC000000000000000FFE000000000000000FFE000000000000001DFF0000000000
+00001DFF0000000000000038FF8000000000000038FF80000000000000787FC000000000
+0000707FC0000000000000F03FE0000000000000E03FE0000000000001E01FF000000000
+0001C01FF0000000000003C00FF8000000000003800FF80000000000078007FC00000000
+00070007FC00000000000F0003FE00000000000E0003FE00000000001E0001FF00000000
+001C0001FF00000000003C0000FF8000000000380000FF80000000007800007FC0000000
+007000007FC000000000F000003FE000000000E000003FE000000001E000001FF0000000
+01C000001FF000000003C000000FF8000000038000000FF80000000780000007FC000000
+0700000007FC0000000F00000003FE0000000E00000003FE0000001E00000001FF000000
+1C00000001FF0000003C00000000FF8000003800000000FF80000078000000007FC00000
+70000000007FC00000F0000000003FE00000E0000000003FE00001E0000000001FF00001
+C0000000001FF00003C0000000000FF8000380000000000FF80007800000000007FC0007
+000000000007FC000F000000000003FE000E000000000003FE001E000000000001FF001F
+FFFFFFFFFFFFFF003FFFFFFFFFFFFFFF803FFFFFFFFFFFFFFF807FFFFFFFFFFFFFFFC07F
+FFFFFFFFFFFFFFC0FFFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFE043417CC04C>I<000000
+3C0000000000003C0000000000003C0000000000007E0000000000007E0000000000007E
+000000000000FF000000000000FF000000000000FF000000000001FF800000000001FF80
+0000000001FF800000000003FFC00000000003FFC00000000003BFC00000000003BFC000
+000000073FE000000000071FE000000000071FE0000000000E1FF0000000000E0FF00000
+00000E0FF0000000001C0FF8000000001C07F8000000001C07F8000000003C07FC000000
+003803FC000000003803FC000000007803FE000000007003FE000000007001FE00000000
+7001FE00000000E001FF00000000E000FF00000000E000FF00000001C000FF80000001C0
+007F80000001C0007F8000000380007FC000000380003FC000000380003FC00000078000
+3FE000000700001FE000000700001FE000000F00001FF000000E00000FF000000E00000F
+F000001E00000FF800001C00000FF800001C000007F800001C000007F8000038000007FC
+000038000003FC000038000003FC000070000003FE000070000001FE000070000001FE00
+00F0000001FF0000F0000000FF0001F0000000FF0003F8000001FF800FFE000007FFC0FF
+FFE000FFFFFFFFFFE000FFFFFFFFFFE000FFFFFF38417DC03F>3
+D<1E007F80FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC0FFC07F807F807F807F807F807F807F
+807F807F807F807F807F803F003F003F003F003F003F003F003F003F003F003F003F001E
+001E001E001E001E001E001E001E001E001E001E000C0000000000000000000000000000
+0000001E007F807F80FFC0FFC0FFC0FFC07F807F801E000A4179C019>33
+D<0000300000700000E00001C0000380000780000F00001E00003E00003C0000780000F8
+0000F00001F00001E00003E00003E00007C00007C0000FC0000F80000F80001F80001F00
+001F00003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C00
+00FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC00
+00FC0000FC0000FC0000FC0000FC0000FC00007C00007E00007E00007E00007E00007E00
+007E00003E00003F00003F00003F00001F00001F00001F80000F80000F80000FC00007C0
+0007C00003E00003E00001E00001F00000F00000F800007800003C00003E00001E00000F
+000007800003800001C00000E0000070000030145A77C323>40 D<C00000E00000700000
+3800001C00001E00000F000007800007C00003C00001E00001F00000F00000F800007800
+007C00007C00003E00003E00003F00001F00001F00001F80000F80000F80000FC0000FC0
+000FC00007C00007E00007E00007E00007E00007E00007E00003E00003F00003F00003F0
+0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F0
+0003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C0000FC0
+000FC0000FC0000F80000F80001F80001F00001F00003F00003E00003E00007C00007C00
+00780000F80000F00001F00001E00003C00007C0000780000F00001E00001C0000380000
+700000E00000C00000145A7BC323>I<00000006000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000007FFFFFFFFFFFFFE0FFFFFFFF
+FFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE00000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F0000000000000006000000003C3C7BB447>43
+D<0001FE0000000FFFC000003F03F000007C00F80000F8007C0001F0003E0003E0001F00
+07C0000F8007C0000F800FC0000FC01F800007E01F800007E01F800007E03F800007F03F
+800007F03F000003F07F000003F87F000003F87F000003F87F000003F87F000003F87F00
+0003F8FF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF0000
+03FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003
+FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FCFF000003FC7F000003F8
+7F000003F87F000003F87F000003F87F000003F83F800007F03F800007F03F800007F01F
+800007E01F800007E01F800007E00FC0000FC00FC0000FC007E0001F8003E0001F0001F0
+003E0000F8007C00007C00F800003F03F000000FFFC0000001FE0000263F7DBC2D>48
+D<0001C0000003C0000007C000001FC000007FC00007FFC000FFFFC000FF9FC000F81FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC0
+00001FC000001FC000001FC000007FF000FFFFFFF8FFFFFFF8FFFFFFF81D3D78BC2D>I<
+0007FC0000003FFF800000FFFFE00003F01FF80007C007FC000F0001FE001E0000FF001C
+0000FF803C00007FC07800007FC07800003FE07000003FE0FF00003FE0FF80001FF0FFC0
+001FF0FFC0001FF0FFC0001FF0FFC0001FF0FFC0001FF07F80001FF03F00001FF00C0000
+1FF00000001FE00000003FE00000003FE00000003FC00000007FC00000007F80000000FF
+80000000FF00000001FE00000001FC00000003F800000007F000000007E00000000FC000
+00001F800000003F000000007E000000007C00000000F800000001F000000003E0000000
+07C00000000F800000001F000070003E000070003C000070007800007000F00000E001E0
+0000E003C00000E007800000E00F000001E01FFFFFFFE01FFFFFFFE03FFFFFFFE07FFFFF
+FFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0243D7CBC2D>I<0007FC0000003FFF800000F8
+0FE00001E003F800078001FC000F0001FE000E0000FF001E0000FF801F80007F803FC000
+7FC03FE0007FC03FE0007FC03FF0007FC03FE0007FC03FE0007FC01FE0007FC00FC0007F
+C00000007F80000000FF80000000FF00000000FF00000001FE00000001FE00000003FC00
+000003F800000007E00000000FC00000003F0000001FFC0000001FFF800000000FE00000
+0007F800000003FC00000001FE00000000FF00000000FF800000007FC00000007FC00000
+007FE00000003FE00000003FE00000003FF00000003FF00C00003FF03F00003FF07F8000
+3FF0FFC0003FF0FFC0003FF0FFC0003FF0FFC0003FE0FFC0003FE0FF80007FE07F00007F
+C07800007FC0780000FF803C0000FF801E0001FF000F0003FE0007C007FC0003F80FF000
+00FFFFE000003FFF80000007F80000243F7CBC2D>I<0000000E000000001E000000003E
+000000003E000000007E000000007E00000000FE00000001FE00000001FE00000003FE00
+0000077E000000067E0000000E7E0000001C7E0000001C7E000000387E000000707E0000
+00707E000000E07E000001C07E000001C07E000003807E000007007E000007007E00000E
+007E00001C007E00001C007E000038007E000070007E000070007E0000E0007E0000C000
+7E0001C0007E000380007E000300007E000700007E000E00007E000C00007E001C00007E
+003800007E003800007E007000007E00E000007E00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE0000
+0000FE00000000FE00000000FE00000000FE00000000FE00000001FF000001FFFFFF0001
+FFFFFF0001FFFFFF283E7EBD2D>I<1E007F807F80FFC0FFC0FFC0FFC07F807F801E0000
+000000000000000000000000000000000000000000000000000000000000000000000000
+001E007F807F80FFC0FFC0FFC0FFC07F807F801E000A2779A619>58
+D<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE0000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE03C167B
+A147>61 D<001FF80000FFFF0003E01FC00F0007F01E0003F83C0001FC780001FE780000
+FEFE0000FFFF0000FFFF8000FFFF8000FFFF8000FFFF8000FF7F0000FF3E0000FF000001
+FE000001FE000003FC000007F8000007F000000FC000001F8000003F0000003E0000007C
+00000078000000F8000000F0000001F0000001E0000001E0000003C0000003C000000380
+000003800000038000000380000003800000038000000380000003800000038000000380
+000003800000030000000000000000000000000000000000000000000000000000000000
+000000000000078000001FE000001FE000003FF000003FF000003FF000003FF000001FE0
+00001FE0000007800020407BBF2B>63 D<FFFFFFC0007FFFFCFFFFFFC0007FFFFCFFFFFF
+C0007FFFFC01FFE000000FFF80007F80000007FE00007F80000007F800007F80000007E0
+00007F80000007C000007F8000000F8000007F8000001F0000007F8000003E0000007F80
+00007C0000007F800000F80000007F800001F00000007F800003E00000007F800007C000
+00007F80000F800000007F80001F000000007F80003E000000007F80007C000000007F80
+00F8000000007F8001F0000000007F8003E0000000007F800780000000007F800FC00000
+00007F801FC0000000007F803FE0000000007F807FF0000000007F80FFF0000000007F81
+EFF8000000007F83C7FC000000007F8787FC000000007F8F03FE000000007F9E01FF0000
+00007FBC01FF000000007FF800FF800000007FF0007FC00000007FE0007FC00000007FC0
+003FE00000007F80001FF00000007F80001FF00000007F80000FF80000007F800007FC00
+00007F800007FC0000007F800003FE0000007F800001FF0000007F800001FF0000007F80
+0000FF8000007F8000007FC000007F8000007FE000007F8000003FE000007F8000001FF0
+00007F8000000FF800007F8000000FF800007F80000007FC00007F80000007FE00007F80
+000007FF00007F80000007FF8001FFE000000FFFC0FFFFFFC000FFFFFFFFFFFFC000FFFF
+FFFFFFFFC000FFFFFF403E7DBD47>75 D<FFFFFFFFC0000000FFFFFFFFFC000000FFFFFF
+FFFF80000001FFC000FFE00000007F80001FF00000007F800007FC0000007F800001FE00
+00007F800000FF0000007F800000FF8000007F8000007FC000007F8000007FC000007F80
+00003FE000007F8000003FE000007F8000003FF000007F8000003FF000007F8000003FF0
+00007F8000003FF000007F8000003FF000007F8000003FF000007F8000003FF000007F80
+00003FE000007F8000007FE000007F8000007FC000007F8000007F8000007F800000FF80
+00007F800000FF0000007F800001FC0000007F800007F80000007F80001FE00000007F80
+00FF800000007FFFFFFC000000007FFFFFF0000000007F8001FC000000007F80003F0000
+00007F80001FC00000007F80000FE00000007F800007F00000007F800007F80000007F80
+0003F80000007F800003FC0000007F800001FC0000007F800001FE0000007F800001FE00
+00007F800001FE0000007F800001FF0000007F800001FF0000007F800001FF0000007F80
+0001FF0000007F800001FF8000007F800001FF8000007F800001FF8000007F800001FF80
+00007F800001FFC004007F800001FFC00E007F800001FFC00E007F800000FFC00E007F80
+0000FFE00E007F8000007FE01E01FFE000007FE01CFFFFFFC0003FF01CFFFFFFC0001FF8
+38FFFFFFC00007F870000000000001FFE00000000000003F803F407DBD43>82
+D<FFFCFFFCFFFCFFFCF000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F0
+00F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000FFFCFFFCFF
+FCFFFC0E5B77C319>91 D<FFFCFFFCFFFCFFFC003C003C003C003C003C003C003C003C00
+3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
+3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
+3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
+3C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C003C00
+3C003C003CFFFCFFFCFFFCFFFC0E5B7FC319>93 D<001800003C00007E0000FF0001E780
+03C3C00781E00F00F01E00783C003C78001EF0000F600006180D76BD2D>I
+E
+%EndDVIPSBitmapFont
+/F5 134[33 18[22 29 33 1[33 9[48 3[41 37 44 1[37 48 48
+59 41 2[22 48 48 37 41 48 2[48 7[33 33 33 33 33 33 33
+33 33 2[17 4[22 22 40[{TeXBase1Encoding ReEncodeFont}33
+66.4176 /Times-Roman rf
+%DVIPSBitmapFont: F6 cmsy10 10.95 40
+/F6 40 107 df<7FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF836
+04789847>0 D<1E007F807F80FFC0FFC0FFC0FFC07F807F801E000A0A799B19>I<0003C0
+000003C0000003E0000003C0000003C0000003C0000003C0000003C0000003C000F003C0
+0FFC03C03FFE03C07FFF03C0FF3FC3C3FC0FE187F003F18FC000FDBF00003FFC00000FF0
+000003C000000FF000003FFC0000FDBF0003F18FC00FE187F03FC3C3FCFF03C0FFFE03C0
+7FFC03C03FF003C00F0003C0000003C0000003C0000003C0000003C0000003C0000003E0
+000003C0000003C00020277AA92D>3 D<000000FFF000000000000FFFFF00000000003F
+FFFFC000000000FF871FF000000003F80701FC0000000FE007007F0000001F8007001F80
+00003E00070007C000007800070001E00000F000070000F00001E000070000780003C000
+0700003C000780000700001E000700000700000E000F00000700000F000E000007000007
+001E000007000007801C000007000003803C000007000003C038000007000001C0780000
+07000001E070000007000000E070000007000000E070000007000000E0F0000007000000
+F0E000000700000070E000000700000070E000000700000070FFFFFFFFFFFFFFF0FFFFFF
+FFFFFFFFF0FFFFFFFFFFFFFFF0E000000700000070E000000700000070E0000007000000
+70E000000700000070F0000007000000F070000007000000E070000007000000E0700000
+07000000E078000007000001E038000007000001C03C000007000003C01C000007000003
+801E000007000007800E000007000007000F00000700000F000700000700000E00078000
+0700001E0003C0000700003C0001E000070000780000F000070000F000007800070001E0
+00003E00070007C000001F8007001F8000000FE007007F00000003F80701FC00000000FF
+871FF0000000003FFFFFC0000000000FFFFF000000000000FFF00000003C3C7BB447>8
+D<000000FFF000000000000FFFFF00000000003FFFFFC000000000FF801FF000000003F8
+0001FC0000000FE000007F0000001F8000001F8000003E00000007C000007800000001E0
+0000F000000000F00001F800000000F80003FC00000001FC00079E00000003DE00070F00
+0000078E000F078000000F0F000E03C000001E07001E01E000003C07801C00F000007803
+803C00780000F003C038003C0001E001C078001E0003C001E070000F00078000E0700007
+800F0000E0700003C01E0000E0F00001E03C0000F0E00000F078000070E0000078F00000
+70E000003DE0000070E000001FC0000070E000000F80000070E000000F80000070E00000
+1FC0000070E000003DE0000070E0000078F0000070E00000F078000070F00001E03C0000
+F0700003C01E0000E0700007800F0000E070000F00078000E078001E0003C001E038003C
+0001E001C03C00780000F003C01C00F000007803801E01E000003C07800E03C000001E07
+000F078000000F0F00070F000000078E00079E00000003DE0003FC00000001FC0001F800
+000000F80000F000000000F000007800000001E000003E00000007C000001F8000001F80
+00000FE000007F00000003F80001FC00000000FF801FF0000000003FFFFFC0000000000F
+FFFF000000000000FFF00000003C3C7BB447>10 D<000FFC0000003FFF000000FFFFC000
+03FFFFF00007F807F8000FE001FC001F80007E003F00003F003E00001F007C00000F807C
+00000F807800000780F8000007C0F8000007C0F0000003C0F0000003C0F0000003C0F000
+0003C0F0000003C0F0000003C0F8000007C0F8000007C078000007807C00000F807C0000
+0F803E00001F003F00003F001F80007E000FE001FC0007F807F80003FFFFF00000FFFFC0
+00003FFF0000000FFC000022227BA72D>14 D<000FFC0000003FFF000000FFFFC00003FF
+FFF00007FFFFF8000FFFFFFC001FFFFFFE003FFFFFFF003FFFFFFF007FFFFFFF807FFFFF
+FF807FFFFFFF80FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFF
+C0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC0FFFFFFFFC07FFFFFFF807FFFFFFF807FFFFFFF80
+3FFFFFFF003FFFFFFF001FFFFFFE000FFFFFFC0007FFFFF80003FFFFF00000FFFFC00000
+3FFF0000000FFC000022227BA72D>I<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFF
+FFFFFFF07FFFFFFFFFFFFFE0000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFF
+FFFFFFF07FFFFFFFFFFFFFE0000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFF
+FFFFFFF07FFFFFFFFFFFFFE03C287BAA47>17 D<000007FFFFFFF800003FFFFFFFFC0001
+FFFFFFFFFC0003FFFFFFFFF8000FFC00000000001FE000000000007F000000000000FE00
+0000000001F8000000000003F0000000000007E0000000000007C000000000000F800000
+0000001F8000000000001F0000000000003E0000000000003E0000000000007C00000000
+00007C0000000000007800000000000078000000000000F8000000000000F80000000000
+00F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000
+F0000000000000F0000000000000F0000000000000F8000000000000F800000000000078
+000000000000780000000000007C0000000000007C0000000000003E0000000000003E00
+00000000001F0000000000001F8000000000000F80000000000007C0000000000007E000
+0000000003F0000000000001F8000000000000FE0000000000007F0000000000001FE000
+000000000FFC000000000003FFFFFFFFF80001FFFFFFFFFC00003FFFFFFFFC000007FFFF
+FFF800000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000001FFFFFFFFFFFF83F
+FFFFFFFFFFFC3FFFFFFFFFFFFC1FFFFFFFFFFFF8364878B947>I<7FFFFFFF800000FFFF
+FFFFF00000FFFFFFFFFE00007FFFFFFFFF000000000000FFC000000000001FE000000000
+0003F8000000000001FC0000000000007E0000000000003F0000000000001F8000000000
+000F80000000000007C0000000000007E0000000000003E0000000000001F00000000000
+01F0000000000000F8000000000000F80000000000007800000000000078000000000000
+7C0000000000007C0000000000003C0000000000003C0000000000003C0000000000003C
+0000000000003C0000000000003C0000000000003C0000000000003C0000000000007C00
+00000000007C0000000000007800000000000078000000000000F8000000000000F80000
+00000001F0000000000001F0000000000003E0000000000007E0000000000007C0000000
+00000F8000000000001F8000000000003F0000000000007E000000000001FC0000000000
+03F800000000001FE00000000000FFC0007FFFFFFFFF0000FFFFFFFFFE0000FFFFFFFFF0
+00007FFFFFFF800000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+00000000000000000000000000000000000000000000000000000000000000000000007F
+FFFFFFFFFFE0FFFFFFFFFFFFF0FFFFFFFFFFFFF07FFFFFFFFFFFE0364878B947>I<0000
+00000000180000000000007C000000000001FC000000000007F800000000001FF0000000
+00007FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001
+FF000000000007FC00000000001FF000000000007FC00000000001FF000000000007FC00
+000000001FF000000000007FC00000000001FF000000000007FC00000000001FF0000000
+00007FC00000000001FF000000000007FC00000000001FF000000000007FC00000000000
+FF000000000000FE0000000000007F8000000000003FE000000000000FF8000000000003
+FE000000000000FF8000000000003FE000000000000FF8000000000003FE000000000000
+FF8000000000003FE000000000000FF8000000000003FE000000000000FF800000000000
+3FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000000000
+0FF8000000000003FE000000000000FF8000000000003FE000000000000FF80000000000
+03FC000000000000FC000000000000380000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+0000000000007FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFFFFFFFFFFF83648
+78B947>I<60000000000000F8000000000000FE0000000000007F8000000000003FE000
+000000000FF8000000000003FE000000000000FF8000000000003FE000000000000FF800
+0000000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE00
+0000000000FF8000000000003FE000000000000FF8000000000003FE000000000000FF80
+00000000003FE000000000000FF8000000000003FE000000000000FF8000000000003FE0
+00000000000FF8000000000003FC000000000001FC000000000007F800000000001FF000
+000000007FC00000000001FF000000000007FC00000000001FF000000000007FC0000000
+0001FF000000000007FC00000000001FF000000000007FC00000000001FF000000000007
+FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001FF000
+000000007FC00000000001FF000000000007FC00000000001FF000000000007FC0000000
+0000FF000000000000FC0000000000007000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000007FFFFFFFFFFFF8FFFFFFFFFFFFFCFFFFFFFFFFFFFC7FFF
+FFFFFFFFF8364878B947>I<000007FFFFFFF800003FFFFFFFFC0001FFFFFFFFFC0003FF
+FFFFFFF8000FFC00000000001FE000000000007F000000000000FE000000000001F80000
+00000003F0000000000007E0000000000007C000000000000F8000000000001F80000000
+00001F0000000000003E0000000000003E0000000000007C0000000000007C0000000000
+007800000000000078000000000000F8000000000000F8000000000000F0000000000000
+F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000F0
+000000000000F0000000000000F8000000000000F8000000000000780000000000007800
+00000000007C0000000000007C0000000000003E0000000000003E0000000000001F0000
+000000001F8000000000000F80000000000007C0000000000007E0000000000003F00000
+00000001F8000000000000FE0000000000007F0000000000001FE000000000000FFC0000
+00000003FFFFFFFFF80001FFFFFFFFFC00003FFFFFFFFC000007FFFFFFF8363678B147>
+26 D<7FFFFFFF800000FFFFFFFFF00000FFFFFFFFFE00007FFFFFFFFF000000000000FF
+C000000000001FE0000000000003F8000000000001FC0000000000007E0000000000003F
+0000000000001F8000000000000F80000000000007C0000000000007E0000000000003E0
+000000000001F0000000000001F0000000000000F8000000000000F80000000000007800
+0000000000780000000000007C0000000000007C0000000000003C0000000000003C0000
+000000003C0000000000003C0000000000003C0000000000003C0000000000003C000000
+0000003C0000000000007C0000000000007C000000000000780000000000007800000000
+0000F8000000000000F8000000000001F0000000000001F0000000000003E00000000000
+07E0000000000007C000000000000F8000000000001F8000000000003F0000000000007E
+000000000001FC000000000003F800000000001FE00000000000FFC0007FFFFFFFFF0000
+FFFFFFFFFE0000FFFFFFFFF000007FFFFFFF800000363678B147>I<6000000C00000000
+0000F800001F000000000000FE00001FC000000000007F80000FF000000000003FC00007
+F800000000000FF00001FE000000000003FC00007F800000000000FF00001FE000000000
+007F80000FF000000000001FE00003FC000000000007F80000FF000000000001FE00003F
+C00000000000FF00001FE000000000003FC00007F800000000000FF00001FE0000000000
+03FC00007F800000000001FE00003FC000000000007F80000FF000000000001FE00003FC
+000000000007F80000FF000000000003FC00007F800000000000FF00001FE00000000000
+3FC00007F800000000000FF00001FE000000000007F80000FF000000000001FE00003FC0
+00000000007F80000FF000000000001FE00003FC00000000000FF00001FE000000000003
+F800007F000000000003F800007F00000000000FF00001FE00000000001FE00003FC0000
+0000007F80000FF00000000001FE00003FC00000000007F80000FF00000000000FF00001
+FE00000000003FC00007F80000000000FF00001FE00000000003FC00007F800000000007
+F80000FF00000000001FE00003FC00000000007F80000FF00000000001FE00003FC00000
+000003FC00007F80000000000FF00001FE00000000003FC00007F80000000000FF00001F
+E00000000001FE00003FC00000000007F80000FF00000000001FE00003FC00000000007F
+80000FF00000000000FF00001FE00000000003FC00007F80000000000FF00001FE000000
+00003FC00007F800000000007F80000FF00000000000FE00001FC00000000000F800001F
+0000000000006000000C000000000000503C7BB45B>29 D<000000000000003000000000
+000000000078000000000000000000780000000000000000007C0000000000000000003C
+0000000000000000003C0000000000000000003E0000000000000000001E000000000000
+0000001E0000000000000000001F0000000000000000000F8000000000000000000F8000
+0000000000000007C0000000000000000003E0000000000000000003E000000000000000
+0001F0000000000000000000F80000000000000000007C0000000000000000007E000000
+0000000000001F8000000000000000000FC0000000000000000007F07FFFFFFFFFFFFFFF
+FFFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFFFFFFFFFC00000000
+0000000007F000000000000000000FC000000000000000001F8000000000000000007E00
+00000000000000007C000000000000000000F8000000000000000001F000000000000000
+0003E0000000000000000003E0000000000000000007C000000000000000000F80000000
+00000000000F8000000000000000001F0000000000000000001E0000000000000000001E
+0000000000000000003E0000000000000000003C0000000000000000003C000000000000
+0000007C0000000000000000007800000000000000000078000000000000000000300000
+50307BAE5B>33 D<00000C00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000000001E00000000001E00000000001E00000000001E00
+000000001E00000000001E00000040001E000080F8001E0007C0FF001E003FC0FF801E00
+7FC03FE01E01FF0007F81E07F80001FC1E0FE000007E1E1F8000003F1E3F0000000F9E7C
+00000007DEF800000003FFF000000003FFF000000001FFE000000000FFC0000000007F80
+000000007F80000000003F00000000003F00000000003F00000000001E00000000001E00
+000000001E00000000000C00000000000C00000000000C0000002A517FBE2D>35
+D<000000000001E0000000000000000001F0000000000000000000F00000000000000000
+00F8000000000000000000780000000000000000007C0000000000000000003E00000000
+00000000003E0000000000000000001F0000000000000000000F80000000000000000007
+C0000000000000000007E0000000000000000003E0000000000000000001F000007FFFFF
+FFFFFFFFFC0000FFFFFFFFFFFFFFFE0000FFFFFFFFFFFFFFFF00007FFFFFFFFFFFFFFF80
+000000000000000007E0000000000000000003F0000000000000000001FC000000000000
+0000007F0000000000000000001FC000000000000000000FF8000000000000000003FF00
+0000000000000003FF00000000000000000FF800000000000000001FC000000000000000
+007F000000000000000001FC000000000000000003F0000000000000000007E0007FFFFF
+FFFFFFFFFF8000FFFFFFFFFFFFFFFF0000FFFFFFFFFFFFFFFE00007FFFFFFFFFFFFFFC00
+0000000000000001F0000000000000000003E0000000000000000007E000000000000000
+0007C000000000000000000F8000000000000000001F0000000000000000003E00000000
+00000000003E0000000000000000007C00000000000000000078000000000000000000F8
+000000000000000000F0000000000000000001F0000000000000000001E000000050327B
+AF5B>41 D<000000F0000000F0000000000000F0000000F0000000000001F0000000F800
+0000000001E000000078000000000003E00000007C000000000003C00000003C00000000
+0007C00000003E00000000000F800000001F00000000000F000000000F00000000001F00
+0000000F80000000003E0000000007C0000000003C0000000003C0000000007C00000000
+03E000000000F80000000001F000000001FFFFFFFFFFFFF800000003FFFFFFFFFFFFFC00
+000007FFFFFFFFFFFFFE0000000FFFFFFFFFFFFFFF0000003F0000000000000FC000007E
+00000000000007E00000FC00000000000003F00003F800000000000001FC000FE0000000
+000000007F003FC0000000000000003FC0FF00000000000000000FF0FF00000000000000
+000FF03FC0000000000000003FC00FE0000000000000007F0003F800000000000001FC00
+00FC00000000000003F000007E00000000000007E000003F0000000000000FC000000FFF
+FFFFFFFFFFFF00000007FFFFFFFFFFFFFE00000003FFFFFFFFFFFFFC00000001FFFFFFFF
+FFFFF800000000F80000000001F0000000007C0000000003E0000000003C0000000003C0
+000000003E0000000007C0000000001F000000000F80000000000F000000000F00000000
+000F800000001F000000000007C00000003E000000000003C00000003C000000000003E0
+0000007C000000000001E000000078000000000001F0000000F8000000000000F0000000
+F0000000000000F0000000F000000054327DAF5B>44 D<0007FC000000001FE000001FFF
+80000000FFF800007FFFE0000003FFFE0001FFFFF800000FF01F8003FFFFFE00003F8003
+C007E00FFF00007E0001E00F8003FF8000F80000F00F0000FFE001F00000701E00007FF0
+03E00000381C00003FF807C000001C3800001FF80F8000001C3800000FFC1F0000000C70
+000007FE3E0000000E70000007FF3E0000000660000003FFFC00000006E0000001FFF800
+000007E0000000FFF800000003C00000007FF000000003C00000007FF000000003C00000
+003FF000000003C00000001FF800000003C00000000FFC00000003C00000000FFE000000
+03C00000000FFE00000003C00000001FFF00000007E00000001FFF80000007600000003F
+FFC0000006600000007CFFE000000E700000007C7FE000000E30000000F83FF000001C38
+000001F01FF800001C38000003E01FFC0000381C000007C00FFE0000780E00000F8007FF
+0000F00F00001F0001FFC001F00780007E0000FFF007E003C001FC00007FFFFFC001F80F
+F000001FFFFF80007FFFC0000007FFFE00001FFF00000001FFF8000007F8000000003FE0
+0050297BA75B>49 D<000007FFFFE000003FFFFFF00001FFFFFFF00003FFFFFFE0000FFC
+000000001FE0000000007F0000000000FE0000000001F80000000003F00000000007E000
+00000007C0000000000F80000000001F80000000001F00000000003E00000000003E0000
+0000007C00000000007C0000000000780000000000780000000000F80000000000F80000
+000000F00000000000F00000000000FFFFFFFFFFE0FFFFFFFFFFF0FFFFFFFFFFF0FFFFFF
+FFFFE0F00000000000F00000000000F80000000000F80000000000780000000000780000
+0000007C00000000007C00000000003E00000000003E00000000001F00000000001F8000
+0000000F800000000007C00000000007E00000000003F00000000001F80000000000FE00
+000000007F00000000001FE0000000000FFC0000000003FFFFFFE00001FFFFFFF000003F
+FFFFF0000007FFFFE02C3678B13D>I<0000000000600000000000F00000000001F00000
+000001F00000000003E00000000003E00000000007C00000000007C0000000000F800000
+00000F80000000001F00000000001F00000000003E00000000003E00000000007C000000
+00007C0000000000F80000000000F80000000001F00000000001F00000000003E0000000
+0003E00000000007C00000000007C0000000000F80000000000F80000000001F00000000
+001F00000000003E00000000003E00000000007C00000000007C0000000000F800000000
+00F80000000001F00000000001F00000000003E00000000003E00000000007C000000000
+07C0000000000F80000000000F80000000001F00000000001F00000000003E0000000000
+3E00000000007C00000000007C0000000000F80000000000F80000000001F00000000001
+F00000000003E00000000003E00000000007C00000000007C0000000000F80000000000F
+80000000001F00000000001F00000000003E00000000003E00000000007C00000000007C
+0000000000F80000000000F80000000001F00000000001F00000000003E00000000003E0
+0000000007C00000000007C0000000000F80000000000F80000000001F00000000001F00
+000000003E00000000003E00000000007C00000000007C0000000000F80000000000F800
+00000000F000000000006000000000002C5473C000>54 D<60F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0FCFEFEFCF0F0F0F0F0F0F0F0F0F0F0F0F0F06007227BA700>I<60000000000180
+F00000000003C0F80000000007C0F80000000007C0780000000007807C000000000F807C
+000000000F803C000000000F003E000000001F003E000000001F001F000000003E001F00
+0000003E000F000000003C000F800000007C000F800000007C000780000000780007C000
+0000F80007C0000000F80003E0000001F00003E0000001F00001E0000001E00001F00000
+03E00001FFFFFFFFE00000FFFFFFFFC00000FFFFFFFFC00000FFFFFFFFC000007C00000F
+8000007C00000F8000003C00000F0000003E00001F0000003E00001F0000001E00001E00
+00001F00003E0000001F00003E0000000F80007C0000000F80007C000000078000780000
+0007C000F800000007C000F800000003E001F000000003E001F000000001E001E0000000
+01F003E000000001F003E000000000F003C000000000F807C000000000F807C000000000
+7C0F80000000007C0F80000000003C0F00000000003E1F00000000003E1F00000000001E
+1E00000000001F3E00000000001F3E00000000000FFC00000000000FFC000000000007F8
+000000000007F8000000000007F8000000000003F0000000000003F0000000000003F000
+0000000001E0000000000000C0000000324180BE33>I<7FFFFFFFFEFFFFFFFFFFFFFFFF
+FFFF7FFFFFFFFF000000000F000000000F000000000F000000000F000000000F00000000
+0F000000000F000000000F000000000F000000000F000000000F000000000F000000000F
+000000000F000000000F000000000F000000000F000000000F000000000F000000000F00
+0000000F000000000F000000000F000000000F000000000F1FFFFFFFFF7FFFFFFFFF7FFF
+FFFFFF7FFFFFFFFF000000000F000000000F000000000F000000000F000000000F000000
+000F000000000F000000000F000000000F000000000F000000000F000000000F00000000
+0F000000000F000000000F000000000F000000000F000000000F000000000F000000000F
+000000000F000000000F000000000F000000000F000000000F000000000F7FFFFFFFFFFF
+FFFFFFFFFFFFFFFFFF7FFFFFFFFE283F7BBE33>I<7FFFFFFFFFFF80FFFFFFFFFFFFC0FF
+FFFFFFFFFFC07FFFFFFFFFFFC0000000000003C0000000000003C0000000000003C00000
+00000003C0000000000003C0000000000003C0000000000003C0000000000003C0000000
+000003C0000000000003C0000000000003C0000000000003C0000000000003C000000000
+0003C0000000000003C0000000000003C0000000000003C0000000000003C00000000000
+03C0000000000003C032187B9F3D>I<00000018000000003C000000003C000000007C00
+0000007C000003FC7800000FFFF800003E07F800007801F00000F000F00001E001F80003
+C001FC00078001FE00078001FE000F0003EF000F0003EF001F0003CF801E0007C7803E00
+07C7C03E000787C03E000787C03E000F87C07E000F87E07C000F03E07C000F03E07C001F
+03E07C001F03E07C001E03E0FC003E03F0FC003E03F0FC003C03F0FC003C03F0FC007C03
+F0FC007C03F0FC007803F0FC007803F0FC00F803F0FC00F803F0FC00F003F0FC01F003F0
+FC01F003F0FC01E003F0FC01E003F0FC03E003F0FC03E003F0FC03C003F0FC03C003F0FC
+07C003F0FC07C003F0FC078003F07C0F8003E07C0F8003E07C0F0003E07E0F0007E07E1F
+0007E07E1F0007E03E1E0007C03E1E0007C03E3E0007C01F3E000F801F3C000F800F7C00
+0F000F7C000F000FF8001F0007F8001E0003F8003C0001F800780001F000F80000F801E0
+0001FE07C00001FFFF000001E3FC000003E000000003E000000003C000000003C0000000
+0180000000244D7CC52D>I<00000006000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000000000000F00000000
+0000000F000000000000000F000000000000000F000000000000000F000000000000000F
+000000000000000F000000000000000F000000000000000F000000007FFFFFFFFFFFFFE0
+FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFFFFE03C3C7BBB47>63
+D<00000000000001800000000000000007C0000000000000000FC0000000000000001FC0
+000000000000003FC0000000000000007FC0000000000000007FC000000000000000FFC0
+00000000000000FFC000000000000001FFC000000000000001FFC000000000000003FFC0
+00000000000003BFC000000000000007BFC0000000000000073FC00000000000000F3FC0
+0000000000000E3FC00000000000001E3FC00000000000001C3FC00000000000003C3FC0
+000000000000383FC0000000000000783FC0000000000000703FC0000000000000F03FC0
+000000000001E03FC0000000000001E03FC0000000000003C03FC0000000000003C03FC0
+000000000007803FC0000000000007803FC000000000000F003FC000000000001E003FC0
+00000000001E003FC000000000003C003FC000000000003C003FC0000000000078003FC0
+0000000000F8003FC00000000000F0003FC00000000001E0003FC00000000001E0003FE0
+0000000003C0003FE00000000007C0003FE0000000000780003FE0000000000F00001FE0
+000000001F00001FE0000000001E00001FE0000000003FFFFFFFE0000000007FFFFFFFE0
+000000007FFFFFFFE000000000FFFFFFFFE000000001FFFFFFFFF000000003E000001FF0
+00000003E000001FF000000007C000001FF00000000F8000000FF00010001F8000000FF0
+0030001F0000000FF80030003E0000000FF80078007C0000000FF8007C00FC0000000FF8
+00FE01F800000007FC00FF87F000000007FC00FFFFE000000007FC1CFFFFE000000007FE
+7CFFFFC000000003FFF87FFF8000000003FFE07FFF0000000003FFC03FFE0000000001FF
+001FFC0000000000FC000FF00000000000000003C00000000000000046477EC149>65
+D<000000003FE000000003FFF80000001FFFFC0000007FFFFE000001FFFFFE000007FC0F
+FE00000FC003FE00003F0001FE00007C0001FE0000F80001FC0001F00001FC0003E00001
+F80007C00001F8000F800003F0001F800003F0003F000007E0003E000007E0007E00000F
+C000FC00000FC000FC00001F8001F800001F0001F800003E0003F00000380003F0000000
+0007E00000000007E0000000000FE0000000000FC0000000001FC0000000001FC0000000
+001FC0000000003F80000000003F80000000003F80000000003F80000000007F80000000
+007F00000000007F00000000007F00000000007F0000000000FF0000000000FF00000000
+00FF0000000000FF0000000000FF0000000000FF0000000000FF0000000000FF00000000
+00FF8000000000FF80000000E0FF80000003E0FF80000007C07FC000000F807FC000001F
+807FE000003F007FE000003E003FF000007C003FF80000F8001FFC0001F0001FFF0007E0
+000FFFE03F800007FFFFFF000003FFFFFC000001FFFFF00000007FFF800000000FFC0000
+002F427FBF30>67 D<000001FFFFFC00000000003FFFFFFFE000000001FFFFFFFFFC0000
+0007FFFFFFFFFF8000001FFFFFFFFFFFC000007FE1FC01FFFFF00001FC01FC000FFFF800
+03F001FC0001FFFC0007C001FC00003FFE000F8003FC00001FFF001F8003FC000007FF00
+3F0003FC000003FF803F0003FC000001FF807E0003F8000000FFC0FE0003F8000000FFC0
+FC0003F80000007FC0F00003F80000007FE0C00007F80000003FE0000007F80000003FE0
+000007F00000003FE0000007F00000001FE0000007F00000001FE0000007F00000001FE0
+00000FF00000001FE000000FE00000001FE000000FE00000001FE000000FE00000001FC0
+00000FE00000001FC000001FC00000001FC000001FC00000001FC000001FC00000003F80
+00001FC00000003F8000003F800000003F8000003F800000003F0000003F800000007F00
+00003F800000007E0000007F000000007E0000007F00000000FC0000007F00000000FC00
+00007E00000001F8000000FE00000001F0000000FE00000003F0000000FC00000007E000
+0001FC00000007C0000001FC0000000F80000001F80000001F00000003F80000003E0000
+0003F80000007C00000003F0000000F800000007F0000003F000000007E0000007C00000
+0007E000001F800000000FE000007E000000000FC00001FC000000001FC0000FF0000000
+001F80007FC0000000001F800FFF00000000003FFFFFFC0000000000FFFFFFE000000000
+01FFFFFF000000000003FFFFF8000000000007FFFF000000000000433E7EBD46>I<6000
+0000000180F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000
+000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0000000
+0003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000000000
+03C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003
+C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0
+F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0
+0000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000
+00000003C0F00000000003C0F00000000003C0F00000000003C0F80000000007C0F80000
+000007C0780000000007807C000000000F807C000000000F803E000000001F003F000000
+003F001F800000007E000FC0000000FC0007F0000003F80003FC00000FF00001FF00003F
+E000007FF003FF8000001FFFFFFE00000007FFFFF800000001FFFFE0000000001FFE0000
+0032397BB63D>91 D<00001FFE0000000001FFFFE000000007FFFFF80000001FFFFFFE00
+00007FF003FF800001FF00003FE00003FC00000FF00007F0000003F8000FC0000000FC00
+1F800000007E003F000000003F003E000000001F007C000000000F807C000000000F8078
+000000000780F80000000007C0F80000000007C0F00000000003C0F00000000003C0F000
+00000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000
+000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0000000
+0003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000000000
+03C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003
+C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0
+F00000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F0
+0000000003C0F00000000003C0F00000000003C0F00000000003C0F00000000003C0F000
+00000003C06000000000018032397BB63D>I<000000C0000000000001E0000000000003
+F0000000000003F0000000000007F8000000000007F8000000000007F800000000000FFC
+00000000000FFC00000000001F3E00000000001F3E00000000003E1F00000000003E1F00
+000000003C0F00000000007C0F80000000007C0F8000000000F807C000000000F807C000
+000001F003E000000001F003E000000001E001E000000003E001F000000003E001F00000
+0007C000F800000007C000F80000000F80007C0000000F80007C0000001F00003E000000
+1F00003E0000001E00001E0000003E00001F0000003E00001F0000007C00000F8000007C
+00000F800000F8000007C00000F8000007C00000F0000003C00001F0000003E00001F000
+0003E00003E0000001F00003E0000001F00007C0000000F80007C0000000F80007800000
+0078000F800000007C000F800000007C001F000000003E001F000000003E003E00000000
+1F003E000000001F003C000000000F007C000000000F807C000000000F80F80000000007
+C0F80000000007C0F00000000003C06000000000018032397BB63D>94
+D<60000000000180F00000000003C0F80000000007C0F80000000007C07C000000000F80
+7C000000000F803C000000000F003E000000001F003E000000001F001F000000003E001F
+000000003E000F800000007C000F800000007C000780000000780007C0000000F80007C0
+000000F80003E0000001F00003E0000001F00001F0000003E00001F0000003E00000F000
+0003C00000F8000007C00000F8000007C000007C00000F8000007C00000F8000003E0000
+1F0000003E00001F0000001E00001E0000001F00003E0000001F00003E0000000F80007C
+0000000F80007C00000007C000F800000007C000F800000003E001F000000003E001F000
+000001E001E000000001F003E000000001F003E000000000F807C000000000F807C00000
+00007C0F80000000007C0F80000000003C0F00000000003E1F00000000003E1F00000000
+001F3E00000000001F3E00000000000FFC00000000000FFC000000000007F80000000000
+07F8000000000007F8000000000003F0000000000003F0000000000001E0000000000000
+C000000032397BB63D>I<0000003F000003FF00000FE000003F8000007E000001FC0000
+01F8000003F0000003F0000007E0000007E0000007E0000007E0000007E0000007E00000
+07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
+07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
+07E0000007E0000007E0000007E000000FE000000FC000001FC000003F8000003F000000
+FE000003F800007FE00000FF0000007FE0000003F8000000FE0000003F0000003F800000
+1FC000000FC000000FE0000007E0000007E0000007E0000007E0000007E0000007E00000
+07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
+07E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00000
+07E0000007E0000007E0000007E0000003F0000003F0000001F8000001FC0000007E0000
+003F8000000FE0000003FF0000003F205B7AC32D>102 D<FC000000FFC0000007F00000
+01FC0000007E0000003F8000001F8000000FC000000FC0000007E0000007E0000007E000
+0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
+0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
+0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007F0000003F000
+0003F8000001FC000000FC0000007F0000001FC0000007FE000000FF000007FE00001FC0
+00007F000000FC000001FC000003F8000003F0000007F0000007E0000007E0000007E000
+0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
+0007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E000
+0007E0000007E0000007E0000007E0000007E0000007E0000007E000000FC000000FC000
+001F8000003F8000007E000001FC000007F00000FFC00000FC000000205B7AC32D>I<00
+00600000F00001F00001F00001E00003E00003E00003C00007C00007C0000F80000F8000
+0F00001F00001F00001E00003E00003E00007C00007C0000780000F80000F80000F00001
+F00001F00001E00003E00003E00007C00007C0000780000F80000F80000F00001F00001F
+00003E00003E00003C00007C00007C0000780000F80000F80000F80000F800007800007C
+00007C00003C00003E00003E00001F00001F00000F00000F80000F800007800007C00007
+C00003E00003E00001E00001F00001F00000F00000F80000F800007800007C00007C0000
+3E00003E00001E00001F00001F00000F00000F80000F800007C00007C00003C00003E000
+03E00001E00001F00001F00000F0000060145A77C323>I<600000F00000F80000F80000
+7800007C00007C00003C00003E00003E00001F00001F00000F00000F80000F8000078000
+07C00007C00003E00003E00001E00001F00001F00000F00000F80000F800007800007C00
+007C00003E00003E00001E00001F00001F00000F00000F80000F800007C00007C00003C0
+0003E00003E00001E00001F00001F00001F00001F00001E00003E00003E00003C00007C0
+0007C0000F80000F80000F00001F00001F00001E00003E00003E00007C00007C00007800
+00F80000F80000F00001F00001F00001E00003E00003E00007C00007C0000780000F8000
+0F80000F00001F00001F00003E00003E00003C00007C00007C0000780000F80000F80000
+F00000600000145A7BC323>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0
+F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F060045B76C3
+19>I E
+%EndDVIPSBitmapFont
+/F7 75[30 11[30 31[30 13[35 40 40 61 40 45 25 35 35 45
+45 45 45 66 25 40 25 25 45 45 25 40 45 40 45 45 6[51
+2[76 2[51 45 56 1[56 66 61 76 51 61 40 30 66 66 56 56
+66 61 56 56 6[30 7[45 3[23 30 23 4[30 36[45 2[{
+TeXBase1Encoding ReEncodeFont}57 90.9091 /Times-Italic
+rf /F8 135[86 3[57 1[76 1[96 1[96 4[48 96 2[76 96 2[86
+29[124 115 124 11[86 86 86 86 86 49[{TeXBase1Encoding ReEncodeFont}18
+172.188 /Times-Bold rf
+%DVIPSBitmapFont: F9 cmr8 8 14
+/F9 14 62 df<00030007000E001C0038007000F001E001C003C0078007800F000F001E
+001E001E003C003C003C003C0078007800780078007800F800F800F000F000F000F000F0
+00F000F000F000F000F000F000F800F800780078007800780078003C003C003C003C001E
+001E001E000F000F000780078003C001C001E000F000700038001C000E0007000310437A
+B11B>40 D<C000E000700038001C000E000F000780038003C001E001E000F000F0007800
+780078003C003C003C003C001E001E001E001E001E001F001F000F000F000F000F000F00
+0F000F000F000F000F000F001F001F001E001E001E001E001E003C003C003C003C007800
+78007800F000F001E001E003C0038007800F000E001C0038007000E000C00010437CB11B
+>I<00000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+0000000003800000000003800000000003800000000003800000FFFFFFFFFFFCFFFFFFFF
+FFFCFFFFFFFFFFFC00000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+000000000380000000000380000000000380000000000380000000000380000000000380
+00000000038000000000038000000000038000000000038000000000038000002E2F7CA7
+37>43 D<003FC00000FFF00003E07C0007C03E000F801F000F000F001E0007801E000780
+3E0007C03E0007C07C0003E07C0003E07C0003E07C0003E07C0003E0FC0003F0FC0003F0
+FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F0
+FC0003F0FC0003F0FC0003F0FC0003F0FC0003F07C0003E07C0003E07C0003E07E0007E0
+3E0007C03E0007C03E0007C01F000F800F000F000F801F0007C03E0003F0FC0000FFF000
+003FC0001C2D7DAB23>48 D<000C00003C00007C0003FC00FFFC00FC7C00007C00007C00
+007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00
+007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00
+007C00007C00007C00007C00007C00007C00007C00007C00007C0000FE007FFFFE7FFFFE
+172C7AAB23>I<007F800001FFF0000780FC000E003F001C001F8038000FC070000FC060
+0007E0F00007E0FC0007F0FE0007F0FE0003F0FE0003F0FE0003F07C0007F0000007F000
+0007F0000007E000000FE000000FC000001FC000001F8000003F0000007E0000007C0000
+00F8000001F0000003E0000007C000000F8000001E0000003C00000078000000F0003000
+E0003001C0003003800060070000600E0000E01FFFFFE03FFFFFE07FFFFFC0FFFFFFC0FF
+FFFFC01C2C7DAB23>I<003FC00001FFF00007C0FC000E007E001C003F001C001F803F00
+1FC03F001FC03F800FC03F000FC03F000FC00C001FC000001FC000001F8000001F800000
+3F0000003E0000007C000000F8000003F00000FFC00000FFF0000000FC0000003F000000
+1F8000001FC000000FC000000FE000000FE0000007F0000007F0380007F07C0007F0FE00
+07F0FE0007F0FE0007F0FE000FE0F8000FE060000FC070001FC038001F801E003F000780
+FC0001FFF000007FC0001C2D7DAB23>I<00000E0000000E0000001E0000003E0000003E
+0000007E000000FE000000FE000001BE000003BE0000033E0000063E00000E3E00000C3E
+0000183E0000383E0000303E0000603E0000E03E0000C03E0001803E0003803E0003003E
+0006003E000E003E000C003E0018003E0038003E0030003E0060003E00E0003E00FFFFFF
+FCFFFFFFFC00003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E
+0000003E0000007F00001FFFFC001FFFFC1E2D7EAC23>I<0C0001800FC01F800FFFFF00
+0FFFFE000FFFFC000FFFF0000FFFC0000C7E00000C0000000C0000000C0000000C000000
+0C0000000C0000000C0000000C0000000C1FC0000C7FF8000DE07C000F801F000F001F80
+0E000F800C0007C0000007E0000007E0000003E0000003F0000003F0000003F0000003F0
+780003F0FC0003F0FC0003F0FC0003F0FC0003F0F80007E0E00007E0600007C070000FC0
+38000F801C001F000E003E000780F80001FFE000007F80001C2D7DAB23>I<0003F80000
+0FFE00003E078000F8018001F007C003E00FC007C00FC00F800FC00F800FC01F0007801F
+0000003E0000003E0000007E0000007E0000007C0000007C0FC000FC3FF000FCF07C00FD
+C01E00FF800F00FF000F80FF0007C0FE0007E0FE0007E0FE0003E0FC0003F0FC0003F0FC
+0003F0FC0003F07C0003F07C0003F07C0003F07E0003F07E0003F03E0003E03E0007E01E
+0007E01F0007C00F000F8007801F0003C03E0001E07C00007FF000001FC0001C2D7DAB23
+>I<300000003C0000003FFFFFF83FFFFFF83FFFFFF07FFFFFF07FFFFFE0700001C06000
+018060000380C0000700C0000E00C0000C0000001C000000380000003000000070000000
+E0000001C0000001C00000038000000380000007000000070000000F0000000E0000001E
+0000001E0000003E0000003E0000003E0000003C0000007C0000007C0000007C0000007C
+000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC
+0000007800001D2E7CAC23>I<001FC00000FFF00003E07C0007801E000F000F001E0007
+801E0007803C0003C03C0003C03C0003C03C0003C03E0003C03E0007C03F0007801FC00F
+801FE00F001FF81E000FFC3C0007FFF80003FFE00000FFE000003FF80000FFFC0003C7FF
+000783FF801F00FFC01E003FC03C001FE07C0007E0780003F0F80003F0F00001F0F00000
+F0F00000F0F00000F0F00000F0F80000E0780001E07C0001C03C0003C01E0007800F800F
+0007E03C0001FFF000003FC0001C2D7DAB23>I<003F800000FFF00003E0780007C03E00
+0F801F001F000F003E000F803E0007807E0007C07C0007C0FC0007E0FC0003E0FC0003E0
+FC0003E0FC0003F0FC0003F0FC0003F0FC0003F0FC0003F07C0007F07E0007F07E0007F0
+3E000FF01F000FF00F001FF007803BF003E0F3F000FFC3F0003F03E0000003E0000007E0
+000007E0000007C0000007C000000FC01E000F803F000F003F001F003F003E003F003C00
+3E0078001C00F0000E03E00007FF800001FE00001C2D7DAB23>I<FFFFFFFFFFFCFFFFFF
+FFFFFCFFFFFFFFFFFC000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+000000000000000000000000000000FFFFFFFFFFFCFFFFFFFFFFFCFFFFFFFFFFFC2E137C
+9937>61 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Ga cmmi10 10.95 59
+/Ga 59 123 df<000001C00000000FFF0000003FFFE0000079FFF00000E03FF00001C00F
+F000018007F000018001E0000380000000038000000003C000000001C000000001E00000
+0001E000000001F000000001F000000000F800000000FC00000000FC000000007E000000
+007F000000003F800000003F800000001FC00000001FE00000000FE00000007FF0000001
+F7F8000007C7F800001F83FC00003E03FC00007C01FC0000F801FE0001F801FE0003F000
+FE0007E000FE0007E000FE000FC0007E001F80007E001F80007E003F80007E003F00007E
+003F00007E007F00007E007E00007E007E00007E007E00007E00FE00007C00FC00007C00
+FC0000FC00FC0000FC00FC0000F800FC0001F800FC0001F800FC0001F0007C0003F0007C
+0003E0007C0003E0003E0007C0003E000F80001F000F00000F001E000007803C000003E0
+78000000FFE00000003F80000024427CC028>14 D<003F00000000003FE00000000007F0
+0000000003FC0000000001FC0000000000FE0000000000FE0000000000FE00000000007F
+00000000007F00000000003F80000000003F80000000003F80000000001FC0000000001F
+C0000000001FC0000000000FE0000000000FE0000000000FE00000000007F00000000007
+F00000000007F00000000003F80000000003F80000000001FC0000000001FC0000000001
+FC0000000000FE0000000000FE0000000000FE00000000007F00000000007F0000000000
+7F00000000003F80000000007F8000000000FF8000000001FFC000000003FFC000000007
+CFE00000000F8FE00000001F0FE00000003E07F00000007C07F0000000FC07F0000001F8
+03F8000003F003F8000007E003F800000FC001FC00001F8001FC00003F0001FC00007F00
+00FE0000FE0000FE0001FC00007F0003F800007F0007F000007F000FE000003F801FC000
+003F803FC000003F807F8000001FC0FF0000001FC0FE0000001FE0FC0000000FE0F80000
+0007F07000000003F02C407BBE35>21 D<0001C00000000003E00000E00007E00003F000
+07E00003F00007E00003F0000FE00007F0000FE00007F0000FC00007E0000FC00007E000
+1FC0000FE0001FC0000FE0001F80000FC0001F80000FC0003F80001FC0003F80001FC000
+3F00001F80003F00001F80007F00003F80007F00003F80007E00003F00007E00003F0000
+FE00007F0000FE00007F0000FC00007E0000FC00007E0001FC0000FE0001FC0000FE0701
+F80000FC0701F80000FC0701F80001FC0703F80001FC0F03F80003F80E03F80003F80E07
+F80007F81E07F8000FF81C07FC001FF81C07FC003CF8380FFE0070F8380FFF81E07C700F
+C7FF803FE00FC1FE000F801FC0000000001FC0000000001F80000000001F80000000003F
+80000000003F80000000003F00000000003F00000000007F00000000007F00000000007E
+00000000007E0000000000FE0000000000FE0000000000FC0000000000FC0000000000FC
+0000000000F80000000000700000000000303C7EA737>I<007F000001C03FFF000003E0
+3FFF000007E03FFE000007E000FE000007E000FE00000FE000FE00000FC000FC00000FC0
+00FC00001FC001FC00001F8001FC00003F8001F800003F0001F800003F0003F800007E00
+03F800007E0003F00000FC0003F00001FC0007F00001F80007F00003F00007E00007E000
+07E00007E0000FE0000FC0000FE0001F80000FC0003F00000FC0007E00001FC0007C0000
+1FC000F800001F8001F000001F8007E000003F800FC000003F801F0000003F003E000000
+3F00F80000007F01F00000007F07C00000007E1F000000007EFC00000000FFE000000000
+FF8000000000F800000000002B287CA72D>I<001FFFFFFFFE007FFFFFFFFF01FFFFFFFF
+FF03FFFFFFFFFF07FFFFFFFFFE0FC03801C0001F003801C0003E003803C0003C00780380
+00780070038000F00070038000F000F0078000E000F00780000000E00780000001E00700
+000001E00700000001E00F00000003C00F00000003C00F00000003C00F00000007C00F00
+000007800F00000007800F0000000F801F0000000F801F0000001F001F0000001F001F80
+00001F001F8000003E001F8000003E001F8000007E001F8000007E001FC00000FC001FC0
+0000FC000FC00001FC000FE00001F8000FE00003F8000FE00003F80007E00003F00007E0
+0000E00003800030287DA634>25 D<00000FFFFFFE00007FFFFFFF0001FFFFFFFF0007FF
+FFFFFF001FFFFFFFFE003FE03FE000007F000FE00000FE0007F00001FC0003F00003F800
+03F80007F00001F8000FE00001F8000FC00001F8001FC00001F8001F800001F8003F8000
+01F8003F000001F8007F000001F8007E000001F8007E000001F8007E000003F800FE0000
+03F000FC000003F000FC000003F000FC000007E000FC000007E000FC00000FE000FC0000
+0FC000FC00001F8000FC00001F80007C00003F00007C00007E00007C00007C00003E0000
+F800001E0001F000001F0007E000000F800F80000003E07E00000000FFF8000000003FC0
+00000030287DA634>27 D<001FFFFFFFC000FFFFFFFFC001FFFFFFFFC003FFFFFFFFC007
+FFFFFFFF800FC0070000001F000F0000003E000F0000003C000E00000078001E000000F0
+001E000000E0001E000000E0001E00000000003C00000000003C00000000003C00000000
+007C00000000007C0000000000780000000000F80000000000F80000000000F800000000
+00F80000000001F00000000001F00000000001F00000000003F00000000003F000000000
+03E00000000003E00000000007E00000000007E00000000007E0000000000FC000000000
+0FC0000000000FC0000000001FC0000000001FC0000000001F80000000000F000000002A
+287DA628>I<00001FF0000001FFFC000007FFFF00001FFFFFC0007FC01FE000FC0007E0
+01F00001E003C00000000780000000078000000007000000000F000000000E000000000E
+000000000F000000000700000000078000000003CFFF000001FFFF800001FF1F000003DF
+FE00000781E000000E000000001C000000003C0000000078000000007000000000F00000
+0000E000000000E000000000E000000000E000000000E000000000E000000600F000000E
+00F000001C0078000038007C0000F0003F8007E0001FFFFFC00007FFFF000001FFFC0000
+007FE00000232B7DA82A>34 D<00000C0000000000000000001E0000000000000000003E
+0000000000000000003C0000000000000000003C0000000000000000007C000000000000
+00000078000000000000000000F8000000000000000001F0000000000000000001F00000
+00000000000003E0000000000000000007C0000000000000000007C00000000000000000
+0F8000000000000000001F0000000000000000003F0000000000000000007E0000000000
+00000000FC000000000000000001F8000000000000000003F0000000000000000007E000
+000000000000001FC000000000000000003FFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFF
+FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE501A7BAE5B>40
+D<0000000000000030000000000000000000780000000000000000007C00000000000000
+00003C0000000000000000003C0000000000000000003E0000000000000000001E000000
+0000000000001F0000000000000000000F8000000000000000000F800000000000000000
+07C0000000000000000003E0000000000000000003E0000000000000000001F000000000
+0000000000F8000000000000000000FC0000000000000000007E0000000000000000003F
+0000000000000000001F8000000000000000000FC0000000000000000007E00000000000
+00000003F87FFFFFFFFFFFFFFFFFFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F
+FFFFFFFFFFFFFFFFFF501A7BAE5B>42 D<1E007F807F80FFC0FFC0FFC0FFC07F807F801E
+000A0A798919>58 D<1E007F80FF80FFC0FFC0FFE0FFE0FFE07FE01E6000600060006000
+6000E000C000C000C001C001800380030007000E001C001800380030000B1C798919>I<
+00000000000038000000000000FC000000000003FC00000000000FF800000000003FE000
+00000000FF800000000003FE00000000000FF800000000003FE00000000000FF80000000
+0003FE00000000000FF800000000003FE00000000000FF800000000003FE00000000000F
+F800000000003FE00000000000FF800000000003FE00000000000FF800000000003FE000
+00000000FF800000000003FE00000000000FF800000000003FE000000000007F80000000
+0000FE000000000000FE0000000000007F8000000000003FE000000000000FF800000000
+0003FE000000000000FF8000000000003FE000000000000FF8000000000003FE00000000
+0000FF8000000000003FE000000000000FF8000000000003FE000000000000FF80000000
+00003FE000000000000FF8000000000003FE000000000000FF8000000000003FE0000000
+00000FF8000000000003FE000000000000FF8000000000003FE000000000000FF8000000
+000003FC000000000000FC00000000000038363678B147>I<000000018000000003C000
+000007C000000007C000000007800000000F800000000F800000000F000000001F000000
+001F000000001E000000003E000000003E000000003C000000007C000000007C00000000
+7800000000F800000000F800000000F000000001F000000001F000000001E000000003E0
+00000003E000000003C000000007C000000007C000000007800000000F800000000F8000
+00001F000000001F000000001E000000003E000000003E000000003C000000007C000000
+007C000000007800000000F800000000F800000000F000000001F000000001F000000001
+E000000003E000000003E000000003C000000007C000000007C000000007800000000F80
+0000000F800000000F000000001F000000001F000000001E000000003E000000003E0000
+00007C000000007C000000007800000000F800000000F800000000F000000001F0000000
+01F000000001E000000003E000000003E000000003C000000007C000000007C000000007
+800000000F800000000F800000000F000000001F000000001F000000001E000000003E00
+0000003E000000003C000000007C000000007C000000007800000000F800000000F80000
+0000F0000000006000000000225B7BC32D>I<60000000000000F8000000000000FF0000
+000000007FC000000000001FF0000000000007FC000000000001FF0000000000007FC000
+000000001FF0000000000007FC000000000001FF0000000000007FC000000000001FF000
+0000000007FC000000000001FF0000000000007FC000000000001FF0000000000007FC00
+0000000001FF0000000000007FC000000000001FF0000000000007FC000000000001FF00
+00000000007FC000000000001FF0000000000007F8000000000001FC000000000001FC00
+0000000007F800000000001FF000000000007FC00000000001FF000000000007FC000000
+00001FF000000000007FC00000000001FF000000000007FC00000000001FF00000000000
+7FC00000000001FF000000000007FC00000000001FF000000000007FC00000000001FF00
+0000000007FC00000000001FF000000000007FC00000000001FF000000000007FC000000
+00001FF000000000007FC00000000000FF000000000000FC000000000000700000000000
+00363678B147>I<00000300000000000300000000000300000000000300000000000780
+000000000780000000000780000000000780000000000780000000000780000000000780
+000000000780000000000FC0000000000FC0000000000FC0000000000FC00000F0000FC0
+003CFF800FC007FC3FFE0FC1FFF00FFFFFFFFFC003FFFFFFFF0000FFFFFFFC00001FFFFF
+E0000007FFFF80000001FFFE000000007FF8000000007FF800000000FFFC00000000FFFC
+00000001FFFE00000001FFFE00000003FCFF00000003F87F00000007F03F80000007E01F
+8000000FC00FC000000F8007C000001F0003E000003E0001F000003C0000F00000780000
+780000700000380000E000001C000040000008002E2C81AC2D>I<000000000007000000
+000000000F000000000000000F800000000000001F800000000000001F80000000000000
+3F800000000000007F800000000000007F80000000000000FF80000000000000FF800000
+00000001FF80000000000003FF80000000000003FF800000000000077FC0000000000007
+7FC000000000000E3FC000000000001E3FC000000000001C3FC00000000000383FC00000
+000000383FC00000000000703FC00000000000703FC00000000000E03FC00000000001C0
+3FC00000000001C03FE00000000003803FE00000000003801FE00000000007001FE00000
+00000F001FE0000000000E001FE0000000001C001FE0000000001C001FE0000000003800
+1FE00000000078001FE00000000070001FE000000000E0001FE000000000E0001FF00000
+0001C0001FF000000001C0000FF00000000380000FF00000000700000FF000000007FFFF
+FFF00000000FFFFFFFF00000000FFFFFFFF00000001C00000FF00000003C00000FF00000
+003800000FF00000007000000FF80000007000000FF8000000E0000007F8000001E00000
+07F8000001C0000007F800000380000007F800000380000007F800000700000007F80000
+0F00000007F800000E00000007F800001E00000007F800003C00000007FC00007C000000
+07FC0000FE00000007FC0007FF0000001FFE00FFFFF00007FFFFFCFFFFF00007FFFFFCFF
+FFF00007FFFFF83E417DC044>65 D<0001FFFFFFFFF800000001FFFFFFFFFF00000001FF
+FFFFFFFFE000000001FE00003FF000000001FE000007F800000001FC000003FC00000001
+FC000001FE00000001FC000001FF00000003FC000000FF00000003F8000000FF00000003
+F8000000FF80000003F8000000FF80000007F80000007F80000007F0000000FF80000007
+F0000000FF80000007F0000000FF8000000FF0000000FF0000000FE0000001FF0000000F
+E0000001FE0000000FE0000003FE0000001FE0000003FC0000001FC0000007F80000001F
+C000000FF80000001FC000001FE00000003FC000003FC00000003F8000007F800000003F
+800001FE000000003F800007F8000000007F80007FE0000000007FFFFFFF00000000007F
+FFFFFFE0000000007F000007F800000000FF000001FE00000000FE000000FF00000000FE
+0000007F80000000FE0000003FC0000001FE0000003FC0000001FC0000003FE0000001FC
+0000001FE0000001FC0000001FE0000003FC0000001FE0000003F80000001FF0000003F8
+0000001FF0000003F80000001FF0000007F80000001FE0000007F00000003FE0000007F0
+0000003FE0000007F00000003FC000000FF00000007FC000000FE00000007F8000000FE0
+000000FF8000000FE0000001FF0000001FE0000001FE0000001FC0000003FE0000001FC0
+000007FC0000003FC000001FF00000003FC000003FE00000003F800000FFC00000007F80
+0007FF000000FFFFFFFFFFFC000000FFFFFFFFFFF0000000FFFFFFFFFF00000000413E7D
+BD45>I<000000001FF8000700000001FFFE00070000000FFFFF800E0000007FF007E01E
+000001FF0000F03E000003FC0000787E00000FF000003CFC00003FC000001FFC00007F80
+00000FFC0000FF0000000FFC0001FE00000007F80007F800000007F8000FF000000003F8
+001FF000000003F8001FE000000003F0003FC000000001F0007F8000000001F000FF8000
+000001F001FF0000000001E001FE0000000001E003FE0000000001E007FC0000000001E0
+07FC0000000001C00FF80000000001C00FF80000000001C01FF00000000001C01FF00000
+000000003FF00000000000003FE00000000000003FE00000000000007FE0000000000000
+7FC00000000000007FC00000000000007FC0000000000000FFC0000000000000FF800000
+00000000FF80000000000000FF80000000000000FF80000000000000FF80000000000000
+FF00000000000000FF00000000003C00FF00000000003C00FF00000000003800FF000000
+00003800FF00000000007800FF00000000007000FF0000000000F0007F8000000000E000
+7F8000000001E0007F8000000003C0003F800000000380003FC00000000780003FC00000
+000F00001FC00000001E00000FE00000003C00000FF000000078000007F8000000F00000
+03F8000001E0000001FE000007C0000000FF00000F000000007FC0007E000000001FF803
+F80000000007FFFFE00000000001FFFF8000000000001FF80000000040427BBF41>I<00
+01FFFFFFFFF800000001FFFFFFFFFF00000001FFFFFFFFFFC000000001FF00003FF00000
+0001FF00000FF800000001FE000003FC00000001FE000000FE00000001FE0000007F0000
+0003FE0000003F80000003FC0000003F80000003FC0000001FC0000003FC0000001FC000
+0007FC0000000FE0000007F80000000FE0000007F80000000FF0000007F80000000FF000
+000FF800000007F000000FF000000007F000000FF000000007F000000FF000000007F800
+001FF000000007F800001FE000000007F800001FE000000007F800001FE00000000FF800
+003FE00000000FF800003FC00000000FF800003FC00000000FF800003FC00000000FF000
+007FC00000000FF000007F800000001FF000007F800000001FF000007F800000001FF000
+00FF800000001FE00000FF000000003FE00000FF000000003FE00000FF000000003FC000
+01FF000000007FC00001FE000000007FC00001FE000000007F800001FE00000000FF8000
+03FE00000000FF000003FC00000000FF000003FC00000001FE000003FC00000001FC0000
+07FC00000003FC000007F800000003F8000007F800000007F0000007F80000000FF00000
+0FF80000001FE000000FF00000001FC000000FF00000003F8000000FF00000007F000000
+1FF0000000FE0000001FE0000001FC0000001FE0000007F80000003FE000000FE0000000
+3FE000003FC00000003FC00001FF000000007FC0000FFC000000FFFFFFFFFFF0000000FF
+FFFFFFFFC0000000FFFFFFFFFC00000000453E7DBD4B>I<0001FFFFFFFFFFFFC00001FF
+FFFFFFFFFFC00001FFFFFFFFFFFFC0000001FF000001FFC0000001FF0000003FC0000001
+FE0000001FC0000001FE0000000FC0000001FE0000000F80000003FE0000000780000003
+FC0000000780000003FC0000000780000003FC0000000780000007FC0000000780000007
+F80000000780000007F80000000700000007F8000000070000000FF8000000070000000F
+F0000700070000000FF0000700070000000FF0000F000F0000001FF0000E000E0000001F
+E0000E00000000001FE0001E00000000001FE0001E00000000003FE0003C00000000003F
+C0003C00000000003FC0007C00000000003FC001FC00000000007FFFFFF800000000007F
+FFFFF800000000007FFFFFF800000000007F8003F80000000000FF8001F00000000000FF
+0000F00000000000FF0000F00000000000FF0000F00000000001FF0000E00000000001FE
+0000E00000000001FE0000E00038000001FE0001E00078000003FE0001C00070000003FC
+0001C000F0000003FC00000000E0000003FC00000000E0000007FC00000001E0000007F8
+00000001C0000007F800000003C0000007F8000000038000000FF8000000078000000FF0
+0000000F0000000FF00000000F0000000FF00000001F0000001FF00000003E0000001FE0
+0000007E0000001FE0000000FC0000003FE0000001FC0000003FE0000003F80000003FC0
+00000FF80000007FC00000FFF80000FFFFFFFFFFFFF00000FFFFFFFFFFFFF00000FFFFFF
+FFFFFFE00000423E7DBD43>I<0001FFFFFFFFFFFF0001FFFFFFFFFFFF0001FFFFFFFFFF
+FF000001FF000007FF000001FF000000FF000001FE0000007F000001FE0000003F000001
+FE0000001E000003FE0000001E000003FC0000001E000003FC0000001E000003FC000000
+1E000007FC0000001E000007F80000001E000007F80000001C000007F80000001C00000F
+F80000001C00000FF00000001C00000FF00007001C00000FF0000F003C00001FF0000E00
+3800001FE0000E000000001FE0000E000000001FE0001E000000003FE0001C000000003F
+C0003C000000003FC0007C000000003FC000FC000000007FC003F8000000007FFFFFF800
+0000007FFFFFF8000000007FFFFFF800000000FF8003F000000000FF0001F000000000FF
+0000F000000000FF0000F000000001FF0000E000000001FE0000E000000001FE0000E000
+000001FE0001E000000003FE0001C000000003FC0001C000000003FC0001C000000003FC
+00000000000007FC00000000000007F800000000000007F800000000000007F800000000
+00000FF80000000000000FF00000000000000FF00000000000000FF00000000000001FF0
+0000000000001FE00000000000001FE00000000000003FE00000000000003FE000000000
+00003FC00000000000007FE00000000000FFFFFFF800000000FFFFFFF800000000FFFFFF
+F800000000403E7DBD3A>I<000000003FF0000E00000003FFFE000E0000001FFFFF801C
+0000007FF00FC03C000001FF0001E07C000007FC0000F0FC00000FF0000079F800003FC0
+00003FF800007F8000001FF80000FF0000000FF80003FC0000000FF00007F80000000FF0
+000FF000000007F0001FE000000007F0003FE000000007E0003FC000000003E0007F8000
+000003E000FF0000000003E001FF0000000003C001FE0000000003C003FE0000000003C0
+07FC0000000003C007FC0000000003800FF80000000003800FF80000000003801FF00000
+000003801FF00000000000003FF00000000000003FE00000000000003FE0000000000000
+7FE00000000000007FC00000000000007FC00000000000007FC0000000000000FFC00000
+00000000FF80000000000000FF80000000000000FF80000000000000FF8000003FFFFFE0
+FF8000003FFFFFE0FF0000003FFFFFE0FF000000001FF800FF000000000FF800FF000000
+000FF000FF000000000FF000FF000000001FF000FF000000001FE000FF000000001FE000
+FF000000001FE0007F800000003FE0007F800000003FC0007F800000003FC0003FC00000
+003FC0003FC00000007FC0001FC00000007F80001FE00000007F80000FF0000000FF8000
+07F0000001FF800003F8000003FF000001FC000007BF000000FF00001F1F0000007FC000
+7E0F0000001FF803F80E00000007FFFFE00600000001FFFF8000000000001FF800000000
+3F427BBF47>I<0001FFFFFFC03FFFFFF80001FFFFFFC03FFFFFF00001FFFFFF803FFFFF
+F0000001FF8000003FF000000001FF0000003FE000000001FE0000003FC000000001FE00
+00003FC000000001FE0000007FC000000003FE0000007FC000000003FC0000007F800000
+0003FC0000007F8000000003FC000000FF8000000007FC000000FF8000000007F8000000
+FF0000000007F8000000FF0000000007F8000001FF000000000FF8000001FF000000000F
+F0000001FE000000000FF0000001FE000000000FF0000003FE000000001FF0000003FE00
+0000001FE0000003FC000000001FE0000003FC000000001FE0000007FC000000003FE000
+0007FC000000003FC0000007F8000000003FC0000007F8000000003FC000000FF8000000
+007FFFFFFFFFF8000000007FFFFFFFFFF0000000007FFFFFFFFFF0000000007F8000001F
+F000000000FF8000001FF000000000FF0000001FE000000000FF0000001FE000000000FF
+0000003FE000000001FF0000003FE000000001FE0000003FC000000001FE0000003FC000
+000001FE0000007FC000000003FE0000007FC000000003FC0000007F8000000003FC0000
+007F8000000003FC000000FF8000000007FC000000FF8000000007F8000000FF00000000
+07F8000000FF0000000007F8000001FF000000000FF8000001FF000000000FF0000001FE
+000000000FF0000001FE000000000FF0000003FE000000001FF0000003FE000000001FE0
+000003FC000000001FE0000003FC000000003FE0000007FC000000003FE0000007FC0000
+00003FC0000007F8000000007FE000000FFC000000FFFFFFE01FFFFFFC0000FFFFFFE01F
+FFFFFC0000FFFFFFE01FFFFFF800004D3E7DBD4C>I<0001FFFFFFC00003FFFFFFC00003
+FFFFFFC0000001FF8000000001FF0000000001FE0000000001FE0000000001FE00000000
+03FE0000000003FC0000000003FC0000000003FC0000000007FC0000000007F800000000
+07F80000000007F8000000000FF8000000000FF0000000000FF0000000000FF000000000
+1FF0000000001FE0000000001FE0000000001FE0000000003FE0000000003FC000000000
+3FC0000000003FC0000000007FC0000000007F80000000007F80000000007F8000000000
+FF8000000000FF0000000000FF0000000000FF0000000001FF0000000001FE0000000001
+FE0000000001FE0000000003FE0000000003FC0000000003FC0000000003FC0000000007
+FC0000000007F80000000007F80000000007F8000000000FF8000000000FF0000000000F
+F0000000000FF0000000001FF0000000001FE0000000001FE0000000003FE0000000003F
+E0000000003FC000000000FFE0000000FFFFFFE00000FFFFFFE00000FFFFFFE000002A3E
+7DBD28>I<0001FFFF8000000000FFFFC00001FFFF8000000001FFFF800001FFFF800000
+0003FFFF80000001FF8000000003FF8000000001FFC000000007FF0000000001DFC00000
+0007FE0000000001DFC00000000EFE0000000001DFC00000001DFE0000000003DFC00000
+001DFE00000000039FC000000039FC00000000039FC000000071FC00000000039FC00000
+0073FC00000000078FE0000000E3FC00000000070FE0000000E3F800000000070FE00000
+01C3F800000000070FE000000387F8000000000F0FE000000387F8000000000E0FE00000
+0707F0000000000E0FE000000707F0000000000E0FE000000E0FF0000000001E0FE00000
+1C0FF0000000001C07F000001C0FE0000000001C07F00000380FE0000000001C07F00000
+701FE0000000003C07F00000701FE0000000003807F00000E01FC0000000003807F00000
+E01FC0000000003807F00001C03FC0000000007807F00003803FC0000000007003F80003
+803F80000000007003F80007003F80000000007003F8000E007F8000000000F003F8000E
+007F8000000000E003F8001C007F0000000000E003F8001C007F0000000000E003F80038
+00FF0000000001E003F8007000FF0000000001C001FC007000FE0000000001C001FC00E0
+00FE0000000001C001FC01C001FE0000000003C001FC01C001FE00000000038001FC0380
+01FC00000000038001FC038001FC00000000038001FC070003FC00000000078001FC0E00
+03FC00000000070000FE0E0003F800000000070000FE1C0003F800000000070000FE1C00
+07F8000000000F0000FE380007F8000000000E0000FE700007F0000000000E0000FE7000
+07F0000000000E0000FEE0000FF0000000001E0000FFC0000FF0000000001C0000FFC000
+0FE0000000001C00007F80000FE0000000003C00007F80001FE0000000007C00007F0000
+1FE000000000FE00007E00001FC000000003FF00007E00003FE0000000FFFFFC007C007F
+FFFFE00000FFFFFC0078007FFFFFE00000FFFFFC0038007FFFFFC000005A3E7CBD58>77
+D<0001FFFF800001FFFFF80001FFFF800001FFFFF00001FFFF800001FFFFF0000000FFC0
+00000FFE00000001FFC0000003F000000001FFE0000003E000000001FFE0000001C00000
+0001DFE0000003C000000003DFF0000003C0000000038FF000000380000000038FF80000
+0380000000038FF8000007800000000787FC000007800000000707FC0000070000000007
+03FC000007000000000703FE00000F000000000F03FE00000F000000000E01FF00000E00
+0000000E01FF00000E000000000E00FF00001E000000001E00FF80001E000000001C007F
+80001C000000001C007FC0001C000000001C007FC0003C000000003C003FE0003C000000
+0038003FE000380000000038001FE000380000000038001FF000780000000078001FF000
+780000000070000FF800700000000070000FF8007000000000700007F800F000000000F0
+0007FC00F000000000E00003FC00E000000000E00003FE00E000000000E00003FE01E000
+000001E00001FF01E000000001C00001FF01C000000001C00000FF01C000000001C00000
+FF83C000000003C00000FF83C0000000038000007FC380000000038000007FC380000000
+038000003FC780000000078000003FE780000000070000001FE700000000070000001FF7
+00000000070000001FFF000000000F0000000FFF000000000E0000000FFE000000000E00
+000007FE000000000E00000007FE000000001E00000007FE000000001C00000003FC0000
+00001C00000003FC000000003C00000001FC000000007C00000001FC00000000FE000000
+00F800000003FF00000000F8000000FFFFFC000000F8000000FFFFFC00000078000000FF
+FFFC000000700000004D3E7DBD49>I<0001FFFFFFFFF000000001FFFFFFFFFF00000001
+FFFFFFFFFFC000000001FF00007FE000000001FF00000FF800000001FE000003FC000000
+01FE000001FC00000003FE000001FE00000003FE000000FF00000003FC000000FF000000
+03FC000000FF00000007FC000000FF00000007FC000000FF80000007F8000000FF800000
+07F8000000FF8000000FF8000000FF8000000FF8000001FF0000000FF0000001FF000000
+0FF0000001FF0000001FF0000001FE0000001FF0000003FE0000001FE0000003FC000000
+1FE0000007FC0000003FE0000007F80000003FE000000FF00000003FC000001FE0000000
+3FC000003FC00000007FC000007F800000007FC00000FE000000007F800003FC00000000
+7F80003FF000000000FFFFFFFFC000000000FFFFFFFC0000000000FF0000000000000000
+FF0000000000000001FF0000000000000001FF0000000000000001FE0000000000000001
+FE0000000000000003FE0000000000000003FE0000000000000003FC0000000000000003
+FC0000000000000007FC0000000000000007FC0000000000000007F80000000000000007
+F8000000000000000FF8000000000000000FF8000000000000000FF0000000000000000F
+F0000000000000001FF0000000000000001FF0000000000000001FE0000000000000001F
+E0000000000000003FE0000000000000003FE0000000000000003FC0000000000000007F
+E0000000000000FFFFFFE00000000000FFFFFFE00000000000FFFFFFE00000000000413E
+7DBD3A>80 D<000000003FF0000000000003FFFF00000000001FC03FC0000000007E0007
+E000000001F80001F800000007E00000FC0000000FC000007E0000003F8000003F000000
+7E0000003F800000FC0000001FC00003F80000001FC00007F00000000FE0000FF0000000
+0FE0001FE00000000FF0001FC000000007F0003F8000000007F8007F8000000007F800FF
+0000000007F801FE0000000007F801FE0000000007F803FC0000000007FC03FC00000000
+07FC07F80000000007FC0FF80000000007FC0FF80000000007FC1FF00000000007FC1FF0
+0000000007FC1FE00000000007FC3FE00000000007FC3FE00000000007F87FC000000000
+0FF87FC0000000000FF87FC0000000000FF87FC0000000000FF8FF80000000001FF0FF80
+000000001FF0FF80000000001FF0FF80000000003FE0FF80000000003FE0FF0000000000
+3FE0FF00000000007FC0FF00000000007FC0FF00000000007F80FF0000000000FF80FF00
+00000000FF00FF0000000001FE00FF0000000001FE00FF0000000003FC00FF0000000003
+F8007F0000000007F8007F000000000FF0007F8000F8000FE0003F8003FE001FC0003F80
+0F07003F80001FC01C03007F00001FC0380180FE00000FE0300181FC00000FE03001C3F8
+000007F07001C7E0000003F86000CFC0000001FC6000FF80000000FE6000FE000000003F
+F003F8000000000FF81FE0000C000003FFFFE0000C0000007FF1E0001C0000000001E000
+180000000001E000380000000001F000380000000001F000700000000001F800F0000000
+0001F803F00000000001FC0FE00000000001FFFFE00000000001FFFFC00000000001FFFF
+800000000001FFFF800000000000FFFF000000000000FFFE0000000000007FFC00000000
+00003FF00000000000000FC000003E527BBF48>I<0001FFFFFFFF8000000001FFFFFFFF
+F800000001FFFFFFFFFF0000000001FF0001FF8000000001FF00003FE000000001FE0000
+0FF000000001FE000007F800000001FE000003FC00000003FE000003FC00000003FC0000
+01FE00000003FC000001FE00000003FC000001FE00000007FC000001FF00000007F80000
+01FF00000007F8000001FF00000007F8000001FF0000000FF8000003FE0000000FF00000
+03FE0000000FF0000003FE0000000FF0000007FC0000001FF0000007FC0000001FE00000
+0FF80000001FE000000FF00000001FE000001FE00000003FE000003FC00000003FC00000
+7F800000003FC00000FE000000003FC00003FC000000007FC0000FF0000000007F8000FF
+80000000007FFFFFFC00000000007FFFFFF80000000000FF8001FE0000000000FF00007F
+8000000000FF00001FC000000000FF00001FE000000001FF00000FF000000001FE000007
+F000000001FE000007F000000001FE000007F800000003FE000007F800000003FC000007
+F800000003FC000007F800000003FC00000FF800000007FC00000FF800000007F800000F
+F800000007F800000FF000000007F800001FF00000000FF800001FF00000000FF000001F
+F00000000FF000001FF00000000FF000001FF00000001FF000003FF00100001FE000003F
+F00380001FE000003FE00380003FE000003FE00780003FE000003FE00700003FC000001F
+E00F00007FE000001FE00E00FFFFFFE0000FF01E00FFFFFFE00007F03C00FFFFFFE00003
+F87800000000000000FFE0000000000000003F800041407DBD45>I<00000007FC003800
+00003FFF0038000000FFFFC070000003F807F0F000000FE000F9F000001F80007FF00000
+3F00003FE000007E00001FE00000FC00001FE00001F800000FE00001F000000FC00003F0
+000007C00007E0000007C00007E0000007C0000FE000000780000FC000000780000FC000
+000780000FC000000780001FC000000700001FC000000700001FC000000700001FE00000
+0700001FE000000000001FF000000000001FF800000000001FFE00000000000FFFC00000
+00000FFFFC0000000007FFFFC000000007FFFFF800000003FFFFFE00000001FFFFFF0000
+0000FFFFFF800000003FFFFFC000000007FFFFE000000000FFFFE0000000000FFFF00000
+000000FFF000000000003FF000000000001FF800000000000FF8000000000007F8000000
+000007F8000000000003F8000700000003F8000F00000003F8000F00000003F0000E0000
+0003F0000E00000003F0001E00000007F0001E00000007E0001E00000007E0001E000000
+0FC0003E0000000FC0003F0000001F80003F0000001F80003F8000003F00007F8000007E
+00007FC00000FC00007FE00001F800007DF00003F00000F8FC000FE00000F83F803F8000
+00F01FFFFE000000E007FFF8000000C0007FC000000035427BBF38>I<01FFFFFFFFFFFF
+FC01FFFFFFFFFFFFFC03FFFFFFFFFFFFFC03FF0003FE000FFC03F80003FC0001FC07E000
+03FC0000F807C00007FC0000F807800007FC0000780F800007F80000780F000007F80000
+781E00000FF80000781E00000FF80000781C00000FF00000703C00000FF0000070380000
+1FF00000703800001FF00000707800001FE00000707000001FE00000707000003FE00000
+F0F000003FE00000E0E000003FC00000E00000003FC00000000000007FC0000000000000
+7FC00000000000007F800000000000007F80000000000000FF80000000000000FF800000
+00000000FF00000000000000FF00000000000001FF00000000000001FF00000000000001
+FE00000000000001FE00000000000003FE00000000000003FE00000000000003FC000000
+00000003FC00000000000007FC00000000000007FC00000000000007F800000000000007
+F80000000000000FF80000000000000FF80000000000000FF00000000000000FF0000000
+0000001FF00000000000001FF00000000000001FE00000000000001FE00000000000003F
+E00000000000003FE00000000000003FC00000000000003FC00000000000007FC0000000
+0000007FC0000000000000FFC0000000000001FFE0000000001FFFFFFFFC0000001FFFFF
+FFFC0000001FFFFFFFF80000003E3D7FBC35>I<7FFFFFF0007FFFFE7FFFFFF0007FFFFC
+7FFFFFE0007FFFFC007FE0000003FF80007FC0000000FC00007F80000000F800007F8000
+0000700000FF80000000F00000FF80000000F00000FF00000000E00000FF00000000E000
+01FF00000001E00001FF00000001C00001FE00000001C00001FE00000001C00003FE0000
+0003C00003FE00000003800003FC00000003800003FC00000003800007FC000000078000
+07FC00000007000007F800000007000007F80000000700000FF80000000F00000FF80000
+000E00000FF00000000E00000FF00000000E00001FF00000001E00001FF00000001C0000
+1FE00000001C00001FE00000001C00003FE00000003C00003FE00000003800003FC00000
+003800003FC00000003800007FC00000007800007FC00000007800007F80000000700000
+7F80000000700000FF80000000F00000FF80000000F00000FF00000000E00000FF000000
+00E00000FF00000001E00000FF00000001C00000FE00000001C00000FE00000003C00000
+FE00000003800000FE00000007800000FE0000000F000000FE0000000E000000FE000000
+1E000000FE0000003C0000007F000000780000007F000000F00000003F000001E0000000
+3F800003C00000001FC00007800000000FE0001F0000000007F0007E0000000003FC03F8
+0000000000FFFFE000000000003FFF80000000000007FC00000000003F407ABD3E>I<FF
+FFFF00000FFFFFFFFFFF00000FFFFFFFFFFF00000FFFFE03FFC0000000FFE001FF000000
+007F0001FF000000003E0001FF000000003C0000FF00000000780000FF00000000700000
+FF00000000E00000FF00000000E00000FF00000001C00000FF00000003C00000FF800000
+03800000FF800000070000007F8000000F0000007F8000000E0000007F8000001C000000
+7F8000001C0000007F800000380000007F800000780000007FC00000700000007FC00000
+E00000003FC00000E00000003FC00001C00000003FC00003800000003FC0000380000000
+3FC00007000000003FC0000F000000003FE0000E000000003FE0001C000000003FE0001C
+000000001FE00038000000001FE00078000000001FE00070000000001FE000E000000000
+1FE001E0000000001FE001C0000000001FF00380000000001FF00380000000000FF00700
+000000000FF00F00000000000FF00E00000000000FF01C00000000000FF01C0000000000
+0FF03800000000000FF87000000000000FF870000000000007F8E0000000000007F9E000
+0000000007F9C0000000000007FB80000000000007FB80000000000007FF000000000000
+07FE00000000000007FE00000000000007FC00000000000003FC00000000000003F80000
+0000000003F000000000000003F000000000000003E000000000000003E0000000000000
+03C0000000000040407BBD35>I<00007FFFFF8007FFFFC00000FFFFFF8007FFFFC00000
+FFFFFF8007FFFFC0000001FFF80000FFF8000000007FE000007F80000000007FC000007F
+00000000003FC000007C00000000003FE000007800000000003FE00000F000000000001F
+F00001E000000000001FF00003C000000000000FF800078000000000000FF8000F000000
+0000000FF8000E00000000000007FC001C00000000000007FC003800000000000003FE00
+7000000000000003FE00E000000000000003FE01E000000000000001FF03C00000000000
+0001FF078000000000000000FF8F0000000000000000FF9E0000000000000000FFBC0000
+0000000000007FF800000000000000007FF000000000000000003FE00000000000000000
+3FE000000000000000003FE000000000000000001FF000000000000000001FF000000000
+000000001FF800000000000000003FF800000000000000007FF80000000000000000F7FC
+0000000000000001E7FC0000000000000001C3FE000000000000000383FE000000000000
+000703FE000000000000000E01FF000000000000001E01FF000000000000003C00FF8000
+00000000007800FF80000000000000F000FF80000000000001E0007FC0000000000003C0
+007FC000000000000780003FE000000000000700003FE000000000000E00003FE0000000
+00001C00001FF000000000003800001FF000000000007000000FF80000000000F000000F
+F80000000001E000000FF80000000003C0000007FC0000000007C0000007FC000000001F
+80000003FE000000007FC0000007FE00000003FFE000001FFF0000007FFFFC0001FFFFFE
+0000FFFFFC0003FFFFFE0000FFFFFC0003FFFFFE00004A3E7EBD4B>88
+D<FFFFFF800003FFFF80FFFFFF800003FFFF80FFFFFF800003FFFF8001FFE00000007FF0
+0000FFC00000003F8000007FC00000003F0000007FC00000003C0000007FC00000007800
+00003FE0000000700000003FE0000000E00000001FF0000001C00000001FF0000003C000
+00001FF0000007800000000FF800000F000000000FF800000E000000000FF800001C0000
+000007FC0000380000000007FC0000780000000007FC0000F00000000003FE0001E00000
+000003FE0001C00000000003FF0003800000000001FF0007000000000001FF000E000000
+000000FF801E000000000000FF803C000000000000FF80780000000000007FC070000000
+0000007FC0E00000000000007FC1C00000000000003FE3C00000000000003FE780000000
+0000003FFF000000000000001FFE000000000000001FFC000000000000000FF800000000
+0000000FF8000000000000000FF0000000000000000FF0000000000000000FE000000000
+0000001FE0000000000000001FE0000000000000001FE0000000000000001FC000000000
+0000003FC0000000000000003FC0000000000000003FC0000000000000003F8000000000
+0000007F80000000000000007F80000000000000007F80000000000000007F0000000000
+000000FF0000000000000000FF0000000000000000FF0000000000000001FE0000000000
+000001FE0000000000000001FE0000000000000003FF00000000000007FFFFFE00000000
+0007FFFFFE000000000007FFFFFE0000000000413E7DBD35>I<00001F8000000000FFE0
+00000003F0707000000FC039F800001F801DF800003F000FF800007E000FF00000FC000F
+F00001FC0007F00003F80007F00007F00007E00007F00007E0000FE00007E0001FE0000F
+E0001FE0000FC0003FC0000FC0003FC0000FC0003FC0001FC0007FC0001F80007F80001F
+80007F80001F80007F80003F8000FF80003F0000FF00003F0000FF00003F0000FF00007F
+0000FF00007E0380FE00007E0380FE00007E0380FE0000FE0380FE0000FC07807E0001FC
+07007E0003FC07007E0003FC0F003F0007FC0E003F000EFC0E001F801C7C1C000F80787C
+1C0007C1F03E380001FFC01FF000007F0007C00029297DA730>97
+D<001FC000000FFFC000000FFF8000000FFF800000003F800000003F800000003F000000
+003F000000007F000000007F000000007E000000007E00000000FE00000000FE00000000
+FC00000000FC00000001FC00000001FC00000001F800000001F800000003F800000003F8
+00000003F000000003F03F800007F0FFE00007F3C1F80007E700FC0007FE007E000FFC00
+3E000FF8003F000FF0003F000FE0003F801FE0001F801FC0001F801F80001F801F80003F
+C03F80003FC03F80003FC03F00003FC03F00003FC07F00007FC07F00007F807E00007F80
+7E00007F807E0000FF80FE0000FF00FC0000FF00FC0000FF00FC0001FE00FC0001FE00FC
+0001FC00FC0003FC00F80003F800F80007F8007C0007F0007C000FE0007C000FC0003C00
+1F80003E003F00001E007E00000F00F800000783F0000003FFC0000000FE00000022407C
+BE27>I<000007F00000007FFE000001FC0F000007E00380000FC001C0003F8001E0007F
+0007E000FE001FE001FC001FE003F8001FE003F8001FC007F0001FC00FF0001F800FE000
+00001FE00000003FC00000003FC00000003FC00000007FC00000007F800000007F800000
+007F80000000FF80000000FF00000000FF00000000FF00000000FF00000000FF00000000
+FF000000007E000000607F000000E07F000001E07F000003C03F000007803F80000F001F
+80001E000FC0007C0007E001F00001F01FC00000FFFF0000001FF0000023297DA727>I<
+0000000007F000000003FFF000000003FFE000000003FFE0000000000FE0000000000FE0
+000000000FC0000000000FC0000000001FC0000000001FC0000000001F80000000001F80
+000000003F80000000003F80000000003F00000000003F00000000007F00000000007F00
+000000007E00000000007E0000000000FE0000000000FE0000000000FC0000001F80FC00
+0000FFE1FC000003F071FC00000FC039F800001F801DF800003F000FF800007E000FF800
+00FC000FF00001FC0007F00003F80007F00007F00007F00007F00007E0000FE00007E000
+1FE0000FE0001FE0000FE0003FC0000FC0003FC0000FC0003FC0001FC0007FC0001FC000
+7F80001F80007F80001F80007F80003F8000FF80003F8000FF00003F0000FF00003F0000
+FF00007F0000FF00007F0380FE00007E0380FE00007E0380FE0000FE0380FE0000FE0780
+7E0001FC07007E0003FC07007E0003FC0F003F0007FC0E003F000EFC0E001F801C7C1C00
+0F80787C1C0007C1F03E380001FFC01FF000007F0007C0002C407DBE2F>I<00001FE000
+0000FFFC000003F01E00000FC00F00003F800780007E0007C000FC0003C003F80003C007
+F80003C007F00007C00FE00007801FE00007801FC0000F803FC0001F003FC0003E007F80
+01FC007F801FF0007FFFFF8000FFFFF80000FF00000000FF00000000FF00000000FF0000
+0000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE000000
+C0FE000001C07E000003C07E000007803F00000F003F00001E001F00003C000F8000F800
+07C003E00003E03F800000FFFE0000003FE0000022297CA72A>I<000000003E00000000
+00FFC000000003E1E000000007C0F00000000F81F00000000F87F00000001F8FF0000000
+1F0FF00000003F0FF00000003F0FF00000003F0FE00000007E03800000007E0000000000
+7E00000000007E00000000007E0000000000FC0000000000FC0000000000FC0000000000
+FC0000000000FC0000000001FC0000000001F80000000001F80000000001F800000003FF
+FFFC000003FFFFFC000003FFFFFC00000003F00000000003F00000000003F00000000007
+F00000000007E00000000007E00000000007E00000000007E0000000000FE0000000000F
+C0000000000FC0000000000FC0000000000FC0000000000FC0000000001FC0000000001F
+80000000001F80000000001F80000000001F80000000003F80000000003F00000000003F
+00000000003F00000000003F00000000007F00000000007E00000000007E00000000007E
+00000000007E0000000000FE0000000000FC0000000000FC0000000000FC0000000000FC
+0000000001FC0000000001F80000000001F80000000001F80000000001F80000000003F0
+0000000003F00000000003F00000000003E00000001E07E00000007F07E00000007F07C0
+000000FF07C0000000FF0F80000000FF0F80000000FE0F00000000F81E00000000703E00
+0000007878000000001FF00000000007C0000000002C537CBF2D>I<000001F800000000
+0FFE000000003F0787000000FC03DF800001F801DF800003F000FF80000FE000FF80001F
+C0007F00001F80007F00003F80007F00007F00007F0000FF00007E0000FE00007E0001FE
+0000FE0001FE0000FE0003FC0000FC0003FC0000FC0003FC0001FC0007FC0001FC0007F8
+0001F80007F80001F80007F80003F8000FF80003F8000FF00003F0000FF00003F0000FF0
+0007F0000FF00007F0000FF00007E0000FE00007E00007E0000FE00007E0000FE00007E0
+001FC00007F0003FC00003F0007FC00001F000FFC00001F801FF800000F803DF8000007E
+0F3F8000001FFC3F80000007F03F00000000003F00000000007F00000000007F00000000
+007E00000000007E0000000000FE0000000000FE0000000000FC00001C0001FC00007F00
+01F80000FF0003F80000FF0003F00000FF0007E00000FF000FC00000FE001F800000F800
+7E0000007E01FC0000001FFFE000000003FF00000000293B7FA72B>I<00003C0000FE00
+00FE0001FE0001FE0001FE0001FC00007000000000000000000000000000000000000000
+0000000000000000000000000000000000000000007E0001FF8003C7C00703C00F03E00E
+03E01C03E01C07E03807E03807E0780FE0700FC0700FC0F01FC0F01F80001F80003F8000
+3F00007F00007E00007E0000FE0000FC0000FC0001FC0001F80003F80E03F00E03F00E07
+F01E07E01C07E01C07E03C07C03807C07807C07007C0E007C1E003E3C001FF00007C0017
+3E7EBC1F>105 D<00000001C000000007F000000007F00000000FF00000000FF0000000
+0FF00000000FE00000000380000000000000000000000000000000000000000000000000
+000000000000000000000000000000000000000000000000000000000000000000000000
+0000000000000003E00000000FF80000003C3E000000701E000000E01F000001C01F0000
+03C01F800007801F800007001F80000F003F80000E003F00001E003F00001C003F00003C
+007F00003C007F000000007E000000007E00000000FE00000000FE00000000FC00000000
+FC00000001FC00000001FC00000001F800000001F800000003F800000003F800000003F0
+00000003F000000007F000000007F000000007E000000007E00000000FE00000000FE000
+00000FC00000000FC00000001FC00000001FC00000001F800000001F800000003F800000
+003F800000003F000000003F000000007F000000007E000000007E00001C00FE00007F00
+FC0000FF01FC0000FF01F80000FF03F00000FF07E00000FE0FC00000F81F800000783E00
+00003FF80000000FE0000000245081BC25>I<0007F003FFF003FFE003FFE0000FE0000F
+E0000FC0000FC0001FC0001FC0001F80001F80003F80003F80003F00003F00007F00007F
+00007E00007E0000FE0000FE0000FC0000FC0001FC0001FC0001F80001F80003F80003F8
+0003F00003F00007F00007F00007E00007E0000FE0000FE0000FC0000FC0001FC0001FC0
+001F80001F80003F80003F80003F00003F00007F00007F03807E03807E0380FE0380FE07
+80FC0700FC0700FC0F00FC0E00FC0E007C1C007C3C003E38001FF00007C00014407DBE1B
+>108 D<00F80007F00007F8000003FE003FFE001FFE0000078F80F81F00781F00000F0F
+81C00F81E00F80000E07C78007C3C007C0001C07CF0007C78007C0001C07FE0007EF0007
+E0003C07FC0007FE0007E0003807F80007FC0007E000380FF00007F80007E000780FF000
+07F80007E000700FE00007F00007E000700FE00007F00007E000F00FC0000FE0000FE000
+F01FC0000FE0000FC000001F80000FC0000FC000001F80000FC0000FC000001F80001FC0
+001FC000003F80001FC0001F8000003F00001F80001F8000003F00001F80003F8000003F
+00003F80003F0000007F00003F80003F0000007E00003F00007F0000007E00003F00007E
+0000007E00007F00007E000000FE00007F0000FE01C000FC00007E0000FC01C000FC0000
+7E0000FC01C000FC0000FE0001FC03C001FC0000FE0001F8038001F80000FC0001F80380
+01F80000FC0001F8070001F80001FC0001F0070003F80001FC0001F00E0003F00001F800
+01F01E0003F00001F80001F01C0003F00003F80001F0380007F00003F80000F8F00007E0
+0003F000007FE00001C00000E000001F80004A297EA750>I<00F8000FF0000003FE003F
+FC0000078F80F03E00000F0F83C01F00000E07C7800F80001C07CF000F80001C07FE000F
+C0003C07FC000FC0003807F8000FC000380FF0000FC000780FF0000FC000700FE0000FC0
+00700FE0000FC000F00FC0001FC000F01FC0001F8000001F80001F8000001F80001F8000
+001F80003F8000003F80003F0000003F00003F0000003F00007F0000003F00007E000000
+7F00007E0000007E0000FE0000007E0000FC0000007E0000FC000000FE0001FC038000FC
+0001F8038000FC0001F8038000FC0003F8078001FC0003F0070001F80003F0070001F800
+03F00E0001F80003E00E0003F80003E01C0003F00003E03C0003F00003E0380003F00003
+E0700007F00001F1E00007E00000FFC00001C000003F000031297EA737>I<000007F800
+00007FFE000001FC0F800007E007E0000FC003F0003F8001F8007F0001F800FE0000FC01
+FC0000FC03F80000FE03F80000FE07F00000FE0FF00000FE0FE00000FE1FE00000FF3FC0
+0000FF3FC00000FF3FC00001FE7FC00001FE7F800001FE7F800001FE7F800003FEFF8000
+03FCFF000003FCFF000003FCFF000007F8FF000007F8FF00000FF0FF00000FF07E00000F
+E07F00001FC07F00003F807F00003F803F00007F001F8000FC001F8001F8000FC003F000
+07E00FC00001F03F000000FFFC0000001FE0000028297DA72C>I<0007C000FE00000FF0
+03FF80001C7C0F07E000383C1C03F000783E7801F800703EF000F800F03FE000FC00E03F
+C000FC00E03F8000FE01E07F80007E01C07F00007E01C07E00007E01C07E0000FF03C0FE
+0000FF03C0FE0000FF0000FC0000FF0000FC0000FF0001FC0001FF0001FC0001FE0001F8
+0001FE0001F80001FE0003F80003FE0003F80003FC0003F00003FC0003F00003FC0007F0
+0007F80007F00007F80007E00007F00007E0000FF0000FE0000FE0000FE0001FE0000FE0
+001FC0000FE0003F80001FE0003F00001FF0007E00001FF000FC00001FB801F800003FBC
+03E000003F9E0FC000003F07FF0000003F01F80000007F00000000007F00000000007E00
+000000007E0000000000FE0000000000FE0000000000FC0000000000FC0000000001FC00
+00000001FC0000000001F80000000001F80000000003F80000000003F800000000FFFFE0
+000000FFFFE0000000FFFFE0000000303A84A72E>I<01F0003F8007FC00FFE00F1F03C0
+F00E1F0F00F81E0F9E03F81C0FBC03F83C0FF807F8380FF007F8380FF007F8781FE007F0
+701FC001C0701FC00000701F800000F01F800000F03F800000003F000000003F00000000
+3F000000007F000000007E000000007E000000007E00000000FE00000000FC00000000FC
+00000000FC00000001FC00000001F800000001F800000001F800000003F800000003F000
+000003F000000003F000000007F000000007E000000007E000000007E00000000FE00000
+000FC0000000038000000025297EA729>114 D<00001FC0000000FFF8000003E03C0000
+07800E00001E000700001E000780003C000F800078001F800078003F800078003F8000F8
+003F0000F8003F0000F8001C0000FC00000000FE00000000FFE0000000FFFE0000007FFF
+C000003FFFE000001FFFF800000FFFFC000003FFFC0000001FFE00000003FE00000000FE
+000000007E000C00003E003F00003E007F80003E007F80003E00FF00003C00FF00003C00
+FF00007800FC00007800F00000F000700001E000780003C0003C000780000F803E000003
+FFF80000007FC0000021297CA72B>I<000070000000FC000001FC000001FC000001F800
+0001F8000003F8000003F8000003F0000003F0000007F0000007F0000007E0000007E000
+000FE000000FE000000FC000000FC0007FFFFFF0FFFFFFF0FFFFFFE0001F8000003F8000
+003F8000003F0000003F0000007F0000007F0000007E0000007E000000FE000000FE0000
+00FC000000FC000001FC000001FC000001F8000001F8000003F8000003F8000003F00000
+03F0000007F0000007F001C007E001C007E003C00FE003800FE003800FC007800FC00700
+0FC00E000FC01E000FC03C0007C0380007C0700003E1E00001FF8000003E00001C3A7EB8
+21>I<007C0000000001FF0000038003C7C0000FC00703C0000FC00F03E0000FC00E03E0
+001FC01C03E0001FC01C07E0001F803807E0001F803807E0003F80780FE0003F80700FC0
+003F00700FC0003F00F01FC0007F00F01F80007F00001F80007E00003F80007E00003F00
+00FE00003F0000FE00007F0000FC00007E0000FC00007E0001FC0000FE0001FC0000FC00
+01F80000FC0001F80000FC0003F80001FC0003F81C01F80003F01C01F80003F01C01F800
+07F01C01F80007F03C01F80007E03801F8000FE03801F8001FE07800F8001FE07000FC00
+3FE070007C0073E0F0007E00E3E0E0003F03C1F1C0000FFF007F800001FC001F002E297E
+A734>I<007E00007801FF0001FC03C7C001FE0703C003FE0F03E003FE0E03E003FE1C03
+E003FE1C07E001FE3807E000FE3807E0007E780FE0003E700FC0003E700FC0001EF01FC0
+001EF01F80001C001F80001C003F80001C003F00003C003F000038007F000038007E0000
+38007E00007800FE00007000FC00007000FC0000F000FC0000E001FC0000E001F80001C0
+01F80001C001F800038001F800038001F800070001F800070000F8000E0000F8001C0000
+FC003C00007C007800003E00F000001F03C0000007FF80000001FC000027297EA72C>I<
+003E00000000038000FF800007000FE001C3E0001F801FE00381E0001F801FF00701F000
+1F801FF00E01F0003F801FF01E01F0003F001FF01C03F0003F000FF03C03F0003F0007F0
+3803F0007F0003E07807F0007E0003E07007E0007E0003E07007E0007E0001E0F00FE000
+FE0001E0F00FC000FC0001C0000FC000FC0001C0001FC000FC0001C0001F8001FC0003C0
+001F8001F8000380003F8001F8000380003F0001F8000380003F0003F8000780007F0003
+F0000700007E0003F0000700007E0003F0000700007E0003F0000F0000FE0007F0000E00
+00FC0007E0000E0000FC0007E0001C0000FC0007E0001C0000FC0007E0001C0000FC0007
+E000380000FC000FE0003800007C000FE0007000007E001FE000F000007E001FF000E000
+003F0039F001C000001F0070F8038000000FC0E07C0F00000003FFC01FFC000000007F00
+07F000003C297EA741>I<0001F8003F000007FE00FFE0001E0F83C0F0003807C780F800
+7003CF03F800E003FE03F801C003FC07F803C003FC07F8038003F807F8070003F807F007
+0003F801C00E0003F000000E0003F000001E0007F000001E0007F00000000007E0000000
+0007E0000000000FE0000000000FC0000000000FC0000000000FC0000000001FC0000000
+001F80000000001F80000000001F80000000003F80000000003F0001C000003F0001C000
+003F0001C000007F0003C01E007F0003803F007E0007807F80FE0007007F80FE000F00FF
+81FE001E00FF01DF001C00FE03DF0038007C078F80F0003C0F07C1E0001FFC03FF800007
+F0007E00002D297EA734>I<007C0000000001FF0000038003C7C0000FC00703C0000FC0
+0F03E0000FC00E03E0001FC01C03E0001F801C07E0001F803807E0001F803807E0003F80
+780FE0003F00700FC0003F00700FC0003F00F01FC0007F00F01F80007E00001F80007E00
+003F80007E00003F0000FE00003F0000FC00007F0000FC00007E0000FC00007E0001FC00
+00FE0001FC0000FC0001F80000FC0001F80000FC0003F80001FC0003F00001F80003F000
+01F80003F00001F80007F00001F80007E00001F80007E00001F8000FE00001F8001FE000
+00F8001FC00000FC003FC000007C007FC000007E00FFC000003F03DF8000000FFF1F8000
+0001FC1F80000000003F80000000003F00000000003F00000000007F00000380007E0000
+0FE000FE00001FE000FC00001FE001F800001FE001F800003FC003F000003FC007E00000
+1F000FC000001C001F8000001E003F0000000E007C0000000781F000000003FFC0000000
+00FE000000002A3B7EA72D>I<0000F8000E0003FE001E000FFF001C001FFF803C003FFF
+C078007FFFC0F0007E07F1E000F800FFE000F0001FC000E000078001E0000F0000C0001E
+000000003C000000007800000000F000000001E000000003C000000007800000000F0000
+00003E000000007800000000F000000001E000000003C000000007800000000F00000000
+1E0000E0003C0000E000780000E000F00001E001E00003C003C00003C007F80007800FFF
+001F801F87E07F001E03FFFE003C01FFFC007801FFF8007000FFF000F0007FC000E0001F
+000027297DA72A>I E
+%EndDVIPSBitmapFont
+/Gb 133[40 45 45 66 45 51 30 35 40 51 51 45 51 76 25
+51 1[25 51 45 30 40 51 40 51 45 6[61 2[91 66 66 61 51
+66 1[56 71 66 86 61 71 1[35 71 71 56 61 66 66 61 66 6[30
+45 45 45 45 45 45 45 45 45 45 1[23 30 23 2[30 30 30 36[51
+2[{TeXBase1Encoding ReEncodeFont}65 90.9091 /Times-Bold
+rf
+%DVIPSBitmapFont: Gc cmmi8 8 43
+/Gc 43 122 df<000001FC00000007FF0000001E07C000003803E000007001E00000E000
+F00001C000F000018000F000038000F000070000F000060000F0000E0001F0000C0001F0
+000C0001E0001C0003E000180007C000180007800038000F0000307FBE000030FFFC0000
+70FFF80000607FBE000060001E000060000F0000E0000F8000C000078000C000078000C0
+00078001C00007C001800007C001800007C001800007C00380000FC00300000F80030000
+0F800300000F800700001F800700001F000700003F000700003E000F00007C000F0000F8
+000F8001F0000DC003E0001CE007C00018703F0000183FFC0000180FE000003800000000
+3000000000300000000030000000007000000000600000000060000000006000000000E0
+00000000C000000000C000000000C000000000243C7EAE28>12 D<001F00000000FFC000
+3001FFF0007007FFF800600FFFF800E00F807C00C01E003C01C03C001E018038000E0380
+700007030060000707006000030600E0000306000000038E000000018C000000019C0000
+00019800000001B800000001B000000001B000000001F000000001E000000001E0000000
+01E000000001C000000001C0000000018000000001800000000380000000038000000003
+80000000038000000007000000000700000000070000000007000000000E000000000E00
+0000000E000000000E000000001C000000001C000000001C00000000180000242C7F9D24
+>I<00E00001F00001F00003F00003E00003E00003E00007E00007C00007C00007C0000F
+C0000F80000F80001F80001F00001F00001F00003F00003E00203E00607E00607C00E07C
+00C0F801C0F80380F80700780E00783C003FF0000FC000131F7D9D19>19
+D<00E000000001F0003C0001F000FF0003F003FF0003F00F7F0003E01C7E0003E0381C00
+07E070000007E0E0000007C3C0000007C70000000FDE0000000FF80000000FFF8000000F
+FFF800001F83FE00001F803F00001F001F80001F000F80003F000F80403F000F80C03E00
+0F80C03E000F80C07E000F81C07E000F81807C000F03807C000F8300FC000F8700FC0007
+8E00F80003FC00700000F000221F7D9D29>I<001C000000003E000380003E0007C0007E
+000FC0007E000F80007C000F80007C000F8000FC001F8000FC001F0000F8001F0000F800
+1F0001F8003F0001F8003E0001F0003E0001F0003E0003F0007E0003F0007C0003E0007C
+0003E0007C0007E000FC0807E000F81807C000F81807C000F8180FC001F8380FC001F830
+0FE003F0300FE007F0701FE00EF8601FF83C78E01F7FF03FC01F1FC00F003F000000003F
+000000003E000000003E000000007E000000007E000000007C000000007C00000000FC00
+000000FC00000000F800000000F8000000007000000000252C7E9D2A>22
+D<0003FFFFF0001FFFFFF0007FFFFFF000FFFFFFE001FC1F800003F00FC00007C007C000
+0F8003E0001F8003E0001F0003E0003E0003E0003E0003E0007C0003E0007C0003E0007C
+0007E000FC0007C000F80007C000F80007C000F8000FC000F8000F8000F8001F8000F800
+1F0000F8003E000078003C000078007C00007C00F800003C01E000001F07C0000007FF00
+000001F8000000241E7D9C28>27 D<60000000F8000000FE000000FF000000EFC00000E3
+F00000E1FC0000E07F0000E01F8000E007E000E001F800E000FE00E0003F80E0000FC0E0
+0003F0E00000FCE000007CE00000FCE00003F0E0000FC0E0003F80E000FE00E001F800E0
+07E000E01F8000E07F0000E1FC0000E3F00000EFC00000FF000000FE000000F800000060
+0000001E217EA023>46 D<3C7EFFFFFFFF7E3C08087A8714>58 D<3C007E00FF00FF00FF
+80FF807F803D80018001800180038003000300070006000E001C0038007000600009157A
+8714>I<0000000001C00000000007C0000000001FC0000000007F0000000001FC000000
+0007F0000000001FC0000000007F0000000001FC0000000007F0000000000FC000000000
+3F0000000000FC0000000003F8000000000FE0000000003F8000000000FE0000000003F8
+000000000FE0000000003F8000000000FE0000000000F80000000000FE00000000003F80
+000000000FE00000000003F80000000000FE00000000003F80000000000FE00000000003
+F80000000000FC00000000003F00000000000FC00000000007F00000000001FC00000000
+007F00000000001FC00000000007F00000000001FC00000000007F00000000001FC00000
+000007C00000000001C02A2B7AA537>I<000000C0000001C0000003C000000380000003
+8000000780000007000000070000000F0000000E0000000E0000001E0000001C0000001C
+0000003C00000038000000780000007000000070000000F0000000E0000000E0000001E0
+000001C0000001C0000003C00000038000000780000007000000070000000F0000000E00
+00000E0000001E0000001C0000001C0000003C0000003800000038000000780000007000
+0000F0000000E0000000E0000001E0000001C0000001C0000003C0000003800000038000
+0007800000070000000F0000000E0000000E0000001E0000001C0000001C0000003C0000
+003800000038000000780000007000000070000000F0000000E0000000E00000001A437C
+B123>I<00000000700000000000700000000000F00000000001F00000000001F0000000
+0003F80000000003F80000000007F8000000000DF8000000000DF80000000019F8000000
+0039F80000000031F80000000061FC0000000060FC00000000C0FC0000000180FC000000
+0180FC0000000300FC0000000700FC0000000600FC0000000C00FE0000000C007E000000
+18007E00000030007E00000030007E00000060007E000000E0007E000000C0007E000001
+80007F000001FFFFFF000003FFFFFF00000600003F00000600003F00000C00003F00001C
+00003F00001800003F00003000003F80003000001F80006000001F8000C000001F8001C0
+00001F8003C000001F8007C000001F800FC000003FC0FFF80007FFFEFFF80007FFFE2F2F
+7DAE35>65 D<003FFFFFFF00003FFFFFFFC00000FE0007F00000FE0001F80000FC0000FC
+0000FC00007E0001FC00007E0001FC00007F0001F800007F0001F800007F0003F800007F
+0003F800007E0003F00000FE0003F00000FE0007F00001FC0007F00001F80007E00003F0
+0007E00007E0000FE0001FC0000FE0007F00000FC003FC00000FFFFFF800001FFFFFFE00
+001FC0003F80001F80000FC0001F80000FE0003F800007E0003F800007F0003F000007F0
+003F000003F0007F000003F0007F000003F0007E000007F0007E000007F000FE000007E0
+00FE00000FE000FC00000FC000FC00001FC001FC00003F8001FC00007F0001F80000FE00
+01F80003F80003F8000FF000FFFFFFFFC000FFFFFFFC0000302D7CAC35>I<0000007FC0
+03000003FFF80700001FC03E0F00007E00071F0001F80003BF0003F00001FE000FC00000
+FE001F8000007E003F0000007E007E0000007C00FC0000003C01F80000003C03F8000000
+3C07F0000000380FE0000000380FE0000000381FC0000000381FC0000000303F80000000
+003F80000000007F80000000007F00000000007F00000000007F0000000000FF00000000
+00FE0000000000FE0000000000FE0000000000FE0000000000FE0000000000FE00000001
+80FE0000000380FE0000000300FE00000003007E00000007007E00000006007E0000000E
+003F0000001C003F00000038001F80000070000F800000E00007C00001C00003E0000780
+0001F8001E0000007E00F80000001FFFE000000003FF000000302F7CAD32>I<003FFFFF
+FE0000003FFFFFFFC0000000FE0007F0000000FE0001F8000000FC00007E000000FC0000
+3F000001FC00001F000001FC00001F800001F800000F800001F800000FC00003F8000007
+C00003F8000007E00003F0000007E00003F0000007E00007F0000007E00007F0000007E0
+0007E0000007E00007E0000007E0000FE0000007E0000FE0000007E0000FC000000FE000
+0FC000000FE0001FC000000FE0001FC000000FC0001F8000001FC0001F8000001FC0003F
+8000001F80003F8000003F80003F0000003F00003F0000003F00007F0000007E00007F00
+00007E00007E000000FC00007E000000F80000FE000001F80000FE000003F00000FC0000
+07E00000FC00000FC00001FC00001F000001FC00003E000001F80000FC000001F80003F0
+000003F8001FC00000FFFFFFFF000000FFFFFFF8000000332D7CAC3A>I<003FFFFFFFFF
+80003FFFFFFFFF800000FE00007F800000FE00000F800000FC000007800000FC00000780
+0001FC000003800001FC000003000001F8000003000001F8000003000003F80000030000
+03F8000003000003F0000003000003F0003003000007F0007003000007F0007000000007
+E0006000000007E000E00000000FE000E00000000FE001E00000000FC007C00000000FFF
+FFC00000001FFFFFC00000001FC007C00000001F8003800000001F8003800000003F8003
+800000003F8003800000003F0003000C00003F0003000C00007F0003001C00007F000000
+1800007E0000003800007E000000300000FE000000700000FE000000E00000FC000000E0
+0000FC000001C00001FC000003C00001FC000007800001F800000F800001F800001F8000
+03F80001FF0000FFFFFFFFFF0000FFFFFFFFFE0000312D7DAC34>I<003FFFFC003FFFFC
+0000FE000000FE000000FC000000FC000001FC000001FC000001F8000001F8000003F800
+0003F8000003F0000003F0000007F0000007F0000007E0000007E000000FE000000FE000
+000FC000000FC000001FC000001FC000001F8000001F8000003F8000003F8000003F0000
+003F0000007F0000007F0000007E0000007E000000FE000000FE000000FC000000FC0000
+01FC000001FC000001F8000001F8000003F80000FFFFE000FFFFE0001E2D7DAC1F>73
+D<003FFFFE0000003FFFFE00000000FF0000000000FE0000000000FC0000000000FC0000
+000001FC0000000001FC0000000001F80000000001F80000000003F80000000003F80000
+000003F00000000003F00000000007F00000000007F00000000007E00000000007E00000
+00000FE0000000000FE0000000000FC0000000000FC0000000001FC0000000001FC00000
+00001F80000000001F80000000003F80000000003F80000000003F00000180003F000001
+80007F00000380007F00000300007E00000700007E0000060000FE00000E0000FE00000E
+0000FC00001C0000FC00003C0001FC00003C0001FC0000780001F80001F80001F80003F0
+0003F8001FF000FFFFFFFFF000FFFFFFFFE000292D7DAC30>76 D<003FFE00000001FFF0
+003FFE00000003FFF00000FF00000003F8000000FF00000007F8000000DF0000000DF000
+0000DF0000000DF0000001DF0000001BF0000001DF00000033E00000018F80000033E000
+00018F80000063E00000038F800000C7E00000038F800000C7C00000030F80000187C000
+00030F80000307C000000707C000030FC000000707C000060F8000000607C0000C0F8000
+000607C0000C0F8000000E07C000181F8000000E07C000301F0000000C03E000301F0000
+000C03E000601F0000001C03E000C03F0000001C03E000C03E0000001803E001803E0000
+001803E003003E0000003801F003007E0000003801F006007C0000003001F00C007C0000
+003001F00C007C0000007001F01800FC0000007001F03000F80000006001F03000F80000
+006000F86000F8000000E000F8C001F8000000E000F8C001F0000000C000F98001F00000
+00C000FB0001F0000001C000FB0003F0000001C0007E0003E000000180007C0003E00000
+03C0007C0003E000000FE000780007E00000FFFE007001FFFF8000FFFE003001FFFF8000
+442D7CAC44>I<003FFFFFFF0000003FFFFFFFE0000000FE0007F0000000FE0001FC0000
+00FC00007E000000FC00007E000001FC00003F000001FC00003F000001F800003F000001
+F800003F800003F800003F000003F800007F000003F000007F000003F000007F000007F0
+0000FE000007F00000FE000007E00000FC000007E00001F800000FE00003F000000FE000
+07E000000FC0001F8000000FC000FF0000000FFFFFF80000001FFFFFC00000001F800000
+0000001F8000000000001F8000000000003F8000000000003F0000000000003F00000000
+00003F0000000000007F0000000000007E0000000000007E0000000000007E0000000000
+00FE000000000000FC000000000000FC000000000000FC000000000001FC000000000001
+F8000000000001F8000000000003F80000000000FFFFE000000000FFFFE000000000312D
+7DAC2D>80 D<003FFFFFF80000003FFFFFFF00000000FE001FC0000000FE0007E0000000
+FC0003F0000000FC0001F8000001FC0000FC000001FC0000FC000001F80000FE000001F8
+0000FE000003F80000FE000003F80001FC000003F00001FC000003F00001FC000007F000
+03F8000007F00003F0000007E00007E0000007E0000FC000000FE0001F8000000FE0007E
+0000000FC003F80000000FFFFFE00000001FFFFF000000001FC007C00000001F8003E000
+00001F8001F00000003F8001F80000003F8000F80000003F0000FC0000003F0000FC0000
+007F0001FC0000007F0001FC0000007E0001F80000007E0001F8000000FE0003F8000000
+FE0003F8000000FC0003F8000000FC0003F8000001FC0003F8038001FC0003F8030001F8
+0003F8030001F80003F8070003F80001FC0E00FFFFE000FC3C00FFFFE0007FF000000000
+000FC000312E7CAC35>82 D<000007F00600003FFE0E0000F80F9E0003E001FE00078000
+FE000F00007C001E00007C003C00003C003C00003C007800003800780000380078000038
+00F800003800F800003000F800003000FC00000000FC00000000FE000000007F80000000
+7FF80000003FFF8000003FFFF000001FFFFC000007FFFE000000FFFF0000001FFF000000
+01FF800000003F800000001F800000000F800000000F8000000007801800000780180000
+078018000007801800000F803800000F003800000F003800001E003800001E007C00003C
+007E000078007F0000F0007B8003E000F1F00F8000E07FFE0000C00FF00000272F7CAD2B
+>I<0FFFFFFFFFFF0FFFFFFFFFFF1FC003F8003F1F0003F8001F1C0003F0000E3C0003F0
+000E380007F00006300007F00006700007E0000E700007E0000E60000FE0000CE0000FE0
+000CC0000FC0000CC0000FC0000CC0001FC0000C00001FC0000000001F80000000001F80
+000000003F80000000003F80000000003F00000000003F00000000007F00000000007F00
+000000007E00000000007E0000000000FE0000000000FE0000000000FC0000000000FC00
+00000001FC0000000001FC0000000001F80000000001F80000000003F80000000003F800
+00000003F00000000003F00000000007F00000000007F00000000007E0000000000FE000
+0000001FE00000001FFFFFF000001FFFFFF00000302D7FAC29>I<0007E000001FF80000
+7C1CE000F80DE001F00FE003E007E007C007E00FC007E01F8007C01F8007C03F0007C03F
+000FC07F000F807E000F807E000F807E001F80FE001F00FC001F00FC001F00FC003F02FC
+003E06FC003E06F8003E06F8007E0E7C00FE0C7C00FC0C7C01FC1C3E07BE181F0E1E380F
+FC0FF003F003C01F1F7D9D25>97 D<00F800001FF800001FF8000001F8000001F8000001
+F0000001F0000003F0000003F0000003E0000003E0000007E0000007E0000007C0000007
+C000000FC000000FC7E0000F9FF8000FB83C001FF01E001FE01F001FC01F001F800F803F
+000F803F000F803E000F803E000F807E001F807E001F807C001F807C001F807C003F80FC
+003F00F8003F00F8003F00F8007E00F8007E00F8007C00F800FC00F800F8007801F00078
+03F0007807E0003C0F80001E1F00000FFC000003F00000192F7DAD1E>I<0001F800000F
+FE00003E0780007C018001F801C003F007C007E00FC00FC00FC00F800F801F800F803F00
+00003F0000007F0000007E0000007E0000007E000000FE000000FC000000FC000000FC00
+0000FC000000FC000000FC0000607C0000E07C0001C07C0003803E000F001E001C000F81
+F80007FFE00000FE00001B1F7D9D1F>I<0000001F000003FF000003FF0000003F000000
+3F0000003E0000003E0000007E0000007E0000007C0000007C000000FC000000FC000000
+F8000000F8000001F80007E1F8001FF9F0007C1DF000F80FF001F00FF003E007E007C007
+E00FC007E01F8007E01F8007C03F0007C03F000FC07F000FC07E000F807E000F807E001F
+80FE001F80FC001F00FC001F00FC003F02FC003F06FC003E06F8003E06F8007E0E7C00FE
+0C7C00FC0C7C01FC1C3E07BE181F0E1E380FFC0FF003F003C0202F7DAD24>I<0000FC00
+0003FF00000F839C001F01BC003E01FC007C00FC00F800FC01F800FC03F000FC03F000F8
+07E000F807E001F80FE001F80FC001F00FC001F00FC003F01FC003F01F8003E01F8003E0
+1F8007E01F8007E01F8007C01F8007C00F800FC00F801FC007803F8007C07F8003E1FF80
+00FF9F80003E1F0000001F0000003F0000003F0000003E0000003E0000007E0038007C00
+FC00FC00FC00F800FC01F000F807E000F00F80007FFE00001FF800001E2C7E9D22>103
+D<000700000F80001FC0001FC0000F800007000000000000000000000000000000000000
+0000000000000000000001E00007F8000E3C001C3E00383E00303E00703E00607E00E07C
+00C07C00C0FC0080F80000F80001F80001F00003F00003E00003E00007E00007C04007C0
+C00FC0C00F80C00F81C01F01801F03801F07000F06000F1E0007F80001F000122E7EAC18
+>105 D<000000E0000001F0000003F0000003F0000003F0000001C00000000000000000
+0000000000000000000000000000000000000000000000000000000000007C000003FE00
+00078F80000E0780001C0780003807C0003007C000700FC000600F8000E00F8000C00F80
+00801F8000001F8000001F0000001F0000003F0000003F0000003E0000003E0000007E00
+00007E0000007C0000007C000000FC000000FC000000F8000000F8000001F8000001F800
+0001F0000001F0000003F0000003F0000003E0000003E0000007E0003807C000FC0FC000
+FC0F8000FC1F0000F83E0000F0F800007FF000001F8000001C3B81AC1D>I<001F000003
+FF000003FF0000003F0000003F0000003E0000003E0000007E0000007E0000007C000000
+7C000000FC000000FC000000F8000000F8000001F8000001F800F801F003FC01F00F0E03
+F01C1E03F0387E03E0707E03E0E07E07E1C07E07E3803807C7000007CE00000FDC00000F
+F800000FF800000FFF80001F9FE0001F83F0001F01F8001F00F8003F00F8043F00F80C3E
+00F80C3E00F80C7E00F81C7E00F8187C00F0387C00F830FC00F870FC0078E0F8003FC070
+000F801F2F7DAD25>I<007C0FFC0FFC00FC00FC00F800F801F801F801F001F003F003F0
+03E003E007E007E007C007C00FC00FC00F800F801F801F801F001F003F003F003E003E00
+7E007E007C007C00FC08FC18F818F818F838F830F030F070F86078E03FC00F000E2F7DAD
+15>I<078007F0007E00001FE01FFC03FF800018F0781F0783E0003878E00F1E01E00030
+79C00FB801F000707F800FB001F000607F000FF001F00060FE000FE001F000E0FE000FC0
+01F000C0FC000FC001F000C0F8000F8001F00081F8001F8003F00001F8001F8003E00001
+F0001F0003E00001F0001F0003E00003F0003F0007E00003F0003F0007C00003E0003E00
+07C00003E0003E000FC00007E0007E000F808007E0007E000F818007C0007C001F818007
+C0007C001F01800FC000FC003F03800FC000FC003E03000F8000F8003E07000F8000F800
+3E0E001F8001F8001E0C001F8001F8001E3C001F0001F0000FF0000E0000E00003E00039
+1F7E9D3E>I<07C007E0001FE03FF80018F8783E003879E01E00307B801F00707F001F00
+607F001F0060FE001F00E0FC001F00C0FC001F00C0F8001F0081F8003F0001F8003E0001
+F0003E0001F0003E0003F0007E0003F0007C0003E0007C0003E000FC0007E000F80807E0
+00F81807C001F81807C001F0180FC001F0380FC003E0300F8003E0700F8003E0E01F8001
+E0C01F8001E3C01F0000FF000E00003E00251F7E9D2B>I<0001F800000FFF00003F0780
+007C03C001F803E003F001F007E001F00FC001F80F8000F81F8000F83F0000F83F0001F8
+7F0001F87E0001F87E0001F87E0003F8FE0003F0FC0003F0FC0003F0FC0007E0FC0007E0
+FC000FC0FC000FC07C001F807C001F007C003E003E007C001F01F8000F83E00003FF8000
+00FC00001D1F7D9D22>I<007C01F80000FE07FE0001CF8E0F0003879C07800307B807C0
+0707F007C00607E003E0060FC003E00E0F8003E00C0F8003E00C0F8003E0081F8007E000
+1F8007E0001F0007E0001F0007E0003F000FE0003F000FC0003E000FC0003E000FC0007E
+001F80007E001F80007C001F00007C003F0000FC003E0000FC007C0000FC00FC0000FE01
+F80001FF03E00001FB87C00001F1FF000001F0FC000003F000000003F000000003E00000
+0003E000000007E000000007E000000007C000000007C00000000FC00000000FC0000000
+FFFC000000FFFC000000232B829D24>I<0007E030001FF870007C1CF000F80DF001F00F
+F003E007E007C007E00FC003E01F8007E01F8007C03F0007C03F0007C07F000FC07E000F
+807E000F807E000F80FE001F80FC001F00FC001F00FC001F00FC003F00FC003E00F8003E
+00F8007E007C00FE007C00FC007C01FC003E07FC001F0EFC000FFCF80003F0F8000000F8
+000001F8000001F0000001F0000001F0000003F0000003E0000003E0000007E0000007E0
+0000FFFE0000FFFE001C2B7D9D20>I<07C01F000FF07FC01CF8E0E03879C1E0307B87E0
+707F07E0607E07E060FC07E0E0FC0380C0F80000C0F8000081F8000001F8000001F00000
+01F0000003F0000003F0000003E0000003E0000007E0000007E0000007C0000007C00000
+0FC000000FC000000F8000000F8000001F8000001F8000001F0000000E0000001B1F7E9D
+20>I<0007E0003FF800781E00F00601E00703C00F03C01F03C01F07C01E07C00C07E000
+07F80007FF8003FFE001FFF000FFF8003FFC0001FC0000FC00007C78003CFC003CFC003C
+FC007CF80078E000F8E000F06001E07807C01FFF0007F800181F7C9D21>I<000E00001F
+00001F00003F00003F00003E00003E00007E00007E00007C00007C0000FC0000FC00FFFF
+F8FFFFF801F80001F80001F00001F00003F00003F00003E00003E00007E00007E00007C0
+0007C0000FC0000FC0000F80000F80001F80101F80301F00301F00701F00601F00E01E01
+C01E03801F07000F0E0007FC0001F000152B7EA919>I<01E000000007F8000E000E3C00
+1F001C3E003F00383E003E00303E003E00703E003E00607E007E00E07C007C00C07C007C
+00C0FC007C0080F800FC0000F800F80001F800F80001F000F80001F001F80003F001F000
+03E001F00003E001F00003E003F02007E003E06007C003E06007C003E06007C003E0E007
+C007E0C003C00FC0C003E01FC1C003E03BE18001F071E380007FE0FF00001F803C00231F
+7E9D29>I<003F007C0000FFC1FF0001C1E383800380F703C00700F60FC00E00FE0FC01C
+00FC0FC01800FC0FC03800FC07003000F800003000F800002001F800000001F000000001
+F000000001F000000003F000000003E000000003E000000003E000000007E001000007E0
+03000007C003003807C007007C0FC00600FC0FC00E00FC1FC00C00FC1BC01C00F03BE038
+007071E0F0003FE0FFC0000F803F0000221F7E9D28>120 D<01E0000007F8000E0E3C00
+1F1C3E003F383E003E303E003E703E003E607E007EE07C007CC07C007CC0FC007C80F800
+FC00F800F801F800F801F000F801F001F803F001F003E001F003E001F003E003F007E003
+E007C003E007C003E007C007E007C007C003C00FC003E01FC003E03FC001F07F80007FEF
+80001F8F8000001F8000001F0000001F003E003E003E003E007E007C007E00F8007C01F0
+007003E0003007C0003C0F80000FFE000003F00000202C7E9D23>I
+E
+%EndDVIPSBitmapFont
+/Gd 7[42 79[28 16[83 2[37 37 24[37 42 42 60 42 42 23
+32 28 42 42 42 42 65 23 42 23 23 42 42 28 37 42 37 42
+37 6[51 60 1[78 60 1[51 46 55 1[46 1[60 74 51 60 32 28
+60 60 46 51 60 55 55 60 76 5[23 42 2[42 42 42 42 42 42
+42 1[21 28 21 2[28 28 37[46 2[{TeXBase1Encoding ReEncodeFont}69
+83.022 /Times-Roman rf /Ge 133[53 60 1[86 1[66 40 47
+53 66 66 60 66 100 33 66 1[33 66 60 40 53 66 53 66 60
+9[120 86 1[80 66 2[73 93 86 1[80 2[47 1[93 73 80 86 86
+80 86 6[40 2[60 60 60 60 60 60 60 2[30 40 30 4[40 39[{
+TeXBase1Encoding ReEncodeFont}51 119.552 /Times-Bold
+rf /Gf 134[103 103 2[115 69 80 92 115 115 103 115 172
+57 2[57 115 103 69 92 115 92 115 103 13[115 2[126 1[149
+1[138 2[80 2[126 138 149 149 138 149 19[69 45[{
+TeXBase1Encoding ReEncodeFont}33 206.559 /Times-Bold
+rf /Gg 32[45 42[30 10[69 30 16[91 45 1[40 40 10[30 13[40
+45 45 66 45 45 25 35 30 45 45 45 45 71 25 45 25 25 45
+45 30 40 45 40 45 40 30 2[30 1[30 56 66 1[86 66 66 56
+51 61 66 51 66 66 81 56 66 35 30 66 66 51 56 66 61 61
+66 1[40 3[25 25 45 45 45 45 45 45 45 45 45 45 1[23 30
+23 2[30 30 30 71 4[30 2[30 12[25 30 12[51 51 2[{
+TeXBase1Encoding ReEncodeFont}89 90.9091 /Times-Roman
+rf end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+ end
+%%EndSetup
+%%Page: 1 1
+TeXDict begin 1 0 bop Black Black 277 851 a @beginspecial
+-153 @llx -3 @lly 153 @urx 372 @ury 612 @rwi @clip @setspecial
+%%BeginDocument: pics/cam.arms.ps
+%!PS-Adobe-2.0 EPSF-2.0
+%%Title: Arms of University of Cambridge
+%%Creator: Philip Hazel, July 1986
+%%CreationDate: 12:00:00 31-07-86
+%%BoundingBox: -153 -3 153 372
+%%EndComments
+
+/cuarmsdict 50 dict def cuarmsdict begin
+
+/mtrx matrix def
+/lionfix{filled{gsave lioncolour fill grestore}if stroke}def
+/toefix{gsave lioncolour fill grestore stroke} def
+
+/ea{/savematrix mtrx currentmatrix def
+translate 5 -1 roll rotate scale 0 0 1 5 -2 roll arc
+savematrix setmatrix}def
+
+/ec{/savematrix mtrx currentmatrix def
+translate 5 -1 roll rotate scale 0 0 1 5 -2 roll arcn
+savematrix setmatrix}def
+
+/db /rlineto load def /dt /lineto load def /mt /moveto load def
+
+/lion1{0.77 0.77 scale
+-200 -600 translate
+406 338 mt 440 375 45 -115 38 arc
+120 -90 90 15 11 445 425 ea
+120 -90 90 15 15 402 442 ea
+130 -143 25 33 20 360 454 ea
+
+360 485 32 217 73 arcn 397 507 dt
+464 524 45 241 70 arc 464 554 20 36 -133 arcn
+377 396 161 63 97 arc 362 494 62 93 227 arc
+512 690 308 235 255 arc 437 373 16 70 -105 arcn
+420 360 dt -100 20 db -50 0 db -20 40 db
+
+262 55 125 80 55 200 465 ea
+270 -41 185 23 15 265 517 ea
+260 540 dt -4 20 db -6 10 db -16 -2 db -14 -8 db
+90 -90 90 40 20 200 560 ea
+-14 8 db -16 2 db -6 -10 db -4 -20 db
+90 -5 221 23 15 135 517 ea
+98 55 125 80 55 200 465 ea
+420 340 285 164 183 arc
+} def
+
+/lion2{126 299 27 70 126 arc
+98 333 15 271 190 arcn
+287 438 230 207 170 arcn
+307 0 145 50 25 33 522 ea
+
+240 485 240 162 177 arc
+20 496 18 177 270 arc
+96 -10 190 26 12 7 450 ea
+
+111 -25 180 36 12 15 388 ea 40 350 dt
+119 -30 190 33 10 36 318 ea 70 296 dt
+
+127 -15 180 28 7 66 260 ea
+130 213 45 138 120 arcn
+120 296 36 -75 -40 arc
+}def
+
+/lion3{69 255 81 11 -37 arcn
+-123 362 300 -33 -47 arcn
+40 57 160 30 11 49 98 ea
+40 175 350 40 15 57 90 ea
+
+72 150 345 50 18 115 123 ea
+90 150 330 45 14 155 177 ea
+80 150 340 50 10 186 230 ea
+110 105 240 32 22 218 284 ea
+}def
+
+/lion4{332 247 36 115 210 arc
+307 160 31 40 -55 arcn
+160 390 305 -58 -70 arcn
+22 30 160 20 7 243 90 ea
+27 170 330 30 12 250 77 ea 288 90 dt
+
+60 125 300 45 15 312 100 ea 340 125 dt
+72 155 360 30 12 356 140 ea
+380 190 25 210 400 arc
+90 230 50 18 13 383 208 ec
+363 240 22 300 356 arc
+}def
+
+/lion5{476 296 108 212 242 arc
+412 171 32 50 -30 arcn
+55 90 310 40 20 420 84 ea
+
+498 102 54 200 235 arc
+93 200 360 40 11 470 105 ea
+95 165 350 30 8 474 173 ea
+479 205 5 210 360 arc 490 270 dt
+470 260 13 350 195 arcn
+348 247 108 10 60 arc
+}def
+
+/lion6{90 0 360 30 15 72 445 ea toefix
+243 324 108 180 208 arc stroke}def
+
+/lion7{10 0 360 30 20 53 148 ea toefix}def
+/lion8{-5 0 360 33 13 243 115 ea toefix}def
+
+/lion9{50 0 360 27 13 393 103 ea toefix
+317 280 mt 335 292 18 235 380 arc
+385 238 dt stroke}def
+
+/lion10{160 360 mt 4 -20 db 16 -20 db 16 20 db 4 20 db 10 -14 db
+10 -6 db 10 6 db 10 24 db 14 0 db 16 10 db stroke
+gsave 200 490 translate
+1 1 2{pop 16 0 mt 24 40 db -26 -20 db lioneyecolour fill
+-1 1 scale}for grestore
+90 90 270 60 25 200 465 ea 200 450 dt closepath 1 setlinewidth stroke
+500 710 203 240 271 arc stroke
+} def
+
+/lion11{280 280 dt 262 203 18 133 220 arc
+228 156 36 42 -50 arcn
+52 38 315 44 23 160 20 ea 195 40 dt
+
+67 135 322 44 17 220 54 ea
+85 100 305 27 20 263 90 ea
+75 130 340 22 10 293 118 ea
+314 137 8 -150 40 arc
+
+380 197 72 202 148 arcn
+250 317 99 323 350 arc
+
+422 334 72 208 248 arc
+47 360 240 24 11 394 242 ec
+60 60 310 30 20 364 178 ea
+
+65 110 340 30 15 408 196 ea
+72 150 350 15 8 435 239 ea
+450 260 11 220 40 arc
+505 375 108 237 200 arcn
+}def
+
+/lion12{30 0 360 30 20 135 56 ea toefix
+35 0 360 22 15 352 212 ea toefix
+280 280 mt 347 300 dt stroke
+}def
+
+/lion13{0 45 -40 31 20 178 242 ec
+40 90 310 31 20 137 168 ea 170 174 dt
+
+80 90 320 41 20 189 163 ea
+82 160 310 35 20 226 218 ea
+73 180 325 25 10 263 266 ea 333 284 dt
+
+341 260 18 145 215 arc
+325 183 27 30 -58 arcn
+37 90 320 35 15 287 84 ea
+
+80 50 280 23 12 325 80 ea
+75 160 335 25 17 350 124 ea
+112 140 290 15 11 378 154 ea 383 170 dt
+395 180 9 265 31 arc
+462 230 72 210 180 arcn
+
+405 160 32 60 -10 arcn
+82 90 340 34 17 432 13 ea
+105 150 330 35 15 455 63 ea
+100 160 330 30 11 466 126 ea 461 161 dt
+80 180 345 26 8 475 187 ea
+125 180 60 40 15 456 251 ec
+325 265 108 14 43 arc
+}def
+
+/lion14{335 306 22 265 336 arc 390 230 dt stroke
+10 0 360 25 13 122 198 ea toefix
+13 0 360 22 13 266 106 ea toefix
+60 0 360 28 15 400 24 ea toefix
+}def
+
+/lion15{69 255 81 11 -40 arcn
+40 57 160 30 11 49 123 ea
+40 175 350 40 15 57 113 ea
+
+72 150 320 50 18 115 145 ea
+90 120 270 27 15 155 188 ea
+80 170 340 50 10 186 230 ea
+110 105 240 32 22 218 284 ea
+}def
+
+/lion16{10 0 360 30 20 53 168 ea toefix}def
+
+
+/cuarms{/arg exch def gsave 0.05 0.05 scale
+ arg type /booleantype eq { /arg arg {1} {0} ifelse def} if
+
+ arg 3 eq
+ {
+ % colour definitions
+ /erminecolour { 0 0 0 setrgbcolor } def
+ /lioncolour { 1 .9 0 setrgbcolor } def
+ /lioneyecolour { 1 0 0 setrgbcolor } def
+ /bgcolour { 1 0 0 setrgbcolor } def
+ /crosscolour { 1 1 1 setrgbcolor } def
+ /bookcolour { 1 0 0 setrgbcolor } def
+ /bktrimcolour { 1 .9 0 setrgbcolor } def
+ /filled true def
+ }
+ {
+ /erminecolour { 0 setgray } def
+ /lioncolour { 1 setgray } def
+ /lioneyecolour { 0 setgray } def
+ /bgcolour { 0 setgray } def
+ /crosscolour { 1 setgray } def
+ /bookcolour { 0 setgray } def
+ /bktrimcolour { 1 setgray } def
+ /filled arg 1 eq def
+ }
+ ifelse
+
+
+ 1 1 2
+ {pop %repeat for symmetry
+
+ %outline
+ bgcolour
+ 0 1475 moveto 600 1475 lineto
+ 600 343 0 0 500 arcto 4 {pop} repeat
+ 0 0 lineto gsave crosscolour fill grestore 15 setlinewidth stroke
+
+ 125 1475 moveto 125 1000 lineto 600 1000 lineto
+ filled {600 1475 lineto fill} if
+
+ 125 75 moveto 125 700 lineto 600 700 lineto
+ filled {600 343 0 0 500 arcto 4 {pop} repeat fill}
+ {20 setlinewidth stroke} ifelse
+
+ %ermine
+ [[0 1170] [63 1045] [63 1295] [225 850] [375 850] [525 850]
+ [300 730] [450 730] [0 275] [0 540] [63 120] [63 400]]
+ {
+ aload pop
+ gsave translate
+ 0 115 10 0 360 arc erminecolour fill
+ 172 107 170 180 210 arc
+ 8 20 lineto 0 0 lineto -8 20 lineto
+ -172 107 170 -30 0 arc
+ closepath fill
+ grestore
+ }
+ forall
+
+ %book
+ gsave 0 745 translate
+ 0 0 moveto 60 0 lineto 60 -80 lineto 100 -80 lineto 100 0 lineto
+ 140 0 lineto 140 225 lineto
+ 70 213 20 37 143 arc 0 213 20 37 90 arc bookcolour fill
+
+ bktrimcolour
+ 70 213 12 0 180 arc
+ 58 183 lineto 82 183 lineto fill
+ 0 213 12 0 90 arc
+ 0 183 lineto 12 183 lineto fill
+
+ 80 -22 12 0 180 arc
+ 80 -43 12 180 0 arc fill
+ 80 -67 6 0 360 arc fill
+
+ 105 25 8 0 360 arc fill
+ 105 180 8 0 360 arc fill
+
+ 0 -90 90 50 25 0 112.5 ea
+ 0 90 -90 45 20 0 112.5 ec fill
+
+ 0 -90 90 20 5 0 112.5 ea fill
+
+ grestore -1 1 scale
+ }for
+
+%point of shield
+0 0 7.5 0 360 arc fill
+
+%lions
+2 setlinewidth
+
+gsave -405 1450 translate
+lion1 lion2 lion3 lion4 lion5 lionfix
+lion6 lion7 lion8 lion9 lion10
+grestore
+
+gsave -400 675 translate
+lion1 lion2 lion13 lionfix
+lion6 lion14 lion10
+grestore
+
+gsave 322 1450 translate
+lion1 lion2 lion3 lion4 lion5 lionfix
+lion6 lion7 lion8 lion9 lion10
+grestore
+
+317 675 translate
+lion1 lion2 lion15 lion11 lionfix
+lion6 lion16 lion12 lion10
+
+grestore}def
+end
+
+%%EndProlog
+
+5 5 scale
+cuarmsdict begin 3 cuarms end
+
+
+%%EndDocument
+ @endspecial Black Black 2919 1277 a Gg(Christian)25
+b(Urban)2500 1390 y(Gon)l(ville)g(and)f(Caius)g(Colle)o(ge)1784
+1502 y(Uni)n(v)o(ersity)h(of)e(Cambridge)i(Computer)f(Laboratory)p
+277 1638 3226 19 v Black Black 2177 1961 a Gf(Classical)54
+b(Logic)1947 2329 y(and)e(Computation)p 277 2516 V Black
+Black 1458 2704 a Gg(A)22 b(dissertation)27 b(submitted)f(to)d(the)h
+(Uni)n(v)o(ersity)h(of)e(Cambridge)1900 2817 y(to)n(w)o(ards)h(the)g
+(de)o(gree)h(of)e(Doctor)h(of)g(Philosophy)-6 b(.)3005
+2930 y(October)24 b(2000)p Black Black Black Black 1345
+5195 a(Cop)o(yright)i(\251)46 b(Christian)25 b(Urban)p
+Black Black eop end
+%%Page: 2 2
+TeXDict begin 2 1 bop Black Black Black Black eop end
+%%Page: 3 3
+TeXDict begin 3 2 bop Black Black 277 317 a Ge(Abstract)277
+524 y Gg(This)24 b(thesis)h(contains)h(a)e(study)h(of)f(the)g(proof)h
+(theory)g(of)f(classical)i(logic)f(and)g(addresses)h(the)e(prob-)277
+637 y(lem)h(of)g(gi)n(ving)h(a)f(computational)j(interpretation)h(to)c
+(classical)j(proofs.)34 b(This)25 b(interpretation)k(aims)277
+750 y(to)24 b(capture)h(features)h(of)e(computation)i(that)f(go)f(be)o
+(yond)h(what)f(can)g(be)g(e)o(xpressed)i(in)d(intuitionistic)277
+863 y(logic.)418 976 y(W)-7 b(e)34 b(introduce)i(se)n(v)o(eral)g
+(strongly)g(normalising)h(cut-elimination)h(procedures)f(for)d
+(classical)277 1089 y(logic.)h(Our)24 b(procedures)k(are)e(less)f
+(restricti)n(v)o(e)j(than)d(pre)n(vious)j(strongly)f(normalising)h
+(procedures,)277 1202 y(while)19 b(at)g(the)g(same)f(time)h(retaining)i
+(the)e(strong)h(normalisation)i(property)-6 b(,)22 b(which)d(v)n
+(arious)h(standard)277 1315 y(cut-elimination)29 b(procedures)f(lack.)
+33 b(In)25 b(order)h(to)f(apply)h(proof)g(techniques)i(from)d(term)f
+(re)n(writing,)277 1428 y(including)f(symmetric)d(reducibility)j
+(candidates)g(and)d(recursi)n(v)o(e)i(path)e(ordering,)i(we)d(de)n(v)o
+(elop)j(term)277 1541 y(annotations)27 b(for)d(sequent)h(proofs)g(of)f
+(classical)h(logic.)418 1653 y(W)-7 b(e)25 b(then)g(present)i(a)e
+(sequence-conclusio)q(n)31 b(natural)c(deduction)g(calculus)h(for)d
+(classical)i(logic)277 1766 y(and)g(study)h(the)f(correspondence)k
+(between)c(cut-elimination)k(and)c(normalisation.)40
+b(In)27 b(contrast)h(to)277 1879 y(earlier)33 b(w)o(ork,)g(which)f
+(analysed)h(this)f(correspondence)k(in)31 b(v)n(arious)i(fragments)g
+(of)e(intuitionistic)277 1992 y(logic,)24 b(we)f(establish)j(the)e
+(correspondence)k(in)23 b(classical)j(logic.)418 2105
+y(Finally)-6 b(,)35 b(we)c(study)i(applications)j(of)31
+b(cut-elimination.)58 b(In)32 b(particular)l(,)k(we)c(analyse)h(se)n(v)
+o(eral)277 2218 y(classical)e(proofs)e(with)f(respect)i(to)e(their)h
+(beha)n(viour)i(under)f(cut-elimination.)46 b(Because)29
+b(our)g(cut-)277 2331 y(elimination)k(procedures)g(impose)d(fe)n(wer)g
+(constraints)j(than)e(pre)n(vious)h(procedures,)i(we)c(are)g(able)277
+2444 y(to)25 b(sho)n(w)f(ho)n(w)h(a)f(fragment)i(of)f(classical)i
+(logic)e(can)g(be)g(seen)h(as)e(a)h(typing)h(system)f(for)g(the)g
+(simply-)277 2557 y(typed)34 b(lambda)g(calculus)h(e)o(xtended)g(with)e
+(an)g(erratic)i(choice)f(operator)-5 b(.)60 b(As)32 b(a)h(pleasing)i
+(conse-)277 2670 y(quence,)25 b(we)e(can)h(gi)n(v)o(e)f(a)g(simple)i
+(computational)h(interpretation)i(to)23 b(Lafont')-5
+b(s)25 b(e)o(xample.)p Black Black eop end
+%%Page: 4 4
+TeXDict begin 4 3 bop Black Black Black Black eop end
+%%Page: 5 5
+TeXDict begin 5 4 bop Black Black 277 317 a Ge(Pr)n(eface)277
+524 y Gg(This)21 b(dissertation)j(is)d(the)g(result)h(of)f(my)f(o)n(wn)
+g(w)o(ork)h(and)g(e)o(xcept)h(where)g(otherwise)g(stated)g(includes)277
+637 y(nothing)g(that)e(is)f(the)h(outcome)h(of)f(w)o(ork)f(done)i(in)f
+(collaboration.)31 b(Whene)n(v)o(er)21 b(possible)g(long)g(proofs)277
+750 y(are)g(gi)n(v)o(en)g(in)f(Appendix)i(B,)e(rather)h(than)g(in)f
+(the)h(main)f(te)o(xt.)28 b(A)19 b(reference,)k(in)e(each)g(case,)g
+(will)f(point)277 863 y(the)k(reader)h(to)e(the)h(section)h(in)f(the)g
+(appendix)i(where)d(the)h(details)h(of)f(the)g(proofs)h(can)e(be)h
+(found.)277 1048 y(I)33 b(am)g(grateful)i(to)e(my)g(e)o(xaminers,)k
+(Prof.)c(A.)f(M.)g(Pitts)h(and)h(Prof.)f(H.)f(P)-10 b(.)32
+b(Barendre)o(gt,)37 b(for)d(their)277 1161 y(helpful)23
+b(comments)f(and)g(useful)g(suggestions.)32 b(An)o(y)20
+b(remaining)j(errors)g(are)e(of)g(course)i(all)e(my)g(o)n(wn)277
+1274 y(w)o(ork.)277 1478 y(The)k(follo)n(wing)i(people)h(ha)n(v)o(e)e
+(requested)i(\(or)e(been)g(gi)n(v)o(en)g(;o\))g(a)f(cop)o(y)i(of)e
+(this)i(dissertation)i(\(as)c(of)277 1591 y(March)f(2006\):)p
+Black Black 547 1743 a Gd(Edmund)18 b(Robinson)638 b(edmundr@dcs.qmw)-5
+b(.ac.uk)547 1843 y(Gianluigi)19 b(Bellin)723 b(bellin@sci.uni)n(vr)-5
+b(.it)547 1943 y(Pierre-Louis)18 b(Curien)598 b(curien@dmi.ens.fr)547
+2042 y(Jose)20 b(Espirito)g(Santo)623 b(jes@math.uminho.pt)547
+2142 y(P)o(aul)20 b(Ruet)936 b(ruet@iml.uni)n(v-mrs.fr)547
+2242 y(Nicola)20 b(Piccinini)722 b(pic@arena.sci.uni)n(vr)-5
+b(.it)547 2341 y(Rene)20 b(V)-9 b(ester)o(gaard)676 b(v)o
+(ester@jaist.ac.jp)547 2441 y(Jim)20 b(Laird)939 b
+(jiml@cogs.susx.ac.uk)547 2540 y(Marcelo)19 b(Fiore)787
+b(Marcelo.Fiore@cl.cam.ac.uk)547 2640 y(Ro)o(y)20 b(Dyckhof)n(f)783
+b(rd@dcs.st-and.ac.uk)547 2740 y(Ralph)20 b(Matthes)773
+b(matthes@informatik.uni-muenchen)o(.de)547 2839 y(Felix)20
+b(Joachimski)694 b(joachski@rz.mathematik.uni-muench)o(en.)o(de)547
+2939 y(Thomas)19 b(Antonini)675 b(tototbol@club-internet.fr)547
+3039 y(Eduardo)18 b(De)i(la)h(Hoz)621 b(edehozvi@hotmail.com)547
+3138 y(Jeremy)19 b(Da)o(wson)728 b(jeremy@discus.anu.edu.au)547
+3238 y(Lars)20 b(Birk)o(edal)806 b(birk)o(edal@itu.dk)547
+3337 y(Edw)o(ard)19 b(Haeusler)686 b(hermann@inf.puc-rio.br)547
+3437 y(Stephane)19 b(Lengrand)614 b(Stephane.Lengrand@ENS-L)-5
+b(yon.fr)547 3537 y(Norman)18 b(Danner)722 b(ndanner@wesle)o(yan.edu)
+547 3636 y(Dan)20 b(Dougherty)743 b(dd@cs.wpi.edu)547
+3736 y(Zena)19 b(Matilde)h(Ariola)582 b(ariola@cs.uore)o(gon.edu)547
+3836 y(Masahik)o(o)19 b(Sato)765 b(masahik)o(o@kuis.k)o(yoto-u.ac.jp)
+547 3935 y(K)n(en)19 b(Shan)937 b(k)o(en@digitas.harv)n(ard.edu)547
+4035 y(James)20 b(Brotherston)643 b(jjb@dcs.ed.ac.uk)547
+4135 y(Morten)19 b(Heine)h(S\370rensen)470 b(mhs@it-practice.dk)547
+4234 y(Richard)19 b(Nathan)h(Linger)493 b(rlinger@cse.ogi.edu)547
+4334 y(T)m(imothy)18 b(Grif)n(\002n)732 b(tim.grif)n(\002n@intel.com)
+547 4433 y(V)-9 b(aleria)19 b(de)h(P)o(ai)n(v)n(a)726
+b(V)-9 b(aleria.deP)o(ai)n(v)n(a@parc.com)547 4533 y(Stef)o(an)20
+b(Hetzl)848 b(shetzl@chello.at)547 4633 y(Stef)n(fen)19
+b(v)n(an)h(Bak)o(el)670 b(svb@doc.ic.ac.uk)547 4732 y(Carsten)20
+b(Sch)7 b(\250)-35 b(urmann)605 b(carsten@cs.yale.edu)547
+4832 y(Jens)20 b(Brage)898 b(brage@math.su.se)547 4932
+y(Dominic)19 b(Hughes)694 b(dominic@theory)-5 b(.stanford.edu)547
+5031 y(Rajee)n(v)20 b(Gore)844 b(Rajee)n(v)-5 b(.Gore@anu.edu.au)547
+5131 y(Ale)o(xander)18 b(Leitsch)650 b(leitsch@logic.at)547
+5230 y(Agatha)19 b(Ciabatone)662 b(agata@logic.at)547
+5330 y(Mattia)20 b(Petrolo)782 b(mattia.petrolo@libero.it)p
+Black Black eop end
+%%Page: 6 6
+TeXDict begin 6 5 bop Black Black Black Black eop end
+%%Page: 7 7
+TeXDict begin 7 6 bop Black Black 277 317 a Ge(Ackno)o(wledgements)277
+524 y Gg(First,)31 b(and)f(abo)o(v)o(e)h(all,)g(I)e(wish)g(to)h(thank)h
+(Ga)n(vin)f(Bierman)g(for)g(his)g(immense)g(help)h(and)f(constant)277
+637 y(encouragement)g(during)e(the)e(time)g(of)g(my)g(Ph.D.)e(He)i(not)
+g(only)h(has)g(consistently)i(gi)n(v)o(en)e(his)g(time)277
+750 y(to)h(impro)o(v)o(e)h(my)f(w)o(ork,)h(b)n(ut)g(has)g(also)g(been)g
+(v)o(ery)g(patient)h(with)e(the)g(slo)n(w)g(speed)i(of)e(my)g(writing.)
+277 863 y(His)c(e)o(xpertise)j(and)e(the)g(numerous)h(discussions)i
+(with)c(him)h(ha)n(v)o(e)g(been)g(in)l(v)n(aluable)j(to)c(this)h
+(thesis.)277 976 y(I)e(should)i(lik)o(e)f(to)g(thank)h(him)e(for)h(his)
+f(generous)j(support)g(and)e(belief)g(in)g(me.)418 1089
+y(I)j(w)o(as)f(pri)n(vile)o(ged)j(in)e(ha)n(ving)h(the)f(opportunity)k
+(to)26 b(w)o(ork)h(with)g(Martin)g(Hyland.)40 b(It)26
+b(is)h(a)f(great)277 1202 y(pleasure)j(to)e(ackno)n(wledge)i(the)e
+(enormous)i(amount)e(I)g(ha)n(v)o(e)g(had)g(learnt)h(from)f(the)g(con)l
+(v)o(ersations)277 1315 y(with)c(him.)29 b(His)23 b(enthusiasm)j(and)e
+(e)o(xperience)i(in\003uenced)f(this)f(thesis)h(in)f(man)o(y)f(w)o
+(ays.)418 1428 y(Ro)o(y)g(Dyckhof)n(f)i(has)e(helped)i(me)e(much)g(o)o
+(v)o(er)g(the)h(years.)29 b(I)23 b(ha)n(v)o(e)h(learnt)g(a)f(great)h
+(deal)g(from)f(his)277 1541 y(immense)i(insight)h(into)f(proof)h
+(theory)-6 b(.)33 b(I)24 b(am)f(indebted)k(to)d(him)g(for)h(gi)n(ving)h
+(me)d(in)l(v)n(aluable)28 b(advice)277 1653 y(for)c(my)f(w)o(ork.)418
+1766 y(I)j(appreciated)j(v)o(ery)d(much)g(the)g(con)l(v)o(ersation)k
+(with)25 b(Henk)h(Barendre)o(gt)i(about)f(my)e(w)o(ork)h(in)g(a)277
+1879 y(beautiful)j(churchyard)g(in)e(l'Aquila.)39 b(This)26
+b(delightful)j(afternoon)g(has)e(been)h(a)e(refreshing)j(source)277
+1992 y(of)24 b(reassurance,)i(which)e(made)g(the)f(process)j(of)d
+(writing)i(this)f(thesis)g(less)h(arduous.)418 2105 y(I)32
+b(am)f(v)o(ery)h(grateful)i(to)d(Laurent)i(Re)o(gnier)g(and)f(Jean-Yv)o
+(es)h(Girard)g(for)f(gi)n(ving)h(me)e(time)g(to)277 2218
+y(\002nish)24 b(this)g(thesis)h(while)f(w)o(orking)g(in)g(Marseille.)
+418 2331 y(The)35 b(w)o(ork)g(has)h(greatly)h(bene\002ted)f(from)f
+(discussions)k(with)c(Harold)h(Schellinx)h(and)e(Jean-)277
+2444 y(Baptiste)25 b(Joinet)g(concerning)h(LK)1386 2411
+y Gc(tq)1449 2444 y Gg(.)418 2557 y(I)f(thank)i(Claudia)f(F)o(aggian,)g
+(who)f(took)i(care)f(of)f(me)g(in)g(the)h(\002rst)f(months)h(of)f(my)g
+(stay)h(in)f(Mar)n(-)277 2670 y(seille.)418 2783 y(Thank)d(goes)g(also)
+g(to)f(Barbara)h(and)g(W)-7 b(erner)21 b(Daniel,)h(who)f(taught)i(me)e
+(that)g(science)i(is)e(fun)h(and)277 2895 y(that)i(research)i(is)d(a)g
+(f)o(ascinating)k(lifelong)e(acti)n(vity)-6 b(.)418 3008
+y(If)26 b(my)f(laptop)j(had)e(not)h(been)g(repaired)h(in)e(time,)g(my)f
+(brother)j(w)o(ould)e(ha)n(v)o(e)h(lent)g(me)e(his)h(most)277
+3121 y(holy)33 b(possession)h(\(an)e(Apple)g(Po)n(werbook)h(G3\).)53
+b(Thank)32 b(you)g(v)o(ery)g(much)g(for)g(that)g(and)g(all)g(the)277
+3234 y(enjo)o(yable)26 b(time)e(with)f(you.)418 3347
+y(I)j(am)f(grateful)j(be)o(yond)f(an)o(y)f(measure)h(to)f(my)g(parents)
+h(for)g(their)f(unstinting)j(support)f(o)o(v)o(er)e(all)277
+3460 y(the)19 b(years\227thank)j(you)d(comes)g(not)h(e)n(v)o(en)e
+(close)i(to)f(adequate)i(for)e(ho)n(w)f(much)h(the)o(y)g(ha)n(v)o(e)h
+(supported)277 3573 y(me.)277 3785 y(I)26 b(w)o(ant)h(to)g(e)o(xpress)h
+(my)e(gratitude)k(to)c(the)h(German)g(Academic)h(Exchange)g(Service)g
+(\(D)l(AAD\))d(for)277 3898 y(generously)38 b(supporting)f(me)d(o)o(v)o
+(er)g(three)h(years)g(with)g(tw)o(o)f(scholarships.)64
+b(I)34 b(ackno)n(wledge)j(use)277 4011 y(of)29 b(P)o(aul)g(T)-7
+b(aylor')i(s)30 b(diagram)g(package)h(and)f(thank)g(the)f(authors)i(of)
+e(dvips)h(for)g(making)g(their)g(code)277 4124 y(publicly)d(a)n(v)n
+(ailable,)g(without)f(which)f(the)g(modi\002cation)i(that)e(allo)n(wed)
+g(me)f(to)h(dra)o(w)f(the)h(proofs)h(in)277 4237 y(Appendix)f(A)e(w)o
+(ould)h(ha)n(v)o(e)g(been)g(impossible.)p Black Black
+eop end
+%%Page: 8 8
+TeXDict begin 8 7 bop Black Black Black Black eop end
+%%Page: 9 9
+TeXDict begin 9 8 bop Black Black 277 982 a Gf(Contents)277
+1368 y Gb(1)92 b(Intr)n(oduction)2551 b(1)414 1481 y
+Gg(1.1)96 b(Outline)24 b(of)f(the)h(Thesis)73 b(.)45
+b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g
+(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 134 w(6)p
+Black 414 1594 a(1.2)96 b(Contrib)n(utions)69 b(.)45
+b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g
+(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 134 w(8)p Black 277 1798 a Gb(2)92 b(Sequent)21
+b(Calculi)2431 b(9)414 1911 y Gg(2.1)96 b(Gentzen')-5
+b(s)25 b(Sequent)f(Calculi)78 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g
+(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(10)p Black 414 2023 a(2.2)96 b(Cut-Elimination)25
+b(in)f(Propositional)i(Classical)f(Logic)83 b(.)45 b(.)g(.)g(.)g(.)h(.)
+f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(21)p Black 414
+2136 a(2.3)96 b(Proof)23 b(of)h(Strong)g(Normalisation)72
+b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)
+g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(31)p Black 414 2249
+a(2.4)96 b(First-Order)24 b(Classical)h(Logic)47 b(.)f(.)f(.)g(.)g(.)g
+(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
+h(.)f(.)p Black 88 w(41)p Black 414 2362 a(2.5)96 b(V)-10
+b(ariations)25 b(of)e(the)h(Sequent)h(Calculus)58 b(.)45
+b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g
+(.)h(.)f(.)p Black 88 w(44)p Black 414 2475 a(2.6)96
+b(Localised)25 b(V)-10 b(ersion)48 b(.)d(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)
+g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g
+(.)g(.)h(.)f(.)p Black 88 w(48)p Black 414 2588 a(2.7)96
+b(Notes)79 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g
+(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
+g(.)g(.)h(.)f(.)p Black 88 w(57)p Black 277 2792 a Gb(3)92
+b(Natural)23 b(Deduction)2273 b(65)414 2905 y Gg(3.1)96
+b(Intuitionistic)27 b(Natural)d(Deduction)87 b(.)45 b(.)g(.)h(.)f(.)g
+(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(66)p Black 414 3018 a(3.2)96 b(The)23 b(Correspondence)k
+(between)e(Cut-Elimination)g(and)f(Normalisation)i(I)j(.)45
+b(.)h(.)f(.)p Black 88 w(73)p Black 414 3131 a(3.3)96
+b(Classical)25 b(Natural)f(Deduction)87 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)
+g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(81)p Black 414 3243 a(3.4)96 b(The)23 b(Correspondence)k
+(between)e(Cut-Elimination)g(and)f(Normalisation)i(II)67
+b(.)46 b(.)f(.)p Black 88 w(93)p Black 414 3356 a(3.5)96
+b(Notes)79 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g
+(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
+g(.)g(.)h(.)f(.)p Black 88 w(95)p Black 277 3560 a Gb(4)92
+b(A)n(pplications)23 b(of)g(Cut-Elimination)1708 b(101)414
+3673 y Gg(4.1)96 b(Implementation)59 b(.)46 b(.)f(.)g(.)g(.)g(.)g(.)h
+(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)
+g(.)g(.)g(.)g(.)h(.)f(.)p Black 43 w(102)p Black 414
+3786 a(4.2)96 b(Non-Deterministic)26 b(Computation:)31
+b(Case)24 b(Study)79 b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g
+(.)g(.)h(.)f(.)p Black 43 w(113)p Black 414 3899 a(4.3)96
+b(A)22 b(Simple,)h(Non-Deterministic)j(Programming)f(Language)89
+b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43
+w(118)p Black 414 4012 a(4.4)96 b(Notes)79 b(.)46 b(.)f(.)g(.)g(.)g(.)h
+(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
+f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+43 w(122)p Black 277 4216 a Gb(5)92 b(Conclusion)2518
+b(125)414 4329 y Gg(5.1)96 b(Further)24 b(W)-7 b(ork)74
+b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
+g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 43 w(126)p Black 277 4532 a Gb(A)71 b(Experimental)23
+b(Data)2214 b(131)277 4736 y(B)76 b(Details)24 b(f)n(or)f(some)h(Pr)n
+(oofs)2057 b(141)414 4849 y Gg(B.1)80 b(Proofs)24 b(of)f(Chapter)i(2)54
+b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
+f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+43 w(141)p Black 414 4962 a(B.2)80 b(Proofs)24 b(of)f(Chapter)i(3)54
+b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
+f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+43 w(156)p Black 414 5075 a(B.3)80 b(Proofs)24 b(of)f(Chapter)i(4)54
+b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
+f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+43 w(167)p Black Black Black eop end
+%%Page: 10 10
+TeXDict begin 10 9 bop Black Black Black Black eop end
+%%Page: 11 11
+TeXDict begin 11 10 bop Black Black 277 982 a Gf(List)52
+b(of)g(Figur)l(es)414 1277 y Gg(1.1)96 b(Ov)o(ervie)n(w)23
+b(of)h(the)f(thesis)90 b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g
+(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 134 w(7)p Black 414 1473 a(2.1)96 b(Reduction)25
+b(sequence)h(impossible)g(in)d(LK)2007 1440 y Gc(tq)2141
+1473 y Gg(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
+g(.)h(.)f(.)p Black 88 w(18)p Black 414 1586 a(2.2)96
+b(V)-10 b(ariant)24 b(of)f(Kleene')-5 b(s)25 b(sequent)h(calculus)f
+(G3a)90 b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
+h(.)f(.)p Black 88 w(20)p Black 414 1699 a(2.3)96 b(T)-6
+b(erm)22 b(assignment)k(for)d(classical)j(sequent)g(proofs)87
+b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(23)p Black 414 1812 a(2.4)96 b(Proof)23 b(substitution)56
+b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
+h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(27)p Black 414 1925 a(2.5)96 b(Cut-reductions)27
+b(for)c(logical)j(cuts)e(and)g(commuting)h(cuts)60 b(.)45
+b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88
+w(29)p Black 414 2038 a(2.6)96 b(Auxiliary)25 b(proof)f(substitution)30
+b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
+h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(33)p Black
+414 2151 a(2.7)96 b(De\002nition)24 b(of)f(the)h(set)g(operators)i(for)
+e(propositional)j(connecti)n(v)o(es)39 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f
+(.)p Black 88 w(35)p Black 414 2263 a(2.8)96 b(De\002nition)24
+b(of)f(the)h(set)g(operators)i(for)e(quanti\002ers)36
+b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(45)p Black 414 2376 a(2.9)96 b(Alternati)n(v)o(e)25
+b(formulation)h(of)d(some)h(inference)i(rules)61 b(.)46
+b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(46)p Black 414 2489 a(2.10)51 b(T)-6 b(erm)22
+b(assignment)k(for)d(intuitionistic)28 b(sequent)d(proofs)73
+b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(47)p Black 414 2602 a(2.11)51 b(Cut-reductions)27
+b(for)c(labelled)j(cuts)k(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
+f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+88 w(50)p Black 414 2715 a(2.12)51 b(T)-6 b(erm)22 b(assignment)k(for)d
+(the)h(symmetric)h(lambda)f(calculus)k(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g
+(.)g(.)g(.)h(.)f(.)p Black 88 w(62)p Black 414 2911 a(3.1)96
+b(Natural)24 b(deduction)i(calculus)g(for)e(intuitionistic)j(logic)71
+b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(67)p Black 414 3024 a(3.2)96 b(T)-6 b(erm)22
+b(assignment)k(for)d(intuitionistic)28 b(natural)d(deduction)h(proofs)
+58 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(70)p
+Black 414 3137 a(3.3)96 b(T)m(ranslation)25 b(from)f(NJ-proofs)h(to)e
+(intuitionistic)28 b(sequent)d(proofs)75 b(.)45 b(.)g(.)g(.)g(.)g(.)h
+(.)f(.)p Black 88 w(71)p Black 414 3250 a(3.4)96 b(T)m(ranslation)25
+b(from)f(intuitionistic)j(sequent)f(proofs)f(to)e(NJ-proofs)75
+b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(71)p
+Black 414 3363 a(3.5)96 b(A)22 b(non-terminating)27 b(reduction)g
+(sequence)57 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g
+(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(75)p Black 414 3476
+a(3.6)96 b(Natural)24 b(deduction)i(calculus)g(for)e(classical)h(logic)
+86 b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(83)p Black 414 3588 a(3.7)96 b(T)-6 b(erm)22
+b(assignment)k(for)d(classical)j(natural)f(deduction)i(proofs)72
+b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88
+w(85)p Black 414 3701 a(3.8)96 b(T)m(ranslation)25 b(from)f(natural)h
+(deduction)h(proofs)f(to)f(sequent)h(proofs)32 b(.)45
+b(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(86)p Black 414
+3814 a(3.9)96 b(T)m(ranslation)25 b(from)f(sequent)h(proofs)g(to)f
+(natural)h(deduction)h(proofs)32 b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 88 w(87)p Black 414 3927 a(3.10)51 b(Proof)23 b(substitution)k
+(in)d(natural)h(deduction)h(I)67 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g
+(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(91)p
+Black 414 4040 a(3.11)51 b(Proof)23 b(substitution)k(in)d(natural)h
+(deduction)h(II)37 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g
+(.)g(.)g(.)g(.)h(.)f(.)p Black 88 w(92)p Black 414 4236
+a(4.1)96 b(Excerpt)24 b(from)f(the)h(reduction)i(system)f(for)e(an)h
+(outermost-leftmost)k(strate)o(gy)93 b(.)45 b(.)p Black
+43 w(104)p Black 414 4349 a(4.2)96 b(T)-7 b(w)o(o)22
+b(normal)i(forms)g(reachable)i(by)d(applying)j(dif)n(ferent)g(logical)f
+(reductions)40 b(.)46 b(.)f(.)p Black 43 w(105)p Black
+414 4462 a(4.3)96 b(Code)23 b(for)h(main)f(datatypes)85
+b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)
+g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43 w(108)p
+Black 414 4575 a(4.4)96 b(A)22 b(normal)i(form)g(of)f(Proof)h(\(4.1\))g
+(sho)n(wn)g(on)f(P)o(age)g(110)67 b(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g
+(.)g(.)g(.)h(.)f(.)p Black 43 w(112)p Black 414 4688
+a(4.5)96 b(Sequent)24 b(proofs)h Ga(\034)33 b Gg(and)24
+b Ga(")1462 4702 y Gc(i)1527 4688 y Gg(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g
+(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
+h(.)f(.)p Black 43 w(119)p Black 414 4801 a(4.6)96 b(T)-7
+b(yping)24 b(rules)g(for)g Ga(\025)1282 4764 y F9(+)1391
+4801 y Gg(.)45 b(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
+g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 43 w(121)p Black 414 4997 a(5.1)96 b(A)22 b(normal)i(form)g(of)f
+(the)h(LK-proof)g(gi)n(v)o(en)g(in)g(Example)f(2.1.3)51
+b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43
+w(128)p Black Black Black eop end
+%%Page: 12 12
+TeXDict begin 12 11 bop Black Black Black Black eop end
+%%Page: 1 13
+TeXDict begin 1 12 bop Black Black 277 957 a F8(Chapter)44
+b(1)277 1388 y Gf(Intr)l(oduction)p Black Black 1140
+1805 a Gd(A)20 b(sequent)f(calculus)g(without)g(cut-elimination)f(is)i
+(lik)o(e)g(a)g(car)g(without)f(engine.)3031 2004 y(\227J.-Y)-11
+b(.)20 b(Girard)1871 2103 y(in)h(Linear)e(Logic:)25 b(Its)c(Syntax)e
+(and)h(Semantics,)f(1995.)277 2416 y Gg(In)f(this)h(thesis)g(we)f
+(study)h(the)g(proof)g(theory)h(of)e(classical)i(logic)f(and)g(address)
+h(the)f(problem)g(of)f(gi)n(ving)277 2528 y(a)35 b(computational)40
+b(interpretation)f(to)d(classical)i(proofs.)67 b(This)35
+b(interpretation)40 b(aims)c(to)g(capture)277 2641 y(features)25
+b(of)d(computation)k(that)d(go)g(be)o(yond)h(what)f(can)g(be)g(e)o
+(xpressed)i(in)e(intuitionistic)j(logic.)k(The)277 2754
+y(point)c(of)e(departure)j(for)e(this)g(thesis)g(will)f(be)h(the)g
+F7(Curry-Howar)m(d)g(corr)m(espondence)p Gg(,)k(which)c(gi)n(v)o(es)277
+2867 y(a)e(computational)k(interpretation)h(to)23 b(intuitionistic)28
+b(proofs.)418 2997 y(According)k(to)e(the)h(Curry-Ho)n(w)o(ard)g
+(correspondence,)37 b(the)30 b(simply-typed)j(lambda)e(calculus)277
+3110 y(can)24 b(be)g(vie)n(wed)g(as)g(a)f(term)h(assignment)i(for)e
+(intuitionistic)k(proofs)d(formalised)h(in)d(Gentzen')-5
+b(s)26 b(nat-)277 3222 y(ural)32 b(deduction)h(calculus)g(NJ.)d(What)h
+(mak)o(es)h(this)f(term)g(assignment)i(e)o(xciting)g(is)e(that)g(it)g
+(relates)277 3335 y(not)24 b(just)g(tw)o(o)f(calculi,)i(b)n(ut)f(also)g
+(certain)h(concepts)h(within)e(them,)g(as)f(sho)n(wn)h(belo)n(w)-6
+b(.)p Black Black 631 3549 a(Gentzen')h(s)25 b(NJ-calculus)614
+b(simply-typed)27 b(lambda)d(calculus)895 3732 y(formula)667
+b F6(,)585 b Gg(type)940 3845 y(proof)713 b F6(,)580
+b Gg(term)789 3958 y(normalisation)563 b F6(,)492 b Gg(reduction)277
+4169 y(Curry)20 b(and)g(Fe)o(ys)g([1958])h(hinted)g(at)f(these)h
+(correspondences,)k(b)n(ut)20 b(it)g(took)h(quite)f(some)g(time)g
+(before)277 4282 y(the)o(y)k(were)f(systematically)k(studied)f(by)d(Ho)
+n(w)o(ard)h([1980].)418 4411 y(One)h(consequence)k(of)c(the)g(Curry-Ho)
+n(w)o(ard)h(correspondence)k(is)25 b(that)h(we)e(can)h(talk)h(of)f(a)f
+F7(com-)277 4524 y(putational)29 b(interpr)m(etation)h
+Gg(of)c(NJ-proofs.)37 b(The)26 b(simply-typed)j(lambda)e(calculus)h(is)
+d(a)h(prototyp-)277 4637 y(ical)i(functional)j(programming)f(language:)
+40 b(the)28 b(terms)g(are)g(programs,)i(and)e(reduction)j(is)c(a)g
+(form)277 4750 y(of)c(computation,)i(which)e(con)l(v)o(erts)i(a)d(term)
+h(to)g(its)f(simplest)i(form,)f(analogous)j(to)c(symbolic)j(e)n(v)n
+(alu-)277 4863 y(ation.)33 b(On)23 b(the)i(other)g(hand,)h
+(normalisation)h(is)e(a)f(method)h(for)g(eliminating)i(certain)f
+(redundancies)277 4976 y(in)32 b(proofs.)57 b(Applied)33
+b(iterati)n(v)o(ely)-6 b(,)37 b(it)32 b(transforms)i(a)e(proof)i(to)e
+(one)h(in)f(normal)h(form.)55 b(Using)33 b(the)277 5088
+y(Curry-Ho)n(w)o(ard)d(correspondence)k(we)28 b(see)h(that)g(the)h(tw)o
+(o)e(notions)j(coincide,)h(and)e(thus)f(the)g(com-)277
+5201 y(putational)i(interpretation)i(of)28 b(an)h(NJ-proof)g(is)g(the)f
+(corresponding)33 b(simply-typed)e(lambda)f(term)277
+5314 y(representing)d(a)c(functional)k(program.)p Black
+Black eop end
+%%Page: 2 14
+TeXDict begin 2 13 bop Black -144 51 a Gb(2)3152 b(Intr)n(oduction)p
+-144 88 3691 4 v Black 452 317 a Gg(Because)37 b(of)e(its)h(connection)
+j(with)d(computation,)41 b(the)36 b(Curry-Ho)n(w)o(ard)h
+(correspondence)k(is)321 430 y(quite)35 b(useful)g(in)e(programming)i
+(language)h(design:)51 b(often)34 b(computer)h(scientists)h(and)e
+(logicians)321 543 y(ha)n(v)o(e)29 b(arri)n(v)o(ed)g(independently)j
+(at)c(the)h(same)f(idea.)43 b(F)o(or)27 b(e)o(xample,)j(Girard)e
+([1972])i(and)e(Re)o(ynolds)321 656 y([1974])35 b(independently)i
+(studied)e(the)e(second-order)k(polymorphic)f(lambda)e(calculus,)j(and)
+c(v)o(er)n(-)321 769 y(sions)g(of)e(the)h(typing)h(algorithm)g(of)e(ML)
+f(were)h(de)n(v)o(eloped)j(independently)h(by)d(Hindle)o(y)g([1969])321
+882 y(and)22 b(Milner)f([1978].)30 b(Another)22 b(e)o(xample)g
+(\(described)i(by)d(Mitchell)h([1996]\))h(is)e(the)g(formulation)j(of)
+321 995 y(sums)h(in)f(\223classical\224)j(ML,)c(which)i(w)o(as)f(not)h
+(incorrect,)h(b)n(ut)f(relied)h(on)f(e)o(xceptions)i(to)d(ensure)i
+(type)321 1108 y(security)-6 b(.)31 b(This)22 b(meant)h(a)f(form)h(of)f
+(runtime)i(type)f(check)h(w)o(as)e(necessary)j(to)e(ensure)h(that)f
+(programs)321 1221 y(could)33 b(not)e(change)i(their)f(type.)53
+b(Clearly)32 b(this)g(runtime)g(check)h(slo)n(wed)f(do)n(wn)f(the)g(e)o
+(x)o(ecution)j(of)321 1334 y(programs.)42 b(The)27 b(proper)i
+(formulation)h(introduced)g(later)l(,)f(which)f(does)g(not)g(require)h
+(an)o(y)f(runtime)321 1446 y(type)d(check,)f(corresponds)j(e)o(xactly)e
+(to)e(the)h(inference)i(rules)f(for)e F6(_)g Gg(in)g(NJ.)462
+1587 y(In)28 b(practice,)i(the)e(Curry-Ho)n(w)o(ard)h(correspondence)j
+(is)27 b(often)i(emplo)o(yed)g(in)e(proof)i(assistants)321
+1700 y(with)d(which)g(man)o(y)g(mathematical)i(proofs)g(can)e(be)g
+(fully)h(formalised)h(and)e(check)o(ed.)39 b(F)o(ormalised)321
+1813 y(proofs)25 b(ho)n(we)n(v)o(er)e(tend)h(to)f(be)h(v)o(ery)f(lar)n
+(ge,)i(and)e(therefore)j(one)d(needs)i(good)f(bookk)o(eeping)j(de)n
+(vices)321 1926 y(to)c(k)o(eep)g(track)h(of)e(them.)29
+b(NuPrl)22 b(and)h(Coq)f(are)h(e)o(xamples)h(of)e(contemporary)k(proof)
+e(assistants)h(that)321 2038 y(mak)o(e)f(use)g(of)f(the)h(Curry-Ho)n(w)
+o(ard)h(correspondence)j(by)c(representing)j(proofs)e(as)e(terms.)462
+2179 y(Whilst)28 b(the)f(Curry-Ho)n(w)o(ard)h(correspondence)k(w)o(as)
+26 b(originally)k(established)g(for)d(the)h(simply-)321
+2292 y(typed)g(lambda)f(calculus)h(and)e(Gentzen')-5
+b(s)28 b(NJ-calculus)h(only)-6 b(,)27 b(later)g(it)f(has)h(been)f
+(often)i(studied)g(in)321 2405 y(the)22 b(setting)i(of)e(more)f(e)o
+(xpressi)n(v)o(e)j(typed)f(lambda)g(calculi)g(and)f(more)g(e)o(xpressi)
+n(v)o(e)i(logics.)29 b(This)22 b(w)o(as)321 2518 y(moti)n(v)n(ated)31
+b(by)f(the)g(f)o(act)g(that,)i(although)g(the)d(simply-typed)k(lambda)e
+(calculus)g(can)f(be)g(seen)g(as)g(a)321 2630 y(core)24
+b(of)e(v)n(arious)i(mainstream)g(functional)i(programming)f(languages,)
+g(only)e(a)g(limited)g(number)h(of)321 2743 y(features)32
+b(of)d(those)h(languages)i(\(e.g.)d(pattern)i(matching)g(and)f
+(abstract)h(datatypes\))h(can)e(be)f(easily)321 2856
+y(encoded)e(into)f(this)f(core.)34 b(Other)25 b(features)i(cannot.)34
+b(Examples)26 b(are)f(polymorphism)j(and)d(state.)34
+b(In)321 2969 y(more)23 b(e)o(xpressi)n(v)o(e)i(typed)f(lambda)f
+(calculi)i(these)e(features)i(are)e(directly)i(accessible.)31
+b(F)o(or)22 b(instance,)321 3082 y(System)31 b(F)f(pro)o(vides)i(f)o
+(acilities)h(for)e(polymorphism)j([Girard)d(et)g(al.,)f(1989],)j(and)f
+(linear)g(lambda)321 3195 y(calculi)g(of)n(fer)e(mechanisms)i(to)e
+(manipulate)i(state)e([W)-7 b(adler,)31 b(1990].)49 b(Using)30
+b(the)g(Curry-Ho)n(w)o(ard)321 3308 y(correspondence)f(one)24
+b(\002nds)f(the)h(more)g(e)o(xpressi)n(v)o(e)i(lambda)e(calculi)h(gi)n
+(v)o(e)f(a)f(computational)k(inter)n(-)321 3421 y(pretation)f(to)e
+(proofs)h(in)e(more)h(e)o(xpressi)n(v)o(e)h(NJ-calculi,)g(three)g(of)e
+(which)h(are)g(listed)g(belo)n(w)-6 b(.)p Black Black
+925 3699 a(NJ-calculi)865 b(typed)25 b(lambda)f(calculi)625
+3883 y(\002rst-order)h(NJ-calculus)147 b F6(,)812 b Ga(\025P)56
+b Gg([de)24 b(Bruijn,)g(1980])514 3996 y(second-order)j(NJ-calculus)147
+b F6(,)595 b Gg(System)24 b(F)42 b([Girard,)24 b(1972])781
+4109 y(linear)h(NJ-calculus)147 b F6(,)118 b Gg(linear)25
+b(lambda)f(calculus)46 b([Benton)25 b(et)e(al.,)g(1993])462
+4384 y(In)i(this)g(thesis)h(we)e(shall)i(study)f(the)g(Curry-Ho)n(w)o
+(ard)h(correspondence)j(in)c(the)g(setting)h(of)f(clas-)321
+4496 y(sical)h(logic.)35 b(This)25 b(logic)h(is)f(more)g(e)o(xpressi)n
+(v)o(e)i(than)f(intuitionistic)j(logic,)e(in)e(the)g(sense)h(that)g(e)n
+(v)o(ery)321 4609 y(intuitionistic)32 b(proof)d(is)e(a)g(classical)j
+(proof)f(b)n(ut)f(not)g F7(vice)g(ver)o(sa)p Gg(.)42
+b(Grif)n(\002n)27 b([1990])i(w)o(as)e(the)h(\002rst)g(to)321
+4722 y(note)34 b(a)e(connection)j(between)f(classical)g(logic)g(and)f
+(functional)i(programming)f(languages)i(with)321 4835
+y(control)30 b(operators.)44 b(W)-7 b(e)27 b(tak)o(e)i(this)f(observ)n
+(ation)j(as)d(e)n(vidence)i(that)e(a)f(computational)32
+b(interpreta-)321 4948 y(tion)26 b(for)f(classical)i(proofs)f(can)g
+(capture)g(features)h(of)e(computation)i(not)f(directly)g(e)o
+(xpressible)i(in)d(a)321 5061 y(typed)g(lambda)f(calculus)i(which)e
+(corresponds)j(to)c(intuitionistic)28 b(logic.)462 5201
+y(Usually)-6 b(,)32 b(the)e(Curry-Ho)n(w)o(ard)g(correspondence)k(is)29
+b(formulated)j(for)d(natural)i(deduction)h(cal-)321 5314
+y(culi,)j(because)g(in)d(intuitionistic)37 b(logic)c(the)o(y)g(ha)n(v)o
+(e)g(compelling)i(adv)n(antages)g(as)e(deduction)i(sys-)p
+Black Black eop end
+%%Page: 3 15
+TeXDict begin 3 14 bop Black 3922 51 a Gb(3)p 277 88
+3691 4 v Black 277 317 a Gg(tems.)27 b(Unfortunately)-6
+b(,)23 b(there)d(are)f(v)n(arious)h(technical)h(reasons)2272
+284 y F5(1)2330 317 y Gg(which)e(mak)o(e)g(their)h(classical)h(coun-)
+277 430 y(terparts)k(less)e(suitable)i(as)d(deduction)k(systems)d(for)g
+(classical)i(logic.)k(Sequent)24 b(calculi)g(seem)f(much)277
+543 y(better)i(suited.)30 b(Therefore)25 b(in)e(this)h(thesis)g(we)f
+(shall)h(mainly)g(focus)h(on)e(sequent)j(calculus)f(formula-)277
+656 y(tions)c(of)f(classical)i(logic.)28 b(The)20 b(best-kno)n(wn)i
+(sequent)f(calculus)h(for)e(classical)j(logic)d(is)g(the)g(calculus)277
+769 y(LK)g(in)l(v)o(ented)j(by)e(Gentzen)h([1935].)30
+b(T)-7 b(o)20 b(illustrate)j(some)e(problems)i(concerning)h(a)d
+(computational)277 882 y(interpretation)28 b(of)23 b(classical)j
+(logic,)e(we)f(shall)h(describe)i(this)e(calculus)i(brie\003y)e(belo)n
+(w)-6 b(.)418 1012 y(In)24 b(LK)d(proofs)k(consist)g(of)f(trees)g
+(labelled)h(by)f F7(sequents)i Gg(of)d(the)h(form)f F4(\000)p
+2751 1000 11 41 v 2762 982 46 5 v 96 w(\001)p Gg(,)f(where)i
+F4(\000)f Gg(and)g F4(\001)277 1125 y Gg(are)i(collections)i(of)d
+(formulae.)33 b(The)23 b(axioms)j(of)e(LK)e(are)j(of)f(the)h(form)p
+2573 1046 244 4 v 24 w Ga(B)p 2667 1113 11 41 v 2677
+1095 46 5 v 101 w(B)t Gg(.)31 b(The)23 b(general)j(form)277
+1238 y(of)e(an)f F7(infer)m(ence)j(rule)e Gg(is)f(either)p
+Black Black 1479 1462 a Ga(P)p 1479 1482 72 4 v 1479
+1560 a(C)1744 1494 y Gg(or)2014 1448 y Ga(P)2072 1462
+y F9(1)2203 1448 y Ga(P)2261 1462 y F9(2)p 2014 1482
+287 4 v 2122 1560 a Ga(C)277 1785 y Gg(where)i(the)g
+Ga(P)13 b Gg(')-5 b(s)25 b(stand)h(for)f(sequents,)i(called)f
+F7(pr)m(emises)p Gg(,)g(and)g Ga(C)k Gg(stands)d(for)e(a)f(sequent,)j
+(called)f(the)277 1898 y F7(conclusion)p Gg(,)i(which)d(is)g(deduced)i
+(from)e(the)g(premises.)34 b(There)26 b(are)f(three)g(sorts)h(of)f
+(inference)i(rules)277 2011 y(in)32 b(LK.)e(Logical)j(inference)h
+(rules)f(introduce)i(a)c(formula)i(in)f(the)g(conclusion)j(and)e(come)f
+(in)g(tw)o(o)277 2124 y(\003a)n(v)n(ours\227left)h(rules)f(and)f(right)
+g(rules.)51 b(F)o(or)30 b(e)o(xample,)j(the)e(left)g(and)g(right)g
+(rule)g(introducing)j(an)277 2237 y(implicational)27
+b(formula)d(ha)n(v)o(e)g(the)g(form:)p Black Black 839
+2448 a F4(\000)896 2462 y F9(1)p 956 2436 11 41 v 966
+2418 46 5 v 1032 2448 a F4(\001)1108 2462 y F9(1)1147
+2448 y Ga(;)15 b(B)96 b(C)q(;)15 b F4(\000)1515 2462
+y F9(2)p 1575 2436 11 41 v 1586 2418 46 5 v 1651 2448
+a F4(\001)1727 2462 y F9(2)p 839 2486 928 4 v 877 2564
+a Ga(B)5 b F6(\033)p Ga(C)q(;)15 b F4(\000)1185 2578
+y F9(1)1225 2564 y Ga(;)g F4(\000)1322 2578 y F9(2)p
+1381 2552 11 41 v 1392 2534 46 5 v 1458 2564 a F4(\001)1534
+2578 y F9(1)1573 2564 y Ga(;)g F4(\001)1689 2578 y F9(2)1808
+2503 y F6(\033)1879 2517 y Gc(L)2300 2448 y Ga(B)5 b(;)15
+b F4(\000)p 2491 2436 11 41 v 2502 2418 46 5 v 96 w(\001)p
+Ga(;)g(C)p 2285 2486 485 4 v 2285 2564 a F4(\000)p 2362
+2552 11 41 v 2373 2534 46 5 v 96 w(\001)p Ga(;)g(B)5
+b F6(\033)p Ga(C)2812 2503 y F6(\033)2882 2517 y Gc(R)277
+2789 y Gg(Structural)24 b(inference)h(rules)e(manipulate)i(sequents,)g
+(in)d(the)h(sense)g(that)g(contraction)j(identi\002es)e(oc-)277
+2902 y(currences)h(of)d(the)h(same)g(formula)g(and)g(weak)o(ening)i
+(introduces)g(surplus)f(formulae.)30 b(F)o(or)22 b(e)o(xample,)277
+3015 y(the)i(contraction-left)k(and)c(weak)o(ening-right)k(rule)c(ha)n
+(v)o(e)g(the)g(form:)p Black Black 1010 3226 a Ga(B)5
+b(;)15 b(B)5 b(;)15 b F4(\000)p 1315 3214 11 41 v 1326
+3196 46 5 v 96 w(\001)p 1010 3264 457 4 v 1067 3342 a
+Ga(B)5 b(;)15 b F4(\000)p 1258 3330 11 41 v 1269 3312
+46 5 v 96 w(\001)1509 3288 y Gg(Contr)1715 3302 y Gc(L)2179
+3244 y F4(\000)p 2256 3232 11 41 v 2267 3213 46 5 v 96
+w(\001)p 2122 3264 343 4 v 2122 3342 a(\000)p 2199 3330
+11 41 v 2210 3312 46 5 v 96 w(\001)p Ga(;)g(B)2506 3288
+y Gg(W)-7 b(eak)2710 3302 y Gc(R)277 3567 y Gg(The)23
+b(third)i(sort)f(of)f(inference)j(rule)e(is)g(the)f(cut-rule)1336
+3750 y F4(\000)1393 3764 y F9(1)p 1453 3738 11 41 v 1463
+3720 46 5 v 1529 3750 a F4(\001)1605 3764 y F9(1)1644
+3750 y Ga(;)15 b(B)96 b(B)5 b(;)15 b F4(\000)2020 3764
+y F9(2)p 2079 3738 11 41 v 2089 3720 46 5 v 2155 3750
+a F4(\001)2231 3764 y F9(2)p 1336 3788 935 4 v 1503 3867
+a F4(\000)1560 3881 y F9(1)1599 3867 y Ga(;)g F4(\000)1696
+3881 y F9(2)p 1756 3855 11 41 v 1767 3836 46 5 v 1832
+3867 a F4(\001)1908 3881 y F9(1)1948 3867 y Ga(;)g F4(\001)2064
+3881 y F9(2)2312 3818 y Gg(Cut)277 4091 y(which)23 b(enables)i(us)e(to)
+g(join)g(tw)o(o)g(LK-proofs)h(together)-5 b(.)30 b(W)-7
+b(e)22 b(shall)i(often)g(simply)g(refer)f(to)g(an)g(appli-)277
+4204 y(cation)i(of)e(the)h(cut-rule)i(as)d(a)g(cut.)418
+4334 y(One)f(consequence)k(of)d(our)f(use)h(of)f(sequent)j(calculi)f
+(in)e(place)h(of)f(natural)i(deduction)i(calculi)e(is)277
+4447 y(that)i(computation)j(corresponds)g(to)d F7(cut-elimination)p
+Gg(\227a)j(procedure)g(which)d(transforms)i(a)d(gi)n(v)o(en)277
+4560 y(sequent)32 b(proof)g(containing)h(instances)g(of)d(cut)h(to)f
+(one)h(with)f(no)g(instances)j(of)d(cut)h(\(called)h(a)e(cut-)277
+4673 y(free)e(proof\).)40 b(This)27 b(procedure)i(does)f(not)f
+(eliminate)i(all)e(cuts)g(from)g(a)g(proof)h(immediately)-6
+b(,)29 b(rather)277 4786 y(it)j(replaces)i(e)n(v)o(ery)f(cut)f(with)g
+(simpler)h(cuts,)i(and)e(by)f(iteration)i(one)f(e)n(v)o(entually)i
+(ends)e(up)f(with)g(a)277 4899 y(cut-free)25 b(proof.)418
+5029 y(Zuck)o(er)37 b([1974])g(and)f(Pottinger)h([1977])g(ha)n(v)o(e)g
+(sho)n(wn)f(that)g(normalisation)j(and)d(cut-elimi-)277
+5142 y(nation)29 b(are)g(closely)g(related)h(in)d(intuitionistic)32
+b(logic.)43 b(Thus)28 b(the)g(question)i(of)e(the)g(computational)p
+Black 277 5227 1290 4 v 383 5283 a F3(1)412 5314 y F2(\223One)17
+b(may)h(doubt)g(that)f(this)g(is)g(the)h(proper)g(w)o(ay)g(of)f
+(analysing)h(classical)f(inferences.)-5 b(\224)24 b([Pra)o(witz,)16
+b(1971,)i(P)o(age)f(244])p Black Black Black eop end
+%%Page: 4 16
+TeXDict begin 4 15 bop Black -144 51 a Gb(4)3152 b(Intr)n(oduction)p
+-144 88 3691 4 v Black 321 317 a Gg(meaning)26 b(of)e(cut-elimination)k
+(is)c(settled)h(in)f(the)h(intuitionistic)j(case.)j(Surprisingly)-6
+b(,)27 b(there)e(is)f(little)321 430 y(attention)36 b(paid)e(in)f(the)h
+(literature)h(to)f(an)f(analysis)i(of)f(what)f(cut-elimination)k(in)c
+(classical)j(logic)321 543 y(means)23 b(computationally)-6
+b(.)33 b(At)21 b(the)i(time)f(of)g(writing)h(we)f(are)g(a)o(w)o(are)h
+(only)g(of)f(w)o(ork)h(by)f(Danos)h(et)f(al.)321 656
+y([1997],)34 b(which)c(considers)j(a)d(v)n(ariant)i(of)e(Gentzen')-5
+b(s)33 b(sequent)f(calculus)g(LK)d(as)h(a)g(programming)321
+769 y(language.)51 b(Ho)n(we)n(v)o(er)l(,)31 b(we)e(shall)i(sho)n(w)f
+(that)g(there)h(are)f(still)h(man)o(y)f(open)h(questions)h(concerning)
+321 882 y(the)24 b(relationship)j(between)e(cut-elimination)i(and)d
+(computation.)462 1011 y(One)e(of)h(the)f(reasons)j(for)d(the)h(little)
+g(attention)i(is)d(that,)h(in)f(contrast)j(to)d(cut-elimination)k(in)d
+(intu-)321 1124 y(itionistic)28 b(logic,)f(cut-elimination)i(in)c
+(classical)i(logic)f(had)g(been)g(dismissed)h(in)f(the)f(past)h(as)f
+(being)321 1237 y(not)j(v)o(ery)g(interesting)i(from)e(a)f
+(computational)k(point)d(of)g(vie)n(w)-6 b(.)40 b(F)o(or)26
+b(e)o(xample,)j(Lafont)f(ar)n(gued)i(in)321 1350 y(the)24
+b(in\003uential)i(book)e([Girard)h(et)e(al.,)g(1989])i(that)f(in)g
+(classical)h(logic)g(a)e(correspondence)28 b(between)321
+1463 y(cut-elimination)g(and)d(computation)h(is)e(unachie)n(v)n(able,)j
+(o)n(wing)e(to)e(an)h(\223inconsistenc)o(y\224.)35 b(He)23
+b(noted)321 1576 y(that)h(the)g(classical)i(proof)p Black
+Black 397 2243 a @beginspecial 179 @llx 453 @lly 318
+@urx 628 @ury 417 @rwi @clip @setspecial
+%%BeginDocument: pics/lafont-left.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: lafont-left.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o lafont-left.ps lafont-left.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.09:0346
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (lafont-left.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi8 8 1
+/Fb 1 77 df<90383FFFFEA2010090C8FC5C5CA21301A25CA21303A25CA21307A25CA213
+0FA25CA2131FA25CA2133FA291C7EA0180A24914031700017E5C160601FE140EA2495C16
+3C12015E49EB01F84B5A0003141FB7FC5E292D7DAC30>76 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmmi12 12 1
+/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
+00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
+E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
+A26C48EB00E0342C7EAA37>25 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray 2.0 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 139.41826 139.41826 184.94283 213.39557 156.49008 284.52744 91.04869
+301.59924 56.90549 256.07469 62.59595 199.1692 102.43004 139.41826
+ /currentpoint load stopped pop 1. 0.1 0. /c ED /b ED /a ED false
+OpenCurve gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore end
+
+
+@endspecial 1344 2024 a
+ tx@Dict begin CP CP translate 2.63748 2.85962 scale NET end
+ 1344 2024 a Fc(\031)1399 2039
+y Fb(L)1344 2024 y
+ tx@Dict begin CP CP translate 1 2.63748 div 1 2.85962 div scale NET
+ end
+ 1344 2024 a Black 1918 5251 a Fa(1)p
+Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 506 2310 11 41 v 516 2292 46 5 v 582 2322
+a Ga(B)p 430 2342 282 4 v 450 2409 11 41 v 460 2391 46
+5 v 526 2421 a(B)5 b(;)15 b(C)753 2366 y Gg(W)-7 b(eak)957
+2380 y Gc(R)1106 2243 y @beginspecial 365 @llx 453 @lly
+519 @urx 628 @ury 462 @rwi @clip @setspecial
+%%BeginDocument: pics/lafont-right.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: lafont-right.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o lafont-right.ps lafont-right.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.09:0346
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (lafont-right.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi8 8 1
+/Fb 1 83 df<013FB512F816FF903A00FE001FC0EE07E04A6D7E707E01016E7EA24A80A2
+13034C5A5CA201074A5A5F4A495A4C5A010F4A5A047EC7FC9138C003F891B512E04991C8
+FC9138C007C04A6C7E6F7E013F80150091C77EA2491301A2017E5CA201FE1303A25BA200
+01EE038018005B5F0003913801FC0EB5D8E000133CEE7FF0C9EA0FC0312E7CAC35>82
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmmi12 12 1
+/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
+00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
+E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
+A26C48EB00E0342C7EAA37>25 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray 2.0 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 310.13472 139.41826 384.11203 227.62195 372.73111 284.52744 312.98018
+298.7538 241.84831 213.39557 290.2179 139.41826 /currentpoint load
+stopped pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0
+SLW 0 setgray 0 setlinecap stroke grestore end
+
+
+@endspecial 2927 2024 a
+ tx@Dict begin CP CP translate 2.50807 2.85962 scale NET end
+ 2927 2024 a Fc(\031)2982 2039
+y Fb(R)2927 2024 y
+ tx@Dict begin CP CP translate 1 2.50807 div 1 2.85962 div scale NET
+ end
+ 2927 2024 a Black 1918 5251 a Fa(1)p
+Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 1234 2310 11 41 v 1245 2292 46 5 v 1310
+2322 a Ga(B)p 1178 2342 242 4 v 1178 2421 a(C)p 1270
+2409 11 41 v 1280 2391 46 5 v 103 w(B)1461 2366 y Gg(W)g(eak)1665
+2380 y Gc(L)p 430 2458 990 4 v 803 2525 11 41 v 813 2507
+46 5 v 879 2537 a Ga(B)5 b(;)15 b(B)1461 2489 y Gg(Cut)p
+783 2575 284 4 v 860 2641 11 41 v 870 2623 46 5 v 936
+2653 a Ga(B)1108 2599 y Gg(Contr)1314 2613 y Gc(R)1888
+2464 y F6(\000)-31 b(\000)g(!)2229 2433 y @beginspecial
+179 @llx 453 @lly 318 @urx 628 @ury 417 @rwi @clip @setspecial
+%%BeginDocument: pics/lafont-left.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: lafont-left.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o lafont-left.ps lafont-left.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.09:0346
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (lafont-left.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi8 8 1
+/Fb 1 77 df<90383FFFFEA2010090C8FC5C5CA21301A25CA21303A25CA21307A25CA213
+0FA25CA2131FA25CA2133FA291C7EA0180A24914031700017E5C160601FE140EA2495C16
+3C12015E49EB01F84B5A0003141FB7FC5E292D7DAC30>76 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmmi12 12 1
+/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
+00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
+E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
+A26C48EB00E0342C7EAA37>25 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray 2.0 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 139.41826 139.41826 184.94283 213.39557 156.49008 284.52744 91.04869
+301.59924 56.90549 256.07469 62.59595 199.1692 102.43004 139.41826
+ /currentpoint load stopped pop 1. 0.1 0. /c ED /b ED /a ED false
+OpenCurve gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore end
+
+
+@endspecial 1344 2024 a
+ tx@Dict begin CP CP translate 2.63748 2.85962 scale NET end
+ 1344 2024 a Fc(\031)1399 2039
+y Fb(L)1344 2024 y
+ tx@Dict begin CP CP translate 1 2.63748 div 1 2.85962 div scale NET
+ end
+ 1344 2024 a Black 1918 5251 a Fa(1)p
+Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 2338 2500 11 41 v 2349 2482 46 5 v 2414
+2512 a Ga(B)2700 2464 y Gg(or)2899 2433 y @beginspecial
+365 @llx 453 @lly 519 @urx 628 @ury 462 @rwi @clip @setspecial
+%%BeginDocument: pics/lafont-right.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: lafont-right.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o lafont-right.ps lafont-right.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.09:0346
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (lafont-right.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi8 8 1
+/Fb 1 83 df<013FB512F816FF903A00FE001FC0EE07E04A6D7E707E01016E7EA24A80A2
+13034C5A5CA201074A5A5F4A495A4C5A010F4A5A047EC7FC9138C003F891B512E04991C8
+FC9138C007C04A6C7E6F7E013F80150091C77EA2491301A2017E5CA201FE1303A25BA200
+01EE038018005B5F0003913801FC0EB5D8E000133CEE7FF0C9EA0FC0312E7CAC35>82
+D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmmi12 12 1
+/Fc 1 26 df<010FB712E0013F16F05B48B812E04817C02807E0060030C7FCEB800EEA0F
+00001E010C13705A0038011C13605A0060011813E000E013381240C7FC5C4B5AA214F014
+E01301150314C01303A3EB078082130FA2EB1F00A34980133E137EA24980A2000114015B
+A26C48EB00E0342C7EAA37>25 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray 2.0 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 310.13472 139.41826 384.11203 227.62195 372.73111 284.52744 312.98018
+298.7538 241.84831 213.39557 290.2179 139.41826 /currentpoint load
+stopped pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0
+SLW 0 setgray 0 setlinecap stroke grestore end
+
+
+@endspecial 2927 2024 a
+ tx@Dict begin CP CP translate 2.50807 2.85962 scale NET end
+ 2927 2024 a Fc(\031)2982 2039
+y Fb(R)2927 2024 y
+ tx@Dict begin CP CP translate 1 2.50807 div 1 2.85962 div scale NET
+ end
+ 2927 2024 a Black 1918 5251 a Fa(1)p
+Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 3027 2500 11 41 v 3037 2482 46 5 v 3103
+2512 a Ga(B)p Black 3372 2307 a Gg(\(1.1\))p Black 321
+2862 a(reduces,)29 b(as)d(sho)n(wn,)h(non-deterministically)32
+b(to)26 b(one)g(of)g(its)h(subproofs,)i(and)d(based)i(upon)f(a)f(cate-)
+321 2975 y(gorical)f(insight)h(of)d(Lambek)h(and)g(Scott)f([1988,)i(P)o
+(age)e(67])h(he)g(concluded:)p Black Black 549 3193 a(More)j(generally)
+-6 b(,)30 b(all)d(proofs)i(of)e(a)g(gi)n(v)o(en)g(sequent)i
+F4(\000)p 2304 3181 11 41 v 2315 3163 46 5 v 97 w(\001)d
+Gg(are)h(identi\002ed.)41 b(So)26 b(clas-)549 3306 y(sical)h(logic)h
+(is)f F7(inconsistent)p Gg(,)k(not)c(from)f(a)h F7(lo)o(gical)h
+Gg(vie)n(wpoint)h(\()p F6(?)d Gg(is)g(not)i(pro)o(v)n(able\),)549
+3419 y(b)n(ut)c(from)f(an)h F7(algorithmic)i Gg(one)e([Girard)g(et)f
+(al.,)g(1989,)h(P)o(age)f(152].)321 3637 y(His)e(ar)n(gument)j(is)d
+(that)i(if)e(one)h(tak)o(es)h(cut-elimination)i(as)d(an)f(equality)j
+(preserving)g(operation,)h(then)321 3750 y(in)g(the)g(e)o(xample)g(abo)
+o(v)o(e)g(all)f(proofs)i(of)f(an)f(arbitrary)j(formula)f
+Ga(B)i Gg(are)c(identi\002ed\227therefore)30 b(there)321
+3863 y(is)20 b(an)f(\223inconsistenc)o(y\224)24 b(when)c(vie)n(wing)g
+(classical)i(proofs)f(as)f(programs.)29 b(Let)19 b(us)g(stress)i(that)f
+(Lafont)321 3975 y(assumes)j(that)f(cut-elimination)j(is)c(an)g
+(equality)i(preserving)h(operation;)h(otherwise)e(the)f(\223inconsis-)
+321 4088 y(tenc)o(y\224)e(cannot)h(arise.)28 b(Clearly)-6
+b(,)20 b(this)g(assumption)h(is)e(the)g(pre)n(v)n(ailing)i(doctrine)g
+(in)e(the)h(simply-typed)321 4201 y(lambda)31 b(calculus)h(where)e
+(reduction)i(does)f(not)f(change)i(the)e(\(denotational\))k(meaning)d
+(of)f(terms.)321 4314 y(Furthermore,)e(it)e(is)g(a)g(v)o(ery)g
+(plausible)i(assumption)h(in)d(the)g(conte)o(xt)i(of)e(natural)h
+(deduction,)i(to)d(the)321 4427 y(e)o(xtent)f(that)f(Kreisel)g([1971,)h
+(P)o(age)e(112])h(vie)n(wed)g(it)f(as)h(a)f F7(minimum)g(r)m(equir)m
+(ement)p Gg(.)p Black Black 549 4645 a(A)g(minimum)i(requirement)j(is)
+12 b(.)i(.)g(.)g(that)24 b F7(any)i(derivation)i(can)d(be)g(normalized)
+p Gg(,)j(that)d(is)549 4758 y(transformed)k(into)f(a)f(unique)i(normal)
+f(form)f(by)h(a)f(series)h(of)f(steps,)i(so-called)h(\223con-)549
+4871 y(v)o(ersions\224,)25 b(each)f(of)g(which)g(preserv)o(e)h(the)f
+(proof)g(described)i(by)e(the)g(deri)n(v)n(ation.)321
+5088 y(In)c(this)h(thesis)g(we)f(shall)h(propose)h(that)f(in)f(the)g
+(conte)o(xt)i(of)e(classical)i(logic)f(it)f(is)g(ho)n(we)n(v)o(er)h
+(prudent)h(to)321 5201 y(reconsider)30 b(this)d(assumption.)40
+b(But)26 b(before)h(doing)h(so,)f(let)g(us)f(analyse)i(ho)n(w)e(the)h
+(\223inconsistenc)o(y\224)321 5314 y(in)d(Lafont')-5
+b(s)24 b(e)o(xample)h(w)o(as)e(dealt)h(with)g(earlier)-5
+b(.)p Black Black eop end
+%%Page: 5 17
+TeXDict begin 5 16 bop Black 3922 51 a Gb(5)p 277 88
+3691 4 v Black 418 317 a Gg(According)28 b(to)e(Lafont,)h(the)f
+(problem)h(with)f(the)g(\223inconsistenc)o(y\224)31 b(can)26
+b(be)g(remedied,)i(if)e(clas-)277 430 y(sical)c(logic)g(is)f
+(restricted)i(so)e(that)h(the)f(symmetric)h(instance)h(of)e(the)g(cut)g
+(gi)n(v)o(en)h(in)f(\(1.1\))g(is)g(no)g(longer)277 543
+y(deri)n(v)n(able.)31 b(Examples)24 b(of)f(such)h(logics)g(are)g
+(intuitionistic)j(logic)d(and)g(linear)g(logic.)30 b(In)23
+b(intuitionis-)277 656 y(tic)e(logic)g(the)g(sequents)h(are)f
+(restricted)i(to)d(be)h(of)f(the)h(form)f F4(\000)p 2236
+644 11 41 v 2246 626 46 5 v 96 w Ga(B)t Gg(,)g(thus)i(eliminating)g
+(the)f(inference)p 1673 827 11 41 v 1683 809 46 5 v 1749
+839 a Ga(B)p 1597 859 282 4 v 1617 926 11 41 v 1627 907
+46 5 v 1693 938 a(B)5 b(;)15 b(C)1920 883 y Gg(W)-7 b(eak)2124
+897 y Gc(R)277 1143 y Gg(and)24 b(in)g(linear)g(logic)h(the)f
+(structural)i(rules)e(are)g(formulated)i(such)e(that)p
+1320 1314 11 41 v 1330 1296 46 5 v 1396 1326 a Ga(B)p
+1222 1346 325 4 v 1242 1414 11 41 v 1253 1396 46 5 v
+1318 1426 a(B)5 b(;)15 b F4(?)p Ga(C)1588 1370 y Gg(W)-7
+b(eak)1792 1384 y Gc(R)p 2061 1314 11 41 v 2071 1296
+46 5 v 2137 1326 a Ga(B)p 1992 1346 267 4 v 1992 1426
+a F4(!)p Ga(C)p 2109 1414 11 41 v 2120 1396 46 5 v 103
+w(B)2300 1370 y Gg(W)g(eak)2504 1384 y Gc(L)p 1222 1463
+1037 4 v 1619 1530 11 41 v 1629 1512 46 5 v 1695 1542
+a Ga(B)5 b(;)15 b(B)2300 1494 y Gg(Cut)277 1748 y(is)32
+b(not)g(a)f(v)n(alid)i(instance)h(of)d(the)i(cut-rule.)55
+b(Consequently)-6 b(,)37 b(Lafont')-5 b(s)33 b(e)o(xample)f(cannot)i
+(arise)e(in)277 1861 y(intuitionistic)c(logic)c(or)g(in)f(linear)i
+(logic.)418 1990 y(F)o(or)j(intuitionistic)k(logic)d(we)f(ha)n(v)o(e,)i
+(as)e(mentioned)i(earlier)l(,)h(the)e(Curry-Ho)n(w)o(ard)g(correspon-)
+277 2103 y(dence)24 b(with)f(the)g(simply-typed)j(lambda)d(calculus.)31
+b(F)o(or)22 b(linear)h(logic)h(the)f(situation)i(is)e(unclear)-5
+b(.)30 b(At)277 2216 y(its)g(inception)i(it)d(w)o(as)h(thought)h(to)f
+(ha)n(v)o(e)g(direct)h(connection)h(with)e(concurrenc)o(y)-6
+b(,)34 b(and)c(some)g(con-)277 2329 y(nections)i(ha)n(v)o(e)f(been)f
+(unco)o(v)o(ered)i(by)e(Abramsk)o(y)g([1993].)49 b(Ho)n(we)n(v)o(er)l
+(,)31 b(it)f(is)f(still)i(f)o(air)f(to)g(say)g(that)277
+2442 y(in)h(linear)g(logic)h(the)f(question)i(of)d(what)h(kind)g(of)g
+(computation)i(the)e(process)h(of)f(cut-elimination)277
+2555 y(corresponds)c(is)c(lar)n(gely)j(unanswered.)418
+2684 y(Recently)-6 b(,)38 b(a)33 b(number)h(of)g(other)g(solutions)j
+(for)c(the)h(\223inconsistenc)o(y\224)k(in)c(Lafont')-5
+b(s)35 b(e)o(xample)277 2797 y(ha)n(v)o(e)26 b(been)g(proposed.)35
+b(Instead)27 b(of)e(restricting)j(classical)f(logic)f(so)f(that)h
+(Proof)f(\(1.1\))g(is)g(not)g(deri)n(v-)277 2910 y(able,)37
+b(the)o(y)e(restrict)g(the)g(reduction)h(rules)f(of)f(classical)j
+(logic.)61 b(F)o(or)33 b(e)o(xample)i(in)f(P)o(arigot')-5
+b(s)35 b Ga(\025\026)p Gg(-)277 3023 y(calculus,)23 b(although)h
+(formulated)f(as)e(a)f(natural)j(deduction)g(calculus,)h(Lafont')-5
+b(s)22 b(proof)g(is)f(deri)n(v)n(able,)277 3136 y(b)n(ut)28
+b(reduces)i(to)e(one)g(subproof)i(only\227the)f(one)g(on)e(the)h(right)
+h([P)o(arigot,)f(1992,)h(Bierman,)e(1999].)277 3249 y(In)h(this)h(w)o
+(ay)e(Lafont')-5 b(s)29 b(ar)n(gument)h(does)f(not)g(apply;)i(it)d(is)g
+(completely)i(bypassed.)44 b(As)28 b(a)f(pleasing)277
+3362 y(consequence,)33 b(Bierman)c([1998])h(w)o(as)e(able)h(to)g(sho)n
+(w)f(that)h Ga(\025\026)e Gg(has)i(a)f(simple)h(computational)j(in-)277
+3475 y(terpretation:)47 b(it)30 b(is)h(a)f(simply-typed)k(lambda)d
+(calculus)i(which)e(is)g(able)g(to)f(sa)n(v)o(e)i(and)f(restore)h(the)
+277 3588 y(runtime)25 b(en)l(vironment.)418 3717 y(Another)32
+b(solution)h(is)d(gi)n(v)o(en)h(by)g(Danos)g(et)g(al.)f([1997].)51
+b(In)31 b(their)g(sequent)i(calculus,)h(named)277 3830
+y(LK)399 3797 y Gc(tq)462 3830 y Gg(,)d(Lafont')-5 b(s)33
+b(proof)f(is)e(deri)n(v)n(able,)35 b(b)n(ut)c(e)n(v)o(ery)g(formula)h
+(is)f(required)i(to)e(be)g(annotated)i(with)e(a)277 3943
+y(colour)-5 b(.)33 b(In)24 b(ef)n(fect,)h(their)g(solution)i(of)d(the)g
+(\223inconsistenc)o(y\224)29 b(is)24 b(similar)h(to)f(the)h(approach)i
+(tak)o(en)e(by)277 4056 y(P)o(arigot,)h(in)f(the)h(sense)g(that)g
+(Proof)g(\(1.1\))g(reduces)h(to)e(one)h(subproof)i(only)-6
+b(.)35 b(Ho)n(we)n(v)o(er)l(,)25 b(whereas)h(in)277 4169
+y Ga(\025\026)f Gg(the)h(reduction)i(system)f(is)f(restricted)i(so)e
+(that)g(Lafont')-5 b(s)27 b(proof)g(reduces)h(to)d(only)i(the)f
+(subproof)277 4282 y(on)i(the)h(right,)h(in)e(LK)977
+4249 y Gc(tq)1066 4282 y Gg(this)h(proof)g(can)g(reduce)g(to)f(either)i
+(subproof,)h(b)n(ut)d(the)h(colour)g(annotation)277 4394
+y(determines)g(which)d(one.)38 b(The)26 b(colour)i(annotation)i(seems)d
+(to)f(correspond)k(to)c(the)h(restriction)i(im-)277 4507
+y(posed)35 b(by)f(linear)h(logic,)j(since)d(e)n(v)o(ery)f
+(cut-elimination)k(step)c(in)g(LK)2572 4474 y Gc(tq)2668
+4507 y Gg(can)g(be)g(mapped)h(onto)g(a)277 4620 y(series)23
+b(of)f(cut-elimination)k(steps)d(in)f(linear)h(logic.)29
+b(Ho)n(we)n(v)o(er)l(,)22 b(the)g(precise)i(relationship)h(needs)e(yet)
+277 4733 y(to)29 b(be)f(w)o(ork)o(ed)i(out.)44 b(Danos)30
+b(et)e(al.)g(gi)n(v)o(e)h(a)f(computational)k(interpretation)h(for)c
+(LK)3011 4700 y Gc(tq)3073 4733 y Gg(-proofs,)j(b)n(ut)277
+4846 y(their)24 b(proposal)i(is)e(some)n(what)g(blurred.)418
+4976 y(Although)f(Lafont')-5 b(s)22 b(reasoning)i(has)d(found)h(its)f
+(w)o(ay)g(into)h(a)e(number)i(of)f(treatises)i(on)e(the)g(proof)277
+5088 y(theory)26 b(of)e(classical)j(logic,)f(for)e(e)o(xample)h
+([Girard)h(et)e(al.,)g(1989,)h(Girard,)g(1991,)g(Schellinx,)h(1994,)277
+5201 y(Bierman,)19 b(1999],)h(there)g(is)e(an)h(ob)o(vious)h(question)h
+(whether)f(the)f(restrictions)i(mentioned)g(abo)o(v)o(e)e(are)277
+5314 y F7(r)m(eally)j Gg(necessary)i(to)e(solv)o(e)g(the)g(problem)g
+(with)f(the)h(\223inconsistenc)o(y\224)k(in)21 b(Lafont')-5
+b(s)23 b(proof.)29 b(There)22 b(is)p Black Black eop
+end
+%%Page: 6 18
+TeXDict begin 6 17 bop Black -144 51 a Gb(6)3152 b(Intr)n(oduction)p
+-144 88 3691 4 v Black 321 317 a Gg(a)27 b(fear)g(that)h(certain)g
+(computational)i(features)f(of)e(classical)i(logic)f(are)f(lost)h(by)f
+(these)h(restrictions.)321 430 y(In)c(classical)h(logic)g(we)d(do)i
+(not)g(ha)n(v)o(e)g(access)h(to)e(ne)n(w)g(functions,)i(a)e(f)o(act)h
+(established)j(se)n(v)o(eral)e(years)321 543 y(ago)j(\(for)g(e)o
+(xample)g(by)f(Friedman)h([1978]\),)h(b)n(ut)f(we)e(do)i(ha)n(v)o(e)f
+(access)i(to)e(ne)n(w)g(proofs,)i(compared)321 656 y(to)i
+(intuitionistic)k(logic.)51 b(Thus)31 b(we)f(may)h(hope)g(to)g(ha)n(v)o
+(e)g(access)i(to)d(a)h(substantially)j(lar)n(ger)f(class)321
+769 y(of)k(programs)h(capturing)i(computational)g(beha)n(viour)g(not)d
+(e)o(xpressible)j(in)d(intuitionistic)j(typed)321 882
+y(lambda)25 b(calculi.)30 b(Unfortunately)-6 b(,)27 b(none)d(of)g(the)g
+(proposed)i(solutions)g(for)e(Lafont')-5 b(s)24 b(e)o(xample)h(ha)n(v)o
+(e)321 995 y(yet)f(ful\002lled)h(this)f(hope.)462 1132
+y(In)f(this)h(thesis)g(we)f(shall)h(sho)n(w)f(that)g(the)h
+(restrictions)i(are)d F7(not)h Gg(necessary)h(to)e(obtain)i(a)d
+(strongly)321 1245 y(normalising)33 b(cut-elimination)g(procedure.)51
+b(Also,)31 b(we)e(w)o(ant)h(to)f(ar)n(gue)j(that)e(the)g(restrictions)j
+(are)321 1358 y F7(not)f Gg(required)i(to)d(solv)o(e)h(the)g(problem)h
+(arising)g(from)e(Lafont')-5 b(s)33 b(e)o(xample.)53
+b(The)31 b(\223inconsistenc)o(y\224)321 1470 y(only)j(appears)h(if)e
+(we)f(re)o(gard)i(cut-elimination)j(as)c(an)g(equality)i(preserving)h
+(operation.)60 b(This)33 b(is)321 1583 y(of)28 b(course)h(a)e
+(plausible)j(doctrine)f(coming)f(from)g(the)g(simply-typed)i(lambda)e
+(calculus,)j(b)n(ut)d(there)321 1696 y(are)38 b(man)o(y)e(calculi,)42
+b(notably)d(calculi)g(for)e(concurrenc)o(y)-6 b(,)43
+b(where)38 b(reduction)h(is)e F7(not)g Gg(an)g(equality)321
+1809 y(preserving)28 b(operation.)35 b(T)-7 b(ak)o(e)24
+b(for)h(e)o(xample)h(a)e(non-deterministic)29 b(choice)e(operator)l(,)g
+(say)e F4(+)p Gg(,)f(with)321 1922 y(the)g(reduction)1448
+2174 y Ga(M)30 b F4(+)20 b Ga(N)61 b F6(\000)-32 b(\000)h(!)50
+b Ga(M)61 b Gg(or)51 b Ga(N)35 b(:)321 2424 y Gg(Clearly)-6
+b(,)25 b(we)e(cannot)i(hope)g(that)f(reduction)j(preserv)o(es)e
+(equality)-6 b(.)32 b(Therefore,)25 b(we)e(shall)i(accept)g(the)321
+2537 y(vie)n(w)34 b(that)g(cut-elimination)j(corresponds)g(to)c
+(computation)k(which)d(may)f(or)h(may)f(not)h(preserv)o(e)321
+2650 y(equality)c(between)f(proofs)h(and)e(in)g(this)h(w)o(ay)f(a)n(v)n
+(oid)h(the)f(\223inconsistenc)o(y\224)33 b(in)28 b(Lafont')-5
+b(s)29 b(e)o(xample.)321 2763 y(Under)g(this)g(assumption)i(it)d(seems)
+g(prudent)j(ho)n(we)n(v)o(er)d(to)g(reconsider)k(the)c(proof)i(theory)f
+(of)g(clas-)321 2876 y(sical)e(logic,)h(despite)g(the)e(long)h(list)g
+(of)f(te)o(xtbooks,)j(for)d(instance)i([Sch)8 b(\250)-38
+b(utte,)27 b(1960,)g(T)-7 b(ak)o(euti,)27 b(1975,)321
+2989 y(Girard,)e(1987b,)i(T)m(roelstra)f(and)f(Schwichtenber)n(g,)j
+(1996,)e(Buss,)e(1998],)j(already)f(written)g(on)f(this)321
+3102 y(subject.)321 3455 y Ge(1.1)119 b(Outline)31 b(of)f(the)g(Thesis)
+321 3693 y Gg(W)-7 b(e)24 b(shall)i(introduce)h(se)n(v)o(eral)f
+(reduction)i(systems)e(in)e(this)i(thesis;)h(Figure)e(1.1)g(gi)n(v)o
+(es)g(an)g(o)o(v)o(ervie)n(w)321 3806 y(and)19 b(roughly)i(indicates)f
+(the)f(dependencies)k(between)c(them.)27 b(The)18 b(plan)h(of)g(the)f
+(thesis)i(is)e(as)h(follo)n(ws:)p Black 458 4072 a F6(\017)p
+Black 46 w Gg(Chapter)31 b(2)g(re)n(vie)n(ws)g(Gentzen')-5
+b(s)33 b(sequent)g(calculus)g(LK)c(and)i(his)h(cut-elimination)i
+(proce-)549 4185 y(dure.)j(Then)26 b(we)g(introduce)i(a)e(ne)n(w)g
+(sequent)i(calculus)g(for)f(classical)h(logic)f(and)g(sho)n(w)f(ho)n(w)
+549 4298 y(its)j(proofs)i(can)f(be)f(annotated)j(with)e(terms.)46
+b(Ne)o(xt,)31 b(tw)o(o)e(cut-elimination)k(procedures)f(for)549
+4411 y(this)g(sequent)h(calculus)g(are)f(formulated;)38
+b(the)o(y)31 b(include)j(a)d(notion)h(of)g(proof)g(substitution.)549
+4524 y(The)e(principal)j(result)g(of)d(this)i(thesis)g(is)f(a)f(proof)i
+(that)g(establishes)i(strong)e(normalisation)549 4637
+y(for)22 b(both)h(cut-elimination)i(procedures.)32 b(This)21
+b(result)j(is)d(then)i(e)o(xtended)h(to)e(\002rst-order)i(clas-)549
+4750 y(sical)29 b(logic,)i(to)e(other)h(formulations)h(of)e(classical)i
+(logic)f(and)f(to)g(intuitionistic)k(logic.)45 b(W)-7
+b(e)549 4863 y(also)33 b(pro)o(v)o(e)h(strong)h(normalisation)h(for)e
+(a)f(cut-elimination)j(procedure)g(where)e(the)f(proof)549
+4976 y(substitution)e(is)d(replaced)i(with)e(completely)i(local)f
+(reduction)i(rules.)43 b(Ha)n(ving)30 b(considered)549
+5088 y(se)n(v)o(eral)d(strongly)h(normalising)g(cut-elimination)i
+(procedures,)f(we)c(conclude)j(this)f(chapter)549 5201
+y(comparing)35 b(our)f(w)o(ork)f(with)g(w)o(ork)h(by)f(Dragalin)h
+([1988])h(and)f(w)o(ork)g(by)f(Barbanera)i(and)549 5314
+y(Berardi)24 b([1994].)p Black Black eop end
+%%Page: 7 19
+TeXDict begin 7 18 bop Black 277 51 a Gb(1.1)23 b(Outline)g(of)h(the)f
+(Thesis)2703 b(7)p 277 88 3691 4 v Black Black Black
+Black 922 229 2077 4 v 922 2146 4 1918 v 1023 2088 a
+@beginspecial 81 @llx 332 @lly 495 @urx 732 @ury 2277
+@rwi @clip @setspecial
+%%BeginDocument: pics/1.0.0.Overview.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: 1.0.0.Overview.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%DocumentFonts: Times-Bold Times-Roman
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips 1.0.0.Overview.dvi -o 1.0.0.Overview.ps
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.06.05:0717
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: 8r.enc
+% @@psencodingfile@{
+% author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry",
+% version = "0.6",
+% date = "1 July 1998",
+% filename = "8r.enc",
+% email = "tex-fonts@@tug.org",
+% docstring = "Encoding for TrueType or Type 1 fonts
+% to be used with TeX."
+% @}
+%
+% Idea is to have all the characters normally included in Type 1 fonts
+% available for typesetting. This is effectively the characters in Adobe
+% Standard Encoding + ISO Latin 1 + extra characters from Lucida.
+%
+% Character code assignments were made as follows:
+%
+% (1) the Windows ANSI characters are almost all in their Windows ANSI
+% positions, because some Windows users cannot easily reencode the
+% fonts, and it makes no difference on other systems. The only Windows
+% ANSI characters not available are those that make no sense for
+% typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen
+% (173). quotesingle and grave are moved just because it's such an
+% irritation not having them in TeX positions.
+%
+% (2) Remaining characters are assigned arbitrarily to the lower part
+% of the range, avoiding 0, 10 and 13 in case we meet dumb software.
+%
+% (3) Y&Y Lucida Bright includes some extra text characters; in the
+% hopes that other PostScript fonts, perhaps created for public
+% consumption, will include them, they are included starting at 0x12.
+%
+% (4) Remaining positions left undefined are for use in (hopefully)
+% upward-compatible revisions, if someday more characters are generally
+% available.
+%
+% (5) hyphen appears twice for compatibility with both
+% ASCII and Windows.
+%
+/TeXBase1Encoding [
+% 0x00 (encoded characters from Adobe Standard not in Windows 3.1)
+ /.notdef /dotaccent /fi /fl
+ /fraction /hungarumlaut /Lslash /lslash
+ /ogonek /ring /.notdef
+ /breve /minus /.notdef
+% These are the only two remaining unencoded characters, so may as
+% well include them.
+ /Zcaron /zcaron
+% 0x10
+ /caron /dotlessi
+% (unusual TeX characters available in, e.g., Lucida Bright)
+ /dotlessj /ff /ffi /ffl
+ /.notdef /.notdef /.notdef /.notdef
+ /.notdef /.notdef /.notdef /.notdef
+ % very contentious; it's so painful not having quoteleft and quoteright
+ % at 96 and 145 that we move the things normally found there to here.
+ /grave /quotesingle
+% 0x20 (ASCII begins)
+ /space /exclam /quotedbl /numbersign
+ /dollar /percent /ampersand /quoteright
+ /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash
+% 0x30
+ /zero /one /two /three /four /five /six /seven
+ /eight /nine /colon /semicolon /less /equal /greater /question
+% 0x40
+ /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O
+% 0x50
+ /P /Q /R /S /T /U /V /W
+ /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore
+% 0x60
+ /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o
+% 0x70
+ /p /q /r /s /t /u /v /w
+ /x /y /z /braceleft /bar /braceright /asciitilde
+ /.notdef % rubout; ASCII ends
+% 0x80
+ /.notdef /.notdef /quotesinglbase /florin
+ /quotedblbase /ellipsis /dagger /daggerdbl
+ /circumflex /perthousand /Scaron /guilsinglleft
+ /OE /.notdef /.notdef /.notdef
+% 0x90
+ /.notdef /.notdef /.notdef /quotedblleft
+ /quotedblright /bullet /endash /emdash
+ /tilde /trademark /scaron /guilsinglright
+ /oe /.notdef /.notdef /Ydieresis
+% 0xA0
+ /.notdef % nobreakspace
+ /exclamdown /cent /sterling
+ /currency /yen /brokenbar /section
+ /dieresis /copyright /ordfeminine /guillemotleft
+ /logicalnot
+ /hyphen % Y&Y (also at 45); Windows' softhyphen
+ /registered
+ /macron
+% 0xD0
+ /degree /plusminus /twosuperior /threesuperior
+ /acute /mu /paragraph /periodcentered
+ /cedilla /onesuperior /ordmasculine /guillemotright
+ /onequarter /onehalf /threequarters /questiondown
+% 0xC0
+ /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
+ /Egrave /Eacute /Ecircumflex /Edieresis
+ /Igrave /Iacute /Icircumflex /Idieresis
+% 0xD0
+ /Eth /Ntilde /Ograve /Oacute
+ /Ocircumflex /Otilde /Odieresis /multiply
+ /Oslash /Ugrave /Uacute /Ucircumflex
+ /Udieresis /Yacute /Thorn /germandbls
+% 0xE0
+ /agrave /aacute /acircumflex /atilde
+ /adieresis /aring /ae /ccedilla
+ /egrave /eacute /ecircumflex /edieresis
+ /igrave /iacute /icircumflex /idieresis
+% 0xF0
+ /eth /ntilde /ograve /oacute
+ /ocircumflex /otilde /odieresis /divide
+ /oslash /ugrave /uacute /ucircumflex
+ /udieresis /yacute /thorn /ydieresis
+] def
+
+%%EndProcSet
+%%BeginProcSet: texps.pro
+%!
+TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2
+index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll
+exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]/Metrics
+exch def dict begin Encoding{exch dup type/integertype ne{pop pop 1 sub
+dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def}
+ifelse}forall Metrics/Metrics currentdict end def[2 index currentdict
+end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{
+dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1
+roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def
+dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}
+if}forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}
+def end
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (1.0.0.Overview.dvi)
+@start /Fa 206[50 49[{TeXBase1Encoding ReEncodeFont}1
+99.6264 /Times-Roman rf /Fb 139[48 1[64 1[80 7[80 2[64
+3[72 29[104 14[72 72 72 50[{TeXBase1Encoding ReEncodeFont}10
+143.462 /Times-Bold rf
+%DVIPSBitmapFont: Fc cmbsy10 12 1
+/Fc 1 37 df<0378177803FC17FCA3020184A24B177E0203187FA24A48717EA24A48717E
+A24A48717E023F854A48717E4ACB6C7EA2D903FE72B4FC4948727F4948737ED93FF0F13F
+F04948737E2603FFC073B4FC001F90BD12E0007F1DF8BF12FCA26C1DF8001F1DE0000301
+C0CC000F1300C66C6CF11FF86D6C4F5AD90FF8F17FC06D6C4F5A6D6C4E90C7FCD900FFF0
+03FCA26E6C4D5A6E6C4D5A021F616E6C4D5AA26E6C4D5AA26E6C4DC8FCA20201187E6F17
+FEA2020060A30378177866367AB373>36 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fd cmbsy10 10 1
+/Fd 1 49 df<1440EB03F8EB07FE130F14FF5BA35BA214FE137F14FCA2EBFFF8A214F05A
+14E0A214C05A148014005A5BA2485AA25B121F5BA2485AA25BA2485A90C7FCA212FEA212
+7C120C182C7DAE1D>48 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fe cmbsy10 17.28 2
+/Fe 2 34 df<003FBE1280481DC0BF12E0A56C1DC06C1D80630972A780>0
+D<1FFE1E018BA48C8AA28C1F7F8CA2797EA2797EA2797E8C1F07797E8D797F797F8D7A7E
+7A7E7A7E7A7E7A13C07A7F7A13F87A13FE7B6C7E003FC312E04822FCC51280A112C0A3A1
+12806CFAFC006C22E0D46C13805748C7FC5613F85613E0565B5690C8FC565A565A565A56
+5A69555B555B9EC9FC555A1F0F68555AA2555AA2555AA2681FFF68A2669DCAFCA4671E00
+924D77C9A5>33 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Ff cmmib10 12 12
+/Ff 12 121 df<EB07C0EB1FE0497E137FA313FF5CA35A5CA35A5CA35A91C7FCA25A5BA2
+121F5BA2123F5B151E007F143F49133EA200FF147E49137C15FCEC01F89038C003F0EC07
+E0EC1FC0EC7F80397FC3FF006CB45A6C13F86C13E0000190C7FC202E7BAC29>19
+D<EB07C0D91FE0EC3F80496CECFFC0017F02077F4C7F163F01FF5C16FD9126E003F95BED
+07E148DA0FC05B92393F007F80DAC07E013EC7FC4B90C8FC48EBC1F0ECC7E0EC9FC0ECBF
+804801FECAFC5CECFFFCEDFFC04815F882D9FE0113FFDA001F7F001F14076F7F497F180F
+003FEF1F8019005BA2007F5F183E4915806012FF715A496D13C193387FC3F070B45A496E
+5B6C486E5B003EC8D801FEC7FC392E7BAC43>I<EC03FF021F13E091B5EAF0F80103ECF9
+FC49903883FFFE903A1FFE007FFFD93FF87F49486D5A495A48150F4849131F4A5C5A4890
+C7FC163F485E5B123F167F007F5E5BA216FF00FF5E5BA25D5F5B18784B147CEF80FC18F8
+5B17814B14F06C6C15014B1303003F023F14E06D5B001F49B5EA07C0270FFE0FFDEB8F80
+6CB500F013FF00014A6C13006C6C9038801FFE903A0FFC0007F8362E7BAC3F>97
+D<ED7FF091380FFFFE023FEBFF8091B612C001039038E03FE0010F90388007F090391FFE
+000FD93FF8EB3FF8495A4948137F485B48EDFFF0485BA24890C7EA7FE04816C049EC3F80
+003F92C7FCA2127F5BA312FF5BA45BA51730007F167817F816036C6CEC07F0001FED1FE0
+6DEC7FC06C6C903803FF802707FF803F1300000190B512FC6C15F0013F1480010301F0C7
+FC2D2E7BAC33>99 D<EC03F0EC07F8EC0FFC141F143FA415F815F0EC1FE0EC0FC091C7FC
+ADEB0FE0EB3FFCEBFFFE487FD803F81380D807E013C0485A5B485A485A123EA2485A1580
+A2EAFC0700781400C65A5CA2131F5C133FA25C137F5CA213FFECE01E48143FECC03EA25A
+EC807CA215FCEC00F8EC01F01403EC07E06CEB1FC06CEBFF806D1300EB3FFCEB07F02047
+7DC528>105 D<ECFF8090B512C05AA215807E1307A21500A25BA25CA2131FA25CA2133F
+A25CA2137FA25CA213FFA25CA25AA25CA25AA25CA25AA291C7FCA25AA25BA2121FA25BA2
+123FA25B140F007FEB1F80150013F0A25C00FF133E13E0007F5BA214FC5C383FF1F06CB4
+5A6C5B00035BC690C7FC1A467EC423>108 D<017FDA0FFEEC1FFC2601FFE090267FFFC0
+90B57E48D9F801B5D8E0038048D9FC076E4814F0903FC7FE0FF81FF81FF03FF8D80F8390
+3C1FC00FFC3F801F401F03FF3F0007FE7E000FFC037C5D003F4A6E4880003E4A5D49495D
+007E4A5D007C605DD8FC0F90C74890C7121F00F84D5D00785B1200011F031F153F644A5D
+A2013F033F157F644A5D1BFF017F037F5E624A4B5D1D3C01FF03FF4A147EF4807C4A5D62
+484BEF00F8A24A4BECFE011DF0484BEF03E01C074A4BED0FC00803EB3F8074B5120091C7
+91C85B6C486E48ED7FF8D800F8DA00F8ED0FE05F2E7DAC67>I<017FEC0FFE2601FFE090
+387FFFC048D9F801B57E48D9FC07803C0FC7FE0FF81FF8018390391FC00FFC3C1F03FF3F
+0007FE157C003E4A805D495B007C5CA25DD8FC0F90C75A00F85F00785B1200011F151F60
+5CA2013F153F605C177F017F5E17FF4A5D191E01FF4A143FF0C03E5C5E48EF807CA24AED
+00FC19F848EF01F018034AED07E070EB1FC070EBFF8091C86C13006C48ED3FFCD800F8ED
+07F0402E7DAC47>I<ED7FF8020FB57E023F14E091B67E01039038E03FFC010F9038000F
+FE49486D7ED93FF86D1380495A49486D13C0485B4817E0485BA24890C7FC5A5B123F5E12
+7F5BA25E12FF4916C0A25E18805B18005E5F4C5AA24C5A007F5E4C5A6C6C495B4B5B6C6C
+010F90C7FC6C6C495A3A07FF80FFF8000190B512E06C1580013F49C8FC010313C0332E7B
+AC3A>I<EC0FC04A7E143F4A7EA314FF5DA35B5DA35B5DA35B92C7FC007FB612C0B712E0
+A216C07E26000FFEC7FC131F5CA3133F5CA3137F5CA313FF5CA35A5CA35A5CED03C0ED07
+E04815C01400ED0F80151F481500495B0007147E5D4A5A0003495A9038FF0FE06CEBFFC0
+6C5CD93FFEC7FCEB0FF823417EBF29>116 D<EB0FE0D93FFCEC03F0D9FFFE4A7E486D14
+0FD803F86D497ED807E07F4848153F495E485A485A003E167F60485A5D17FFD8FC075E00
+7891C7FCC65A4A5B60131F5C5E013F5E5CA25E017F93C7FC5CF001E04C14F0EFFE034A16
+E0A21807041F14C017FC6E013F130F013F027F148016FF90261FF803EC1F00903B0FFE0F
+F7FE3E6DB538C3FFFE6D02815B010049C66C5ADA1FF8EB1FE03C2E7DAC44>I<DAFF8013
+FF0107D9F00313C0011FD9FC0F13E0496D4813F0903BFF83FF3F83F82601FC009038FE01
+FC4848ECFC07D807E09138F80FFE49017F131F000FECFFF04848153F90C7FC4803E013FC
+123E4AEC1FF8007E9238C00FF0003CEE07C0C792C7FC5C5EA35C93C8FCA35C5DA2D807C0
+1678261FE01F15FCD83FF016F8D87FF85B1701023F15F000FF160301F0ED07E0027F15C0
+01E0151F267FC0FFEC3F8001016DEBFF003B3F87F3FF03FCD9FFE1EBFFF86C01C05C0007
+D9003F13C0D801FCD907FEC7FC372E7CAC42>120 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fg cmmib10 17.28 1
+/Fg 1 60 df<13FE3803FF80000F13E0487F487F487FA2B57EA280A31580A47EA27E7E6C
+13EF0003138F3800FE0FEB001FA21500A25CA3147EA35CA2495AA2495A1307495A5C131F
+495A49C7FC13FE485A485A485A5B5B6C5A193375962E>59 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fh eusb10 17.28 2
+/Fh 2 85 df<0603B512804DB6FC173F0403B6EAFE00041F15F8047F15E00303B7128003
+0F01E391C7FC92383FFE03EDFFF84A13C00207138091380FFE00EC3FFCEC7FF04A5A495B
+5B495B4990C7FC5B495A137FA213FFA25AA25AA280A45C7E5C6C5BEB7FE0EB3F8090C9FC
+AB5F171F94B6FC1603160FEE3FFBEE7FC3923801FF03ED07FEED0FF8ED3FE0ED7FC0EDFF
+004A5AEC07FCEC0FF04A5A4A485D4A5A4AC7FC495A495A495AA2495A495A133F495A4A5E
+01FF5D4890C8FCA2485A000760A2485AA2121F495F003F5EA261127F5B4D5BA212FF4D5B
+A296C8FC4D5AA24D5A7F4C5B4C5B6C6C4A5B4C5B6D4A5B6C6C4A48C9FC6EEBFFFC6CD9E0
+015B6CD9F80F13E06C90B612806C4BCAFC6C15F86C15E0011F49CBFC010313E049787CE3
+52>74 D<923803FFC0037F01FF181C0203B600F0173E021F03FF177C027F04E016FC49B8
+00FCED01F849DDFFC0EC03F0010F06F8140749DEFF80EB1FE0017F07FCEBFFC09026FFE0
+0794B612804890C7123F484802071900484802006049031F17F8484803035F001F04005F
+65003F6452C7FC007F071F5B080113F06D9538000FC0486C96C9FC7F7F80A28080A37EA2
+5C7E5C6C90C9FC6C5AEA01F8CBFCB3A561A54D5BA4615FA261A24D5BA2615F61A2D91FC0
+4A90CBFCD97FF05D48486C143F485F6E5D484C5A606E14FF4C5B4C5B6ED907FCCCFC6C91
+38801FF89238C07FF092B512C06C5E6C4BCDFC6D14F8011F14C0010701FCCEFCD9003FCF
+FC67677DE467>84 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fi cmbx12 17.28 4
+/Fi 4 76 df<18FC4D7E4D7EA34D7FA24D7FA34D7FA34D7FA24D7FA394B57EA34C80A24C
+80A34C8117F7A2040F8117E3A2DC1FE18017C1043F811780A2047F814D7EA24C6D7F5E03
+0182845E0303824C7FA203076E805E030F83845E031F834C7FA2033F6E805E037F838593
+C8FC4B834B81A20201707F5D020384855D0207854B81A2020F70805D021F85855D023F85
+4B81A2027F8592CA7E4A85865C0101864A83A20103864A8301078786130F90267FFF8085
+B76C91B812FCA666647BE371>3 D<167C16FC1501ED07F0150FED1FE0ED3FC0ED7F80ED
+FF004A5A14034A5A4A5A5D141F4A5A147F4A5A5D5B4990C7FCA2495A130F5C131FA2495A
+A2495AA213FF5C5AA25C5AA25A5CA25AA291C8FCA25AA35B123FA5127F5BA612FFB3A412
+7FA67F123FA5121F7FA37EA280A27EA2807EA27E80A27E80137FA26D7EA26D7EA2130F80
+13076D7EA26D7F7F816E7E143F6E7E140F816E7E6E7E14016E7EED7F80ED3FC0ED1FE0ED
+0FF01507ED01FC1500167C269071EB3F>40 D<127812FC127E6C7E7F6C7E6C7E6C7E6C7E
+6C7E7F6C7F6D7E133F806D7E806D7E1307806D7EA26D7F817F81A26E7EA26E7EA281141F
+81A2140F81A2168080A216C0A280A216E0A38016F0A516F880A616FCB3A416F8A65C16F0
+A516E05CA316C0A25CA21680A25C1600A25D141FA25D143F5DA24A5AA24A5AA25D5B5D49
+90C7FCA2495A5C130F495A5C495A5C137F495A4890C8FC5B485A485A485A485A485A5B00
+7EC9FC5A1278269077EB3F>I<B96C020FB612FCA6D8000102C0CA003FEBF0000A0390C7
+FC525A525AF41FF0525A525A525A090390C8FC515AF30FF8515A515A515A50485A5090C9
+FC505AF20FF8505A505A505A4F485A4F90CAFCF107FC4F5A4F5A4F5A4F5A4E485A4E90CB
+FCF007FC4E5A4E7E4E7E18FF4D7F4D805F4D804D804D8094B6FC04C181DCC3FE809326C7
+FC7F7F9338CFF83F9326DFF01F7FDCFFE0814D6C804D7EDCFE00814C6D804C7F4C6D804C
+824C6E7F85737F8873808588738085738088747F86747F8974808689748086748089757F
+87757F8A7580878A7580090F14FCB96C010FB8FCA670627AE17E>75
+D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 1505 803 a Fi(\()p Fh(J)p Fg(;)1752
+718 y Ff(int)1723 803 y Fe(\000)-45 b(!)p Fi(\))1491
+1393 y(\()p Fh(T)5 b Fg(;)1758 1308 y Ff(cut)1729 1393
+y Fe(\000)-37 b(!)p Fi(\))1473 1984 y(\()p Fh(T)5 b Fg(;)1740
+1899 y Ff(aux)1711 1984 y Fe(\000)-64 b(\000)f(!)p Fi(\))1473
+2574 y(\()p Fh(T)5 b Fg(;)p 1740 2433 197 4 v 1740 2490
+a Ff(aux)1711 2574 y Fe(\000)-64 b(\000)f(!)p Fi(\))1436
+3165 y(\()p Fh(T)1607 3113 y Ff(m)1680 3165 y Fg(;)p
+1782 3024 V 1782 3080 a Ff(aux)1998 3044 y Fd(0)1754
+3165 y Fe(\000)e(\000)f(!)p Fi(\))470 3755 y @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow
+ } def [ 156.49008 347.12338 156.49008 307.2897 /Lineto /lineto load
+def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow
+ } def [ 156.49008 275.99152 156.49008 236.15785 /Lineto /lineto load
+def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial
+@beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { BeginArrow
+1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow moveto } def /ArrowB
+{ } def [ 156.49008 204.85966 156.49008 165.02599 /Lineto /lineto
+load def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { BeginArrow
+1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow moveto } def /ArrowB
+{ } def [ 156.49008 133.7278 156.49008 93.89413 /Lineto /lineto load
+def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial 2478 1984 a(\()p Fh(T)2650 1932
+y Fc($)2762 1984 y Fg(;)2864 1899 y Ff(l)q(oc)2836 1984
+y Fe(\000)-53 b(!)p Fi(\))470 3755 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow
+ } def [ 233.31241 219.08603 199.1692 219.08603 /Lineto /lineto load
+def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+
+@endspecial 487 803 a(\(\003)p Fg(;)803 718 y Ff(\023)736
+803 y Fe(\000)-110 b(!)-9 b Fi(\))444 1393 y(\(K)p Fg(;)773
+1308 y Ff(\024)706 1393 y Fe(\000)-93 b(!)p Fi(\))470
+3755 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { BeginArrow
+1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow moveto } def /ArrowB
+{ } def [ 113.81097 361.34975 73.9773 361.34975 /Lineto /lineto load
+def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { BeginArrow
+1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow moveto } def /ArrowB
+{ } def [ 113.81097 290.2179 73.9773 290.2179 /Lineto /lineto load
+def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial @beginspecial @setspecial
+ tx@Dict begin STP newpath 0.8 SLW 0 setgray 0. true -45.52455 261.76515
+88.20367 412.56477 .5 Frame gsave 0.8 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial
+139 476 a Fb(Chapter)34 b(3)470 3755 y @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 0.8 SLW 0 setgray 0. true 105.27505 193.47873
+361.34975 384.11203 .5 Frame gsave 0.8 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial 2782 713 a(Chapter)g(2)470 3755
+y @beginspecial @setspecial
+ tx@Dict begin STP newpath 0.8 SLW 0 setgray 0. true 105.27505 14.22636
+256.07469 176.40692 .5 Frame gsave 0.8 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial 1931 3561 a(Chapter)g(4)470
+3755 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 177.82964 159.33553 153.64464 159.33553 /Lineto
+/lineto load def false Line gsave 0.8 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 0.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 180.6751 88.20367 156.49008 88.20367 /Lineto /lineto
+load def false Line gsave 0.8 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial Black 1918 5251 a Fa(1)p Black
+eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 2995 2146 V 922 2149 2077 4 v Black 1256
+2403 a Gg(Figure)24 b(1.1:)29 b(Ov)o(ervie)n(w)24 b(of)f(the)h(thesis.)
+p Black Black Black 414 2825 a F6(\017)p Black 45 w Gg(Chapter)k(3)f
+(concerns)i(the)f(relation)h(between)f(normalisation)i(and)d
+(cut-elimination.)43 b(After)504 2938 y(re)n(vie)n(wing)32
+b(some)f(standard)h(material)g(on)e(natural)i(deduction)i(in)c
+(intuitionistic)k(logic,)f(we)504 3051 y(sho)n(w)21 b(the)h
+(correspondence)j(between)e(normalisation)h(and)d(cut-elimination)k(in)
+c(the)g F4(\()p F6(\033)q Ga(;)15 b F6(^)p F4(\))p Gg(-)504
+3163 y(fragment)34 b(of)f(intuitionistic)j(logic.)57
+b(Then,)35 b(we)c(consider)k(a)d(sequent-conclusio)q(n)38
+b(natural)504 3276 y(deduction)24 b(formulation)f(for)e(classical)i
+(logic)f(and)f(establish)j(the)d(correspondence)k(between)504
+3389 y(normalisation)33 b(and)c(cut-elimination)k(for)c(all)h(connecti)
+n(v)o(es.)48 b(W)-7 b(e)28 b(close)i(this)g(chapter)h(with)504
+3502 y(some)h(remarks)h(about)f(the)g(natural)i(deduction)g(calculus)f
+(introduced)i(by)d(P)o(arigot)g([1992])504 3615 y(and)24
+b(compare)h(our)f(approach)i(with)d(the)h(one)g(tak)o(en)h(by)e(Ungar)h
+([1992].)p Black 414 3809 a F6(\017)p Black 45 w Gg(Chapter)30
+b(4)e(describes)j(\002rst)e(an)f(implementation)k(for)d(one)g(of)g(our)
+g(cut-elimination)j(proce-)504 3922 y(dures.)d(F)o(or)20
+b(this)g(cut-elimination)k(procedure)f(we)d(pro)o(v)o(e)h(se)n(v)o
+(eral)g(properties)i(that)e(consider)n(-)504 4035 y(ably)h(simplify)h
+(the)e(implementation.)31 b(Ne)o(xt,)21 b(we)g(analyse)i(a)d
+(particular)k(classical)g(proof)e(and)504 4148 y(sho)n(w)g(that)g(the)g
+(process)h(of)e(eliminating)j(its)e(cuts)g(corresponds)j(to)c
+(non-deterministic)26 b(com-)504 4261 y(putation.)66
+b(W)-7 b(e)34 b(then)h(introduce)j(a)c(typed,)39 b(non-deterministic)h
+(lambda)35 b(calculus,)40 b(which)504 4374 y(can)e(be)f(seen)g(as)g(a)g
+(prototypical)j(functional)g(programming)f(language)g(with)e(an)g
+(erratic)504 4487 y(choice)32 b(operator)l(,)i(and)c(sho)n(w)g(ho)n(w)g
+(computation)i(in)e(this)h(calculus)h(can)e(be)g(simulated)i(by)504
+4599 y(cut-elimination)g(in)c(a)g(fragment)h(of)f(classical)j(logic.)43
+b(In)28 b(the)h(last)f(section)i(of)e(this)h(chapter)504
+4712 y(we)23 b(comment)h(on)g(the)g(colour)h(annotations)i(introduced)f
+(in)e(LK)2566 4679 y Gc(tq)2628 4712 y Gg(.)p Black 414
+4906 a F6(\017)p Black 45 w Gg(Chapter)i(5)e(completes)i(the)f
+(dissertation)j(by)d(dra)o(wing)g(some)f(conclusions)k(and)d
+(suggesting)504 5019 y(further)g(w)o(ork.)p Black 414
+5213 a F6(\017)p Black 45 w Gg(Appendix)c(A)c(contains)j(tw)o(o)e
+(normal)i(forms)e(of)h(the)f(classical)j(proof)f(analysed)g(in)f
+(Chapter)g(4.)p Black 414 5407 a F6(\017)p Black 45 w
+Gg(Appendix)26 b(B)c(gi)n(v)o(es)i(the)g(details)h(for)f(some)f(proofs)
+i(omitted)g(in)e(the)h(main)g(te)o(xt.)p Black Black
+eop end
+%%Page: 8 20
+TeXDict begin 8 19 bop Black -144 51 a Gb(8)3152 b(Intr)n(oduction)p
+-144 88 3691 4 v Black 321 317 a Ge(1.2)119 b(Contrib)n(utions)321
+541 y Gg(The)29 b(main)h(contrib)n(ution)j(of)c(this)h(thesis)h(is)e
+(to)g(re-e)o(xamine)j(the)d(proof)i(theory)g(of)e(classical)j(logic)321
+654 y(under)24 b(the)e(assumption)j(that)d(cut-elimination)k(is)c(an)g
+(operation)j(which)d(may)g(or)g(may)g(not)h(preserv)o(e)321
+767 y(the)h(equality)i(between)e(proofs.)31 b(Some)22
+b(speci\002c)j(contrib)n(utions)j(are)23 b(listed)i(belo)n(w)-6
+b(.)p Black 321 996 a Gb(Chapter)23 b(2:)p Black Black
+Black Black 658 1142 a F6(\017)p Black 46 w Gg(A)h(sequent)k(calculus)g
+(with)e(completely)i(implicit)f(structural)i(rules)d(is)g(de)n(v)o
+(eloped)i(for)749 1255 y(classical)d(logic.)30 b(A)22
+b(term)i(assignment)i(is)d(gi)n(v)o(en)h(for)g(the)g(proofs)h(of)e
+(this)h(calculus.)p Black 658 1401 a F6(\017)p Black
+46 w Gg(T)-7 b(w)o(o)23 b(strongly)k(normalising)g(cut-elimination)i
+(procedures)e(are)e(designed.)35 b(The)o(y)24 b(are)749
+1514 y(less)32 b(restricti)n(v)o(e)j(than)d(pre)n(vious)j(strongly)f
+(normalising)h(procedures)g(and)e(allo)n(w)-6 b(,)34
+b(in)749 1627 y(general,)25 b(more)e(normal)h(forms)g(to)g(be)f
+(reached.)p Black 658 1773 a F6(\017)p Black 46 w Gg(A)29
+b(strongly)k(normalising)g(cut-elimination)h(procedure)f(with)d
+(completely)j(local)e(re-)749 1886 y(duction)e(rules)f(is)f(de)n(v)o
+(eloped.)41 b(As)26 b(f)o(ar)i(as)f(I)f(am)h(a)o(w)o(are,)g(it)g(is)g
+(the)g(only)h(strongly)i(nor)n(-)749 1999 y(malising)f(cut-elimination)
+j(procedure)e(for)e(classical)j(logic)e(whose)f(reduction)j(rules)749
+2112 y(are)23 b(local)i(and)f(which)g(allo)n(ws)f(cuts)i(to)e(be)h
+(permuted)h(with)e(other)i(cuts.)p Black 321 2299 a Gb(Chapter)e(3:)p
+Black Black Black Black 658 2445 a F6(\017)p Black 46
+w Gg(The)e(correspondence)27 b(between)c(the)g(standard)h
+(normalisation)i(procedure)f(of)d(NJ)f(and)749 2558 y(the)35
+b(intuitionistic)k(v)n(ariant)d(of)f(one)g(of)g(our)g(cut-elimination)k
+(procedures)f(is)c(estab-)749 2671 y(lished)24 b(in)g(the)g
+F4(\()p F6(\033)p Ga(;)15 b F6(^)p F4(\))p Gg(-fragment.)p
+Black 658 2817 a F6(\017)p Black 46 w Gg(A)24 b(counter)k(e)o(xample)f
+(is)f(gi)n(v)o(en,)h(which)f(sho)n(ws)g(that)h(certain)g
+(cut-elimination)j(reduc-)749 2930 y(tions)f(cannot)h(be)e(mapped,)j
+(contrary)f(to)e(commonly)i(accepted)g(belief,)h(onto)e(reduc-)749
+3043 y(tions)e(of)f(the)h(e)o(xplicit)h(substitution)i(calculus)e
+Ga(\025)p F1(x)p Gg(,)e(pro)o(vided)i(one)f(uses)g(the)f(standard)749
+3156 y(translations)g(between)f(sequent)h(proofs)f(and)f(natural)h
+(deduction)h(proofs.)p Black 658 3302 a F6(\017)p Black
+46 w Gg(A)c(sequence-conclusi)q(on)30 b(natural)25 b(deduction)i
+(calculus)f(for)e(classical)i(logic)f(is)e(intro-)749
+3415 y(duced.)53 b(It)32 b(is)f(sho)n(wn)h(that)g(its)f(normalisation)k
+(procedure)f(is)d(strongly)j(normalising)749 3528 y(and)22
+b(that)g(the)h(normal)f(natural)i(deduction)g(proofs)g(respect)f(the)f
+(subformula)j(property)-6 b(.)749 3641 y(F)o(or)18 b(this)i(natural)h
+(deduction)h(calculus)f(the)f(correspondence)k(between)c(normalisation)
+749 3754 y(and)k(cut-elimination)j(is)c(established)k(for)d(all)f
+(connecti)n(v)o(es.)p Black 321 3941 a Gb(Chapter)g(4:)p
+Black Black Black Black 658 4088 a F6(\017)p Black 46
+w Gg(An)k(implementation)32 b(for)d(a)f(leftmost-outermost)33
+b(cut-reduction)f(strate)o(gy)e(is)f(de)n(v)o(el-)749
+4200 y(oped.)f(This)21 b(strate)o(gy)i(does)f(not)f(restrict)i(the)e
+(normal)h(forms)f(reachable)i(from)e(a)g(proof.)p Black
+658 4347 a F6(\017)p Black 46 w Gg(The)e(classical)j(proof)e(studied)i
+(by)e(Barbanera)h(et)f(al.)f([1997])i(is)f(translated)i(into)e(our)g
+(se-)749 4459 y(quent)h(calculus.)30 b(The)20 b(beha)n(viour)j(of)e
+(this)g(proof)g(under)h(cut-elimination)i(is)d(analysed,)749
+4572 y(and)h(it)f(is)h(sho)n(wn)g(that)h(tw)o(o)e(of)h(its)g(normal)g
+(forms)h(dif)n(fer)f(in)g(\223essential\224)j(features.)30
+b(The)749 4685 y(normal)24 b(forms)g(are)f(gi)n(v)o(en)h(in)g(Appendix)
+h(A.)p Black 658 4831 a F6(\017)p Black 46 w Gg(It)h(is)g(sho)n(wn)h
+(that)g(normalisation)i(in)e(the)f(simply-typed)k(lambda)d(calculus)i
+(e)o(xtended)749 4944 y(with)24 b(an)h(erratic)h(choice)g(operator)h
+(can)e(be)g(simulated)h(by)f(cut-elimination)j(in)d(classi-)749
+5057 y(cal)e(logic.)p Black Black eop end
+%%Page: 9 21
+TeXDict begin 9 20 bop Black Black 277 990 a F8(Chapter)44
+b(2)277 1455 y Gf(Sequent)50 b(Calculi)p Black Black
+1140 1944 a Gd(In)18 b(order)f(to)i(be)g(able)f(to)h(enunciate)e(and)h
+(pro)o(v)o(e)e(the)j F0(Hauptsatz)f Gd(in)g(a)h(con)m(v)o(enient)1140
+2044 y(form,)d(I)g(had)f(to)i(pro)o(vide)d(a)i(logical)g(calculus)g
+(especially)f(suited)h(to)g(the)h(purpose.)1140 2143
+y(F)o(or)j(this)g(the)h(natural)e(deduction)f(calculus)i(pro)o(v)o(ed)e
+(unsuitable.)3041 2276 y(\227G.)j(Gentzen)1904 2376 y(in)g(In)m(v)o
+(estigations)c(into)j(Logical)g(Deductions,)e(1935.)277
+3006 y Gg(T)-7 b(w)o(o)32 b(of)g(Gentzen')-5 b(s)35 b(most)e(striking)i
+(and)e(highly)i(original)g(in)l(v)o(entions)g(are)f F7(sequent)g
+(calculi)h Gg(and)277 3119 y F7(cut-elimination)28 b(pr)l(ocedur)m(es)p
+Gg(.)33 b(In)24 b(this)g(chapter)i(we)d(shall)i(sho)n(w)f(that)h(only)g
+(a)e(small)h(restriction)j(on)277 3232 y(the)h(standard)i
+(cut-elimination)i(procedure)f(for)d(classical)i(logic)f(is)f(suf)n
+(\002cient)h(to)f(obtain)h(strongly)277 3345 y(normalising)36
+b(proof)e(transformations.)62 b(Prior)34 b(to)f(our)g(w)o(ork,)j(some)d
+(strongly)j(normalising)g(cut-)277 3458 y(elimination)e(procedures,)i
+(notably)d(in)f([Dragalin,)g(1988,)g(Danos)g(et)f(al.,)g(1997],)j(ha)n
+(v)o(e)e(been)g(de-)277 3571 y(v)o(eloped,)c(b)n(ut)e(all)g(of)g(them)f
+(impose)i(some)f(quite)g(strong)i(restrictions.)38 b(W)-7
+b(e)25 b(shall)i(sho)n(w)e(that)h(these)277 3683 y(restrictions)35
+b(are)d(unnecessary)j(to)c(ensure)i(strong)g(normalisation.)56
+b(The)31 b(basic)h(idea)g(of)g(our)g(cut-)277 3796 y(elimination)i
+(procedure)h(is)d(to)f(pro)o(vide)j(some)e(means)g(to)g(pre)n(v)o(ent)h
+(interference)i(between)e(proof)277 3909 y(transformations)27
+b(that)e(simply)f(permute)g(cut-rules)i(upw)o(ards)f(in)f(a)f(proof.)
+418 4072 y(W)-7 b(e)27 b(shall)h(\002rst)f(describe)j(Gentzen')-5
+b(s)29 b(sequent)g(calculi)g(LK)d(and)i(LJ,)e(and)i(the)f(main)h(ideas)
+g(be-)277 4185 y(hind)35 b(his)f F7(Hauptsatz)i Gg(\(cut-elimination)i
+(theorem\).)61 b(Ne)o(xt,)36 b(we)d(shall)i(de)n(vise)g(term)f
+(annotations)277 4298 y(for)i(proofs)h(of)f(a)f(sequent)i(calculus)h
+(of)e(classical)h(logic,)j(whose)c(inference)i(rules)e(are)g(inspired)
+277 4411 y(by)f(a)f(v)n(ariant)j(of)d(Kleene')-5 b(s)37
+b(sequent)f(calculus)h(G3.)62 b(The)35 b(main)f(part)i(of)f(this)g
+(chapter)i(is)d(occu-)277 4524 y(pied)23 b(by)g(an,)f(unfortunately)-6
+b(,)27 b(rather)d(lengthy)g(proof)f(of)g(strong)h(normalisation)h(in)e
+(which)g(we)e(adapt)277 4637 y(the)27 b(technique)j(of)c(symmetric)i
+(reducibility)i(candidates)g(de)n(v)o(eloped)f(by)e(Barbanera)h(and)g
+(Berardi)277 4750 y([1994].)43 b(Subsequently)-6 b(,)31
+b(we)c(e)o(xtend)i(this)f(result)h(to)f(the)g(\002rst-order)h(case)g
+(and)f(to)f(other)i(formula-)277 4863 y(tions)i(of)e(the)h
+(propositional)j(fragment.)48 b(The)29 b(cut-elimination)k(procedure)f
+(for)d(which)h(we)f(pro)o(v)o(e)277 4976 y(strong)d(normalisation)i
+(depends)f(on)d(a)g(global,)j(or)d(non-local,)j(notion)f(of)f(proof)g
+(substitution.)36 b(Us-)277 5088 y(ing)d(results)i(concerning)h(e)o
+(xplicit)e(substitution)j(calculi)d(we)e(can)i(replace)g(the)f(global)i
+(operation)277 5201 y(with)23 b(completely)j(local)e(proof)g
+(transformations)j(and)d(obtain)g(again)g(a)f(strongly)i(normalising)h
+(cut-)277 5314 y(elimination)g(procedure.)p Black Black
+eop end
+%%Page: 10 22
+TeXDict begin 10 21 bop Black -144 51 a Gb(10)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Ge(2.1)119
+b(Gentzen')l(s)30 b(Sequent)i(Calculi)321 541 y Gg(In)h(his)f(seminal)i
+(paper)f([1935])h(Gentzen)g(introduced)h(the)e(sequent)h(calculi)g(LJ)e
+(and)h(LK)e(for)h(in-)321 654 y(tuitionistic)h(and)d(classical)i
+(logic,)g(respecti)n(v)o(ely)-6 b(.)50 b(He)29 b(w)o(as)h(able)g(to)g
+(sho)n(w)f(that)h(for)g(each)h(sequent)321 767 y(proof)23
+b(a)f(normal)h(form)f(can)g(be)h(found)g(in)f(which)g(all)h
+(applications)i(of)d(the)h(cut-rule)h(are)e(eliminated.)321
+880 y(Gentzen)j(not)e(only)i(pro)o(v)o(ed)f(that)g(all)f(occurrences)k
+(of)c(this)h(rule)f(can)h(be)f(eliminated,)j(b)n(ut)d(also)h(ga)n(v)o
+(e)321 993 y(a)29 b(simple)h(procedure)i(for)e(doing)h(so.)46
+b(Before)30 b(we)e(outline)k(this)e(procedure,)j(let)c(us)h(\002rst)f
+(e)o(xamine)321 1106 y(LK)22 b(in)i(more)f(detail.)462
+1235 y(A)f F7(sequent)i Gg(in)e(LK)f(is)h(a)g(pair)h
+F4(\(\000)p Ga(;)15 b F4(\001\))22 b Gg(of)g(\002nite)g(multisets)i(of)
+e(formulae,)i(commonly)g(written)f(as)321 1348 y F4(\000)p
+398 1336 11 41 v 409 1318 46 5 v 96 w(\001)p Gg(,)g(where)g(the)h
+(formulae)h(are)f(gi)n(v)o(en)g(by)g(the)f(grammar)p
+Black Black 1218 1577 a Ga(B)30 b F4(::=)25 b Ga(A)h
+F6(j)f(:)p Ga(B)30 b F6(j)25 b Ga(B)5 b F6(^)o Ga(B)30
+b F6(j)25 b Ga(B)5 b F6(_)p Ga(B)29 b F6(j)d Ga(B)5 b
+F6(\033)o Ga(B)30 b Gg(.)321 1806 y(W)-7 b(e)35 b(adopt)h(the)f(con)l
+(v)o(ention)k(that)c Ga(A)g Gg(stands)h(for)g(atomic)f(formulae,)k
+(also)d(called)h(propositional)321 1919 y(symbols,)c(and)e
+Ga(B)5 b(;)15 b(C)q(;)g(:)g(:)g(:)32 b Gg(for)e(arbitrary)j(formulae.)
+51 b(The)30 b(turnstile)i(di)n(vides)g(a)e(sequent)j(into)e(tw)o(o)321
+2032 y(zones,)24 b(called)g(the)g F7(antecedent)i Gg(and)d(the)g
+F7(succedent)p Gg(.)31 b(The)23 b(intuiti)n(v)o(e)h(meaning)g(of)f(a)g
+(sequent)h(of)f(the)321 2145 y(form)1454 2367 y Ga(B)1523
+2381 y F9(1)1562 2367 y Ga(;)15 b(:)g(:)g(:)i(;)e(B)1833
+2381 y Gc(n)p 1900 2355 11 41 v 1910 2337 46 5 v 1976
+2367 a Ga(C)2041 2381 y F9(1)2081 2367 y Ga(;)g(:)g(:)g(:)h(;)f(C)2347
+2381 y Gc(m)321 2588 y Gg(is)20 b(that)h(the)f(conjunction)k(of)c(the)g
+(formulae,)i Ga(B)1801 2602 y Gc(i)1829 2588 y Gg(,)d(in)h(the)h
+(antecedent)i(implies)e(the)f(disjunction)j(of)d(the)321
+2701 y(formulae,)27 b Ga(C)762 2715 y Gc(j)799 2701 y
+Gg(,)d(in)i(the)f(succedent.)37 b(There)25 b(is)h(no)f(e)o(xplicit)i
+(constant)g(for)f(f)o(alsum)g(in)f(LK;)f(ho)n(we)n(v)o(er)l(,)321
+2814 y(a)f(sequent)j(with)d(an)h(empty)g(succedent,)i(say)e
+F4(\000)p 1853 2802 11 41 v 1863 2784 46 5 v 96 w Gg(,)e(can)i(be)g
+(interpreted)i(as)e F4(\000)e Gg(implies)j(f)o(alsum.)462
+2943 y(The)k(proofs)i(in)e(Gentzen')-5 b(s)31 b(sequent)g(calculi)g
+(are)e(tree-structures)34 b(where)29 b(the)g(lea)n(v)o(es)i(are)e
+F7(ax-)321 3056 y(ioms)37 b Gg(of)f(the)g(form)p 999
+2977 244 4 v 37 w Ga(B)p 1092 3044 11 41 v 1103 3026
+46 5 v 101 w(B)k Gg(and)c(the)h(nodes)h(are)e F7(infer)m(ence)j(rules)p
+Gg(.)68 b(There)36 b(are)h(three)g(kinds)h(of)321 3169
+y(inference)28 b(rules:)33 b(logical)27 b(rules,)f(structural)h(rules)f
+(and)g(the)f(cut-rule.)35 b(The)25 b(logical)h(and)g(structural)321
+3282 y(inference)g(rules)f(f)o(all)f(into)g(tw)o(o)f(groups\227left)j
+(rules)f(and)f(right)g(rules\227depending)k(on)c(which)g(half)321
+3395 y(of)g(the)g(sequent)h(the)o(y)f(act)g(on.)k(Some)23
+b(of)h(the)g(logical)h(rules)f(are)g(listed)h(belo)n(w)-6
+b(.)p Black Black 1016 3676 a Ga(B)1085 3690 y Gc(i)1113
+3676 y Ga(;)15 b F4(\000)p 1231 3664 11 41 v 1241 3646
+46 5 v 97 w(\001)p 926 3714 547 4 v 926 3792 a Ga(B)995
+3806 y F9(1)1034 3792 y F6(^)p Ga(B)1164 3806 y F9(2)1203
+3792 y Ga(;)g F4(\000)p 1321 3780 11 41 v 1331 3762 46
+5 v 97 w(\001)1514 3727 y F6(^)1575 3741 y Gc(L)1623
+3751 y FZ(i)2190 3676 y F4(\000)p 2267 3664 11 41 v 2277
+3646 46 5 v 96 w(\001)p Ga(;)g(B)95 b F4(\000)p 2700
+3664 11 41 v 2711 3646 46 5 v 96 w(\001)p Ga(;)15 b(C)p
+2190 3714 775 4 v 2339 3792 a F4(\000)p 2416 3780 11
+41 v 2427 3762 46 5 v 97 w(\001)p Ga(;)g(B)5 b F6(^)o
+Ga(C)3006 3732 y F6(^)3066 3746 y Gc(R)828 3995 y Ga(B)g(;)15
+b F4(\000)p 1019 3983 11 41 v 1029 3965 46 5 v 96 w(\001)90
+b Ga(C)q(;)15 b F4(\000)p 1445 3983 11 41 v 1456 3965
+46 5 v 97 w(\001)p 828 4032 770 4 v 977 4111 a Ga(B)5
+b F6(_)p Ga(C)q(;)15 b F4(\000)p 1295 4099 11 41 v 1306
+4081 46 5 v 97 w(\001)1639 4051 y F6(_)1699 4065 y Gc(L)2381
+3995 y F4(\000)p 2458 3983 11 41 v 2468 3965 46 5 v 96
+w(\001)p Ga(;)g(B)2719 4009 y Gc(i)p 2291 4032 547 4
+v 2291 4111 a F4(\000)p 2368 4099 11 41 v 2378 4081 46
+5 v 96 w(\001)p Ga(;)g(B)2629 4125 y F9(1)2668 4111 y
+F6(_)p Ga(B)2798 4125 y F9(2)2879 4046 y F6(_)2939 4060
+y Gc(R)2992 4070 y FZ(i)744 4313 y F4(\000)801 4327 y
+F9(1)p 860 4301 11 41 v 871 4283 46 5 v 936 4313 a F4(\001)1012
+4327 y F9(1)1051 4313 y Ga(;)g(B)96 b(C)q(;)15 b F4(\000)1419
+4327 y F9(2)p 1480 4301 11 41 v 1490 4283 46 5 v 1556
+4313 a F4(\001)1632 4327 y F9(2)p 744 4351 928 4 v 782
+4430 a Ga(B)5 b F6(\033)o Ga(C)q(;)15 b F4(\000)1089
+4444 y F9(1)1129 4430 y Ga(;)g F4(\000)1226 4444 y F9(2)p
+1286 4418 11 41 v 1296 4400 46 5 v 1362 4430 a F4(\001)1438
+4444 y F9(1)1477 4430 y Ga(;)g F4(\001)1593 4444 y F9(2)1712
+4368 y F6(\033)1783 4383 y Gc(L)2344 4313 y Ga(B)5 b(;)15
+b F4(\000)p 2535 4301 11 41 v 2546 4283 46 5 v 96 w(\001)p
+Ga(;)g(C)p 2329 4351 485 4 v 2329 4430 a F4(\000)p 2406
+4418 11 41 v 2417 4400 46 5 v 96 w(\001)p Ga(;)g(B)5
+b F6(\033)p Ga(C)2856 4368 y F6(\033)2927 4383 y Gc(R)321
+4733 y Gg(W)-7 b(e)24 b(say)i(the)f F6(^)806 4747 y Gc(L)854
+4757 y FZ(i)884 4733 y Gg(-rule)h(introduces)i(the)e(formula)g
+Ga(B)2000 4747 y F9(1)2039 4733 y F6(^)p Ga(B)2169 4747
+y F9(2)2208 4733 y Gg(\227the)f F7(main)g(formula)i Gg(of)e(this)g
+(inference)321 4846 y(rule\227and)k(refer)e(to)g F4(\000)f
+Gg(and)h F4(\001)e Gg(as)i F7(conte)n(xts)i Gg(\(multisets)g(of)d
+(formulae\).)40 b(In)27 b(both)g(the)g(premise)h(and)321
+4959 y(conclusion)i(of)d(this)h(rule)g(the)f(comma)g(is)g(interpreted)j
+(as)d(the)g(multiset)i(union.)40 b(The)27 b(terminology)321
+5072 y(gi)n(v)o(en)d(for)g F6(^)732 5086 y Gc(L)780 5096
+y FZ(i)833 5072 y Gg(also)g(applies)h(to)f(the)g(other)g(rules.)462
+5201 y(There)e(is)f(a)g(slight)i(peculiarity)h(in)e(Gentzen')-5
+b(s)23 b F6(\033)2016 5215 y Gc(L)2068 5201 y Gg(-rule,)f(in)f(which,)h
+(if)g(we)e(read)i(it)f(from)h(bottom)321 5314 y(to)k(top,)h(the)f
+(conte)o(xts)i(are)e(split)h(up)f(into)h(tw)o(o)f(multisets.)37
+b(In)26 b(contrast,)i(in)e(the)h(inference)h(rules)f
+F6(^)3489 5328 y Gc(R)p Black Black eop end
+%%Page: 11 23
+TeXDict begin 11 22 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
+(Sequent)e(Calculi)2442 b(11)p 277 88 3691 4 v Black
+277 317 a Gg(and)33 b F6(_)500 331 y Gc(L)584 317 y Gg(both)g(premises)
+g(share)h(the)e(same)g(conte)o(xt.)56 b(The)32 b(rules)h(sharing)h(the)
+e(conte)o(xts)i(are)f(said)277 430 y(to)28 b(be)h F7(additive)p
+Gg(,)i(while)d(the)h(rules)g(splitting)h(the)f(conte)o(xts)h(are)e
+(said)h(to)f(be)g F7(multiplicative)p Gg(.)46 b(Ev)o(ery)277
+543 y(inference)26 b(rule)e(with)f(tw)o(o)h(premises)h(can)e(be)h
+(de\002ned)g(either)h(w)o(ay)-6 b(.)418 673 y(In)26 b(our)g
+(formulation)i(of)e(Gentzen')-5 b(s)28 b(LK)c(there)i(are)g(four)h
+(structural)h(rules)f(again)f(di)n(vided)i(into)277 786
+y(left)c(and)g(right)g(rules.)967 753 y F5(1)p Black
+Black 1067 956 a F4(\000)p 1144 944 11 41 v 1155 926
+46 5 v 96 w(\001)p 1010 976 343 4 v 1010 1055 a Ga(B)5
+b(;)15 b F4(\000)p 1201 1043 11 41 v 1212 1025 46 5 v
+96 w(\001)1395 1000 y Gg(W)-7 b(eak)1599 1014 y Gc(L)2179
+956 y F4(\000)p 2256 944 11 41 v 2267 926 46 5 v 96 w(\001)p
+2122 976 343 4 v 2122 1055 a(\000)p 2199 1043 11 41 v
+2210 1025 46 5 v 96 w(\001)p Ga(;)15 b(B)2506 1000 y
+Gg(W)-7 b(eak)2710 1014 y Gc(R)952 1269 y Ga(B)5 b(;)15
+b(B)5 b(;)15 b F4(\000)p 1257 1257 11 41 v 1268 1239
+46 5 v 96 w(\001)p 952 1307 457 4 v 1009 1385 a Ga(B)5
+b(;)15 b F4(\000)p 1200 1373 11 41 v 1211 1355 46 5 v
+96 w(\001)1450 1331 y Gg(Contr)1656 1345 y Gc(L)2064
+1269 y F4(\000)p 2141 1257 11 41 v 2151 1239 46 5 v 96
+w(\001)p Ga(;)g(B)5 b(;)15 b(B)p 2064 1307 457 4 v 2121
+1385 a F4(\000)p 2198 1373 11 41 v 2208 1355 46 5 v 96
+w(\001)p Ga(;)g(B)2562 1331 y Gg(Contr)2768 1345 y Gc(R)277
+1570 y Gg(The)23 b(only)i(inference)g(rule)g(that)f(is)f(neither)i(a)e
+(left)h(nor)g(a)f(right)i(rule)f(is)f(the)h(cut-rule)p
+Black Black 1336 1741 a F4(\000)1393 1755 y F9(1)p 1453
+1729 11 41 v 1463 1711 46 5 v 1529 1741 a F4(\001)1605
+1755 y F9(1)1644 1741 y Ga(;)15 b(B)96 b(B)5 b(;)15 b
+F4(\000)2020 1755 y F9(2)p 2079 1729 11 41 v 2089 1711
+46 5 v 2155 1741 a F4(\001)2231 1755 y F9(2)p 1336 1779
+935 4 v 1503 1857 a F4(\000)1560 1871 y F9(1)1599 1857
+y Ga(;)g F4(\000)1696 1871 y F9(2)p 1756 1845 11 41 v
+1767 1827 46 5 v 1832 1857 a F4(\001)1908 1871 y F9(1)1948
+1857 y Ga(;)g F4(\001)2064 1871 y F9(2)2312 1809 y Gg(Cut)277
+2042 y(in)24 b(which)f(the)h(formula)h Ga(B)i Gg(is)c(called)i(the)f
+F7(cut-formula)p Gg(.)418 2172 y(The)36 b(intuitionistic)k(sequent)e
+(calculus)g(LJ)d(can)h(be)g(obtained)j(from)d(LK)e(by)i(restricting)j
+(the)277 2285 y(succedent)33 b(of)c(sequents)j(to)e(at)g(most)g(a)f
+(single)i(formula,)h(by)e(dropping)i(the)f(Contr)2992
+2299 y Gc(R)3050 2285 y Gg(-rule)g(and)f(by)277 2398
+y(replacing)c(the)e F6(\033)843 2412 y Gc(L)895 2398
+y Gg(-rule)g(with)p Black Black 1415 2568 a F4(\000)1472
+2582 y F9(1)p 1532 2556 11 41 v 1542 2538 46 5 v 1608
+2568 a Ga(B)95 b(C)q(;)15 b F4(\000)1935 2582 y F9(2)p
+1995 2556 11 41 v 2006 2538 46 5 v 2072 2568 a Ga(D)p
+1415 2606 735 4 v 1453 2685 a(B)5 b F6(\033)o Ga(C)q(;)15
+b F4(\000)1760 2699 y F9(1)1800 2685 y Ga(;)g F4(\000)1897
+2699 y F9(2)p 1957 2673 11 41 v 1968 2654 46 5 v 2033
+2685 a Ga(D)2191 2623 y F6(\033)2262 2637 y Gc(L)2339
+2623 y Ga(:)418 2869 y Gg(One)37 b(of)g(Gentzen')-5 b(s)39
+b(moti)n(v)o(es)f(when)f(designing)j(the)d(sequent)i(calculi)g(LK)d
+(and)h(LJ)g(w)o(as)f(to)277 2982 y(pro)o(vide)e(deducti)n(v)o(e)h
+(systems)e(for)g(classical)h(and)f(intuitionistic)k(logic,)e(respecti)n
+(v)o(ely)-6 b(,)37 b(for)c(which)277 3095 y F7(consistency)24
+b Gg(could)e(be)e(established)k(by)d(simple)g(methods.)29
+b(Let)20 b(us)h(brie\003y)g(illustrate)i(his)d(ar)n(gument)277
+3208 y(for)g(consistenc)o(y)-6 b(.)31 b(First)20 b(notice)h(that)f(in)g
+(sequent)i(calculi)f(consistenc)o(y)i(coincides)g(with)c(the)h(absence)
+277 3321 y(of)35 b(a)g(proof)h(for)f(the)h(empty)f(sequent)i(\(i.e.,)h
+(both)e(the)f(antecedent)j(and)e(succedent)i(are)d(empty\).)277
+3434 y(Assume)26 b(we)f(w)o(ould)h(be)g(gi)n(v)o(en)g(a)g(proof)g(of)g
+(this)g(sequent,)i(then)f(we)e(can)h(construct)i(a)e(proof)g(of)g(the)
+277 3547 y(sequent)p 606 3535 11 41 v 617 3517 46 5 v
+131 w Ga(B)5 b F6(^)o(:)p Ga(B)35 b Gg(simply)e(by)g(applying)h(W)-7
+b(eak)1937 3561 y Gc(R)1996 3547 y Gg(.)54 b(In)32 b(f)o(act,)i(we)e(w)
+o(ould)h(be)f(able)h(to)f(construct)277 3660 y(for)f(an)o(y)g(formula)h
+Ga(C)k Gg(a)30 b(proof)i(of)f(the)g(sequent)p 1879 3648
+11 41 v 1889 3630 46 5 v 144 w Ga(C)22 b Gg(.)49 b(Ob)o(viously)-6
+b(,)34 b(LK)29 b(and)j(LJ)e(w)o(ould)h(then)g(be)277
+3773 y(inconsistent.)69 b(F)o(ortunately)-6 b(,)41 b(there)c(is)e(no)h
+(proof)h(of)f(the)g(empty)g(sequent)i(in)e(either)h(LK)d(or)i(LJ.)277
+3886 y(Although)28 b(this)e(is)g(not)h(ob)o(vious,)h(it)d(is)h(easy)h
+(to)f(v)o(erify)h(that)f(there)h(cannot)h(be)e(an)o(y)g(such)h(proof)g
+(that)277 3998 y(enjo)o(ys)e(the)f(subformula)i(property)-6
+b(.)p Black 277 4186 a Gb(De\002nition)23 b(2.1.1)g Gg(\(Subformula)j
+(and)e(Subformula)h(Property\))p Gb(:)p Black Black 414
+4393 a F6(\017)p Black 45 w Gg(The)j(relation)i Ga(B)h
+F7(is)d(a)g(subformula)i(of)41 b Ga(C)34 b Gg(is)28 b(de\002ned)h(as)e
+(the)i(transiti)n(v)o(e,)h(re\003e)o(xi)n(v)o(e)f(closure)504
+4506 y(of)24 b(the)g(clauses:)p Black 614 4689 a F6(\017)p
+Black 45 w Ga(B)5 b Gg(,)22 b Ga(C)30 b Gg(are)23 b(subformulae)j(of)e
+Ga(B)5 b F6(^)o Ga(C)i Gg(,)22 b Ga(B)5 b F6(_)o Ga(C)29
+b Gg(and)24 b Ga(B)5 b F6(\033)p Ga(C)i Gg(,)21 b(and)p
+Black 614 4831 a F6(\017)p Black 45 w Ga(B)28 b Gg(is)23
+b(a)g(subformula)j(of)d F6(:)p Ga(B)5 b Gg(.)p Black
+414 5014 a F6(\017)p Black 45 w Gg(A)27 b(proof)h Ga(\031)i
+Gg(of)d(the)g(sequent)j F4(\000)p 1523 5002 11 41 v 1533
+4984 46 5 v 96 w(\001)c Gg(enjo)o(ys)j(the)e F7(subformula)j(pr)l
+(operty)p Gg(,)g(if)d(and)h(only)g(if)f(all)504 5127
+y(formulae)e(occurring)h(in)e Ga(\031)i Gg(are)d(subformulae)k(of)c
+(the)h(formulae)h(in)e F4(\000)g Gg(and)h F4(\001)p Gg(.)p
+Black 277 5227 1290 4 v 383 5283 a F3(1)412 5314 y F2(Gentzen)17
+b(de\002ned)g(sequents)h(using)g(sequences)g(of)f(formulae)g(and)g
+(therefore)g(also)g(had)g(an)g(e)o(xplicit)g(Exchange-rule.)p
+Black Black Black eop end
+%%Page: 12 24
+TeXDict begin 12 23 bop Black -144 51 a Gb(12)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(The)27
+b(crux)h(of)f(Gentzen')-5 b(s)29 b(ar)n(gument)g(for)e(consistenc)o(y)k
+(is)c(that)g(in)g(LJ)g(and)g(LK)f(all)h(cut-free)i(proofs)321
+430 y(enjo)o(y)e(the)f(subformula)j(property:)35 b(the)27
+b(premises)g(of)e(the)h(logical)i(and)e(structural)i(inference)h(rules)
+321 543 y(contain)37 b(only)f(subformulae)i(of)d(their)h(respecti)n(v)o
+(e)h(conclusion.)67 b(If)34 b(there)i(were)f(a)g(proof)h(of)f(the)321
+656 y(empty)26 b(sequent,)h(then)f(according)i(to)d(his)h
+F7(Hauptsatz)h Gg(there)f(must)f(be)h(one)f(without)i(cuts.)34
+b(But)25 b(this)321 769 y(cut-free)34 b(proof)e(w)o(ould)g(lack)g(the)g
+(subformula)i(property)-6 b(.)55 b(Consequently)-6 b(,)36
+b(there)d(cannot)g(be)e(an)o(y)321 882 y(proof)25 b(of)e(the)h(empty)g
+(sequent)i(in)d(either)i(LK)d(or)h(LJ.)462 1017 y(Since)29
+b(Gentzen')-5 b(s)31 b(w)o(ork)e(man)o(y)f F7(Haupts)1794
+1018 y(\250)1787 1017 y(atze)j Gg(ha)n(v)o(e)f(appeared)h(for)e(v)n
+(arious)h(sequent)g(calculus)321 1130 y(formulations.)66
+b(The)o(y)34 b(all)h(use)g(his)g(technique)j(of)d(proof)h
+(transformations,)41 b(referred)36 b(to)f(as)g F7(cut-)321
+1243 y(r)m(eductions)p Gg(,)24 b(which)e(con)l(v)o(ert)h(a)e(proof)h
+(containing)i(cuts)e(not)g(immediately)h(to)e(a)f(cut-free)j(proof,)g
+(b)n(ut)321 1356 y(replace)e(the)e(cuts)h(by)f(simpler)h(cuts,)h(or)e
+(permute)h(the)f(cuts)h(to)n(w)o(ards)g(the)f(lea)n(v)o(es)i(where)e
+(the)o(y)g(e)n(v)o(entu-)321 1469 y(ally)j(v)n(anish.)29
+b(Iterating)23 b(this)f(process)h(of)e(applying)i(proof)g
+(transformations)i(will)20 b(lead)i(to)f(a)g(cut-free)321
+1582 y(proof.)66 b(W)-7 b(e)35 b(shall)h(sk)o(etch)h(the)f(main)g
+(lines)g(of)g(Gentzen')-5 b(s)37 b F7(Hauptsatz)h Gg(by)d(gi)n(ving)i
+(some)f(of)f(his)321 1695 y(cut-reductions.)48 b(Ho)n(we)n(v)o(er)l(,)
+30 b(in)e(what)h(follo)n(ws)g(we)e(shall)j(study)g(se)n(v)o(eral)f(dif)
+n(ferent)i(cut-reduction)321 1808 y(systems,)h(and)e(for)g(this)g(it)f
+(is)g(con)l(v)o(enient)k(to)c(introduce)j(some)e(notation)h(and)f
+(terminology)j(com-)321 1921 y(monly)j(used)g(in)f(connection)j(with)d
+(term)h(re)n(writing)g(\(see)g(for)f(e)o(xample)h([Baader)g(and)g(Nipk)
+o(o)n(w)-6 b(,)321 2033 y(1998]\).)p Black 321 2221 a
+Gb(De\002nition)23 b(2.1.2:)p Black Black 458 2422 a
+F6(\017)p Black 46 w Gg(A)f F7(r)m(eduction)k(system)e
+Gg(is)f(the)h(pair)g F4(\()p FY(A)p Ga(;)15 b F6(\000)-30
+b(\000)e(!)p F4(\))p Gg(,)23 b(in)g(which)p Black 658
+2633 a F6(\017)p Black 46 w FY(A)f Gg(is)i(a)f(set)h(of)f(objects)i
+(\(in)f(this)g(thesis)h(usually)g(a)e(set)h(of)g(terms)f(or)h
+(proofs\),)h(and)p Black 658 2791 a F6(\017)p Black 46
+w(\000)-32 b(\000)h(!)23 b Gg(is)g(a)g(binary)i(relation)g(o)o(v)o(er)f
+FY(A)p Gg(;)f(it)g(is)h(often)g(referred)i(to)d(as)g(a)h
+F7(r)m(eduction)p Gg(.)549 3002 y(Instead)33 b(of)e(writing)i
+F4(\()p Ga(a;)15 b(b)p F4(\))41 b F6(2\000)-32 b(\000)h(!)p
+Gg(,)32 b(we)f(write)g Ga(a)41 b F6(\000)-32 b(\000)h(!)40
+b Ga(b)31 b Gg(and)h(say)f Ga(a)g Gg(reduces)j(to)d Ga(b)p
+Gg(.)52 b(The)549 3115 y(transiti)n(v)o(e)24 b(and)e(the)h(re\003e)o
+(xi)n(v)o(e)f(transiti)n(v)o(e)i(closure)g(of)e F6(\000)-31
+b(\000)f(!)22 b Gg(is)g(written)h(as)f F6(\000)-32 b(\000)h(!)3081
+3082 y F9(+)3161 3115 y Gg(and)23 b F6(\000)-31 b(\000)f(!)3484
+3082 y FX(\003)3524 3115 y Gg(,)549 3228 y(respecti)n(v)o(ely)-6
+b(.)30 b(W)-7 b(e)19 b(shall)h(often)h(annotate)h(the)d(`)p
+F6(\000)-31 b(\000)g(!)p Gg(')19 b(to)h(qualify)h(the)f(reduction)i(in)
+e(question.)549 3390 y(Whene)n(v)o(er)29 b(we)f(de\002ne)h(a)f
+(reduction,)k(say)d Ga(a)34 b F6(\000)-31 b(\000)g(!)34
+b Ga(b)p Gg(,)29 b(we)e(automatically)32 b(assume)d(that)g(the)549
+3503 y(reduction)e(is)e(closed)i(under)f(conte)o(xt)h(formation.)35
+b(This)25 b(is)f(a)h(standard)i(con)l(v)o(ention)i(in)c(term)549
+3616 y(re)n(writing.)p Black 458 3827 a F6(\017)p Black
+46 w Gg(A)d(term)i(is)g(said)h(to)f(be)g(a)f F7(normal)i(form)f
+Gg(if)g(and)g(only)h(if)f(it)f(does)i(not)g(reduce.)31
+b(In)24 b(this)h(thesis)g(a)549 3940 y(normal)f(form)f(often)i
+(corresponds)i(to)c(a)g(cut-free)j(proof.)p Black 458
+4151 a F6(\017)p Black 46 w Gg(Let)h Ga(a)h Gg(be)g(an)g(element)h(of)g
+FY(A)p Gg(,)f(then)h Ga(a)e Gg(is)i(said)f(to)h(be)f
+F7(str)l(ongly)i(normalising)h Gg(if)d(and)h(only)g(if)549
+4264 y(all)g(reduction)j(sequences)g(starting)g(from)d
+Ga(a)g Gg(are)g(\002nite.)47 b(In)29 b(this)h(case)g(we)f(write)g
+Ga(a)c F6(2)g Ga(S)5 b(N)3508 4278 y Gc(r)549 4377 y
+Gg(and)21 b(use)j FW(M)t(A)t(X)t(R)t(E)t(D)1184 4391
+y Gc(r)1222 4377 y F4(\()p Ga(a)p F4(\))d Gg(to)g(denote)i(the)e
+(longest)i(reduction)h(sequence)f(starting)g(from)f Ga(a)e
+Gg(\(the)549 4490 y(annotation)26 b Ga(r)f Gg(indicates)h(to)e(which)g
+(reduction)i(these)f(notions)g(refer)f(to\).)29 b(Correspondingly)-6
+b(,)549 4603 y(a)25 b(reduction)j(system)e(is)g(said)g(to)f(be)h
+(strongly)i(normalising)g(if)d(and)h(only)h(if)e(all)h(elements)h(of)
+549 4716 y FY(A)22 b Gg(are)i(strongly)i(normalising.)462
+4976 y(Cut-reductions)h(come)22 b(in)h(tw)o(o)f(\003a)n(v)n(ours)j
+(depending)g(on)e(whether)h(the)o(y)f(apply)h(to)e F7(lo)o(gical)j
+(cuts)321 5088 y Gg(or)j F7(commuting)i(cuts)p Gg(.)42
+b(A)27 b(cut)i(is)e(said)i(to)f(be)g(a)g(logical)h(cut)g(when)f(the)g
+(cut-formula)j(is)d(introduced)321 5201 y(on)d(both)h(sides)f(by)g
+(axioms)h(or)e(logical)j(inference)g(rules;)f(otherwise)h(the)e(cut)g
+(is)f(said)i(to)e(be)h(a)g(com-)p Black Black eop end
+%%Page: 13 25
+TeXDict begin 13 24 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
+(Sequent)e(Calculi)2442 b(13)p 277 88 3691 4 v Black
+277 317 a Gg(muting)24 b(cut.)29 b(An)23 b(instance)j(of)d(a)g(logical)
+j(cut)d(is)h(as)f(follo)n(ws.)p Black Black 929 523 a
+F4(\000)986 537 y F9(1)p 1046 511 11 41 v 1056 493 46
+5 v 1122 523 a F4(\001)1198 537 y F9(1)1237 523 y Ga(;)15
+b(B)96 b F4(\000)1499 537 y F9(1)p 1558 511 11 41 v 1569
+493 46 5 v 1635 523 a F4(\001)1711 537 y F9(1)1750 523
+y Ga(;)15 b(C)p 929 560 933 4 v 1119 639 a F4(\000)1176
+653 y F9(1)p 1235 627 11 41 v 1246 609 46 5 v 1311 639
+a F4(\001)1387 653 y F9(1)1426 639 y Ga(;)g(B)5 b F6(^)p
+Ga(C)1903 579 y F6(^)1964 593 y Gc(R)2176 523 y Ga(B)g(;)15
+b F4(\000)2347 537 y F9(2)p 2406 511 11 41 v 2417 493
+46 5 v 2482 523 a F4(\001)2558 537 y F9(2)p 2112 560
+549 4 v 2112 639 a Ga(B)5 b F6(^)o Ga(C)q(;)15 b F4(\000)2409
+653 y F9(2)p 2470 627 11 41 v 2480 609 46 5 v 2546 639
+a F4(\001)2622 653 y F9(2)2703 574 y F6(^)2763 588 y
+Gc(L)2811 597 y FV(1)p 1119 677 1543 4 v 1590 756 a F4(\000)1647
+770 y F9(1)1686 756 y Ga(;)g F4(\000)1783 770 y F9(2)p
+1843 744 11 41 v 1853 725 46 5 v 1919 756 a F4(\001)1995
+770 y F9(1)2034 756 y Ga(;)g F4(\001)2150 770 y F9(2)2703
+707 y Gg(Cut)277 975 y(Here)21 b(the)h(cut-formula,)i
+Ga(B)5 b F6(^)o Ga(C)i Gg(,)21 b(is)g(the)h(main)f(formula)i(in)e(both)
+h(the)g F6(^)2519 989 y Gc(R)2597 975 y Gg(and)g F6(^)2810
+989 y Gc(L)2858 998 y FV(1)2897 975 y Gg(-rule.)28 b(According)277
+1088 y(to)c(Gentzen')-5 b(s)25 b(procedure)h(this)e(cut)g(reduces)h(to)
+p Black Black 1336 1269 a F4(\000)1393 1283 y F9(1)p
+1453 1257 11 41 v 1463 1239 46 5 v 1529 1269 a F4(\001)1605
+1283 y F9(1)1644 1269 y Ga(;)15 b(B)96 b(B)5 b(;)15 b
+F4(\000)2020 1283 y F9(2)p 2079 1257 11 41 v 2089 1239
+46 5 v 2155 1269 a F4(\001)2231 1283 y F9(2)p 1336 1306
+935 4 v 1503 1385 a F4(\000)1560 1399 y F9(1)1599 1385
+y Ga(;)g F4(\000)1696 1399 y F9(2)p 1756 1373 11 41 v
+1767 1355 46 5 v 1832 1385 a F4(\001)1908 1399 y F9(1)1948
+1385 y Ga(;)g F4(\001)2064 1399 y F9(2)2312 1337 y Gg(Cut)277
+1580 y(where)26 b(the)f(de)o(gree)h(of)f(the)h(cut-formula)h(has)f
+(decreased)i(\(the)d(de)o(gree)i(of)e(a)f(formula)i(is)f(de\002ned)h
+(as)277 1693 y(usual\).)k(Another)25 b(instance)g(of)f(a)f(logical)i
+(cut)f(is)f(as)h(follo)n(ws.)p Black Black 1236 1898
+a F4(\000)p 1313 1886 11 41 v 1323 1868 46 5 v 96 w(\001)p
+Ga(;)15 b(B)p 1170 1936 475 4 v 1170 2015 a F4(\000)p
+1247 2003 11 41 v 1257 1984 46 5 v 96 w(\001)p Ga(;)g(B)5
+b F6(_)o Ga(C)1686 1950 y F6(_)1747 1964 y Gc(R)1800
+1973 y FV(1)p 1929 1936 508 4 v 1929 2015 a Ga(B)g F6(_)o
+Ga(C)p 2155 2003 11 41 v 2166 1984 46 5 v 103 w(B)g F6(_)o
+Ga(C)p 1170 2052 1268 4 v 1566 2131 a F4(\000)p 1643
+2119 11 41 v 1653 2101 46 5 v 96 w(\001)p Ga(;)15 b(B)5
+b F6(_)o Ga(C)2478 2083 y Gg(Cut)277 2351 y(Here)24 b(the)g
+(cut-formula)i(is)e(introduced)j(by)d(a)f(logical)j(rule)e(and)h(by)f
+(an)g(axiom.)30 b(Clearly)-6 b(,)25 b(this)f(appli-)277
+2463 y(cation)h(of)e(the)h(cut)g(can)g(disappear)l(,)i(to)e(yield)g
+(the)g(follo)n(wing)h(proof.)p Black Black 1621 2669
+a F4(\000)p 1698 2657 11 41 v 1709 2639 46 5 v 96 w(\001)p
+Ga(;)15 b(B)p 1555 2707 475 4 v 1555 2785 a F4(\000)p
+1632 2773 11 41 v 1643 2755 46 5 v 96 w(\001)p Ga(;)g(B)5
+b F6(_)p Ga(C)2072 2720 y F6(_)2132 2734 y Gc(R)2185
+2743 y FV(1)418 3005 y Gg(In)31 b(the)h(cases)g(where)g(a)e(cut)i
+(cannot)h(be)e(transformed)j(by)d(a)g(cut-reduction)k(for)c(logical)i
+(cuts,)277 3118 y(then)28 b(the)g(cut)g(is)g(a)f(commuting)i(cut,)f
+(for)g(which)g(proof)h(transformations)i(are)d(de\002ned)g(permuting)
+277 3231 y(the)c(cut)g(to)n(w)o(ards)g(the)g(lea)n(v)o(es.)30
+b(A)22 b(typical)j(instance)h(of)d(a)h(commuting)g(cut)g(is)g(the)f
+(proof)1011 3431 y Ga(B)5 b(;)15 b F4(\000)1182 3445
+y F9(1)p 1242 3419 11 41 v 1252 3400 46 5 v 1318 3431
+a F4(\001)1394 3445 y F9(1)1433 3431 y Ga(;)g(C)q(;)g(D)p
+996 3468 678 4 v 996 3547 a F4(\000)1053 3561 y F9(1)p
+1113 3535 11 41 v 1123 3517 46 5 v 1189 3547 a F4(\001)1265
+3561 y F9(1)1304 3547 y Ga(;)g(B)5 b F6(\033)p Ga(C)q(;)15
+b(D)1715 3486 y F6(\033)1785 3500 y Gc(R)1995 3431 y
+Ga(D)s(;)g(E)5 b(;)15 b F4(\000)2282 3445 y F9(2)p 2342
+3419 11 41 v 2353 3400 46 5 v 2418 3431 a F4(\001)2494
+3445 y F9(2)p 1934 3468 661 4 v 1934 3547 a Ga(D)s(;)g(E)5
+b F6(^)p Ga(F)s(;)15 b F4(\000)2343 3561 y F9(2)p 2403
+3535 11 41 v 2413 3517 46 5 v 2479 3547 a F4(\001)2555
+3561 y F9(2)2636 3482 y F6(^)2696 3496 y Gc(L)2744 3505
+y FV(1)p 996 3584 1599 4 v 1250 3663 a Ga(E)5 b F6(^)p
+Ga(F)s(;)15 b F4(\000)1541 3677 y F9(1)1581 3663 y Ga(;)g
+F4(\000)1678 3677 y F9(2)p 1737 3651 11 41 v 1748 3633
+46 5 v 1814 3663 a F4(\001)1890 3677 y F9(1)1929 3663
+y Ga(;)g F4(\001)2045 3677 y F9(2)2084 3663 y Ga(;)g(B)5
+b F6(\033)p Ga(C)2636 3615 y Gg(Cut)p Black 3328 3663
+a(\(2.1\))p Black 277 3846 a(whose)25 b(cut-formula,)j
+Ga(D)s Gg(,)c(is)g(not)h(introduced)j(by)d(the)g(inference)j(rules)d
+(directly)i(abo)o(v)o(e)e(the)h(cut.)32 b(In)277 3959
+y(this)e(case,)h(the)f(cut)f(is)g(permuted)i(upw)o(ards)f(in)g(the)f
+(proof)i(yielding)g(either)f(one)g(of)f(the)h(follo)n(wing)277
+4072 y(tw)o(o)23 b(proofs.)p Black Black 280 4394 a Ga(B)5
+b(;)15 b F4(\000)451 4408 y F9(1)p 510 4382 11 41 v 521
+4364 46 5 v 586 4394 a F4(\001)662 4408 y F9(1)702 4394
+y Ga(;)g(C)q(;)g(D)1063 4278 y(D)s(;)g(E)5 b(;)15 b F4(\000)1350
+4292 y F9(2)p 1411 4266 11 41 v 1421 4247 46 5 v 1487
+4278 a F4(\001)1563 4292 y F9(2)p 1002 4315 661 4 v 1002
+4394 a Ga(D)s(;)g(E)5 b F6(^)q Ga(F)s(;)15 b F4(\000)1412
+4408 y F9(2)p 1471 4382 11 41 v 1482 4364 46 5 v 1547
+4394 a F4(\001)1623 4408 y F9(2)1689 4329 y F6(^)1750
+4343 y Gc(L)1798 4352 y FV(1)p 280 4431 1383 4 v 441
+4510 a Ga(B)5 b(;)15 b(E)5 b F6(^)p Ga(F)s(;)15 b F4(\000)846
+4524 y F9(1)886 4510 y Ga(;)g F4(\000)983 4524 y F9(2)p
+1043 4498 11 41 v 1053 4480 46 5 v 1119 4510 a F4(\001)1195
+4524 y F9(1)1234 4510 y Ga(;)g F4(\001)1350 4524 y F9(2)1389
+4510 y Ga(;)g(C)1689 4462 y Gg(Cut)p 426 4548 1091 4
+v 426 4627 a Ga(E)5 b F6(^)p Ga(F)s(;)15 b F4(\000)717
+4641 y F9(1)757 4627 y Ga(;)g F4(\000)854 4641 y F9(2)p
+914 4615 11 41 v 924 4596 46 5 v 990 4627 a F4(\001)1066
+4641 y F9(1)1105 4627 y Ga(;)g F4(\001)1221 4641 y F9(2)1260
+4627 y Ga(;)g(B)5 b F6(\033)p Ga(C)1558 4565 y F6(\033)1629
+4579 y Gc(R)1911 4278 y Ga(B)g(;)15 b F4(\000)2082 4292
+y F9(1)p 2141 4266 11 41 v 2151 4247 46 5 v 2217 4278
+a F4(\001)2293 4292 y F9(1)2332 4278 y Ga(;)g(C)q(;)g(D)p
+1895 4315 678 4 v 1895 4394 a F4(\000)1952 4408 y F9(1)p
+2012 4382 11 41 v 2022 4364 46 5 v 2088 4394 a F4(\001)2164
+4408 y F9(1)2203 4394 y Ga(;)g(B)5 b F6(\033)p Ga(C)q(;)15
+b(D)2599 4333 y F6(\033)2669 4347 y Gc(R)2803 4394 y
+Ga(D)s(;)g(E)5 b(;)15 b F4(\000)3090 4408 y F9(2)p 3150
+4382 11 41 v 3161 4364 46 5 v 3226 4394 a F4(\001)3302
+4408 y F9(2)p 1895 4431 1447 4 v 2134 4510 a Ga(E)5 b(;)15
+b F4(\000)2303 4524 y F9(1)2343 4510 y Ga(;)g F4(\000)2440
+4524 y F9(2)p 2500 4498 11 41 v 2510 4480 46 5 v 2576
+4510 a F4(\001)2652 4524 y F9(1)2691 4510 y Ga(;)g F4(\001)2807
+4524 y F9(2)2847 4510 y Ga(;)g(B)5 b F6(\033)p Ga(C)3368
+4462 y Gg(Cut)p 2073 4548 1091 4 v 2073 4627 a Ga(E)g
+F6(^)p Ga(F)s(;)15 b F4(\000)2364 4641 y F9(1)2404 4627
+y Ga(;)g F4(\000)2501 4641 y F9(2)p 2561 4615 11 41 v
+2571 4596 46 5 v 2637 4627 a F4(\001)2713 4641 y F9(1)2752
+4627 y Ga(;)g F4(\001)2868 4641 y F9(2)2908 4627 y Ga(;)g(B)5
+b F6(\033)o Ga(C)3205 4561 y F6(^)3266 4575 y Gc(L)3314
+4584 y FV(1)277 4846 y Gg(Usually)-6 b(,)23 b(it)e(is)g(left)g
+(unspeci\002ed)j(which)d(alternati)n(v)o(e)j(is)d(tak)o(en,)i(and)e
+(therefore)j(commuting)e(cuts)g(are)277 4959 y(a)g(source)h(of)f
+(non-determinism.)32 b(This)22 b(is)g(a)g(point)h(we)e(shall)i(study)g
+(more)g(closely)g(in)f(the)h(follo)n(wing)277 5072 y(sections)j(of)d
+(this)h(chapter)-5 b(.)418 5201 y(The)28 b(intricacies)i(of)e(a)g
+(cut-elimination)j(theorem)e(lie)f(in)g(the)g(f)o(act)g(that)h(one)f
+(has)g(to)g(sho)n(w)g(that)277 5314 y(the)k(process)i(of)e(applying)i
+(cut-reductions)i(terminates;)i(this)33 b(is)f(complicated)i(in)e(LK)e
+(and)i(other)p Black Black eop end
+%%Page: 14 26
+TeXDict begin 14 25 bop Black -144 51 a Gb(14)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(sequent)k(calculi)f(by)
+e(the)h(presence)i(of)d(contractions.)33 b(Consider)25
+b(the)f(follo)n(wing)h(commuting)f(cut.)1170 521 y F4(\000)1227
+535 y F9(1)p 1287 509 11 41 v 1297 491 46 5 v 1363 521
+a F4(\001)1439 535 y F9(1)1478 521 y Ga(;)15 b(B)5 b(;)15
+b(B)p 1170 559 536 4 v 1227 637 a F4(\000)1284 651 y
+F9(1)p 1344 625 11 41 v 1354 607 46 5 v 1420 637 a F4(\001)1496
+651 y F9(1)1535 637 y Ga(;)g(B)1747 583 y Gg(Contr)1953
+597 y Gc(R)2103 637 y Ga(B)5 b(;)15 b F4(\000)2274 651
+y F9(2)p 2333 625 11 41 v 2344 607 46 5 v 2409 637 a
+F4(\001)2485 651 y F9(2)p 1227 675 1298 4 v 1576 754
+a F4(\000)1633 768 y F9(1)1672 754 y Ga(;)g F4(\000)1769
+768 y F9(2)p 1829 742 11 41 v 1839 724 46 5 v 1905 754
+a F4(\001)1981 768 y F9(1)2020 754 y Ga(;)g F4(\001)2136
+768 y F9(2)2566 705 y Gg(Cut)p Black 3372 754 a(\(2.2\))p
+Black 321 942 a(This)24 b(cut)f(reduces)j(to)981 1145
+y F4(\000)1038 1159 y F9(1)p 1097 1133 11 41 v 1107 1115
+46 5 v 1173 1145 a F4(\001)1249 1159 y F9(1)1288 1145
+y Ga(;)15 b(B)5 b(;)15 b(B)96 b(B)5 b(;)15 b F4(\000)1778
+1159 y F9(2)p 1837 1133 11 41 v 1848 1115 46 5 v 1914
+1145 a F4(\001)1990 1159 y F9(2)p 981 1183 1049 4 v 1148
+1262 a F4(\000)1205 1276 y F9(1)1244 1262 y Ga(;)g F4(\000)1341
+1276 y F9(2)p 1401 1250 11 41 v 1411 1231 46 5 v 1477
+1262 a F4(\001)1553 1276 y F9(1)1592 1262 y Ga(;)g F4(\001)1708
+1276 y F9(2)1748 1262 y Ga(;)g(B)2070 1213 y Gg(Cut)2293
+1262 y Ga(B)5 b(;)15 b F4(\000)2464 1276 y F9(2)p 2523
+1250 11 41 v 2533 1231 46 5 v 2599 1262 a F4(\001)2675
+1276 y F9(2)p 1148 1299 1567 4 v 1485 1378 a F4(\000)1542
+1392 y F9(1)1581 1378 y Ga(;)g F4(\000)1678 1392 y F9(2)1718
+1378 y Ga(;)g F4(\000)1815 1392 y F9(2)p 1875 1366 11
+41 v 1885 1348 46 5 v 1951 1378 a F4(\001)2027 1392 y
+F9(1)2066 1378 y Ga(;)g F4(\001)2182 1392 y F9(2)2221
+1378 y Ga(;)g F4(\001)2337 1392 y F9(2)2756 1330 y Gg(Cut)p
+1485 1416 893 4 v 1489 1452 884 4 v 1631 1531 a F4(\000)1688
+1545 y F9(1)1727 1531 y Ga(;)g F4(\000)1824 1545 y F9(2)p
+1884 1519 11 41 v 1895 1501 46 5 v 1960 1531 a F4(\001)2036
+1545 y F9(1)2075 1531 y Ga(;)g F4(\001)2191 1545 y F9(2)2414
+1482 y Gg(Contr)p Black 3372 1531 a(\(2.3\))p Black 321
+1719 a(where)22 b(the)g(right)g(subproof)i(has)e(been)h(duplicated)h
+(and)e(where)g(the)g(double)h(lines)f(stand)h(for)f(se)n(v)o(eral)321
+1831 y(contractions.)32 b(The)22 b(reader)h(will)f(see)g(that)h(the)g
+(proof-size)h(of)f(the)f(reduct)i(is)d(v)n(astly)j(bigger)f(than)g(the)
+321 1944 y(proof)k(from)e(which)g(we)f(started.)35 b(In)26
+b(f)o(act,)f(it)g(is)g(not)h(hard)g(to)f(check)h(that)g(the)f
+(cut-elimination)k(pro-)321 2057 y(cess)g(can)f(result)g(into)h(super)n
+(-e)o(xponential)k(gro)n(wth)28 b(of)f(the)h(proof-size;)33
+b(see)28 b(for)f(e)o(xample)i([Girard)321 2170 y(et)24
+b(al.,)e(1989,)j(P)o(age)e(111].)462 2301 y(When)d(designing)j(a)c
+(cut-elimination)k(procedure)f(one)f(therefore)g(has)f(to)g(tak)o(e)g
+(care)h(that)f(for)g(e)n(v-)321 2414 y(ery)26 b(sequent)i(proof)f(the)f
+(process)i(of)d(applying)k(cut-reductions)h(actually)e(terminates;)h
+(that)d(means)321 2526 y(it)e(leads)h(to)f(a)f(cut-free)j(proof.)31
+b(In)24 b(this)h(thesis)g(we)e(shall)i(introduce)h(se)n(v)o(eral)f(no)o
+(v)o(el)g(cut-elimination)321 2639 y(procedures)g(for)d(classical)i
+(logic.)30 b(The)21 b(design)i(of)f(these)h(procedures)i(is)d(moti)n(v)
+n(ated)h(by)f(the)g(follo)n(w-)321 2752 y(ing)i(three)h(criteria:)p
+Black 458 2986 a F6(\017)p Black 46 w Gg(\002rst,)42
+b(the)e(cut-elimination)j(procedure)f(should)f F7(not)f
+Gg(restrict)h(the)e(collection)k(of)c(normal)549 3099
+y(forms)31 b(reachable)j(from)d(a)g(gi)n(v)o(en)h(proof)h(in)e(such)h
+(a)f(w)o(ay)g(that)h(\223essential\224)i(normal)e(forms)549
+3212 y(are)23 b(no)h(longer)h(reachable,)p Black 458
+3404 a F6(\017)p Black 46 w Gg(second,)f(the)g(cut-elimination)j
+(procedure)g(should)e(be)e F7(str)l(ongly)j(normalising)p
+Gg(,)g(i.e.,)c(all)i(pos-)549 3516 y(sible)g(reduction)i(strate)o(gies)
+g(should)f(terminate,)g(and)p Black 458 3708 a F6(\017)p
+Black 46 w Gg(third,)f(the)g(cut-elimination)j(procedure)f(should)f
+(allo)n(w)f(cuts)g(to)f(pass)i(o)o(v)o(er)e(other)i(cuts.)321
+3942 y(At)j(the)g(time)g(of)h(writing,)h(we)d(are)i(una)o(w)o(are)g(of)
+f(an)o(y)h(other)g(cut-elimination)j(procedure)f(for)d(a)g(se-)321
+4055 y(quent)37 b(calculus)h(formulation)h(of)c(classical)j(logic)f
+(that)g(satis\002es)g(all)e(three)i(criteria.)68 b(So)35
+b(let)h(us)321 4168 y(justify)25 b(these)g(criteria.)462
+4298 y(As)31 b(we)f(ha)n(v)o(e)i(seen)g(abo)o(v)o(e,)h(some)e
+(cut-reductions)36 b(can)31 b(be)g(applied)i(in)e(a)g
+(non-deterministic)321 4411 y(f)o(ashion)36 b(so)d(that)h(applying)i
+(dif)n(ferent)g(cut-reductions)h(may)d(result)g(in)g(dif)n(ferent)h
+(normal)g(forms.)321 4524 y(W)l(ith)g(respect)h(to)e(our)h(\002rst)f
+(criterion,)39 b(most)c(e)o(xisting)h(cut-elimination)i(procedures,)i
+(including)321 4637 y(Gentzen')-5 b(s)29 b(original,)g(are)e(thus)g
+(quite)h(unsatisf)o(actory)j(since)d(the)o(y)f(terminate)h(only)f(if)g
+(a)f(particular)321 4750 y(strate)o(gy)20 b(for)f(applying)h
+(cut-reductions)j(is)18 b(emplo)o(yed\227the)o(y)j(are)d
+F7(weakly)h(normalising)p Gg(.)30 b(Common)321 4863 y(e)o(xamples)k
+(being)g(an)e(innermost)i(reduction)h(strate)o(gy)-6
+b(,)36 b(or)d(the)f(elimination)j(of)e(the)f(cut)h(with)f(the)321
+4976 y(highest)k(rank.)60 b(An)34 b(unpleasant)i(consequence)i(of)c
+(these)h(strate)o(gies)h(is)d(that)i(the)o(y)f(surly)h(restrict)321
+5088 y(the)30 b(number)g(of)f(normal)h(forms)f(reachable)j(from)d(a)g
+(gi)n(v)o(en)g(proof.)47 b(As)28 b(we)h(shall)h(demonstrate)i(in)321
+5201 y(Chapter)f(4,)g(the)g(normal)g(forms)f(reachable)i(from)e(a)g
+(proof)h(play)g(ho)n(we)n(v)o(er)f(an)g(important)i(r)8
+b(\210)-38 b(ole)31 b(in)321 5314 y(in)l(v)o(estigating)h(a)27
+b(computational)k(interpretation)h(for)c(classical)i(proofs.)44
+b(Therefore)29 b(our)f(\002rst)g(tw)o(o)321 5427 y(criteria.)p
+Black Black eop end
+%%Page: 15 27
+TeXDict begin 15 26 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
+(Sequent)e(Calculi)2442 b(15)p 277 88 3691 4 v Black
+418 317 a Gg(As)35 b(a)h(\002rst)g(attempt)h(for)f(a)f(strongly)k
+(normalising)f(cut-elimination)i(procedure)e(one)f(might)277
+430 y(tak)o(e)e(simply)g(an)g(unrestricted)i(v)o(ersion)f(of)e
+(Gentzen')-5 b(s)36 b(cut-elimination)j(procedure;)j(that)35
+b(is)f(by)277 543 y(remo)o(ving)21 b(the)f(strate)o(gy)-6
+b(.)29 b(Unfortunately)-6 b(,)23 b(this)d(w)o(ould,)h(as)e(stated)i
+(earlier)l(,)h(allo)n(w)d(in\002nite)i(reduction)277
+656 y(sequences,)32 b(one)c(of)h(which)f(is)g(illustrated)j(in)d(the)g
+(follo)n(wing)i(e)o(xample)f(gi)n(v)o(en)g(by)f(Gallier)h([1993])277
+769 y(and)24 b(Danos)g(et)f(al.)h([1997].)p Black 277
+957 a Gb(Example)f(2.1.3:)p Black 35 w Gg(Consider)i(the)e(proof)p
+Black Black 1074 1071 213 4 v 1074 1144 a FU(A)p 1154
+1132 10 38 v 1164 1116 42 4 v 88 w(A)p 1369 1071 213
+4 v 83 w(A)p 1450 1132 10 38 v 1460 1116 42 4 v 89 w(A)p
+1074 1164 509 4 v 1113 1238 a(A)p FT(_)q FU(A)p 1311
+1226 10 38 v 1321 1209 42 4 v 88 w(A;)14 b(A)1623 1181
+y FT(_)1679 1193 y FS(L)p 1113 1274 430 4 v 1163 1347
+a FU(A)p FT(_)p FU(A)p 1361 1335 10 38 v 1371 1318 42
+4 v 89 w(A)1584 1296 y FR(Contr)1797 1308 y FS(R)p 1934
+1071 213 4 v 1934 1144 a FU(A)p 2014 1132 10 38 v 2024
+1116 42 4 v 88 w(A)p 2229 1071 213 4 v 83 w(A)p 2310
+1132 10 38 v 2319 1116 42 4 v 88 w(A)p 1934 1164 509
+4 v 1973 1238 a(A;)g(A)p 2153 1226 10 38 v 2162 1209
+42 4 v 88 w(A)p FT(^)q FU(A)2483 1181 y FT(^)2538 1193
+y FS(R)p 1973 1274 430 4 v 2022 1347 a FU(A)p 2103 1335
+10 38 v 2113 1318 42 4 v 89 w(A)p FT(^)p FU(A)2444 1296
+y FR(Contr)2657 1308 y FS(L)p 1163 1367 1190 4 v 1534
+1440 a FU(A)p FT(_)p FU(A)p 1732 1428 10 38 v 1742 1412
+42 4 v 89 w(A)p FT(^)p FU(A)2394 1395 y FR(Cut)277 1607
+y Gg(The)22 b(problem)h(lies)g(with)e(the)i(lo)n(wer)f(cut,)g(which)h
+(needs)g(to)f(be)g(permuted)i(upw)o(ards.)29 b(There)22
+b(are)h(tw)o(o)277 1720 y(possible)32 b(reductions:)43
+b(either)30 b(the)g(cut)f(can)h(be)f(permuted)i(upw)o(ards)f(in)f(the)h
+(left)f(proof)i(branch)f(or)277 1833 y(in)d(the)h(right)g(proof)h
+(branch.)42 b(In)27 b(both)h(cases)h(a)e(subproof)i(needs)g(to)e(be)h
+(duplicated.)43 b(If)27 b(one)h(is)f(not)277 1945 y(careful,)34
+b(applying)f(these)e(reductions)j(in)c(alternation)k(can)d(lead)g(to)g
+(arbitrary)i(big)e(normal)g(forms)277 2058 y(and)e(to)f
+(non-termination.)47 b(F)o(or)28 b(e)o(xample,)i(consider)g(the)f
+(reduction)i(sequence)g(starting)f(with)e(the)277 2171
+y(proof)d(abo)o(v)o(e)f(and)g(continuing)i(as)e(follo)n(ws)p
+Black Black 730 2395 213 4 v 730 2468 a FU(A)p 811 2456
+10 38 v 821 2440 42 4 v 89 w(A)p 1026 2395 213 4 v 83
+w(A)p 1107 2456 10 38 v 1116 2440 42 4 v 88 w(A)p 730
+2488 509 4 v 770 2562 a(A)p FT(_)p FU(A)p 968 2550 10
+38 v 978 2533 42 4 v 89 w(A;)14 b(A)1280 2505 y FT(_)1335
+2517 y FS(L)p 1468 2286 213 4 v 1468 2359 a FU(A)p 1549
+2347 10 38 v 1558 2330 42 4 v 88 w(A)p 1763 2286 213
+4 v 83 w(A)p 1844 2347 10 38 v 1854 2330 42 4 v 89 w(A)p
+1468 2379 509 4 v 1507 2452 a(A;)g(A)p 1687 2440 10 38
+v 1697 2423 42 4 v 89 w(A)p FT(^)p FU(A)2017 2396 y FT(^)2073
+2408 y FS(R)p 1507 2488 430 4 v 1557 2562 a FU(A)p 1638
+2550 10 38 v 1647 2533 42 4 v 88 w(A)p FT(^)q FU(A)1978
+2510 y Gd(Contr)2168 2522 y FS(L)p 770 2598 1118 4 v
+1055 2671 a FU(A)p FT(_)q FU(A)p 1253 2659 10 38 v 1263
+2642 42 4 v 88 w(A;)g(A)p FT(^)q FU(A)1929 2625 y Gd(Cut)p
+2300 2395 213 4 v 2300 2468 a FU(A)p 2381 2456 10 38
+v 2390 2440 42 4 v 88 w(A)p 2595 2395 213 4 v 83 w(A)p
+2676 2456 10 38 v 2686 2440 42 4 v 89 w(A)p 2300 2488
+509 4 v 2339 2562 a(A;)g(A)p 2519 2550 10 38 v 2529 2533
+42 4 v 89 w(A)p FT(^)p FU(A)2849 2505 y FT(^)2905 2517
+y FS(R)p 2339 2598 430 4 v 2389 2671 a FU(A)p 2470 2659
+10 38 v 2479 2642 42 4 v 88 w(A)p FT(^)q FU(A)2810 2620
+y Gd(Contr)3000 2632 y FS(L)p 1055 2707 1665 4 v 1555
+2780 a FU(A)p FT(_)p FU(A)p 1753 2768 10 38 v 1763 2752
+42 4 v 89 w(A)p FT(^)p FU(A;)g(A)p FT(^)q FU(A)2761 2735
+y Gd(Cut)p 1555 2816 665 4 v 1663 2890 a FU(A)p FT(_)q
+FU(A)p 1861 2878 10 38 v 1871 2861 42 4 v 88 w(A)p FT(^)q
+FU(A)2261 2838 y Gd(Contr)2451 2850 y FS(R)277 3056 y
+Gg(where)34 b(the)f(cut)g(is)g(permuted)i(to)e(the)g(left,)j(creating)f
+(tw)o(o)e(copies)h(of)f(the)h(right)g(subproof.)60 b(No)n(w)277
+3169 y(permute)25 b(the)f(upper)g(cut)g(to)g(the)f(right,)i(which)e(gi)
+n(v)o(es)h(the)g(follo)n(wing)h(proof.)p Black Black
+395 3393 213 4 v 395 3466 a FU(A)p 476 3454 10 38 v 485
+3438 42 4 v 88 w(A)p 690 3393 213 4 v 83 w(A)p 771 3454
+10 38 v 781 3438 42 4 v 89 w(A)p 395 3486 509 4 v 434
+3559 a(A)p FT(_)q FU(A)p 633 3547 10 38 v 642 3531 42
+4 v 88 w(A;)14 b(A)944 3503 y FT(_)1000 3515 y FS(L)p
+1132 3283 213 4 v 1132 3357 a FU(A)p 1213 3345 10 38
+v 1223 3328 42 4 v 89 w(A)p 1428 3283 213 4 v 83 w(A)p
+1509 3345 10 38 v 1518 3328 42 4 v 88 w(A)p 1132 3377
+509 4 v 1172 3450 a(A)p FT(_)p FU(A)p 1370 3438 10 38
+v 1380 3421 42 4 v 89 w(A;)g(A)1682 3394 y FT(_)1737
+3406 y FS(L)p 1870 3283 213 4 v 1870 3357 a FU(A)p 1951
+3345 10 38 v 1960 3328 42 4 v 88 w(A)p 2166 3283 213
+4 v 84 w(A)p 2246 3345 10 38 v 2256 3328 42 4 v 88 w(A)p
+1870 3377 509 4 v 1909 3450 a(A;)g(A)p 2089 3438 10 38
+v 2099 3421 42 4 v 89 w(A)p FT(^)p FU(A)2420 3394 y FT(^)2475
+3406 y FS(R)p 1172 3486 1167 4 v 1432 3559 a FU(A)p FT(_)q
+FU(A;)g(A)p 1730 3547 10 38 v 1739 3531 42 4 v 88 w(A;)g(A)p
+FT(^)q FU(A)2380 3514 y Gd(Cut)p 434 3596 1645 4 v 825
+3669 a FU(A)p FT(_)p FU(A;)g(A)p FT(_)q FU(A)p 1240 3657
+10 38 v 1250 3640 42 4 v 88 w(A;)g(A;)g(A)p FT(^)q FU(A)2120
+3623 y Gd(Cut)p 825 3705 863 4 v 933 3778 a FU(A)p FT(_)q
+FU(A)p 1132 3766 10 38 v 1141 3750 42 4 v 88 w(A;)g(A;)g(A)p
+FT(^)q FU(A)1729 3727 y Gd(Contr)1919 3739 y FS(L)p 933
+3814 647 4 v 983 3888 a FU(A)p FT(_)p FU(A)p 1181 3876
+10 38 v 1191 3859 42 4 v 89 w(A;)g(A)p FT(^)p FU(A)1621
+3837 y FR(Contr)1834 3849 y FS(R)p 2612 3612 213 4 v
+2612 3685 a FU(A)p 2693 3673 10 38 v 2703 3656 42 4 v
+89 w(A)p 2908 3612 213 4 v 83 w(A)p 2989 3673 10 38 v
+2998 3656 42 4 v 88 w(A)p 2612 3705 509 4 v 2652 3778
+a(A;)g(A)p 2832 3766 10 38 v 2841 3750 42 4 v 88 w(A)p
+FT(^)q FU(A)3162 3722 y FT(^)3217 3734 y FS(R)p 2652
+3814 430 4 v 2701 3888 a FU(A)p 2782 3876 10 38 v 2792
+3859 42 4 v 89 w(A)p FT(^)p FU(A)3123 3837 y FR(Contr)3336
+3849 y FS(L)p 983 3924 2049 4 v 1675 3997 a FU(A)p FT(_)q
+FU(A)p 1873 3985 10 38 v 1883 3968 42 4 v 88 w(A)p FT(^)p
+FU(A;)g(A)p FT(^)q FU(A)3073 3952 y FR(Cut)p 1675 4033
+665 4 v 1783 4106 a FU(A)p FT(_)q FU(A)p 1982 4094 10
+38 v 1991 4078 42 4 v 88 w(A)p FT(^)q FU(A)2381 4055
+y Gd(Contr)2571 4067 y FS(R)277 4273 y Gg(This)22 b(proof)i(contains)h
+(an)d(instance)j(of)d(the)h(reduction)i(applied)f(in)f(the)g(\002rst)f
+(step)h(\(bold)g(f)o(ace\).)30 b(Ev)o(en)277 4386 y(w)o(orse,)23
+b(it)f(is)h(bigger)h(than)f(the)g(proof)h(with)e(which)h(we)f(started,)
+i(and)f(so)f(in)h(ef)n(fect)g(we)f(can)h(construct)277
+4499 y(reduction)j(sequences)g(with)e(possibly)i(in\002nitely)f(big)f
+(normal)g(forms.)418 4753 y(It)g(seems)h(dif)n(\002cult)g(to)f(a)n(v)n
+(oid)i(the)f(in\002nite)g(reduction)h(sequence)h(gi)n(v)o(en)e(in)f
+(the)h(e)o(xample)g(abo)o(v)o(e)277 4866 y(using)k(an)e(unrestricted)k
+(Gentzen-lik)o(e)f(formulation)g(of)d(the)h(cut-reductions.)44
+b(A)26 b(number)i(of)g(peo-)277 4979 y(ple,)38 b(for)d(e)o(xample)g
+(Dragalin)h([1988],)g(Herbelin)g([1994],)g(Cichon)g(et)e(al.)h([1996],)
+h(Danos)f(et)g(al.)277 5092 y([1997])26 b(and)g(Bittar)f([1999],)h(ha)n
+(v)o(e)f(managed)i(to)d(de)n(v)o(elop)i(strongly)h(normalising)h
+(cut-elimination)277 5204 y(procedures,)e(b)n(ut)e(the)o(y)g(all)g
+(impose)g(f)o(airly)h(strong)g(restrictions)i(on)c(the)h
+(cut-reductions.)p Black Black eop end
+%%Page: 16 28
+TeXDict begin 16 27 bop Black -144 51 a Gb(16)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 462 317 a Gg(Here)j(is)f(one)h
+(common)g(restriction:)34 b(consider)27 b(the)e(follo)n(wing)h
+(reduction)h(rule,)e(which)g(allo)n(ws)321 430 y(a)e(cut-rule)j(\(Suf)n
+(\002x)d(2\))g(to)h(pass)g(o)o(v)o(er)g(another)h(cut-rule)g(\(Suf)n
+(\002x)e(1\).)p Black Black 322 561 a Ga(:)15 b(:)g(:)p
+464 549 11 41 v 474 531 46 5 v 128 w(:)g(:)g(:)77 b(:)15
+b(:)g(:)p 878 549 11 41 v 889 531 46 5 v 127 w(:)g(:)g(:)p
+322 581 754 4 v 530 650 a(:)g(:)g(:)p 671 638 11 41 v
+681 620 46 5 v 127 w(:)g(:)g(:)1102 605 y Gg(Cut)1233
+619 y F9(1)1293 650 y Ga(:)g(:)g(:)p 1434 638 11 41 v
+1445 620 46 5 v 127 w(:)g(:)g(:)p 530 670 1102 4 v 911
+739 a(:)g(:)g(:)p 1053 727 11 41 v 1063 709 46 5 v 128
+w(:)g(:)g(:)1658 694 y Gg(Cut)1789 708 y F9(2)1857 692
+y F6(\000)-31 b(\000)f(!)2039 561 y Ga(:)15 b(:)g(:)p
+2180 549 11 41 v 2191 531 46 5 v 128 w(:)g(:)g(:)77 b(:)15
+b(:)g(:)p 2595 549 11 41 v 2605 531 46 5 v 127 w(:)g(:)g(:)p
+2039 581 754 4 v 2246 650 a(:)g(:)g(:)p 2388 638 11 41
+v 2398 620 46 5 v 128 w(:)g(:)g(:)2819 605 y Gg(Cut)2950
+619 y F9(2)3009 650 y Ga(:)g(:)g(:)p 3151 638 11 41 v
+3161 620 46 5 v 128 w(:)g(:)g(:)p 2246 670 1102 4 v 2628
+739 a(:)g(:)g(:)p 2769 727 11 41 v 2780 709 46 5 v 128
+w(:)g(:)g(:)3375 694 y Gg(Cut)3506 708 y F9(1)321 893
+y Gg(Clearly)-6 b(,)25 b(this)f(reduction)i(w)o(ould)f(immediately)g
+(break)g(strong)g(normalisation)i(because)f(the)e(reduct)321
+1006 y(is)j(again)g(an)g(instance)i(of)e(this)g(rule,)h(and)f(we)f(can)
+h(loop)h(by)e(constantly)k(applying)f(this)f(rule.)39
+b(Thus)321 1119 y(a)29 b(common)h(restriction)j(is)c(not)h(to)g(allo)n
+(w)f(a)h(cut-rule)h(to)f(pass)g(o)o(v)o(er)g(another)h(cut-rule)h(in)d
+(an)o(y)h(cir)n(-)321 1232 y(cumstances.)45 b(Ho)n(we)n(v)o(er)l(,)29
+b(this)f(has)h(se)n(v)o(eral)g(serious)h(dra)o(wbacks.)43
+b(In)28 b(the)h(intuitionistic)j(case,)d(for)321 1345
+y(e)o(xample,)f(such)g(a)e(restriction)k(limits)d(the)g(correspondence)
+k(between)d(cut-elimination)i(and)e(beta-)321 1458 y(reduction.)47
+b(In)28 b(particular)l(,)33 b(strong)d(normalisation)i(of)c
+(beta-reduction)33 b(cannot)d(be)f(inferred)i(from)321
+1571 y(strong)j(normalisation)h(of)d(cut-elimination,)38
+b(as)32 b(noted)h(by)f(Herbelin)i([1994])f(and)g(by)f(Dyckhof)n(f)321
+1684 y(and)24 b(Pinto)g([1998].)30 b(Therefore)25 b(our)f(third)h
+(criterion.)462 1813 y(In)g(the)h(rest)f(of)g(this)g(chapter)i(we)d
+(shall)i(de)n(v)o(elop)h(strongly)g(normalising)g(cut-elimination)i
+(pro-)321 1926 y(cedures)36 b(which)f(contain)h(the)e(standard)i
+(Gentzen-lik)o(e)h(cut-elimination)h(steps)d(for)f(logical)i(cuts)321
+2039 y(and)26 b(allo)n(w)g(commuting)h(cuts)f(to)g(pass)g(o)o(v)o(er)g
+(other)g(cuts.)36 b(As)25 b(a)g(pleasing)i(result,)g(we)e(can)h
+(simulate)321 2152 y(beta-reduction)i(and)d(infer)f(strong)i
+(normalisation)h(for)d(the)g(simply-typed)j(lambda)e(calculus)h(from)
+321 2265 y(the)g(strong)h(normalisation)i(result)e(of)f(one)g(of)g(our)
+g(cut-elimination)j(procedures.)39 b(W)-7 b(e)24 b(shall)j(pro)o(v)o(e)
+321 2378 y(this)d(result)h(in)f(Chapter)g(3.)462 2507
+y(Danos)i(et)f(al.)g(allo)n(w)h(cut-rules)h(to)f(pass)g(o)o(v)o(er)f
+(other)h(cut-rules)i(in)d(their)h(strongly)i(normalising)321
+2620 y(cut-elimination)k(procedure)e(introduced)h(for)d(the)g(sequent)h
+(calculus)h(LK)2732 2587 y Gc(tq)2822 2620 y Gg([Danos)e(et)g(al.,)f
+(1997,)321 2733 y(Joinet)e(et)d(al.,)h(1998].)29 b(So)23
+b(this)g(cut-elimination)k(procedure)e(satis\002es)f(our)g(second)g
+(and)g(third)g(crite-)321 2846 y(rion,)h(b)n(ut)g(as)g(we)e(shall)i
+(see)g(it)f(violates)j(the)d(\002rst.)31 b(In)24 b(LK)2147
+2813 y Gc(tq)2234 2846 y Gg(e)n(v)o(ery)h(formula)g(\(and)g(its)g
+(subformulae\))321 2959 y(are)j(required)j(to)c(be)h(coloured)j(with)c
+(either)j(`)p Ga(\()p Gg(')d(or)h(`)p Ga(*)p Gg('.)42
+b(Here)27 b(is)h(an)g(instance)i(of)e(a)g(cut-rule)i(in)321
+3072 y(LK)443 3039 y Gc(tq)506 3072 y Gg(.)p Black Black
+1291 3156 a FS(\()1293 3230 y FU(A)p 1399 3210 10 38
+v 1408 3193 42 4 v 1495 3109 a FS(\()-11 b FQ(\000)g(\000)g(\000)g
+(\000)1494 3156 y FS(\()1491 3230 y FU(B)1582 3222 y
+FT(^)1663 3156 y FS(*)1660 3230 y FU(C)1978 3109 y FS(\()g
+FQ(\000)g(\000)g(\000)g(\000)1978 3156 y FS(\()1975 3230
+y FU(B)2065 3222 y FT(^)2147 3156 y FS(*)2144 3230 y
+FU(C)p 2251 3210 10 38 v 2261 3193 42 4 v 2348 3156 a
+FS(*)2344 3230 y FU(D)p 1291 3250 1125 4 v 1717 3297
+a FS(\()1719 3371 y FU(A)p 1825 3351 10 38 v 1835 3334
+42 4 v 1921 3297 a FS(*)1918 3371 y FU(D)2457 3277 y
+Gd(Cut)321 3513 y Gg(Recall)32 b(the)g(problematic)i(in\002nite)e
+(reduction)j(sequence)e(in)f(Example)g(2.1.3.)52 b(This)32
+b(sequence)i(is)321 3612 y(a)n(v)n(oided)e(in)e(LK)856
+3579 y Gc(tq)948 3612 y Gg(by)f(de)n(vising)j(a)d(speci\002c)i
+(protocol)h(for)e(cut-elimination,)35 b(which)30 b(uses)g(the)g(ad-)321
+3712 y(ditional)k(information)g(pro)o(vided)f(by)f(the)g(colours.)54
+b(If)32 b(in)f(a)g(commuting)i(cut)f(the)g(colour)h(`)p
+Ga(\()p Gg(')e(is)321 3811 y(attached)25 b(to)e(the)h(cut-formula,)h
+(then)f(the)f(commuting)h(cut)g(is)f(permuted)h(to)f(the)g(left,)h(and)
+f(similarly)321 3911 y(for)i(the)g(`)p Ga(*)p Gg('-colour)h(\(hence)g
+(the)f(use)g(of)f(an)h(arro)n(w)f(to)g(denote)i(a)e(colour!\).)34
+b(Suppose)26 b(we)d(ha)n(v)o(e)i(the)321 4011 y(follo)n(wing)g(colour)g
+(annotation)i(for)d(the)f(commuting)i(cut)f(gi)n(v)o(en)g(in)g
+(\(2.1\).)1245 4111 y FS(*)1242 4185 y FU(B)p 1351 4165
+10 38 v 1360 4148 42 4 v 1446 4111 a FS(*)1444 4185 y
+FU(C)1510 4177 y(;)1550 4111 y FS(\()1546 4185 y FU(D)p
+1178 4213 504 4 v 1197 4374 10 38 v 1206 4358 42 4 v
+1297 4273 a FS(\()-11 b FQ(\000)g(\000)g(\000)g(\000)1292
+4321 y FS(*)1289 4394 y FU(B)1379 4386 y FT(\033)1470
+4321 y FS(*)1467 4394 y FU(C)1533 4386 y(;)p 0.75 TeXcolorgray
+0.75 TeXcolorgray 1570 4419 112 154 v 0.75 TeXcolorgray
+Black 1599 4321 a FS(\()1595 4394 y FU(D)p 0.75 TeXcolorgray
+Black 1723 4229 a FT(\033)1788 4241 y FS(R)2125 4111
+y(\()2121 4185 y FU(D)2192 4177 y(;)2232 4111 y FS(*)2229
+4185 y FU(E)p 2337 4165 10 38 v 2347 4148 42 4 v 2017
+4213 494 4 v 0.75 TeXcolorgray 0.75 TeXcolorgray 2017
+4419 112 154 v 0.75 TeXcolorgray Black 2046 4321 a FS(\()2042
+4394 y FU(D)p 0.75 TeXcolorgray Black 2129 4386 a(;)2168
+4273 y FQ(\000)g(\000)g(\000)g(\000)g FS(*)2168 4321
+y(*)2166 4394 y FU(E)2255 4386 y FT(^)2339 4321 y FS(*)2334
+4394 y FU(F)p 2441 4374 10 38 v 2451 4358 42 4 v 2552
+4225 a FT(^)2607 4238 y FS(L)2653 4246 y FP(1)p 1178
+4439 1333 4 v 1541 4500 a FQ(\000)g(\000)g(\000)g(\000)g
+FS(*)1541 4547 y(*)1538 4621 y FU(E)1628 4613 y FT(^)1712
+4547 y FS(*)1707 4621 y FU(F)p 1814 4601 10 38 v 1823
+4584 42 4 v 1914 4500 a FQ(\000)g(\000)g(\000)g(\000)g
+FS(*)1909 4547 y(*)1906 4621 y FU(B)1996 4613 y FT(\033)2087
+4547 y FS(*)2085 4621 y FU(C)2552 4467 y Gd(Cut)324 4767
+y Gg(Then)23 b(this)g(cut,)f(because)j(the)d(cut-formula)j
+Ga(D)g Gg(is)d(annotated)j(with)e(`)p Ga(\()p Gg(',)f(reduces)i(to)e
+(the)h(follo)n(wing)321 4880 y(proof)i(instance,)g(only)-6
+b(.)1368 5111 y FS(*)1366 5185 y FU(B)p 1474 5165 10
+38 v 1484 5148 42 4 v 1570 5111 a FS(*)1567 5185 y FU(C)1633
+5177 y(;)1674 5111 y FS(\()1670 5185 y FU(D)1958 4901
+y FS(\()1954 4975 y FU(D)2025 4967 y(;)2064 4901 y FS(*)2062
+4975 y FU(E)p 2170 4955 10 38 v 2179 4938 42 4 v 1870
+5003 453 4 v 1874 5111 a FS(\()1870 5185 y FU(D)1941
+5177 y(;)1981 5064 y FQ(\000)-11 b(\000)g(\000)g(\000)g
+FS(*)1981 5111 y(*)1978 5185 y FU(E)2067 5177 y FT(^)2152
+5111 y FS(*)2146 5185 y FU(F)p 2253 5165 10 38 v 2263
+5148 42 4 v 2364 5015 a FT(^)2420 5028 y FS(L)2466 5036
+y FP(1)p 1366 5213 958 4 v 1578 5321 a FS(*)1575 5394
+y FU(B)1642 5386 y(;)1682 5274 y FQ(\000)g(\000)g(\000)g(\000)g
+FS(*)1682 5321 y(*)1679 5394 y FU(E)1769 5386 y FT(^)1853
+5321 y FS(*)1848 5394 y FU(F)p 1955 5374 10 38 v 1964
+5358 42 4 v 2050 5321 a FS(*)2048 5394 y FU(C)2364 5240
+y Gd(Cut)p 1538 5423 612 4 v 1541 5483 a FQ(\000)g(\000)g(\000)g(\000)g
+FS(*)1541 5531 y(*)1538 5604 y FU(E)1628 5596 y FT(^)1712
+5531 y FS(*)1707 5604 y FU(F)p 1814 5584 10 38 v 1823
+5568 42 4 v 1914 5483 a FQ(\000)g(\000)g(\000)g(\000)g
+FS(*)1909 5531 y(*)1906 5604 y FU(B)1996 5596 y FT(\033)2087
+5531 y FS(*)2085 5604 y FU(C)2192 5439 y FT(\033)2256
+5451 y FS(R)p Black Black eop end
+%%Page: 17 29
+TeXDict begin 17 28 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
+(Sequent)e(Calculi)2442 b(17)p 277 88 3691 4 v Black
+277 451 a Gg(By)29 b(enforcing)j(that)e(commuting)h(cuts)f(can)g(be)g
+(permuted)h(into)f(one)g(direction)i(only)-6 b(,)32 b(the)e(in\002nite)
+277 564 y(reduction)22 b(sequence)f(gi)n(v)o(en)f(in)f(Example)h(2.1.3)
+f(cannot)i(be)e(constructed.)31 b(Ho)n(we)n(v)o(er)l(,)19
+b(there)h(are)g(tw)o(o)277 677 y(anno)o(ying)31 b(restrictions)h(in)d
+(their)g(cut-elimination)j(procedure)g(for)c(LK)2597
+644 y Gc(tq)2660 677 y Gg(,)h(both)g(of)g(which)g(violate)277
+790 y(our)24 b(\002rst)f(criterion.)p Black 414 1040
+a F6(\017)p Black 45 w Gg(First,)k(there)g(is)f(a)g(problem)h(with)f
+(the)h(compositionality)j(of)c(the)h(colour)g(annotation,)j(in)c(the)
+504 1153 y(sense)38 b(that)e(some)g(cuts)h(require)h(the)e(same)g
+(colour)h(annotation)i(for)e(their)f(cut-formulae:)504
+1266 y(the)30 b(choice)i(of)d(a)h(colouring)i(can)e(permeate)h(through)
+h(a)e(proof.)48 b(In)30 b(particular)l(,)k(the)c(colour)504
+1378 y(annotation)h(has)d(to)f(respect,)j(using)e(terminology)i
+(introduced)h(for)c(LK)2832 1346 y Gc(tq)2895 1378 y
+Gg(,)g F7(identity)j(classes)504 1491 y Gg([Schellinx,)36
+b(1994,)i(P)o(age)c(107].)61 b(F)o(or)33 b(e)o(xample,)38
+b(in)c(the)g(follo)n(wing)i(LK-proof)f(with)f(tw)o(o)504
+1604 y(commuting)25 b(cuts)1208 1940 y(.)1208 1973 y(.)1208
+2006 y(.)p 1180 2074 11 41 v 1190 2056 46 5 v 1256 2086
+a Ga(B)p 1709 1802 244 4 v 1709 1881 a(B)p 1802 1869
+11 41 v 1813 1850 46 5 v 101 w(B)1819 1906 y Gg(.)1819
+1940 y(.)1819 1973 y(.)1819 2006 y(.)1602 2086 y Ga(B)5
+b(;)15 b F4(\000)p 1793 2074 11 41 v 1803 2056 46 5 v
+96 w(\001)p Ga(;)g(B)p 1109 2123 950 4 v 1412 2202 a
+F4(\000)p 1489 2190 11 41 v 1500 2172 46 5 v 97 w(\001)p
+Ga(;)g(B)2100 2154 y Gg(Cut)2603 2056 y(.)2603 2089 y(.)2603
+2122 y(.)2504 2202 y Ga(B)p 2598 2190 11 41 v 2609 2172
+46 5 v 1412 2240 1313 4 v 1954 2318 a F4(\000)p 2031
+2306 11 41 v 2042 2288 46 5 v 96 w(\001)2766 2270 y Gg(Cut)504
+2581 y(all)23 b(occurrences)j(of)c Ga(B)27 b Gg(must)22
+b(in)h(LK)1679 2548 y Gc(tq)1763 2581 y Gg(ha)n(v)o(e)h(the)e(same)h
+(colour)-5 b(.)30 b(Consequently)-6 b(,)26 b(the)d(normal)504
+2694 y(forms)d(that)h(arise)f(in)g(LK)e(by)h(permuting)j(both)e(cuts)h
+(to)n(w)o(ards)f(the)g(axiom,)h(where)f(the)o(y)g(mer)n(ge)504
+2807 y(into)25 b(a)e(single)i(cut,)e(cannot)i(be)f(obtained)i(in)d(LK)
+2053 2774 y Gc(tq)2116 2807 y Gg(.)p Black 414 3011 a
+F6(\017)p Black 45 w Gg(Second,)29 b(the)f(colour)h(annotation)h(is)e
+(in)l(v)n(ariant)i(under)e(cut-reductions.)45 b(Thus)27
+b(whene)n(v)o(er)i(a)504 3124 y(cut)h(is)f(duplicated)j(in)d(a)g
+(reduction)j(sequence,)h(the)c(colour)i(annotation)h(pre)n(v)o(ents)f
+(both)f(in-)504 3237 y(stances)c(from)e(reducing)i(dif)n(ferently)-6
+b(.)33 b(Figure)25 b(2.1)e(gi)n(v)o(es)i(an)f(e)o(xample)h(of)e(such)i
+(a)f(reduction)504 3350 y(sequence)i(that)e(e)o(xists)h(in)e(LK,)f(b)n
+(ut)i(not)g(in)f(LK)1999 3317 y Gc(tq)2062 3350 y Gg(.)277
+3600 y(Making)34 b(the)g(cut-elimination)j(procedure)f(dependent)g(on)d
+(the)h(colour)g(annotations)j(is)c(a)g(strong)277 3713
+y(restriction:)44 b(certainly)31 b(some)e(normal)h(forms)g(can)f(no)h
+(longer)g(be)f(reached.)48 b(In)29 b(f)o(act,)i(the)f(colours)277
+3826 y(constrain)35 b(the)e(cut-elimination)k(procedure)e(to)e(be)g
+(con\003uent,)j(which)e(is)e(an)h(essential)i(property)277
+3939 y(in)30 b(the)h(strong)h(normalisation)i(proof)d(of)f(Danos)h(et)g
+(al.:)42 b(it)30 b(enabled)j(them)d(to)g(e)o(xploit)i(the)f(strong)277
+4052 y(normalisation)g(result)d(for)g(proof-nets)i(in)d(linear)i(logic)
+f([Girard,)g(1987a].)42 b(The)27 b(colours)i(are)f(used)277
+4164 y(ingeniously)38 b(to)c(map)g(e)n(v)o(ery)h(LK)1383
+4131 y Gc(tq)1446 4164 y Gg(-proof)h(to)e(a)g(corresponding)39
+b(proof-net)e(in)d(linear)h(logic)h(and)277 4277 y(e)n(v)o(ery)24
+b(cut-elimination)j(step)e(to)e(a)g(series)i(of)e(reductions)k(on)c
+(proof-nets.)418 4411 y(W)-7 b(e)24 b(shall)h(sho)n(w)f(that)h(the)g
+(colour)g(annotations)j(of)c(LK)2183 4378 y Gc(tq)2269
+4411 y Gg(are,)h(in)f(f)o(act,)h(unnecessary)j(to)c(ensure)277
+4524 y(strong)h(normalisation)h(of)d(cut-elimination.)33
+b(As)22 b(stated)i(earlier)l(,)h(a)e(pleasing)i(consequence)i(is)c
+(that,)277 4637 y(in)28 b(general,)j(more)d(normal)g(forms)h(can)f(be)g
+(reached)i(from)e(a)f(gi)n(v)o(en)i(proof)g(containing)i(cuts.)43
+b(One)277 4750 y(not-so-pleasing)c(consequence)f(of)d(the)g(generality)
+i(of)d(our)h(cut-elimination)j(procedure)f(is)e(that)277
+4863 y(strong)f(normalisation)h(is)d(more)g(dif)n(\002cult)h(to)f(pro)o
+(v)o(e;)37 b(it)32 b(cannot,)j(for)e(e)o(xample,)h(be)f(pro)o(v)o(ed)g
+(by)f(a)277 4976 y(translation)i(into)e(proof-nets.)55
+b(In)31 b(the)g(end,)i(we)e(found)h(it)f(e)o(xtremely)i(useful)f(to)f
+(de)n(v)o(elop)i(a)e(term)277 5088 y(calculus)d(for)d(sequent)i(deri)n
+(v)n(ations.)37 b(This)25 b(then)h(allo)n(wed)h(us)e(to)g(adapt)i
+(directly)g(a)e(po)n(werful)h(proof)277 5201 y(technique)g(from)e(the)g
+(term)f(re)n(writing)i(literature)h([Barbanera)f(and)f(Berardi,)g
+(1994].)p Black Black eop end
+%%Page: 18 30
+TeXDict begin 18 29 bop Black -144 51 a Gb(18)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black Black -144 508 V -144
+3960 4 3452 v 67 731 491 4 v 67 810 a Ga(A)p F6(_)p Ga(A)p
+284 798 11 41 v 295 780 46 5 v 96 w(A)p F6(_)p Ga(A)p
+743 731 491 4 v 186 w(A)p F6(_)p Ga(A)p 960 798 11 41
+v 970 780 46 5 v 96 w(A)p F6(_)p Ga(A)p 67 830 1166 4
+v 87 915 a F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p F6(_)p
+F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 703 903 11 41 v
+713 884 46 5 v 97 w Ga(A)p F6(_)p Ga(A;)15 b(A)p F6(_)p
+Ga(A)1274 848 y F6(_)1335 862 y Gc(L)p 87 957 1127 4
+v 205 1042 a F4(\()p Ga(A)p F6(_)q Ga(A)p F4(\))p F6(_)p
+F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 822 1030 11 41 v
+832 1012 46 5 v 97 w Ga(A)p F6(_)o Ga(A)1255 981 y Gg(Contr)1461
+995 y Gc(R)p 1611 650 233 4 v 1611 729 a Ga(A)p 1699
+717 11 41 v 1709 698 46 5 v 96 w(A)p 1934 650 233 4 v
+91 w(A)p 2023 717 11 41 v 2033 698 46 5 v 97 w(A)p 1611
+748 557 4 v 1654 827 a(A)p F6(_)o Ga(A)p 1871 815 11
+41 v 1881 797 46 5 v 97 w(A;)g(A)2208 767 y F6(_)2269
+781 y Gc(L)p 1654 865 471 4 v 1708 943 a Ga(A)p F6(_)p
+Ga(A)p 1925 931 11 41 v 1936 913 46 5 v 96 w(A)2165 889
+y Gg(Contr)2371 903 y Gc(R)p 2521 650 233 4 v 2521 729
+a Ga(A)p 2609 717 11 41 v 2620 698 46 5 v 96 w(A)p 2845
+650 233 4 v 92 w(A)p 2933 717 11 41 v 2943 698 46 5 v
+96 w(A)p 2521 748 557 4 v 2564 827 a(A;)g(A)p 2761 815
+11 41 v 2771 797 46 5 v 97 w(A)p F6(^)p Ga(A)3119 767
+y F6(^)3179 781 y Gc(R)p 2564 865 471 4 v 2618 943 a
+Ga(A)p 2707 931 11 41 v 2717 913 46 5 v 97 w(A)p F6(^)p
+Ga(A)3076 889 y Gg(Contr)3282 903 y Gc(L)p 1708 963 1272
+4 v 2099 1042 a Ga(A)p F6(_)p Ga(A)p 2316 1030 11 41
+v 2326 1012 46 5 v 96 w(A)p F6(^)p Ga(A)3021 994 y Gg(Cut)g
+FO(?)p 205 1085 2384 4 v 953 1170 a F4(\()p Ga(A)p F6(_)p
+Ga(A)p F4(\))p F6(_)p F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p
+1569 1158 11 41 v 1579 1139 46 5 v 97 w Ga(A)p F6(^)p
+Ga(A)2631 1115 y Gg(Cut)1671 1405 y FN(#)p -33 1595 233
+4 v -33 1674 a Ga(A)p 55 1662 11 41 v 66 1643 46 5 v
+97 w(A)p 291 1595 233 4 v 91 w(A)p 379 1662 11 41 v 390
+1643 46 5 v 96 w(A)p -33 1694 557 4 v 10 1772 a(A)p F6(_)p
+Ga(A)p 227 1760 11 41 v 238 1742 46 5 v 97 w(A;)g(A)565
+1712 y F6(_)625 1726 y Gc(L)p 10 1810 471 4 v 65 1889
+a Ga(A)p F6(_)o Ga(A)p 282 1877 11 41 v 292 1858 46 5
+v 97 w(A)522 1834 y Gg(Contr)728 1848 y Gc(R)p 830 1595
+233 4 v 830 1674 a Ga(A)p 919 1662 11 41 v 929 1643 46
+5 v 97 w(A)p 1154 1595 233 4 v 91 w(A)p 1242 1662 11
+41 v 1253 1643 46 5 v 96 w(A)p 830 1694 557 4 v 873 1772
+a(A;)g(A)p 1070 1760 11 41 v 1081 1742 46 5 v 97 w(A)p
+F6(^)p Ga(A)1428 1712 y F6(^)1489 1726 y Gc(R)p 873 1810
+471 4 v 928 1889 a Ga(A)p 1016 1877 11 41 v 1026 1858
+46 5 v 96 w(A)p F6(^)p Ga(A)1385 1834 y Gg(Contr)1591
+1848 y Gc(L)p 65 1909 1225 4 v 432 1987 a Ga(A)p F6(_)o
+Ga(A)p 649 1975 11 41 v 659 1957 46 5 v 97 w(A)p F6(^)p
+Ga(A)1331 1939 y Gg(Cut)g FO(?)p 1735 1595 233 4 v 1735
+1674 a Ga(A)p 1823 1662 11 41 v 1834 1643 46 5 v 97 w(A)p
+2059 1595 233 4 v 91 w(A)p 2147 1662 11 41 v 2157 1643
+46 5 v 96 w(A)p 1735 1694 557 4 v 1778 1772 a(A)p F6(_)p
+Ga(A)p 1995 1760 11 41 v 2006 1742 46 5 v 96 w(A;)g(A)2333
+1712 y F6(_)2393 1726 y Gc(L)p 1778 1810 471 4 v 1832
+1889 a Ga(A)p F6(_)p Ga(A)p 2050 1877 11 41 v 2060 1858
+46 5 v 97 w(A)2290 1834 y Gg(Contr)2496 1848 y Gc(R)p
+2598 1595 233 4 v 2598 1674 a Ga(A)p 2687 1662 11 41
+v 2697 1643 46 5 v 97 w(A)p 2922 1595 233 4 v 91 w(A)p
+3010 1662 11 41 v 3021 1643 46 5 v 96 w(A)p 2598 1694
+557 4 v 2641 1772 a(A;)g(A)p 2838 1760 11 41 v 2849 1742
+46 5 v 97 w(A)p F6(^)p Ga(A)3196 1712 y F6(^)3257 1726
+y Gc(R)p 2641 1810 471 4 v 2696 1889 a Ga(A)p 2784 1877
+11 41 v 2794 1858 46 5 v 96 w(A)p F6(^)p Ga(A)3153 1834
+y Gg(Contr)3359 1848 y Gc(L)p 1832 1909 1225 4 v 2200
+1987 a Ga(A)p F6(_)o Ga(A)p 2417 1975 11 41 v 2427 1957
+46 5 v 97 w(A)p F6(^)p Ga(A)3099 1939 y Gg(Cut)g FO(?)p
+432 2007 2259 4 v 997 2092 a F4(\()p Ga(A)p F6(_)q Ga(A)p
+F4(\))p F6(_)p F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 1614
+2080 11 41 v 1624 2062 46 5 v 97 w Ga(A)p F6(_)p Ga(A;)g(A)p
+F6(_)p Ga(A)2731 2025 y F6(_)2792 2039 y Gc(L)p 997 2135
+1127 4 v 1116 2219 a F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p
+F6(_)p F4(\()p Ga(A)p F6(_)q Ga(A)p F4(\))p 1732 2207
+11 41 v 1743 2189 46 5 v 96 w Ga(A)p F6(_)p Ga(A)2166
+2159 y Gg(Contr)2372 2173 y Gc(R)1671 2454 y FN(#)1686
+2574 y FM(.)1686 2607 y(.)1686 2640 y(.)1671 2828 y FN(#)p
+2 3018 233 4 v 2 3097 a Ga(A)p 90 3085 11 41 v 101 3067
+46 5 v 97 w(A)p 326 3018 233 4 v 91 w(A)p 414 3085 11
+41 v 425 3067 46 5 v 96 w(A)p 2 3117 557 4 v 45 3196
+a(A;)g(A)p 242 3184 11 41 v 253 3165 46 5 v 97 w(A)p
+F6(^)p Ga(A)600 3135 y F6(^)660 3149 y Gc(R)p 45 3233
+471 4 v 99 3312 a Ga(A)p 188 3300 11 41 v 198 3282 46
+5 v 97 w(A)p F6(^)p Ga(A)557 3257 y Gg(Contr)763 3271
+y Gc(L)p 860 3018 233 4 v 860 3097 a Ga(A)p 948 3085
+11 41 v 959 3067 46 5 v 96 w(A)p 1183 3018 233 4 v 91
+w(A)p 1272 3085 11 41 v 1282 3067 46 5 v 97 w(A)p 860
+3117 557 4 v 903 3196 a(A;)g(A)p 1100 3184 11 41 v 1110
+3165 46 5 v 97 w(A)p F6(^)p Ga(A)1457 3135 y F6(^)1518
+3149 y Gc(R)p 903 3233 471 4 v 957 3312 a Ga(A)p 1045
+3300 11 41 v 1056 3282 46 5 v 97 w(A)p F6(^)o Ga(A)1414
+3257 y Gg(Contr)1620 3271 y Gc(L)p 99 3332 1220 4 v 345
+3411 a Ga(A)p F6(_)p Ga(A)p 562 3399 11 41 v 573 3380
+46 5 v 96 w(A)p F6(^)p Ga(A;)g(A)p F6(^)q Ga(A)1360 3350
+y F6(_)1421 3364 y Gc(L)p 345 3448 728 4 v 464 3527 a
+Ga(A)p F6(_)p Ga(A)p 681 3515 11 41 v 692 3497 46 5 v
+96 w(A)p F6(^)p Ga(A)1114 3472 y Gg(Contr)1320 3486 y
+Gc(R)p 1717 3018 233 4 v 1717 3097 a Ga(A)p 1806 3085
+11 41 v 1816 3067 46 5 v 97 w(A)p 2041 3018 233 4 v 91
+w(A)p 2129 3085 11 41 v 2140 3067 46 5 v 96 w(A)p 1717
+3117 557 4 v 1760 3196 a(A)p F6(_)p Ga(A)p 1978 3184
+11 41 v 1988 3165 46 5 v 97 w(A;)g(A)2315 3135 y F6(_)2376
+3149 y Gc(L)p 1760 3233 471 4 v 1815 3312 a Ga(A)p F6(_)o
+Ga(A)p 2032 3300 11 41 v 2042 3282 46 5 v 97 w(A)2272
+3257 y Gg(Contr)2478 3271 y Gc(R)p 2580 3018 233 4 v
+2580 3097 a Ga(A)p 2669 3085 11 41 v 2679 3067 46 5 v
+97 w(A)p 2904 3018 233 4 v 91 w(A)p 2992 3085 11 41 v
+3003 3067 46 5 v 96 w(A)p 2580 3117 557 4 v 2623 3196
+a(A)p F6(_)p Ga(A)p 2841 3184 11 41 v 2851 3165 46 5
+v 97 w(A;)g(A)3178 3135 y F6(_)3239 3149 y Gc(L)p 2623
+3233 471 4 v 2678 3312 a Ga(A)p F6(_)p Ga(A)p 2895 3300
+11 41 v 2905 3282 46 5 v 96 w(A)3135 3257 y Gg(Contr)3341
+3271 y Gc(R)p 1815 3332 1225 4 v 2063 3411 a Ga(A)p F6(_)p
+Ga(A;)g(A)p F6(_)p Ga(A)p 2518 3399 11 41 v 2528 3380
+46 5 v 97 w(A)p F6(^)p Ga(A)3081 3350 y F6(^)3141 3364
+y Gc(R)p 2063 3448 728 4 v 2182 3527 a Ga(A)p F6(_)p
+Ga(A)p 2399 3515 11 41 v 2409 3497 46 5 v 96 w(A)p F6(^)p
+Ga(A)2832 3472 y Gg(Contr)3038 3486 y Gc(L)p 464 3547
+2209 4 v 1005 3632 a F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p
+F6(_)p F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 1621 3620
+11 41 v 1631 3601 46 5 v 97 w Ga(A)p F6(^)p Ga(A;)g(A)p
+F6(^)p Ga(A)2714 3565 y F6(_)2774 3579 y Gc(L)p 1005
+3674 1127 4 v 1123 3759 a F4(\()p Ga(A)p F6(_)p Ga(A)p
+F4(\))p F6(_)q F4(\()p Ga(A)p F6(_)p Ga(A)p F4(\))p 1740
+3747 11 41 v 1750 3729 46 5 v 97 w Ga(A)p F6(^)o Ga(A)2173
+3698 y Gg(Contr)2379 3712 y Gc(R)p 3543 3960 4 3452 v
+-144 3963 3691 4 v 321 4116 a Gg(Figure)23 b(2.1:)29
+b(The)21 b(displayed)k(LK-proofs)e(are)g(tak)o(en)g(from)f(a)g
+(reduction)j(sequence)g(that)d(starts)i(with)321 4229
+y(the)34 b(\002rst)f(proof)h(and)g(ends)g(with)f(the)g(third)h
+(proof\227a)h(normal)f(form.)58 b(The)32 b(second)j(proof)f(is)g(an)321
+4342 y(intermediate)e(step.)46 b(The)28 b(cuts)i(in)f(the)g(top)h
+(proof)g(are)f(eliminated)i(such)f(that)g(\002rst)e(the)i(right)g(sub-)
+321 4455 y(proof)g(is)f(duplicated)j(creating)e(tw)o(o)f(instances)i
+(of)e(the)g(cut)g(mark)o(ed)h(with)e(a)g(star)i(\(second)g(proof\).)321
+4568 y(Subsequently)-6 b(,)25 b(each)d(cop)o(y)h(of)e(this)h(cut)g(is)f
+(reduced)i(applying)h(dif)n(ferent)f(reduction)h(rules.)29
+b(This)21 b(re-)321 4681 y(duction)i(sequence)g(is)e(impossible)h(in)f
+(a)f(cut-reduction)25 b(system)c(with)g(colour)n(-annotation,)27
+b(because)321 4794 y(the)e(colours)g(pre)n(v)o(ent)h(the)e(tw)o(o)g
+(copies)h(of)f(the)g(cut)h(from)f(reducing)i(dif)n(ferently)-6
+b(.)33 b(In)24 b(ef)n(fect,)h(starting)321 4907 y(from)i(the)g(\002rst)
+f(proof)i(the)f(gi)n(v)o(en)g(normal)g(form)g(is)f(not)h(reachable)i
+(in)e(LK)2719 4874 y Gc(tq)2807 4907 y Gg(\(in)g(Section)h(4.4.1)e(we)
+321 5020 y(shall)f(sho)n(w)e(that)h(this)g(is)g(an)f(\223essential\224)
+k(normal)d(form\).)p Black Black Black eop end
+%%Page: 19 31
+TeXDict begin 19 30 bop Black 277 51 a Gb(2.1)23 b(Gentzen')m(s)h
+(Sequent)e(Calculi)2442 b(19)p 277 88 3691 4 v Black
+418 317 a Gg(T)-7 b(o)28 b(be)g(able)h(to)g(present)h(our)f
+(cut-elimination)j(procedures)g(in)c(a)h(con)l(v)o(enient)i(form,)f(we)
+d(shall)277 430 y(introduce)34 b(a)d(non-standard)j(formulation)g(of)d
+(the)h(sequent)h(calculus.)53 b(This)31 b(sequent)i(calculus)h(is)277
+543 y(inspired)d(by)f(a)e(v)n(ariant)j(of)e(Kleene')-5
+b(s)30 b(sequent)h(calculus)g(G3.)45 b(Kleene)30 b([1952a,)i(P)o(age)c
+(481])i(men-)277 656 y(tioned)f(this)f(v)n(ariant)h(as)f(G3a,)g(b)n(ut)
+g(did)g(not)g(formalise)h(it.)41 b(Later)l(,)28 b(a)g(complete)h
+(formalisation)h(of)e(a)277 769 y(calculus)e(similar)f(to)f(G3a,)f
+(named)i(G3c,)e(w)o(as)h(gi)n(v)o(en)g(by)g(T)m(roelstra)h(and)g
+(Schwichtenber)n(g)i([1996].)277 882 y(The)g(distinguishing)k(feature)e
+(of)e(these)h(sequent)h(calculi)g(is)e(that)g(the)o(y)h(ha)n(v)o(e)f
+(no)h(e)o(xplicit)g(rules)g(for)277 995 y(weak)o(ening)35
+b(and)e(contraction.)60 b(In)33 b(our)g(calculus)i(contraction)h(and)e
+(weak)o(ening)g(are)f(implicit)h(in)277 1108 y(the)28
+b(form)g(of)f(the)h(axioms)h(and)f(logical)h(rules,)g(which)f(is)g
+(some)n(what)g(analogous)i(to)e(the)g(approach)277 1221
+y(tak)o(en)k(by)f(Kleene)h(in)f(G3a.)50 b(On)31 b(one)g(hand,)i(this)f
+(reduces)h(the)e(number)h(of)f(inference)i(rules)f(and)277
+1334 y(thus)25 b(simpli\002es)g(the)g(calculus;)i(ho)n(we)n(v)o(er)d
+(on)h(the)f(other)i(hand,)f(the)f(formalisation)k(of)c(the)h(conte)o
+(xts)277 1446 y(and)f(inference)i(rules)e(is)g(quite)g(intricate.)418
+1577 y(In)19 b(the)g(sequel)h(we)e(shall)h(re)o(gard)g(conte)o(xts)i
+(as)d(sets)h(of)g(\(label,formula\))i(pairs,)g(as)d(in)h(type)g(theory)
+-6 b(,)277 1690 y(and)29 b F7(not)f Gg(as)g(multisets,)j(as)d(in)g(LK)e
+(or)i(LJ.)f(This)h(is)g(to)g(a)n(v)n(oid)i(well-kno)n(wn)f(problems)h
+(reported)g(by)277 1803 y(Lei)n(v)n(ant)e([1979],)j(which)d(w)o(ould)h
+(break)g(the)f(correspondence)k(between)d(the)g(sequent)g(proofs)h(and)
+277 1916 y(our)d(term)g(annotations)k(\(the)c(term)g(annotations)j
+(will)d(be)g(gi)n(v)o(en)g(in)g(Section)h(2.2\).)39 b(Since)28
+b(we)e(ha)n(v)o(e)277 2029 y(conte)o(xts)k(on)e(both)h(sides)g(of)f
+(the)h(turnstile,)i(it)d(is)g(con)l(v)o(enient)j(to)d(separate)i(the)f
+(labels)g(into)g F7(names)277 2142 y Gg(and)g F7(co-names)p
+Gg(;)j Ga(a)p Gg(,)c Ga(b)p Gg(,)g Ga(c)p Gg(,.)14 b(.)g(.)g(stand)27
+b(for)h(co-names)i(and)e(.)14 b(.)g(.)g(,)21 b Ga(x)p
+Gg(,)h Ga(y)s Gg(,)h Ga(z)31 b Gg(for)d(names.)43 b(In)28
+b(this)g(w)o(ay)-6 b(,)29 b(the)277 2255 y(conte)o(xts)36
+b(on)e(the)h(left-hand)h(side)f(of)f(the)h(turnstile,)j(called)e
+(left-conte)o(xts,)k(will)34 b(be)g(b)n(uilt)h(up)f(by)277
+2367 y(\(name,formula\))i(pairs)f(and)f(on)g(the)g(right-hand)i(side)f
+(by)f(\(co-name,formula\))j(pairs;)j(we)32 b(shall)277
+2480 y(refer)24 b(to)g(those)g(conte)o(xts)i(as)d(right-conte)o(xts.)33
+b(Suppose)25 b(we)d(ha)n(v)o(e)j(the)e(conte)o(xts)p
+Black Black 1262 2709 a F4(\000)47 b(=)g F6(f)p F4(\()p
+Ga(x;)15 b(B)5 b F4(\))p Ga(;)15 b F4(\()p Ga(y)s(;)g(C)7
+b F4(\))p Ga(;)15 b F4(\()p Ga(z)t(;)g(D)s F4(\))p F6(g)51
+b Gg(and)1243 2865 y F4(\001)c(=)g F6(f)p F4(\()p Ga(a;)15
+b(E)5 b F4(\))p Ga(;)15 b F4(\()p Ga(b;)g(F)e F4(\))p
+F6(g)277 3097 y Gg(then)20 b(we)e(can)h(form)f(the)h(sequent)i
+F4(\000)p 1416 3085 11 41 v 1427 3066 46 5 v 96 w(\001)p
+Gg(.)26 b(W)l(ith)19 b(some)g(minor)g(ab)n(use)i(of)d(language)j(we)d
+(say)h F6(f)p Ga(x;)c(y)s(;)g(z)t F6(g)277 3210 y Gg(is)23
+b(the)f F7(domain)i Gg(of)f F4(\000)p Gg(,)e(written)i
+Ga(dom)p F4(\(\000\))p Gg(;)h F6(f)p Ga(a;)15 b(b)p F6(g)23
+b Gg(respecti)n(v)o(ely)i(is)e(the)f(domain)i(of)f F4(\001)p
+Gg(.)k(In)22 b(the)h(rest)g(of)277 3323 y(the)k(thesis)h(we)e(shall)i
+(emplo)o(y)g(some)e(shorthand)k(notation)f(for)e(conte)o(xts;)j(rather)
+e(than)g(writing)f(for)277 3435 y(e)o(xample)d F6(f)p
+F4(\()p Ga(x;)15 b(B)5 b F4(\))p Ga(;)15 b F4(\()p Ga(y)s(;)g(C)7
+b F4(\))p Ga(;)15 b F4(\()p Ga(z)t(;)g(D)s F4(\))p F6(g)p
+Gg(,)27 b(we)c(shall)h(simply)g(write)g Ga(x)17 b F4(:)g
+Ga(B)5 b(;)15 b(y)20 b F4(:)e Ga(C)q(;)d(z)22 b F4(:)c
+Ga(D)s Gg(.)418 3566 y(Figure)34 b(2.2)f(gi)n(v)o(es)h(the)f(inference)
+i(rules)f(of)g(our)f(sequent)i(calculus.)60 b(Note)33
+b(that)g(there)h(are)g(a)277 3679 y(number)22 b(of)e(subtleties)k
+(concerning)g(conte)o(xts)e(implicit)g(in)f(our)g(inference)i(rules.)29
+b(First,)21 b(we)f(assume)277 3792 y(the)29 b(con)l(v)o(ention)j(that)e
+(a)e(conte)o(xt)i(is)f(ill-formed,)j(if)c(it)h(contains)i(more)d(than)i
+(one)f(occurrence)j(of)d(a)277 3905 y(name)g(or)g(co-name.)45
+b(F)o(or)28 b(e)o(xample,)i(the)f(left-conte)o(xt)j Ga(x)26
+b F4(:)h Ga(B)5 b(;)15 b(x)27 b F4(:)g Ga(C)34 b Gg(is)29
+b(not)g(allo)n(wed.)45 b(Hereafter)l(,)277 4018 y(this)24
+b(will)e(be)h(referred)i(to)e(as)g(the)g F7(conte)n(xt)i(con)l(vention)
+p Gg(,)h(and)e(it)e(will)h(be)g(assumed)h(that)g(all)f(inference)277
+4131 y(rules)i(ha)n(ving)g(as)e(conte)o(xts)j(sets)e(of)f
+(\(label,formula\))k(pairs)d(respect)h(this)g(con)l(v)o(ention.)418
+4261 y(Second,)d(we)d(ha)n(v)o(e)h(the)h(follo)n(wing)g(con)l(v)o
+(entions)j(for)c(the)g(commas)g(in)g(Figure)h(2.2:)27
+b(a)20 b(comma)f(in)277 4374 y(a)24 b(conclusion)j(stands)f(for)e(set)h
+(union)g(and)g(a)f(comma)g(in)g(a)f(premise)j(stands)f(for)g
+F7(disjoint)h Gg(set)e(union.)277 4487 y(Consider)h(for)f(e)o(xample)g
+(the)g F6(\033)1291 4501 y Gc(R)1348 4487 y Gg(-rule.)1468
+4689 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 1770
+4677 11 41 v 1781 4659 46 5 v 96 w(\001)p Ga(;)g(a)j
+F4(:)f Ga(C)p 1468 4727 674 4 v 1513 4807 a F4(\000)p
+1590 4795 11 41 v 1600 4776 46 5 v 96 w(\001)p Ga(;)e(b)i
+F4(:)h Ga(B)5 b F6(\033)o Ga(C)2183 4744 y F6(\033)2254
+4759 y Gc(R)277 5032 y Gg(This)31 b(rule)g(introduces)j(the)d
+(\(co-name,formula\))j(pair)e Ga(b)e F4(:)h Ga(B)5 b
+F6(\033)p Ga(C)36 b Gg(in)31 b(the)g(conclusion.)54 b(Ho)n(we)n(v)o(er)
+l(,)277 5145 y(there)34 b(might)e(be)h(an)f F7(implicit)i(contr)o
+(action)p Gg(.)58 b(By)32 b(this)h(we)f(mean)g Ga(b)g
+Gg(might)h(already)h(occur)g(in)e(the)p Black Black eop
+end
+%%Page: 20 32
+TeXDict begin 20 31 bop Black -144 51 a Gb(20)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black Black 321 229 3226
+4 v 321 2138 4 1909 v 1596 321 676 4 v 1596 400 a Ga(x)17
+b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 1898 388 11 41 v 1909
+370 46 5 v 96 w(\001)p Ga(;)g(a)j F4(:)f Ga(B)884 591
+y F4(\000)p 961 579 11 41 v 971 560 46 5 v 96 w(\001)p
+Ga(;)e(a)i F4(:)h Ga(B)p 852 628 515 4 v 852 707 a(x)f
+F4(:)g F6(:)p Ga(B)5 b(;)15 b F4(\000)p 1215 695 11 41
+v 1225 677 46 5 v 96 w(\001)1408 641 y F6(:)1469 655
+y Gc(L)2380 591 y Ga(x)j F4(:)f Ga(B)5 b(;)15 b F4(\000)p
+2683 579 11 41 v 2693 560 46 5 v 96 w(\001)p 2352 628
+512 4 v 2352 707 a(\000)p 2429 695 11 41 v 2440 677 46
+5 v 96 w(\001)p Ga(;)g(a)j F4(:)f F6(:)p Ga(B)2905 641
+y F6(:)2966 655 y Gc(R)857 922 y Ga(x)g F4(:)h Ga(B)1038
+936 y Gc(i)1066 922 y Ga(;)d F4(\000)p 1183 910 11 41
+v 1194 892 46 5 v 96 w(\001)p 769 960 655 4 v 769 1038
+a Ga(y)20 b F4(:)d Ga(B)945 1052 y F9(1)985 1038 y F6(^)o
+Ga(B)1114 1052 y F9(2)1154 1038 y Ga(;)e F4(\000)p 1271
+1026 11 41 v 1282 1008 46 5 v 96 w(\001)1465 973 y F6(^)1525
+987 y Gc(L)1573 997 y FZ(i)2117 922 y F4(\000)p 2194
+910 11 41 v 2205 892 46 5 v 96 w(\001)p Ga(;)g(a)j F4(:)f
+Ga(B)96 b F4(\000)p 2736 910 11 41 v 2746 892 46 5 v
+96 w(\001)p Ga(;)15 b(b)i F4(:)h Ga(C)p 2117 960 981
+4 v 2321 1038 a F4(\000)p 2398 1026 11 41 v 2408 1008
+46 5 v 96 w(\001)p Ga(;)d(c)i F4(:)h Ga(B)5 b F6(^)o
+Ga(C)3140 978 y F6(^)3200 992 y Gc(R)615 1254 y Ga(x)17
+b F4(:)h Ga(B)5 b(;)15 b F4(\000)p 917 1242 11 41 v 928
+1223 46 5 v 96 w(\001)90 b Ga(y)20 b F4(:)e Ga(C)q(;)d
+F4(\000)p 1452 1242 11 41 v 1462 1223 46 5 v 97 w(\001)p
+615 1291 989 4 v 821 1370 a Ga(z)22 b F4(:)17 b Ga(B)5
+b F6(_)o Ga(C)q(;)15 b F4(\000)p 1245 1358 11 41 v 1256
+1340 46 5 v 97 w(\001)1645 1309 y F6(_)1706 1323 y Gc(L)2358
+1253 y F4(\000)p 2435 1241 11 41 v 2445 1222 46 5 v 96
+w(\001)p Ga(;)g(a)i F4(:)h Ga(B)2804 1267 y Gc(i)p 2272
+1290 646 4 v 2272 1370 a F4(\000)p 2349 1358 11 41 v
+2359 1340 46 5 v 96 w(\001)p Ga(;)d(b)i F4(:)h Ga(B)2709
+1384 y F9(1)2748 1370 y F6(_)p Ga(B)2878 1384 y F9(2)2959
+1303 y F6(_)3019 1317 y Gc(R)3072 1327 y FZ(i)610 1585
+y F4(\000)p 687 1573 11 41 v 697 1555 46 5 v 96 w(\001)p
+Ga(;)d(a)i F4(:)h Ga(B)95 b(x)17 b F4(:)h Ga(C)q(;)d
+F4(\000)p 1447 1573 11 41 v 1457 1555 46 5 v 97 w(\001)p
+610 1623 989 4 v 810 1701 a Ga(y)20 b F4(:)e Ga(B)5 b
+F6(\033)o Ga(C)q(;)15 b F4(\000)p 1246 1689 11 41 v 1256
+1671 46 5 v 97 w(\001)1640 1640 y F6(\033)1711 1654 y
+Gc(L)2266 1584 y Ga(x)i F4(:)g Ga(B)5 b(;)15 b F4(\000)p
+2568 1572 11 41 v 2579 1554 46 5 v 96 w(\001)p Ga(;)g(a)j
+F4(:)f Ga(C)p 2266 1622 674 4 v 2311 1701 a F4(\000)p
+2388 1689 11 41 v 2398 1671 46 5 v 96 w(\001)p Ga(;)e(b)i
+F4(:)h Ga(B)5 b F6(\033)o Ga(C)2981 1639 y F6(\033)3052
+1653 y Gc(R)1271 1915 y F4(\000)1328 1929 y F9(1)p 1387
+1903 11 41 v 1398 1885 46 5 v 1463 1915 a F4(\001)1539
+1929 y F9(1)1578 1915 y Ga(;)15 b(a)j F4(:)f Ga(B)96
+b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2173 1929 y F9(2)p
+2233 1903 11 41 v 2243 1885 46 5 v 2309 1915 a F4(\001)2385
+1929 y F9(2)p 1271 1953 1154 4 v 1547 2032 a F4(\000)1604
+2046 y F9(1)1644 2032 y Ga(;)g F4(\000)1741 2046 y F9(2)p
+1800 2020 11 41 v 1811 2002 46 5 v 1877 2032 a F4(\001)1953
+2046 y F9(1)1992 2032 y Ga(;)g F4(\001)2108 2046 y F9(2)2466
+1983 y Gg(Cut)p 3543 2138 4 1909 v 321 2141 3226 4 v
+Black 960 2294 a(Figure)24 b(2.2:)30 b(V)-10 b(ariant)24
+b(of)f(Kleene')-5 b(s)25 b(sequent)g(calculus)h(G3a.)p
+Black Black 321 2725 a(premise.)k(Thus)24 b(the)f(conclusion)k(of)c
+(the)h F6(\033)1718 2739 y Gc(R)1776 2725 y Gg(-rule)g(is)f(of)h(the)g
+(form)1607 2988 y F4(\000)p 1684 2976 11 41 v 1694 2958
+46 5 v 96 w(\001)c F6(\010)g Ga(b)d F4(:)g Ga(B)5 b F6(\033)p
+Ga(C)321 3232 y Gg(where)33 b F6(\010)f Gg(denotes)i(set)f(union.)57
+b(Note)32 b(that)h Ga(x)h F4(:)g Ga(B)i Gg(and)d Ga(a)h
+F4(:)g Ga(C)k Gg(are)33 b(not)g(part)g(of)g(the)f(conclusion)321
+3345 y(because)26 b(the)o(y)e(are)f(intended)j(to)e(be)f(dischar)n
+(ged.)32 b(Hence)24 b(the)g(premise)h(must)e(be)h(of)f(the)h(form)1526
+3609 y Ga(x)17 b F4(:)h Ga(B)24 b F6(\012)c F4(\000)p
+1899 3597 11 41 v 1910 3578 46 5 v 96 w(\001)g F6(\012)g
+Ga(a)e F4(:)f Ga(C)321 3830 y Gg(where)24 b F6(\012)f
+Gg(denotes)i(disjoint)h(set)d(union.)462 3965 y(There)28
+b(is)f(one)h(point)g(w)o(orth)f(mentioning)j(in)d(the)h(cut-rule,)h
+(because)h(it)d(is)g(the)g(only)h(inference)321 4078
+y(rule)33 b(in)g(our)g(sequent)i(calculus)f(that)f(does)h(not)f(share)h
+(the)f(conte)o(xts,)j(b)n(ut)d(requires)i(that)e(the)g(tw)o(o)321
+4191 y(conte)o(xts)j(of)d(the)h(premises)h(are)f(joined)h(on)f(each)g
+(side)h(of)e(the)h(conclusion.)62 b(Thus)34 b(we)f(tak)o(e)h(the)321
+4304 y(cut-rule)26 b(to)d(be)h(of)f(the)h(form)1175 4506
+y F4(\000)1232 4520 y F9(1)p 1291 4494 11 41 v 1302 4476
+46 5 v 1367 4506 a F4(\001)1443 4520 y F9(1)1503 4506
+y F6(\012)c Ga(a)d F4(:)g Ga(B)96 b(x)17 b F4(:)g Ga(B)25
+b F6(\012)20 b F4(\000)2219 4520 y F9(2)p 2278 4494 11
+41 v 2289 4476 46 5 v 2354 4506 a F4(\001)2430 4520 y
+F9(2)p 1175 4540 1295 4 v 1451 4619 a F4(\000)1508 4633
+y F9(1)1568 4619 y F6(\010)g F4(\000)1716 4633 y F9(2)p
+1775 4607 11 41 v 1786 4589 46 5 v 1851 4619 a F4(\001)1927
+4633 y F9(1)1987 4619 y F6(\010)g F4(\001)2154 4633 y
+F9(2)2511 4570 y Gg(Cut)26 b Ga(:)321 4863 y Gg(In)i(consequence,)k
+(this)d(rule)f(is)g(only)h(applicable,)i(if)d(it)f(does)i(not)f(break)h
+(the)f(conte)o(xt)i(con)l(v)o(ention,)321 4976 y(which)i(can)f(al)o(w)o
+(ays)h(be)f(achie)n(v)o(ed)i(by)e(renaming)i(some)e(labels)h
+(appropriately)-6 b(.)56 b(Note,)32 b(ho)n(we)n(v)o(er)l(,)321
+5088 y(we)h(do)g(not)h(require)g(that)g(cuts)g(ha)n(v)o(e)g(to)f(be)g
+(\223fully\224)i(multiplicati)n(v)o(e:)51 b(the)34 b
+F4(\000)2851 5102 y Gc(i)2879 5088 y Gg(')-5 b(s)33 b(can)g(share)h
+(some)321 5201 y(formulae)25 b(\(similarly)g(the)f F4(\001)1258
+5215 y Gc(j)1295 5201 y Gg(')-5 b(s\).)p Black Black
+eop end
+%%Page: 21 33
+TeXDict begin 21 32 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
+(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(21)p
+277 88 3691 4 v Black 277 317 a Ge(2.2)119 b(Cut-Elimination)31
+b(in)g(Pr)n(opositional)f(Classical)f(Logic)277 541 y
+Gg(In)23 b(this)g(section)i(we)d(shall)i(introduce)h(a)d(strongly)j
+(normalising)h(cut-elimination)g(procedure.)31 b(Usu-)277
+654 y(ally)-6 b(,)29 b(sequent)h(proofs)f(are)f(written)h(pictorially)i
+(in)c(a)h(tree-lik)o(e)i(f)o(ashion)g(using)f(inference)h(rules)e(of)
+277 767 y(the)k(form)636 729 y Gc(P)681 738 y FV(1)p
+636 746 80 4 v 642 798 a Gc(C)756 767 y Gg(or)872 729
+y Gc(P)917 738 y FV(1)971 729 y Gc(P)1016 738 y FV(2)p
+872 746 179 4 v 934 798 a Gc(C)1060 767 y Gg(.)51 b(This)32
+b(is)f(ho)n(we)n(v)o(er)g(a)g(rather)i(space)f(consuming)i(notation.)54
+b(In)31 b(order)h(to)277 880 y(present)e(our)f(strong)h(normalisation)h
+(proof)f(in)e(a)g(manageable)j(form,)e(we)f(shall)h(annotate)h(our)f
+(se-)277 993 y(quent)34 b(proofs)g(with)e(terms)h(and)g(e)o(xpress)h
+(the)f(cut-elimination)j(procedure)f(as)e(a)f(term)g(re)n(writing)277
+1105 y(system.)46 b(In)29 b(particular)l(,)34 b(we)28
+b(are)h(able)h(to)f(e)o(xpress)i(a)d(proof)j(transformation)h(as)d(a)g
+(special)i(sort)e(of)277 1218 y(proof)c(substitution.)418
+1348 y(F)o(or)f(sequent)i(calculi,)g(e)n(v)o(en)f(in)f(the)h
+(intuitionistic)j(case,)d(it)g(is)f(not)h(entirely)h(clear)f(what)g
+(appro-)277 1461 y(priate)31 b(term)e(annotations)k(are.)48
+b(In)29 b(f)o(act,)j(there)e(are)g(a)f(number)i(of)e(choices,)k(and)d
+(there)h(is)e(no)h(real)277 1574 y(consensus)j(on)c(the)h(best.)48
+b(Our)29 b(term)g(calculus)j(encodes)f(the)f(entire)h(structure)h(of)d
+(a)g(sequent)j(cal-)277 1687 y(culus)c(proof)h(and)e(thus)h(allo)n(ws)g
+(us)f(to)g(de\002ne)h(a)e(complete)j(cut-elimination)i(procedure)f(as)d
+(a)g(term)277 1799 y(re)n(writing)38 b(system.)918 1766
+y F5(2)1022 1799 y Gg(Other)f(proposals)i(use)d(lambda)h(terms)g(as)f
+(annotation)j([Pottinger,)f(1977,)277 1912 y(Abramsk)o(y)-6
+b(,)32 b(1993,)h(Barendre)o(gt)g(and)f(Ghilezan,)h(2000],)h(which)e(ho)
+n(we)n(v)o(er)g(do)g(not)g(fully)h(encode)277 2025 y(the)24
+b(structure)i(of)d(the)h(sequent)h(proofs)g(and)f(so)g(w)o(ould)g(seem)
+g(less)g(useful)h(for)e(our)h(purposes.)p Black 277 2213
+a Gb(De\002nition)f(2.2.1)g Gg(\(Ra)o(w)g(T)-6 b(erms\))p
+Gb(:)p Black 33 w Gg(The)23 b(set)h(of)g(ra)o(w)e(terms,)i
+FY(R)p Gg(,)e(is)h(de\002ned)h(by)g(the)g(grammar)p Black
+Black 603 2386 a Ga(M)5 b(;)15 b(N)110 b F4(::=)99 b
+FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))914 b Gg(axiom)967
+2499 y F6(j)147 b FL(Cut)p F4(\()1312 2487 y FX(h)1340
+2499 y Ga(a)r F4(:)r Ga(B)1491 2487 y FX(i)1518 2499
+y Ga(M)11 b(;)1657 2487 y F9(\()1684 2499 y Ga(x)r F4(:)r
+Ga(B)1839 2487 y F9(\))1867 2499 y Ga(N)f F4(\))381 b
+Gg(cut)967 2612 y F6(j)147 b FL(Not)1282 2626 y Gc(R)1340
+2612 y F4(\()1375 2600 y F9(\()1403 2612 y Ga(x)r F4(:)r
+Ga(B)1558 2600 y F9(\))1585 2612 y Ga(M)10 b(;)15 b(a)p
+F4(\))560 b Gg(not-right)967 2725 y F6(j)147 b FL(Not)1282
+2739 y Gc(L)1334 2725 y F4(\()1369 2713 y FX(h)1397 2725
+y Ga(a)r F4(:)r Ga(B)1548 2713 y FX(i)1575 2725 y Ga(M)10
+b(;)15 b(x)p F4(\))566 b Gg(not-left)967 2838 y F6(j)147
+b FL(And)1294 2852 y Gc(R)1352 2838 y F4(\()1387 2826
+y FX(h)1414 2838 y Ga(a)r F4(:)r Ga(B)1565 2826 y FX(i)1593
+2838 y Ga(M)10 b(;)1731 2826 y FX(h)1759 2838 y Ga(b)r
+F4(:)r Ga(C)1899 2826 y FX(i)1926 2838 y Ga(N)g(;)15
+b(c)p F4(\))243 b Gg(and-right)967 2953 y F6(j)147 b
+FL(And)1294 2916 y Gc(i)1294 2976 y(L)1346 2953 y F4(\()1381
+2941 y F9(\()1409 2953 y Ga(x)r F4(:)r Ga(B)1564 2941
+y F9(\))1591 2953 y Ga(M)10 b(;)15 b(y)s F4(\))554 b
+Gg(and-left)2646 2967 y Gc(i)2893 2953 y Ga(i)25 b F4(=)g(1)p
+Ga(;)15 b F4(2)967 3067 y F6(j)147 b FL(Or)1239 3030
+y Gc(i)1239 3090 y(R)1296 3067 y F4(\()1331 3055 y FX(h)1359
+3067 y Ga(a)r F4(:)r Ga(B)1510 3055 y FX(i)1538 3067
+y Ga(M)10 b(;)15 b(b)p F4(\))616 b Gg(or)n(-right)2639
+3081 y Gc(i)2893 3067 y Ga(i)25 b F4(=)g(1)p Ga(;)15
+b F4(2)967 3180 y F6(j)147 b FL(Or)1239 3194 y Gc(L)1291
+3180 y F4(\()1326 3168 y F9(\()1354 3180 y Ga(x)r F4(:)r
+Ga(B)1509 3168 y F9(\))1536 3180 y Ga(M)10 b(;)1674 3168
+y F9(\()1702 3180 y Ga(y)5 b F4(:)r Ga(C)1851 3168 y
+F9(\))1878 3180 y Ga(N)10 b(;)15 b(z)t F4(\))284 b Gg(or)n(-left)967
+3293 y F6(j)147 b FL(Imp)1284 3315 y Gc(R)1342 3293 y
+F4(\()1377 3281 y F9(\()1404 3293 y Ga(x)r F4(:)r Ga(B)1559
+3281 y F9(\))q FX(h)1614 3293 y Ga(a)r F4(:)r Ga(C)1763
+3281 y FX(i)1790 3293 y Ga(M)10 b(;)15 b(b)p F4(\))364
+b Gg(implication-right)967 3406 y F6(j)147 b FL(Imp)1284
+3428 y Gc(L)1336 3406 y F4(\()1371 3394 y FX(h)1399 3406
+y Ga(a)r F4(:)r Ga(B)1550 3394 y FX(i)1577 3406 y Ga(M)10
+b(;)1715 3394 y F9(\()1743 3406 y Ga(x)r F4(:)r Ga(C)1896
+3394 y F9(\))1923 3406 y Ga(N)g(;)15 b(y)s F4(\))237
+b Gg(implication-left)277 3578 y(where)30 b Ga(B)j Gg(and)d
+Ga(C)35 b Gg(are)30 b(types)g(\(formulae\);)35 b Ga(x)p
+Gg(,)30 b Ga(y)s Gg(,)f Ga(z)k Gg(are)d(tak)o(en)h(from)e(a)g(set)h(of)
+f(names)h(and)g Ga(a)p Gg(,)g Ga(b)p Gg(,)g Ga(c)277
+3690 y Gg(from)24 b(a)f(set)g(of)h(co-names.)418 3944
+y(In)34 b(a)f(term)g(we)g(use)g(round)i(brack)o(ets)h(to)d(signify)i
+(that)f(a)f(name)h(becomes)g(bound)h(and)f(angle)277
+4057 y(brack)o(ets)f(that)f(a)e(co-name)j(becomes)f(bound.)53
+b(In)31 b(what)g(follo)n(ws)g(we)f(shall)i(often)g(omit)f(the)h(type)
+277 4170 y(annotations)g(on)c(bindings,)k(and)c(assume)h(that)g
+Ga(F)13 b(N)d F4(\()p Ga(M)g F4(\))28 b Gg(and)h Ga(F)13
+b(C)7 b F4(\()p Ga(M)j F4(\))28 b Gg(stand,)i(respecti)n(v)o(ely)-6
+b(,)32 b(for)277 4283 y(the)27 b(set)f(of)g(free)h(names)g(and)g(free)f
+(co-names)i(of)e(the)h(term)f Ga(M)10 b Gg(.)36 b(W)-7
+b(e)26 b(do)g(not)h(gi)n(v)o(e)f(the)h(formal)g(de\002-)277
+4396 y(nitions)d(of)e Ga(F)13 b(N)d F4(\()p 834 4396
+28 4 v 852 4396 V 870 4396 V 65 w(\))22 b Gg(and)h Ga(F)13
+b(C)7 b F4(\()p 1287 4396 V 1304 4396 V 1322 4396 V 64
+w(\))p Gg(,)22 b(rather)h(gi)n(v)o(e)g(the)f(reader)i(tw)o(o)e
+(illustrati)n(v)o(e)i(e)o(xamples.)30 b(Consider)277
+4509 y(the)24 b(follo)n(wing)h(terms.)p Black Black 1205
+4688 a FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))284 b FL(Imp)1947
+4710 y Gc(L)1999 4688 y F4(\()2034 4676 y FX(h)2062 4688
+y Ga(b)2101 4676 y FX(i)2128 4688 y Ga(M)10 b(;)2266
+4676 y F9(\()2294 4688 y Ga(y)2342 4676 y F9(\))2369
+4688 y Ga(N)g(;)15 b(z)t F4(\))277 4868 y Gg(Here,)27
+b Ga(x)f Gg(and)h Ga(z)j Gg(are)c(free)h(names,)h(and)f
+Ga(a)f Gg(is)g(a)g(free)h(co-name.)39 b(On)26 b(the)g(other)i(hand,)g
+Ga(y)g Gg(and)f Ga(b)f Gg(are)h(a)277 4980 y(bound)d(name)e(and)g
+(bound)i(co-name,)f(respecti)n(v)o(ely)-6 b(.)31 b(F)o(or)21
+b(con)l(v)o(enience)26 b Ga(F)13 b(N)d F4(\()p 2790 4980
+V 2808 4980 V 2825 4980 V 65 w(\))21 b Gg(and)i Ga(F)13
+b(C)7 b F4(\()p 3242 4980 V 3259 4980 V 3277 4980 V 64
+w(\))22 b Gg(will)277 5093 y(not)f(be)g(restricted)j(to)c(just)i(a)e
+(single)i(term,)f(b)n(ut)h(also)f(be)g(used)h(for)f(sets)g(of)g(terms.)
+28 b(Notice)21 b(that)h(names)277 5206 y(and)h(co-names)g(are)f(not)g
+(the)h(same)f(notions)h(as)f(a)g(v)n(ariable)h(in)f(the)g(lambda)h
+(calculus:)31 b(whilst)22 b(a)g(term)277 5319 y(can)i(be)f(substituted)
+j(for)e(a)e(v)n(ariable,)j(a)e(name)g(or)g(a)g(co-name)h(can)g(only)g
+(be)f(\223renamed\224.)31 b(Re)n(writing)p Black 277
+5384 1290 4 v 383 5439 a F3(2)412 5471 y F2(Pfenning)21
+b([1995])g(de)n(v)o(eloped)h(similar)e(terms)g(for)h(an)g(encoding)h
+(of)e(a)h(weakly)g(normalising)g(cut-elimination)g(pro-)277
+5562 y(cedure)f(into)f(LF)-6 b(.)p Black Black Black
+eop end
+%%Page: 22 34
+TeXDict begin 22 33 bop Black -144 51 a Gb(22)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(a)e(name)h
+Ga(x)e Gg(to)i Ga(y)h Gg(in)e Ga(M)30 b Gg(is)20 b(written)h(as)g
+Ga(M)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])p Gg(,)20
+b(and)h(re)n(writing)h(a)d(co-name)j Ga(a)e Gg(to)g Ga(b)g
+Gg(in)g Ga(M)30 b Gg(is)20 b(written)321 430 y(as)k Ga(M)10
+b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p Gg(.)28 b(The)c(routine)h
+(formalisation)h(of)e(these)g(re)n(writing)h(operations)i(is)c
+(omitted.)462 560 y(T)-7 b(o)26 b(annotate)i(terms)f(to)f(the)g
+(sequent)j(proofs)e(of)g(the)f(calculus)j(gi)n(v)o(en)d(in)h(Figure)g
+(2.2,)f(we)g(shall)321 673 y(replace)h(e)n(v)o(ery)e(sequent)h(of)e
+(the)h(form)g F4(\000)p 1643 661 11 41 v 1653 642 46
+5 v 96 w(\001)e Gg(with)i(a)f F7(typing)i(judg)o(ement)h
+Gg(of)d(the)h(form)f F4(\000)3237 661 y Gc(.)3292 673
+y Ga(M)3416 661 y Gc(.)3471 673 y F4(\001)321 786 y Gg(in)32
+b(which)g Ga(M)41 b Gg(is)31 b(a)h(term,)h F4(\000)e
+Gg(a)g(left-conte)o(xt)k(and)d F4(\001)e Gg(a)i(right-conte)o(xt.)56
+b(Henceforth)34 b(we)d(shall)i(be)321 898 y(interested)26
+b(in)e F7(well-typed)h Gg(terms,)f(only;)g(this)g(means)g(those)h(for)e
+(which)h(there)h(are)e(tw)o(o)g(conte)o(xts,)j F4(\000)321
+1011 y Gg(and)g F4(\001)p Gg(,)f(such)i(that)f F4(\000)1036
+999 y Gc(.)1091 1011 y Ga(M)1214 999 y Gc(.)1269 1011
+y F4(\001)f Gg(holds)i(gi)n(v)o(en)f(the)g(inference)i(rules)f(in)e
+(Figure)h(2.3.)35 b(W)-7 b(e)25 b(de\002ne)h(the)321
+1124 y(follo)n(wing)f(set)f(of)f(well-typed)j(terms.)p
+Black Black 550 1325 a FY(T)706 1273 y F5(def)713 1325
+y F4(=)891 1224 y FK(n)977 1325 y Ga(M)1122 1220 y FK(\014)1122
+1275 y(\014)1122 1329 y(\014)1200 1325 y Ga(M)35 b F6(2)25
+b FY(R)d Gg(and)i(well-typed)i(by)d(the)h(rules)h(sho)n(wn)e(in)h
+(Figure)g(2.3)3257 1224 y FK(o)462 1542 y Gg(The)g(de\002nition)h(we)e
+(gi)n(v)o(e)g(ne)o(xt)h(corresponds)j(to)d(the)g(traditional)i(notion)g
+(of)d(the)h(main)g(formula)321 1655 y(of)g(an)f(inference)j(rule.)p
+Black 321 1843 a Gb(De\002nition)d(2.2.2:)p Black Black
+458 2035 a F6(\017)p Black 46 w Gg(A)f(term,)h Ga(M)10
+b Gg(,)23 b F7(intr)l(oduces)j Gg(the)e(name)f Ga(z)k
+Gg(or)d(co-name)h Ga(c)p Gg(,)d(if)i(and)g(only)g(if)f
+Ga(M)33 b Gg(is)24 b(of)f(the)h(form:)p Black Black 807
+2205 a(for)g Ga(z)t Gg(:)100 b FL(Ax)o F4(\()p Ga(z)t(;)15
+b(c)p F4(\))1107 2318 y FL(Not)1250 2332 y Gc(L)1302
+2318 y F4(\()1337 2306 y FX(h)1365 2318 y Ga(a)1413 2306
+y FX(i)1440 2318 y Ga(S)5 b(;)15 b(z)t F4(\))1107 2432
+y FL(And)1262 2395 y Gc(i)1262 2455 y(L)1314 2432 y F4(\()1349
+2420 y F9(\()1376 2432 y Ga(x)1428 2420 y F9(\))1456
+2432 y Ga(S)5 b(;)15 b(z)t F4(\))1107 2545 y FL(Or)1206
+2559 y Gc(L)1258 2545 y F4(\()1293 2533 y F9(\()1321
+2545 y Ga(x)1373 2533 y F9(\))1401 2545 y Ga(S)5 b(;)1502
+2533 y F9(\()1529 2545 y Ga(y)1577 2533 y F9(\))1605
+2545 y Ga(T)12 b(;)j(z)t F4(\))1107 2658 y FL(Imp)1251
+2680 y Gc(L)1304 2658 y F4(\()1339 2646 y FX(h)1366 2658
+y Ga(a)1414 2646 y FX(i)1442 2658 y Ga(S)5 b(;)1543 2646
+y F9(\()1571 2658 y Ga(x)1623 2646 y F9(\))1650 2658
+y Ga(T)13 b(;)i(z)t F4(\))2197 2205 y Gg(for)24 b Ga(c)p
+Gg(:)100 b FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))2490
+2318 y FL(Not)2633 2332 y Gc(R)2691 2318 y F4(\()2726
+2306 y F9(\()2753 2318 y Ga(x)2805 2306 y F9(\))2833
+2318 y Ga(S)5 b(;)15 b(c)p F4(\))2490 2430 y FL(And)2645
+2444 y Gc(R)2703 2430 y F4(\()2738 2418 y FX(h)2765 2430
+y Ga(a)2813 2418 y FX(i)2841 2430 y Ga(S)5 b(;)2942 2418
+y FX(h)2970 2430 y Ga(b)3009 2418 y FX(i)3036 2430 y
+Ga(T)13 b(;)i(c)p F4(\))2490 2545 y FL(Or)2590 2508 y
+Gc(i)2590 2568 y(R)2647 2545 y F4(\()2682 2533 y FX(h)2710
+2545 y Ga(a)2758 2533 y FX(i)2786 2545 y Ga(S)5 b(;)15
+b(c)p F4(\))2490 2658 y FL(Imp)2635 2680 y Gc(R)2692
+2658 y F4(\()2727 2646 y F9(\()2755 2658 y Ga(x)2807
+2646 y F9(\))q FX(h)2862 2658 y Ga(a)2910 2646 y FX(i)2938
+2658 y Ga(S)5 b(;)15 b(c)p F4(\))p Black 458 2825 a F6(\017)p
+Black 46 w Gg(A)25 b(term,)i Ga(M)10 b Gg(,)27 b F7(fr)m(eshly)h
+Gg(introduces)i(a)c(name,)i(if)e(and)h(only)h(if)e Ga(M)36
+b Gg(introduces)30 b(this)e(name,)f(b)n(ut)549 2938 y(none)e(of)g(its)f
+(proper)i(subterms.)34 b(In)24 b(other)i(w)o(ords,)f(the)g(name)f(must)
+h(not)g(be)f(free)h(in)g(a)f(proper)549 3050 y(subterm)g(of)g
+Ga(M)10 b Gg(,)22 b(just)i(on)g(the)g(top-le)n(v)o(el)h(of)e
+Ga(M)10 b Gg(.)29 b(Similarly)24 b(for)f(co-names.)321
+3304 y(Let)29 b(us)h(illustrate)i(the)e(de\002nition)i(just)e(gi)n(v)o
+(en)h(and)f(our)g(implicit)h(con)l(v)o(entions)i(for)d(conte)o(xts)i
+(with)321 3417 y(the)24 b(follo)n(wing)h(e)o(xample:)30
+b(consider)c(the)e F6(\033)1724 3431 y Gc(R)1782 3417
+y Gg(-rule)h(again,)e(this)i(time)e(annotated)j(with)d(terms.)p
+Black Black 1431 3574 a Ga(x)17 b F4(:)g Ga(B)5 b(;)15
+b F4(\000)1738 3562 y Gc(.)1793 3574 y Ga(M)1917 3562
+y Gc(.)1972 3574 y F4(\001)p Ga(;)g(a)i F4(:)g Ga(C)p
+1195 3611 1308 4 v 1195 3696 a F4(\000)1277 3684 y Gc(.)1332
+3696 y FL(Imp)1476 3718 y Gc(R)1534 3696 y F4(\()1569
+3684 y F9(\()1597 3696 y Ga(x)1649 3684 y F9(\))p FX(h)1704
+3696 y Ga(a)1752 3684 y FX(i)1779 3696 y Ga(M)10 b(;)15
+b(b)p F4(\))2017 3684 y Gc(.)2072 3696 y F4(\001)p Ga(;)g(b)j
+F4(:)f Ga(B)5 b F6(\033)o Ga(C)2544 3629 y F6(\033)2615
+3643 y Gc(R)321 3868 y Gg(No)n(w)22 b(this)i(rule)g(introduces)i(the)e
+(\(co-name,type\))i(pair)l(,)e Ga(b)18 b F4(:)f Ga(B)5
+b F6(\033)o Ga(C)i Gg(,)22 b(in)h(the)h(conclusion,)i(and)e(conse-)321
+3981 y(quently)-6 b(,)24 b Ga(b)d Gg(is)h(a)f(free)h(co-name)h(in)f
+FL(Imp)1567 4003 y Gc(R)1625 3981 y F4(\()1660 3969 y
+F9(\()1688 3981 y Ga(x)1740 3969 y F9(\))p FX(h)1795
+3981 y Ga(a)1843 3969 y FX(i)1870 3981 y Ga(M)10 b(;)15
+b(b)p F4(\))p Gg(.)28 b(In)22 b(general,)i(ho)n(we)n(v)o(er)l(,)e
+Ga(b)f Gg(could)i(already)h(be)321 4094 y(free)g(in)g(the)g(subterm)g
+Ga(M)10 b Gg(,)23 b(and)h(thus)g(the)g(conclusion)i(of)e(this)g(rule)g
+(is)f(of)h(the)g(form)1219 4277 y F4(\000)1301 4265 y
+Gc(.)1356 4277 y FL(Imp)1501 4299 y Gc(R)1558 4277 y
+F4(\()1593 4265 y F9(\()1621 4277 y Ga(x)1673 4265 y
+F9(\))q FX(h)1728 4277 y Ga(a)1776 4265 y FX(i)1804 4277
+y Ga(M)10 b(;)15 b(b)p F4(\))2042 4265 y Gc(.)2097 4277
+y F4(\001)20 b F6(\010)f Ga(b)f F4(:)f Ga(B)5 b F6(\033)o
+Ga(C)32 b(:)321 4448 y Gg(In)25 b(case)g(the)g(term)f
+FL(Imp)1071 4470 y Gc(R)1128 4448 y F4(\()1163 4436 y
+F9(\()1191 4448 y Ga(x)1243 4436 y F9(\))q FX(h)1298
+4448 y Ga(a)1346 4436 y FX(i)1373 4448 y Ga(M)11 b(;)k(b)p
+F4(\))24 b Gg(freshly)i(introduces)i Ga(b)19 b F4(:)g
+Ga(B)5 b F6(\033)o Ga(C)i Gg(,)23 b(then)j(the)f(conclusion)i(is)e(of)
+321 4561 y(the)f(form)1245 4674 y F4(\000)1327 4662 y
+Gc(.)1382 4674 y FL(Imp)1526 4696 y Gc(R)1584 4674 y
+F4(\()1619 4662 y F9(\()1646 4674 y Ga(x)1698 4662 y
+F9(\))q FX(h)1753 4674 y Ga(a)1801 4662 y FX(i)1829 4674
+y Ga(M)10 b(;)15 b(b)p F4(\))2067 4662 y Gc(.)2122 4674
+y F4(\001)20 b F6(\012)g Ga(b)d F4(:)g Ga(B)5 b F6(\033)p
+Ga(C)321 4833 y Gg(where)29 b Ga(b)d F4(:)g Ga(B)5 b
+F6(\033)o Ga(C)34 b Gg(is)28 b(not)g(in)g F4(\001)p Gg(.)42
+b(The)27 b(binders)j Ga(x)e Gg(and)g Ga(a)g Gg(cannot)h(be)g(part)f(of)
+g(the)h(conclusion,)j(and)321 4946 y(therefore)26 b(the)e(premise)g
+(must)g(be)g(of)f(the)h(form)1420 5136 y Ga(x)17 b F4(:)g
+Ga(B)25 b F6(\012)20 b F4(\000)1798 5124 y Gc(.)1853
+5136 y Ga(M)1976 5124 y Gc(.)2031 5136 y F4(\001)g F6(\012)g
+Ga(a)d F4(:)h Ga(C)32 b(:)462 5307 y Gg(W)-7 b(e)28 b(add)g(tw)o(o)g
+(ne)n(w)f(syntactic)j(cate)o(gories)h(of)d(terms,)h(which)f(are)g
+F7(not)h Gg(proof)g(annotations,)j(b)n(ut)321 5420 y(play)h(an)f
+(important)i(r)8 b(\210)-38 b(ole)33 b(in)f(the)g(de\002nition)i(of)e
+(substitution)k(and)c(in)g(our)h(strong)g(normalisation)321
+5533 y(proof.)p Black Black eop end
+%%Page: 23 35
+TeXDict begin 23 34 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
+(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(23)p
+277 88 3691 4 v Black Black 277 229 V 277 2078 4 1849
+v 1584 321 1054 4 v 1584 406 a Ga(x)17 b F4(:)h Ga(B)5
+b(;)15 b F4(\000)1892 394 y Gc(.)1947 406 y FL(Ax)o F4(\()p
+Ga(x;)g(a)p F4(\))2286 394 y Gc(.)2341 406 y F4(\001)p
+Ga(;)g(a)i F4(:)g Ga(B)818 597 y F4(\000)900 585 y Gc(.)954
+597 y Ga(M)1078 585 y Gc(.)1133 597 y F4(\001)p Ga(;)e(a)i
+F4(:)h Ga(B)p 555 634 1138 4 v 555 719 a(x)f F4(:)g F6(:)p
+Ga(B)5 b(;)15 b F4(\000)923 707 y Gc(.)978 719 y FL(Not)1121
+733 y Gc(L)1173 719 y F4(\()1208 707 y FX(h)1236 719
+y Ga(a)1284 707 y FX(i)1311 719 y Ga(M)10 b(;)15 b(x)p
+F4(\))1562 707 y Gc(.)1617 719 y F4(\001)1734 647 y F6(:)1795
+661 y Gc(L)2639 597 y Ga(x)j F4(:)f Ga(B)5 b(;)15 b F4(\000)2947
+585 y Gc(.)3002 597 y Ga(M)3125 585 y Gc(.)3180 597 y
+F4(\001)p 2378 634 1140 4 v 2378 719 a(\000)2460 707
+y Gc(.)2515 719 y FL(Not)2657 733 y Gc(R)2715 719 y F4(\()2750
+707 y F9(\()2778 719 y Ga(x)2830 707 y F9(\))2857 719
+y Ga(M)c(;)k(a)p F4(\))3105 707 y Gc(.)3159 719 y F4(\001)p
+Ga(;)g(a)j F4(:)f F6(:)p Ga(B)3559 647 y F6(:)3620 661
+y Gc(R)791 910 y Ga(x)g F4(:)g Ga(B)971 924 y Gc(i)999
+910 y Ga(;)e F4(\000)1122 898 y Gc(.)1177 910 y Ga(M)1300
+898 y Gc(.)1355 910 y F4(\001)p 466 947 1289 4 v 466
+1045 a Ga(y)20 b F4(:)e Ga(B)643 1059 y F9(1)682 1045
+y F6(^)p Ga(B)812 1059 y F9(2)851 1045 y Ga(;)d F4(\000)974
+1033 y Gc(.)1028 1045 y FL(And)1183 1008 y Gc(i)1183
+1068 y(L)1235 1045 y F4(\()1270 1033 y F9(\()1298 1045
+y Ga(x)1350 1033 y F9(\))1377 1045 y Ga(M)10 b(;)15 b(y)s
+F4(\))1624 1033 y Gc(.)1679 1045 y F4(\001)1796 960 y
+F6(^)1857 974 y Gc(L)1905 984 y FZ(i)2212 922 y F4(\000)2294
+910 y Gc(.)2349 922 y Ga(M)2472 910 y Gc(.)2527 922 y
+F4(\001)p Ga(;)g(a)i F4(:)h Ga(B)277 b F4(\000)3179 910
+y Gc(.)3234 922 y Ga(N)3342 910 y Gc(.)3397 922 y F4(\001)p
+Ga(;)15 b(b)j F4(:)f Ga(C)p 2212 960 1472 4 v 2238 1045
+a F4(\000)2320 1033 y Gc(.)2375 1045 y FL(And)2530 1059
+y Gc(R)2587 1045 y F4(\()2622 1033 y FX(h)2650 1045 y
+Ga(a)2698 1033 y FX(i)2726 1045 y Ga(M)10 b(;)2864 1033
+y FX(h)2892 1045 y Ga(b)2931 1033 y FX(i)2958 1045 y
+Ga(N)g(;)15 b(c)p F4(\))3181 1033 y Gc(.)3236 1045 y
+F4(\001)p Ga(;)g(c)j F4(:)f Ga(B)5 b F6(^)p Ga(C)3725
+978 y F6(^)3786 992 y Gc(R)384 1248 y Ga(x)17 b F4(:)h
+Ga(B)5 b(;)15 b F4(\000)692 1236 y Gc(.)747 1248 y Ga(M)870
+1236 y Gc(.)925 1248 y F4(\001)272 b Ga(y)20 b F4(:)e
+Ga(C)q(;)d F4(\000)1570 1236 y Gc(.)1625 1248 y Ga(N)1733
+1236 y Gc(.)1788 1248 y F4(\001)p 384 1285 1480 4 v 434
+1370 a Ga(z)21 b F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15 b
+F4(\000)863 1358 y Gc(.)918 1370 y FL(Or)1017 1384 y
+Gc(L)1069 1370 y F4(\()1104 1358 y F9(\()1132 1370 y
+Ga(x)1184 1358 y F9(\))1211 1370 y Ga(M)c(;)1350 1358
+y F9(\()1377 1370 y Ga(y)1425 1358 y F9(\))1453 1370
+y Ga(N)f(;)15 b(z)t F4(\))1683 1358 y Gc(.)1738 1370
+y F4(\001)1905 1303 y F6(_)1966 1317 y Gc(L)2617 1235
+y F4(\000)2699 1223 y Gc(.)2754 1235 y Ga(M)2877 1223
+y Gc(.)2932 1235 y F4(\001)p Ga(;)g(a)i F4(:)h Ga(B)3225
+1249 y Gc(i)p 2326 1273 1218 4 v 2326 1370 a F4(\000)2408
+1358 y Gc(.)2463 1370 y FL(Or)2562 1333 y Gc(i)2562 1393
+y(R)2620 1370 y F4(\()2655 1358 y FX(h)2683 1370 y Ga(a)2731
+1358 y FX(i)2758 1370 y Ga(M)10 b(;)15 b(b)p F4(\))2996
+1358 y Gc(.)3051 1370 y F4(\001)p Ga(;)g(b)j F4(:)f Ga(B)3335
+1384 y F9(1)3374 1370 y F6(_)p Ga(B)3504 1384 y F9(2)3585
+1286 y F6(_)3646 1300 y Gc(R)3699 1310 y FZ(i)379 1560
+y F4(\000)461 1548 y Gc(.)516 1560 y Ga(M)639 1548 y
+Gc(.)694 1560 y F4(\001)p Ga(;)e(a)j F4(:)f Ga(B)277
+b(x)17 b F4(:)h Ga(C)q(;)d F4(\000)1565 1548 y Gc(.)1620
+1560 y Ga(N)1728 1548 y Gc(.)1783 1560 y F4(\001)p 379
+1598 1480 4 v 400 1683 a Ga(y)20 b F4(:)d Ga(B)5 b F6(\033)o
+Ga(C)q(;)15 b F4(\000)840 1671 y Gc(.)895 1683 y FL(Imp)1040
+1705 y Gc(L)1092 1683 y F4(\()1127 1671 y FX(h)1155 1683
+y Ga(a)1203 1671 y FX(i)1230 1683 y Ga(M)10 b(;)1368
+1671 y F9(\()1396 1683 y Ga(x)1448 1671 y F9(\))1475
+1683 y Ga(N)g(;)15 b(y)s F4(\))1707 1671 y Gc(.)1762
+1683 y F4(\001)1900 1616 y F6(\033)1971 1630 y Gc(L)2525
+1560 y Ga(x)i F4(:)g Ga(B)5 b(;)15 b F4(\000)2832 1548
+y Gc(.)2887 1560 y Ga(M)3010 1548 y Gc(.)3065 1560 y
+F4(\001)p Ga(;)g(a)j F4(:)f Ga(C)p 2289 1598 1308 4 v
+2289 1683 a F4(\000)2371 1671 y Gc(.)2426 1683 y FL(Imp)2570
+1705 y Gc(R)2628 1683 y F4(\()2663 1671 y F9(\()2691
+1683 y Ga(x)2743 1671 y F9(\))p FX(h)2797 1683 y Ga(a)2845
+1671 y FX(i)2873 1683 y Ga(M)10 b(;)15 b(b)p F4(\))3111
+1671 y Gc(.)3166 1683 y F4(\001)p Ga(;)g(b)i F4(:)h Ga(B)5
+b F6(\033)o Ga(C)3638 1616 y F6(\033)3709 1630 y Gc(R)1268
+1873 y F4(\000)1325 1887 y F9(1)1390 1861 y Gc(.)1445
+1873 y Ga(M)1568 1861 y Gc(.)1623 1873 y F4(\001)1699
+1887 y F9(1)1738 1873 y Ga(;)15 b(a)j F4(:)f Ga(B)146
+b(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)2384 1887 y F9(2)2448
+1861 y Gc(.)2503 1873 y Ga(N)2611 1861 y Gc(.)2666 1873
+y F4(\001)2742 1887 y F9(2)p 1268 1911 1514 4 v 1373
+1996 a F4(\000)1430 2010 y F9(1)1469 1996 y Ga(;)g F4(\000)1566
+2010 y F9(2)1631 1984 y Gc(.)1686 1996 y FL(Cut)p F4(\()1859
+1984 y FX(h)1887 1996 y Ga(a)1935 1984 y FX(i)1962 1996
+y Ga(M)10 b(;)2100 1984 y F9(\()2128 1996 y Ga(x)2180
+1984 y F9(\))2207 1996 y Ga(N)g F4(\))2351 1984 y Gc(.)2406
+1996 y F4(\001)2482 2010 y F9(1)2521 1996 y Ga(;)15 b
+F4(\001)2637 2010 y F9(2)2823 1941 y Gg(Cut)p 3965 2078
+4 1849 v 277 2081 3691 4 v 277 2235 a(Figure)22 b(2.3:)28
+b(T)-6 b(erm)20 b(assignment)k(for)e(sequent)h(proofs)g(of)f(the)f
+(propositional)26 b(fragment)d(of)e(classical)277 2348
+y(logic.)p Black Black 277 2738 a Gb(De\002nition)28
+b(2.2.3:)p Black 35 w Gg(Let)g Ga(M)38 b Gg(and)30 b
+Ga(N)38 b Gg(be)29 b(well-typed)i(terms,)g(then)2451
+2726 y F9(\()2479 2738 y Ga(x)r F4(:)r Ga(B)2634 2726
+y F9(\))2661 2738 y Ga(M)39 b Gg(and)2947 2726 y FX(h)2974
+2738 y Ga(a)r F4(:)r Ga(C)3123 2726 y FX(i)3151 2738
+y Ga(N)f Gg(are)29 b(re-)277 2851 y(ferred)f(to)e(as)g(a)g
+F7(named)g(term)h Gg(and)f F7(co-named)i(term)p Gg(,)f(respecti)n(v)o
+(ely)-6 b(.)39 b(More)27 b(formally)-6 b(,)28 b(we)d(ha)n(v)o(e)i(the)
+277 2964 y(follo)n(wing)e(tw)o(o)e(f)o(amilies)i(of)e(sets)i(inde)o(x)o
+(ed)f(by)g(types:)p Black Black 391 3171 a FY(T)448 3190
+y F9(\()p Gc(B)s F9(\))659 3120 y F5(def)666 3171 y F4(=)844
+3070 y FK(n)929 3159 y F9(\()957 3171 y Ga(x)r F4(:)r
+Ga(B)1112 3159 y F9(\))1139 3171 y Ga(M)1284 3067 y FK(\014)1284
+3121 y(\014)1284 3176 y(\014)1362 3171 y Ga(M)35 b F6(2)25
+b FY(T)51 b Gg(with)23 b(the)h(typing)h(judgement)53
+b Ga(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)2994 3159
+y Gc(.)3049 3171 y Ga(M)3172 3159 y Gc(.)3227 3171 y
+F4(\001)3328 3070 y FK(o)392 3382 y FY(T)449 3400 y FX(h)p
+Gc(C)5 b FX(i)659 3330 y F5(def)666 3382 y F4(=)844 3281
+y FK(n)929 3370 y FX(h)957 3382 y Ga(a)r F4(:)r Ga(C)1106
+3370 y FX(i)1133 3382 y Ga(N)1284 3277 y FK(\014)1284
+3332 y(\014)1284 3386 y(\014)1362 3382 y Ga(N)50 b F6(2)25
+b FY(T)51 b Gg(with)23 b(the)h(typing)h(judgement)53
+b F4(\000)2768 3370 y Gc(.)2823 3382 y Ga(N)2932 3370
+y Gc(.)2986 3382 y F4(\001)p Ga(;)15 b(a)j F4(:)f Ga(C)3322
+3281 y FK(o)277 3585 y Gg(W)-7 b(e)22 b(e)o(xtend)j(the)e(notion)i(of)e
+(free)h(names)f(and)h(free)g(co-names)g(to)f(the)h(named)g(and)f
+(co-named)i(terms)277 3698 y(in)f(the)f(ob)o(vious)j(w)o(ay)-6
+b(.)418 3952 y(No)n(w)30 b(let)h(us)f(focus)i(on)f(term)g(re)n(writing)
+h(rules.)51 b(One)31 b(reason)h(for)f(introducing)j(terms)d(is)g(that)
+277 4065 y(the)o(y)c(greatly)h(simplify)g(the)f(formalisation)j(of)c
+(the)h(cut-reduction)j(rules,)e(most)f(notably)i(the)d(rules)277
+4177 y(for)j(commuting)i(cuts.)46 b(In)29 b(the)h(sequent)h(calculus)g
+(gi)n(v)o(en)f(in)f(Figure)g(2.2)g(there)h(are)g(300)f(dif)n(ferent)277
+4290 y(cases)k(of)e(commuting)i(cuts!)55 b(T)-7 b(o)30
+b(consider)k(each)f(case)f(separately)i(is)e(clearly)h(rather)g
+(laborious,)277 4403 y(and)d(unfortunately)j(simpli\002cations)f(using)
+e(sequent)h(proofs)g(seem)e(dif)n(\002cult)h(to)f(obtain.)47
+b(F)o(or)28 b(e)o(x-)277 4516 y(ample)22 b(Ungar)g([1992,)h(P)o(age)e
+(192])h(remarks)h(on)e(a)g(cut-elimination)26 b(procedure)e(in)e(a)f
+(much)g(simpler)277 4629 y(setting:)p Black Black 504
+4815 a(Unfortunately)-6 b(,)33 b(there)c(are)g(a)f(lar)n(ge)i(number)f
+(of)f(cases)i(to)e(consider)j(and)e(I)f(ha)n(v)o(e)h(not)504
+4928 y(been)j(able)f(to)f(\002nd)g(a)g(notation)i(that)f(enables)h
+(more)e(than)i(a)d(couple)j(of)e(these)i(to)e(be)504
+5041 y(amalgamated.)277 5228 y(Therefore)37 b(traditional)g(treatments)
+g(of)e(cut-elimination)j(either)e(omit)f(these)h(permutation)h(rules)
+277 5341 y(entirely)e(or)d(present)i(only)g(a)e(handful)j(of)d(cases;)
+38 b(for)33 b(e)o(xample)h([Gentzen,)f(1935,)h(Girard)f(et)f(al.,)p
+Black Black eop end
+%%Page: 24 36
+TeXDict begin 24 35 bop Black -144 51 a Gb(24)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(1989,)34
+b(Gallier,)f(1993].)57 b(This)33 b(is)f(unfortunate)k(as)d(a)f(careful)
+j(study)f(of)e(these)i(rules)g(sheds)f(some)321 430 y(light)25
+b(on)e(the)h(problems)h(of)f(non-termination)j(of)d(cut-elimination.)
+462 591 y(A)j(substitution)k(operation,)g(which)d(we)f(shall)h
+(introduce)j(for)c(terms,)i(allo)n(ws)f(us)f(to)h(formalise)321
+704 y(the)e(proof)g(transformations)j(necessary)f(for)d(commuting)i
+(cuts)f(in)f(only)h(twenty)f(clauses.)36 b(Clearly)-6
+b(,)321 817 y(this)28 b(is)f(an)g(adv)n(antage)j(of)d(our)h(use)f(of)g
+(terms.)40 b(T)-7 b(o)26 b(gi)n(v)o(e)h(the)h(de\002nition)h(of)e(this)
+h(substitution)i(oper)n(-)321 930 y(ation)c(in)f(a)g(compact)h(form,)f
+(we)f(assume)i(the)f(follo)n(wing)h(con)l(v)o(ention,)j(which)c(is)g
+(standard)i(in)e(term)321 1042 y(re)n(writing.)p Black
+321 1230 a Gb(Con)l(v)o(ention)19 b(2.2.4)f Gg(\(Barendre)o(gt-style)k
+(Naming)c(Con)l(v)o(ention\))p Gb(:)p Black 37 w Gg(W)-7
+b(e)17 b(assume)i(that)g(terms)f(are)g(equal)321 1343
+y(up)26 b(to)f(alpha-con)l(v)o(ersion;)31 b(that)26 b(means)g(re)n
+(writing)g(bound)h(names)e(or)h(co-names)g(does)g(not)g(change)321
+1456 y(terms.)i(This)20 b(con)l(v)o(ersion)k(generates)e(alpha-equi)n
+(v)n(alence)k(classes)c(of)e(terms.)28 b(When)20 b(writing)h(terms)321
+1569 y(we)28 b(observ)o(e)j(a)d(Barendre)o(gt-style)k(naming)e(con)l(v)
+o(ention,)j(which)c(says)h(that)f(free)g(and)h(bound)g(\(co-)321
+1682 y(\)names)35 b(are)g(al)o(w)o(ays)g(distinct)h(\(cf.)e(Con)l(v)o
+(ention)i(2.1.13)f(gi)n(v)o(en)g(by)f(Barendre)o(gt)i([1981]\).)63
+b(Thus)321 1795 y(we)24 b(can)g(vie)n(w)g(our)g(terms)h(as)f
+(representati)n(v)o(es)k(of)c(the)g(alpha-equi)n(v)n(alence)29
+b(classes)d(and)e(w)o(ork)h(with)321 1908 y(these)g(terms)f(in)f(the)h
+(na)m(\250)-27 b(\021v)o(e)24 b(w)o(ay)-6 b(.)p Black
+321 2145 a Gb(Remark)39 b(2.2.5:)p Black 34 w Gg(An)f(alternati)n(v)o
+(e)j(to)e(this)h(con)l(v)o(ention)i(a)n(v)n(oiding)f(the)f(problems)g
+(arising)h(from)321 2258 y(alpha-con)l(v)o(ersions)34
+b(w)o(ould)29 b(be)g(to)f(use)h(de)f(Bruijn')-5 b(s)30
+b(nameless)g(terms.)44 b(This)28 b(an)g(ele)o(gant)i(method)321
+2371 y(for)c(an)g(implementation,)j(ho)n(we)n(v)o(er)l(,)d(at)g(the)f
+(e)o(xpense)j(of)d(making)i(our)f(terms)g(ille)o(gible)h(for)f(human)
+321 2484 y(readers.)67 b(Another)37 b(alternati)n(v)o(e)h(is)d(to)h
+(de\002ne)g(directly)i(the)e(alpha-equi)n(v)n(alence)k(classes)e(of)d
+(our)321 2597 y(terms)22 b(using)h(the)e(meta-language)k(pro)o(vided)f
+(by)d(Gabbay)h(and)g(Pitts)g([1999].)29 b(Both)22 b(methods)h(seem)321
+2710 y(less)32 b(useful)g(for)f(our)g(purposes,)k(since)c(the)o(y)g
+(either)h(complicate)h(the)e(de\002nition)i(of)e(terms)g(or)f(the)321
+2822 y(de\002nition)23 b(of)e(substitution.)31 b(Therefore)23
+b(we)d(shall)i(use)f(the)h(Barendre)o(gt-style)i(naming)e(con)l(v)o
+(ention)321 2935 y(throughout)27 b(the)d(thesis.)462
+3220 y(Before)h(we)f(formalise)i(the)e(substitution)k(operation,)f(let)
+d(us)h(gi)n(v)o(e)f(some)g(intuition)j(behind)f(this)321
+3333 y(operation.)31 b(Consider)24 b(the)f(follo)n(wing)i(sequent)f
+(proof)g(where)f(we)f(ha)n(v)o(e)h(omitted)h(the)f(term)g(annota-)321
+3446 y(tions)i(and)f(labels)h(for)e(bre)n(vity)-6 b(.)p
+Black Black 307 3916 a FU(\031)354 3928 y FJ(1)391 3746
+y FI(8)391 3821 y(<)391 3970 y(:)p 472 3865 703 4 v 472
+3938 a FU(B)t FT(_)q FU(C)p 678 3926 10 38 v 688 3910
+42 4 v 94 w(D)r FT(\033)p FU(E)5 b(;)14 b(B)t FT(_)p
+FU(C)1216 3884 y FH(?)p 1339 3755 670 4 v 1339 3829 a
+FU(B)t FT(_)q FU(C)q(;)g(D)p 1649 3817 10 38 v 1658 3800
+42 4 v 90 w(E)5 b(;)14 b(B)t FT(_)q FU(C)2050 3775 y
+FH(?)p 1323 3865 703 4 v 1323 3938 a FU(B)t FT(_)p FU(C)p
+1529 3926 10 38 v 1539 3910 42 4 v 95 w(D)r FT(\033)o
+FU(E)5 b(;)14 b(B)t FT(_)q FU(C)2053 3881 y FT(\033)2117
+3893 y FS(R)p 472 3974 1553 4 v 711 4053 a FG(\()p FU(B)t
+FT(_)q FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)q
+FU(C)g FG(\))p 1290 4041 10 38 v 1299 4024 42 4 v 88
+w FU(D)r FT(\033)p FU(E)f(;)14 b(B)t FT(_)p FU(C)2053
+3991 y FT(_)2108 4004 y FS(L)p 2245 3761 427 4 v 2245
+3834 a FU(B)t(;)g(F)p 2433 3822 10 38 v 2442 3806 42
+4 v 100 w(B)t(;)g(C)p 2755 3761 420 4 v 90 w(C)q(;)g(F)p
+2935 3822 10 38 v 2945 3806 42 4 v 100 w(B)t(;)g(C)p
+2245 3870 929 4 v 2439 3944 a(B)t FT(_)p FU(C)q(;)g(F)p
+2742 3932 10 38 v 2752 3915 42 4 v 101 w(B)t(;)g(C)3202
+3887 y FT(_)3257 3900 y FS(L)3307 3887 y FT(\017)p 2378
+3980 663 4 v 2378 4053 a FU(B)t FT(_)q FU(C)q(;)g(F)e
+FT(^)q FU(G)p 2802 4041 10 38 v 2812 4024 42 4 v 88 w(B)t(;)i(C)3069
+3992 y FT(^)3124 4005 y FS(L)3170 4013 y FP(1)3355 3746
+y FI(9)3355 3821 y(=)3355 3970 y(;)3429 3916 y FU(\031)3476
+3928 y FJ(2)p 593 4073 2613 4 v 1261 4152 a FG(\()p FU(B)t
+FT(_)p FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)q
+FU(C)g FG(\))p FU(;)14 b(F)e FT(^)q FU(G)p 2062 4140
+10 38 v 2071 4123 42 4 v 88 w(D)r FT(\033)p FU(E)5 b(;)14
+b(B)t(;)g(C)3234 4101 y Gd(Cut)321 4524 y Gg(The)23 b(cut-formula,)j
+Ga(B)5 b F6(_)o Ga(C)i Gg(,)22 b(is)h(neither)i(introduced)i(in)c(the)h
+(inference)i(rule)e F6(_)2794 4538 y Gc(L)2869 4524 y
+Gg(nor)f(in)h F6(^)3166 4538 y Gc(L)3214 4547 y FV(1)3253
+4524 y Gg(.)k(There-)321 4637 y(fore)d(the)g(cut)f(is,)h(by)f
+(de\002nition,)i(a)e(commuting)i(cut.)31 b(In)24 b Ga(\031)2194
+4651 y F9(1)2257 4637 y Gg(the)h(cut-formula)h(is)f(introduced)i(in)d
+(the)321 4750 y(axioms)31 b(mark)o(ed)f(with)f(a)g(star)l(,)j(and)e(in)
+f Ga(\031)1664 4764 y F9(2)1704 4750 y Gg(,)g(respecti)n(v)o(ely)-6
+b(,)34 b(in)c(the)f(inference)j(rule)e(mark)o(ed)h(with)e(a)321
+4863 y(disc.)k(Eliminating)26 b(the)f(cut)g(in)g(the)g(proof)h(abo)o(v)
+o(e)f(means)g(to)g(either)h(permute)f(the)g(deri)n(v)n(ation)i
+Ga(\031)3412 4877 y F9(2)3476 4863 y Gg(to)321 4976 y(the)j(places)g
+(mark)o(ed)h(with)e(a)f(star)i(and)g(replace)h(the)e(corresponding)34
+b(axioms)c(with)f Ga(\031)3107 4990 y F9(2)3146 4976
+y Gg(,)h(or)f(to)g(per)n(-)321 5088 y(mute)23 b Ga(\031)577
+5102 y F9(1)639 5088 y Gg(and)h(\223cut)g(it)e(against\224)j(the)f
+(inference)h(rule)f(mark)o(ed)g(with)f(a)g(disc.)29 b(In)23
+b(the)h(former)f(case)h(the)321 5201 y(deri)n(v)n(ation)i(being)f
+(permuted)g(is)e(duplicated.)p Black Black eop end
+%%Page: 25 37
+TeXDict begin 25 36 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
+(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(25)p
+277 88 3691 4 v Black 418 294 a Gg(W)-7 b(e)18 b(realise)i(these)f
+(operations)j(at)c(the)h(term)f(le)n(v)o(el)h(with)f(tw)o(o)g
+(symmetric)i(forms)f(of)f(substitution,)277 407 y(which)24
+b(we)f(shall)h(write)g(as)p Black Black 1012 586 a Ga(P)13
+b F4([)p Ga(x)k F4(:)r Ga(B)31 b F4(:=)1425 574 y FX(h)1452
+586 y Ga(a)17 b F4(:)r Ga(B)1618 574 y FX(i)1646 586
+y Ga(Q)p F4(])99 b Gg(or)i Ga(S)5 b F4([)p Ga(b)17 b
+F4(:)r Ga(B)30 b F4(:=)2407 574 y F9(\()2435 586 y Ga(y)20
+b F4(:)r Ga(B)2601 574 y F9(\))2628 586 y Ga(T)13 b F4(])25
+b Gg(.)277 765 y(F)o(or)g(bre)n(vity)j(we)d(shall)i(usually)g(omit)f
+(the)g(type)h(annotations)i(in)d(the)g(substitution)k(operation,)f
+(pro-)277 878 y(vided)c(the)o(y)f(are)f(clear)i(from)e(the)h(conte)o
+(xt.)418 1008 y(Returning)d(to)e(our)g(moti)n(v)n(ating)h(e)o(xample,)h
+(assume)e(that)h Ga(M)28 b Gg(and)19 b Ga(N)28 b Gg(are)19
+b(the)g(terms)g(correspond-)277 1120 y(ing)24 b(to)f(the)h(subproofs)j
+Ga(\031)1077 1134 y F9(1)1139 1120 y Gg(and)d Ga(\031)1345
+1134 y F9(2)1384 1120 y Gg(,)e(which)i(thus)g(ha)n(v)o(e)h(the)e
+(typing)j(judgements:)p Black Black 1011 1294 a Ga(x)17
+b F4(:)h(\()p Ga(B)5 b F6(_)o Ga(C)i F4(\))p F6(_)o F4(\()p
+Ga(B)e F6(_)p Ga(C)i F4(\))1786 1282 y Gc(.)1866 1294
+y Ga(M)2015 1282 y Gc(.)2095 1294 y Ga(a)17 b F4(:)h
+Ga(D)s F6(\033)o Ga(E)5 b(;)15 b(b)j F4(:)g Ga(B)5 b
+F6(_)o Ga(C)1092 1421 y(y)20 b F4(:)e Ga(B)5 b F6(_)o
+Ga(C)q(;)15 b(z)22 b F4(:)c Ga(F)13 b F6(^)o Ga(G)1800
+1409 y Gc(.)1888 1421 y Ga(N)2028 1409 y Gc(.)2108 1421
+y Ga(c)18 b F4(:)f Ga(B)5 b(;)15 b(d)j F4(:)f Ga(C)277
+1591 y Gg(Consequently)-6 b(,)27 b(we)22 b(ha)n(v)o(e)j(the)e(term)h
+(annotation)p Black Black 528 1758 a Ga(x)18 b F4(:)f(\()p
+Ga(B)5 b F6(_)o Ga(C)i F4(\))p F6(_)p F4(\()p Ga(B)e
+F6(_)o Ga(C)i F4(\))p Ga(;)15 b(z)22 b F4(:)c Ga(F)13
+b F6(^)o Ga(G)1653 1746 y Gc(.)1733 1758 y FL(Cut)p F4(\()1906
+1746 y FX(h)1934 1758 y Ga(b)1973 1746 y FX(i)2000 1758
+y Ga(M)e(;)2139 1746 y F9(\()2166 1758 y Ga(y)2214 1746
+y F9(\))2242 1758 y Ga(N)f F4(\))2411 1746 y Gc(.)2491
+1758 y Ga(a)17 b F4(:)g Ga(D)s F6(\033)p Ga(E)5 b(;)15
+b(c)j F4(:)g Ga(B)5 b(;)15 b(d)i F4(:)g Ga(C)277 1943
+y Gg(for)27 b(the)g(conclusion)j(of)c(the)h(e)o(xample)h(proof.)39
+b(The)26 b(term)g Ga(M)10 b F4([)p Ga(b)32 b F4(:=)2474
+1931 y F9(\()2501 1943 y Ga(y)2549 1931 y F9(\))2576
+1943 y Ga(N)10 b F4(])26 b Gg(denotes)j(the)e(follo)n(wing)277
+2056 y(proof,)d(where)g(we)f(ha)n(v)o(e)h(again)g(omitted)h(all)f(term)
+f(annotations)k(and)d(labels.)p Black Black 286 2296
+665 4 v 286 2370 a FU(B)t(;)14 b(F)p 474 2358 10 38 v
+483 2341 42 4 v 100 w(D)r FT(\033)p FU(E)5 b(;)14 b(B)t(;)g(C)p
+1080 2296 659 4 v 135 w(C)q(;)g(F)p 1261 2358 10 38 v
+1271 2341 42 4 v 101 w(D)r FT(\033)o FU(E)5 b(;)14 b(B)t(;)g(C)p
+286 2406 1453 4 v 622 2479 a(B)t FT(_)p FU(C)q(;)g(F)p
+925 2467 10 38 v 935 2450 42 4 v 101 w(D)r FT(\033)o
+FU(E)5 b(;)14 b(B)t(;)g(C)1780 2423 y FT(_)1835 2435
+y FS(L)p 562 2515 902 4 v 562 2588 a FU(B)t FT(_)p FU(C)q(;)g(F)e
+FT(^)q FU(G)p 986 2576 10 38 v 995 2560 42 4 v 88 w(D)r
+FT(\033)p FU(E)5 b(;)14 b(B)t(;)g(C)1505 2528 y FT(^)1560
+2540 y FS(L)1606 2548 y FP(1)p 1968 2187 628 4 v 1968
+2260 a FU(B)t(;)g(F)r(;)g(D)p 2254 2248 10 38 v 2264
+2232 42 4 v 91 w(E)5 b(;)14 b(B)t(;)g(C)p 2725 2187 622
+4 v 135 w(C)q(;)g(F)r(;)g(D)p 3005 2248 10 38 v 3014
+2232 42 4 v 91 w(E)5 b(;)14 b(B)t(;)g(C)p 1968 2296 1379
+4 v 2285 2370 a(B)t FT(_)q FU(C)q(;)g(F)r(;)g(D)p 2687
+2358 10 38 v 2697 2341 42 4 v 91 w(E)5 b(;)14 b(B)t(;)g(C)3388
+2313 y FT(_)3443 2326 y FS(L)p 2220 2406 874 4 v 2220
+2479 a FU(B)t FT(_)q FU(C)q(;)g(F)e FT(^)q FU(G;)i(D)p
+2752 2467 10 38 v 2762 2450 42 4 v 90 w(E)5 b(;)14 b(B)t(;)g(C)3136
+2418 y FT(^)3191 2431 y FS(L)3237 2439 y FP(1)p 2207
+2515 902 4 v 2207 2588 a FU(B)t FT(_)p FU(C)q(;)g(F)e
+FT(^)q FU(G)p 2631 2576 10 38 v 2640 2560 42 4 v 88 w(D)r
+FT(\033)p FU(E)5 b(;)14 b(B)t(;)g(C)3150 2531 y FT(\033)3214
+2544 y FS(R)p 562 2624 2547 4 v 1196 2703 a FG(\()p FU(B)t
+FT(_)p FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)q
+FU(C)g FG(\))p FU(;)14 b(F)e FT(^)q FU(G)p 1997 2691
+10 38 v 2006 2675 42 4 v 88 w(D)r FT(\033)p FU(E)5 b(;)14
+b(B)t(;)g(C)3150 2641 y FT(_)3205 2654 y FS(L)277 2901
+y Gg(Similarly)-6 b(,)24 b(the)g(symmetric)g(case)h Ga(N)10
+b F4([)p Ga(y)28 b F4(:=)1677 2889 y FX(h)1705 2901 y
+Ga(b)1744 2889 y FX(i)1771 2901 y Ga(M)10 b F4(])23 b
+Gg(denotes)j(the)d(proof)p Black Black 440 3144 703 4
+v 440 3218 a FU(B)t FT(_)q FU(C)p 647 3206 10 38 v 656
+3189 42 4 v 94 w(D)r FT(\033)p FU(E)5 b(;)14 b(B)t FT(_)p
+FU(C)p 1288 3035 670 4 v 1288 3108 a(B)t FT(_)p FU(C)q(;)g(D)p
+1597 3096 10 38 v 1607 3080 42 4 v 91 w(E)5 b(;)14 b(B)t
+FT(_)p FU(C)p 1272 3144 703 4 v 1272 3218 a(B)t FT(_)p
+FU(C)p 1478 3206 10 38 v 1487 3189 42 4 v 94 w(D)r FT(\033)p
+FU(E)5 b(;)14 b(B)t FT(_)p FU(C)2015 3160 y FT(\033)2080
+3173 y FS(R)p 440 3254 1534 4 v 670 3333 a FG(\()p FU(B)t
+FT(_)q FU(C)6 b FG(\))p FT(_)q FG(\()p FU(B)t FT(_)p
+FU(C)g FG(\))p 1248 3321 10 38 v 1258 3304 42 4 v 89
+w FU(D)r FT(\033)o FU(E)f(;)14 b(B)t FT(_)q FU(C)2015
+3271 y FT(_)2071 3283 y FS(L)p 2217 3150 427 4 v 2217
+3223 a FU(B)t(;)g(F)p 2405 3211 10 38 v 2414 3195 42
+4 v 100 w(B)t(;)g(C)p 2773 3150 420 4 v 136 w(C)q(;)g(F)p
+2954 3211 10 38 v 2963 3195 42 4 v 100 w(B)t(;)g(C)p
+2217 3259 976 4 v 2434 3333 a(B)t FT(_)p FU(C)q(;)g(F)p
+2737 3321 10 38 v 2747 3304 42 4 v 101 w(B)t(;)g(C)3234
+3276 y FT(_)3289 3289 y FS(L)p 670 3373 2307 4 v 1244
+3452 a FG(\()p FU(B)t FT(_)q FU(C)6 b FG(\))p FT(_)q
+FG(\()p FU(B)t FT(_)p FU(C)g FG(\))p FU(;)14 b(F)p 1924
+3440 10 38 v 1934 3424 42 4 v 101 w(D)r FT(\033)o FU(E)5
+b(;)14 b(B)t(;)g(C)3017 3401 y Gd(Cut)p 1183 3493 1280
+4 v 1183 3572 a FG(\()p FU(B)t FT(_)q FU(C)6 b FG(\))p
+FT(_)q FG(\()p FU(B)t FT(_)q FU(C)g FG(\))p FU(;)14 b(E)5
+b FT(^)q FU(F)p 1985 3560 10 38 v 1995 3543 42 4 v 100
+w(D)r FT(\033)o FU(E)g(;)14 b(B)t(;)g(C)2504 3505 y FT(^)2559
+3518 y FS(L)2605 3526 y FP(1)418 3763 y Gg(As)29 b(we)f(ha)n(v)o(e)i
+(seen,)h(commuting)g(cuts)f(need)g(to)f(permute,)j(or)d(\223jump\224,)j
+(to)d(the)g(places)i(where)277 3876 y(the)k(cut-formula)j(is)d(a)f
+(main)h(formula.)64 b(At)34 b(the)h(le)n(v)o(el)h(of)f(terms)g(this)g
+(means)h(the)f(cuts)h(need)f(to)277 3989 y(be)e(permuted)i(to)e(e)n(v)o
+(ery)h(subterm)h(that)e(introduces)k(the)c(cut-formula.)61
+b(Therefore,)37 b(whene)n(v)o(er)d(a)277 4102 y(substitution)40
+b(is)c(ne)o(xt)h(to)g(a)f(term)g(in)g(which)h(the)g(cut-formula)h(is)f
+(introduced,)42 b(the)37 b(substitution)277 4215 y(becomes)25
+b(an)f(instance)j(of)d(the)g(cut-term)h(constructor)-5
+b(.)34 b(In)23 b(the)i(follo)n(wing)g(tw)o(o)f(e)o(xamples)h(we)e
+(shall)277 4328 y(write)h F4([)p Ga(\033)s F4(])f Gg(and)h
+F4([)p Ga(\034)10 b F4(])23 b Gg(for)h(the)g(substitutions)j
+F4([)p Ga(c)f F4(:=)1848 4316 y F9(\()1876 4328 y Ga(x)1928
+4316 y F9(\))1955 4328 y Ga(P)13 b F4(])23 b Gg(and)h
+F4([)p Ga(x)i F4(:=)2452 4316 y FX(h)2479 4328 y Ga(b)2518
+4316 y FX(i)2546 4328 y Ga(Q)p F4(])p Gg(,)c(respecti)n(v)o(ely)-6
+b(.)p Black Black 540 4521 a FL(And)694 4535 y Gc(R)752
+4521 y F4(\()787 4509 y FX(h)815 4521 y Ga(a)863 4509
+y FX(i)890 4521 y Ga(M)10 b(;)1028 4509 y FX(h)1056 4521
+y Ga(b)1095 4509 y FX(i)1123 4521 y Ga(N)g(;)15 b(c)p
+F4(\)[)p Ga(\033)s F4(])101 b(=)e FL(Cut)p F4(\()1869
+4509 y FX(h)1897 4521 y Ga(c)1936 4509 y FX(i)1964 4521
+y FL(And)2118 4535 y Gc(R)2176 4521 y F4(\()2211 4509
+y FX(h)2239 4521 y Ga(a)2287 4509 y FX(i)2330 4521 y
+Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)2573 4509 y FX(h)2601
+4521 y Ga(b)2640 4509 y FX(i)2683 4521 y Ga(N)g F4([)p
+Ga(\033)s F4(])p Ga(;)15 b(c)p F4(\))r Ga(;)3027 4509
+y F9(\()3054 4521 y Ga(x)3106 4509 y F9(\))3134 4521
+y Ga(P)e F4(\))539 4657 y FL(Imp)684 4679 y Gc(L)736
+4657 y F4(\()771 4645 y FX(h)798 4657 y Ga(a)846 4645
+y FX(i)874 4657 y Ga(M)d(;)1012 4645 y F9(\()1040 4657
+y Ga(y)1088 4645 y F9(\))1115 4657 y Ga(N)g(;)15 b(x)p
+F4(\)[)p Ga(\034)10 b F4(])101 b(=)e FL(Cut)p F4(\()1869
+4645 y FX(h)1897 4657 y Ga(b)1936 4645 y FX(i)1964 4657
+y Ga(Q)o(;)2075 4645 y F9(\()2103 4657 y Ga(x)2155 4645
+y F9(\))2183 4657 y FL(Imp)2327 4679 y Gc(L)2379 4657
+y F4(\()2414 4645 y FX(h)2442 4657 y Ga(a)2490 4645 y
+FX(i)2533 4657 y Ga(M)10 b F4([)p Ga(\034)g F4(])p Ga(;)2771
+4645 y F9(\()2799 4657 y Ga(y)2847 4645 y F9(\))2890
+4657 y Ga(N)g F4([)p Ga(\034)g F4(])p Ga(;)15 b(x)p F4(\))q(\))277
+4844 y Gg(In)23 b(the)h(\002rst)f(e)o(xample)h(the)g(formula)h
+(labelled)g(with)e Ga(c)g Gg(is)h(the)f(main)h(formula)g(and)g(in)f
+(the)h(second)h(the)277 4957 y(formula)h(labelled)g(with)e
+Ga(x)g Gg(is)g(the)h(main)g(formula.)32 b(So)24 b(in)g(both)i(cases)f
+(the)g(substitutions)j(\223e)o(xpand\224)277 5070 y(to)e(cuts,)g(and)g
+(in)g(addition)h(the)f(substitutions)k(are)25 b(pushed)j(inside)f(the)e
+(subterms.)37 b(This)25 b(is)g(because)277 5183 y(there)34
+b(might)e(be)h(se)n(v)o(eral)g(occurrences)j(of)c Ga(c)g
+Gg(and)h Ga(x)f Gg(\(both)h(labels)h(need)f(not)g(ha)n(v)o(e)g(been)h
+(freshly)p Black Black eop end
+%%Page: 26 38
+TeXDict begin 26 37 bop Black -144 51 a Gb(26)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 294 a Gg(introduced\).)31
+b(An)20 b(e)o(xception)i(applies)g(to)e(axioms,)i(where)f(the)f
+(substitution)k(is)c(de\002ned)h(dif)n(ferently)-6 b(.)p
+Black Black 1271 467 a FL(Ax)p F4(\()p Ga(x;)15 b(a)p
+F4(\)[)p Ga(x)26 b F4(:=)1809 455 y FX(h)1836 467 y Ga(b)1875
+455 y FX(i)1903 467 y Ga(P)13 b F4(])99 b(=)h Ga(P)13
+b F4([)p Ga(b)d F6(7!)g Ga(a)p F4(])1266 604 y FL(Ax)o
+F4(\()p Ga(x;)15 b(a)p F4(\)[)p Ga(a)27 b F4(:=)1799
+592 y F9(\()1826 604 y Ga(y)1874 592 y F9(\))1902 604
+y Ga(Q)p F4(])99 b(=)h Ga(Q)p F4([)p Ga(y)13 b F6(7!)d
+Ga(x)p F4(])321 780 y Gg(Recall)29 b(that)f Ga(P)13 b
+F4([)p Ga(b)18 b F6(7!)g Ga(a)p F4(])28 b Gg(stands)h(for)f(the)g(term)
+g Ga(P)40 b Gg(where)28 b(e)n(v)o(ery)g(free)h(occurrence)h(of)e(the)g
+(co-name)321 893 y Ga(b)i Gg(is)g(re)n(written)i(to)e
+Ga(a)g Gg(\(similarly)i Ga(Q)p F4([)p Ga(y)26 b F6(7!)d
+Ga(x)p F4(])p Gg(\).)49 b(W)-7 b(e)30 b(are)g(left)h(with)f(the)h
+(cases)h(where)e(the)h(name)g(or)321 1006 y(co-name)24
+b(that)f(is)f(being)i(substituted)i(for)c(is)h(not)f(a)g(label)i(of)e
+(the)h(main)g(formula.)29 b(In)22 b(these)i(cases)f(the)321
+1119 y(substitutions)k(are)c(pushed)h(inside)g(the)f(subterms)h(or)e(v)
+n(anish)i(in)f(case)g(of)f(the)h(axioms.)29 b(Suppose)24
+b(the)321 1232 y(substitution)j F4([)p Ga(\033)s F4(])d
+Gg(is)f F7(not)h Gg(of)g(the)f(form)h F4([)p Ga(z)30
+b F4(:=)25 b Ga(:)15 b(:)g(:)q F4(])23 b Gg(and)h F4([)p
+Ga(a)h F4(:=)h Ga(:)15 b(:)g(:)q F4(])p Gg(,)22 b(then)j(we)d(ha)n(v)o
+(e)j(for)e(e)o(xample:)p Black Black 875 1425 a FL(Or)974
+1439 y Gc(L)1027 1425 y F4(\()1062 1413 y F9(\()1089
+1425 y Ga(x)1141 1413 y F9(\))1169 1425 y Ga(M)10 b(;)1307
+1413 y F9(\()1335 1425 y Ga(y)1383 1413 y F9(\))1410
+1425 y Ga(N)g(;)15 b(z)t F4(\)[)p Ga(\033)s F4(])101
+b(=)f FL(Or)2090 1439 y Gc(L)2142 1425 y F4(\()2177 1413
+y F9(\()2205 1425 y Ga(x)2257 1413 y F9(\))2310 1425
+y Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)2553 1413 y
+F9(\()2581 1425 y Ga(y)2629 1413 y F9(\))2682 1425 y
+Ga(N)g F4([)p Ga(\033)s F4(])p Ga(;)15 b(z)t F4(\))1307
+1562 y FL(Ax)p F4(\()p Ga(z)t(;)g(a)p F4(\)[)p Ga(\033)s
+F4(])101 b(=)f FL(Ax)o F4(\()p Ga(z)t(;)15 b(a)p F4(\))462
+1757 y Gg(The)30 b(complete)h(de\002nition)g(of)f(the)g(substitution)j
+(operation)f(is)e(gi)n(v)o(en)g(in)f(Figure)i(2.4.)47
+b(W)-7 b(e)28 b(do)321 1870 y(not)g(need)g(to)f(w)o(orry)h(about)g
+(inserting)i(contraction)g(rules)e(when)f(a)g(term)g(is)g(duplicated,)k
+(since)d(our)321 1983 y(conte)o(xts)c(are)e(sets)g(of)g(labelled)h
+(formulae,)h(and)e(thus)g(contractions)k(are)c(made)f(implicitly)-6
+b(.)30 b(Another)321 2096 y(simpli\002cation)23 b(is)c(due)i(to)f(our)g
+(use)g(of)g(the)g(Barendre)o(gt-style)k(naming)d(con)l(v)o(ention,)i
+(because)f(we)d(do)321 2209 y(not)h(need)g(to)g(w)o(orry)f(about)i
+(possible)h(capture)f(of)e(free)h(names)g(or)f(co-names.)29
+b(Let)19 b(us)g(no)n(w)g(introduce)321 2322 y(some)24
+b(useful)h(terminology)h(for)e(substitutions.)p Black
+321 2509 a Gb(T)-8 b(erminology)35 b(2.2.6:)p Black 34
+w Gg(W)-7 b(e)33 b(shall)h(use)g(the)g(e)o(xpression)j
+F4([)p Ga(\033)s F4(])c Gg(to)h(range)g(o)o(v)o(er)g(substitutions)k
+(of)33 b(the)321 2622 y(form)26 b F4([)p Ga(x)18 b F4(:)f
+Ga(B)30 b F4(:=)880 2610 y FX(h)908 2622 y Ga(a)17 b
+F4(:)g Ga(B)1089 2610 y FX(i)1131 2622 y Ga(Q)p F4(])26
+b Gg(and)g F4([)p Ga(b)18 b F4(:)f Ga(B)30 b F4(:=)1754
+2610 y F9(\()1781 2622 y Ga(y)21 b F4(:)c Ga(B)1963 2610
+y F9(\))2005 2622 y Ga(T)c F4(])p Gg(.)35 b(In)26 b(the)h(\002rst)e
+(case)i Ga(x)17 b F4(:)h Ga(B)29 b Gg(is)d(the)h F7(domain)g
+Gg(of)321 2735 y F4([)p Ga(\033)s F4(])p Gg(,)d(written)h(as)f
+Ga(dom)p F4(\([)p Ga(\033)s F4(]\))p Gg(,)h(and)f(the)g(co-named)i
+(term)2107 2723 y FX(h)2134 2735 y Ga(a)r F4(:)r Ga(B)2285
+2723 y FX(i)2313 2735 y Ga(Q)d Gg(is)h(the)g F7(co-domain)i
+Gg(of)e F4([)p Ga(\033)s F4(])p Gg(,)g(written)321 2848
+y(as)g Ga(codom)p F4(\([)p Ga(\033)s F4(]\))p Gg(.)30
+b(Similarly)24 b(in)f(the)h(second)h(case.)462 3085 y(Ne)o(xt,)k(let)f
+(us)g(focus)i(on)e(the)g(cut-reductions)33 b(for)28 b(logical)i(cuts.)
+43 b(Consider)30 b(an)e(instance)i(of)f(an)321 3198 y
+F6(^)382 3212 y Gc(R)440 3198 y Ga(=)p F6(^)546 3212
+y Gc(L)594 3221 y FV(1)632 3198 y Gg(-cut)c(for)e(which)h(a)f(na)m
+(\250)-27 b(\021v)o(e)25 b(de\002nition)g(of)e(reduction)j(might)e(be)g
+(as)f(follo)n(ws.)p Black Black 627 3409 a FL(Cut)p F4(\()800
+3397 y FX(h)827 3409 y Ga(c)866 3397 y FX(i)894 3409
+y FL(And)1049 3423 y Gc(R)1107 3409 y F4(\()1142 3397
+y FX(h)1169 3409 y Ga(a)1217 3397 y FX(i)1245 3409 y
+Ga(M)10 b(;)1383 3397 y FX(h)1411 3409 y Ga(b)1450 3397
+y FX(i)1477 3409 y Ga(N)g(;)15 b(c)p F4(\))q Ga(;)1715
+3397 y F9(\()1743 3409 y Ga(y)1791 3397 y F9(\))1818
+3409 y FL(And)1973 3372 y F9(1)1973 3432 y Gc(L)2025
+3409 y F4(\()2060 3397 y F9(\()2088 3409 y Ga(x)2140
+3397 y F9(\))2167 3409 y Ga(P)e(;)i(y)s F4(\))q(\))23
+b F6(\000)-31 b(\000)f(!)23 b FL(Cut)p F4(\()2786 3397
+y FX(h)2814 3409 y Ga(a)2862 3397 y FX(i)2889 3409 y
+Ga(M)10 b(;)3027 3397 y F9(\()3055 3409 y Ga(x)3107 3397
+y F9(\))3134 3409 y Ga(P)j F4(\))321 3629 y Gg(Ho)n(we)n(v)o(er)l(,)20
+b(there)g(is)f(a)f(problem)j(with)e(this)g(reduction)j(rule.)28
+b(In)19 b(our)g(sequent)i(calculus)h(the)d(structural)321
+3742 y(rules)28 b(are)f F7(implicit)p Gg(:)36 b(this)27
+b(means)g(that)h(not)f(only)g(does)h(the)e(calculus)j(ha)n(v)o(e)e(fe)n
+(wer)g(inference)i(rules,)321 3855 y(b)n(ut)c(more)e(importantly)-6
+b(,)27 b(we)c(ha)n(v)o(e)h(a)f(v)o(ery)i(con)l(v)o(enient)h(w)o(ay)e
+(of)g(de\002ning)h(substitution)i(\(we)c(do)h(not)321
+3968 y(need)g(e)o(xplicit)g(contractions)i(when)d(a)f(term)g(is)h
+(duplicated\).)31 b(On)22 b(the)h(other)h(hand,)f(there)h(is)e(a)g
+(subtle)321 4081 y(side-ef)n(fect)k(of)e(this)g(design)h(decision;)h
+(consider)g(the)e(follo)n(wing)h(instance)g(of)f(the)f(rede)o(x)3179
+4048 y F5(3)3241 4081 y Gg(abo)o(v)o(e)p Black Black
+325 4290 a FG(\000)377 4302 y FJ(1)437 4278 y FS(.)490
+4290 y FU(M)603 4278 y FS(.)656 4290 y FG(\001)725 4302
+y FJ(1)762 4290 y FU(;)p 0.75 TeXcolorgray 0.75 TeXcolorgray
+799 4315 330 107 v 0.75 TeXcolorgray Black 39 w(c)16
+b FG(:)g FU(B)t FT(^)q FU(C)p 0.75 TeXcolorgray Black
+31 w(;)e(a)i FG(:)h FU(B)45 b FG(\000)1425 4302 y FJ(1)1485
+4278 y FS(.)1538 4290 y FU(N)1637 4278 y FS(.)1690 4290
+y FG(\001)1759 4302 y FJ(1)1797 4290 y FU(;)14 b(b)h
+FG(:)i FU(C)p 325 4335 1666 4 v 464 4414 a FG(\000)516
+4426 y FJ(1)577 4402 y FS(.)630 4414 y FF(And)771 4426
+y FS(R)825 4414 y FG(\()857 4402 y FQ(h)884 4414 y FU(a)928
+4402 y FQ(i)955 4414 y FU(M)9 b(;)1082 4402 y FQ(h)1108
+4414 y FU(b)1144 4402 y FQ(i)1171 4414 y FU(N)g(;)14
+b(c)p FG(\))1375 4402 y FS(.)1428 4414 y FG(\001)1497
+4426 y FJ(1)1534 4414 y FU(;)g(c)i FG(:)h FU(B)t FT(^)p
+FU(C)2018 4352 y FT(^)2073 4364 y FS(R)2484 4287 y FU(x)g
+FG(:)f FU(B)t(;)e FG(\000)2743 4299 y FJ(2)2804 4275
+y FS(.)2857 4287 y FU(P)2944 4275 y FS(.)2997 4287 y
+FG(\001)3066 4299 y FJ(2)p 2211 4323 1168 4 v 2211 4414
+a FU(y)k FG(:)f FU(B)t FT(^)p FU(C)q(;)d FG(\000)2581
+4426 y FJ(2)2642 4402 y FS(.)2695 4414 y FF(And)2836
+4377 y FJ(1)2836 4434 y FS(L)2886 4414 y FG(\()2918 4402
+y FJ(\()2944 4414 y FU(x)2991 4402 y FJ(\))3017 4414
+y FU(P)e(;)i(y)s FG(\))3218 4402 y FS(.)3271 4414 y FG(\001)3340
+4426 y FJ(2)3405 4335 y FT(^)3461 4348 y FS(L)3507 4356
+y FP(1)p 464 4455 2914 4 v 795 4546 a FG(\000)847 4558
+y FJ(1)884 4546 y FU(;)g FG(\000)973 4558 y FJ(2)1033
+4534 y FS(.)1086 4546 y FF(Cut)p FG(\()1244 4534 y FQ(h)1271
+4546 y FU(c)1307 4534 y FQ(i)1334 4546 y FF(And)1475
+4558 y FS(R)1530 4546 y FG(\()1562 4534 y FQ(h)1589 4546
+y FU(a)1633 4534 y FQ(i)1660 4546 y FU(M)8 b(;)1786 4534
+y FQ(h)1813 4546 y FU(b)1849 4534 y FQ(i)1875 4546 y
+FU(N)h(;)14 b(c)p FG(\))p FU(;)2093 4534 y FJ(\()2119
+4546 y FU(y)2163 4534 y FJ(\))2189 4546 y FF(And)2330
+4509 y FJ(1)2330 4566 y FS(L)2380 4546 y FG(\()2412 4534
+y FJ(\()2438 4546 y FU(x)2485 4534 y FJ(\))2511 4546
+y FU(P)e(;)i(y)s FG(\)\))2744 4534 y FS(.)2797 4546 y
+FG(\001)2866 4558 y FJ(1)2904 4546 y FU(;)g FG(\001)3010
+4558 y FJ(2)3405 4482 y Gd(Cut)321 4762 y Gg(where)24
+b Ga(c)f Gg(is)h(a)f(free)h(co-name)g(in)g Ga(M)33 b
+Gg(\(shaded)25 b(box\).)30 b(Our)23 b(na)m(\250)-27 b(\021v)o(e)24
+b(reduction)i(rule)e(w)o(ould)g(yield)p Black Black 1003
+4947 a FG(\000)1055 4959 y FJ(1)1115 4935 y FS(.)1168
+4947 y FU(M)1280 4935 y FS(.)1333 4947 y FG(\001)1402
+4959 y FJ(1)1440 4947 y FU(;)14 b(c)i FG(:)g FU(B)t FT(^)q
+FU(C)q(;)e(a)i FG(:)h FU(B)87 b(x)17 b FG(:)f FU(B)t(;)e
+FG(\000)2297 4959 y FJ(2)2357 4935 y FS(.)2410 4947 y
+FU(P)2498 4935 y FS(.)2551 4947 y FG(\001)2620 4959 y
+FJ(2)p 1003 4983 1655 4 v 1049 5081 a FG(\000)1101 5093
+y FJ(1)1138 5081 y FU(;)g FG(\000)1227 5093 y FJ(2)1287
+5069 y FS(.)1340 5081 y FF(Cut)p FG(\()1498 5069 y FQ(h)1525
+5081 y FU(a)1569 5069 y FQ(i)1596 5081 y FU(M)9 b(;)1723
+5069 y FJ(\()1749 5081 y FU(x)1796 5069 y FJ(\))1822
+5081 y FU(P)j FG(\))1942 5069 y FS(.)1995 5081 y FG(\001)2064
+5093 y FJ(1)2101 5081 y FU(;)i FG(\001)2207 5093 y FJ(2)2245
+5081 y FU(;)p 0.75 TeXcolorgray 0.75 TeXcolorgray 2282
+5106 330 107 v 0.75 TeXcolorgray Black 39 w(c)i FG(:)g
+FU(B)t FT(^)q FU(C)p 0.75 TeXcolorgray Black 2699 5010
+a Gd(Cut)23 b FU(:)321 5297 y Gg(Unfortunately)-6 b(,)36
+b Ga(c)31 b Gg(has)g(no)n(w)f(become)i(free)g(in)f(the)g(conclusion!)55
+b(The)30 b(problem)i(here)g(is)f(that)g(the)p Black 321
+5362 1290 4 v 427 5417 a F3(3)456 5449 y FE(Rede)o(x)19
+b F2(refers)f(to)h(a)g(place)g(in)g(a)g(term)g(where)g(a)g(reduction)h
+(may)f(occur)l(.)p Black Black Black eop end
+%%Page: 27 39
+TeXDict begin 27 38 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
+(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(27)p
+277 88 3691 4 v Black Black 277 537 V 277 4783 4 4247
+v 818 744 a FL(Ax)p F4(\()p Ga(x;)15 b(c)p F4(\)[)p Ga(c)27
+b F4(:=)1334 732 y F9(\()1362 744 y Ga(y)1410 732 y F9(\))1437
+744 y Ga(P)13 b F4(])1580 692 y F5(def)1587 744 y F4(=)54
+b Ga(P)13 b F4([)p Ga(y)g F6(7!)d Ga(x)p F4(])814 935
+y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(y)29
+b F4(:=)1343 923 y FX(h)1370 935 y Ga(c)1409 923 y FX(i)1437
+935 y Ga(P)13 b F4(])1580 884 y F5(def)1587 935 y F4(=)54
+b Ga(P)13 b F4([)p Ga(c)d F6(7!)g Ga(a)p F4(])550 1127
+y FL(Not)693 1141 y Gc(R)750 1127 y F4(\()785 1115 y
+F9(\()813 1127 y Ga(x)865 1115 y F9(\))892 1127 y Ga(M)h(;)k(a)p
+F4(\)[)p Ga(a)26 b F4(:=)1334 1115 y F9(\()1362 1127
+y Ga(y)1410 1115 y F9(\))1437 1127 y Ga(P)13 b F4(])1580
+1076 y F5(def)1587 1127 y F4(=)54 b FL(Cut)p F4(\()1885
+1115 y FX(h)1913 1127 y Ga(a)1961 1115 y FX(i)1989 1127
+y FL(Not)2131 1141 y Gc(R)2189 1127 y F4(\()2224 1115
+y F9(\()2252 1127 y Ga(x)2304 1115 y F9(\))2331 1127
+y Ga(M)10 b F4([)p Ga(a)26 b F4(:=)2649 1115 y F9(\()2676
+1127 y Ga(y)2724 1115 y F9(\))2752 1127 y Ga(P)13 b F4(])p
+Ga(;)i(a)p F4(\))q Ga(;)3012 1115 y F9(\()3040 1127 y
+Ga(y)3088 1115 y F9(\))3115 1127 y Ga(P)e F4(\))560 1319
+y FL(Not)703 1333 y Gc(L)755 1319 y F4(\()790 1307 y
+FX(h)818 1319 y Ga(a)866 1307 y FX(i)893 1319 y Ga(M)d(;)15
+b(x)p F4(\)[)p Ga(x)26 b F4(:=)1343 1307 y FX(h)1370
+1319 y Ga(c)1409 1307 y FX(i)1437 1319 y Ga(P)13 b F4(])1580
+1268 y F5(def)1587 1319 y F4(=)54 b FL(Cut)p F4(\()1885
+1307 y FX(h)1913 1319 y Ga(c)1952 1307 y FX(i)1980 1319
+y Ga(P)13 b(;)2091 1307 y F9(\()2119 1319 y Ga(x)2171
+1307 y F9(\))2198 1319 y FL(Not)2341 1333 y Gc(L)2393
+1319 y F4(\()2428 1307 y FX(h)2456 1319 y Ga(a)2504 1307
+y FX(i)2531 1319 y Ga(M)d F4([)p Ga(x)26 b F4(:=)2853
+1307 y FX(h)2880 1319 y Ga(c)2919 1307 y FX(i)2947 1319
+y Ga(P)13 b F4(])p Ga(;)i(x)p F4(\))q(\))342 1511 y FL(And)497
+1525 y Gc(R)554 1511 y F4(\()589 1499 y FX(h)617 1511
+y Ga(a)665 1499 y FX(i)693 1511 y Ga(M)10 b(;)831 1499
+y FX(h)859 1511 y Ga(b)898 1499 y FX(i)925 1511 y Ga(N)g(;)15
+b(c)p F4(\)[)p Ga(c)27 b F4(:=)1334 1499 y F9(\()1362
+1511 y Ga(y)1410 1499 y F9(\))1437 1511 y Ga(P)13 b F4(])1580
+1460 y F5(def)1587 1511 y F4(=)54 b FL(Cut)p F4(\()1885
+1499 y FX(h)1913 1511 y Ga(c)1952 1499 y FX(i)1980 1511
+y FL(And)2134 1525 y Gc(R)2192 1511 y F4(\()2227 1499
+y FX(h)2255 1511 y Ga(a)2303 1499 y FX(i)2330 1511 y
+Ga(M)10 b F4([)p Ga(c)26 b F4(:=)2640 1499 y F9(\()2667
+1511 y Ga(y)2715 1499 y F9(\))2742 1511 y Ga(P)13 b F4(])q
+Ga(;)2879 1499 y FX(h)2906 1511 y Ga(b)2945 1499 y FX(i)2973
+1511 y Ga(N)d F4([)p Ga(c)26 b F4(:=)3267 1499 y F9(\()3294
+1511 y Ga(y)3342 1499 y F9(\))3370 1511 y Ga(P)13 b F4(])p
+Ga(;)i(c)p F4(\))q Ga(;)3621 1499 y F9(\()3649 1511 y
+Ga(y)3697 1499 y F9(\))3724 1511 y Ga(P)e F4(\))552 1703
+y FL(And)707 1666 y Gc(i)707 1726 y(L)759 1703 y F4(\()794
+1691 y F9(\()822 1703 y Ga(x)874 1691 y F9(\))901 1703
+y Ga(M)d(;)15 b(y)s F4(\)[)p Ga(y)29 b F4(:=)1343 1691
+y FX(h)1370 1703 y Ga(c)1409 1691 y FX(i)1437 1703 y
+Ga(P)13 b F4(])1580 1652 y F5(def)1587 1703 y F4(=)54
+b FL(Cut)p F4(\()1885 1691 y FX(h)1913 1703 y Ga(c)1952
+1691 y FX(i)1980 1703 y Ga(P)13 b(;)2091 1691 y F9(\()2119
+1703 y Ga(y)2167 1691 y F9(\))2194 1703 y FL(And)2349
+1666 y Gc(i)2349 1726 y(L)2401 1703 y F4(\()2436 1691
+y F9(\()2463 1703 y Ga(x)2515 1691 y F9(\))2543 1703
+y Ga(M)d F4([)p Ga(y)28 b F4(:=)2861 1691 y FX(h)2888
+1703 y Ga(c)2927 1691 y FX(i)2955 1703 y Ga(P)13 b F4(])p
+Ga(;)i(y)s F4(\))q(\))615 1895 y FL(Or)714 1858 y Gc(i)714
+1918 y(R)772 1895 y F4(\()807 1883 y FX(h)834 1895 y
+Ga(a)882 1883 y FX(i)910 1895 y Ga(M)10 b(;)15 b(c)p
+F4(\)[)p Ga(c)27 b F4(:=)1334 1883 y F9(\()1362 1895
+y Ga(y)1410 1883 y F9(\))1437 1895 y Ga(P)13 b F4(])1580
+1844 y F5(def)1587 1895 y F4(=)54 b FL(Cut)p F4(\()1885
+1883 y FX(h)1913 1895 y Ga(c)1952 1883 y FX(i)1980 1895
+y FL(Or)2079 1858 y Gc(i)2079 1918 y(R)2137 1895 y F4(\()2172
+1883 y FX(h)2200 1895 y Ga(a)2248 1883 y FX(i)2275 1895
+y Ga(M)10 b F4([)p Ga(c)26 b F4(:=)2584 1883 y F9(\()2612
+1895 y Ga(y)2660 1883 y F9(\))2687 1895 y Ga(P)13 b F4(])p
+Ga(;)i(c)p F4(\))q Ga(;)2938 1883 y F9(\()2966 1895 y
+Ga(y)3014 1883 y F9(\))3041 1895 y Ga(P)e F4(\))385 2087
+y FL(Or)484 2101 y Gc(L)536 2087 y F4(\()571 2075 y F9(\()599
+2087 y Ga(x)651 2075 y F9(\))678 2087 y Ga(M)e(;)817
+2075 y F9(\()844 2087 y Ga(y)892 2075 y F9(\))920 2087
+y Ga(N)f(;)15 b(z)t F4(\)[)p Ga(z)30 b F4(:=)1343 2075
+y FX(h)1370 2087 y Ga(c)1409 2075 y FX(i)1437 2087 y
+Ga(P)13 b F4(])1580 2036 y F5(def)1587 2087 y F4(=)54
+b FL(Cut)p F4(\()1885 2075 y FX(h)1913 2087 y Ga(c)1952
+2075 y FX(i)1980 2087 y Ga(P)13 b(;)2091 2075 y F9(\()2119
+2087 y Ga(z)2165 2075 y F9(\))2192 2087 y FL(Or)2292
+2101 y Gc(L)2344 2087 y F4(\()2379 2075 y F9(\()2407
+2087 y Ga(x)2459 2075 y F9(\))2486 2087 y Ga(M)d F4([)p
+Ga(z)30 b F4(:=)2802 2075 y FX(h)2830 2087 y Ga(c)2869
+2075 y FX(i)2896 2087 y Ga(P)13 b F4(])q Ga(;)3033 2075
+y F9(\()3060 2087 y Ga(y)3108 2075 y F9(\))3136 2087
+y Ga(N)d F4([)p Ga(z)29 b F4(:=)3437 2075 y FX(h)3464
+2087 y Ga(c)3503 2075 y FX(i)3531 2087 y Ga(P)13 b F4(])p
+Ga(;)i(z)t F4(\))q(\))463 2279 y FL(Imp)608 2301 y Gc(R)665
+2279 y F4(\()700 2267 y F9(\()728 2279 y Ga(x)780 2267
+y F9(\))q FX(h)835 2279 y Ga(a)883 2267 y FX(i)911 2279
+y Ga(M)10 b(;)15 b(b)p F4(\)[)p Ga(b)26 b F4(:=)1334
+2267 y F9(\()1362 2279 y Ga(y)1410 2267 y F9(\))1437
+2279 y Ga(P)13 b F4(])1580 2228 y F5(def)1587 2279 y
+F4(=)54 b FL(Cut)p F4(\()1885 2267 y FX(h)1913 2279 y
+Ga(b)1952 2267 y FX(i)1980 2279 y FL(Imp)2124 2301 y
+Gc(R)2182 2279 y F4(\()2217 2267 y F9(\()2244 2279 y
+Ga(x)2296 2267 y F9(\))q FX(h)2351 2279 y Ga(a)2399 2267
+y FX(i)2427 2279 y Ga(M)10 b F4([)p Ga(b)25 b F4(:=)2736
+2267 y F9(\()2763 2279 y Ga(y)2811 2267 y F9(\))2838
+2279 y Ga(P)13 b F4(])q Ga(;)i(b)p F4(\))p Ga(;)3089
+2267 y F9(\()3117 2279 y Ga(y)3165 2267 y F9(\))3193
+2279 y Ga(P)e F4(\))336 2471 y FL(Imp)481 2493 y Gc(L)533
+2471 y F4(\()568 2459 y FX(h)596 2471 y Ga(a)644 2459
+y FX(i)671 2471 y Ga(M)d(;)809 2459 y F9(\()837 2471
+y Ga(x)889 2459 y F9(\))917 2471 y Ga(N)f(;)15 b(y)s
+F4(\)[)p Ga(y)29 b F4(:=)1343 2459 y FX(h)1370 2471 y
+Ga(c)1409 2459 y FX(i)1437 2471 y Ga(P)13 b F4(])1580
+2420 y F5(def)1587 2471 y F4(=)54 b FL(Cut)p F4(\()1885
+2459 y FX(h)1913 2471 y Ga(c)1952 2459 y FX(i)1980 2471
+y Ga(P)13 b(;)2091 2459 y F9(\()2119 2471 y Ga(y)2167
+2459 y F9(\))2194 2471 y FL(Imp)2338 2493 y Gc(L)2391
+2471 y F4(\()2426 2459 y FX(h)2453 2471 y Ga(a)2501 2459
+y FX(i)2529 2471 y Ga(M)d F4([)p Ga(y)28 b F4(:=)2847
+2459 y FX(h)2874 2471 y Ga(c)2913 2459 y FX(i)2941 2471
+y Ga(P)13 b F4(])p Ga(;)3077 2459 y F9(\()3105 2471 y
+Ga(x)3157 2459 y F9(\))3184 2471 y Ga(N)d F4([)p Ga(y)29
+b F4(:=)3487 2459 y FX(h)3514 2471 y Ga(c)3553 2459 y
+FX(i)3581 2471 y Ga(P)13 b F4(])p Ga(;)i(y)s F4(\))q(\))315
+2734 y Gb(Otherwise:)1114 2926 y FL(Ax)o F4(\()p Ga(x;)g(a)p
+F4(\)[)p Ga(\033)s F4(])1580 2874 y F5(def)1587 2926
+y F4(=)54 b FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))788
+3118 y FL(Cut)o F4(\()960 3106 y FX(h)988 3118 y Ga(a)1036
+3106 y FX(i)1064 3118 y Ga(M)10 b(;)1202 3106 y F9(\()1230
+3118 y Ga(x)1282 3106 y F9(\))1309 3118 y Ga(N)g F4(\)[)p
+Ga(\033)s F4(])1580 3066 y F5(def)1587 3118 y F4(=)54
+b FL(Cut)p F4(\()1885 3106 y FX(h)1913 3118 y Ga(a)1961
+3106 y FX(i)2014 3118 y Ga(M)10 b F4([)p Ga(\033)s F4(])q
+Ga(;)2258 3106 y F9(\()2285 3118 y Ga(x)2337 3106 y F9(\))2390
+3118 y Ga(N)g F4([)p Ga(\033)s F4(])q(\))863 3310 y FL(Not)1006
+3324 y Gc(R)1063 3310 y F4(\()1098 3298 y F9(\()1126
+3310 y Ga(x)1178 3298 y F9(\))1205 3310 y Ga(M)h(;)k(a)p
+F4(\)[)p Ga(\033)s F4(])1580 3258 y F5(def)1587 3310
+y F4(=)54 b FL(Not)1855 3324 y Gc(R)1913 3310 y F4(\()1948
+3298 y F9(\()1976 3310 y Ga(x)2028 3298 y F9(\))2080
+3310 y Ga(M)10 b F4([)p Ga(\033)s F4(])q Ga(;)15 b(a)p
+F4(\))868 3502 y FL(Not)1011 3516 y Gc(L)1063 3502 y
+F4(\()1098 3490 y FX(h)1126 3502 y Ga(a)1174 3490 y FX(i)1202
+3502 y Ga(M)10 b(;)15 b(x)p F4(\)[)p Ga(\033)s F4(])1580
+3450 y F5(def)1587 3502 y F4(=)54 b FL(Not)1855 3516
+y Gc(L)1907 3502 y F4(\()1942 3490 y FX(h)1970 3502 y
+Ga(a)2018 3490 y FX(i)2071 3502 y Ga(M)10 b F4([)p Ga(\033)s
+F4(])q Ga(;)15 b(x)p F4(\))646 3694 y FL(And)801 3708
+y Gc(R)859 3694 y F4(\()894 3682 y FX(h)921 3694 y Ga(a)969
+3682 y FX(i)997 3694 y Ga(M)10 b(;)1135 3682 y FX(h)1163
+3694 y Ga(b)1202 3682 y FX(i)1229 3694 y Ga(N)g(;)15
+b(c)p F4(\)[)p Ga(\033)s F4(])1580 3642 y F5(def)1587
+3694 y F4(=)54 b FL(And)1867 3708 y Gc(R)1925 3694 y
+F4(\()1960 3682 y FX(h)1987 3694 y Ga(a)2035 3682 y FX(i)2088
+3694 y Ga(M)10 b F4([)p Ga(\033)s F4(])q Ga(;)2332 3682
+y FX(h)2360 3694 y Ga(b)2399 3682 y FX(i)2452 3694 y
+Ga(N)g F4([)p Ga(\033)s F4(])p Ga(;)15 b(c)p F4(\))857
+3886 y FL(And)1011 3849 y Gc(i)1011 3909 y(L)1063 3886
+y F4(\()1098 3874 y F9(\()1126 3886 y Ga(x)1178 3874
+y F9(\))1206 3886 y Ga(M)10 b(;)15 b(y)s F4(\)[)p Ga(\033)s
+F4(])1580 3834 y F5(def)1587 3886 y F4(=)54 b FL(And)1867
+3849 y Gc(i)1867 3909 y(L)1919 3886 y F4(\()1954 3874
+y F9(\()1982 3886 y Ga(x)2034 3874 y F9(\))2087 3886
+y Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)15 b(y)s F4(\))919
+4077 y FL(Or)1018 4041 y Gc(i)1018 4101 y(R)1076 4077
+y F4(\()1111 4065 y FX(h)1139 4077 y Ga(a)1187 4065 y
+FX(i)1215 4077 y Ga(M)10 b(;)15 b(b)p F4(\)[)p Ga(\033)s
+F4(])1580 4026 y F5(def)1587 4077 y F4(=)54 b FL(Or)1812
+4041 y Gc(i)1812 4101 y(R)1869 4077 y F4(\()1904 4065
+y FX(h)1932 4077 y Ga(a)1980 4065 y FX(i)2033 4077 y
+Ga(M)10 b F4([)p Ga(\033)s F4(])q Ga(;)15 b(b)p F4(\))688
+4269 y FL(Or)787 4283 y Gc(L)839 4269 y F4(\()874 4257
+y F9(\()902 4269 y Ga(x)954 4257 y F9(\))981 4269 y Ga(M)10
+b(;)1119 4257 y F9(\()1147 4269 y Ga(y)1195 4257 y F9(\))1222
+4269 y Ga(N)g(;)15 b(z)t F4(\)[)p Ga(\033)s F4(])1580
+4218 y F5(def)1587 4269 y F4(=)54 b FL(Or)1812 4283 y
+Gc(L)1864 4269 y F4(\()1899 4257 y F9(\()1927 4269 y
+Ga(x)1979 4257 y F9(\))2031 4269 y Ga(M)10 b F4([)p Ga(\033)s
+F4(])q Ga(;)2275 4257 y F9(\()2303 4269 y Ga(y)2351 4257
+y F9(\))2403 4269 y Ga(N)g F4([)p Ga(\033)s F4(])q Ga(;)15
+b(z)t F4(\))767 4461 y FL(Imp)912 4483 y Gc(R)969 4461
+y F4(\()1004 4449 y F9(\()1032 4461 y Ga(x)1084 4449
+y F9(\))q FX(h)1139 4461 y Ga(a)1187 4449 y FX(i)1215
+4461 y Ga(M)10 b(;)15 b(b)p F4(\)[)p Ga(\033)s F4(])1580
+4410 y F5(def)1587 4461 y F4(=)54 b FL(Imp)1857 4483
+y Gc(R)1915 4461 y F4(\()1950 4449 y F9(\()1977 4461
+y Ga(x)2029 4449 y F9(\))q FX(h)2084 4461 y Ga(a)2132
+4449 y FX(i)2185 4461 y Ga(M)10 b F4([)p Ga(\033)s F4(])q
+Ga(;)15 b(b)p F4(\))641 4653 y FL(Imp)785 4675 y Gc(L)837
+4653 y F4(\()872 4641 y FX(h)900 4653 y Ga(a)948 4641
+y FX(i)975 4653 y Ga(M)c(;)1114 4641 y F9(\()1141 4653
+y Ga(x)1193 4641 y F9(\))1221 4653 y Ga(N)f(;)15 b(y)s
+F4(\)[)p Ga(\033)s F4(])1580 4602 y F5(def)1587 4653
+y F4(=)54 b FL(Imp)1857 4675 y Gc(L)1909 4653 y F4(\()1944
+4641 y FX(h)1972 4653 y Ga(a)2020 4641 y FX(i)2073 4653
+y Ga(M)10 b F4([)p Ga(\033)s F4(])p Ga(;)2316 4641 y
+F9(\()2344 4653 y Ga(x)2396 4641 y F9(\))2449 4653 y
+Ga(N)g F4([)p Ga(\033)s F4(])q Ga(;)15 b(y)s F4(\))p
+3965 4783 V 277 4786 3691 4 v Black 1340 4940 a Gg(Figure)24
+b(2.4:)29 b(Proof)24 b(substitution.)p Black Black Black
+Black eop end
+%%Page: 28 40
+TeXDict begin 28 39 bop Black -144 51 a Gb(28)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 294 a Gg(original)31
+b(proof,)g(despite)f(\002rst)f(appearances,)k(is)28 b
+F7(not)h Gg(a)g(logical)h(cut,)g(b)n(ut)f(is)g(in)g(f)o(act)g(a)f
+(commuting)321 407 y(cut,)c(and)g(should)h(really)g(be)e(reduced)j(to)p
+Black Black 1078 586 a FL(And)1233 600 y Gc(R)1290 586
+y F4(\()1325 574 y FX(h)1353 586 y Ga(a)1401 574 y FX(i)1429
+586 y Ga(M)10 b(;)1567 574 y FX(h)1595 586 y Ga(b)1634
+574 y FX(i)1661 586 y Ga(N)g(;)15 b(c)p F4(\)[)p Ga(c)27
+b F4(:=)2070 574 y F9(\()2098 586 y Ga(y)2146 574 y F9(\))2173
+586 y FL(And)2327 549 y F9(1)2327 609 y Gc(L)2380 586
+y F4(\()2415 574 y F9(\()2442 586 y Ga(x)2494 574 y F9(\))2522
+586 y Ga(P)13 b(;)i(y)s F4(\)])26 b Gg(.)321 765 y(Consequently)-6
+b(,)27 b(we)c(ensure)i(that)f(logical)i(reduction)g(rules)e(apply)h
+(only)g(where)f(the)g(cut-formula)i(is)321 878 y F7(fr)m(eshly)h
+Gg(introduced.)37 b(Figure)26 b(2.5)f(gi)n(v)o(es)h(the)g
+(cut-reductions)k(for)25 b(logical)i(cuts,)f(denoted)i(by)3428
+841 y Gc(l)3353 878 y F6(\000)-31 b(\000)g(!)p Gg(,)321
+991 y(and)27 b(commuting)h(cuts,)g(denoted)g(by)1614
+954 y Gc(c)1544 991 y F6(\000)-31 b(\000)f(!)p Gg(.)37
+b(W)-7 b(e)25 b(automatically)30 b(assume)d(that)g(the)g(reductions)i
+(are)321 1104 y(closed)24 b(under)f(conte)o(xt)g(formation,)h(which)e
+(is)g(a)f(standard)j(con)l(v)o(ention)h(in)d(term)g(re)n(writing.)29
+b(F)o(or)21 b(the)321 1217 y(cut-reduction)28 b F6(\033)899
+1231 y Gc(R)957 1217 y Ga(=)p F6(\033)1073 1231 y Gc(L)1148
+1217 y Gg(\(Rule)c(4\))f(there)i(are)f(a)f(fe)n(w)f(remarks)j(w)o(orth)
+f(making.)p Black 321 1404 a Gb(Remark)f(2.2.7:)p Black
+Black 458 1526 a F6(\017)p Black 46 w Gg(First,)37 b(there)f(are)g(tw)o
+(o)f(w)o(ays)g(to)g(reduce)i(a)d(cut-rule)k(ha)n(ving)f(an)e
+(implication)i(as)e(the)h(cut-)549 1639 y(formula.)29
+b(Consider)c(the)f(follo)n(wing)h(proof-fragment)p Black
+Black 989 1819 a FU(x)17 b FG(:)f FU(B)1182 1807 y FS(.)1235
+1819 y FU(M)1348 1807 y FS(.)1401 1819 y FU(a)g FG(:)h
+FU(C)p 752 1839 1051 4 v 775 1906 a FS(.)828 1918 y FF(Imp)960
+1938 y FS(R)1015 1918 y FG(\()1047 1906 y FJ(\()1073
+1918 y FU(x)1120 1906 y FJ(\))p FQ(h)1173 1918 y FU(a)1217
+1906 y FQ(i)1244 1918 y FU(M)9 b(;)14 b(b)p FG(\))1461
+1906 y FS(.)1514 1918 y FU(b)i FG(:)h FU(B)t FT(\033)o
+FU(C)1844 1855 y FT(\033)1909 1867 y FS(R)2128 1791 y(.)2181
+1803 y FU(N)2280 1791 y FS(.)2333 1803 y FU(c)f FG(:)g
+FU(B)254 b(y)19 b FG(:)d FU(C)2928 1791 y FS(.)2981 1803
+y FU(P)3069 1791 y FS(.)p 2046 1839 1135 4 v 2046 1918
+a FU(z)k FG(:)c FU(B)t FT(\033)p FU(C)2364 1906 y FS(.)2417
+1918 y FF(Imp)2549 1938 y FS(L)2599 1918 y FG(\()2631
+1906 y FQ(h)2658 1918 y FU(c)2694 1906 y FQ(i)2721 1918
+y FU(N)8 b(;)2833 1906 y FJ(\()2859 1918 y FU(y)2903
+1906 y FJ(\))2929 1918 y FU(P)k(;)i(z)t FG(\))3128 1906
+y FS(.)3223 1855 y FT(\033)3287 1867 y FS(L)p 752 1958
+2429 4 v 1059 2025 a(.)1112 2037 y FF(Cut)p FG(\()1270
+2025 y FQ(h)1297 2037 y FU(b)1333 2025 y FQ(i)1360 2037
+y FF(Imp)1492 2057 y FS(R)1546 2037 y FG(\()1578 2025
+y FJ(\()1604 2037 y FU(x)1651 2025 y FJ(\))q FQ(h)1705
+2037 y FU(a)1749 2025 y FQ(i)1775 2037 y FU(M)9 b(;)14
+b(b)p FG(\))p FU(;)2007 2025 y FJ(\()2033 2037 y FU(z)2076
+2025 y FJ(\))2101 2037 y FF(Imp)2233 2057 y FS(L)2282
+2037 y FG(\()2314 2025 y FQ(h)2342 2037 y FU(c)2378 2025
+y FQ(i)2404 2037 y FU(N)9 b(;)2517 2025 y FJ(\()2543
+2037 y FU(y)2587 2025 y FJ(\))2613 2037 y FU(P)i(;)j(z)t
+FG(\)\))2844 2025 y FS(.)3223 1986 y Gd(Cut)549 2224
+y Gg(which)23 b(can)h(be)g(reduced)h(either)g(to)p Black
+Black 1154 2358 a FS(.)1207 2370 y FU(N)1305 2358 y FS(.)1358
+2370 y FU(c)17 b FG(:)f FU(B)87 b(x)17 b FG(:)f FU(B)1793
+2358 y FS(.)1846 2370 y FU(M)1959 2358 y FS(.)2012 2370
+y FU(a)g FG(:)h FU(C)p 1131 2390 1047 4 v 1228 2456 a
+FS(.)1280 2468 y FF(Cut)p FG(\()1438 2456 y FQ(h)1466
+2468 y FU(c)1502 2456 y FQ(i)1528 2468 y FU(N)9 b(;)1641
+2456 y FJ(\()1667 2468 y FU(x)1714 2456 y FJ(\))1740
+2468 y FU(M)g FG(\))1885 2456 y FS(.)1938 2468 y FU(a)16
+b FG(:)h FU(C)2218 2417 y Gd(Cut)2421 2468 y FU(y)i FG(:)e
+FU(C)2609 2456 y FS(.)2662 2468 y FU(P)2750 2456 y FS(.)p
+1204 2509 1599 4 v 1417 2576 a(.)1470 2588 y FF(Cut)p
+FG(\()1628 2576 y FQ(h)1655 2588 y FU(a)1699 2576 y FQ(i)1726
+2588 y FF(Cut)p FG(\()1884 2576 y FQ(h)1911 2588 y FU(c)1947
+2576 y FQ(i)1974 2588 y FU(N)8 b(;)2086 2576 y FJ(\()2112
+2588 y FU(x)2159 2576 y FJ(\))2186 2588 y FU(M)g FG(\))q
+FU(;)2345 2576 y FJ(\()2370 2588 y FU(y)2414 2576 y FJ(\))2440
+2588 y FU(P)k FG(\))2560 2576 y FS(.)2844 2537 y Gd(Cut)549
+2717 y Gg(or)23 b(to)p Black Black 1246 2907 a FS(.)1299
+2919 y FU(N)1398 2907 y FS(.)1451 2919 y FU(c)16 b FG(:)h
+FU(B)1669 2804 y(x)g FG(:)f FU(B)1862 2792 y FS(.)1915
+2804 y FU(M)2028 2792 y FS(.)2081 2804 y FU(a)g FG(:)g
+FU(C)90 b(y)19 b FG(:)d FU(C)2516 2792 y FS(.)2569 2804
+y FU(P)2657 2792 y FS(.)p 1669 2840 1042 4 v 1741 2919
+a FU(x)h FG(:)f FU(B)1934 2907 y FS(.)1987 2919 y FF(Cut)p
+FG(\()2145 2907 y FQ(h)2172 2919 y FU(a)2216 2907 y FQ(i)2243
+2919 y FU(M)9 b(;)2370 2907 y FJ(\()2396 2919 y FU(y)2440
+2907 y FJ(\))2465 2919 y FU(P)j FG(\))2585 2907 y FS(.)2752
+2867 y Gd(Cut)p 1223 2959 1416 4 v 1344 3026 a FS(.)1397
+3038 y FF(Cut)p FG(\()1555 3026 y FQ(h)1582 3038 y FU(c)1618
+3026 y FQ(i)1645 3038 y FU(N)d(;)1758 3026 y FJ(\()1784
+3038 y FU(x)1831 3026 y FJ(\))1857 3038 y FF(Cut)p FG(\()2015
+3026 y FQ(h)2042 3038 y FU(a)2086 3026 y FQ(i)2113 3038
+y FU(M)f(;)2239 3026 y FJ(\()2265 3038 y FU(y)2309 3026
+y FJ(\))2335 3038 y FU(P)k FG(\)\))2487 3026 y FS(.)2680
+2987 y Gd(Cut)549 3226 y Gg(Therefore)26 b(we)e(ha)n(v)o(e)i(included)h
+(tw)o(o)e(reductions,)j(which)d(entails)i(that)e(our)h(cut-elimination)
+549 3338 y(procedure)g(is)d(non-deterministic.)p Black
+458 3509 a F6(\017)p Black 46 w Gg(Second,)38 b(special)e(care)f(needs)
+h(to)e(be)h(tak)o(en)h(so)f(that)g(there)g(is)g(no)g(clash)g(between)h
+(bound)549 3622 y(and)31 b(free)g(\(co-\)names)s(.)50
+b(The)31 b(term)g FL(Imp)1876 3644 y Gc(R)1934 3622 y
+F4(\()1969 3610 y F9(\()1996 3622 y Ga(x)2048 3610 y
+F9(\))q FX(h)2103 3622 y Ga(a)2151 3610 y FX(i)2179 3622
+y Ga(M)10 b(;)15 b(b)p F4(\))31 b Gg(binds)h Ga(x)e Gg(and)h
+Ga(a)g Gg(simultaneously;)549 3735 y(ho)n(we)n(v)o(er)24
+b(in)g(the)h(reducts)h(the)e(cut-rules)j(bind)e Ga(x)e
+Gg(and)i Ga(a)p Gg(,)e(separately)-6 b(.)34 b(Therefore)25
+b(in)f(the)h(\002rst)549 3848 y(reduction)33 b(rule)e(we)f(need)i(to)f
+(ensure)h(that)g Ga(a)e Gg(is)g(not)h(a)g(free)g(co-name)h(in)2966
+3836 y FX(h)2993 3848 y Ga(c)3032 3836 y FX(i)3060 3848
+y Ga(N)40 b Gg(and)31 b(in)g(the)549 3961 y(second)k(rule)g(that)g
+Ga(x)e Gg(is)h(not)g(a)g(free)g(name)g(in)2089 3949 y
+F9(\()2117 3961 y Ga(y)2165 3949 y F9(\))2192 3961 y
+Ga(P)13 b Gg(.)59 b(This)34 b(can)h(al)o(w)o(ays)g(be)f(achie)n(v)o(ed)
+h(by)549 4074 y(renaming)22 b Ga(a)f Gg(and)h Ga(x)e
+Gg(appropriately:)32 b(the)o(y)22 b(are)g(binders)h(in)e
+FL(Imp)2573 4096 y Gc(R)2631 4074 y F4(\()2666 4062 y
+F9(\()2694 4074 y Ga(x)2746 4062 y F9(\))p FX(h)2801
+4074 y Ga(a)2849 4062 y FX(i)2876 4074 y Ga(M)10 b(;)15
+b(b)p F4(\))p Gg(.)28 b(W)-7 b(e)21 b(assume)549 4187
+y(that)j(the)f(renaming)j(is)d(done)h(implicitly)i(in)d(the)h
+(cut-elimination)j(procedure.)321 4412 y(W)-7 b(e)29
+b(are)g(no)n(w)f(ready)j(to)e(formulate)h(the)g(cut-elimination)j
+(procedure,)f(which)e(we)e(shall)i(de\002ne)g(in)321
+4525 y(terms)24 b(of)f(a)h(reduction)i(system.)p Black
+321 4712 a Gb(De\002nition)d(2.2.8)g Gg(\(Cut-Elimination)j
+(Procedure\))p Gb(:)p Black 321 4825 a Gg(The)d(cut-elimination)28
+b(procedure)e F4(\()p FY(T)t Ga(;)1613 4788 y Gc(cut)1583
+4825 y F6(\000)-32 b(\000)h(!)p F4(\))23 b Gg(is)g(a)g(reduction)k
+(system)d(where:)p Black 458 4988 a F6(\017)p Black 46
+w FY(T)e Gg(is)i(the)g(set)f(of)h(well-typed)h(terms,)f(and)p
+Black 458 5159 a F6(\017)p Black 579 5122 a Gc(cut)549
+5159 y F6(\000)-32 b(\000)h(!)23 b Gg(consists)i(of)f(the)f(reductions)
+k(for)d(logical)h(cuts)f(and)g(commuting)h(cuts;)f(that)g(is)1662
+5297 y Gc(cut)1631 5334 y F6(\000)-31 b(\000)f(!)1826
+5283 y F5(def)1834 5334 y F4(=)2011 5297 y Gc(l)1937
+5334 y F6(\000)g(\000)h(!)25 b([)2288 5297 y Gc(c)2218
+5334 y F6(\000)-31 b(\000)f(!)51 b Ga(:)p Black Black
+eop end
+%%Page: 29 41
+TeXDict begin 29 40 bop Black 277 51 a Gb(2.2)23 b(Cut-Elimination)h
+(in)e(Pr)n(opositional)k(Classical)f(Logic)1582 b(29)p
+277 88 3691 4 v Black Black 277 663 V 277 4657 4 3995
+v 475 830 a(Logical)24 b(Cuts)46 b(\()p FO(i)30 b FD(=)f(1)p
+FO(;)18 b FD(2)p Gb(\):)546 1036 y Gg(1.)99 b FL(Cut)p
+F4(\()886 1024 y FX(h)914 1036 y Ga(a)962 1024 y FX(i)990
+1036 y FL(Not)1132 1050 y Gc(R)1190 1036 y F4(\()1225
+1024 y F9(\()1253 1036 y Ga(x)1305 1024 y F9(\))1332
+1036 y Ga(M)10 b(;)15 b(a)p F4(\))q Ga(;)1594 1024 y
+F9(\()1622 1036 y Ga(y)1670 1024 y F9(\))1697 1036 y
+FL(Not)1840 1050 y Gc(L)1892 1036 y F4(\()1927 1024 y
+FX(h)1955 1036 y Ga(b)1994 1024 y FX(i)2021 1036 y Ga(N)10
+b(;)15 b(y)s F4(\))q(\))2363 999 y Gc(l)2288 1036 y F6(\000)-31
+b(\000)g(!)25 b FL(Cut)p F4(\()2657 1024 y FX(h)2685
+1036 y Ga(b)2724 1024 y FX(i)2751 1036 y Ga(N)10 b(;)2874
+1024 y F9(\()2902 1036 y Ga(x)2954 1024 y F9(\))2981
+1036 y Ga(M)g F4(\))996 1219 y Gg(if)23 b FL(Not)1217
+1233 y Gc(R)1275 1219 y F4(\()1310 1207 y F9(\()1337
+1219 y Ga(x)1389 1207 y F9(\))1417 1219 y Ga(M)10 b(;)15
+b(a)p F4(\))23 b Gg(and)h FL(Not)1958 1233 y Gc(L)2010
+1219 y F4(\()2045 1207 y FX(h)2073 1219 y Ga(b)2112 1207
+y FX(i)2140 1219 y Ga(N)9 b(;)15 b(y)s F4(\))24 b Gg(freshly)h
+(introduce)h Ga(a)d Gg(and)h Ga(y)546 1496 y Gg(2.)99
+b FL(Cut)p F4(\()886 1484 y FX(h)914 1496 y Ga(b)953
+1484 y FX(i)980 1496 y FL(And)1135 1510 y Gc(R)1193 1496
+y F4(\()1228 1484 y FX(h)1256 1496 y Ga(a)1304 1510 y
+F9(1)1343 1484 y FX(i)1370 1496 y Ga(M)1458 1510 y F9(1)1498
+1496 y Ga(;)1538 1484 y FX(h)1566 1496 y Ga(a)1614 1510
+y F9(2)1653 1484 y FX(i)1681 1496 y Ga(M)1769 1510 y
+F9(2)1809 1496 y Ga(;)15 b(b)p F4(\))p Ga(;)1963 1484
+y F9(\()1991 1496 y Ga(y)2039 1484 y F9(\))2066 1496
+y FL(And)2221 1459 y Gc(i)2221 1519 y(L)2273 1496 y F4(\()2308
+1484 y F9(\()2336 1496 y Ga(x)2388 1484 y F9(\))2415
+1496 y Ga(N)10 b(;)15 b(y)s F4(\))q(\))2757 1459 y Gc(l)2682
+1496 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p F4(\()3051
+1484 y FX(h)3079 1496 y Ga(a)3127 1510 y Gc(i)3155 1484
+y FX(i)3182 1496 y Ga(M)3270 1510 y Gc(i)3299 1496 y
+Ga(;)3339 1484 y F9(\()3367 1496 y Ga(x)3419 1484 y F9(\))3446
+1496 y Ga(N)10 b F4(\))996 1679 y Gg(if)23 b FL(And)1229
+1693 y Gc(R)1286 1679 y F4(\()1321 1667 y FX(h)1349 1679
+y Ga(a)1397 1693 y F9(1)1437 1667 y FX(i)1464 1679 y
+Ga(M)1552 1693 y F9(1)1592 1679 y Ga(;)1632 1667 y FX(h)1660
+1679 y Ga(a)1708 1693 y F9(2)1747 1667 y FX(i)1775 1679
+y Ga(M)1863 1693 y F9(2)1902 1679 y Ga(;)15 b(b)p F4(\))24
+b Gg(and)g FL(And)2348 1642 y Gc(i)2348 1702 y(L)2400
+1679 y F4(\()2435 1667 y F9(\()2463 1679 y Ga(x)2515
+1667 y F9(\))2543 1679 y Ga(N)10 b(;)15 b(y)s F4(\))23
+b Gg(freshly)i(introduce)h Ga(b)d Gg(and)h Ga(y)546 1956
+y Gg(3.)99 b FL(Cut)p F4(\()886 1944 y FX(h)914 1956
+y Ga(b)953 1944 y FX(i)980 1956 y FL(Or)1080 1919 y Gc(i)1080
+1979 y(R)1137 1956 y F4(\()1172 1944 y FX(h)1200 1956
+y Ga(a)1248 1944 y FX(i)1276 1956 y Ga(M)10 b(;)15 b(b)p
+F4(\))q Ga(;)1529 1944 y F9(\()1556 1956 y Ga(y)1604
+1944 y F9(\))1632 1956 y FL(Or)1731 1970 y Gc(L)1783
+1956 y F4(\()1818 1944 y F9(\()1846 1956 y Ga(x)1898
+1970 y F9(1)1937 1944 y(\))1965 1956 y Ga(N)2038 1970
+y F9(1)2077 1956 y Ga(;)2117 1944 y F9(\()2145 1956 y
+Ga(x)2197 1970 y F9(2)2236 1944 y(\))2264 1956 y Ga(N)2337
+1970 y F9(2)2376 1956 y Ga(;)g(y)s F4(\))q(\))2635 1919
+y Gc(l)2561 1956 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p
+F4(\()2929 1944 y FX(h)2957 1956 y Ga(a)3005 1944 y FX(i)3032
+1956 y Ga(M)10 b(;)3170 1944 y F9(\()3198 1956 y Ga(x)3250
+1970 y Gc(i)3278 1944 y F9(\))3306 1956 y Ga(N)3379 1970
+y Gc(i)3407 1956 y F4(\))996 2139 y Gg(if)23 b FL(Or)1173
+2153 y Gc(L)1226 2139 y F4(\()1261 2127 y F9(\()1288
+2139 y Ga(x)1340 2153 y F9(1)1380 2127 y(\))1407 2139
+y Ga(N)1480 2153 y F9(1)1520 2139 y Ga(;)1560 2127 y
+F9(\()1588 2139 y Ga(x)1640 2153 y F9(2)1679 2127 y(\))1706
+2139 y Ga(N)1779 2153 y F9(2)1819 2139 y Ga(;)15 b(y)s
+F4(\))23 b Gg(and)h FL(Or)2218 2102 y Gc(i)2218 2162
+y(R)2276 2139 y F4(\()2311 2127 y FX(h)2339 2139 y Ga(a)2387
+2127 y FX(i)2414 2139 y Ga(M)11 b(;)k(b)p F4(\))23 b
+Gg(freshly)i(introduce)h Ga(y)g Gg(and)e Ga(b)546 2416
+y Gg(4.)99 b FL(Cut)p F4(\()886 2404 y FX(h)914 2416
+y Ga(b)953 2404 y FX(i)980 2416 y FL(Imp)1125 2438 y
+Gc(R)1183 2416 y F4(\()1218 2404 y F9(\()1245 2416 y
+Ga(x)1297 2404 y F9(\))q FX(h)1352 2416 y Ga(a)1400 2404
+y FX(i)1428 2416 y Ga(M)10 b(;)15 b(b)p F4(\))q Ga(;)1681
+2404 y F9(\()1709 2416 y Ga(z)1755 2404 y F9(\))1782
+2416 y FL(Imp)1927 2438 y Gc(L)1979 2416 y F4(\()2014
+2404 y FX(h)2042 2416 y Ga(c)2081 2404 y FX(i)2108 2416
+y Ga(N)10 b(;)2231 2404 y F9(\()2259 2416 y Ga(y)2307
+2404 y F9(\))2334 2416 y Ga(P)j(;)i(z)t F4(\))r(\))788
+2515 y Gc(l)713 2552 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
+F4(\()1082 2540 y FX(h)1110 2552 y Ga(a)1158 2540 y FX(i)1185
+2552 y FL(Cut)p F4(\()1358 2540 y FX(h)1386 2552 y Ga(c)1425
+2540 y FX(i)1452 2552 y Ga(N)10 b(;)1575 2540 y F9(\()1603
+2552 y Ga(x)1655 2540 y F9(\))1683 2552 y Ga(M)g F4(\))p
+Ga(;)1856 2540 y F9(\()1884 2552 y Ga(y)1932 2540 y F9(\))1959
+2552 y Ga(P)j F4(\))49 b Gg(or)788 2650 y Gc(l)713 2687
+y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p F4(\()1082 2675
+y FX(h)1110 2687 y Ga(c)1149 2675 y FX(i)1176 2687 y
+Ga(N)10 b(;)1299 2675 y F9(\()1327 2687 y Ga(x)1379 2675
+y F9(\))1407 2687 y FL(Cut)o F4(\()1579 2675 y FX(h)1607
+2687 y Ga(a)1655 2675 y FX(i)1683 2687 y Ga(M)g(;)1821
+2675 y F9(\()1849 2687 y Ga(y)1897 2675 y F9(\))1924
+2687 y Ga(P)j F4(\)\))996 2870 y Gg(if)23 b FL(Imp)1219
+2892 y Gc(L)1271 2870 y F4(\()1306 2858 y FX(h)1334 2870
+y Ga(c)1373 2858 y FX(i)1400 2870 y Ga(N)10 b(;)1523
+2858 y F9(\()1551 2870 y Ga(y)1599 2858 y F9(\))1626
+2870 y Ga(P)j(;)i(z)t F4(\))24 b Gg(and)g FL(Imp)2141
+2892 y Gc(R)2198 2870 y F4(\()2233 2858 y F9(\()2261
+2870 y Ga(x)2313 2858 y F9(\))q FX(h)2368 2870 y Ga(a)2416
+2858 y FX(i)2443 2870 y Ga(M)11 b(;)k(b)p F4(\))23 b
+Gg(freshly)i(introduce)h Ga(z)h Gg(and)d Ga(b)546 3147
+y Gg(5.)99 b FL(Cut)p F4(\()886 3135 y FX(h)914 3147
+y Ga(a)962 3135 y FX(i)990 3147 y Ga(M)10 b(;)1128 3135
+y F9(\()1155 3147 y Ga(x)1207 3135 y F9(\))1235 3147
+y FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))q(\))1674 3110
+y Gc(l)1600 3147 y F6(\000)-31 b(\000)f(!)26 b Ga(M)10
+b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])996 3330 y Gg(if)23
+b Ga(M)33 b Gg(freshly)25 b(introduces)i Ga(a)546 3607
+y Gg(6.)99 b FL(Cut)p F4(\()886 3595 y FX(h)914 3607
+y Ga(a)962 3595 y FX(i)990 3607 y FL(Ax)o F4(\()p Ga(y)s(;)15
+b(a)p F4(\))q Ga(;)1339 3595 y F9(\()1367 3607 y Ga(x)1419
+3595 y F9(\))1446 3607 y Ga(M)10 b F4(\))1679 3570 y
+Gc(l)1605 3607 y F6(\000)-31 b(\000)f(!)26 b Ga(M)10
+b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])996 3790 y Gg(if)23
+b Ga(M)33 b Gg(freshly)25 b(introduces)i Ga(x)475 4067
+y Gb(Commuting)22 b(Cuts:)546 4273 y Gg(7.)99 b FL(Cut)p
+F4(\()886 4261 y FX(h)914 4273 y Ga(a)962 4261 y FX(i)990
+4273 y Ga(M)10 b(;)1128 4261 y F9(\()1155 4273 y Ga(x)1207
+4261 y F9(\))1235 4273 y Ga(N)g F4(\))783 4372 y Gc(c)713
+4409 y F6(\000)-31 b(\000)g(!)25 b Ga(M)10 b F4([)p Ga(a)26
+b F4(:=)1227 4397 y F9(\()1254 4409 y Ga(x)1306 4397
+y F9(\))1334 4409 y Ga(N)10 b F4(])113 b Gg(if)24 b Ga(M)33
+b Gg(does)24 b(not)g(freshly)h(introduce)h Ga(a)p Gg(,)47
+b(or)783 4507 y Gc(c)713 4544 y F6(\000)-31 b(\000)g(!)25
+b Ga(N)10 b F4([)p Ga(x)25 b F4(:=)1215 4532 y FX(h)1243
+4544 y Ga(a)1291 4532 y FX(i)1318 4544 y Ga(M)11 b F4(])113
+b Gg(if)24 b Ga(N)32 b Gg(does)25 b(not)f(freshly)h(introduce)h
+Ga(x)p 3965 4657 V 277 4660 3691 4 v Black 730 4814 a
+Gg(Figure)f(2.5:)k(Cut-reductions)e(for)c(logical)j(cuts)e(and)g
+(commuting)h(cuts.)p Black Black Black Black eop end
+%%Page: 30 42
+TeXDict begin 30 41 bop Black -144 51 a Gb(30)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(Notice)j(that)820
+280 y Gc(l)746 317 y F6(\000)-31 b(\000)f(!)23 b Gg(and)1163
+280 y Gc(c)1093 317 y F6(\000)-31 b(\000)f(!)23 b Gg(are,)h(by)g
+(assumption,)h(closed)g(under)g(conte)o(xt)g(formation.)31
+b(The)24 b F7(com-)321 430 y(pleteness)f Gg(of)799 393
+y Gc(cut)769 430 y F6(\000)-32 b(\000)h(!)19 b Gg(is)h(simply)g(the)h
+(f)o(act,)g(ob)o(vious)g(by)f(inspection,)k(that)c(e)n(v)o(ery)h(term)e
+(be)o(ginning)k(with)321 543 y(a)h(cut)h(matches)h(at)e(least)h(one)g
+(left-hand)i(side)e(of)f(the)h(reduction)i(rules.)33
+b(So)23 b(each)i(irreducible)j(term,)321 656 y(also)c(called)h(a)e
+(normal)i(form,)e(is)g(cut-free.)462 786 y(W)-7 b(e)23
+b(should)j(pro)o(v)o(e)e(that)h(the)f(cut-reductions)k(satisfy)e(the)e
+(subject)i(reduction)g(property)-6 b(,)26 b(which)321
+898 y(states)i(that)e(well-typed)i(terms)f(reduce)g(to)f(well-typed)i
+(terms.)37 b(An)25 b(auxiliary)k(lemma)c(required)k(in)321
+1011 y(this)24 b(proof)h(follo)n(ws.)p Black 321 1199
+a Gb(Lemma)e(2.2.9)g Gg(\(W)-7 b(eak)o(ening)26 b(and)e(Contraction)i
+(Lemma\))p Gb(:)p Black Black 458 1396 a F6(\017)p Black
+46 w Gg(Suppose)j F4(\000)p Gg(,)f F4(\000)1049 1363
+y FX(0)1072 1396 y Gg(,)g F4(\001)f Gg(and)h F4(\001)1460
+1363 y FX(0)1510 1396 y Gg(are)g(conte)o(xts.)44 b(If)28
+b Ga(M)37 b Gg(is)28 b(a)f(term)h(with)g(the)g(typing)i(judgement)549
+1509 y F4(\000)631 1497 y Gc(.)686 1509 y Ga(M)809 1497
+y Gc(.)864 1509 y F4(\001)p Gg(,)22 b(then)j(also)f F4(\000)1391
+1476 y FX(0)1414 1509 y Ga(;)15 b F4(\000)1537 1497 y
+Gc(.)1592 1509 y Ga(M)1715 1497 y Gc(.)1770 1509 y F4(\001)p
+Ga(;)g F4(\001)1962 1476 y FX(0)2008 1509 y Gg(is)24
+b(a)f(typing)j(judgement)f(for)g Ga(M)10 b Gg(,)22 b(pro)o(vided)k(the)
+549 1621 y(conte)o(xt)f(con)l(v)o(ention)h(is)e(observ)o(ed.)p
+Black 458 1801 a F6(\017)p Black 46 w Gg(If)e Ga(M)32
+b Gg(is)22 b(a)g(term)g(with)g(the)h(typing)h(judgement)h
+Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b(y)20 b F4(:)e Ga(B)5
+b(;)15 b F4(\000)2588 1789 y Gc(.)2642 1801 y Ga(M)2766
+1789 y Gc(.)2821 1801 y F4(\001)o Gg(,)22 b(then)h(for)g(the)g(term)549
+1914 y Ga(M)10 b F4([)p Ga(y)27 b F6(7!)d Ga(x)p F4(])30
+b Gg(we)g(ha)n(v)o(e)i(a)e(typing)j(judgement)g Ga(x)17
+b F4(:)h Ga(B)5 b(;)15 b F4(\000)2356 1902 y Gc(.)2410
+1914 y Ga(M)10 b F4([)p Ga(y)j F6(7!)d Ga(x)p F4(])2795
+1902 y Gc(.)2850 1914 y F4(\001)p Gg(.)50 b(If)31 b Ga(M)40
+b Gg(is)31 b(a)g(term)549 2027 y(with)26 b(the)h(typing)h(judgement)g
+F4(\000)1622 2015 y Gc(.)1677 2027 y Ga(M)1800 2015 y
+Gc(.)1855 2027 y F4(\001)p Ga(;)15 b(a)j F4(:)f Ga(B)5
+b(;)15 b(b)i F4(:)h Ga(B)t Gg(,)26 b(then)h(for)g(the)g(term)f
+Ga(M)10 b F4([)p Ga(b)16 b F6(7!)f Ga(a)p F4(])26 b Gg(we)549
+2139 y(ha)n(v)o(e)e(a)f(typing)i(judgement)g F4(\000)1547
+2127 y Gc(.)1601 2139 y Ga(M)10 b F4([)p Ga(b)g F6(7!)g
+Ga(a)p F4(])1973 2127 y Gc(.)2028 2139 y F4(\001)p Ga(;)15
+b(a)j F4(:)f Ga(B)5 b Gg(.)p Black 321 2352 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(All)23 b(by)g(tri)n(vial)i(induction)h(on)e(the)g
+(structure)i(of)d Ga(M)10 b Gg(.)p 3480 2352 4 62 v 3484
+2294 55 4 v 3484 2352 V 3538 2352 4 62 v Black 321 2540
+a Gb(Pr)n(oposition)25 b(2.2.10)f Gg(\(Subject)h(Reduction\))p
+Gb(:)p Black 321 2653 a Gg(Suppose)i Ga(M)35 b Gg(is)25
+b(a)g(term)g(with)g(the)h(typing)g(judgement)i F4(\000)2187
+2641 y Gc(.)2242 2653 y Ga(M)2365 2641 y Gc(.)2420 2653
+y F4(\001)c Gg(and)i Ga(M)2834 2615 y Gc(cut)2803 2653
+y F6(\000)-31 b(\000)f(!)29 b Ga(N)10 b Gg(,)24 b(then)i
+Ga(N)35 b Gg(is)25 b(a)321 2765 y(term)f(with)f(the)h(typing)h
+(judgement)g F4(\000)1573 2753 y Gc(.)1627 2765 y Ga(N)1736
+2753 y Gc(.)1791 2765 y F4(\001)o Gg(.)p Black 321 2978
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(inspection)j(of)e(the)f
+(reduction)k(rules)d(\(see)g(P)o(age)f(141\).)p 3480
+2978 V 3484 2920 55 4 v 3484 2978 V 3538 2978 4 62 v
+462 3182 a(Let)40 b(us)h(mention)h(that)f(the)g(Barendre)o(gt-style)k
+(naming)c(con)l(v)o(ention)j(is)d(indispensable)j(for)321
+3295 y(strong)29 b(normalisation)i(of)1236 3258 y Gc(cut)1205
+3295 y F6(\000)-31 b(\000)f(!)p Gg(.)41 b(If)27 b(we)g(do)h(not)g
+(observ)o(e)h(this)g(con)l(v)o(ention,)i(we)c(lose)i(strong)g(nor)n(-)
+321 3408 y(malisation.)61 b(T)-7 b(o)32 b(gi)n(v)o(e)i(an)f(e)o(xample)
+i(of)e(a)g(non-terminating)k(reduction)f(sequence)g(we)d(need)h(the)321
+3521 y(follo)n(wing)25 b(lemma.)p Black 321 3708 a Gb(Lemma)e(2.2.11:)p
+Black 35 w Gg(F)o(or)f(all)i(terms)g Ga(M)35 b F6(2)25
+b FY(T)e Gg(we)f(ha)n(v)o(e)p Black 417 3892 a(\(i\))p
+Black 47 w Ga(M)10 b F4([)p Ga(x)25 b F4(:=)870 3880
+y FX(h)898 3892 y Ga(a)946 3880 y FX(i)973 3892 y FL(Ax)p
+F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(])1364 3855 y Gc(cut)1333
+3892 y F6(\000)-31 b(\000)g(!)1504 3859 y FX(\003)1568
+3892 y Ga(M)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])p
+Black 392 4071 a Gg(\(ii\))p Black 47 w Ga(M)g F4([)p
+Ga(a)25 b F4(:=)866 4059 y F9(\()894 4071 y Ga(x)946
+4059 y F9(\))973 4071 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p
+F4(\))q(])1359 4034 y Gc(cut)1328 4071 y F6(\000)-31
+b(\000)g(!)1499 4038 y FX(\003)1563 4071 y Ga(M)10 b
+F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p Black 321 4284 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(routine)i(induction)h(on)e(the)
+g(structure)h(of)f Ga(M)10 b Gg(.)p 3480 4284 V 3484
+4226 55 4 v 3484 4284 V 3538 4284 4 62 v Black 321 4546
+a Gb(Example)25 b(2.2.12:)p Black 34 w Gg(W)-7 b(e)24
+b(start)i(with)e(the)h(term)g FL(Not)1957 4560 y Gc(R)2014
+4546 y F4(\()2049 4534 y F9(\()2077 4546 y Ga(x)2129
+4534 y F9(\))2157 4546 y Ga(M)10 b(;)15 b(a)p F4(\)[)p
+Ga(a)28 b F4(:=)2603 4534 y F9(\()2630 4546 y Ga(y)2678
+4534 y F9(\))2706 4546 y FL(Ax)o F4(\()p Ga(y)s(;)15
+b(a)p F4(\))q(])24 b Gg(for)h(which)g(we)321 4659 y(assume)d(that)f
+(there)h(are)f(se)n(v)o(eral)h(free)f(occurrences)j(of)d
+Ga(a)f Gg(in)h Ga(M)10 b Gg(;)21 b(that)h(means)f FL(Not)2938
+4673 y Gc(R)2996 4659 y F4(\()3031 4647 y F9(\()3058
+4659 y Ga(x)3110 4647 y F9(\))3138 4659 y Ga(M)10 b(;)15
+b(a)p F4(\))21 b Gg(does)321 4772 y(not)27 b(freshly)h(introduce)h
+Ga(a)p Gg(.)37 b(W)-7 b(e)26 b(apply)h(our)g(de\002nition)i(of)d
+(substitution)k(\(see)d(Figure)g(2.4\))g(so)f(as)h(to)321
+4885 y(yield)916 5039 y FL(Cut)o F4(\()1088 5027 y FX(h)1116
+5039 y Ga(a)1164 5027 y FX(i)1192 5039 y FL(Not)1334
+5053 y Gc(R)1392 5039 y F4(\()1427 5027 y F9(\()1455
+5039 y Ga(x)1507 5027 y F9(\))1534 5039 y Ga(M)10 b F4([)p
+Ga(a)26 b F4(:=)1852 5027 y F9(\()1880 5039 y Ga(y)1928
+5027 y F9(\))1955 5039 y FL(Ax)o F4(\()p Ga(y)s(;)15
+b(a)p F4(\))q(])q Ga(;)g(a)p F4(\))q Ga(;)2454 5027 y
+F9(\()2481 5039 y Ga(y)2529 5027 y F9(\))2557 5039 y
+FL(Ax)o F4(\()p Ga(y)s(;)g(a)p F4(\))q(\))26 b Ga(:)p
+Black 420 w Gg(\(2.4\))p Black Black Black eop end
+%%Page: 31 43
+TeXDict begin 31 42 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
+n(ong)h(Normalisation)2290 b(31)p 277 88 3691 4 v Black
+277 317 a Gg(According)32 b(to)e(the)h(lemma)e(just)i(gi)n(v)o(en)g
+(this)f(term)g(reduces,)j(assuming)f(that)f Ga(a)e Gg(is)h(free)g(in)g
+Ga(M)10 b Gg(,)31 b(by)277 430 y(some)24 b(reductions)i(to)1071
+619 y FL(Cut)p F4(\()1244 607 y FX(h)1272 619 y Ga(a)1320
+607 y FX(i)1347 619 y FL(Not)1490 633 y Gc(R)1548 619
+y F4(\()1583 607 y F9(\()1611 619 y Ga(x)1663 607 y F9(\))1690
+619 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)p F4(])q Ga(;)15
+b(a)p F4(\))q Ga(;)2210 607 y F9(\()2237 619 y Ga(y)2285
+607 y F9(\))2313 619 y FL(Ax)o F4(\()p Ga(y)s(;)g(a)p
+F4(\))q(\))26 b Ga(:)277 823 y Gg(Clearly)-6 b(,)22 b
+Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)p F4(])22 b Gg(is)f(equi)n(v)n
+(alent)j(to)d Ga(M)10 b Gg(,)20 b(which)i(contains)i(some)d(free)h
+(occurrences)i(of)d Ga(a)g Gg(though.)277 936 y(Therefore)f(we)e
+(cannot)h(apply)h(a)e(logical)i(rule,)f(b)n(ut)g(ha)n(v)o(e)g(to)f
+(apply)i(a)e(reduction)j(rule)d(for)h(commuting)277 1049
+y(cuts.)29 b(This)24 b(gi)n(v)o(es)g(us)1279 1240 y FL(Not)1421
+1254 y Gc(R)1479 1240 y F4(\()1514 1228 y F9(\()1542
+1240 y Ga(x)1594 1228 y F9(\))1621 1240 y Ga(M)10 b(;)15
+b(a)p F4(\)[)p Ga(a)27 b F4(:=)2063 1228 y F9(\()2090
+1240 y Ga(y)2138 1228 y F9(\))2166 1240 y FL(Ax)o F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))q(])277 1444 y Gg(and)27 b(we)f(are)g
+(\223back\224)i(where)f(we)f(started)i(from.)37 b(A)25
+b(closer)j(analysis)g(of)f(this)g(erroneous)i(reduction)277
+1557 y(sequence)37 b(re)n(v)o(eals)e(that)g(in)f(Step)g(\(2.4\))h(the)f
+(co-name)i Ga(a)d Gg(became)j(bound)f(by)g(the)f(cut)h(when)f(we)277
+1670 y(pushed)27 b(the)f(substitution)j(inside)e(the)f(term)f
+FL(Not)1856 1684 y Gc(R)1914 1670 y F4(\()1949 1658 y
+F9(\()1977 1670 y Ga(x)2029 1658 y F9(\))2056 1670 y
+Ga(M)10 b(;)15 b(a)p F4(\))p Gg(.)35 b(T)-7 b(o)24 b(a)n(v)n(oid)j
+(this)f(capture)i(of)d(the)h(free)277 1782 y(occurrence)c(of)e
+Ga(a)e Gg(in)945 1770 y F9(\()972 1782 y Ga(y)1020 1770
+y F9(\))1047 1782 y FL(Ax)p F4(\()p Ga(y)s(;)d(a)p F4(\))q
+Gg(,)k(we)f(ha)n(v)o(e)i(to)g(rename)g(the)f(corresponding)24
+b(binder)-5 b(.)29 b(Accordingly)-6 b(,)277 1895 y(we)23
+b(should)i(ha)n(v)o(e)f(written)p Black Black 806 2083
+a FL(Not)949 2097 y Gc(R)1007 2083 y F4(\()1042 2071
+y F9(\()1070 2083 y Ga(x)1122 2071 y F9(\))1149 2083
+y Ga(M)10 b(;)15 b(a)p F4(\)[)p Ga(a)26 b F4(:=)1591
+2071 y F9(\()1618 2083 y Ga(y)1666 2071 y F9(\))1693
+2083 y FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(])636
+2220 y F6(\021)99 b FL(Not)949 2234 y Gc(R)1007 2220
+y F4(\()1042 2208 y F9(\()1070 2220 y Ga(x)1122 2208
+y F9(\))1149 2220 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1479
+2187 y FX(0)1503 2220 y F4(])p Ga(;)15 b(a)1616 2187
+y FX(0)1640 2220 y F4(\)[)p Ga(a)1748 2187 y FX(0)1797
+2220 y F4(:=)1918 2208 y F9(\()1946 2220 y Ga(y)1994
+2208 y F9(\))2021 2220 y FL(Ax)p F4(\()p Ga(y)s(;)g(a)p
+F4(\))q(])636 2357 y(=)99 b FL(Cut)p F4(\()979 2345 y
+FX(h)1007 2357 y Ga(a)1055 2324 y FX(0)1078 2345 y(i)1106
+2357 y FL(Not)1249 2371 y Gc(R)1306 2357 y F4(\()1341
+2345 y F9(\()1369 2357 y Ga(x)1421 2345 y F9(\))1448
+2357 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1778 2324
+y FX(0)1802 2357 y F4(][)p Ga(a)1900 2324 y FX(0)1949
+2357 y F4(:=)2071 2345 y F9(\()2098 2357 y Ga(y)2146
+2345 y F9(\))2173 2357 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(a)p F4(\))q(])p Ga(;)g(a)2596 2324 y FX(0)2620 2357
+y F4(\))p Ga(;)2695 2345 y F9(\()2723 2357 y Ga(y)2771
+2345 y F9(\))2798 2357 y FL(Ax)p F4(\()p Ga(y)s(;)g(a)p
+F4(\))q(\))277 2570 y Gg(assuming)25 b Ga(a)691 2537
+y FX(0)737 2570 y Gg(does)g(not)f(occur)g(freely)h(in)e
+Ga(M)10 b Gg(.)28 b(No)n(w)23 b(we)f(may)i(apply)g(Lemma)f(2.2.11)h
+(and)g(recei)n(v)o(e)277 2700 y(performing)i(some)d(reductions)896
+2907 y FL(Cut)p F4(\()1069 2895 y FX(h)1096 2907 y Ga(a)1144
+2874 y FX(0)1168 2895 y(i)1195 2907 y FL(Not)1338 2921
+y Gc(R)1396 2907 y F4(\()1431 2895 y F9(\()1458 2907
+y Ga(x)1510 2895 y F9(\))1538 2907 y Ga(M)10 b F4([)p
+Ga(a)g F6(7!)g Ga(a)1868 2874 y FX(0)1892 2907 y F4(][)p
+Ga(a)1990 2874 y FX(0)2024 2907 y F6(7!)g Ga(a)p F4(])p
+Ga(;)15 b(a)2286 2874 y FX(0)2310 2907 y F4(\))p Ga(;)2385
+2895 y F9(\()2413 2907 y Ga(y)2461 2895 y F9(\))2488
+2907 y FL(Ax)p F4(\()p Ga(y)s(;)g(a)p F4(\))q(\))25 b
+Ga(:)277 3111 y Gg(Because)i FL(Not)747 3125 y Gc(R)805
+3111 y F4(\()840 3099 y F9(\()868 3111 y Ga(x)920 3099
+y F9(\))947 3111 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1277
+3078 y FX(0)1301 3111 y F4(][)p Ga(a)1399 3078 y FX(0)1433
+3111 y F6(7!)g Ga(a)p F4(])p Ga(;)15 b(a)1695 3078 y
+FX(0)1719 3111 y F4(\))25 b Gg(freshly)i(introduces)h
+Ga(a)2507 3078 y FX(0)2531 3111 y Gg(,)d(we)f(can)i(no)n(w)f(apply)h(a)
+f(logi-)277 3224 y(cal)f(reduction)i(and)e(obtain)1149
+3413 y FL(Not)1292 3427 y Gc(R)1349 3413 y F4(\()1384
+3401 y F9(\()1412 3413 y Ga(x)1464 3401 y F9(\))1492
+3413 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(a)1822 3380
+y FX(0)1845 3413 y F4(][)p Ga(a)1943 3380 y FX(0)1977
+3413 y F6(7!)g Ga(a)p F4(])q Ga(;)15 b(a)2240 3375 y
+FX(0)2263 3413 y F4(\)[)p Ga(a)2371 3375 y FX(0)2405
+3413 y F6(7!)10 b Ga(a)p F4(])26 b Ga(:)277 3600 y Gg(This)d(term)h(is)
+f(equi)n(v)n(alent)j(to)e FL(Not)1367 3614 y Gc(R)1425
+3600 y F4(\()1460 3588 y F9(\()1488 3600 y Ga(x)1540
+3588 y F9(\))1567 3600 y Ga(M)10 b(;)15 b(a)p F4(\))p
+Gg(\227the)25 b(term)e(we)g(e)o(xpected)i(gi)n(v)o(en)f(Lemma)f
+(2.2.11.)277 3901 y Ge(2.3)119 b(Pr)n(oof)29 b(of)h(Str)n(ong)g
+(Normalisation)277 4125 y Gg(In)c(this)g(section)i(we)d(shall)i(gi)n(v)
+o(e)f(a)f(direct)i(proof)g(of)f(strong)h(normalisation)i(for)d(the)g
+(reduction)j(sys-)277 4238 y(tem)c F4(\()p FY(T)t Ga(;)602
+4201 y Gc(cut)571 4238 y F6(\000)-31 b(\000)f(!)p F4(\))p
+Gg(.)35 b(The)25 b(proof)h(adapts)h(the)f(technique)i(of)e(the)g
+(symmetric)g(reducibility)j(candidates)3461 4205 y F5(4)277
+4351 y Gg(de)n(v)o(eloped)j(by)d(Barbanera)i(and)f(Berardi)g([1994].)47
+b(Unfortunately)-6 b(,)34 b(we)28 b(cannot)j(apply)g(this)e(tech-)277
+4464 y(nique)c(directly)h(to)e(pro)o(v)o(e)g(strong)h(normalisation)i
+(for)d F4(\()p FY(T)t Ga(;)2190 4426 y Gc(cut)2159 4464
+y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)23 b(because)j(in)e(order)h(to)
+e(strengthen)277 4576 y(an)h(induction)i(hypothesis,)g(we)c(need)j(the)
+f(follo)n(wing)h(property)897 4817 y Ga(M)10 b F4([)p
+Ga(x)26 b F4(:=)1219 4805 y FX(h)1247 4817 y Ga(a)1295
+4805 y FX(i)1322 4817 y Ga(P)13 b F4(][)p Ga(b)26 b F4(:=)1629
+4805 y F9(\()1657 4817 y Ga(y)1705 4805 y F9(\))1732
+4817 y Ga(Q)p F4(])f F6(\021)g Ga(M)10 b F4([)p Ga(b)26
+b F4(:=)2259 4805 y F9(\()2287 4817 y Ga(y)2335 4805
+y F9(\))2362 4817 y Ga(Q)p F4(][)p Ga(x)f F4(:=)2683
+4805 y FX(h)2710 4817 y Ga(a)2758 4805 y FX(i)2786 4817
+y Ga(P)13 b F4(])277 5038 y Gg(for)24 b Ga(b)e Gg(not)i(free)g(in)864
+5026 y FX(h)891 5038 y Ga(a)939 5026 y FX(i)967 5038
+y Ga(P)35 b Gg(and)24 b Ga(x)f Gg(not)h(free)f(in)1685
+5026 y F9(\()1712 5038 y Ga(y)1760 5026 y F9(\))1788
+5038 y Ga(Q)o Gg(.)28 b(Ho)n(we)n(v)o(er)23 b(this)h(does)g
+F7(not)g Gg(hold)h(for)e(the)h(substitu-)p Black 277
+5100 1290 4 v 383 5156 a F3(4)412 5188 y F2(It)g(seems)i(this)f(type)g
+(of)g(candidates)i(w)o(as)e(\002rst)f(used)i(by)g(Girard)f([1987a])h
+(for)f(pro)o(ving)h(strong)g(normalisation)g(of)277 5279
+y(proof-nets.)p Black Black Black eop end
+%%Page: 32 44
+TeXDict begin 32 43 bop Black -144 51 a Gb(32)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(tion)h(operation)i
+(de\002ned)e(in)g(Figure)g(2.4.)28 b(In)22 b(ef)n(fect,)h
+(\223independent\224)k(substitutions,)f(in)c(general,)i(do)321
+430 y(not)g(commute!)30 b(The)23 b(\(only\))i(problematic)h(case)e(is)g
+(where)f Ga(M)33 b Gg(is)24 b(of)f(the)h(form)f FL(Ax)p
+F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(:)789 643 y FL(Ax)o
+F4(\()p Ga(x;)g(b)p F4(\)[)p Ga(x)27 b F4(:=)1317 631
+y FX(h)1344 643 y Ga(a)1392 631 y FX(i)1420 643 y Ga(P)13
+b F4(][)p Ga(b)26 b F4(:=)1727 631 y F9(\()1754 643 y
+Ga(y)1802 631 y F9(\))1830 643 y Ga(Q)p F4(])83 b(=)g
+Ga(P)13 b F4([)p Ga(a)d F6(7!)g Ga(b)p F4(][)p Ga(b)26
+b F4(:=)2694 631 y F9(\()2721 643 y Ga(y)2769 631 y F9(\))2797
+643 y Ga(Q)p F4(])k Ga(;)15 b Gg(b)n(ut)789 792 y FL(Ax)o
+F4(\()p Ga(x;)g(b)p F4(\)[)p Ga(b)27 b F4(:=)1304 780
+y F9(\()1332 792 y Ga(y)1380 780 y F9(\))1407 792 y Ga(Q)p
+F4(][)p Ga(x)e F4(:=)1728 780 y FX(h)1755 792 y Ga(a)1803
+780 y FX(i)1831 792 y Ga(P)13 b F4(])83 b(=)g Ga(Q)p
+F4([)p Ga(y)13 b F6(7!)d Ga(x)p F4(][)p Ga(x)25 b F4(:=)2721
+780 y FX(h)2748 792 y Ga(a)2796 780 y FX(i)2823 792 y
+Ga(P)13 b F4(])i Ga(:)321 1002 y Gg(Clearly)-6 b(,)20
+b(there)g(is)e(no)h(reason)h(for)e(the)h(tw)o(o)f(resultant)j(terms)e
+(to)f(be)h(equal.)28 b(T)-7 b(o)17 b(remedy)i(this)g(situation,)321
+1115 y(we)34 b(shall)h(de\002ne)g(an)f(auxiliary)j(cut-reduction)h
+(system,)f F4(\()p FY(T)t Ga(;)2380 1078 y Gc(aux)2360
+1115 y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)37 b(which)d(has)h(a)f
+(more)g(subtle)321 1228 y(de\002nition)23 b(of)d(substitution)k
+(including)f(tw)o(o)e(special)h(clauses)g(to)f(handle)h(the)f
+(problematic)i(e)o(xample)321 1341 y(abo)o(v)o(e.)30
+b(Intuiti)n(v)o(ely)-6 b(,)25 b(we)e(should)i(e)o(xpect)923
+1556 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\)[)p Ga(x)26
+b F4(:=)1452 1544 y FX(h)1479 1556 y Ga(a)1527 1544 y
+FX(i)1555 1556 y Ga(P)13 b F4(][)p Ga(b)25 b F4(:=)1861
+1544 y F9(\()1889 1556 y Ga(y)1937 1544 y F9(\))1964
+1556 y Ga(Q)p F4(])923 1705 y FL(Ax)p F4(\()p Ga(x;)15
+b(b)p F4(\)[)p Ga(b)26 b F4(:=)1439 1693 y F9(\()1466
+1705 y Ga(y)1514 1693 y F9(\))1541 1705 y Ga(Q)p F4(][)p
+Ga(x)g F4(:=)1862 1693 y FX(h)1890 1705 y Ga(a)1938 1693
+y FX(i)1965 1705 y Ga(P)13 b F4(])2103 1475 y FK(\))2227
+1631 y F4(=)50 b FL(Cut)p F4(\()2521 1619 y FX(h)2548
+1631 y Ga(a)2596 1619 y FX(i)2624 1631 y Ga(P)13 b(;)2735
+1619 y F9(\()2763 1631 y Ga(y)2811 1619 y F9(\))2838
+1631 y Ga(Q)p F4(\))26 b Ga(:)321 1903 y Gg(The)h(ne)n(w)g
+(substitution)k(operation,)f(written)e(as)f Ga(M)5 b
+F6(f)-7 b Ga(a)33 b F4(:=)2235 1891 y F9(\()2263 1903
+y Ga(x)2315 1891 y F9(\))2342 1903 y Ga(N)p F6(g)27 b
+Gg(and)h Ga(N)5 b F6(f)-7 b Ga(x)33 b F4(:=)2974 1891
+y F9(\()3001 1903 y Ga(a)3049 1891 y F9(\))3077 1903
+y Ga(M)p F6(g)p Gg(,)28 b(is)f(gi)n(v)o(en)321 2016 y(in)j(Figure)h
+(2.6.)49 b(W)-7 b(e)29 b(apply)j(the)e(same)g(terminology)j(as)d(for)h
+(substitutions)j(of)c(the)h(form)f F4([)p Ga(\033)s F4(])g
+Gg(\(see)321 2129 y(T)-6 b(erminology)25 b(2.2.6\).)k(F)o(or)23
+b F6(f)p 1270 2129 28 4 v 1288 2129 V 1306 2129 V 65
+w(g)g Gg(we)g(ha)n(v)o(e)h(the)g(follo)n(wing)h(substitution)i(lemma.)p
+Black 321 2317 a Gb(Lemma)c(2.3.1)g Gg(\(Substitution)k(Lemma\))p
+Gb(:)p Black 321 2430 a Gg(F)o(or)f(all)h Ga(M)42 b F6(2)30
+b FY(T)d Gg(and)g(tw)o(o)f(arbitrary)j(proof)f(substitutions,)j
+F6(f)p Ga(\033)s F6(g)d Gg(and)f F6(f)p Ga(\034)10 b
+F6(g)p Gg(,)27 b(such)h(that)f Ga(dom)p F4(\()p F6(f)p
+Ga(\033)s F6(g)p F4(\))321 2543 y Gg(is)d(not)g(free)g(in)f
+Ga(codom)p F4(\()p F6(f)p Ga(\034)10 b F6(g)p F4(\))p
+Gg(,)25 b(we)d(ha)n(v)o(e)1392 2721 y Ga(M)10 b F6(f)p
+Ga(\033)s F6(gf)p Ga(\034)g F6(g)28 b(\021)d Ga(M)10
+b F6(f)p Ga(\034)g F6(gf)p Ga(\033)s F6(f)p Ga(\034)g
+F6(gg)28 b Ga(:)p Black 321 2934 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)e(the)f(structure)j(of)e
+Ga(M)32 b Gg(\(see)25 b(P)o(age)e(141\).)p 3480 2934
+4 62 v 3484 2876 55 4 v 3484 2934 V 3538 2934 4 62 v
+321 3138 a(Since)34 b(we)f(changed)j(the)e(substitution)j(operation)f
+(we)d(need)i(to)e(change)j(the)e(reduction)i(rule)e(for)321
+3251 y(commuting)25 b(cuts.)30 b(The)23 b(modi\002ed)h(rule)g(is)f(as)h
+(follo)n(ws.)p Black Black 427 3469 a FL(Cut)p F4(\()600
+3457 y FX(h)628 3469 y Ga(a)676 3457 y FX(i)704 3469
+y Ga(M)10 b(;)842 3457 y F9(\()869 3469 y Ga(x)921 3457
+y F9(\))949 3469 y Ga(N)g F4(\))1225 3432 y Gc(c)1256
+3409 y FC(0)1167 3469 y F6(\000)-31 b(\000)f(!)100 b
+Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1763 3457 y F9(\()1790
+3469 y Ga(x)1842 3457 y F9(\))1870 3469 y Ga(N)p F6(g)114
+b Gg(if)24 b Ga(M)33 b Gg(does)24 b(not)g(freshly)h(introduce)h
+Ga(a)p Gg(,)d(or)1225 3581 y Gc(c)1256 3557 y FC(0)1167
+3618 y F6(\000)-31 b(\000)f(!)100 b Ga(N)5 b F6(f)-7
+b Ga(x)26 b F4(:=)1752 3606 y FX(h)1779 3618 y Ga(a)1827
+3606 y FX(i)1855 3618 y Ga(M)p F6(g)114 b Gg(if)24 b
+Ga(N)32 b Gg(does)25 b(not)f(freshly)h(introduce)h Ga(x)p
+Gg(.)321 3848 y(The)d(auxiliary)j(cut-elimination)i(procedure)e(is)d
+(then)p Black 321 4056 a Gb(De\002nition)g(2.3.2)g Gg(\(Auxiliary)j
+(Cut-Elimination)g(Procedure\))p Gb(:)p Black 321 4169
+a Gg(The)d(auxiliary)j(cut-elimination)i(procedure,)d
+F4(\()p FY(T)-11 b Ga(;)1956 4132 y Gc(aux)1936 4169
+y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)23 b(is)h(a)f(reduction)j
+(system)e(where:)p Black 458 4352 a F6(\017)p Black 46
+w FY(T)e Gg(is)i(the)g(set)f(of)h(well-typed)h(terms,)f(and)p
+Black 458 4531 a F6(\017)p Black 569 4494 a Gc(aux)549
+4531 y F6(\000)-32 b(\000)h(!)26 b Gg(consists)j(of)d(the)h(rules)h
+(for)f(the)g(logical)h(cuts)g(and)f(the)g(modi\002ed)g(reduction)j(for)
+d(com-)549 4644 y(muting)d(cuts;)g(that)g(is)1651 4741
+y Gc(aux)1631 4778 y F6(\000)-31 b(\000)f(!)1826 4726
+y F5(def)1834 4778 y F4(=)2011 4741 y Gc(l)1937 4778
+y F6(\000)g(\000)h(!)25 b([)2277 4741 y Gc(c)2308 4717
+y FC(0)2218 4778 y F6(\000)-31 b(\000)f(!)51 b Ga(:)321
+5032 y Gg(W)-7 b(e)27 b(ha)n(v)o(e)h(to)g(v)o(erify)h(that)1186
+4995 y Gc(aux)1166 5032 y F6(\000)-31 b(\000)f(!)27 b
+Gg(satis\002es)i(the)f(subject)h(reduction)h(property)-6
+b(.)44 b(Ho)n(we)n(v)o(er)l(,)28 b(gi)n(v)o(en)g(the)321
+5145 y(proof)j(of)f(Proposition)i(2.2.10,)f(this)g(is)e(a)h(routine)h
+(matter)l(,)h(and)e(so)g(we)f(omit)g(the)i(details.)48
+b(Let)30 b(us)p Black Black eop end
+%%Page: 33 45
+TeXDict begin 33 44 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
+n(ong)h(Normalisation)2290 b(33)p 277 88 3691 4 v Black
+Black 277 601 V 277 4767 4 4167 v 879 791 a FL(Ax)o F4(\()p
+Ga(x;)15 b(c)p F4(\))-5 b F6(f)e Ga(c)28 b F4(:=)1403
+779 y F9(\()1431 791 y Ga(y)1479 779 y F9(\))1506 791
+y Ga(P)s F6(g)1646 740 y F5(def)1653 791 y F4(=)40 b
+FL(Cut)p F4(\()1937 779 y FX(h)1965 791 y Ga(c)2004 779
+y FX(i)2031 791 y FL(Ax)p F4(\()p Ga(x;)15 b(c)p F4(\))q
+Ga(;)2376 779 y F9(\()2404 791 y Ga(y)2452 779 y F9(\))2479
+791 y Ga(P)e F4(\))874 961 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p
+F4(\))-5 b F6(f)e Ga(y)29 b F4(:=)1412 949 y FX(h)1439
+961 y Ga(c)1478 949 y FX(i)1506 961 y Ga(P)s F6(g)1646
+909 y F5(def)1653 961 y F4(=)40 b FL(Cut)p F4(\()1937
+949 y FX(h)1965 961 y Ga(c)2004 949 y FX(i)2031 961 y
+Ga(P)13 b(;)2142 949 y F9(\()2170 961 y Ga(y)2218 949
+y F9(\))2245 961 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p F4(\))q(\))611
+1130 y FL(Not)753 1144 y Gc(R)811 1130 y F4(\()846 1118
+y F9(\()874 1130 y Ga(x)926 1118 y F9(\))953 1130 y Ga(M)10
+b(;)15 b(a)p F4(\))-5 b F6(f)e Ga(a)27 b F4(:=)1403 1118
+y F9(\()1431 1130 y Ga(y)1479 1118 y F9(\))1506 1130
+y Ga(P)s F6(g)1646 1079 y F5(def)1653 1130 y F4(=)40
+b FL(Cut)p F4(\()1937 1118 y FX(h)1965 1130 y Ga(a)2013
+1118 y FX(i)2040 1130 y FL(Not)2183 1144 y Gc(R)2240
+1130 y F4(\()2275 1118 y F9(\()2303 1130 y Ga(x)2355
+1118 y F9(\))2383 1130 y Ga(M)5 b F6(f)-7 b Ga(a)26 b
+F4(:=)2709 1118 y F9(\()2736 1130 y Ga(y)2784 1118 y
+F9(\))2812 1130 y Ga(P)s F6(g)q Ga(;)15 b(a)p F4(\))p
+Ga(;)3082 1118 y F9(\()3110 1130 y Ga(y)3158 1118 y F9(\))3186
+1130 y Ga(P)e F4(\))621 1299 y FL(Not)763 1313 y Gc(L)815
+1299 y F4(\()850 1287 y FX(h)878 1299 y Ga(a)926 1287
+y FX(i)954 1299 y Ga(M)d(;)15 b(x)p F4(\))-5 b F6(f)e
+Ga(x)26 b F4(:=)1412 1287 y FX(h)1439 1299 y Ga(c)1478
+1287 y FX(i)1506 1299 y Ga(P)s F6(g)1646 1248 y F5(def)1653
+1299 y F4(=)40 b FL(Cut)p F4(\()1937 1287 y FX(h)1965
+1299 y Ga(c)2004 1287 y FX(i)2031 1299 y Ga(P)13 b(;)2142
+1287 y F9(\()2170 1299 y Ga(x)2222 1287 y F9(\))2250
+1299 y FL(Not)2392 1313 y Gc(L)2444 1299 y F4(\()2479
+1287 y FX(h)2507 1299 y Ga(a)2555 1287 y FX(i)2583 1299
+y Ga(M)5 b F6(f)-7 b Ga(x)26 b F4(:=)2913 1287 y FX(h)2940
+1299 y Ga(c)2979 1287 y FX(i)3007 1299 y Ga(P)t F6(g)p
+Ga(;)15 b(x)p F4(\))q(\))403 1469 y FL(And)557 1483 y
+Gc(R)615 1469 y F4(\()650 1457 y FX(h)678 1469 y Ga(a)726
+1457 y FX(i)753 1469 y Ga(M)10 b(;)891 1457 y FX(h)919
+1469 y Ga(b)958 1457 y FX(i)986 1469 y Ga(N)g(;)15 b(c)p
+F4(\))-5 b F6(f)e Ga(c)27 b F4(:=)1403 1457 y F9(\()1431
+1469 y Ga(y)1479 1457 y F9(\))1506 1469 y Ga(P)s F6(g)1646
+1417 y F5(def)1653 1469 y F4(=)40 b FL(Cut)p F4(\()1937
+1457 y FX(h)1965 1469 y Ga(c)2004 1457 y FX(i)2031 1469
+y FL(And)2186 1483 y Gc(R)2244 1469 y F4(\()2279 1457
+y FX(h)2306 1469 y Ga(a)2354 1457 y FX(i)2382 1469 y
+Ga(M)5 b F6(f)-7 b Ga(c)26 b F4(:=)2699 1457 y F9(\()2727
+1469 y Ga(y)2775 1457 y F9(\))2802 1469 y Ga(P)t F6(g)p
+Ga(;)2949 1457 y FX(h)2977 1469 y Ga(b)3016 1457 y FX(i)3043
+1469 y Ga(N)5 b F6(f)-7 b Ga(c)27 b F4(:=)3346 1457 y
+F9(\()3373 1469 y Ga(y)3421 1457 y F9(\))3449 1469 y
+Ga(P)s F6(g)q Ga(;)15 b(c)p F4(\))q Ga(;)3711 1457 y
+F9(\()3739 1469 y Ga(y)3787 1457 y F9(\))3814 1469 y
+Ga(P)e F4(\))613 1638 y FL(And)768 1601 y Gc(i)768 1661
+y(L)820 1638 y F4(\()855 1626 y F9(\()883 1638 y Ga(x)935
+1626 y F9(\))962 1638 y Ga(M)d(;)15 b(y)s F4(\))-5 b
+F6(f)e Ga(y)29 b F4(:=)1412 1626 y FX(h)1439 1638 y Ga(c)1478
+1626 y FX(i)1506 1638 y Ga(P)s F6(g)1646 1587 y F5(def)1653
+1638 y F4(=)40 b FL(Cut)p F4(\()1937 1626 y FX(h)1965
+1638 y Ga(c)2004 1626 y FX(i)2031 1638 y Ga(P)13 b(;)2142
+1626 y F9(\()2170 1638 y Ga(y)2218 1626 y F9(\))2245
+1638 y FL(And)2400 1601 y Gc(i)2400 1661 y(L)2452 1638
+y F4(\()2487 1626 y F9(\()2515 1638 y Ga(x)2567 1626
+y F9(\))2594 1638 y Ga(M)5 b F6(f)-7 b Ga(y)29 b F4(:=)2920
+1626 y FX(h)2948 1638 y Ga(c)2987 1626 y FX(i)3015 1638
+y Ga(P)s F6(g)q Ga(;)15 b(y)s F4(\)\))675 1807 y FL(Or)775
+1771 y Gc(i)775 1831 y(R)832 1807 y F4(\()867 1795 y
+FX(h)895 1807 y Ga(a)943 1795 y FX(i)971 1807 y Ga(M)10
+b(;)15 b(c)p F4(\))-5 b F6(f)e Ga(c)27 b F4(:=)1403 1795
+y F9(\()1431 1807 y Ga(y)1479 1795 y F9(\))1506 1807
+y Ga(P)s F6(g)1646 1756 y F5(def)1653 1807 y F4(=)40
+b FL(Cut)p F4(\()1937 1795 y FX(h)1965 1807 y Ga(c)2004
+1795 y FX(i)2031 1807 y FL(Or)2131 1771 y Gc(i)2131 1831
+y(R)2188 1807 y F4(\()2223 1795 y FX(h)2251 1807 y Ga(a)2299
+1795 y FX(i)2327 1807 y Ga(M)5 b F6(f)-7 b Ga(c)26 b
+F4(:=)2644 1795 y F9(\()2672 1807 y Ga(y)2720 1795 y
+F9(\))2747 1807 y Ga(P)s F6(g)q Ga(;)15 b(c)p F4(\))q
+Ga(;)3009 1795 y F9(\()3037 1807 y Ga(y)3085 1795 y F9(\))3112
+1807 y Ga(P)e F4(\))445 1977 y FL(Or)545 1991 y Gc(L)597
+1977 y F4(\()632 1965 y F9(\()660 1977 y Ga(x)712 1965
+y F9(\))739 1977 y Ga(M)d(;)877 1965 y F9(\()905 1977
+y Ga(y)953 1965 y F9(\))980 1977 y Ga(N)g(;)15 b(z)t
+F4(\))-5 b F6(f)e Ga(z)31 b F4(:=)1412 1965 y FX(h)1439
+1977 y Ga(c)1478 1965 y FX(i)1506 1977 y Ga(P)s F6(g)1646
+1925 y F5(def)1653 1977 y F4(=)40 b FL(Cut)p F4(\()1937
+1965 y FX(h)1965 1977 y Ga(c)2004 1965 y FX(i)2031 1977
+y Ga(P)13 b(;)2142 1965 y F9(\()2170 1977 y Ga(z)2216
+1965 y F9(\))2244 1977 y FL(Or)2343 1991 y Gc(L)2395
+1977 y F4(\()2430 1965 y F9(\()2458 1977 y Ga(x)2510
+1965 y F9(\))2537 1977 y Ga(M)5 b F6(f)-7 b Ga(z)31 b
+F4(:=)2862 1965 y FX(h)2889 1977 y Ga(c)2928 1965 y FX(i)2956
+1977 y Ga(P)t F6(g)p Ga(;)3103 1965 y F9(\()3131 1977
+y Ga(y)3179 1965 y F9(\))3206 1977 y Ga(N)5 b F6(f)-7
+b Ga(z)30 b F4(:=)3516 1965 y FX(h)3543 1977 y Ga(c)3582
+1965 y FX(i)3610 1977 y Ga(P)s F6(g)q Ga(;)15 b(z)t F4(\))q(\))524
+2146 y FL(Imp)668 2168 y Gc(R)726 2146 y F4(\()761 2134
+y F9(\()789 2146 y Ga(x)841 2134 y F9(\))p FX(h)896 2146
+y Ga(a)944 2134 y FX(i)971 2146 y Ga(M)10 b(;)15 b(b)p
+F4(\))-5 b F6(f)e Ga(b)27 b F4(:=)1403 2134 y F9(\()1431
+2146 y Ga(y)1479 2134 y F9(\))1506 2146 y Ga(P)s F6(g)1646
+2095 y F5(def)1653 2146 y F4(=)40 b FL(Cut)p F4(\()1937
+2134 y FX(h)1965 2146 y Ga(b)2004 2134 y FX(i)2031 2146
+y FL(Imp)2175 2168 y Gc(R)2233 2146 y F4(\()2268 2134
+y F9(\()2296 2146 y Ga(x)2348 2134 y F9(\))p FX(h)2403
+2146 y Ga(a)2451 2134 y FX(i)2478 2146 y Ga(M)5 b F6(f)-7
+b Ga(b)26 b F4(:=)2796 2134 y F9(\()2823 2146 y Ga(y)2871
+2134 y F9(\))2898 2146 y Ga(P)t F6(g)p Ga(;)15 b(b)p
+F4(\))q Ga(;)3160 2134 y F9(\()3188 2146 y Ga(y)3236
+2134 y F9(\))3263 2146 y Ga(P)e F4(\))397 2316 y FL(Imp)541
+2337 y Gc(L)594 2316 y F4(\()629 2304 y FX(h)656 2316
+y Ga(a)704 2304 y FX(i)732 2316 y Ga(M)d(;)870 2304 y
+F9(\()898 2316 y Ga(x)950 2304 y F9(\))977 2316 y Ga(N)g(;)15
+b(y)s F4(\))-5 b F6(f)e Ga(y)29 b F4(:=)1412 2304 y FX(h)1439
+2316 y Ga(c)1478 2304 y FX(i)1506 2316 y Ga(P)s F6(g)1646
+2264 y F5(def)1653 2316 y F4(=)40 b FL(Cut)p F4(\()1937
+2304 y FX(h)1965 2316 y Ga(c)2004 2304 y FX(i)2031 2316
+y Ga(P)13 b(;)2142 2304 y F9(\()2170 2316 y Ga(y)2218
+2304 y F9(\))2245 2316 y FL(Imp)2390 2337 y Gc(L)2442
+2316 y F4(\()2477 2304 y FX(h)2505 2316 y Ga(a)2553 2304
+y FX(i)2580 2316 y Ga(M)5 b F6(f)-7 b Ga(y)29 b F4(:=)2906
+2304 y FX(h)2934 2316 y Ga(c)2973 2304 y FX(i)3001 2316
+y Ga(P)s F6(g)q Ga(;)3148 2304 y F9(\()3175 2316 y Ga(x)3227
+2304 y F9(\))3255 2316 y Ga(N)5 b F6(f)-7 b Ga(y)29 b
+F4(:=)3566 2304 y FX(h)3593 2316 y Ga(c)3632 2304 y FX(i)3660
+2316 y Ga(P)t F6(g)p Ga(;)15 b(y)s F4(\))q(\))314 2532
+y FL(Cut)o F4(\()486 2520 y FX(h)514 2532 y Ga(a)562
+2520 y FX(i)590 2532 y FL(Ax)o F4(\()p Ga(x;)g(a)p F4(\))q
+Ga(;)943 2520 y F9(\()971 2532 y Ga(y)1019 2520 y F9(\))1046
+2532 y Ga(M)c F4(\))-5 b F6(f)e Ga(x)26 b F4(:=)1412
+2520 y FX(h)1439 2532 y Ga(b)1478 2520 y FX(i)1506 2532
+y Ga(P)s F6(g)1646 2481 y F5(def)1653 2532 y F4(=)40
+b FL(Cut)p F4(\()1937 2520 y FX(h)1965 2532 y Ga(b)2004
+2520 y FX(i)2031 2532 y Ga(P)13 b(;)2142 2520 y F9(\()2170
+2532 y Ga(y)2218 2520 y F9(\))2245 2532 y Ga(M)5 b F6(f)-7
+b Ga(x)26 b F4(:=)2575 2520 y FX(h)2603 2532 y Ga(b)2642
+2520 y FX(i)2669 2532 y Ga(P)t F6(g)p F4(\))323 2702
+y FL(Cut)o F4(\()495 2690 y FX(h)523 2702 y Ga(a)571
+2690 y FX(i)599 2702 y Ga(M)10 b(;)737 2690 y F9(\()765
+2702 y Ga(x)817 2690 y F9(\))844 2702 y FL(Ax)p F4(\()p
+Ga(x;)15 b(b)p F4(\))q(\))-5 b F6(f)e Ga(b)26 b F4(:=)1403
+2690 y F9(\()1431 2702 y Ga(y)1479 2690 y F9(\))1506
+2702 y Ga(P)s F6(g)1646 2650 y F5(def)1653 2702 y F4(=)40
+b FL(Cut)p F4(\()1937 2690 y FX(h)1965 2702 y Ga(a)2013
+2690 y FX(i)2040 2702 y Ga(M)5 b F6(f)-7 b Ga(b)26 b
+F4(:=)2357 2690 y F9(\()2385 2702 y Ga(y)2433 2690 y
+F9(\))2460 2702 y Ga(P)t F6(g)p Ga(;)2607 2690 y F9(\()2635
+2702 y Ga(y)2683 2690 y F9(\))2710 2702 y Ga(P)13 b F4(\))330
+2942 y Gb(Otherwise:)1153 3111 y FL(Ax)p F4(\()p Ga(x;)i(a)p
+F4(\))p F6(f)p Ga(\033)s F6(g)1646 3060 y F5(def)1653
+3111 y F4(=)40 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))827
+3281 y FL(Cut)p F4(\()1000 3269 y FX(h)1028 3281 y Ga(a)1076
+3269 y FX(i)1103 3281 y Ga(M)10 b(;)1241 3269 y F9(\()1269
+3281 y Ga(x)1321 3269 y F9(\))1348 3281 y Ga(N)g F4(\))p
+F6(f)p Ga(\033)s F6(g)1646 3229 y F5(def)1653 3281 y
+F4(=)40 b FL(Cut)p F4(\()1937 3269 y FX(h)1965 3281 y
+Ga(a)2013 3269 y FX(i)2065 3281 y Ga(M)10 b F6(f)p Ga(\033)s
+F6(g)r Ga(;)2350 3269 y F9(\()2377 3281 y Ga(x)2429 3269
+y F9(\))2482 3281 y Ga(N)g F6(f)p Ga(\033)s F6(g)q F4(\))902
+3450 y FL(Not)1045 3464 y Gc(R)1103 3450 y F4(\()1138
+3438 y F9(\()1165 3450 y Ga(x)1217 3438 y F9(\))1245
+3450 y Ga(M)g(;)15 b(a)p F4(\))p F6(f)p Ga(\033)s F6(g)1646
+3398 y F5(def)1653 3450 y F4(=)40 b FL(Not)1907 3464
+y Gc(R)1964 3450 y F4(\()1999 3438 y F9(\()2027 3450
+y Ga(x)2079 3438 y F9(\))2132 3450 y Ga(M)10 b F6(f)p
+Ga(\033)s F6(g)q Ga(;)15 b(a)p F4(\))908 3619 y FL(Not)1051
+3633 y Gc(L)1103 3619 y F4(\()1138 3607 y FX(h)1165 3619
+y Ga(a)1213 3607 y FX(i)1241 3619 y Ga(M)10 b(;)15 b(x)p
+F4(\))p F6(f)p Ga(\033)s F6(g)1646 3568 y F5(def)1653
+3619 y F4(=)40 b FL(Not)1907 3633 y Gc(L)1959 3619 y
+F4(\()1994 3607 y FX(h)2021 3619 y Ga(a)2069 3607 y FX(i)2122
+3619 y Ga(M)10 b F6(f)p Ga(\033)s F6(g)q Ga(;)15 b(x)p
+F4(\))686 3789 y FL(And)840 3803 y Gc(R)898 3789 y F4(\()933
+3777 y FX(h)961 3789 y Ga(a)1009 3777 y FX(i)1036 3789
+y Ga(M)10 b(;)1174 3777 y FX(h)1202 3789 y Ga(b)1241
+3777 y FX(i)1269 3789 y Ga(N)g(;)15 b(c)p F4(\))p F6(f)p
+Ga(\033)s F6(g)1646 3737 y F5(def)1653 3789 y F4(=)40
+b FL(And)1918 3803 y Gc(R)1976 3789 y F4(\()2011 3777
+y FX(h)2039 3789 y Ga(a)2087 3777 y FX(i)2140 3789 y
+Ga(M)10 b F6(f)p Ga(\033)s F6(g)q Ga(;)2424 3777 y FX(h)2452
+3789 y Ga(b)2491 3777 y FX(i)2543 3789 y Ga(N)g F6(f)p
+Ga(\033)s F6(g)r Ga(;)15 b(c)p F4(\))896 3958 y FL(And)1051
+3921 y Gc(i)1051 3981 y(L)1103 3958 y F4(\()1138 3946
+y F9(\()1166 3958 y Ga(x)1218 3946 y F9(\))1245 3958
+y Ga(M)10 b(;)15 b(y)s F4(\))p F6(f)p Ga(\033)s F6(g)1646
+3906 y F5(def)1653 3958 y F4(=)40 b FL(And)1918 3921
+y Gc(i)1918 3981 y(L)1971 3958 y F4(\()2006 3946 y F9(\()2033
+3958 y Ga(x)2085 3946 y F9(\))2138 3958 y Ga(M)10 b F6(f)p
+Ga(\033)s F6(g)q Ga(;)15 b(y)s F4(\))959 4127 y FL(Or)1058
+4091 y Gc(i)1058 4150 y(R)1116 4127 y F4(\()1151 4115
+y FX(h)1178 4127 y Ga(a)1226 4115 y FX(i)1254 4127 y
+Ga(M)10 b(;)15 b(b)p F4(\))p F6(f)p Ga(\033)s F6(g)1646
+4076 y F5(def)1653 4127 y F4(=)40 b FL(Or)1863 4091 y
+Gc(i)1863 4150 y(R)1921 4127 y F4(\()1956 4115 y FX(h)1984
+4127 y Ga(a)2032 4115 y FX(i)2084 4127 y Ga(M)10 b F6(f)p
+Ga(\033)s F6(g)r Ga(;)15 b(b)p F4(\))727 4297 y FL(Or)826
+4311 y Gc(L)878 4297 y F4(\()913 4285 y F9(\()941 4297
+y Ga(x)993 4285 y F9(\))1021 4297 y Ga(M)10 b(;)1159
+4285 y F9(\()1187 4297 y Ga(y)1235 4285 y F9(\))1262
+4297 y Ga(N)g(;)15 b(z)t F4(\))p F6(f)p Ga(\033)s F6(g)1646
+4245 y F5(def)1653 4297 y F4(=)40 b FL(Or)1863 4311 y
+Gc(L)1915 4297 y F4(\()1950 4285 y F9(\()1978 4297 y
+Ga(x)2030 4285 y F9(\))2083 4297 y Ga(M)10 b F6(f)p Ga(\033)s
+F6(g)q Ga(;)2367 4285 y F9(\()2395 4297 y Ga(y)2443 4285
+y F9(\))2495 4297 y Ga(N)g F6(f)p Ga(\033)s F6(g)q Ga(;)15
+b(z)t F4(\))807 4466 y FL(Imp)951 4488 y Gc(R)1009 4466
+y F4(\()1044 4454 y F9(\()1072 4466 y Ga(x)1124 4454
+y F9(\))p FX(h)1178 4466 y Ga(a)1226 4454 y FX(i)1254
+4466 y Ga(M)10 b(;)15 b(b)p F4(\))p F6(f)p Ga(\033)s
+F6(g)1646 4415 y F5(def)1653 4466 y F4(=)40 b FL(Imp)1908
+4488 y Gc(R)1966 4466 y F4(\()2001 4454 y F9(\()2029
+4466 y Ga(x)2081 4454 y F9(\))p FX(h)2136 4466 y Ga(a)2184
+4454 y FX(i)2236 4466 y Ga(M)10 b F6(f)p Ga(\033)s F6(g)r
+Ga(;)15 b(b)p F4(\))680 4635 y FL(Imp)824 4657 y Gc(L)877
+4635 y F4(\()912 4623 y FX(h)939 4635 y Ga(a)987 4623
+y FX(i)1015 4635 y Ga(M)10 b(;)1153 4623 y F9(\()1181
+4635 y Ga(x)1233 4623 y F9(\))1260 4635 y Ga(N)g(;)15
+b(y)s F4(\))p F6(f)p Ga(\033)s F6(g)1646 4584 y F5(def)1653
+4635 y F4(=)40 b FL(Imp)1908 4657 y Gc(L)1960 4635 y
+F4(\()1995 4623 y FX(h)2023 4635 y Ga(a)2071 4623 y FX(i)2124
+4635 y Ga(M)10 b F6(f)p Ga(\033)s F6(g)q Ga(;)2408 4623
+y F9(\()2436 4635 y Ga(x)2488 4623 y F9(\))2541 4635
+y Ga(N)g F6(f)p Ga(\033)s F6(g)q Ga(;)15 b(y)s F4(\))p
+3965 4767 V 277 4770 3691 4 v Black 1157 4923 a Gg(Figure)24
+b(2.6:)29 b(Auxiliary)c(proof)g(substitution.)p Black
+Black Black Black eop end
+%%Page: 34 46
+TeXDict begin 34 45 bop Black -144 51 a Gb(34)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(outline)k(ho)n(w)d(we)f
+(shall)j(proceed)g(in)f(our)g(proof)g(of)g(strong)h(normalisation)h
+(for)e F4(\()p FY(T)t Ga(;)3017 280 y Gc(aux)2997 317
+y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(.)p Black Black
+Black Black Black 597 536 a(\(1\))p Black 47 w(De\002ne)20
+b(the)g(sets)h(of)g(candidates)i(o)o(v)o(er)e(types)g(using)h(a)e
+(\002x)o(ed)g(point)i(construction)749 648 y(\(De\002nition)i(2.3.4\).)
+p Black 597 791 a(\(2\))p Black 47 w(Pro)o(v)o(e)f(that)h(candidates)i
+(are)e(closed)h(under)g(reduction)h(\(Lemma)c(2.3.12\).)p
+Black 597 933 a(\(3\))p Black 47 w(Sho)n(w)35 b(that)i(a)f(named)h(or)f
+(co-named)i(term)e(in)h(a)f(candidate)i(implies)g(strong)749
+1046 y(normalisation)26 b(for)e(the)g(corresponding)k(term)23
+b(\(Lemma)g(2.3.13\).)p Black 597 1189 a(\(4\))p Black
+47 w(Extend)40 b(the)g(notion)i(of)e(safe)g(substitution)k(to)39
+b(simultaneous)k(substitutions)749 1302 y(\(De\002nition)24
+b(2.3.15\).)p Black 597 1444 a(\(5\))p Black 47 w(Pro)o(v)o(e)f(that)h
+(all)f(terms)h(are)g(strongly)i(normalising)g(\(Theorem)e(2.3.19\).)321
+1662 y(Finally)-6 b(,)32 b(we)d(shall)i(sho)n(w)e(that)i(e)n(v)o(ery)
+1604 1625 y Gc(cut)1573 1662 y F6(\000)-31 b(\000)f(!)p
+Gg(-reduction)33 b(maps)d(onto)g(a)f(series)i(of)2987
+1625 y Gc(aux)2967 1662 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)321
+1775 y(and)24 b(thus)h(pro)o(v)o(e)f(that)g F4(\()p FY(T)t
+Ga(;)1199 1738 y Gc(cut)1168 1775 y F6(\000)-31 b(\000)g(!)p
+F4(\))23 b Gg(is)g(strongly)j(normalising,)g(too.)462
+1905 y(First,)40 b(we)35 b(shall)j(de\002ne)f(for)f(e)n(v)o(ery)h(type)
+g(tw)o(o)f(candidates,)43 b(written)37 b(as)f FB(J)p
+F6(h)p Ga(B)5 b F6(i)p FB(K)35 b Gg(and)i FB(J)p F4(\()p
+Ga(B)5 b F4(\))p FB(K)p Gg(.)321 2018 y(These)40 b(candidates)j(are)d
+(subsets)h(of)e(named)i(or)e(co-named)i(terms;)49 b(i.e.,)42
+b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)55 b F6(\022)f FY(T)3264
+2036 y FX(h)p Gc(B)s FX(i)3415 2018 y Gg(and)321 2130
+y FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)44 b F6(\022)f
+FY(T)754 2149 y F9(\()p Gc(B)s F9(\))866 2130 y Gg(.)58
+b(Whereas)35 b(traditional)h(notions)f(of)f(candidates)i(are)e
+(de\002ned)g(by)g(a)f(simple)h(in-)321 2243 y(duction)h(o)o(v)o(er)e
+(types,)j(our)d(candidates)i(are)e(inducti)n(v)o(ely)j(de\002ned)d(o)o
+(v)o(er)g(types,)j(b)n(ut)d(also)h(include)321 2356 y(\002x)o(ed)21
+b(point)i(operations.)31 b(Before)22 b(we)f(gi)n(v)o(e)g(the)h
+(de\002nition)h(of)f(the)f(candidates,)k(we)c(shall)h(introduce)321
+2469 y(some)30 b(set)f(operators,)k(which)c(\002x)g(certain)i(closure)g
+(properties)g(for)f(the)f(candidates.)49 b(Each)29 b(of)g(the)321
+2582 y(operators)i(is)e(de\002ned)g(o)o(v)o(er)g(sets)g(of)g
+(\(co-\)named)h(terms)f(ha)n(ving)i(a)d(speci\002c)h(term)g
+(constructor)j(at)321 2695 y(the)24 b(top-le)n(v)o(el.)p
+Black 321 2883 a Gb(De\002nition)f(2.3.3)g Gg(\(Set)h(Operators\))p
+Gb(:)p Black Black Black 745 3192 a FW(A)t(X)t(I)t(O)t(M)t(S)1055
+3210 y F9(\()p Gc(B)s F9(\))1256 3140 y F5(def)1263 3192
+y F4(=)1426 3091 y FK(n)1537 3180 y F9(\()1564 3192 y
+Ga(x)r F4(:)r Ga(B)1719 3180 y F9(\))1747 3192 y FL(Ax)o
+F4(\()p Ga(y)s(;)15 b(b)p F4(\))2120 3087 y FK(\014)2120
+3142 y(\014)2120 3196 y(\014)2224 3180 y F9(\()2251 3192
+y Ga(x)r F4(:)r Ga(B)2406 3180 y F9(\))2433 3192 y FL(Ax)p
+F4(\()p Ga(y)s(;)g(b)p F4(\))26 b F6(2)f FY(T)2902 3210
+y F9(\()p Gc(B)s F9(\))3064 3091 y FK(o)745 3426 y FW(A)t(X)t(I)t(O)t
+(M)t(S)1055 3445 y FX(h)p Gc(B)s FX(i)1256 3375 y F5(def)1263
+3426 y F4(=)1426 3325 y FK(n)1537 3414 y FX(h)1564 3426
+y Ga(a)r F4(:)r Ga(B)1715 3414 y FX(i)1743 3426 y FL(Ax)o
+F4(\()p Ga(y)s(;)15 b(b)p F4(\))2116 3322 y FK(\014)2116
+3376 y(\014)2116 3431 y(\014)2220 3414 y FX(h)2247 3426
+y Ga(a)r F4(:)r Ga(B)2398 3414 y FX(i)2426 3426 y FL(Ax)o
+F4(\()p Ga(y)s(;)g(b)p F4(\))26 b F6(2)f FY(T)2894 3445
+y FX(h)p Gc(B)s FX(i)3057 3325 y FK(o)321 3639 y Gg(Note)37
+b(that)h Ga(x)e Gg(can)h(be)g(equal)h(to)f Ga(y)s Gg(,)i(and)e
+Ga(a)g Gg(to)g Ga(b)p Gg(.)68 b(Figure)37 b(2.7)g(gi)n(v)o(es)g(the)h
+(set)f(operators)i(which)321 3752 y(correspond)27 b(to)c(the)h(other)h
+(term)e(constructors.)32 b(Additionally)27 b(we)22 b(ha)n(v)o(e)p
+Black Black 330 3915 a FW(B)t(I)t(N)t(D)t(I)t(N)t(G)665
+3933 y F9(\()p Gc(B)s F9(\))782 3915 y F4(\()p Ga(X)7
+b F4(\))1019 3863 y F5(def)1026 3915 y F4(=)1189 3814
+y FK(n)1274 3903 y F9(\()1302 3915 y Ga(x)r F4(:)r Ga(B)1457
+3903 y F9(\))1484 3915 y Ga(M)1607 3810 y FK(\014)1607
+3865 y(\014)1607 3919 y(\014)1663 3915 y Gg(for)24 b(all)1908
+3903 y FX(h)1935 3915 y Ga(a)r F4(:)r Ga(B)2086 3903
+y FX(i)2114 3915 y Ga(P)38 b F6(2)25 b Ga(X)d(:)k(M)5
+b F6(f)-7 b Ga(x)26 b F4(:=)2774 3903 y FX(h)2801 3915
+y Ga(a)r F4(:)r Ga(B)2952 3903 y FX(i)2980 3915 y Ga(P)s
+F6(g)g(2)f Ga(S)5 b(N)3332 3929 y Gc(aux)3479 3814 y
+FK(o)339 4149 y FW(B)t(I)t(N)t(D)t(I)t(N)t(G)674 4168
+y FX(h)p Gc(B)s FX(i)791 4149 y F4(\()p Ga(Y)20 b F4(\))1019
+4098 y F5(def)1026 4149 y F4(=)1189 4048 y FK(n)1274
+4137 y FX(h)1302 4149 y Ga(a)r F4(:)r Ga(B)1453 4137
+y FX(i)1480 4149 y Ga(M)1604 4045 y FK(\014)1604 4099
+y(\014)1604 4154 y(\014)1659 4149 y Gg(for)k(all)1904
+4137 y F9(\()1931 4149 y Ga(x)r F4(:)r Ga(B)2086 4137
+y F9(\))2114 4149 y Ga(P)38 b F6(2)25 b Ga(Y)35 b(:)25
+b(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2761 4137 y F9(\()2788
+4149 y Ga(x)r F4(:)r Ga(B)2943 4137 y F9(\))2970 4149
+y Ga(P)t F6(g)g(2)e Ga(S)5 b(N)3322 4163 y Gc(aux)3470
+4048 y FK(o)462 4420 y Gg(The)33 b(set)f(operators)37
+b FW(A)t(X)t(I)t(O)t(M)t(S)f Gg(and)d(the)g(set)g(operators)i(gi)n(v)o
+(en)e(in)f(Figure)i(2.7)e(correspond)k(to)321 4532 y(the)d(properties)i
+(we)c(need)j(to)e(pro)o(v)o(e)g(that)h(a)f(logical)i(cut)f(is)f
+(strongly)i(normalising;)42 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)35
+b Gg(is)321 4645 y(suf)n(\002cient)h(to)f(sho)n(w)f(strong)i
+(normalisation)i(of)c(a)g(commuting)i(cut.)62 b(F)o(or)34
+b(the)h(de\002nition)h(of)e(the)321 4758 y(candidates)d(we)c(use)h
+(\002x)o(ed)g(points)h(of)f(increasing)i(set)e(operators.)44
+b(A)27 b(set)h(operator)l(,)j Ga(op)p Gg(,)d(is)f(said)i(to)321
+4871 y(be:)p Black Black 774 5065 a(increasing,)118 b(if)23
+b(and)h(only)h(if)114 b Ga(S)30 b F6(\022)25 b Ga(S)2114
+5032 y FX(0)2188 5065 y F6(\))50 b Ga(op)p F4(\()p Ga(S)5
+b F4(\))26 b F6(\022)f Ga(op)p F4(\()p Ga(S)2858 5032
+y FX(0)2881 5065 y F4(\))p Gg(,)e(and)774 5213 y(decreasing,)103
+b(if)23 b(and)h(only)h(if)114 b Ga(S)30 b F6(\022)25
+b Ga(S)2114 5180 y FX(0)2188 5213 y F6(\))50 b Ga(op)p
+F4(\()p Ga(S)5 b F4(\))26 b F6(\023)f Ga(op)p F4(\()p
+Ga(S)2858 5180 y FX(0)2881 5213 y F4(\))p Gg(.)p Black
+Black eop end
+%%Page: 35 47
+TeXDict begin 35 46 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
+n(ong)h(Normalisation)2290 b(35)p 277 88 3691 4 v Black
+Black 277 492 V 277 4876 4 4384 v Black Black 708 834
+a F5(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)1075 849 y FQ(h:)p
+FS(B)s FQ(i)1231 834 y FG(\()p FU(X)7 b FG(\))1471 787
+y F5(def)1481 834 y FG(=)1655 664 y FI(8)1655 738 y(<)1655
+888 y(:)1771 721 y FQ(h)1798 733 y FU(a)r FG(:)r FT(:)p
+FU(B)1991 721 y FQ(i)2019 733 y FF(Not)2149 745 y FS(R)2204
+733 y FG(\()2236 721 y FJ(\()2262 733 y FU(x)r FG(:)r
+FU(B)2403 721 y FJ(\))2430 733 y FU(M)i(;)14 b(a)p FG(\))23
+b FT(j)1960 833 y FF(Not)2090 845 y FS(R)2144 833 y FG(\()2176
+821 y FJ(\()2203 833 y FU(x)r FG(:)r FU(B)2344 821 y
+FJ(\))2371 833 y FU(M)9 b(;)14 b(a)p FG(\))23 b Gd(freshly)c
+(introduces)i FU(a;)1960 920 y FJ(\()1986 932 y FU(x)r
+FG(:)r FU(B)2127 920 y FJ(\))2154 932 y FU(M)32 b FT(2)23
+b FU(X)3326 664 y FI(9)3326 738 y(=)3326 888 y(;)759
+1279 y F5(N)t(O)q(T)t(L)t(E)t(F)t(T)1079 1294 y FJ(\()p
+FQ(:)p FS(B)s FJ(\))1231 1279 y FG(\()p FU(X)7 b FG(\))1471
+1232 y F5(def)1481 1279 y FG(=)1655 1109 y FI(8)1655
+1184 y(<)1655 1333 y(:)1771 1167 y FJ(\()1797 1179 y
+FU(x)r FG(:)r FT(:)p FU(B)1993 1167 y FJ(\))2020 1179
+y FF(Not)2151 1191 y FS(L)2200 1179 y FG(\()2232 1167
+y FQ(h)2260 1179 y FU(a)r FG(:)r FU(B)2398 1167 y FQ(i)2426
+1179 y FU(M)h(;)14 b(x)p FG(\))24 b FT(j)1960 1279 y
+FF(Not)2090 1291 y FS(L)2140 1279 y FG(\()2172 1267 y
+FQ(h)2199 1279 y FU(a)r FG(:)r FU(B)2337 1267 y FQ(i)2365
+1279 y FU(M)8 b(;)14 b(x)p FG(\))24 b Gd(freshly)19 b(introduces)i
+FU(x;)1960 1366 y FQ(h)1987 1378 y FU(a)r FG(:)r FU(B)2125
+1366 y FQ(i)2152 1378 y FU(M)32 b FT(2)23 b FU(X)3326
+1109 y FI(9)3326 1184 y(=)3326 1333 y(;)548 1775 y F5(A)t(N)t(D)t(R)t
+(I)t(G)t(H)t(T)925 1790 y FQ(h)p FS(B)s FQ(^)p FS(C)t
+FQ(i)1132 1775 y FG(\()p FU(X)r(;)14 b(Y)19 b FG(\))1471
+1728 y F5(def)1481 1775 y FG(=)1655 1555 y FI(8)1655
+1630 y(>)1655 1655 y(>)1655 1680 y(<)1655 1829 y(>)1655
+1854 y(>)1655 1879 y(:)1771 1613 y FQ(h)1798 1625 y FU(c)r
+FG(:)r FU(B)t FT(^)q FU(C)2049 1613 y FQ(i)2076 1625
+y FF(And)2217 1637 y FS(R)2272 1625 y FG(\()2304 1613
+y FQ(h)2331 1625 y FU(a)r FG(:)r FU(B)2469 1613 y FQ(i)2497
+1625 y FU(M)8 b(;)2623 1613 y FQ(h)2650 1625 y FU(b)r
+FG(:)r FU(C)2778 1613 y FQ(i)2806 1625 y FU(N)h(;)14
+b(c)p FG(\))23 b FT(j)1960 1724 y FF(And)2101 1736 y
+FS(R)2155 1724 y FG(\()2187 1712 y FQ(h)2214 1724 y FU(a)r
+FG(:)r FU(B)2352 1712 y FQ(i)2380 1724 y FU(M)9 b(;)2507
+1712 y FQ(h)2534 1724 y FU(b)r FG(:)r FU(C)2662 1712
+y FQ(i)2689 1724 y FU(N)g(;)14 b(c)p FG(\))23 b Gd(freshly)d
+(introduces)h FU(c;)1960 1812 y FQ(h)1987 1824 y FU(a)r
+FG(:)r FU(B)2125 1812 y FQ(i)2152 1824 y FU(M)32 b FT(2)23
+b FU(X)r(;)1960 1912 y FQ(h)1987 1924 y FU(b)r FG(:)r
+FU(C)2115 1912 y FQ(i)2142 1924 y FU(N)32 b FT(2)24 b
+FU(Y)3614 1555 y FI(9)3614 1630 y(>)3614 1655 y(>)3614
+1680 y(=)3614 1829 y(>)3614 1854 y(>)3614 1879 y(;)636
+2276 y F5(A)t(N)t(D)t(L)t(E)t(F)t(T)966 2246 y FS(i)966
+2303 y FJ(\()p FS(B)1042 2311 y FP(1)1074 2303 y FQ(^)p
+FS(B)1169 2311 y FP(2)1201 2303 y FJ(\))1231 2276 y FG(\()p
+FU(X)7 b FG(\))1471 2229 y F5(def)1481 2276 y FG(=)1655
+2106 y FI(8)1655 2181 y(<)1655 2330 y(:)1771 2164 y FJ(\()1797
+2176 y FU(y)e FG(:)r FU(B)1931 2188 y FJ(1)1969 2176
+y FT(^)p FU(B)2087 2188 y FJ(2)2124 2164 y(\))2150 2176
+y FF(And)2291 2139 y FS(i)2291 2197 y(L)2341 2176 y FG(\()2373
+2164 y FJ(\()2399 2176 y FU(x)r FG(:)r FU(B)2536 2188
+y FS(i)2565 2164 y FJ(\))2591 2176 y FU(M)k(;)14 b(y)s
+FG(\))23 b FT(j)1960 2281 y FF(And)2101 2244 y FS(i)2101
+2302 y(L)2150 2281 y FG(\()2182 2269 y FJ(\()2209 2281
+y FU(x)r FG(:)r FU(B)2346 2293 y FS(i)2375 2269 y FJ(\))2401
+2281 y FU(M)8 b(;)14 b(y)s FG(\))23 b Gd(freshly)d(introduces)g
+FU(y)s(;)1960 2369 y FJ(\()1986 2381 y FU(x)r FG(:)r
+FU(B)2123 2393 y FS(i)2152 2369 y FJ(\))2178 2381 y FU(M)31
+b FT(2)24 b FU(X)3355 2106 y FI(9)3355 2181 y(=)3355
+2330 y(;)642 2734 y F5(O)t(R)t(R)t(I)t(G)t(H)t(T)963
+2704 y FS(i)963 2761 y FQ(h)p FS(B)1040 2769 y FP(1)1073
+2761 y FQ(_)p FS(B)1168 2769 y FP(2)1200 2761 y FQ(i)1231
+2734 y FG(\()p FU(X)7 b FG(\))1471 2687 y F5(def)1481
+2734 y FG(=)1655 2564 y FI(8)1655 2638 y(<)1655 2788
+y(:)1771 2621 y FQ(h)1798 2633 y FU(b)r FG(:)r FU(B)1924
+2645 y FJ(1)1961 2633 y FT(_)q FU(B)2080 2645 y FJ(2)2117
+2621 y FQ(i)2144 2633 y FF(Or)2234 2596 y FS(i)2234 2654
+y(R)2289 2633 y FG(\()2321 2621 y FQ(h)2348 2633 y FU(a)r
+FG(:)r FU(B)2482 2645 y FS(i)2511 2621 y FQ(i)2537 2633
+y FU(M)i(;)14 b(b)p FG(\))23 b FT(j)1960 2739 y FF(Or)2050
+2702 y FS(i)2050 2759 y(R)2105 2739 y FG(\()2137 2727
+y FQ(h)2164 2739 y FU(a)r FG(:)r FU(B)2298 2751 y FS(i)2326
+2727 y FQ(i)2353 2739 y FU(M)9 b(;)14 b(b)p FG(\))23
+b Gd(freshly)c(introduces)i FU(b;)1960 2827 y FQ(h)1987
+2839 y FU(a)r FG(:)r FU(B)2121 2851 y FS(i)2149 2827
+y FQ(i)2176 2839 y FU(M)32 b FT(2)23 b FU(X)3291 2564
+y FI(9)3291 2638 y(=)3291 2788 y(;)654 3235 y F5(O)t(R)t(L)t(E)t(F)t(T)
+928 3250 y FJ(\()p FS(B)s FQ(_)o FS(C)t FJ(\))1132 3235
+y FG(\()p FU(X)r(;)14 b(Y)19 b FG(\))1471 3188 y F5(def)1481
+3235 y FG(=)1655 3015 y FI(8)1655 3090 y(>)1655 3115
+y(>)1655 3140 y(<)1655 3289 y(>)1655 3314 y(>)1655 3339
+y(:)1771 3073 y FJ(\()1797 3085 y FU(z)6 b FG(:)r FU(B)t
+FT(_)p FU(C)2054 3073 y FJ(\))2081 3085 y FF(Or)2171
+3097 y FS(L)2221 3085 y FG(\()2253 3073 y FJ(\()2279
+3085 y FU(x)r FG(:)r FU(B)2420 3073 y FJ(\))2448 3085
+y FU(M)i(;)2574 3073 y FJ(\()2600 3085 y FU(y)d FG(:)r
+FU(C)2736 3073 y FJ(\))2763 3085 y FU(N)k(;)14 b(z)t
+FG(\))22 b FT(j)1960 3185 y FF(Or)2050 3197 y FS(L)2100
+3185 y FG(\()2132 3173 y FJ(\()2158 3185 y FU(x)r FG(:)r
+FU(B)2299 3173 y FJ(\))2327 3185 y FU(M)8 b(;)2453 3173
+y FJ(\()2479 3185 y FU(y)d FG(:)r FU(C)2615 3173 y FJ(\))2642
+3185 y FU(N)k(;)14 b(z)t FG(\))22 b Gd(freshly)e(introduces)h
+FU(z)t(;)1960 3272 y FJ(\()1986 3284 y FU(x)r FG(:)r
+FU(B)2127 3272 y FJ(\))2154 3284 y FU(M)32 b FT(2)23
+b FU(X)r(;)1960 3372 y FJ(\()1986 3384 y FU(y)5 b FG(:)r
+FU(C)2122 3372 y FJ(\))2148 3384 y FU(N)32 b FT(2)24
+b FU(Y)3579 3015 y FI(9)3579 3090 y(>)3579 3115 y(>)3579
+3140 y(=)3579 3289 y(>)3579 3314 y(>)3579 3339 y(;)566
+3880 y F5(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)917 3895 y FQ(h)p
+FS(B)s FQ(\033)q FS(C)t FQ(i)1132 3880 y FG(\()p FU(X)r(;)14
+b(Y)19 b FG(\))1471 3833 y F5(def)1481 3880 y FG(=)1655
+3561 y FI(8)1655 3635 y(>)1655 3660 y(>)1655 3685 y(>)1655
+3710 y(>)1655 3735 y(>)1655 3760 y(>)1655 3785 y(<)1655
+3934 y(>)1655 3959 y(>)1655 3984 y(>)1655 4009 y(>)1655
+4034 y(>)1655 4059 y(>)1655 4084 y(:)1771 3618 y FQ(h)1798
+3630 y FU(b)r FG(:)r FU(B)t FT(\033)p FU(C)2058 3618
+y FQ(i)2085 3630 y FF(Imp)2217 3651 y FS(R)2271 3630
+y FG(\()2303 3618 y FJ(\()2330 3630 y FU(x)r FG(:)r FU(B)2471
+3618 y FJ(\))q FQ(h)2525 3630 y FU(a)r FG(:)r FU(C)2661
+3618 y FQ(i)2689 3630 y FU(M)9 b(;)14 b(b)p FG(\))23
+b FT(j)1960 3730 y FF(Imp)2092 3750 y FS(R)2146 3730
+y FG(\()2178 3718 y FJ(\()2204 3730 y FU(x)r FG(:)r FU(B)2345
+3718 y FJ(\))r FQ(h)2400 3730 y FU(a)r FG(:)r FU(C)2536
+3718 y FQ(i)2564 3730 y FU(M)8 b(;)14 b(b)p FG(\))23
+b Gd(freshly)c(introduces)i FU(b;)1960 3830 y Gd(for)e(all)2183
+3818 y FJ(\()2209 3830 y FU(z)6 b FG(:)r FU(C)2344 3818
+y FJ(\))2371 3830 y FU(P)35 b FT(2)23 b FU(Y)42 b(:)2290
+3917 y FJ(\()2316 3929 y FU(x)r FG(:)r FU(B)2457 3917
+y FJ(\))2485 3929 y FU(M)t FT(f)-7 b FU(a)22 b FG(:=)2782
+3917 y FJ(\()2808 3929 y FU(z)2851 3917 y FJ(\))2876
+3929 y FU(P)r FT(g)h(2)g FU(X)r(;)1960 4029 y Gd(for)c(all)2183
+4017 y FQ(h)2210 4029 y FU(c)r FG(:)r FU(B)2340 4017
+y FQ(i)2368 4029 y FU(Q)k FT(2)g FU(X)30 b(:)2290 4117
+y FQ(h)2317 4129 y FU(a)r FG(:)r FU(C)2453 4117 y FQ(i)2481
+4129 y FU(M)t FT(f)-7 b FU(x)23 b FG(:=)2782 4117 y FQ(h)2809
+4129 y FU(c)2845 4117 y FQ(i)2871 4129 y FU(Q)-9 b FT(g)22
+b(2)i FU(Y)3502 3561 y FI(9)3502 3635 y(>)3502 3660 y(>)3502
+3685 y(>)3502 3710 y(>)3502 3735 y(>)3502 3760 y(>)3502
+3785 y(=)3502 3934 y(>)3502 3959 y(>)3502 3984 y(>)3502
+4009 y(>)3502 4034 y(>)3502 4059 y(>)3502 4084 y(;)616
+4525 y F5(I)t(M)t(P)t(L)t(E)t(F)t(T)920 4540 y FJ(\()p
+FS(B)s FQ(\033)p FS(C)t FJ(\))1132 4525 y FG(\()p FU(X)r(;)14
+b(Y)19 b FG(\))1471 4478 y F5(def)1481 4525 y FG(=)1655
+4305 y FI(8)1655 4380 y(>)1655 4405 y(>)1655 4430 y(<)1655
+4579 y(>)1655 4604 y(>)1655 4629 y(:)1771 4363 y FJ(\()1797
+4375 y FU(y)5 b FG(:)r FU(B)t FT(\033)p FU(C)2065 4363
+y FJ(\))2091 4375 y FF(Imp)2223 4395 y FS(L)2273 4375
+y FG(\()2305 4363 y FQ(h)2332 4375 y FU(a)r FG(:)r FU(B)2470
+4363 y FQ(i)2498 4375 y FU(M)j(;)2624 4363 y FJ(\()2650
+4375 y FU(x)r FG(:)r FU(C)2789 4363 y FJ(\))2817 4375
+y FU(N)h(;)14 b(y)s FG(\))23 b FT(j)1960 4475 y FF(Imp)2092
+4495 y FS(L)2141 4475 y FG(\()2173 4463 y FQ(h)2200 4475
+y FU(a)r FG(:)r FU(B)2338 4463 y FQ(i)2366 4475 y FU(M)9
+b(;)2493 4463 y FJ(\()2519 4475 y FU(x)r FG(:)r FU(C)2658
+4463 y FJ(\))2685 4475 y FU(N)g(;)14 b(y)s FG(\))23 b
+Gd(freshly)c(introduces)i FU(y)s(;)1960 4562 y FQ(h)1987
+4574 y FU(a)r FG(:)r FU(B)2125 4562 y FQ(i)2152 4574
+y FU(M)32 b FT(2)23 b FU(X)r(;)1960 4662 y FJ(\()1986
+4674 y FU(x)r FG(:)r FU(C)2125 4662 y FJ(\))2152 4674
+y FU(N)32 b FT(2)23 b FU(Y)3626 4305 y FI(9)3626 4380
+y(>)3626 4405 y(>)3626 4430 y(=)3626 4579 y(>)3626 4604
+y(>)3626 4629 y(;)p 3965 4876 V 277 4879 3691 4 v Black
+582 5032 a Gg(Figure)h(2.7:)29 b(De\002nition)c(of)e(the)h(set)g
+(operators)i(for)d(propositional)28 b(connecti)n(v)o(es.)p
+Black Black Black Black eop end
+%%Page: 36 48
+TeXDict begin 36 47 bop Black -144 51 a Gb(36)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(W)-7
+b(e)23 b(are)h(no)n(w)f(ready)h(to)g(de\002ne)g(the)f(set)h(operator)k
+FW(N)t(E)t(G)d Gg(and)f(the)g(candidates.)p Black 321
+505 a Gb(De\002nition)f(2.3.4)g Gg(\(Reducibility)k(Candidates\))p
+Gb(:)p Black 321 618 a Gg(The)c(mutually)i(recursi)n(v)o(e)h
+(de\002nition)f(o)o(v)o(er)e(types)i(for)h FW(N)t(E)t(G)f
+Gg(and)f(the)g(candidates)j(is)c(as)h(follo)n(ws:)321
+781 y FA(NEG)483 798 y Fz(h)p Fy(B)s Fz(i)615 781 y Gb(:)333
+974 y FW(N)t(E)t(G)493 993 y FX(h)p Gc(A)p FX(i)606 974
+y F4(\()p Ga(X)7 b F4(\))947 923 y F5(def)954 974 y F4(=)333
+1155 y FW(N)t(E)t(G)493 1173 y FX(h:)p Gc(C)e FX(i)655
+1155 y F4(\()p Ga(X)i F4(\))947 1103 y F5(def)954 1155
+y F4(=)333 1336 y FW(N)t(E)t(G)493 1354 y FX(h)p Gc(C)e
+FX(^)r Gc(D)r FX(i)715 1336 y F4(\()p Ga(X)i F4(\))947
+1284 y F5(def)954 1336 y F4(=)333 1516 y FW(N)t(E)t(G)493
+1535 y FX(h)p Gc(C)570 1544 y FV(1)607 1535 y FX(_)p
+Gc(C)704 1544 y FV(2)738 1535 y FX(i)770 1516 y F4(\()p
+Ga(X)g F4(\))947 1465 y F5(def)954 1516 y F4(=)333 1697
+y FW(N)t(E)t(G)493 1715 y FX(h)p Gc(C)e FX(\033)r Gc(D)r
+FX(i)723 1697 y F4(\()p Ga(X)i F4(\))947 1645 y F5(def)954
+1697 y F4(=)1073 863 y FK(9)1073 945 y(>)1073 972 y(>)1073
+999 y(>)1073 1027 y(>)1073 1054 y(>)1073 1081 y(>)1073
+1109 y(>)1073 1136 y(>)1073 1163 y(>)1073 1190 y(>)1073
+1218 y(=)1073 1381 y(>)1073 1409 y(>)1073 1436 y(>)1073
+1463 y(>)1073 1490 y(>)1073 1518 y(>)1073 1545 y(>)1073
+1572 y(>)1073 1599 y(>)1073 1627 y(>)1073 1654 y(;)1238
+1151 y FW(A)t(X)t(I)t(O)t(M)t(S)1548 1169 y FX(h)p Gc(B)s
+FX(i)1690 1151 y F6([)1329 1331 y FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1664
+1350 y FX(h)p Gc(B)s FX(i)1781 1331 y F4(\()p Ga(X)g
+F4(\))26 b F6([)2102 863 y FK(8)2102 945 y(>)2102 972
+y(>)2102 999 y(>)2102 1027 y(>)2102 1054 y(>)2102 1081
+y(>)2102 1109 y(>)2102 1136 y(>)2102 1163 y(>)2102 1190
+y(>)2102 1218 y(<)2102 1381 y(>)2102 1409 y(>)2102 1436
+y(>)2102 1463 y(>)2102 1490 y(>)2102 1518 y(>)2102 1545
+y(>)2102 1572 y(>)2102 1599 y(>)2102 1627 y(>)2102 1654
+y(:)2224 974 y F6(\000)2226 1155 y FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)
+2626 1173 y FX(h:)p Gc(C)5 b FX(i)2790 1155 y F4(\()p
+FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o F4(\))2226 1336
+y FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)2638 1354 y FX(h)p
+Gc(C)e FX(^)r Gc(D)r FX(i)2861 1336 y F4(\()p FB(J)p
+F6(h)p Ga(C)i F6(i)p FB(K)o Ga(;)15 b FB(J)p F6(h)p Ga(D)s
+F6(i)q FB(K)o F4(\))2224 1448 y FK(S)2300 1543 y Gc(i)p
+F9(=1)p Gc(;)p F9(2)2490 1516 y FW(O)t(R)t(R)t(I)t(G)t(H)t(T)2841
+1483 y Gc(i)2841 1548 y FX(h)p Gc(C)2918 1557 y FV(1)2955
+1548 y FX(_)p Gc(C)3052 1557 y FV(2)3087 1548 y FX(i)3119
+1516 y F4(\()p FB(J)p F6(h)p Ga(C)3291 1530 y Gc(i)3319
+1516 y F6(i)p FB(K)p F4(\))2226 1697 y FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t
+(T)2608 1715 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)2840
+1697 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)o F4(\))321 1918 y
+FA(NEG)483 1935 y Fx(\()p Fy(B)s Fx(\))615 1918 y Gb(:)333
+2111 y FW(N)t(E)t(G)493 2130 y F9(\()p Gc(A)p F9(\))606
+2111 y F4(\()p Ga(X)7 b F4(\))947 2060 y F5(def)954 2111
+y F4(=)333 2292 y FW(N)t(E)t(G)493 2310 y F9(\()p FX(:)p
+Gc(C)e F9(\))655 2292 y F4(\()p Ga(X)i F4(\))947 2240
+y F5(def)954 2292 y F4(=)333 2473 y FW(N)t(E)t(G)493
+2491 y F9(\()p Gc(C)570 2500 y FV(1)607 2491 y FX(^)p
+Gc(C)704 2500 y FV(2)738 2491 y F9(\))770 2473 y F4(\()p
+Ga(X)g F4(\))947 2421 y F5(def)954 2473 y F4(=)333 2653
+y FW(N)t(E)t(G)493 2672 y F9(\()p Gc(C)e FX(_)r Gc(D)r
+F9(\))715 2653 y F4(\()p Ga(X)i F4(\))947 2602 y F5(def)954
+2653 y F4(=)333 2834 y FW(N)t(E)t(G)493 2852 y F9(\()p
+Gc(C)e FX(\033)r Gc(D)r F9(\))723 2834 y F4(\()p Ga(X)i
+F4(\))947 2782 y F5(def)954 2834 y F4(=)1073 2000 y FK(9)1073
+2082 y(>)1073 2109 y(>)1073 2137 y(>)1073 2164 y(>)1073
+2191 y(>)1073 2218 y(>)1073 2246 y(>)1073 2273 y(>)1073
+2300 y(>)1073 2327 y(>)1073 2355 y(=)1073 2518 y(>)1073
+2546 y(>)1073 2573 y(>)1073 2600 y(>)1073 2627 y(>)1073
+2655 y(>)1073 2682 y(>)1073 2709 y(>)1073 2737 y(>)1073
+2764 y(>)1073 2791 y(;)1238 2288 y FW(A)t(X)t(I)t(O)t(M)t(S)1548
+2306 y F9(\()p Gc(B)s F9(\))1690 2288 y F6([)1329 2468
+y FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1664 2487 y F9(\()p Gc(B)s
+F9(\))1781 2468 y F4(\()p Ga(X)g F4(\))26 b F6([)2102
+2000 y FK(8)2102 2082 y(>)2102 2109 y(>)2102 2137 y(>)2102
+2164 y(>)2102 2191 y(>)2102 2218 y(>)2102 2246 y(>)2102
+2273 y(>)2102 2300 y(>)2102 2327 y(>)2102 2355 y(<)2102
+2518 y(>)2102 2546 y(>)2102 2573 y(>)2102 2600 y(>)2102
+2627 y(>)2102 2655 y(>)2102 2682 y(>)2102 2709 y(>)2102
+2737 y(>)2102 2764 y(>)2102 2791 y(:)2224 2111 y F6(\000)2226
+2292 y FW(N)t(O)q(T)t(L)t(E)t(F)t(T)2571 2310 y F9(\()p
+FX(:)p Gc(C)5 b F9(\))2737 2292 y F4(\()p FB(J)p F6(h)p
+Ga(C)i F6(i)p FB(K)o F4(\))2224 2404 y FK(S)2300 2500
+y Gc(i)p F9(=1)p Gc(;)p F9(2)2490 2473 y FW(A)t(N)t(D)t(L)t(E)t(F)t(T)
+2847 2440 y Gc(i)2847 2504 y F9(\()p Gc(C)2924 2513 y
+FV(1)2963 2504 y FX(^)p Gc(c)3041 2513 y FV(2)3075 2504
+y F9(\))3107 2473 y F4(\()p FB(J)p F4(\()p Ga(C)3279
+2487 y Gc(i)3307 2473 y F4(\))q FB(K)o F4(\))2226 2653
+y FW(O)t(R)t(L)t(E)t(F)t(T)2522 2672 y F9(\()p Gc(C)e
+FX(_)t Gc(D)r F9(\))2747 2653 y F4(\()p FB(J)p F4(\()p
+Ga(C)i F4(\))p FB(K)o Ga(;)15 b FB(J)p F4(\()p Ga(D)s
+F4(\))q FB(K)o F4(\))2226 2834 y FW(I)t(M)t(P)t(L)t(E)t(F)t(T)2553
+2852 y F9(\()p Gc(C)5 b FX(\033)h Gc(D)r F9(\))2787 2834
+y F4(\()p FB(J)p F6(h)p Ga(C)h F6(i)p FB(K)p Ga(;)15
+b FB(J)p F4(\()p Ga(D)s F4(\))q FB(K)o F4(\))321 3055
+y Gb(Candidates:)574 3228 y FB(J)p F4(\()p Ga(B)5 b F4(\))o
+FB(K)891 3176 y F5(def)898 3228 y F4(=)106 b Ga(X)1150
+3242 y F9(0)574 3368 y FB(J)p F6(h)p Ga(B)5 b F6(i)o
+FB(K)891 3316 y F5(def)898 3368 y F4(=)108 b FW(N)t(E)t(G)1237
+3386 y FX(h)p Gc(B)s FX(i)1354 3368 y F4(\()p FB(J)p
+F4(\()p Ga(B)5 b F4(\))p FB(K)o F4(\))321 3586 y Gg(where)24
+b Ga(X)641 3600 y F9(0)704 3586 y Gg(is)f(the)h(least)g(\002x)o(ed)f
+(point)i(of)e(the)h(operator)k FW(N)t(E)t(G)2266 3605
+y F9(\()p Gc(B)s F9(\))2382 3586 y F6(\016)40 b FW(N)t(E)t(G)2627
+3605 y FX(h)p Gc(B)s FX(i)2744 3586 y Gg(.)p Black 321
+3824 a Gb(Remark)28 b(2.3.5:)p Black 34 w Gg(The)h(least)g(\002x)o(ed)f
+(point)i(of)e(the)h(operator)k FW(N)t(E)t(G)2434 3842
+y F9(\()p Gc(B)s F9(\))2565 3824 y F6(\016)38 b FW(N)t(E)t(G)2808
+3842 y FX(h)p Gc(B)s FX(i)2952 3824 y Gg(is)28 b(de\002ned,)j(since)321
+3936 y(both)e FW(B)t(I)t(N)t(D)t(I)t(N)t(G)845 3955 y
+FX(h)p Gc(B)s FX(i)987 3936 y Gg(and)g FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
+1481 3955 y F9(\()p Gc(B)s F9(\))1623 3936 y Gg(are)d(decreasing)j
+(operators.)38 b(Consequently)-6 b(,)31 b FW(N)t(E)t(G)3273
+3955 y FX(h)p Gc(B)s FX(i)3415 3936 y Gg(and)323 4049
+y FW(N)t(E)t(G)483 4068 y F9(\()p Gc(B)s F9(\))622 4049
+y Gg(are)23 b(decreasing.)31 b(But)23 b(then)i FW(N)t(E)t(G)1688
+4068 y F9(\()p Gc(B)s F9(\))1805 4049 y F6(\016)17 b
+FW(N)t(E)t(G)2027 4068 y FX(h)p Gc(B)s FX(i)2166 4049
+y Gg(must)22 b(be)h(increasing,)j(and)d(the)g(least)h(\002x)o(ed)321
+4162 y(point)h Ga(X)606 4176 y F9(0)668 4162 y Gg(e)o(xists)g
+(according)h(to)e(T)-7 b(arski')i(s)24 b(\002x)o(ed)f(point)i(theorem)f
+([Da)n(v)o(e)o(y)g(and)g(Priestle)o(y,)g(1990].)321 4437
+y(T)-7 b(w)o(o)22 b(basic)j(properties)h(of)e(the)g(candidates)i(are)e
+(as)f(follo)n(ws.)p Black 321 4625 a Gb(Lemma)g(2.3.6:)p
+Black 34 w Gg(F)o(or)g(the)h(candidates)i(we)d(ha)n(v)o(e:)p
+Black Black 722 4776 a(\(i\))100 b FB(J)p F4(\()p Ga(B)5
+b F4(\))p FB(K)25 b F4(=)i FW(N)t(E)t(G)1408 4795 y F9(\()p
+Gc(B)s F9(\))1524 4776 y F4(\()p FB(J)p F6(h)p Ga(B)5
+b F6(i)q FB(K)o F4(\))355 b Gg(\(ii\))103 b FW(A)t(X)t(I)t(O)t(M)t(S)
+2690 4795 y F9(\()p Gc(B)s F9(\))2832 4776 y F6(\022)25
+b FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)907 4925 y(J)p
+F6(h)p Ga(B)g F6(i)p FB(K)25 b F4(=)i FW(N)t(E)t(G)1408
+4943 y FX(h)p Gc(B)s FX(i)1524 4925 y F4(\()p FB(J)p
+F4(\()p Ga(B)5 b F4(\))q FB(K)o F4(\))568 b FW(A)t(X)t(I)t(O)t(M)t(S)
+2690 4943 y FX(h)p Gc(B)s FX(i)2832 4925 y F6(\022)25
+b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)p Black 321 5125
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(\(i\))25 b(is)g(immediate)i(from)e
+(De\002nition)h(2.3.4,)g(and)g(\(ii\))f(holds)i(tri)n(vially)g(since)h
+FW(N)t(E)t(G)g Gg(is)d(closed)321 5238 y(under)i FW(A)t(X)t(I)t(O)t(M)t
+(S)r Gg(.)p 3480 5238 4 62 v 3484 5180 55 4 v 3484 5238
+V 3538 5238 4 62 v Black Black eop end
+%%Page: 37 49
+TeXDict begin 37 48 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
+n(ong)h(Normalisation)2290 b(37)p 277 88 3691 4 v Black
+277 294 a Gg(Let)21 b(us)g(analyse)i(some)e(of)g(the)h(moti)n(v)n
+(ations)h(behind)g(the)e(completely)j(symmetric)e(de\002nition)h(of)e
+(the)277 407 y(candidates.)p Black 277 594 a Gb(Remark)j(2.3.7:)p
+Black 34 w Gg(Gi)n(v)o(en)h(the)g(symmetry)h(stated)g(in)e(Lemma)g
+(2.3.6\(i\),)h(we)f(ha)n(v)o(e)i(a)e(simple)h(method)277
+707 y(to)f(check)h(whether)g(a)f(named)h(or)f(co-named)h(term)f
+(belongs)i(to)e(a)g(candidate.)33 b(F)o(or)23 b(e)o(xample,)i(tak)o(e)g
+(a)277 820 y(co-named)f(term)f(of)f(the)h(form)1275 808
+y FX(h)1302 820 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1586
+808 y FX(i)1613 820 y Ga(M)32 b Gg(for)22 b(which)h(we)f(wish)h(to)f
+(kno)n(w)h(whether)g(it)g(belongs)h(to)277 933 y FB(J)p
+F6(h)p Ga(B)5 b F6(^)o Ga(C)i F6(i)p FB(K)p Gg(.)38 b(Because)28
+b(of)f(the)g(equation)i FB(J)p F6(h)p Ga(B)5 b F6(^)o
+Ga(C)i F6(i)p FB(K)31 b F4(=)j FW(N)t(E)t(G)2241 952
+y FX(h)p Gc(B)s FX(^)r Gc(C)5 b FX(i)2459 933 y F4(\()p
+FB(J)p F4(\()p Ga(B)g F6(^)p Ga(C)i F4(\))p FB(K)o F4(\))27
+b Gg(it)f(is)h(suf)n(\002cient)h(to)277 1046 y(sho)n(w)f(that)655
+1034 y FX(h)682 1046 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p
+Ga(C)966 1034 y FX(i)993 1046 y Ga(M)35 b Gg(belongs)29
+b(to)f FW(N)t(E)t(G)1683 1064 y FX(h)p Gc(B)s FX(^)r
+Gc(C)5 b FX(i)1902 1046 y F4(\()p FB(J)p F4(\()p Ga(B)g
+F6(^)o Ga(C)i F4(\))p FB(K)p F4(\))p Gg(.)37 b(By)26
+b(de\002nition)i(of)h FW(N)t(E)t(G)3152 1064 y FX(h)p
+Gc(B)s FX(^)r Gc(C)5 b FX(i)3396 1046 y Gg(we)277 1159
+y(therefore)26 b(ha)n(v)o(e)e(to)g(sho)n(w)f(that)1284
+1147 y FX(h)1311 1159 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p
+Ga(C)1595 1147 y FX(i)1622 1159 y Ga(M)33 b Gg(is)23
+b(in)h(at)f(least)h(one)g(of)g(the)g(follo)n(wing)h(three)f(sets:)p
+Black Black 1234 1373 a(\(i\))102 b FW(A)t(X)t(I)t(O)t(M)t(S)1731
+1391 y FX(h)p Gc(B)s FX(^)s Gc(C)5 b FX(i)1208 1508 y
+Gg(\(ii\))103 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1833
+1527 y FX(h)p Gc(B)s FX(^)s Gc(C)5 b FX(i)2052 1508 y
+F4(\()p FB(J)p F6(h)p Ga(B)g F6(i)p FB(K)p Ga(;)15 b
+FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)p F4(\))1183 1644
+y Gg(\(iii\))103 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1756
+1662 y FX(h)p Gc(B)s FX(^)r Gc(C)5 b FX(i)1975 1644 y
+F4(\()p FB(J)p F4(\()p Ga(B)g F6(^)p Ga(C)i F4(\))o FB(K)p
+F4(\))277 1845 y Gg(This)32 b(means)g(that)901 1833 y
+FX(h)928 1845 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1212
+1833 y FX(i)1239 1845 y Ga(M)41 b Gg(must)32 b(satisfy)i(certain)f
+(conditions)i(depending)g(on)d(its)h(top-le)n(v)o(el)277
+1958 y(term)24 b(constructor)-5 b(.)35 b(F)o(or)23 b(e)o(xample,)j(in)e
+(\(i\))g(it)g(is)h(required)h(that)f(the)g(co-named)h(term)2982
+1946 y FX(h)3009 1958 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p
+Ga(C)3293 1946 y FX(i)3320 1958 y Ga(M)34 b Gg(is)277
+2071 y(of)29 b(the)g(form)725 2059 y FX(h)752 2071 y
+Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1036 2059 y FX(i)1063
+2071 y FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))q Gg(;)31
+b(in)e(\(ii\))g(of)g(the)g(form)2109 2059 y FX(h)2136
+2071 y Ga(a)r F4(:)r Ga(B)5 b F6(^)p Ga(C)2420 2059 y
+FX(i)2447 2071 y FL(And)2601 2085 y Gc(R)2659 2071 y
+F4(\()2694 2059 y FX(h)2722 2071 y Ga(b)2761 2059 y FX(i)2788
+2071 y Ga(S)g(;)2889 2059 y FX(h)2917 2071 y Ga(c)2956
+2059 y FX(i)2984 2071 y Ga(T)13 b(;)i(a)p F4(\))28 b
+Gg(where)i(it)277 2184 y(is)24 b(presupposed)k(that)998
+2172 y FX(h)1026 2184 y Ga(b)1065 2172 y FX(i)1092 2184
+y Ga(S)g Gg(and)1331 2172 y FX(h)1358 2184 y Ga(c)1397
+2172 y FX(i)1425 2184 y Ga(T)36 b Gg(belong)26 b(to)e
+FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)23 b Gg(and)h(to)g
+FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)p Gg(,)23 b(respecti)n(v)o(ely;)k
+(in)d(\(iii\))h(it)f(is)277 2297 y(required)30 b(that)f
+Ga(M)38 b Gg(is)28 b(strongly)i(normalising)h(under)e(an)o(y)g
+(substitution)i(on)e Ga(a)e Gg(with)h(a)g(named)h(term)277
+2410 y(belonging)d(to)e(the)g(candidate)i FB(J)p F4(\()p
+Ga(B)5 b F6(^)o Ga(C)i F4(\))p FB(K)o Gg(.)277 2664 y(In)24
+b(the)f(ne)o(xt)h(three)h(lemmas)e(we)g(shall)h(deduce)i(some)d
+(properties)k(for)2550 2627 y Gc(aux)2530 2664 y F6(\000)-31
+b(\000)g(!)p Gg(.)p Black 277 2852 a Gb(Lemma)23 b(2.3.8:)p
+Black 34 w Gg(Suppose)i Ga(M)35 b F6(2)25 b FY(T)e Gg(and)h
+Ga(M)1760 2815 y Gc(aux)1740 2852 y F6(\000)-31 b(\000)g(!)25
+b Ga(M)2034 2819 y FX(0)2057 2852 y Gg(.)p Black 373
+3055 a(\(i\))p Black 46 w(If)f Ga(M)33 b Gg(freshly)25
+b(introduces)h(the)e(name)g Ga(x)p Gg(,)e(then)i Ga(M)2113
+3022 y FX(0)2159 3055 y Gg(freshly)i(introduces)g Ga(x)p
+Gg(.)p Black 348 3206 a(\(ii\))p Black 46 w(If)e Ga(M)33
+b Gg(freshly)25 b(introduces)h(the)e(co-name)h Ga(a)p
+Gg(,)d(then)i Ga(M)2225 3173 y FX(0)2272 3206 y Gg(freshly)h
+(introduces)h Ga(a)p Gg(.)p Black 277 3418 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(If)36 b Ga(M)46 b Gg(freshly)39 b(introduces)g(a)e(name)f
+(or)h(a)f(co-name,)41 b(then)d Ga(M)46 b Gg(cannot)38
+b(be)f(of)f(the)h(form)277 3531 y FL(Cut)p F4(\()p 452
+3531 28 4 v 470 3531 V 488 3531 V 65 w Ga(;)p 557 3531
+V 575 3531 V 593 3531 V 80 w F4(\))22 b Gg(\(see)h(De\002nition)g
+(2.2.2\).)29 b(The)22 b(lemma)g(follo)n(ws)h(by)g(inspection)i(of)e
+(the)f(reduction)j(rules)277 3644 y(of)396 3607 y Gc(aux)376
+3644 y F6(\000)-32 b(\000)h(!)p Gg(.)p 3436 3644 4 62
+v 3440 3586 55 4 v 3440 3644 V 3494 3644 4 62 v Black
+277 3832 a Gb(Lemma)23 b(2.3.9:)p Black 34 w Gg(F)o(or)g(all)g(terms)h
+Ga(M)35 b F6(2)25 b FY(T)e Gg(we)g(ha)n(v)o(e)p Black
+373 4035 a(\(i\))p Black 46 w Ga(M)5 b F6(f)-7 b Ga(x)26
+b F4(:=)835 4023 y FX(h)862 4035 y Ga(a)910 4023 y FX(i)938
+4035 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))-8 b F6(g)1329
+3998 y Gc(aux)1308 4035 y F6(\000)-31 b(\000)g(!)1479
+4002 y FX(\003)1543 4035 y Ga(M)10 b F4([)p Ga(x)g F6(7!)g
+Ga(y)s F4(])p Black 348 4186 a Gg(\(ii\))p Black 46 w
+Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)831 4174 y F9(\()858
+4186 y Ga(x)910 4174 y F9(\))938 4186 y FL(Ax)o F4(\()p
+Ga(x;)15 b(b)p F4(\))-8 b F6(g)1324 4148 y Gc(aux)1303
+4186 y F6(\000)-31 b(\000)g(!)1474 4153 y FX(\003)1538
+4186 y Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p
+Black 277 4398 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23
+b(routine)i(induction)h(on)e(the)f(structure)j(of)e Ga(M)33
+b Gg(\(see)24 b(the)f(proof)i(of)f(Lemma)e(2.2.11\).)p
+3436 4398 V 3440 4340 55 4 v 3440 4398 V 3494 4398 4
+62 v Black 277 4586 a Gb(Notation)g(2.3.10:)p Black 35
+w Gg(The)f(e)o(xpression)k Ga(M)1626 4549 y Gc(aux)1606
+4586 y F6(\000)-31 b(\000)f(!)1776 4553 y F9(0)p Gc(=)p
+F9(1)1896 4586 y Ga(M)1994 4553 y FX(0)2039 4586 y Gg(stands)23
+b(for)f(either)h Ga(M)d F6(\021)10 b Ga(M)2929 4553 y
+FX(0)2973 4586 y Gg(or)21 b Ga(M)3198 4549 y Gc(aux)3178
+4586 y F6(\000)-32 b(\000)h(!)10 b Ga(M)3456 4553 y FX(0)3479
+4586 y Gg(.)p Black 277 4807 a Gb(Lemma)23 b(2.3.11:)p
+Black 35 w Gg(F)o(or)f(an)i(arbitrary)h(substitution)j
+F6(f)p Ga(\033)s F6(g)p Gg(,)p Black Black 504 5010 a(if)c
+Ga(M)726 4973 y Gc(aux)706 5010 y F6(\000)-31 b(\000)f(!)26
+b Ga(M)1000 4977 y FX(0)1023 5010 y Gg(,)c(then)j Ga(M)10
+b F6(f)p Ga(\033)s F6(g)1537 4973 y Gc(aux)1517 5010
+y F6(\000)-31 b(\000)f(!)1687 4977 y F9(0)p Gc(=)p F9(1)1823
+5010 y Ga(M)1921 4977 y FX(0)1944 5010 y F6(f)p Ga(\033)s
+F6(g)p Gg(.)p Black 277 5223 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(By)23 b(induction)j(on)d(the)h(structure)i(of)d
+Ga(M)33 b Gg(\(see)24 b(P)o(age)f(142\).)p 3436 5223
+V 3440 5165 55 4 v 3440 5223 V 3494 5223 4 62 v Black
+Black eop end
+%%Page: 38 50
+TeXDict begin 38 49 bop Black -144 51 a Gb(38)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(In)k(ef)n(fect,)g(the)g
+(substitution)j(operation)f F6(f)p 1674 317 28 4 v 1693
+317 V 1710 317 V 65 w(g)e Gg(beha)n(v)o(es)h(quite)g(dif)n(ferent)g
+(under)g(reduction)h(in)e(com-)321 430 y(parison)38 b(with)d(the)h
+(standard)i(notion)f(of)e(v)n(ariable)j(substitution.)68
+b(Note,)38 b(on)e(the)g(other)h(hand,)i(if)321 543 y
+Ga(N)450 506 y Gc(aux)430 543 y F6(\000)-32 b(\000)h(!)25
+b Ga(N)708 510 y FX(0)731 543 y Gg(,)e(then)h Ga(M)5
+b F6(f)-7 b Ga(a)26 b F4(:=)1282 531 y F9(\()1310 543
+y Ga(x)1362 531 y F9(\))1389 543 y Ga(N)q F6(g)1554 506
+y Gc(aux)1533 543 y F6(\000)-31 b(\000)g(!)1704 510 y
+FX(\003)1768 543 y Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2095
+531 y F9(\()2122 543 y Ga(x)2174 531 y F9(\))2201 543
+y Ga(N)2284 510 y FX(0)2298 543 y F6(g)p Gg(,)d(as)h(e)o(xpected.)462
+673 y(The)c(ne)o(xt)f(tw)o(o)h(lemmas)f(establish)j(important)f
+(properties)i(of)c(the)h(candidates.)30 b(The)19 b(\002rst)g(sho)n(ws)
+321 786 y(that)k(the)f(candidates)i(are)e(closed)i(under)f(reductions,)
+h(and)f(the)f(second)h(sho)n(ws)f(ho)n(w)g(the)g(candidates)321
+898 y(are)i(link)o(ed)h(to)f(the)f(property)j(of)e(strong)h
+(normalisation.)p Black 321 1086 a Gb(Lemma)e(2.3.12:)p
+Black Black 417 1262 a Gg(\(i\))p Black 47 w(If)632 1250
+y FX(h)659 1262 y Ga(a)r F4(:)r Ga(B)810 1250 y FX(i)838
+1262 y Ga(M)35 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)p
+FB(K)22 b Gg(and)i Ga(M)1585 1225 y Gc(aux)1564 1262
+y F6(\000)-31 b(\000)g(!)25 b Ga(M)1858 1229 y FX(0)1881
+1262 y Gg(,)e(then)2106 1250 y FX(h)2133 1262 y Ga(a)r
+F4(:)r Ga(B)2284 1250 y FX(i)2312 1262 y Ga(M)2410 1229
+y FX(0)2458 1262 y F6(2)i FB(J)p F6(h)p Ga(B)5 b F6(i)p
+FB(K)p Gg(.)p Black 392 1404 a(\(ii\))p Black 47 w(If)632
+1392 y F9(\()659 1404 y Ga(x)r F4(:)r Ga(B)814 1392 y
+F9(\))842 1404 y Ga(M)35 b F6(2)25 b FB(J)p F4(\()p Ga(B)5
+b F4(\))p FB(K)22 b Gg(and)i Ga(M)1589 1367 y Gc(aux)1568
+1404 y F6(\000)-31 b(\000)g(!)25 b Ga(M)1862 1371 y FX(0)1885
+1404 y Gg(,)e(then)2110 1392 y F9(\()2137 1404 y Ga(x)r
+F4(:)r Ga(B)2292 1392 y F9(\))2320 1404 y Ga(M)2418 1371
+y FX(0)2466 1404 y F6(2)i FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)p Gg(.)p Black 321 1616 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(By)33 b(simultaneous)38 b(induction)e(on)f(the)f(de)o(gree)h
+(of)g Ga(B)i Gg(\(the)e(number)g(of)f(logical)i(symbols)321
+1729 y(in)d Ga(B)5 b Gg(\).)56 b(Gi)n(v)o(en)32 b(Lemma)g(2.3.6\(i\),)k
+(the)d(proof)h(analyses)h(all)e(possible)i(sets)e(where)3079
+1717 y FX(h)3107 1729 y Ga(a)r F4(:)r Ga(B)3258 1717
+y FX(i)3285 1729 y Ga(M)42 b Gg(and)321 1830 y F9(\()349
+1842 y Ga(x)r F4(:)r Ga(B)504 1830 y F9(\))531 1842 y
+Ga(M)33 b Gg(could)25 b(be)e(member)h(in)f(\(see)h(P)o(age)f(142\).)p
+3480 1842 4 62 v 3484 1784 55 4 v 3484 1842 V 3538 1842
+4 62 v Black 321 2030 a Gb(Lemma)g(2.3.13:)p Black Black
+417 2206 a Gg(\(i\))p Black 47 w(If)632 2194 y FX(h)659
+2206 y Ga(a)r F4(:)r Ga(B)810 2194 y FX(i)838 2206 y
+Ga(M)35 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)o
+Gg(,)23 b(then)h Ga(M)35 b F6(2)25 b Ga(S)5 b(N)1832
+2220 y Gc(aux)1954 2206 y Gg(.)p Black 392 2348 a(\(ii\))p
+Black 47 w(If)632 2336 y F9(\()659 2348 y Ga(x)r F4(:)r
+Ga(B)814 2336 y F9(\))842 2348 y Ga(M)35 b F6(2)25 b
+FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)o Gg(,)23 b(then)h
+Ga(M)35 b F6(2)25 b Ga(S)5 b(N)1836 2362 y Gc(aux)1958
+2348 y Gg(.)p Black 321 2560 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(The)23 b(proof)i(is)e(similar)h(to)g(the)g(one)g(gi)n(v)o(en)g
+(for)f(Lemma)g(2.3.12)h(\(see)g(P)o(age)f(144\).)p 3480
+2560 V 3484 2502 55 4 v 3484 2560 V 3538 2560 4 62 v
+462 2764 a(W)-7 b(e)31 b(are)h(no)n(w)f(in)g(the)h(position)i(to)d(pro)
+o(v)o(e)h(that)h(a)e(cut)h(is)f(strongly)j(normalising)g(pro)o(vided)f
+(its)321 2877 y(immediate)j(subterms)h(are)e(strongly)i(normalising)h
+(and)e(in)f(a)f(candidate)k(corresponding)h(to)c(the)321
+2990 y(cut-formula.)40 b(This)26 b(is)g(a)g(lengthy)h(lemma:)35
+b(the)26 b(cases)h(for)g(the)f(logical)i(reductions)h(require)f(rather)
+321 3103 y(dif)n(\002cult)d(ar)n(guments.)p Black 321
+3291 a Gb(Lemma)e(2.3.14:)p Black 35 w Gg(If)g Ga(M)5
+b(;)15 b(N)36 b F6(2)24 b Ga(S)5 b(N)1477 3305 y Gc(aux)1600
+3291 y Gg(,)1645 3279 y FX(h)1673 3291 y Ga(a)r F4(:)r
+Ga(B)1824 3279 y FX(i)1851 3291 y Ga(M)35 b F6(2)25 b
+FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)22 b Gg(and)2454 3279
+y F9(\()2482 3291 y Ga(x)r F4(:)r Ga(B)2637 3279 y F9(\))2664
+3291 y Ga(N)35 b F6(2)25 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)p Gg(,)22 b(then)1315 3485 y FL(Cut)p F4(\()1488
+3473 y FX(h)1515 3485 y Ga(a)r F4(:)r Ga(B)1666 3473
+y FX(i)1694 3485 y Ga(M)10 b(;)1832 3473 y F9(\()1860
+3485 y Ga(x)r F4(:)r Ga(B)2015 3473 y F9(\))2042 3485
+y Ga(N)g F4(\))26 b F6(2)e Ga(S)5 b(N)2405 3499 y Gc(aux)2528
+3485 y Ga(:)p Black 321 3697 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(The)26 b(proof)i(of)f(this)h(lemma)e(is)h(inspired)i(by)e(a)g
+(technique)i(applied)g(in)e([Pra)o(witz,)g(1971].)40
+b(It)321 3810 y(sho)n(ws)34 b(by)g(induction)i(that)e(e)n(v)o(ery)g
+(immediate)h(reduct)g(of)e(the)h(term)f FL(Cut)p F4(\()2780
+3798 y FX(h)2808 3810 y Ga(a)r F4(:)r Ga(B)2959 3798
+y FX(i)2986 3810 y Ga(M)11 b(;)3125 3798 y F9(\()3152
+3810 y Ga(x)r F4(:)r Ga(B)3307 3798 y F9(\))3335 3810
+y Ga(N)f F4(\))33 b Gg(is)321 3923 y(strongly)f(normalising)f(\(see)f
+(P)o(ages)f(145\226148\).)48 b(The)28 b(induction)k(proceeds)g(o)o(v)o
+(er)d(a)f(le)o(xicograph-)321 4036 y(ically)37 b(ordered)g(induction)h
+(v)n(alue)e(of)f(the)g(form)g F4(\()p Ga(\016)n(;)15
+b(\026;)g(\027)6 b F4(\))p Gg(,)39 b(where)c Ga(\016)k
+Gg(is)c(the)g(de)o(gree)h(of)g(the)f(cut-)321 4149 y(formula)29
+b Ga(B)5 b Gg(;)30 b Ga(\026)d Gg(and)i Ga(\027)k Gg(are)28
+b(the)g(longest)i(reduction)h(sequences)g(\(relati)n(v)o(e)f(to)2862
+4112 y Gc(aux)2842 4149 y F6(\000)-32 b(\000)h(!)p Gg(\))28
+b(starting)i(from)321 4262 y Ga(M)j Gg(and)24 b Ga(N)10
+b Gg(,)23 b(respecti)n(v)o(ely\227by)k(assumption)f(both)e
+Ga(\026)e Gg(and)i Ga(\027)29 b Gg(are)24 b(\002nite.)p
+3480 4262 V 3484 4204 55 4 v 3484 4262 V 3538 4262 4
+62 v 462 4466 a(It)g(is)f(left)h(to)f(sho)n(w)h(that)g(all)g
+(well-typed)h(terms)f(are)g(strongly)h(normalising.)32
+b(In)23 b(order)i(to)e(do)h(so,)321 4579 y(we)19 b(shall)h(consider)i
+(a)d(special)i(class)f(of)g(substitutions,)k(which)19
+b(are)h(called)h F7(safe)p Gg(.)28 b(T)-7 b(w)o(o)18
+b(substitutions,)321 4692 y(say)k F6(f)p Ga(\033)s F6(g)f
+Gg(and)h F6(f)p Ga(\034)10 b F6(g)p Gg(,)22 b(are)f(safe,)h(if)f(and)g
+(only)h(if)f(the)h(domain)g(of)f F6(f)p Ga(\033)s F6(g)h
+Gg(is)f(not)g(free)h(in)f(the)g(co-domain)j(of)321 4805
+y F6(f)p Ga(\034)10 b F6(g)22 b Gg(and)h(the)f(domain)h(of)f
+F6(f)p Ga(\034)10 b F6(g)22 b Gg(is)g(not)g(free)h(in)f(the)g
+(co-domain)i(of)e F6(f)p Ga(\033)s F6(g)p Gg(.)28 b(F)o(or)21
+b(e)o(xample)e F6(f)-7 b Ga(x)25 b F4(:=)3336 4793 y
+FX(h)3364 4805 y Ga(a)3412 4793 y FX(i)3439 4805 y Ga(P)t
+F6(g)321 4917 y Gg(and)h F6(f)-7 b Ga(b)38 b F4(:=)726
+4905 y F9(\()753 4917 y Ga(y)801 4905 y F9(\))828 4917
+y Ga(Q)-9 b F6(g)30 b Gg(are)g(safe,)i(pro)o(vided)g(that)f
+Ga(x)e Gg(is)h(not)h(free)f(in)2410 4905 y F9(\()2438
+4917 y Ga(y)2486 4905 y F9(\))2513 4917 y Ga(Q)f Gg(and)i
+Ga(b)e Gg(is)h(not)h(free)g(in)3350 4905 y FX(h)3377
+4917 y Ga(a)3425 4905 y FX(i)3453 4917 y Ga(P)13 b Gg(.)321
+5030 y(As)25 b(e)o(xplained)j(earlier)l(,)f(the)e(substitution)k
+(operation)f F6(f)p 2099 5030 28 4 v 2117 5030 V 2135
+5030 V 65 w(g)d Gg(is)h(de\002ned)g(with)f(the)h(property)h(in)e(mind)
+321 5143 y(that)f(safe)h(substitutions)i(can)d(commute.)30
+b(As)23 b(a)g(special)i(case)f(of)g(the)g(substitution)j(lemma)c(for)h
+F6(f)p 3438 5143 V 3456 5143 V 3474 5143 V 65 w(g)321
+5256 y Gg(\(Lemma)f(2.3.1\))h(we)f(ha)n(v)o(e)h(for)f(all)h
+Ga(M)33 b Gg(and)24 b(tw)o(o)f(safe)h(substitutions)k
+F6(f)p Ga(\033)s F6(g)c Gg(and)g F6(f)p Ga(\034)10 b
+F6(g)1463 5411 y Ga(M)g F6(f)p Ga(\033)s F6(gf)p Ga(\034)g
+F6(g)27 b(\021)e Ga(M)10 b F6(f)p Ga(\034)g F6(gf)p Ga(\033)s
+F6(g)28 b Ga(:)p Black Black eop end
+%%Page: 39 51
+TeXDict begin 39 50 bop Black 277 51 a Gb(2.3)23 b(Pr)n(oof)i(of)e(Str)
+n(ong)h(Normalisation)2290 b(39)p 277 88 3691 4 v Black
+418 317 a Gg(W)-7 b(e)22 b(shall)h(no)n(w)g(e)o(xtend)g(the)g(notion)h
+(of)f(safety)h(from)e(substitutions)27 b(to)22 b(simultaneous)k
+(substitu-)277 430 y(tions;)f(that)f(is)f(to)h(sets)g(of)f
+(substitutions.)p Black 277 618 a Gb(De\002nition)g(2.3.15)h
+Gg(\(Safe)f(Simultaneous)j(Substitution,)g FO(sss)p Gg(\))p
+Gb(:)p Black Black Black 1167 775 a F6(;)100 b Gg(is)23
+b(an)g F7(sss)p Gg(.)915 888 y F4(^)-50 b Ga(\033)23
+b F6([)d(f)p Ga(\033)s F6(g)101 b Gg(is)23 b(an)g F7(sss)p
+Gg(,)h(if)f(and)h(only)h(if)1413 1000 y F6(\017)52 b
+F4(^)-50 b Ga(\033)26 b Gg(is)e(an)f F7(sss)p Gg(,)1413
+1113 y F6(\017)47 b Ga(dom)p F4(\()p F6(f)p Ga(\033)s
+F6(g)p F4(\))28 b F6(62)c Ga(dom)p F4(\()5 b(^)-50 b
+Ga(\033)t F4(\))p Gg(,)1413 1226 y F6(\017)47 b Ga(dom)p
+F4(\()p F6(f)p Ga(\033)s F6(g)p F4(\))25 b Gg(not)f(free)g(in)f
+Ga(codom)p F4(\()5 b(^)-50 b Ga(\033)5 b F4(\))p Gg(,)22
+b(and)1413 1339 y F6(\017)47 b Ga(dom)p F4(\()5 b(^)-50
+b Ga(\033)t F4(\))23 b Gg(not)h(free)g(in)f Ga(codom)p
+F4(\()p F6(f)p Ga(\033)s F6(g)p F4(\))p Gg(.)277 1593
+y(In)j(the)g(presence)i(of)d(our)h(Barendre)o(gt-style)k(naming)d(con)l
+(v)o(ention)h(and)f(alpha-con)l(v)o(ersion,)k(which)277
+1706 y(we)26 b(assumed)i(in)f(Con)l(v)o(ention)i(2.2.4,)f(an)o(y)f(set)
+g(of)g(substitutions)j(can)e(be)f(transformed)i(into)e(a)g(safe)277
+1819 y(simultaneous)35 b(substitution.)59 b(W)-7 b(e)31
+b(shall,)k(ho)n(we)n(v)o(er)l(,)g(omit)d(a)g(formal)h(proof)g(and)g
+(rather)h(gi)n(v)o(e)e(the)277 1932 y(reader)25 b(the)f(follo)n(wing)h
+(e)o(xample.)p Black 277 2120 a Gb(Example)g(2.3.16:)p
+Black 35 w Gg(Suppose)h(we)e(ha)n(v)o(e)i(a)e(term,)h(say)h
+Ga(M)10 b Gg(,)24 b(and)i(a)e(safe)i(simultaneous)i(substitution,)277
+2233 y(say)1047 2392 y F4(^)-50 b Ga(\033)29 b F4(=)1219
+2291 y FK(n)1275 2392 y F6(f)-7 b Ga(x)25 b F4(:=)1511
+2380 y FX(h)1539 2392 y Ga(c)1578 2380 y FX(i)1606 2392
+y FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))-8 b F6(g)p Ga(;)10
+b F6(f)-7 b Ga(a)27 b F4(:=)2215 2380 y F9(\()2242 2392
+y Ga(z)2288 2380 y F9(\))2316 2392 y FL(Ax)o F4(\()p
+Ga(z)t(;)15 b(c)p F4(\))-7 b F6(g)2651 2291 y FK(o)2712
+2392 y Ga(;)277 2613 y Gg(and)27 b(assume)g(we)e(ha)n(v)o(e)i(the)g
+(substitution)j F6(f)p Ga(\033)s F6(g)h(\021)26 b(f)-7
+b Ga(b)30 b F4(:=)2146 2601 y F9(\()2173 2613 y Ga(y)2221
+2601 y F9(\))2248 2613 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
+F4(\))-8 b F6(g)p Gg(.)36 b(Clearly)-6 b(,)33 b F4(^)-50
+b Ga(\033)25 b F6([)d(f)p Ga(\033)s F6(g)27 b Gg(is)f(not)277
+2726 y(safe,)34 b(and)f(therefore)h Ga(M)10 b F4(\()5
+b(^)-50 b Ga(\033)30 b F6([)c(f)p Ga(\033)s F6(g)p F4(\))32
+b Gg(is)g(an)g(ill-de\002ned)i(e)o(xpression.)56 b(Ho)n(we)n(v)o(er)l
+(,)34 b Ga(x)p Gg(,)f Ga(a)e Gg(and)h Ga(b)f Gg(are)277
+2839 y(considered)25 b(as)d(binders)i(and)e(thus)h(can)f(be)g(re)n
+(written.)29 b(In)22 b(ef)n(fect,)h(we)e(can)h(form)g(the)g(follo)n
+(wing)i(safe)277 2951 y(v)o(ersion)h(of)j F4(^)-49 b
+Ga(\033)23 b F6([)d(f)p Ga(\033)s F6(g)608 3205 y F4(^)-50
+b Ga(\033)655 3225 y FE(safe)805 3205 y F4(=)901 3104
+y FK(n)957 3205 y F6(f)-7 b Ga(x)1047 3168 y FX(0)1096
+3205 y F4(:=)1217 3193 y FX(h)1244 3205 y Ga(c)1283 3193
+y FX(i)1311 3205 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\))-9
+b F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)1772 3168 y FX(0)1822
+3205 y F4(:=)1944 3193 y F9(\()1971 3205 y Ga(z)2017
+3193 y F9(\))2045 3205 y FL(Ax)o F4(\()p Ga(z)t(;)15
+b(c)p F4(\))-7 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(b)2492
+3168 y FX(0)2542 3205 y F4(:=)2663 3193 y F9(\()2690
+3205 y Ga(y)2738 3193 y F9(\))2766 3205 y FL(Ax)o F4(\()p
+Ga(x;)15 b(a)p F4(\))-8 b F6(g)3115 3104 y FK(o)277 3461
+y Gg(assuming)25 b(that)g Ga(x)855 3428 y FX(0)878 3461
+y Gg(,)d Ga(a)971 3428 y FX(0)1018 3461 y Gg(and)i Ga(b)1211
+3428 y FX(0)1257 3461 y Gg(are)g(fresh.)30 b(Subsequently)-6
+b(,)26 b(we)d(need)i(to)e(re)n(write)h(the)g(corresponding)277
+3574 y(names)36 b(and)f(co-names)i(in)e Ga(M)10 b Gg(.)63
+b(No)n(w)33 b(the)j(e)o(xpression)h Ga(M)10 b F4([)p
+Ga(x)32 b F6(7!)g Ga(x)2538 3541 y FX(0)2561 3574 y F4(][)p
+Ga(a)g F6(7!)f Ga(a)2861 3541 y FX(0)2885 3574 y F4(][)p
+Ga(b)h F6(7!)f Ga(b)3167 3541 y FX(0)3190 3574 y F4(])21
+b(^)-51 b Ga(\033)3282 3593 y FE(safe)3442 3574 y Gg(is)277
+3686 y(well-de\002ned.)277 3949 y(In)24 b(the)f(ne)o(xt)h(lemma)f(we)g
+(shall)i(sho)n(w)e(that)h(a)f(speci\002c)i(substitution)i(b)n(uilt)d
+(up)g(by)g(axioms)g(is)f(an)h(sss.)p Black 277 4137 a
+Gb(Lemma)f(2.3.17:)p Black 35 w Gg(Let)k F4(^)-50 b Ga(\033)26
+b Gg(be)e(of)f(the)h(form)672 4265 y FK(8)672 4346 y(<)672
+4510 y(:)830 4365 y([)753 4560 y Gc(i)p F9(=0)p Gc(;:::)n(;n)1003
+4451 y F6(f)-7 b Ga(x)1093 4465 y Gc(i)1147 4451 y F4(:=)1268
+4439 y FX(h)1296 4451 y Ga(c)1335 4439 y FX(i)1362 4451
+y FL(Ax)p F4(\()p Ga(x)1552 4465 y Gc(i)1580 4451 y Ga(;)15
+b(c)p F4(\))-8 b F6(g)1731 4265 y FK(9)1731 4346 y(=)1731
+4510 y(;)1832 4451 y F6([)1913 4265 y FK(8)1913 4346
+y(<)1913 4510 y(:)2085 4365 y([)1994 4560 y Gc(j)t F9(=0)p
+Gc(;:::)n(;m)2272 4451 y F6(f)h Ga(a)2358 4465 y Gc(j)2420
+4451 y F4(:=)2542 4439 y F9(\()2569 4451 y Ga(y)2617
+4439 y F9(\))2644 4451 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(a)2918 4465 y Gc(j)2955 4451 y F4(\))-9 b F6(g)3026
+4265 y FK(9)3026 4346 y(=)3026 4510 y(;)277 4781 y Gg(where)28
+b(the)g Ga(x)716 4795 y Gc(i)744 4781 y Gg(')-5 b(s)27
+b(and)h Ga(a)1037 4795 y Gc(i)1065 4781 y Gg(')-5 b(s)28
+b(are)g(distinct)h(names)f(and)g(co-names,)i(respecti)n(v)o(ely)-6
+b(.)43 b(Substitution)35 b F4(^)-49 b Ga(\033)30 b Gg(is)277
+4894 y(an)24 b(sss.)p Black 277 5107 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)f(induction)j(on)d(the)h(length)h(of)j
+F4(^)-49 b Ga(\033)s Gg(.)p 3436 5107 4 62 v 3440 5049
+55 4 v 3440 5107 V 3494 5107 4 62 v Black Black eop end
+%%Page: 40 52
+TeXDict begin 40 51 bop Black -144 51 a Gb(40)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 462 317 a Gg(No)n(w)27
+b(we)g(can)h(sho)n(w)f(that)i(e)n(v)o(ery)f(well-typed)i(term)d
+(together)j(with)e(a)f(closing)i(substitution)j(is)321
+430 y(strongly)26 b(normalising.)31 b(This)24 b(is)f(again)h(a)f
+(rather)i(lengthy)g(proof.)p Black 321 618 a Gb(Lemma)e(2.3.18:)p
+Black Black 458 847 a F6(\017)p Black 46 w Gg(F)o(or)j(e)n(v)o(ery)i
+(well-typed)h(term)e Ga(M)10 b Gg(\227not)28 b(necessarily)i(strongly)g
+(normalising\227with)g(a)d(typ-)549 960 y(ing)c(judgement)j
+F4(\000)1176 948 y Gc(.)1231 960 y Ga(M)1354 948 y Gc(.)1409
+960 y F4(\001)p Gg(,)c(and)p Black 458 1158 a F6(\017)p
+Black 46 w Gg(for)36 b(e)n(v)o(ery)h(sss,)45 b F4(^)-50
+b Ga(\033)s Gg(,)39 b(such)e(that)g Ga(dom)p F4(\(\000\))31
+b F6([)e Ga(dom)p F4(\(\001\))50 b F6(\022)f Ga(dom)p
+F4(\()5 b(^)-50 b Ga(\033)t F4(\))p Gg(,)39 b(i.e.,)k
+F4(^)-50 b Ga(\033)39 b Gg(is)e(a)f(closing)549 1271
+y(substitution,)992 1238 y F5(5)1056 1271 y Gg(and)p
+Black 658 1470 a F6(\017)p Black 46 w Gg(for)23 b(e)n(v)o(ery)1098
+1458 y F9(\()1126 1470 y Ga(x)r F4(:)r Ga(B)1281 1458
+y F9(\))1308 1470 y Ga(P)38 b F6(2)25 b Ga(codom)p F4(\()5
+b(^)-50 b Ga(\033)t F4(\))23 b Gg(we)g(require)i(that)2461
+1458 y F9(\()2489 1470 y Ga(x)r F4(:)r Ga(B)2644 1458
+y F9(\))2671 1470 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(B)5 b F4(\))p FB(K)22 b Gg(and)p Black 658 1622 a
+F6(\017)p Black 46 w Gg(for)h(e)n(v)o(ery)1098 1610 y
+FX(h)1126 1622 y Ga(a)r F4(:)r Ga(C)1275 1610 y FX(i)1302
+1622 y Ga(Q)i F6(2)g Ga(codom)p F4(\()5 b(^)-50 b Ga(\033)t
+F4(\))23 b Gg(we)g(require)i(that)2456 1610 y FX(h)2484
+1622 y Ga(a)r F4(:)r Ga(C)2633 1610 y FX(i)2660 1622
+y Ga(Q)g F6(2)g FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)o
+Gg(;)p Black Black 549 1821 a(we)22 b(ha)n(v)o(e)i Ga(M)15
+b F4(^)-50 b Ga(\033)29 b F6(2)c Ga(S)5 b(N)1267 1835
+y Gc(aux)1389 1821 y Gg(.)p Black 321 2034 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(o)o(v)o(er)d(the)h(structure)i(of)e
+Ga(M)32 b Gg(\(see)24 b(P)o(ages)g(148\226150\).)p 3480
+2034 4 62 v 3484 1976 55 4 v 3484 2034 V 3538 2034 4
+62 v 321 2241 a(W)-7 b(e)23 b(are)h(no)n(w)f(able)h(to)f(pro)o(v)o(e)h
+(that)g F4(\()p FY(T)t Ga(;)1580 2203 y Gc(aux)1560 2241
+y F6(\000)-31 b(\000)g(!)o F4(\))24 b Gg(is)f(strongly)j(normalising.)p
+Black 321 2428 a Gb(Theor)n(em)e(2.3.19:)p Black 35 w
+Gg(The)f(reduction)j(system)e F4(\()p FY(T)t Ga(;)1945
+2391 y Gc(aux)1925 2428 y F6(\000)-31 b(\000)f(!)p F4(\))23
+b Gg(is)h(strongly)h(normalising.)p Black 321 2641 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(By)32 b(Lemma)h(2.3.18)h(we)e(kno)n(w)h
+(that)h(for)g(an)f(arbitrary)j(well-typed)f(term,)g(say)f
+Ga(M)10 b Gg(,)35 b(with)321 2754 y(the)29 b(typing)h(judgement)g
+F4(\000)1213 2742 y Gc(.)1268 2754 y Ga(M)1392 2742 y
+Gc(.)1446 2754 y F4(\001)e Gg(and)h(an)f(arbitrary)j(safe)d
+(simultaneous)k(substitution,)h(say)g F4(^)-50 b Ga(\033)t
+Gg(,)321 2867 y(where)32 b(all)g(free)g(names)h(and)f(co-names)h(of)f
+Ga(M)41 b Gg(are)32 b(amongst)h(the)f(domain)h(of)j F4(^)-50
+b Ga(\033)t Gg(,)32 b(the)g(term)g Ga(M)15 b F4(^)-50
+b Ga(\033)321 2979 y Gg(is)27 b(strongly)j(normalising.)43
+b(T)-7 b(aking)32 b F4(^)-50 b Ga(\033)30 b Gg(to)d(be)h(the)f(safe)h
+(simultaneous)i(substitution)h(from)d(Lemma)321 3092
+y(2.3.17,)f(we)d(can)i(infer)l(,)h(using)g(Lemma)e(2.3.9,)h(that)g
+Ga(M)15 b F4(^)-50 b Ga(\033)2212 3055 y Gc(aux)2192
+3092 y F6(\000)-31 b(\000)f(!)2362 3059 y FX(\003)2431
+3092 y Ga(M)10 b Gg(,)25 b(and)h(we)f(therefore)j(ha)n(v)o(e)e(that)321
+3205 y Ga(M)33 b Gg(is)24 b(strongly)h(normalising.)31
+b(Thus)24 b(we)f(are)g(done.)p 3480 3205 V 3484 3147
+55 4 v 3484 3205 V 3538 3205 4 62 v 462 3412 a(From)e(this)h(result)g
+(we)f(can)h(deduce)h(strong)g(normalisation)h(for)e F4(\()p
+FY(T)t Ga(;)2664 3375 y Gc(cut)2633 3412 y F6(\000)-31
+b(\000)g(!)p F4(\))p Gg(,)21 b(which)g(is)h(relati)n(v)o(ely)321
+3525 y(straightforw)o(ard)31 b(since)c(e)n(v)o(ery)1374
+3488 y Gc(cut)1343 3525 y F6(\000)-31 b(\000)f(!)p Gg(-reduction)30
+b(maps)c(onto)i(a)e(series)h(of)2738 3488 y Gc(aux)2718
+3525 y F6(\000)-31 b(\000)f(!)p Gg(-reductions.)41 b(First,)321
+3638 y(we)23 b(pro)o(v)o(e)h(that)g Ga(M)10 b F6(f)p
+Ga(\033)s F6(g)24 b Gg(reduces)h(to)f(or)f(is)h(equi)n(v)n(alent)i(to)d
+Ga(M)10 b F4([)p Ga(\033)s F4(])p Gg(.)p Black 321 3826
+a Gb(Lemma)23 b(2.3.20:)p Black 35 w Gg(F)o(or)f(all)i(terms)g
+Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)e Gg(we)g(ha)n(v)o(e)p
+Black 417 4041 a(\(i\))p Black 47 w Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)875 4029 y F9(\()902 4041 y Ga(x)954
+4029 y F9(\))982 4041 y Ga(N)p F6(g)1146 4004 y Gc(aux)1126
+4041 y F6(\000)-31 b(\000)f(!)1296 4008 y FX(\003)1361
+4041 y Ga(M)10 b F4([)p Ga(a)26 b F4(:=)1679 4029 y F9(\()1706
+4041 y Ga(x)1758 4029 y F9(\))1786 4041 y Ga(N)10 b F4(])p
+Black 392 4240 a Gg(\(ii\))p Black 47 w Ga(M)5 b F6(f)-7
+b Ga(x)26 b F4(:=)879 4228 y FX(h)906 4240 y Ga(a)954
+4228 y FX(i)982 4240 y Ga(N)p F6(g)1146 4203 y Gc(aux)1126
+4240 y F6(\000)-31 b(\000)f(!)1296 4207 y FX(\003)1361
+4240 y Ga(M)10 b F4([)p Ga(x)25 b F4(:=)1683 4228 y FX(h)1710
+4240 y Ga(a)1758 4228 y FX(i)1786 4240 y Ga(N)10 b F4(])p
+Black 321 4453 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23
+b(induction)j(on)e(the)f(structure)j(of)e Ga(M)32 b Gg(\(see)25
+b(P)o(age)e(150\).)p 3480 4453 V 3484 4395 55 4 v 3484
+4453 V 3538 4453 4 62 v 321 4660 a(The)g(ne)o(xt)h(lemma)f(sho)n(ws)h
+(that)g(e)n(v)o(ery)1592 4623 y Gc(cut)1561 4660 y F6(\000)-31
+b(\000)g(!)p Gg(-reduction)26 b(maps)e(onto)g(a)f(series)i(of)2938
+4623 y Gc(aux)2918 4660 y F6(\000)-31 b(\000)g(!)o Gg(-reductions.)p
+Black 321 4847 a Gb(Lemma)23 b(2.3.21:)p Black 35 w Gg(F)o(or)f(all)i
+(terms)g Ga(M)10 b Gg(,)22 b Ga(N)35 b F6(2)25 b FY(T)t
+Gg(,)19 b(if)k Ga(M)2091 4810 y Gc(cut)2060 4847 y F6(\000)-31
+b(\000)g(!)25 b Ga(N)10 b Gg(,)22 b(then)j Ga(M)2707
+4810 y Gc(aux)2687 4847 y F6(\000)-31 b(\000)f(!)2857
+4814 y F9(+)2942 4847 y Ga(N)10 b Gg(.)p Black 321 5060
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e(the)f
+(structure)j(of)1791 5023 y Gc(cut)1761 5060 y F6(\000)-32
+b(\000)h(!)23 b Gg(\(see)h(P)o(age)f(151\).)p 3480 5060
+V 3484 5002 55 4 v 3484 5060 V 3538 5060 4 62 v Black
+321 5227 1290 4 v 427 5283 a F3(5)456 5314 y F2(All)18
+b(free)h(names)g(and)h(co-names)g(of)f Fw(M)27 b F2(are)19
+b(amongst)h(the)f(domain)g(of)k Fv(^)-42 b Fw(\033)s
+F2(.)p Black Black Black eop end
+%%Page: 41 53
+TeXDict begin 41 52 bop Black 277 51 a Gb(2.4)23 b(First-Order)i
+(Classical)g(Logic)2399 b(41)p 277 88 3691 4 v Black
+277 317 a Gg(It)23 b(is)h(rather)g(easy)h(no)n(w)e(to)g(sho)n(w)h(that)
+g F4(\()p FY(T)t Ga(;)1663 280 y Gc(cut)1632 317 y F6(\000)-31
+b(\000)g(!)p F4(\))23 b Gg(is)g(strongly)j(normalising.)p
+Black 277 574 a Gb(Theor)n(em)e(2.3.22:)p Black 34 w
+Gg(The)g(reduction)i(system)e F4(\()p FY(T)t Ga(;)1911
+537 y Gc(cut)1881 574 y F6(\000)-32 b(\000)h(!)p F4(\))23
+b Gg(is)g(strongly)j(normalising.)p Black 277 821 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(The)c(reduction)i(system)f F4(\()p FY(T)t
+Ga(;)1489 784 y Gc(aux)1469 821 y F6(\000)-31 b(\000)f(!)p
+F4(\))22 b Gg(is)g(strongly)j(normalising,)f(and)f(whene)n(v)o(er)g
+Ga(M)3254 784 y Gc(cut)3224 821 y F6(\000)-32 b(\000)h(!)25
+b Ga(N)277 934 y Gg(we)18 b(ha)n(v)o(e)i(that)f Ga(M)886
+897 y Gc(aux)865 934 y F6(\000)-31 b(\000)g(!)1036 901
+y F9(+)1120 934 y Ga(N)10 b Gg(.)26 b(Consequently)-6
+b(,)23 b(the)c(reduction)i(system)f F4(\()p FY(T)t Ga(;)2713
+897 y Gc(cut)2682 934 y F6(\000)-31 b(\000)f(!)p F4(\))18
+b Gg(must)h(be)g(strongly)277 1047 y(normalising,)26
+b(too.)p 3436 1047 4 62 v 3440 988 55 4 v 3440 1047 V
+3494 1047 4 62 v 277 1481 a Ge(2.4)119 b(First-Order)30
+b(Classical)g(Logic)277 1723 y Gg(In)e(this)g(section)h(we)e(e)o(xtend)
+i(the)f(cut-elimination)k(procedure)e F4(\()p FY(T)t
+Ga(;)2498 1686 y Gc(cut)2467 1723 y F6(\000)-31 b(\000)f(!)p
+F4(\))27 b Gg(to)h(the)g(\002rst-order)i(frag-)277 1836
+y(ment)c(of)h(classical)h(logic.)38 b(T)-7 b(o)25 b(do)h(so,)h(we)e(e)o
+(xtend)j(the)e(notion)i(of)e(a)g(formula)h(by)f(allo)n(wing)i(atomic)
+277 1949 y(formulae)d(to)f(ha)n(v)o(e)g(ar)n(guments)i(ranging)f(o)o(v)
+o(er)f F7(e)n(xpr)m(essions)j Gg(and)d(introduce)i(the)e(quanti\002ers)
+i F6(8)c Gg(and)277 2062 y F6(9)p Gg(.)57 b(W)-7 b(e)32
+b(use)i(`e)o(xpression')i(instead)g(of)d(`term')g(\(the)h(standard)i
+(terminology\))g(in)d(order)i(to)e(a)n(v)n(oid)277 2175
+y(confusion)38 b(with)d(our)h(terminology)i(introduced)g(in)d(pre)n
+(vious)i(sections.)66 b(Moreo)o(v)o(er)l(,)40 b(we)34
+b(use)i(a)277 2288 y(sans)28 b(serif)g(font)g(for)f(e)o(xpressions)j
+(to)d(clearly)i(distinguish)i(them)c(from)g(terms.)40
+b(The)27 b(grammar)g(for)277 2400 y(e)o(xpressions)g(is)p
+Black Black 1603 2643 a FL(t)e F4(::=)g FL(x)h F6(j)f
+FL(f)c(t)15 b Ga(:)g(:)g(:)i FL(t)277 2885 y Gg(where)25
+b FL(x)f Gg(is)g(tak)o(en)i(from)e(a)h(set)f(of)h F7(variables)i
+Gg(and)e FL(f)30 b Gg(from)24 b(a)h(set)f(of)h(functional)i(symbols.)34
+b(An)23 b F7(arity)277 2998 y Gg(\(a)33 b(natural)h(number\))h(is)d
+(assigned)j(to)e(each)h(functional)i(symbol)e(specifying)h(the)f
+(number)f(of)g(its)277 3110 y(ar)n(guments.)39 b(W)-7
+b(e)26 b(shall)h(often)g(write)g FL(x)p Ga(;)15 b FL(y)q
+Ga(;)g FL(z)26 b Gg(for)g(v)n(ariables)j(and)d FL(t)g
+Gg(for)g(arbitrary)j(e)o(xpressions.)40 b(The)277 3223
+y(formulae)25 b(of)e(\002rst-order)j(classical)f(logic)g(are)f(gi)n(v)o
+(en)g(by)f(the)h(grammar)p Black Black 782 3465 a Ga(B)30
+b F4(::=)c Ga(A)15 b FL(t)1144 3479 y Fu(1)1198 3465
+y Ga(:)g(:)g(:)h FL(t)1352 3479 y Fu(n)1418 3465 y F6(j)26
+b(:)p Ga(B)j F6(j)d Ga(B)5 b F6(^)o Ga(B)29 b F6(j)d
+Ga(B)5 b F6(_)o Ga(B)30 b F6(j)25 b Ga(B)5 b F6(\033)p
+Ga(B)29 b F6(j)d(8)p FL(x)p Ga(:B)j F6(j)d(9)p FL(x)p
+Ga(:B)277 3707 y Gg(where)21 b Ga(A)e Gg(ranges)j(o)o(v)o(er)e
+F7(pr)m(edicate)i(symbols)p Gg(,)g(each)e(of)h(which)f(tak)o(e)h(a)f
+(\002x)o(ed)f(number)i(of)f(e)o(xpressions)277 3820 y(as)25
+b(ar)n(guments,)j(and)d(where)h FL(x)e Gg(ranges)i(o)o(v)o(er)f(v)n
+(ariables.)36 b(An)24 b(occurrence)k(of)d(the)h(v)n(ariable)h
+FL(x)d Gg(is)h(said)277 3933 y(to)31 b(be)f F7(bound)p
+Gg(,)j(if)e(it)f(is)g(inside)i(a)e(formula)i(of)e(the)h(form)f
+F6(8)p FL(x)p Ga(:B)k Gg(or)d F6(9)p FL(x)p Ga(:B)5 b
+Gg(.)48 b(W)-7 b(e)29 b(ha)n(v)o(e)i(the)g(standard)277
+4046 y(notion)c(of)e(free)g(v)n(ariables,)j(and)d(for)h(the)f(set)g(of)
+g(free)h(v)n(ariables)h(of)e(an)g(e)o(xpression,)j(say)e
+FL(t)p Gg(,)e(and)i(of)f(a)277 4159 y(formula,)f(say)g
+Ga(B)5 b Gg(,)22 b(we)h(shall)h(write)g Ga(F)13 b(V)20
+b F4(\()p FL(t)p F4(\))k Gg(and)g Ga(F)13 b(V)20 b F4(\()p
+Ga(B)5 b F4(\))p Gg(,)23 b(respecti)n(v)o(ely)-6 b(.)418
+4298 y(Just)27 b(as)f(with)g(terms,)h(we)f(identify)i(formulae)f(that)g
+(dif)n(fer)g(only)g(in)f(the)h(names)g(of)f(their)h(bound)277
+4411 y(v)n(ariables.)46 b(Moreo)o(v)o(er)l(,)30 b(we)e(shall)h(observ)o
+(e)h(a)e(Barendre)o(gt-style)k(naming)e(con)l(v)o(ention)h(for)e(bound)
+277 4524 y(and)21 b(free)h(v)n(ariables.)30 b(This)20
+b(is)h(a)g(standard)i(con)l(v)o(ention)h(allo)n(wing)e(us)e(to)h
+(assume)h(that)f(distinct)i(quan-)277 4637 y(ti\002er)29
+b(occurrences)k(are)c(follo)n(wed)h(by)g(distinct)h(v)n(ariables.)48
+b(F)o(or)28 b(e)o(xample,)j(it)e(e)o(xcludes)i(formulae)277
+4750 y(such)j(as)f F6(9)p FL(x)p Ga(:)p F4(\()p Ga(A)p
+FL(x)p F6(^8)p FL(x)p Ga(:B)5 b FL(x)p F4(\))p Gg(,)34
+b(which)g(can)g(equally)h(be)e(written)h(as)f F6(9)p
+FL(y)q Ga(:)p F4(\()p Ga(A)p FL(y)q F6(^)q(8)p FL(x)p
+Ga(:B)5 b FL(x)p F4(\))p Gg(.)56 b(It)33 b(also)h(al-)277
+4863 y(lo)n(ws)c(a)f(simple)i(de\002nition)h(of)e(the)g(notion)i(of)d
+(capture)j(a)n(v)n(oiding)h(v)n(ariable)f(substitution,)j(written)277
+4976 y(as)27 b F4([)p FL(x)32 b F4(:=)g FL(t)p F4(])p
+Gg(,)c(b)n(ut)f(we)g(omit)g(to)g(gi)n(v)o(e)g(the)h(de\002nition)h
+(\(see)f(for)f(e)o(xample)h([Gallier,)g(1990,)h(P)o(age)d(4]\).)277
+5088 y(Later)l(,)h(it)f(will)g(be)h(con)l(v)o(enient)i(to)d(e)o(xtend)i
+(this)f(notion)g(to)g(conte)o(xts.)39 b(F)o(or)25 b(instance)j
+F4(\000[)p FL(x)j F4(:=)f FL(t)p F4(])c Gg(will)277 5201
+y(be)e(tak)o(en)g(to)g(mean)f(that)i(the)e(substitution)k
+F4([)p FL(x)f F4(:=)f FL(t)p F4(])e Gg(is)g(applied)j(to)d(e)n(v)o(ery)
+h(formula)h(in)e F4(\000)p Gg(.)p Black Black eop end
+%%Page: 42 54
+TeXDict begin 42 53 bop Black -144 51 a Gb(42)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 462 317 a Gg(W)-7
+b(e)25 b(are)g(no)n(w)f(ready)j(to)e(de\002ne)g(the)g(sequent)i
+(calculus)h(for)d(\002rst-order)i(classical)g(logic.)34
+b(There)321 430 y(are)24 b(four)g(rules)h(to)e(go)o(v)o(ern)i(the)e
+(quanti\002ers,)j F7(viz.)p Black Black 916 640 a Ga(x)17
+b F4(:)g Ga(B)5 b F4([)p FL(x)25 b F4(:=)h FL(t)p F4(])p
+Ga(;)15 b F4(\000)p 1490 628 11 41 v 1501 610 46 5 v
+96 w(\001)p 916 683 727 4 v 995 763 a Ga(y)20 b F4(:)d
+F6(8)p FL(x)p Ga(:B)5 b(;)15 b F4(\000)p 1411 751 11
+41 v 1421 732 46 5 v 96 w(\001)1683 707 y F6(8)1734 721
+y Gc(L)2075 640 y F4(\000)p 2152 628 11 41 v 2162 610
+46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(B)5 b F4([)p
+FL(x)25 b F4(:=)g FL(y)q F4(])p 2075 683 733 4 v 2161
+763 a(\000)p 2238 751 11 41 v 2249 732 46 5 v 97 w(\001)p
+Ga(;)15 b(b)i F4(:)g F6(8)p FL(x)p Ga(:B)2849 707 y F6(8)2900
+721 y Gc(R)911 912 y Ga(x)g F4(:)g Ga(B)5 b F4([)p FL(x)25
+b F4(:=)g FL(y)q F4(])p Ga(;)15 b F4(\000)p 1495 900
+11 41 v 1506 882 46 5 v 97 w(\001)p 911 955 737 4 v 995
+1034 a Ga(y)20 b F4(:)d F6(9)p FL(x)p Ga(:B)5 b(;)15
+b F4(\000)p 1411 1022 11 41 v 1421 1004 46 5 v 96 w(\001)1689
+979 y F6(9)1740 993 y Gc(L)2080 912 y F4(\000)p 2157
+900 11 41 v 2167 882 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h
+Ga(B)5 b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])p 2080
+955 723 4 v 2161 1034 a(\000)p 2238 1022 11 41 v 2249
+1004 46 5 v 97 w(\001)p Ga(;)15 b(b)i F4(:)g F6(9)p FL(x)p
+Ga(:B)2844 979 y F6(9)2895 993 y Gc(R)321 1253 y Gg(The)25
+b F6(8)538 1267 y Gc(R)619 1253 y Gg(and)g F6(9)825 1267
+y Gc(L)901 1253 y Gg(rules)g(are)g(subject)i(to)d(the)h(usual)h(pro)o
+(viso)h(that)e FL(y)g Gg(should)i(not)e(appear)h(freely)g(in)f
+F4(\000)321 1366 y Gg(and)k F4(\001)p Gg(.)44 b(W)-7
+b(e)28 b(obtain)i(the)f(\002rst-order)h(system)g(by)e(adding)j(these)f
+(rules)f(to)g(the)g(calculus)i(sho)n(wn)e(in)321 1479
+y(Figure)24 b(2.2.)29 b(The)23 b(ne)n(w)g(rules)h(gi)n(v)o(e)g(rise)g
+(to)f(the)h(term)g(annotations)j(gi)n(v)o(en)d(ne)o(xt.)p
+Black 321 1667 a Gb(De\002nition)18 b(2.4.1)h Gg(\(Ra)o(w)e(T)-6
+b(erms)18 b(for)h(Quanti\002ers\))p Gb(:)p Black 36 w
+Gg(W)-7 b(e)18 b(e)o(xtend)i(the)f(grammar)g(gi)n(v)o(en)g(in)g
+(De\002nition)321 1780 y(2.2.1)24 b(with)f(the)h(follo)n(wing)h
+(clauses:)p Black Black 927 1976 a Ga(M)5 b(;)15 b(N)110
+b F4(::=)100 b FL(Exists)1684 1990 y Gc(R)1742 1976 y
+F4(\()1777 1964 y FX(h)1805 1976 y Ga(a)r F4(:)r Ga(B)1956
+1964 y FX(i)1983 1976 y Ga(M)10 b(;)15 b FL(t)p Ga(;)g(b)p
+F4(\))265 b Gg(e)o(xists-right)1291 2106 y F6(j)148 b
+FL(Exists)1684 2120 y Gc(L)1736 2106 y F4(\()1771 2094
+y F9(\()1799 2106 y Ga(x)r F4(:)r Ga(B)1954 2094 y F9(\))1981
+2106 y F4([)p FL(y)q F4(])p Ga(M)11 b(;)k(y)s F4(\))237
+b Gg(e)o(xists-left)1291 2235 y F6(j)148 b FL(F)m(o)m(rall)1674
+2249 y Gc(R)1732 2235 y F4(\()1767 2223 y FX(h)1795 2235
+y Ga(a)r F4(:)r Ga(B)1946 2223 y FX(i)1973 2235 y F4([)p
+FL(y)q F4(])p Ga(M)11 b(;)k(b)p F4(\))254 b Gg(forall-right)1291
+2364 y F6(j)148 b FL(F)m(o)m(rall)1674 2378 y Gc(L)1726
+2364 y F4(\()1761 2352 y F9(\()1789 2364 y Ga(x)r F4(:)r
+Ga(B)1944 2352 y F9(\))1971 2364 y Ga(M)10 b(;)15 b FL(t)p
+Ga(;)g(y)s F4(\))268 b Gg(forall-left)321 2574 y(where)24
+b FL(y)g Gg(is)f(a)h(v)n(ariable)h(and)f FL(t)e Gg(is)i(an)f(e)o
+(xpression;)k(square)e(brack)o(ets)g(denote)h(a)d(ne)n(w)g(binding)i
+(opera-)321 2687 y(tion)f(for)g(v)n(ariables.)31 b(Thus)24
+b F4([)p FL(y)q F4(])p Ga(M)33 b Gg(means)24 b(that)g
+FL(y)g Gg(becomes)h(bound)g(in)e Ga(M)10 b Gg(.)321 2941
+y(Notice)27 b(that)g(in)f(the)h(clauses)h(for)f(e)o(xists-right)i(and)e
+(forall-left)i(we)c(ha)n(v)o(e)i(to)g(record)g(an)g(e)o(xpression)321
+3054 y(\(this)f(will)e(become)i(clearer)g(when)f(we)f(de\002ne)h(the)g
+(cut-reductions\).)37 b(W)-7 b(e)24 b(can)h(no)n(w)f(gi)n(v)o(e)h(the)g
+(rules)321 3167 y(for)f(forming)h(typing)g(judgements.)p
+Black Black 625 3377 a Ga(x)17 b F4(:)h Ga(B)5 b F4([)p
+FL(x)24 b F4(:=)i FL(t)p F4(])p Ga(;)15 b F4(\000)1204
+3365 y Gc(.)1259 3377 y Ga(M)1382 3365 y Gc(.)1437 3377
+y F4(\001)p 403 3420 1332 4 v 403 3505 a Ga(y)20 b F4(:)e
+F6(8)p FL(x)p Ga(:B)5 b(;)15 b F4(\000)824 3493 y Gc(.)879
+3505 y FL(F)m(o)m(rall)1090 3519 y Gc(L)1142 3505 y F4(\()1177
+3493 y F9(\()1205 3505 y Ga(x)1257 3493 y F9(\))1284
+3505 y Ga(M)10 b(;)15 b FL(t)p Ga(;)g(y)s F4(\))1604
+3493 y Gc(.)1659 3505 y F4(\001)1776 3444 y F6(8)1827
+3458 y Gc(L)2215 3377 y F4(\000)2297 3365 y Gc(.)2352
+3377 y Ga(M)2475 3365 y Gc(.)2530 3377 y F4(\001)p Ga(;)g(a)i
+F4(:)h Ga(B)5 b F4([)p FL(x)25 b F4(:=)g FL(y)q F4(])p
+1994 3420 1337 4 v 1994 3505 a(\000)2076 3493 y Gc(.)2131
+3505 y FL(F)m(o)m(rall)2341 3519 y Gc(R)2399 3505 y F4(\()2434
+3493 y FX(h)2462 3505 y Ga(a)2510 3493 y FX(i)2537 3505
+y F4([)p FL(y)q F4(])p Ga(M)11 b(;)k(b)p F4(\))2869 3493
+y Gc(.)2924 3505 y F4(\001)p Ga(;)g(b)i F4(:)h F6(8)p
+FL(x)p Ga(:B)3371 3444 y F6(8)3422 3458 y Gc(R)620 3701
+y Ga(x)f F4(:)g Ga(B)5 b F4([)p FL(x)25 b F4(:=)h FL(y)q
+F4(])p Ga(;)15 b F4(\000)1209 3689 y Gc(.)1264 3701 y
+Ga(M)1388 3689 y Gc(.)1443 3701 y F4(\001)p 388 3744
+1363 4 v 388 3829 a Ga(y)20 b F4(:)d F6(9)p FL(x)p Ga(:B)5
+b(;)15 b F4(\000)809 3817 y Gc(.)864 3829 y FL(Exists)1084
+3843 y Gc(L)1137 3829 y F4(\()1172 3817 y F9(\()1199
+3829 y Ga(x)1251 3817 y F9(\))1279 3829 y F4([)p FL(y)q
+F4(])p Ga(M)c(;)k(y)s F4(\))1619 3817 y Gc(.)1674 3829
+y F4(\001)1792 3768 y F6(9)1843 3782 y Gc(L)2220 3701
+y F4(\000)2302 3689 y Gc(.)2357 3701 y Ga(M)2480 3689
+y Gc(.)2535 3701 y F4(\001)p Ga(;)g(a)i F4(:)h Ga(B)5
+b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])p 1999 3744 1326
+4 v 1999 3829 a(\000)2081 3817 y Gc(.)2136 3829 y FL(Exists)2356
+3843 y Gc(R)2414 3829 y F4(\()2449 3817 y FX(h)2477 3829
+y Ga(a)2525 3817 y FX(i)2552 3829 y Ga(M)11 b(;)k FL(t)p
+Ga(;)g(b)p F4(\))2864 3817 y Gc(.)2919 3829 y F4(\001)p
+Ga(;)g(b)i F4(:)h F6(9)p FL(x)p Ga(:B)3366 3768 y F6(9)3417
+3782 y Gc(R)321 4048 y Gg(Again,)31 b(the)g F6(8)788
+4062 y Gc(R)874 4048 y Gg(and)f F6(9)1085 4062 y Gc(L)1166
+4048 y Gg(rules)h(are)f(subject)i(to)d(the)h(pro)o(viso)i(that)e
+FL(y)h Gg(does)f(not)h(occur)g(freely)g(in)f F4(\000)321
+4161 y Gg(and)c F4(\001)p Gg(.)31 b(Since)25 b(the)h(logical)g
+(cut-reductions)j(for)c(the)h(quanti\002ers)h(include)f(v)n(ariable)h
+(substitutions,)321 4274 y(we)33 b(need)i(a)e(corresponding)38
+b(operation)f(for)d(terms.)59 b(Assuming)35 b(the)f(Barendre)o
+(gt-style)k(naming)321 4386 y(con)l(v)o(ention)27 b(for)d(v)n
+(ariables,)h(this)f(operation)i(is)e(de\002ned)g(as)f(follo)n(ws.)p
+Black 321 4574 a Gb(De\002nition)g(2.4.2)g Gg(\(V)-10
+b(ariable)25 b(Substitution)i(for)c(T)-6 b(erms\))p Gb(:)p
+Black 34 w Gg(The)23 b(four)h(non-tri)n(vial)j(cases)d(are:)p
+Black Black 680 4794 a FL(Exists)900 4808 y Gc(R)958
+4794 y F4(\()993 4782 y FX(h)1021 4794 y Ga(a)1069 4782
+y FX(i)1096 4794 y Ga(M)10 b(;)15 b FL(s)p Ga(;)g(b)p
+F4(\)[)p FL(x)27 b F4(:=)e FL(t)p F4(])1756 4742 y F5(def)1763
+4794 y F4(=)106 b FL(Exists)2161 4808 y Gc(R)2218 4794
+y F4(\()2253 4782 y FX(h)2281 4794 y Ga(a)2329 4782 y
+FX(i)2382 4794 y Ga(M)10 b F4([)p FL(x)25 b F4(:=)h FL(t)p
+F4(])p Ga(;)15 b FL(s)p F4([)p FL(x)25 b F4(:=)h FL(t)p
+F4(])p Ga(;)15 b(b)p F4(\))654 4934 y FL(Exists)875 4948
+y Gc(L)927 4934 y F4(\()962 4922 y F9(\()990 4934 y Ga(x)1042
+4922 y F9(\))1069 4934 y F4([)p FL(y)q F4(])p Ga(M)c(;)k(y)s
+F4(\)[)p FL(x)26 b F4(:=)f FL(t)p F4(])1756 4882 y F5(def)1763
+4934 y F4(=)106 b FL(Exists)2161 4948 y Gc(L)2213 4934
+y F4(\()2248 4922 y F9(\()2276 4934 y Ga(x)2328 4922
+y F9(\))2355 4934 y F4([)p FL(y)q F4(])26 b Ga(M)10 b
+F4([)p FL(x)25 b F4(:=)h FL(t)p F4(])p Ga(;)15 b(b)p
+F4(\))671 5073 y FL(F)m(o)m(rall)882 5087 y Gc(R)940
+5073 y F4(\()975 5061 y FX(h)1002 5073 y Ga(a)1050 5061
+y FX(i)1078 5073 y F4([)p FL(y)q F4(])p Ga(M)c(;)k(b)p
+F4(\)[)p FL(x)26 b F4(:=)f FL(t)p F4(])1756 5022 y F5(def)1763
+5073 y F4(=)106 b FL(F)m(o)m(rall)2151 5087 y Gc(R)2208
+5073 y F4(\()2243 5061 y FX(h)2271 5073 y Ga(a)2319 5061
+y FX(i)2347 5073 y F4([)p FL(y)q F4(])25 b Ga(M)10 b
+F4([)p FL(x)26 b F4(:=)f FL(t)p F4(])p Ga(;)15 b(b)p
+F4(\))683 5213 y FL(F)m(o)m(rall)893 5227 y Gc(L)945
+5213 y F4(\()980 5201 y F9(\()1008 5213 y Ga(x)1060 5201
+y F9(\))1087 5213 y Ga(M)c(;)k FL(s)p Ga(;)g(y)s F4(\)[)p
+FL(x)26 b F4(:=)f FL(t)p F4(])1756 5162 y F5(def)1763
+5213 y F4(=)106 b FL(F)m(o)m(rall)2151 5227 y Gc(L)2203
+5213 y F4(\()2238 5201 y F9(\()2265 5213 y Ga(x)2317
+5201 y F9(\))2370 5213 y Ga(M)10 b F4([)p FL(x)26 b F4(:=)f
+FL(t)p F4(])p Ga(;)15 b FL(s)p F4([)p FL(x)26 b F4(:=)f
+FL(t)p F4(])p Ga(;)15 b(b)p F4(\))p Black Black eop end
+%%Page: 43 55
+TeXDict begin 43 54 bop Black 277 51 a Gb(2.4)23 b(First-Order)i
+(Classical)g(Logic)2399 b(43)p 277 88 3691 4 v Black
+418 317 a Gg(W)-7 b(e)23 b(should)j(point)f(out)g(that)f(our)h(use)f
+(of)g(the)h(Barendre)o(gt-style)i(naming)e(con)l(v)o(ention)j(for)c(v)n
+(ari-)277 430 y(ables)37 b(corresponds)i(to)d(the)g F7(pur)m
+(e-variable)j(con)l(vention)g Gg(commonly)e(used)g(in)e(treatises)j(of)
+e(cut-)277 543 y(elimination)30 b(based)e(on)f(sequent)i(proofs)f
+(\(for)g(e)o(xample)g([T)m(roelstra)g(and)g(Schwichtenber)n(g,)i(1996,)
+277 656 y(P)o(age)c(58]\).)36 b(This)26 b(con)l(v)o(ention)j(is)d
+(vital)h(in)f(the)g(cut-elimination)j(procedure,)g(since)e(without)g
+(it)f(not)277 769 y(all)e(\002rst-order)h(proofs)g(will)e(ha)n(v)o(e)h
+(a)f(cut-free)j(normal)e(form.)418 903 y(Whilst)37 b(the)f(e)o
+(xtension)j(of)d(the)g(proof)h(substitution)j(sho)n(wn)d(in)f(Figure)g
+(2.4)g(and)h(the)f(corre-)277 1016 y(sponding)26 b(adaptation)h(of)d
+(the)g(reduction)1704 979 y Gc(c)1634 1016 y F6(\000)-31
+b(\000)g(!)22 b Gg(for)i(the)g(\002rst-order)i(case)e(are)g(quite)h
+(easy)-6 b(,)24 b(and)h(thus)277 1129 y(not)k(e)o(xplained,)k(the)c
+(reduction)i(rules)f(for)f(logical)i(cuts)e(need)h(some)f(e)o
+(xplanation.)48 b(Consider)30 b(the)277 1242 y(de\002nition)25
+b(belo)n(w)-6 b(.)p Black 277 1429 a Gb(De\002nition)23
+b(2.4.3)g Gg(\(Cut-Reductions)k(for)d(Quanti\002ers\))p
+Gb(:)p Black Black Black 442 1639 a FL(Cut)p F4(\()615
+1627 y FX(h)642 1639 y Ga(b)681 1627 y FX(i)709 1639
+y FL(Exists)929 1653 y Gc(R)987 1639 y F4(\()1022 1627
+y FX(h)1050 1639 y Ga(a)1098 1627 y FX(i)1125 1639 y
+Ga(M)10 b(;)15 b FL(t)p Ga(;)g(b)p F4(\))q Ga(;)1451
+1627 y F9(\()1479 1639 y Ga(y)1527 1627 y F9(\))1555
+1639 y FL(Exists)1775 1653 y Gc(L)1827 1639 y F4(\()1862
+1627 y F9(\()1890 1639 y Ga(x)1942 1627 y F9(\))1969
+1639 y F4([)p FL(y)q F4(])p Ga(N)c(;)k(y)s F4(\))q(\))516
+1738 y Gc(l)442 1776 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p
+F4(\()810 1764 y FX(h)838 1776 y Ga(a)886 1764 y FX(i)913
+1776 y Ga(M)10 b(;)1051 1764 y F9(\()1079 1776 y Ga(x)1131
+1764 y F9(\))1159 1776 y Ga(N)g F4([)p FL(y)26 b F4(:=)g
+FL(t)p F4(]\))724 1936 y Gg(if)e FL(Exists)1023 1950
+y Gc(R)1081 1936 y F4(\()1116 1924 y FX(h)1143 1936 y
+Ga(a)1191 1924 y FX(i)1219 1936 y Ga(M)10 b(;)15 b FL(t)p
+Ga(;)g(b)p F4(\))24 b Gg(and)g FL(Exists)1902 1950 y
+Gc(L)1954 1936 y F4(\()1989 1924 y F9(\()2017 1936 y
+Ga(x)2069 1924 y F9(\))2097 1936 y F4([)p FL(y)q F4(])p
+Ga(N)10 b(;)15 b(y)s F4(\))24 b Gg(freshly)h(introduce)h
+Ga(a)d Gg(and)h Ga(x)442 2167 y FL(Cut)p F4(\()615 2155
+y FX(h)642 2167 y Ga(b)681 2155 y FX(i)709 2167 y FL(F)m(o)m(rall)919
+2181 y Gc(R)977 2167 y F4(\()1012 2155 y FX(h)1040 2167
+y Ga(a)1088 2155 y FX(i)1115 2167 y F4([)p FL(y)q F4(])p
+Ga(M)11 b(;)k(b)p F4(\))q Ga(;)1462 2155 y F9(\()1490
+2167 y Ga(y)1538 2155 y F9(\))1565 2167 y FL(F)m(o)m(rall)1775
+2181 y Gc(L)1827 2167 y F4(\()1862 2155 y F9(\()1890
+2167 y Ga(x)1942 2155 y F9(\))1970 2167 y Ga(N)10 b(;)15
+b FL(t)p Ga(;)g(y)s F4(\)\))516 2266 y Gc(l)442 2303
+y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p F4(\()810 2291
+y FX(h)838 2303 y Ga(a)886 2291 y FX(i)913 2303 y Ga(M)10
+b F4([)p FL(y)27 b F4(:=)e FL(t)p F4(])p Ga(;)1324 2291
+y F9(\()1352 2303 y Ga(x)1404 2291 y F9(\))1432 2303
+y Ga(N)10 b F4(\))724 2463 y Gg(if)24 b FL(F)m(o)m(rall)1013
+2477 y Gc(R)1071 2463 y F4(\()1106 2451 y FX(h)1133 2463
+y Ga(a)1181 2451 y FX(i)1209 2463 y F4([)p FL(y)q F4(])p
+Ga(M)11 b(;)k(b)p F4(\))23 b Gg(and)h FL(F)m(o)m(rall)1903
+2477 y Gc(L)1955 2463 y F4(\()1990 2451 y F9(\()2017
+2463 y Ga(x)2069 2451 y F9(\))2097 2463 y Ga(N)10 b(;)15
+b FL(t)p Ga(;)g(y)s F4(\))23 b Gg(freshly)j(introduce)g
+Ga(a)c Gg(and)i Ga(x)277 2713 y Gg(W)-7 b(e)18 b(must)h(ensure)h(that)f
+(reducing)i(a)d(v)n(alid)h(proof)h(yields)g(again)g(a)e(v)n(alid)h
+(proof)h(\(in)f(the)g(sense)h(of)e(being)277 2826 y(deri)n(v)n(able)j
+(by)f(the)f(inference)j(rules\).)28 b(This)19 b(holds)h(only)g(if)f
+(some)h(alpha-con)l(v)o(ersions)k(are)c(made.)27 b(An)277
+2939 y(e)o(xample)i(where)f(such)h(a)f(con)l(v)o(ersion)j(is)c
+(necessary)k(w)o(as)d(gi)n(v)o(en)g(by)g(Kleene)h([1952a,)h(P)o(age)e
+(450],)277 3052 y(and)34 b(T)m(roelstra)h(and)e(Schwichtenber)n(g)k
+([1996,)g(P)o(age)c(58].)58 b(W)-7 b(e)33 b(assume)h(these)g(con)l(v)o
+(ersions)j(are)277 3165 y(done)25 b(implicitly)-6 b(.)418
+3299 y(In)37 b(the)h(sequel)g(we)e(shall)i(tak)o(e)1557
+3262 y Gc(l)1483 3299 y F6(\000)-31 b(\000)g(!)o Gg(,)1786
+3262 y Gc(c)1716 3299 y F6(\000)g(\000)f(!)p Gg(,)39
+b F4([)p Ga(\033)s F4(])e Gg(and)h FY(T)e Gg(to)h(denote)i(the)e
+(notions)i(for)e(\002rst-)277 3412 y(order)28 b(classical)i(logic.)40
+b(The)27 b(de\002nitions)i(are)e(laborious,)j(b)n(ut)e(straightforw)o
+(ard)j(gi)n(v)o(en)c(the)h(details)277 3524 y(pro)o(vided)f(for)d(the)h
+(propositional)k(calculus.)34 b(The)24 b(cut-elimination)k(procedure)f
+(for)e(the)g(\002rst-order)277 3637 y(system)f(is)g(de\002ned)g(as)g
+(follo)n(ws.)p Black 277 3825 a Gb(De\002nition)f(2.4.4)g
+Gg(\(Cut-Elimination)j(for)e(First-Order)h(Classical)g(Logic\))p
+Gb(:)p Black 277 3938 a Gg(The)c(cut-elimination)26 b(procedure)e(for)e
+(\002rst-order)i(classical)f(logic,)g F4(\()p FY(T)t
+Ga(;)2630 3901 y Gc(cut)2599 3938 y F6(\000)-31 b(\000)f(!)p
+F4(\))p Gg(,)22 b(is)f(a)g(reduction)k(sys-)277 4051
+y(tem)e(where:)p Black 414 4273 a F6(\017)p Black 45
+w FY(T)g Gg(is)h(the)f(set)h(of)g(well-typed)h(\(\002rst-order\))h
+(terms,)d(and)p Black 414 4478 a F6(\017)p Black 535
+4441 a Gc(cut)504 4478 y F6(\000)-31 b(\000)g(!)22 b
+Gg(consists)k(of)d(the)h(reductions)j(for)c(logical)j(cuts)e(and)g
+(commuting)h(cuts;)f(that)g(is)1618 4680 y Gc(cut)1587
+4717 y F6(\000)-31 b(\000)f(!)1782 4666 y F5(def)1789
+4717 y F4(=)1967 4680 y Gc(l)1892 4717 y F6(\000)h(\000)g(!)25
+b([)2244 4680 y Gc(c)2174 4717 y F6(\000)-31 b(\000)f(!)50
+b Ga(:)277 4976 y Gg(W)-7 b(e)30 b(should)j(no)n(w)e(pro)o(v)o(e)h
+(that)1316 4938 y Gc(cut)1286 4976 y F6(\000)-32 b(\000)h(!)30
+b Gg(still)i(respects)h(the)f(subject)h(reduction)h(property)-6
+b(.)54 b(Ho)n(we)n(v)o(er)l(,)277 5088 y(this)35 b(proof)g(is)f(a)f
+(straightforw)o(ard)38 b(e)o(xtension)e(of)e(the)g(proof)h(of)f
+(Proposition)j(2.2.10.)60 b(The)34 b(only)277 5201 y(additional)26
+b(lemma)e(we)e(need)j(in)e(this)h(proof)h(is)e(as)h(follo)n(ws.)p
+Black Black eop end
+%%Page: 44 56
+TeXDict begin 44 55 bop Black -144 51 a Gb(44)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black Black 321 317 a(Lemma)30
+b(2.4.5:)p Black 34 w Gg(If)69 b F4(\000)1105 305 y Gc(.)1160
+317 y Ga(M)1283 305 y Gc(.)1338 317 y F4(\001)e Gg(is)31
+b(a)f(typing)i(judgement,)i(then)d(for)g(an)f(arbitrary)j(substitution)
+321 430 y F4([)p FL(x)26 b F4(:=)f FL(t)p F4(])e Gg(also)h
+F4(\000[)p FL(x)h F4(:=)g FL(t)p F4(])1139 418 y Gc(.)1194
+430 y Ga(M)10 b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])1589
+418 y Gc(.)1644 430 y F4(\001[)p FL(x)g F4(:=)g FL(t)p
+F4(])p Gg(.)p Black 321 643 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(By)e(induction)j(on)e(the)f(structure)j(of)e
+Ga(M)10 b Gg(.)p 3480 643 4 62 v 3484 585 55 4 v 3484
+643 V 3538 643 4 62 v 321 847 a(W)-7 b(e)20 b(conclude)j(this)e
+(section)h(with)e(the)h(strong)h(normalisation)h(theorem)f(for)e(the)h
+(\002rst-order)h(system.)p Black 321 1035 a Gb(Theor)n(em)j(2.4.6:)p
+Black 34 w Gg(The)g(reduction)i(system)f F4(\()p FY(T)t
+Ga(;)1915 998 y Gc(cut)1885 1035 y F6(\000)-32 b(\000)h(!)p
+F4(\))24 b Gg(for)h(\002rst)g(order)h(classical)h(logic)f(is)e
+(strongly)321 1148 y(normalising.)p Black 321 1360 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(The)g(proof)j(is)e(similar)g(to)g(the)h
+(strong)g(normalisation)i(proof)f(for)e(the)g(propositional)k(calcu-)
+321 1473 y(lus,)24 b(and)g(for)g(space)g(reasons)i(all)d(b)n(ut)h(the)g
+(follo)n(wing)h(details)g(are)f(omitted.)p Black 458
+1663 a F6(\017)p Black 46 w Gg(An)c(auxiliary)j(substitution,)i
+F6(f)p 1538 1663 28 4 v 1556 1663 V 1573 1663 V 65 w(g)p
+Gg(,)20 b(and)i(an)f(auxiliary)i(reduction,)2697 1626
+y Gc(aux)2677 1663 y F6(\000)-32 b(\000)h(!)p Gg(,)20
+b(need)i(to)f(be)g(de\002ned)549 1776 y(along)28 b(the)g(lines)g(of)f
+(the)h(de\002nitions)h(gi)n(v)o(en)f(for)f(the)h(propositional)j
+(calculus.)42 b(This)28 b(a)n(v)n(oids)549 1889 y(the)23
+b(problem)i(of)f F4([)p 1134 1889 V 1152 1889 V 1169
+1889 V 64 w(])f Gg(where)h(safe)g(substitutions)k(do)23
+b(not)h(commute.)p Black 458 2036 a F6(\017)p Black 46
+w Gg(The)k(candidates)33 b(need)d(to)f(be)g(e)o(xtended)i(for)f
+(quanti\002ed)h(formulae;)j(Figure)29 b(2.8)h(gi)n(v)o(es)f(the)549
+2149 y(corresponding)e(set)d(operators.)p Black 458 2297
+a F6(\017)p Black 46 w Gg(The)g(induction)k(in)d(Lemma)f(2.3.18)h
+(includes)j(in)d(the)g(\002rst-order)i(system)e(a)g(closing)i(substi-)
+549 2410 y(tution)d(for)g(v)n(ariables.)p 3480 2410 4
+62 v 3484 2352 55 4 v 3484 2410 V 3538 2410 4 62 v 321
+2565 a(Unless)g(otherwise)h(stated,)f(we)f(henceforth)j(assume)e(that)f
+F4(\()p FY(T)t Ga(;)2376 2528 y Gc(cut)2345 2565 y F6(\000)-31
+b(\000)g(!)o F4(\))23 b Gg(and)h F4(\()p FY(T)t Ga(;)2880
+2528 y Gc(aux)2860 2565 y F6(\000)-32 b(\000)h(!)p F4(\))23
+b Gg(refer)h(to)f(\002rst-)321 2678 y(order)i(classical)h(logic.)321
+2984 y Ge(2.5)119 b(V)-11 b(ariations)30 b(of)g(the)g(Sequent)i
+(Calculus)321 3208 y Gg(Designing)25 b(a)d(logical)j(calculus)f(is)f
+(lik)o(e)g(composing)i(a)d(fugue:)30 b(there)24 b(are)f(man)o(y)g(v)n
+(ariations.)30 b(A)22 b(nat-)321 3321 y(ural)28 b(question)i(is)e(to)f
+(what)h(e)o(xtent)g(the)g(strong)h(normalisation)i(result)e(depends)g
+(on)f(our)g(particular)321 3434 y(formulation)35 b(of)d(the)g
+(inference)j(rules.)55 b(Some)31 b(aspects)j(of)e(our)h(rules)g(are)f
+(crucial)i(in)e(the)g(strong)321 3547 y(normalisation)d(proof;)f
+(others)f(are)f(not.)35 b(The)25 b(use)h(of)g(sets)g(of)g(labelled)h
+(formulae)g(as)f(conte)o(xts,)h(for)321 3660 y(e)o(xample,)d(plays)h
+(an)f(important)h(r)8 b(\210)-38 b(ole.)29 b(Labels)24
+b(allo)n(w)g(us)g(to)f(distinguish)k(dif)n(ferent)e(formula)g(occur)n
+(-)321 3772 y(rences)h(in)e(a)g(typing)i(deri)n(v)n(ation.)34
+b(This)25 b(is)f(an)g(indispensable)29 b(pro)o(viso)d(for)e(a)g(strong)
+i(normalisation)321 3885 y(proof)j(b)n(uilt)f(around)h(the)e(notion)i
+(of)e(candidates;)33 b(see)27 b([Lei)n(v)n(ant,)h(1979].)41
+b(On)27 b(the)g(other)h(hand,)h(the)321 3998 y(speci\002c)g(form)e(of)g
+(our)h(inference)i(rules)f(is)e(irrele)n(v)n(ant,)j(in)d(the)h(sense)h
+(that)f(our)g(candidate)i(method)321 4111 y(e)o(xtends)24
+b(to)f(other)g(formulations)j(of)c(the)h(inference)i(rules.)k(W)-7
+b(e)21 b(shall)j(gi)n(v)o(e)e(some)h(e)o(xamples)h(belo)n(w)-6
+b(.)462 4241 y(First,)33 b(there)e(are)g(alternati)n(v)o(e)i
+(formulations)h(for)c(and-left)j(and)e(or)n(-right.)52
+b(The)31 b(and-left)h(rule,)321 4354 y(for)24 b(instance,)h(may)f(be)f
+(of)h(the)f(form)p Black Black 781 4543 a Ga(x)17 b F4(:)g
+Ga(B)961 4557 y Gc(i)989 4543 y Ga(;)e F4(\000)p 1107
+4531 11 41 v 1117 4513 46 5 v 97 w(\001)p 693 4580 653
+4 v 693 4659 a Ga(z)22 b F4(:)17 b Ga(B)868 4673 y F9(1)908
+4659 y F6(^)o Ga(B)1037 4673 y F9(2)1077 4659 y Ga(;)e
+F4(\000)p 1194 4647 11 41 v 1204 4629 46 5 v 96 w(\001)1387
+4602 y F6(^)1448 4617 y Gc(L)1496 4627 y FZ(i)1577 4602
+y F4(\()p Ga(i)26 b F4(=)f(1)p Ga(;)15 b F4(2\))2078
+4612 y Gg(or)2301 4543 y Ga(x)i F4(:)h Ga(B)5 b(;)15
+b(y)k F4(:)f Ga(C)q(;)d F4(\000)p 2818 4531 11 41 v 2828
+4513 46 5 v 97 w(\001)p 2301 4580 669 4 v 2347 4659 a
+Ga(z)22 b F4(:)17 b Ga(B)5 b F6(^)o Ga(C)q(;)15 b F4(\000)p
+2771 4647 11 41 v 2782 4629 46 5 v 97 w(\001)3011 4602
+y F6(^)3072 4569 y FX(0)3072 4629 y Gc(L)3149 4602 y
+Ga(:)321 4863 y Gg(The)24 b(\002rst)f(rule,)h(which)g(we)f(included)j
+(in)e(our)g(sequent)i(calculus,)f(is)f(often)h(referred)g(to)f(as)f
+(the)i(addi-)321 4976 y(ti)n(v)o(e)20 b(v)n(ariant)h(of)f(the)g
+(and-left)i(rule,)f(and)f(the)g(second)i(as)e(the)g(multiplicati)n(v)o
+(e)i(v)n(ariant.)29 b(If)20 b(we)f(are)h(only)321 5088
+y(interested)29 b(in)e(pro)o(v)n(ability)-6 b(,)30 b(it)c(is)g(not)h
+(dif)n(\002cult)g(to)g(sho)n(w)f(that)h(in)g(classical)h(logic)g(the)f
+(tw)o(o)f(v)n(ariants)321 5201 y(are)31 b(interderi)n(v)n(able.)55
+b(By)30 b(this)i(we)e(mean)h(that)h(one)f(can)h(be)f(deri)n(v)o(ed)h
+(from)f(the)g(other)-5 b(.)52 b(Ho)n(we)n(v)o(er)l(,)321
+5314 y(their)23 b(tw)o(o)f(beha)n(viours)k(in)c(the)g(process)i(of)e
+(cut-elimination)k(are)c(rather)i(dif)n(ferent.)30 b(Whereas)23
+b(a)f(cut-)321 5427 y(instance)27 b F6(^)703 5441 y Gc(R)761
+5427 y Ga(=)p F6(^)867 5441 y Gc(L)915 5451 y FZ(i)969
+5427 y Gg(is)e(replaced)h(by)f(a)e(single)j(cut)f(on)f(a)g(smaller)i
+(formula,)f(a)f(cut-instance)k F6(^)3330 5441 y Gc(R)3388
+5427 y Ga(=)p F6(^)3494 5394 y FX(0)3494 5454 y Gc(L)p
+Black Black eop end
+%%Page: 45 57
+TeXDict begin 45 56 bop Black 277 51 a Gb(2.5)23 b(V)-8
+b(ariations)25 b(of)e(the)g(Sequent)f(Calculus)2124 b(45)p
+277 88 3691 4 v Black Black 277 229 V 277 1974 4 1746
+v 529 472 a F5(F)t(O)t(R)t(A)t(L)t(L)t(L)t(E)t(F)t(T)986
+487 y FJ(\()p FQ(8)p Ft(x)p FS(:B)s FJ(\))1180 472 y
+FG(\()p FU(X)7 b FG(\))1419 425 y F5(def)1429 472 y FG(=)1604
+302 y FI(8)1604 376 y(<)1604 526 y(:)1719 359 y FJ(\()1745
+371 y FU(y)e FG(:)r FT(8)p FF(x)p FU(:B)1991 359 y FJ(\))2017
+371 y FF(F)n(o)n(rall)2209 383 y FS(L)2259 371 y FG(\()2291
+359 y FJ(\()2317 371 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)25
+b FG(:=)e FF(t)p FG(])2708 359 y FJ(\))2734 371 y FU(M)9
+b(;)14 b FF(t)p FU(;)g(y)s FG(\))22 b FT(j)1908 471 y
+FF(F)n(o)n(rall)2100 483 y FS(L)2150 471 y FG(\()2182
+459 y FJ(\()2208 471 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)j
+FG(:=)e FF(t)p FG(])2599 459 y FJ(\))2625 471 y FU(M)8
+b(;)14 b FF(t)p FU(;)g(y)s FG(\))23 b Gd(freshly)c(introduces)i
+FU(y)s(;)1908 559 y FJ(\()1934 571 y FU(x)r FG(:)r FU(B)t
+FG([)p FF(x)k FG(:=)e FF(t)p FG(])2325 559 y FJ(\))2351
+571 y FU(M)31 b FT(2)24 b FU(X)3646 302 y FI(9)3646 376
+y(=)3646 526 y(;)479 906 y F5(F)t(O)t(R)t(A)t(L)t(L)t(R)t(I)t(G)t(H)t
+(T)983 921 y FQ(h8)p Ft(x)p FS(:B)s FQ(i)1180 906 y FG(\()p
+FU(X)7 b FG(\))1419 859 y F5(def)1429 906 y FG(=)1604
+735 y FI(8)1604 810 y(<)1604 960 y(:)1719 793 y FJ(\()1745
+805 y FU(b)r FG(:)r FT(8)p FF(x)p FU(:B)1983 793 y FJ(\))2009
+805 y FF(F)n(o)n(rall)2201 817 y FS(R)2256 805 y FG(\()2288
+793 y FQ(h)2315 805 y FU(a)r FG(:)r FU(B)t FG([)p FF(x)24
+b FG(:=)f FF(y)q FG(])2711 793 y FQ(i)2738 805 y FG([)p
+FF(y)q FG(])p FU(M)10 b(;)k(b)p FG(\))22 b FT(j)1908
+905 y FF(F)n(o)n(rall)2100 917 y FS(R)2155 905 y FG(\()2187
+893 y FQ(h)2214 905 y FU(a)r FG(:)r FU(B)t FG([)p FF(x)i
+FG(:=)f FF(y)q FG(])2610 893 y FQ(i)2637 905 y FG([)p
+FF(y)q FG(])p FU(M)9 b(;)14 b(b)p FG(\))23 b Gd(freshly)d(introduces)h
+FU(b;)1908 1004 y Gd(for)f(all)j FF(t)g Gd(s.t.)2305
+992 y FJ(\()2331 1004 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)i
+FG(:=)d FF(t)p FG(])2721 992 y FJ(\))2747 1004 y FU(M)32
+b FT(2)23 b FU(X)3661 735 y FI(9)3661 810 y(=)3661 960
+y(;)562 1340 y F5(E)t(X)t(I)t(S)t(T)t(S)t(L)t(E)t(F)t(T)986
+1355 y FJ(\()p FQ(9)p Ft(x)p FS(:B)s FJ(\))1180 1340
+y FG(\()p FU(X)7 b FG(\))1419 1293 y F5(def)1429 1340
+y FG(=)1604 1169 y FI(8)1604 1244 y(<)1604 1394 y(:)1719
+1227 y FJ(\()1745 1239 y FU(y)e FG(:)r FT(9)p FF(x)p
+FU(:B)1990 1227 y FJ(\))2017 1239 y FF(Exists)2219 1251
+y FS(L)2268 1239 y FG(\()2300 1227 y FJ(\()2326 1239
+y FU(x)r FG(:)r FU(B)t FG([)p FF(x)25 b FG(:=)e FF(t)p
+FG(])2717 1227 y FJ(\))2743 1239 y FG([)p FF(y)q FG(])p
+FU(M)9 b(;)14 b(y)s FG(\))23 b FT(j)1908 1339 y FF(Exists)2109
+1351 y FS(L)2159 1339 y FG(\()2191 1327 y FJ(\()2217
+1339 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)i FG(:=)e FF(t)p
+FG(])2608 1327 y FJ(\))2634 1339 y FG([)p FF(y)q FG(])p
+FU(M)9 b(;)14 b(y)s FG(\))23 b Gd(freshly)c(introduces)i
+FU(y)s(;)1908 1438 y Gd(for)f(all)g FF(t)h Gd(s.t.)2300
+1426 y FJ(\()2326 1438 y FU(x)r FG(:)r FU(B)t FG([)p
+FF(x)k FG(:=)e FF(t)p FG(])2717 1426 y FJ(\))2743 1438
+y FU(M)31 b FT(2)24 b FU(X)3674 1169 y FI(9)3674 1244
+y(=)3674 1394 y(;)512 1774 y F5(E)t(X)t(I)t(S)t(T)t(S)t(R)t(I)t(G)t(H)t
+(T)983 1789 y FQ(h9)p Ft(x)p FS(:B)s FQ(i)1180 1774 y
+FG(\()p FU(X)7 b FG(\))1419 1726 y F5(def)1429 1774 y
+FG(=)1604 1603 y FI(8)1604 1678 y(<)1604 1828 y(:)1719
+1661 y FJ(\()1745 1673 y FU(b)r FG(:)r FT(9)p FF(x)p
+FU(:B)1982 1661 y FJ(\))2009 1673 y FF(Exists)2211 1685
+y FS(R)2265 1673 y FG(\()2297 1661 y FQ(h)2324 1673 y
+FU(a)r FG(:)r FU(B)t FG([)p FF(x)25 b FG(:=)d FF(y)q
+FG(])2720 1661 y FQ(i)2748 1673 y FU(M)8 b(;)14 b FF(t)p
+FU(;)g(b)p FG(\))23 b FT(j)1908 1773 y FF(Exists)2109
+1785 y FS(R)2164 1773 y FG(\()2196 1761 y FQ(h)2223 1773
+y FU(a)r FG(:)r FU(B)t FG([)p FF(x)h FG(:=)f FF(y)q FG(])2619
+1761 y FQ(i)2646 1773 y FU(M)9 b(;)14 b FF(t)p FU(;)g(b)p
+FG(\))23 b Gd(freshly)c(introduces)i FU(b;)1908 1860
+y FJ(\()1934 1872 y FU(x)r FG(:)r FU(B)t FG([)p FF(x)k
+FG(:=)e FF(t)p FG(])2325 1860 y FJ(\))2351 1872 y FU(M)31
+b FT(2)24 b FU(X)3651 1603 y FI(9)3651 1678 y(=)3651
+1828 y(;)p 3965 1974 V 277 1977 3691 4 v Black 854 2131
+a Gg(Figure)g(2.8:)29 b(De\002nition)c(of)e(the)h(set)g(operators)i
+(for)e(quanti\002ers.)p Black Black 277 2553 a(is)k(replaced)i(by)f(tw)
+o(o)f(cuts,)h(and)g(one)g(can)f(choose)i(the)e(order)i(in)e(which)g
+(these)h(cuts)g(appear)h(in)e(the)277 2666 y(reduct.)h(Gi)n(v)o(en)19
+b(the)h(term)g(assignment)i(for)d F6(^)1720 2633 y FX(0)1720
+2693 y Gc(L)1791 2666 y Gg(sho)n(wn)h(in)f(Figure)h(2.9,)g(we)f(thus)i
+(ha)n(v)o(e)f(the)g(reduction)277 2779 y(rule)p Black
+Black 434 2991 a FL(Cut)o F4(\()606 2979 y FX(h)634 2991
+y Ga(c)673 2979 y FX(i)701 2991 y FL(And)856 3005 y Gc(R)913
+2991 y F4(\()948 2979 y FX(h)976 2991 y Ga(a)1024 2979
+y FX(i)1052 2991 y Ga(M)10 b(;)1190 2979 y FX(h)1217
+2991 y Ga(b)1256 2979 y FX(i)1284 2991 y Ga(N)g(;)15
+b(c)p F4(\))q Ga(;)1522 2979 y F9(\()1550 2991 y Ga(z)1596
+2979 y F9(\))1624 2991 y FL(And)1778 2954 y FX(0)1778
+3014 y Gc(L)1830 2991 y F4(\()1865 2979 y F9(\()1893
+2991 y Ga(x)1945 2979 y F9(\)\()2000 2991 y Ga(y)2048
+2979 y F9(\))2075 2991 y Ga(P)e(;)i(z)t F4(\))q(\))508
+3102 y Gc(l)434 3140 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p
+F4(\()802 3128 y FX(h)830 3140 y Ga(a)878 3128 y FX(i)905
+3140 y Ga(M)10 b(;)1043 3128 y F9(\()1071 3140 y Ga(x)1123
+3128 y F9(\))1151 3140 y FL(Cut)o F4(\()1323 3128 y FX(h)1351
+3140 y Ga(b)1390 3128 y FX(i)1418 3140 y Ga(N)g(;)1541
+3128 y F9(\()1568 3140 y Ga(y)1616 3128 y F9(\))1644
+3140 y Ga(P)j F4(\)\))99 b Gg(or)508 3239 y Gc(l)434
+3276 y F6(\000)-32 b(\000)h(!)25 b FL(Cut)p F4(\()802
+3264 y FX(h)830 3276 y Ga(b)869 3264 y FX(i)896 3276
+y Ga(N)10 b(;)1019 3264 y F9(\()1047 3276 y Ga(y)1095
+3264 y F9(\))1122 3276 y FL(Cut)p F4(\()1295 3264 y FX(h)1323
+3276 y Ga(a)1371 3264 y FX(i)1398 3276 y Ga(M)g(;)1536
+3264 y F9(\()1564 3276 y Ga(x)1616 3264 y F9(\))1644
+3276 y Ga(P)j F4(\)\))716 3460 y Gg(if)23 b FL(And)949
+3474 y Gc(R)1007 3460 y F4(\()1042 3448 y FX(h)1069 3460
+y Ga(a)1117 3448 y FX(i)1145 3460 y Ga(M)10 b(;)1283
+3448 y FX(h)1311 3460 y Ga(b)1350 3448 y FX(i)1377 3460
+y Ga(N)g(;)15 b(c)p F4(\))24 b Gg(and)g FL(And)1907 3423
+y FX(0)1907 3483 y Gc(L)1959 3460 y F4(\()1994 3448 y
+F9(\()2022 3460 y Ga(x)2074 3448 y F9(\)\()2128 3460
+y Ga(y)2176 3448 y F9(\))2204 3460 y Ga(P)13 b(;)i(z)t
+F4(\))23 b Gg(freshly)j(introduce)g Ga(c)d Gg(and)h Ga(z)t
+Gg(,)277 3694 y(This)f(reduction)i(is)e(similar)h(to)e(that)i(gi)n(v)o
+(en)f(in)g(Figure)g(2.5)g(for)g F6(\033)2342 3708 y Gc(R)2400
+3694 y Ga(=)p F6(\033)2516 3708 y Gc(L)2568 3694 y Gg(,)f(and)h(also)h
+(requires)h(similar)277 3807 y(side-conditions)40 b(as)35
+b(speci\002ed)h(in)f(Remark)g(2.2.7.)63 b(Much)35 b(the)h(same)f
+(discussion)j(as)d(gi)n(v)o(en)g(for)277 3920 y(and-left)26
+b(applies)f(to)e(or)n(-right,)j(whose)e(multiplicati)n(v)o(e)i(v)n
+(ariant,)e F6(_)2413 3887 y FX(0)2413 3947 y Gc(R)2471
+3920 y Gg(,)e(is)i(sho)n(wn)f(in)h(Figure)g(2.9.)418
+4051 y(Another)g(source)g(for)f(v)n(ariation)i(is)e(ho)n(w)f(we)g
+(treat)h(the)g(conte)o(xts)i(in)d(the)h(rules)h(with)e(tw)o(o)h(premi-)
+277 4164 y(ses:)47 b(these)34 b(conte)o(xts)g(can)f(be)f(either)i
+(shared)g(or)e(split.)56 b(In)32 b(ef)n(fect,)k(we)31
+b(ha)n(v)o(e)i(the)g(follo)n(wing)h(tw)o(o)277 4277 y(possibilities)27
+b(for)d(and-right.)p Black Black 552 4492 a F4(\000)p
+629 4480 11 41 v 639 4462 46 5 v 96 w(\001)p Ga(;)15
+b(a)j F4(:)f Ga(B)95 b F4(\000)p 1170 4480 11 41 v 1181
+4462 46 5 v 97 w(\001)p Ga(;)15 b(b)i F4(:)g Ga(C)p 552
+4530 981 4 v 755 4608 a F4(\000)p 833 4596 11 41 v 843
+4578 46 5 v 97 w(\001)p Ga(;)e(c)i F4(:)h Ga(B)5 b F6(^)o
+Ga(C)1574 4548 y F6(^)1635 4562 y Gc(R)1929 4492 y F4(\000)1986
+4506 y F9(1)p 2045 4480 11 41 v 2056 4462 46 5 v 2121
+4492 a F4(\001)2197 4506 y F9(1)2237 4492 y Ga(;)15 b(a)i
+F4(:)h Ga(B)95 b F4(\000)2606 4506 y F9(2)p 2666 4480
+11 41 v 2676 4462 46 5 v 2742 4492 a F4(\001)2818 4506
+y F9(2)2857 4492 y Ga(;)15 b(b)j F4(:)f Ga(C)p 1929 4530
+1139 4 v 2026 4608 a F4(\000)2083 4622 y F9(1)2122 4608
+y Ga(;)e F4(\000)2219 4622 y F9(2)p 2279 4596 11 41 v
+2289 4578 46 5 v 2355 4608 a F4(\001)2431 4622 y F9(1)2470
+4608 y Ga(;)g F4(\001)2586 4622 y F9(2)2626 4608 y Ga(;)g(c)j
+F4(:)f Ga(B)5 b F6(^)o Ga(C)3109 4551 y F6(^)3170 4518
+y FX(0)3170 4578 y Gc(R)277 4844 y Gg(Note)26 b(that)g(in)f(the)h
+F6(^)932 4812 y FX(0)932 4871 y Gc(R)990 4844 y Gg(-rule)g(the)g(conte)
+o(xt)h(are)f(treated)h(as)f(in)f(the)h(cut-rule;)j(that)d(means)g
+F4(\000)3162 4858 y F9(1)3223 4844 y F6(\\)21 b F4(\000)3362
+4858 y F9(2)3426 4844 y Gg(or)277 4957 y F4(\001)353
+4971 y F9(1)410 4957 y F6(\\)c F4(\001)564 4971 y F9(2)625
+4957 y Gg(may)23 b(not)g(be)g(empty)-6 b(.)29 b(Thus)23
+b F6(^)1586 4924 y FX(0)1586 4984 y Gc(R)1666 4957 y
+Gg(is)g(actually)h(a)f(generalisation)k(of)c F6(^)2811
+4971 y Gc(R)2869 4957 y Gg(.)28 b(Similar)22 b(remarks)277
+5070 y(apply)j(to)e(the)h(other)h(inference)h(rules)e(with)f(tw)o(o)h
+(premises)g(\(see)h(Figure)f(2.9\).)418 5201 y(Our)19
+b(strong)i(normalisation)i(proof)d(can)g(be)f(easily)i(modi\002ed)f(to)
+f(accommodate)i(the)f(alternati)n(v)o(e)277 5314 y(formulations)27
+b(of)c(the)h(inference)i(rules)e(mentioned)i(abo)o(v)o(e.)k(In)23
+b(f)o(act,)h(it)f(is)h(rob)n(ust)h(enough)g(to)f(pro)o(v)o(e)277
+5427 y(strong)34 b(normalisation)j(for)c(a)f(sequent)j(calculus)g
+(containing)h(all)d(v)n(ariants)h(and)g(their)f(respecti)n(v)o(e)p
+Black Black eop end
+%%Page: 46 58
+TeXDict begin 46 57 bop Black -144 51 a Gb(46)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black Black -144 229 V -144
+1636 4 1407 v 168 370 a Ga(x)17 b F4(:)g Ga(B)5 b(;)15
+b(y)20 b F4(:)e Ga(C)q(;)d F4(\()p Ga(z)22 b F4(:)c Ga(B)5
+b F6(^)o Ga(C)i F4(\))p Ga(;)15 b F4(\000)1112 358 y
+Gc(.)1167 370 y Ga(M)1290 358 y Gc(.)1345 370 y F4(\001)p
+139 412 1312 4 v 139 503 a Ga(z)21 b F4(:)d Ga(B)5 b
+F6(^)o Ga(C)q(;)15 b F4(\000)568 491 y Gc(.)622 503 y
+FL(And)777 466 y FX(0)777 526 y Gc(L)829 503 y F4(\()864
+491 y F9(\()892 503 y Ga(x)944 491 y F9(\)\()999 503
+y Ga(y)1047 491 y F9(\))1074 503 y Ga(M)10 b(;)15 b(z)t
+F4(\))1319 491 y Gc(.)1374 503 y F4(\001)1492 434 y F6(^)1552
+401 y FX(0)1552 461 y Gc(L)1841 370 y F4(\000)1923 358
+y Gc(.)1978 370 y Ga(M)2102 358 y Gc(.)2156 370 y F4(\001)p
+Ga(;)g F4(\()p Ga(c)k F4(:)e Ga(B)5 b F6(^)o Ga(C)i F4(\))p
+Ga(;)15 b(a)j F4(:)f Ga(B)5 b(;)15 b(b)i F4(:)h Ga(C)p
+1841 412 1241 4 v 1841 503 a F4(\000)1923 491 y Gc(.)1978
+503 y FL(Or)2077 466 y FX(0)2077 526 y Gc(R)2134 503
+y F4(\()2169 491 y FX(h)2197 503 y Ga(a)2245 491 y FX(i)q(h)2300
+503 y Ga(b)2339 491 y FX(i)2367 503 y Ga(M)10 b(;)15
+b(c)p F4(\))2605 491 y Gc(.)2660 503 y F4(\001)p Ga(;)g(c)j
+F4(:)f Ga(B)5 b F6(^)o Ga(C)3122 434 y F6(_)3183 401
+y FX(0)3183 461 y Gc(R)704 718 y F4(\000)761 732 y F9(1)826
+706 y Gc(.)880 718 y Ga(M)1004 706 y Gc(.)1059 718 y
+F4(\001)1135 732 y F9(1)1174 718 y Ga(;)15 b(a)j F4(:)f
+Ga(B)459 b F4(\000)1907 732 y F9(2)1972 706 y Gc(.)2026
+718 y Ga(N)2135 706 y Gc(.)2190 718 y F4(\001)2266 732
+y F9(2)2305 718 y Ga(;)15 b(b)i F4(:)h Ga(C)p 704 755
+1812 4 v 715 846 a F4(\000)772 860 y F9(1)811 846 y Ga(;)d
+F4(\000)908 860 y F9(2)973 834 y Gc(.)1028 846 y FL(And)1182
+809 y FX(0)1182 869 y Gc(R)1240 846 y F4(\()1275 834
+y FX(h)1303 846 y Ga(a)1351 834 y FX(i)1378 846 y Ga(M)10
+b(;)1516 834 y FX(h)1544 846 y Ga(b)1583 834 y FX(i)1611
+846 y Ga(N)g(;)15 b(c)p F4(\))1834 834 y Gc(.)1889 846
+y F4(\001)1965 860 y F9(1)2004 846 y Ga(;)g F4(\001)2120
+860 y F9(2)2160 846 y Ga(;)g(c)j F4(:)f Ga(B)5 b F6(^)o
+Ga(C)2557 777 y F6(^)2617 744 y FX(0)2617 804 y Gc(R)794
+1060 y Ga(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)1077
+1074 y F9(1)1141 1048 y Gc(.)1196 1060 y Ga(M)1319 1048
+y Gc(.)1374 1060 y F4(\001)1450 1074 y F9(1)1762 1060
+y Ga(y)20 b F4(:)d Ga(C)q(;)e F4(\000)2032 1074 y F9(2)2098
+1048 y Gc(.)2153 1060 y Ga(N)2261 1048 y Gc(.)2316 1060
+y F4(\001)2392 1074 y F9(2)p 737 1097 1751 4 v 737 1188
+a Ga(z)22 b F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)1140
+1202 y F9(1)1180 1188 y Ga(;)g F4(\000)1277 1202 y F9(2)1342
+1176 y Gc(.)1397 1188 y FL(Or)1496 1151 y FX(0)1496 1211
+y Gc(L)1548 1188 y F4(\()1583 1176 y F9(\()1611 1188
+y Ga(x)1663 1176 y F9(\))1691 1188 y Ga(M)10 b(;)1829
+1176 y F9(\()1857 1188 y Ga(y)1905 1176 y F9(\))1932
+1188 y Ga(N)g(;)15 b(z)t F4(\))2162 1176 y Gc(.)2217
+1188 y F4(\001)2293 1202 y F9(1)2332 1188 y Ga(;)g F4(\001)2448
+1202 y F9(2)2529 1119 y F6(_)2590 1086 y FX(0)2590 1146
+y Gc(L)698 1402 y F4(\000)755 1416 y F9(1)819 1390 y
+Gc(.)874 1402 y Ga(M)998 1390 y Gc(.)1053 1402 y F4(\001)1129
+1416 y F9(1)1168 1402 y Ga(;)g(a)i F4(:)h Ga(B)459 b(x)17
+b F4(:)g Ga(C)q(;)e F4(\000)2118 1416 y F9(2)2184 1390
+y Gc(.)2239 1402 y Ga(N)2347 1390 y Gc(.)2402 1402 y
+F4(\001)2478 1416 y F9(2)p 698 1440 1820 4 v 703 1530
+a Ga(y)20 b F4(:)d Ga(B)5 b F6(\033)o Ga(C)q(;)15 b F4(\000)1117
+1544 y F9(1)1158 1530 y Ga(;)g F4(\000)1255 1544 y F9(2)1319
+1518 y Gc(.)1374 1530 y FL(Imp)1519 1493 y FX(0)1519
+1553 y Gc(L)1571 1530 y F4(\()1606 1518 y FX(h)1634 1530
+y Ga(a)1682 1518 y FX(i)1709 1530 y Ga(M)10 b(;)1847
+1518 y F9(\()1875 1530 y Ga(x)1927 1518 y F9(\))1955
+1530 y Ga(N)g(;)15 b(y)s F4(\))2186 1518 y Gc(.)2241
+1530 y F4(\001)2317 1544 y F9(1)2356 1530 y Ga(;)g F4(\001)2472
+1544 y F9(2)2558 1461 y F6(\033)2629 1428 y FX(0)2629
+1488 y Gc(L)p 3543 1636 4 1407 v -144 1639 3691 4 v Black
+843 1793 a Gg(Figure)25 b(2.9:)k(Alternati)n(v)o(e)c(formulation)h(of)d
+(some)h(inference)i(rules.)p Black Black 321 2219 a(cut-reductions.)33
+b(Since)21 b(the)h(proof)h(does)f(not)g(pose)h(an)o(y)e(ne)n(w)g
+(challenges,)k(the)d(details)h(are)f(omitted.)321 2332
+y(In)28 b(what)f(follo)n(ws)i(we)d(shall)j(emplo)o(y)g(the)e
+(formulation)j(of)e(the)g(inference)i(rules)e(that)h(seems)f(most)321
+2445 y(suited)d(for)f(the)g(problem)g(at)g(hand.)462
+2579 y(The)h(last)g(v)n(ariation)i(for)d(classical)j(logic)f(we)e
+(shall)h(present)i(arises)e(from)g(the)g(w)o(onderful)i(sym-)321
+2691 y(metry)i(of)f(classical)i(logic.)44 b(Ev)o(ery)28
+b(sequent)i(of)e(the)h(form)f F4(\000)p 2317 2679 11
+41 v 2327 2661 46 5 v 96 w(\001)f Gg(can)i(be)f(replaced)i(by)p
+3237 2679 11 41 v 3247 2661 46 5 v 125 w F6(:)p F4(\000)p
+Ga(;)15 b F4(\001)321 2804 y Gg(where)21 b F6(:)p F4(\000)f
+Gg(is)h(tak)o(en)h(to)e(mean)h(that)h(e)n(v)o(ery)f(formula)h(in)f
+F4(\000)e Gg(is)i(ne)o(gated.)29 b(The)20 b(corresponding)26
+b(sequent)321 2917 y(calculus)38 b(is)d(commonly)i(referred)g(to)f(as)f
+(single-sided)k(sequent)e(calculus)h(or)d(Gentzen-Sch)8
+b(\250)-38 b(utte)321 3030 y(system)33 b([Sch)8 b(\250)-38
+b(utte,)33 b(1960].)55 b(The)31 b(cut-rule,)36 b(for)c(e)o(xample,)j
+(is)d(in)f(this)i(calculus)h(of)e(the)g(follo)n(wing)321
+3143 y(form.)p 1412 3327 11 41 v 1423 3309 46 5 v 1488
+3339 a F4(\000)p Ga(;)15 b(a)j F4(:)f Ga(B)p 1878 3327
+11 41 v 1888 3309 46 5 v 192 w F4(\001)p Ga(;)e(b)i F4(:)h
+F6(:)p Ga(B)p 1392 3377 911 4 v 1733 3444 11 41 v 1743
+3426 46 5 v 1809 3456 a F4(\000)p Ga(;)d F4(\001)2344
+3407 y Gg(Cut)321 3692 y(It)30 b(is)f(easy)i(to)f(adapt)h(De\002nition)
+f(2.3.4)g(\(the)h(symmetric)f(reducibility)k(candidates\))f(for)d(a)f
+(single-)321 3805 y(sided)21 b(sequent)h(calculus,)g(and)e(the)g(proof)
+h(of)e(strong)i(normalisation)i(for)d(cut-elimination)j(proceeds)321
+3918 y(just)h(as)g(the)g(proof)g(gi)n(v)o(en)g(for)1308
+3881 y Gc(cut)1277 3918 y F6(\000)-31 b(\000)f(!)p Gg(.)28
+b(W)-7 b(e)23 b(shall)h(omit)g(the)g(details.)462 4052
+y(T)-7 b(o)18 b(conclude)k(this)d(section,)i(we)d(shall)i(introduce)i
+(term)c(annotations)23 b(for)c(intuitionistic)k(sequent)321
+4165 y(proofs)j(and)f(pro)o(v)o(e)g(a)e(corresponding)29
+b(strong)d(normalisation)h(theorem.)32 b(F)o(or)24 b(simplicity)-6
+b(,)26 b(we)e(shall)321 4278 y(treat)29 b(only)h(the)e(propositional)k
+(connecti)n(v)o(es,)g F6(^)p Gg(,)d F6(_)e Gg(and)h F6(\033)p
+Gg(,)h(and)f(not)h(ne)o(gation)h(and)f(the)f(units,)j(as)321
+4390 y(the)o(y)24 b(add)g(no)g(substantial)i(ne)n(w)d(issues)i(for)f
+(strong)h(normalisation.)462 4524 y(The)g(sequent)i(calculus)g(for)f
+(intuitionistic)j(logic)d(can)f(be)g(obtained)j(by)d(restricting)j(the)
+d(succe-)321 4637 y(dent)j(of)f(our)g(classical)j(sequents)f(to)e(at)g
+(most)g(a)f(single)j(formula.)40 b(So)26 b(our)h(intuitionistic)k
+(sequents)321 4750 y(are)24 b(of)g(the)g(form)f F4(\000)p
+964 4738 11 41 v 975 4719 46 5 v 96 w Ga(a)17 b F4(:)h
+Ga(B)t Gg(.)29 b(W)-7 b(e)22 b(could)j(drop)g(the)f(labels)g(on)g(the)g
+(right-hand)j(side)d(of)f(the)h(turnstile)321 4863 y(when)f(assigning)h
+(terms)f(to)f(intuitionistic)k(sequents,)e(because)h(on)d(this)h(side)f
+(contraction)k(is)c(not)g(al-)321 4976 y(lo)n(wed.)33
+b(Ho)n(we)n(v)o(er)l(,)25 b(we)f(shall)i(k)o(eep)f(this)h(slight)g
+(incon)l(v)o(enience)j(of)c(ha)n(ving)h(to)f(label)h(this)f(formula:)
+321 5088 y(it)i(sa)n(v)o(es)h(us)f(from)g(rede\002ning)i(the)e
+(substitution)k(operation)e(and)f(cut-reductions.)43
+b(Thus)27 b(our)h(intu-)321 5201 y(itionistic)33 b(typing)e(judgements)
+h(are)e(of)g(the)g(form)f F4(\000)2050 5189 y Gc(.)2105
+5201 y Ga(M)2229 5189 y Gc(.)2284 5201 y Ga(a)17 b F4(:)g
+Ga(B)5 b Gg(,)30 b(in)g(which)g Ga(M)39 b Gg(is)29 b(a)h(term)f(tak)o
+(en)321 5314 y(from)f(the)h(set)f(of)g(well-typed)j(terms,)e(denoted)h
+(by)e FY(I)g Gg(and)h(inducti)n(v)o(ely)h(de\002ned)f(by)g(the)f
+(inference)321 5427 y(rules)d(gi)n(v)o(en)f(in)f(Figure)h(2.10.)29
+b(The)23 b(intuitionistic)28 b(cut-elimination)f(procedure)f(is)e(as)f
+(follo)n(ws.)p Black Black eop end
+%%Page: 47 59
+TeXDict begin 47 58 bop Black 277 51 a Gb(2.5)23 b(V)-8
+b(ariations)25 b(of)e(the)g(Sequent)f(Calculus)2124 b(47)p
+277 88 3691 4 v Black Black 277 229 V 277 1881 4 1652
+v 1642 321 938 4 v 1642 406 a Ga(x)18 b F4(:)f Ga(B)5
+b(;)15 b F4(\000)1950 394 y Gc(.)2005 406 y FL(Ax)o F4(\()p
+Ga(x;)g(a)p F4(\))2344 394 y Gc(.)2399 406 y Ga(a)i F4(:)g
+Ga(B)859 620 y(x)g F4(:)g Ga(B)1039 634 y Gc(i)1067 620
+y Ga(;)e F4(\000)1190 608 y Gc(.)1245 620 y Ga(M)1368
+608 y Gc(.)1423 620 y Ga(a)i F4(:)h Ga(C)p 534 658 1393
+4 v 534 755 a(y)i F4(:)e Ga(B)711 769 y F9(1)750 755
+y F6(^)p Ga(B)880 769 y F9(2)919 755 y Ga(;)d F4(\000)1042
+743 y Gc(.)1097 755 y FL(And)1251 718 y Gc(i)1251 778
+y(L)1303 755 y F4(\()1338 743 y F9(\()1366 755 y Ga(x)1418
+743 y F9(\))1446 755 y Ga(M)10 b(;)15 b(y)s F4(\))1693
+743 y Gc(.)1747 755 y Ga(a)j F4(:)f Ga(C)1968 671 y F6(^)2029
+685 y Gc(L)2077 695 y FZ(i)2397 651 y F4(\000)2479 639
+y Gc(.)2534 651 y Ga(M)2657 639 y Gc(.)2712 651 y Ga(a)h
+F4(:)f Ga(B)186 b F4(\000)3157 639 y Gc(.)3212 651 y
+Ga(N)3320 639 y Gc(.)3375 651 y Ga(b)18 b F4(:)f Ga(C)p
+2320 671 1303 4 v 2320 755 a F4(\000)2402 743 y Gc(.)2457
+755 y FL(And)2611 769 y Gc(R)2669 755 y F4(\()2704 743
+y FX(h)2732 755 y Ga(a)2780 743 y FX(i)2807 755 y Ga(M)11
+b(;)2946 743 y FX(h)2973 755 y Ga(b)3012 743 y FX(i)3040
+755 y Ga(N)f(;)15 b(c)p F4(\))3263 743 y Gc(.)3318 755
+y Ga(c)j F4(:)f Ga(B)5 b F6(^)o Ga(C)3664 689 y F6(^)3725
+703 y Gc(R)440 978 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b
+F4(\000)747 966 y Gc(.)802 978 y Ga(M)926 966 y Gc(.)980
+978 y Ga(a)j F4(:)f Ga(D)185 b(y)20 b F4(:)d Ga(C)q(;)e
+F4(\000)1644 966 y Gc(.)1699 978 y Ga(N)1807 966 y Gc(.)1862
+978 y Ga(a)i F4(:)h Ga(D)p 440 1016 1608 4 v 499 1100
+a(z)k F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)928
+1088 y Gc(.)983 1100 y FL(Or)1082 1114 y Gc(L)1134 1100
+y F4(\()1169 1088 y F9(\()1197 1100 y Ga(x)1249 1088
+y F9(\))1276 1100 y Ga(M)c(;)1415 1088 y F9(\()1442 1100
+y Ga(y)1490 1088 y F9(\))1518 1100 y Ga(N)f(;)15 b(z)t
+F4(\))1748 1088 y Gc(.)1803 1100 y Ga(a)i F4(:)h Ga(D)2089
+1034 y F6(_)2150 1048 y Gc(L)2698 969 y F4(\000)2780
+957 y Gc(.)2835 969 y Ga(M)2959 957 y Gc(.)3014 969 y
+Ga(a)f F4(:)g Ga(B)3190 983 y Gc(i)p 2408 1003 1102 4
+v 2408 1100 a F4(\000)2490 1088 y Gc(.)2545 1100 y FL(Or)2644
+1063 y Gc(i)2644 1123 y(R)2702 1100 y F4(\()2737 1088
+y FX(h)2764 1100 y Ga(a)2812 1088 y FX(i)2840 1100 y
+Ga(M)10 b(;)15 b(b)p F4(\))3078 1088 y Gc(.)3133 1100
+y Ga(b)i F4(:)h Ga(B)3301 1114 y F9(1)3340 1100 y F6(_)p
+Ga(B)3470 1114 y F9(2)3550 1016 y F6(_)3611 1030 y Gc(R)3664
+1040 y FZ(i)552 1315 y F4(\000)634 1303 y Gc(.)689 1315
+y Ga(M)812 1303 y Gc(.)867 1315 y Ga(a)g F4(:)f Ga(B)186
+b(x)17 b F4(:)h Ga(C)q(;)d F4(\000)1531 1303 y Gc(.)1586
+1315 y Ga(N)1694 1303 y Gc(.)1749 1315 y Ga(b)i F4(:)g
+Ga(D)p 469 1353 1539 4 v 469 1438 a(y)j F4(:)e Ga(B)5
+b F6(\033)o Ga(C)q(;)15 b F4(\000)910 1426 y Gc(.)965
+1438 y FL(Imp)1109 1460 y Gc(L)1161 1438 y F4(\()1196
+1426 y FX(h)1224 1438 y Ga(a)1272 1426 y FX(i)1300 1438
+y Ga(M)10 b(;)1438 1426 y F9(\()1466 1438 y Ga(x)1518
+1426 y F9(\))1545 1438 y Ga(N)g(;)15 b(y)s F4(\))1777
+1426 y Gc(.)1832 1438 y Ga(b)i F4(:)g Ga(D)2050 1371
+y F6(\033)2120 1385 y Gc(L)2606 1315 y Ga(x)g F4(:)h
+Ga(B)5 b(;)15 b F4(\000)2914 1303 y Gc(.)2969 1315 y
+Ga(M)3092 1303 y Gc(.)3147 1315 y Ga(a)i F4(:)h Ga(C)p
+2370 1353 1192 4 v 2370 1438 a F4(\000)2453 1426 y Gc(.)2507
+1438 y FL(Imp)2652 1460 y Gc(R)2710 1438 y F4(\()2745
+1426 y F9(\()2772 1438 y Ga(x)2824 1426 y F9(\))q FX(h)2879
+1438 y Ga(a)2927 1426 y FX(i)2955 1438 y Ga(M)10 b(;)15
+b(b)p F4(\))3193 1426 y Gc(.)3248 1438 y Ga(b)i F4(:)g
+Ga(B)5 b F6(\033)p Ga(C)3604 1371 y F6(\033)3674 1385
+y Gc(R)1319 1653 y F4(\000)1376 1667 y F9(1)1440 1641
+y Gc(.)1495 1653 y Ga(M)1618 1641 y Gc(.)1673 1653 y
+Ga(a)17 b F4(:)h Ga(B)146 b(x)17 b F4(:)g Ga(B)5 b(;)15
+b F4(\000)2278 1667 y F9(2)2343 1641 y Gc(.)2398 1653
+y Ga(N)2506 1641 y Gc(.)2561 1653 y Ga(b)i F4(:)g Ga(C)p
+1319 1691 1413 4 v 1423 1775 a F4(\000)1480 1789 y F9(1)1519
+1775 y Ga(;)e F4(\000)1616 1789 y F9(2)1681 1763 y Gc(.)1736
+1775 y FL(Cut)p F4(\()1909 1763 y FX(h)1937 1775 y Ga(a)1985
+1763 y FX(i)2012 1775 y Ga(M)10 b(;)2150 1763 y F9(\()2178
+1775 y Ga(x)2230 1763 y F9(\))2258 1775 y Ga(N)g F4(\))2401
+1763 y Gc(.)2456 1775 y Ga(b)17 b F4(:)h Ga(C)2772 1721
+y Gg(Cut)p 3965 1881 4 1652 v 277 1884 3691 4 v 277 2038
+a(Figure)30 b(2.10:)40 b(T)-6 b(erm)28 b(assignment)k(for)d(sequent)i
+(proofs)f(in)f(the)h(propositional)j(fragment)d(of)f(intu-)277
+2151 y(itionistic)d(logic.)p Black Black 277 2571 a Gb(De\002nition)d
+(2.5.1)g Gg(\(Cut-Elimination)j(for)e(Intuitionistic)j(Logic\))p
+Gb(:)p Black 277 2684 a Gg(The)37 b(cut-elimination)k(procedure)e(for)f
+(intuitionistic)j(logic,)g F4(\()p FY(I)p Ga(;)2467 2647
+y Gc(int)2428 2684 y F6(\000)-31 b(\000)g(!)p F4(\))p
+Gg(,)39 b(is)e(a)g(reduction)j(system)277 2797 y(where:)p
+Black 414 3004 a F6(\017)p Black 45 w FY(I)23 b Gg(is)h(the)f(set)h(of)
+g(well-typed)h(intuitionistic)j(terms,)23 b(and)p Black
+414 3195 a F6(\017)p Black 543 3158 a Gc(int)504 3195
+y F6(\000)-31 b(\000)g(!)22 b Gg(consists)k(of)d(the)h(reductions)j
+(for)c(logical)j(cuts)e(and)g(commuting)h(cuts;)f(that)g(is)1626
+3386 y Gc(int)1587 3423 y F6(\000)-31 b(\000)f(!)1782
+3371 y F5(def)1789 3423 y F4(=)1967 3386 y Gc(l)1892
+3423 y F6(\000)h(\000)g(!)25 b([)2244 3386 y Gc(c)2174
+3423 y F6(\000)-31 b(\000)f(!)50 b Ga(:)277 3677 y Gg(Gi)n(v)o(en)28
+b(that)h(intuitionistic)k(logic,)d(as)e(we)g(de\002ned)h(it,)h(is)e(a)g
+(restricted)j(v)o(ersion)f(of)e(classical)j(logic,)277
+3790 y(we)23 b(e)o(xpect)h(that)h F4(\()p FY(I)p Ga(;)977
+3753 y Gc(int)939 3790 y F6(\000)-32 b(\000)h(!)p F4(\))23
+b Gg(is)g(strongly)j(normalising.)31 b(This)24 b(is)f(indeed)i(the)f
+(case.)p Black 277 4004 a Gb(Theor)n(em)g(2.5.2:)p Black
+34 w Gg(The)f(reduction)j(system)e F4(\()p FY(I)p Ga(;)1856
+3967 y Gc(int)1817 4004 y F6(\000)-31 b(\000)g(!)p F4(\))23
+b Gg(is)g(strongly)j(normalising.)p Black 277 4216 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(Assume)31 b(there)h(is)f(a)g
+(well-typed)j(intuitionistic)h(term,)d(say)g Ga(M)10
+b Gg(,)32 b(from)g(which)f(an)h(in\002nite)277 4329 y(reduction)d
+(sequence)f(starts.)38 b(Since)26 b(we)f(kno)n(w)h(that)h
+F4(\000)2082 4317 y Gc(.)2137 4329 y Ga(M)2260 4317 y
+Gc(.)2315 4329 y Ga(a)18 b F4(:)f Ga(B)30 b Gg(is)c(deri)n(v)n(able)i
+(using)f(the)f(rules)277 4442 y(gi)n(v)o(en)36 b(in)f(Figure)h(2.10,)j
+(we)34 b(can)i(translate)i(this)e(deri)n(v)n(ation)i(into)e(the)f
+(classical)j(system)e(sho)n(wn)277 4555 y(in)d(Figure)h(2.3)g(\(only)g
+(the)g F6(\033)1236 4569 y Gc(L)1288 4555 y Gg(-rule)g(requires)h(some)
+f(changes\).)61 b(It)33 b(is)g(not)h(hard)g(to)f(see)h(that)g(the)277
+4668 y(in\002nite)29 b(reduction)h(sequence)g(starting)f(from)f
+Ga(M)37 b Gg(w)o(ould)28 b(entail)h(an)e(in\002nite)i(reduction)h
+(sequence)277 4781 y(in)f F4(\()p FY(T)t Ga(;)540 4744
+y Gc(cut)509 4781 y F6(\000)-31 b(\000)g(!)o F4(\))p
+Gg(.)46 b(Since)30 b(we)f(pro)o(v)o(ed)h(that)g F4(\()p
+FY(T)t Ga(;)1755 4744 y Gc(cut)1725 4781 y F6(\000)-32
+b(\000)h(!)p F4(\))29 b Gg(is)g(strongly)j(normalising,)h
+F4(\()p FY(I)p Ga(;)3016 4744 y Gc(int)2977 4781 y F6(\000)-32
+b(\000)h(!)p F4(\))29 b Gg(must)g(be)277 4894 y(strongly)d
+(normalising,)g(too.)p 3436 4894 4 62 v 3440 4836 55
+4 v 3440 4894 V 3494 4894 4 62 v 277 5201 a(W)-7 b(e)20
+b(shall)h(use)g(this)g(result)h(in)f(Chapter)g(3)f(in)h(order)g(to)g
+(pro)o(v)o(e)g(strong)h(normalisation)i(for)c(the)h(simply-)277
+5314 y(typed)k(lambda)f(calculus.)p Black Black eop end
+%%Page: 48 60
+TeXDict begin 48 59 bop Black -144 51 a Gb(48)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Ge(2.6)119
+b(Localised)30 b(V)-12 b(ersion)321 541 y Gg(In)29 b(the)g(pre)n(vious)
+h(section)g(we)e(claimed)i(that)f(our)g(strong)h(normalisation)h
+(result)f(e)o(xtends)g(to)e(a)h(v)n(a-)321 654 y(riety)36
+b(of)e(formulations)j(of)e(the)f(inference)j(rules.)62
+b(In)35 b(this)g(section)h(we)d(shall)j(sho)n(w)e(that)h(strong)321
+767 y(normalisation)g(can)e(also)f(be)g(obtained)j(with)d(a)f(dif)n
+(ferent)j(set)e(of)g(cut-reduction)k(rules.)55 b(T)-7
+b(o)31 b(sa)n(v)o(e)321 880 y(space,)24 b(we)d(shall)j(restrict)g(the)e
+(presentation)k(in)d(this)g(section)h(to)e(only)h(the)g(propositional)j
+(fragment,)321 993 y(b)n(ut)33 b(it)f(should)i(be)f(emphasised)h(that)f
+(the)g(corresponding)k(result)c(for)g(\002rst-order)h(classical)h
+(logic)321 1105 y(may)24 b(be)f(obtained)j(by)e(a)f(simple)h
+(adaptation)i(of)e(the)g(proof)g(we)f(shall)h(gi)n(v)o(e.)462
+1235 y(The)d(cut-elimination)26 b(procedures)e(de\002ned)e(so)g(f)o(ar)
+f(include)i(global,)g(or)f(non-local,)i(cut-reduc-)321
+1348 y(tions.)32 b(A)23 b(cut-reduction)28 b(is)c(said)h(to)f(be)g
+F7(local)p Gg(,)h(if)f(only)h(neighbouring)j(inference)f(rules)e(are)f
+(re)n(writ-)321 1461 y(ten,)30 b(possibly)g(duplicating)i(a)c(subderi)n
+(v)n(ation.)46 b(Most)28 b(of)g(the)h(traditional)i(cut-elimination)h
+(proce-)321 1574 y(dures)c(based)h(on)e(Gentzen')-5 b(s)29
+b F7(Hauptsatz)g Gg(ha)n(v)o(e)e(such)h(local)g(cut-reductions.)44
+b(One)26 b(reason)j(for)e(our)321 1687 y(use)h(of)e(the)i(non-local)h
+(cut-reductions)i(w)o(as)c(to)g(a)n(v)n(oid)h(the)g(in\002nite)f
+(reduction)j(gi)n(v)o(en)d(in)g(Example)321 1799 y(2.1.3.)h(Using)20
+b(results)h(concerning)h(e)o(xplicit)g(substitution)h(calculi,)e(we)e
+(shall)h(sho)n(w)g(that)g(our)g(substi-)321 1912 y(tution)26
+b(operation)i(can,)d(in)f(f)o(act,)i(be)e(replaced)j(by)e(local)g
+(cut-reductions)k(without)d(breaking)h(strong)321 2025
+y(normalisation.)36 b(The)25 b(local)g(cut-reductions)30
+b(will)24 b(be)h(de\002ned)h(such)f(that)h(the)o(y)f(bridge)h(the)f
+(gap)g(be-)321 2138 y(tween)f(our)g(global)h(cut-reductions)j(gi)n(v)o
+(en)c(earlier)h(and)f(the)g(Gentzen-lik)o(e)i(local)e(cut-reductions.)
+462 2268 y(Explicit)k(substitution)i(calculi)e(ha)n(v)o(e)f(been)h(de)n
+(v)o(eloped)g(in)f(order)g(to)g(internalise)i(the)e(substitu-)321
+2381 y(tion)g(operation,)i(a)c(meta-le)n(v)o(el)i(operation)i(on)d
+(lambda)g(terms,)h(arising)g(from)f(beta-reductions.)41
+b(In)321 2493 y(these)26 b(calculi)f(the)g(reductions)i(are)e
+(completely)h(primiti)n(v)o(e)f(in)f(the)h(sense)g(that)g(the)o(y)g
+(are)f(part)h(of)f(the)321 2606 y(calculus.)45 b(Note,)29
+b(ho)n(we)n(v)o(er)l(,)h(if)d(the)i(\(non-local\))i(substitution)h
+(operation)f(is)d(replaced)i(by)e(a)g(na)m(\250)-27 b(\021v)o(e)321
+2719 y(de\002nition)28 b(of)d(a)g(\(local\))j(e)o(xplicit)f
+(substitution)i(operator)l(,)f(the)e(resulting)i(calculus)g(may)d(no)h
+(longer)321 2832 y(be)f(strongly)i(normalising,)h(as)d(sho)n(wn)g(by)g
+(Melli)5 b(\036)-35 b(es)26 b([1995].)35 b(Ne)n(v)o(ertheless,)27
+b(it)e(is)f(possible)k(to)c(gi)n(v)o(e)321 2945 y(an)g(e)o(xplicit)h
+(substitution)i(operation)f(that)e(preserv)o(es)i(strong)f
+(normalisation.)462 3075 y(In)30 b Ga(\025)p F1(x)p Gg(,)h(for)f(e)o
+(xample,)i(the)e(beta-reduction)35 b F4(\()p Ga(\025x:M)10
+b F4(\))p Ga(N)2401 3037 y Gc(\014)2338 3075 y F6(\000)-31
+b(\000)f(!)37 b Ga(M)10 b F4([)p Ga(x)38 b F4(:=)f Ga(N)10
+b F4(])29 b Gg(is)h(replaced)i(by)321 3187 y(the)g(reduction)j
+F4(\()p Ga(\025x:M)10 b F4(\))p Ga(N)1331 3150 y Gc(b)1261
+3187 y F6(\000)-32 b(\000)h(!)41 b Ga(M)10 b F6(h)p Ga(x)41
+b F4(:=)f Ga(N)10 b F6(i)32 b Gg(where)g(the)g(reduct)h(contains)h(a)e
+(ne)n(w)f(syntactic)321 3300 y(constructor)-5 b(.)32
+b(The)23 b(follo)n(wing)i(reduction)h(rules)f(apply)g(to)e(this)h(term)
+f(constructor)-5 b(.)p Black Black 1236 3474 a Ga(x)p
+F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)1793 3437 y Gc(x)1728
+3474 y F6(\000)-31 b(\000)f(!)100 b Ga(P)1240 3587 y(y)s
+F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)1793 3550 y Gc(x)1728
+3587 y F6(\000)-31 b(\000)f(!)100 b Ga(y)993 3700 y F4(\()p
+Ga(\025)q(y)s(:M)10 b F4(\))p F6(h)p Ga(x)26 b F4(:=)f
+Ga(P)13 b F6(i)1793 3662 y Gc(x)1728 3700 y F6(\000)-31
+b(\000)f(!)100 b Ga(\025y)s(:)15 b(M)10 b F6(h)p Ga(x)26
+b F4(:=)f Ga(P)13 b F6(i)1036 3812 y F4(\()p Ga(M)d(N)g
+F4(\))p F6(h)p Ga(x)27 b F4(:=)e Ga(P)13 b F6(i)1793
+3775 y Gc(x)1728 3812 y F6(\000)-31 b(\000)f(!)100 b
+Ga(M)10 b F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)i Ga(N)10
+b F6(h)p Ga(x)26 b F4(:=)f Ga(P)13 b F6(i)321 3984 y
+Gg(The)33 b(reader)i(is)e(referred)i(to)e([Rose,)g(1996])i(for)f(a)e
+(detailed)k(study)e(of)f Ga(\025)p F1(x)f Gg(including)k(a)d(proof)i
+(of)321 4097 y(strong)26 b(normalisation.)33 b(Here,)24
+b(we)f(shall)i(sho)n(w)f(that)g(a)g(similar)g(feat)h(is)f(possible)i
+(for)e(our)g(term)g(cal-)321 4210 y(culus,)29 b(where)f(the)f
+(substitution)k(operation)f(realises)f(the)e(proof)h(transformations)j
+(corresponding)321 4323 y(to)24 b(the)g(elimination)h(of)f(commuting)h
+(cuts.)462 4452 y(W)-7 b(e)27 b(be)o(gin)h(by)f(adding)i(to)e(our)g
+(term)g(calculus)i(tw)o(o)e(ne)n(w)f(constructors)31
+b(which)c(we)g(refer)h(to)f(as)321 4565 y F7(labelled)f(cuts)p
+Gg(.)j(The)o(y)23 b(are)h(written:)p Black Black 998
+4744 a FL(Cut)1077 4697 y FC( )1138 4744 y F4(\()1173
+4732 y FX(h)1200 4744 y Ga(a)1248 4732 y FX(i)1276 4744
+y Ga(M)10 b(;)1414 4732 y F9(\()1442 4744 y Ga(x)1494
+4732 y F9(\))1521 4744 y Ga(N)g F4(\))205 b Gg(and)h
+FL(Cut)2259 4697 y FC(!)2320 4744 y F4(\()2355 4732 y
+FX(h)2383 4744 y Ga(a)2431 4732 y FX(i)2458 4744 y Ga(M)10
+b(;)2596 4732 y F9(\()2624 4744 y Ga(x)2676 4732 y F9(\))2703
+4744 y Ga(N)g F4(\))26 b Gg(.)321 4924 y(Consequently)-6
+b(,)27 b(we)c(ha)n(v)o(e)h(tw)o(o)f(ne)n(w)g(rules)h(for)g(forming)h
+(typing)g(judgements.)322 5089 y F4(\000)379 5103 y F9(1)443
+5077 y Gc(.)498 5089 y Ga(M)622 5077 y Gc(.)677 5089
+y F4(\001)753 5103 y F9(1)792 5089 y Ga(;)15 b(a)i F4(:)h
+Ga(B)65 b(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)1357
+5103 y F9(2)1421 5077 y Gc(.)1476 5089 y Ga(N)1584 5077
+y Gc(.)1639 5089 y F4(\001)1715 5103 y F9(2)p 322 5126
+1433 4 v 385 5211 a F4(\000)442 5225 y F9(1)482 5211
+y Ga(;)g F4(\000)579 5225 y F9(2)643 5199 y Gc(.)698
+5211 y FL(Cut)777 5164 y FC( )838 5211 y F4(\()873 5199
+y FX(h)901 5211 y Ga(a)949 5199 y FX(i)976 5211 y Ga(M)10
+b(;)1114 5199 y F9(\()1142 5211 y Ga(x)1194 5199 y F9(\))1222
+5211 y Ga(N)g F4(\))1365 5199 y Gc(.)1420 5211 y F4(\001)1496
+5225 y F9(1)1535 5211 y Ga(;)15 b F4(\001)1651 5225 y
+F9(2)1781 5159 y Gg(Cut)1853 5112 y FC( )1954 5089 y
+F4(\000)2011 5103 y F9(1)2075 5077 y Gc(.)2130 5089 y
+Ga(M)2254 5077 y Gc(.)2309 5089 y F4(\001)2385 5103 y
+F9(1)2424 5089 y Ga(;)g(a)i F4(:)h Ga(B)65 b(x)17 b F4(:)h
+Ga(B)5 b(;)15 b F4(\000)2989 5103 y F9(2)3053 5077 y
+Gc(.)3108 5089 y Ga(N)3216 5077 y Gc(.)3271 5089 y F4(\001)3347
+5103 y F9(2)p 1954 5126 V 2017 5211 a F4(\000)2074 5225
+y F9(1)2113 5211 y Ga(;)g F4(\000)2210 5225 y F9(2)2275
+5199 y Gc(.)2330 5211 y FL(Cut)2409 5164 y FC(!)2470
+5211 y F4(\()2505 5199 y FX(h)2533 5211 y Ga(a)2581 5199
+y FX(i)2608 5211 y Ga(M)10 b(;)2746 5199 y F9(\()2774
+5211 y Ga(x)2826 5199 y F9(\))2854 5211 y Ga(N)g F4(\))2997
+5199 y Gc(.)3052 5211 y F4(\001)3128 5225 y F9(1)3167
+5211 y Ga(;)15 b F4(\001)3283 5225 y F9(2)3412 5159 y
+Gg(Cut)3484 5112 y FC(!)p Black 3372 5315 a Gg(\(2.5\))p
+Black Black Black eop end
+%%Page: 49 61
+TeXDict begin 49 60 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
+b(ersion)2779 b(49)p 277 88 3691 4 v Black 277 317 a
+Gg(Con)l(v)o(ention)39 b(2.2.4)e(concerning)j(the)d(Barendre)o
+(gt-style)j(naming)e(con)l(v)o(ention)i(and)d(alpha-equi-)277
+430 y(v)n(alence)26 b(e)o(xtends)f(to)f(the)g(ne)n(w)f(terms)h(in)g
+(the)g(ob)o(vious)i(w)o(ay)-6 b(.)30 b(Henceforth,)c(we)d(shall)h(only)
+h(be)f(inter)n(-)277 543 y(ested)f(in)e(well-typed)i(terms;)g(that)f
+(means)f(terms)h Ga(M)31 b Gg(for)21 b(which)h(there)g(are)g(conte)o
+(xts)h F4(\000)d Gg(and)i F4(\001)f Gg(such)277 656 y(that)i
+F4(\000)517 644 y Gc(.)572 656 y Ga(M)695 644 y Gc(.)750
+656 y F4(\001)e Gg(is)h(deri)n(v)n(able)i(gi)n(v)o(en)f(the)f(rules)h
+(in)f(\(2.5\))h(and)f(Figure)h(2.3.)28 b(The)22 b(corresponding)k(set)
+277 769 y(of)e(well-typed)h(terms)f(is)f(de\002ned)i(as)p
+Black Black 428 970 a FY(T)489 936 y FX($)659 918 y F5(def)666
+969 y F4(=)844 868 y FK(n)929 970 y Ga(M)1075 865 y FK(\014)1075
+919 y(\014)1075 974 y(\014)1152 970 y Ga(M)33 b Gg(is)24
+b(well-typed)h(by)f(the)g(rules)g(sho)n(wn)g(in)f(\(2.5\))h(and)g
+(Figure)g(2.3)3290 868 y FK(o)277 1167 y Gg(W)l(ith)i(respect)h(to)e
+(the)g(terms)h(gi)n(v)o(en)f(earlier)l(,)i(clearly)g(we)e(ha)n(v)o(e)g
+FY(T)k F6(\032)f FY(T)2558 1134 y FX($)2629 1167 y Gg(.)33
+b(In)25 b(the)g(sequel,)i(we)d(shall)277 1280 y(refer)g(to)g(a)f(term)g
+(whose)h(outermost)i(term)d(constructor)k(is)c(a)g(labelled)j(cut)e(as)
+f(a)g F7(labelled)j(term)p Gg(.)418 1409 y(Ne)o(xt,)21
+b(we)e(replace)k(the)d(non-local)j(reductions)h(of)2052
+1372 y Gc(aux)2032 1409 y F6(\000)-31 b(\000)g(!)19 b
+Gg(with)h(local)i(ones.)28 b(The)20 b(only)i(reduction)277
+1522 y(that)33 b(needs)h(to)f(be)f(replaced)j(is)d(the)h(reduction)i
+(for)e(commuting)h(cuts,)h(since)f(it)e(is)h(the)f(only)i(one)277
+1635 y(which)24 b(reduces)h(a)e(term)h(by)f(applying)j(a)d(proof)i
+(substitution.)32 b(The)23 b(ne)n(w)g(reductions)k(are:)p
+Black 414 1814 a F6(\017)p Black 45 w Gg(the)d(reduction)1054
+1777 y Gc(c)1085 1754 y FC(00)1004 1814 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(which)i(\223labels\224)h(cuts)g(when)e(the)o(y)h
+(need)h(to)e(be)h(commuted,)g F7(viz.)p Black Black 468
+1984 a FL(Cut)p F4(\()641 1972 y FX(h)668 1984 y Ga(a)716
+1972 y FX(i)744 1984 y Ga(M)10 b(;)882 1972 y F9(\()910
+1984 y Ga(x)962 1972 y F9(\))989 1984 y Ga(N)g F4(\))1204
+1947 y Gc(c)1235 1923 y FC(00)1155 1984 y F6(\000)-31
+b(\000)f(!)47 b FL(Cut)1451 1936 y FC( )1512 1984 y F4(\()1547
+1972 y FX(h)1575 1984 y Ga(a)1623 1972 y FX(i)1650 1984
+y Ga(M)10 b(;)1788 1972 y F9(\()1816 1984 y Ga(x)1868
+1972 y F9(\))1896 1984 y Ga(N)g F4(\))1467 2096 y Gg(if)23
+b Ga(M)33 b Gg(does)24 b(not)g(freshly)h(introduce)h
+Ga(a)d Gg(and)h(is)g(not)g(labelled,)h(or)1204 2196 y
+Gc(c)1235 2173 y FC(00)1155 2233 y F6(\000)-31 b(\000)f(!)47
+b FL(Cut)1451 2186 y FC(!)1512 2233 y F4(\()1547 2221
+y FX(h)1575 2233 y Ga(a)1623 2221 y FX(i)1650 2233 y
+Ga(M)10 b(;)1788 2221 y F9(\()1816 2233 y Ga(x)1868 2221
+y F9(\))1896 2233 y Ga(N)g F4(\))1467 2346 y Gg(if)23
+b Ga(N)33 b Gg(does)24 b(not)g(freshly)h(introduce)h
+Ga(x)d Gg(and)h(is)f(not)h(labelled)p Black 414 2489
+a F6(\017)p Black 45 w Gg(the)41 b(reduction)1103 2452
+y Gc(x)1038 2489 y F6(\000)-32 b(\000)h(!)p Gg(,)43 b(which)e(permutes)
+g(labelled)i(cuts)e(to)f(the)g(places)i(where)e(the)h(cut-)504
+2602 y(formula)25 b(is)e(introduced)k(\(Figure)d(2.11)g(gi)n(v)o(es)g
+(the)g(corresponding)k(reduction)e(rules\).)277 2781
+y(W)-7 b(e)24 b(shall)h(assume)g(that)g(terms)g(ha)n(v)o(e)g(been)g
+(suitably)h(alpha-con)l(v)o(erted)k(before)25 b(applying)i(an)3367
+2744 y Gc(x)3302 2781 y F6(\000)-32 b(\000)h(!)p Gg(-)277
+2894 y(reduction,)28 b(so)e(that)g(name)g(or)f(co-name)i(capture)g
+(will)e(not)h(occur)l(,)i(and)e(we)e(assume)j(these)f(con)l(v)o(er)n(-)
+277 3007 y(sions)f(are)e(done)i(implicitly)-6 b(.)418
+3136 y(Furthermore,)43 b(we)36 b(shall)j(introduce)h(a)d
+F7(garba)o(g)o(e)j(r)m(eduction)p Gg(,)j(which)38 b(is)f(some)n(what)i
+(similar)277 3249 y(to)31 b(a)f(traditional)j(cut-reduction)h(where)d
+(the)g(cut-formula)i(is)d(weak)o(ened,)k(and)d(remo)o(v)o(e)g(the)f
+(side-)277 3362 y(conditions)d(on)c(the)h(logical)i(cut-reductions)h
+(with)d(axioms.)29 b(Thus)24 b(we)f(ha)n(v)o(e)h(the)g(follo)n(wing)h
+(reduc-)277 3475 y(tions:)p Black 414 3654 a F6(\017)p
+Black 45 w Gg(the)696 3617 y Gc(g)r(c)644 3654 y F6(\000)-32
+b(\000)h(!)p Gg(-reduction)32 b(eliminates)f(labelled)g(cuts)e(pro)o
+(vided)i(their)f(corresponding)j(name)c(or)504 3767 y(co-name)c(is)e
+(not)h(free,)g F7(viz.)p Black Black 1066 3930 a FL(Cut)1145
+3882 y FC( )1206 3930 y F4(\()1241 3918 y FX(h)1269 3930
+y Ga(a)1317 3918 y FX(i)1344 3930 y Ga(M)10 b(;)1482
+3918 y F9(\()1510 3930 y Ga(x)1562 3918 y F9(\))1590
+3930 y Ga(N)g F4(\))1859 3892 y Gc(g)r(c)1808 3930 y
+F6(\000)-32 b(\000)h(!)99 b Ga(M)201 b Gg(if)49 b Ga(a)25
+b F6(62)g Ga(F)13 b(C)7 b F4(\()p Ga(M)j F4(\))1066 4042
+y FL(Cut)1145 3995 y FC(!)1206 4042 y F4(\()1241 4030
+y FX(h)1269 4042 y Ga(a)1317 4030 y FX(i)1344 4042 y
+Ga(M)g(;)1482 4030 y F9(\()1510 4042 y Ga(x)1562 4030
+y F9(\))1590 4042 y Ga(N)g F4(\))1859 4005 y Gc(g)r(c)1808
+4042 y F6(\000)-32 b(\000)h(!)99 b Ga(N)216 b Gg(if)49
+b Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()p Ga(N)g F4(\))p
+Black 414 4209 a F6(\017)p Black 45 w Gg(the)706 4172
+y Gc(l)728 4148 y FC(0)643 4209 y F6(\000)-32 b(\000)h(!)p
+Gg(-reduction)31 b(is)c(just)1534 4172 y Gc(l)1460 4209
+y F6(\000)-31 b(\000)f(!)27 b Gg(e)o(xcept)i(for)f(the)g(logical)i
+(cuts)f(with)e(axioms,)j(which)e(are)504 4322 y(as)c(follo)n(ws:)p
+Black Black 1206 4473 a FL(Cut)o F4(\()1378 4461 y FX(h)1406
+4473 y Ga(a)1454 4461 y FX(i)1482 4473 y FL(Ax)o F4(\()p
+Ga(x;)15 b(a)p F4(\))q Ga(;)1835 4461 y F9(\()1863 4473
+y Ga(y)1911 4461 y F9(\))1939 4473 y Ga(M)10 b F4(\))2235
+4436 y Gc(l)2257 4412 y FC(0)2172 4473 y F6(\000)-32
+b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(y)j F6(7!)d Ga(x)p
+F4(])1210 4586 y FL(Cut)p F4(\()1383 4574 y FX(h)1411
+4586 y Ga(b)1450 4574 y FX(i)1478 4586 y Ga(M)g(;)1616
+4574 y F9(\()1644 4586 y Ga(x)1696 4574 y F9(\))1723
+4586 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))q(\))2235
+4548 y Gc(l)2257 4525 y FC(0)2172 4586 y F6(\000)-32
+b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(b)g F6(7!)g Ga(a)p
+F4(])277 4756 y Gg(At)25 b(\002rst)h(sight,)i(it)d(seems)i(as)f(if)g(a)
+1408 4719 y Gc(g)r(c)1356 4756 y F6(\000)-31 b(\000)g(!)p
+Gg(-reduction)28 b(can)f(be)f(simulated)i(by)e(some)2965
+4719 y Gc(x)2900 4756 y F6(\000)-31 b(\000)g(!)o Gg(-reductions,)277
+4869 y(b)n(ut)19 b(in)g(general)i(this)e(is)g(not)g(true,)h(because)g
+(labelled)h(cuts)f(cannot)g(be)f(permuted)h(with)f(other)g(labelled)277
+4982 y(cuts.)40 b(In)27 b(the)g(same)g(w)o(ay)-6 b(,)28
+b(a)1261 4945 y Gc(l)1283 4921 y FC(0)1198 4982 y F6(\000)-31
+b(\000)f(!)p Gg(-reduction)30 b(cannot,)f(in)e(general,)j(be)d
+(simulated)h(by)g(some)3376 4945 y Gc(l)3302 4982 y F6(\000)-32
+b(\000)h(!)p Gg(-)277 5095 y(and)507 5058 y Gc(x)442
+5095 y F6(\000)f(\000)h(!)p Gg(-reductions.)63 b(Since)1390
+5058 y Gc(g)r(c)1338 5095 y F6(\000)-31 b(\000)g(!)33
+b Gg(and)1769 5058 y Gc(l)1791 5034 y FC(0)1706 5095
+y F6(\000)-31 b(\000)f(!)34 b Gg(can)g(be)g(easily)h(accommodated)i(in)
+d(our)g(strong)277 5208 y(normalisation)27 b(proof,)d(we)f(include)i
+(them)f(in)f(the)h(local)h(cut-elimination)i(procedure.)p
+Black Black eop end
+%%Page: 50 62
+TeXDict begin 50 61 bop Black -144 51 a Gb(50)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black Black -144 318 V -144
+5049 4 4732 v Black Black 394 485 a FF(Cut)461 438 y
+FC( )522 485 y FG(\()554 473 y FQ(h)581 485 y FU(c)617
+473 y FQ(i)643 485 y FF(Ax)q FG(\()p FU(x;)14 b(c)p FG(\))q
+FU(;)959 473 y FJ(\()985 485 y FU(y)1029 473 y FJ(\))1054
+485 y FU(P)e FG(\))1236 450 y FS(x)1173 485 y FT(\000)-25
+b(\000)g(!)22 b FF(Cut)p FG(\()1516 473 y FQ(h)1543 485
+y FU(c)1579 473 y FQ(i)1606 485 y FF(Ax)p FG(\()p FU(x;)14
+b(c)p FG(\))q FU(;)1921 473 y FJ(\()1947 485 y FU(y)1991
+473 y FJ(\))2017 485 y FU(P)d FG(\))-120 621 y FF(Cut)-53
+574 y FC( )8 621 y FG(\()40 609 y FQ(h)67 621 y FU(c)103
+609 y FQ(i)130 621 y FF(Cut)o FG(\()287 609 y FQ(h)315
+621 y FU(a)359 609 y FQ(i)385 621 y FU(M)e(;)512 609
+y FJ(\()538 621 y FU(x)585 609 y FJ(\))611 621 y FF(Ax)q
+FG(\()p FU(x;)14 b(c)p FG(\))q(\))p FU(;)959 609 y FJ(\()985
+621 y FU(y)1029 609 y FJ(\))1054 621 y FU(P)e FG(\))1236
+586 y FS(x)1173 621 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p
+FG(\()1516 609 y FQ(h)1543 621 y FU(a)1587 609 y FQ(i)1614
+621 y FF(Cut)1680 574 y FC( )1741 621 y FG(\()1773 609
+y FQ(h)1800 621 y FU(c)1836 609 y FQ(i)1863 621 y FU(M)9
+b(;)1990 609 y FJ(\()2016 621 y FU(y)2060 609 y FJ(\))2085
+621 y FU(P)j FG(\))p FU(;)2219 609 y FJ(\()2245 621 y
+FU(y)2289 609 y FJ(\))2315 621 y FU(P)g FG(\))145 757
+y FF(Cut)212 710 y FC( )273 757 y FG(\()305 745 y FQ(h)332
+757 y FU(a)376 745 y FQ(i)403 757 y FF(Not)533 769 y
+FS(R)588 757 y FG(\()620 745 y FJ(\()646 757 y FU(x)693
+745 y FJ(\))719 757 y FU(M)d(;)14 b(a)p FG(\))p FU(;)959
+745 y FJ(\()985 757 y FU(y)1029 745 y FJ(\))1054 757
+y FU(P)e FG(\))1236 722 y FS(x)1173 757 y FT(\000)-25
+b(\000)g(!)22 b FF(Cut)p FG(\()1516 745 y FQ(h)1543 757
+y FU(a)1587 745 y FQ(i)1614 757 y FF(Not)1744 769 y FS(R)1798
+757 y FG(\()1830 745 y FJ(\()1857 757 y FU(x)1904 745
+y FJ(\))1930 757 y FF(Cut)1997 710 y FC( )2058 757 y
+FG(\()2090 745 y FQ(h)2117 757 y FU(a)2161 745 y FQ(i)2188
+757 y FU(M)8 b(;)2314 745 y FJ(\()2340 757 y FU(y)2384
+745 y FJ(\))2410 757 y FU(P)j FG(\))q FU(;)p Gd(\))o
+FU(;)2594 745 y FJ(\()2620 757 y FU(y)2664 745 y FJ(\))2690
+757 y FU(P)h FG(\))-50 893 y FF(Cut)17 846 y FC( )78
+893 y FG(\()110 881 y FQ(h)137 893 y FU(c)173 881 y FQ(i)200
+893 y FF(And)341 905 y FS(R)395 893 y FG(\()427 881 y
+FQ(h)454 893 y FU(a)498 881 y FQ(i)525 893 y FU(M)d(;)652
+881 y FQ(h)679 893 y FU(b)715 881 y FQ(i)741 893 y FU(N)g(;)14
+b(c)p FG(\))p FU(;)959 881 y FJ(\()985 893 y FU(y)1029
+881 y FJ(\))1054 893 y FU(P)e FG(\))1236 858 y FS(x)1173
+893 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
+881 y FQ(h)1543 893 y FU(c)1579 881 y FQ(i)1606 893 y
+FF(And)1747 905 y FS(R)1801 893 y FG(\()1833 881 y FQ(h)1860
+893 y FU(a)1904 881 y FQ(i)1931 893 y FF(Cut)1998 846
+y FC( )2059 893 y FG(\()2091 881 y FQ(h)2118 893 y FU(c)2154
+881 y FQ(i)2181 893 y FU(M)-5 b(;)2294 881 y FJ(\()2319
+893 y FU(y)2363 881 y FJ(\))2389 893 y FU(P)12 b FG(\))p
+FU(;)2523 881 y FQ(h)2550 893 y FU(b)2586 881 y FQ(i)2612
+893 y FF(Cut)2679 846 y FC( )2740 893 y FG(\()2772 881
+y FQ(h)2799 893 y FU(c)2835 881 y FQ(i)2862 893 y FU(N)-5
+b(;)2961 881 y FJ(\()2987 893 y FU(y)3031 881 y FJ(\))3056
+893 y FU(P)12 b FG(\))q FU(;)i(c)p FG(\))p FU(;)3296
+881 y FJ(\()3322 893 y FU(y)3366 881 y FJ(\))3391 893
+y FU(P)e FG(\))203 1029 y FF(Cut)269 982 y FC( )330 1029
+y FG(\()362 1017 y FQ(h)389 1029 y FU(c)425 1017 y FQ(i)452
+1029 y FF(Or)543 992 y FS(i)543 1050 y(R)597 1029 y FG(\()629
+1017 y FQ(h)656 1029 y FU(a)700 1017 y FQ(i)727 1029
+y FU(M)d(;)14 b(c)p FG(\))p FU(;)959 1017 y FJ(\()985
+1029 y FU(y)1029 1017 y FJ(\))1054 1029 y FU(P)e FG(\))1236
+994 y FS(x)1173 1029 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p
+FG(\()1516 1017 y FQ(h)1543 1029 y FU(c)1579 1017 y FQ(i)1606
+1029 y FF(Or)1696 992 y FS(i)1696 1050 y(R)1751 1029
+y FG(\()1783 1017 y FQ(h)1810 1029 y FU(a)1854 1017 y
+FQ(i)1881 1029 y FF(Cut)1947 982 y FC( )2008 1029 y FG(\()2040
+1017 y FQ(h)2067 1029 y FU(c)2103 1017 y FQ(i)2130 1029
+y FU(M)9 b(;)2257 1017 y FJ(\()2283 1029 y FU(y)2327
+1017 y FJ(\))2352 1029 y FU(P)j FG(\))p FU(;)i(c)p FG(\))q
+FU(;)2592 1017 y FJ(\()2617 1029 y FU(y)2661 1017 y FJ(\))2687
+1029 y FU(P)e FG(\))63 1165 y FF(Cut)129 1118 y FC( )190
+1165 y FG(\()222 1153 y FQ(h)249 1165 y FU(b)285 1153
+y FQ(i)312 1165 y FF(Imp)444 1185 y FS(R)498 1165 y FG(\()530
+1153 y FJ(\()557 1165 y FU(x)604 1153 y FJ(\))p FQ(h)657
+1165 y FU(a)701 1153 y FQ(i)728 1165 y FU(M)c(;)14 b(b)p
+FG(\))p FU(;)959 1153 y FJ(\()985 1165 y FU(y)1029 1153
+y FJ(\))1054 1165 y FU(P)e FG(\))1236 1130 y FS(x)1173
+1165 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
+1153 y FQ(h)1543 1165 y FU(b)1579 1153 y FQ(i)1605 1165
+y FF(Imp)1737 1185 y FS(R)1792 1165 y FG(\()1824 1153
+y FJ(\()1850 1165 y FU(x)1897 1153 y FJ(\))p FQ(h)1950
+1165 y FU(a)1994 1153 y FQ(i)2021 1165 y FF(Cut)2088
+1118 y FC( )2149 1165 y FG(\()2181 1153 y FQ(h)2208 1165
+y FU(b)2244 1153 y FQ(i)2270 1165 y FU(M)9 b(;)2397 1153
+y FJ(\()2423 1165 y FU(y)2467 1153 y FJ(\))2492 1165
+y FU(P)j FG(\))p FU(;)i(b)p FG(\))p FU(;)2731 1153 y
+FJ(\()2757 1165 y FU(y)2801 1153 y FJ(\))2827 1165 y
+FU(P)e FG(\))390 1348 y FF(Cut)456 1301 y FC(!)517 1348
+y FG(\()549 1336 y FQ(h)576 1348 y FU(c)612 1336 y FQ(i)639
+1348 y FU(P)g(;)741 1336 y FJ(\()767 1348 y FU(y)811
+1336 y FJ(\))837 1348 y FF(Ax)p FG(\()p FU(y)s(;)i(a)p
+FG(\)\))1236 1313 y FS(x)1173 1348 y FT(\000)-25 b(\000)g(!)22
+b FF(Cut)p FG(\()1516 1336 y FQ(h)1543 1348 y FU(c)1579
+1336 y FQ(i)1606 1348 y FU(P)11 b(;)1707 1336 y FJ(\()1733
+1348 y FU(y)1777 1336 y FJ(\))1803 1348 y FF(Ax)q FG(\()p
+FU(y)s(;)j(a)p FG(\)\))-119 1484 y FF(Cut)-52 1437 y
+FC(!)9 1484 y FG(\()41 1472 y FQ(h)68 1484 y FU(c)104
+1472 y FQ(i)131 1484 y FU(P)d(;)232 1472 y FJ(\()258
+1484 y FU(y)302 1472 y FJ(\))328 1484 y FF(Cut)p FG(\()486
+1472 y FQ(h)513 1484 y FU(a)557 1472 y FQ(i)584 1484
+y FF(Ax)p FG(\()p FU(y)s(;)j(a)p FG(\))p FU(;)903 1472
+y FJ(\()929 1484 y FU(z)972 1472 y FJ(\))997 1484 y FU(M)9
+b FG(\)\))1236 1449 y FS(x)1173 1484 y FT(\000)-25 b(\000)g(!)22
+b FF(Cut)p FG(\()1516 1472 y FQ(h)1543 1484 y FU(c)1579
+1472 y FQ(i)1606 1484 y FU(P)11 b(;)1707 1472 y FJ(\()1733
+1484 y FU(z)1776 1472 y FJ(\))1801 1484 y FF(Cut)1868
+1437 y FC(!)1929 1484 y FG(\()1961 1472 y FQ(h)1988 1484
+y FU(c)2024 1472 y FQ(i)2051 1484 y FU(P)h(;)2153 1472
+y FJ(\()2179 1484 y FU(y)2223 1472 y FJ(\))2248 1484
+y FU(M)d FG(\)\))152 1620 y FF(Cut)219 1573 y FC(!)280
+1620 y FG(\()312 1608 y FQ(h)339 1620 y FU(c)375 1608
+y FQ(i)402 1620 y FU(P)j(;)504 1608 y FJ(\()530 1620
+y FU(x)577 1608 y FJ(\))603 1620 y FF(Not)733 1632 y
+FS(L)783 1620 y FG(\()815 1608 y FQ(h)842 1620 y FU(a)886
+1608 y FQ(i)913 1620 y FU(M)d(;)14 b(x)p FG(\)\))1236
+1585 y FS(x)1173 1620 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p
+FG(\()1516 1608 y FQ(h)1543 1620 y FU(c)1579 1608 y FQ(i)1606
+1620 y FU(P)11 b(;)1707 1608 y FJ(\()1733 1620 y FU(x)1780
+1608 y FJ(\))1807 1620 y FF(Not)1937 1632 y FS(L)1987
+1620 y FG(\()2019 1608 y FQ(h)2046 1620 y FU(a)2090 1608
+y FQ(i)2117 1620 y FF(Cut)2183 1573 y FC(!)2244 1620
+y FG(\()2276 1608 y FQ(h)2303 1620 y FU(c)2339 1608 y
+FQ(i)2366 1620 y FU(P)h(;)2468 1608 y FJ(\()2494 1620
+y FU(x)2541 1608 y FJ(\))2567 1620 y FU(M)d FG(\))p FU(;)14
+b(x)p FG(\))q(\))147 1756 y FF(Cut)214 1709 y FC(!)275
+1756 y FG(\()307 1744 y FQ(h)334 1756 y FU(c)370 1744
+y FQ(i)397 1756 y FU(P)e(;)499 1744 y FJ(\()525 1756
+y FU(y)569 1744 y FJ(\))594 1756 y FF(And)735 1719 y
+FS(i)735 1777 y(L)785 1756 y FG(\()817 1744 y FJ(\()843
+1756 y FU(x)890 1744 y FJ(\))917 1756 y FU(M)c(;)14 b(y)s
+FG(\)\))1236 1721 y FS(x)1173 1756 y FT(\000)-25 b(\000)g(!)22
+b FF(Cut)p FG(\()1516 1744 y FQ(h)1543 1756 y FU(c)1579
+1744 y FQ(i)1606 1756 y FU(P)11 b(;)1707 1744 y FJ(\()1733
+1756 y FU(y)1777 1744 y FJ(\))1803 1756 y FF(And)1944
+1719 y FS(i)1944 1777 y(L)1994 1756 y FG(\()2026 1744
+y FJ(\()2052 1756 y FU(x)2099 1744 y FJ(\))2125 1756
+y FF(Cut)2192 1709 y FC(!)2253 1756 y FG(\()2285 1744
+y FQ(h)2312 1756 y FU(c)2348 1744 y FQ(i)2375 1756 y
+FU(P)h(;)2477 1744 y FJ(\()2503 1756 y FU(y)2547 1744
+y FJ(\))2572 1756 y FU(M)d FG(\))p FU(;)14 b(y)s FG(\)\))-8
+1892 y FF(Cut)59 1845 y FC(!)120 1892 y FG(\()152 1880
+y FQ(h)179 1892 y FU(c)215 1880 y FQ(i)242 1892 y FU(P)e(;)344
+1880 y FJ(\()370 1892 y FU(z)413 1880 y FJ(\))438 1892
+y FF(Or)529 1904 y FS(L)578 1892 y FG(\()610 1880 y FJ(\()637
+1892 y FU(x)684 1880 y FJ(\))710 1892 y FU(M)d(;)837
+1880 y FJ(\()862 1892 y FU(y)906 1880 y FJ(\))932 1892
+y FU(N)g(;)14 b(z)t FG(\))o(\))1236 1857 y FS(x)1173
+1892 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
+1880 y FQ(h)1543 1892 y FU(c)1579 1880 y FQ(i)1606 1892
+y FU(P)11 b(;)1707 1880 y FJ(\()1733 1892 y FU(z)1776
+1880 y FJ(\))1801 1892 y FF(Or)1892 1904 y FS(L)1942
+1892 y FG(\()1974 1880 y FJ(\()2000 1892 y FU(x)2047
+1880 y FJ(\))2073 1892 y FF(Cut)2140 1845 y FC(!)2201
+1892 y FG(\()2233 1880 y FQ(h)2260 1892 y FU(c)2296 1880
+y FQ(i)2323 1892 y FU(P)h(;)2425 1880 y FJ(\()2451 1892
+y FU(z)2494 1880 y FJ(\))2519 1892 y FU(M)d FG(\))p FU(;)2678
+1880 y FJ(\()2704 1892 y FU(y)2748 1880 y FJ(\))2773
+1892 y FF(Cut)2840 1845 y FC(!)2901 1892 y FG(\()2933
+1880 y FQ(h)2960 1892 y FU(c)2996 1880 y FQ(i)3023 1892
+y FU(P)j(;)3125 1880 y FJ(\()3151 1892 y FU(z)3194 1880
+y FJ(\))3219 1892 y FU(N)d FG(\))p FU(;)14 b(z)t FG(\))o(\))-54
+2028 y FF(Cut)13 1981 y FC(!)74 2028 y FG(\()106 2016
+y FQ(h)133 2028 y FU(c)169 2016 y FQ(i)196 2028 y FU(P)e(;)298
+2016 y FJ(\()324 2028 y FU(y)368 2016 y FJ(\))393 2028
+y FF(Imp)525 2049 y FS(L)575 2028 y FG(\()607 2016 y
+FQ(h)634 2028 y FU(a)678 2016 y FQ(i)705 2028 y FU(M)c(;)831
+2016 y FJ(\()857 2028 y FU(x)904 2016 y FJ(\))931 2028
+y FU(N)g(;)14 b(y)s FG(\)\))1236 1993 y FS(x)1173 2028
+y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516 2016
+y FQ(h)1543 2028 y FU(c)1579 2016 y FQ(i)1606 2028 y
+FU(P)11 b(;)1707 2016 y FJ(\()1733 2028 y FU(y)1777 2016
+y FJ(\))1803 2028 y FF(Imp)1935 2049 y FS(L)1985 2028
+y FG(\()2017 2016 y FQ(h)2044 2028 y FU(a)2088 2016 y
+FQ(i)2114 2028 y FF(Cut)2181 1981 y FC(!)2242 2028 y
+FG(\()2274 2016 y FQ(h)2301 2028 y FU(c)2337 2016 y FQ(i)2364
+2028 y FU(P)h(;)2466 2016 y FJ(\()2492 2028 y FU(y)2536
+2016 y FJ(\))2561 2028 y FU(M)d FG(\))p FU(;)2720 2016
+y FJ(\()2746 2028 y FU(x)2793 2016 y FJ(\))2820 2028
+y FF(Cut)2886 1981 y FC(!)2947 2028 y FG(\()2979 2016
+y FQ(h)3006 2028 y FU(c)3042 2016 y FQ(i)3069 2028 y
+FU(P)j(;)3171 2016 y FJ(\()3197 2028 y FU(y)3241 2016
+y FJ(\))3267 2028 y FU(N)c FG(\))q FU(;)14 b(y)s FG(\))o(\))-111
+2212 y FR(Otherwise:)386 2324 y FF(Cut)453 2277 y FC( )514
+2324 y FG(\()546 2312 y FQ(h)573 2324 y FU(b)609 2312
+y FQ(i)636 2324 y FF(Ax)p FG(\()p FU(x;)g(a)p FG(\))q
+FU(;)959 2312 y FJ(\()985 2324 y FU(y)1029 2312 y FJ(\))1054
+2324 y FU(P)e FG(\))1236 2288 y FS(x)1173 2324 y FT(\000)-25
+b(\000)g(!)22 b FF(Ax)p FG(\()p FU(x;)14 b(a)p FG(\))83
+2460 y FF(Cut)150 2413 y FC( )211 2460 y FG(\()243 2448
+y FQ(h)270 2460 y FU(b)306 2448 y FQ(i)332 2460 y FF(Cut)p
+FG(\()490 2448 y FQ(h)517 2460 y FU(a)561 2448 y FQ(i)588
+2460 y FU(M)9 b(;)715 2448 y FJ(\()741 2460 y FU(x)788
+2448 y FJ(\))814 2460 y FU(N)g FG(\))p FU(;)959 2448
+y FJ(\()985 2460 y FU(y)1029 2448 y FJ(\))1054 2460 y
+FU(P)j FG(\))1236 2424 y FS(x)1173 2460 y FT(\000)-25
+b(\000)g(!)22 b FF(Cut)p FG(\()1516 2448 y FQ(h)1543
+2460 y FU(a)1587 2448 y FQ(i)1614 2460 y FF(Cut)1680
+2413 y FC( )1741 2460 y FG(\()1773 2448 y FQ(h)1800 2460
+y FU(b)1836 2448 y FQ(i)1863 2460 y FU(M)9 b(;)1990 2448
+y FJ(\()2015 2460 y FU(y)2059 2448 y FJ(\))2085 2460
+y FU(P)j FG(\))p FU(;)2219 2448 y FJ(\()2245 2460 y FU(x)2292
+2448 y FJ(\))2318 2460 y FF(Cut)2385 2413 y FC( )2446
+2460 y FG(\()2478 2448 y FQ(h)2505 2460 y FU(b)2541 2448
+y FQ(i)2568 2460 y FU(N)d(;)2681 2448 y FJ(\()2706 2460
+y FU(y)2750 2448 y FJ(\))2776 2460 y FU(P)j FG(\)\))154
+2596 y FF(Cut)220 2549 y FC( )281 2596 y FG(\()313 2584
+y FQ(h)340 2596 y FU(b)376 2584 y FQ(i)403 2596 y FF(Not)533
+2608 y FS(R)588 2596 y FG(\()620 2584 y FJ(\()646 2596
+y FU(x)693 2584 y FJ(\))719 2596 y FU(M)d(;)14 b(a)p
+FG(\))p FU(;)959 2584 y FJ(\()985 2596 y FU(y)1029 2584
+y FJ(\))1054 2596 y FU(P)e FG(\))1236 2560 y FS(x)1173
+2596 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488 2608 y
+FS(R)1542 2596 y FG(\()1574 2584 y FJ(\()1601 2596 y
+FU(x)1648 2584 y FJ(\))1674 2596 y FF(Cut)1741 2549 y
+FC( )1802 2596 y FG(\()1834 2584 y FQ(h)1861 2596 y FU(b)1897
+2584 y FQ(i)1924 2596 y FU(M)8 b(;)2050 2584 y FJ(\()2076
+2596 y FU(y)2120 2584 y FJ(\))2146 2596 y FU(P)j FG(\))q
+FU(;)j(a)p FG(\))156 2732 y FF(Cut)223 2685 y FC( )284
+2732 y FG(\()316 2720 y FQ(h)343 2732 y FU(b)379 2720
+y FQ(i)406 2732 y FF(Not)536 2744 y FS(L)586 2732 y FG(\()618
+2720 y FQ(h)645 2732 y FU(a)689 2720 y FQ(i)716 2732
+y FU(M)8 b(;)14 b(x)p FG(\))q FU(;)959 2720 y FJ(\()985
+2732 y FU(y)1029 2720 y FJ(\))1054 2732 y FU(P)e FG(\))1236
+2696 y FS(x)1173 2732 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488
+2744 y FS(L)1538 2732 y FG(\()1570 2720 y FQ(h)1597 2732
+y FU(a)1641 2720 y FQ(i)1668 2732 y FF(Cut)1734 2685
+y FC( )1795 2732 y FG(\()1827 2720 y FQ(h)1855 2732 y
+FU(b)1891 2720 y FQ(i)1917 2732 y FU(M)9 b(;)2044 2720
+y FJ(\()2069 2732 y FU(y)2113 2720 y FJ(\))2139 2732
+y FU(P)j FG(\))p FU(;)i(x)p FG(\))-57 2868 y FF(Cut)10
+2821 y FC( )70 2868 y FG(\()102 2856 y FQ(h)130 2868
+y FU(d)173 2856 y FQ(i)200 2868 y FF(And)341 2880 y FS(R)395
+2868 y FG(\()427 2856 y FQ(h)454 2868 y FU(a)498 2856
+y FQ(i)525 2868 y FU(M)9 b(;)652 2856 y FQ(h)679 2868
+y FU(b)715 2856 y FQ(i)741 2868 y FU(N)g(;)14 b(c)p FG(\))p
+FU(;)959 2856 y FJ(\()985 2868 y FU(y)1029 2856 y FJ(\))1054
+2868 y FU(P)e FG(\))1236 2832 y FS(x)1173 2868 y FT(\000)-25
+b(\000)g(!)22 b FF(And)1499 2880 y FS(R)1553 2868 y FG(\()1585
+2856 y FQ(h)1612 2868 y FU(a)1656 2856 y FQ(i)1683 2868
+y FF(Cut)1750 2821 y FC( )1811 2868 y FG(\()1843 2856
+y FQ(h)1870 2868 y FU(d)1913 2856 y FQ(i)1940 2868 y
+FU(M)9 b(;)2067 2856 y FJ(\()2093 2868 y FU(y)2137 2856
+y FJ(\))2162 2868 y FU(P)j FG(\))p FU(;)2296 2856 y FQ(h)2323
+2868 y FU(b)2359 2856 y FQ(i)2386 2868 y FF(Cut)2453
+2821 y FC( )2513 2868 y FG(\()2545 2856 y FQ(h)2573 2868
+y FU(d)2616 2856 y FQ(i)2643 2868 y FU(N)c(;)2755 2856
+y FJ(\()2781 2868 y FU(y)2825 2856 y FJ(\))2851 2868
+y FU(P)k FG(\))p FU(;)i(c)p FG(\))141 3004 y FF(Cut)208
+2957 y FC( )269 3004 y FG(\()301 2992 y FQ(h)328 3004
+y FU(a)372 2992 y FQ(i)398 3004 y FF(And)540 2967 y FS(i)540
+3024 y(L)589 3004 y FG(\()621 2992 y FJ(\()648 3004 y
+FU(x)695 2992 y FJ(\))721 3004 y FU(M)9 b(;)14 b(y)s
+FG(\))o FU(;)960 2992 y FJ(\()986 3004 y FU(z)1029 2992
+y FJ(\))1054 3004 y FU(P)e FG(\))1236 2968 y FS(x)1173
+3004 y FT(\000)-25 b(\000)g(!)22 b FF(And)1499 2967 y
+FS(i)1499 3024 y(L)1549 3004 y FG(\()1581 2992 y FJ(\()1607
+3004 y FU(x)1654 2992 y FJ(\))1680 3004 y FF(Cut)1747
+2957 y FC( )1808 3004 y FG(\()1840 2992 y FQ(h)1867 3004
+y FU(a)1911 2992 y FQ(i)1938 3004 y FU(M)8 b(;)2064 2992
+y FJ(\()2090 3004 y FU(z)2133 2992 y FJ(\))2158 3004
+y FU(P)k FG(\))q FU(;)i(y)s FG(\))199 3140 y FF(Cut)266
+3093 y FC( )327 3140 y FG(\()359 3128 y FQ(h)386 3140
+y FU(c)422 3128 y FQ(i)449 3140 y FF(Or)539 3103 y FS(i)539
+3160 y(R)594 3140 y FG(\()626 3128 y FQ(h)653 3140 y
+FU(a)697 3128 y FQ(i)724 3140 y FU(M)8 b(;)14 b(b)p FG(\))p
+FU(;)955 3128 y FJ(\()981 3140 y FU(x)1028 3128 y FJ(\))1054
+3140 y FU(P)e FG(\))1236 3104 y FS(x)1173 3140 y FT(\000)-25
+b(\000)g(!)22 b FF(Or)1448 3103 y FS(i)1448 3160 y(R)1503
+3140 y FG(\()1535 3128 y FQ(h)1562 3140 y FU(a)1606 3128
+y FQ(i)1633 3140 y FF(Cut)1700 3093 y FC( )1760 3140
+y FG(\()1792 3128 y FQ(h)1820 3140 y FU(c)1856 3128 y
+FQ(i)1882 3140 y FU(M)9 b(;)2009 3128 y FJ(\()2035 3140
+y FU(x)2082 3128 y FJ(\))2108 3140 y FU(P)j FG(\))p FU(;)i(b)p
+FG(\))-16 3276 y FF(Cut)50 3229 y FC( )111 3276 y FG(\()143
+3264 y FQ(h)170 3276 y FU(a)214 3264 y FQ(i)241 3276
+y FF(Or)332 3288 y FS(L)382 3276 y FG(\()414 3264 y FJ(\()440
+3276 y FU(x)487 3264 y FJ(\))513 3276 y FU(M)9 b(;)640
+3264 y FJ(\()666 3276 y FU(y)710 3264 y FJ(\))735 3276
+y FU(N)g(;)14 b(z)t FG(\))o FU(;)959 3264 y FJ(\()985
+3276 y FU(v)1028 3264 y FJ(\))1054 3276 y FU(P)e FG(\))1236
+3240 y FS(x)1173 3276 y FT(\000)-25 b(\000)g(!)22 b FF(Or)1448
+3288 y FS(L)1498 3276 y FG(\()1530 3264 y FJ(\()1556
+3276 y FU(x)1603 3264 y FJ(\))1630 3276 y FF(Cut)1697
+3229 y FC( )1757 3276 y FG(\()1789 3264 y FQ(h)1817 3276
+y FU(a)1861 3264 y FQ(i)1887 3276 y FU(M)9 b(;)2014 3264
+y FJ(\()2040 3276 y FU(v)2083 3264 y FJ(\))2109 3276
+y FU(P)j FG(\))p FU(;)2243 3264 y FJ(\()2269 3276 y FU(y)2313
+3264 y FJ(\))2339 3276 y FF(Cut)2405 3229 y FC( )2466
+3276 y FG(\()2498 3264 y FQ(h)2525 3276 y FU(a)2569 3264
+y FQ(i)2596 3276 y FU(N)d(;)2709 3264 y FJ(\()2735 3276
+y FU(v)2778 3264 y FJ(\))2804 3276 y FU(P)j FG(\))p FU(;)i(z)t
+FG(\))62 3412 y FF(Cut)129 3365 y FC( )190 3412 y FG(\()222
+3400 y FQ(h)249 3412 y FU(c)285 3400 y FQ(i)312 3412
+y FF(Imp)444 3432 y FS(R)498 3412 y FG(\()530 3400 y
+FJ(\()557 3412 y FU(x)604 3400 y FJ(\))p FQ(h)657 3412
+y FU(a)701 3400 y FQ(i)728 3412 y FU(M)8 b(;)14 b(b)p
+FG(\))p FU(;)959 3400 y FJ(\()985 3412 y FU(y)1029 3400
+y FJ(\))1054 3412 y FU(P)e FG(\))1236 3376 y FS(x)1173
+3412 y FT(\000)-25 b(\000)g(!)22 b FF(Imp)1490 3432 y
+FS(R)1544 3412 y FG(\()1576 3400 y FJ(\()1602 3412 y
+FU(x)1649 3400 y FJ(\))q FQ(h)1703 3412 y FU(a)1747 3400
+y FQ(i)1773 3412 y FF(Cut)1840 3365 y FC( )1901 3412
+y FG(\()1933 3400 y FQ(h)1960 3412 y FU(c)1996 3400 y
+FQ(i)2023 3412 y FU(M)9 b(;)2150 3400 y FJ(\()2175 3412
+y FU(y)2219 3400 y FJ(\))2245 3412 y FU(P)j FG(\))p FU(;)i(b)p
+FG(\))-52 3548 y FF(Cut)15 3501 y FC( )76 3548 y FG(\()108
+3536 y FQ(h)135 3548 y FU(b)171 3536 y FQ(i)197 3548
+y FF(Imp)329 3568 y FS(L)379 3548 y FG(\()411 3536 y
+FQ(h)438 3548 y FU(a)482 3536 y FQ(i)509 3548 y FU(M)9
+b(;)636 3536 y FJ(\()661 3548 y FU(x)708 3536 y FJ(\))735
+3548 y FU(N)g(;)14 b(y)s FG(\))o FU(;)960 3536 y FJ(\()986
+3548 y FU(z)1029 3536 y FJ(\))1054 3548 y FU(P)e FG(\))1236
+3512 y FS(x)1173 3548 y FT(\000)-25 b(\000)g(!)22 b FF(Imp)1490
+3568 y FS(L)1539 3548 y FG(\()1571 3536 y FQ(h)1598 3548
+y FU(a)1642 3536 y FQ(i)1669 3548 y FF(Cut)1736 3501
+y FC( )1797 3548 y FG(\()1829 3536 y FQ(h)1856 3548 y
+FU(b)1892 3536 y FQ(i)1919 3548 y FU(M)8 b(;)2045 3536
+y FJ(\()2071 3548 y FU(z)2114 3536 y FJ(\))2139 3548
+y FU(P)k FG(\))p FU(;)2273 3536 y FJ(\()2299 3548 y FU(x)2346
+3536 y FJ(\))2373 3548 y FF(Cut)2440 3501 y FC( )2500
+3548 y FG(\()2532 3536 y FQ(h)2560 3548 y FU(b)2596 3536
+y FQ(i)2622 3548 y FU(N)d(;)2735 3536 y FJ(\()2761 3548
+y FU(z)2804 3536 y FJ(\))2829 3548 y FU(P)j FG(\))p FU(;)i(y)s
+FG(\))386 3731 y FF(Cut)453 3684 y FC(!)514 3731 y FG(\()546
+3719 y FQ(h)573 3731 y FU(b)609 3719 y FQ(i)636 3731
+y FU(P)d(;)737 3719 y FJ(\()763 3731 y FU(y)807 3719
+y FJ(\))833 3731 y FF(Ax)p FG(\()p FU(x;)j(a)p FG(\))q(\))1236
+3696 y FS(x)1173 3731 y FT(\000)-25 b(\000)g(!)22 b FF(Ax)p
+FG(\()p FU(x;)14 b(a)p FG(\))83 3867 y FF(Cut)150 3820
+y FC(!)211 3867 y FG(\()243 3855 y FQ(h)270 3867 y FU(b)306
+3855 y FQ(i)332 3867 y FU(P)e(;)434 3855 y FJ(\()460
+3867 y FU(y)504 3855 y FJ(\))530 3867 y FF(Cut)o FG(\()687
+3855 y FQ(h)715 3867 y FU(a)759 3855 y FQ(i)785 3867
+y FU(M)d(;)912 3855 y FJ(\()938 3867 y FU(x)985 3855
+y FJ(\))1011 3867 y FU(N)g FG(\)\))1236 3832 y FS(x)1173
+3867 y FT(\000)-25 b(\000)g(!)22 b FF(Cut)p FG(\()1516
+3855 y FQ(h)1543 3867 y FU(a)1587 3855 y FQ(i)1614 3867
+y FF(Cut)1680 3820 y FC(!)1741 3867 y FG(\()1773 3855
+y FQ(h)1800 3867 y FU(b)1836 3855 y FQ(i)1863 3867 y
+FU(P)12 b(;)1965 3855 y FJ(\()1991 3867 y FU(y)2035 3855
+y FJ(\))2060 3867 y FU(M)d FG(\))p FU(;)2219 3855 y FJ(\()2245
+3867 y FU(x)2292 3855 y FJ(\))2318 3867 y FF(Cut)2385
+3820 y FC(!)2446 3867 y FG(\()2478 3855 y FQ(h)2505 3867
+y FU(b)2541 3855 y FQ(i)2568 3867 y FU(P)j(;)2670 3855
+y FJ(\()2695 3867 y FU(y)2739 3855 y FJ(\))2765 3867
+y FU(N)d FG(\)\))154 4003 y FF(Cut)220 3956 y FC(!)281
+4003 y FG(\()313 3991 y FQ(h)340 4003 y FU(b)376 3991
+y FQ(i)403 4003 y FU(P)j(;)505 3991 y FJ(\()531 4003
+y FU(y)575 3991 y FJ(\))600 4003 y FF(Not)731 4015 y
+FS(R)785 4003 y FG(\()817 3991 y FJ(\()843 4003 y FU(x)890
+3991 y FJ(\))917 4003 y FU(M)c(;)14 b(a)p FG(\)\))1236
+3968 y FS(x)1173 4003 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488
+4015 y FS(R)1542 4003 y FG(\()1574 3991 y FJ(\()1601
+4003 y FU(x)1648 3991 y FJ(\))1674 4003 y FF(Cut)1741
+3956 y FC(!)1802 4003 y FG(\()1834 3991 y FQ(h)1861 4003
+y FU(b)1897 3991 y FQ(i)1924 4003 y FU(P)11 b(;)2025
+3991 y FJ(\()2051 4003 y FU(y)2095 3991 y FJ(\))2121
+4003 y FU(M)d FG(\))q FU(;)14 b(a)p FG(\))156 4139 y
+FF(Cut)223 4092 y FC(!)284 4139 y FG(\()316 4127 y FQ(h)343
+4139 y FU(b)379 4127 y FQ(i)406 4139 y FU(P)e(;)508 4127
+y FJ(\()533 4139 y FU(y)577 4127 y FJ(\))603 4139 y FF(Not)733
+4151 y FS(L)783 4139 y FG(\()815 4127 y FQ(h)842 4139
+y FU(a)886 4127 y FQ(i)913 4139 y FU(M)d(;)14 b(x)p FG(\)\))1236
+4104 y FS(x)1173 4139 y FT(\000)-25 b(\000)g(!)22 b FF(Not)1488
+4151 y FS(L)1538 4139 y FG(\()1570 4127 y FQ(h)1597 4139
+y FU(a)1641 4127 y FQ(i)1668 4139 y FF(Cut)1734 4092
+y FC(!)1795 4139 y FG(\()1827 4127 y FQ(h)1855 4139 y
+FU(b)1891 4127 y FQ(i)1917 4139 y FU(P)12 b(;)2019 4127
+y FJ(\()2045 4139 y FU(y)2089 4127 y FJ(\))2114 4139
+y FU(M)d FG(\))p FU(;)14 b(x)p FG(\))-57 4275 y FF(Cut)10
+4228 y FC(!)70 4275 y FG(\()102 4263 y FQ(h)130 4275
+y FU(d)173 4263 y FQ(i)200 4275 y FU(P)e(;)302 4263 y
+FJ(\()327 4275 y FU(y)371 4263 y FJ(\))397 4275 y FF(And)538
+4287 y FS(R)593 4275 y FG(\()625 4263 y FQ(h)652 4275
+y FU(a)696 4263 y FQ(i)723 4275 y FU(M)c(;)849 4263 y
+FQ(h)876 4275 y FU(b)912 4263 y FQ(i)938 4275 y FU(N)h(;)14
+b(c)p FG(\)\))1236 4240 y FS(x)1173 4275 y FT(\000)-25
+b(\000)g(!)22 b FF(And)1499 4287 y FS(R)1553 4275 y FG(\()1585
+4263 y FQ(h)1612 4275 y FU(a)1656 4263 y FQ(i)1683 4275
+y FF(Cut)1750 4228 y FC(!)1811 4275 y FG(\()1843 4263
+y FQ(h)1870 4275 y FU(d)1913 4263 y FQ(i)1940 4275 y
+FU(P)12 b(;)2042 4263 y FJ(\()2068 4275 y FU(y)2112 4263
+y FJ(\))2138 4275 y FU(M)c FG(\))p FU(;)2296 4263 y FQ(h)2323
+4275 y FU(b)2359 4263 y FQ(i)2386 4275 y FF(Cut)2453
+4228 y FC(!)2513 4275 y FG(\()2545 4263 y FQ(h)2573 4275
+y FU(d)2616 4263 y FQ(i)2643 4275 y FU(P)j(;)2744 4263
+y FJ(\()2770 4275 y FU(y)2814 4263 y FJ(\))2840 4275
+y FU(N)e FG(\))p FU(;)14 b(c)p FG(\))141 4411 y FF(Cut)208
+4364 y FC(!)269 4411 y FG(\()301 4399 y FQ(h)328 4411
+y FU(a)372 4399 y FQ(i)398 4411 y FU(P)e(;)500 4399 y
+FJ(\()526 4411 y FU(z)569 4399 y FJ(\))594 4411 y FF(And)735
+4374 y FS(i)735 4432 y(L)785 4411 y FG(\()817 4399 y
+FJ(\()843 4411 y FU(x)890 4399 y FJ(\))917 4411 y FU(M)c(;)14
+b(y)s FG(\)\))1236 4376 y FS(x)1173 4411 y FT(\000)-25
+b(\000)g(!)22 b FF(And)1499 4374 y FS(i)1499 4432 y(L)1549
+4411 y FG(\()1581 4399 y FJ(\()1607 4411 y FU(x)1654
+4399 y FJ(\))1680 4411 y FF(Cut)1747 4364 y FC(!)1808
+4411 y FG(\()1840 4399 y FQ(h)1867 4411 y FU(a)1911 4399
+y FQ(i)1938 4411 y FU(P)12 b(;)2040 4399 y FJ(\()2066
+4411 y FU(z)2109 4399 y FJ(\))2134 4411 y FU(M)c FG(\))q
+FU(;)14 b(y)s FG(\))199 4547 y FF(Cut)266 4500 y FC(!)327
+4547 y FG(\()359 4535 y FQ(h)386 4547 y FU(c)422 4535
+y FQ(i)449 4547 y FU(P)e(;)551 4535 y FJ(\()576 4547
+y FU(x)623 4535 y FJ(\))650 4547 y FF(Or)740 4510 y FS(i)740
+4568 y(R)795 4547 y FG(\()827 4535 y FQ(h)854 4547 y
+FU(a)898 4535 y FQ(i)925 4547 y FU(M)c(;)14 b(b)p FG(\)\))1236
+4512 y FS(x)1173 4547 y FT(\000)-25 b(\000)g(!)22 b FF(Or)1448
+4510 y FS(i)1448 4568 y(R)1503 4547 y FG(\()1535 4535
+y FQ(h)1562 4547 y FU(a)1606 4535 y FQ(i)1633 4547 y
+FF(Cut)1700 4500 y FC(!)1760 4547 y FG(\()1792 4535 y
+FQ(h)1820 4547 y FU(c)1856 4535 y FQ(i)1882 4547 y FU(P)12
+b(;)1984 4535 y FJ(\()2010 4547 y FU(x)2057 4535 y FJ(\))2083
+4547 y FU(M)d FG(\))p FU(;)14 b(b)p FG(\))-16 4683 y
+FF(Cut)50 4636 y FC(!)111 4683 y FG(\()143 4671 y FQ(h)170
+4683 y FU(a)214 4671 y FQ(i)241 4683 y FU(P)e(;)343 4671
+y FJ(\()369 4683 y FU(v)412 4671 y FJ(\))438 4683 y FF(Or)529
+4695 y FS(L)578 4683 y FG(\()610 4671 y FJ(\()637 4683
+y FU(x)684 4671 y FJ(\))710 4683 y FU(M)d(;)837 4671
+y FJ(\()862 4683 y FU(y)906 4671 y FJ(\))932 4683 y FU(N)g(;)14
+b(z)t FG(\))o(\))1236 4648 y FS(x)1173 4683 y FT(\000)-25
+b(\000)g(!)22 b FF(Or)1448 4695 y FS(L)1498 4683 y FG(\()1530
+4671 y FJ(\()1556 4683 y FU(x)1603 4671 y FJ(\))1630
+4683 y FF(Cut)1697 4636 y FC(!)1757 4683 y FG(\()1789
+4671 y FQ(h)1817 4683 y FU(a)1861 4671 y FQ(i)1887 4683
+y FU(P)12 b(;)1989 4671 y FJ(\()2015 4683 y FU(v)2058
+4671 y FJ(\))2084 4683 y FU(M)d FG(\))p FU(;)2243 4671
+y FJ(\()2269 4683 y FU(y)2313 4671 y FJ(\))2339 4683
+y FF(Cut)2405 4636 y FC(!)2466 4683 y FG(\()2498 4671
+y FQ(h)2525 4683 y FU(a)2569 4671 y FQ(i)2596 4683 y
+FU(P)j(;)2698 4671 y FJ(\()2724 4683 y FU(v)2767 4671
+y FJ(\))2793 4683 y FU(N)d FG(\))p FU(;)14 b(z)t FG(\))62
+4819 y FF(Cut)129 4772 y FC(!)190 4819 y FG(\()222 4807
+y FQ(h)249 4819 y FU(c)285 4807 y FQ(i)312 4819 y FU(P)e(;)414
+4807 y FJ(\()440 4819 y FU(y)484 4807 y FJ(\))509 4819
+y FF(Imp)641 4839 y FS(R)696 4819 y FG(\()728 4807 y
+FJ(\()754 4819 y FU(x)801 4807 y FJ(\))p FQ(h)854 4819
+y FU(a)898 4807 y FQ(i)925 4819 y FU(M)c(;)14 b(b)p FG(\)\))1236
+4784 y FS(x)1173 4819 y FT(\000)-25 b(\000)g(!)22 b FF(Imp)1490
+4839 y FS(R)1544 4819 y FG(\()1576 4807 y FJ(\()1602
+4819 y FU(x)1649 4807 y FJ(\))q FQ(h)1703 4819 y FU(a)1747
+4807 y FQ(i)1773 4819 y FF(Cut)1840 4772 y FC(!)1901
+4819 y FG(\()1933 4807 y FQ(h)1960 4819 y FU(c)1996 4807
+y FQ(i)2023 4819 y FU(P)12 b(;)2125 4807 y FJ(\()2151
+4819 y FU(y)2195 4807 y FJ(\))2220 4819 y FU(M)d FG(\))p
+FU(;)14 b(b)p FG(\))-52 4955 y FF(Cut)15 4908 y FC(!)76
+4955 y FG(\()108 4943 y FQ(h)135 4955 y FU(b)171 4943
+y FQ(i)197 4955 y FU(P)e(;)299 4943 y FJ(\()325 4955
+y FU(z)368 4943 y FJ(\))393 4955 y FF(Imp)525 4975 y
+FS(L)575 4955 y FG(\()607 4943 y FQ(h)634 4955 y FU(a)678
+4943 y FQ(i)705 4955 y FU(M)c(;)831 4943 y FJ(\()857
+4955 y FU(x)904 4943 y FJ(\))931 4955 y FU(N)g(;)14 b(y)s
+FG(\)\))1236 4919 y FS(x)1173 4955 y FT(\000)-25 b(\000)g(!)22
+b FF(Imp)1490 4975 y FS(L)1539 4955 y FG(\()1571 4943
+y FQ(h)1598 4955 y FU(a)1642 4943 y FQ(i)1669 4955 y
+FF(Cut)1736 4908 y FC(!)1797 4955 y FG(\()1829 4943 y
+FQ(h)1856 4955 y FU(b)1892 4943 y FQ(i)1919 4955 y FU(P)11
+b(;)2020 4943 y FJ(\()2046 4955 y FU(z)2089 4943 y FJ(\))2115
+4955 y FU(M)d FG(\))p FU(;)2273 4943 y FJ(\()2299 4955
+y FU(x)2346 4943 y FJ(\))2373 4955 y FF(Cut)2440 4908
+y FC(!)2500 4955 y FG(\()2532 4943 y FQ(h)2560 4955 y
+FU(b)2596 4943 y FQ(i)2622 4955 y FU(P)k(;)2724 4943
+y FJ(\()2750 4955 y FU(z)2793 4943 y FJ(\))2818 4955
+y FU(N)d FG(\))p FU(;)14 b(y)s FG(\))p 3543 5049 V -144
+5052 3691 4 v Black 1112 5206 a Gg(Figure)24 b(2.11:)29
+b(Cut-reductions)e(for)d(labelled)i(cuts.)p Black Black
+Black Black eop end
+%%Page: 51 63
+TeXDict begin 51 62 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
+b(ersion)2779 b(51)p 277 88 3691 4 v Black Black 277
+317 a(De\002nition)23 b(2.6.1)g Gg(\(Local)h(Cut-Elimination)i
+(Procedure\))p Gb(:)p Black 277 430 a Gg(The)d(local)i(cut-elimination)
+i(procedure,)f F4(\()p FY(T)1724 397 y FX($)1795 430
+y Ga(;)1877 393 y Gc(l)q(oc)1835 430 y F6(\000)-31 b(\000)g(!)p
+F4(\))p Gg(,)22 b(is)i(a)f(reduction)j(system)e(where:)p
+Black 414 615 a F6(\017)p Black 45 w FY(T)565 582 y FX($)659
+615 y Gg(is)f(the)h(set)g(of)f(terms)h(well-typed)i(by)d(the)h(rules)g
+(sho)n(wn)g(in)g(\(2.5\))g(and)g(Figure)g(2.3,)f(and)p
+Black 414 795 a F6(\017)p Black 546 758 a Gc(l)q(oc)504
+795 y F6(\000)-31 b(\000)g(!)28 b Gg(consists)k(of)d(the)h(rules)g(for)
+f(logical,)k(commuting)d(and)g(labelled)h(cuts)f(as)g(well)f(as)g(the)
+504 908 y(rules)c(for)f(garbage)h(collection;)h(that)e(is)1370
+1073 y Gc(l)q(oc)1328 1111 y F6(\000)-31 b(\000)g(!)1514
+1059 y F5(def)1521 1111 y F4(=)1677 1073 y Gc(l)1699
+1050 y FC(0)1614 1111 y F6(\000)f(\000)h(!)25 b([)1944
+1073 y Gc(c)1975 1050 y FC(00)1895 1111 y F6(\000)-31
+b(\000)f(!)25 b([)2242 1073 y Gc(x)2176 1111 y F6(\000)-31
+b(\000)g(!)25 b([)2509 1073 y Gc(g)r(c)2458 1111 y F6(\000)-32
+b(\000)h(!)25 b Ga(:)277 1365 y Gg(As)j(usual,)j(we)d(assume)i(the)f
+(reductions)i(are)e(closed)i(under)f(conte)o(xt)g(formation.)46
+b(An)28 b(immediate)277 1477 y(observ)n(ation)35 b(is)c(that)1030
+1440 y Gc(l)q(oc)988 1477 y F6(\000)-31 b(\000)g(!)30
+b Gg(is)i(complete,)j(in)c(the)h(sense)h(that)f(it)f(eliminates)j(all)d
+(cuts)i(\(routine)g(by)277 1590 y(inspection)k(of)d(the)g(reduction)i
+(rules\).)60 b(Another)35 b(is)f(that)2237 1553 y Gc(l)q(oc)2195
+1590 y F6(\000)-31 b(\000)g(!)32 b Gg(respects)k(the)e(subject)i
+(reduction)277 1703 y(property)-6 b(.)p Black 277 1891
+a Gb(Pr)n(oposition)34 b(2.6.2)e Gg(\(Subject)i(Reduction\))p
+Gb(:)p Black 110 w Gg(Suppose)g Ga(M)42 b Gg(belongs)35
+b(to)d FY(T)2794 1858 y FX($)2897 1891 y Gg(and)h(has)g(the)g(typ-)277
+2004 y(ing)f(judgement)i F4(\000)921 1992 y Gc(.)976
+2004 y Ga(M)1099 1992 y Gc(.)1154 2004 y F4(\001)p Gg(.)53
+b(Let)31 b Ga(M)1638 1967 y Gc(l)q(oc)1596 2004 y F6(\000)-31
+b(\000)g(!)40 b Ga(N)10 b Gg(,)33 b(then)f Ga(N)51 b
+F6(2)40 b FY(T)2419 1971 y FX($)2520 2004 y Gg(with)32
+b(the)g(typing)h(judgement)277 2117 y F4(\000)359 2105
+y Gc(.)414 2117 y Ga(N)522 2105 y Gc(.)577 2117 y F4(\001)p
+Gg(.)p Black 277 2329 a F7(Pr)l(oof)o(.)p Black 34 w
+Gg(By)19 b(inspection)k(of)d(the)g(reduction)j(rules;)f(analogous)h(to)
+d(proof)h(of)f(Proposition)j(2.2.10.)p 3436 2329 4 62
+v 3440 2271 55 4 v 3440 2329 V 3494 2329 4 62 v 418 2533
+a(T)-7 b(o)18 b(pro)o(v)o(e)i(strong)g(normalisation)i(for)e
+F4(\()p FY(T)1737 2500 y FX($)1808 2533 y Ga(;)1890 2496
+y Gc(l)q(oc)1848 2533 y F6(\000)-31 b(\000)f(!)p F4(\))p
+Gg(,)19 b(let)h(us)f(\002rst)f(e)o(xamine)i(if)f(there)h(is)f(a)f
+(straight-)277 2646 y(forw)o(ard)25 b(method)g(inferring)h(this)f
+(property)h(from)d(the)i(strong)g(normalisation)i(result)e(of)f
+F4(\()p FY(T)t Ga(;)3294 2609 y Gc(aux)3274 2646 y F6(\000)-31
+b(\000)f(!)p F4(\))p Gg(.)277 2759 y(A)21 b(na)m(\250)-27
+b(\021v)o(e)22 b(attempt)h(might)f(use)g(the)g(follo)n(wing)i(lemma,)d
+(often)i(applied)h(successfully)h(in)d(the)g(e)o(xplicit)277
+2872 y(substitution)30 b(community)e(\(see)f(for)f(e)o(xample)i([Bloo,)
+e(1997]\).)39 b(It)26 b(establishes)j(strong)f(normalisa-)277
+2985 y(tion)f(for)f(a)g(reduction)i(system)f(with)f(the)g(help)h(of)f
+(another)i(one,)f(for)f(which)h(strong)g(normalisation)277
+3098 y(is)c(already)j(kno)n(wn)e(to)f(hold.)1195 3065
+y F5(6)p Black 277 3286 a Gb(Lemma)d(2.6.3:)p Black 34
+w Gg(Let)g F4(\()p FY(R)p Ga(;)1181 3249 y Gc(R)1123
+3286 y F6(\000)-31 b(\000)f(!)p F4(\))20 b Gg(and)h F4(\()p
+FY(S)p Ga(;)1686 3249 y Gc(S)1624 3286 y F6(\000)-31
+b(\000)g(!)p F4(\))20 b Gg(be)h(tw)o(o)f(reduction)j(systems)f(where)
+3086 3249 y Gc(S)3024 3286 y F6(\000)-31 b(\000)f(!)20
+b Gg(consists)277 3399 y(of)27 b(tw)o(o)f(reductions,)1015
+3361 y Gc(S)1058 3370 y FV(1)969 3399 y F6(\000)-32 b(\000)h(!)26
+b Gg(and)1368 3361 y Gc(S)1411 3370 y FV(2)1322 3399
+y F6(\000)-31 b(\000)f(!)p Gg(,)27 b(and)g(suppose)i(that)e
+F4(\()p FY(R)p Ga(;)2380 3361 y Gc(R)2322 3399 y F6(\000)-32
+b(\000)h(!)p F4(\))26 b Gg(and)i F4(\()p FY(S)p Ga(;)2882
+3361 y Gc(S)2925 3370 y FV(1)2836 3399 y F6(\000)-32
+b(\000)h(!)p F4(\))26 b Gg(are)h(strongly)277 3511 y(normalising.)44
+b(Let)27 b F6(j)p 950 3511 28 4 v 968 3511 V 986 3511
+V 65 w(j)1038 3478 y FX(\017)1105 3511 y Gg(be)g(a)h(translation)i
+(which)f(maps)e(elements)j(of)d FY(S)g Gg(to)h(elements)h(of)f
+FY(R)f Gg(such)277 3624 y(that)d(\(for)g(all)g Ga(a;)15
+b(b)26 b F6(2)e FY(S)p Gg(\):)p Black Black 1254 3823
+a F6(\017)74 b Gg(if)23 b Ga(a)1571 3786 y Gc(S)1614
+3795 y FV(1)1524 3823 y F6(\000)-31 b(\000)g(!)25 b Ga(b)p
+Gg(,)d(then)j F6(j)p Ga(a)p F6(j)2082 3790 y FX(\017)2203
+3786 y Gc(R)2144 3823 y F6(\000)-31 b(\000)g(!)2315 3790
+y FX(\003)2377 3823 y F6(j)p Ga(b)p F6(j)2466 3790 y
+FX(\017)1254 3971 y F6(\017)74 b Gg(if)23 b Ga(a)1571
+3934 y Gc(S)1614 3943 y FV(2)1524 3971 y F6(\000)-31
+b(\000)g(!)25 b Ga(b)p Gg(,)d(then)j F6(j)p Ga(a)p F6(j)2082
+3938 y FX(\017)2203 3934 y Gc(R)2144 3971 y F6(\000)-31
+b(\000)g(!)2315 3938 y F9(+)2396 3971 y F6(j)p Ga(b)p
+F6(j)2485 3938 y FX(\017)277 4198 y Gg(Then)24 b(we)e(ha)n(v)o(e)j
+(that)f F4(\()p FY(S)p Ga(;)1153 4161 y Gc(S)1091 4198
+y F6(\000)-32 b(\000)h(!)p F4(\))23 b Gg(is)g(strongly)j(normalising.)p
+Black 277 4436 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Assume)e(for)h(the)g
+(sak)o(e)g(of)g(deri)n(ving)h(a)e(contradiction)29 b(that)c
+F4(\()p FY(S)p Ga(;)2639 4399 y Gc(S)2577 4436 y F6(\000)-31
+b(\000)f(!)p F4(\))24 b Gg(is)h(not)g(strongly)i(nor)n(-)277
+4548 y(malising.)57 b(W)l(ithout)34 b(loss)f(of)f(generality)j(we)d
+(may)g(assume)h(that)g(e)n(v)o(ery)g(reduction)i(sequence)f(in)277
+4661 y F4(\()p FY(S)p Ga(;)464 4624 y Gc(S)402 4661 y
+F6(\000)-31 b(\000)g(!)o F4(\))23 b Gg(is)h(of)f(the)h(form)1269
+4843 y Ga(a)1388 4806 y Gc(S)1431 4815 y FV(1)1342 4843
+y F6(\000)-31 b(\000)f(!)1512 4805 y FX(\003)1577 4843
+y Ga(b)1688 4806 y Gc(S)1731 4815 y FV(2)1641 4843 y
+F6(\000)h(\000)g(!)25 b Ga(c)1948 4806 y Gc(S)1991 4815
+y FV(1)1901 4843 y F6(\000)-31 b(\000)g(!)2072 4805 y
+FX(\003)2136 4843 y Ga(d)2255 4806 y Gc(S)2298 4815 y
+FV(2)2209 4843 y F6(\000)g(\000)f(!)25 b Ga(:)15 b(:)g(:)277
+5041 y Gg(Suppose)24 b(the)f(abo)o(v)o(e)g(reduction)j(sequence)f
+(denotes)f(an)f(in\002nite)h(reduction)h(sequence,)g(then)e(using)p
+Black 277 5114 1290 4 v 383 5170 a F3(6)412 5201 y F2(W)-6
+b(e)18 b(will)g(not)h(use)g(this)g(lemma)g(in)g(this)g(section,)g(b)o
+(ut)f(in)h(a)g(later)f(one.)p Black Black Black eop end
+%%Page: 52 64
+TeXDict begin 52 63 bop Black -144 51 a Gb(52)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(the)33
+b(translation)i F6(j)p 906 317 28 4 v 923 317 V 941 317
+V 64 w(j)993 284 y FX(\017)1064 317 y Gg(we)c(can)i(map)e(it)h(onto)h
+(an)f(in\002nite)h(reduction)h(sequence)h(in)d F4(\()p
+FY(R)p Ga(;)3267 280 y Gc(R)3209 317 y F6(\000)-31 b(\000)f(!)p
+F4(\))p Gg(,)34 b(as)321 430 y(sho)n(wn)24 b(belo)n(w)-6
+b(.)1041 565 y Ga(a)1225 528 y Gc(S)1268 537 y FV(1)1143
+565 y F6(\000)-21 b(\000)g(\000)g(!)1384 527 y FX(\003)1482
+565 y Ga(b)1681 528 y Gc(S)1724 537 y FV(2)1599 565 y
+F6(\000)g(\000)g(\000)g(!)78 b Ga(c)2097 528 y Gc(S)2140
+537 y FV(1)2016 565 y F6(\000)-21 b(\000)g(\000)g(!)2257
+527 y FX(\003)2350 565 y Ga(d)2554 528 y Gc(S)2597 537
+y FV(2)2472 565 y F6(\000)g(\000)h(\000)e(!)26 b Ga(:)15
+b(:)g(:)996 929 y F6(j)p Ga(a)p F6(j)1094 891 y FX(\017)1003
+747 y(\017)1043 810 y F6(#)p 1063 746 4 149 v 1237 892
+a Gc(R)1143 929 y F6(\000)-21 b(\000)g(\000)g(!)1384
+891 y FX(\003)1437 929 y F6(j)p Ga(b)p F6(j)1526 891
+y FX(\017)1439 747 y(\017)1480 810 y F6(#)p 1500 746
+V 1663 892 a Gc(R)1570 929 y F6(\000)f(\000)i(\000)f(!)1811
+891 y F9(+)1873 929 y F6(j)p Ga(c)p F6(j)1962 891 y FX(\017)1875
+747 y(\017)1916 810 y F6(#)p 1936 746 V 2109 892 a Gc(R)2016
+929 y F6(\000)g(\000)g(\000)g(!)2257 891 y FX(\003)2305
+929 y F6(j)p Ga(d)p F6(j)2402 891 y FX(\017)2312 747
+y(\017)2353 810 y F6(#)p 2373 746 V 2537 892 a Gc(R)2443
+929 y F6(\000)g(\000)g(\000)g(!)2684 891 y F9(+)2768
+929 y Ga(:)15 b(:)g(:)321 1165 y Gg(By)30 b(assumption)j(we)d(kno)n(w)g
+(that)h(e)n(v)o(ery)1706 1128 y Gc(S)1749 1137 y FV(1)1660
+1165 y F6(\000)-31 b(\000)f(!)1830 1132 y FX(\003)1870
+1165 y Gg(-reduction)33 b(is)d(\002nite.)50 b(Thus)30
+b(we)g(kno)n(w)h(that)g(there)321 1278 y(must)g(be)f(in\002nitely)i
+(man)o(y)1278 1241 y Gc(S)1321 1250 y FV(2)1231 1278
+y F6(\000)-31 b(\000)g(!)p Gg(-reductions.)52 b(Ho)n(we)n(v)o(er)l(,)32
+b(this)f(implies)g(that)g(we)f(ha)n(v)o(e)h(in\002nitely)321
+1391 y(man)o(y)598 1354 y Gc(R)539 1391 y F6(\000)-31
+b(\000)g(!)710 1358 y F9(+)769 1391 y Gg(-reductions,)22
+b(which)c(contradicts)k(our)c(assumption)j(about)e F4(\()p
+FY(R)p Ga(;)2864 1354 y Gc(R)2806 1391 y F6(\000)-31
+b(\000)f(!)p F4(\))18 b Gg(being)h(strongly)321 1504
+y(normalising.)p 3480 1504 4 62 v 3484 1446 55 4 v 3484
+1504 V 3538 1504 4 62 v 462 1708 a(Let)30 b(us)h(return)h(to)e(the)h
+(question)h(of)f(whether)g(or)g(not)g F4(\()p FY(T)2325
+1675 y FX($)2396 1708 y Ga(;)2478 1671 y Gc(l)q(oc)2436
+1708 y F6(\000)-31 b(\000)f(!)p F4(\))30 b Gg(is)h(strongly)h
+(normalising.)321 1821 y(It)j(seems)g(as)g(if)f(the)h(lemma)g(gi)n(v)o
+(en)g(abo)o(v)o(e)g(should)i(be)d(helpful,)39 b(since)d(it)f(is)f(easy)
+i(to)e(sho)n(w)h(that)321 1934 y F4(\()p FY(T)417 1901
+y FX($)488 1934 y Ga(;)594 1897 y Gc(x)529 1934 y F6(\000)-31
+b(\000)f(!)p F4(\))21 b Gg(and)g F4(\()p FY(T)1002 1901
+y FX($)1073 1934 y Ga(;)1165 1897 y Gc(g)r(c)1114 1934
+y F6(\000)-32 b(\000)h(!)p F4(\))20 b Gg(are)i(strongly)h(normalising)g
+(\(we)e(do)g(not)g(allo)n(w)-6 b(,)22 b(using)g(terminology)321
+2047 y(from)27 b(e)o(xplicit)i(substitution)h(calculi,)f(substitution)i
+(composition\).)42 b(Furthermore,)29 b(we)d(should)j(be)321
+2159 y(able)21 b(to)g(\002nd)f(a)g(translation)j(which)e(maps)1726
+2122 y Gc(x)1660 2159 y F6(\000)-31 b(\000)g(!)p Gg(-reductions)23
+b(and)2462 2122 y Gc(g)r(c)2410 2159 y F6(\000)-31 b(\000)f(!)p
+Gg(-reductions)24 b(onto)d(identities,)321 2272 y(and)549
+2235 y Gc(l)571 2212 y FC(0)486 2272 y F6(\000)-32 b(\000)h(!)p
+Gg(-)33 b(and)933 2235 y Gc(c)964 2212 y FC(00)883 2272
+y F6(\000)-31 b(\000)g(!)p Gg(-reductions)37 b(onto)d(a)g(series)h(of)
+2133 2235 y Gc(aux)2112 2272 y F6(\000)-31 b(\000)g(!)p
+Gg(-reductions.)62 b(Whilst)35 b(this)f(approach)321
+2385 y(seems)i(plausible,)k(in)35 b(f)o(act,)k(it)c(f)o(ails)h(when)f
+(using)i(the)e(ob)o(vious)i(candidate)h(for)d(the)h(translation,)321
+2498 y(namely)25 b(the)e(one)h(that)h(replaces)g(labelled)h(cuts)e
+(with)f(substitutions,)k(as)d(indicated)i(belo)n(w)-6
+b(.)p Black Black 1119 2714 a F6(j)p FL(Cut)1223 2666
+y FC( )1284 2714 y F4(\()1319 2702 y FX(h)1347 2714 y
+Ga(a)1395 2702 y FX(i)1422 2714 y Ga(M)11 b(;)1561 2702
+y F9(\()1588 2714 y Ga(x)1640 2702 y F9(\))1668 2714
+y Ga(N)f F4(\))p F6(j)1811 2681 y FX(\017)1891 2662 y
+F5(def)1898 2714 y F4(=)47 b F6(j)p Ga(M)10 b F6(j)2164
+2681 y FX(\017)2200 2714 y F6(f)-7 b Ga(a)25 b F4(:=)2433
+2702 y F9(\()2460 2714 y Ga(x)2512 2702 y F9(\))2540
+2714 y F6(j)p Ga(N)10 b F6(j)2673 2681 y FX(\017)2703
+2714 y F6(g)1119 2886 y(j)p FL(Cut)1223 2839 y FC(!)1284
+2886 y F4(\()1319 2874 y FX(h)1347 2886 y Ga(a)1395 2874
+y FX(i)1422 2886 y Ga(M)h(;)1561 2874 y F9(\()1588 2886
+y Ga(x)1640 2874 y F9(\))1668 2886 y Ga(N)f F4(\))p F6(j)1811
+2853 y FX(\017)1891 2835 y F5(def)1898 2886 y F4(=)47
+b F6(j)p Ga(N)10 b F6(j)2149 2853 y FX(\017)2185 2886
+y F6(f)-7 b Ga(x)25 b F4(:=)2421 2874 y FX(h)2449 2886
+y Ga(a)2497 2874 y FX(i)2524 2886 y F6(j)p Ga(M)10 b
+F6(j)2672 2853 y FX(\017)2703 2886 y F6(g)321 3078 y
+Gg(Using)29 b(this)g(translation,)j(the)d(proof)g(f)o(ails)g(because)h
+(in)f F4(\()p FY(T)2216 3045 y FX($)2287 3078 y Ga(;)2369
+3041 y Gc(l)q(oc)2327 3078 y F6(\000)-31 b(\000)f(!)p
+F4(\))28 b Gg(we)g(can)g(perform)i(reductions)321 3191
+y(that)d(cannot)i(be)d(\223mirrored\224)j(by)e(an)o(y)f(reduction)j(in)
+e F4(\()p FY(T)t Ga(;)2179 3154 y Gc(aux)2159 3191 y
+F6(\000)-31 b(\000)f(!)p F4(\))p Gg(.)37 b(Consider)29
+b(for)d(e)o(xample)i(the)f(term)321 3304 y Ga(M)36 b
+F6(\021)25 b FL(Cut)619 3257 y FC( )680 3304 y F4(\()715
+3292 y FX(h)743 3304 y Ga(a)791 3292 y FX(i)819 3304
+y Ga(S)5 b(;)920 3292 y F9(\()947 3304 y Ga(x)999 3292
+y F9(\))1027 3304 y Ga(T)13 b F4(\))31 b Gg(with)g Ga(a)f
+Gg(not)i(free)g(in)f Ga(S)5 b Gg(.)52 b(So)31 b Ga(M)40
+b Gg(is)31 b(translated)j(to)e F6(j)p Ga(S)5 b F6(j)2928
+3271 y FX(\017)2963 3304 y F6(f)-7 b Ga(a)40 b F4(:=)3225
+3292 y F9(\()3252 3304 y Ga(x)3304 3292 y F9(\))3332
+3304 y F6(j)p Ga(T)13 b F6(j)3448 3271 y FX(\017)3478
+3304 y F6(g)p Gg(,)321 3417 y(which)25 b(is)e(just)i
+F6(j)p Ga(S)5 b F6(j)916 3384 y FX(\017)979 3417 y Gg(because)26
+b(of)e(the)g(assumption)i(about)g Ga(a)p Gg(.)j(Clearly)-6
+b(,)25 b(there)g(is)e(no)h(reason)i(that)e(an)o(y)321
+3530 y(reduction)k Ga(T)37 b Gg(may)25 b(perform)h(can)g(be)f(mirrored)
+i(by)e F6(j)p Ga(S)5 b F6(j)2107 3497 y FX(\017)2147
+3530 y Gg(,)24 b(and)i(consequently)-6 b(,)30 b(we)24
+b(cannot)j(guaran-)321 3643 y(tee)j(that)f(an)g(in\002nite)h(reduction)
+h(sequence)h(occurs)e(in)f(\(using)i(again)e(terminology)j(from)d(e)o
+(xplicit)321 3756 y(substitution)d(calculi\))e(garbage)f
+(substitutions.)33 b(This)22 b(is)f(ho)n(w)h(Melli)5
+b(\036)-35 b(es)23 b([1995])h(constructed)h(a)d(non-)321
+3869 y(terminating)k(reduction)g(sequence)g(for)e Ga(\025\033)s
+Gg(.)462 3998 y(Because)k(of)e(this)g(f)o(ailure)i(our)f(strong)g
+(normalisation)j(proof)d(for)f F4(\()p FY(T)2684 3965
+y FX($)2755 3998 y Ga(;)2838 3961 y Gc(l)q(oc)2796 3998
+y F6(\000)-32 b(\000)h(!)p F4(\))26 b Gg(is)g(again)g(rather)321
+4111 y(in)l(v)n(olv)o(ed.)55 b(An)31 b(important)i(f)o(act)e(in)h(this)
+g(proof)g(is)f(that)2212 4074 y Gc(x)2147 4111 y F6(\000)-31
+b(\000)f(!)31 b Gg(is)g(con\003uent,)k(in)c(contrast)i(to)3395
+4074 y Gc(l)q(oc)3353 4111 y F6(\000)-31 b(\000)g(!)p
+Gg(,)321 4224 y(which)24 b(clearly)h(is)f(not.)p Black
+321 4412 a Gb(Lemma)f(2.6.4:)p Black 34 w Gg(The)g(reduction)1483
+4375 y Gc(x)1417 4412 y F6(\000)-31 b(\000)g(!)22 b Gg(is)p
+Black 417 4587 a(\(i\))p Black 47 w(strongly)j(normalising)h(and)p
+Black 392 4763 a(\(ii\))p Black 47 w(con\003uent.)p Black
+321 4976 a F7(Pr)l(oof)o(.)p Black 34 w Gg(The)20 b(measure)i(gi)n(v)o
+(en)f(on)g(P)o(age)f(151)h(implies)h Fs([)p Ga(M)10 b
+Fs(])26 b Ga(>)f Fs([)p Ga(N)10 b Fs(])21 b Gg(whene)n(v)o(er)g
+Ga(M)3041 4938 y Gc(x)2976 4976 y F6(\000)-32 b(\000)h(!)25
+b Ga(N)10 b Gg(.)27 b(There-)321 5088 y(fore)561 5051
+y Gc(x)495 5088 y F6(\000)-31 b(\000)g(!)28 b Gg(must)g(be)h(strongly)i
+(normalising.)46 b(Con\003uence)30 b(of)2449 5051 y Gc(x)2383
+5088 y F6(\000)-31 b(\000)g(!)27 b Gg(follo)n(ws)j(from)e(local)i
+(con\003u-)321 5201 y(ence,)37 b(which)d(can)g(easily)h(be)f
+(established)j(by)d(inspection)i(of)e(the)g(reduction)i(rules,)h(and)d
+(strong)321 5314 y(normalisation)27 b(of)1008 5277 y
+Gc(x)942 5314 y F6(\000)-31 b(\000)g(!)p Gg(.)p 3480
+5314 V 3484 5256 55 4 v 3484 5314 V 3538 5314 4 62 v
+Black Black eop end
+%%Page: 53 65
+TeXDict begin 53 64 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
+b(ersion)2779 b(53)p 277 88 3691 4 v Black 277 317 a
+Gg(As)33 b(a)h(consequence)j(of)d(this)h(lemma,)h(we)d(may)g(de\002ne)i
+(the)f(unique)h Ga(x)p Gg(-normal)g(form)f(of)g(a)g(term)277
+430 y(belonging)26 b(to)e FY(T)818 397 y FX($)889 430
+y Gg(.)p Black 277 618 a Gb(De\002nition)f(2.6.5:)p Black
+34 w Gg(The)g(unique)i Ga(x)p Gg(-normal)g(form)e(of)h(a)f(term)g
+Ga(M)36 b F6(2)24 b FY(T)2546 585 y FX($)2640 618 y Gg(is)f(denoted)j
+(by)d F6(j)p Ga(M)10 b F6(j)3295 632 y Gc(x)3340 618
+y Gg(.)277 855 y(Before)24 b(we)f(continue,)i(tw)o(o)f(quick)g(observ)n
+(ations)j(about)e Ga(x)p Gg(-normal)g(forms.)p Black
+277 1043 a Gb(Lemma)e(2.6.6:)p Black 34 w Gg(If)g(and)h(only)h(if)e
+Ga(M)33 b Gg(is)23 b(an)h(element)g(of)g FY(T)t Gg(,)18
+b(then)24 b F6(j)p Ga(M)10 b F6(j)2494 1057 y Gc(x)2564
+1043 y F6(\021)25 b Ga(M)10 b Gg(.)p Black 277 1256 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(If)23 b Ga(M)35 b F6(2)25
+b FY(T)t Gg(,)18 b(then)24 b Ga(M)33 b Gg(cannot)24 b(contain)h(an)o(y)
+f(instance)h(of)e FL(Cut)2433 1208 y FC( )2516 1256 y
+Gg(or)g FL(Cut)2693 1208 y FC(!)2754 1256 y Gg(,)f(and)i
+F7(vice)g(ver)o(sa)p Gg(.)p 3436 1256 4 62 v 3440 1197
+55 4 v 3440 1256 V 3494 1256 4 62 v Black 277 1443 a
+Gb(Lemma)f(2.6.7:)p Black 34 w Gg(F)o(or)g(all)g(unlabelled)k(terms,)c
+(for)h(e)o(xample)g FL(And)2366 1457 y Gc(R)2424 1443
+y F4(\()2459 1431 y FX(h)2486 1443 y Ga(a)2534 1431 y
+FX(i)2562 1443 y Ga(M)10 b(;)2700 1431 y FX(h)2728 1443
+y Ga(b)2767 1431 y FX(i)2794 1443 y Ga(N)g(;)15 b(c)p
+F4(\))p Gg(,)24 b(we)f(ha)n(v)o(e)881 1667 y F6(j)p FL(And)1061
+1681 y Gc(R)1119 1667 y F4(\()1154 1655 y FX(h)1182 1667
+y Ga(a)1230 1655 y FX(i)1257 1667 y Ga(M)10 b(;)1395
+1655 y FX(h)1423 1667 y Ga(b)1462 1655 y FX(i)1489 1667
+y Ga(N)g(;)15 b(c)p F4(\))p F6(j)1711 1681 y Gc(x)1782
+1667 y F6(\021)25 b FL(And)2032 1681 y Gc(R)2090 1667
+y F4(\()2125 1655 y FX(h)2153 1667 y Ga(a)2201 1655 y
+FX(i)2228 1667 y F6(j)p Ga(M)10 b F6(j)2376 1681 y Gc(x)2421
+1667 y Ga(;)2461 1655 y FX(h)2489 1667 y Ga(b)2528 1655
+y FX(i)2555 1667 y F6(j)p Ga(N)g F6(j)2688 1681 y Gc(x)2732
+1667 y Ga(;)15 b(c)p F4(\))27 b Ga(:)277 1891 y Gg(Similarly)d(for)g
+(the)g(other)g(unlabelled)j(terms.)p Black 277 2104 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(By)c(inspection)j(of)d(the)1358
+2067 y Gc(x)1292 2104 y F6(\000)-31 b(\000)g(!)o Gg(-reductions.)p
+3436 2104 V 3440 2046 55 4 v 3440 2104 V 3494 2104 4
+62 v 277 2314 a(Ne)o(xt,)23 b(we)g(shall)h(pro)o(v)o(e)g(that)1272
+2277 y Gc(x)1207 2314 y F6(\000)-31 b(\000)g(!)22 b Gg(correctly)k
+(simulates)f(the)f(substitution)j(operation.)p Black
+277 2502 a Gb(Lemma)c(2.6.8:)p Black 34 w Gg(F)o(or)g(all)g
+Ga(M)5 b(;)15 b(N)36 b F6(2)25 b FY(T)e Gg(we)f(ha)n(v)o(e)p
+Black 373 2733 a(\(i\))p Black 46 w FL(Cut)583 2685 y
+FC( )644 2733 y F4(\()679 2721 y FX(h)707 2733 y Ga(a)755
+2721 y FX(i)782 2733 y Ga(M)11 b(;)921 2721 y F9(\()948
+2733 y Ga(x)1000 2721 y F9(\))1028 2733 y Ga(N)f F4(\))1237
+2695 y Gc(x)1171 2733 y F6(\000)-31 b(\000)g(!)1342 2700
+y F9(+)1426 2733 y Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1752
+2721 y F9(\()1780 2733 y Ga(x)1832 2721 y F9(\))1859
+2733 y Ga(N)p F6(g)p Black 348 2946 a Gg(\(ii\))p Black
+46 w FL(Cut)583 2899 y FC(!)644 2946 y F4(\()679 2934
+y FX(h)707 2946 y Ga(a)755 2934 y FX(i)782 2946 y Ga(N)10
+b(;)905 2934 y F9(\()933 2946 y Ga(x)985 2934 y F9(\))1013
+2946 y Ga(M)g F4(\))1237 2909 y Gc(x)1171 2946 y F6(\000)-31
+b(\000)g(!)1342 2913 y F9(+)1426 2946 y Ga(M)5 b F6(f)-7
+b Ga(x)26 b F4(:=)1756 2934 y FX(h)1783 2946 y Ga(a)1831
+2934 y FX(i)1859 2946 y Ga(N)p F6(g)p Black 277 3159
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(Both)d(cases)i(by)e(induction)k(on)c
+(the)h(structure)i(of)d Ga(M)10 b Gg(;)23 b(note)i(we)d(assumed)j
+Ga(M)5 b(;)15 b(N)36 b F6(2)25 b FY(T)t Gg(.)p 3436 3159
+V 3440 3101 55 4 v 3440 3159 V 3494 3159 4 62 v 277 3370
+a(If)e(we)g(apply)i F6(j)p 741 3370 28 4 v 759 3370 V
+776 3370 V 65 w(j)829 3384 y Gc(x)896 3370 y Gg(to)e(the)h(lemma)f(abo)
+o(v)o(e,)h(we)e(ha)n(v)o(e)j(the)e(follo)n(wing)i(corollary)-6
+b(.)p Black 277 3557 a Gb(Cor)n(ollary)26 b(2.6.9:)p
+Black 34 w Gg(F)o(or)d(all)h Ga(M)5 b(;)15 b(N)35 b F6(2)25
+b FY(T)e Gg(we)g(thus)h(ha)n(v)o(e)p Black 373 3788 a(\(i\))p
+Black 46 w F6(j)p FL(Cut)608 3741 y FC( )669 3788 y F4(\()704
+3776 y FX(h)732 3788 y Ga(a)780 3776 y FX(i)808 3788
+y Ga(M)10 b(;)946 3776 y F9(\()974 3788 y Ga(x)1026 3776
+y F9(\))1053 3788 y Ga(N)g F4(\))p F6(j)1196 3802 y Gc(x)1266
+3788 y F6(\021)25 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1688
+3776 y F9(\()1715 3788 y Ga(x)1767 3776 y F9(\))1795
+3788 y Ga(N)p F6(g)p Black 348 4002 a Gg(\(ii\))p Black
+46 w F6(j)p FL(Cut)608 3955 y FC(!)669 4002 y F4(\()704
+3990 y FX(h)732 4002 y Ga(a)780 3990 y FX(i)808 4002
+y Ga(M)10 b(;)946 3990 y F9(\()974 4002 y Ga(x)1026 3990
+y F9(\))1053 4002 y Ga(N)g F4(\))p F6(j)1196 4016 y Gc(x)1266
+4002 y F6(\021)25 b Ga(N)5 b F6(f)-7 b Ga(x)25 b F4(:=)1677
+3990 y FX(h)1704 4002 y Ga(a)1752 3990 y FX(i)1780 4002
+y Ga(M)p F6(g)277 4262 y Gg(This)i(corollary)i(concerns)g(subterms)g
+(belonging)h(to)d FY(T)t Gg(,)22 b(b)n(ut)28 b(we)e(can)h(no)n(w)g
+(easily)h(generalise)i(it)c(to)277 4375 y(all)e(terms)f(of)h
+FY(T)775 4342 y FX($)846 4375 y Gg(.)p Black 277 4563
+a Gb(Lemma)f(2.6.10:)p Black 35 w Gg(F)o(or)f(all)i Ga(M)5
+b(;)15 b(N)35 b F6(2)25 b FY(T)1538 4530 y FX($)1632
+4563 y Gg(we)e(ha)n(v)o(e)p Black 373 4793 a(\(i\))p
+Black 46 w F6(j)p FL(Cut)608 4746 y FC( )669 4793 y F4(\()704
+4781 y FX(h)732 4793 y Ga(a)780 4781 y FX(i)808 4793
+y Ga(M)10 b(;)946 4781 y F9(\()974 4793 y Ga(x)1026 4781
+y F9(\))1053 4793 y Ga(N)g F4(\))p F6(j)1196 4807 y Gc(x)1291
+4793 y F6(\021)50 b(j)p Ga(M)10 b F6(j)1560 4807 y Gc(x)1600
+4793 y F6(f)-7 b Ga(a)26 b F4(:=)1833 4781 y F9(\()1860
+4793 y Ga(x)1912 4781 y F9(\))1955 4793 y F6(j)p Ga(N)10
+b F6(j)2088 4807 y Gc(x)2123 4793 y F6(g)p Black 348
+5007 a Gg(\(ii\))p Black 46 w F6(j)p FL(Cut)608 4960
+y FC(!)669 5007 y F4(\()704 4995 y FX(h)732 5007 y Ga(a)780
+4995 y FX(i)808 5007 y Ga(M)g(;)946 4995 y F9(\()974
+5007 y Ga(x)1026 4995 y F9(\))1053 5007 y Ga(N)g F4(\))p
+F6(j)1196 5021 y Gc(x)1291 5007 y F6(\021)50 b(j)p Ga(N)10
+b F6(j)1545 5021 y Gc(x)1585 5007 y F6(f)-7 b Ga(x)25
+b F4(:=)1822 4995 y FX(h)1849 5007 y Ga(a)1897 4995 y
+FX(i)1940 5007 y F6(j)p Ga(M)10 b F6(j)2088 5021 y Gc(x)2123
+5007 y F6(g)p Black 277 5220 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(By)23 b(calculation)j(using)f(Lemma)d(2.6.6)i(and)g(Corollary)h
+(2.6.9)f(\(see)g(P)o(age)f(151\).)p 3436 5220 4 62 v
+3440 5162 55 4 v 3440 5220 V 3494 5220 4 62 v Black Black
+eop end
+%%Page: 54 66
+TeXDict begin 54 65 bop Black -144 51 a Gb(54)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(No)n(w)g(we)h(are)h(in)
+f(a)g(position)j(to)e(sho)n(w)f(that)h(the)1894 280 y
+Gc(l)q(oc)1852 317 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)27
+b(project)e(onto)2934 280 y Gc(aux)2913 317 y F6(\000)-31
+b(\000)g(!)p Gg(-reductions.)p Black 321 505 a Gb(Lemma)23
+b(2.6.11:)p Black 35 w Gg(F)o(or)f(all)i Ga(M)5 b(;)15
+b(N)36 b F6(2)24 b FY(T)1582 472 y FX($)1679 505 y Gg(if)f
+Ga(M)1922 468 y Gc(l)q(oc)1880 505 y F6(\000)-31 b(\000)f(!)26
+b Ga(N)10 b Gg(,)22 b(then)i F6(j)p Ga(M)10 b F6(j)2531
+519 y Gc(x)2621 468 y(aux)2601 505 y F6(\000)-31 b(\000)f(!)2771
+472 y FX(\003)2836 505 y F6(j)p Ga(N)10 b F6(j)2969 519
+y Gc(x)3013 505 y Gg(.)p Black 321 718 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)e(the)f(de\002nition)j(of)1833
+680 y Gc(l)q(oc)1791 718 y F6(\000)-31 b(\000)f(!)23
+b Gg(\(see)h(P)o(age)f(151\).)p 3480 718 4 62 v 3484
+660 55 4 v 3484 718 V 3538 718 4 62 v 321 922 a(As)28
+b(e)o(xplained)j(earlier)l(,)g(this)e(lemma)f(is)h(not)g(strong)h
+(enough)g(to)f(pro)o(v)o(e)g(strong)h(normalisation)h(for)321
+1035 y F4(\()p FY(T)417 1002 y FX($)488 1035 y Ga(;)571
+998 y Gc(l)q(oc)529 1035 y F6(\000)-31 b(\000)f(!)p F4(\))p
+Gg(.)47 b(In)30 b(the)g(proof,)i(which)e(we)f(shall)i(gi)n(v)o(e)f(ne)o
+(xt,)h(we)e(mak)o(e)h(use)g(of)g(the)g(recursi)n(v)o(e)i(path)321
+1148 y(ordering)26 b(theorem)f(by)e(Dersho)n(witz.)p
+Black 321 1335 a Gb(De\002nition)g(2.6.12)h Gg(\(Recursi)n(v)o(e)h(P)o
+(ath)e(Ordering,)h(Dersho)n(witz,)h(1982\))p Gb(:)p Black
+2660 1302 a F5(7)321 1448 y Gg(Let)e Ga(s)i F6(\021)g
+Ga(f)10 b F4(\()p Ga(s)762 1462 y F9(1)801 1448 y Ga(;)15
+b(:)g(:)g(:)h(;)f(s)1045 1462 y Gc(m)1112 1448 y F4(\))23
+b Gg(and)h Ga(t)h F6(\021)g Ga(g)s F4(\()p Ga(t)1592
+1462 y F9(1)1632 1448 y Ga(;)15 b(:)g(:)g(:)i(;)e(t)1867
+1462 y Gc(n)1914 1448 y F4(\))23 b Gg(be)h(terms,)f(then)h
+Ga(s)h(>)2646 1415 y Gc(r)r(po)2779 1448 y Ga(t)p Gg(,)p
+Black Black 451 1633 a(if)e(and)h(only)g(if)806 1757
+y(\(i\))119 b Ga(s)1053 1771 y Gc(i)1106 1757 y F6(\025)1177
+1724 y Gc(r)r(po)1309 1757 y Ga(t)23 b Gg(for)g(some)h
+Ga(i)i F4(=)f(1)p Ga(;)15 b(:)g(:)g(:)i(;)e(m)550 b Gg(\(subterm\))451
+1881 y(or)780 2005 y(\(ii\))120 b Ga(f)34 b F6(\035)25
+b Ga(g)i Gg(and)d Ga(s)g(>)1567 1972 y Gc(r)r(po)1700
+2005 y Ga(t)1733 2019 y Gc(j)1792 2005 y Gg(for)g(all)f
+Ga(j)31 b F4(=)25 b(1)p Ga(;)15 b(:)g(:)g(:)i(;)e(n)238
+b Gg(\(decreasing)27 b(heads\))451 2130 y(or)755 2254
+y(\(iii\))120 b Ga(f)34 b F4(=)25 b Ga(g)h Gg(and)e F6(f)-24
+b(j)p Ga(s)1497 2268 y F9(1)1537 2254 y Ga(;)15 b(:)g(:)g(:)i(;)e(s)
+1782 2268 y Gc(m)1849 2254 y F6(j)-24 b(g)26 b Ga(>)1992
+2210 y Gc(r)r(po)1992 2283 y(mul)q(t)2172 2254 y F6(f)-24
+b(j)p Ga(t)2251 2268 y F9(1)2291 2254 y Ga(;)15 b(:)g(:)g(:)i(;)e(t)
+2526 2268 y Gc(n)2573 2254 y F6(j)-24 b(g)119 b Gg(\(equal)25
+b(heads\))321 2439 y(where)h F6(\035)e Gg(is)i(a)e(precedence)29
+b(de\002ned)d(o)o(v)o(er)f(term)g(constructors,)k Ga(>)2496
+2395 y Gc(r)r(po)2496 2468 y(mul)q(t)2675 2439 y Gg(is)d(the)f(e)o
+(xtension)j(of)d Ga(>)3439 2406 y Gc(r)r(po)321 2552
+y Gg(to)f(\002nite)f(multisets)i(and)f F6(\025)1200 2519
+y Gc(r)r(po)1331 2552 y Gg(means)f Ga(>)1656 2519 y Gc(r)r(po)1787
+2552 y Gg(or)g(equi)n(v)n(alent)j(up)e(to)f(permutation)j(of)e
+(subterms.)p Black 321 2789 a Gb(Theor)n(em)h(2.6.13)h
+Gg(\(Dersho)n(witz,)g(1982\))p Gb(:)p Black 36 w Gg(The)e(recursi)n(v)o
+(e)j(path)f(ordering)h Ga(>)2822 2756 y Gc(r)r(po)2954
+2789 y Gg(is)e(well-founded,)321 2902 y(if)f(and)g(only)g(if)f(the)h
+(precedence)j F6(\035)22 b Gg(is)i(well-founded.)321
+3156 y(Unfortunately)-6 b(,)27 b(tw)o(o)c(problems)i(preclude)h(a)d
+(direct)i(application)h(of)e(Dersho)n(witz')-5 b(s)25
+b(theorem.)p Black 458 3356 a F6(\017)p Black 46 w Gg(First,)33
+b(the)f(theorem)h(requires)h(a)d(well-founded)k(precedence)g(for)d(our)
+g(term)f(constructors.)549 3469 y(Unfortunately)-6 b(,)38
+b(our)c(reduction)i(rules)e(include)i(the)d(tw)o(o)g(reductions)k
+(\(written)d(schemati-)549 3581 y(cally\))p Black Black
+1327 3771 a FL(Cut)p F4(\()p 1502 3771 28 4 v 1520 3771
+V 1537 3771 V 65 w Ga(;)p 1607 3771 V 1625 3771 V 1642
+3771 V 80 w F4(\))1854 3734 y Gc(c)1885 3711 y FC(00)1805
+3771 y F6(\000)-32 b(\000)h(!)100 b FL(Cut)2154 3724
+y FC( )2214 3771 y F4(\()p 2251 3771 V 2269 3771 V 2287
+3771 V 65 w Ga(;)p 2357 3771 V 2374 3771 V 2392 3771
+V 80 w F4(\))1012 3884 y FL(Cut)1091 3837 y FC( )1151
+3884 y F4(\()p FL(Cut)q F4(\()p 1362 3884 V 1380 3884
+V 1397 3884 V 64 w Ga(;)p 1467 3884 V 1485 3884 V 1502
+3884 V 80 w F4(\))p Ga(;)p 1607 3884 V 1625 3884 V 1642
+3884 V 81 w F4(\))1870 3847 y Gc(x)1805 3884 y F6(\000)-32
+b(\000)h(!)100 b FL(Cut)o F4(\()p FL(Cut)2326 3837 y
+FC( )2387 3884 y F4(\()p 2424 3884 V 2443 3884 V 2460
+3884 V 65 w Ga(;)p 2530 3884 V 2547 3884 V 2565 3884
+V 80 w F4(\))p Ga(;)15 b FL(Cut)2746 3837 y FC( )2808
+3884 y F4(\()p 2845 3884 V 2863 3884 V 2880 3884 V 65
+w Ga(;)p 2950 3884 V 2968 3884 V 2985 3884 V 80 w F4(\)\))549
+4071 y Gg(and)24 b(consequently)j(we)c(ha)n(v)o(e)h(the)g(c)o(ycle)p
+Black Black 1643 4556 a @beginspecial 115 @llx 600 @lly
+212 @urx 660 @ury 970 @rwi @clip @setspecial
+%%BeginDocument: pics/2.6.0.cycle.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: 2.6.0.cycle.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o 2.6.0.cycle.ps 2.6.0.cycle.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 1999.11.11:2142
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (2.6.0.cycle.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr10 10 1
+/Fa 1 50 df<EB01C013031307131F13FFB5FCA2131F1200B3B3A8497E007FB512F0A31C
+3879B72A>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmsy7 7 1
+/Fb 1 49 df<13E0EA01F0EA03F8A3EA07F0A313E0A2120F13C0A3EA1F80A21300A25A12
+3EA35AA3127812F8A25A12100D1E7D9F13>48 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmmi10 10 2
+/Fc 2 121 df<EC3FC0903801FFF0903807E03C90380F800E90383F0007017E131F4913
+7F484813FF485A485A120F4913FE001F143848481300A2127F90C8FCA35A5AA45AA31503
+1507007E1406150E003E143C003F14706C14E0390F8007C03907C03F003801FFF838003F
+C020267DA424>99 D<903907E001F090391FF807FC9039783E0E0F9039E01F1C1FD801C0
+9038383F803A03800FF07F0100EBE0FF5A000E4A1300000C157E021F133C001C4AC7FC12
+18A2C7123FA292C8FCA25CA2147EA214FEA24A130CA20101141C001E1518003F5BD87F81
+143801835C00FF1560010714E03AFE0E7C01C0D87C1C495A2778383E0FC7FC391FF00FFC
+3907C003F029267EA42F>120 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fd cmsy5 5 1
+/Fd 1 33 df<1338A35BA25B485A485A000FCAFC003FB712F0B812F8003F16F0000FCAFC
+EA03806C7E6C7E1370A27FA32D157B9439>32 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fe cmss10 10 3
+/Fe 3 118 df<913803FF80023F13F891B6FC010315C05B131F4948C61380D97FF0130F
+D9FFC013034849130191C9FC485A485A485A5B121F5B123F5BA2485AA448CAFCAC6C7EA4
+6C7EA27F121F7F120F7F6C7E6C7E6C6C15206E14E06C6D1301D97FF0130FD93FFE137F6D
+B6FC010715C06D150001005C023F13F0020313802B3C7BBA35>67
+D<EA01FCAAB6FCA5D801FCC7FCB3A76D138014013900FF07C014FFA26D1300EB3FFCEB1F
+E01A307FAE1E>116 D<00FEEB01FCB3AA1403A214076C131F387F807F90B5FC6C13F914
+F1000F13C1D803FCC7FC1E267AA42B>I E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 639 1621 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 0.6 SLW 0 setgray 0.6 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { BeginArrow
+1. 1. scale false 0.4 0.3 2.0 8. Arrow EndArrow } def [ 45.52455
+62.59595 28.45274 71.13185 11.38092 62.59595 /currentpoint load stopped
+pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.6 SLW 0
+setgray 0 setlinecap stroke grestore end
+
+
+@endspecial @beginspecial @setspecial
+ tx@Dict begin STP newpath 0.6 SLW 0 setgray 0.6 SLW 0 setgray
+/ArrowA { BeginArrow 1. 1. scale false 0.4 0.3 2.0 8. Arrow EndArrow
+ moveto } def /ArrowB { } def [ 45.52455 51.21501 28.45274 42.67911
+11.38092 51.21501 /currentpoint load stopped pop 1. 0.1 0. /c ED
+/b ED /a ED false OpenCurve gsave 0.6 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial 576
+1178 a Fe(Cut)1050 1181 y(Cut)1117 1133 y Fd( )860 991
+y Fc(c)896 961 y Fb(00)852 1356 y Fc(x)p Black 1926 5255
+a Fa(1)p Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 549 4610 a(for)32 b(the)h(outermost)i(term)d
+(constructors.)60 b(Bloo)33 b(and)g(Geuv)o(ers)g([1999])h(ha)n(v)o(e)g
+(presented)h(a)549 4723 y(cle)n(v)o(er)k(solution)i(for)e(an)g
+(analogous)i(problem)f(in)f Ga(\025)p F1(x)p Gg(,)i(which)f(we)e(shall)
+h(adapt)h(for)f(our)549 4836 y(re)n(write)g(system.)76
+b(The)39 b(essence)i(of)e(this)g(solution)j(is)d(that)g(we)f(tak)o(e)i
+(into)g(account)h(that)549 4949 y F4(\()p FY(T)t Ga(;)702
+4912 y Gc(aux)681 4949 y F6(\000)-31 b(\000)g(!)p F4(\))32
+b Gg(is)h(strongly)j(normalising.)60 b(This)33 b(allo)n(ws)h(us)f(to)g
+(order)h(the)g(term)f(constructors)549 5062 y(according)26
+b(to)e(the)g(maximal)g(number)h(of)1919 5025 y Gc(aux)1898
+5062 y F6(\000)-31 b(\000)g(!)p Gg(-reductions)27 b(their)d
+Ga(x)p Gg(-normal)h(form)f(can)g(per)n(-)549 5175 y(form.)p
+Black 321 5228 1290 4 v 427 5283 a F3(7)456 5314 y Fr(f)-24
+b(j)14 b Fw(:)f(:)g(:)g Fr(j)-24 b(g)20 b F2(stands)f(for)g(a)g
+(multiset)g(of)f(terms.)p Black Black Black eop end
+%%Page: 55 67
+TeXDict begin 55 66 bop Black 277 51 a Gb(2.6)23 b(Localised)i(V)-9
+b(ersion)2779 b(55)p 277 88 3691 4 v Black Black 414
+317 a F6(\017)p Black 45 w Gg(The)28 b(second)i(problem)g(arises)g
+(from)e(the)h(f)o(act)g(that)g(the)f(recursi)n(v)o(e)i(path)g(ordering)
+g(theorem)504 430 y(applies)e(only)f(to)f(\002rst-order)h(re)n(write)g
+(systems,)g(i.e.,)f(no)g(binding)i(operations)h(are)d(allo)n(wed.)504
+543 y(In)g(our)h(term)f(calculus)i(ho)n(we)n(v)o(er)e(we)g(ha)n(v)o(e)g
+(tw)o(o)g(binding)i(operations:)37 b(one)27 b(for)f(names)h(and)504
+656 y(one)34 b(for)f(co-names.)58 b(W)-7 b(e)31 b(solv)o(e)j(this)f
+(problem)h(by)f(introducing)j(another)f(term)e(calculus,)504
+769 y(denoted)24 b(by)e FY(H)q Gg(,)e(for)h(which)h(we)f(can)h(apply)h
+(this)g(theorem,)f(and)h(then)f(pro)o(v)o(e)g(strong)h(normal-)504
+882 y(isation)j(for)d F4(\()p FY(T)t Ga(;)1073 845 y
+Gc(l)q(oc)1031 882 y F6(\000)-31 b(\000)f(!)p F4(\))23
+b Gg(by)h(translation.)277 1061 y(The)f(term)h(calculus)h
+FY(H)e Gg(is)g(de\002ned)h(as)g(follo)n(ws.)p Black 277
+1249 a Gb(De\002nition)f(2.6.14:)p Black 35 w Gg(Let)f
+FY(H)h Gg(denote)i(the)f(set)f(of)h(all)g(terms)f(generated)j(by)e(the)
+g(grammar)p Black Black 364 1428 a Ga(M)5 b(;)15 b(N)110
+b F4(::=)100 b Ga(?)g F6(j)g Ga(M)30 b F6(\001)1314 1442
+y Gc(n)1381 1428 y Ga(N)110 b F6(j)100 b Ga(M)10 b F6(h)p
+Ga(N)g F6(i)1940 1442 y Gc(n)2087 1428 y F6(j)100 b(h)p
+Ga(M)10 b F6(i)2380 1442 y Gc(n)2428 1428 y Ga(N)109
+b F6(j)100 b FB(L)p Ga(M)5 b(;)15 b(N)10 b FB(M)101 b
+F6(j)f FB(L)p Ga(M)10 b FB(M)277 1607 y Gg(where)24 b
+Ga(n)e Gg(is)i(a)f(natural)i(number)-5 b(.)30 b(Furthermore,)24
+b(we)f(ha)n(v)o(e)h(the)g(well-founded)j(precedence)p
+Black Black 729 1787 28 4 v 746 1787 V 764 1787 V 811
+1787 a F6(\001)836 1801 y Gc(n)p F9(+1)p 996 1787 V 1013
+1787 V 1031 1787 V 1109 1787 a F6(\035)50 b(h)p 1287
+1787 V 1305 1787 V 1323 1787 V 65 w(i)1385 1801 y Gc(n)p
+1435 1787 V 1452 1787 V 1470 1787 V 1512 1787 a Ga(;)p
+1580 1787 V 1598 1787 V 1615 1787 V 105 w F6(h)p 1679
+1787 V 1697 1787 V 1715 1787 V 65 w(i)1777 1801 y Gc(n)1875
+1787 y F6(\035)p 2019 1787 V 2036 1787 V 2054 1787 V
+135 w(\001)2126 1801 y Gc(n)p 2196 1787 V 2213 1787 V
+2231 1787 V 2309 1787 a F6(\035)g Ga(?;)41 b FB(L)p 2598
+1787 V 2616 1787 V 2634 1787 V 65 w(M)p Ga(;)g FB(L)p
+2799 1787 V 2817 1787 V 2835 1787 V 65 w Ga(;)p 2905
+1787 V 2922 1787 V 2940 1787 V 80 w FB(M)26 b Ga(:)277
+2041 y Gg(In)g(order)g(to)g(de\002ne)g(a)f(translation)j(from)e(terms)g
+(of)f FY(T)2000 2008 y FX($)2096 2041 y Gg(to)g(terms)h(of)f
+FY(H)q Gg(,)f(we)h(shall)h(use,)h(as)e(it)g(turns)277
+2153 y(out)g(later)l(,)h(an)f(alternati)n(v)o(e)i(de\002nition)f(of)f
+(the)f(set)h(of)g FY(T)2028 2121 y FX($)2099 2153 y Gg(.)31
+b(This)24 b(alternati)n(v)o(e)j(de\002nition)g(is)d(required)277
+2266 y(to)g(strengthen)i(an)e(induction)i(hypothesis.)p
+Black 277 2454 a Gb(De\002nition)d(2.6.15:)p Black Black
+Black 425 2631 a FY(T)486 2598 y FX($)482 2653 y Gc(<)p
+FX(1)708 2579 y F5(def)715 2631 y F4(=)892 2530 y FK(n)978
+2631 y Ga(M)1117 2526 y FK(\014)1117 2581 y(\014)1117
+2635 y(\014)1195 2631 y Ga(M)35 b F6(2)25 b FY(T)1465
+2598 y FX($)1559 2631 y Gg(and)f(for)g(e)n(v)o(ery)g(subterm)g
+Ga(N)33 b Gg(of)23 b Ga(M)10 b Gg(,)23 b F6(j)p Ga(N)10
+b F6(j)2859 2645 y Gc(x)2928 2631 y F6(2)25 b Ga(S)5
+b(N)3148 2645 y Gc(aux)3293 2530 y FK(o)277 2903 y Gg(Clearly)-6
+b(,)31 b(we)d(ha)n(v)o(e)h FY(T)982 2870 y FX($)978 2925
+y Gc(<)p FX(1)1139 2903 y F6(\022)34 b FY(T)1305 2870
+y FX($)1376 2903 y Gg(.)43 b(The)28 b(\002rst)h(property)h(we)e(need)i
+(to)e(sho)n(w)h(for)g FY(T)2961 2870 y FX($)2957 2925
+y Gc(<)p FX(1)3110 2903 y Gg(is)g(that)g(it)g(is)277
+3016 y(closed)c(under)804 2979 y Gc(l)q(oc)762 3016 y
+F6(\000)-31 b(\000)f(!)p Gg(-reductions.)p Black 277
+3203 a Gb(Lemma)23 b(2.6.16:)p Black 35 w FY(T)950 3170
+y FX($)946 3226 y Gc(<)p FX(1)1094 3203 y Gg(is)h(closed)h(under)1704
+3166 y Gc(l)q(oc)1662 3203 y F6(\000)-31 b(\000)g(!)p
+Gg(-reductions.)p Black 277 3416 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)d(the)h(de\002nition)h(of)1789
+3379 y Gc(l)q(oc)1747 3416 y F6(\000)-31 b(\000)f(!)23
+b Gg(\(see)h(P)o(age)f(152\).)p 3436 3416 4 62 v 3440
+3358 55 4 v 3440 3416 V 3494 3416 4 62 v 277 3620 a(Ne)o(xt,)g(we)g
+(shall)h(de\002ne)g(a)f(translation)k(from)c(terms)h(of)f
+FY(T)2119 3587 y FX($)2115 3643 y Gc(<)p FX(1)2264 3620
+y Gg(to)g(terms)h(of)g FY(H)q Gg(.)p Black 277 3808 a
+Gb(De\002nition)c(2.6.17:)p Black 34 w Gg(The)g(translation)p
+1553 3808 28 4 v 1571 3808 V 1588 3808 V 129 w F4(:)25
+b FY(T)1752 3775 y FX($)1748 3830 y Gc(<)p FX(1)1900
+3808 y F6(!)g FY(H)19 b Gg(is)h(inducti)n(v)o(ely)j(de\002ned)f(by)e
+(the)h(follo)n(wing)277 3921 y(clauses)k(\()p Ga(l)r(;)15
+b(m;)g(n)24 b Gg(are)f(natural)i(numbers\).)p Black Black
+495 4119 a FL(Cut)p F4(\()668 4107 y FX(h)696 4119 y
+Ga(a)744 4107 y FX(i)771 4119 y Ga(S)5 b(;)872 4107 y
+F9(\()900 4119 y Ga(x)952 4107 y F9(\))980 4119 y Ga(T)12
+b F4(\))p 495 4156 586 4 v 1128 4067 a F5(def)1135 4119
+y F4(=)54 b Ga(S)p 1260 4134 61 4 v 25 w F6(\001)1366
+4134 y Gc(l)1413 4119 y Ga(T)p 1413 4134 66 4 v 345 w(l)1887
+4067 y F5(def)1894 4119 y F4(=)i FW(M)t(A)t(X)t(R)t(E)t(D)2361
+4133 y Gc(aux)2484 4119 y F4(\()p F6(j)p FL(Cut)p F4(\()2717
+4107 y FX(h)2745 4119 y Ga(a)2793 4107 y FX(i)2820 4119
+y Ga(S)5 b(;)2921 4107 y F9(\()2949 4119 y Ga(x)3001
+4107 y F9(\))3029 4119 y Ga(T)12 b F4(\))p F6(j)3154
+4133 y Gc(x)3199 4119 y F4(\))493 4266 y FL(Cut)572 4219
+y FC( )633 4266 y F4(\()668 4254 y FX(h)696 4266 y Ga(a)744
+4254 y FX(i)771 4266 y Ga(S)5 b(;)872 4254 y F9(\()900
+4266 y Ga(x)952 4254 y F9(\))980 4266 y Ga(T)12 b F4(\))p
+493 4303 588 4 v 1128 4214 a F5(def)1135 4266 y F4(=)54
+b Ga(S)p 1260 4281 61 4 v 5 w F6(h)p Ga(T)p 1356 4281
+66 4 v 13 w F6(i)1457 4280 y Gc(m)1760 4266 y Ga(m)1887
+4214 y F5(def)1894 4266 y F4(=)i FW(M)t(A)t(X)t(R)t(E)t(D)2361
+4280 y Gc(aux)2484 4266 y F4(\()p F6(j)p FL(Cut)2623
+4219 y FC( )2684 4266 y F4(\()2719 4254 y FX(h)2747 4266
+y Ga(a)2795 4254 y FX(i)2822 4266 y Ga(S)5 b(;)2923 4254
+y F9(\()2951 4266 y Ga(x)3003 4254 y F9(\))3031 4266
+y Ga(T)12 b F4(\))p F6(j)3156 4280 y Gc(x)3201 4266 y
+F4(\))493 4413 y FL(Cut)572 4365 y FC(!)633 4413 y F4(\()668
+4401 y FX(h)696 4413 y Ga(a)744 4401 y FX(i)771 4413
+y Ga(S)5 b(;)872 4401 y F9(\()900 4413 y Ga(x)952 4401
+y F9(\))980 4413 y Ga(T)12 b F4(\))p 493 4450 588 4 v
+1128 4361 a F5(def)1135 4413 y F4(=)54 b F6(h)p Ga(S)p
+1295 4428 61 4 v 5 w F6(i)1391 4427 y Gc(n)1439 4413
+y Ga(T)p 1439 4428 66 4 v 294 w(n)1887 4361 y F5(def)1894
+4413 y F4(=)i FW(M)t(A)t(X)t(R)t(E)t(D)2361 4427 y Gc(aux)2484
+4413 y F4(\()p F6(j)p FL(Cut)2623 4365 y FC(!)2684 4413
+y F4(\()2719 4401 y FX(h)2747 4413 y Ga(a)2795 4401 y
+FX(i)2822 4413 y Ga(S)5 b(;)2923 4401 y F9(\()2951 4413
+y Ga(x)3003 4401 y F9(\))3031 4413 y Ga(T)12 b F4(\))p
+F6(j)3156 4427 y Gc(x)3201 4413 y F4(\))277 4630 y Gg(Otherwise)p
+Black Black 930 4743 a FL(Ax)p F4(\()p Ga(x;)j(a)p F4(\))p
+930 4780 314 4 v 1344 4692 a F5(def)1351 4743 y F4(=)106
+b Ga(?)679 4890 y FL(Not)822 4904 y Gc(R)880 4890 y F4(\()915
+4878 y F9(\()943 4890 y Ga(x)995 4878 y F9(\))1022 4890
+y Ga(M)10 b(;)15 b(a)p F4(\))p 679 4927 565 4 v 1344
+4838 a F5(def)1351 4890 y F4(=)106 b FB(L)p Ga(M)p 1563
+4905 99 4 v 10 w FB(M)463 5037 y FL(And)617 5051 y Gc(R)675
+5037 y F4(\()710 5025 y FX(h)738 5037 y Ga(a)786 5025
+y FX(i)813 5037 y Ga(M)11 b(;)952 5025 y FX(h)979 5037
+y Ga(b)1018 5025 y FX(i)1046 5037 y Ga(N)f(;)15 b(c)p
+F4(\))p 463 5074 782 4 v 1344 4985 a F5(def)1351 5037
+y F4(=)106 b FB(L)p Ga(M)p 1563 5052 99 4 v 10 w(;)15
+b(N)p 1701 5052 83 4 v 11 w FB(M)736 5184 y FL(Or)835
+5147 y Gc(i)835 5207 y(R)893 5184 y F4(\()928 5172 y
+FX(h)956 5184 y Ga(a)1004 5172 y FX(i)1031 5184 y Ga(M)10
+b(;)15 b(b)p F4(\))p 736 5221 509 4 v 1344 5132 a F5(def)1351
+5184 y F4(=)106 b FB(L)p Ga(M)p 1563 5199 99 4 v 10 w
+FB(M)584 5331 y FL(Imp)728 5353 y Gc(R)786 5331 y F4(\()821
+5319 y F9(\()849 5331 y Ga(x)901 5319 y F9(\))p FX(h)956
+5331 y Ga(a)1004 5319 y FX(i)1031 5331 y Ga(M)10 b(;)15
+b(b)p F4(\))p 584 5368 661 4 v 1344 5279 a F5(def)1351
+5331 y F4(=)106 b FB(L)p Ga(M)p 1563 5346 99 4 v 10 w
+FB(M)2170 4817 y FL(Not)2313 4831 y Gc(L)2365 4817 y
+F4(\()2400 4805 y FX(h)2428 4817 y Ga(a)2476 4805 y FX(i)2504
+4817 y Ga(M)10 b(;)15 b(x)p F4(\))p 2170 4854 559 4 v
+2829 4765 a F5(def)2836 4817 y F4(=)106 b FB(L)p Ga(M)p
+3048 4832 99 4 v 11 w FB(M)2159 4963 y FL(And)2313 4927
+y Gc(i)2313 4986 y(L)2365 4963 y F4(\()2400 4951 y F9(\()2428
+4963 y Ga(x)2480 4951 y F9(\))2508 4963 y Ga(M)10 b(;)15
+b(y)s F4(\))p 2159 5001 571 4 v 2829 4912 a F5(def)2836
+4963 y F4(=)106 b FB(L)p Ga(M)p 3048 4978 99 4 v 11 w
+FB(M)1990 5111 y FL(Or)2089 5125 y Gc(L)2141 5111 y F4(\()2176
+5099 y F9(\()2204 5111 y Ga(x)2256 5099 y F9(\))2283
+5111 y Ga(M)10 b(;)2421 5099 y F9(\()2449 5111 y Ga(y)2497
+5099 y F9(\))2524 5111 y Ga(N)g(;)15 b(z)t F4(\))p 1990
+5148 740 4 v 2829 5059 a F5(def)2836 5111 y F4(=)106
+b FB(L)p Ga(M)p 3048 5126 99 4 v 11 w(;)15 b(N)p 3187
+5126 83 4 v 10 w FB(M)1943 5257 y FL(Imp)2087 5279 y
+Gc(L)2139 5257 y F4(\()2174 5245 y FX(h)2202 5257 y Ga(a)2250
+5245 y FX(i)2277 5257 y Ga(M)c(;)2416 5245 y F9(\()2443
+5257 y Ga(x)2495 5245 y F9(\))2523 5257 y Ga(N)f(;)15
+b(y)s F4(\))p 1943 5295 787 4 v 2829 5206 a F5(def)2836
+5257 y F4(=)106 b FB(L)p Ga(M)p 3048 5272 99 4 v 11 w(;)15
+b(N)p 3187 5272 83 4 v 10 w FB(M)p Black Black eop end
+%%Page: 56 68
+TeXDict begin 56 67 bop Black -144 51 a Gb(56)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 317 a Gg(Because)30
+b(of)f(the)h(restriction)i(put)d(on)g FY(T)1617 284 y
+FX($)1613 340 y Gc(<)p FX(1)1739 317 y Gg(,)h(it)f(is)f(not)i(dif)n
+(\002cult)g(to)f(pro)o(v)o(e)g(that)h(this)g(translation)i(is)321
+430 y(well-de\002ned.)p Black 321 618 a Gb(Lemma)23 b(2.6.18:)p
+Black 35 w Gg(The)g(translation)p 1503 633 60 4 v 111
+w F4(:)i FY(T)1699 585 y FX($)1695 640 y Gc(<)p FX(1)1846
+618 y F6(!)h FY(H)c Gg(is)h(well-de\002ned.)p Black 321
+830 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Assume)32 b Ga(M)52
+b F6(2)41 b FY(T)1206 797 y FX($)1202 853 y Gc(<)p FX(1)1328
+830 y Gg(.)55 b(W)-7 b(e)31 b(ha)n(v)o(e)i(by)g(de\002nition)h(of)e
+FY(T)2427 797 y FX($)2423 853 y Gc(<)p FX(1)2580 830
+y Gg(that)h(the)g Ga(x)p Gg(-normal)g(form)g(of)321 943
+y(e)n(v)o(ery)25 b(subterm,)h Ga(N)10 b Gg(,)24 b(of)g
+Ga(M)34 b Gg(is)25 b(an)f(element)i(in)e Ga(S)5 b(N)1968
+957 y Gc(aux)2091 943 y Gg(.)31 b(Consequently)-6 b(,)29
+b FW(M)t(A)t(X)t(R)t(E)t(D)3028 957 y Gc(aux)3150 943
+y F4(\()p F6(j)p Ga(N)10 b F6(j)3318 957 y Gc(x)3362
+943 y F4(\))25 b Gg(is)f(a)321 1056 y(natural)h(number)-5
+b(.)p 3480 1056 4 62 v 3484 998 55 4 v 3484 1056 V 3538
+1056 4 62 v 462 1260 a(The)32 b(ne)o(xt)h(lemma)f(is)g(useful)h(for)f
+(comparing)j(labels)e(of)f(terms)g(belonging)j(to)e FY(H)q
+Gg(;)h(it)e(relates)321 1373 y(tw)o(o)27 b(terms)h(of)f
+FY(T)875 1340 y FX($)871 1396 y Gc(<)p FX(1)1024 1373
+y Gg(according)j(to)e(the)f(number)i(of)2071 1336 y Gc(aux)2051
+1373 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)31 b(their)d
+Ga(x)p Gg(-normal)h(form)e(can)321 1486 y(perform.)p
+Black 321 1674 a Gb(Lemma)c(2.6.19:)p Black 35 w Gg(F)o(or)f(all)i
+(terms)g Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)1807 1641
+y FX($)1803 1696 y Gc(<)p FX(1)1952 1674 y Gg(we)e(ha)n(v)o(e)p
+Black 417 1846 a(\(i\))p Black 49 w FW(M)t(A)t(X)t(R)t(E)t(D)891
+1860 y Gc(aux)1013 1846 y F4(\()p F6(j)p Ga(M)10 b F6(j)1196
+1860 y Gc(x)1241 1846 y F4(\))25 b F6(\025)i FW(M)t(A)t(X)t(R)t(E)t(D)
+1739 1860 y Gc(aux)1862 1846 y F4(\()p F6(j)p Ga(N)10
+b F6(j)2030 1860 y Gc(x)2074 1846 y F4(\))p Gg(,)23 b(pro)o(vided)j
+Ga(M)2665 1809 y Gc(l)q(oc)2623 1846 y F6(\000)-31 b(\000)f(!)25
+b Ga(N)10 b Gg(.)p Black 392 1990 a(\(ii\))p Black 49
+w FW(M)t(A)t(X)t(R)t(E)t(D)891 2004 y Gc(aux)1013 1990
+y F4(\()p F6(j)p Ga(M)g F6(j)1196 2004 y Gc(x)1241 1990
+y F4(\))35 b F6(\025)h FW(M)t(A)t(X)t(R)t(E)t(D)1758
+2004 y Gc(aux)1880 1990 y F4(\()p F6(j)p Ga(N)10 b F6(j)2048
+2004 y Gc(x)2093 1990 y F4(\))p Gg(,)29 b(pro)o(vided)h
+Ga(N)38 b Gg(is)28 b(an)h(immediate)g(subterm)549 2103
+y(of)23 b Ga(M)10 b Gg(,)23 b(and)h Ga(M)32 b Gg(is)24
+b(unlabelled.)p Black 367 2247 a(\(iii\))p Black 49 w
+FW(M)t(A)t(X)t(R)t(E)t(D)891 2261 y Gc(aux)1013 2247
+y F4(\()p F6(j)p Ga(M)10 b F6(j)1196 2261 y Gc(x)1241
+2247 y F4(\))k Ga(>)i FW(M)t(A)t(X)t(R)t(E)t(D)1718 2261
+y Gc(aux)1840 2247 y F4(\()p F6(j)p Ga(N)10 b F6(j)2008
+2261 y Gc(x)2053 2247 y F4(\))p Gg(,)25 b(pro)o(vided)j
+Ga(M)2674 2210 y Gc(l)2696 2186 y FC(0)2611 2247 y F6(\000)-31
+b(\000)f(!)30 b Ga(N)35 b Gg(or)26 b Ga(M)3197 2210 y
+Gc(c)3228 2186 y FC(00)3148 2247 y F6(\000)-32 b(\000)h(!)29
+b Ga(N)35 b Gg(on)549 2360 y(the)23 b(outermost)j(le)n(v)o(el.)p
+Black 321 2572 a F7(Pr)l(oof)o(.)p Black 34 w Gg(\(i\))31
+b(follo)n(ws)h(from)f(Lemma)f(2.6.11;)36 b(for)31 b(\(ii\))h(note)g
+(that)f(all)h(reductions)i(which)d F6(j)p Ga(N)10 b F6(j)3345
+2586 y Gc(x)3420 2572 y Gg(can)321 2685 y(perform)25
+b(can)e(be)h(performed)h(by)e F6(j)p Ga(M)10 b F6(j)1556
+2699 y Gc(x)1601 2685 y Gg(;)23 b(\(iii\))h(is)f(by)g(simple)h
+(calculation)j(using)d(Lemma)f(2.6.7)g(and)321 2798 y(the)h(f)o(act)g
+(that)g(the)g(side)g(conditions)j(put)d(on)1779 2761
+y Gc(c)1810 2737 y FC(00)1729 2798 y F6(\000)-31 b(\000)g(!)22
+b Gg(ensures)k(that)e F6(j)p Ga(M)10 b F6(j)2525 2812
+y Gc(x)2615 2761 y(aux)2595 2798 y F6(\000)-32 b(\000)h(!)25
+b(j)p Ga(N)10 b F6(j)2923 2812 y Gc(x)2967 2798 y Gg(.)p
+3480 2798 V 3484 2740 55 4 v 3484 2798 V 3538 2798 4
+62 v 321 3002 a(No)n(w)26 b(we)g(are)h(in)g(the)h(position)h(to)e(pro)o
+(v)o(e)g(the)h(\(main\))f(lemma)g(that)g(relates)i(e)n(v)o(ery)3044
+2965 y Gc(l)q(oc)3002 3002 y F6(\000)-31 b(\000)g(!)p
+Gg(-reduction)321 3115 y(to)21 b(a)g(pair)h(of)f(terms)h(that)f(belong)
+i(to)e FY(H)g Gg(and)g(which)h(are)f(ordered)i(decreasingly)i
+(according)f(to)d Ga(>)3416 3082 y Gc(r)r(po)3524 3115
+y Gg(.)p Black 321 3303 a Gb(Lemma)i(2.6.20:)p Black
+35 w Gg(F)o(or)f(all)i Ga(M)5 b(;)15 b(N)36 b F6(2)24
+b FY(T)1582 3270 y FX($)1578 3325 y Gc(<)p FX(1)1704
+3303 y Gg(,)f(if)g Ga(M)1993 3265 y Gc(l)q(oc)1952 3303
+y F6(\000)-32 b(\000)h(!)25 b Ga(N)10 b Gg(,)22 b(then)j
+Ga(M)p 2455 3318 99 4 v 35 w(>)2649 3270 y Gc(r)r(po)2782
+3303 y Ga(N)p 2782 3318 83 4 v 10 w Gg(.)p Black 321
+3515 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(induction)j(on)e(the)f
+(de\002nition)j(of)1833 3478 y Gc(l)q(oc)1791 3515 y
+F6(\000)-31 b(\000)f(!)23 b Gg(\(see)h(P)o(ages)g(152\226155\).)p
+3480 3515 4 62 v 3484 3457 55 4 v 3484 3515 V 3538 3515
+4 62 v 321 3719 a(Using)j(this)g(lemma,)f(we)f(can)i(sho)n(w)f(that)h
+(e)n(v)o(ery)1943 3682 y Gc(l)q(oc)1901 3719 y F6(\000)-32
+b(\000)h(!)p Gg(-reduction)29 b(sequence)g(starting)f(with)e(a)g(term)
+321 3832 y(of)e FY(T)f Gg(is)g(terminating.)p Black 321
+4020 a Gb(Lemma)32 b(2.6.21:)p Black 35 w Gg(Ev)o(ery)1231
+3983 y Gc(l)q(oc)1189 4020 y F6(\000)-31 b(\000)g(!)p
+Gg(-reduction)35 b(sequence)g(starting)g(with)d(a)g(term)h(belonging)i
+(to)e FY(T)f Gg(is)321 4133 y(terminating.)p Black 321
+4345 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Suppose)22 b(for)e(the)h(sak)o
+(e)g(of)f(deri)n(ving)i(a)e(contradiction)k(that)d(from)g
+Ga(M)29 b Gg(the)21 b(follo)n(wing)h(in\002nite)321 4458
+y(reduction)k(sequence)g(starts.)1074 4624 y Ga(M)36
+b F6(\021)25 b Ga(M)1382 4638 y F9(1)1488 4587 y Gc(l)q(oc)1447
+4624 y F6(\000)-32 b(\000)h(!)25 b Ga(M)1730 4638 y F9(2)1837
+4587 y Gc(l)q(oc)1795 4624 y F6(\000)-31 b(\000)f(!)25
+b Ga(M)2078 4638 y F9(3)2185 4587 y Gc(l)q(oc)2143 4624
+y F6(\000)-31 b(\000)g(!)25 b Ga(M)2427 4638 y F9(4)2534
+4587 y Gc(l)q(oc)2492 4624 y F6(\000)-32 b(\000)h(!)25
+b Ga(:)15 b(:)g(:)321 4806 y Gg(By)25 b(Lemma)g(2.6.6)h(we)f(ha)n(v)o
+(e)h(for)g(all)g(subterms)h Ga(N)35 b Gg(of)25 b Ga(M)35
+b Gg(that)26 b F6(j)p Ga(N)10 b F6(j)2511 4820 y Gc(x)2585
+4806 y F6(\021)29 b Ga(N)35 b Gg(\()p Ga(M)g Gg(does)27
+b(not)f(contain)321 4919 y(an)o(y)21 b(labelled)h(cut\),)f(and)g(by)f
+(Theorem)h(2.3.19)g(we)e(kno)n(w)h(that)h(each)g(of)f(them)g(is)g
+(strongly)j(normalis-)p Black Black eop end
+%%Page: 57 69
+TeXDict begin 57 68 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
+b(57)p 277 88 3691 4 v Black 277 353 a Gg(ing)24 b(under)666
+316 y Gc(aux)645 353 y F6(\000)-31 b(\000)g(!)p Gg(.)28
+b(Consequently)-6 b(,)26 b(e)n(v)o(ery)g FW(M)t(A)t(X)t(R)t(E)t(D)1969
+367 y Gc(aux)2091 353 y F4(\()p F6(j)p Ga(N)10 b F6(j)2259
+367 y Gc(x)2304 353 y F4(\))23 b Gg(is)g(\002nite,)g(and)h(thus)g
+Ga(M)33 b Gg(belongs)25 b(to)277 466 y FY(T)338 433 y
+FX($)334 488 y Gc(<)p FX(1)460 466 y Gg(.)j(By)21 b(Lemmas)h(2.6.16)g
+(and)h(2.6.20)g(we)e(ha)n(v)o(e)i(that)g(the)g(in\002nite)g(reduction)i
+(sequence)f(starting)277 579 y(from)g Ga(M)32 b Gg(can)24
+b(be)g(mapped)g(onto)h(the)f(decreasing)i(chain)1124
+802 y Ga(M)1212 816 y F9(1)p 1124 830 128 4 v 1277 802
+a Ga(>)1348 765 y Gc(r)r(po)1480 802 y Ga(M)1568 816
+y F9(2)p 1480 830 V 1633 802 a Ga(>)1704 765 y Gc(r)r(po)1837
+802 y Ga(M)1925 816 y F9(3)p 1837 830 V 1989 802 a Ga(>)2060
+765 y Gc(r)r(po)2193 802 y Ga(M)2281 816 y F9(4)p 2193
+830 V 2346 802 a Ga(>)2417 765 y Gc(r)r(po)2549 802 y
+Ga(:)15 b(:)g(:)277 1034 y Gg(which)33 b(ho)n(we)n(v)o(er)h
+(contradicts)i(the)d(well-foundedness)k(of)c Ga(>)2297
+1001 y Gc(r)r(po)2404 1034 y Gg(.)56 b(Thus)33 b(all)2862
+997 y Gc(l)q(oc)2820 1034 y F6(\000)-31 b(\000)g(!)o
+Gg(-reduction)36 b(se-)277 1147 y(quences)26 b(starting)f(with)e(a)h
+(term)f(that)h(is)f(an)h(element)g(in)g FY(T)f Gg(must)g(terminate.)p
+3436 1147 4 62 v 3440 1089 55 4 v 3440 1147 V 3494 1147
+4 62 v 418 1351 a(Ne)o(xt,)h(we)f(e)o(xtend)i(this)g(lemma)f(to)g(all)g
+(terms)h(of)f FY(T)2053 1318 y FX($)2123 1351 y Gg(.)30
+b(T)-7 b(o)23 b(do)h(so,)g(we)g(shall)h(\002rst)f(sho)n(w)f(that)i(for)
+277 1464 y(e)n(v)o(ery)h Ga(M)39 b F6(2)28 b FY(T)777
+1431 y FX($)873 1464 y Gg(there)e(is)f(a)g(term)g Ga(N)39
+b F6(2)29 b FY(T)t Gg(,)20 b(such)27 b(that)f Ga(N)2232
+1427 y Gc(l)q(oc)2190 1464 y F6(\000)-31 b(\000)g(!)2361
+1431 y FX(\003)2429 1464 y Ga(M)10 b Gg(.)34 b(Because)26
+b Ga(N)35 b Gg(is)25 b(an)g(element)277 1577 y(in)31
+b FY(T)t Gg(,)c(we)j(ha)n(v)o(e)i(that)f Ga(N)40 b Gg(is)30
+b(strongly)j(normalising)g(by)e(the)g(lemma)g(just)g(gi)n(v)o(en,)i
+(and)e(so)g Ga(M)10 b Gg(,)31 b(too,)277 1690 y(must)24
+b(be)f(strongly)j(normalising.)p Black 277 1877 a Gb(Lemma)d(2.6.22:)p
+Black 35 w Gg(F)o(or)h(e)n(v)o(ery)g(term)g Ga(M)37 b
+F6(2)26 b FY(T)1722 1844 y FX($)1816 1877 y Gg(with)e(the)h(typing)h
+(judgement)g F4(\000)2881 1865 y Gc(.)2936 1877 y Ga(M)3059
+1865 y Gc(.)3114 1877 y F4(\001)p Gg(,)d(there)j(is)277
+1990 y(a)d(term)h Ga(N)35 b F6(2)25 b FY(T)d Gg(with)i(the)g(typing)h
+(judgement)g F4(\000)1840 1957 y FX(0)1863 1990 y Ga(;)15
+b F4(\000)1986 1978 y Gc(.)2041 1990 y Ga(N)2149 1978
+y Gc(.)2204 1990 y F4(\001)p Ga(;)g F4(\001)2396 1957
+y FX(0)2442 1990 y Gg(such)24 b(that)g Ga(N)2940 1953
+y Gc(l)q(oc)2898 1990 y F6(\000)-31 b(\000)g(!)3069 1957
+y FX(\003)3133 1990 y Ga(M)10 b Gg(.)p Black 277 2203
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(W)-7 b(e)23 b(construct)k
+Ga(N)33 b Gg(by)24 b(inducti)n(v)o(ely)j(replacing)f(in)e
+Ga(M)34 b Gg(all)24 b(occurrences)k(of)c FL(Cut)3009
+2155 y FC( )3094 2203 y Gg(and)g FL(Cut)3327 2155 y FC(!)3411
+2203 y Gg(by)277 2316 y(some)g(instances)i(of)d FL(Cut)g
+Gg(\(see)h(P)o(age)f(155\).)p 3436 2316 V 3440 2257 55
+4 v 3440 2316 V 3494 2316 4 62 v 277 2520 a(No)n(w)f(the)i(strong)h
+(normalisation)i(theorem)d(is)g(by)f(a)h(simple)g(contradiction)j(ar)n
+(gument.)p Black 277 2707 a Gb(Theor)n(em)d(2.6.23:)p
+Black 34 w Gg(The)g(reduction)i(system)e F4(\()p FY(T)1844
+2674 y FX($)1915 2707 y Ga(;)1997 2670 y Gc(l)q(oc)1955
+2707 y F6(\000)-31 b(\000)g(!)p F4(\))23 b Gg(is)g(strongly)j
+(normalising.)p Black 277 2920 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(Suppose)21 b Ga(M)35 b F6(2)25 b FY(T)1132 2887
+y FX($)1222 2920 y Gg(is)20 b(not)h(strongly)h(normalising.)30
+b(Then)20 b(by)g(the)h(lemma)e(just)i(gi)n(v)o(en)f(there)277
+3033 y(is)27 b(a)g(term)g Ga(N)42 b F6(2)32 b FY(T)26
+b Gg(such)j(that)e Ga(N)1428 2996 y Gc(l)q(oc)1387 3033
+y F6(\000)-32 b(\000)h(!)1557 3000 y FX(\003)1628 3033
+y Ga(M)10 b Gg(.)40 b(Clearly)-6 b(,)28 b(if)f Ga(M)37
+b Gg(is)27 b(not)h(strongly)h(normalising,)i(then)277
+3146 y(so)d(is)g Ga(N)10 b Gg(,)29 b(which)f(ho)n(we)n(v)o(er)h
+(contradicts)i(Lemma)c(2.6.21.)44 b(Consequently)-6 b(,)32
+b Ga(M)38 b Gg(must)28 b(be)g(strongly)277 3259 y(normalising.)p
+3436 3259 V 3440 3201 55 4 v 3440 3259 V 3494 3259 4
+62 v 277 3463 a(While)k(Gentzen-lik)o(e)i(local)f(reductions)h(tend)f
+(to)e(break)i(strong)g(normalisation,)j(in)c(this)g(section)277
+3576 y(we)23 b(ha)n(v)o(e)h(sho)n(wn)g(that)g(a)e(strongly)k
+(normalising)g(cut-elimination)h(procedure)f(can)e(be)g(obtained)h(by)
+277 3689 y(replacing)h(our)e(global)h(operation)h(of)e(proof)g
+(substitution)j(with)d(appropriate)i(local)f(reductions.)277
+3995 y Ge(2.7)119 b(Notes)277 4218 y Gg(Se)n(v)o(eral)35
+b(cut-elimination)k(procedures)f(ha)n(v)o(e)d(been)h(introduced)i(in)d
+(this)h(chapter)l(,)j(and)d(we)e(ha)n(v)o(e)277 4331
+y(focused)e(on)e(sho)n(wing,)i(in)d(each)i(case,)g(the)f(property)i(of)
+e(strong)h(normalisation.)51 b(In)29 b(this)i(section)277
+4444 y(we)25 b(shall)h(tak)o(e)g(a)f(step)h(back)g(and)g(consider)i(a)d
+(more)g(global)i(picture.)36 b(W)-7 b(e)24 b(shall)j(\002rst)e(moti)n
+(v)n(ate)h(our)277 4557 y(use)31 b(of)g(tw)o(o)f(slightly)j(dif)n
+(ferent)g(notions)g(of)d(proof)i(substitution.)54 b(Ne)o(xt,)32
+b(we)e(shall)i(compare)g(our)277 4670 y(w)o(ork)23 b(to)g(the)h
+(cut-elimination)j(procedure)e(by)e(Dragalin)h(and)g(to)f(the)g
+(symmetric)h(lambda)g(calculus)277 4783 y(by)g(Barbanera)h(and)f
+(Berardi.)277 5046 y Fq(2.7.1)99 b(Wh)o(y)24 b(T)-7 b(w)o(o)25
+b(Notions)f(of)h(Pr)n(oof)g(Substitution?)277 5237 y
+Gg(The)33 b(proof)h(substitution)i(denoted)f(by)e F4([)p
+1606 5237 28 4 v 1624 5237 V 1642 5237 V 65 w(])f Gg(w)o(as)h
+(introduced)j(in)d(order)h(to)f(a)n(v)n(oid)h(in\002nite)g(reduc-)277
+5350 y(tion)i(sequences)j(arising)e(from)e(the)h(too)g(liberal)h
+(de\002nition)h(of)d(Gentzen')-5 b(s)37 b(reduction)i(rules)d(for)p
+Black Black eop end
+%%Page: 58 70
+TeXDict begin 58 69 bop Black -144 51 a Gb(58)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 353 a Gg(commuting)29
+b(cuts.)40 b(W)-7 b(e)26 b(modi\002ed)i(this)f(proof)i(substitution)h
+(in)d(Section)h(2.3)f(so)g(that)h(independent)321 466
+y(substitutions)i(can)d(commute.)36 b(The)26 b(modi\002ed)g(v)n(ariant)
+h(w)o(as)f(referred)i(to)e(as)f(auxiliary)k(proof)e(sub-)321
+579 y(stitution)33 b(and)f(denoted)g(by)f F6(f)p 1296
+579 28 4 v 1315 579 V 1332 579 V 65 w(g)p Gg(.)51 b(Both)30
+b(substitution)35 b(operations)f(are)d(applied)h(when)f(instances)321
+692 y(of)h(commuting)h(cuts)f(are)g(reduced:)47 b F4([)p
+1576 692 V 1594 692 V 1612 692 V 65 w(])31 b Gg(is)g(used)i(in)e(the)h
+(cut-elimination)k(procedure)e F4(\()p FY(T)t Ga(;)3372
+654 y Gc(cut)3341 692 y F6(\000)-32 b(\000)h(!)p F4(\))321
+804 y Gg(and)25 b F6(f)p 523 804 V 541 804 V 559 804
+V 65 w(g)f Gg(in)g F4(\()p FY(T)t Ga(;)902 767 y Gc(aux)882
+804 y F6(\000)-32 b(\000)h(!)p F4(\))p Gg(.)30 b(In)24
+b(Section)h(2.6)g(we)e(deri)n(v)o(ed)i(from)f F4(\()p
+FY(T)t Ga(;)2447 767 y Gc(aux)2427 804 y F6(\000)-31
+b(\000)g(!)o F4(\))24 b Gg(the)h(local)g(cut-elimination)321
+917 y(procedure)30 b F4(\()p FY(T)807 884 y FX($)878
+917 y Ga(;)960 880 y Gc(l)q(oc)918 917 y F6(\000)-31
+b(\000)g(!)p F4(\))p Gg(,)27 b(where)g(in)f(place)i(of)f(the)g
+(substitution)k(operation)e F6(f)p 2842 917 V 2860 917
+V 2878 917 V 65 w(g)p Gg(,)e(local)h(reduction)321 1030
+y(rules)23 b(are)e(applied.)30 b(This)21 b(cut-elimination)k(procedure)
+f(could)f(also)f(be)g(deri)n(v)o(ed)g(from)f F4(\()p
+FY(T)t Ga(;)3257 993 y Gc(cut)3226 1030 y F6(\000)-31
+b(\000)g(!)o F4(\))q Gg(,)21 b(in)321 1143 y(which)27
+b(case)g(we)f(w)o(ould)h(ha)n(v)o(e)g(a)g(slightly)h(dif)n(ferent)h
+(local)e(procedure.)40 b(All)26 b(procedures)k(are)d(com-)321
+1256 y(plete)f(in)f(the)g(sense)g(of)g(eliminating)i(all)e(cuts)g(from)
+g(a)f(classical)j(proof.)34 b(Thus)25 b(the)g(question)i(arises,)321
+1369 y(why)22 b(did)g(we)g(introduce)j(tw)o(o)d(cut-elimination)k
+(procedures)f(for)d FY(T)t Gg(,)c(or)k(more)g(speci\002cally)j(why)c
+(did)321 1482 y(we)i(introduce)i(tw)o(o)e(proof)i(substitutions?)33
+b(In)23 b(the)g(follo)n(wing)i(we)d(will)h(discuss)i(the)f(trade-of)n
+(fs)h(that)321 1595 y(led)f(us)g(to)f(gi)n(v)o(e)h(the)g(tw)o(o)f(v)o
+(ersions)i(of)f(substitution)j(and)d(cut-elimination.)462
+1724 y(Whilst)e(our)f(sequent)i(calculus)g(gi)n(v)o(en)e(in)g(Section)g
+(2.2)g(is)f(rather)i(dif)n(ferent)h(from)e(Gentzen')-5
+b(s)22 b(se-)321 1837 y(quent)i(calculus)g(LK)d(\(all)i(structural)h
+(rules)g(are)e(implicit\),)i(the)e(cut-elimination)k(rules)e(of)e
+F4(\()p FY(T)t Ga(;)3372 1800 y Gc(cut)3341 1837 y F6(\000)-32
+b(\000)h(!)p F4(\))321 1950 y Gg(are)32 b(v)o(ery)f(reminiscent)i(of)e
+(his)h(rules,)h(e)o(xcept)f(that)g(we)e(allo)n(w)h(cuts)h(to)f(pass)h
+(o)o(v)o(er)f(other)h(cuts.)52 b(In)321 2063 y(contrast,)36
+b(the)c(rules)g(of)g F4(\()p FY(T)t Ga(;)1274 2026 y
+Gc(aux)1254 2063 y F6(\000)-31 b(\000)f(!)p F4(\))31
+b Gg(dif)n(fer)i(some)n(what)f(from)g(Gentzen')-5 b(s)33
+b(rules.)55 b(The)31 b(dif)n(ferences)321 2176 y(arise)25
+b(from)e(the)h(tw)o(o)f(clauses)p Black Black 692 2390
+a FL(Cut)p F4(\()865 2378 y FX(h)892 2390 y Ga(a)940
+2378 y FX(i)968 2390 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
+F4(\))q Ga(;)1322 2378 y F9(\()1349 2390 y Ga(y)1397
+2378 y F9(\))1425 2390 y Ga(M)10 b F4(\))-5 b F6(f)e
+Ga(x)26 b F4(:=)1790 2378 y FX(h)1818 2390 y Ga(b)1857
+2378 y FX(i)1884 2390 y Ga(P)t F6(g)2015 2338 y F5(def)2022
+2390 y F4(=)k FL(Cut)p F4(\()2296 2378 y FX(h)2324 2390
+y Ga(b)2363 2378 y FX(i)2390 2390 y Ga(P)13 b(;)2501
+2378 y F9(\()2529 2390 y Ga(y)2577 2378 y F9(\))2604
+2390 y Ga(M)5 b F6(f)-7 b Ga(x)26 b F4(:=)2935 2378 y
+FX(h)2962 2390 y Ga(b)3001 2378 y FX(i)3029 2390 y Ga(P)s
+F6(g)q F4(\))701 2530 y FL(Cut)p F4(\()874 2518 y FX(h)902
+2530 y Ga(a)950 2518 y FX(i)977 2530 y Ga(M)10 b(;)1115
+2518 y F9(\()1143 2530 y Ga(x)1195 2518 y F9(\))1222
+2530 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\))q(\))-5 b
+F6(f)e Ga(b)26 b F4(:=)1781 2518 y F9(\()1809 2530 y
+Ga(y)1857 2518 y F9(\))1884 2530 y Ga(P)t F6(g)2015 2478
+y F5(def)2022 2530 y F4(=)k FL(Cut)p F4(\()2296 2518
+y FX(h)2324 2530 y Ga(a)2372 2518 y FX(i)2399 2530 y
+Ga(M)5 b F6(f)-7 b Ga(b)26 b F4(:=)2717 2518 y F9(\()2744
+2530 y Ga(y)2792 2518 y F9(\))2819 2530 y Ga(P)t F6(g)p
+Ga(;)2966 2518 y F9(\()2994 2530 y Ga(y)3042 2518 y F9(\))3069
+2530 y Ga(P)13 b F4(\))321 2732 y Gg(which)24 b(allo)n(w)g(us,)f(for)h
+(e)o(xample,)g(to)f(reduce)i(the)f(lo)n(wer)f(cut-instance)k(in)d(the)g
+(proof)843 3083 y F4(\000)925 3071 y Gc(.)980 3083 y
+Ga(N)1088 3071 y Gc(.)1143 3083 y Ga(b)17 b F4(:)g Ga(B)p
+1406 2871 841 4 v 1406 2955 a(x)g F4(:)g Ga(B)1616 2943
+y Gc(.)1671 2955 y FL(Ax)p F4(\()p Ga(x;)e(a)p F4(\))2010
+2943 y Gc(.)2065 2955 y Ga(a)i F4(:)h Ga(B)95 b(y)20
+b F4(:)d Ga(B)2543 2943 y Gc(.)2598 2955 y Ga(M)2721
+2943 y Gc(.)2776 2955 y F4(\001)p 1406 2998 1447 4 v
+1485 3083 a Ga(x)g F4(:)h Ga(B)1696 3071 y Gc(.)1750
+3083 y FL(Cut)p F4(\()1923 3071 y FX(h)1951 3083 y Ga(a)1999
+3071 y FX(i)2027 3083 y FL(Ax)o F4(\()p Ga(x;)d(a)p F4(\))q
+Ga(;)2380 3071 y F9(\()2408 3083 y Ga(y)2456 3071 y F9(\))2483
+3083 y Ga(M)10 b F4(\))2642 3071 y Gc(.)2697 3083 y F4(\001)2894
+3028 y Gg(Cut)p 843 3125 1931 4 v 962 3210 a F4(\000)1044
+3198 y Gc(.)1099 3210 y FL(Cut)p F4(\()1272 3198 y FX(h)1299
+3210 y Ga(b)1338 3198 y FX(i)1366 3210 y Ga(N)g(;)1489
+3198 y F9(\()1517 3210 y Ga(x)1569 3198 y F9(\))1596
+3210 y FL(Cut)p F4(\()1769 3198 y FX(h)1797 3210 y Ga(a)1845
+3198 y FX(i)1872 3210 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
+F4(\))q Ga(;)2226 3198 y F9(\()2254 3210 y Ga(y)2302
+3198 y F9(\))2329 3210 y Ga(M)10 b F4(\)\))2523 3198
+y Gc(.)2578 3210 y F4(\001)2814 3156 y Gg(Cut)321 3413
+y(in)24 b(a)f(single)i(step)f(to)1283 3595 y F4(\000)1365
+3583 y Gc(.)1420 3595 y Ga(N)1528 3583 y Gc(.)1583 3595
+y Ga(b)17 b F4(:)h Ga(B)95 b(y)20 b F4(:)e Ga(B)2052
+3583 y Gc(.)2107 3595 y Ga(M)2231 3583 y Gc(.)2285 3595
+y F4(\001)p 1283 3632 1079 4 v 1362 3717 a(\000)1444
+3705 y Gc(.)1499 3717 y FL(Cut)p F4(\()1672 3705 y FX(h)1700
+3717 y Ga(b)1739 3705 y FX(i)1766 3717 y Ga(N)10 b(;)1889
+3705 y F9(\()1917 3717 y Ga(y)1965 3705 y F9(\))1993
+3717 y Ga(M)g F4(\))2151 3705 y Gc(.)2206 3717 y F4(\001)2403
+3663 y Gg(Cut)25 b Ga(:)321 3920 y Gg(This)30 b(kind)g(of)f
+(cut-reduction,)35 b(which)30 b(\223mer)n(ges\224)h(tw)o(o)e(cuts)h
+(into)g(a)f(single)i(cut)f(has,)h(as)e(f)o(ar)h(as)f(we)321
+4033 y(are)c(a)o(w)o(are,)g(not)g(been)g(considered)j(else)n(where.)33
+b(Therefore)26 b(comparing)h(the)e(cut-elimination)j(pro-)321
+4146 y(cedure)k F4(\()p FY(T)t Ga(;)746 4109 y Gc(aux)726
+4146 y F6(\000)-32 b(\000)h(!)p F4(\))30 b Gg(with)g(traditional)j
+(cut-elimination)h(procedures,)g(for)c(e)o(xample,)j(according)g(to)321
+4259 y(which)h(normal)f(forms)g(can)h(be)e(reached)j(from)e(a)f(proof,)
+k(is)d(rather)h(dif)n(\002cult.)58 b(Much)33 b(simpler)h(is)321
+4372 y(the)26 b(comparison)i(with)d F4(\()p FY(T)t Ga(;)1256
+4335 y Gc(cut)1225 4372 y F6(\000)-31 b(\000)g(!)o F4(\))26
+b Gg(because)h(its)f(reduction)i(rules)e(are)g(easier)h(to)e(relate)i
+(to)e(standard)321 4485 y(reduction)h(rules.)462 4614
+y(Another)l(,)g(more)f(important)h(reason)g(for)f(presenting)i
+F4(\()p FY(T)t Ga(;)2348 4577 y Gc(cut)2317 4614 y F6(\000)-31
+b(\000)f(!)p F4(\))24 b Gg(is)h(the)f(close)i(correspondence)321
+4727 y(with)i(normalisation)j(in)d(natural)h(deduction.)45
+b(As)27 b(we)g(shall)h(see)h(in)e(Chapter)i(3,)f(we)f(ha)n(v)o(e)i(the)
+f(fol-)321 4840 y(lo)n(wing)c(correspondences)29 b(in)23
+b(the)h F4(\()p F6(\033)p Ga(;)15 b F6(^)p F4(\))p Gg(-fragment)26
+b(of)d(intuitionistic)28 b(logic)p Black Black 1190 5032
+a Ga(M)1427 4995 y Gc(int)1352 5032 y F6(\000)-21 b(\000)h(\000)f(!)64
+b Ga(N)1179 5395 y(M)1277 5358 y FX(0)1176 5214 y Fu(n)1218
+5270 y F6(#)p 1238 5207 4 142 v 1449 5358 a Gc(\014)1350
+5395 y F6(\000)-21 b(\000)h(\000)f(!)1592 5358 y FX(\003)1646
+5395 y Ga(N)1729 5358 y FX(0)1725 5214 y Fu(n)1678 5270
+y F6(#)p 1698 5207 V 2159 5032 a Ga(S)2386 4995 y Gc(\014)2287
+5032 y F6(\000)g(\000)h(\000)f(!)76 b Ga(T)2148 5395
+y(S)2209 5358 y FX(0)2135 5214 y Fu(s)2168 5270 y F6(#)p
+2188 5207 V 2360 5358 a Gc(int)2286 5395 y F6(\000)-21
+b(\000)g(\000)g(!)2522 5358 y F9(+)2606 5395 y Ga(T)2672
+5358 y FX(0)2664 5214 y Fu(s)2616 5270 y F6(#)p 2636
+5207 V Black Black eop end
+%%Page: 59 71
+TeXDict begin 59 70 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
+b(59)p 277 88 3691 4 v Black 277 353 a Gg(where)568 316
+y Gc(int)529 353 y F6(\000)-31 b(\000)f(!)30 b Gg(is)g(the)h
+(intuitionistic)k(v)o(ersion)d(of)1882 316 y Gc(cut)1851
+353 y F6(\000)-31 b(\000)f(!)30 b Gg(and)h F6(j)p 2239
+353 28 4 v 2257 353 V 2274 353 V 65 w(j)2327 320 y Fu(n)2368
+353 y Gg(,)g F6(j)p 2449 353 V 2467 353 V 2484 353 V
+65 w(j)2537 320 y Fu(s)2598 353 y Gg(are)g(slight)g(v)n(ariants)i(of)d
+(the)277 466 y(standard)k(translations)i(between)d(natural)h(deduction)
+h(proofs)e(and)g(sequent)h(proofs.)56 b(Thus)3371 429
+y Gc(int)3332 466 y F6(\000)-31 b(\000)f(!)277 579 y
+Gg(can)24 b(simulate)h(beta-reduction,)i(which)d(\(using)h
+F6(j)p 1849 579 V 1867 579 V 1885 579 V 65 w(j)1937 546
+y Fu(s)1969 579 y Gg(\))e(the)g(intuitionistic)28 b(v)o(ersion)d(of)
+3045 542 y Gc(aux)3025 579 y F6(\000)-31 b(\000)g(!)22
+b Gg(cannot.)418 724 y(Whilst)d(the)g(proof)h(substitution)i
+F4([)p 1491 724 V 1509 724 V 1526 724 V 64 w(])c Gg(leads)i(to)e(a)g
+(more)g(traditional)k(cut-elimination)g(procedure,)277
+837 y(the)j(auxiliary)j(proof)e(substitution)i F6(f)p
+1476 837 V 1494 837 V 1512 837 V 65 w(g)p Gg(,)d(on)g(the)g(other)h
+(hand,)g(plays)g(a)f(crucial)h(r)8 b(\210)-38 b(ole)26
+b(in)f(our)g(strong)277 950 y(normalisation)d(proof:)28
+b(it)18 b(allo)n(ws)h(independent)k(substitutions)f(to)d(commute.)28
+b(Indeed,)21 b(it)d(is)h(dif)n(\002cult)277 1063 y(to)j(imagine)i(a)e
+(v)o(ersion)h(of)g(the)f(proof)i(of)e(Lemma)f(2.3.18)i(that)g(does)g
+(not)g(require)h(the)e(commutation)277 1175 y(of)i(independent)j
+(substitutions.)418 1321 y(Another)j(important)g(point)g(in)f(f)o(a)n
+(v)n(our)h(of)1823 1284 y Gc(aux)1803 1321 y F6(\000)-32
+b(\000)h(!)28 b Gg(is)g(the)h(f)o(act)g(that)g(if)g(we)e(are)i
+(interested)j(in)c(the)277 1434 y(collection)22 b(of)c(normal)i(forms)f
+(which)g(can)g(be)f(reached)j(by)e(cut-elimination,)k(then)2941
+1397 y Gc(aux)2921 1434 y F6(\000)-31 b(\000)f(!)18 b
+Gg(has)h(se)n(v)o(eral)277 1546 y(adv)n(antages)26 b(o)o(v)o(er)913
+1509 y Gc(cut)882 1546 y F6(\000)-31 b(\000)g(!)o Gg(.)28
+b(T)-7 b(o)22 b(calculate)k(a)c(certain)j(normal)f(form,)f(it)f(is)h
+(possible)j(to)d(apply)h(the)f(rules)277 1659 y(of)396
+1622 y Gc(aux)376 1659 y F6(\000)-32 b(\000)h(!)23 b
+Gg(in)g(a)g(leftmost-outermost)28 b(strate)o(gy)-6 b(.)30
+b(This)24 b(can)g(be)f(e)o(xploited)j(in)d(an)h(implementation,)i(the)
+277 1772 y(details)d(of)f(which)f(will)g(be)h(gi)n(v)o(en)g(in)f
+(Chapter)i(4.)k(If)22 b(we)e(restrict)2369 1735 y Gc(cut)2338
+1772 y F6(\000)-31 b(\000)g(!)20 b Gg(in)i(the)f(same)h(w)o(ay)-6
+b(,)21 b(we)g(\223lose\224)277 1885 y(some)29 b(normal)g(forms.)43
+b(By)28 b(this)h(we)e(mean)i(some)f(normal)i(forms)e(reachable)j(by)
+2979 1848 y Gc(cut)2949 1885 y F6(\000)-32 b(\000)h(!)27
+b Gg(cannot)j(be)277 1998 y(reached)c(by)e(the)g(corresponding)k
+(leftmost-outermost)g(strate)o(gy)-6 b(.)31 b(Unfortunately)-6
+b(,)27 b(without)e(such)g(a)277 2111 y(restriction)h(an)e
+(implementation)i(of)1500 2074 y Gc(cut)1469 2111 y F6(\000)-31
+b(\000)f(!)23 b Gg(is)g(no)h(picnic!)277 2470 y Fq(2.7.2)99
+b(Dragalin')l(s)25 b(Str)n(ong)g(Normalisation)f(Pr)n(oof)h(f)n(or)g
+(Cut-Elimination)277 2692 y Gg(As)19 b(f)o(ar)h(as)f(we)g(are)h(a)o(w)o
+(are,)g(Dragalin)g([1988])h(ga)n(v)o(e)f(the)g(\002rst)f(strong)i
+(normalisation)i(proof)e(for)f(a)f(cut-)277 2805 y(elimination)32
+b(procedure)g(for)e(classical)i(logic.)48 b(His)29 b(procedure)k(is)c
+(based)i(on)f(Gentzen-lik)o(e)i(local)277 2918 y(reduction)c(rules,)g
+(and)e(thus)g(he)g(had)g(to)g(o)o(v)o(ercome)h(se)n(v)o(eral)g(dif)n
+(\002culties)g(in)f(order)h(to)f(pro)o(v)o(e)g(strong)277
+3031 y(normalisation.)33 b(One)24 b(dif)n(\002culty)h(arises)g(in)f
+(situations)j(where)d(the)g(cut-formula)i(is)e(contracted)j(just)277
+3144 y(abo)o(v)o(e)g(the)g(cut-rule,)i(as)e(illustrated)i(in)e(\(2.2\))
+g(on)f(P)o(age)h(14.)38 b(Reducing)28 b(this)f(kind)g(of)g
+(cut-instance)277 3257 y(using)33 b(a)e(Gentzen-lik)o(e)k(reduction)f
+(rule)e(yields)h(a)f(proof)g(with)g(tw)o(o)f(ne)n(w)g(cuts.)54
+b(As)31 b(a)g(result,)k(the)277 3370 y(proof)c(size)f(increases)i
+(without)e(a)g(decrease)h(of)f(the)f(height)j(of)d(the)h(subproofs)i
+(abo)o(v)o(e)e(the)g(lo)n(west)277 3483 y(cut.)56 b(This)32
+b(is)g(v)o(ery)h(anno)o(ying)i(in)d(a)g(strong)i(normalisation)i
+(proof,)f(because)f(simple)f(inductions)277 3596 y(on)25
+b(the)g(proof)h(size)g(or)f(on)g(the)g(proof)h(height)g(are)f(not)h
+(applicable.)35 b(F)o(ollo)n(wing)25 b(Gentzen,)i(Dragalin)277
+3708 y(o)o(v)o(ercame)f(this)f(dif)n(\002culty)h(by)f(using)h(the)g
+(multicut-rule)h(in)e(place)h(of)f(the)g(cut-rule.)35
+b(Thus,)25 b(instead)277 3821 y(of)d(reducing)h(the)f(cut)g(in)f
+(\(2.2\))h(to)g(a)f(proof)i(with)e(tw)o(o)g(ne)n(w)g(cuts,)h(one)g
+(just)g(remo)o(v)o(es)g(the)g(contraction)277 3934 y(and)i(increases)i
+(the)e(corresponding)k(inde)o(x)c(of)f(the)h(multicut,)h(as)e(sho)n(wn)
+h(belo)n(w)-6 b(.)p Black Black 288 4225 a FG(\000)340
+4237 y FJ(1)p 396 4213 10 38 v 405 4196 42 4 v 465 4225
+a FG(\001)534 4237 y FJ(1)572 4225 y FU(;)14 b(C)674
+4195 y FS(n)p FJ(+1)p 288 4261 515 4 v 330 4334 a FG(\000)382
+4346 y FJ(1)p 438 4322 10 38 v 447 4306 42 4 v 507 4334
+a FG(\001)576 4346 y FJ(1)614 4334 y FU(;)g(C)716 4304
+y FS(n)831 4283 y Gd(Contr)1021 4295 y FS(R)1116 4334
+y FU(C)1181 4304 y FS(m)1244 4334 y FU(;)g FG(\000)1333
+4346 y FJ(2)p 1389 4322 10 38 v 1398 4306 42 4 v 1458
+4334 a FG(\001)1527 4346 y FJ(2)p 330 4370 1235 4 v 671
+4444 a FG(\000)723 4456 y FJ(1)760 4444 y FU(;)g FG(\000)849
+4456 y FJ(2)p 905 4432 10 38 v 914 4415 42 4 v 974 4444
+a FG(\001)1043 4456 y FJ(1)1081 4444 y FU(;)g FG(\001)1187
+4456 y FJ(2)1592 4398 y Gd(Multicut)1937 4396 y FT(\000)-25
+b(\000)g(!)2158 4334 y FG(\000)2210 4346 y FJ(1)p 2266
+4322 10 38 v 2275 4306 42 4 v 2335 4334 a FG(\001)2404
+4346 y FJ(1)2442 4334 y FU(;)14 b(C)2544 4304 y FS(n)p
+FJ(+1)2729 4334 y FU(C)2794 4304 y FS(m)2857 4334 y FU(;)g
+FG(\000)2946 4346 y FJ(2)p 3001 4322 10 38 v 3011 4306
+42 4 v 3071 4334 a FG(\001)3140 4346 y FJ(2)p 2158 4370
+1020 4 v 2391 4444 a FG(\000)2443 4456 y FJ(1)2481 4444
+y FU(;)g FG(\000)2570 4456 y FJ(2)p 2625 4432 10 38 v
+2635 4415 42 4 v 2695 4444 a FG(\001)2764 4456 y FJ(1)2801
+4444 y FU(;)g FG(\001)2907 4456 y FJ(2)3205 4398 y Gd(Multicut)418
+4739 y Gg(Another)31 b(dif)n(\002culty)g(arises)f(from)g(reduction)i
+(rules)e(that)h(allo)n(w)e(\(multi\)cuts)j(to)d(be)h(permuted)277
+4838 y(with)h(other)h(\(multi\)cuts:)46 b(the)o(y)31
+b(cause)h(loops,)h(unless)g(some)e(restrictions)j(are)d(imposed.)52
+b(Unfor)n(-)277 4938 y(tunately)-6 b(,)38 b(Dragalin)c(did)f(not)h
+(consider)h(an)o(y)e(of)g(these)h(restricted)i(rules,)g(and)e(without)g
+(them)f(the)277 5038 y(correpondence)d(between)c(normalisation)i(and)e
+(cut-elimination)j(f)o(ails.)34 b(W)-7 b(e)25 b(feel)g(this)h(is)f(a)g
+(serious)277 5137 y(shortcoming)k(of)d(his)g(cut-elimination)k
+(procedure,)f(not)e(just)f(because)i(we)e(\223lose\224)h(the)f
+(correspon-)277 5237 y(dence)32 b(with)f(normalisation)j(\(see)e(ne)o
+(xt)f(chapter\),)k(b)n(ut)c(also)h(the)o(y)g(are)f(required)i(to)e
+(interpret)i(La-)p Black Black eop end
+%%Page: 60 72
+TeXDict begin 60 71 bop Black -144 51 a Gb(60)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black 321 388 a Gg(font')-5
+b(s)27 b(e)o(xample)f(as)g(an)f(instance)j(of)e(a)f(non-deterministic)
+30 b(choice.)36 b(Although)27 b(Lafont')-5 b(s)27 b(e)o(xample)321
+488 y(\(translated)g(into)d(Dragalin')-5 b(s)25 b(system\))p
+1399 675 10 38 v 1409 658 42 4 v 1469 687 a FU(B)p 1311
+707 295 4 v 1329 779 10 38 v 1339 762 42 4 v 1399 791
+a(B)t(;)14 b(C)1568 761 y FJ(1)1647 729 y Gd(W)-7 b(eak)1834
+741 y FS(R)p 2041 675 10 38 v 2051 658 42 4 v 2111 687
+a FU(B)p 1971 707 258 4 v 1971 791 a(C)2036 761 y FJ(1)p
+2092 779 10 38 v 2102 762 42 4 v 2162 791 a FU(B)2271
+729 y Gd(W)g(eak)2458 741 y FS(L)p 1311 827 919 4 v 1659
+888 10 38 v 1668 872 42 4 v 1728 900 a FU(B)t(;)14 b(B)2271
+855 y Gd(Multicut)p 1640 936 260 4 v 1711 998 10 38 v
+1721 981 42 4 v 1780 1010 a FU(B)1941 958 y Gd(Contr)2131
+970 y FS(R)321 1220 y Gg(can)24 b(reduce)g(non-deterministicall)q(y)k
+(to)23 b(either)i(subproof,)g(the)e(lo)n(wer)g(cut)g(in)g(the)h
+(\223nested\224)h(v)o(ersion)321 1333 y(of)f(Lafont')-5
+b(s)24 b(e)o(xample)p 909 1671 11 41 v 919 1653 46 5
+v 985 1683 a Ga(B)p 813 1703 322 4 v 833 1783 11 41 v
+844 1765 46 5 v 909 1795 a(B)5 b(;)15 b(C)1095 1762 y
+F9(1)1176 1727 y Gg(W)-7 b(eak)1380 1741 y Gc(R)p 1683
+1541 11 41 v 1694 1523 46 5 v 1760 1553 a Ga(B)p 1584
+1573 328 4 v 1605 1653 11 41 v 1615 1635 46 5 v 1681
+1665 a(B)5 b(;)15 b(D)1873 1632 y F9(1)1953 1597 y Gg(W)-7
+b(eak)2157 1611 y Gc(R)p 1529 1703 439 4 v 1529 1795
+a Ga(C)1601 1762 y F9(1)p 1660 1783 11 41 v 1671 1765
+46 5 v 1736 1795 a Ga(B)5 b(;)15 b(D)1928 1762 y F9(1)2009
+1727 y Gg(W)-7 b(eak)2213 1741 y Gc(L)p 813 1833 1155
+4 v 1190 1913 11 41 v 1200 1895 46 5 v 1266 1925 a Ga(B)5
+b(;)15 b(B)5 b(;)15 b(D)1572 1892 y F9(1)2009 1863 y
+Gg(Multicut)p 2492 1801 11 41 v 2502 1783 46 5 v 2568
+1813 a Ga(B)p 2413 1833 288 4 v 2413 1925 a(D)2491 1892
+y F9(1)p 2550 1913 11 41 v 2561 1895 46 5 v 2626 1925
+a Ga(B)2741 1857 y Gg(W)-7 b(eak)2945 1871 y Gc(L)p 1169
+1963 1531 4 v 1756 2029 11 41 v 1767 2011 46 5 v 1832
+2041 a Ga(B)5 b(;)15 b(B)5 b(;)15 b(B)2741 1993 y Gg(Multicut)p
+1736 2079 398 4 v 1751 2116 369 4 v 1870 2182 11 41 v
+1880 2164 46 5 v 1946 2194 a Ga(B)2160 2140 y Gg(Contr)2366
+2154 y Gc(R)321 2444 y Gg(cannot.)40 b(Using)27 b(Dragalin')-5
+b(s)28 b(reduction)i(rules,)e(the)f(lo)n(wer)f(multicut)i(can)g(reduce)
+g(to)e(its)h(right)h(sub-)321 2557 y(proof,)g(b)n(ut)e(not)g
+(immediately)i(to)e(its)g(left)g(one.)37 b(F)o(or)25
+b(this)h(the)g(upper)h(multicut)h(has)e(to)g(reduce)h(\002rst.)321
+2670 y(Consequently)-6 b(,)28 b(the)c(lo)n(wer)g(multicut)i(is)e(not)h
+(a)e(genuine)k(non-deterministic)i(choice)c(as)f(it)g(depends)321
+2783 y(on)30 b(another)i(multicut.)48 b(Clearly)-6 b(,)32
+b(to)e(remedy)g(this)g(problem)h(we)e(need)i(reduction)h(rules)f(that)f
+(per)n(-)321 2896 y(mute)25 b(the)g(lo)n(wer)g(multicut)h(with)e(the)h
+(upper)h(one.)33 b(As)24 b(mentioned)i(earlier)l(,)h(the)e(na)m(\250)
+-27 b(\021v)o(e)25 b(formulation)321 3009 y(of)f(these)g(reduction)i
+(rules,)f(e.g.)p Black Black 445 3238 a FU(:)14 b(:)g(:)p
+574 3226 10 38 v 583 3210 42 4 v 115 w(:)g(:)g(:)83 b(:)14
+b(:)g(:)p 966 3226 10 38 v 976 3210 42 4 v 116 w(:)g(:)g(:)p
+445 3258 702 4 v 641 3324 a(:)g(:)g(:)p 770 3312 10 38
+v 780 3295 42 4 v 115 w(:)g(:)g(:)1188 3280 y Gd(Multicut)1475
+3292 y FJ(2)1523 3324 y FU(:)g(:)g(:)p 1652 3312 10 38
+v 1662 3295 42 4 v 116 w(:)g(:)g(:)p 641 3344 1192 4
+v 1082 3410 a(:)g(:)g(:)p 1211 3398 10 38 v 1221 3381
+42 4 v 116 w(:)g(:)g(:)1874 3366 y Gd(Multicut)2161 3378
+y FJ(1)893 3731 y F6(\000)-31 b(\000)g(!)1254 3654 y
+FU(:)14 b(:)g(:)p 1383 3642 10 38 v 1393 3625 42 4 v
+116 w(:)g(:)g(:)83 b(:)14 b(:)g(:)p 1776 3642 10 38 v
+1785 3625 42 4 v 115 w(:)g(:)g(:)p 1254 3674 702 4 v
+1450 3740 a(:)g(:)g(:)p 1580 3728 10 38 v 1589 3711 42
+4 v 116 w(:)g(:)g(:)1997 3696 y Gd(Multicut)2284 3708
+y FJ(1)2357 3654 y FU(:)g(:)g(:)p 2486 3642 10 38 v 2495
+3625 42 4 v 115 w(:)g(:)g(:)83 b(:)14 b(:)g(:)p 2878
+3642 10 38 v 2888 3625 42 4 v 115 w(:)g(:)g(:)p 2357
+3674 702 4 v 2553 3740 a(:)g(:)g(:)p 2682 3728 10 38
+v 2691 3711 42 4 v 115 w(:)g(:)g(:)3100 3696 y Gd(Multicut)3387
+3708 y FJ(1)p 1450 3760 1412 4 v 2002 3825 a FU(:)g(:)g(:)p
+2131 3813 10 38 v 2140 3797 42 4 v 115 w(:)g(:)g(:)2904
+3782 y Gd(Multicut)3191 3794 y FJ(2)321 4078 y Gg(breaks)25
+b(strong)g(normalisation.)462 4215 y(As)k(f)o(ar)i(as)e(I)h(ha)n(v)o(e)
+g(been)h(able)f(to)g(ascertain,)j(the)e(cut-elimination)i(procedure)g
+(gi)n(v)o(en)d(in)g(Sec-)321 4328 y(tion)c(2.6)f(is)h(the)f(only)h
+(strongly)i(normalising)g(cut-elimination)h(procedure)f(that)e(is)f
+(both)h(local)g(and)321 4440 y(allo)n(ws)20 b(cut-instances)k(to)19
+b(be)h(permuted)h(with)f(other)h(cut-instances.)2505
+4408 y F5(8)2573 4440 y Gg(Of)e(course)i(we)e(can)h(easily)h(re-)321
+4553 y(formulate)j(Dragalin')-5 b(s)24 b(cut-elimination)i(procedure,)g
+(along)d(the)g(lines)g(of)g F4(\()p FY(T)2825 4520 y
+FX($)2896 4553 y Ga(;)2978 4516 y Gc(l)q(oc)2936 4553
+y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)22 b(to)h(include)321
+4666 y(reduction)31 b(rules)e(that)g(permute)g(multicuts)h(with)e
+(other)h(multicuts)h(so)e(that)h(strong)g(normalisation)321
+4779 y(still)f(holds.)39 b(But)27 b(a)f(strong)i(normalisation)i(proof)
+e(is)e(then)i(much)f(harder:)37 b(these)28 b(rules)f(do)g(not)g(de-)321
+4892 y(crease)g(the)f(proof)g(size)g(or)g(proof)g(height.)36
+b(It)25 b(is)g(not)h(ob)o(vious)h(ho)n(w)e(Dragalin')-5
+b(s)27 b(proof)g(method)f(can)321 5005 y(be)e(adapted)h(to)f(pro)o(v)o
+(e)g(strong)h(normalisation)h(in)e(this)g(case.)p Black
+321 5115 1290 4 v 427 5171 a F3(8)456 5202 y F2(Zuck)o(er)j([1974])g
+(obtained)g(a)f(strongly)h(normalising)g(cut-elimination)g(procedure)g
+(for)f(intuitionistic)g(logic)g(with)321 5294 y(local)18
+b(reduction)h(rules)e(by)h(considering)h FE(pr)m(oper)g
+F2(reductions,)f(i.e.,)f(non-repeating)j(and)e(termination)g
+(reductions,)g(b)o(ut)g(he)321 5385 y(did)h(not)h(restrict)e(his)h
+(reduction)h(rules)f(accordingly)-5 b(.)p Black Black
+Black eop end
+%%Page: 61 73
+TeXDict begin 61 72 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
+b(61)p 277 88 3691 4 v Black 277 388 a Fq(2.7.3)99 b(Comparison)25
+b(with)g(the)h(Symmetric)f(Lambda)h(Calculus)277 589
+y Gg(In)38 b(this)g(section)h(we)d(compare)j(our)f(w)o(ork)f(with)h
+(the)f(symmetric)i(lambda)f(calculus,)43 b Ga(\025)3209
+552 y Gc(S)t(y)r(m)3396 589 y Gg(for)277 702 y(short,)33
+b(de)n(v)o(eloped)f(by)e(Barbanera)i(and)e(Berardi)h([1994].)50
+b(This)29 b(comparison)k(is)d(w)o(orthwhile)h(be-)277
+815 y(cause)41 b(we)d(adapted)k(their)e(proof)g(technique)i(based)f(on)
+e(the)h(notion)h(of)e(symmetric)i(reducibil-)277 928
+y(ity)c(candidates,)43 b(and)38 b(moreo)o(v)o(er)g(the)o(y)f(also)g
+(tak)o(e)h(the)f(vie)n(w)g(that)h(cut-elimination)i(in)d(classical)277
+1041 y(logic)30 b(corresponds)i(via)d(the)g(Curry-Ho)n(w)o(ard)h
+(correspondence)k(to)28 b(non-deterministic)34 b(computa-)277
+1154 y(tion)24 b([Barbanera)i(et)d(al.,)g(1997].)418
+1288 y(The)g(formulae)i(of)f Ga(\025)1085 1251 y Gc(S)t(y)r(m)1258
+1288 y Gg(are)g(gi)n(v)o(en)g(by)f(the)h(grammar)p Black
+Black 1218 1542 a Ga(B)5 b(;)15 b(C)32 b F4(::=)26 b
+Ga(A)50 b F6(j)h Ga(A)1838 1509 y FX(?)1948 1542 y F6(j)f
+Ga(B)5 b F6(^)p Ga(C)57 b F6(j)50 b Ga(B)5 b F6(_)o Ga(C)277
+1808 y Gg(where)23 b Ga(A)g Gg(stands)h(for)f(atomic)h(formulae.)30
+b(The)23 b(ne)o(gation)h(in)f Ga(\025)2281 1771 y Gc(S)t(y)r(m)2454
+1808 y Gg(is)f(not)i(a)e(primiti)n(v)o(e)i(connecti)n(v)o(e,)277
+1921 y(as)g(in)f(our)h(sequent)h(calculus,)h(instead)f(it)e(is)h
+(de\002ned)g(by)g(the)f(clauses:)p Black Black 1138 2196
+a F4(\()p Ga(A)p F4(\))1276 2163 y FX(?)1371 2144 y F5(def)1379
+2196 y F4(=)42 b Ga(A)1560 2163 y FX(?)1855 2196 y F4(\()p
+Ga(B)5 b F6(^)p Ga(C)i F4(\))2132 2163 y FX(?)2226 2144
+y F5(def)2233 2196 y F4(=)42 b Ga(B)2420 2163 y FX(?)2494
+2196 y F6(_)15 b Ga(C)2642 2163 y FX(?)1079 2336 y F4(\()p
+Ga(A)1182 2303 y FX(?)1242 2336 y F4(\))1277 2303 y FX(?)1371
+2284 y F5(def)1379 2336 y F4(=)42 b Ga(A)295 b F4(\()p
+Ga(B)5 b F6(_)p Ga(C)i F4(\))2132 2303 y FX(?)2226 2284
+y F5(def)2233 2336 y F4(=)42 b Ga(B)2420 2303 y FX(?)2494
+2336 y F6(^)15 b Ga(C)2642 2303 y FX(?)277 2601 y Gg(The)23
+b(terms)h(of)f Ga(\025)817 2564 y Gc(S)t(y)r(m)991 2601
+y Gg(are)g(gi)n(v)o(en)h(by)g(the)g(grammar)p Black Black
+942 2855 a Ga(M)5 b(;)15 b(N)35 b F4(::=)26 b Ga(x)40
+b F6(j)h(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)41 b(j)g Ga(\033)1933
+2869 y Gc(i)1961 2855 y F4(\()p Ga(M)10 b F4(\))41 b
+F6(j)g Ga(\025x:M)51 b F6(j)41 b Ga(M)30 b(?)21 b(N)277
+3109 y Gg(where)31 b Ga(x)f Gg(is)h(tak)o(en)g(from)g(a)f(set)h(of)g(v)
+n(ariables.)52 b(There)31 b(are)g(tw)o(o)g(kinds)g(of)g(typing)h
+(judgements)h(in)277 3222 y Ga(\025)330 3186 y Gc(S)t(y)r(m)481
+3222 y Gg(,)22 b F7(viz.)1275 3350 y F4(\000)1357 3338
+y Gc(.)1412 3350 y Ga(M)28 b F4(:)17 b Ga(B)186 b Gg(and)e
+F4(\000)2221 3338 y Gc(.)2275 3350 y Ga(M)28 b F4(:)17
+b F6(?)p Black 824 w Gg(\(2.6\))p Black 277 3556 a(where)27
+b(in)g(the)g(latter)h F6(?)d Gg(is)i(a)f(distinguished)31
+b(atomic)c(formula.)40 b(In)26 b(the)h(sequel)i(we)d(are)g(only)i
+(inter)n(-)277 3669 y(ested)f(in)f(well-typed)h(terms,)g(that)f(means)g
+(those)h(for)f(which)g(there)h(is)e(a)h(conte)o(xt)h
+F4(\000)e Gg(and)h(a)f(formula)277 3782 y Ga(B)i Gg(such)c(that)h
+(either)g F4(\000)1031 3770 y Gc(.)1086 3782 y Ga(M)j
+F4(:)17 b Ga(B)27 b Gg(or)22 b F4(\000)1518 3770 y Gc(.)1573
+3782 y Ga(M)28 b F4(:)17 b F6(?)22 b Gg(is)g(deri)n(v)n(able)j(gi)n(v)o
+(en)e(the)h(inference)h(rules)e(sho)n(wn)g(in)277 3895
+y(Figure)j(2.12.)34 b(Because)26 b(ne)o(gation)h(is)e(not)h(a)e
+(primiti)n(v)o(e)j(connecti)n(v)o(e,)g(the)f(inference)h(rules)g(of)e
+Ga(\025)3352 3858 y Gc(S)t(y)r(m)277 4008 y Gg(are)33
+b(quite)g(hard)g(to)g(read,)i(in)d(particular)j(the)e(inference)i(rule)
+e Ga(?)p Gg(.)55 b(An)31 b(e)o(xample)j(may)e(clarify)i(this)277
+4121 y(inference)26 b(rule.)j(Consider)c(the)f(follo)n(wing)h
+Ga(\025)1742 4084 y Gc(S)t(y)r(m)1893 4121 y Gg(-proof.)p
+740 4310 417 4 v 740 4383 a FU(x)17 b FG(:)f FU(B)934
+4371 y FS(.)987 4383 y FU(x)g FG(:)h FU(B)p 1240 4310
+406 4 v 87 w(y)i FG(:)d FU(C)1428 4371 y FS(.)1481 4383
+y FU(y)j FG(:)d FU(C)p 726 4419 934 4 v 726 4518 a(x)h
+FG(:)f FU(B)t(;)e(y)19 b FG(:)d FU(C)1121 4506 y FS(.)1174
+4518 y FT(h)p FU(x;)e(y)s FT(i)j FG(:)p 0.75 TeXcolorgray
+0.75 TeXcolorgray 1422 4542 238 107 v 0.75 TeXcolorgray
+Black 41 w FU(B)t FT(^)p FU(C)p 0.75 TeXcolorgray Black
+1701 4440 a FT(h)p 1736 4440 25 4 v 1752 4440 V 1768
+4440 V 60 w FU(;)p 1833 4440 V 1849 4440 V 1865 4440
+V 74 w FT(i)p 2207 4299 519 4 v 2207 4386 a FU(z)j FG(:)c
+FU(B)2372 4356 y FQ(?)2451 4374 y FS(.)2504 4386 y FU(z)k
+FG(:)c FU(B)2669 4356 y FQ(?)p 2006 4406 922 4 v 2006
+4518 a FU(z)j FG(:)d FU(B)2170 4487 y FQ(?)2250 4506
+y FS(.)2303 4518 y FU(\033)2350 4530 y FJ(1)2387 4518
+y FG(\()p FU(z)t FG(\))g(:)p 0.75 TeXcolorgray 0.75 TeXcolorgray
+2550 4542 378 121 v 0.75 TeXcolorgray Black 42 w FU(B)2642
+4487 y FQ(?)2712 4518 y FT(_)e FU(C)2846 4487 y FQ(?)p
+0.75 TeXcolorgray Black 2969 4417 a FU(\033)3016 4429
+y FJ(1)p 726 4562 2202 4 v 1185 4649 a FU(x)i FG(:)h
+FU(B)t(;)d(y)19 b FG(:)d FU(C)q(;)e(z)20 b FG(:)d FU(B)1754
+4619 y FQ(?)1833 4637 y FS(.)1886 4649 y FT(h)p FU(x;)d(y)s
+FT(i)19 b FU(?)f(\033)2204 4661 y FJ(1)2241 4649 y FG(\()p
+FU(z)t FG(\))f(:)f FT(?)2969 4582 y FU(?)p Black 3328
+4649 a Gg(\(2.7\))p Black 277 4855 a(The)22 b(last)g(step)h(in)e(this)i
+(proof)g(is)f(a)f(v)n(alid)i(instance)h(of)e Ga(?)p Gg(,)f(since)i
+F4(\()p Ga(B)5 b F6(^)p Ga(C)i F4(\))2551 4822 y FX(?)2630
+4855 y Gg(is)22 b(de\002ned)h(as)f Ga(B)3172 4822 y FX(?)3246
+4855 y F6(_)14 b Ga(C)3393 4822 y FX(?)3452 4855 y Gg(.)418
+4990 y(Barbanera)24 b(and)e(Berardi)h(call)f(a)f(term)h(of)g(the)g
+(form)f Ga(M)j(?)14 b(N)32 b F7(symmetric)22 b(application)p
+Gg(,)j(because)277 5103 y(if)e Ga(M)29 b(?)19 b(N)32
+b Gg(is)23 b(well-typed,)i(then)f(so)f(is)g Ga(N)29 b(?)19
+b(M)10 b Gg(.)28 b(Ho)n(we)n(v)o(er)l(,)23 b(one)g(can)h(also)g(re)o
+(gard)f Ga(?)g Gg(as)g(an)g(instance)277 5216 y(of)30
+b(the)h(cut-rule.)51 b(T)-7 b(o)29 b(illustrate)k(this,)f(let)f(us)f
+(reformulate)j(the)d(proof)i(just)f(gi)n(v)o(en)f(in)h(our)f(sequent)p
+Black Black eop end
+%%Page: 62 74
+TeXDict begin 62 73 bop Black -144 51 a Gb(62)2987 b(Sequent)22
+b(Calculi)p -144 88 3691 4 v Black Black 321 300 3226
+4 v 321 1258 4 958 v 1601 392 548 4 v 1601 471 a Ga(x)17
+b F4(:)h Ga(B)5 b(;)15 b F4(\000)1909 459 y Gc(.)1963
+471 y Ga(x)j F4(:)f Ga(B)692 699 y F4(\000)774 687 y
+Gc(.)829 699 y Ga(M)27 b F4(:)18 b Ga(B)95 b F4(\000)1233
+687 y Gc(.)1288 699 y Ga(N)27 b F4(:)18 b Ga(C)p 692
+719 811 4 v 753 804 a F4(\000)835 792 y Gc(.)890 804
+y F6(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)18 b F4(:)f Ga(B)5
+b F6(^)o Ga(C)1544 741 y F6(h)p 1581 741 28 4 v 1599
+741 V 1616 741 V 65 w Ga(;)p 1686 741 V 1704 741 V 1721
+741 V 80 w F6(i)2400 685 y F4(\000)2482 673 y Gc(.)2537
+685 y Ga(M)27 b F4(:)18 b Ga(B)2764 699 y Gc(i)p 2235
+719 723 4 v 2235 804 a F4(\000)2317 792 y Gc(.)2372 804
+y Ga(\033)2424 818 y Gc(i)2452 804 y F4(\()p Ga(M)10
+b F4(\))18 b(:)f Ga(B)2749 818 y F9(1)2789 804 y F6(_)o
+Ga(B)2918 818 y F9(2)2999 731 y Ga(\033)3051 745 y Gc(i)895
+1019 y Ga(x)h F4(:)f Ga(B)5 b(;)15 b F4(\000)1203 1007
+y Gc(.)1258 1019 y Ga(M)27 b F4(:)18 b F6(?)p 895 1056
+591 4 v 912 1152 a F4(\000)994 1140 y Gc(.)1049 1152
+y Ga(\025x:M)28 b F4(:)17 b Ga(B)1411 1119 y FX(?)1528
+1088 y Ga(\025)2138 1039 y F4(\000)2195 1053 y F9(1)2260
+1027 y Gc(.)2315 1039 y Ga(M)27 b F4(:)18 b Ga(B)95 b
+F4(\000)2694 1053 y F9(2)2758 1027 y Gc(.)2813 1039 y
+Ga(N)27 b F4(:)18 b Ga(B)3030 1006 y FX(?)p 2138 1072
+951 4 v 2258 1152 a F4(\000)2315 1166 y F9(1)2355 1152
+y Ga(;)d F4(\000)2452 1166 y F9(2)2516 1140 y Gc(.)2571
+1152 y Ga(M)31 b(?)20 b(N)27 b F4(:)18 b F6(?)3130 1093
+y Ga(?)p 3543 1258 4 958 v 321 1261 3226 4 v Black 735
+1415 a Gg(Figure)24 b(2.12:)30 b(T)-6 b(erm)22 b(assignment)k(for)d
+(the)h(symmetric)h(lambda)f(calculus.)p Black Black 321
+1828 a(calculus.)65 b(Here)35 b(is)g(the)g(sequent)i(proof)f(that)f
+(corresponds)k(to)34 b(\(2.7\))i(\(for)f(bre)n(vity)h(we)f(omit)f(all)
+321 1941 y(labels\).)p 1192 2201 244 4 v 1192 2280 a
+Ga(B)p 1285 2268 11 41 v 1296 2250 46 5 v 100 w(B)p 1526
+2201 240 4 v 96 w(C)p 1618 2268 11 41 v 1628 2250 46
+5 v 103 w(C)p 1192 2300 574 4 v 1235 2379 a(B)5 b(;)15
+b(C)p 1440 2367 11 41 v 1451 2349 46 5 v 102 w(B)5 b
+F6(^)p Ga(C)1807 2318 y F6(^)1867 2332 y Gc(R)p 2130
+2085 244 4 v 2130 2164 a Ga(B)p 2224 2152 11 41 v 2234
+2134 46 5 v 101 w(B)p 2079 2184 345 4 v 2079 2262 a(B)g(;)15
+b F6(:)p Ga(B)p 2348 2250 11 41 v 2358 2232 46 5 v 2465
+2196 a F6(:)2526 2210 y Gc(L)p 2016 2300 472 4 v 2016
+2379 a Ga(B)5 b F6(^)o Ga(C)q(;)15 b F6(:)p Ga(B)p 2411
+2367 11 41 v 2422 2349 46 5 v 2529 2314 a F6(^)2589 2328
+y Gc(L)2637 2337 y FV(1)p 1235 2416 1253 4 v 1635 2495
+a Ga(B)5 b(;)15 b(C)q(;)g F6(:)p Ga(B)p 2010 2483 11
+41 v 2021 2465 46 5 v 2529 2447 a Gg(Cut)321 2708 y(As)27
+b(the)h(reader)h(can)f(see,)h(e)n(v)o(en)e(if)h(the)g
+Ga(\033)1628 2722 y F9(1)1667 2708 y Gg(-rule)g(introduces)j(an)d
+F6(_)o Gg(,)g(it)f(corresponds)k(to)d(an)f(instance)321
+2821 y(of)d(the)g F6(^)614 2835 y Gc(L)662 2844 y FV(1)701
+2821 y Gg(-rule,)g(and)g(the)g Ga(?)p Gg(-rule)h(is)e(clearly)i(a)e
+(cut.)462 2950 y(There)f(are)f(a)g(number)h(of)f(reduction)j(rules)e
+(associated)i(with)d Ga(\025)2471 2913 y Gc(S)t(y)r(m)2622
+2950 y Gg(,)f(some)i(of)f(which)h(are)f(gi)n(v)o(en)321
+3063 y(belo)n(w)-6 b(.)p Black Black 1194 3160 a Ga(\025x:M)30
+b(?)21 b(N)1704 3123 y Gc(sy)r(m)1691 3160 y F6(\000)-32
+b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(x)26 b F4(:=)f Ga(N)10
+b F4(])1194 3297 y Ga(M)30 b(?)21 b(\025x:N)1704 3260
+y Gc(sy)r(m)1691 3297 y F6(\000)-32 b(\000)h(!)99 b Ga(N)10
+b F4([)p Ga(x)26 b F4(:=)f Ga(M)10 b F4(])917 3445 y
+F6(h)p Ga(M)1040 3459 y F9(1)1080 3445 y Ga(;)15 b(M)1208
+3459 y F9(2)1248 3445 y F6(i)21 b Ga(?)f(\033)1421 3459
+y Gc(i)1449 3445 y F4(\()p Ga(N)10 b F4(\))1699 3408
+y Gc(sy)r(m)1686 3445 y F6(\000)-31 b(\000)f(!)83 b Ga(M)2027
+3459 y Gc(i)2076 3445 y Ga(?)21 b(N)917 3581 y(\033)969
+3595 y Gc(i)997 3581 y F4(\()p Ga(N)10 b F4(\))21 b Ga(?)g
+F6(h)p Ga(M)1360 3595 y F9(1)1400 3581 y Ga(;)15 b(M)1528
+3595 y F9(2)1568 3581 y F6(i)1699 3544 y Gc(sy)r(m)1686
+3581 y F6(\000)-31 b(\000)f(!)83 b Ga(N)31 b(?)20 b(M)2196
+3595 y Gc(i)2539 3358 y FK(\))2718 3513 y Ga(i)26 b F4(=)f(1)p
+Ga(;)15 b F4(2)321 3788 y Gg(As)30 b(usual,)i(the)e(e)o(xpression)j
+Ga(M)10 b F4([)p Ga(x)38 b F4(:=)f Ga(N)10 b F4(])29
+b Gg(stands)j(for)e(the)g(substitution)k(of)c(the)g(v)n(ariable)i
+Ga(x)p Gg(.)47 b(Ac-)321 3901 y(cording)33 b(to)d(the)h(reduction)i
+(rules)e(of)g Ga(\025)1608 3864 y Gc(sy)r(m)1744 3901
+y Gg(,)g(the)g(term)f Ga(\025x:M)36 b(?)26 b(\025y)s(:N)39
+b Gg(reduces)33 b(to)d(either)i Ga(M)40 b Gg(or)321 4014
+y Ga(N)35 b Gg(assuming)28 b(that)f Ga(x)e Gg(and)h Ga(y)i
+Gg(are)f(not)f(free)g(v)n(ariables)i(in)e Ga(M)36 b Gg(and)26
+b Ga(N)10 b Gg(,)26 b(respecti)n(v)o(ely)-6 b(.)39 b(So)25
+b(the)h(reduc-)321 4127 y(tion)e(system)f(of)g Ga(\025)910
+4090 y Gc(S)t(y)r(m)1082 4127 y Gg(is)g(non-deterministic,)k(analogous)
+f(to)c(our)h(cut-elimination)k(procedure)e(for)321 4239
+y(classical)h(logic.)462 4369 y(Because)h(of)f(the)g(close)g
+(correspondence)31 b(with)25 b(our)h(sequent)i(calculus,)g(one)e(may)g
+(reasonably)321 4482 y(ask)38 b(whether)g(our)f(strong)i(normalisation)
+h(results)f(for)e F4(\()p FY(T)t Ga(;)2345 4445 y Gc(cut)2314
+4482 y F6(\000)-31 b(\000)f(!)p F4(\))37 b Gg(and)h F4(\()p
+FY(T)t Ga(;)2877 4445 y Gc(aux)2856 4482 y F6(\000)-31
+b(\000)g(!)p F4(\))36 b Gg(follo)n(w)i(from)321 4595
+y(Barbanera)d(and)e(Berardi')-5 b(s)34 b(strong)f(normalisation)j
+(result,)g(for)d(e)o(xample,)i(by)d(a)h(simple)g(transla-)321
+4708 y(tion.)42 b(Ho)n(we)n(v)o(er)l(,)29 b(it)e(does)i(not)f(appear)h
+(that)f(such)h(a)e(simple)h(translation)j(e)o(xists.)42
+b(Primarily)28 b(this)h(is)321 4821 y(because)g(our)f(term)e
+(constructors)31 b(include)e(multiple)f(binders;)j(for)c(e)o(xample,)h
+(the)f(term)g(construc-)321 4933 y(tor)j FL(Imp)596 4955
+y Gc(R)653 4933 y F4(\()688 4921 y F9(\()716 4933 y Ga(x)768
+4921 y F9(\))q FX(h)823 4933 y Ga(a)871 4921 y FX(i)898
+4933 y Ga(M)11 b(;)k(b)p F4(\))29 b Gg(and)h FL(And)1455
+4897 y FX(0)1455 4957 y Gc(L)1507 4933 y F4(\()1542 4921
+y F9(\()1570 4933 y Ga(x)1622 4921 y F9(\)\()1677 4933
+y Ga(y)1725 4921 y F9(\))1752 4933 y Ga(M)10 b(;)15 b(z)t
+F4(\))p Gg(.)47 b(Owing)30 b(to)f(the)h(speci\002c)h(form)e(of)h(the)g
+(typing)321 5046 y(judgements)c(sho)n(wn)e(in)g(\(2.6\),)f(where)h
+(only)g(a)g(single)h(formula)f(on)g(the)g(right-hand)i(side)e(is)g
+(permit-)321 5159 y(ted,)d(it)e(is)h(dif)n(\002cult)h(to)e(imagine)i(a)
+f(translation)i(that)f(encodes)h(the)e(typing)h(judgements)h(of)e
+(these)h(term)321 5272 y(constructors)28 b(into)c Ga(\025)1006
+5235 y Gc(S)t(y)r(m)1157 5272 y Gg(.)k(Another)d(obstacle)h(to)e(a)f
+(proof)i(by)f(translation)j(are)d(our)g(cut-reductions)321
+5385 y(that)g(replace)h(a)e(single)h(cut-instance)j(with)c(tw)o(o)g
+(nested)i(cut-instances.)32 b(In)23 b(f)o(act,)h(we)e(had)i(to)f(e)o
+(xtend)p Black Black eop end
+%%Page: 63 75
+TeXDict begin 63 74 bop Black 277 51 a Gb(2.7)23 b(Notes)3248
+b(63)p 277 88 3691 4 v Black 277 388 a Gg(the)27 b(proof)g(technique)h
+(of)e(Barbanera)i(and)f(Berardi)g(to)f(deal)h(with)f(such)g
+(cut-reductions.)41 b(It)26 b(seems)277 501 y(highly)34
+b(unlik)o(ely)h(that)e(this)g(dynamic)h(beha)n(viour)i(of)c(our)h
+(cut-elimination)j(procedure)g(could)d(be)277 614 y(captured)26
+b(by)d(a)h(simple)g(translation.)418 744 y(Ev)o(en)29
+b(when)g(restricting)j(our)e(calculus)h(to)e(just)h(the)g
+F4(\()p F6(^)o Ga(;)15 b F6(_)p F4(\))p Gg(-fragment,)33
+b(i.e.,)c(to)h(the)f(fragment)277 856 y(where)20 b(term)f(constructors)
+k(bind)d(only)h(a)e(single)i(name)e(or)h(co-name)g(and)g(where)g
+(reduction)i(rules)e(do)277 969 y(not)28 b(create)i(nested)f
+(cut-instances,)k(the)28 b(strong)h(normalisation)i(proof)e(by)f
+(translation)j(f)o(ails)e(using)277 1082 y(the)24 b(natural)h
+(candidate,)h F6(j)p 1107 1082 28 4 v 1125 1082 V 1142
+1082 V 65 w(j)1195 1049 y Fu(Sym)1327 1082 y Gg(,)c(as)i(translation.)
+32 b(The)23 b(clauses)i(of)e F6(j)p 2480 1082 V 2498
+1082 V 2516 1082 V 65 w(j)2568 1049 y Fu(Sym)2723 1082
+y Gg(are)h(gi)n(v)o(en)g(belo)n(w)-6 b(.)p Black Black
+1211 1310 a F6(j)p FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))p
+F6(j)1573 1277 y Fu(Sym)1806 1259 y F5(def)1813 1310
+y F4(=)107 b Ga(x)20 b(?)g(a)743 1450 y F6(j)p FL(And)923
+1464 y Gc(R)981 1450 y F4(\()1016 1438 y FX(h)1043 1450
+y Ga(a)1091 1438 y FX(i)1119 1450 y Ga(M)10 b(;)1257
+1438 y FX(h)1285 1450 y Ga(b)1324 1438 y FX(i)1351 1450
+y Ga(N)g(;)15 b(c)p F4(\))p F6(j)1573 1417 y Fu(Sym)1806
+1399 y F5(def)1813 1450 y F4(=)107 b F6(h)p Ga(\025a:)p
+F6(j)p Ga(M)10 b F6(j)2300 1417 y Fu(Sym)2433 1450 y
+Ga(;)15 b(\025b:)p F6(j)p Ga(N)10 b F6(j)2723 1417 y
+Fu(Sym)2856 1450 y F6(i)20 b Ga(?)h(c)954 1590 y F6(j)p
+FL(And)1133 1553 y Gc(i)1133 1613 y(L)1186 1590 y F4(\()1221
+1578 y F9(\()1248 1590 y Ga(x)1300 1578 y F9(\))1328
+1590 y Ga(M)10 b(;)15 b(y)s F4(\))p F6(j)1574 1557 y
+Fu(Sym)1806 1539 y F5(def)1813 1590 y F4(=)107 b Ga(\033)2043
+1604 y Gc(i)2071 1590 y F4(\()p Ga(\025x:)p F6(j)p Ga(M)10
+b F6(j)2384 1557 y Fu(Sym)2517 1590 y F4(\))20 b Ga(?)h(y)1016
+1730 y F6(j)p FL(Or)1141 1693 y Gc(i)1141 1753 y(R)1198
+1730 y F4(\()1233 1718 y FX(h)1261 1730 y Ga(a)1309 1718
+y FX(i)1337 1730 y Ga(M)10 b(;)15 b(b)p F4(\))p F6(j)1574
+1697 y Fu(Sym)1806 1678 y F5(def)1813 1730 y F4(=)107
+b Ga(\033)2043 1744 y Gc(i)2071 1730 y F4(\()p Ga(\025a:)p
+F6(j)p Ga(M)10 b F6(j)2380 1697 y Fu(Sym)2513 1730 y
+F4(\))21 b Ga(?)f(b)784 1870 y F6(j)p FL(Or)909 1884
+y Gc(L)961 1870 y F4(\()996 1858 y F9(\()1024 1870 y
+Ga(x)1076 1858 y F9(\))1103 1870 y Ga(M)10 b(;)1241 1858
+y F9(\()1269 1870 y Ga(y)1317 1858 y F9(\))1344 1870
+y Ga(N)g(;)15 b(z)t F4(\))p F6(j)1573 1837 y Fu(Sym)1806
+1818 y F5(def)1813 1870 y F4(=)107 b F6(h)p Ga(\025x:)p
+F6(j)p Ga(M)10 b F6(j)2304 1837 y Fu(Sym)2437 1870 y
+Ga(;)15 b(\025y)s(:)p F6(j)p Ga(N)10 b F6(j)2736 1837
+y Fu(Sym)2869 1870 y F6(i)20 b Ga(?)h(z)884 2009 y F6(j)p
+FL(Cut)p F4(\()1082 1997 y FX(h)1110 2009 y Ga(a)1158
+1997 y FX(i)1186 2009 y Ga(M)10 b(;)1324 1997 y F9(\()1352
+2009 y Ga(x)1404 1997 y F9(\))1431 2009 y Ga(N)g F4(\))p
+F6(j)1574 1976 y Fu(Sym)1806 1958 y F5(def)1813 2009
+y F4(=)107 b Ga(\025a:)p F6(j)p Ga(M)10 b F6(j)2265 1976
+y Fu(Sym)2418 2009 y Ga(?)20 b(\025x:)p F6(j)p Ga(N)10
+b F6(j)2746 1976 y Fu(Sym)277 2226 y Gg(The)20 b(translation)j
+(respects)f(the)f(typing)h(judgements)g(of)e FY(T)2130
+2193 y F9(\()p FX(^)m Gc(;)p FX(_)o F9(\))2299 2226 y
+Gg(,)g(as)g(stated)h(in)g(the)f(follo)n(wing)i(propo-)277
+2339 y(sition.)p Black 277 2526 a Gb(Pr)n(oposition)j(2.7.1:)p
+Black 34 w Gg(If)f Ga(M)36 b F6(2)25 b FY(T)1348 2493
+y F9(\()p FX(^)m Gc(;)p FX(_)p F9(\))1540 2526 y Gg(with)f(the)g
+(typing)i(judgement)f F4(\000)2604 2514 y Gc(.)2658 2526
+y Ga(M)2782 2514 y Gc(.)2837 2526 y F4(\001)o Gg(,)e(then)i
+F6(j)p Ga(M)10 b F6(j)3286 2493 y Fu(Sym)3442 2526 y
+Gg(is)277 2639 y(well-typed)31 b(in)e Ga(\025)847 2602
+y Gc(S)t(y)r(m)1025 2639 y Gg(with)g(the)h(typing)h(judgement)g
+F4(\000)p Ga(;)15 b F4(\001)2201 2606 y FX(?)2285 2627
+y Gc(.)2340 2639 y F6(j)p Ga(M)10 b F6(j)2488 2606 y
+Fu(Sym)2638 2639 y F4(:)17 b F6(?)p Gg(,)29 b(where)h
+F4(\001)3130 2606 y FX(?)3217 2639 y Gg(is)f(tak)o(en)277
+2752 y(to)24 b(mean)f(that)h(all)g(formulae)h(of)e F4(\001)g
+Gg(are)h(ne)o(gated.)p Black 277 2989 a F7(Pr)l(oof.)p
+Black 46 w Gg(By)f(induction)j(on)e(the)g(structure)i(of)d
+Ga(M)10 b Gg(.)p 3436 2989 4 62 v 3440 2931 55 4 v 3440
+2989 V 3494 2989 4 62 v 277 3194 a(But)18 b F6(j)p 453
+3194 28 4 v 471 3194 V 489 3194 V 65 w(j)541 3161 y Fu(Sym)691
+3194 y Gg(does)i F7(not)f Gg(respect)i(the)e(reductions)i(in)e(the)g
+(system)h F4(\()p FY(T)2396 3161 y F9(\()p FX(^)m Gc(;)p
+FX(_)o F9(\))2565 3194 y Ga(;)2636 3157 y Gc(cut)2605
+3194 y F6(\000)-31 b(\000)g(!)o F4(\))p Gg(.)27 b(T)-7
+b(o)18 b(gi)n(v)o(e)h(a)f(counter)n(-)277 3307 y(e)o(xample,)k
+(consider)h(the)e(term)g FL(Cut)o F4(\()1445 3295 y FX(h)1473
+3307 y Ga(a)1521 3295 y FX(i)1549 3307 y Ga(M)10 b(;)1687
+3295 y F9(\()1715 3307 y Ga(x)1767 3295 y F9(\))1794
+3307 y Ga(N)g F4(\))20 b Gg(and)i(assume)f Ga(M)30 b
+Gg(introduces)24 b Ga(a)p Gg(,)c(b)n(ut)i(not)f(freshly)277
+3419 y(\(i.e.,)37 b(there)e(is)f(an)h(implicit)g(contraction\).)65
+b(According)37 b(to)d(our)h(reduction)i(rules)f(this)f(term)f(can)277
+3532 y(reduce)25 b(as)f(follo)n(ws.)1193 3754 y FL(Cut)p
+F4(\()1366 3742 y FX(h)1394 3754 y Ga(a)1442 3742 y FX(i)1469
+3754 y Ga(M)10 b(;)1607 3742 y F9(\()1635 3754 y Ga(x)1687
+3742 y F9(\))1714 3754 y Ga(N)g F4(\))1889 3717 y Gc(cut)1858
+3754 y F6(\000)-31 b(\000)f(!)25 b Ga(M)10 b F4([)p Ga(a)26
+b F4(:=)2371 3742 y FX(h)2399 3754 y Ga(x)2451 3742 y
+FX(i)2478 3754 y Ga(N)10 b F4(])277 3975 y Gg(Since)23
+b Ga(M)33 b Gg(introduces)26 b Ga(a)p Gg(,)c(the)h(reduct)i
+Ga(M)10 b F4([)p Ga(a)25 b F4(:=)1816 3963 y FX(h)1844
+3975 y Ga(x)1896 3963 y FX(i)1923 3975 y Ga(N)10 b F4(])23
+b Gg(is)g(of)g(the)g(form)g FL(Cut)p F4(\()2740 3963
+y FX(h)2768 3975 y Ga(a)2816 3963 y FX(i)2858 3975 y
+Ga(:)15 b(:)g(:)q(;)3004 3963 y F9(\()3032 3975 y Ga(x)3084
+3963 y F9(\))3112 3975 y Ga(N)10 b F4(\))p Gg(,)22 b(mean-)277
+4088 y(ing)34 b(that)g(the)g(outermost)i(cut-instance)h(does)d(not)g
+(change.)60 b(Gi)n(v)o(en)34 b(the)g(translation)i F6(j)p
+3133 4088 V 3151 4088 V 3169 4088 V 65 w(j)3221 4055
+y Fu(Sym)3353 4088 y Gg(,)f(no)277 4201 y(reduction)i(of)d
+Ga(\025)816 4164 y Gc(S)t(y)r(m)1000 4201 y Gg(can)g(\223mirror\224)i
+(this)e(beha)n(viour)-5 b(.)64 b(The)34 b(e)o(xistence)i(of)e(a)g(more)
+g(complicated)277 4314 y(translation)26 b(of)d(our)g(sequent)h(proofs)h
+(into)e Ga(\025)1694 4277 y Gc(S)t(y)r(m)1845 4314 y
+Gg(,)e(which)j(gi)n(v)o(es)f(a)f(strong)i(normalisation)i(proof)e(for)
+277 4427 y FY(T)338 4394 y F9(\()p FX(^)m Gc(;)p FX(_)o
+F9(\))507 4427 y Gg(,)e(is)i(possible,)h(b)n(ut)f(we)f(conjecture)j
+(unlik)o(ely)-6 b(.)p Black Black eop end
+%%Page: 64 76
+TeXDict begin 64 75 bop Black Black Black Black eop end
+%%Page: 65 77
+TeXDict begin 65 76 bop Black Black 277 1004 a F8(Chapter)44
+b(3)277 1435 y Gf(Natural)52 b(Deduction)f(Calculi)p
+Black Black 1140 1853 a Gd(I)19 b(intended)e(\002rst)i(to)g(set)g(up)g
+(a)g(formal)e(system)i(which)f(comes)g(as)i(close)e(as)i(possi-)1140
+1952 y(ble)15 b(to)h(actual)f(reasoning.)21 b(The)15
+b(result)g(w)o(as)h(a)g(\223calculus)f(of)g(natural)f(deduction\224.)
+3041 2152 y(\227G.)21 b(Gentzen)1904 2251 y(in)g(In)m(v)o(estigations)c
+(into)j(Logical)g(Deductions,)e(1935.)277 2497 y F7(Natur)o(al)24
+b(deduction)i(calculi)p Gg(,)e(lik)o(e)g(sequent)h(calculi,)f(were)f
+(in)l(v)o(ented)i(by)e(Gentzen)i([1935].)30 b(Whilst)277
+2610 y(sequent)k(calculi)g(of)n(fered)f(a)f(con)l(v)o(enient)j(w)o(ay)d
+(to)g(state)h(his)f F7(Hauptsatz)p Gg(,)k(natural)e(deduction)h(cal-)
+277 2723 y(culi)c(of)n(fered)i(a)d(con)l(v)o(enient)k(approach)f(to)e
+(reasoning)i(by)e(mimicking)h(the)f(reasoning)j(emplo)o(yed)277
+2836 y(by)24 b(mathematicians.)33 b(Pra)o(witz)23 b([1965])j(pro)o(v)o
+(ed)f(later)g(that)f(a)g(v)o(ersion)h(of)f(the)g(cut-elimination)k
+(the-)277 2948 y(orem)23 b(also)h(holds)g(for)f(NJ)f(and)i(NK,)d
+(Gentzen')-5 b(s)25 b(natural)f(deduction)i(calculi)f(for)e
+(intuitionistic)k(and)277 3061 y(classical)f(logic,)e(respecti)n(v)o
+(ely)-6 b(.)418 3191 y(In)25 b(this)h(chapter)h(we)d(shall)i(study)g
+(the)g(striking)h(similarities)g(between)f(natural)h(deduction)h(cal-)
+277 3304 y(culi)21 b(and)g(sequent)h(calculi.)29 b(In)21
+b(particular)l(,)i(we)d(shall)h(sho)n(w)f(a)g(close)h(correspondence)k
+(between)d(cut-)277 3417 y(elimination)31 b(and)e(normalisation)j
+(using)e(slight)g(v)n(ariants)g(of)f(the)f(standard)j(translations)h
+(between)277 3530 y(natural)22 b(deduction)h(proofs)f(and)f(sequent)h
+(proofs.)29 b(This)21 b(gi)n(v)o(es,)g(for)g(e)o(xample,)g(in)f(the)h
+(classical)i(case)277 3642 y(the)h(correspondences)k(illustrated)f
+(with)c(the)h(diagrams)p Black Black 1182 3799 a Ga(S)1411
+3762 y Gc(\024)1310 3799 y F6(\000)-21 b(\000)h(\000)f(!)64
+b Ga(T)1171 4163 y(S)1232 4125 y FX(0)1146 3981 y Fu(S)1191
+4037 y F6(#)p 1211 3974 4 142 v 1353 4125 a Gc(cut)1281
+4163 y F6(\000)-21 b(\000)g(\000)g(!)1522 4125 y F9(+)1605
+4163 y Ga(T)1671 4125 y FX(0)1675 3981 y Fu(S)1628 4037
+y F6(#)p 1648 3974 V 2116 3799 a Ga(M)2335 3762 y Gc(cut)2263
+3799 y F6(\000)g(\000)g(\000)g(!)56 b Ga(N)2104 4163
+y(M)2202 4125 y FX(0)2088 3981 y Fu(N)2144 4037 y F6(#)p
+2164 3974 V 2358 4125 a Gc(\024)2258 4163 y F6(\000)-21
+b(\000)h(\000)e(!)2494 4125 y FX(\003)2561 4163 y Ga(N)2644
+4125 y FX(0)2627 3981 y Fu(N)2580 4037 y F6(#)p 2600
+3974 V 277 4316 a Gg(where)34 b F6(j)p 559 4316 28 4
+v 577 4316 V 595 4316 V 65 w(j)647 4283 y Fu(S)724 4316
+y Gg(is)g(a)f(translation)k(from)d(natural)h(deduction)i(proofs)e(to)f
+(sequent)i(proofs,)i F6(j)p 3193 4316 V 3211 4316 V 3228
+4316 V 65 w(j)3281 4283 y Fu(N)3368 4316 y Gg(is)c(a)277
+4429 y(translation)c(from)d(sequent)i(proofs)f(to)f(natural)i
+(deduction)h(proofs,)f(and)2717 4392 y Gc(\024)2652 4429
+y F6(\000)-31 b(\000)g(!)26 b Gg(is)h(a)f(normalisation)277
+4542 y(procedure)i(for)e(our)f(natural)i(deduction)h(calculus.)36
+b(In)26 b(contrast)h(to)e(earlier)i(w)o(ork,)e(we)g(obtain)i(such)277
+4655 y(tight)c(correspondences)k(because)d(of)d(the)h(fe)n(wer)g
+(constraints)j(in)d(our)g(cut-elimination)k(procedures.)418
+4784 y(W)-7 b(e)20 b(shall)i(be)o(gin)g(with)f(sho)n(wing)h(the)f
+(correspondence)k(between)d(our)g(intuitionistic)j(cut-elimi-)277
+4897 y(nation)k(procedure)h(and)e(the)g(standard)h(normalisation)i
+(procedure)f(of)d(NJ.)f(This)i(part)g(will)f(closely)277
+5010 y(follo)n(w)34 b(e)o(xisting)h(w)o(ork.)60 b(The)33
+b(ne)o(xt)h(step)g(will)f(be)h(to)g(e)o(xtend)g(the)g(correspondence)39
+b(to)33 b(classical)277 5123 y(logic.)51 b(Unfortunately)-6
+b(,)36 b(it)30 b(is)h(v)o(ery)g(impractical)i(to)e(do)f(the)h(e)o
+(xtension)i(using)f(Gentzen')-5 b(s)33 b(natural)277
+5236 y(deduction)j(calculus)f(NK,)c(because)k(this)e(calculus)i
+(requires)g(double)g(ne)o(gation)f(translations)i(for)277
+5349 y(encoding)24 b(classical)f(proofs.)29 b(So)20 b(instead)j(of)d
+(using)j(NK,)c(we)h(shall)i(introduce)h(a)d(v)n(ariant)j(of)e(the)g
+(nat-)277 5462 y(ural)f(deduction)i(calculus)f(de)n(v)o(eloped)h(by)d
+(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c)20 b([1985])h(and)e(gi)n(v)o
+(e)h(normalisation)i(rules)e(inspired)277 5575 y(by)27
+b(the)h(rules)f(P)o(arigot)h([1992])g(de\002ned)g(for)g(his)f
+Ga(\025\026)p Gg(-calculus.)41 b(No)26 b(claim)i(is)e(made)i(about)g
+(superi-)277 5688 y(ority)i(of)e(our)h(natural)i(deduction)g(calculus)g
+(o)o(v)o(er)e(other)g(natural)i(deduction)g(calculi)f(for)f(classical)
+277 5801 y(logic.)p Black Black eop end
+%%Page: 66 78
+TeXDict begin 66 77 bop Black -144 51 a Gb(66)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Ge(3.1)119
+b(Intuitionistic)31 b(Natural)f(Deduction)321 588 y Gg(Lik)o(e)d
+(sequent)j(proofs,)f(natural)g(deduction)h(proofs)f(are)e(written)h(in)
+f(a)g(tree-lik)o(e)i(f)o(ashion,)h(and)e(tw)o(o)321 701
+y(styles)d(of)f(writing)g(them)f(can)h(be)g(identi\002ed)h(in)f(the)f
+(literature.)p Black 458 880 a F6(\017)p Black 46 w Gg(One,)30
+b(used)h(for)e(e)o(xample)i(in)e([Gentzen,)i(1935])g(and)f(in)g(the)f
+(classic)j(w)o(ork)d(on)h(natural)h(de-)549 993 y(duction)25
+b([Pra)o(witz,)e(1965],)i(is)e(to)g(write)h(trees)g(of)g(the)g(form)
+2019 1165 y F4(\000)2036 1191 y Gg(.)2036 1224 y(.)2036
+1257 y(.)2036 1290 y(.)2011 1370 y Ga(B)549 1554 y Gg(where)36
+b(the)g(formula)h Ga(B)j Gg(is)c(the)h(conclusion)i(and)d
+F4(\000)g Gg(stands)h(for)f(a)g(\002nite)g(number)h(of)f(as-)549
+1667 y(sumption)d(pack)o(ets.)53 b(The)31 b(assumption)j(pack)o(ets)f
+(are)f(multisets)g(containing)j(formulae)d(all)549 1780
+y(of)27 b(which)i(are)f(annotated)i(with)e(a)g(unique)h(\(natural)h
+(number\))f(label.)43 b(The)27 b(inference)k(rules)549
+1892 y(that)26 b(dischar)n(ge,)j(or)d(\223close\224,)j(assumption)f
+(pack)o(ets)g(are)e(annotated)j(with)d(the)g(labels)h(of)f(the)549
+2005 y(pack)o(ets)f(the)o(y)f(dischar)n(ge.)p Black 458
+2176 a F6(\017)p Black 46 w Gg(The)19 b(other)l(,)j(used)e(for)g(e)o
+(xample)h(in)f([Gentzen,)g(1936],)i(is)e(to)f(write)h(natural)i
+(deduction)g(proofs)549 2289 y(in)27 b(\223sequent-style\224)33
+b(where)28 b(in)f(e)n(v)o(ery)i(stage)f(of)g(the)g(proof)h(the)f
+(undischar)n(ged)k(assumption)549 2402 y(pack)o(ets)25
+b(are)f(recorded)h(e)o(xplicitly)-6 b(.)32 b(Thus)23
+b(the)h(proofs)h(are)f(of)f(the)h(form)2036 2527 y(.)2036
+2560 y(.)2036 2593 y(.)2036 2626 y(.)1934 2706 y F4(\000)p
+2011 2694 11 41 v 2022 2676 46 5 v 96 w Ga(B)549 2889
+y Gg(Throughout)d(this)f(chapter)g(we)f(shall)g(use)h(the)f
+(sequent-style)k(for)c(writing)h(natural)h(deduction)549
+3002 y(proofs.)66 b(W)-7 b(e)35 b(shall)i(tak)o(e)f F4(\000)f
+Gg(to)g(be)h(a)f(set)h(of)g(labelled)i(formulae)f(analogous)h(to)e(the)
+g(left-)549 3115 y(conte)o(xts)24 b(de\002ned)f(in)f(connection)k(with)
+c(sequent)i(calculi.)30 b(Ho)n(we)n(v)o(er)22 b(in)h(this)g(section)h
+(and)f(in)549 3228 y(the)j(ne)o(xt,)h(the)g(standard)h(terminology)h
+(for)e(natural)h(deduction)h(will)d(be)g(adopted,)j(and)e(thus)549
+3341 y(the)19 b(labels)i(are)f(referred)h(to)e(as)g F7(variables)j
+Gg(\(these)f(tw)o(o)e(sections)j(deal)e(with)f(the)h(propositional)549
+3454 y(fragment)25 b(of)f(intuitionistic)k(logic,)d(only;)h(so)e(no)g
+(confusion)j(can)d(occur)i(with)e(the)g(notion)i(of)549
+3567 y(v)n(ariables)f(introduced)i(in)c(Section)i(2.4)e(for)h
+(\002rst-order)h(classical)h(logic\).)321 3746 y(Figure)d(3.1)e(gi)n(v)
+o(es)h(the)g(inference)i(rules)f(of)e(Gentzen')-5 b(s)23
+b(intuitionistic)j(natural)d(deduction)i(calculus,)321
+3859 y(called)i(NJ.)687 3826 y F5(1)750 3859 y Gg(The)e(inference)j
+(rules)f(come)f(in)g(tw)o(o)g(\003a)n(v)n(ours,)h(those)g(for)f
+F7(intr)l(oducing)k Gg(a)25 b(connecti)n(v)o(e)321 3972
+y(and)32 b(those)g(for)f F7(eliminating)j Gg(a)c(connecti)n(v)o(e.)54
+b(Writing)32 b(the)f(proofs)i(in)e(sequent-style)j(means)e(that)321
+4085 y(the)23 b(inference)i(rules)f(of)f(natural)h(deduction)h(are)e
+(solely)h(concerned)i(with)c(manipulating)k(formulae)321
+4198 y(in)g(the)h(succedent,)i(unlik)o(e)f(in)e(sequent)i(calculi)g
+(where)e(inference)j(rules)e(manipulate)h(formulae)g(in)321
+4311 y(both)e(the)f(antecedent)j(and)d(the)h(succedent.)35
+b(This)25 b(is)g(why)f(it)h(is)f(often)i(said)g(that)f(natural)i
+(deduction)321 4424 y(calculi)e(are)f(asymmetric.)462
+4553 y(There)i(are)g(well-kno)n(wn)h(translations)i(going)e(back)f(to)g
+(Gentzen)h([1935])g(between)g(NJ-proofs)321 4666 y(and)d
+(intuitionistic)j(sequent)d(proofs.)30 b(Belo)n(w)-6
+b(,)23 b(we)f(shall)h(de\002ne)h(the)f(translation)j
+F6(j)p 2946 4666 28 4 v 2964 4666 V 2981 4666 V 65 w(j)3034
+4633 y Fu(s)3065 4666 y Gg(,)c(which)h(maps)321 4779
+y(NJ-proofs)28 b(to)e(sequent)i(proofs,)f(and)g(the)f(translation)j
+F6(j)p 2118 4779 V 2136 4779 V 2153 4779 V 65 w(j)2206
+4746 y Fu(n)2246 4779 y Gg(,)d(which)g(maps)g(sequent)i(proofs)f(to)f
+(NJ-)321 4892 y(proofs.)55 b(It)31 b(will)h(be)f(con)l(v)o(enient)k(to)
+d(de\002ne)g(both)h(o)o(v)o(er)e(terms,)j(rather)f(than)f(proofs.)55
+b(One)31 b(slight)321 5005 y(complication)39 b(arises)e(from)e(the)h(f)
+o(act)g(that)g(we)f(ha)n(v)o(e)h(chosen)h(intuitionistic)j(sequents)e
+(to)d(be)h(of)321 5118 y(the)e(form)f F4(\000)p 751 5106
+11 41 v 761 5087 46 5 v 96 w Ga(a)17 b F4(:)h Ga(B)36
+b Gg(\(see)e(P)o(age)f(46\).)57 b(This)33 b(choice)i(spared)f(us)g(the)
+f(w)o(ork)g(of)g(ha)n(ving)i(to)e(de\002ne)321 5230 y(speci\002c)22
+b(cut-elimination)i(rules)e(for)f(intuitionistic)k(sequent)d(proofs,)h
+(b)n(ut)e(it)f(causes)j(the)e(translation)p Black 321
+5295 1290 4 v 427 5351 a F3(1)456 5382 y F2(W)-6 b(e)18
+b(are)h(not)g(concerned)i(here)e(with)g(the)g(quanti\002ers)g(and)h(ne)
+o(gation.)p Black Black Black eop end
+%%Page: 67 79
+TeXDict begin 67 78 bop Black 277 51 a Gb(3.1)23 b(Intuitionistic)i
+(Natural)f(Deduction)2216 b(67)p 277 88 3691 4 v Black
+Black 277 300 3226 4 v 277 1564 4 1265 v 1486 392 453
+4 v 1486 471 a Ga(x)18 b F4(:)f Ga(B)5 b(;)15 b F4(\000)p
+1789 459 11 41 v 1799 441 46 5 v 96 w Ga(B)609 685 y(x)j
+F4(:)f Ga(B)5 b(;)15 b F4(\000)p 912 673 11 41 v 922
+655 46 5 v 96 w Ga(C)p 609 723 451 4 v 650 801 a F4(\000)p
+727 789 11 41 v 738 771 46 5 v 96 w Ga(B)5 b F6(\033)o
+Ga(C)1101 740 y F6(\033)1172 754 y Gc(I)1980 699 y F4(\000)p
+2057 687 11 41 v 2067 669 46 5 v 96 w Ga(B)g F6(\033)o
+Ga(C)98 b F4(\000)p 2517 687 11 41 v 2527 669 46 5 v
+96 w Ga(B)p 1980 723 687 4 v 2211 801 a F4(\000)p 2288
+789 11 41 v 2298 771 46 5 v 96 w Ga(C)2708 740 y F6(\033)2778
+754 y Gc(E)568 1029 y F4(\000)p 645 1017 11 41 v 656
+999 46 5 v 97 w Ga(B)d F4(\000)p 963 1017 11 41 v 973
+999 46 5 v 96 w Ga(C)p 568 1049 543 4 v 660 1128 a F4(\000)p
+737 1116 11 41 v 748 1098 46 5 v 96 w Ga(B)5 b F6(^)o
+Ga(C)1152 1067 y F6(^)1213 1081 y Gc(I)2101 1016 y F4(\000)p
+2179 1004 11 41 v 2189 985 46 5 v 97 w Ga(B)2324 1030
+y F9(1)2363 1016 y F6(^)p Ga(B)2493 1030 y F9(2)p 2101
+1049 431 4 v 2192 1128 a F4(\000)p 2269 1116 11 41 v
+2279 1098 46 5 v 96 w Ga(B)2414 1142 y Gc(i)2574 1062
+y F6(^)2634 1076 y Gc(E)2686 1086 y FZ(i)704 1346 y F4(\000)p
+781 1334 11 41 v 791 1316 46 5 v 96 w Ga(B)926 1360 y
+Gc(i)p 614 1380 431 4 v 614 1458 a F4(\000)p 691 1446
+11 41 v 701 1428 46 5 v 96 w Ga(B)836 1472 y F9(1)875
+1458 y F6(_)p Ga(B)1005 1472 y F9(2)1086 1393 y F6(_)1146
+1407 y Gc(I)1177 1417 y FZ(i)1607 1342 y F4(\000)p 1684
+1330 11 41 v 1694 1312 46 5 v 96 w Ga(B)g F6(_)o Ga(C)98
+b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 2359 1330 11
+41 v 2370 1312 46 5 v 96 w Ga(D)94 b(y)20 b F4(:)d Ga(C)q(;)e
+F4(\000)p 2895 1330 11 41 v 2906 1312 46 5 v 97 w Ga(D)p
+1607 1380 1443 4 v 2213 1458 a F4(\000)p 2290 1446 11
+41 v 2300 1428 46 5 v 96 w Ga(D)3091 1398 y F6(_)3151
+1412 y Gc(E)p 3499 1564 4 1265 v 277 1567 3226 4 v Black
+770 1721 a Gg(Figure)24 b(3.1:)29 b(Natural)24 b(deduction)i(calculus)g
+(for)e(intuitionistic)j(logic.)p Black Black 277 2107
+a F6(j)p 304 2107 28 4 v 322 2107 V 340 2107 V 65 w(j)392
+2074 y Fu(s)456 2107 y Gg(to)34 b(be)f(slightly)j(messy:)50
+b(we)33 b(ha)n(v)o(e)h(to)g(e)o(xplicitly)i(record)f(the)e(co-name)i
+(of)f(the)g(formula)g(in)277 2219 y(the)c(succedent.)48
+b(Before)30 b(gi)n(ving)g(the)g(de\002nition)h(of)e F6(j)p
+2025 2219 V 2043 2219 V 2060 2219 V 64 w(j)2112 2186
+y Fu(s)2172 2219 y Gg(and)h F6(j)p 2359 2219 V 2377 2219
+V 2395 2219 V 65 w(j)2447 2186 y Fu(n)2488 2219 y Gg(,)f(we)g(shall)h
+(\002rst)e(illustrate)k(the)277 2332 y(translations)27
+b(on)d(the)f(le)n(v)o(el)h(of)g(proofs.)p Black 277 2512
+a Gb(Axioms:)p Black 47 w Gg(The)f(sequent)i(proof)p
+1723 2636 560 4 v 1723 2715 a Ga(x)18 b F4(:)f Ga(B)5
+b(;)15 b F4(\000)p 2026 2703 11 41 v 2036 2685 46 5 v
+96 w Ga(a)i F4(:)h Ga(B)504 2898 y Gg(is)24 b(translated)i(to)p
+1752 3004 453 4 v 1752 3083 a Ga(x)17 b F4(:)h Ga(B)5
+b(;)15 b F4(\000)p 2054 3071 11 41 v 2065 3053 46 5 v
+96 w Ga(B)29 b(:)504 3266 y Gg(The)h(re)n(v)o(erse)h(translation)h(is)e
+(analogous,)k(b)n(ut)c(we)f(ha)n(v)o(e)h(to)g(record,)j(as)c(mentioned)
+j(abo)o(v)o(e,)504 3379 y(the)24 b(co-name)h Ga(a)p Gg(.)p
+Black 277 3550 a Gb(Right)e(Rules:)p Black 46 w Gg(A)f(sequent)k(proof)
+e(ending)i(with)d(an)g(instance)j(of)e(the)f F6(^)2595
+3564 y Gc(R)2653 3550 y Gg(-rule)1671 3689 y Ga(\031)1723
+3703 y F9(1)1549 3781 y F4(\000)p 1626 3769 11 41 v 1637
+3751 46 5 v 96 w Ga(a)17 b F4(:)h Ga(B)2090 3688 y(\031)2142
+3702 y F9(2)1974 3781 y F4(\000)p 2051 3769 11 41 v 2062
+3751 46 5 v 96 w Ga(b)g F4(:)f Ga(C)p 1549 3801 749 4
+v 1695 3880 a F4(\000)p 1772 3868 11 41 v 1782 3850 46
+5 v 96 w Ga(c)g F4(:)h Ga(B)5 b F6(^)o Ga(C)2339 3819
+y F6(^)2400 3833 y Gc(R)504 4063 y Gg(is)24 b(translated)i(to)1658
+4211 y F6(j)p Ga(\031)1735 4225 y F9(1)1775 4211 y F6(j)1800
+4179 y Fu(n)1636 4313 y F4(\000)p 1713 4301 11 41 v 1723
+4283 46 5 v 96 w Ga(B)1975 4211 y F6(j)p Ga(\031)2052
+4225 y F9(2)2091 4211 y F6(j)2116 4179 y Fu(n)1953 4313
+y F4(\000)p 2030 4301 11 41 v 2041 4283 46 5 v 97 w Ga(C)p
+1636 4333 543 4 v 1728 4412 a F4(\000)p 1805 4400 11
+41 v 1815 4381 46 5 v 96 w Ga(B)5 b F6(^)o Ga(C)2220
+4351 y F6(^)2280 4365 y Gc(I)2345 4351 y Ga(:)p Black
+277 4595 a Gb(Left)23 b(Rules:)p Black 46 w Gg(A)g(sequent)i(proof)g
+(ending)g(with)e(an)h(instance)h(of)f(the)g F6(_)2539
+4609 y Gc(L)2591 4595 y Gg(-rule)1563 4733 y Ga(\031)1615
+4747 y F9(1)1331 4825 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15
+b F4(\000)p 1633 4813 11 41 v 1644 4795 46 5 v 97 w Ga(c)i
+F4(:)h Ga(D)2204 4733 y(\031)2256 4747 y F9(2)1977 4825
+y Ga(y)i F4(:)e Ga(C)q(;)d F4(\000)p 2269 4813 11 41
+v 2279 4795 46 5 v 97 w Ga(c)i F4(:)h Ga(D)p 1331 4863
+1191 4 v 1588 4941 a(z)j F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15
+b F4(\000)p 2012 4929 11 41 v 2022 4911 46 5 v 97 w Ga(c)i
+F4(:)h Ga(D)2563 4881 y F6(_)2624 4895 y Gc(L)p Black
+Black eop end
+%%Page: 68 80
+TeXDict begin 68 79 bop Black -144 51 a Gb(68)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 549 365 a Gg(is)g(translated)j(to)
+p 725 573 706 4 v 725 652 a Ga(z)c F4(:)17 b Ga(B)5 b
+F6(_)o Ga(C)q(;)15 b F4(\000)p 1149 640 11 41 v 1160
+621 46 5 v 97 w Ga(B)5 b F6(_)o Ga(C)1832 550 y F6(j)p
+Ga(\031)1909 564 y F9(1)1949 550 y F6(j)1974 517 y Fu(n)1522
+652 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b(z)22 b F4(:)17
+b Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)p 2171 640 11
+41 v 2182 621 46 5 v 97 w Ga(D)2721 550 y F6(j)p Ga(\031)2798
+564 y F9(2)2837 550 y F6(j)2862 517 y Fu(n)2416 652 y
+Ga(y)20 b F4(:)d Ga(C)q(;)e(z)23 b F4(:)17 b Ga(B)5 b
+F6(_)o Ga(C)q(;)15 b F4(\000)p 3054 640 11 41 v 3065
+621 46 5 v 97 w Ga(D)p 725 689 2483 4 v 1678 768 a(z)21
+b F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)p 2102
+756 11 41 v 2112 738 46 5 v 97 w Ga(D)3249 707 y F6(_)3310
+721 y Gc(E)549 989 y Gg(where)23 b Ga(z)f F4(:)17 b Ga(B)5
+b F6(_)o Ga(C)30 b Gg(might)24 b(need)g(to)f(be)h(added)h(to)e
+F6(j)p Ga(\031)2169 1003 y F9(1)2209 989 y F6(j)2234
+956 y Fu(n)2297 989 y Gg(or)h(to)f F6(j)p Ga(\031)2566
+1003 y F9(2)2606 989 y F6(j)2631 956 y Fu(n)2672 989
+y Gg(.)p Black 321 1170 a Gb(The)g(Cut-Rule:)p Black
+45 w Gg(A)f(sequent)k(proof)e(ending)h(with)f(an)f(instance)j(of)d(the)
+h(cut-rule)1576 1346 y Ga(\031)1628 1360 y F9(1)1435
+1439 y F4(\000)1492 1453 y F9(1)p 1551 1427 11 41 v 1561
+1409 46 5 v 1627 1439 a Ga(a)17 b F4(:)h Ga(B)2148 1345
+y(\031)2200 1359 y F9(2)1899 1439 y Ga(x)f F4(:)h Ga(B)5
+b(;)15 b F4(\000)2182 1453 y F9(2)p 2241 1427 11 41 v
+2252 1409 46 5 v 2317 1439 a Ga(b)j F4(:)f Ga(C)p 1435
+1476 1053 4 v 1711 1556 a F4(\000)1768 1570 y F9(1)1808
+1556 y Ga(;)e F4(\000)1905 1570 y F9(2)p 1964 1544 11
+41 v 1975 1526 46 5 v 2041 1556 a Ga(b)i F4(:)g Ga(C)2529
+1507 y Gg(Cut)549 1777 y(is)23 b(translated)j(to)1470
+1963 y F6(j)p Ga(\031)1547 1977 y F9(1)1586 1963 y F6(j)1611
+1930 y Fu(n)1374 2065 y F4(\000)1431 2079 y F9(1)p 1490
+2053 11 41 v 1501 2035 46 5 v 1567 2065 a Ga(a)17 b F4(:)g
+Ga(B)2042 1962 y F6(j)p Ga(\031)2119 1976 y F9(2)2158
+1962 y F6(j)2183 1929 y Fu(n)1839 2065 y Ga(x)g F4(:)g
+Ga(B)5 b(;)15 b F4(\000)2121 2079 y F9(2)p 2181 2053
+11 41 v 2191 2035 46 5 v 2257 2065 a Ga(b)i F4(:)g Ga(C)p
+1374 2102 1053 4 v 1651 2182 a F4(\000)1708 2196 y F9(1)1747
+2182 y Ga(;)e F4(\000)1844 2196 y F9(2)p 1904 2170 11
+41 v 1914 2152 46 5 v 1980 2182 a Ga(b)i F4(:)h Ga(C)2468
+2133 y Gg(Subst)27 b Ga(:)549 2403 y Gg(There)c(are)g(tw)o(o)f
+(possible)j(w)o(ays)e(of)g(dealing)i(with)e(the)g(substitution:)32
+b(either)24 b(it)f(is)g(performed)549 2516 y(immediately)-6
+b(,)33 b(or)e(it)f(is)g(\223suspended\224)k(and)d(performed)h(later)-5
+b(.)50 b(W)-7 b(e)29 b(shall)j(emplo)o(y)f(the)g(\002rst)549
+2629 y(method)24 b(and)g(mention)h(some)e(problems)i(with)f(the)g
+(second.)p Black 321 2811 a Gb(Intr)n(oduction)g(Rules:)p
+Black 46 w Gg(An)f(NJ-proof)i(ending)g(with)f(an)f(instance)j(of)d(the)
+h F6(^)2792 2825 y Gc(I)2832 2811 y Gg(-rule)1764 3009
+y F6(D)1834 3023 y F9(1)1705 3101 y F4(\000)p 1782 3089
+11 41 v 1793 3071 46 5 v 96 w Ga(B)2080 3009 y F6(D)2150
+3023 y F9(2)2023 3101 y F4(\000)p 2100 3089 11 41 v 2110
+3071 46 5 v 96 w Ga(C)p 1705 3121 543 4 v 1797 3200 a
+F4(\000)p 1874 3188 11 41 v 1885 3169 46 5 v 96 w Ga(B)5
+b F6(^)o Ga(C)2289 3139 y F6(^)2350 3153 y Gc(I)549 3420
+y Gg(is)23 b(translated)j(to)1660 3612 y F6(jD)1755 3626
+y F9(1)1794 3612 y F6(j)1819 3579 y Fu(s)1819 3634 y
+Gc(a)1593 3713 y F4(\000)p 1670 3701 11 41 v 1681 3683
+46 5 v 96 w Ga(a)18 b F4(:)f Ga(B)2083 3606 y F6(jD)2178
+3620 y F9(2)2218 3606 y F6(j)2243 3573 y Fu(s)2243 3634
+y Gc(b)2019 3713 y F4(\000)p 2096 3701 11 41 v 2106 3683
+46 5 v 96 w Ga(b)g F4(:)g Ga(C)p 1593 3733 749 4 v 1739
+3812 a F4(\000)p 1816 3800 11 41 v 1826 3782 46 5 v 96
+w Ga(c)g F4(:)h Ga(B)5 b F6(^)o Ga(C)2383 3751 y F6(^)2444
+3765 y Gc(R)549 4033 y Gg(where)23 b Ga(c)g Gg(is)h(a)f(fresh)h
+(co-name.)p Black 321 4214 a Gb(Elimination)g(Rules:)p
+Black 46 w Gg(An)e(NJ-proof)j(ending)h(with)d(an)g(instance)j(of)e(the)
+f F6(_)2758 4228 y Gc(E)2818 4214 y Gg(-rule)1370 4412
+y F6(D)1440 4426 y F9(1)1246 4505 y F4(\000)p 1323 4493
+11 41 v 1333 4475 46 5 v 96 w Ga(B)5 b F6(_)o Ga(C)1869
+4412 y F6(D)1939 4426 y F9(2)1695 4505 y Ga(x)17 b F4(:)h
+Ga(B)5 b(;)15 b F4(\000)p 1998 4493 11 41 v 2008 4475
+46 5 v 96 w Ga(D)2410 4412 y F6(D)2480 4426 y F9(3)2242
+4505 y Ga(y)21 b F4(:)c Ga(C)q(;)e F4(\000)p 2534 4493
+11 41 v 2544 4475 46 5 v 97 w Ga(D)p 1246 4542 1443 4
+v 1851 4621 a F4(\000)p 1928 4609 11 41 v 1939 4591 46
+5 v 96 w Ga(D)2729 4561 y F6(_)2790 4575 y Gc(E)549 4842
+y Gg(is)23 b(translated)j(to)1229 5144 y F6(jD)1324 5158
+y F9(1)1364 5144 y F6(j)1389 5111 y Fu(s)1389 5166 y
+Gc(a)1096 5245 y F4(\000)p 1173 5233 11 41 v 1184 5215
+46 5 v 97 w Ga(a)17 b F4(:)g Ga(B)5 b F6(_)o Ga(C)1834
+5027 y F6(jD)1929 5041 y F9(2)1969 5027 y F6(j)1994 4994
+y Fu(s)1994 5050 y Gc(c)1654 5129 y Ga(x)17 b F4(:)g
+Ga(B)5 b(;)15 b F4(\000)p 1956 5117 11 41 v 1967 5099
+46 5 v 96 w Ga(c)j F4(:)f Ga(D)2475 5027 y F6(jD)2570
+5041 y F9(3)2610 5027 y F6(j)2635 4994 y Fu(s)2635 5050
+y Gc(c)2300 5129 y Ga(y)j F4(:)e Ga(C)q(;)d F4(\000)p
+2591 5117 11 41 v 2602 5099 46 5 v 96 w Ga(c)j F4(:)f
+Ga(D)p 1654 5166 1191 4 v 1911 5245 a(z)k F4(:)d Ga(B)5
+b F6(_)o Ga(C)q(;)15 b F4(\000)p 2334 5233 11 41 v 2345
+5215 46 5 v 97 w Ga(c)i F4(:)h Ga(D)2886 5185 y F6(_)2946
+5199 y Gc(L)p 1096 5283 1491 4 v 1677 5361 a F4(\000)p
+1754 5349 11 41 v 1764 5331 46 5 v 96 w Ga(c)g F4(:)f
+Ga(D)2629 5313 y Gg(Cut)p Black Black eop end
+%%Page: 69 81
+TeXDict begin 69 80 bop Black 277 51 a Gb(3.1)23 b(Intuitionistic)i
+(Natural)f(Deduction)2216 b(69)p 277 88 3691 4 v Black
+504 365 a Gg(where)25 b Ga(z)j Gg(is)d(a)f(fresh)i(name.)32
+b(This)24 b(is)g(the)h(standard)i(translation)h(for)d(the)g
+F6(_)2895 379 y Gc(E)2955 365 y Gg(-rule;)h(ho)n(we)n(v)o(er)l(,)504
+478 y(we)g(shall)h(slightly)h(modify)g(this)e(translation)k(by)c(using)
+i(our)e(proof)i(substitution)h(instead)f(of)504 590 y(the)c(cut-rule.)
+418 812 y(As)32 b(mentioned)j(earlier)l(,)i(it)c(will)f(be)h(con)l(v)o
+(enient)j(to)d(de\002ne)g(the)g(translations)k F6(j)p
+3032 812 28 4 v 3050 812 V 3067 812 V 65 w(j)3120 779
+y Fu(s)3183 812 y Gg(and)d F6(j)p 3374 812 V 3391 812
+V 3409 812 V 64 w(j)3461 779 y Fu(n)277 925 y Gg(o)o(v)o(er)24
+b(terms.)29 b(T)-7 b(o)22 b(do)i(so,)f(NJ-proofs)i(will)e(be)h
+(annotated)i(with)d(lambda)i(terms.)p Black 277 1113
+a Gb(De\002nition)30 b(3.1.1)h Gg(\(Ra)o(w)f(Lambda)h(T)-6
+b(erms\))p Gb(:)p Black 34 w Gg(The)31 b(set)g(of)g(ra)o(w)f(lambda)i
+(terms)f(is)g(de\002ned)h(by)f(the)277 1225 y(grammar)p
+Black Black 482 1417 a Ga(M)5 b(;)15 b(N)5 b(;)15 b(P)113
+b F4(::=)100 b Ga(x)1232 b Gg(v)n(ariable)952 1530 y
+F6(j)148 b Ga(\025x)17 b F4(:)g Ga(B)5 b(:M)933 b Gg
+(implication-introducti)q(on)952 1643 y F6(j)148 b Ga(M)25
+b(N)1098 b Gg(implication-elimination)952 1756 y F6(j)148
+b(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)998 b Gg(and-introduction)952
+1869 y F6(j)148 b Fp(fst)o F4(\()p Ga(M)10 b F4(\))973
+b Gg(and)2539 1836 y F9(1)2579 1869 y Gg(-elimination)952
+1982 y F6(j)148 b Fp(snd)o F4(\()p Ga(M)10 b F4(\))973
+b Gg(and)2539 1949 y F9(2)2579 1982 y Gg(-elimination)952
+2095 y F6(j)148 b Fp(inl)o F4(\()p Ga(M)10 b F4(\))973
+b Gg(or)2484 2062 y F9(1)2524 2095 y Gg(-introduction)952
+2208 y F6(j)148 b Fp(inr)o F4(\()p Ga(M)10 b F4(\))973
+b Gg(or)2484 2175 y F9(2)2524 2208 y Gg(-introduction)952
+2321 y F6(j)148 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025x)j
+F4(:)f Ga(B)5 b(:M)g(;)15 b(\025y)20 b F4(:)e Ga(C)q(:N)10
+b F4(\))190 b Gg(or)n(-elimination)277 2566 y(Let)30
+b(us)g(brie\003y)h(describe)i(the)e(notions)h(and)f(con)l(v)o(entions)j
+(we)c(shall)h(use)g(for)f(lambda)i(terms:)43 b(the)277
+2679 y(notions)30 b(of)d(bound)i(and)g(free)f(v)n(ariables)i(will)d(be)
+h(as)f(usual;)k(for)d(bre)n(vity)h(we)e(shall)i(often)f(omit)g(the)277
+2792 y(typings)35 b(on)e(binders)h(and)g(simply)f(write)g
+Ga(\025x:M)10 b Gg(;)37 b(a)c(Barendre)o(gt-style)j(naming)e(con)l(v)o
+(ention)i(for)277 2905 y(v)n(ariables)c(will)e(al)o(w)o(ays)h(be)f
+(observ)o(ed;)36 b(and)30 b(lambda)h(terms)f(will)g(be)g(re)o(garded)i
+(as)e(equi)n(v)n(alent)i(up)277 3018 y(to)25 b(renaming)h(of)f(bound)i
+(v)n(ariables.)34 b(A)24 b(pleasing)j(consequence)i(of)c(these)g(con)l
+(v)o(entions)k(is)c(that)g(the)277 3131 y(notion)e(of)f(v)n(ariable)h
+(substitution)i(can)d(be)g(de\002ned)g(without)g(w)o(orrying)i(about)e
+(clashes)i(and)e(capture)277 3243 y(of)j(v)n(ariables.)34
+b(Since)25 b(it)f(will)h(al)o(w)o(ays)g(be)g(clear)h(from)e(the)h
+(conte)o(xt)h(whether)g(we)e(deal)h(with)g(a)f(proof)277
+3356 y(substitution)i(or)c(a)g(v)n(ariable)j(substitution,)h(no)c
+(confusion)j(will)d(occur)i(when)f(we)e(emplo)o(y)j(the)e(same)277
+3469 y(shorthand)k(notation)g(for)e(both)g(substitutions;)k(that)c(is)f
+F4([)p Ga(\033)s F4(])p Gg(.)418 3599 y(T)-7 b(o)28 b(annotate)k
+(natural)e(deduction)i(proofs)f(with)d(lambda)i(terms,)h(we)d(shall)i
+(replace)h(e)n(v)o(ery)e(se-)277 3712 y(quent)f(of)e(the)g(form)g
+F4(\000)p 1021 3700 11 41 v 1032 3681 46 5 v 96 w Ga(B)k
+Gg(with)c(a)g(typing)i(judgement)g(of)e(the)h(form)f
+F4(\000)2638 3700 y Gc(.)2693 3712 y Ga(M)h F4(:)18 b
+Ga(B)30 b Gg(in)c(which)g F4(\000)g Gg(is)g(a)277 3825
+y(conte)o(xt,)i Ga(M)35 b Gg(is)26 b(a)g(lambda)g(term)g(and)h
+Ga(B)i Gg(is)d(a)g(formula.)37 b(In)26 b(the)g(sequel)i(we)d(are)h
+(interested)j(in)d(only)277 3937 y(simply-typed)34 b(lambda)e(terms,)h
+(i.e.,)g(those)f(for)f(which)h(there)g(is)f(a)g(conte)o(xt)i
+F4(\000)d Gg(and)i(a)e(formula)j Ga(B)277 4050 y Gg(such)25
+b(that)f F4(\000)708 4038 y Gc(.)763 4050 y Ga(M)j F4(:)18
+b Ga(B)27 b Gg(is)d(deri)n(v)n(able)h(gi)n(v)o(en)g(the)f(inferences)i
+(sho)n(wn)e(in)g(Figure)g(3.2.)30 b(The)23 b(follo)n(wing)277
+4163 y(set)h(contains)i(all)d(simply-typed)k(lambda)d(terms.)p
+Black Black 495 4406 a F4(\003)658 4354 y F5(def)665
+4406 y F4(=)843 4305 y FK(n)928 4406 y Ga(M)1074 4301
+y FK(\014)1074 4356 y(\014)1074 4410 y(\014)1151 4406
+y F4(\000)1233 4394 y Gc(.)1288 4406 y Ga(M)k F4(:)17
+b Ga(B)27 b Gg(is)d(deri)n(v)n(able)h(using)g(the)f(rules)g(gi)n(v)o
+(en)g(in)g(Figure)g(3.2)3246 4305 y FK(o)418 4650 y Gg(No)n(w)19
+b(we)h(return)h(to)f(the)h(translations)i F6(j)p 1660
+4650 28 4 v 1678 4650 V 1696 4650 V 65 w(j)1748 4617
+y Fu(s)1799 4650 y Gg(and)d F6(j)p 1976 4650 V 1994 4650
+V 2012 4650 V 65 w(j)2064 4617 y Fu(n)2125 4650 y Gg(whose)g(clauses)i
+(are)f(gi)n(v)o(en)f(in)g(Figures)i(3.3)277 4763 y(and)g(3.4,)f
+(respecti)n(v)o(ely)-6 b(.)30 b(Clearly)-6 b(,)22 b(we)f(e)o(xpect)h
+(that)f(both)h(translations)i(respect)f(typing)f(judgements.)p
+Black 277 4951 a Gb(Pr)n(oposition)j(3.1.2:)p Black Black
+97 w Gg(\(i\))p Black 46 w(If)35 b Ga(M)56 b F6(2)45
+b F4(\003)34 b Gg(with)h(the)f(typing)j(judgement)f F4(\000)2735
+4939 y Gc(.)2790 4951 y Ga(M)28 b F4(:)17 b Ga(B)5 b
+Gg(,)36 b(then)f(for)g(all)504 5063 y(co-names)25 b Ga(a)e
+Gg(we)g(ha)n(v)o(e)h F6(j)p Ga(M)10 b F6(j)1414 5030
+y Fu(s)1414 5086 y Gc(a)1482 5063 y F6(2)25 b FY(I)d
+Gg(with)i(the)g(typing)h(judgement)g F4(\000)2691 5051
+y Gc(.)2746 5063 y F6(j)p Ga(M)10 b F6(j)2894 5030 y
+Fu(s)2894 5086 y Gc(a)2962 5051 y(.)3017 5063 y Ga(a)17
+b F4(:)g Ga(B)5 b Gg(.)p Black 348 5249 a(\(ii\))p Black
+46 w(If)28 b Ga(M)42 b F6(2)33 b FY(I)27 b Gg(with)g(the)h(typing)h
+(judgement)g F4(\000)1960 5237 y Gc(.)2014 5249 y Ga(M)2138
+5237 y Gc(.)2193 5249 y Ga(a)17 b F4(:)g Ga(B)5 b Gg(,)27
+b(then)i(we)d(ha)n(v)o(e)j F6(j)p Ga(M)10 b F6(j)3084
+5216 y Fu(n)3157 5249 y F6(2)33 b F4(\003)27 b Gg(with)504
+5361 y(the)d(typing)h(judgement)h F4(\000)1382 5349 y
+Gc(.)1437 5361 y F6(j)p Ga(M)10 b F6(j)1585 5329 y Fu(n)1643
+5361 y F4(:)18 b Ga(B)t Gg(.)p Black Black eop end
+%%Page: 70 82
+TeXDict begin 70 81 bop Black -144 51 a Gb(70)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black 321 277 3226
+4 v 321 1863 4 1587 v 1483 369 548 4 v 1483 447 a Ga(x)17
+b F4(:)g Ga(B)5 b(;)15 b F4(\000)1790 435 y Gc(.)1845
+447 y Ga(x)i F4(:)h Ga(B)536 638 y(x)f F4(:)g Ga(B)5
+b(;)15 b F4(\000)843 626 y Gc(.)898 638 y Ga(M)27 b F4(:)18
+b Ga(C)p 511 676 641 4 v 511 755 a F4(\000)593 743 y
+Gc(.)648 755 y Ga(\025x:M)28 b F4(:)17 b Ga(B)5 b F6(\033)o
+Ga(C)1193 693 y F6(\033)1264 707 y Gc(I)2030 653 y F4(\000)2112
+641 y Gc(.)2167 653 y Ga(M)27 b F4(:)18 b Ga(B)5 b F6(\033)o
+Ga(C)97 b F4(\000)2713 641 y Gc(.)2768 653 y Ga(N)27
+b F4(:)18 b Ga(B)p 2030 677 955 4 v 2275 755 a F4(\000)2357
+743 y Gc(.)2412 755 y Ga(M)25 b(N)i F4(:)18 b Ga(C)3026
+694 y F6(\033)3096 708 y Gc(E)431 983 y F4(\000)514 971
+y Gc(.)568 983 y Ga(M)28 b F4(:)17 b Ga(B)96 b F4(\000)973
+971 y Gc(.)1028 983 y Ga(N)27 b F4(:)17 b Ga(C)p 431
+1003 811 4 v 492 1088 a F4(\000)574 1076 y Gc(.)629 1088
+y F6(h)p Ga(M)5 b(;)15 b(N)10 b F6(i)18 b F4(:)g Ga(B)5
+b F6(^)o Ga(C)1283 1021 y F6(^)1344 1035 y Gc(I)1760
+969 y F4(\000)1842 957 y Gc(.)1897 969 y Ga(M)28 b F4(:)17
+b Ga(B)2124 983 y F9(1)2164 969 y F6(^)o Ga(B)2293 983
+y F9(2)p 1738 1003 617 4 v 1738 1088 a F4(\000)1820 1076
+y Gc(.)1875 1088 y Fp(fst)o F4(\()p Ga(M)10 b F4(\))18
+b(:)g Ga(B)2316 1102 y F9(1)2396 1017 y F6(^)2457 1031
+y Gc(E)2509 1040 y FV(1)2661 969 y F4(\000)2743 957 y
+Gc(.)2798 969 y Ga(M)27 b F4(:)18 b Ga(B)3025 983 y F9(1)3064
+969 y F6(^)p Ga(B)3194 983 y F9(2)p 2638 1003 V 2638
+1088 a F4(\000)2721 1076 y Gc(.)2775 1088 y Fp(snd)p
+F4(\()p Ga(M)10 b F4(\))18 b(:)f Ga(B)3216 1102 y F9(2)3297
+1017 y F6(^)3358 1031 y Gc(E)3410 1040 y FV(2)1066 1302
+y F4(\000)1148 1290 y Gc(.)1203 1302 y Ga(M)27 b F4(:)17
+b Ga(B)1429 1316 y F9(1)p 874 1335 786 4 v 874 1420 a
+F4(\000)956 1408 y Gc(.)1011 1420 y Fp(inl)o F4(\()p
+Ga(M)10 b F4(\))18 b(:)g Ga(B)1452 1434 y F9(1)1491 1420
+y F6(_)p Ga(B)1621 1434 y F9(2)1702 1349 y F6(_)1762
+1363 y Gc(I)1793 1372 y FV(1)2228 1302 y F4(\000)2310
+1290 y Gc(.)2364 1302 y Ga(M)28 b F4(:)17 b Ga(B)2591
+1316 y F9(2)p 2036 1335 V 2036 1420 a F4(\000)2118 1408
+y Gc(.)2173 1420 y Fp(inr)o F4(\()p Ga(M)10 b F4(\))18
+b(:)g Ga(B)2614 1434 y F9(1)2653 1420 y F6(_)p Ga(B)2783
+1434 y F9(2)2864 1349 y F6(_)2924 1363 y Gc(I)2955 1372
+y FV(2)941 1634 y F4(\000)1023 1622 y Gc(.)1078 1634
+y Ga(P)30 b F4(:)17 b Ga(B)5 b F6(_)o Ga(C)98 b(x)17
+b F4(:)g Ga(B)5 b(;)15 b F4(\000)1812 1622 y Gc(.)1867
+1634 y Ga(M)28 b F4(:)17 b Ga(D)94 b(y)20 b F4(:)d Ga(C)q(;)e
+F4(\000)2490 1622 y Gc(.)2545 1634 y Ga(N)27 b F4(:)17
+b Ga(D)p 941 1672 1825 4 v 1298 1757 a F4(\000)1380 1745
+y Gc(.)1435 1757 y Fp(case)o F4(\()p Ga(P)s(;)e(\025x:M)5
+b(;)15 b(\025)q(y)s(:N)10 b F4(\))18 b(:)f Ga(D)2807
+1690 y F6(_)2867 1704 y Gc(E)p 3543 1863 4 1587 v 321
+1866 3226 4 v Black 636 2019 a Gg(Figure)24 b(3.2:)30
+b(T)-6 b(erm)22 b(assignment)k(for)d(intuitionistic)28
+b(natural)d(deduction)h(proofs.)p Black Black Black 321
+2465 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Both)d(by)h(routine)h(induction)
+i(on)c(the)h(structure)i(of)d Ga(M)10 b Gg(.)p 3480 2465
+4 62 v 3484 2407 55 4 v 3484 2465 V 3538 2465 4 62 v
+Black 321 2653 a Gb(Remark)35 b(3.1.3:)p Black 34 w Gg(It)g(is)g
+(well-kno)n(wn)h(that)g F6(j)p 1768 2653 28 4 v 1786
+2653 V 1804 2653 V 65 w(j)1856 2620 y Fu(n)1897 2653
+y Gg(,)h(the)e(translation)j(from)d(sequent)i(proofs)g(to)e(NJ-)321
+2766 y(proofs,)25 b(is)e(man)o(y-to-one.)31 b(T)-7 b(ak)o(e)24
+b(for)f(e)o(xample)i(the)f(sequent)h(proof)p Black Black
+1320 2960 233 4 v 1320 3039 a Ga(A)p 1408 3027 11 41
+v 1418 3008 46 5 v 96 w(A)p 1252 3058 367 4 v 1252 3137
+a(A)p F6(^)p Ga(B)p 1475 3125 11 41 v 1485 3107 46 5
+v 101 w(A)1661 3072 y F6(^)1721 3086 y Gc(L)1769 3095
+y FV(1)p 1899 2960 233 4 v 1899 3039 a Ga(A)p 1987 3027
+11 41 v 1998 3008 46 5 v 97 w(A)p 2223 2960 233 4 v 91
+w(A)p 2311 3027 11 41 v 2321 3008 46 5 v 96 w(A)p 1899
+3058 557 4 v 1996 3137 a(A)p 2085 3125 11 41 v 2095 3107
+46 5 v 97 w(A)p F6(^)p Ga(A)2497 3077 y F6(^)2557 3091
+y Gc(R)p 1252 3157 1106 4 v 1557 3236 a Ga(A)p F6(^)p
+Ga(B)p 1780 3224 11 41 v 1790 3206 46 5 v 101 w(A)p F6(^)p
+Ga(A)2399 3187 y Gg(Cut)p 1451 3256 708 4 v 1472 3329
+11 41 v 1482 3310 46 5 v 1548 3341 a F4(\()p Ga(A)p F6(^)p
+Ga(B)5 b F4(\))p F6(\033)o F4(\()p Ga(A)p F6(^)q Ga(A)p
+F4(\))2201 3273 y F6(\033)2271 3287 y Gc(R)321 3591 y
+Gg(and)24 b(the)g(tw)o(o)f(normal)i(forms)p Black Black
+852 3766 233 4 v 852 3845 a Ga(A)p 940 3833 11 41 v 950
+3815 46 5 v 96 w(A)p 1175 3766 233 4 v 91 w(A)p 1263
+3833 11 41 v 1274 3815 46 5 v 97 w(A)p 852 3865 557 4
+v 949 3943 a(A)p 1037 3931 11 41 v 1048 3913 46 5 v 96
+w(A)p F6(^)p Ga(A)1449 3883 y F6(^)1510 3897 y Gc(R)p
+882 3963 496 4 v 882 4042 a Ga(A)p F6(^)p Ga(B)p 1104
+4030 11 41 v 1115 4012 46 5 v 100 w(A)p F6(^)p Ga(A)1419
+3977 y F6(^)1480 3991 y Gc(L)1528 4000 y FV(1)p 776 4062
+708 4 v 796 4135 11 41 v 806 4117 46 5 v 872 4147 a F4(\()p
+Ga(A)p F6(^)p Ga(B)5 b F4(\))p F6(\033)p F4(\()p Ga(A)p
+F6(^)p Ga(A)p F4(\))1525 4080 y F6(\033)1596 4094 y Gc(R)p
+1957 3766 233 4 v 1957 3845 a Ga(A)p 2045 3833 11 41
+v 2056 3815 46 5 v 96 w(A)p 1890 3865 367 4 v 1890 3943
+a(A)p F6(^)o Ga(B)p 2112 3931 11 41 v 2123 3913 46 5
+v 101 w(A)2298 3878 y F6(^)2359 3892 y Gc(L)2407 3901
+y FV(1)p 2603 3766 233 4 v 2603 3845 a Ga(A)p 2692 3833
+11 41 v 2702 3815 46 5 v 97 w(A)p 2536 3865 367 4 v 2536
+3943 a(A)p F6(^)p Ga(B)p 2759 3931 11 41 v 2769 3913
+46 5 v 101 w(A)2945 3878 y F6(^)3005 3892 y Gc(L)3053
+3901 y FV(1)p 1890 3963 1014 4 v 2149 4042 a Ga(A)p F6(^)o
+Ga(B)p 2371 4030 11 41 v 2381 4012 46 5 v 101 w(A)p F6(^)p
+Ga(A)2945 3982 y F6(^)3005 3996 y Gc(R)p 2042 4062 708
+4 v 2063 4135 11 41 v 2073 4117 46 5 v 2139 4147 a F4(\()p
+Ga(A)p F6(^)p Ga(B)g F4(\))p F6(\033)o F4(\()p Ga(A)p
+F6(^)q Ga(A)p F4(\))2792 4080 y F6(\033)2862 4094 y Gc(R)321
+4397 y Gg(reachable)25 b(from)e(it)f(\(for)h(bre)n(vity)h(we)e(omitted)
+i(all)f(labels\).)30 b(All)22 b(three)h(sequent)i(proofs)f(are)f
+(mapped)321 4510 y(by)h F6(j)p 462 4510 28 4 v 480 4510
+V 497 4510 V 65 w(j)550 4477 y Fu(n)613 4510 y Gg(to)g(the)g(same)f
+(lambda)h(term,)g(namely)1522 4755 y Ga(\025x:)p F6(h)p
+Fp(fst)p F4(\()p Ga(x)p F4(\))p Ga(;)15 b Fp(snd)p F4(\()p
+Ga(x)p F4(\))p F6(i)26 b Ga(:)462 5023 y Gg(Ne)o(xt)i(we)g(shall)h
+(de\002ne)g(the)g(reduction)i(rules)e(for)g(NJ-proofs.)45
+b(Recall)29 b(that)f(one)h(of)g(the)f(moti-)321 5136
+y(v)n(ations)e(of)e(cut-elimination)j(are)d(to)g(transform)i(a)d(proof)
+i(containing)i(cuts)e(to)f(one)g(in)g(normal)h(form)321
+5249 y(satisfying)h(the)d(subformula)i(property)g(\(see)f(De\002nition)
+f(2.1.1\).)29 b(Whereas)24 b(in)f(sequent)i(calculi)f(one)321
+5361 y(can)h(check)g(by)g(simple)g(inspection)i(of)d(a)g(proof)h
+(whether)h(the)e(subformula)j(property)f(holds,)g(this)f(is)p
+Black Black eop end
+%%Page: 71 83
+TeXDict begin 71 82 bop Black 277 51 a Gb(3.1)23 b(Intuitionistic)i
+(Natural)f(Deduction)2216 b(71)p 277 88 3691 4 v Black
+Black 277 533 V 277 2392 4 1860 v 587 711 a Gg(\(1\))926
+b F6(j)p Ga(x)p F6(j)1720 678 y Fu(s)1720 733 y Gc(c)1855
+659 y F5(def)1862 711 y F4(=)106 b FL(Ax)p F4(\()p Ga(x;)15
+b(c)p F4(\))587 851 y Gg(\(2\))750 b F6(j)p Ga(\025x:M)10
+b F6(j)1720 818 y Fu(s)1720 873 y Gc(c)1855 799 y F5(def)1862
+851 y F4(=)106 b FL(Imp)2184 873 y Gc(R)2242 851 y F4(\()2277
+839 y F9(\()2304 851 y Ga(x)2356 839 y F9(\))q FX(h)2411
+851 y Ga(a)2459 839 y FX(i)2502 851 y F6(j)p Ga(M)10
+b F6(j)2650 818 y Fu(s)2650 873 y Gc(a)2692 851 y Ga(;)15
+b(c)p F4(\))587 990 y Gg(\(3\))691 b F6(jh)p Ga(M)5 b(;)15
+b(N)10 b F6(ij)1719 957 y Fu(s)1719 1013 y Gc(c)1855
+939 y F5(def)1862 990 y F4(=)106 b FL(And)2194 1004 y
+Gc(R)2252 990 y F4(\()2287 978 y FX(h)2315 990 y Ga(a)2363
+978 y FX(i)2405 990 y F6(j)p Ga(M)10 b F6(j)2553 957
+y Fu(s)2553 1013 y Gc(a)2595 990 y Ga(;)2635 978 y FX(h)2663
+990 y Ga(b)2702 978 y FX(i)2745 990 y F6(j)p Ga(N)g F6(j)2878
+957 y Fu(s)2878 1018 y Gc(b)2913 990 y Ga(;)15 b(c)p
+F4(\))587 1130 y Gg(\(4\))666 b F6(j)p Fp(inl)p F4(\()p
+Ga(M)10 b F4(\))p F6(j)1720 1097 y Fu(s)1720 1153 y Gc(c)1855
+1079 y F5(def)1862 1130 y F4(=)106 b FL(Or)2139 1093
+y F9(1)2139 1153 y Gc(R)2196 1130 y F4(\()2231 1118 y
+FX(h)2259 1130 y Ga(a)2307 1118 y FX(i)2350 1130 y F6(j)p
+Ga(M)10 b F6(j)2498 1097 y Fu(s)2498 1153 y Gc(a)2540
+1130 y Ga(;)15 b(c)p F4(\))587 1270 y Gg(\(5\))666 b
+F6(j)p Fp(inr)p F4(\()p Ga(M)10 b F4(\))p F6(j)1720 1237
+y Fu(s)1720 1293 y Gc(c)1855 1219 y F5(def)1862 1270
+y F4(=)106 b FL(Or)2139 1233 y F9(2)2139 1293 y Gc(R)2196
+1270 y F4(\()2231 1258 y FX(h)2259 1270 y Ga(a)2307 1258
+y FX(i)2350 1270 y F6(j)p Ga(M)10 b F6(j)2498 1237 y
+Fu(s)2498 1293 y Gc(a)2540 1270 y Ga(;)15 b(c)p F4(\))587
+1528 y Gg(\(6\))772 b F6(j)p Ga(M)35 b(N)10 b F6(j)1720
+1495 y Fu(s)1720 1550 y Gc(c)1855 1476 y F5(def)1862
+1528 y F4(=)106 b F6(j)p Ga(M)10 b F6(j)2187 1495 y Fu(s)2187
+1550 y Gc(a)2230 1528 y F4([)p Ga(a)25 b F4(:=)2449 1516
+y F9(\()2477 1528 y Ga(y)2525 1516 y F9(\))2552 1528
+y FL(Imp)2697 1550 y Gc(L)2749 1528 y F4(\()2784 1516
+y FX(h)2812 1528 y Ga(b)2851 1516 y FX(i)2878 1528 y
+F6(j)p Ga(N)10 b F6(j)3011 1495 y Fu(s)3011 1556 y Gc(b)3046
+1528 y Ga(;)3086 1516 y F9(\()3114 1528 y Ga(z)3160 1516
+y F9(\))3187 1528 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p
+F4(\))r Ga(;)g(y)s F4(\)])587 1668 y Gg(\(7\))666 b F6(j)p
+Fp(fst)p F4(\()p Ga(M)10 b F4(\))p F6(j)1720 1635 y Fu(s)1720
+1690 y Gc(c)1855 1616 y F5(def)1862 1668 y F4(=)106 b
+F6(j)p Ga(M)10 b F6(j)2187 1635 y Fu(s)2187 1690 y Gc(a)2230
+1668 y F4([)p Ga(a)25 b F4(:=)2449 1656 y F9(\()2477
+1668 y Ga(y)2525 1656 y F9(\))2552 1668 y FL(And)2707
+1631 y F9(1)2707 1691 y Gc(L)2759 1668 y F4(\()2794 1656
+y F9(\()2822 1668 y Ga(x)2874 1656 y F9(\))2901 1668
+y FL(Ax)p F4(\()p Ga(x;)15 b(c)p F4(\))q Ga(;)g(y)s F4(\))q(])587
+1808 y Gg(\(8\))666 b F6(j)p Fp(snd)p F4(\()p Ga(M)10
+b F4(\))p F6(j)1720 1775 y Fu(s)1720 1830 y Gc(c)1855
+1756 y F5(def)1862 1808 y F4(=)106 b F6(j)p Ga(M)10 b
+F6(j)2187 1775 y Fu(s)2187 1830 y Gc(a)2230 1808 y F4([)p
+Ga(a)25 b F4(:=)2449 1796 y F9(\()2477 1808 y Ga(y)2525
+1796 y F9(\))2552 1808 y FL(And)2707 1771 y F9(2)2707
+1831 y Gc(L)2759 1808 y F4(\()2794 1796 y F9(\()2822
+1808 y Ga(x)2874 1796 y F9(\))2901 1808 y FL(Ax)p F4(\()p
+Ga(x;)15 b(c)p F4(\))q Ga(;)g(y)s F4(\))q(])587 1947
+y Gg(\(9\))142 b F6(j)p Fp(case)p F4(\()p Ga(P)s(;)15
+b(\025x:M)5 b(;)15 b(\025)q(y)s(:N)10 b F4(\))p F6(j)1720
+1914 y Fu(s)1720 1970 y Gc(c)1855 1896 y F5(def)1862
+1947 y F4(=)106 b F6(j)p Ga(P)13 b F6(j)2160 1914 y Fu(s)2160
+1970 y Gc(a)2203 1947 y F4([)p Ga(a)25 b F4(:=)2422 1935
+y F9(\()2450 1947 y Ga(z)2496 1935 y F9(\))2524 1947
+y FL(Or)2623 1961 y Gc(L)2675 1947 y F4(\()2710 1935
+y F9(\()2738 1947 y Ga(x)2790 1935 y F9(\))2817 1947
+y F6(j)p Ga(M)10 b F6(j)2965 1914 y Fu(s)2965 1970 y
+Gc(c)3000 1947 y Ga(;)3040 1935 y F9(\()3068 1947 y Ga(y)3116
+1935 y F9(\))3144 1947 y F6(j)p Ga(N)g F6(j)3277 1914
+y Fu(s)3277 1970 y Gc(c)3312 1947 y Ga(;)15 b(z)t F4(\))q(])1289
+2173 y Gg(where)24 b(in:)101 b(\(6\))114 b Ga(y)28 b
+F6(62)d Ga(F)13 b(N)d F4(\()2297 2161 y FX(h)2325 2173
+y Ga(b)2364 2161 y FX(i)2392 2173 y F6(j)p Ga(N)g F6(j)2525
+2140 y Fu(s)2525 2201 y Gc(b)2559 2173 y F4(\))1730 2286
+y Gg(\(9\))114 b Ga(z)30 b F6(62)25 b Ga(F)13 b(N)d F4(\()2296
+2274 y F9(\()2324 2286 y Ga(x)2376 2274 y F9(\))2403
+2286 y F6(j)p Ga(M)g F6(j)2551 2253 y Fu(s)2551 2309
+y Gc(c)2586 2286 y Ga(;)2626 2274 y F9(\()2654 2286 y
+Ga(y)2702 2274 y F9(\))2729 2286 y F6(j)p Ga(N)g F6(j)2862
+2253 y Fu(s)2862 2309 y Gc(c)2898 2286 y F4(\))p 3965
+2392 V 277 2395 3691 4 v Black 601 2549 a Gg(Figure)24
+b(3.3:)29 b(T)m(ranslation)d(from)d(NJ-proofs)i(to)f(intuitionistic)j
+(sequent)f(proofs.)p Black Black Black 277 3151 V 277
+4929 4 1779 v 595 3329 a(\(1\))661 b F6(j)p FL(Ax)p F4(\()p
+Ga(x;)15 b(a)p F4(\))p F6(j)1724 3296 y Fu(n)1865 3277
+y F5(def)1872 3329 y F4(=)107 b Ga(x)595 3468 y Gg(\(2\))335
+b F6(j)p FL(Cut)p F4(\()1233 3456 y FX(h)1261 3468 y
+Ga(a)1309 3456 y FX(i)1336 3468 y Ga(M)10 b(;)1474 3456
+y F9(\()1502 3468 y Ga(x)1554 3456 y F9(\))1582 3468
+y Ga(N)g F4(\))p F6(j)1725 3435 y Fu(n)1865 3417 y F5(def)1872
+3468 y F4(=)107 b F6(j)p Ga(N)10 b F6(j)2183 3435 y Fu(n)2224
+3468 y F4([)p Ga(x)25 b F4(:=)h F6(j)p Ga(M)10 b F6(j)2596
+3435 y Fu(n)2637 3468 y F4(])595 3726 y Gg(\(3\))194
+b F6(j)p FL(And)1073 3740 y Gc(R)1131 3726 y F4(\()1166
+3714 y FX(h)1194 3726 y Ga(a)1242 3714 y FX(i)1269 3726
+y Ga(M)11 b(;)1408 3714 y FX(h)1435 3726 y Ga(b)1474
+3714 y FX(i)1502 3726 y Ga(N)f(;)15 b(c)p F4(\))p F6(j)1724
+3693 y Fu(n)1865 3675 y F5(def)1872 3726 y F4(=)107 b
+F6(hj)p Ga(M)10 b F6(j)2233 3693 y Fu(n)2274 3726 y Ga(;)15
+b F6(j)p Ga(N)10 b F6(j)2447 3693 y Fu(n)2489 3726 y
+F6(i)595 3866 y Gg(\(4\))467 b F6(j)p FL(Or)1291 3829
+y F9(1)1291 3889 y Gc(R)1349 3866 y F4(\()1384 3854 y
+FX(h)1412 3866 y Ga(a)1460 3854 y FX(i)1487 3866 y Ga(M)10
+b(;)15 b(b)p F4(\))p F6(j)1724 3833 y Fu(n)1865 3815
+y F5(def)1872 3866 y F4(=)107 b Fp(inl)o F4(\()p F6(j)p
+Ga(M)10 b F6(j)2376 3833 y Fu(n)2418 3866 y F4(\))595
+4006 y Gg(\(5\))467 b F6(j)p FL(Or)1291 3969 y F9(2)1291
+4029 y Gc(R)1349 4006 y F4(\()1384 3994 y FX(h)1412 4006
+y Ga(a)1460 3994 y FX(i)1487 4006 y Ga(M)10 b(;)15 b(b)p
+F4(\))p F6(j)1724 3973 y Fu(n)1865 3954 y F5(def)1872
+4006 y F4(=)107 b Fp(inr)o F4(\()p F6(j)p Ga(M)10 b F6(j)2376
+3973 y Fu(n)2418 4006 y F4(\))595 4146 y Gg(\(6\))314
+b F6(j)p FL(Imp)1184 4168 y Gc(R)1242 4146 y F4(\()1277
+4134 y F9(\()1304 4146 y Ga(x)1356 4134 y F9(\))q FX(h)1411
+4146 y Ga(a)1459 4134 y FX(i)1487 4146 y Ga(M)10 b(;)15
+b(c)p F4(\))p F6(j)1724 4113 y Fu(n)1865 4094 y F5(def)1872
+4146 y F4(=)107 b Ga(\025x:)p F6(j)p Ga(M)10 b F6(j)2328
+4113 y Fu(n)595 4404 y Gg(\(7\))404 b F6(j)p FL(And)1284
+4367 y F9(1)1284 4427 y Gc(L)1336 4404 y F4(\()1371 4392
+y F9(\()1399 4404 y Ga(x)1451 4392 y F9(\))1478 4404
+y Ga(M)10 b(;)15 b(y)s F4(\))p F6(j)1724 4371 y Fu(n)1865
+4352 y F5(def)1872 4404 y F4(=)107 b F6(j)p Ga(M)10 b
+F6(j)2198 4371 y Fu(n)2239 4404 y F4([)p Ga(x)25 b F4(:=)h
+Fp(fst)o F4(\()p Ga(y)s F4(\)])595 4543 y Gg(\(8\))404
+b F6(j)p FL(And)1284 4507 y F9(2)1284 4566 y Gc(L)1336
+4543 y F4(\()1371 4531 y F9(\()1399 4543 y Ga(x)1451
+4531 y F9(\))1478 4543 y Ga(M)10 b(;)15 b(y)s F4(\))p
+F6(j)1724 4510 y Fu(n)1865 4492 y F5(def)1872 4543 y
+F4(=)107 b F6(j)p Ga(M)10 b F6(j)2198 4510 y Fu(n)2239
+4543 y F4([)p Ga(x)25 b F4(:=)h Fp(snd)o F4(\()p Ga(y)s
+F4(\)])595 4683 y Gg(\(9\))235 b F6(j)p FL(Or)1059 4697
+y Gc(L)1111 4683 y F4(\()1146 4671 y F9(\()1174 4683
+y Ga(x)1226 4671 y F9(\))1254 4683 y Ga(M)10 b(;)1392
+4671 y F9(\()1420 4683 y Ga(y)1468 4671 y F9(\))1495
+4683 y Ga(N)g(;)15 b(z)t F4(\))p F6(j)1724 4650 y Fu(n)1865
+4632 y F5(def)1872 4683 y F4(=)107 b Fp(case)o F4(\()p
+Ga(z)t(;)15 b(\025)q(x:)p F6(j)p Ga(M)10 b F6(j)2641
+4650 y Fu(n)2682 4683 y Ga(;)15 b(\025)q(y)s(:)p F6(j)p
+Ga(N)10 b F6(j)2982 4650 y Fu(n)3023 4683 y F4(\))595
+4823 y Gg(\(10\))143 b F6(j)p FL(Imp)1058 4845 y Gc(L)1110
+4823 y F4(\()1145 4811 y FX(h)1172 4823 y Ga(a)1220 4811
+y FX(i)1248 4823 y Ga(M)10 b(;)1386 4811 y F9(\()1414
+4823 y Ga(x)1466 4811 y F9(\))1493 4823 y Ga(N)g(;)15
+b(y)s F4(\))p F6(j)1724 4790 y Fu(n)1865 4771 y F5(def)1872
+4823 y F4(=)107 b F6(j)p Ga(N)10 b F6(j)2183 4790 y Fu(n)2224
+4823 y F4([)p Ga(x)25 b F4(:=)h(\()p Ga(y)33 b F6(j)p
+Ga(M)10 b F6(j)2709 4790 y Fu(n)2750 4823 y F4(\)])p
+3965 4929 V 277 4932 3691 4 v Black 601 5086 a Gg(Figure)24
+b(3.4:)29 b(T)m(ranslation)d(from)d(intuitionistic)k(sequent)f(proofs)f
+(to)e(NJ-proofs.)p Black Black Black Black eop end
+%%Page: 72 84
+TeXDict begin 72 83 bop Black -144 51 a Gb(72)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(more)h(dif)n
+(\002cult)g(in)f(NJ.)f(Consider)i(the)g(proof)g(fragment)h(where)e(an)g
+(implication)j(is)d(introduced)j(and)321 478 y(eliminated)g
+(immediately)f(afterw)o(ards.)1558 696 y F6(D)1628 710
+y F9(1)1388 788 y Ga(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)p
+1691 776 11 41 v 1701 758 46 5 v 96 w Ga(C)p 1388 825
+451 4 v 1429 904 a F4(\000)p 1506 892 11 41 v 1516 874
+46 5 v 96 w Ga(B)5 b F6(\033)o Ga(C)1880 843 y F6(\033)1950
+857 y Gc(I)2140 812 y F6(D)2210 826 y F9(2)2081 904 y
+F4(\000)p 2158 892 11 41 v 2169 874 46 5 v 96 w Ga(B)p
+1429 928 880 4 v 1756 1006 a F4(\000)p 1833 994 11 41
+v 1843 976 46 5 v 96 w Ga(C)2349 945 y F6(\033)2420 959
+y Gc(E)p Black 3372 1006 a Gg(\(3.1\))p Black 321 1210
+a(Here)21 b(the)h(formula)g Ga(B)5 b F6(\033)o Ga(C)27
+b Gg(violates)c(the)f(subformula)h(property)-6 b(.)30
+b(Ho)n(we)n(v)o(er)l(,)21 b(we)g(e)o(xpect)h(that)g F4(\000)p
+3399 1198 11 41 v 3409 1180 46 5 v 96 w Ga(C)321 1323
+y Gg(is)g(pro)o(v)n(able)h(without)g(introducing)i(this)e(formula.)29
+b(Indeed,)23 b(we)e(can)h(construct)j(a)c(proof)i(roughly)h(as)321
+1436 y(follo)n(ws:)37 b(some)27 b(lea)n(v)o(es)h(in)e
+F6(D)1286 1450 y F9(1)1352 1436 y Gg(are)h(of)g(the)g(form)p
+1931 1357 569 4 v 27 w Ga(x)17 b F4(:)g Ga(B)5 b(;)15
+b F4(\000)p Ga(;)g F4(\001)p 2349 1424 11 41 v 2360 1406
+46 5 v 96 w Ga(B)5 b Gg(\227replace)28 b(all)f(those)h(instances)321
+1549 y(with)23 b(the)g(natural)h(deduction)h(proof)f(of)e
+F4(\001)p Ga(;)15 b F4(\000)p 1802 1537 11 41 v 1812
+1519 46 5 v 97 w Ga(B)26 b Gg(that)d(is)g(obtained)i(by)d(adding)i
+F4(\001)e Gg(to)h(all)f(sequents)321 1662 y(of)32 b F6(D)498
+1676 y F9(2)568 1662 y Gg(and)g(by)f(possibly)j(renaming)f(some)e(v)n
+(ariables;)38 b(\002nally)32 b(remo)o(v)o(e)f(all)h(assumptions)i
+Ga(x)e F4(:)g Ga(B)321 1775 y Gg(in)k F6(D)497 1789 y
+F9(1)536 1775 y Gg(.)64 b(Belo)n(w)-6 b(,)37 b(we)e(shall)h(introduce)i
+(the)e(reduction)i(rules,)h(commonly)e(referred)g(to)e(as)h
+F7(beta-)321 1888 y(r)m(eductions)p Gg(,)26 b(realising)g(this)e(kind)g
+(of)g(proof)h(transformations.)p Black 321 2075 a Gb(De\002nition)e
+(3.1.4)g Gg(\(Beta-Reductions\))p Gb(:)p Black Black
+Black 1667 2285 a F4(\()p Ga(\025x:M)10 b F4(\))15 b
+Ga(N)2227 2248 y Gc(\014)2164 2285 y F6(\000)-32 b(\000)h(!)99
+b Ga(M)10 b F4([)p Ga(x)26 b F4(:=)f Ga(N)10 b F4(])1563
+2422 y Fp(fst)o F4(\()p F6(h)p Ga(M)5 b(;)15 b(N)10 b
+F6(i)p F4(\))2227 2385 y Gc(\014)2164 2422 y F6(\000)-32
+b(\000)h(!)99 b Ga(M)1563 2558 y Fp(snd)o F4(\()p F6(h)p
+Ga(M)5 b(;)15 b(N)10 b F6(i)p F4(\))2227 2521 y Gc(\014)2164
+2558 y F6(\000)-32 b(\000)h(!)99 b Ga(N)1004 2695 y Fp(case)o
+F4(\()p Fp(inl)p F4(\()p Ga(P)13 b F4(\))p Ga(;)i(\025)q(x:M)5
+b(;)15 b(\025)q(y)s(:N)10 b F4(\))2227 2658 y Gc(\014)2164
+2695 y F6(\000)-32 b(\000)h(!)99 b Ga(M)10 b F4([)p Ga(x)26
+b F4(:=)f Ga(P)13 b F4(])1004 2831 y Fp(case)o F4(\()p
+Fp(inr)p F4(\()p Ga(P)g F4(\))p Ga(;)i(\025)q(x:M)5 b(;)15
+b(\025)q(y)s(:N)10 b F4(\))2227 2794 y Gc(\014)2164 2831
+y F6(\000)-32 b(\000)h(!)99 b Ga(N)10 b F4([)p Ga(y)29
+b F4(:=)c Ga(P)13 b F4(])321 3081 y Gg(The)28 b(\002rst)f(reduction)k
+(rule)d(deals)h(with)f(proof)h(instances)h(as)e(sho)n(wn)g(in)g
+(\(3.1\).)42 b(Since)28 b(all)g(rules)g(are)321 3194
+y(rather)d(standard,)g(we)e(do)h(not)g(e)o(xplain)h(them)e(further)-5
+b(.)462 3328 y(Unfortunately)f(,)40 b(to)34 b(ensure)h(that)f(the)g
+(subformula)i(property)g(holds)f(for)f(normal)h(NJ-proofs,)321
+3441 y(the)30 b(beta-reductions)j(are)d(not)f(suf)n(\002cient.)47
+b(F)o(or)28 b(this)i(property)h(to)e(hold,)j(further)e(reduction)i
+(rules,)321 3554 y(referred)37 b(to)f(as)f F7(commuting)i(r)m
+(eductions)p Gg(,)j(are)c(required.)66 b(These)36 b(rules)g(are)f
+(often)i(criticised)h(as)321 3667 y(being)e(inele)o(gant,)i(if)c(not)g
+(catastrophic)k([Girard)d(et)f(al.,)f(1989,)38 b(P)o(age)c(74].)61
+b(Certainly)-6 b(,)38 b(the)o(y)c(are)321 3780 y(more)27
+b(complicated)i(than)e(beta-reductions)k(and)c(seem)f(to)g(be)h
+(necessary)h(just)f(because)i(of)d(certain)321 3893 y(defects)f(of)d
+(the)h(syntax)h(based)g(on)f(terms,)g(b)n(ut)g(we)f(shall)h(sho)n(w)g
+(that)g(the)o(y)g(correspond)j(to)c(the)h(\(quite)321
+4005 y(natural\))j(commuting)f(reductions)h(of)e(sequent)h(calculi.)p
+Black 321 4193 a Gb(De\002nition)e(3.1.5)g Gg(\(Commuting)i
+(Reductions\))p Gb(:)p Black Black Black 964 4403 a Fp(case)o
+F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025y)s(:N)10
+b F4(\))15 b Ga(Q)2036 4366 y Gc(\015)1971 4403 y F6(\000)-31
+b(\000)g(!)99 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p
+F4(\()p Ga(M)26 b(Q)p F4(\))p Ga(;)15 b(\025y)s(:)p F4(\()p
+Ga(N)26 b(Q)p F4(\)\))837 4540 y Fp(fst)o F4(\()p Fp(case)p
+F4(\()p Ga(P)s(;)15 b(\025x:M)5 b(;)15 b(\025)q(y)s(:N)10
+b F4(\)\))2036 4502 y Gc(\015)1971 4540 y F6(\000)-31
+b(\000)g(!)99 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p
+Fp(fst)o F4(\()p Ga(M)10 b F4(\))p Ga(;)15 b(\025)q(y)s(:)p
+Fp(fst)p F4(\()p Ga(N)10 b F4(\)\))837 4676 y Fp(snd)o
+F4(\()p Fp(case)p F4(\()p Ga(P)s(;)15 b(\025x:M)5 b(;)15
+b(\025)q(y)s(:N)10 b F4(\)\))2036 4639 y Gc(\015)1971
+4676 y F6(\000)-31 b(\000)g(!)99 b Fp(case)o F4(\()p
+Ga(P)s(;)15 b(\025)q(x:)p Fp(snd)o F4(\()p Ga(M)10 b
+F4(\))p Ga(;)15 b(\025)q(y)s(:)p Fp(snd)p F4(\()p Ga(N)10
+b F4(\)\))331 4822 y Fp(case)o F4(\()p Fp(case)o F4(\()p
+Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
+b F4(\))p Ga(;)15 b(\025)q(u:S;)g(\025v)s(:T)e F4(\))2036
+4785 y Gc(\015)1971 4822 y F6(\000)-31 b(\000)g(!)2240
+4813 y Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p Fp(case)o
+F4(\()p Ga(M)5 b(;)15 b(\025)q(u:S;)g(\025)q(v)s(:T)e
+F4(\))p Ga(;)2566 4925 y(\025y)s(:)p Fp(case)o F4(\()p
+Ga(N)5 b(;)15 b(\025)q(u:S;)g(\025)q(v)s(:T)e F4(\)\))321
+5175 y Gg(W)-7 b(e)26 b(shall,)h(as)f(usual,)h(assume)g(that)1546
+5138 y Gc(\014)1482 5175 y F6(\000)-31 b(\000)f(!)26
+b Gg(and)1899 5138 y Gc(\015)1834 5175 y F6(\000)-31
+b(\000)f(!)26 b Gg(are)g(closed)i(under)f(conte)o(xt)g(formation.)39
+b(Thus)321 5288 y(we)23 b(can)h(de\002ne)g(the)g(normalisation)i
+(procedure)h(of)c(NJ-proofs)i(as)f(follo)n(ws.)p Black
+Black eop end
+%%Page: 73 85
+TeXDict begin 73 84 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
+(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
+b(73)p 277 88 3691 4 v Black Black 277 365 a(De\002nition)23
+b(3.1.6)g Gg(\(Normalisation)j(Procedure)g(of)d(NJ-Proofs\))p
+Gb(:)p Black 277 478 a Gg(The)g(normalisation)k(procedure)f(for)e
+(NJ-proofs,)h F4(\(\003)p Ga(;)2099 440 y Gc(\023)2027
+478 y F6(\000)-31 b(\000)f(!)p F4(\))p Gg(,)23 b(is)g(a)g(reduction)j
+(system)f(where:)p Black 414 676 a F6(\017)p Black 45
+w F4(\003)e Gg(is)h(the)f(set)h(of)g(simply-typed)i(lambda)f(terms,)e
+(and)p Black 414 861 a F6(\017)p Black 577 824 a Gc(\023)504
+861 y F6(\000)-31 b(\000)g(!)22 b Gg(consists)k(of)d(beta-reductions)29
+b(and)24 b(commuting)h(reductions;)h(that)e(is)1659 1042
+y Gc(\023)1587 1079 y F6(\000)-31 b(\000)f(!)1782 1028
+y F5(def)1789 1079 y F4(=)1956 1042 y Gc(\014)1892 1079
+y F6(\000)h(\000)g(!)25 b([)2239 1042 y Gc(\015)2174
+1079 y F6(\000)-31 b(\000)f(!)50 b Ga(:)277 1333 y Gg(It)23
+b(is)h(simple)g(to)f(sho)n(w)h(that)1241 1296 y Gc(\023)1169
+1333 y F6(\000)-31 b(\000)f(!)23 b Gg(satis\002es)h(the)g(subject)i
+(reduction)g(property)-6 b(.)p Black 277 1521 a Gb(Pr)n(oposition)39
+b(3.1.7)e Gg(\(Subject)i(Reduction,)k(Pra)o(witz,)37
+b(1965\))p Gb(:)p Black 35 w Gg(Suppose)i Ga(M)47 b Gg(is)37
+b(a)g(simply-typed)277 1634 y(lambda)28 b(term)f(with)h(the)f(typing)i
+(judgement)g F4(\000)1841 1622 y Gc(.)1896 1634 y Ga(M)f
+F4(:)17 b Ga(B)31 b Gg(and)d Ga(M)2515 1597 y Gc(\023)2442
+1634 y F6(\000)-31 b(\000)g(!)32 b Ga(N)10 b Gg(,)27
+b(then)h Ga(N)36 b Gg(is)27 b(a)g(simply-)277 1747 y(typed)e(lambda)f
+(term)g(with)f(the)h(typing)h(judgement)g F4(\000)2043
+1735 y Gc(.)2098 1747 y Ga(M)j F4(:)17 b Ga(B)5 b Gg(.)p
+Black 277 1984 a F7(Pr)l(oof.)p Black 46 w Gg(Analogous)26
+b(to)d(proof)i(of)e(Proposition)j(2.2.10.)p 3436 1984
+4 62 v 3440 1926 55 4 v 3440 1984 V 3494 1984 4 62 v
+277 2187 a(Furthermore,)k(the)e(reduction)1363 2150 y
+Gc(\023)1290 2187 y F6(\000)-31 b(\000)g(!)27 b Gg(is)g(complete)i(in)f
+(the)g(sense)h(that)f(the)g(normal)g(NJ-proofs)i(sat-)277
+2300 y(isfy)j(the)f(subformula)j(property)-6 b(.)56 b(Whilst)33
+b(in)f(the)h(setting)g(of)f(sequent)i(calculi)g(the)f(proof)g(of)f
+(this)277 2413 y(property)d(is)d(by)g(tri)n(vial)h(inspection)i(of)d
+(the)h(inference)h(rules,)g(the)e(proof)i(for)e(NJ)g(is)g(more)g(dif)n
+(\002cult.)277 2526 y(F)o(or)k(e)o(xample,)i(a)e(simple)h(inspection)j
+(of)c(the)h(inference)i(rules)e(is)f(not)h(suf)n(\002cient;)k(for)c
+(the)g(details)277 2639 y(of)25 b(the)g(proof)h(we)e(refer)h(to)g([Pra)
+o(witz,)f(1965].)34 b(One)24 b(interesting)k(feature)e(of)f(the)g
+(natural)i(deduction)277 2752 y(calculus)g(we)d(shall)h(introduce)j(in)
+c(Section)i(3.3)e(for)h(classical)i(logic)f(is)e(that)h(the)g
+(subformula)i(prop-)277 2865 y(erty)j(for)g(normal)g(proofs)h(can)e(be)
+h(pro)o(v)o(ed,)h(lik)o(e)f(in)f(sequent)j(calculi,)g(by)d(a)g(simple)h
+(inspection)i(of)277 2978 y(the)24 b(inference)i(rules.)277
+3286 y Ge(3.2)119 b(The)48 b(Corr)n(espondence)i(between)f
+(Cut-Elimination)g(and)g(Nor)l(-)546 3435 y(malisation)29
+b(I)277 3659 y Gg(In)f(this)g(section,)i(we)d(address)i(the)f(question)
+i(whether)f(there)f(is)g(a)f(correspondence)32 b(between)d(cut-)277
+3772 y(elimination)h(and)e(normalisation,)j(or)c(more)h(precisely)i
+(whether)e(the)g(translations)i(de\002ned)f(in)e(the)277
+3885 y(preceding)j(section)e(respect)h(reduction.)41
+b(This)27 b(\223correspondence)32 b(question\224)d(w)o(as)e(tackled)h
+(pre)n(vi-)277 3997 y(ously)23 b(by)e(Zuck)o(er)h([1974])h(and)f
+(Pottinger)h([1977],)g(who)e(wrote)g(the)h(classic)h(w)o(orks)f(on)f
+(the)h(subject.)277 4110 y(Zuck)o(er)g(mentioned)g(that)g(the)f
+(correspondence)k(question)e(goes)f(back)f(to)g(the)g(follo)n(wing)h
+(remark)f(by)277 4223 y(Kreisel)j([1971,)h(P)o(age)e(113],)h(which)g
+(both)g(Zuck)o(er)h(and)f(Pottinger)h(dispro)o(v)o(e.)p
+Black Black 504 4445 a(Consider)9 b(.)14 b(.)g(.)g(a)35
+b(calculus)h(of)d(sequents)k(and)d(a)f(system)i(of)f(natural)h
+(deduction.)63 b(In-)504 4558 y(spection)39 b(sho)n(ws)d(that)12
+b(.)i(.)g(.)g(the)36 b(normalization)k(procedure)e(for)f(systems)g(of)f
+(natural)504 4671 y(deduction)31 b(does)d(not)g(correspond)i(to)d(a)g
+(particularly)k(natural)e(cut)f(elimination)h(pro-)504
+4784 y(cedure.)277 5006 y(Ho)n(we)n(v)o(er)l(,)h(there)g(are)f(some)h
+(subtle)g(points)h(in)e(their)h(w)o(orks,)g(which)g(mak)o(e)f(their)h
+(answers)g(not)f(so)277 5119 y(clear)n(-cut.)i(Let)23
+b(us)h(analyse)h(in)e(turn)i(these)f(subtleties.)418
+5249 y(Zuck)o(er)32 b(studied)g(the)f(correspondence)k(question)e
+(between)f(NJ)e(and)h(a)f(v)n(ariant)i(of)f(LJ.)e(Since)277
+5361 y(all)38 b(reduction)h(sequences)i(of)c(NJ)f(are)i(terminating,)43
+b(one)38 b(pro)o(viso)g(for)g(the)g(correspondence)k(is)p
+Black Black eop end
+%%Page: 74 86
+TeXDict begin 74 85 bop Black -144 51 a Gb(74)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(that)28
+b(all)g(reduction)h(sequences)i(in)c(the)g(sequent)j(calculus)f(are)e
+(terminating,)k(too.)40 b(Indeed,)30 b(a)d(non-)321 478
+y(terminating)c(reduction)f(sequence)g(in)e(the)h(sequent)g(calculus)h
+(w)o(ould)f(hamper)g(the)f(correspondence)321 590 y(with)29
+b(NJ.)f(Another)j(pro)o(viso)f(is)f(that)h(the)g(cut-elimination)j
+(procedure)e(has)f(to)f(include)i(reduction)321 703 y(rules)k(which)f
+(allo)n(w)f(cuts)i(to)e(pass)i(o)o(v)o(er)e(other)i(cuts.)60
+b(Gentzen)35 b([1935])g(did)f(not)g(consider)i(such)321
+816 y(rules,)23 b(as)f(the)o(y)g(are)h(usually)g(the)g(source)g(for)f
+(loops)h(and)g(therefore)h(for)e(non-terminating)k(reduction)321
+929 y(sequences;)h(ho)n(we)n(v)o(er)l(,)d(the)o(y)g(are)f(crucial)i
+(for)f(the)g(correspondence)k(question.)462 1059 y(One)22
+b(\(rather)h F7(ad)e(hoc)p Gg(\))h(w)o(ay)g(round)g(the)g(problem)h(of)
+e(loops)i(is)e(to)g(consider)j(only)e F7(pr)l(oper)h(r)m(educ-)321
+1172 y(tion)f(sequences)h Gg([Zuck)o(er,)f(1974,)g(P)o(age)e(93],)i
+(which)f(do)g(not)g(include)h(repetitions.)31 b(This)21
+b(restriction)321 1284 y(is)i(suf)n(\002cient)h(to)f(ensure)i
+(termination)g(of)e(Zuck)o(er')-5 b(s)24 b(cut-elimination)j(procedure)
+f(in)c(the)i F4(\()p F6(^)p Ga(;)15 b F6(\033)p Ga(;)g
+F6(8)p F4(\))p Gg(-)321 1397 y(fragment)24 b(of)d(intuitionistic)26
+b(logic,)d(and)f(so)g(he)g(could)h(answer)g(the)f(correspondence)27
+b(question)d(pos-)321 1510 y(iti)n(v)o(ely)34 b(for)e(this)h(fragment.)
+56 b(Using)33 b(the)f F6(_)1739 1524 y Gc(L)1791 1510
+y Gg(-rule,)j(ho)n(we)n(v)o(er)l(,)g(he)d(constructed)k(a)c
+(non-repeating,)321 1623 y(non-terminating)40 b(reduction)d(sequence,)k
+(and)35 b(thus)h(he)g(f)o(ailed)g(to)f(ensure)i(the)e(\002rst)g(pro)o
+(viso.)66 b(A)321 1736 y(simpli\002ed)31 b(v)o(ersion)g(of)f(this)h
+(reduction)h(sequence)g(is)e(sho)n(wn)g(in)g(Figure)g(3.5.)48
+b(Consequently)-6 b(,)35 b(he)321 1849 y(ga)n(v)o(e)28
+b(a)g(ne)o(gati)n(v)o(e)g(answer)h(to)e(the)i(correspondence)j
+(question)e(for)e(the)g(fragment)h(that)g(includes)h
+F6(_)321 1962 y Gg(and)i F6(9)p Gg(.)52 b(Zuck)o(er)32
+b(concluded)j(that)d(the)g(lack)g(of)g(termination)i(of)d
+(cut-elimination)36 b(w)o(as)31 b(responsi-)321 2075
+y(ble)e(for)f(this)g(f)o(ailure,)j(b)n(ut)d(we)g(shall)h(sho)n(w)f
+(that)g(e)n(v)o(en)g(if)g(one)h(does)f(ha)n(v)o(e)h(a)f(strongly)i
+(normalising)321 2188 y(cut-elimination)j(procedure)f(\(which)e(is)f(v)
+o(ery)h(similar)g(to)f(the)h(one)g(used)g(by)f(Zuck)o(er\),)j(the)d
+(corre-)321 2301 y(spondence)i(between)e(cut-elimination)i(and)d
+(normalisation)j(f)o(ails)d(for)g(the)g(standard)i(formulation)321
+2414 y(of)h(NJ:)g(certain)i(commuting)f(reductions)i(of)d(the)h
+(sequent)h(calculus)g(cannot)g(be)e(encoded)j(in)d(NJ.)321
+2526 y(In)c(Section)g(3.3)g(we)f(shall)h(mak)o(e)g(appropriate)j
+(changes)e(to)f(the)g(standard)h(formulation)h(of)e(natural)321
+2639 y(deduction)i(and)d(impro)o(v)o(e)h(Zuck)o(er')-5
+b(s)27 b(result)g(by)g(sho)n(wing)g(the)f(correspondence)k(in)c
+(classical)j(logic)321 2752 y(for)24 b(all)g(connecti)n(v)o(es.)462
+2882 y(In)g(some)h(sense)g(Pottinger)h(solv)o(ed)f(Zuck)o(er')-5
+b(s)25 b(problem)h(with)e(non-terminating)k(reduction)e(se-)321
+2995 y(quences,)j(and)e(thus)h(he)e(could)i(sho)n(w)e(the)h
+(correspondence)32 b(for)26 b(all)h(connecti)n(v)o(es.)41
+b(Unfortunately)-6 b(,)321 3108 y(his)25 b(method)g(had)g(a)f(subtle)h
+(defect:)32 b(he)25 b(annotated)i(sequent)f(proofs)g(with)e
+(lambda-terms)i(and)f(then)321 3220 y(formalised)30 b(cut-elimination)h
+(as)c(normalisation.)43 b(As)27 b(already)i(noted)g(by)e(himself,)i
+(the)f(notion)h(of)321 3333 y(normality)e(for)f(lambda)g(terms)f(does)h
+F7(not)g Gg(coincide)i(with)d(the)g(notion)i(of)e(cut-freedom)j
+([Pottinger,)321 3446 y(1977,)d(P)o(age)e(323].)29 b(Consider)c(for)f
+(e)o(xample)g(the)g(follo)n(wing)h(sequent)h(proof.)p
+1235 3619 244 4 v 1235 3698 a Ga(B)p 1329 3686 11 41
+v 1339 3668 46 5 v 101 w(B)p 1569 3619 244 4 v 95 w(B)p
+1663 3686 11 41 v 1673 3668 46 5 v 101 w(B)p 1235 3718
+578 4 v 1402 3797 a(B)p 1496 3785 11 41 v 1506 3767 46
+5 v 101 w(B)1854 3748 y Gg(Cut)p 2091 3602 354 4 v 2091
+3680 a Ga(B)5 b(;)15 b(C)p 2297 3668 11 41 v 2308 3650
+46 5 v 103 w(C)p 2076 3718 384 4 v 2076 3797 a(B)p 2170
+3785 11 41 v 2181 3767 46 5 v 101 w(C)7 b F6(\033)o Ga(C)2501
+3736 y F6(\033)2572 3750 y Gc(R)p 1402 3820 1058 4 v
+1739 3899 a Ga(B)p 1833 3887 11 41 v 1843 3869 46 5 v
+101 w(C)g F6(\033)o Ga(C)2501 3851 y Gg(Cut)321 4103
+y(Using)31 b(Pottinger')-5 b(s)33 b(term)e(assignment,)k(this)c(proof)h
+(is)e(annotated)k(with)c(the)h(lambda)h(term)e Ga(\025x:x)p
+Gg(.)321 4216 y(Clearly)-6 b(,)33 b(this)e(term)g(is)f(normal,)j(b)n
+(ut)e(the)f(sequent)j(proof)e(contains)i(tw)o(o)d(cuts.)51
+b(Because)31 b(the)g(cut-)321 4329 y(elimination)23 b(reductions)g
+(that)d(start)h(from)f(the)g(proof)h(abo)o(v)o(e)g(are)f(not)h
+(\223mirrored\224)h(by)e(an)o(y)g(reduction)321 4442
+y(of)26 b(the)h(lambda)g(term,)f(the)g(question)j(whether)e(these)g
+(cut-reductions)j(break)d(the)g(correspondence)321 4555
+y(remains)d(open.)29 b(W)-7 b(e)22 b(shall)i(a)n(v)n(oid)g(this)g
+(problem)g(by)f(using)h(our)f(term)f(assignment,)j(which)f(encodes)321
+4667 y(precisely)i(the)e(structure)i(of)d(sequent)j(proofs.)462
+4797 y(No)n(w)32 b(we)g(shall)i(be)o(gin)f(by)g(sho)n(wing)h(that)g
+(normalisation)i(in)c(NJ)h(can)g(be)g(simulated)h(by)f(our)321
+4910 y(intuitionistic)39 b(cut-elimination)g(procedure.)65
+b(T)-7 b(o)34 b(do)h(so,)i(we)d(shall)i(sho)n(w)e(that)i
+(beta-reductions)321 5023 y(map)28 b(onto)h(a)f(series)h(of)g
+(cut-reductions)j(and)d(that)g(commuting)g(reductions)i(map)d(onto)h
+(identities.)321 5136 y(F)o(or)35 b(the)h(\002rst)f(part)h(we)f(ha)n(v)
+o(e)h(to)g(pro)o(v)o(e)g(three)h(lemmas.)65 b(The)35
+b(\002rst)g(sho)n(ws)h(that)g(a)f(form)h(of)f(the)321
+5249 y(substitution)e(lemma)d(holds)h(for)e(the)h(proof)h(substitution)
+i F4([)p 2257 5249 28 4 v 2275 5249 V 2293 5249 V 65
+w(])c Gg(\(the)h(\223usual\224)i(substitution)h(lemma)321
+5361 y(does,)24 b(in)g(general,)h(not)f(hold)g(for)g(this)g
+(substitution;)j(cf.)c(Lemma)g(2.3.1\).)p Black Black
+eop end
+%%Page: 75 87
+TeXDict begin 75 86 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
+(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
+b(75)p 277 88 3691 4 v Black Black 277 990 V 277 3907
+4 2917 v Black Black 1093 1331 a Ga(\031)1145 1345 y
+F9(1)1020 1423 y Ga(C)p 1111 1411 11 41 v 1122 1393 46
+5 v 102 w(F)1426 1331 y(\031)1478 1345 y F9(2)1349 1423
+y Ga(D)p 1447 1411 11 41 v 1458 1393 46 5 v 99 w(F)p
+1020 1443 575 4 v 1118 1522 a(C)7 b F6(_)p Ga(D)p 1349
+1510 11 41 v 1359 1492 46 5 v 99 w(F)1636 1461 y F6(_)1697
+1475 y Gc(L)1912 1215 y Ga(\031)1964 1229 y F9(3)1840
+1307 y Ga(A)p 1928 1295 11 41 v 1939 1277 46 5 v 96 w(F)2241
+1215 y(\031)2293 1229 y F9(4)2166 1307 y Ga(B)p 2260
+1295 11 41 v 2270 1277 46 5 v 101 w(F)p 1840 1327 568
+4 v 1939 1406 a(A)p F6(_)o Ga(B)p 2161 1394 11 41 v 2172
+1375 46 5 v 101 w(F)2449 1345 y F6(_)2509 1359 y Gc(L)2777
+1313 y Ga(\031)2829 1327 y F9(5)2652 1406 y Ga(F)s(;)15
+b(F)p 2845 1394 11 41 v 2855 1375 46 5 v 110 w(G)p 1939
+1443 1054 4 v 2225 1522 a(A)p F6(_)p Ga(B)5 b(;)15 b(F)p
+2559 1510 11 41 v 2569 1492 46 5 v 109 w(G)3034 1474
+y Gb(Cut)3181 1441 y Fy(?)p 1118 1559 1588 4 v 1602 1638
+a Ga(C)7 b F6(_)o Ga(D)s(;)15 b(A)p F6(_)p Ga(B)p 2075
+1626 11 41 v 2085 1608 46 5 v 101 w(G)2748 1590 y Gb(Cut)2093
+1868 y FN(#)898 2304 y Ga(\031)950 2318 y F9(1)825 2397
+y Ga(C)p 916 2385 11 41 v 927 2366 46 5 v 102 w(F)1231
+2304 y(\031)1283 2318 y F9(2)1154 2397 y Ga(D)p 1252
+2385 11 41 v 1263 2366 46 5 v 100 w(F)p 825 2417 575
+4 v 924 2495 a(C)7 b F6(_)o Ga(D)p 1154 2483 11 41 v
+1164 2465 46 5 v 99 w(F)1441 2435 y F6(_)1502 2449 y
+Gc(L)1717 2054 y Ga(\031)1769 2068 y F9(3)1645 2146 y
+Ga(A)p 1733 2134 11 41 v 1744 2116 46 5 v 96 w(F)2096
+2054 y(\031)2148 2068 y F9(5)1971 2146 y Ga(F)s(;)15
+b(F)p 2164 2134 11 41 v 2174 2116 46 5 v 110 w(G)p 1645
+2184 667 4 v 1804 2263 a(A;)g(F)p 2004 2251 11 41 v 2015
+2232 46 5 v 110 w(G)2353 2214 y Gg(Cut)2650 2054 y Ga(\031)2702
+2068 y F9(4)2575 2146 y Ga(B)p 2669 2134 11 41 v 2680
+2116 46 5 v 101 w(F)3032 2054 y(\031)3084 2068 y F9(5)2907
+2146 y Ga(F)s(;)g(F)p 3100 2134 11 41 v 3110 2116 46
+5 v 110 w(G)p 2575 2184 673 4 v 2735 2263 a(B)5 b(;)15
+b(F)p 2940 2251 11 41 v 2951 2232 46 5 v 109 w(G)3289
+2214 y Gg(Cut)p 1804 2300 1284 4 v 2155 2379 a Ga(A)p
+F6(_)o Ga(B)5 b(;)15 b(F)s(;)g(F)p 2590 2367 11 41 v
+2600 2349 46 5 v 110 w(G)3129 2318 y F6(_)3190 2332 y
+Gc(L)p 2155 2417 583 4 v 2205 2495 a Ga(A)p F6(_)p Ga(B)5
+b(;)15 b(F)p 2539 2483 11 41 v 2550 2465 46 5 v 109 w(G)2779
+2440 y Gg(Contr)2985 2454 y Gc(L)p 924 2533 1764 4 v
+1495 2612 a Ga(C)7 b F6(_)o Ga(D)s(;)15 b(A)p F6(_)p
+Ga(B)p 1968 2600 11 41 v 1978 2581 46 5 v 101 w(G)2728
+2565 y Gg(Cut)2859 2532 y Fz(\017)2093 2841 y FN(#)488
+3278 y Ga(\031)540 3292 y F9(1)415 3370 y Ga(C)p 506
+3358 11 41 v 517 3340 46 5 v 102 w(F)821 3278 y(\031)873
+3292 y F9(2)744 3370 y Ga(D)p 842 3358 11 41 v 853 3340
+46 5 v 99 w(F)p 415 3390 575 4 v 513 3469 a(C)7 b F6(_)p
+Ga(D)p 744 3457 11 41 v 754 3438 46 5 v 99 w(F)1031 3408
+y F6(_)1092 3422 y Gc(L)1309 3161 y Ga(\031)1361 3175
+y F9(1)1235 3254 y Ga(C)p 1326 3242 11 41 v 1337 3223
+46 5 v 103 w(F)1641 3161 y(\031)1693 3175 y F9(2)1565
+3254 y Ga(D)p 1663 3242 11 41 v 1673 3223 46 5 v 99 w(F)p
+1235 3274 575 4 v 1334 3352 a(C)g F6(_)o Ga(D)p 1564
+3340 11 41 v 1574 3322 46 5 v 99 w(F)1851 3292 y F6(_)1912
+3306 y Gc(L)2127 3027 y Ga(\031)2179 3041 y F9(3)2055
+3120 y Ga(A)p 2143 3108 11 41 v 2154 3089 46 5 v 96 w(F)2506
+3027 y(\031)2558 3041 y F9(5)2381 3120 y Ga(F)s(;)15
+b(F)p 2574 3108 11 41 v 2585 3089 46 5 v 110 w(G)p 2055
+3157 667 4 v 2215 3236 a(A;)g(F)p 2414 3224 11 41 v 2425
+3206 46 5 v 110 w(G)2763 3188 y Gg(Cut)3060 3027 y Ga(\031)3112
+3041 y F9(4)2985 3120 y Ga(B)p 3079 3108 11 41 v 3090
+3089 46 5 v 101 w(F)3442 3027 y(\031)3494 3041 y F9(5)3317
+3120 y Ga(F)s(;)g(F)p 3510 3108 11 41 v 3520 3089 46
+5 v 110 w(G)p 2985 3157 673 4 v 3145 3236 a(B)5 b(;)15
+b(F)p 3350 3224 11 41 v 3361 3206 46 5 v 109 w(G)3699
+3188 y Gg(Cut)p 2215 3274 1284 4 v 2565 3352 a Ga(A)p
+F6(_)p Ga(B)5 b(;)15 b(F)s(;)g(F)p 3000 3340 11 41 v
+3011 3322 46 5 v 109 w(G)3539 3292 y F6(_)3600 3306 y
+Gc(L)p 1334 3390 1815 4 v 1875 3469 a Ga(C)7 b F6(_)o
+Ga(D)s(;)15 b(A)p F6(_)p Ga(B)5 b(;)15 b(F)p 2459 3457
+11 41 v 2469 3438 46 5 v 109 w(G)3189 3420 y Gb(Cut)p
+513 3506 2094 4 v 1125 3585 a Ga(C)7 b F6(_)o Ga(D)s(;)15
+b(C)7 b F6(_)o Ga(D)s(;)15 b(A)p F6(_)p Ga(B)p 1848 3573
+11 41 v 1858 3555 46 5 v 101 w(G)2648 3537 y Gb(Cut)p
+1125 3623 871 4 v 1250 3701 a Ga(C)7 b F6(_)o Ga(D)s(;)15
+b(A)p F6(_)p Ga(B)p 1723 3689 11 41 v 1733 3671 46 5
+v 101 w(G)2037 3647 y Gg(Contr)2243 3661 y Gc(L)p 3965
+3907 4 2917 v 277 3910 3691 4 v 277 4064 a Gg(Figure)40
+b(3.5:)62 b(A)38 b(non-terminating)44 b(reduction)e(sequence)h(in)c
+(Zuck)o(er')-5 b(s)41 b(sequent)h(calculus)g(\(see)277
+4177 y([Ungar,)22 b(1992]\).)30 b(In)22 b(the)g(\002rst)g(step,)h(the)f
+(cut)g(mark)o(ed)h(with)f(a)g(star)g(is)g(reduced)i(creating)g(tw)o(o)e
+(copies)277 4289 y(of)i Ga(\031)428 4303 y F9(5)491 4289
+y Gg(as)g(well)g(as)g(introducing)j(a)d(contraction.)33
+b(In)24 b(the)h(second)h(step,)e(the)h(cut)f(mark)o(ed)h(with)f(a)g
+(disk)277 4402 y(is)32 b(permuted)i(with)e(the)g(contraction)k(rule)c
+(creating)j(tw)o(o)c(copies)j(of)e Ga(\031)2606 4416
+y F9(1)2677 4402 y Gg(and)g Ga(\031)2891 4416 y F9(2)2931
+4402 y Gg(.)53 b(No)n(w)31 b(the)i(cuts)277 4515 y(written)27
+b(in)e(bold)i(f)o(ace)f(ha)n(v)o(e)h(the)f(same)f(shape,)i(and)g(we)e
+(can)h(repeat)h(the)f(reduction)i(applied)f(in)f(the)277
+4628 y(\002rst)d(step)h(and)g(so)g(forth)g F7(ad)g(in\002nitum.)p
+Black Black Black eop end
+%%Page: 76 88
+TeXDict begin 76 87 bop Black -144 51 a Gb(76)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(Lemma)32
+b(3.2.1:)p Black 34 w Gg(F)o(or)f(all)i Ga(M)51 b F6(2)41
+b FY(J)32 b Gg(and)h(tw)o(o)e(substitutions)37 b(ha)n(ving)d(the)e
+(form)g F4([)p Ga(a)42 b F4(:=)3195 353 y F9(\()3222
+365 y Ga(y)3270 353 y F9(\))3297 365 y Ga(S)5 b F4(])32
+b Gg(and)321 478 y F4([)p Ga(x)26 b F4(:=)545 466 y FX(h)572
+478 y Ga(b)611 466 y FX(i)639 478 y Ga(T)13 b F4(])p
+Gg(,)22 b(we)h(ha)n(v)o(e)684 694 y Ga(M)10 b F4([)p
+Ga(a)26 b F4(:=)1002 682 y F9(\()1029 694 y Ga(y)1077
+682 y F9(\))1105 694 y Ga(S)5 b F4(][)p Ga(x)25 b F4(:=)1415
+682 y FX(h)1442 694 y Ga(b)1481 682 y FX(i)1508 694 y
+Ga(T)13 b F4(])1664 657 y Gc(int)1625 694 y F6(\000)-32
+b(\000)h(!)1795 656 y FX(\003)1860 694 y Ga(M)10 b F4([)p
+Ga(x)25 b F4(:=)2181 682 y FX(h)2209 694 y Ga(b)2248
+682 y FX(i)2275 694 y Ga(T)13 b F4(][)p Ga(a)26 b F4(:=)2586
+682 y F9(\()2614 694 y Ga(y)2662 682 y F9(\))2689 694
+y Ga(S)5 b F4([)p Ga(x)25 b F4(:=)2973 682 y FX(h)3001
+694 y Ga(b)3040 682 y FX(i)3067 694 y Ga(T)13 b F4(]])321
+910 y Gg(pro)o(vided)26 b Ga(a)d Gg(is)g(not)h(free)g(in)1216
+898 y FX(h)1244 910 y Ga(b)1283 898 y FX(i)1310 910 y
+Ga(T)13 b Gg(,)22 b(and)i Ga(S)k Gg(freshly)d(introduces)i
+Ga(y)s Gg(,)22 b(b)n(ut)i(is)g(not)f(an)h(axiom.)p Black
+321 1122 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)f(induction)j(on)e(the)f
+(structure)j(of)e Ga(M)32 b Gg(\(see)25 b(P)o(age)e(156\).)p
+3480 1122 4 62 v 3484 1064 55 4 v 3484 1122 V 3538 1122
+4 62 v 321 1330 a(The)e(ne)o(xt)h(lemma)f(concerns)j(the)d(freshness)j
+(of)d(a)g(co-name,)i(say)f Ga(c)p Gg(,)f(when)g(forming)i(the)f
+(translation)321 1443 y F6(j)p 348 1443 28 4 v 366 1443
+V 384 1443 V 65 w(j)436 1410 y Fu(s)436 1466 y Gc(c)471
+1443 y Gg(;)h(it)g(will)h(be)f(applied)i(to)f(determine)h(whether)g(a)e
+(logical)i(cut-reduction)i(can)d(be)g(performed.)p Black
+321 1631 a Gb(Lemma)f(3.2.2:)p Black 34 w Gg(F)o(or)g(all)h
+Ga(M)35 b F6(2)25 b F4(\003)e Gg(and)h(for)f(all)h(co-names)h
+Ga(c)p Gg(,)e(if)g Ga(M)33 b Gg(is)23 b(of)h(the)g(form)p
+Black Black 1168 1851 a Ga(x)51 b F6(j)g Ga(\025x:S)k
+F6(j)c(h)p Ga(S;)15 b(T)e F6(i)51 b(j)g Fp(inl)o F4(\()p
+Ga(S)5 b F4(\))52 b F6(j)e Fp(inr)p F4(\()p Ga(S)5 b
+F4(\))321 2071 y Gg(then)25 b F6(j)p Ga(M)10 b F6(j)649
+2038 y Fu(s)649 2093 y Gc(c)707 2071 y Gg(freshly)25
+b(introduces)h Ga(c)p Gg(.)p Black 321 2283 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)21 b(inspection)j(of)e(the)f(inference)j(rules)f(sho)n
+(wn)e(in)h(Figure)g(3.2)f(and)h(the)g(translations)j(gi)n(v)o(en)321
+2396 y(in)f(Figure)g(3.3.)p 3480 2396 4 62 v 3484 2338
+55 4 v 3484 2396 V 3538 2396 4 62 v 321 2604 a(The)f(v)n(ariable)j
+(substitution)h(and)d(proof)g(substitution)j(are)d(related)h(as)f
+(follo)n(ws.)p Black 321 2792 a Gb(Lemma)f(3.2.3:)p Black
+34 w Gg(F)o(or)g(all)h Ga(M)5 b(;)15 b(N)35 b F6(2)25
+b F4(\003)e Gg(and)h(for)g(all)f(co-names)i Ga(a)p Gg(,)e
+Ga(b)p Gg(,)f(we)h(ha)n(v)o(e)1167 3008 y F6(j)p Ga(M)10
+b F6(j)1315 2971 y Fu(s)1315 3031 y Gc(a)1357 3008 y
+F4([)p Ga(x)26 b F4(:=)1581 2996 y FX(h)1608 3008 y Ga(b)1647
+2996 y FX(i)1675 3008 y F6(j)p Ga(N)10 b F6(j)1808 2975
+y Fu(s)1808 3036 y Gc(b)1843 3008 y F4(])1932 2971 y
+Gc(int)1893 3008 y F6(\000)-31 b(\000)f(!)2063 2971 y
+FX(\003)2128 3008 y F6(j)p Ga(M)10 b F4([)p Ga(x)26 b
+F4(:=)f Ga(N)10 b F4(])p F6(j)2608 2971 y Fu(s)2608 3031
+y Gc(a)2675 3008 y Ga(:)p Black 321 3221 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)e(the)f(structure)j(of)e
+Ga(M)32 b Gg(\(see)25 b(P)o(age)e(157\).)p 3480 3221
+V 3484 3163 55 4 v 3484 3221 V 3538 3221 4 62 v 321 3429
+a(No)n(w)c(we)g(are)h(in)g(a)g(position)i(to)e(sho)n(w)g(that)h
+(beta-reductions)j(map)c(onto)h(a)e(series)j(of)e(cut-reductions.)321
+3542 y(T)-7 b(o)29 b(mak)o(e)g(the)h(induction)i(go)d(through,)j(we)d
+(ha)n(v)o(e)h(to)f(pro)o(v)o(e)h(this)g(in)f(conjunction)k(with)c(a)g
+(slightly)321 3655 y(more)24 b(general)h(statement.)p
+Black 321 3842 a Gb(Pr)n(oposition)32 b(3.2.4:)p Black
+34 w Gg(F)o(or)e(all)h Ga(M)5 b(;)15 b(M)1551 3809 y
+FX(0)1614 3842 y F6(2)38 b F4(\003)p Gg(,)31 b(for)g(all)g(co-names)h
+Ga(c)p Gg(,)g(and)g(for)e(an)o(y)h(substitution)k(of)321
+3955 y(the)h(form)e F4([)p Ga(c)47 b F4(:=)931 3943 y
+F9(\()958 3955 y Ga(y)1006 3943 y F9(\))1033 3955 y Ga(N)10
+b F4(])35 b Gg(where)g Ga(N)44 b Gg(freshly)37 b(introduces)h
+Ga(y)f Gg(and)e(is)g(not)g(an)g(axiom,)j(we)c(ha)n(v)o(e)i(if)321
+4068 y Ga(M)508 4031 y Gc(\014)445 4068 y F6(\000)-32
+b(\000)h(!)25 b Ga(M)738 4035 y FX(0)784 4068 y Gg(then)p
+Black 417 4288 a(\(i\))p Black 47 w F6(j)p Ga(M)10 b
+F6(j)697 4255 y Fu(s)697 4311 y Gc(c)796 4251 y(int)757
+4288 y F6(\000)-31 b(\000)f(!)927 4255 y F9(+)1012 4288
+y F6(j)p Ga(M)1135 4255 y FX(0)1158 4288 y F6(j)1183
+4255 y Fu(s)1183 4311 y Gc(c)p Black 392 4446 a Gg(\(ii\))p
+Black 47 w F6(j)p Ga(M)10 b F6(j)697 4413 y Fu(s)697
+4469 y Gc(c)732 4446 y F4([)p Ga(c)26 b F4(:=)943 4434
+y F9(\()970 4446 y Ga(y)1018 4434 y F9(\))1046 4446 y
+Ga(N)10 b F4(])1218 4409 y Gc(int)1179 4446 y F6(\000)-31
+b(\000)f(!)1349 4413 y F9(+)1434 4446 y F6(j)p Ga(M)1557
+4413 y FX(0)1580 4446 y F6(j)1605 4413 y Fu(s)1605 4469
+y Gc(c)1640 4446 y F4([)p Ga(c)26 b F4(:=)1851 4434 y
+F9(\()1879 4446 y Ga(y)1927 4434 y F9(\))1954 4446 y
+Ga(N)10 b F4(])p Black 321 4659 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(By)23 b(induction)j(on)e(the)f(de\002nition)j(of)1855
+4622 y Gc(\014)1791 4659 y F6(\000)-31 b(\000)f(!)23
+b Gg(\(see)h(P)o(age)f(157\).)p 3480 4659 V 3484 4601
+55 4 v 3484 4659 V 3538 4659 4 62 v 321 4867 a(It)h(remains)g(to)g
+(check)g(whether)h(commuting)g(reductions)h(translate)g(onto)e
+(identities.)p Black 321 5055 a Gb(Pr)n(oposition)h(3.2.5:)p
+Black 34 w Gg(F)o(or)e(all)h Ga(M)5 b(;)15 b(N)35 b F6(2)25
+b F4(\003)e Gg(and)h(for)g(all)f Ga(c)p Gg(')-5 b(s,)24
+b(if)f Ga(M)2520 5017 y Gc(\015)2455 5055 y F6(\000)-31
+b(\000)g(!)25 b Ga(N)10 b Gg(,)22 b(then)i F6(j)p Ga(M)10
+b F6(j)3106 5022 y Fu(s)3106 5077 y Gc(c)3167 5055 y
+F6(\021)25 b(j)p Ga(N)10 b F6(j)3396 5022 y Fu(s)3396
+5077 y Gc(c)3456 5055 y Ga(:)p Black 321 5267 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)e(the)f(de\002nition)j(of)1856
+5230 y Gc(\015)1791 5267 y F6(\000)-31 b(\000)f(!)23
+b Gg(\(see)h(P)o(age)f(158\).)p 3480 5267 V 3484 5209
+55 4 v 3484 5267 V 3538 5267 4 62 v Black Black eop end
+%%Page: 77 89
+TeXDict begin 77 88 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
+(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
+b(77)p 277 88 3691 4 v Black 418 365 a Gg(So)27 b(we)g(ha)n(v)o(e)h
+(sho)n(wn)g(that)g(normalisation)j(can)d(be)g(simulated)h(by)f
+(cut-elimination)j(using)e(the)277 478 y(translation)h
+F6(j)p 714 478 28 4 v 732 478 V 749 478 V 64 w(j)801
+445 y Fu(s)833 478 y Gg(.)36 b(T)-7 b(o)26 b(sum)g(up)g(this)h(result,)
+h(we)e(should)i(lik)o(e)f(to)g(sho)n(w)f(that)h F4(\(\003)p
+Ga(;)2959 440 y Gc(\023)2887 478 y F6(\000)-32 b(\000)h(!)p
+F4(\))26 b Gg(is)g(strongly)277 590 y(normalising)32
+b(by)d(appealing)j(to)d(the)h(strong)h(normalisation)h(result)e(of)g
+F4(\()p FY(J)p Ga(;)2759 553 y Gc(int)2720 590 y F6(\000)-31
+b(\000)g(!)p F4(\))p Gg(.)45 b(This)29 b(is)g(a)g(v)o(ery)277
+703 y(roundabout)j(w)o(ay)c(for)h(pro)o(ving)h(this)f(property)h(for)f
+F4(\(\003)p Ga(;)2179 666 y Gc(\023)2107 703 y F6(\000)-32
+b(\000)h(!)p F4(\))p Gg(,)29 b(b)n(ut)g(the)f(point)i(here)f(is)f(to)g
+(support)277 816 y(the)21 b(claim)g(made)g(in)g(Section)g(2.5)g
+(stating)i(that)e(our)g(reduction)i(system)f(for)f(cut-elimination)j
+(is)d(v)o(ery)277 929 y(useful)k(for)f(strong)h(normalisation)h(proofs)
+f(by)f(translation.)p Black 277 1117 a Gb(Theor)n(em)e(3.2.6)g
+Gg(\(Pra)o(witz,)f(1971\))p Gb(:)p Black 36 w Gg(The)g(reduction)j
+(system)f F4(\(\003)p Ga(;)2490 1080 y Gc(\023)2418 1117
+y F6(\000)-31 b(\000)f(!)p F4(\))21 b Gg(is)h(strongly)i(normalising.)p
+Black 277 1329 a F7(Pr)l(oof)o(.)p Black 34 w Gg(Ev)o(ery)846
+1292 y Gc(\023)773 1329 y F6(\000)-31 b(\000)f(!)p Gg(-reduction)27
+b(sequence)f(is)d(of)g(the)h(form)1068 1497 y Ga(M)1156
+1511 y F9(1)1310 1460 y Gc(\015)1209 1497 y F6(\000)-21
+b(\000)h(\000)f(!)1450 1460 y FX(\003)1504 1497 y Ga(M)1592
+1511 y F9(2)1764 1460 y Gc(\014)1665 1497 y F6(\000)g(\000)h(\000)f(!)
+33 b Ga(M)2028 1511 y F9(3)2182 1460 y Gc(\015)2082 1497
+y F6(\000)-21 b(\000)g(\000)g(!)2323 1460 y FX(\003)2377
+1497 y Ga(M)2465 1511 y F9(4)2606 1497 y Ga(:)15 b(:)g(:)1075
+1861 y(N)1148 1875 y F9(1)1077 1679 y Fu(s)1110 1748
+y F6(#)p 1130 1685 4 141 v 1214 1861 a(\021)-21 b(\021)g(\021)g(\021)g
+(\021)27 b Ga(N)1585 1875 y F9(2)1513 1679 y Fu(s)1546
+1748 y F6(#)p 1566 1685 V 1710 1824 a Gc(int)1636 1861
+y F6(\000)-21 b(\000)g(\000)g(!)1877 1824 y F9(+)1948
+1861 y Ga(N)2021 1875 y F9(3)1950 1679 y Fu(s)1983 1748
+y F6(#)p 2003 1685 V 2086 1861 a(\021)g(\021)h(\021)f(\021)g(\021)26
+b Ga(N)2457 1875 y F9(4)2386 1679 y Fu(s)2419 1748 y
+F6(#)p 2439 1685 V 2606 1861 a Ga(:)15 b(:)g(:)277 2033
+y Gg(which)31 b(as)f(sho)n(wn)h(can)g(be)f(mapped)h(onto)h(a)d
+(reduction)k(sequence)g(in)d(our)h(intuitionistic)j(sequent)277
+2146 y(calculus)f(\(\002rst)e(and)h(third)f(square)i(are)e(by)g
+(Proposition)j(3.2.5)d(and)g(second)i(square)f(by)f(Proposi-)277
+2259 y(tion)j(3.2.4\).)58 b(Gi)n(v)o(en)33 b(the)g(measure)h(sho)n(wn)g
+(on)f(P)o(age)g(159,)i(we)e(can)g(easily)i(infer)f(that)f(all)3367
+2222 y Gc(\015)3302 2259 y F6(\000)-32 b(\000)h(!)p Gg(-)277
+2372 y(reduction)26 b(sequences)g(must)d(terminate.)31
+b(Hence)23 b(by)h(Lemma)e(2.6.3)h(and)h(Theorem)g(2.5.2,)f(we)g(\002nd)
+277 2485 y(that)h(e)n(v)o(ery)730 2448 y Gc(\023)657
+2485 y F6(\000)-31 b(\000)g(!)o Gg(-reduction)27 b(sequence)f(is)d
+(terminating.)31 b(Thus)24 b(we)e(are)i(done.)p 3436
+2485 4 62 v 3440 2427 55 4 v 3440 2485 V 3494 2485 4
+62 v 418 2689 a(Ne)o(xt)38 b(we)g(shall)h(sho)n(w)f(the)h
+(correspondence)k(in)38 b(the)h(other)g(direction,)44
+b(meaning)c(that)f(cut-)277 2802 y(elimination)g(can)d(be)h(simulated)h
+(by)e(normalisation.)70 b(As)36 b(we)f(shall)j(see,)h(the)e(dif)n
+(\002culties)h(here)277 2915 y(arise)25 b(from)f(the)h(commuting)g
+(reductions)i(in)d(our)h(sequent)h(calculus,)g(and)f(therefore)h(we)e
+(shall)h(\002rst)277 3028 y(focus)k(on)e(the)g F4(\()p
+F6(^)p Ga(;)15 b F6(\033)p F4(\))p Gg(-fragment)30 b(of)d
+(intuitionistic)k(logic)d(where)g(the)g(problems)g(can)g(be)f(a)n(v)n
+(oided.)277 3141 y(W)-7 b(e)23 b(shall)i(write)g FY(I)864
+3108 y F9(\()p FX(^)p Gc(;)p FX(\033)p F9(\))1068 3141
+y Gg(for)f(the)g(corresponding)29 b(set)24 b(of)g(well-typed)i(terms)e
+(of)h(our)f(sequent)i(calcu-)277 3254 y(lus.)44 b(Before)29
+b(we)f(can)h(pro)o(v)o(e)g(the)g(proposition)j(for)d(the)g
+(correspondence,)34 b(we)28 b(ha)n(v)o(e)h(to)f(sho)n(w)h(that)277
+3366 y(the)e(proof)h(substitution)j(of)c(our)g(sequent)i(calculus)g
+(corresponds)h(to)d(the)g(v)n(ariable)i(substitution)h(in)277
+3479 y(NJ.)p Black 277 3667 a Gb(Lemma)23 b(3.2.7:)p
+Black 34 w Gg(F)o(or)g(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25
+b FY(I)1471 3634 y F9(\()p FX(^)q Gc(;)p FX(\033)o F9(\))1674
+3667 y Gg(we)e(ha)n(v)o(e)p Black 373 3855 a(\(i\))p
+Black 46 w F6(j)p Ga(M)10 b F4([)p Ga(x)26 b F4(:=)851
+3843 y FX(h)879 3855 y Ga(a)927 3843 y FX(i)954 3855
+y Ga(N)10 b F4(])p F6(j)1087 3822 y Fu(n)1154 3855 y
+F6(\021)25 b(j)p Ga(M)10 b F6(j)1398 3822 y Fu(n)1439
+3855 y F4([)p Ga(x)25 b F4(:=)h F6(j)p Ga(N)10 b F6(j)1796
+3822 y Fu(n)1837 3855 y F4(])p Black 348 4002 a Gg(\(ii\))p
+Black 46 w F6(j)p Ga(M)g F4([)p Ga(a)26 b F4(:=)848 3990
+y F9(\()875 4002 y Ga(x)927 3990 y F9(\))954 4002 y Ga(N)10
+b F4(])p F6(j)1087 3969 y Fu(n)1154 4002 y F6(\021)25
+b(j)p Ga(N)10 b F6(j)1383 3969 y Fu(n)1424 4002 y F4([)p
+Ga(x)25 b F4(:=)g F6(j)p Ga(M)10 b F6(j)1795 3969 y Fu(n)1837
+4002 y F4(])p Gg(,)22 b(pro)o(vided)k Ga(a)f F6(2)g Ga(F)13
+b(C)7 b F4(\()p Ga(M)j F4(\))p Gg(.)p Black 277 4214
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)d(the)h
+(structure)i(of)d Ga(M)33 b Gg(\(see)24 b(P)o(age)f(159\).)p
+3436 4214 V 3440 4156 55 4 v 3440 4214 V 3494 4214 4
+62 v 277 4418 a(The)29 b(proposition)k(which)c(sho)n(ws)h(that)g
+(cut-elimination)j(can)c(be)h(simulated)h(by)e(normalisation)k(is)277
+4531 y(as)24 b(follo)n(ws.)p Black 277 4719 a Gb(Pr)n(oposition)h
+(3.2.8:)p Black 34 w Gg(F)o(or)e(all)g Ga(M)5 b(;)15
+b(N)36 b F6(2)25 b FY(I)1621 4686 y F9(\()p FX(^)q Gc(;)p
+FX(\033)o F9(\))1802 4719 y Gg(,)d(if)h Ga(M)2088 4682
+y Gc(int)2049 4719 y F6(\000)-32 b(\000)h(!)25 b Ga(N)10
+b Gg(,)23 b(then)h F6(j)p Ga(M)10 b F6(j)2700 4686 y
+Fu(n)2839 4682 y Gc(\023)2766 4719 y F6(\000)-31 b(\000)g(!)2937
+4686 y FX(\003)3001 4719 y F6(j)p Ga(N)10 b F6(j)3134
+4686 y Fu(n)3175 4719 y Gg(.)p Black 277 4932 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)d(the)h(de\002nition)h(of)1786
+4894 y Gc(int)1747 4932 y F6(\000)-31 b(\000)f(!)23 b
+Gg(\(see)h(P)o(age)f(160\).)p 3436 4932 V 3440 4873 55
+4 v 3440 4932 V 3494 4932 4 62 v 418 5136 a(Let)d(us)g(no)n(w)f(tak)o
+(e)i(a)f(step)h(back)g(and)f(analyse)i(the)e(result)i(obtained)g(in)e
+(Proposition)j(3.2.8.)k(What)277 5249 y(is)21 b(sho)n(wn)g(is)f(that)i
+(cut-elimination)i(steps)e(can)f(be)g(simulated)h(by)f
+(beta-reductions\227b)n(ut)27 b(simulated)p Black Black
+eop end
+%%Page: 78 90
+TeXDict begin 78 89 bop Black -144 51 a Gb(78)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(in)h(a)f(weak)g
+(sense.)30 b(Whene)n(v)o(er)1172 605 y FL(Cut)p F4(\()1345
+593 y FX(h)1373 605 y Ga(a)1421 593 y FX(i)1448 605 y
+Ga(M)10 b(;)1586 593 y F9(\()1614 605 y Ga(x)1666 593
+y F9(\))1693 605 y Ga(N)g F4(\))1876 568 y Gc(int)1837
+605 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o F4(\()2205
+593 y FX(h)2233 605 y Ga(a)2281 593 y FX(i)2309 605 y
+Ga(M)2407 572 y FX(0)2430 605 y Ga(;)2470 593 y F9(\()2498
+605 y Ga(x)2550 593 y F9(\))2577 605 y Ga(N)10 b F4(\))321
+843 y Gg(with)24 b Ga(x)e Gg(is)i(not)g(free)g(in)f Ga(N)10
+b Gg(,)22 b(then)1105 1095 y F6(j)p FL(Cut)q F4(\()1304
+1083 y FX(h)1331 1095 y Ga(a)1379 1083 y FX(i)1407 1095
+y Ga(M)10 b(;)1545 1083 y F9(\()1573 1095 y Ga(x)1625
+1083 y F9(\))1652 1095 y Ga(N)g F4(\))p F6(j)1795 1057
+y Fu(n)1862 1095 y F6(\021)25 b(j)p FL(Cut)p F4(\()2156
+1083 y FX(h)2183 1095 y Ga(a)2231 1083 y FX(i)2259 1095
+y Ga(M)2357 1062 y FX(0)2380 1095 y Ga(;)2420 1083 y
+F9(\()2448 1095 y Ga(x)2500 1083 y F9(\))2528 1095 y
+Ga(N)10 b F4(\))p F6(j)2671 1057 y Fu(n)2737 1095 y Ga(:)321
+1334 y Gg(W)-7 b(e)29 b(achie)n(v)o(e)i(a)e(some)n(what)h(closer)h
+(correspondence)j(between)d(cut-elimination)i(and)e(normalisa-)321
+1446 y(tion,)h(if)e(we)f(translate)j(the)e(sequent)i(calculus)g(into)e
+(a)g(simply-typed)j(lambda)e(calculus)h(e)o(xtended)321
+1559 y(with)39 b(an)f(e)o(xplicit)i(substitution)j(operator)-5
+b(.)76 b(This)38 b(w)o(as)g(proposed,)45 b(for)39 b(e)o(xample,)k(by)38
+b(Herbelin)321 1672 y([1994],)30 b(and)d(Barendre)o(gt)i(and)f
+(Ghilezan)h([2000].)41 b(On)27 b(one)g(hand,)i(the)f(e)o(xplicit)g
+(substitution)j(op-)321 1785 y(erator)24 b(ensures)g(that)f(more)g
+(cut-elimination)j(reductions)f(match)e(with)g(normalisation)i
+(reductions;)321 1898 y(on)33 b(the)h(other)l(,)i(we)d(are)g(not)g(a)o
+(w)o(are)g(of)g(an)o(y)h(w)o(ork)f(that)g(points)i(out)e(that)h(there)g
+(is)f(a)g(discrepanc)o(y)321 2011 y(pre)n(v)o(enting)24
+b(a)d(perfect)j(match.)k(W)-7 b(e)21 b(shall)h(demonstrate)i(the)e
+(discrepanc)o(y)j(using)d Ga(\025)p Fp(x)f Gg([Rose,)h(1996].)p
+Black 321 2199 a Gb(Remark)37 b(3.2.9:)p Black 34 w Gg(First)h(let)f
+(us)h(remind)g(the)g(reader)g(of)g(the)f(e)o(xplicit)i(substitution)i
+(calculus)f Ga(\025)p F1(x)321 2312 y Gg(brie\003y)24
+b(described)i(on)e(P)o(age)f(48.)29 b(The)23 b(terms)h(are)g(gi)n(v)o
+(en)g(by)f(the)h(grammar)1256 2570 y Ga(x)50 b F6(j)h
+Ga(\025x:M)61 b F6(j)51 b Ga(M)25 b(N)60 b F6(j)51 b
+Ga(M)10 b F6(h)p Ga(x)26 b F4(:=)f Ga(N)10 b F6(i)26
+b Ga(:)321 2809 y Gg(In)d(contrast)h(to)f(the)g(simply-typed)j(lambda)d
+(calculus,)i(in)d Ga(\025)p Fp(x)g Gg(beta-reductions)27
+b(are)c(split)g(into)h(more)321 2922 y(atomic)35 b(steps:)52
+b(one)34 b(step)h(is)f(the)g(reduction)j F4(\()p Ga(\025x:M)10
+b F4(\))p Ga(N)2315 2885 y Gc(b)2245 2922 y F6(\000)-31
+b(\000)f(!)45 b Ga(M)10 b F6(h)p Ga(x)45 b F4(:=)g Ga(N)10
+b F6(i)34 b Gg(introducing)j(the)321 3035 y(e)o(xplicit)24
+b(substitution)h(operator)l(,)f(and)e(the)g(others)h(in)l(v)n(olv)o(e)h
+(reductions)g(that)e(permute)h(this)f(operator)321 3147
+y(inside)37 b(the)e(term)g Ga(M)10 b Gg(.)62 b(As)34
+b(a)h(consequence,)41 b(the)36 b(translation)i(from)d(sequent)h(proofs)
+h(to)e(natural)321 3260 y(deduction)27 b(proofs)e(can)e(be)h
+(modi\002ed,)g(so)f(as)h(to)f(incorporate)k(the)d(ne)n(w)f(term)g
+(constructor)-5 b(.)p Black Black 1076 3533 a F6(j)p
+FL(Cut)p F4(\()1274 3521 y FX(h)1302 3533 y Ga(a)1350
+3521 y FX(i)1377 3533 y Ga(M)10 b(;)1515 3521 y F9(\()1543
+3533 y Ga(x)1595 3521 y F9(\))1622 3533 y Ga(N)g F4(\))p
+F6(j)1765 3500 y Fu(n)1801 3476 y FC(0)1929 3481 y F5(def)1936
+3533 y F4(=)106 b F6(j)p Ga(N)10 b F6(j)2246 3500 y Fu(n)2282
+3476 y FC(0)2309 3533 y F6(h)p Ga(x)26 b F4(:=)f F6(j)p
+Ga(M)10 b F6(j)2691 3500 y Fu(n)2727 3476 y FC(0)2755
+3533 y F6(i)1055 3673 y(j)p FL(Imp)1225 3694 y Gc(R)1282
+3673 y F4(\()1317 3661 y F9(\()1345 3673 y Ga(x)1397
+3661 y F9(\))q FX(h)1452 3673 y Ga(a)1500 3661 y FX(i)1528
+3673 y Ga(M)g(;)15 b(c)p F4(\))p F6(j)1765 3640 y Fu(n)1801
+3616 y FC(0)1929 3621 y F5(def)1936 3673 y F4(=)106 b
+Ga(\025x:)p F6(j)p Ga(M)10 b F6(j)2391 3640 y Fu(n)2427
+3616 y FC(0)929 3812 y F6(j)p FL(Imp)1098 3834 y Gc(L)1151
+3812 y F4(\()1186 3800 y FX(h)1213 3812 y Ga(a)1261 3800
+y FX(i)1289 3812 y Ga(M)g(;)1427 3800 y F9(\()1455 3812
+y Ga(x)1507 3800 y F9(\))1534 3812 y Ga(N)g(;)15 b(y)s
+F4(\))p F6(j)1765 3779 y Fu(n)1801 3756 y FC(0)1929 3761
+y F5(def)1936 3812 y F4(=)106 b F6(j)p Ga(N)10 b F6(j)2246
+3779 y Fu(n)2282 3756 y FC(0)2309 3812 y F6(h)p Ga(x)26
+b F4(:=)f(\()p Ga(y)34 b F6(j)p Ga(M)10 b F6(j)2805 3779
+y Fu(n)2841 3756 y FC(0)2868 3812 y F4(\))p F6(i)462
+4055 y Gg(T)-7 b(o)19 b(sho)n(w)g(the)h(discrepanc)o(y)-6
+b(,)23 b(we)18 b(shall)j(no)n(w)d(consider)k(the)e(logical)h
+(cut-reduction)i(for)d(cuts)g(with)321 4168 y(a)k(cut-formula)j(ha)n
+(ving)g(an)d(implication)j(as)d(top-most)i(connecti)n(v)o(e.)34
+b(On)24 b(P)o(age)g(29)h(we)f(de\002ned)h(this)321 4281
+y(cut-reduction)j(as)1009 4516 y FL(Cut)p F4(\()1182
+4504 y FX(h)1210 4516 y Ga(b)1249 4504 y FX(i)1276 4516
+y FL(Imp)1421 4538 y Gc(R)1478 4516 y F4(\()1513 4504
+y F9(\()1541 4516 y Ga(x)1593 4504 y F9(\))q FX(h)1648
+4516 y Ga(a)1696 4504 y FX(i)1723 4516 y Ga(M)11 b(;)k(b)p
+F4(\))p Ga(;)1976 4504 y F9(\()2004 4516 y Ga(z)2050
+4504 y F9(\))2078 4516 y FL(Imp)2222 4538 y Gc(L)2275
+4516 y F4(\()2310 4504 y FX(h)2337 4516 y Ga(c)2376 4504
+y FX(i)2404 4516 y Ga(N)10 b(;)2527 4504 y F9(\()2555
+4516 y Ga(y)2603 4504 y F9(\))2630 4516 y Ga(P)j(;)i(z)t
+F4(\))q(\))1265 4627 y Gc(l)1191 4664 y F6(\000)-31 b(\000)f(!)25
+b FL(Cut)p F4(\()1559 4652 y FX(h)1587 4664 y Ga(a)1635
+4652 y FX(i)1663 4664 y FL(Cut)o F4(\()1835 4652 y FX(h)1863
+4664 y Ga(c)1902 4652 y FX(i)1930 4664 y Ga(N)10 b(;)2053
+4652 y F9(\()2081 4664 y Ga(x)2133 4652 y F9(\))2160
+4664 y Ga(M)g F4(\))q Ga(;)2334 4652 y F9(\()2362 4664
+y Ga(y)2410 4652 y F9(\))2437 4664 y Ga(P)j F4(\))51
+b Gg(or)1265 4740 y Gc(l)1191 4777 y F6(\000)-31 b(\000)f(!)25
+b FL(Cut)p F4(\()1559 4765 y FX(h)1587 4777 y Ga(c)1626
+4765 y FX(i)1654 4777 y Ga(N)10 b(;)1777 4765 y F9(\()1805
+4777 y Ga(x)1857 4765 y F9(\))1884 4777 y FL(Cut)p F4(\()2057
+4765 y FX(h)2085 4777 y Ga(a)2133 4765 y FX(i)2160 4777
+y Ga(M)g(;)2298 4765 y F9(\()2326 4777 y Ga(y)2374 4765
+y F9(\))2401 4777 y Ga(P)j F4(\))q(\))p Black 3372 4647
+a Gg(\(3.2\))p Black 321 5023 a(including)25 b(a)d(choice)h(of)f(ho)n
+(w)f(the)i(cuts)f(are)h(arranged)h(in)e(the)g(reduct.)30
+b(There)22 b(is)g(no)g(reason)h(to)f(prefer)321 5136
+y(one)28 b(choice)i(o)o(v)o(er)d(the)h(other)h(\(the)o(y)f(e)n(v)o(en)g
+(lead)g(to)g(dif)n(ferent)i(normal)e(forms)g(as)g(we)e(shall)j(sho)n(w)
+f(in)321 5249 y(Chapter)c(4\).)29 b(Unfortunately)-6
+b(,)26 b(using)e(the)f(translation)j F6(j)p 2092 5249
+28 4 v 2110 5249 V 2128 5249 V 65 w(j)2180 5216 y Fu(n)2216
+5192 y FC(0)2265 5249 y Gg(gi)n(v)o(en)e(abo)o(v)o(e)f(only)h(the)f
+(\002rst)g(reduction)p Black Black eop end
+%%Page: 79 91
+TeXDict begin 79 90 bop Black 277 51 a Gb(3.2)23 b(The)g(Corr)n
+(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(I)849
+b(79)p 277 88 3691 4 v Black 277 365 a Gg(is)29 b(matched)i(by)e
+(reductions)j(in)e Ga(\025)p Fp(x)o Gg(;)i(the)e(other)g(is)f
+F7(not)p Gg(.)47 b(The)28 b(translations)33 b(of)c(the)h(reducts)h(sho)
+n(wn)277 478 y(in)24 b(\(3.2\))f(are:)p Black Black 631
+702 a F6(j)p FL(Cut)p F4(\()829 690 y FX(h)857 702 y
+Ga(a)905 690 y FX(i)932 702 y FL(Cut)p F4(\()1105 690
+y FX(h)1133 702 y Ga(c)1172 690 y FX(i)1200 702 y Ga(N)9
+b(;)1322 690 y F9(\()1350 702 y Ga(x)1402 690 y F9(\))1430
+702 y Ga(M)h F4(\))p Ga(;)1603 690 y F9(\()1631 702 y
+Ga(y)1679 690 y F9(\))1706 702 y Ga(P)j F4(\))p F6(j)1837
+669 y Fu(n)1873 646 y FC(0)1926 702 y F4(=)25 b F6(j)p
+Ga(P)13 b F6(j)2143 669 y Fu(n)2179 646 y FC(0)2207 702
+y F6(h)p Ga(y)28 b F4(:=)d F6(j)p Ga(M)10 b F6(j)2584
+669 y Fu(n)2620 646 y FC(0)2648 702 y F6(h)p Ga(x)25
+b F4(:=)h F6(j)p Ga(N)10 b F6(j)3015 669 y Fu(n)3051
+646 y FC(0)3078 702 y F6(ii)631 868 y(j)p FL(Cut)p F4(\()829
+856 y FX(h)857 868 y Ga(c)896 856 y FX(i)923 868 y Ga(N)g(;)1046
+856 y F9(\()1074 868 y Ga(x)1126 856 y F9(\))1154 868
+y FL(Cut)o F4(\()1326 856 y FX(h)1354 868 y Ga(a)1402
+856 y FX(i)1430 868 y Ga(M)g(;)1568 856 y F9(\()1596
+868 y Ga(y)1644 856 y F9(\))1671 868 y Ga(P)j F4(\)\))p
+F6(j)1837 835 y Fu(n)1873 811 y FC(0)1926 868 y F4(=)25
+b F6(j)p Ga(P)13 b F6(j)2143 835 y Fu(n)2179 811 y FC(0)2207
+868 y F6(h)p Ga(y)28 b F4(:=)d F6(j)p Ga(M)10 b F6(j)2584
+835 y Fu(n)2620 811 y FC(0)2648 868 y F6(ih)p Ga(x)26
+b F4(:=)f F6(j)p Ga(N)10 b F6(j)3050 835 y Fu(n)3086
+811 y FC(0)3113 868 y F6(i)277 1089 y Gg(W)l(ith)24 b(the)g
+(\(standard\))i(reduction)g(rules)f(of)e Ga(\025)p Fp(x)p
+Gg(,)f(only)j(the)f(\002rst)f(reduct)i(can)f(be)f(reached.)p
+Black Black 908 1318 a F6(j)p FL(Cut)p F4(\()1106 1306
+y FX(h)1134 1318 y Ga(b)1173 1306 y FX(i)1201 1318 y
+FL(Imp)1345 1340 y Gc(R)1403 1318 y F4(\()1438 1306 y
+F9(\()1466 1318 y Ga(x)1518 1306 y F9(\))p FX(h)1572
+1318 y Ga(a)1620 1306 y FX(i)1648 1318 y Ga(M)10 b(;)15
+b(b)p F4(\))q Ga(;)1901 1306 y F9(\()1929 1318 y Ga(z)1975
+1306 y F9(\))2002 1318 y FL(Imp)2147 1340 y Gc(L)2199
+1318 y F4(\()2234 1306 y FX(h)2262 1318 y Ga(c)2301 1306
+y FX(i)2328 1318 y Ga(N)10 b(;)2451 1306 y F9(\()2479
+1318 y Ga(y)2527 1306 y F9(\))2555 1318 y Ga(P)j(;)i(z)t
+F4(\))q(\))p F6(j)2808 1285 y Fu(n)2844 1261 y FC(0)1008
+1459 y F4(=)93 b F6(j)p Ga(P)13 b F6(j)1293 1426 y Fu(n)1329
+1403 y FC(0)1357 1459 y F6(h)p Ga(y)28 b F4(:=)d Ga(z)20
+b F6(j)p Ga(N)10 b F6(j)1781 1426 y Fu(n)1817 1403 y
+FC(0)1844 1459 y F6(ih)p Ga(z)30 b F4(:=)c Ga(\025x:)p
+F6(j)p Ga(M)10 b F6(j)2386 1426 y Fu(n)2422 1403 y FC(0)2449
+1459 y F6(i)908 1601 y(\000)-31 b(\000)f(!)94 b(j)p Ga(P)13
+b F6(j)1293 1568 y Fu(n)1329 1545 y FC(0)1357 1601 y
+F6(h)p Ga(y)28 b F4(:=)d Ga(z)20 b F6(j)p Ga(N)10 b F6(j)1781
+1568 y Fu(n)1817 1545 y FC(0)1844 1601 y F6(h)p Ga(z)30
+b F4(:=)25 b Ga(\025x:)p F6(j)p Ga(M)10 b F6(j)2350 1568
+y Fu(n)2386 1545 y FC(0)2414 1601 y F6(ii)908 1743 y(\000)-31
+b(\000)f(!)1097 1710 y FX(\003)1172 1743 y F6(j)p Ga(P)13
+b F6(j)1293 1710 y Fu(n)1329 1686 y FC(0)1357 1743 y
+F6(h)p Ga(y)28 b F4(:=)d(\()p Ga(\025)q(x:)p F6(j)p Ga(M)10
+b F6(j)1900 1710 y Fu(n)1936 1686 y FC(0)1963 1743 y
+F4(\))15 b F6(j)p Ga(N)10 b F6(j)2146 1710 y Fu(n)2182
+1686 y FC(0)2210 1743 y F6(i)908 1884 y(\000)-31 b(\000)f(!)94
+b(j)p Ga(P)13 b F6(j)1293 1851 y Fu(n)1329 1828 y FC(0)1357
+1884 y F6(h)p Ga(y)28 b F4(:=)d F6(j)p Ga(M)10 b F6(j)1734
+1851 y Fu(n)1770 1828 y FC(0)1798 1884 y F6(h)p Ga(x)25
+b F4(:=)h F6(j)p Ga(N)10 b F6(j)2165 1851 y Fu(n)2201
+1828 y FC(0)2228 1884 y F6(ii)277 2152 y Gg(The)33 b(discrepanc)o(y)j
+(appears)f(if)e(we)f(try)h(to)g(reach)h(the)g(second)g(reduct.)59
+b(Here)33 b(we)f(w)o(ould)i(need)g(a)277 2265 y(reduction)26
+b(of)e(the)f(form)h(\()p Ga(x)h F6(62)g Ga(F)13 b(V)21
+b F4(\()p Ga(P)13 b F4(\))p Gg(\))993 2509 y Ga(P)g F6(h)p
+Ga(y)29 b F4(:=)c Ga(M)10 b F6(h)p Ga(x)25 b F4(:=)h
+Ga(N)10 b F6(ii)26 b(\000)-32 b(\000)h(!)25 b Ga(P)13
+b F6(h)p Ga(y)28 b F4(:=)e Ga(M)10 b F6(ih)p Ga(x)26
+b F4(:=)f Ga(N)10 b F6(i)277 2730 y Gg(which,)29 b(as)e(f)o(ar)g(as)h
+(we)e(kno)n(w)-6 b(,)28 b(has)g(not)g(been)g(considered)i(for)e(an)o(y)
+f(e)o(xplicit)i(substitution)i(calculus)277 2842 y(and)24
+b(indeed)h(w)o(ould)f(be)g(rather)h(strange.)418 2972
+y(What)39 b(is)g(sho)n(wn)g(by)g(this)g(e)o(xample)g(is)g(that)g(the)g
+(ob)o(vious)i(candidate)g(for)e(a)f(simply-typed)277
+3085 y(lambda)29 b(calculus)g(with)f(an)g(e)o(xplicit)h(substitution)i
+(operator)f(and)e(a)f(natural)j(translation)h(from)c(se-)277
+3198 y(quent)34 b(proofs)f(to)f(this)h(lambda)g(calculus)h(gi)n(v)o(es)
+f(a)f(closer)h(correspondence)k(between)d(cut-elimi-)277
+3311 y(nation)e(and)e(normalisation,)35 b(b)n(ut)30 b(not)g(all)h
+(cut-reductions)j(are)c(\223mirrored\224.)50 b(In)30
+b(the)g(ne)o(xt)h(section)277 3424 y(we)26 b(shall)i(de)n(v)o(elop)g(a)
+e(natural)i(deduction)i(calculus)f(with)d(a)h(symmetric)g(e)o(xplicit)i
+(substitution)h(op-)277 3536 y(erator)-5 b(.)58 b(F)o(or)32
+b(this)h(calculus)i(we)d(shall)i(gi)n(v)o(e)f(translations)j(so)d(that)
+g F7(all)g Gg(cut-reductions)k(map)c(onto)277 3649 y(normalisation)27
+b(reductions.)418 3903 y(In)h(the)h(rest)g(of)f(this)g(section)i(we)e
+(shall)h(analyse)h(whether)f(we)f(can)g(e)o(xtend)i(Proposition)g
+(3.2.8)277 4016 y(to)22 b(all)h(connecti)n(v)o(es)i(of)d
+(intuitionistic)k(logic.)j(As)22 b(mentioned)i(earlier)l(,)g(Zuck)o(er)
+f(concluded)i(that)e(this)277 4129 y(cannot)h(be)e(done)h(for)f(the)h
+(fragment)g(including)i F6(_)c Gg(or)h F6(9)p Gg(,)f(because)j(\(in)e
+(his)h(setting\))h(cut-elimination)277 4242 y(f)o(ails)i(to)e(be)h
+(strongly)h(normalising.)35 b(Our)24 b(cut-elimination)k(procedure)f
+F4(\()p FY(I)p Ga(;)2756 4205 y Gc(int)2717 4242 y F6(\000)-31
+b(\000)f(!)p F4(\))24 b F7(is)h Gg(strongly)i(nor)n(-)277
+4355 y(malising,)g(and)f(thus)f(it)g(is)g(interesting)k(to)c
+(re-address)j(the)d(question)j(of)d(the)g(correspondence.)39
+b(Un-)277 4468 y(fortunately)-6 b(,)28 b(it)d(turns)h(out)f(that)h(the)
+f F6(_)p Gg(-connecti)n(v)o(e)i(is)e(still)h(problematic)h(with)e
+(respect)h(to)f(the)h(sim-)277 4581 y(ulation)f(of)f(cut-elimination.)
+418 4710 y(Clearly)-6 b(,)34 b(to)d(eliminate)i(all)e(cut-instances)k
+(from)c(sequent)i(proofs)f(we)f(need)h(the)f(commuting)277
+4823 y(reduction)26 b(of)e(the)f(form)1193 5028 y FL(Cut)p
+F4(\()1366 5016 y FX(h)1394 5028 y Ga(a)1442 5016 y FX(i)1469
+5028 y Ga(M)10 b(;)1607 5016 y F9(\()1635 5028 y Ga(x)1687
+5016 y F9(\))1714 5028 y Ga(N)g F4(\))1928 4990 y Gc(c)1858
+5027 y F6(\000)-31 b(\000)f(!)2053 5028 y Ga(M)10 b F4([)p
+Ga(a)26 b F4(:=)2371 5016 y F9(\()2399 5028 y Ga(x)2451
+5016 y F9(\))2478 5028 y Ga(N)10 b F4(])p Black 742 w
+Gg(\(3.3\))p Black 277 5249 a(which)25 b(may)f(be)g(applied)i(if)e
+Ga(M)33 b Gg(does)25 b(not)g(freshly)h(introduce)h Ga(a)p
+Gg(.)j(In)24 b(the)g F4(\()p F6(^)p Ga(;)15 b F6(\033)p
+F4(\))p Gg(-fragment)27 b(consid-)277 5361 y(ered)f(abo)o(v)o(e,)g
+(this)g(reduction)h(is)f(mapped)g(by)f F6(j)p 1783 5361
+28 4 v 1801 5361 V 1819 5361 V 65 w(j)1871 5329 y Fu(n)1936
+5361 y Gg(onto)h(an)f(identity)j(\(see)d(Lemma)g(3.2.7\).)34
+b(But)24 b(in)277 5474 y(case)f Ga(M)33 b Gg(is)22 b(an)h
+F6(_)826 5488 y Gc(L)879 5474 y Gg(-rule,)g(then)g F6(j)p
+1300 5474 V 1318 5474 V 1336 5474 V 65 w(j)1388 5441
+y Fu(n)1451 5474 y Gg(does)g(not)h(translate)g(\(3.3\))g(onto)f(an)g
+(identity)-6 b(.)30 b(In)23 b(consequence,)p Black Black
+eop end
+%%Page: 80 92
+TeXDict begin 80 91 bop Black -144 51 a Gb(80)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(the)30
+b(correspondence)k(f)o(ails.)48 b(The)29 b(issues)i(are)f(best)g(e)o
+(xplained)i(with)e(an)f(e)o(xample.)48 b(Consider)31
+b(the)321 478 y(follo)n(wing)25 b(sequent)h(proof)e(\(where)g(for)g
+(bre)n(vity)h(we)e(ha)n(v)o(e)h(omitted)h(all)e(labels\).)p
+758 635 233 4 v 758 714 a Ga(A)p 846 702 11 41 v 857
+684 46 5 v 97 w(A)p 1082 635 244 4 v 91 w(B)p 1175 702
+11 41 v 1186 684 46 5 v 101 w(B)p 758 734 567 4 v 801
+813 a(A;)15 b(B)p 1004 801 11 41 v 1014 782 46 5 v 102
+w(A)p F6(^)o Ga(B)1367 752 y F6(^)1427 766 y Gc(R)p 1576
+635 233 4 v 1576 714 a Ga(A)p 1664 702 11 41 v 1675 684
+46 5 v 96 w(A)p 1899 635 244 4 v 91 w(B)p 1993 702 11
+41 v 2004 684 46 5 v 101 w(B)p 1576 734 567 4 v 1619
+813 a(A;)g(B)p 1821 801 11 41 v 1832 782 46 5 v 101 w(A)p
+F6(^)p Ga(B)2184 752 y F6(^)2245 766 y Gc(R)p 801 850
+1299 4 v 1089 929 a Ga(A)p F6(_)o Ga(B)5 b(;)15 b(B)5
+b(;)15 b(A)p 1534 917 11 41 v 1544 899 46 5 v 97 w(A)p
+F6(^)p Ga(B)2141 868 y F6(_)2202 882 y Gc(L)p 2393 653
+233 4 v 2393 732 a Ga(A)p 2482 720 11 41 v 2492 701 46
+5 v 97 w(A)p 2717 653 233 4 v 91 w(A)p 2805 720 11 41
+v 2816 701 46 5 v 97 w(A)p 2393 752 557 4 v 2491 830
+a(A)p 2579 818 11 41 v 2590 800 46 5 v 96 w(A)p F6(^)p
+Ga(A)2991 770 y F6(^)3052 784 y Gc(R)p 2424 850 496 4
+v 2424 929 a Ga(A)p F6(^)p Ga(B)p 2646 917 11 41 v 2657
+899 46 5 v 100 w(A)p F6(^)p Ga(A)2961 864 y F6(^)3021
+878 y Gc(L)3069 887 y FV(1)p 1089 967 1831 4 v 1645 1045
+a Ga(A)p F6(_)p Ga(B)5 b(;)15 b(B)5 b(;)15 b(A)p 2090
+1033 11 41 v 2100 1015 46 5 v 96 w(A)p F6(^)p Ga(A)2961
+997 y Gg(Cut)p Black 3372 1045 a(\(3.4\))p Black 321
+1204 a(T)-7 b(o)23 b(eliminate)i(the)f(cut,)f(we)g(need)h(to)g(apply)g
+(the)g(rule)g(sho)n(wn)g(in)g(\(3.3\).)29 b(This)23 b(gi)n(v)o(es)h(us)
+p 355 1502 233 4 v 355 1580 a Ga(A)p 443 1568 11 41 v
+453 1550 46 5 v 96 w(A)p 678 1502 244 4 v 91 w(B)p 772
+1568 11 41 v 782 1550 46 5 v 101 w(B)p 355 1600 567 4
+v 398 1679 a(A;)15 b(B)p 600 1667 11 41 v 610 1649 46
+5 v 101 w(A)p F6(^)p Ga(B)963 1618 y F6(^)1024 1633 y
+Gc(R)p 1172 1403 233 4 v 1172 1482 a Ga(A)p 1261 1470
+11 41 v 1271 1451 46 5 v 97 w(A)p 1496 1403 233 4 v 91
+w(A)p 1584 1470 11 41 v 1595 1451 46 5 v 96 w(A)p 1172
+1502 557 4 v 1270 1580 a(A)p 1358 1568 11 41 v 1369 1550
+46 5 v 96 w(A)p F6(^)p Ga(A)1770 1520 y F6(^)1831 1534
+y Gc(R)p 1203 1600 496 4 v 1203 1679 a Ga(A)p F6(^)o
+Ga(B)p 1425 1667 11 41 v 1436 1649 46 5 v 101 w(A)p F6(^)p
+Ga(A)1740 1614 y F6(^)1800 1628 y Gc(L)1848 1637 y FV(1)p
+398 1717 1301 4 v 810 1795 a Ga(A;)g(B)p 1013 1783 11
+41 v 1023 1765 46 5 v 102 w(A)p F6(^)o Ga(A)1740 1747
+y Gg(Cut)p 1979 1502 233 4 v 1979 1580 a Ga(A)p 2068
+1568 11 41 v 2078 1550 46 5 v 97 w(A)p 2303 1502 244
+4 v 91 w(B)p 2397 1568 11 41 v 2407 1550 46 5 v 101 w(B)p
+1979 1600 567 4 v 2022 1679 a(A;)g(B)p 2225 1667 11 41
+v 2235 1649 46 5 v 102 w(A)p F6(^)p Ga(B)2588 1618 y
+F6(^)2648 1633 y Gc(R)p 2797 1403 233 4 v 2797 1482 a
+Ga(A)p 2885 1470 11 41 v 2896 1451 46 5 v 96 w(A)p 3121
+1403 233 4 v 92 w(A)p 3209 1470 11 41 v 3219 1451 46
+5 v 96 w(A)p 2797 1502 557 4 v 2894 1580 a(A)p 2983 1568
+11 41 v 2993 1550 46 5 v 97 w(A)p F6(^)p Ga(A)3395 1520
+y F6(^)3455 1534 y Gc(R)p 2827 1600 496 4 v 2827 1679
+a Ga(A)p F6(^)p Ga(B)p 3050 1667 11 41 v 3060 1649 46
+5 v 101 w(A)p F6(^)p Ga(A)3364 1614 y F6(^)3425 1628
+y Gc(L)3473 1637 y FV(1)p 2022 1717 1301 4 v 2435 1795
+a Ga(A;)g(B)p 2637 1783 11 41 v 2648 1765 46 5 v 101
+w(A)p F6(^)p Ga(A)3364 1747 y Gg(Cut)p 810 1833 2101
+4 v 1499 1912 a Ga(A)p F6(_)o Ga(B)5 b(;)15 b(B)5 b(;)15
+b(A)p 1944 1900 11 41 v 1954 1881 46 5 v 97 w(A)p F6(^)o
+Ga(B)2952 1851 y F6(_)3012 1865 y Gc(L)p Black 3372 2025
+a Gg(\(3.5\))p Black 321 2154 a(where)33 b(tw)o(o)g(copies)h(of)f(the)g
+(cut)h(ha)n(v)o(e)f(been)h(created.)58 b(Let)33 b(us)g(gi)n(v)o(e)g
+(the)g(corresponding)k(natural)321 2267 y(deduction)27
+b(proofs.)j(F)o(orming)23 b F6(j)p Gg(\(3.4\))r F6(j)1545
+2234 y Fu(n)1608 2267 y Gg(we)g(ha)n(v)o(e)h(the)g(natural)h(deduction)
+h(proof)p -104 2538 458 4 v -104 2612 a FU(A)p FT(_)q
+FU(B)p 99 2600 10 38 v 109 2583 42 4 v 92 w(A)p FT(_)p
+FU(B)p 409 2445 213 4 v 409 2518 a(A)p 490 2506 10 38
+v 499 2490 42 4 v 88 w(A)p 691 2445 223 4 v 70 w(B)p
+776 2506 10 38 v 786 2490 42 4 v 92 w(B)p 409 2538 504
+4 v 441 2612 a(A;)14 b(B)p 626 2600 10 38 v 636 2583
+42 4 v 93 w(A)p FT(^)p FU(B)927 2555 y FT(^)982 2568
+y FS(I)p 1075 2445 213 4 v 1075 2518 a FU(A)p 1156 2506
+10 38 v 1166 2490 42 4 v 89 w(A)p 1357 2445 223 4 v 69
+w(B)p 1443 2506 10 38 v 1452 2490 42 4 v 92 w(B)p 1075
+2538 504 4 v 1108 2612 a(A;)g(B)p 1293 2600 10 38 v 1302
+2583 42 4 v 92 w(A)p FT(^)q FU(B)1593 2555 y FT(^)1649
+2568 y FS(I)p -104 2648 1651 4 v 391 2721 a FU(A)p FT(_)q
+FU(B)t(;)g(A;)g(B)p 798 2709 10 38 v 807 2692 42 4 v
+92 w(A)p FT(^)q FU(B)1561 2665 y FT(_)1616 2677 y FS(E)p
+391 2757 661 4 v 452 2830 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p
+859 2818 10 38 v 868 2802 42 4 v 92 w(A)1093 2770 y FT(^)1149
+2782 y FS(E)1198 2790 y FP(1)p 1714 2538 458 4 v 1714
+2612 a FU(A)p FT(_)q FU(B)p 1918 2600 10 38 v 1927 2583
+42 4 v 92 w(A)p FT(_)q FU(B)p 2227 2445 213 4 v 2227
+2518 a(A)p 2308 2506 10 38 v 2317 2490 42 4 v 88 w(A)p
+2509 2445 223 4 v 70 w(B)p 2594 2506 10 38 v 2604 2490
+42 4 v 92 w(B)p 2227 2538 504 4 v 2260 2612 a(A;)g(B)p
+2444 2600 10 38 v 2454 2583 42 4 v 92 w(A)p FT(^)p FU(B)2745
+2555 y FT(^)2800 2568 y FS(I)p 2894 2445 213 4 v 2894
+2518 a FU(A)p 2974 2506 10 38 v 2984 2490 42 4 v 88 w(A)p
+3175 2445 223 4 v 69 w(B)p 3261 2506 10 38 v 3270 2490
+42 4 v 92 w(B)p 2894 2538 504 4 v 2926 2612 a(A;)g(B)p
+3111 2600 10 38 v 3120 2583 42 4 v 92 w(A)p FT(^)q FU(B)3411
+2555 y FT(^)3467 2568 y FS(I)p 1714 2648 1651 4 v 2209
+2721 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p 2616 2709 10
+38 v 2625 2692 42 4 v 92 w(A)p FT(^)q FU(B)3379 2665
+y FT(_)3434 2677 y FS(E)p 2209 2757 661 4 v 2271 2830
+a FU(A)p FT(_)p FU(B)t(;)g(A;)g(B)p 2677 2818 10 38 v
+2687 2802 42 4 v 93 w(A)2912 2770 y FT(^)2967 2782 y
+FS(E)3016 2790 y FP(1)p 452 2866 2357 4 v 1303 2940 a
+FU(A)p FT(_)p FU(B)t(;)g(A;)g(B)p 1709 2928 10 38 v 1719
+2911 42 4 v 93 w(A)p FT(^)p FU(A)2850 2883 y FT(^)2906
+2896 y FS(I)321 3153 y Gg(in)35 b(which)h(the)f F6(^)888
+3167 y Gc(E)940 3176 y FV(1)979 3153 y Gg(-rules)h(can)f(be)g(permuted)
+i(with)e(the)g F6(_)2280 3167 y Gc(E)2339 3153 y Gg(-rules.)65
+b(This)34 b(gi)n(v)o(es)i(the)f(follo)n(wing)321 3266
+y(proof.)p -104 3644 458 4 v -104 3717 a FU(A)p FT(_)q
+FU(B)p 99 3705 10 38 v 109 3689 42 4 v 92 w(A)p FT(_)p
+FU(B)p 409 3441 213 4 v 409 3515 a(A)p 490 3503 10 38
+v 499 3486 42 4 v 88 w(A)p 691 3441 223 4 v 70 w(B)p
+776 3503 10 38 v 786 3486 42 4 v 92 w(B)p 409 3535 504
+4 v 441 3608 a(A;)14 b(B)p 626 3596 10 38 v 636 3579
+42 4 v 93 w(A)p FT(^)p FU(B)927 3552 y FT(^)982 3564
+y FS(I)p 441 3644 440 4 v 503 3717 a FU(A;)g(B)p 687
+3705 10 38 v 697 3689 42 4 v 92 w(A)894 3657 y FT(^)950
+3669 y FS(E)999 3677 y FP(1)p 1090 3441 213 4 v 1090
+3515 a FU(A)p 1171 3503 10 38 v 1180 3486 42 4 v 88 w(A)p
+1372 3441 223 4 v 70 w(B)p 1457 3503 10 38 v 1467 3486
+42 4 v 92 w(B)p 1090 3535 504 4 v 1123 3608 a(A;)g(B)p
+1307 3596 10 38 v 1317 3579 42 4 v 92 w(A)p FT(^)q FU(B)1608
+3552 y FT(^)1663 3564 y FS(I)p 1123 3644 440 4 v 1184
+3717 a FU(A;)g(B)p 1369 3705 10 38 v 1378 3689 42 4 v
+92 w(A)1576 3657 y FT(^)1631 3669 y FS(E)1680 3677 y
+FP(1)p -104 3754 1605 4 v 429 3827 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p
+836 3815 10 38 v 845 3798 42 4 v 92 w(A)1514 3770 y FT(_)1570
+3783 y FS(E)p 1744 3644 458 4 v 1744 3717 a FU(A)p FT(_)p
+FU(B)p 1947 3705 10 38 v 1957 3689 42 4 v 93 w(A)p FT(_)p
+FU(B)p 2257 3441 213 4 v 2257 3515 a(A)p 2337 3503 10
+38 v 2347 3486 42 4 v 88 w(A)p 2538 3441 223 4 v 69 w(B)p
+2624 3503 10 38 v 2633 3486 42 4 v 92 w(B)p 2257 3535
+504 4 v 2289 3608 a(A;)g(B)p 2474 3596 10 38 v 2483 3579
+42 4 v 92 w(A)p FT(^)q FU(B)2774 3552 y FT(^)2830 3564
+y FS(I)p 2289 3644 440 4 v 2350 3717 a FU(A;)g(B)p 2535
+3705 10 38 v 2545 3689 42 4 v 93 w(A)2742 3657 y FT(^)2797
+3669 y FS(E)2846 3677 y FP(1)p 2938 3441 213 4 v 2938
+3515 a FU(A)p 3019 3503 10 38 v 3028 3486 42 4 v 88 w(A)p
+3220 3441 223 4 v 70 w(B)p 3305 3503 10 38 v 3315 3486
+42 4 v 92 w(B)p 2938 3535 504 4 v 2970 3608 a(A;)g(B)p
+3155 3596 10 38 v 3165 3579 42 4 v 93 w(A)p FT(^)p FU(B)3456
+3552 y FT(^)3511 3564 y FS(I)p 2970 3644 440 4 v 3032
+3717 a FU(A;)g(B)p 3216 3705 10 38 v 3226 3689 42 4 v
+92 w(A)3423 3657 y FT(^)3479 3669 y FS(E)3528 3677 y
+FP(1)p 1744 3754 1605 4 v 2277 3827 a FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p
+2683 3815 10 38 v 2693 3798 42 4 v 92 w(A)3362 3770 y
+FT(_)3417 3783 y FS(E)p 429 3863 2386 4 v 1294 3936 a
+FU(A)p FT(_)q FU(B)t(;)g(A;)g(B)p 1701 3924 10 38 v 1710
+3908 42 4 v 92 w(A)p FT(^)q FU(A)2857 3880 y FT(^)2912
+3892 y FS(I)321 4156 y Gg(Here)24 b(we)e(are)i(stuck!)30
+b(There)24 b(is)g(no)f(reduction)j(that)e(w)o(ould)g(gi)n(v)o(e)g
+F6(j)p Gg(\(3.5\))r F6(j)2640 4123 y Fu(n)2680 4156 y
+Gg(\227the)g(proof)h(belo)n(w)-6 b(.)p 85 4646 458 4
+v 85 4720 a FU(A)p FT(_)q FU(B)p 288 4708 10 38 v 298
+4691 42 4 v 92 w(A)p FT(_)p FU(B)p 626 4334 213 4 v 626
+4408 a(A)p 706 4396 10 38 v 716 4379 42 4 v 88 w(A)p
+921 4334 223 4 v 83 w(B)p 1007 4396 10 38 v 1016 4379
+42 4 v 92 w(B)p 626 4427 518 4 v 665 4501 a(A;)14 b(B)p
+850 4489 10 38 v 859 4472 42 4 v 92 w(A)p FT(^)q FU(B)1185
+4444 y FT(^)1240 4457 y FS(I)p 665 4537 440 4 v 726 4610
+a FU(A;)g(B)p 911 4598 10 38 v 920 4582 42 4 v 92 w(A)1145
+4550 y FT(^)1201 4562 y FS(E)1250 4570 y FP(1)p 1369
+4334 213 4 v 1369 4408 a FU(A)p 1450 4396 10 38 v 1459
+4379 42 4 v 88 w(A)p 1665 4334 223 4 v 84 w(B)p 1750
+4396 10 38 v 1760 4379 42 4 v 92 w(B)p 1369 4427 518
+4 v 1408 4501 a(A;)g(B)p 1593 4489 10 38 v 1603 4472
+42 4 v 93 w(A)p FT(^)p FU(B)1928 4444 y FT(^)1984 4457
+y FS(I)p 1408 4537 440 4 v 1470 4610 a FU(A;)g(B)p 1654
+4598 10 38 v 1664 4582 42 4 v 92 w(A)1889 4550 y FT(^)1944
+4562 y FS(E)1993 4570 y FP(1)p 726 4646 1061 4 v 1039
+4720 a FU(A;)g(B)p 1224 4708 10 38 v 1233 4691 42 4 v
+92 w(A)p FT(^)q FU(A)1828 4663 y FT(^)1883 4676 y FS(I)p
+2113 4334 213 4 v 2113 4408 a FU(A)p 2193 4396 10 38
+v 2203 4379 42 4 v 88 w(A)p 2408 4334 223 4 v 83 w(B)p
+2494 4396 10 38 v 2503 4379 42 4 v 92 w(B)p 2113 4427
+518 4 v 2152 4501 a(A;)g(B)p 2337 4489 10 38 v 2346 4472
+42 4 v 92 w(A)p FT(^)q FU(B)2672 4444 y FT(^)2727 4457
+y FS(I)p 2152 4537 440 4 v 2213 4610 a FU(A;)g(B)p 2398
+4598 10 38 v 2408 4582 42 4 v 93 w(A)2633 4550 y FT(^)2688
+4562 y FS(E)2737 4570 y FP(1)p 2856 4334 213 4 v 2856
+4408 a FU(A)p 2937 4396 10 38 v 2947 4379 42 4 v 88 w(A)p
+3152 4334 223 4 v 84 w(B)p 3237 4396 10 38 v 3247 4379
+42 4 v 92 w(B)p 2856 4427 518 4 v 2896 4501 a(A;)g(B)p
+3080 4489 10 38 v 3090 4472 42 4 v 92 w(A)p FT(^)p FU(B)3415
+4444 y FT(^)3471 4457 y FS(I)p 2896 4537 440 4 v 2957
+4610 a FU(A;)g(B)p 3142 4598 10 38 v 3151 4582 42 4 v
+92 w(A)3376 4550 y FT(^)3431 4562 y FS(E)3480 4570 y
+FP(1)p 2213 4646 1061 4 v 2526 4720 a FU(A;)g(B)p 2711
+4708 10 38 v 2721 4691 42 4 v 93 w(A)p FT(^)p FU(A)3315
+4663 y FT(^)3370 4676 y FS(I)p 85 4756 2876 4 v 1195
+4829 a FU(A)p FT(_)p FU(B)t(;)g(B)t(;)g(A)p 1601 4817
+10 38 v 1611 4800 42 4 v 89 w(A)p FT(^)p FU(A)3002 4773
+y FT(_)3057 4785 y FS(E)321 5043 y Gg(What)27 b(is)g(needed)h(is)e(a)h
+(reduction)i(rule)e(which)g(permutes)h F6(^)2271 5057
+y Gc(I)2336 5043 y Gg(with)f F6(_)2584 5057 y Gc(E)2644
+5043 y Gg(.)37 b(On)26 b(the)h(le)n(v)o(el)g(of)g(lambda)321
+5156 y(terms)d(the)g(corresponding)k(reduction)e(rule)e(is)f(as)h
+(follo)n(ws.)p Black Black 706 5329 a F6(h)p Fp(case)o
+F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
+b F4(\))p Ga(;)15 b Fp(case)o F4(\()p Ga(P)s(;)g(\025)q(z)t(:S;)g(\025)
+q(w)r(:T)e F4(\))p F6(i)1129 5477 y(\000)-32 b(\000)h(!)76
+b Fp(case)n F4(\()p Ga(P)s(;)15 b(\025)q(x:)p F6(h)p
+Ga(M)5 b(;)15 b(S)5 b F4([)p Ga(z)31 b F4(:=)25 b Ga(x)p
+F4(])p F6(i)p Ga(;)15 b(\025)q(y)s(:)p F6(h)p Ga(N)5
+b(;)15 b(T)e F4([)p Ga(w)29 b F4(:=)c Ga(y)s F4(])p F6(i)p
+F4(\))p Black Black eop end
+%%Page: 81 93
+TeXDict begin 81 92 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
+d(Deduction)2373 b(81)p 277 88 3691 4 v Black 277 365
+a Gg(Since)21 b(the)h(reduction)i(\(3.3\))d(cannot)i(be)e(dispensed)j
+(with)d(in)g(the)h(sequent)h(calculus,)g(we)e(ha)n(v)o(e)g(to)g(e)o(x-)
+277 478 y(tend)g(the)g(natural)h(deduction)h(calculus)g(with)d
+(commuting)i(reductions)i(of)c(the)h(kind)g(sho)n(wn)g(abo)o(v)o(e.)
+3464 445 y F5(2)277 590 y Gg(As)33 b(can)h(be)f(easily)i(sho)n(wn,)h
+(these)e(commuting)h(reductions)i(are)c(harmless)i(with)f(respect)h(to)
+e(the)277 703 y(subformula)27 b(property)-6 b(.)36 b(W)-7
+b(e)24 b(shall)i(do)f(the)g(e)o(xtension)i(in)e(the)g(ne)o(xt)h
+(section)h(and)e(establish)i(the)f(cor)n(-)277 816 y(respondence)h(for)
+d(classical)i(logic.)277 1117 y Ge(3.3)119 b(Classical)30
+b(Natural)g(Deduction)277 1341 y Gg(Gentzen)22 b([1935])h(de\002ned)f
+(the)f(classical)i(natural)g(deduction)g(calculus)g(NK)d(by)h(e)o
+(xtending)i(NJ)e(with)277 1454 y(an)j(additional)i(axiom,)e(kno)n(wn)g
+(as)f(the)h(e)o(xcluded)h(middle)g(axiom,)e(sho)n(wn)h(belo)n(w)-6
+b(.)1740 1671 y Ga(B)20 b F6(_)15 b(:)p Ga(B)277 1842
+y Gg(In)33 b(order)i(to)e(obtain)i(a)d(classical)k(natural)f(deduction)
+h(calculus,)i(one)33 b(can,)j(alternati)n(v)o(ely)-6
+b(,)39 b(add)33 b(to)277 1955 y(NJ)f(the)g(stability)i(axiom,)h
+F6(::)p Ga(B)5 b F6(\033)n Ga(B)g Gg(,)33 b(an)f(instance)j(of)d
+(Peirce')-5 b(s)33 b(la)o(w)-6 b(,)33 b F4(\(\()p Ga(B)5
+b F6(\033?)p F4(\))p F6(\033)p Ga(B)g F4(\))p F6(\033)o
+Ga(B)g Gg(,)33 b(or)f(an)277 2067 y(additional)40 b(inference)f(rule)f
+(called)g(the)f(absurdity)j(rule.)69 b(All)36 b(these)i(calculi)h(are)e
+(adequate)i(for)277 2180 y(classical)26 b(logic)e(in)f(terms)h(of)f
+(pro)o(v)n(ability;)j(ho)n(we)n(v)o(er)l(,)e(from)f(a)g(proof)i
+(theoretic)g(point)g(of)e(vie)n(w)g(the)o(y)277 2293
+y(are)i(not)g(v)o(ery)g(ele)o(gant.)33 b(Let)23 b(us)i(\002rst)f
+(mention)i(tw)o(o)e(shortcomings)k(remark)o(ed)e(by)f(Gentzen)g([1935,)
+277 2406 y(P)o(ages)31 b(189\226190])i(and)f(Pra)o(witz)e([1971,)k(P)o
+(age)c(251]:)45 b(the)31 b(inference)j(rules)e(for)f(ne)o(gation)h(do)f
+(not)277 2519 y(f)o(all)25 b(into)g(the)f(general)i(pattern)g(of)e
+(introduction)k(and)d(elimination)h(rules,)g(and)e(there)h(are)g
+(problems)277 2632 y(concerning)32 b(the)d(subformula)i(property)-6
+b(.)47 b(F)o(or)28 b(analysing)j(the)f(correspondence)j(question)e(a)d
+(third)277 2745 y(shortcoming)h(is)e(particularly)j(anno)o(ying:)38
+b(classical)29 b(sequent)f(proofs)g(can)f(only)g(be)g(encoded)i(into)
+277 2858 y(NK)22 b(via)i(a)f(double)i(ne)o(gation)g(translation.)418
+2987 y(Better)38 b(suited)h(for)f(handling)i(classical)g(logic)e(and)g
+(much)g(more)g(con)l(v)o(enient)j(for)c(sho)n(wing)277
+3100 y(the)f(correspondence)41 b(is)35 b(the)h(sequence-conclusi)q(on)
+41 b(natural)d(deduction)g(calculus)3038 3067 y F5(3)3113
+3100 y Gg(introduced)277 3213 y(by)28 b(Bori)5 b(\020)-35
+b(ci)5 b(\264)-35 b(c)28 b([1985].)42 b(W)-7 b(e)27 b(shall)h
+(reformulate)i(this)e(calculus)h(into)g(\223sequent-style\224.)45
+b(F)o(or)26 b(this,)j(we)277 3326 y(shall)i(tak)o(e)g(sequents)i(of)d
+(the)g(form)g F4(\000)p 1529 3314 11 41 v 1540 3296 46
+5 v 97 w(\001)f Gg(where)h F4(\000)f Gg(and)i F4(\001)e
+Gg(are)i(sets)f(of)g(\(label,formula\))k(pairs,)277 3439
+y(analogous)24 b(to)e(the)f(left-)h(and)g(right-conte)o(xts)k
+(introduced)e(for)e(sequent)h(calculi.)30 b(Thus)21 b(the)h(labels)g
+(in)277 3552 y F4(\000)i Gg(are)g(referred)i(to)f(as)f(names)h(and)f
+(in)h F4(\001)e Gg(as)h(co-names.)33 b(The)24 b(inference)j(rules)e(of)
+f(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)26
+b(calcu-)277 3665 y(lus,)21 b(as)f(usual)h(for)f(natural)h(deduction,)i
+(come)d(in)g(pairs)h(introducing)i(a)c(connecti)n(v)o(e)k(and)d
+(eliminating)277 3778 y(a)j(connecti)n(v)o(e.)31 b(F)o(or)23
+b(instance)j(the)d(rules)i(introducing)i(and)d(eliminating)i
+F6(^)c Gg(are:)p Black Black 673 3952 a F4(\000)p 750
+3940 11 41 v 760 3921 46 5 v 96 w(\001)p Ga(;)15 b(a)i
+F4(:)h Ga(B)95 b F4(\000)p 1291 3940 11 41 v 1302 3921
+46 5 v 96 w(\001)p Ga(;)15 b(b)j F4(:)f Ga(C)p 673 3989
+981 4 v 876 4068 a F4(\000)p 953 4056 11 41 v 964 4038
+46 5 v 96 w(\001)p Ga(;)e(c)j F4(:)f Ga(B)5 b F6(^)p
+Ga(C)1695 4008 y F6(^)1756 4022 y Gc(I)2268 3951 y F4(\000)p
+2345 3939 11 41 v 2355 3920 46 5 v 96 w(\001)p Ga(;)15
+b(a)i F4(:)h Ga(B)2714 3965 y F9(1)2753 3951 y F6(^)p
+Ga(B)2883 3965 y F9(2)p 2268 3988 655 4 v 2363 4068 a
+F4(\000)p 2440 4056 11 41 v 2450 4038 46 5 v 96 w(\001)p
+Ga(;)d(b)i F4(:)h Ga(B)2800 4082 y Gc(i)2964 4001 y F6(^)3024
+4016 y Gc(E)3076 4026 y FZ(i)277 4262 y Gg(Again,)39
+b(rede)o(x)o(es)f(arise)f(when)f(a)g(connecti)n(v)o(e)j(is)d
+(introduced)k(and)d(eliminated)h(afterw)o(ards.)69 b(An)277
+4375 y(e)o(xample)24 b(is)1526 4456 y Ga(\031)1328 4535
+y F4(\000)p 1405 4523 11 41 v 1416 4504 46 5 v 96 w(\001)p
+Ga(;)15 b(a)j F4(:)f Ga(B)2050 4455 y(\031)2105 4422
+y FX(0)1870 4535 y F4(\000)p 1947 4523 11 41 v 1957 4504
+46 5 v 96 w(\001)p Ga(;)e(b)i F4(:)h Ga(C)p 1328 4572
+981 4 v 1532 4651 a F4(\000)p 1609 4639 11 41 v 1619
+4621 46 5 v 96 w(\001)p Ga(;)d(c)j F4(:)f Ga(B)5 b F6(^)o
+Ga(C)2351 4590 y F6(^)2411 4605 y Gc(I)p 1532 4689 574
+4 v 1594 4768 a F4(\000)p 1671 4756 11 41 v 1681 4738
+46 5 v 96 w(\001)p Ga(;)15 b(d)j F4(:)f Ga(B)2147 4702
+y F6(^)2208 4716 y Gc(E)2260 4725 y FV(1)277 4931 y Gg(which)24
+b(reduces)h(to)f(the)g(proof)1878 4965 y(.)1878 4998
+y(.)1878 5032 y(.)1665 5112 y F4(\000)p 1742 5100 11
+41 v 1752 5082 46 5 v 96 w(\001)p Ga(;)15 b(d)j F4(:)f
+Ga(B)p Black 277 5238 1290 4 v 383 5294 a F3(2)412 5326
+y F2(While)22 b(this)g(rule)h(has)g(not)g(been)g(considered)h(for)f(a)g
+(natural)f(deduction)j(calculus,)f(unpublished)g(w)o(ork)f(by)h(Dybjer)
+277 5417 y(and)c(Ong)f(suggests)h(that)f(this)f(rule)h(comes)h(into)f
+(play)g(when)h(considering)g(bicartesian)f(closed)h(cate)o(gories.)383
+5478 y F3(3)412 5510 y F2(T)-6 b(o)17 b(be)h(consistent)h(with)e(our)h
+(terminology)h(for)f(sequents,)g(we)g(should)h(refer)e(to)h(this)f
+(natural)h(deduction)i(calculus)e(as)277 5601 y(sequence-succedent)k
+(natural)d(deduction)i(calculus,)e(b)o(ut)g(we)f(shall)h(follo)n(w)g
+(Bori)t(\020)-29 b(ci)t(\264)g(c')l(s)19 b(original)g(terminology)-5
+b(.)p Black Black Black eop end
+%%Page: 82 94
+TeXDict begin 82 93 bop Black -144 51 a Gb(82)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(obtained)37
+b(from)e Ga(\031)i Gg(by)e(renaming)h Ga(a)e Gg(to)h
+Ga(d)p Gg(.)62 b(Ho)n(we)n(v)o(er)l(,)37 b(notice)g(that)e(in)g(case)g
+(of)g(more)g(than)g(one)321 478 y(formula)h(in)g(the)f(succedent)j
+(there)e(might)f(be)h(se)n(v)o(eral)g(inferences)i(in)d
+(\223between\224)i(the)e(rule)h(that)321 590 y(introduces)27
+b(a)c(connecti)n(v)o(e)j(and)e(the)g(rule)g(that)g(eliminates)h(it,)e
+(as)h(indicated)i(belo)n(w)-6 b(.)1326 746 y F4(\000)1383
+713 y FX(0)p 1426 734 11 41 v 1437 716 46 5 v 1502 746
+a F4(\001)1578 713 y FX(0)1601 746 y Ga(;)15 b(a)j F4(:)f
+Ga(B)96 b F4(\000)1971 713 y FX(0)p 2014 734 11 41 v
+2025 716 46 5 v 2090 746 a F4(\001)2166 713 y FX(0)2189
+746 y Ga(;)15 b(b)j F4(:)f Ga(C)p 1326 784 1074 4 v 1553
+870 a F4(\000)1610 837 y FX(0)p 1653 858 11 41 v 1663
+840 46 5 v 1729 870 a F4(\001)1805 837 y FX(0)1828 870
+y Ga(;)e(c)j F4(:)f Ga(B)5 b F6(^)p Ga(C)2441 802 y F6(^)2502
+816 y Gc(I)1851 914 y Gg(.)1851 947 y(.)1851 980 y(.)1851
+1013 y(.)1576 1093 y F4(\000)p 1653 1081 11 41 v 1663
+1063 46 5 v 96 w(\001)p Ga(;)15 b(c)j F4(:)f Ga(B)5 b
+F6(^)o Ga(C)p 1576 1131 574 4 v 1638 1210 a F4(\000)p
+1715 1198 11 41 v 1725 1180 46 5 v 96 w(\001)p Ga(;)15
+b(d)j F4(:)f Ga(B)2191 1144 y F6(^)2252 1158 y Gc(E)2304
+1167 y FV(1)321 1388 y Gg(In)i(order)h(to)f(apply)h(the)f(reduction)i
+(rule)e(eliminating)i(the)e(rede)o(x,)i(we)d(ha)n(v)o(e)h(to)g(mo)o(v)o
+(e)f(the)h(elimination)321 1501 y(rule)32 b(ne)o(xt)g(to)g(the)g
+(introduction)j(rule.)53 b(This)32 b(means)g(already)h(in)e(the)h
+(fragment)h(containing)i(only)321 1614 y(the)e F6(^)o
+Gg(-connecti)n(v)o(e)i(we)c(need)i(commuting)g(reductions.)57
+b(Cellucci)34 b([1992])f(ga)n(v)o(e)f(the)h(\002rst)e(set)i(of)321
+1727 y(reduction)28 b(rules)e(for)f(Bori)5 b(\020)-35
+b(ci)5 b(\264)-35 b(c')-5 b(s)26 b(calculus.)35 b(These)25
+b(reductions)j(are)d(Gentzen-lik)o(e,)j(in)c(the)i(sense)g(of)321
+1840 y(re)n(writing)20 b(neighbouring)j(inference)e(rules)f(only)-6
+b(.)28 b(As)18 b(with)g(sequent)j(calculi,)g(a)d(set)h(of)g
+(Gentzen-lik)o(e)321 1953 y(reduction)28 b(rules)e(that)f(is)g
+(strongly)i(normalising)g(is)e(rather)h(dif)n(\002cult)g(to)f(\002nd)f
+(\(we)h(illustrated)i(some)321 2065 y(of)j(the)g(dif)n(\002culties)i
+(with)d(an)h(LK-proof)h(in)e(Example)h(2.1.3\).)48 b(Unlik)o(e)31
+b(his)f(rules,)i(which)e(are)g F7(not)321 2178 y Gg(strongly)h
+(normalising,)i(our)c(reduction)j(rules)e(will)e(be)h(similar)h(to)f
+(the)g(\223global\224)i(reduction)h(rules)321 2291 y(introduced)39
+b(for)c F4(\()p FY(T)t Ga(;)1049 2254 y Gc(cut)1018 2291
+y F6(\000)-31 b(\000)f(!)p F4(\))35 b Gg(and)h(in)f(consequence)k(will)
+c(be)g(strongly)j(normalising.)67 b(Restricted)321 2404
+y(v)o(ersions)27 b(of)d(our)h(rules)g(were)g(studied)h(pre)n(viously)h
+(in)e(connection)j(with)c Ga(\025\026)f Gg([P)o(arigot,)i(1992].)33
+b(F)o(or)321 2517 y(space)28 b(reasons)h(we)d(shall)i(gi)n(v)o(e)f(the)
+h(calculus)h(for)e(only)h(the)f(propositional)k(fragment)d(of)f
+(classical)321 2630 y(logic.)i(Note)19 b(ho)n(we)n(v)o(er)g(that)h(all)
+f(results)i(gi)n(v)o(en)f(belo)n(w)f(can)h(be)f(easily)i(e)o(xtended)g
+(to)e(more)h(e)o(xpressi)n(v)o(e)321 2743 y(fragments.)462
+2872 y(W)-7 b(e)20 b(alluded)j(in)d(Section)i(2.5)e(to)h(the)g(man)o(y)
+f(v)n(ariations)k(of)c(de\002ning)i(sequent)h(calculi;)g(similarly)321
+2985 y(there)31 b(are)g(man)o(y)f(v)n(ariants)i(of)e
+(sequence-conclusio)q(n)36 b(natural)c(deduction)h(calculi.)50
+b(T)-7 b(o)29 b(sho)n(w)h(the)321 3098 y(correspondence)40
+b(we)34 b(shall)i(use)f(the)g(calculus)i(gi)n(v)o(en)f(in)f(Figure)g
+(3.6.)63 b(The)34 b(notion)j(of)d(implicit)321 3211 y(contractions)i
+(and)d(the)g(conte)o(xt)g(con)l(v)o(ention)j(can)d(be)f(adapted)i(to)f
+(this)f(calculus)j(in)d(the)h(ob)o(vious)321 3324 y(w)o(ay)20
+b(\(see)h(P)o(age)e(19\).)28 b(Whilst)21 b(our)f(introduction)k(rules)d
+(are)f(rather)h(standard,)i(our)d(elimination)j(rules)321
+3437 y(are)28 b(some)n(what)f(non-standard.)44 b(The)o(y)27
+b(are)g(implicit)h(in)f(the)h(w)o(ork)f(by)g(Bori)5 b(\020)-35
+b(ci)5 b(\264)-35 b(c)28 b([1985],)i(and)d(some)321 3550
+y(of)e(them)g(appear)h(in)f F7(fr)m(ee)g(deduction)j
+Gg(introduced)g(by)d(P)o(arigot)g([1991].)34 b(Ho)n(we)n(v)o(er)l(,)25
+b(we)f(should)j(lik)o(e)321 3663 y(to)i(stress)h(the)f(point)g(that)h
+(the)f(reasons)h(for)f(choosing)i(this)e(particular)i(set)e(of)g
+(inference)i(rules)e(are)321 3776 y(entirely)24 b(pragmatic:)29
+b(the)o(y)22 b(simplify)h(considerably)i(the)d(translations)i(between)f
+(natural)g(deduction)321 3889 y(proofs)34 b(and)e(sequent)i(proofs.)56
+b(Other)32 b(sets)h(of)f(inference)i(rules)f(can)f(also)h(be)f(used)h
+(to)f(study)h(the)321 4001 y(correspondence,)28 b(although)e(the)e
+(machinery)h(required)h(is)d(more)h(complicated.)462
+4131 y(Recall)35 b(the)g(translation)j F6(j)p 1318 4131
+28 4 v 1336 4131 V 1353 4131 V 65 w(j)1406 4098 y Fu(n)1480
+4131 y Gg(from)d(intuitionistic)j(sequent)f(proofs)f(to)e
+(intuitionistic)39 b(natu-)321 4244 y(ral)29 b(deduction)j(proofs)e
+(\(Figure)g(3.4\).)44 b(There,)30 b(as)f(illustrated)j(belo)n(w)-6
+b(,)30 b(we)e(applied)j(a)d(substitution)321 4357 y(operation)e(to)e
+(translate)i(cuts.)1187 4554 y F6(j)p FL(Cut)p F4(\()1385
+4542 y FX(h)1412 4554 y Ga(a)1460 4542 y FX(i)1488 4554
+y Ga(M)10 b(;)1626 4542 y F9(\()1654 4554 y Ga(x)1706
+4542 y F9(\))1733 4554 y Ga(N)g F4(\))p F6(j)1876 4516
+y Fu(n)1958 4554 y F4(=)40 b F6(j)p Ga(N)10 b F6(j)2202
+4516 y Fu(n)2243 4554 y F4([)p Ga(x)25 b F4(:=)h F6(j)p
+Ga(M)10 b F6(j)2615 4516 y Fu(n)2656 4554 y F4(])321
+4732 y Gg(In)24 b(consequence,)k(we)23 b(obtained)j(a)d(rather)j(weak)d
+(correspondence:)35 b(whene)n(v)o(er)25 b Ga(x)e Gg(is)h(not)g(free)h
+(in)e Ga(N)321 4844 y Gg(and)h(therefore)i(in)e F6(j)p
+Ga(N)10 b F6(j)1053 4811 y Fu(n)1094 4844 y Gg(,)23 b(the)h
+(cut-reductions)j(that)e Ga(M)33 b Gg(can)24 b(perform)g(are)g(mapped)h
+(onto)f(identities.)321 4957 y(Consider)36 b(an)f(analogous)i
+(translation)g(for)e(classical)h(sequent)h(proofs)f(\(denoted)g(by)f
+F6(j)p 3184 4957 V 3202 4957 V 3219 4957 V 65 w(j)3272
+4924 y Fu(N)3326 4957 y Gg(\),)h(and)321 5070 y(suppose)26
+b(we)d(are)g(gi)n(v)o(en)h(the)g(term)g(corresponding)j(to)d(Lafont')-5
+b(s)25 b(e)o(xample;)f(that)g(is)1614 5313 y FL(Cut)p
+F4(\()1787 5301 y FX(h)1815 5313 y Ga(a)1863 5301 y FX(i)1890
+5313 y Ga(M)10 b(;)2028 5301 y F9(\()2056 5313 y Ga(x)2108
+5301 y F9(\))2135 5313 y Ga(N)g F4(\))p Black 1119 w
+Gg(\(3.6\))p Black 321 5474 a(where)27 b Ga(a)f Gg(is)g(not)h(free)g
+(in)f Ga(M)36 b Gg(and)27 b Ga(x)e Gg(not)i(free)g(in)f
+Ga(N)10 b Gg(.)37 b(Clearly)-6 b(,)27 b(this)g(term)g(can)f(reduce)i
+(to)f(either)g Ga(M)p Black Black eop end
+%%Page: 83 95
+TeXDict begin 83 94 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
+d(Deduction)2373 b(83)p 277 88 3691 4 v Black Black 277
+277 V 277 2068 4 1792 v 1773 369 676 4 v 1773 447 a Ga(x)17
+b F4(:)h Ga(B)5 b(;)15 b F4(\000)p 2076 435 11 41 v 2086
+417 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(B)615 709
+y(x)f F4(:)h Ga(B)5 b(;)15 b F4(\000)p 918 697 11 41
+v 928 679 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(C)p
+615 746 674 4 v 660 826 a F4(\000)p 737 814 11 41 v 748
+796 46 5 v 96 w(\001)p Ga(;)d(b)j F4(:)f Ga(B)5 b F6(\033)p
+Ga(C)1331 764 y F6(\033)1401 778 y Gc(I)1946 710 y F4(\000)p
+2023 698 11 41 v 2033 680 46 5 v 96 w(\001)p Ga(;)15
+b(a)i F4(:)h Ga(B)5 b F6(\033)o Ga(C)97 b F4(\000)p 2706
+698 11 41 v 2717 680 46 5 v 96 w(\001)p Ga(;)15 b(b)j
+F4(:)f Ga(B)96 b(x)17 b F4(:)g Ga(C)q(;)e F4(\000)p 3457
+698 11 41 v 3467 680 46 5 v 97 w(\001)p 1946 747 1664
+4 v 2663 826 a(\000)p 2740 814 11 41 v 2750 796 46 5
+v 96 w(\001)3650 765 y F6(\033)3721 779 y Gc(E)442 1088
+y F4(\000)p 519 1076 11 41 v 529 1058 46 5 v 96 w(\001)p
+Ga(;)g(a)i F4(:)h Ga(B)145 b F4(\000)p 1110 1076 11 41
+v 1121 1058 46 5 v 97 w(\001)p Ga(;)15 b(b)i F4(:)g Ga(C)p
+442 1126 1032 4 v 670 1205 a F4(\000)p 747 1193 11 41
+v 758 1175 46 5 v 96 w(\001)p Ga(;)e(c)j F4(:)g Ga(B)5
+b F6(^)o Ga(C)1514 1144 y F6(^)1575 1158 y Gc(I)2147
+1088 y F4(\000)p 2224 1076 11 41 v 2234 1058 46 5 v 96
+w(\001)p Ga(;)15 b(a)i F4(:)h Ga(B)2593 1102 y F9(1)2632
+1088 y F6(^)p Ga(B)2762 1102 y F9(2)2917 1088 y Ga(x)f
+F4(:)h Ga(B)3098 1102 y Gc(i)3126 1088 y Ga(;)d F4(\000)p
+3243 1076 11 41 v 3254 1058 46 5 v 97 w(\001)p 2147 1126
+1249 4 v 2657 1205 a(\000)p 2734 1193 11 41 v 2744 1175
+46 5 v 96 w(\001)3437 1139 y F6(^)3497 1153 y Gc(E)3549
+1163 y FZ(i)710 1466 y F4(\000)p 787 1454 11 41 v 797
+1436 46 5 v 96 w(\001)p Ga(;)g(a)i F4(:)h Ga(B)1156 1480
+y Gc(i)p 624 1504 646 4 v 624 1583 a F4(\000)p 701 1571
+11 41 v 711 1553 46 5 v 96 w(\001)p Ga(;)d(b)i F4(:)h
+Ga(B)1061 1597 y F9(1)1100 1583 y F6(_)p Ga(B)1230 1597
+y F9(2)1311 1517 y F6(_)1371 1531 y Gc(I)1402 1541 y
+FZ(i)1951 1467 y F4(\000)p 2028 1455 11 41 v 2039 1437
+46 5 v 96 w(\001)p Ga(;)d(a)j F4(:)f Ga(B)5 b F6(_)o
+Ga(C)98 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 2927
+1455 11 41 v 2938 1437 46 5 v 96 w(\001)91 b Ga(y)20
+b F4(:)e Ga(C)q(;)d F4(\000)p 3461 1455 11 41 v 3472
+1437 46 5 v 97 w(\001)p 1951 1505 1662 4 v 2668 1583
+a(\000)p 2745 1571 11 41 v 2755 1553 46 5 v 96 w(\001)3655
+1523 y F6(_)3715 1537 y Gc(E)730 1846 y Ga(x)i F4(:)h
+Ga(B)5 b(;)15 b F4(\000)p 1033 1834 11 41 v 1043 1816
+46 5 v 96 w(\001)p 702 1883 512 4 v 702 1962 a(\000)p
+779 1950 11 41 v 789 1932 46 5 v 96 w(\001)p Ga(;)g(a)i
+F4(:)h F6(:)p Ga(B)1254 1896 y F6(:)1315 1910 y Gc(I)2261
+1846 y F4(\000)p 2338 1834 11 41 v 2348 1816 46 5 v 96
+w(\001)p Ga(;)d(a)i F4(:)h F6(:)p Ga(B)95 b F4(\000)p
+2940 1834 11 41 v 2950 1816 46 5 v 96 w(\001)p Ga(;)15
+b(b)i F4(:)h Ga(B)p 2261 1883 1044 4 v 2668 1962 a F4(\000)p
+2745 1950 11 41 v 2755 1932 46 5 v 96 w(\001)3346 1896
+y F6(:)3407 1910 y Gc(E)p 3965 2068 4 1792 v 277 2071
+3691 4 v Black 845 2225 a Gg(Figure)25 b(3.6:)k(Natural)24
+b(deduction)i(calculus)g(for)e(classical)h(logic.)p Black
+Black 277 2663 a(or)f Ga(N)10 b Gg(.)31 b(T)m(ranslating)26
+b(this)f(cut-instance)j(to)c(a)g(natural)i(deduction)h(proof)e(using)h
+(an)o(y)e(kind)h(of)g(substi-)277 2776 y(tution)h(operation)h(w)o(ould)
+e(be)g(disastrous:)33 b(it)25 b(w)o(ould)g(result)g(into)g(a)g(f)o
+(ailure)h(of)e(the)h(correspondence)277 2889 y(between)k(normalisation)
+i(and)d(cut-elimination.)46 b(Gi)n(v)o(en)27 b F6(j)p
+2184 2889 28 4 v 2202 2889 V 2220 2889 V 65 w(j)2272
+2856 y Fu(N)2353 2889 y Gg(we)g(w)o(ould)h(translate)i(this)f(term)e
+(as)277 3002 y(follo)n(ws)1071 3262 y F6(j)p FL(Cut)p
+F4(\()1269 3250 y FX(h)1297 3262 y Ga(a)1345 3250 y FX(i)1372
+3262 y Ga(M)10 b(;)1510 3250 y F9(\()1538 3262 y Ga(x)1590
+3250 y F9(\))1618 3262 y Ga(N)g F4(\))p F6(j)1761 3225
+y Fu(N)1856 3262 y F4(=)40 b F6(j)p Ga(N)10 b F6(j)2100
+3225 y Fu(N)2154 3262 y F4([)p Ga(x)26 b F4(:=)2378 3250
+y FX(h)2405 3262 y Ga(a)2453 3250 y FX(i)2481 3262 y
+F6(j)p Ga(M)10 b F6(j)2629 3229 y Fu(N)2683 3262 y F4(])277
+3522 y Gg(where,)23 b(because)i Ga(x)d Gg(not)h(free)g(in)g
+F6(j)p Ga(N)10 b F6(j)1455 3489 y Fu(N)1509 3522 y Gg(,)22
+b(the)h(substitution)j(v)n(anishes;)g(that)d(is)g(the)g(term)f(on)h
+(the)g(right-)277 3635 y(hand)35 b(side)g(is)g(equi)n(v)n(alent)h(to)f
+F6(j)p Ga(N)10 b F6(j)1407 3602 y Fu(N)1461 3635 y Gg(.)60
+b(In)35 b(consequence,)40 b(we)34 b(w)o(ould)h(\223lose\224)g(the)g
+(cut-reductions)277 3747 y(which)29 b(reduce)i(\(3.6\))e(to)g
+Ga(M)10 b Gg(.)44 b(This)29 b(means)g(we)f(cannot)j(de\002ne)e
+F6(j)p 2396 3747 V 2414 3747 V 2432 3747 V 65 w(j)2484
+3714 y Fu(N)2566 3747 y Gg(using)h(a)f(substitution)j(oper)n(-)277
+3860 y(ation.)48 b(W)-7 b(e)29 b(shall)h(remedy)h(this)f(problem)h(by)f
+(introducing)j(the)d(follo)n(wing)h(\(symmetric\))g(e)o(xplicit)277
+3973 y(substitution)c(rule)1191 4191 y F4(\000)1248 4205
+y F9(1)p 1308 4179 11 41 v 1318 4161 46 5 v 1384 4191
+a F4(\001)1460 4205 y F9(1)1499 4191 y Ga(;)15 b(a)i
+F4(:)h Ga(B)95 b(x)17 b F4(:)h Ga(B)5 b(;)15 b F4(\000)2094
+4205 y F9(2)p 2153 4179 11 41 v 2164 4161 46 5 v 2229
+4191 a F4(\001)2305 4205 y F9(2)p 1191 4229 1154 4 v
+1468 4307 a F4(\000)1525 4321 y F9(1)1564 4307 y Ga(;)g
+F4(\000)1661 4321 y F9(2)p 1721 4295 11 41 v 1731 4277
+46 5 v 1797 4307 a F4(\001)1873 4321 y F9(1)1912 4307
+y Ga(;)g F4(\001)2028 4321 y F9(2)2386 4259 y Gg(Subst)277
+4601 y(which)22 b(allo)n(ws)f(us)g(to)g(de\002ne)h(a)f(translation)j
+F6(j)p 1702 4601 28 4 v 1720 4601 V 1737 4601 V 65 w(j)1790
+4568 y Fu(N)1864 4601 y Gg(and)e(reduction)h(rules)g(so)e(that)g
+F6(j)p Gg(\(3.6\))r F6(j)3059 4568 y Fu(N)3133 4601 y
+Gg(can)h(match)277 4714 y F7(both)j Gg(reductions)i(of)d(\(3.6\).)31
+b(Thus,)25 b(we)e(add)i(this)f(inference)j(rule)e(to)f(our)g(natural)i
+(deduction)h(calcu-)277 4827 y(lus.)418 4966 y(In)g(the)h(follo)n(wing)
+h(we)d(shall)i(de)n(v)o(elop)h(reduction)h(rules)e(for)g(our)f
+(classical)j(natural)f(deduction)277 5079 y(calculus.)50
+b(As)29 b(with)g(our)h(cut-elimination)k(rules,)e(these)e(reduction)j
+(rules)d(will)g(be)g(de\002ned)g(using)277 5192 y(terms)24
+b(annotated)i(to)d(proofs.)31 b(The)23 b(ra)o(w)f(terms)i(are)g
+(de\002ned)g(belo)n(w)-6 b(.)p Black Black eop end
+%%Page: 84 96
+TeXDict begin 84 95 bop Black -144 51 a Gb(84)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(De\002nition)g
+(3.3.1)g Gg(\(Ra)o(w)g(T)-6 b(erms\))p Gb(:)p Black 33
+w Gg(The)24 b(set)f(of)h(ra)o(w)e(terms,)i F4(R)p Gg(,)e(is)i
+(de\002ned)g(by)g(the)f(grammar)p Black Black 346 539
+a Ga(M)5 b(;)15 b(N)5 b(;)15 b(P)113 b F4(::=)100 b FL(Id)p
+F4(\()p Ga(x;)15 b(a)p F4(\))1220 b Gg(identity)816 652
+y F6(j)148 b FL(And)1144 666 y Gc(I)1184 652 y F4(\()1219
+640 y FX(h)1246 652 y Ga(a)r F4(:)r Ga(B)1397 640 y FX(i)1425
+652 y Ga(M)10 b(;)1563 640 y FX(h)1591 652 y Ga(b)r F4(:)r
+Ga(C)1731 640 y FX(i)1758 652 y Ga(N)g(;)15 b(c)p F4(\))536
+b Gg(and-introduction)816 766 y F6(j)148 b FL(And)1144
+729 y Gc(i)1144 789 y(E)1203 766 y F4(\()1238 754 y FX(h)1266
+766 y Ga(a)r F4(:)r Ga(B)1412 780 y F9(1)1452 766 y F6(^)o
+Ga(B)1581 780 y F9(2)1621 754 y FX(i)1648 766 y Ga(M)10
+b(;)1786 754 y F9(\()1814 766 y Ga(x)17 b F4(:)h Ga(B)1995
+780 y Gc(i)2023 754 y F9(\))2050 766 y Ga(N)10 b F4(\))323
+b Gg(and)2621 733 y Gc(i)2650 766 y Gg(-elimination)147
+b Ga(i)26 b F4(=)e(1)p Ga(;)15 b F4(2)816 881 y F6(j)148
+b FL(Or)1088 844 y Gc(i)1088 904 y(I)1128 881 y F4(\()1163
+869 y FX(h)1191 881 y Ga(a)1239 895 y Gc(i)1269 881 y
+F4(:)r Ga(B)1365 895 y Gc(i)1394 869 y FX(i)1421 881
+y Ga(M)10 b(;)15 b(b)p F4(\))858 b Gg(or)2566 848 y Gc(i)2595
+881 y Gg(-introduction)173 b Ga(i)26 b F4(=)e(1)p Ga(;)15
+b F4(2)816 994 y F6(j)148 b FL(Or)1088 1008 y Gc(E)1148
+994 y F4(\()1183 982 y FX(h)1211 994 y Ga(a)r F4(:)r
+Ga(B)5 b F6(_)o Ga(C)1494 982 y FX(i)1521 994 y Ga(M)10
+b(;)1659 982 y F9(\()1687 994 y Ga(x)r F4(:)r Ga(B)1842
+982 y F9(\))1869 994 y Ga(N)g(;)1992 982 y F9(\()2020
+994 y Ga(y)5 b F4(:)r Ga(C)2169 982 y F9(\))2196 994
+y Ga(P)13 b F4(\))189 b Gg(or)n(-elimination)816 1107
+y F6(j)148 b FL(Imp)1134 1129 y Gc(I)1173 1107 y F4(\()1208
+1095 y F9(\()1236 1107 y Ga(x)r F4(:)r Ga(B)1391 1095
+y F9(\))p FX(h)1446 1107 y Ga(a)r F4(:)r Ga(C)1595 1095
+y FX(i)1622 1107 y Ga(M)10 b(;)15 b(b)p F4(\))657 b Gg
+(implication-introducti)q(on)816 1220 y F6(j)148 b FL(Imp)1134
+1241 y Gc(E)1193 1220 y F4(\()1228 1208 y FX(h)1256 1220
+y Ga(a)r F4(:)r Ga(B)5 b F6(\033)p Ga(C)1550 1208 y FX(i)1576
+1220 y Ga(M)11 b(;)1715 1208 y FX(h)1742 1220 y Ga(b)r
+F4(:)r Ga(C)1882 1208 y FX(i)1910 1220 y Ga(N)f(;)2033
+1208 y F9(\()2060 1220 y Ga(x)r F4(:)r Ga(B)2215 1208
+y F9(\))2243 1220 y Ga(P)j F4(\))142 b Gg(implication-elimination)816
+1333 y F6(j)148 b FL(Not)1132 1347 y Gc(I)1172 1333 y
+F4(\()1207 1321 y F9(\()1234 1333 y Ga(x)r F4(:)r Ga(B)1389
+1321 y F9(\))1417 1333 y Ga(M)10 b(;)15 b(b)p F4(\))862
+b Gg(ne)o(gation-introduction)816 1445 y F6(j)148 b FL(Not)1132
+1459 y Gc(E)1191 1445 y F4(\()1226 1433 y FX(h)1254 1445
+y Ga(a)r F4(:)r F6(:)p Ga(B)1466 1433 y FX(i)1493 1445
+y Ga(M)10 b(;)1631 1433 y FX(h)1659 1445 y Ga(b)r F4(:)r
+Ga(B)1801 1433 y FX(i)1828 1445 y Ga(N)g F4(\))545 b
+Gg(ne)o(gation-elimination)816 1558 y F6(j)148 b FL(Subst)o
+F4(\()1236 1546 y FX(h)1264 1558 y Ga(a)r F4(:)r Ga(B)1415
+1546 y FX(i)1442 1558 y Ga(M)10 b(;)1580 1546 y F9(\()1608
+1558 y Ga(x)r F4(:)r Ga(B)1763 1546 y F9(\))1791 1558
+y Ga(N)f F4(\))583 b Gg(symmetric)24 b(substitution)321
+1804 y(Henceforth)j(we)d(shall)i(omit)f(the)g(types)h(on)f(the)h
+(binders,)h(pro)o(vided)f(the)o(y)g(are)f(clear)h(from)f(the)g(con-)321
+1917 y(te)o(xt.)k(Con)l(v)o(ention)24 b(2.2.4)e(concerning)j(the)d
+(Barendre)o(gt-style)j(naming)e(con)l(v)o(ention)i(e)o(xtends)e(to)f
+(the)321 2029 y(terms)k(de\002ned)h(abo)o(v)o(e.)36 b(Gi)n(v)o(en)25
+b(the)h(notions)i(of)d(free)h(names)h(and)f(co-names)h(for)f(terms)g
+(of)f FY(R)p Gg(,)g(it)h(is)321 2142 y(routine)g(to)d(de\002ne)h
+(analogous)i(notions)g(for)d(the)h(terms)g(of)f F4(R)p
+Gg(.)462 2272 y(T)-7 b(o)27 b(annotate)j(terms)f(to)f(our)g(natural)h
+(deduction)i(proofs)f(we)d(shall)i(replace)g(e)n(v)o(ery)g(sequent)h
+(of)321 2385 y(the)h(form)f F4(\000)p 745 2373 11 41
+v 755 2354 46 5 v 96 w(\001)f Gg(with)h(a)f(typing)j(judgement)g(of)e
+(the)g(form)g F4(\000)2394 2373 y Gc(.)2449 2385 y Ga(M)2572
+2373 y Gc(.)2627 2385 y F4(\001)f Gg(in)h(which)h F4(\000)e
+Gg(and)h F4(\001)f Gg(are)321 2498 y(conte)o(xts)24 b(and)f
+Ga(M)31 b Gg(is)22 b(a)f(term.)28 b(As)21 b(usual,)i(we)f(are)g
+(interested)i(in)e(only)h(well-typed)h(terms,)e(i.e.,)f(those)321
+2611 y(for)j(which)f(there)h(is)f(a)g(conte)o(xt)h F4(\000)f
+Gg(and)g(a)g(conte)o(xt)h F4(\001)f Gg(such)h(that)f
+F4(\000)2444 2599 y Gc(.)2499 2611 y Ga(M)2623 2599 y
+Gc(.)2677 2611 y F4(\001)g Gg(is)f(deri)n(v)n(able)k(gi)n(v)o(en)d(the)
+321 2723 y(rules)i(sho)n(wn)f(in)f(Figure)h(3.7.)29 b(The)23
+b(set)g(of)h(well-typed)h(terms)f(is)g(de\002ned)g(as)f(follo)n(ws.)p
+Black Black 380 2945 a F4(K)550 2893 y F5(def)558 2945
+y F4(=)735 2844 y FK(n)821 2945 y Ga(M)966 2840 y FK(\014)966
+2895 y(\014)966 2949 y(\014)1044 2945 y Ga(M)35 b F6(2)25
+b F4(R)e Gg(and)h(well-typed)h(by)f(the)g(inference)h(rules)g(gi)n(v)o
+(en)f(in)f(Figure)i(3.7)3427 2844 y FK(o)462 3161 y Gg(Our)f(inference)
+i(rules)e(are)g(de\002ned)g(such)h(that)f(only)h(axioms)f(and)g
+(introduction)j(rules)e(are)f(con-)321 3274 y(cerned)30
+b(with)f(introducing)i(a)d(co-name;)33 b(elimination)e(rules,)f(on)f
+(the)f(other)i(hand,)g(are)f(concerned)321 3387 y(with)24
+b(only)g(eliminating)i(a)d(co-name.)30 b(This)23 b(is)h(e)o(xpressed)h
+(in)f(the)g(follo)n(wing)h(de\002nition.)p Black 321
+3575 a Gb(De\002nition)e(3.3.2:)p Black Black 458 3768
+a F6(\017)p Black 46 w Gg(A)f(term)h Ga(M)33 b F7(intr)l(oduces)27
+b Gg(the)c(co-name)i Ga(c)p Gg(,)e(if)g(and)h(only)h(if)e
+Ga(M)33 b Gg(is)23 b(of)g(the)h(form:)p Black Black 576
+3965 a FL(Id)q F4(\()p Ga(x;)15 b(c)p F4(\))p 899 3998
+4 115 v 101 w FL(And)1105 3979 y Gc(I)1145 3965 y F4(\()1180
+3953 y FX(h)1208 3965 y Ga(a)1256 3953 y FX(i)1283 3965
+y Ga(S)5 b(;)1384 3953 y FX(h)1412 3965 y Ga(b)1451 3953
+y FX(i)1479 3965 y Ga(T)12 b(;)j(c)p F4(\))p 1708 3998
+V 101 w FL(Or)1858 3928 y Gc(i)1858 3988 y(I)1898 3965
+y F4(\()1933 3953 y FX(h)1961 3965 y Ga(a)2009 3953 y
+FX(i)2037 3965 y Ga(S)5 b(;)15 b(c)p F4(\))p 2261 3998
+V 100 w FL(Imp)2457 3986 y Gc(I)2497 3965 y F4(\()2532
+3953 y F9(\()2560 3965 y Ga(x)2612 3953 y F9(\))p FX(h)2666
+3965 y Ga(a)2714 3953 y FX(i)2742 3965 y Ga(S)5 b(;)15
+b(c)p F4(\))p 2966 3998 V 101 w FL(Not)3160 3979 y Gc(I)3200
+3965 y F4(\()3235 3953 y F9(\()3263 3965 y Ga(x)3315
+3953 y F9(\))3342 3965 y Ga(S)5 b(;)15 b(c)p F4(\))p
+Black 458 4160 a F6(\017)p Black 46 w Gg(A)23 b(term)i
+Ga(M)34 b F7(fr)m(eshly)26 b Gg(introduces)i(a)c(co-name,)i(if)f(and)g
+(only)h(if)e(none)i(of)f(its)g(proper)h(subterms)549
+4273 y(introduces)g(this)e(co-name.)p Black 458 4451
+a F6(\017)p Black 46 w Gg(A)e(term)h Ga(M)33 b F7(eliminates)26
+b Gg(the)d(co-name)i Ga(c)p Gg(,)e(if)g(and)h(only)h(if)e
+Ga(M)33 b Gg(is)23 b(of)g(the)h(form:)p Black Black 390
+4648 a FL(And)545 4611 y Gc(i)545 4671 y(E)604 4648 y
+F4(\()639 4636 y FX(h)667 4648 y Ga(c)706 4636 y FX(i)734
+4648 y Ga(S)5 b(;)835 4636 y F9(\()863 4648 y Ga(x)915
+4636 y F9(\))942 4648 y Ga(T)13 b F4(\))p 1076 4681 V
+69 w FL(Or)1212 4662 y Gc(E)1271 4648 y F4(\()1306 4636
+y FX(h)1334 4648 y Ga(c)1373 4636 y FX(i)1401 4648 y
+Ga(S)5 b(;)1502 4636 y F9(\()1530 4648 y Ga(x)1582 4636
+y F9(\))1609 4648 y Ga(T)13 b(;)1715 4636 y F9(\()1743
+4648 y Ga(y)1791 4636 y F9(\))1818 4648 y Ga(P)g F4(\))p
+1957 4681 V 70 w FL(Imp)2138 4669 y Gc(E)2198 4648 y
+F4(\()2233 4636 y FX(h)2260 4648 y Ga(c)2299 4636 y FX(i)2327
+4648 y Ga(S)5 b(;)2428 4636 y FX(h)2456 4648 y Ga(b)2495
+4636 y FX(i)2523 4648 y Ga(T)12 b(;)2628 4636 y F9(\()2656
+4648 y Ga(x)2708 4636 y F9(\))2736 4648 y Ga(P)h F4(\))p
+2875 4681 V 69 w FL(Not)3054 4662 y Gc(E)3114 4648 y
+F4(\()3149 4636 y FX(h)3176 4648 y Ga(c)3215 4636 y FX(i)3243
+4648 y Ga(S)5 b(;)3344 4636 y FX(h)3372 4648 y Ga(b)3411
+4636 y FX(i)3438 4648 y Ga(T)13 b F4(\))462 4910 y Gg(Ne)o(xt)30
+b(we)f(shall)i(gi)n(v)o(e)f(the)g(translation)j F6(j)p
+1765 4910 28 4 v 1783 4910 V 1801 4910 V 65 w(j)1853
+4877 y Fu(N)1907 4910 y Gg(,)e(which)f(maps)g(terms)g(of)g
+FY(T)f Gg(to)h(terms)g(of)g F4(K)p Gg(,)g(and)321 5023
+y(the)24 b(translation)i F6(j)p 888 5023 V 906 5023 V
+923 5023 V 64 w(j)975 4990 y Fu(S)1041 5023 y Gg(for)e(the)f(other)h(w)
+o(ay)f(around,)h(that)g(is)f(from)g(terms)g(of)g F4(K)f
+Gg(to)h(terms)g(of)g FY(T)t Gg(.)h(The)o(y)321 5136 y(are)33
+b(gi)n(v)o(en)f(in)g(Figures)h(3.8)f(and)g(3.9,)i(respecti)n(v)o(ely)-6
+b(.)57 b(An)32 b(important)h(property)i(of)d(these)h(transla-)321
+5249 y(tions)f(is)e(that)h(the)o(y)g(respect)h(typing)g(judgements.)53
+b(The)30 b(proof)h(of)g(this)g(property)i(coincides)g(with)321
+5361 y(sho)n(wing)28 b(the)g(soundness)i(and)d(completeness)j(of)d(our)
+g(natural)i(deduction)h(calculus)f(with)e(respect)321
+5474 y(to)d(pro)o(v)n(ability)i(in)d(classical)j(logic.)p
+Black Black eop end
+%%Page: 85 97
+TeXDict begin 85 96 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
+d(Deduction)2373 b(85)p 277 88 3691 4 v Black Black 277
+1280 V 277 4182 4 2902 v 1599 1372 1024 4 v 1599 1457
+a Ga(x)18 b F4(:)f Ga(B)5 b(;)15 b F4(\000)1907 1445
+y Gc(.)1962 1457 y FL(Id)p F4(\()p Ga(x;)g(a)p F4(\))2271
+1445 y Gc(.)2325 1457 y F4(\001)p Ga(;)g(a)j F4(:)f Ga(B)574
+1707 y F4(\000)656 1695 y Gc(.)711 1707 y Ga(M)834 1695
+y Gc(.)889 1707 y F4(\001)p Ga(;)e(a)i F4(:)h Ga(B)186
+b F4(\000)1450 1695 y Gc(.)1505 1707 y Ga(N)1613 1695
+y Gc(.)1668 1707 y F4(\001)p Ga(;)15 b(b)j F4(:)f Ga(C)p
+564 1745 1402 4 v 564 1830 a F4(\000)646 1818 y Gc(.)701
+1830 y FL(And)855 1844 y Gc(I)895 1830 y F4(\()930 1818
+y FX(h)958 1830 y Ga(a)1006 1818 y FX(i)1033 1830 y Ga(M)10
+b(;)1171 1818 y FX(h)1199 1830 y Ga(b)1238 1818 y FX(i)1266
+1830 y Ga(N)g(;)15 b(c)p F4(\))1489 1818 y Gc(.)1544
+1830 y F4(\001)p Ga(;)g(c)j F4(:)f Ga(B)5 b F6(^)o Ga(C)2006
+1763 y F6(^)2067 1777 y Gc(I)2577 1695 y F4(\000)2660
+1683 y Gc(.)2714 1695 y Ga(M)2838 1683 y Gc(.)2893 1695
+y F4(\001)p Ga(;)15 b(a)i F4(:)h Ga(B)3186 1709 y Gc(i)p
+2296 1732 1200 4 v 2296 1830 a F4(\000)2378 1818 y Gc(.)2433
+1830 y FL(Or)2532 1793 y Gc(i)2532 1853 y(I)2572 1830
+y F4(\()2607 1818 y FX(h)2635 1830 y Ga(a)2683 1818 y
+FX(i)2710 1830 y Ga(M)10 b(;)15 b(b)p F4(\))2948 1818
+y Gc(.)3003 1830 y F4(\001)p Ga(;)g(b)j F4(:)f Ga(B)3287
+1844 y F9(1)3326 1830 y F6(_)p Ga(B)3456 1844 y F9(2)3537
+1745 y F6(_)3598 1759 y Gc(I)3629 1769 y FZ(i)841 2079
+y Ga(x)g F4(:)h Ga(B)5 b(;)15 b F4(\000)1149 2067 y Gc(.)1204
+2079 y Ga(M)1327 2067 y Gc(.)1382 2079 y F4(\001)p Ga(;)g(a)i
+F4(:)h Ga(C)p 614 2117 1290 4 v 614 2202 a F4(\000)696
+2190 y Gc(.)751 2202 y FL(Imp)896 2223 y Gc(I)935 2202
+y F4(\()970 2190 y F9(\()998 2202 y Ga(x)1050 2190 y
+F9(\))q FX(h)1105 2202 y Ga(a)1153 2190 y FX(i)1181 2202
+y Ga(M)10 b(;)15 b(b)p F4(\))1419 2190 y Gc(.)1474 2202
+y F4(\001)p Ga(;)g(b)i F4(:)g Ga(B)5 b F6(\033)p Ga(C)1946
+2134 y F6(\033)2016 2148 y Gc(I)2598 2079 y Ga(x)17 b
+F4(:)h Ga(B)5 b(;)15 b F4(\000)2905 2067 y Gc(.)2960
+2079 y Ga(M)3084 2067 y Gc(.)3139 2079 y F4(\001)p 2345
+2117 1122 4 v 2345 2202 a(\000)2427 2190 y Gc(.)2482
+2202 y FL(Not)2625 2216 y Gc(I)2665 2202 y F4(\()2700
+2190 y F9(\()2728 2202 y Ga(x)2780 2190 y F9(\))2807
+2202 y Ga(M)10 b(;)15 b(a)p F4(\))3054 2190 y Gc(.)3109
+2202 y F4(\001)p Ga(;)g(a)i F4(:)h F6(:)p Ga(B)3509 2129
+y F6(:)3570 2143 y Gc(I)1207 2451 y F4(\000)1289 2439
+y Gc(.)1344 2451 y Ga(M)1468 2439 y Gc(.)1523 2451 y
+F4(\001)p Ga(;)d(a)i F4(:)g Ga(B)1815 2465 y F9(1)1855
+2451 y F6(^)o Ga(B)1984 2465 y F9(2)2206 2451 y Ga(x)g
+F4(:)g Ga(B)2386 2465 y Gc(i)2414 2451 y Ga(;)e F4(\000)2537
+2439 y Gc(.)2592 2451 y Ga(N)2700 2439 y Gc(.)2755 2451
+y F4(\001)p 1207 2489 1624 4 v 1514 2586 a(\000)1597
+2574 y Gc(.)1651 2586 y FL(And)1806 2549 y Gc(i)1806
+2609 y(E)1866 2586 y F4(\()1901 2574 y FX(h)1928 2586
+y Ga(a)1976 2574 y FX(i)2004 2586 y Ga(M)10 b(;)2142
+2574 y F9(\()2170 2586 y Ga(x)2222 2574 y F9(\))2249
+2586 y Ga(N)g F4(\))2393 2574 y Gc(.)2448 2586 y F4(\001)2872
+2502 y F6(^)2933 2516 y Gc(E)2985 2526 y FZ(i)886 2836
+y F4(\000)968 2824 y Gc(.)1023 2836 y Ga(M)1147 2824
+y Gc(.)1202 2836 y F4(\001)p Ga(;)15 b(a)i F4(:)g Ga(B)5
+b F6(_)p Ga(C)188 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2120
+2824 y Gc(.)2175 2836 y Ga(N)2284 2824 y Gc(.)2338 2836
+y F4(\001)182 b Ga(y)20 b F4(:)d Ga(C)q(;)e F4(\000)2892
+2824 y Gc(.)2947 2836 y Ga(P)3043 2824 y Gc(.)3098 2836
+y F4(\001)p 886 2873 2288 4 v 1446 2958 a(\000)1528 2946
+y Gc(.)1583 2958 y FL(Or)1683 2972 y Gc(E)1742 2958 y
+F4(\()1777 2946 y FX(h)1805 2958 y Ga(a)1853 2946 y FX(i)1880
+2958 y Ga(M)c(;)2019 2946 y F9(\()2046 2958 y Ga(x)2098
+2946 y F9(\))2126 2958 y Ga(N)f(;)2249 2946 y F9(\()2277
+2958 y Ga(y)2325 2946 y F9(\))2352 2958 y Ga(P)j F4(\))2484
+2946 y Gc(.)2538 2958 y F4(\001)3216 2891 y F6(_)3276
+2905 y Gc(E)881 3208 y F4(\000)963 3196 y Gc(.)1018 3208
+y Ga(M)1141 3196 y Gc(.)1196 3208 y F4(\001)p Ga(;)i(a)i
+F4(:)h Ga(B)5 b F6(\033)o Ga(C)188 b F4(\000)1899 3196
+y Gc(.)1954 3208 y Ga(N)2062 3196 y Gc(.)2117 3208 y
+F4(\001)p Ga(;)15 b(b)j F4(:)f Ga(B)186 b(x)18 b F4(:)f
+Ga(C)q(;)e F4(\000)2888 3196 y Gc(.)2943 3208 y Ga(P)3039
+3196 y Gc(.)3094 3208 y F4(\001)p 881 3246 2290 4 v 1423
+3331 a(\000)1505 3319 y Gc(.)1560 3331 y FL(Imp)1705
+3353 y Gc(E)1764 3331 y F4(\()1799 3319 y FX(h)1827 3331
+y Ga(a)1875 3319 y FX(i)1902 3331 y Ga(M)c(;)2041 3319
+y FX(h)2068 3331 y Ga(b)2107 3319 y FX(i)2135 3331 y
+Ga(N)f(;)2258 3319 y F9(\()2286 3331 y Ga(x)2338 3319
+y F9(\))2365 3331 y Ga(P)j F4(\))2497 3319 y Gc(.)2552
+3331 y F4(\001)3211 3264 y F6(\033)3282 3278 y Gc(E)1309
+3581 y F4(\000)1391 3569 y Gc(.)1446 3581 y Ga(M)1569
+3569 y Gc(.)1624 3581 y F4(\001)p Ga(;)i(a)i F4(:)h F6(:)p
+Ga(B)186 b F4(\000)2246 3569 y Gc(.)2301 3581 y Ga(N)2409
+3569 y Gc(.)2464 3581 y F4(\001)p Ga(;)15 b(b)i F4(:)g
+Ga(B)p 1309 3619 1444 4 v 1538 3704 a F4(\000)1620 3692
+y Gc(.)1675 3704 y FL(Not)1818 3718 y Gc(E)1877 3704
+y F4(\()1912 3692 y FX(h)1940 3704 y Ga(a)1988 3692 y
+FX(i)2016 3704 y Ga(M)10 b(;)2154 3692 y FX(h)2182 3704
+y Ga(b)2221 3692 y FX(i)2248 3704 y Ga(N)g F4(\))2392
+3692 y Gc(.)2447 3704 y F4(\001)2793 3632 y F6(:)2854
+3646 y Gc(E)1213 3953 y F4(\000)1270 3967 y F9(1)1334
+3941 y Gc(.)1389 3953 y Ga(M)1512 3941 y Gc(.)1567 3953
+y F4(\001)1643 3967 y F9(1)1682 3953 y Ga(;)15 b(a)j
+F4(:)g Ga(B)186 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2368
+3967 y F9(2)2433 3941 y Gc(.)2488 3953 y Ga(N)2596 3941
+y Gc(.)2651 3953 y F4(\001)2727 3967 y F9(2)p 1213 3991
+1554 4 v 1300 4076 a F4(\000)1357 4090 y F9(1)1397 4076
+y Ga(;)g F4(\000)1494 4090 y F9(2)1558 4064 y Gc(.)1613
+4076 y FL(Subst)o F4(\()1860 4064 y FX(h)1888 4076 y
+Ga(a)1936 4064 y FX(i)1964 4076 y Ga(M)10 b(;)2102 4064
+y F9(\()2130 4076 y Ga(x)2182 4064 y F9(\))2209 4076
+y Ga(N)g F4(\))2353 4064 y Gc(.)2408 4076 y F4(\001)2484
+4090 y F9(1)2523 4076 y Ga(;)15 b F4(\001)2639 4090 y
+F9(2)2808 4021 y Gg(Subst)p 3965 4182 4 2902 v 277 4185
+3691 4 v Black 668 4338 a(Figure)24 b(3.7:)29 b(T)-6
+b(erm)23 b(assignment)i(for)f(classical)i(natural)f(deduction)h
+(proofs.)p Black Black Black Black eop end
+%%Page: 86 98
+TeXDict begin 86 97 bop Black -144 51 a Gb(86)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black -144 1278
+V -144 4183 4 2905 v -41 1457 a Gg(\(1\))1043 b F6(j)p
+FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))p F6(j)1439 1424
+y Fu(S)1584 1405 y F5(def)1591 1457 y F4(=)106 b FL(Ax)p
+F4(\()p Ga(x;)15 b(a)p F4(\))-41 1606 y Gg(\(2\))612
+b F6(j)p FL(Subst)o F4(\()948 1594 y FX(h)976 1606 y
+Ga(a)1024 1594 y FX(i)1052 1606 y Ga(M)10 b(;)1190 1594
+y F9(\()1218 1606 y Ga(x)1270 1594 y F9(\))1297 1606
+y Ga(N)g F4(\))p F6(j)1440 1573 y Fu(S)1584 1555 y F5(def)1591
+1606 y F4(=)106 b FL(Cut)p F4(\()1941 1594 y FX(h)1969
+1606 y Ga(a)2017 1594 y FX(i)2059 1606 y F6(j)p Ga(M)10
+b F6(j)2207 1573 y Fu(S)2251 1606 y Ga(;)2291 1594 y
+F9(\()2319 1606 y Ga(x)2371 1594 y F9(\))2414 1606 y
+F6(j)p Ga(N)g F6(j)2547 1573 y Fu(S)2591 1606 y F4(\))-41
+1804 y Gg(\(3\))563 b F6(j)p FL(And)807 1818 y Gc(I)847
+1804 y F4(\()882 1792 y FX(h)909 1804 y Ga(a)957 1792
+y FX(i)985 1804 y Ga(M)10 b(;)1123 1792 y FX(h)1151 1804
+y Ga(b)1190 1792 y FX(i)1217 1804 y Ga(N)g(;)15 b(c)p
+F4(\))p F6(j)1439 1771 y Fu(S)1584 1752 y F5(def)1591
+1804 y F4(=)106 b FL(And)1923 1818 y Gc(R)1980 1804 y
+F4(\()2015 1792 y FX(h)2043 1804 y Ga(a)2091 1792 y FX(i)2134
+1804 y F6(j)p Ga(M)10 b F6(j)2282 1771 y Fu(S)2326 1804
+y Ga(;)2366 1792 y FX(h)2394 1804 y Ga(b)2433 1792 y
+FX(i)2475 1804 y F6(j)p Ga(N)g F6(j)2608 1771 y Fu(S)2652
+1804 y Ga(;)15 b(c)p F4(\))-41 1954 y Gg(\(4\))836 b
+F6(j)p FL(Or)1024 1917 y Gc(i)1024 1977 y(I)1064 1954
+y F4(\()1099 1942 y FX(h)1127 1954 y Ga(a)1175 1942 y
+FX(i)1202 1954 y Ga(M)11 b(;)k(b)p F4(\))p F6(j)1440
+1921 y Fu(S)1584 1902 y F5(def)1591 1954 y F4(=)106 b
+FL(Or)1867 1917 y Gc(i)1867 1977 y(R)1925 1954 y F4(\()1960
+1942 y FX(h)1988 1954 y Ga(a)2036 1942 y FX(i)2078 1954
+y F6(j)p Ga(M)10 b F6(j)2226 1921 y Fu(S)2270 1954 y
+Ga(;)15 b(b)p F4(\))-41 2104 y Gg(\(5\))684 b F6(j)p
+FL(Imp)917 2125 y Gc(I)957 2104 y F4(\()992 2092 y F9(\()1020
+2104 y Ga(x)1072 2092 y F9(\))q FX(h)1127 2104 y Ga(a)1175
+2092 y FX(i)1202 2104 y Ga(M)11 b(;)k(b)p F4(\))p F6(j)1440
+2071 y Fu(S)1584 2052 y F5(def)1591 2104 y F4(=)106 b
+FL(Imp)1912 2125 y Gc(R)1970 2104 y F4(\()2005 2092 y
+F9(\()2033 2104 y Ga(x)2085 2092 y F9(\))p FX(h)2140
+2104 y Ga(a)2188 2092 y FX(i)2230 2104 y F6(j)p Ga(M)10
+b F6(j)2378 2071 y Fu(S)2422 2104 y Ga(;)15 b(b)p F4(\))-41
+2254 y Gg(\(6\))779 b F6(j)p FL(Not)1011 2268 y Gc(I)1051
+2254 y F4(\()1086 2242 y F9(\()1114 2254 y Ga(x)1166
+2242 y F9(\))1193 2254 y Ga(M)11 b(;)k(a)p F4(\))p F6(j)1440
+2221 y Fu(S)1584 2202 y F5(def)1591 2254 y F4(=)106 b
+FL(Not)1911 2268 y Gc(R)1968 2254 y F4(\()2003 2242 y
+F9(\()2031 2254 y Ga(x)2083 2242 y F9(\))2126 2254 y
+F6(j)p Ga(M)10 b F6(j)2274 2221 y Fu(S)2318 2254 y Ga(;)15
+b(a)p F4(\))-41 2451 y Gg(\(7\))430 b F6(j)p FL(And)674
+2414 y Gc(i)674 2474 y(E)734 2451 y F4(\()769 2439 y
+FX(h)797 2451 y Ga(a)845 2439 y FX(i)872 2451 y FL(Id)p
+F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)1190 2439 y F9(\()1218
+2451 y Ga(x)1270 2439 y F9(\))1297 2451 y Ga(N)10 b F4(\))p
+F6(j)1440 2418 y Fu(S)1584 2399 y F5(def)1591 2451 y
+F4(=)106 b FL(And)1923 2414 y Gc(i)1923 2474 y(L)1975
+2451 y F4(\()2010 2439 y F9(\()2038 2451 y Ga(x)2090
+2439 y F9(\))2132 2451 y F6(j)p Ga(N)10 b F6(j)2265 2418
+y Fu(S)2309 2451 y Ga(;)15 b(z)t F4(\))-41 2601 y Gg(\(8\))272
+b F6(j)p FL(Or)460 2615 y Gc(E)520 2601 y F4(\()555 2589
+y FX(h)583 2601 y Ga(a)631 2589 y FX(i)658 2601 y FL(Id)p
+F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)976 2589 y F9(\()1004
+2601 y Ga(x)1056 2589 y F9(\))1083 2601 y Ga(N)10 b(;)1206
+2589 y F9(\()1234 2601 y Ga(y)1282 2589 y F9(\))1309
+2601 y Ga(P)j F4(\))p F6(j)1440 2568 y Fu(S)1584 2549
+y F5(def)1591 2601 y F4(=)106 b FL(Or)1867 2615 y Gc(L)1919
+2601 y F4(\()1954 2589 y F9(\()1982 2601 y Ga(x)2034
+2589 y F9(\))2077 2601 y F6(j)p Ga(N)10 b F6(j)2210 2568
+y Fu(S)2254 2601 y Ga(;)2294 2589 y F9(\()2321 2601 y
+Ga(y)2369 2589 y F9(\))2412 2601 y F6(j)p Ga(P)j F6(j)2533
+2568 y Fu(S)2577 2601 y Ga(;)i(z)t F4(\))-41 2751 y Gg(\(9\))235
+b F6(j)p FL(Imp)469 2772 y Gc(E)529 2751 y F4(\()564
+2739 y FX(h)591 2751 y Ga(a)639 2739 y FX(i)667 2751
+y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))q Ga(;)984
+2739 y FX(h)1012 2751 y Ga(b)1051 2739 y FX(i)1079 2751
+y Ga(N)10 b(;)1202 2739 y F9(\()1230 2751 y Ga(x)1282
+2739 y F9(\))1309 2751 y Ga(P)j F4(\))p F6(j)1440 2718
+y Fu(S)1584 2699 y F5(def)1591 2751 y F4(=)106 b FL(Imp)1912
+2772 y Gc(L)1965 2751 y F4(\()2000 2739 y FX(h)2027 2751
+y Ga(b)2066 2739 y FX(i)2109 2751 y F6(j)p Ga(N)10 b
+F6(j)2242 2718 y Fu(S)2286 2751 y Ga(;)2326 2739 y F9(\()2354
+2751 y Ga(x)2406 2739 y F9(\))2448 2751 y F6(j)p Ga(P)j
+F6(j)2569 2718 y Fu(S)2613 2751 y Ga(;)i(z)t F4(\))-41
+2901 y Gg(\(10\))410 b F6(j)p FL(Not)687 2915 y Gc(E)747
+2901 y F4(\()782 2889 y FX(h)810 2901 y Ga(a)858 2889
+y FX(i)885 2901 y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))r
+Ga(;)1203 2889 y FX(h)1231 2901 y Ga(b)1270 2889 y FX(i)1297
+2901 y Ga(N)10 b F4(\))p F6(j)1440 2868 y Fu(S)1584 2849
+y F5(def)1591 2901 y F4(=)106 b FL(Not)1911 2915 y Gc(L)1963
+2901 y F4(\()1998 2889 y FX(h)2026 2901 y Ga(b)2065 2889
+y FX(i)2107 2901 y F6(j)p Ga(N)10 b F6(j)2240 2868 y
+Fu(S)2284 2901 y Ga(;)15 b(z)t F4(\))-41 3095 y Gb(Otherwise:)-41
+3221 y Gg(\(11\))565 b F6(j)p FL(And)854 3184 y Gc(i)854
+3244 y(E)913 3221 y F4(\()948 3209 y FX(h)976 3221 y
+Ga(a)1024 3209 y FX(i)1052 3221 y Ga(M)10 b(;)1190 3209
+y F9(\()1218 3221 y Ga(x)1270 3209 y F9(\))1297 3221
+y Ga(N)g F4(\))p F6(j)1440 3188 y Fu(S)1584 3169 y F5(def)1591
+3221 y F4(=)106 b FL(Cut)p F4(\()1941 3209 y FX(h)1969
+3221 y Ga(a)2017 3209 y FX(i)2059 3221 y F6(j)p Ga(M)10
+b F6(j)2207 3188 y Fu(S)2251 3221 y Ga(;)2291 3209 y
+F9(\()2319 3221 y Ga(y)2367 3209 y F9(\))2394 3221 y
+FL(And)2549 3184 y Gc(i)2549 3244 y(L)2601 3221 y F4(\()2636
+3209 y F9(\()2664 3221 y Ga(x)2716 3209 y F9(\))2758
+3221 y F6(j)p Ga(N)g F6(j)2891 3188 y Fu(S)2935 3221
+y Ga(;)15 b(y)s F4(\))q(\))-41 3371 y Gg(\(12\))406 b
+F6(j)p FL(Or)640 3385 y Gc(E)699 3371 y F4(\()734 3359
+y FX(h)762 3371 y Ga(a)810 3359 y FX(i)838 3371 y Ga(M)10
+b(;)976 3359 y F9(\()1004 3371 y Ga(x)1056 3359 y F9(\))1083
+3371 y Ga(N)g(;)1206 3359 y F9(\()1234 3371 y Ga(y)1282
+3359 y F9(\))1309 3371 y Ga(P)j F4(\))p F6(j)1440 3338
+y Fu(S)1584 3319 y F5(def)1591 3371 y F4(=)106 b FL(Cut)p
+F4(\()1941 3359 y FX(h)1969 3371 y Ga(a)2017 3359 y FX(i)2059
+3371 y F6(j)p Ga(M)10 b F6(j)2207 3338 y Fu(S)2251 3371
+y Ga(;)2291 3359 y F9(\()2319 3371 y Ga(z)2365 3359 y
+F9(\))2393 3371 y FL(Or)2492 3385 y Gc(L)2544 3371 y
+F4(\()2579 3359 y F9(\()2607 3371 y Ga(x)2659 3359 y
+F9(\))2702 3371 y F6(j)p Ga(N)g F6(j)2835 3338 y Fu(S)2878
+3371 y Ga(;)2918 3359 y F9(\()2946 3371 y Ga(y)2994 3359
+y F9(\))3037 3371 y F6(j)p Ga(P)j F6(j)3158 3338 y Fu(S)3202
+3371 y Ga(;)i(z)t F4(\))q(\))-41 3521 y Gg(\(13\))370
+b F6(j)p FL(Imp)648 3543 y Gc(E)708 3521 y F4(\()743
+3509 y FX(h)771 3521 y Ga(a)819 3509 y FX(i)846 3521
+y Ga(M)10 b(;)984 3509 y FX(h)1012 3521 y Ga(b)1051 3509
+y FX(i)1079 3521 y Ga(N)g(;)1202 3509 y F9(\()1230 3521
+y Ga(x)1282 3509 y F9(\))1309 3521 y Ga(P)j F4(\))p F6(j)1440
+3488 y Fu(S)1584 3469 y F5(def)1591 3521 y F4(=)106 b
+FL(Cut)p F4(\()1941 3509 y FX(h)1969 3521 y Ga(a)2017
+3509 y FX(i)2059 3521 y F6(j)p Ga(M)10 b F6(j)2207 3488
+y Fu(S)2251 3521 y Ga(;)2291 3509 y F9(\()2319 3521 y
+Ga(y)2367 3509 y F9(\))2394 3521 y FL(Imp)2539 3543 y
+Gc(L)2591 3521 y F4(\()2626 3509 y FX(h)2654 3521 y Ga(b)2693
+3509 y FX(i)2735 3521 y F6(j)p Ga(N)g F6(j)2868 3488
+y Fu(S)2912 3521 y Ga(;)2952 3509 y F9(\()2980 3521 y
+Ga(x)3032 3509 y F9(\))3075 3521 y F6(j)p Ga(P)j F6(j)3196
+3488 y Fu(S)3239 3521 y Ga(;)i(y)s F4(\))q(\))-41 3671
+y Gg(\(14\))590 b F6(j)p FL(Not)867 3685 y Gc(E)926 3671
+y F4(\()961 3659 y FX(h)989 3671 y Ga(a)1037 3659 y FX(i)1065
+3671 y Ga(M)10 b(;)1203 3659 y FX(h)1231 3671 y Ga(b)1270
+3659 y FX(i)1297 3671 y Ga(N)g F4(\))p F6(j)1440 3638
+y Fu(S)1584 3619 y F5(def)1591 3671 y F4(=)106 b FL(Cut)p
+F4(\()1941 3659 y FX(h)1969 3671 y Ga(a)2017 3659 y FX(i)2059
+3671 y F6(j)p Ga(M)10 b F6(j)2207 3638 y Fu(S)2251 3671
+y Ga(;)2291 3659 y F9(\()2319 3671 y Ga(y)2367 3659 y
+F9(\))2394 3671 y FL(Not)2537 3685 y Gc(L)2589 3671 y
+F4(\()2624 3659 y FX(h)2652 3671 y Ga(b)2691 3659 y FX(i)2734
+3671 y F6(j)p Ga(N)g F6(j)2867 3638 y Fu(S)2910 3671
+y Ga(;)15 b(y)s F4(\))q(\))268 3912 y Gg(where)24 b(in)48
+b(\(11\))h Ga(y)28 b F6(62)c Ga(F)13 b(N)d F4(\()1177
+3900 y F9(\()1205 3912 y Ga(x)1257 3900 y F9(\))1285
+3912 y F6(j)p Ga(N)g F6(j)1418 3879 y Fu(S)1462 3912
+y F4(\))464 b Gg(\(12\))49 b Ga(z)30 b F6(62)24 b Ga(F)13
+b(N)d F4(\()2506 3900 y F9(\()2534 3912 y Ga(x)2586 3900
+y F9(\))2614 3912 y F6(j)p Ga(N)g F6(j)2747 3879 y Fu(S)2791
+3912 y Ga(;)2831 3900 y F9(\()2858 3912 y Ga(y)2906 3900
+y F9(\))2934 3912 y F6(j)p Ga(P)j F6(j)3055 3879 y Fu(S)3099
+3912 y F4(\))631 4059 y Gg(\(13\))49 b Ga(y)28 b F6(62)c
+Ga(F)13 b(N)d F4(\()1177 4047 y FX(h)1205 4059 y Ga(b)1244
+4047 y FX(i)1272 4059 y F6(j)p Ga(N)g F6(j)1405 4026
+y Fu(S)1449 4059 y Ga(;)1489 4047 y F9(\()1516 4059 y
+Ga(x)1568 4047 y F9(\))1596 4059 y F6(j)p Ga(P)j F6(j)1717
+4026 y Fu(S)1761 4059 y F4(\))165 b Gg(\(14\))49 b Ga(y)28
+b F6(62)d Ga(F)13 b(N)d F4(\()2508 4047 y FX(h)2536 4059
+y Ga(b)2575 4047 y FX(i)2602 4059 y F6(j)p Ga(N)g F6(j)2735
+4026 y Fu(S)2779 4059 y F4(\))p 3543 4183 V -144 4186
+3691 4 v Black 624 4340 a Gg(Figure)24 b(3.8:)29 b(T)m(ranslation)c
+(from)f(natural)h(deduction)h(proofs)f(to)f(sequent)h(proofs.)p
+Black Black Black Black eop end
+%%Page: 87 99
+TeXDict begin 87 98 bop Black 277 51 a Gb(3.3)23 b(Classical)j(Natural)
+d(Deduction)2373 b(87)p 277 88 3691 4 v Black Black 277
+1275 V 277 4186 4 2911 v 442 1454 a Gg(\(1\))1231 b F6(j)p
+FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))p F6(j)2140 1421
+y Fu(N)2295 1402 y F5(def)2302 1454 y F4(=)107 b FL(Id)p
+F4(\()p Ga(x;)15 b(a)p F4(\))442 1641 y Gg(\(2\))763
+b F6(j)p FL(And)1490 1655 y Gc(R)1548 1641 y F4(\()1583
+1629 y FX(h)1611 1641 y Ga(a)1659 1629 y FX(i)1686 1641
+y Ga(M)10 b(;)1824 1629 y FX(h)1852 1641 y Ga(b)1891
+1629 y FX(i)1919 1641 y Ga(N)f(;)15 b(c)p F4(\))p F6(j)2140
+1608 y Fu(N)2295 1590 y F5(def)2302 1641 y F4(=)107 b
+FL(And)2634 1655 y Gc(I)2674 1641 y F4(\()2709 1629 y
+FX(h)2737 1641 y Ga(a)2785 1629 y FX(i)2828 1641 y F6(j)p
+Ga(M)10 b F6(j)2976 1608 y Fu(N)3030 1641 y Ga(;)3070
+1629 y FX(h)3098 1641 y Ga(b)3137 1629 y FX(i)3180 1641
+y F6(j)p Ga(N)g F6(j)3313 1608 y Fu(N)3367 1641 y Ga(;)15
+b(c)p F4(\))442 1791 y Gg(\(3\))1036 b F6(j)p FL(Or)1708
+1754 y Gc(i)1708 1814 y(R)1765 1791 y F4(\()1800 1779
+y FX(h)1828 1791 y Ga(a)1876 1779 y FX(i)1904 1791 y
+Ga(M)10 b(;)15 b(b)p F4(\))p F6(j)2141 1758 y Fu(N)2295
+1740 y F5(def)2302 1791 y F4(=)107 b FL(Or)2579 1754
+y Gc(i)2579 1814 y(I)2619 1791 y F4(\()2654 1779 y FX(h)2682
+1791 y Ga(a)2730 1779 y FX(i)2772 1791 y F6(j)p Ga(M)10
+b F6(j)2920 1758 y Fu(N)2975 1791 y Ga(;)15 b(b)p F4(\))442
+1941 y Gg(\(4\))884 b F6(j)p FL(Imp)1601 1963 y Gc(R)1659
+1941 y F4(\()1694 1929 y F9(\()1721 1941 y Ga(x)1773
+1929 y F9(\))q FX(h)1828 1941 y Ga(a)1876 1929 y FX(i)1904
+1941 y Ga(M)10 b(;)15 b(b)p F4(\))p F6(j)2141 1908 y
+Fu(N)2295 1890 y F5(def)2302 1941 y F4(=)107 b FL(Imp)2624
+1963 y Gc(I)2664 1941 y F4(\()2699 1929 y F9(\()2727
+1941 y Ga(x)2779 1929 y F9(\))p FX(h)2834 1941 y Ga(a)2882
+1929 y FX(i)2925 1941 y F6(j)p Ga(M)10 b F6(j)3073 1908
+y Fu(N)3127 1941 y Ga(;)15 b(b)p F4(\))442 2091 y Gg(\(5\))980
+b F6(j)p FL(Not)1695 2105 y Gc(R)1752 2091 y F4(\()1787
+2079 y F9(\()1815 2091 y Ga(x)1867 2079 y F9(\))1895
+2091 y Ga(M)10 b(;)15 b(a)p F4(\))p F6(j)2141 2058 y
+Fu(N)2295 2040 y F5(def)2302 2091 y F4(=)107 b FL(Not)2623
+2105 y Gc(I)2662 2091 y F4(\()2697 2079 y F9(\()2725
+2091 y Ga(x)2777 2079 y F9(\))2820 2091 y F6(j)p Ga(M)10
+b F6(j)2968 2058 y Fu(N)3022 2091 y Ga(;)15 b(a)p F4(\))442
+2288 y Gg(\(6\))974 b F6(j)p FL(And)1701 2252 y Gc(i)1701
+2311 y(L)1753 2288 y F4(\()1788 2276 y F9(\()1815 2288
+y Ga(x)1867 2276 y F9(\))1895 2288 y Ga(M)10 b(;)15 b(y)s
+F4(\))p F6(j)2141 2255 y Fu(N)2295 2237 y F5(def)2302
+2288 y F4(=)107 b FL(And)2634 2252 y Gc(i)2634 2311 y(E)2694
+2288 y F4(\()2729 2276 y FX(h)2757 2288 y Ga(a)2805 2276
+y FX(i)2832 2288 y FL(Id)q F4(\()p Ga(y)s(;)15 b(a)p
+F4(\))q Ga(;)3152 2276 y F9(\()3179 2288 y Ga(x)3231
+2276 y F9(\))3274 2288 y F6(j)p Ga(M)10 b F6(j)3422 2255
+y Fu(N)3476 2288 y F4(\))442 2438 y Gg(\(7\))805 b F6(j)p
+FL(Or)1476 2452 y Gc(L)1528 2438 y F4(\()1563 2426 y
+F9(\()1591 2438 y Ga(x)1643 2426 y F9(\))1670 2438 y
+Ga(M)10 b(;)1808 2426 y F9(\()1836 2438 y Ga(y)1884 2426
+y F9(\))1912 2438 y Ga(N)g(;)15 b(z)t F4(\))p F6(j)2141
+2405 y Fu(N)2295 2387 y F5(def)2302 2438 y F4(=)107 b
+FL(Or)2579 2452 y Gc(E)2639 2438 y F4(\()2674 2426 y
+FX(h)2701 2438 y Ga(a)2749 2426 y FX(i)2777 2438 y FL(Id)p
+F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)3095 2426 y F9(\()3122
+2438 y Ga(x)3174 2426 y F9(\))3217 2438 y F6(j)p Ga(M)10
+b F6(j)3365 2405 y Fu(N)3420 2438 y Ga(;)3460 2426 y
+F9(\()3487 2438 y Ga(y)3535 2426 y F9(\))3578 2438 y
+F6(j)p Ga(N)g F6(j)3711 2405 y Fu(N)3765 2438 y F4(\))442
+2588 y Gg(\(8\))758 b F6(j)p FL(Imp)1474 2610 y Gc(L)1526
+2588 y F4(\()1561 2576 y FX(h)1589 2588 y Ga(a)1637 2576
+y FX(i)1665 2588 y Ga(M)10 b(;)1803 2576 y F9(\()1831
+2588 y Ga(x)1883 2576 y F9(\))1910 2588 y Ga(N)g(;)15
+b(y)s F4(\))p F6(j)2141 2555 y Fu(N)2295 2537 y F5(def)2302
+2588 y F4(=)107 b FL(Imp)2624 2610 y Gc(E)2684 2588 y
+F4(\()2719 2576 y FX(h)2747 2588 y Ga(b)2786 2576 y FX(i)2813
+2588 y FL(Id)p F4(\()p Ga(y)s(;)15 b(b)p F4(\))q Ga(;)3123
+2576 y FX(h)3151 2588 y Ga(a)3199 2576 y FX(i)3242 2588
+y F6(j)p Ga(M)10 b F6(j)3390 2555 y Fu(N)3444 2588 y
+Ga(;)3484 2576 y F9(\()3512 2588 y Ga(x)3564 2576 y F9(\))3607
+2588 y F6(j)p Ga(N)g F6(j)3740 2555 y Fu(N)3794 2588
+y F4(\))442 2738 y Gg(\(9\))985 b F6(j)p FL(Not)1700
+2752 y Gc(L)1752 2738 y F4(\()1787 2726 y FX(h)1815 2738
+y Ga(a)1863 2726 y FX(i)1891 2738 y Ga(M)10 b(;)15 b(x)p
+F4(\))p F6(j)2141 2705 y Fu(N)2295 2687 y F5(def)2302
+2738 y F4(=)107 b FL(Not)2623 2752 y Gc(E)2682 2738 y
+F4(\()2717 2726 y FX(h)2745 2738 y Ga(b)2784 2726 y FX(i)2811
+2738 y FL(Id)q F4(\()p Ga(x;)15 b(b)p F4(\))q Ga(;)3126
+2726 y FX(h)3154 2738 y Ga(a)3202 2726 y FX(i)3244 2738
+y F6(j)p Ga(M)10 b F6(j)3392 2705 y Fu(N)3447 2738 y
+F4(\))442 2935 y Gg(\(10\))387 b F6(j)p FL(Cut)p F4(\()1177
+2923 y FX(h)1205 2935 y Ga(a)1253 2923 y FX(i)1280 2935
+y Ga(M)11 b(;)1419 2923 y F9(\()1446 2935 y Ga(x)1498
+2923 y F9(\))1526 2935 y FL(And)1680 2899 y Gc(i)1680
+2959 y(L)1732 2935 y F4(\()1767 2923 y F9(\()1795 2935
+y Ga(y)1843 2923 y F9(\))1871 2935 y Ga(N)f(;)15 b(x)p
+F4(\)\))p F6(j)2141 2902 y Fu(N)2295 2884 y F5(def)2302
+2935 y F4(=)107 b FL(And)2634 2899 y Gc(i)2634 2959 y(E)2694
+2935 y F4(\()2729 2923 y FX(h)2757 2935 y Ga(a)2805 2923
+y FX(i)2832 2935 y F6(j)p Ga(M)10 b F6(j)2980 2902 y
+Fu(N)3035 2935 y Ga(;)3075 2923 y F9(\()3103 2935 y Ga(y)3151
+2923 y F9(\))3178 2935 y F6(j)p Ga(N)g F6(j)3311 2902
+y Fu(N)3365 2935 y F4(\))442 3085 y Gg(\(11\))230 b F6(j)p
+FL(Cut)p F4(\()1020 3073 y FX(h)1048 3085 y Ga(a)1096
+3073 y FX(i)1123 3085 y Ga(M)10 b(;)1261 3073 y F9(\()1289
+3085 y Ga(x)1341 3073 y F9(\))1369 3085 y FL(Or)1468
+3099 y Gc(L)1520 3085 y F4(\()1555 3073 y F9(\()1583
+3085 y Ga(y)1631 3073 y F9(\))1658 3085 y Ga(N)g(;)1781
+3073 y F9(\()1809 3085 y Ga(z)1855 3073 y F9(\))1883
+3085 y Ga(P)j(;)i(x)p F4(\)\))p F6(j)2141 3052 y Fu(N)2295
+3034 y F5(def)2302 3085 y F4(=)107 b FL(Or)2579 3099
+y Gc(E)2639 3085 y F4(\()2674 3073 y FX(h)2701 3085 y
+Ga(a)2749 3073 y FX(i)2777 3085 y F6(j)p Ga(M)10 b F6(j)2925
+3052 y Fu(N)2980 3085 y Ga(;)3020 3073 y F9(\()3047 3085
+y Ga(y)3095 3073 y F9(\))3123 3085 y F6(j)p Ga(N)g F6(j)3256
+3052 y Fu(N)3310 3085 y Ga(;)3350 3073 y F9(\()3378 3085
+y Ga(z)3424 3073 y F9(\))3452 3085 y F6(j)p Ga(P)j F6(j)3573
+3052 y Fu(N)3627 3085 y F4(\))442 3235 y Gg(\(12\))191
+b F6(j)p FL(Cut)p F4(\()981 3223 y FX(h)1009 3235 y Ga(a)1057
+3223 y FX(i)1084 3235 y Ga(M)10 b(;)1222 3223 y F9(\()1250
+3235 y Ga(x)1302 3223 y F9(\))1330 3235 y FL(Imp)1474
+3257 y Gc(L)1526 3235 y F4(\()1561 3223 y FX(h)1589 3235
+y Ga(b)1628 3223 y FX(i)1656 3235 y Ga(Q)o(;)1767 3223
+y F9(\()1795 3235 y Ga(y)1843 3223 y F9(\))1871 3235
+y Ga(N)g(;)15 b(x)p F4(\)\))p F6(j)2141 3202 y Fu(N)2295
+3184 y F5(def)2302 3235 y F4(=)107 b FL(Imp)2624 3257
+y Gc(E)2684 3235 y F4(\()2719 3223 y FX(h)2747 3235 y
+Ga(a)2795 3223 y FX(i)2822 3235 y F6(j)p Ga(M)10 b F6(j)2970
+3202 y Fu(N)3025 3235 y Ga(;)3065 3223 y FX(h)3093 3235
+y Ga(b)3132 3223 y FX(i)3159 3235 y F6(j)p Ga(Q)p F6(j)3281
+3202 y Fu(N)3335 3235 y Ga(;)3375 3223 y F9(\()3403 3235
+y Ga(y)3451 3223 y F9(\))3479 3235 y F6(j)p Ga(N)g F6(j)3612
+3202 y Fu(N)3666 3235 y F4(\))442 3385 y Gg(\(13\))419
+b F6(j)p FL(Cut)p F4(\()1209 3373 y FX(h)1237 3385 y
+Ga(a)1285 3373 y FX(i)1312 3385 y Ga(M)10 b(;)1450 3373
+y F9(\()1478 3385 y Ga(x)1530 3373 y F9(\))1558 3385
+y FL(Not)1700 3399 y Gc(L)1752 3385 y F4(\()1787 3373
+y FX(h)1815 3385 y Ga(b)1854 3373 y FX(i)1882 3385 y
+Ga(Q;)15 b(x)p F4(\)\))p F6(j)2141 3352 y Fu(N)2295 3334
+y F5(def)2302 3385 y F4(=)107 b FL(Not)2623 3399 y Gc(E)2682
+3385 y F4(\()2717 3373 y FX(h)2745 3385 y Ga(a)2793 3373
+y FX(i)2820 3385 y F6(j)p Ga(M)10 b F6(j)2968 3352 y
+Fu(N)3023 3385 y Ga(;)3063 3373 y FX(h)3091 3385 y Ga(b)3130
+3373 y FX(i)3157 3385 y F6(j)p Ga(Q)p F6(j)3279 3352
+y Fu(N)3334 3385 y F4(\))442 3579 y Gb(Otherwise:)442
+3706 y Gg(\(14\))859 b F6(j)p FL(Cut)q F4(\()1650 3694
+y FX(h)1677 3706 y Ga(a)1725 3694 y FX(i)1753 3706 y
+Ga(M)10 b(;)1891 3694 y F9(\()1919 3706 y Ga(x)1971 3694
+y F9(\))1998 3706 y Ga(N)g F4(\))p F6(j)2141 3673 y Fu(N)2295
+3654 y F5(def)2302 3706 y F4(=)107 b FL(Subst)o F4(\()2727
+3694 y FX(h)2755 3706 y Ga(a)2803 3694 y FX(i)2830 3706
+y F6(j)p Ga(M)10 b F6(j)2978 3673 y Fu(N)3033 3706 y
+Ga(;)3073 3694 y F9(\()3101 3706 y Ga(x)3153 3694 y F9(\))3180
+3706 y F6(j)p Ga(N)g F6(j)3313 3673 y Fu(N)3368 3706
+y F4(\))840 3923 y Gg(where)24 b(in)48 b(\(10\))74 b
+Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()1779 3911 y F9(\()1807
+3923 y Ga(y)1855 3911 y F9(\))1882 3923 y Ga(N)g F4(\))325
+b Gg(\(11\))74 b Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()2901
+3911 y F9(\()2929 3923 y Ga(y)2977 3911 y F9(\))3004
+3923 y Ga(N)g(;)3127 3911 y F9(\()3155 3923 y Ga(z)3201
+3911 y F9(\))3228 3923 y Ga(P)j F4(\))1203 4070 y Gg(\(12\))74
+b Ga(x)25 b F6(62)g Ga(F)13 b(N)d F4(\()1779 4058 y F9(\()1807
+4070 y Ga(y)1855 4058 y F9(\))1882 4070 y Ga(N)g(;)2005
+4058 y FX(h)2033 4070 y Ga(b)2072 4058 y FX(i)2099 4070
+y Ga(Q)p F4(\))119 b Gg(\(13\))74 b Ga(x)25 b F6(62)g
+Ga(F)13 b(N)d F4(\()2901 4058 y FX(h)2929 4070 y Ga(b)2968
+4058 y FX(i)2995 4070 y Ga(Q)p F4(\))p 3965 4186 V 277
+4189 3691 4 v Black 579 4343 a Gg(Figure)24 b(3.9:)30
+b(T)m(ranslation)25 b(from)f(sequent)h(proofs)g(to)f(natural)h
+(deduction)h(proofs.)p Black Black Black Black eop end
+%%Page: 88 100
+TeXDict begin 88 99 bop Black -144 51 a Gb(88)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(Theor)n(em)h
+(3.3.3)f Gg(\(Soundness)j(and)e(Completeness\))p Gb(:)p
+Black Black 458 575 a F6(\017)p Black 46 w Gg(If)j Ga(M)44
+b F6(2)33 b F4(K)27 b Gg(with)h(the)g(typing)h(judgement)h
+F4(\000)2040 563 y Gc(.)2094 575 y Ga(M)2218 563 y Gc(.)2273
+575 y F4(\001)o Gg(,)e(then)h F6(j)p Ga(M)10 b F6(j)2731
+542 y Fu(S)2809 575 y F6(2)33 b FY(T)27 b Gg(with)h(the)g(typing)549
+688 y(judgement)d F4(\000)1037 676 y Gc(.)1092 688 y
+F6(j)p Ga(M)10 b F6(j)1240 655 y Fu(S)1309 676 y Gc(.)1364
+688 y F4(\001)p Gg(.)p Black 458 873 a F6(\017)p Black
+46 w Gg(If)27 b Ga(M)42 b F6(2)32 b FY(T)27 b Gg(with)g(the)h(typing)h
+(judgement)g F4(\000)2020 861 y Gc(.)2075 873 y Ga(M)2199
+861 y Gc(.)2253 873 y F4(\001)p Gg(,)f(then)g F6(j)p
+Ga(M)10 b F6(j)2711 840 y Fu(N)2798 873 y F6(2)32 b F4(K)26
+b Gg(with)h(the)h(typing)549 985 y(judgement)d F4(\000)1037
+973 y Gc(.)1092 985 y F6(j)p Ga(M)10 b F6(j)1240 953
+y Fu(N)1320 973 y Gc(.)1375 985 y F4(\001)p Gg(.)p Black
+321 1223 a F7(Pr)l(oof.)p Black 46 w Gg(Both)24 b(by)g(routine)h
+(induction)h(on)e(the)g(structure)h(of)f Ga(M)10 b Gg(.)p
+3480 1223 4 62 v 3484 1165 55 4 v 3484 1223 V 3538 1223
+4 62 v 462 1426 a(Before)19 b(we)e(can)i(attack)g(the)g(correspondence)
+j(question)f(with)d(our)g(cut-elimination)k(procedure,)321
+1539 y(we)g(ha)n(v)o(e)g(to)g(de\002ne)h(a)e(normalisation)26
+b(procedure)e(for)f(the)f(natural)i(deduction)h(calculus.)30
+b(Although)321 1651 y(we)25 b(shall)h(de\002ne)g(this)g(procedure)i
+(using)e(terms,)g(the)g(corresponding)j(notion)e(of)f(a)e(normal)j
+(term)e(is)321 1764 y(best)c(e)o(xplained)h(on)e(the)g(le)n(v)o(el)g
+(of)g(proofs:)28 b(unlik)o(e)22 b(in)d(our)i(sequent)g(calculi)h(where)
+e(it)f(is)h(immediately)321 1877 y(clear)32 b(what)f(is)g(meant)g(by)h
+(a)e(normal)i(term)f(\(absence)i(of)e(the)g(cut-term)i(constructor\),)j
+(things)c(are)321 1990 y(more)27 b(delicate)i(in)f(natural)g(deduction)
+i(calculi,)f(as)e(already)i(seen)f(in)f(NJ.)f(T)-7 b(o)26
+b(formally)j(de\002ne)e(the)321 2103 y(notion)e(of)f(a)f(normal)h
+(natural)h(deduction)i(proof,)d(the)g(follo)n(wing)h(de\002nition)g
+(will)e(be)h(useful.)p Black 321 2291 a Gb(De\002nition)e(3.3.4)g
+Gg(\(Maximal)h(Se)o(gment\))p Gb(:)p Black 35 w Gg(A)e
+F7(maximal)i(se)l(gment)h Gg(in)e(a)g(natural)i(deduction)h(proof)f(is)
+321 2404 y(a)k(sequence)i(of)d(occurrences)k(of)d(a)f(labelled)j
+(formula)e Ga(a)d F4(:)g Ga(B)5 b Gg(,)27 b(say)h F4(\()p
+Ga(a)e F4(:)f Ga(B)5 b F4(\))2774 2418 y F9(1)2813 2404
+y Ga(;)15 b(:)g(:)g(:)i(;)e F4(\()p Ga(a)25 b F4(:)g
+Ga(B)5 b F4(\))3282 2418 y Gc(n)3329 2404 y Gg(,)28 b(such)321
+2517 y(that)p Black 458 2714 a F6(\017)p Black 46 w Gg(the)34
+b(\002rst)g(occurrence,)40 b F4(\()p Ga(a)23 b F4(:)f
+Ga(B)5 b F4(\))1588 2728 y F9(1)1628 2714 y Gg(,)36 b(is)e(a)g
+(labelled)i(formula)g(which)f(is)f(eliminated)i(and)f(not)549
+2827 y(introduced)26 b(by)e(an)f(axiom.)p Black 458 2975
+a F6(\017)p Black 46 w F4(\()p Ga(a)35 b F4(:)g Ga(B)5
+b F4(\))836 2989 y Gc(i)p F9(+1)986 2975 y Gg(follo)n(ws)34
+b F4(\()p Ga(a)h F4(:)g Ga(B)5 b F4(\))1576 2989 y Gc(i)1604
+2975 y Gg(,)34 b(if)f Ga(a)i F4(:)g Ga(B)i Gg(occurs)d(in)f(a)g
+(conclusion)j(and)e(premise)g(of)f(an)549 3088 y(inference)25
+b(rule.)p Black 458 3237 a F6(\017)p Black 46 w Gg(the)h(last)h
+(occurrence)i(of)e Ga(a)22 b F4(:)h Ga(B)30 b Gg(either)d(appears)h(in)
+f(an)f(axiom)h(or)f(is)g(freshly)i(introduced)h(by)549
+3350 y(an)23 b(introduction)k(rule.)321 3568 y(No)n(w)22
+b(the)i(notion)h(of)f(a)f(normal)h(natural)h(deduction)i(proof)d(is)g
+(as)f(follo)n(ws.)p Black 321 3756 a Gb(De\002nition)30
+b(3.3.5)h Gg(\(Normal)f(Natural)i(Deduction)g(Proof\))p
+Gb(:)p Black 35 w Gg(A)d F7(normal)j Gg(natural)g(deduction)h(proof)321
+3869 y(contains)26 b(neither)f(a)e(maximal)h(se)o(gment)h(nor)e(an)h
+(instance)i(of)d(Subst.)462 4123 y(As)30 b(mentioned)j(earlier)l(,)h
+(we)c(can)h(easily)h(pro)o(v)o(e)g(that)f(normal)g(natural)i(deduction)
+g(proofs)f(re-)321 4236 y(spect)k(the)f(subformula)i(property)-6
+b(.)65 b(F)o(or)34 b(this)i(notice)g(that)f(all)g(elimination)i(rules)f
+(must)f(ha)n(v)o(e)h(as)321 4348 y(leftmost)26 b(premise)f(an)g(axiom)g
+(which)g(introduces)i(the)e(formula)g(that)g(is)g(eliminated.)33
+b(F)o(or)24 b(e)o(xample)321 4461 y(the)g F6(_)516 4475
+y Gc(E)575 4461 y Gg(-rule)h(in)e(a)g(normal)i(natural)g(deduction)h
+(proof)f(must)e(be)h(of)f(the)h(form)p 476 4615 930 4
+v 476 4694 a Ga(z)e F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15
+b F4(\000)p 900 4682 11 41 v 911 4664 46 5 v 97 w(\001)p
+Ga(;)g(a)j F4(:)f Ga(B)5 b F6(_)o Ga(C)98 b(x)17 b F4(:)g
+Ga(B)5 b(;)15 b(z)22 b F4(:)17 b Ga(B)5 b F6(_)o Ga(C)q(;)15
+b F4(\000)p 2146 4682 11 41 v 2157 4664 46 5 v 97 w(\001)91
+b Ga(y)20 b F4(:)d Ga(C)q(;)e(z)23 b F4(:)17 b Ga(B)5
+b F6(_)o Ga(C)q(;)15 b F4(\000)p 3027 4682 11 41 v 3038
+4664 46 5 v 97 w(\001)p 476 4732 2703 4 v 1540 4811 a
+Ga(z)21 b F4(:)d Ga(B)5 b F6(_)o Ga(C)q(;)15 b F4(\000)p
+1964 4799 11 41 v 1974 4780 46 5 v 97 w(\001)3220 4750
+y F6(_)3281 4764 y Gc(E)3366 4750 y Ga(:)321 5023 y Gg(Clearly)-6
+b(,)33 b(this)f(instance)g(of)f F6(_)1293 5037 y Gc(E)1382
+5023 y Gg(satis\002es)h(the)f(subformula)i(property)-6
+b(.)52 b(Let)30 b(us)h(analyse)i(the)e(three)321 5136
+y(other)i(types)g(of)f(instances)i(of)e(this)g(rule)h(and)f(sho)n(w)g
+(in)f(each)i(case)f(that)h(the)o(y)f(cannot)h(occur)g(in)f(a)321
+5249 y(normal)g(natural)h(deduction)h(proof.)53 b(First,)32
+b(assume)g(the)g(leftmost)g(premise)g(is)f(an)h(axiom)f(which)321
+5361 y(does)24 b(not)f(introduce)i Ga(a)p Gg(.)j(Then)23
+b(we)e(ha)n(v)o(e)j(a)e(maximal)h(se)o(gment)h(of)e(length)i
+F4(1)f Gg(\(\002rst)f(and)i(third)f(clause)p Black Black
+eop end
+%%Page: 89 101
+TeXDict begin 89 100 bop Black 277 51 a Gb(3.3)23 b(Classical)j
+(Natural)d(Deduction)2373 b(89)p 277 88 3691 4 v Black
+277 365 a Gg(of)28 b(De\002nition)g(3.3.4\).)41 b(Second,)29
+b(assume)g(the)f(leftmost)g(premise)h(is)e(an)h(introduction)j(rule.)41
+b(Then)277 478 y(we)24 b(either)j(ha)n(v)o(e)e(a)g(maximal)g(se)o
+(gment)h(of)f(length)h F4(1)p Gg(,)f(pro)o(vided)i(the)e(introduction)k
+(rule)c(introduces)277 590 y(freshly)36 b(the)f(formula)h(that)f(is)g
+(eliminated,)k(or)c(a)f(maximal)h(se)o(gment)g(of)g(length)h(greater)g
+(than)g F4(1)277 703 y Gg(\(second)31 b(and)f(third)g(clause)h(of)e
+(De\002nition)h(3.3.4\).)47 b(Third,)30 b(if)f(the)h(leftmost)h
+(premise)f(is)f(an)g(elim-)277 816 y(ination)35 b(rule,)g(then)f(we)e
+(ha)n(v)o(e)h(a)f(maximal)h(se)o(gment)h(of)f(length)h(greater)g(than)g
+F4(1)e Gg(\(second)j(clause)277 929 y(of)d(De\002nition)h(3.3.4\).)55
+b(So)32 b(in)g(all)g(three)h(cases)g(the)g(proof)g(w)o(ould)g(be)f
+(non-normal.)57 b(Analogous)277 1042 y(remarks)24 b(apply)h(to)e(the)g
+(other)h(elimination)i(rules.)j(Because)24 b(in)f(normal)h(natural)h
+(deduction)h(proofs)277 1155 y(all)21 b(instances)j(of)c(introduction)
+25 b(rules)d(satisfy)g(the)g(subformula)h(property)g(\(ob)o(vious)g(by)
+e(inspection\))277 1268 y(and,)h(as)f(sho)n(wn)h(abo)o(v)o(e,)g(so)f
+(do)h(all)f(instances)j(of)d(elimination)j(rules,)e(we)f(thus)h(ha)n(v)
+o(e)g(sho)n(wn)f(that)h(the)277 1381 y(subformula)k(property)g(holds)e
+(for)g(all)g(normal)g(natural)h(deduction)h(proofs.)418
+1510 y(Ne)o(xt,)21 b(we)g(shall)h(introduce)h(reduction)h(rules)e(that)
+g(transform)h(stepwise)f(a)f(non-normal)j(natural)277
+1623 y(deduction)34 b(proof)f(into)f(a)f(normal)h(one.)52
+b(W)-7 b(e)31 b(be)o(gin)h(with)f(the)h(reduction)i(rules)e(that)g
+(eliminate)h(a)277 1736 y(maximal)24 b(se)o(gment)g(of)g(length)h
+F4(1)p Gg(.)j(Consider)d(the)f(proof)958 1921 y F4(\000)p
+1035 1909 11 41 v 1046 1891 46 5 v 96 w(\001)p Ga(;)15
+b(a)j F4(:)f Ga(B)p 897 1959 574 4 v 897 2038 a F4(\000)p
+974 2026 11 41 v 984 2008 46 5 v 96 w(\001)p Ga(;)e(b)i
+F4(:)h Ga(B)5 b F6(_)o Ga(C)1512 1972 y F6(_)1572 1986
+y Gc(I)1603 1995 y FV(1)1732 2038 y Ga(x)18 b F4(:)f
+Ga(B)5 b(;)15 b F4(\000)p 2035 2026 11 41 v 2045 2008
+46 5 v 96 w(\001)91 b Ga(y)20 b F4(:)d Ga(C)q(;)e F4(\000)p
+2569 2026 11 41 v 2580 2008 46 5 v 97 w(\001)p 897 2076
+1825 4 v 1694 2155 a(\000)p 1771 2143 11 41 v 1782 2125
+46 5 v 96 w(\001)2762 2094 y F6(_)2823 2108 y Gc(E)277
+2363 y Gg(where)26 b Ga(b)c F4(:)g Ga(B)5 b F6(_)o Ga(C)31
+b Gg(forms)c(a)e(maximal)h(se)o(gment)h(of)f(length)h
+F4(1)p Gg(,)f(pro)o(vided)i Ga(b)22 b F4(:)g Ga(B)5 b
+F6(_)o Ga(C)31 b Gg(does)c(not)f(occur)277 2476 y(in)e(the)f(premise)i
+(of)e F6(_)974 2490 y Gc(I)1005 2499 y FV(1)1043 2476
+y Gg(.)28 b(This)c(proof)g(will)f(be)h(reduced)h(to)1245
+2664 y F4(\000)p 1322 2652 11 41 v 1332 2634 46 5 v 96
+w(\001)p Ga(;)15 b(a)i F4(:)h Ga(B)95 b(x)17 b F4(:)h
+Ga(B)5 b(;)15 b F4(\000)p 2089 2652 11 41 v 2099 2634
+46 5 v 96 w(\001)p 1245 2702 996 4 v 1628 2780 a(\000)p
+1705 2768 11 41 v 1716 2750 46 5 v 96 w(\001)2282 2732
+y Gg(Subst)26 b Ga(:)277 2988 y Gg(The)35 b(reduction)k(rules,)g
+(denoted)f(by)1581 2951 y Gc(\014)1518 2988 y F6(\000)-32
+b(\000)h(!)p Gg(,)38 b(eliminating)g(this)e(type)g(of)g(maximal)g(se)o
+(gments)h(are)277 3101 y(de\002ned)24 b(belo)n(w)g(using)h(terms.)p
+Black 277 3289 a Gb(De\002nition)e(3.3.6)g Gg(\(Beta-Reductions\))p
+Gb(:)p Black Black Black 285 3472 a FL(And)439 3435 y
+Gc(i)439 3495 y(E)499 3472 y F4(\()534 3460 y FX(h)562
+3472 y Ga(c)601 3460 y FX(i)629 3472 y FL(And)783 3486
+y Gc(I)823 3472 y F4(\()858 3460 y FX(h)886 3472 y Ga(a)934
+3486 y F9(1)973 3460 y FX(i)1001 3472 y Ga(M)1089 3486
+y F9(1)1128 3472 y Ga(;)1168 3460 y FX(h)1196 3472 y
+Ga(a)1244 3486 y F9(2)1284 3460 y FX(i)1311 3472 y Ga(M)1399
+3486 y F9(2)1439 3472 y Ga(;)15 b(c)p F4(\))q Ga(;)1594
+3460 y F9(\()1622 3472 y Ga(x)1674 3460 y F9(\))1701
+3472 y Ga(N)10 b F4(\))1907 3435 y Gc(\014)1843 3472
+y F6(\000)-31 b(\000)f(!)24 b FL(Subst)o F4(\()2284 3460
+y FX(h)2312 3472 y Ga(a)2360 3486 y Gc(i)2388 3460 y
+FX(i)2416 3472 y Ga(M)2504 3486 y Gc(i)2532 3472 y Ga(;)2572
+3460 y F9(\()2600 3472 y Ga(x)2652 3460 y F9(\))2679
+3472 y Ga(N)10 b F4(\))1752 3620 y Gg(if)23 b FL(And)1985
+3634 y Gc(I)2025 3620 y F4(\()2060 3608 y FX(h)2088 3620
+y Ga(a)2136 3634 y F9(1)2175 3608 y FX(i)2203 3620 y
+Ga(M)2291 3634 y F9(1)2330 3620 y Ga(;)2370 3608 y FX(h)2398
+3620 y Ga(a)2446 3634 y F9(2)2485 3608 y FX(i)2513 3620
+y Ga(M)2601 3634 y F9(2)2641 3620 y Ga(;)15 b(c)p F4(\))23
+b Gg(freshly)j(introduces)g Ga(c)407 3820 y FL(Or)507
+3834 y Gc(E)566 3820 y F4(\()601 3808 y FX(h)629 3820
+y Ga(b)668 3808 y FX(i)696 3820 y FL(Or)795 3783 y Gc(i)795
+3843 y(I)835 3820 y F4(\()870 3808 y FX(h)897 3820 y
+Ga(a)945 3808 y FX(i)973 3820 y Ga(M)10 b(;)15 b(b)p
+F4(\))q Ga(;)1226 3808 y F9(\()1254 3820 y Ga(x)1306
+3834 y F9(1)1345 3808 y(\))1373 3820 y Ga(N)1446 3834
+y F9(1)1485 3820 y Ga(;)1525 3808 y F9(\()1553 3820 y
+Ga(x)1605 3834 y F9(2)1644 3808 y(\))1672 3820 y Ga(N)1745
+3834 y F9(2)1784 3820 y F4(\))1907 3783 y Gc(\014)1843
+3820 y F6(\000)-31 b(\000)f(!)24 b FL(Subst)o F4(\()2284
+3808 y FX(h)2312 3820 y Ga(a)2360 3808 y FX(i)2387 3820
+y Ga(M)11 b(;)2526 3808 y F9(\()2553 3820 y Ga(x)2605
+3834 y Gc(i)2634 3808 y F9(\))2661 3820 y Ga(N)2734 3834
+y Gc(i)2762 3820 y F4(\))1752 3970 y Gg(if)23 b FL(Or)1930
+3933 y Gc(i)1930 3993 y(I)1969 3970 y F4(\()2004 3958
+y FX(h)2032 3970 y Ga(a)2080 3958 y FX(i)2108 3970 y
+Ga(M)10 b(;)15 b(b)p F4(\))23 b Gg(freshly)j(introduces)g
+Ga(b)377 4168 y FL(Imp)521 4189 y Gc(E)581 4168 y F4(\()616
+4156 y FX(h)644 4168 y Ga(b)683 4156 y FX(i)710 4168
+y FL(Imp)855 4189 y Gc(I)894 4168 y F4(\()929 4156 y
+F9(\()957 4168 y Ga(x)1009 4156 y F9(\))q FX(h)1064 4168
+y Ga(a)1112 4156 y FX(i)1140 4168 y Ga(M)10 b(;)15 b(b)p
+F4(\))p Ga(;)1392 4156 y FX(h)1420 4168 y Ga(c)1459 4156
+y FX(i)1487 4168 y Ga(N)10 b(;)1610 4156 y F9(\()1638
+4168 y Ga(y)1686 4156 y F9(\))1713 4168 y Ga(P)j F4(\))1907
+4131 y Gc(\014)1843 4168 y F6(\000)-31 b(\000)f(!)24
+b FL(Subst)o F4(\()2284 4156 y FX(h)2312 4168 y Ga(c)2351
+4156 y FX(i)2379 4168 y Ga(N)10 b(;)2502 4156 y F9(\()2530
+4168 y Ga(x)2582 4156 y F9(\))2609 4168 y FL(Subst)o
+F4(\()2856 4156 y FX(h)2884 4168 y Ga(a)2932 4156 y FX(i)2959
+4168 y Ga(M)g(;)3097 4156 y F9(\()3125 4168 y Ga(y)3173
+4156 y F9(\))3201 4168 y Ga(P)j F4(\)\))48 b Gg(or)1907
+4243 y Gc(\014)1843 4281 y F6(\000)-31 b(\000)f(!)24
+b FL(Subst)o F4(\()2284 4269 y FX(h)2312 4281 y Ga(a)2360
+4269 y FX(i)2387 4281 y FL(Subst)p F4(\()2635 4269 y
+FX(h)2662 4281 y Ga(c)2701 4269 y FX(i)2729 4281 y Ga(N)10
+b(;)2852 4269 y F9(\()2880 4281 y Ga(x)2932 4269 y F9(\))2959
+4281 y Ga(M)g F4(\))q Ga(;)3133 4269 y F9(\()3161 4281
+y Ga(y)3209 4269 y F9(\))3236 4281 y Ga(P)j F4(\))1752
+4429 y Gg(if)23 b FL(Imp)1975 4451 y Gc(I)2015 4429 y
+F4(\()2050 4417 y F9(\()2077 4429 y Ga(x)2129 4417 y
+F9(\))q FX(h)2184 4429 y Ga(a)2232 4417 y FX(i)2260 4429
+y Ga(M)10 b(;)15 b(b)p F4(\))23 b Gg(freshly)j(introduces)g
+Ga(b)680 4627 y FL(Not)822 4641 y Gc(E)882 4627 y F4(\()917
+4615 y FX(h)945 4627 y Ga(a)993 4615 y FX(i)1020 4627
+y FL(Not)1163 4641 y Gc(I)1203 4627 y F4(\()1238 4615
+y F9(\()1266 4627 y Ga(x)1318 4615 y F9(\))1345 4627
+y Ga(M)10 b(;)15 b(a)p F4(\))q Ga(;)1607 4615 y FX(h)1635
+4627 y Ga(b)1674 4615 y FX(i)1701 4627 y Ga(N)10 b F4(\))1907
+4590 y Gc(\014)1843 4627 y F6(\000)-31 b(\000)f(!)24
+b FL(Subst)o F4(\()2284 4615 y FX(h)2312 4627 y Ga(b)2351
+4615 y FX(i)2378 4627 y Ga(N)10 b(;)2501 4615 y F9(\()2529
+4627 y Ga(x)2581 4615 y F9(\))2609 4627 y Ga(M)g F4(\))1752
+4775 y Gg(if)23 b FL(Not)1973 4789 y Gc(I)2013 4775 y
+F4(\()2048 4763 y F9(\()2076 4775 y Ga(x)2128 4763 y
+F9(\))2155 4775 y Ga(M)10 b(;)15 b(a)p F4(\))24 b Gg(freshly)h
+(introduces)h Ga(a)p Black 277 5079 a Gb(Remark)33 b(3.3.7:)p
+Black 34 w Gg(There)g(are)g(a)g(fe)n(w)f(subtleties)k(in)d(the)h(third)
+g(rule.)58 b(As)32 b(with)h(the)g(cut-reduction)277 5192
+y F6(\033)348 5206 y Gc(R)406 5192 y Ga(=)p F6(\033)522
+5206 y Gc(L)574 5192 y Gg(,)24 b(there)i(are)f(tw)o(o)g(w)o(ays)g(to)g
+(eliminate)i(an)e(introduction-eliminat)q(ion)31 b(pair)26
+b F6(\033)3049 5206 y Gc(E)3109 5192 y Ga(=)p F6(\033)3225
+5206 y Gc(I)3265 5192 y Gg(.)32 b(Con-)277 5305 y(sequently)-6
+b(,)24 b(we)c(ha)n(v)o(e)h(tw)o(o)g(reduction)i(rules.)29
+b(W)-7 b(e)20 b(need,)i(ho)n(we)n(v)o(er)l(,)f(to)g(observ)o(e)i(the)e
+(side-conditions)277 5418 y Ga(x)k Gg(not)h(free)g(in)f
+Ga(F)13 b(N)d F4(\()945 5406 y F9(\()973 5418 y Ga(y)1021
+5406 y F9(\))1048 5418 y Ga(P)j F4(\))25 b Gg(\(\002rst)g(rule\))i(and)
+f Ga(a)e Gg(not)i(free)g(in)g Ga(F)13 b(C)7 b F4(\()2381
+5406 y FX(h)2408 5418 y Ga(c)2447 5406 y FX(i)2475 5418
+y Ga(N)j F4(\))25 b Gg(\(second)i(rule\),)g(so)e(that)h(no)277
+5531 y(name)20 b(or)f(co-name)i(capture)g(occurs.)29
+b(This)19 b(can)h(al)o(w)o(ays)h(be)e(achie)n(v)o(ed)i(by)f(renaming)h
+(some)f(binders.)p Black Black eop end
+%%Page: 90 102
+TeXDict begin 90 101 bop Black -144 51 a Gb(90)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 462 365 a Gg(T)-7
+b(o)29 b(eliminate)j(all)e(other)g(maximal)h(se)o(gments,)h(we)d
+(introduce)j(commuting)g(reductions.)50 b(Let)321 478
+y(us)24 b(\002rst)f(gi)n(v)o(e)h(an)f(e)o(xample.)30
+b(Consider)25 b(the)f(proof)957 659 y F4(\000)1014 626
+y FX(0)p 1057 647 11 41 v 1068 629 46 5 v 1133 659 a
+F4(\001)1209 626 y FX(0)1232 659 y Ga(;)15 b(a)j F4(:)f
+Ga(B)96 b F4(\000)1602 626 y FX(0)p 1645 647 11 41 v
+1656 629 46 5 v 1721 659 a F4(\001)1797 626 y FX(0)1820
+659 y Ga(;)15 b(b)j F4(:)f Ga(C)p 957 696 1074 4 v 1184
+783 a F4(\000)1241 750 y FX(0)p 1284 771 11 41 v 1294
+753 46 5 v 1360 783 a F4(\001)1436 750 y FX(0)1459 783
+y Ga(;)e(c)j F4(:)f Ga(B)5 b F6(^)p Ga(C)2072 715 y F6(^)2133
+729 y Gc(I)1482 826 y Gg(.)1482 860 y(.)1482 893 y(.)1482
+926 y(.)1207 1006 y F4(\000)p 1284 994 11 41 v 1294 976
+46 5 v 96 w(\001)p Ga(;)15 b(c)j F4(:)f Ga(B)5 b F6(^)o
+Ga(C)490 b(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)p 2566
+994 11 41 v 2577 976 46 5 v 96 w(\001)p 1207 1043 1512
+4 v 1848 1122 a(\000)p 1925 1110 11 41 v 1936 1092 46
+5 v 96 w(\001)2760 1057 y F6(^)2820 1071 y Gc(E)2872
+1080 y FV(1)321 1318 y Gg(where)24 b(the)g F6(^)761 1332
+y Gc(E)813 1341 y FV(1)851 1318 y Gg(-rule)g(needs)h(to)f(be)f
+(permuted)i(so)f(as)f(to)h(yield)g(the)g(proof)885 1497
+y F4(\000)942 1464 y FX(\017)p 1002 1485 11 41 v 1012
+1466 46 5 v 1078 1497 a F4(\001)1154 1464 y FX(\017)1193
+1497 y Ga(;)15 b(a)j F4(:)f Ga(B)95 b F4(\000)1562 1464
+y FX(\017)p 1622 1485 11 41 v 1632 1466 46 5 v 1698 1497
+a F4(\001)1774 1464 y FX(\017)1813 1497 y Ga(;)15 b(b)j
+F4(:)f Ga(C)p 885 1534 1139 4 v 1128 1614 a F4(\000)1185
+1581 y FX(\017)p 1245 1602 11 41 v 1255 1584 46 5 v 1321
+1614 a F4(\001)1397 1581 y FX(\017)1436 1614 y Ga(;)e(c)j
+F4(:)f Ga(B)5 b F6(^)o Ga(C)2065 1552 y F6(^)2126 1566
+y Gc(I)2257 1614 y Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)2539
+1581 y FX(\017)p 2599 1602 11 41 v 2609 1584 46 5 v 2675
+1614 a F4(\001)2751 1581 y FX(\017)p 1128 1652 1662 4
+v 1805 1732 a F4(\000)1862 1699 y FX(\017)p 1922 1720
+11 41 v 1932 1701 46 5 v 1998 1732 a F4(\001)2074 1699
+y FX(\017)2831 1665 y F6(^)2892 1679 y Gc(E)2944 1688
+y FV(1)1948 1757 y Gg(.)1948 1791 y(.)1948 1824 y(.)1948
+1857 y(.)1845 1937 y F4(\000)p 1922 1925 11 41 v 1932
+1907 46 5 v 96 w(\001)321 2133 y Gg(Here)29 b F4(\000)583
+2100 y FX(\017)650 2133 y Gg(stands)h(for)f(the)g(conte)o(xt)h
+F4(\000)24 b F6([)g F4(\000)1695 2100 y FX(0)1745 2133
+y Gg(\(similarly)31 b F4(\001)2203 2100 y FX(\017)2242
+2133 y Gg(\).)44 b(W)-7 b(e)27 b(realise)k(this)e(kind)g(of)g
+(operation)321 2246 y(using)c(a)e(proof)i(substitution)i(of)c(the)h
+(form:)p Black Black 778 2446 a Ga(M)h Fs(^)q FL(And)1078
+2410 y Gc(i)1078 2469 y(E)1138 2446 y F4(\()1173 2434
+y FX(h)1201 2446 y Ga(a)1249 2434 y FX(i)p 1278 2446
+28 4 v 1296 2446 V 1313 2446 V 1341 2446 a Ga(;)1381
+2434 y F9(\()1409 2446 y Ga(x)1461 2434 y F9(\))1488
+2446 y Ga(N)10 b F4(\))p Fs(_)396 b Ga(M)25 b Fs(^)p
+FL(Imp)2324 2468 y Gc(E)2383 2446 y F4(\()2418 2434 y
+FX(h)2446 2446 y Ga(a)2494 2434 y FX(i)p 2524 2446 V
+2541 2446 V 2559 2446 V 2586 2446 a Ga(;)2626 2434 y
+FX(h)2654 2446 y Ga(b)2693 2434 y FX(i)2721 2446 y Ga(N)10
+b(;)2844 2434 y F9(\()2871 2446 y Ga(x)2923 2434 y F9(\))2951
+2446 y Ga(P)j F4(\))p Fs(_)778 2559 y Ga(M)25 b Fs(^)q
+FL(Or)1023 2573 y Gc(E)1083 2559 y F4(\()1118 2547 y
+FX(h)1145 2559 y Ga(a)1193 2547 y FX(i)p 1223 2559 V
+1241 2559 V 1258 2559 V 1285 2559 a Ga(;)1325 2547 y
+F9(\()1353 2559 y Ga(x)1405 2547 y F9(\))1433 2559 y
+Ga(N)10 b(;)1556 2547 y F9(\()1583 2559 y Ga(y)1631 2547
+y F9(\))1659 2559 y Ga(P)j F4(\))p Fs(_)237 b Ga(M)25
+b Fs(^)p FL(Not)2322 2573 y Gc(E)2382 2559 y F4(\()2417
+2547 y FX(h)2445 2559 y Ga(a)2493 2547 y FX(i)p 2522
+2559 V 2540 2559 V 2557 2559 V 2585 2559 a Ga(;)2625
+2547 y FX(h)2652 2559 y Ga(b)2691 2547 y FX(i)2719 2559
+y Ga(N)10 b F4(\))p Fs(_)321 2755 y Gg(The)32 b(idea)h(behind)h(this)f
+(proof)g(substitution)j(is)c(to)g(mo)o(v)o(e)g(the)g(elimination)j
+(rule)e(inside)g(the)g(term)321 2868 y Ga(M)42 b Gg(until)33
+b(either)h(a)d(corresponding)37 b(introduction)f(rule)d(or)f(a)g
+(corresponding)k(axiom)d(is)f(reached.)321 2981 y(In)c(these)g(tw)o(o)g
+(cases)g(the)g(term)f Ga(M)37 b Gg(is)28 b(\223plugged\224)i(into)e
+(the)g(place)h(of)e(the)h(bar)-5 b(.)41 b(If)27 b(there)i(is)e(no)h
+(cor)n(-)321 3094 y(responding)i(introduction)g(rule)d(nor)g(a)f
+(corresponding)31 b(axiom,)c(then)h(the)e(proof)i(substitution)i(just)
+321 3207 y(v)n(anishes.)g(Figure)22 b(3.10)g(gi)n(v)o(es)g(the)f
+(complete)i(de\002nition)g(of)f Ga(M)10 b Fs(^)p Ga(\033)s
+Fs(_)q Gg(.)27 b(Our)21 b(commuting)i(reductions,)321
+3320 y(denoted)j(by)810 3283 y Gc(\015)745 3320 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(are)i(then)g(de\002ned)h(as)e(follo)n(ws.)p
+Black 321 3507 a Gb(De\002nition)g(3.3.8)g Gg(\(Commuting)i
+(Reductions\))p Gb(:)p Black 572 3683 a FL(And)727 3646
+y Gc(i)727 3706 y(E)786 3683 y F4(\()821 3671 y FX(h)849
+3683 y Ga(a)897 3671 y FX(i)925 3683 y Ga(M)10 b(;)1063
+3671 y F9(\()1091 3683 y Ga(x)1143 3671 y F9(\))1170
+3683 y Ga(N)g F4(\))1436 3646 y Gc(\015)1371 3683 y F6(\000)-31
+b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(And)1910 3646 y Gc(i)1910
+3706 y(E)1969 3683 y F4(\()2004 3671 y FX(h)2032 3683
+y Ga(a)2080 3671 y FX(i)p 2110 3683 V 2127 3683 V 2145
+3683 V 2172 3683 a Ga(;)2212 3671 y F9(\()2240 3683 y
+Ga(x)2292 3671 y F9(\))2319 3683 y Ga(N)g F4(\))p Fs(_)413
+3795 y FL(Or)513 3809 y Gc(E)572 3795 y F4(\()607 3783
+y FX(h)635 3795 y Ga(a)683 3783 y FX(i)711 3795 y Ga(M)g(;)849
+3783 y F9(\()877 3795 y Ga(x)929 3783 y F9(\))956 3795
+y Ga(N)g(;)1079 3783 y F9(\()1107 3795 y Ga(y)1155 3783
+y F9(\))1182 3795 y Ga(P)j F4(\))1436 3758 y Gc(\015)1371
+3795 y F6(\000)-31 b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(Or)1854
+3809 y Gc(E)1914 3795 y F4(\()1949 3783 y FX(h)1977 3795
+y Ga(a)2025 3783 y FX(i)p 2054 3795 V 2072 3795 V 2090
+3795 V 2117 3795 a Ga(;)2157 3783 y F9(\()2185 3795 y
+Ga(x)2237 3783 y F9(\))2264 3795 y Ga(N)g(;)2387 3783
+y F9(\()2415 3795 y Ga(y)2463 3783 y F9(\))2490 3795
+y Ga(P)j F4(\))p Fs(_)377 3906 y FL(Imp)522 3928 y Gc(E)581
+3906 y F4(\()616 3894 y FX(h)644 3906 y Ga(a)692 3894
+y FX(i)719 3906 y Ga(M)e(;)858 3894 y FX(h)885 3906 y
+Ga(b)924 3894 y FX(i)952 3906 y Ga(N)f(;)1075 3894 y
+F9(\()1103 3906 y Ga(x)1155 3894 y F9(\))1182 3906 y
+Ga(P)j F4(\))1436 3869 y Gc(\015)1371 3906 y F6(\000)-31
+b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(Imp)1900 3928 y Gc(E)1959
+3906 y F4(\()1994 3894 y FX(h)2022 3906 y Ga(a)2070 3894
+y FX(i)p 2100 3906 V 2117 3906 V 2135 3906 V 2162 3906
+a Ga(;)2202 3894 y FX(h)2230 3906 y Ga(b)2269 3894 y
+FX(i)2296 3906 y Ga(N)g(;)2419 3894 y F9(\()2447 3906
+y Ga(x)2499 3894 y F9(\))2527 3906 y Ga(P)j F4(\))p Fs(_)597
+4018 y FL(Not)740 4032 y Gc(E)799 4018 y F4(\()834 4006
+y FX(h)862 4018 y Ga(a)910 4006 y FX(i)938 4018 y Ga(M)d(;)1076
+4006 y FX(h)1104 4018 y Ga(b)1143 4006 y FX(i)1170 4018
+y Ga(N)g F4(\))1436 3981 y Gc(\015)1371 4018 y F6(\000)-31
+b(\000)g(!)83 b Ga(M)10 b Fs(^)p FL(Not)1898 4032 y Gc(E)1958
+4018 y F4(\()1993 4006 y FX(h)2020 4018 y Ga(a)2068 4006
+y FX(i)p 2098 4018 V 2115 4018 V 2133 4018 V 2160 4018
+a Ga(;)2200 4006 y FX(h)2228 4018 y Ga(b)2267 4006 y
+FX(i)2295 4018 y Ga(N)g F4(\))p Fs(_)2665 3615 y FK(9)2665
+3696 y(>)2665 3724 y(>)2665 3751 y(=)2665 3915 y(>)2665
+3942 y(>)2665 3969 y(;)2811 3799 y Gg(if)23 b Ga(M)33
+b Gg(does)25 b(not)2811 3912 y(freshly)g(introduce)h
+Ga(a)462 4275 y Gg(What)j(remains)h(is)e(to)h(de\002ne)g(reduction)i
+(rules)e(eliminating)i(instances)g(of)e(Subst.)44 b(This)29
+b(term)321 4388 y(constructor)e(w)o(as)c(introduced)k(in)c(order)h(to)g
+(match)g(all)f(reductions)k(of)c(commuting)i(cuts,)f(in)f(partic-)321
+4501 y(ular)e(the)g(ones)g(in)g(Lafont')-5 b(s)21 b(e)o(xample.)29
+b(Therefore,)22 b(we)e(shall)h(de\002ne)g(the)f(reduction)j(rules)f
+(for)e(Subst)321 4614 y(such)29 b(that)f(we)e(can)i(capture)i(the)d
+(non-deterministic)33 b(beha)n(viour)d(of)d(commuting)i(cuts.)42
+b(T)-7 b(o)26 b(do)i(so,)321 4727 y(we)23 b(introduce)j(another)f
+(proof)g(substitution,)i(written)d(as)p Black Black 1238
+4931 a Ga(M)10 b Fs(\()-7 b Ga(a)26 b F4(:=)1556 4919
+y F9(\()1583 4931 y Ga(x)1635 4919 y F9(\))1663 4931
+y Ga(N)r Fs(\))115 b Gg(or)f Ga(N)10 b Fs(\()-7 b Ga(x)25
+b F4(:=)2381 4919 y FX(h)2408 4931 y Ga(a)2456 4919 y
+FX(i)2484 4931 y Ga(M)s Fs(\))p Gg(.)321 5136 y(Figure)20
+b(3.11)f(gi)n(v)o(es)g(its)g(complete)h(de\002nition,)h(which)e(is)g
+(formulated)h(so)f(that,)h(gi)n(v)o(en)f(the)h(translation)321
+5249 y F6(j)p 348 5249 V 366 5249 V 384 5249 V 65 w(j)436
+5216 y Fu(N)490 5249 y Gg(,)k(there)i(is)e(a)h(perfect)h(match)f(with)g
+(proof)g(substitutions)k(of)c(the)g(form)f F4([)p Ga(\033)s
+F4(])p Gg(.)32 b(Consequently)-6 b(,)28 b(we)321 5361
+y(ha)n(v)o(e)c(the)g(follo)n(wing)h(reduction)h(rule)e(for)g
+FL(Subst)o Gg(.)p Black Black eop end
+%%Page: 91 103
+TeXDict begin 91 102 bop Black 277 51 a Gb(3.3)23 b(Classical)j
+(Natural)d(Deduction)2373 b(91)p 277 88 3691 4 v Black
+Black 277 476 V 277 4986 4 4510 v Black Black 489 631
+a(Let)23 b Fs(^)q FO(\033)s Fs(_)g Gb(be)g(of)h(the)e(f)n(orm)i
+Fs(^)p Fo(And)1566 594 y Fy(i)1566 659 y(E)1630 631 y
+FD(\()1671 619 y Fz(h)1703 631 y FO(c)1750 619 y Fz(i)p
+1781 631 28 4 v 1796 631 V 1811 631 V 1839 631 a FO(;)1885
+619 y Fx(\()1917 631 y FO(x)1977 619 y Fx(\))2008 631
+y FO(P)15 b FD(\))p Fs(_)p Gb(,)22 b(then:)1222 818 y
+FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s
+Fs(_)1660 767 y F5(def)1667 818 y F4(=)54 b FL(And)1946
+781 y Gc(i)1946 841 y(E)2006 818 y F4(\()2041 806 y FX(h)2069
+818 y Ga(c)2108 806 y FX(i)2135 818 y FL(Id)q F4(\()p
+Ga(y)s(;)15 b(c)p F4(\))q Ga(;)2446 806 y F9(\()2474
+818 y Ga(x)2526 806 y F9(\))2553 818 y Ga(P)e F4(\))970
+b Gg(\(1\))729 1005 y FL(And)884 1019 y Gc(I)924 1005
+y F4(\()959 993 y FX(h)986 1005 y Ga(a)1034 993 y FX(i)1062
+1005 y Ga(M)10 b(;)1200 993 y FX(h)1228 1005 y Ga(b)1267
+993 y FX(i)1294 1005 y Ga(N)g(;)15 b(c)p F4(\))p Fs(^)r
+Ga(\033)s Fs(_)1660 954 y F5(def)1667 1005 y F4(=)54
+b FL(And)1946 968 y Gc(i)1946 1028 y(E)2006 1005 y F4(\()2041
+993 y FX(h)2069 1005 y Ga(c)2108 993 y FX(i)2135 1005
+y FL(And)2290 1019 y Gc(I)2330 1005 y F4(\()2365 993
+y FX(h)2393 1005 y Ga(a)2441 993 y FX(i)2468 1005 y Ga(M)10
+b Fs(^)q Ga(\033)s Fs(_)q Ga(;)2727 993 y FX(h)2754 1005
+y Ga(b)2793 993 y FX(i)2821 1005 y Ga(N)g Fs(^)p Ga(\033)s
+Fs(_)q Ga(;)15 b(c)p F4(\))q Ga(;)3179 993 y F9(\()3207
+1005 y Ga(x)3259 993 y F9(\))3286 1005 y Ga(P)e F4(\))237
+b Gg(\(2\))489 1236 y Gb(Let)23 b Fs(^)q FO(\033)s Fs(_)g
+Gb(be)g(of)h(the)e(f)n(orm)i Fs(^)p Fo(Or)1505 1250 y
+Fy(E)1569 1236 y FD(\()1610 1224 y Fz(h)1641 1236 y FO(c)1688
+1224 y Fz(i)p 1720 1236 V 1735 1236 V 1750 1236 V 1777
+1236 a FO(;)1824 1224 y Fx(\()1856 1236 y FO(x)1916 1224
+y Fx(\))1947 1236 y FO(P)14 b(;)2074 1224 y Fx(\()2105
+1236 y FO(y)2162 1224 y Fx(\))2194 1236 y FO(Q)p FD(\))p
+Fs(_)p Gb(,)23 b(then:)1222 1423 y FL(Id)p F4(\()p Ga(y)s(;)15
+b(c)p F4(\))p Fs(^)r Ga(\033)s Fs(_)1660 1372 y F5(def)1667
+1423 y F4(=)54 b FL(Or)1891 1437 y Gc(E)1951 1423 y F4(\()1986
+1411 y FX(h)2013 1423 y Ga(c)2052 1411 y FX(i)2080 1423
+y FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p F4(\))r Ga(;)2391
+1411 y F9(\()2419 1423 y Ga(x)2471 1411 y F9(\))2498
+1423 y Ga(P)e(;)2609 1411 y F9(\()2637 1423 y Ga(y)2685
+1411 y F9(\))2712 1423 y Ga(Q)p F4(\))810 b Gg(\(3\))1002
+1610 y FL(Or)1101 1573 y Gc(i)1101 1633 y(I)1141 1610
+y F4(\()1176 1598 y FX(h)1204 1610 y Ga(a)1252 1598 y
+FX(i)1279 1610 y Ga(M)10 b(;)15 b(c)p F4(\))p Fs(^)r
+Ga(\033)s Fs(_)1660 1559 y F5(def)1667 1610 y F4(=)54
+b FL(Or)1891 1624 y Gc(E)1951 1610 y F4(\()1986 1598
+y FX(h)2013 1610 y Ga(c)2052 1598 y FX(i)2080 1610 y
+FL(Or)2179 1573 y Gc(i)2179 1633 y(I)2219 1610 y F4(\()2254
+1598 y FX(h)2282 1610 y Ga(a)2330 1598 y FX(i)2358 1610
+y Ga(M)10 b Fs(^)p Ga(\033)s Fs(_)q Ga(;)15 b(c)p F4(\))q
+Ga(;)2731 1598 y F9(\()2759 1610 y Ga(x)2811 1598 y F9(\))2838
+1610 y Ga(P)e(;)2949 1598 y F9(\()2977 1610 y Ga(y)3025
+1598 y F9(\))3052 1610 y Ga(Q)p F4(\))470 b Gg(\(4\))489
+1841 y Gb(Let)23 b Fs(^)q FO(\033)s Fs(_)g Gb(be)g(of)h(the)e(f)n(orm)i
+Fs(^)p Fo(Imp)1557 1863 y Fy(E)1622 1841 y FD(\()1663
+1829 y Fz(h)1694 1841 y FO(c)1741 1829 y Fz(i)p 1772
+1841 V 1787 1841 V 1803 1841 V 1830 1841 a FO(;)1876
+1829 y Fz(h)1908 1841 y FO(b)1955 1829 y Fz(i)1987 1841
+y FO(P)14 b(;)2114 1829 y Fx(\()2145 1841 y FO(x)2205
+1829 y Fx(\))2237 1841 y FO(Q)p FD(\))p Fs(_)p Gb(,)22
+b(then:)1222 2028 y FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p
+F4(\))p Fs(^)r Ga(\033)s Fs(_)1660 1977 y F5(def)1667
+2028 y F4(=)54 b FL(Imp)1936 2050 y Gc(E)1996 2028 y
+F4(\()2031 2016 y FX(h)2059 2028 y Ga(c)2098 2016 y FX(i)2125
+2028 y FL(Id)q F4(\()p Ga(y)s(;)15 b(c)p F4(\))q Ga(;)2436
+2016 y FX(h)2464 2028 y Ga(b)2503 2016 y FX(i)2530 2028
+y Ga(P)e(;)2641 2016 y F9(\()2669 2028 y Ga(x)2721 2016
+y F9(\))2748 2028 y Ga(Q)p F4(\))774 b Gg(\(5\))850 2215
+y FL(Imp)994 2237 y Gc(I)1034 2215 y F4(\()1069 2203
+y F9(\()1097 2215 y Ga(x)1149 2203 y F9(\))p FX(h)1204
+2215 y Ga(a)1252 2203 y FX(i)1279 2215 y Ga(M)10 b(;)15
+b(c)p F4(\))p Fs(^)r Ga(\033)s Fs(_)1660 2164 y F5(def)1667
+2215 y F4(=)54 b FL(Imp)1936 2237 y Gc(E)1996 2215 y
+F4(\()2031 2203 y FX(h)2059 2215 y Ga(c)2098 2203 y FX(i)2125
+2215 y FL(Imp)2270 2237 y Gc(I)2310 2215 y F4(\()2345
+2203 y F9(\()2373 2215 y Ga(x)2425 2203 y F9(\))p FX(h)2479
+2215 y Ga(a)2527 2203 y FX(i)2555 2215 y Ga(M)10 b Fs(^)p
+Ga(\033)s Fs(_)q Ga(;)15 b(c)p F4(\))q Ga(;)2928 2203
+y FX(h)2956 2215 y Ga(b)2995 2203 y FX(i)3023 2215 y
+Ga(P)e(;)3134 2203 y F9(\()3161 2215 y Ga(x)3213 2203
+y F9(\))3241 2215 y Ga(Q)p F4(\))281 b Gg(\(6\))489 2446
+y Gb(Let)23 b Fs(^)q FO(\033)s Fs(_)g Gb(be)g(of)h(the)e(f)n(orm)i
+Fs(^)p Fo(Not)1556 2460 y Fy(E)1621 2446 y FD(\()1662
+2434 y Fz(h)1693 2446 y FO(c)1740 2434 y Fz(i)p 1771
+2446 V 1786 2446 V 1802 2446 V 1829 2446 a FO(;)1875
+2434 y Fz(h)1907 2446 y FO(b)1954 2434 y Fz(i)1986 2446
+y FO(P)14 b FD(\))p Fs(_)p Gb(,)23 b(then:)1222 2633
+y FL(Id)p F4(\()p Ga(y)s(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s
+Fs(_)1660 2582 y F5(def)1667 2633 y F4(=)54 b FL(Not)1934
+2647 y Gc(E)1994 2633 y F4(\()2029 2621 y FX(h)2057 2633
+y Ga(c)2096 2621 y FX(i)2124 2633 y FL(Id)p F4(\()p Ga(y)s(;)15
+b(c)p F4(\))q Ga(;)2434 2621 y FX(h)2462 2633 y Ga(b)2501
+2621 y FX(i)2528 2633 y Ga(P)e F4(\))995 b Gg(\(7\))954
+2820 y FL(Not)1097 2834 y Gc(I)1137 2820 y F4(\()1172
+2808 y F9(\()1200 2820 y Ga(x)1252 2808 y F9(\))1279
+2820 y Ga(M)10 b(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s
+Fs(_)1660 2769 y F5(def)1667 2820 y F4(=)54 b FL(Not)1934
+2834 y Gc(E)1994 2820 y F4(\()2029 2808 y FX(h)2057 2820
+y Ga(c)2096 2808 y FX(i)2124 2820 y FL(Not)2266 2834
+y Gc(I)2306 2820 y F4(\()2341 2808 y F9(\()2369 2820
+y Ga(x)2421 2808 y F9(\))2448 2820 y Ga(M)10 b Fs(^)q
+Ga(\033)s Fs(_)q Ga(;)15 b(c)p F4(\))q Ga(;)2822 2808
+y FX(h)2850 2820 y Ga(b)2889 2808 y FX(i)2916 2820 y
+Ga(P)e F4(\))607 b Gg(\(8\))489 3028 y Gb(Otherwise:)1213
+3168 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))p Fs(^)r
+Ga(\033)s Fs(_)1660 3116 y F5(def)1667 3168 y F4(=)54
+b FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))729 3355 y FL(And)884
+3369 y Gc(I)924 3355 y F4(\()959 3343 y FX(h)986 3355
+y Ga(a)1034 3343 y FX(i)1062 3355 y Ga(M)10 b(;)1200
+3343 y FX(h)1228 3355 y Ga(b)1267 3343 y FX(i)1294 3355
+y Ga(N)g(;)15 b(c)p F4(\))p Fs(^)r Ga(\033)s Fs(_)1660
+3303 y F5(def)1667 3355 y F4(=)54 b FL(And)1946 3369
+y Gc(I)1986 3355 y F4(\()2021 3343 y FX(h)2049 3355 y
+Ga(a)2097 3343 y FX(i)2140 3355 y Ga(M)10 b Fs(^)p Ga(\033)s
+Fs(_)q Ga(;)2398 3343 y FX(h)2426 3355 y Ga(b)2465 3343
+y FX(i)2507 3355 y Ga(N)g Fs(^)q Ga(\033)s Fs(_)p Ga(;)15
+b(c)p F4(\))776 3542 y FL(And)931 3505 y Gc(i)931 3565
+y(E)990 3542 y F4(\()1025 3530 y FX(h)1053 3542 y Ga(a)1101
+3530 y FX(i)1129 3542 y Ga(M)10 b(;)1267 3530 y F9(\()1295
+3542 y Ga(x)1347 3530 y F9(\))1374 3542 y Ga(N)g F4(\))p
+Fs(^)q Ga(\033)s Fs(_)1660 3490 y F5(def)1667 3542 y
+F4(=)54 b FL(And)1946 3505 y Gc(i)1946 3565 y(E)2006
+3542 y F4(\()2041 3530 y FX(h)2069 3542 y Ga(a)2117 3530
+y FX(i)2159 3542 y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)q
+Ga(;)2418 3530 y F9(\()2445 3542 y Ga(x)2497 3530 y F9(\))2540
+3542 y Ga(N)g Fs(^)p Ga(\033)s Fs(_)q F4(\))1002 3729
+y FL(Or)1101 3692 y Gc(i)1101 3752 y(I)1141 3729 y F4(\()1176
+3717 y FX(h)1204 3729 y Ga(a)1252 3717 y FX(i)1279 3729
+y Ga(M)h(;)k(b)p F4(\))p Fs(^)q Ga(\033)s Fs(_)1660 3677
+y F5(def)1667 3729 y F4(=)54 b FL(Or)1891 3692 y Gc(i)1891
+3752 y(I)1931 3729 y F4(\()1966 3717 y FX(h)1994 3729
+y Ga(a)2042 3717 y FX(i)2084 3729 y Ga(M)10 b Fs(^)q
+Ga(\033)s Fs(_)q Ga(;)15 b(b)p F4(\))617 3916 y FL(Or)717
+3930 y Gc(E)776 3916 y F4(\()811 3904 y FX(h)839 3916
+y Ga(a)887 3904 y FX(i)915 3916 y Ga(M)10 b(;)1053 3904
+y F9(\()1081 3916 y Ga(x)1133 3904 y F9(\))1160 3916
+y Ga(N)g(;)1283 3904 y F9(\()1311 3916 y Ga(y)1359 3904
+y F9(\))1386 3916 y Ga(P)j F4(\))p Fs(^)q Ga(\033)s Fs(_)1660
+3864 y F5(def)1667 3916 y F4(=)54 b FL(Or)1891 3930 y
+Gc(E)1951 3916 y F4(\()1986 3904 y FX(h)2013 3916 y Ga(a)2061
+3904 y FX(i)2104 3916 y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)p
+Ga(;)2362 3904 y F9(\()2390 3916 y Ga(x)2442 3904 y F9(\))2485
+3916 y Ga(N)g Fs(^)p Ga(\033)s Fs(_)q Ga(;)2728 3904
+y F9(\()2756 3916 y Ga(y)2804 3904 y F9(\))2846 3916
+y Ga(P)j Fs(^)q Ga(\033)s Fs(_)p F4(\))850 4103 y FL(Imp)994
+4125 y Gc(I)1034 4103 y F4(\()1069 4091 y F9(\()1097
+4103 y Ga(x)1149 4091 y F9(\))q FX(h)1204 4103 y Ga(a)1252
+4091 y FX(i)1279 4103 y Ga(M)e(;)k(b)p F4(\))p Fs(^)q
+Ga(\033)s Fs(_)1660 4051 y F5(def)1667 4103 y F4(=)54
+b FL(Imp)1936 4125 y Gc(I)1976 4103 y F4(\()2011 4091
+y F9(\()2039 4103 y Ga(x)2091 4091 y F9(\))p FX(h)2146
+4103 y Ga(a)2194 4091 y FX(i)2236 4103 y Ga(M)10 b Fs(^)q
+Ga(\033)s Fs(_)q Ga(;)15 b(b)p F4(\))581 4290 y FL(Imp)725
+4312 y Gc(E)785 4290 y F4(\()820 4278 y FX(h)848 4290
+y Ga(a)896 4278 y FX(i)923 4290 y Ga(M)10 b(;)1061 4278
+y FX(h)1089 4290 y Ga(b)1128 4278 y FX(i)1156 4290 y
+Ga(N)g(;)1279 4278 y F9(\()1307 4290 y Ga(x)1359 4278
+y F9(\))1386 4290 y Ga(P)j F4(\))p Fs(^)q Ga(\033)s Fs(_)1660
+4238 y F5(def)1667 4290 y F4(=)54 b FL(Imp)1936 4312
+y Gc(E)1996 4290 y F4(\()2031 4278 y FX(h)2059 4290 y
+Ga(a)2107 4278 y FX(i)2149 4290 y Ga(M)10 b Fs(^)q Ga(\033)s
+Fs(_)p Ga(;)2407 4278 y FX(h)2435 4290 y Ga(b)2474 4278
+y FX(i)2517 4290 y Ga(N)g Fs(^)p Ga(\033)s Fs(_)q Ga(;)2760
+4278 y F9(\()2788 4290 y Ga(x)2840 4278 y F9(\))2882
+4290 y Ga(P)j Fs(^)q Ga(\033)s Fs(_)q F4(\))955 4477
+y FL(Not)1097 4491 y Gc(I)1137 4477 y F4(\()1172 4465
+y F9(\()1200 4477 y Ga(x)1252 4465 y F9(\))1279 4477
+y Ga(M)e(;)k(b)p F4(\))p Fs(^)q Ga(\033)s Fs(_)1660 4425
+y F5(def)1667 4477 y F4(=)54 b FL(Not)1934 4491 y Gc(I)1974
+4477 y F4(\()2009 4465 y F9(\()2037 4477 y Ga(x)2089
+4465 y F9(\))2132 4477 y Ga(M)10 b Fs(^)p Ga(\033)s Fs(_)q
+Ga(;)15 b(b)p F4(\))801 4664 y FL(Not)944 4678 y Gc(E)1003
+4664 y F4(\()1038 4652 y FX(h)1066 4664 y Ga(a)1114 4652
+y FX(i)1142 4664 y Ga(M)10 b(;)1280 4652 y FX(h)1308
+4664 y Ga(b)1347 4652 y FX(i)1374 4664 y Ga(N)g F4(\))p
+Fs(^)q Ga(\033)s Fs(_)1660 4612 y F5(def)1667 4664 y
+F4(=)54 b FL(Not)1934 4678 y Gc(E)1994 4664 y F4(\()2029
+4652 y FX(h)2057 4664 y Ga(a)2105 4652 y FX(i)2147 4664
+y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)q Ga(;)2406 4652 y
+FX(h)2434 4664 y Ga(b)2473 4652 y FX(i)2515 4664 y Ga(N)g
+Fs(^)q Ga(\033)s Fs(_)p F4(\))778 4851 y FL(Subst)o F4(\()1025
+4839 y FX(h)1053 4851 y Ga(a)1101 4839 y FX(i)1129 4851
+y Ga(M)g(;)1267 4839 y F9(\()1295 4851 y Ga(x)1347 4839
+y F9(\))1374 4851 y Ga(N)g F4(\))p Fs(^)q Ga(\033)s Fs(_)1660
+4799 y F5(def)1667 4851 y F4(=)54 b FL(Subst)o F4(\()2039
+4839 y FX(h)2067 4851 y Ga(a)2115 4839 y FX(i)2157 4851
+y Ga(M)10 b Fs(^)q Ga(\033)s Fs(_)q Ga(;)2416 4839 y
+F9(\()2443 4851 y Ga(x)2495 4839 y F9(\))2538 4851 y
+Ga(N)g Fs(^)p Ga(\033)s Fs(_)q F4(\))p 3965 4986 4 4510
+v 277 4989 3691 4 v Black 916 5142 a Gg(Figure)24 b(3.10:)30
+b(Proof)23 b(substitution)k(in)d(natural)h(deduction)h(I.)p
+Black Black Black Black eop end
+%%Page: 92 104
+TeXDict begin 92 103 bop Black -144 51 a Gb(92)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black -144 934 V
+-144 4528 4 3594 v 142 1085 a(Let)g Fs(\()p FO(\033)s
+Fs(\))h Gb(be)f(of)g(the)g(f)n(orm)h Fs(\()-7 b FO(x)29
+b FD(:=)1271 1073 y Fz(h)1303 1085 y FO(c)1350 1073 y
+Fz(i)1381 1085 y FO(P)7 b Fs(\))q Gb(,)22 b(then:)767
+1272 y FL(Id)q F4(\()p Ga(x;)15 b(a)p F4(\))p Fs(\()q
+Ga(\033)s Fs(\))1218 1221 y F5(def)1225 1272 y F4(=)54
+b Ga(P)13 b F4([)p Ga(c)d F6(7!)g Ga(a)p F4(])1465 b
+Gg(\(1\))142 1480 y Gb(Let)23 b Fs(\()p FO(\033)s Fs(\))h
+Gb(be)f(of)g(the)g(f)n(orm)h Fs(\()-7 b FO(c)29 b FD(:=)1258
+1468 y Fx(\()1290 1480 y FO(x)1350 1468 y Fx(\))1381
+1480 y FO(P)7 b Fs(\))q Gb(,)22 b(then:)776 1667 y FL(Id)p
+F4(\()p Ga(x;)15 b(c)p F4(\))p Fs(\()r Ga(\033)s Fs(\))1218
+1615 y F5(def)1225 1667 y F4(=)54 b Ga(P)13 b F4([)p
+Ga(y)g F6(7!)d Ga(x)p F4(])1452 b Gg(\(2\))287 1854 y
+FL(And)442 1868 y Gc(I)482 1854 y F4(\()517 1842 y FX(h)545
+1854 y Ga(a)593 1842 y FX(i)620 1854 y Ga(M)10 b(;)758
+1842 y FX(h)786 1854 y Ga(b)825 1842 y FX(i)853 1854
+y Ga(N)g(;)15 b(c)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218
+1802 y F5(def)1225 1854 y F4(=)54 b FL(Subst)o F4(\()1597
+1842 y FX(h)1625 1854 y Ga(c)1664 1842 y FX(i)1692 1854
+y FL(And)1846 1868 y Gc(I)1886 1854 y F4(\()1921 1842
+y FX(h)1949 1854 y Ga(a)1997 1842 y FX(i)2025 1854 y
+Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)2283 1842 y
+FX(h)2311 1854 y Ga(b)2350 1842 y FX(i)2377 1854 y Ga(N)g
+Fs(\()q Ga(\033)s Fs(\))p Ga(;)15 b(c)p F4(\))q Ga(;)2735
+1842 y F9(\()2763 1854 y Ga(y)2811 1842 y F9(\))2838
+1854 y Ga(P)e F4(\))190 b Gg(\(3\))560 2041 y FL(Or)659
+2004 y Gc(i)659 2064 y(I)699 2041 y F4(\()734 2029 y
+FX(h)762 2041 y Ga(a)810 2029 y FX(i)837 2041 y Ga(M)11
+b(;)k(c)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218 1989 y
+F5(def)1225 2041 y F4(=)54 b FL(Subst)o F4(\()1597 2029
+y FX(h)1625 2041 y Ga(c)1664 2029 y FX(i)1692 2041 y
+FL(Or)1791 2004 y Gc(i)1791 2064 y(I)1831 2041 y F4(\()1866
+2029 y FX(h)1894 2041 y Ga(a)1942 2029 y FX(i)1969 2041
+y Ga(M)10 b Fs(\()q Ga(\033)s Fs(\))q Ga(;)15 b(c)p F4(\))q
+Ga(;)2343 2029 y F9(\()2370 2041 y Ga(y)2418 2029 y F9(\))2446
+2041 y Ga(P)e F4(\))582 b Gg(\(4\))408 2228 y FL(Imp)552
+2250 y Gc(I)592 2228 y F4(\()627 2216 y F9(\()655 2228
+y Ga(x)707 2216 y F9(\))q FX(h)762 2228 y Ga(a)810 2216
+y FX(i)837 2228 y Ga(M)11 b(;)k(c)p F4(\))p Fs(\()q Ga(\033)s
+Fs(\))1218 2176 y F5(def)1225 2228 y F4(=)54 b FL(Subst)o
+F4(\()1597 2216 y FX(h)1625 2228 y Ga(c)1664 2216 y FX(i)1692
+2228 y FL(Imp)1836 2250 y Gc(I)1876 2228 y F4(\()1911
+2216 y F9(\()1939 2228 y Ga(x)1991 2216 y F9(\))p FX(h)2046
+2228 y Ga(a)2094 2216 y FX(i)2121 2228 y Ga(M)10 b Fs(\()q
+Ga(\033)s Fs(\))q Ga(;)15 b(c)p F4(\))q Ga(;)2495 2216
+y F9(\()2523 2228 y Ga(y)2571 2216 y F9(\))2598 2228
+y Ga(P)e F4(\))430 b Gg(\(5\))513 2415 y FL(Not)655 2429
+y Gc(I)695 2415 y F4(\()730 2403 y F9(\()758 2415 y Ga(x)810
+2403 y F9(\))837 2415 y Ga(M)11 b(;)k(c)p F4(\))p Fs(\()q
+Ga(\033)s Fs(\))1218 2363 y F5(def)1225 2415 y F4(=)54
+b FL(Subst)o F4(\()1597 2403 y FX(h)1625 2415 y Ga(c)1664
+2403 y FX(i)1692 2415 y FL(Not)1835 2429 y Gc(I)1874
+2415 y F4(\()1909 2403 y F9(\()1937 2415 y Ga(x)1989
+2403 y F9(\))2017 2415 y Ga(M)10 b Fs(\()p Ga(\033)s
+Fs(\))q Ga(;)15 b(c)p F4(\))q Ga(;)2390 2403 y F9(\()2418
+2415 y Ga(y)2466 2403 y F9(\))2493 2415 y Ga(P)e F4(\))535
+b Gg(\(6\))142 2599 y Gb(Otherwise:)771 2738 y FL(Id)q
+F4(\()p Ga(y)s(;)15 b(a)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218
+2687 y F5(def)1225 2738 y F4(=)54 b FL(Id)p F4(\()p Ga(y)s(;)15
+b(a)p F4(\))287 2925 y FL(And)442 2939 y Gc(I)482 2925
+y F4(\()517 2913 y FX(h)545 2925 y Ga(a)593 2913 y FX(i)620
+2925 y Ga(M)10 b(;)758 2913 y FX(h)786 2925 y Ga(b)825
+2913 y FX(i)853 2925 y Ga(N)g(;)15 b(c)p F4(\))p Fs(\()q
+Ga(\033)s Fs(\))1218 2874 y F5(def)1225 2925 y F4(=)54
+b FL(And)1505 2939 y Gc(I)1545 2925 y F4(\()1580 2913
+y FX(h)1607 2925 y Ga(a)1655 2913 y FX(i)1698 2925 y
+Ga(M)10 b Fs(\()q Ga(\033)s Fs(\))p Ga(;)1956 2913 y
+FX(h)1984 2925 y Ga(b)2023 2913 y FX(i)2066 2925 y Ga(N)g
+Fs(\()p Ga(\033)s Fs(\))q Ga(;)15 b(c)p F4(\))335 3112
+y FL(And)489 3076 y Gc(i)489 3136 y(E)549 3112 y F4(\()584
+3100 y FX(h)612 3112 y Ga(a)660 3100 y FX(i)687 3112
+y Ga(M)10 b(;)825 3100 y F9(\()853 3112 y Ga(x)905 3100
+y F9(\))932 3112 y Ga(N)g F4(\))p Fs(\()q Ga(\033)s Fs(\))1218
+3061 y F5(def)1225 3112 y F4(=)54 b FL(And)1505 3076
+y Gc(i)1505 3136 y(E)1564 3112 y F4(\()1599 3100 y FX(h)1627
+3112 y Ga(a)1675 3100 y FX(i)1718 3112 y Ga(M)10 b Fs(\()p
+Ga(\033)s Fs(\))q Ga(;)1976 3100 y F9(\()2004 3112 y
+Ga(x)2056 3100 y F9(\))2098 3112 y Ga(N)g Fs(\()q Ga(\033)s
+Fs(\))p F4(\))560 3300 y FL(Or)660 3263 y Gc(i)660 3323
+y(I)700 3300 y F4(\()735 3288 y FX(h)762 3300 y Ga(a)810
+3288 y FX(i)838 3300 y Ga(M)g(;)15 b(b)p F4(\))p Fs(\()q
+Ga(\033)s Fs(\))1218 3248 y F5(def)1225 3300 y F4(=)54
+b FL(Or)1449 3263 y Gc(i)1449 3323 y(I)1489 3300 y F4(\()1524
+3288 y FX(h)1552 3300 y Ga(a)1600 3288 y FX(i)1643 3300
+y Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)15 b(b)p F4(\))176
+3487 y FL(Or)275 3501 y Gc(E)335 3487 y F4(\()370 3475
+y FX(h)397 3487 y Ga(a)445 3475 y FX(i)473 3487 y Ga(M)10
+b(;)611 3475 y F9(\()639 3487 y Ga(x)691 3475 y F9(\))718
+3487 y Ga(N)g(;)841 3475 y F9(\()869 3487 y Ga(y)917
+3475 y F9(\))944 3487 y Ga(P)j F4(\))p Fs(\()q Ga(\033)s
+Fs(\))1218 3435 y F5(def)1225 3487 y F4(=)54 b FL(Or)1449
+3501 y Gc(E)1509 3487 y F4(\()1544 3475 y FX(h)1572 3487
+y Ga(a)1620 3475 y FX(i)1662 3487 y Ga(M)10 b Fs(\()q
+Ga(\033)s Fs(\))q Ga(;)1921 3475 y F9(\()1949 3487 y
+Ga(x)2001 3475 y F9(\))2043 3487 y Ga(N)g Fs(\()p Ga(\033)s
+Fs(\))q Ga(;)2286 3475 y F9(\()2314 3487 y Ga(y)2362
+3475 y F9(\))2404 3487 y Ga(P)j Fs(\()q Ga(\033)s Fs(\))q
+F4(\))408 3674 y FL(Imp)553 3695 y Gc(I)593 3674 y F4(\()628
+3662 y F9(\()655 3674 y Ga(x)707 3662 y F9(\))q FX(h)762
+3674 y Ga(a)810 3662 y FX(i)838 3674 y Ga(M)d(;)15 b(b)p
+F4(\))p Fs(\()q Ga(\033)s Fs(\))1218 3622 y F5(def)1225
+3674 y F4(=)54 b FL(Imp)1495 3695 y Gc(I)1535 3674 y
+F4(\()1570 3662 y F9(\()1597 3674 y Ga(x)1649 3662 y
+F9(\))q FX(h)1704 3674 y Ga(a)1752 3662 y FX(i)1795 3674
+y Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)15 b(b)p F4(\))139
+3861 y FL(Imp)284 3882 y Gc(E)343 3861 y F4(\()378 3849
+y FX(h)406 3861 y Ga(a)454 3849 y FX(i)482 3861 y Ga(M)10
+b(;)620 3849 y FX(h)648 3861 y Ga(b)687 3849 y FX(i)714
+3861 y Ga(N)g(;)837 3849 y F9(\()865 3861 y Ga(x)917
+3849 y F9(\))944 3861 y Ga(P)j F4(\))p Fs(\()q Ga(\033)s
+Fs(\))1218 3809 y F5(def)1225 3861 y F4(=)54 b FL(Imp)1495
+3882 y Gc(E)1554 3861 y F4(\()1589 3849 y FX(h)1617 3861
+y Ga(a)1665 3849 y FX(i)1708 3861 y Ga(M)10 b Fs(\()p
+Ga(\033)s Fs(\))q Ga(;)1966 3849 y FX(h)1994 3861 y Ga(b)2033
+3849 y FX(i)2075 3861 y Ga(N)g Fs(\()q Ga(\033)s Fs(\))p
+Ga(;)2318 3849 y F9(\()2346 3861 y Ga(x)2398 3849 y F9(\))2441
+3861 y Ga(P)j Fs(\()p Ga(\033)s Fs(\))q F4(\))513 4048
+y FL(Not)656 4062 y Gc(I)696 4048 y F4(\()731 4036 y
+F9(\()758 4048 y Ga(x)810 4036 y F9(\))838 4048 y Ga(M)d(;)15
+b(b)p F4(\))p Fs(\()q Ga(\033)s Fs(\))1218 3996 y F5(def)1225
+4048 y F4(=)54 b FL(Not)1493 4062 y Gc(I)1533 4048 y
+F4(\()1568 4036 y F9(\()1596 4048 y Ga(x)1648 4036 y
+F9(\))1690 4048 y Ga(M)10 b Fs(\()q Ga(\033)s Fs(\))p
+Ga(;)15 b(b)p F4(\))359 4235 y FL(Not)502 4249 y Gc(E)562
+4235 y F4(\()597 4223 y FX(h)624 4235 y Ga(a)672 4223
+y FX(i)700 4235 y Ga(M)10 b(;)838 4223 y FX(h)866 4235
+y Ga(b)905 4223 y FX(i)932 4235 y Ga(N)g F4(\))p Fs(\()q
+Ga(\033)s Fs(\))1218 4183 y F5(def)1225 4235 y F4(=)54
+b FL(Not)1493 4249 y Gc(E)1552 4235 y F4(\()1587 4223
+y FX(h)1615 4235 y Ga(a)1663 4223 y FX(i)1706 4235 y
+Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)1964 4223 y
+FX(h)1992 4235 y Ga(b)2031 4223 y FX(i)2074 4235 y Ga(N)g
+Fs(\()p Ga(\033)s Fs(\))q F4(\))337 4422 y FL(Subst)o
+F4(\()584 4410 y FX(h)612 4422 y Ga(a)660 4410 y FX(i)687
+4422 y Ga(M)g(;)825 4410 y F9(\()853 4422 y Ga(x)905
+4410 y F9(\))932 4422 y Ga(N)g F4(\))p Fs(\()q Ga(\033)s
+Fs(\))1218 4370 y F5(def)1225 4422 y F4(=)54 b FL(Subst)o
+F4(\()1597 4410 y FX(h)1625 4422 y Ga(a)1673 4410 y FX(i)1716
+4422 y Ga(M)10 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)1974
+4410 y F9(\()2002 4422 y Ga(x)2054 4410 y F9(\))2096
+4422 y Ga(N)g Fs(\()q Ga(\033)s Fs(\))p F4(\))p 3543
+4528 V -144 4531 3691 4 v Black 945 4684 a Gg(Figure)24
+b(3.11:)30 b(Proof)23 b(substitution)k(in)d(natural)h(deduction)h(II.)p
+Black Black Black Black eop end
+%%Page: 93 105
+TeXDict begin 93 104 bop Black 277 51 a Gb(3.4)23 b(The)g(Corr)n
+(espondence)h(between)f(Cut-Elimination)g(and)f(Normalisation)k(II)814
+b(93)p 277 88 3691 4 v Black Black 277 365 a(De\002nition)23
+b(3.3.9)g Gg(\(Substitution)k(Elimination\))p Gb(:)p
+Black Black Black 463 555 a FL(Subst)p F4(\()711 543
+y FX(h)738 555 y Ga(a)786 543 y FX(i)814 555 y Ga(M)10
+b(;)952 543 y F9(\()980 555 y Ga(x)1032 543 y F9(\))1059
+555 y Ga(N)g F4(\))1341 518 y Gc(\033)1277 555 y F6(\000)-31
+b(\000)f(!)100 b Ga(M)10 b Fs(\()-6 b Ga(a)25 b F4(:=)1865
+543 y F9(\()1892 555 y Ga(x)1944 543 y F9(\))1972 555
+y Ga(M)s Fs(\))48 b Gg(if)24 b Ga(M)32 b Gg(does)25 b(not)f(freshly)h
+(introduce)h Ga(a)p Gg(,)c(or)1341 655 y Gc(\033)1277
+692 y F6(\000)-31 b(\000)f(!)115 b Ga(N)10 b Fs(\()-7
+b Ga(x)26 b F4(:=)1869 680 y FX(h)1896 692 y Ga(a)1944
+680 y FX(i)1972 692 y Ga(M)s Fs(\))418 937 y Gg(T)-7
+b(o)23 b(sum)g(up)g(the)h(discussion)i(about)f(the)f(reduction)i(rules)
+e(let)f(us)h(combine)g(them)g(in)f(the)h(de\002ni-)277
+1050 y(tion)g(of)g(a)f(normalisation)k(procedure)f(for)d(classical)j
+(natural)f(deduction)i(proofs.)p Black 277 1237 a Gb(De\002nition)c
+(3.3.10)h Gg(\(Normalisation)i(for)e(Classical)h(Natural)f(Deduction)h
+(Proofs\))p Gb(:)p Black 277 1350 a Gg(The)d(normalisation)j(procedure)
+f(for)e(classical)i(natural)g(deduction)g(proofs,)g F4(\(K)p
+Ga(;)2942 1313 y Gc(\024)2877 1350 y F6(\000)-31 b(\000)f(!)p
+F4(\))p Gg(,)22 b(is)g(a)f(reduc-)277 1463 y(tion)j(system)h(where:)p
+Black 414 1666 a F6(\017)p Black 45 w F4(K)e Gg(is)g(the)h(set)g(of)f
+(well-typed)j(terms,)d(and)p Black 414 1853 a F6(\017)p
+Black 569 1816 a Gc(\024)504 1853 y F6(\000)-31 b(\000)g(!)18
+b Gg(consists)k(of)d(beta-reductions,)25 b(commuting)c(reductions)h
+(and)e(reductions)i(to)e(eliminate)504 1966 y(substitutions;)28
+b(that)c(is)1511 2056 y Gc(\024)1446 2093 y F6(\000)-31
+b(\000)f(!)1642 2042 y F5(def)1649 2093 y F4(=)1815 2056
+y Gc(\014)1752 2093 y F6(\000)g(\000)h(!)25 b([)2098
+2056 y Gc(\015)2033 2093 y F6(\000)-31 b(\000)f(!)26
+b([)2378 2056 y Gc(\033)2314 2093 y F6(\000)-31 b(\000)g(!)50
+b Ga(:)277 2347 y Gg(W)-7 b(e)23 b(should)i(lik)o(e)f(to)g(state)g
+(that)1349 2310 y Gc(\024)1284 2347 y F6(\000)-31 b(\000)f(!)23
+b Gg(respects)j(the)d(subject)j(reduction)g(property)-6
+b(.)p Black 277 2535 a Gb(Pr)n(oposition)33 b(3.3.11)f
+Gg(\(Subject)h(Reduction\))p Gb(:)p Black 60 w Gg(Suppose)h
+Ga(M)50 b F6(2)40 b F4(K)31 b Gg(with)h(the)g(typing)h(judgement)277
+2648 y F4(\000)359 2636 y Gc(.)414 2648 y Ga(M)537 2636
+y Gc(.)592 2648 y F4(\001)23 b Gg(and)h Ga(M)1033 2611
+y Gc(\024)968 2648 y F6(\000)-31 b(\000)g(!)25 b Ga(N)10
+b Gg(,)22 b(then)i Ga(N)36 b F6(2)24 b F4(K)f Gg(with)g(the)h(typing)h
+(judgement)h F4(\000)2821 2636 y Gc(.)2876 2648 y Ga(N)2984
+2636 y Gc(.)3039 2648 y F4(\001)o Gg(.)p Black 277 2885
+a F7(Pr)l(oof.)p Black 46 w Gg(Analogous)g(to)d(proof)i(of)e
+(Proposition)j(2.2.10.)p 3436 2885 4 62 v 3440 2827 55
+4 v 3440 2885 V 3494 2885 4 62 v 277 3089 a(As)19 b(mentioned)i
+(earlier)l(,)h(the)e(reduction)1627 3052 y Gc(\024)1562
+3089 y F6(\000)-31 b(\000)f(!)19 b Gg(is)g(complete)i(in)e(the)h(sense)
+h(that)f(to)f(e)n(v)o(ery)h(non-normal)277 3202 y(natural)28
+b(deduction)i(proof)e(a)e(reduction)j(rule)e(can)g(be)g(applied.)40
+b(T)-7 b(o)25 b(sho)n(w)i(that)g(e)n(v)o(ery)g(non-normal)277
+3315 y(natural)33 b(deduction)h(proof)f(can)f(be)f(reduced)j(to)d(a)g
+(normal)h(one,)i(we)d(ha)n(v)o(e)h(to)f(sho)n(w)h(that)3305
+3278 y Gc(\024)3241 3315 y F6(\000)-32 b(\000)h(!)31
+b Gg(is)277 3428 y(terminating.)i(This)24 b(is)g(what)g(we)f(shall)i
+(do)f(ne)o(xt)g(by)h(sho)n(wing)g(the)f(correspondence)29
+b(between)3397 3391 y Gc(\024)3332 3428 y F6(\000)-31
+b(\000)f(!)277 3541 y Gg(and)462 3503 y Gc(cut)431 3541
+y F6(\000)h(\000)f(!)p Gg(.)277 3849 y Ge(3.4)119 b(The)48
+b(Corr)n(espondence)i(between)f(Cut-Elimination)g(and)g(Nor)l(-)546
+3999 y(malisation)29 b(II)277 4222 y Gg(In)h(this)g(section)i(we)d
+(shall)h(sho)n(w)g(the)g(correspondence)35 b(between)30
+b(normalisation)j(and)e(cut-elimi-)277 4335 y(nation)f(in)d(classical)j
+(logic.)43 b(A)27 b(byproduct,)32 b(we)27 b(shall)i(sho)n(w)e(that)2500
+4298 y Gc(\024)2435 4335 y F6(\000)-31 b(\000)f(!)27
+b Gg(is)h(strongly)i(normalising.)277 4448 y(The)d(lengthy)i(part)f(in)
+f(this)h(proof)h(is)e(to)g(establish)j(the)e(correspondence)k(between)c
+(the)g(proof)h(sub-)277 4561 y(stitutions)d Fs(^)p 668
+4561 28 4 v 685 4561 V 703 4561 V 65 w(_)q Gg(,)c Fs(\()p
+843 4561 V 860 4561 V 878 4561 V 65 w(\))h Gg(and)h F4([)p
+1141 4561 V 1159 4561 V 1177 4561 V 65 w(])p Gg(.)k(This)c(is)f(what)h
+(we)e(shall)j(do)e(\002rst.)p Black 277 4749 a Gb(Lemma)g(3.4.1:)p
+Black 34 w Gg(F)o(or)g(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25
+b F4(K)p Gg(,)57 b F6(j)p Ga(M)10 b F6(j)1731 4716 y
+Fu(S)1775 4749 y F4([)p Ga(a)26 b F4(:=)1995 4737 y F9(\()2023
+4749 y Ga(x)2075 4737 y F9(\))2102 4749 y F6(j)p Ga(N)10
+b F6(j)2235 4716 y Fu(S)2279 4749 y F4(])25 b F6(\021)g(j)p
+Ga(M)10 b Fs(\()-6 b Ga(a)25 b F4(:=)2769 4737 y F9(\()2796
+4749 y Ga(x)2848 4737 y F9(\))2875 4749 y Ga(N)s Fs(\))q
+F6(j)3009 4716 y Fu(S)3052 4749 y Gg(.)p Black 277 4961
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(induction)j(on)d(the)h
+(structure)i(of)d Ga(M)33 b Gg(\(see)24 b(P)o(age)f(161\).)p
+3436 4961 4 62 v 3440 4903 55 4 v 3440 4961 V 3494 4961
+4 62 v Black 277 5149 a Gb(Lemma)g(3.4.2:)p Black 34
+w Gg(F)o(or)g(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25 b
+F4(K)p Gg(,)57 b F6(j)p Ga(M)10 b F6(j)1731 5116 y Fu(S)1775
+5149 y F4([)p Ga(x)26 b F4(:=)1999 5137 y FX(h)2027 5149
+y Ga(a)2075 5137 y FX(i)2102 5149 y F6(j)p Ga(N)10 b
+F6(j)2235 5116 y Fu(S)2279 5149 y F4(])2360 5112 y Gc(cut)2329
+5149 y F6(\000)-31 b(\000)g(!)2500 5116 y FX(\003)2564
+5149 y F6(j)p Ga(M)10 b Fs(\()-6 b Ga(x)25 b F4(:=)2911
+5137 y FX(h)2939 5149 y Ga(a)2987 5137 y FX(i)3014 5149
+y Ga(N)s Fs(\))q F6(j)3148 5116 y Fu(S)3191 5149 y Gg(.)p
+Black 277 5361 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)e(induction)j(on)d
+(the)h(structure)i(of)d Ga(M)33 b Gg(\(see)24 b(P)o(age)f(161\).)p
+3436 5361 V 3440 5303 55 4 v 3440 5361 V 3494 5361 4
+62 v Black Black eop end
+%%Page: 94 106
+TeXDict begin 94 105 bop Black -144 51 a Gb(94)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black Black 321 365 a(Lemma)f(3.4.3:)p
+Black 34 w Gg(F)o(or)f(all)h Ga(M)5 b(;)15 b(N)5 b(;)15
+b(P)s(;)g(Q)27 b F6(2)d F4(K)d Gg(with)h Ga(z)30 b F6(62)25
+b Ga(F)13 b(N)d F4(\()2302 353 y F9(\()2330 365 y Ga(x)2382
+353 y F9(\))2409 365 y F6(j)p Ga(N)g F6(j)2542 332 y
+Fu(S)2586 365 y Ga(;)2626 353 y F9(\()2654 365 y Ga(y)2702
+353 y F9(\))2729 365 y F6(j)p Ga(P)j F6(j)2850 332 y
+Fu(S)2894 365 y Ga(;)2934 353 y FX(h)2962 365 y Ga(b)3001
+353 y FX(i)3028 365 y F6(j)p Ga(Q)p F6(j)3150 332 y Fu(S)3194
+365 y F4(\))22 b Gg(we)f(ha)n(v)o(e)p Black Black 840
+637 a F6(j)p Ga(M)10 b F6(j)988 604 y Fu(S)1032 637 y
+F4([)p Ga(a)26 b F4(:=)1252 625 y F9(\()1279 637 y Ga(z)1325
+625 y F9(\))1353 637 y FL(And)1508 600 y Gc(i)1508 660
+y(L)1560 637 y F4(\()1595 625 y F9(\()1623 637 y Ga(x)1675
+625 y F9(\))1717 637 y F6(j)p Ga(N)10 b F6(j)1850 604
+y Fu(S)1894 637 y Ga(;)15 b(z)t F4(\))q(])43 b F6(\021)f(j)p
+Ga(M)10 b Fs(^)q FL(And)2507 600 y Gc(i)2507 660 y(E)2567
+637 y F4(\()2602 625 y FX(h)2630 637 y Ga(a)2678 625
+y FX(i)p 2707 637 28 4 v 2725 637 V 2743 637 V 2770 637
+a Ga(;)2810 625 y F9(\()2838 637 y Ga(x)2890 625 y F9(\))2917
+637 y Ga(N)g F4(\))p Fs(_)q F6(j)3093 604 y Fu(S)572
+796 y F6(j)p Ga(M)g F6(j)720 763 y Fu(S)764 796 y F4([)p
+Ga(a)26 b F4(:=)984 784 y F9(\()1012 796 y Ga(z)1058
+784 y F9(\))1085 796 y FL(Or)1185 810 y Gc(L)1237 796
+y F4(\()1272 784 y F9(\()1299 796 y Ga(x)1351 784 y F9(\))1394
+796 y F6(j)p Ga(N)10 b F6(j)1527 763 y Fu(S)1571 796
+y Ga(;)1611 784 y F9(\()1639 796 y Ga(y)1687 784 y F9(\))1729
+796 y F6(j)p Ga(P)j F6(j)1850 763 y Fu(S)1894 796 y Ga(;)i(z)t
+F4(\))q(])43 b F6(\021)f(j)p Ga(M)10 b Fs(^)q FL(Or)2452
+810 y Gc(E)2512 796 y F4(\()2547 784 y FX(h)2574 796
+y Ga(a)2622 784 y FX(i)p 2652 796 V 2670 796 V 2687 796
+V 2714 796 a Ga(;)2754 784 y F9(\()2782 796 y Ga(x)2834
+784 y F9(\))2862 796 y Ga(N)g(;)2985 784 y F9(\()3013
+796 y Ga(y)3061 784 y F9(\))3088 796 y Ga(P)j F4(\))p
+Fs(_)q F6(j)3252 763 y Fu(S)551 956 y F6(j)p Ga(M)d F6(j)699
+923 y Fu(S)743 956 y F4([)p Ga(a)26 b F4(:=)963 944 y
+F9(\()990 956 y Ga(z)1036 944 y F9(\))1064 956 y FL(Imp)1209
+977 y Gc(L)1261 956 y F4(\()1296 944 y FX(h)1324 956
+y Ga(b)1363 944 y FX(i)1405 956 y F6(j)p Ga(Q)p F6(j)1527
+923 y Fu(S)1571 956 y Ga(;)1611 944 y F9(\()1639 956
+y Ga(y)1687 944 y F9(\))1729 956 y F6(j)p Ga(P)13 b F6(j)1850
+923 y Fu(S)1894 956 y Ga(;)i(z)t F4(\))q(])43 b F6(\021)f(j)p
+Ga(M)10 b Fs(^)q FL(Imp)2497 977 y Gc(E)2557 956 y F4(\()2592
+944 y FX(h)2620 956 y Ga(a)2668 944 y FX(i)p 2697 956
+V 2715 956 V 2732 956 V 2760 956 a Ga(;)2800 944 y FX(h)2828
+956 y Ga(b)2867 944 y FX(i)2894 956 y Ga(Q;)3006 944
+y F9(\()3034 956 y Ga(y)3082 944 y F9(\))3109 956 y Ga(P)j
+F4(\))p Fs(_)q F6(j)3273 923 y Fu(S)876 1115 y F6(j)p
+Ga(M)d F6(j)1024 1082 y Fu(S)1068 1115 y F4([)p Ga(a)26
+b F4(:=)1288 1103 y F9(\()1315 1115 y Ga(z)1361 1103
+y F9(\))1389 1115 y FL(Not)1532 1129 y Gc(L)1584 1115
+y F4(\()1619 1103 y FX(h)1647 1115 y Ga(b)1686 1103 y
+FX(i)1728 1115 y F6(j)p Ga(Q)p F6(j)1850 1082 y Fu(S)1894
+1115 y Ga(;)15 b(z)t F4(\))q(])43 b F6(\021)f(j)p Ga(M)10
+b Fs(^)q FL(Not)2496 1129 y Gc(E)2555 1115 y F4(\()2590
+1103 y FX(h)2618 1115 y Ga(a)2666 1103 y FX(i)p 2696
+1115 V 2713 1115 V 2731 1115 V 2758 1115 a Ga(;)2798
+1103 y FX(h)2826 1115 y Ga(b)2865 1103 y FX(i)2892 1115
+y Ga(Q)p F4(\))p Fs(_)q F6(j)3057 1082 y Fu(S)p Black
+321 1325 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e
+(the)f(structure)j(of)e Ga(M)32 b Gg(\(see)25 b(P)o(age)e(162\).)p
+3480 1325 4 62 v 3484 1267 55 4 v 3484 1325 V 3538 1325
+4 62 v 321 1543 a(No)n(w)31 b(we)g(are)h(in)f(a)h(position)i(to)d(sho)n
+(w)h(that)g(under)h F6(j)p 2057 1543 28 4 v 2075 1543
+V 2093 1543 V 65 w(j)2145 1510 y Fu(S)2220 1543 y Gg(e)n(v)o(ery)f
+(normalisation)j(reduction)f(maps)321 1656 y(onto)25
+b(a)e(series)h(of)g(cut-reductions.)p Black 321 1844
+a Gb(Theor)n(em)g(3.4.4:)p Black 34 w Gg(F)o(or)f(all)g
+Ga(M)5 b(;)15 b(N)36 b F6(2)25 b F4(K)p Gg(,)d(if)h Ga(M)1913
+1807 y Gc(\024)1848 1844 y F6(\000)-31 b(\000)f(!)25
+b Ga(N)10 b Gg(,)23 b(then)h F6(j)p Ga(M)10 b F6(j)2499
+1811 y Fu(S)2599 1807 y Gc(cut)2568 1844 y F6(\000)-31
+b(\000)f(!)2738 1811 y F9(+)2823 1844 y F6(j)p Ga(N)10
+b F6(j)2956 1811 y Fu(S)2999 1844 y Gg(.)p Black 321
+2057 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e(the)f
+(de\002nition)j(of)1856 2019 y Gc(\024)1791 2057 y F6(\000)-31
+b(\000)f(!)23 b Gg(\(see)h(P)o(age)f(163\).)p 3480 2057
+4 62 v 3484 1999 55 4 v 3484 2057 V 3538 2057 4 62 v
+321 2275 a(Since)e(we)e(ha)n(v)o(e)i(sho)n(wn)f(that)1331
+2238 y Gc(\024)1266 2275 y F6(\000)-31 b(\000)f(!)p Gg(-reductions)24
+b(can)c(be)g(simulated)i(by)2629 2238 y Gc(cut)2599 2275
+y F6(\000)-32 b(\000)h(!)p Gg(,)20 b(we)f(e)o(xpect)i(that)g(e)n(v)o
+(ery)386 2350 y Gc(\024)321 2388 y F6(\000)-31 b(\000)g(!)p
+Gg(-reduction)26 b(sequence)g(terminates.)k(This)24 b(is)f(indeed)i
+(the)f(case.)p Black 321 2575 a Gb(Theor)n(em)g(3.4.5:)p
+Black 34 w Gg(The)f(reduction)j(system)f F4(\(K)p Ga(;)1958
+2538 y Gc(\024)1893 2575 y F6(\000)-31 b(\000)f(!)p F4(\))23
+b Gg(is)h(strongly)h(normalising.)p Black 321 2788 a
+F7(Pr)l(oof)o(.)p Black 34 w Gg(By)i(Theorem)i(3.4.4)f(we)g(kno)n(w)g
+(that)h(e)n(v)o(ery)g(reduction)h(sequence)h(of)2927
+2751 y Gc(\024)2862 2788 y F6(\000)-31 b(\000)g(!)27
+b Gg(maps)h(to)h(a)e(re-)321 2901 y(duction)f(sequence)g(of)1102
+2864 y Gc(cut)1071 2901 y F6(\000)-31 b(\000)g(!)o Gg(.)29
+b(Because)24 b F4(\()p FY(T)t Ga(;)1782 2864 y Gc(cut)1751
+2901 y F6(\000)-31 b(\000)f(!)p F4(\))23 b Gg(is)h(strongly)i
+(normalising,)f F4(\(K)p Ga(;)3075 2864 y Gc(\024)3010
+2901 y F6(\000)-31 b(\000)f(!)p F4(\))23 b Gg(must)h(be,)321
+3014 y(too.)p 3480 3014 V 3484 2955 55 4 v 3484 3014
+V 3538 3014 4 62 v 462 3232 a(W)-7 b(e)19 b(proceed)i(with)e(sho)n
+(wing)h(the)g(correspondence)k(in)19 b(the)h(opposite)h(direction.)30
+b(First)19 b(we)g(sho)n(w)321 3344 y(the)31 b(correspondence)36
+b(between)31 b(the)g(proof)h(substitutions\227again)k(this)31
+b(in)l(v)n(olv)o(es)i(rather)f(lengthy)321 3457 y(calculations.)p
+Black 321 3645 a Gb(Lemma)23 b(3.4.6:)p Black 34 w Gg(F)o(or)g(all)h
+Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)t Gg(,)54 b F6(j)p
+Ga(M)10 b F6(j)1762 3612 y Fu(N)1817 3645 y Fs(\()-7
+b Ga(x)25 b F4(:=)2040 3633 y FX(h)2068 3645 y Ga(a)2116
+3633 y FX(i)2143 3645 y F6(j)p Ga(N)10 b F6(j)2276 3612
+y Fu(N)2324 3645 y Fs(\))25 b F6(\021)g(j)p Ga(M)10 b
+F4([)p Ga(x)26 b F4(:=)2824 3633 y FX(h)2852 3645 y Ga(a)2900
+3633 y FX(i)2927 3645 y Ga(N)10 b F4(])p F6(j)3060 3612
+y Fu(N)3115 3645 y Gg(.)p Black 321 3858 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)23 b(induction)j(on)e(the)f(structure)j(of)e
+Ga(M)32 b Gg(\(see)25 b(P)o(age)e(163\).)p 3480 3858
+V 3484 3799 55 4 v 3484 3858 V 3538 3858 4 62 v Black
+321 4045 a Gb(Lemma)g(3.4.7:)p Black 34 w Gg(F)o(or)g(all)h
+Ga(M)5 b(;)15 b(N)35 b F6(2)25 b FY(T)t Gg(,)19 b(if)k
+Ga(N)32 b Gg(freshly)26 b(introduces)g Ga(x)d Gg(and)h(is)f(not)h(an)g
+(axiom,)f(then)p Black Black 1213 4293 a F6(j)p Ga(M)10
+b F6(j)1361 4260 y Fu(N)1416 4293 y Fs(^)p Ga(N)1521
+4308 y Fu(N)1575 4293 y Fs(_)1772 4256 y Gc(\024)1708
+4293 y F6(\000)-32 b(\000)h(!)1878 4260 y FX(\003)2017
+4293 y F6(j)p Ga(M)10 b F4([)p Ga(a)26 b F4(:=)2360 4281
+y F9(\()2387 4293 y Ga(x)2439 4281 y F9(\))2467 4293
+y Ga(N)10 b F4(])p F6(j)2600 4260 y Fu(N)321 4755 y Gg(where)24
+b Ga(N)639 4770 y Fu(N)718 4755 y F6(\021)814 4514 y
+FK(8)814 4596 y(>)814 4623 y(>)814 4651 y(<)814 4814
+y(>)814 4841 y(>)814 4869 y(:)937 4586 y FL(And)1091
+4549 y Gc(i)1091 4609 y(E)1151 4586 y F4(\()1186 4574
+y FX(h)1214 4586 y Ga(a)1262 4574 y FX(i)p 1291 4586
+28 4 v 1309 4586 V 1326 4586 V 1354 4586 a Ga(;)1394
+4574 y F9(\()1421 4586 y Ga(y)1469 4574 y F9(\))1497
+4586 y F6(j)p Ga(P)13 b F6(j)1618 4553 y Fu(N)1672 4586
+y F4(\))937 4699 y FL(Or)1036 4713 y Gc(E)1096 4699 y
+F4(\()1131 4687 y FX(h)1158 4699 y Ga(a)1206 4687 y FX(i)p
+1236 4699 V 1253 4699 V 1271 4699 V 1298 4699 a Ga(;)1338
+4687 y F9(\()1366 4699 y Ga(y)1414 4687 y F9(\))1441
+4699 y F6(j)p Ga(P)g F6(j)1562 4666 y Fu(N)1617 4699
+y Ga(;)1657 4687 y F9(\()1685 4699 y Ga(z)1731 4687 y
+F9(\))1758 4699 y F6(j)p Ga(Q)p F6(j)1880 4666 y Fu(N)1935
+4699 y F4(\))937 4812 y FL(Imp)1081 4834 y Gc(E)1141
+4812 y F4(\()1176 4800 y FX(h)1204 4812 y Ga(a)1252 4800
+y FX(i)p 1281 4812 V 1299 4812 V 1316 4812 V 1344 4812
+a Ga(;)1384 4800 y FX(h)1411 4812 y Ga(b)1450 4800 y
+FX(i)1478 4812 y F6(j)p Ga(P)g F6(j)1599 4779 y Fu(N)1653
+4812 y Ga(;)1693 4800 y F9(\()1721 4812 y Ga(y)1769 4800
+y F9(\))1796 4812 y F6(j)p Ga(Q)p F6(j)1918 4779 y Fu(N)1973
+4812 y F4(\))937 4925 y FL(Not)1079 4939 y Gc(E)1139
+4925 y F4(\()1174 4913 y FX(h)1202 4925 y Ga(a)1250 4913
+y FX(i)p 1279 4925 V 1297 4925 V 1314 4925 V 1342 4925
+a Ga(;)1382 4913 y FX(h)1410 4925 y Ga(b)1449 4913 y
+FX(i)1476 4925 y F6(j)p Ga(P)g F6(j)1597 4892 y Fu(N)1652
+4925 y F4(\))2082 4755 y Gg(pro)o(vided)26 b Ga(N)35
+b F6(\021)2631 4514 y FK(8)2631 4596 y(>)2631 4623 y(>)2631
+4651 y(<)2631 4814 y(>)2631 4841 y(>)2631 4869 y(:)2753
+4586 y FL(And)2908 4550 y Gc(i)2908 4609 y(L)2960 4586
+y F4(\()2995 4574 y F9(\()3023 4586 y Ga(y)3071 4574
+y F9(\))3098 4586 y Ga(P)13 b(;)i(x)p F4(\))2753 4699
+y FL(Or)2853 4713 y Gc(L)2905 4699 y F4(\()2940 4687
+y F9(\()2968 4699 y Ga(y)3016 4687 y F9(\))3043 4699
+y Ga(P)e(;)3154 4687 y F9(\()3182 4699 y Ga(z)3228 4687
+y F9(\))3255 4699 y Ga(Q;)i(x)p F4(\))2753 4812 y FL(Imp)2898
+4834 y Gc(L)2950 4812 y F4(\()2985 4800 y FX(h)3013 4812
+y Ga(b)3052 4800 y FX(i)3079 4812 y Ga(P)e(;)3190 4800
+y F9(\()3218 4812 y Ga(y)3266 4800 y F9(\))3293 4812
+y Ga(Q;)i(x)p F4(\))2753 4925 y FL(Not)2896 4939 y Gc(L)2948
+4925 y F4(\()2983 4913 y FX(h)3011 4925 y Ga(b)3050 4913
+y FX(i)3077 4925 y Ga(P)e(;)i(x)p F4(\))p Black 321 5154
+a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)23 b(induction)j(on)e(the)f
+(structure)j(of)e Ga(M)32 b Gg(\(see)25 b(P)o(age)e(164\).)p
+3480 5154 4 62 v 3484 5096 55 4 v 3484 5154 V 3538 5154
+4 62 v Black Black eop end
+%%Page: 95 107
+TeXDict begin 95 106 bop Black 277 51 a Gb(3.5)23 b(Notes)3248
+b(95)p 277 88 3691 4 v Black Black 277 365 a(Lemma)20
+b(3.4.8:)p Black 34 w Gg(F)o(or)h(all)g Ga(M)5 b(;)15
+b(N)35 b F6(2)25 b FY(T)t Gg(,)16 b(pro)o(vided)23 b
+Ga(N)31 b Gg(does)21 b(not)h(freshly)g(introduce)i Ga(x)p
+Gg(,)c(e)o(xcept)i(where)277 478 y Ga(N)33 b Gg(is)23
+b(an)h(axiom,)f(then)p Black Black 1115 672 a F6(j)p
+Ga(M)10 b F4([)p Ga(a)26 b F4(:=)1458 660 y F9(\()1486
+672 y Ga(x)1538 660 y F9(\))1565 672 y Ga(N)10 b F4(])p
+F6(j)1698 639 y Fu(N)1778 672 y F6(\021)25 b(j)p Ga(M)10
+b F6(j)2022 639 y Fu(N)2076 672 y Fs(\()-6 b Ga(a)25
+b F4(:=)2296 660 y F9(\()2324 672 y Ga(x)2376 660 y F9(\))2403
+672 y F6(j)p Ga(N)10 b F6(j)2536 639 y Fu(N)2584 672
+y Fs(\))25 b Gg(.)p Black 277 884 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)e(induction)j(on)d(the)h(structure)i(of)d
+Ga(M)33 b Gg(\(see)24 b(P)o(age)f(165\).)p 3436 884 4
+62 v 3440 826 55 4 v 3440 884 V 3494 884 4 62 v 277 1088
+a(The)g(correspondence)28 b(between)d(the)f(reduction)i(rules)e(is)g
+(no)n(w)f(a)g(matter)h(of)f(simple)h(calculations.)p
+Black 277 1276 a Gb(Theor)n(em)g(3.4.9:)p Black 34 w
+Gg(F)o(or)f(all)g Ga(M)5 b(;)15 b(N)36 b F6(2)25 b FY(T)t
+Gg(,)18 b(if)24 b Ga(M)1821 1239 y Gc(cut)1790 1276 y
+F6(\000)-31 b(\000)f(!)25 b Ga(N)10 b Gg(,)23 b(then)h
+F6(j)p Ga(M)10 b F6(j)2441 1243 y Fu(N)2586 1239 y Gc(\024)2521
+1276 y F6(\000)-31 b(\000)f(!)2691 1243 y FX(\003)2756
+1276 y F6(j)p Ga(N)10 b F6(j)2889 1243 y Fu(N)2943 1276
+y Gg(.)p Black 277 1489 a F7(Pr)l(oof)o(.)p Black 34
+w Gg(By)23 b(induction)j(on)d(the)h(de\002nition)h(of)1778
+1452 y Gc(cut)1747 1489 y F6(\000)-31 b(\000)f(!)23 b
+Gg(\(see)h(P)o(age)f(165\).)p 3436 1489 V 3440 1431 55
+4 v 3440 1489 V 3494 1489 4 62 v 418 1693 a(T)-7 b(o)23
+b(sum)g(up,)h(we)e(ha)n(v)o(e)j(sho)n(wn)f(in)f(this)h(section)i(the)e
+(close)g(correspondence)29 b(between)24 b(normal-)277
+1806 y(isation)k(and)f(cut-elimination)j(in)c(propositional)k
+(classical)e(logic;)h(by)d(Theorems)h(3.4.4)g(and)f(3.4.9)277
+1919 y(we)d(ha)n(v)o(e)h(the)g(correspondences)k(listed)d(belo)n(w)-6
+b(.)p Black Black 1182 2113 a Ga(S)1411 2076 y Gc(\024)1310
+2113 y F6(\000)-21 b(\000)h(\000)f(!)64 b Ga(T)1171 2477
+y(S)1232 2439 y FX(0)1146 2295 y Fu(S)1191 2351 y F6(#)p
+1211 2288 4 142 v 1353 2440 a Gc(cut)1281 2477 y F6(\000)-21
+b(\000)g(\000)g(!)1522 2439 y F9(+)1605 2477 y Ga(T)1671
+2439 y FX(0)1675 2295 y Fu(S)1628 2351 y F6(#)p 1648
+2288 V 2116 2113 a Ga(M)2335 2076 y Gc(cut)2263 2113
+y F6(\000)g(\000)g(\000)g(!)56 b Ga(N)2104 2477 y(M)2202
+2439 y FX(0)2088 2295 y Fu(N)2144 2351 y F6(#)p 2164
+2288 V 2358 2440 a Gc(\024)2258 2477 y F6(\000)-21 b(\000)h(\000)e(!)
+2494 2439 y FX(\003)2561 2477 y Ga(N)2644 2439 y FX(0)2627
+2295 y Fu(N)2580 2351 y F6(#)p 2600 2288 V 277 2674 a
+Gg(These)23 b(correspondences)28 b(can)23 b(be)g(e)o(xtended)i(to)e
+(\002rst-order)i(classical)g(logic)f(and)f(to)g(other)h(v)n(ariants)277
+2787 y(of)g(sequence-conclusion)30 b(natural)25 b(deduction)h(calculi,)
+f(b)n(ut)f(the)g(details)h(are)f(omitted.)277 3094 y
+Ge(3.5)119 b(Notes)277 3318 y Gg(In)22 b(this)g(section,)h(we)e(shall)i
+(\002rst)e(compare)i(our)f(w)o(ork)g(with)f(earlier)i(w)o(ork)f(by)g
+(Ungar)g([1992],)h(which)277 3431 y(also)29 b(studies)h(the)f
+(correspondence)k(between)c(cut-elimination)j(and)d(normalisation,)j
+(and)d(second)277 3544 y(describe)f(brie\003y)e(the)g
+Ga(\025\026)p Gg(-calculus)h(de)n(v)o(eloped)h(by)e(P)o(arigot)g
+([1992].)36 b(W)-7 b(e)25 b(shall)h(sho)n(w)g(that)g(strong)277
+3657 y(normalisation)39 b(for)c(\(propositional\))40
+b Ga(\025\026)35 b Gg(can)h(be)f(inferred)j(by)d(a)g(simple)h
+(translation)j(from)c(our)277 3769 y(strong)25 b(normalisation)i
+(result,)d(b)n(ut)g(not)g F7(vice)g(ver)o(sa)p Gg(.)277
+4033 y Fq(3.5.1)99 b(Comparison)22 b(with)h(Ungar')l(s)g(A)n(ppr)n
+(oach)g(to)g(the)g(Corr)n(espondence)i(Question)277 4224
+y Gg(While)e(Zuck)o(er)g([1974])h(ar)n(gued)g(that)f(in)f(the)h
+F4(\()p F6(^)p Ga(;)15 b F6(\033)p Ga(;)g F6(_)p F4(\))p
+Gg(-fragment)24 b(of)e(intuitionistic)27 b(logic)c(the)g(lack)277
+4337 y(of)i(strong)h(normalisation)i(of)d(cut-elimination)j(is)d
+(responsible)j(for)c(the)h(f)o(ailure)i(of)d(the)h(correspon-)277
+4450 y(dence,)h(we)e(ha)n(v)o(e)i(sho)n(wn)f(that)h(in)f(f)o(act)g(the)
+g(lack)h(of)f(certain)h(reduction)i(rules)d(in)g(NJ)f(is)h(responsible)
+277 4563 y(\(we)j(\002x)o(ed)g(the)h(problem)g(with)f(strong)i
+(normalisation,)j(b)n(ut)c(could)g(not)g(establish)i(the)d(correspon-)
+277 4676 y(dence)38 b(using)f(NJ\).)f(Ungar)g(made)h(the)g(same)f
+(observ)n(ation)2229 4643 y F5(4)2306 4676 y Gg(and)h(already)h(e)o
+(xtended)g(the)f(corre-)277 4789 y(spondence)29 b(to)d(all)g(connecti)n
+(v)o(es.)39 b(He)26 b(e)n(v)o(en)g(established)j(the)e(correspondence)j
+(in)c(classical)j(logic.)277 4901 y(Ho)n(we)n(v)o(er)l(,)22
+b(his)g(methods,)h(and)f(the)g(details)h(of)f(his)g(results,)h(are)f
+(quite)h(dif)n(ferent)g(from)f(ours.)29 b(F)o(or)20 b(e)o(x-)277
+5014 y(ample,)k(instead)i(of)e(allaying)i(the)f(problem)g(Zuck)o(er)g
+(had)f(with)g(strong)i(normalisation,)h(he)d(sho)n(wed)p
+Black 277 5092 1290 4 v 383 5147 a F3(4)412 5179 y F2(\223The)f
+(problem)g(arises)g(with)f(the)h(con)m(v)o(ersion)h(steps)f(which)g
+(allo)n(w)g(a)g(cut)g(rule)f(to)h(be)g(permuted)h(upw)o(ards)g(past)f
+(an)277 5270 y(application)d(of)e Fr(9)p F2(-)h(or)f
+Fr(_)p F2(-left)g(in)h(the)g(deri)n(v)n(ation)h(of)f(its)f(left-hand)h
+(premise...[T]hese)f(do)h(not)g(in)g(general)h(correspond)g(to)277
+5361 y(permutati)n(v)o(e)g(reductions)g(of)f(the)g(sort)f(prescribed)i
+(by)g(Pra)o(witz)d(for)i(NJ.)-5 b(\224)19 b([Ungar,)f(1992,)i(P)o(age)f
+(41])p Black Black Black eop end
+%%Page: 96 108
+TeXDict begin 96 107 bop Black -144 51 a Gb(96)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(the)29
+b(correspondence)k(between)c(a)f(cut-elimination)j(procedure)g(and)e(a)
+f(normalisation)j(procedure)321 478 y(that)20 b(are)g(both)h
+F7(not)f Gg(strongly)h(normalising.)30 b(Also,)20 b(Ungar')-5
+b(s)20 b(results)h(b)n(uild)g(upon)g(the)f(rather)h(compli-)321
+590 y(cated)26 b(natural)h(deduction)h(calculus)f(introduced)h(by)d
+(Shoesmith)h(and)f(Smile)o(y)f([1978].)35 b(Therefore)321
+703 y(it)30 b(seemed)g(prudent)i(for)d(us)h(to)f(reconsider)k(the)d
+(correspondence)k(between)d(cut-elimination)i(and)321
+816 y(normalisation.)462 951 y(Let)d(us)g(brie\003y)g(study)h
+(Shoesmith)g(and)f(Smile)o(y')-5 b(s)30 b(natural)i(deduction)g
+(calculus,)i(which)c(w)o(as)321 1064 y(used)38 b(by)f(Ungar)-5
+b(.)68 b(In)36 b(this)i(calculus,)k(the)36 b(inference)k(rules)d(for)g
+F6(^)f Gg(and)h F6(\033)e Gg(are)i(the)g(same)g(as)g(in)321
+1177 y(Gentzen')-5 b(s)26 b(NJ-calculus,)f(b)n(ut)f(the)g
+F6(_)p Gg(-elimination)i(rule)e(is)f(the)h(form)1725
+1388 y Ga(B)5 b F6(_)o Ga(C)p 1710 1408 236 4 v 1710
+1486 a(B)95 b(C)1987 1426 y F6(_)2048 1440 y Gc(E)2133
+1426 y Ga(:)321 1727 y Gg(Here)21 b Ga(B)k Gg(and)c Ga(C)26
+b Gg(are)21 b(separate)i(conclusions.)32 b(Ha)n(ving)21
+b(inferences)j(with)d(tw)o(o)f(separate)j(conclusions)321
+1840 y(has)k(the)g(profound)i(ef)n(fect)f(that,)f(in)g(general,)i
+(proofs)f(are)f(not)g(trees,)h(b)n(ut)f(graphs.)39 b(Here)27
+b(is)f(a)g(proof)321 1953 y(\(written)f(schematically\))i(in)c(their)i
+(natural)g(deduction)h(calculus.)p Black Black 1811 2201
+a Ga(B)p 1714 2222 275 4 v 1714 2298 a(C)131 b(D)p 1714
+2318 73 4 v 1910 2318 244 4 v 1714 2394 a(E)h(F)111 b(G)p
+1714 2415 275 4 v 2082 2415 72 4 v 1807 2490 a(H)212
+b(I)462 2736 y Gg(Since)23 b(proofs)g(are)f(no)n(w)g(graphs,)h(the)g
+(calculus)h(of)e(Shoesmith)h(and)f(Smile)o(y)g(has)g(se)n(v)o(eral)h
+(rather)321 2849 y(unpleasant)33 b(features.)49 b(F)o(or)28
+b(e)o(xample,)k(if)e(one)g(applies)h(an)f(inference)i(rule,)f(one)f
+(has)g(to)g(tak)o(e)g(into)321 2962 y(account)24 b(the)e(shape)h(of)e
+(the)h(entire)h(proof.)29 b(By)21 b(this)h(we)f(mean)h(that)g(from)f(a)
+h(proof)g(of)g Ga(B)j Gg(and)d(a)f(proof)321 3075 y(of)j
+Ga(C)7 b Gg(,)22 b(one)j(cannot)g(immediately)h(construct)g(a)e(proof)h
+(of)e Ga(B)5 b F6(^)o Ga(C)i Gg(,)23 b(because)j(the)e(proofs)h(of)f
+Ga(B)k Gg(and)c Ga(C)321 3187 y Gg(must)g(not)g(ha)n(v)o(e)g(an)o(y)g
+(subproof)h(in)f(common.)29 b(F)o(or)23 b(e)o(xample)h(the)g(deri)n(v)n
+(ation)1750 3405 y Ga(B)5 b F6(_)o Ga(C)p 1735 3425 236
+4 v 1735 3504 a(B)95 b(C)2012 3444 y F6(_)2073 3458 y
+Gc(E)p 1735 3524 V 1750 3603 a Ga(B)5 b F6(^)o Ga(C)2012
+3542 y F6(^)2073 3556 y Gc(I)321 3844 y Gg(is)25 b(not)h(allo)n(wed.)34
+b(This)25 b(restriction)j(applies)f(to)e(all)h(inference)h(rules)f
+(with)f(tw)o(o)g(premises.)35 b(Another)321 3956 y(unpleasant)26
+b(feature)e(of)e(this)i(natural)g(deduction)h(calculus)g(concerns)g
+(the)e(operation)i(of)d(proof)i(sub-)321 4069 y(stitution.)31
+b(Consider)25 b(the)f(proof)p Black Black 1818 4318 a
+Ga(B)92 b(C)1843 4366 y Gg(.)1843 4399 y(.)1843 4432
+y(.)2003 4366 y(.)2003 4399 y(.)2003 4432 y(.)321 4633
+y(with)24 b(tw)o(o)f(assumptions,)j Ga(B)h Gg(and)d Ga(C)7
+b Gg(,)22 b(and)i(the)g(proof)1933 4772 y(.)1933 4805
+y(.)1933 4838 y(.)1841 4918 y Ga(B)5 b F6(_)o Ga(C)p
+1826 4938 V 1826 5016 a(B)95 b(C)2103 4956 y F6(_)2164
+4970 y Gc(E)321 5249 y Gg(ending)27 b(with)e(tw)o(o)g(conclusions,)k
+Ga(B)h Gg(and)25 b Ga(C)7 b Gg(.)33 b(Substituting)28
+b(the)e(latter)g(proof)h(for)e(the)h(assumptions)p Black
+Black eop end
+%%Page: 97 109
+TeXDict begin 97 108 bop Black 277 51 a Gb(3.5)23 b(Notes)3248
+b(97)p 277 88 3691 4 v Black 277 365 a Ga(B)27 b Gg(and)d
+Ga(C)30 b Gg(in)23 b(the)h(former)g(one)g(gi)n(v)o(es)g(the)g(proof)p
+Black Black 1878 584 a(.)1878 618 y(.)1878 651 y(.)1787
+730 y Ga(B)5 b F6(_)o Ga(C)p 1773 768 233 4 v 1773 843
+a(B)92 b(C)1799 891 y Gg(.)1799 925 y(.)1799 958 y(.)1959
+891 y(.)1959 925 y(.)1959 958 y(.)277 1240 y(The)24 b(graph-lik)o(e)k
+(structure)f(of)d(proofs,)i(ho)n(we)n(v)o(er)l(,)g(causes)g(the)f
+(de\002nition)h(of)f(this)g(substitution)j(op-)277 1352
+y(eration)k(to)e(be)g(v)o(ery)g(complicated;)36 b(for)30
+b(e)o(xample)h(a)e(simple)i(inducti)n(v)o(e)h(de\002nition)f(is)f
+(impossible)277 1465 y(\(see)d([Ungar,)f(1992,)h(P)o(ages)f
+(55\22676]\).)38 b(Moreo)o(v)o(er)l(,)27 b(it)f(seems)g(v)o(ery)h(dif)n
+(\002cult)f(to)g(de\002ne)h(a)e(sequent-)277 1578 y(style)f
+(formalisation)i(for)d(this)h(natural)h(deduction)g(calculus,)g(and)f
+(it)f(is)g(highly)h(unlik)o(ely)i(that)d(terms)277 1691
+y(can)32 b(be)f(annotated)j(to)e(its)f(proofs.)54 b(In)31
+b(the)h(end,)h(we)e(found)i(that,)g(e)n(v)o(en)f(if)f(Shoesmith)h(and)g
+(Smi-)277 1804 y(le)o(y')-5 b(s)27 b(multiple-conclusion)k(natural)d
+(deduction)h(calculus)f(seems)e(to)g(be)g(better)h(suited)h(for)e
+(classi-)277 1917 y(cal)e(proofs)h(\(the)o(y)g(do)f(not)g(ha)n(v)o(e)g
+(to)g(be)g(encoded)i(via)e(a)f(double)j(ne)o(gation)f(translation)i(as)
+d(in)f(NK\),)g(it)277 2030 y(is)g(a)h(v)o(ery)f(complicated)k
+(calculus.)418 2163 y(Much)i(more)g(con)l(v)o(enient)j(is)c(the)h
+(sequence-conclusi)q(on)35 b(natural)30 b(deduction)h(calculus)g
+(intro-)277 2276 y(duced)41 b(by)e(Bori)5 b(\020)-35
+b(ci)5 b(\264)-35 b(c)40 b([1985].)77 b(Our)39 b(w)o(ork)g(presented)j
+(in)d(Section)h(3.3)f(b)n(uilds)i(upon)g(a)d(slightly)277
+2388 y(modi\002ed)f(v)o(ersion)i(of)d(this)i(calculus.)70
+b(W)-7 b(e)36 b(presented)k(for)d(the)g(corresponding)k(proofs)d(a)f
+(term)277 2501 y(assignment,)24 b(which)e(is)g(similar)g(to)g(the)g
+(term)f(assignment)j(for)e(our)g(sequent)i(proofs,)f(i.e.,)e(the)h
+(terms)277 2614 y(include)31 b(tw)o(o)e(sorts)h(of)g(binders,)1362
+2602 y F9(\()p 1392 2614 28 4 v 1409 2614 V 1427 2614
+V 65 w(\))1510 2614 y Gg(and)1670 2602 y FX(h)p 1699
+2614 V 1717 2614 V 1734 2614 V 65 w(i)1789 2614 y Gg(,)g(and)g(record)g
+(precisely)i(which)e(formulae)g(are)g(dis-)277 2727 y(char)n(ged)e(and)
+f(introduced)i(by)d(inferences.)39 b(A)25 b(dif)n(ferent)j(type)f(of)f
+(term)f(assignment)k(for)d(Bori)5 b(\020)-35 b(ci)5 b(\264)-35
+b(c')-5 b(s)277 2840 y(sequence-conclusi)q(on)30 b(natural)c(deduction)
+i(calculus)e(w)o(as)e(gi)n(v)o(en)h(by)g(P)o(arigot)g([1992].)33
+b(The)24 b(corre-)277 2953 y(sponding)i(term)e(calculus)h(w)o(as)e
+(named)h Ga(\025)q(\026)p Gg(-calculus,)h(which)f(we)f(shall)h(study)h
+(brie\003y)f(ne)o(xt.)277 3238 y Fq(3.5.2)99 b(P)o(arigot')l(s)25
+b Fn(\025)o(\026)p Fq(-Calculus)277 3436 y Gg(The)39
+b Ga(\025\026)p Gg(-calculus)i(can)f(be)f(seen)h(as)f(a)f(simple)i(e)o
+(xtension)h(of)e(the)h(simply-typed)i(lambda)e(cal-)277
+3549 y(culus.)64 b(The)34 b(e)o(xtension)j(is)e(such)h(that)f(via)g
+(the)h(Curry-Ho)n(w)o(ard)g(correspondence)j Ga(\025\026)p
+Gg(-terms)c(no)277 3662 y(longer)21 b(correspond)h(to)d(proofs)h(in)f
+(Gentzen')-5 b(s)21 b(NJ-calculus,)h(b)n(ut)e(to)f(proofs)h(in)f(Bori)5
+b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)21 b(sequence-)277
+3774 y(conclusion)34 b(natural)e(deduction)h(calculus)g(\(see)e(P)o
+(age)f(81\).)50 b(In)30 b(ef)n(fect,)j(P)o(arigot)e(ga)n(v)o(e)g(an)f
+(ele)o(gant)277 3887 y(solution)j(to)d(the)h(problem)g(of)g(ho)n(w)e
+(to)i(modify)g(simply-typed)i(lambda)f(terms)e(so)h(that)g(their)g
+(sin-)277 4000 y(gle)f(type)h(is)f(generalised)j(to)d(a)f(sequence)k
+(of)d(types.)49 b(The)29 b(technical)k(crux)d(of)g(P)o(arigot')-5
+b(s)31 b(solution)277 4113 y(is)f(the)g(addition)h(of)f(tw)o(o)f(ne)n
+(w)g(term)h(constructors)j(to)d(the)f(simply-typed)k(lambda)e
+(calculus.)49 b(The)277 4226 y(corresponding)28 b(ra)o(w)23
+b Ga(\025\026)p Gg(-terms)g(are)h(gi)n(v)o(en)g(by)g(the)g(grammar)p
+Black Black 1187 4438 a Ga(M)5 b(;)15 b(N)110 b F4(::=)100
+b Ga(x)412 b Gg(v)n(ariable)1551 4560 y F6(j)148 b Ga(\025x:M)246
+b Gg(abstraction)1551 4682 y F6(j)148 b Ga(M)25 b(N)278
+b Gg(application)1551 4805 y F6(j)148 b F4([)p Ga(a)p
+F4(])p Ga(M)278 b Gg(passi)n(v)n(ate)1551 4927 y F6(j)148
+b Ga(\026a:M)248 b Gg(acti)n(v)n(ate)277 5136 y(where)20
+b Ga(x)e Gg(is)h(tak)o(en)h(from)f(a)g(set)h(of)f(v)n(ariables)i(and)f
+Ga(a)e Gg(from)h(a)g(set)g(of)g Ga(\026)p Gg(-v)n(ariables.)30
+b(As)18 b(a)h(consequence,)277 5249 y(he)k(could)i(consider)g(the)f
+(sequence)h(of)f(conclusions)i(of)d(proofs)i(in)e(Bori)5
+b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)25 b(calculus)g(as)e(a)g
+(whole,)p Black Black eop end
+%%Page: 98 110
+TeXDict begin 98 109 bop Black -144 51 a Gb(98)2876 b(Natural)23
+b(Deduction)p -144 88 3691 4 v Black 321 365 a Gg(b)n(ut)33
+b(distinguishing)k(one)c(of)g(them)f(as)h F7(active)p
+Gg(\227in)h(what)f(follo)n(ws)g(annotated)i(with)e(a)f(disc\227and)321
+478 y(the)26 b(others)h(as)f F7(passive)p Gg(.)37 b(The)25
+b(latter)h(are)g(signi\002ed)h(by)f(being)h(labelled)g(with)f
+Ga(\026)p Gg(-v)n(ariables.)37 b(T)-7 b(yping)321 590
+y(judgements)26 b(in)e Ga(\025\026)e Gg(ha)n(v)o(e)i(thus)h(the)e(form)
+1672 822 y F4(\000)1754 810 y Gc(.)1809 822 y Ga(M)k
+F4(:)18 b Ga(B)2041 789 y FX(\017)2080 822 y Ga(;)d F4(\001)321
+1033 y Gg(where)24 b F4(\000)f Gg(is)g(a)g(set)h(of)f(\(v)n
+(ariable,formula\))28 b(pairs)c(and)g F4(\001)f Gg(a)g(set)g(of)h(\()p
+Ga(\026)p Gg(-v)n(ariable,formula\))j(pairs.)462 1163
+y(Since)d Ga(\025\026)e Gg(is)h(a)g(natural)i(deduction)h(calculus,)f
+(its)f(inference)h(rules)g(are)e(concerned)j(with)d(intro-)321
+1276 y(ducing)g(or)e(eliminating)j(formulae)f(in)e(the)g(succedent.)31
+b(Ho)n(we)n(v)o(er)l(,)21 b(the)o(y)h(are)f(restricted)j(so)d(that)h
+(the)o(y)321 1389 y(act)g(on)h(acti)n(v)o(e)f(formulae)h(only)-6
+b(,)23 b(as)f(can)h(be)f(seen)g(in)g(the)g(term)g(formation)i(rules)f
+(for)f(abstraction)j(and)321 1502 y(application.)p Black
+Black 516 1728 a Ga(x)17 b F4(:)g Ga(B)5 b(;)15 b F4(\000)823
+1716 y Gc(.)878 1728 y Ga(M)28 b F4(:)17 b Ga(C)1108
+1695 y FX(\017)1147 1728 y Ga(;)e F4(\001)p 456 1766
+867 4 v 456 1851 a(\000)538 1839 y Gc(.)593 1851 y Ga(\025x:M)28
+b F4(:)17 b(\()p Ga(B)5 b F6(\033)p Ga(C)i F4(\))1168
+1818 y FX(\017)1207 1851 y Ga(;)15 b F4(\001)1364 1783
+y F6(\033)1435 1797 y Gc(I)1853 1728 y F4(\000)1935 1716
+y Gc(.)1990 1728 y Ga(M)27 b F4(:)18 b(\()p Ga(B)5 b
+F6(\033)o Ga(C)i F4(\))2434 1695 y FX(\017)2474 1728
+y Ga(;)15 b F4(\001)91 b(\000)2763 1716 y Gc(.)2818 1728
+y Ga(N)27 b F4(:)17 b Ga(B)3034 1695 y FX(\017)3073 1728
+y Ga(;)e F4(\001)p 1853 1771 1337 4 v 2211 1851 a(\000)2293
+1839 y Gc(.)2348 1851 y Ga(M)25 b(N)j F4(:)17 b Ga(C)2676
+1818 y FX(\017)2715 1851 y Ga(;)e F4(\001)3231 1788 y
+F6(\033)3302 1802 y Gc(E)3386 1788 y Ga(:)321 2085 y
+Gg(The)32 b(formation)i(rules)f(for)f(the)g(ne)n(w)g(term)f
+(constructors)36 b(are)c(called,)j(using)f(terminology)g(intro-)321
+2198 y(duced)25 b(by)f(Bierman)g([1998],)g F7(passivate)i
+Gg(and)e F7(activate)p Gg(.)31 b(The)o(y)23 b(are)h(as)g(follo)n(ws.)
+2885 2165 y F5(5)p Black Black 1112 2420 a F4(\000)1194
+2408 y Gc(.)1249 2420 y Ga(M)j F4(:)17 b Ga(B)1480 2387
+y FX(\017)1519 2420 y Ga(;)e F4(\001)p 953 2458 842 4
+v 953 2542 a(\000)1035 2530 y Gc(.)1090 2542 y F4([)p
+Ga(a)p F4(])p Ga(M)28 b F4(:)17 b F6(?)1417 2509 y FX(\017)1456
+2542 y Ga(;)e(a)j F4(:)f Ga(B)5 b(;)15 b F4(\001)2172
+2425 y(\000)2254 2413 y Gc(.)2309 2425 y Ga(M)27 b F4(:)18
+b F6(?)2538 2392 y FX(\017)2577 2425 y Ga(;)d(a)j F4(:)f
+Ga(B)5 b(;)15 b F4(\001)p 2172 2463 743 4 v 2217 2542
+a(\000)2299 2530 y Gc(.)2354 2542 y Ga(\026a:M)28 b F4(:)17
+b Ga(B)2714 2509 y FX(\017)2753 2542 y Ga(;)e F4(\001)321
+2777 y Gg(The)28 b(\002rst)g(rule)h(changes)i(the)e(status)g(of)g(the)f
+(acti)n(v)o(e)h(formula)h(to)e(become)i(passi)n(v)o(e.)44
+b(The)28 b(resulting)321 2890 y(term)i(has)h(then)g(the)f(acti)n(v)o(e)
+h(type)g F6(?)p Gg(,)g(a)e(distinguished)35 b(atomic)c(formula.)49
+b(The)30 b(other)h(rule)g(w)o(orks)321 3003 y(similar)l(,)25
+b(b)n(ut)f(in)f(the)h(re)n(v)o(erse)h(direction.)462
+3133 y(Before)f(passing)h(to)d(the)i(translations)i(between)e
+Ga(\025\026)p Gg(-terms)f(and)g(terms)g(belonging)j(to)d
+F4(K)p Gg(,)f(let)h(us)321 3245 y(brie\003y)30 b(comment)g(on)f(the)g
+(syntactic)j(con)l(v)o(entions)g(in)e(both)f(systems.)47
+b(It)29 b(seems)g(the)h(dif)n(ferences)321 3358 y(are)e(chie\003y)h(a)e
+(matter)h(of)f(taste:)39 b(whereas)29 b(in)e Ga(\025\026)g
+Gg(a)g(typing)i(judgement)h(has)e(only)h(a)e(single)i(acti)n(v)o(e)321
+3471 y(formula,)34 b(and)d(therefore)i(it)e(does)h(not)f(need)h(to)e
+(be)h(recorded)i(in)e(the)g(term,)h(e)o(xcept)g(of)f(course)i(in)321
+3584 y(the)24 b(cases)g(where)g(another)h(formula)f(becomes)h(acti)n(v)
+o(e;)f(in)f(our)h(term)f(calculus,)j(on)d(the)h(other)g(hand,)321
+3697 y(all)k(formulae)h(in)f(the)g(succedent)i(are)e(acti)n(v)o(e,)h
+(so)e(to)h(speak,)i(and)e(therefore)i(it)d(has)h(to)g(be)f(recorded)321
+3810 y(e)o(xplicitly)36 b(which)e(formulae)h(are)f(dischar)n(ged)j(and)
+d(introduced.)62 b(Clearly)-6 b(,)36 b(both)f(syntactic)h(con-)321
+3923 y(v)o(entions)29 b(can)e(be)f(\223simulated\224)j(by)e(the)g
+(other)-5 b(.)39 b(On)26 b(the)h(other)g(hand,)h(considering)i(the)d
+(amount)h(of)321 4036 y(prolixity)-6 b(,)33 b(the)d(syntax)h(of)e
+Ga(\025\026)f Gg(is)i(more)f(concise)i(in)e(the)h(a)n(v)o(erage)h
+(case,)g(b)n(ut)f(less)g(so)f(in)h(the)f(w)o(orst)321
+4149 y(case.)h(F)o(or)22 b(e)o(xample)j(in)e Ga(\025\026)g
+Gg(we)f(can)i(form)g(the)g(term)1681 4380 y Ga(\026a:)p
+F4([)p Ga(a)p F4(])p Ga(\026a:)p F4([)p Ga(a)p F4(])p
+Ga(x)321 4615 y Gg(which)g(corresponds)j(to)d(the)f(term)h
+FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))24 b Gg(in)f(our)h(calculus.)462
+4744 y(Our)d(natural)j(deduction)g(calculus)f F4(K)e
+Gg(is)g(a)g(slightly)j(modi\002ed)e(v)n(ariant)h(of)e(Bori)5
+b(\020)-35 b(ci)5 b(\264)-35 b(c')-5 b(s)23 b(sequence-)321
+4857 y(conclusion)36 b(natural)f(deduction)h(calculus)f(\(see)f(Figure)
+f(3.7\).)58 b(W)-7 b(e)32 b(made)h(the)g(modi\002cations)j(in)321
+4970 y(order)24 b(to)e(f)o(acilitate)j(the)d(translation)k(with)c(our)h
+(sequent)h(calculus)h FY(T)t Gg(.)e(It)f(may)h(be)f(therefore)j
+(surpris-)321 5083 y(ing,)30 b(that)e(there)h(are)g(also)g(relati)n(v)o
+(ely)h(simple)f(translations)i(for)d F4(K)f Gg(to)h(and)h(from)f(the)h
+Ga(\025\026)p Gg(-calculus.)p Black 321 5161 1290 4 v
+427 5217 a F3(5)456 5249 y F2(W)-6 b(e)18 b(use)i(the)e(con)m(v)o
+(ention)j(introduced)f(by)g(Bierman)f([1998])h(where)f(all)f(terms)h
+(ha)o(v)o(e)g(an)g(acti)n(v)o(e)g(type.)p Black Black
+Black eop end
+%%Page: 99 111
+TeXDict begin 99 110 bop Black 277 51 a Gb(3.5)23 b(Notes)3248
+b(99)p 277 88 3691 4 v Black 277 388 a Gg(The)23 b(translations)k(for)d
+(both)g(directions)i(are)e(listed)h(belo)n(w)-6 b(.)p
+Black Black 305 606 a F6(j)p 332 606 28 4 v 350 606 V
+367 606 V 64 w(j)419 573 y Gc(\026)491 606 y F4(:)26
+b(K)f F6(!)g Ga(\025\026)1219 734 y F6(j)p FL(Id)p F4(\()p
+Ga(x;)15 b(a)p F4(\))p F6(j)1551 701 y Gc(\026)1699 683
+y F5(def)1706 734 y F4(=)106 b([)p Ga(a)p F4(])p Ga(x)860
+874 y F6(j)p FL(Imp)1029 896 y Gc(I)1069 874 y F4(\()1104
+862 y F9(\()1132 874 y Ga(x)1184 862 y F9(\))p FX(h)1239
+874 y Ga(a)1287 862 y FX(i)1314 874 y Ga(M)10 b(;)15
+b(b)p F4(\))p F6(j)1551 841 y Gc(\026)1699 822 y F5(def)1706
+874 y F4(=)106 b([)p Ga(b)p F4(]\()p Ga(\025)q(x:\026a:)p
+F6(j)p Ga(M)10 b F6(j)2414 841 y Gc(\026)2462 874 y F4(\))591
+1014 y F6(j)p FL(Imp)760 1035 y Gc(E)820 1014 y F4(\()855
+1002 y FX(h)883 1014 y Ga(a)931 1002 y FX(i)958 1014
+y Ga(M)g(;)1096 1002 y FX(h)1124 1014 y Ga(b)1163 1002
+y FX(i)1191 1014 y Ga(N)g(;)1314 1002 y F9(\()1341 1014
+y Ga(x)1393 1002 y F9(\))1421 1014 y Ga(P)j F4(\))p F6(j)1552
+981 y Gc(\026)1699 962 y F5(def)1706 1014 y F4(=)106
+b F6(j)p Ga(P)13 b F6(j)2004 981 y Gc(\026)2051 1014
+y F4([)p Ga(x)26 b F4(:=)f(\()p Ga(\026a:)p F6(j)p Ga(M)10
+b F6(j)2586 981 y Gc(\026)2634 1014 y F4(\))15 b(\()p
+Ga(\026b:)p F6(j)p Ga(N)10 b F6(j)2971 981 y Gc(\026)3018
+1014 y F4(\)])788 1153 y F6(j)p FL(Subst)o F4(\()1060
+1141 y FX(h)1088 1153 y Ga(a)1136 1141 y FX(i)1164 1153
+y Ga(M)g(;)1302 1141 y F9(\()1329 1153 y Ga(x)1381 1141
+y F9(\))1409 1153 y Ga(N)g F4(\))p F6(j)1552 1120 y Gc(\026)1699
+1102 y F5(def)1706 1153 y F4(=)106 b F6(j)p Ga(N)10 b
+F6(j)2016 1120 y Gc(\026)2063 1153 y F4([)p Ga(x)26 b
+F4(:=)f Ga(\026a:)p F6(j)p Ga(M)10 b F6(j)2563 1120 y
+Gc(\026)2610 1153 y F4(])305 1314 y F6(j)p 332 1314 V
+350 1314 V 367 1314 V 64 w(j)419 1281 y Gc(\024)490 1314
+y F4(:)25 b Ga(\025\026)g F6(!)g F4(K)1452 1442 y F6(j)p
+Ga(x)p F6(j)1554 1409 y Gc(\024)1554 1464 y(c)1699 1390
+y F5(def)1706 1442 y F4(=)106 b FL(Id)p F4(\()p Ga(x;)15
+b(c)p F4(\))1275 1581 y F6(j)p Ga(\025)q(x:M)10 b F6(j)1554
+1548 y Gc(\024)1554 1604 y(c)1699 1530 y F5(def)1706
+1581 y F4(=)106 b FL(Imp)2028 1603 y Gc(I)2067 1581 y
+F4(\()2102 1569 y F9(\()2130 1581 y Ga(x)2182 1569 y
+F9(\))q FX(h)2237 1581 y Ga(a)2285 1569 y FX(i)2313 1581
+y F6(j)p Ga(M)10 b F6(j)2461 1548 y Gc(\024)2461 1604
+y(a)2506 1581 y Ga(;)15 b(c)p F4(\))1323 1721 y F6(j)p
+Ga(M)10 b(N)g F6(j)1554 1688 y Gc(\024)1554 1744 y(c)1699
+1670 y F5(def)1706 1721 y F4(=)106 b FL(Imp)2028 1743
+y Gc(E)2087 1721 y F4(\()2122 1709 y FX(h)2150 1721 y
+Ga(a)2198 1709 y FX(i)2225 1721 y F6(j)p Ga(M)10 b F6(j)2373
+1688 y Gc(\024)2373 1744 y(a)2419 1721 y Ga(;)2459 1709
+y FX(h)2487 1721 y Ga(b)2526 1709 y FX(i)2553 1721 y
+F6(j)p Ga(N)g F6(j)2686 1688 y Gc(\024)2686 1749 y(b)2731
+1721 y Ga(;)2771 1709 y F9(\()2799 1721 y Ga(x)2851 1709
+y F9(\))2879 1721 y FL(Id)p F4(\()p Ga(x;)15 b(c)p F4(\))q(\))1316
+1861 y F6(j)p F4([)p Ga(c)p F4(])p Ga(M)10 b F6(j)1553
+1828 y Gc(\024)1699 1809 y F5(def)1706 1861 y F4(=)106
+b F6(j)p Ga(M)10 b F6(j)2031 1828 y Gc(\024)2031 1883
+y(c)1278 2001 y F6(j)p Ga(\026a:M)g F6(j)1554 1968 y
+Gc(\024)1554 2023 y(c)1699 1949 y F5(def)1706 2001 y
+F4(=)106 b F6(j)p Ga(M)10 b F4([)p Ga(a)g F6(7!)g Ga(c)p
+F4(])p F6(j)2279 1968 y Gc(\024)277 2280 y Gg(Note)26
+b(that)h(in)f(the)g(case)h(where)f(the)g Ga(\025\026)p
+Gg(-term)g(has)h(an)f(acti)n(v)o(e)g(type)h(dif)n(ferent)h(from)e
+F6(?)p Gg(,)f(the)i(clauses)277 2393 y(of)e F6(j)p 404
+2393 V 422 2393 V 440 2393 V 65 w(j)492 2360 y Gc(\024)561
+2393 y Gg(are)g(inde)o(x)o(ed)i(with)d(a)h(label.)34
+b(It)25 b(is)g(easy)g(to)g(v)o(erify)h(that)g(these)g(translations)i
+(respect)f(typing)277 2506 y(judgements.)p Black 277
+2694 a Gb(Pr)n(oposition)e(3.5.1:)p Black Black 414 2921
+a F6(\017)p Black 45 w Gg(If)g Ga(M)38 b F6(2)28 b F4(K)c
+Gg(with)h(the)g(typing)i(judgement)g F4(\000)1967 2909
+y Gc(.)2022 2921 y Ga(M)2145 2909 y Gc(.)2200 2921 y
+F4(\001)p Gg(,)e(then)g F6(j)p Ga(M)10 b F6(j)2652 2888
+y Gc(\026)2728 2921 y F6(2)27 b Ga(\025\026)e Gg(with)f(the)i(typing)
+504 3034 y(judgement)g F4(\000)993 3022 y Gc(.)1048 3034
+y F6(j)p Ga(M)10 b F6(j)1196 3001 y Gc(\026)1268 3022
+y(.)1323 3034 y F6(?)1394 3001 y FX(\017)1433 3034 y
+Ga(;)15 b F4(\001)q Gg(.)p Black 414 3232 a F6(\017)p
+Black 45 w Gg(Assume)38 b Ga(c)g Gg(is)f(a)g(unique)j(label,)i(not)c
+(occurring)i(an)o(ywhere)f(in)f Ga(M)10 b Gg(.)70 b(If)38
+b Ga(M)62 b F6(2)51 b Ga(\025\026)37 b Gg(with)504 3345
+y(the)30 b(typing)h(judgement)h F4(\000)1400 3333 y Gc(.)1455
+3345 y Ga(M)1578 3333 y Gc(.)1633 3345 y Ga(B)1707 3312
+y FX(\017)1746 3345 y Ga(;)15 b F4(\001)p Gg(,)30 b(then)h
+F6(j)p Ga(M)10 b F6(j)2249 3312 y Gc(\024)2249 3368 y(c)2330
+3345 y F6(2)36 b F4(K)29 b Gg(with)g(the)h(typing)h(judgement)504
+3458 y F4(\000)586 3446 y Gc(.)641 3458 y F6(j)p Ga(M)10
+b F6(j)789 3425 y Gc(\024)789 3481 y(c)860 3446 y(.)915
+3458 y Ga(c)17 b F4(:)h Ga(B)5 b(;)15 b F4(\001)p Gg(.)49
+b(If)31 b Ga(M)49 b F6(2)38 b Ga(\025\026)30 b Gg(with)g(the)h(typing)i
+(judgement)g F4(\000)2832 3446 y Gc(.)2887 3458 y Ga(M)3010
+3446 y Gc(.)3065 3458 y F6(?)3136 3425 y FX(\017)3175
+3458 y Ga(;)15 b F4(\001)p Gg(,)32 b(then)504 3571 y
+F6(j)p Ga(M)10 b F6(j)652 3538 y Gc(\024)723 3571 y F6(2)25
+b F4(K)d Gg(with)i(the)g(typing)h(judgement)g F4(\000)1964
+3559 y Gc(.)2019 3571 y F6(j)p Ga(M)10 b F6(j)2167 3538
+y Gc(\024)2238 3559 y(.)2293 3571 y F4(\001)o Gg(.)p
+Black 277 3809 a F7(Pr)l(oof.)p Black 46 w Gg(Both)24
+b(cases)g(by)g(induction)i(on)e(the)g(structure)h(of)f
+Ga(M)10 b Gg(.)p 3436 3809 4 62 v 3440 3751 55 4 v 3440
+3809 V 3494 3809 4 62 v 418 4034 a(There)36 b(are)f(a)f(number)i(of)f
+(reduction)j(rules)e(associated)i(with)d(the)g Ga(\025\026)p
+Gg(-calculus,)40 b(which)35 b(we)277 4147 y(ho)n(we)n(v)o(er)21
+b(omit)f(and)h(instead)h(refer)f(the)g(reader)h(to)e([P)o(arigot,)h
+(1992])g(and)g([Bierman,)g(1998].)29 b(P)o(arigot)277
+4259 y(pro)o(v)o(ed)c(for)e(the)h(corresponding)k(reduction)e(system)e
+(the)g(follo)n(wing)h(tw)o(o)e(properties.)p Black 277
+4447 a Gb(Theor)n(em)h(3.5.2)f Gg(\(P)o(arigot\))p Gb(:)p
+Black 36 w Gg(The)g(reduction)j(system)e(of)f(the)h Ga(\025\026)p
+Gg(-calculus)i(is:)p Black Black 579 4656 a(\(i\))101
+b(strongly)26 b(normalising,)f(and)554 4792 y(\(ii\))101
+b(con\003uent.)277 5046 y(Strong)26 b(normalisation)j(can,)e(for)f(e)o
+(xample,)g(be)g(obtain)h(using)g F6(j)p 2341 5046 28
+4 v 2359 5046 V 2377 5046 V 65 w(j)2429 5013 y Gc(\024)2499
+5046 y Gg(and)f(appealing)i(to)e(our)g(strong)277 5159
+y(normalisation)40 b(result)d(for)g F4(\(K)p Ga(;)1403
+5122 y Gc(\024)1338 5159 y F6(\000)-31 b(\000)g(!)p F4(\))p
+Gg(.)66 b(Unfortunately)40 b(this)d(method)g(does)g(not)g(e)o(xtend)h
+(to)e(the)277 5272 y(second-order)29 b(v)o(ersion)e(of)e
+Ga(\025\026)p Gg(,)f(for)h(which)h(P)o(arigot)f(sho)n(wed)h(strong)g
+(normalisation)j(using)d(a)f(can-)277 5385 y(didates)g(method.)p
+Black Black eop end
+%%Page: 100 112
+TeXDict begin 100 111 bop Black -144 51 a Gb(100)2831
+b(Natural)23 b(Deduction)p -144 88 3691 4 v Black 462
+388 a Gg(T)-7 b(o)26 b(conclude)k(the)d(discussion)j(about)e
+Ga(\025\026)p Gg(,)e(let)i(us)e(consider)k(the)d(con\003uence)i
+(property)g(of)e Ga(\025\026)p Gg(.)321 501 y(At)21 b(\002rst)f
+(glance,)j(it)e(may)g(be)g(surprising)j(that)e Ga(\025\026)e
+Gg(satis\002es)i(this)g(property)-6 b(,)24 b(b)n(ut)e(at)f(a)f(second)j
+(it)e(is)g(less)321 614 y(so,)27 b(if)g(we)f(tak)o(e)h(into)g(account)i
+(that)e(the)g(e)o(xplicit)h(substitution)i(operator)f(in)d
+F4(K)g Gg(w)o(as)g(a)g(prerequisite)321 727 y(in)h(order)i(to)e(obtain)
+h(a)f(correspondence)32 b(with)27 b(our)g(\(non-con\003uent\))k
+(cut-elimination)g(procedure.)321 840 y(As)23 b(remark)o(ed)i(earlier)l
+(,)g(translating)i(this)d(substitution)j(operator)e(as)1084
+1080 y F6(j)p FL(Subst)p F4(\()1357 1068 y FX(h)1385
+1080 y Ga(a)1433 1068 y FX(i)1460 1080 y Ga(M)10 b(;)1598
+1068 y F9(\()1626 1080 y Ga(x)1678 1068 y F9(\))1705
+1080 y Ga(N)g F4(\))p F6(j)1848 1043 y Gc(\026)1921 1029
+y F5(def)1928 1080 y F4(=)32 b F6(j)p Ga(N)10 b F6(j)2164
+1043 y Gc(\026)2211 1080 y F4([)p Ga(x)25 b F4(:=)h Ga(\026a:)p
+F6(j)p Ga(M)10 b F6(j)2711 1043 y Gc(\026)2758 1080 y
+F4(])321 1301 y Gg(then)26 b(all)f(reductions)j(that)e
+Ga(M)34 b Gg(can)25 b(perform)h(are)g(\223lost\224)g(pro)o(vided)h
+Ga(x)d Gg(is)h(not)g(free)h(in)f Ga(N)10 b Gg(.)32 b(Therefore)321
+1414 y(the)j(reduction)j(system)d(of)g Ga(\025\026)e
+Gg(is)i(more)g(restricted,)k(and)c(strong)h(normalisation)i(for)d
+F4(\(K)p Ga(;)3406 1377 y Gc(\024)3341 1414 y F6(\000)-32
+b(\000)h(!)p F4(\))321 1527 y Gg(cannot)22 b(be)f(inferred)h(from)f(P)o
+(arigot')-5 b(s)21 b(strong)h(normalisation)i(result)e(\(using)g(the)e
+(simple)i(translation)321 1640 y F6(j)p 348 1640 28 4
+v 366 1640 V 384 1640 V 65 w(j)436 1607 y Gc(\026)483
+1640 y Gg(\).)52 b(Gi)n(v)o(en)31 b(the)h(con\003uence)h(property)h(of)
+d Ga(\025\026)p Gg(,)h(more)f(complicated)j(translations)h(that)d(w)o
+(ould)321 1753 y(establish)26 b(strong)f(normalisation)i(for)d
+F4(\(K)p Ga(;)1775 1716 y Gc(\024)1710 1753 y F6(\000)-31
+b(\000)f(!)p F4(\))23 b Gg(seem)h(highly)h(unlik)o(ely)-6
+b(.)p Black Black eop end
+%%Page: 101 113
+TeXDict begin 101 112 bop Black Black 277 1033 a F8(Chapter)44
+b(4)277 1471 y Gf(A)-5 b(pplications)53 b(of)f(Cut-Elimination)p
+Black Black 1140 1932 a Gd(It)24 b(is)h(reasonable)e(to)h(hope)f(that)h
+(the)g(relationship)e(between)i(computation)d(and)1140
+2032 y(mathematical)16 b(logic)g(will)i(be)f(as)g(fruitful)f(in)h(the)g
+(ne)o(xt)f(century)g(as)i(that)f(between)1140 2131 y(analysis)j(and)g
+(physics)f(in)i(the)f(last.)3009 2236 y(\227J.)h(McCarthy)1471
+2336 y(in)f(A)h(Basis)g(for)f(a)g(Mathematical)g(Theory)e(of)i
+(Computation,)e(1963.)277 2716 y Gg(T)-7 b(ypical)21
+b(treatments)i(of)e(applications)j(of)d(cut-elimination)j(focus)e(on)f
+(proof-theoretic)k(issues;)e(e.g.,)277 2829 y(subformula)29
+b(property)-6 b(,)30 b(Herbrand)e(interpretations,)j(interpolation)g
+(theorem,)d(numerical)h(bounds)277 2942 y(on)22 b(the)g
+(cut-elimination)j(process.)30 b(W)-7 b(e,)21 b(ho)n(we)n(v)o(er)l(,)h
+(shall)h(use)f(cut-elimination)j(for)d(e)o(xtracting)i(data)277
+3055 y(from)c(a)f(particular)j(classical)f(proof)g(and)f(sho)n(w)f
+(that)h(computation)j(in)c(a)g(simple,)i(non-deterministic)277
+3168 y(language)30 b(can)f(be)f(simulated)h(by)f(cut-elimination)k(in)c
+(a)f(fragment)j(of)d(classical)j(logic.)43 b(T)-7 b(o)27
+b(study)277 3281 y(these)41 b(applications,)47 b(we)40
+b(found)h(in)l(v)n(aluable)i(an)d(implementation)i(that)f(computes)h
+(all)e(normal)277 3394 y(forms)32 b(reachable)j(from)d(a)f(classical)j
+(proof.)55 b(Since)32 b(our)h(cut-elimination)i(procedures)g(are)e
+(non-)277 3507 y(deterministic,)27 b(a)d(na)m(\250)-27
+b(\021v)o(e)25 b(attempt)g(to)f(implement)h(them)f(is)g(rather)h
+(laborious:)34 b(it)23 b(w)o(ould,)i(for)f(e)o(xam-)277
+3620 y(ple,)k(require)h(backtracking.)44 b(W)-7 b(e)26
+b(shall)i(therefore)i(describe)f(some)f(modi\002cations)h(we)e(can)g
+(mak)o(e)277 3733 y(to)391 3696 y Gc(aux)371 3733 y F6(\000)-32
+b(\000)h(!)23 b Gg(that)h(lead)g(to)f(a)g(simple)i(implementation,)h
+(which)e(does)g(not)g(require)h(backtracking.)418 3868
+y(Functional)j(programming)g(languages)h(seem)d(most)g(suitable)h(for)g
+(implementing)h(our)e(reduc-)277 3981 y(tion)40 b(systems,)j(since)d
+(the)o(y)f(ha)n(v)o(e)h(f)o(acilities)h(for)e(declaring)i(algebraic)g
+(datatypes)h(and)d(pro)o(vide)277 4094 y(mechanisms)f(for)e(pattern)h
+(matching.)68 b(In)36 b(ef)n(fect,)k(the)c(operations)j(de\002ned)d(on)
+g(our)h(terms)f(can)277 4207 y(be)28 b(implemented)i(in)e(these)h
+(languages)i(with)d(great)h(economy)g(of)f(e)o(xpression.)45
+b(W)-7 b(e)27 b(ha)n(v)o(e)i(chosen)277 4320 y(OCaml)g(in)h(f)o(a)n(v)n
+(our)j(of)d(other)h(functional)i(languages,)i(because)d(it)e(allo)n(ws)
+g(pattern)i(cases)g(to)e(ha)n(v)o(e)277 4432 y(guards.)g(F)o(or)23
+b(e)o(xample)h(to)g(declare)h(a)e(function)j(one)e(can)g(write)p
+Black Black 1009 4684 a F1(function)96 b F7(pattern)1805
+4698 y F9(1)1896 4684 y F1(when)52 b F7(cond)2343 4698
+y F9(1)2384 4684 y F1(->)i F7(e)n(xpr)2706 4698 y F9(1)1391
+4797 y F1(|)99 b Gg(.)14 b(.)g(.)1391 4910 y F1(|)99
+b F7(pattern)1805 4924 y Gc(n)1903 4910 y F1(when)53
+b F7(cond)2351 4924 y Gc(n)2399 4910 y F1(->)h F7(e)n(xpr)2721
+4924 y Gc(n)277 5159 y Gg(where)31 b(for)g(a)g(pattern)h(case,)i(say)d
+F7(e)n(xpr)1539 5173 y Gc(i)1569 5159 y Gg(,)g(to)g(be)g(selected)i
+(the)e(pattern)i(e)o(xpression)g F7(pattern)3264 5173
+y Gc(i)3325 5159 y Gg(must)277 5272 y(match)26 b(and)g(the)g(guard)h(e)
+o(xpression)h F7(cond)1635 5286 y Gc(i)1690 5272 y Gg(must)e(e)n(v)n
+(aluate)h(to)e F1(true)p Gg(.)33 b(This)25 b(is)h(e)o(xtremely)h
+(helpful)277 5385 y(for)d(structuring)i(our)e(implementation.)p
+Black Black eop end
+%%Page: 102 114
+TeXDict begin 102 113 bop Black -144 51 a Gb(102)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black 321 388 a Ge(4.1)119 b(Implementation)321
+612 y Gg(In)33 b(this)g(section)i(we)d(shall)i(gi)n(v)o(e)f(details)h
+(of)f(an)f(implementation,)38 b(which)33 b(computes)i(all)e(normal)321
+725 y(forms)c(reachable)h(from)e(a)g(proof)h(by)1570
+688 y Gc(aux)1550 725 y F6(\000)-32 b(\000)h(!)p Gg(.)41
+b(Consider)30 b(\002rst)d(the)i(simply-typed)i(lambda)d(calculus)321
+838 y(where)22 b(e)n(v)o(ery)f(term)g(has)g(only)h(a)f(single)h(normal)
+g(form.)28 b(If)20 b(we)g(wish)h(to)g(compute)i(this)e(normal)h(form,)
+321 951 y(it)i(is)g(suf)n(\002cient)h(to)f(implement)i(a)d(simple)i
+(tail-recursi)n(v)o(e)i(e)n(v)n(aluation)g(function.)32
+b(This)24 b(can)h(be)f(done)321 1063 y(in)34 b(a)e(fe)n(w)h(lines)h(of)
+f(code.)59 b(Strong)34 b(normalisation)j(and)d(con\003uence)h(of)e
+(beta-reduction)38 b(are)33 b(the)321 1176 y(fundamental)f(reasons)f
+(why)d(the)h(code)h(of)f(this)g(e)n(v)n(aluation)j(function)f(is)e(so)g
+(simple.)45 b(Con\003uence)321 1289 y(ensures)24 b(that)e(no)f(matter)h
+(which)g(rede)o(x)g(we)f(choose)i(we)d(will)h(\002nd)g(only)i(one)f
+(normal)g(form,)f(and)h(the)321 1402 y(e)n(v)n(aluation)k(function)g
+(will)d(terminate)i(because)h(of)d(the)h(property)i(of)d(strong)i
+(normalisation.)462 1532 y(Our)f(cut-elimination)k(procedures)f(are)e
+(strongly)h(normalising,)h(b)n(ut)d F7(not)h Gg(con\003uent.)32
+b(Depend-)321 1645 y(ing)k(on)g(which)h(rede)o(x)f(and)g(which)g
+(reduction)j(rule)d(one)g(chooses,)41 b(one)36 b(may)g(recei)n(v)o(e)h
+(dif)n(ferent)321 1757 y(normal)29 b(forms.)44 b(Thus)29
+b(an)f(implementation)j(which)e(computes)h F7(all)f Gg(normal)g(forms)g
+(reachable)h(by)352 1833 y Gc(cut)321 1870 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(for)i(e)o(xample,)g(is)f(non-tri)n(vial.)32
+b(Suppose)24 b(in)g(the)g(proof)p Black Black 1302 2767
+a @beginspecial 180 @llx 366 @lly 517 @urx 575 @ury 1516
+@rwi @clip @setspecial
+%%BeginDocument: pics/4.1.0.Choices.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.85 Copyright 1999 Radical Eye Software
+%%Title: 4.1.0.Choices.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 612 792
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o 4.1.0.Choices.ps 4.1.0.Choices.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 1999.11.18:0526
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IE 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IE N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IE 256 array N 2 string 0 1 255{IE S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For copying restrictions, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For copying restrictions, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For copying restrictions, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 40258431 52099146 1000 600 600 (4.1.0.Choices.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmib10 12 1
+/Fb 1 59 df<EA07E0EA1FF8EA3FFCEA7FFEA2B5FCA6EA7FFEA2EA3FFCEA1FF8EA07E010
+10788F20>58 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmbx12 12 3
+/Fc 3 52 df<EC03C01407141F147FEB03FF133FB6FCA413C3EA0003B3B3ADB712FCA526
+4177C038>49 D<ECFFE0010F13FE013F6D7E90B612E0000315F82607FC0313FE3A0FE000
+7FFFD81F806D138048C7000F13C0488001C015E001F07F00FF6E13F07F17F881A46C5A6C
+5A6C5AC9FC17F05DA217E05D17C04B13804B1300A2ED1FFC4B5A5E4B5A4B5A4A90C7FC4A
+5A4A5AEC0FF04A5AEC3F804AC7127814FE495A494814F8D907E014F0495A495A49C8FC01
+7C140149140348B7FC4816E05A5A5A5A5AB8FC17C0A42D417BC038>I<ECFFF0010713FF
+011F14C0017F14F049C66C7ED803F8EB3FFED807E06D7E81D80FF86D138013FE001F16C0
+7FA66C5A6C4815806C485BC814005D5E4B5A4B5A4B5A4A5B020F1380902607FFFEC7FC15
+F815FF16C090C713F0ED3FFCED0FFEEEFF80816F13C017E0A26F13F0A217F8A3EA0FC0EA
+3FF0487EA2487EA217F0A25D17E06C5A494913C05BD83F80491380D81FF0491300D80FFE
+EBFFFE6CB612F800015D6C6C14C0011F49C7FC010113E02D427BC038>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fd cmbx12 17.28 3
+/Fd 3 118 df<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC0131F4BB800F0
+133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113C3020702C0
+9138007FE74A91C9001FB5FC023F01FC16074A01F08291B54882490280824991CB7E4949
+8449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A4A1A3F5AA3
+48491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A1F6C1D80A2
+6C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D4E5A6D6E17
+1F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8020102F8ED
+7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C16E0040716
+80DC007F02F8C9FC050191CAFC626677E375>67 D<EC07E0A6140FA5141FA3143FA2147F
+A214FF5BA25B5B5B5B137F48B5FC000F91B512FEB8FCA5D8001F01E0C8FCB3AFEF0FC0AC
+171F6D6D1480A2173F6D16006F5B6D6D137E6D6D5B6DEBFF836EEBFFF86E5C020F14C002
+035C9126003FFCC7FC325C7DDA3F>116 D<902607FFC0ED3FFEB60207B5FCA6C6EE0007
+6D826D82B3B3A260A360A2607F60183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D
+01FFEB3FE06D91B55A6E1500021F5C020314F8DA003F018002F0C7FC51427BC05A>I
+E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fe cmmib10 17.28 2
+/Fe 2 67 df<13FE3803FF80000F13E04813F04813F84813FCA2B512FEA96C13FCA26C13
+F86C13F06C13E0000313803800FE00171775962E>58 D<037FBA12F892BC12C04A1BF81E
+FF1FC08B6E1CF8DB000391C80001804CDD003F7F4E707F1D0720804C844E7014C0A34C1B
+E04E82A35E4E5EA34C1BC06065208093B5FC4E5E2000535B5D4E4C5B535B535B4B6395CA
+B55A0A035C5291C7FC4B4E13FC4D043F5B99B512E0090714804B4CB500FCC8FC94B912E0
+9AC9FC1DE04B19FE777E05F8C914E00A3F13F84B060F7F4D707F767F8B4B72805F7680A2
+92B5865FA35C5FA35C94CBFCA2644A645E64675C4C4D5C649CC7FC4A4F5B4C5F66525B4A
+96B55A4C04035C515C091F5C4A4E91C8FC4C4BB55A081F14F8003FBD5A481CC09AC9FCBD
+12F81CC06C50CAFC1B8073627AE17C>66 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 310.13472 139.41826 384.11203 227.62195 372.73111
+284.52744 295.90836 301.59924 233.31241 213.39557 290.2179 139.41826
+ 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0 SLW 0 setgray
+0 setlinecap stroke grestore end
+
+
+@endspecial @beginspecial @setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 338.58746 113.81097 85.35823 113.81097 /Lineto /lineto
+load def false Line gsave 2.0 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 139.41826 139.41826 184.94283 213.39557 156.49008
+284.52744 91.04869 301.59924 56.90549 256.07469 62.59595 199.1692 102.43004
+139.41826 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0
+SLW 0 setgray 0 setlinecap stroke grestore end
+
+@endspecial 1167 2742 a Fe(:)27 b(:)g(:)p
+1423 2730 16 62 v 1438 2702 66 7 v 209 w(B)62 b(:)28
+b(:)f(:)566 b(:)27 b(:)h(:)54 b(B)p 2956 2730 16 62 v
+2971 2702 66 7 v 217 w(:)27 b(:)h(:)3282 2849 y Fd(Cut)3552
+2870 y Fc(1)1945 2942 y Fe(:)f(:)g(:)p 2201 2930 16 62
+v 2216 2902 66 7 v 209 w(:)h(:)f(:)470 3755 y @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 136.57324 227.62195 71.13185 227.62195 /Lineto /lineto
+load def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial 1628 1904 a Fd(Cut)1898 1926
+y Fc(2)1237 1987 y Fb(::)p 1326 1975 12 43 v 1337 1956
+49 5 v 110 w(::)1071 1846 y(::)p 1161 1834 12 43 v 1172
+1815 49 5 v 111 w(::)45 b(::)p 1444 1834 12 43 v 1455
+1815 49 5 v 111 w(::)470 3755 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 83.9355 240.42558 101.00732 258.92014 91.04869 278.83696 75.39958
+275.99152 69.70912 257.4974 83.9355 240.42558 /currentpoint load stopped
+pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave .5 setgray
+fill grestore gsave 1.8 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+
+@endspecial @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 119.50143 240.42558 142.26372 264.6106 129.46007 278.83696 113.81097
+275.99152 108.1205 257.4974 119.50143 240.42558 /currentpoint load
+stopped pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave .5
+ setgray fill grestore gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+ grestore end
+
+@endspecial @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 330.05199 213.39557 264.6106 213.39557 /Lineto /lineto
+load def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial 3235 2022 a Fd(Cut)3505 2044
+y Fc(3)2831 2106 y Fb(::)p 2920 2094 12 43 v 2932 2074
+49 5 v 111 w(::)2666 1964 y(::)p 2755 1952 12 43 v 2766
+1933 49 5 v 111 w(::)68 b(::)p 3062 1952 12 43 v 3073
+1933 49 5 v 111 w(::)470 3755 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 275.99152 226.19922 284.52744 250.38422 275.99152 264.6106 261.76515
+264.6106 254.65196 250.38422 275.99152 226.19922 /currentpoint load
+stopped pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave .5
+ setgray fill grestore gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+ grestore end
+
+
+@endspecial @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 312.98018 226.19922 327.20654 233.31241 335.74245 250.38422 327.20654
+261.76515 312.98018 261.76515 301.59924 250.38422 305.86699 236.15785
+312.98018 226.19922 /currentpoint load stopped pop 1. 0.1 0. /c ED
+/b ED /a ED false OpenCurve gsave .5 setgray fill grestore gsave
+1.8 SLW 0 setgray 0 setlinecap stroke grestore end
+
+@endspecial Black
+1918 5251 a Fa(1)p Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 321 2964 a(the)30 b(tw)o(o)g(upper)h(cuts)f(\(those)h
+(with)f(suf)n(\002x)o(es)g(2)f(and)h(3\))g(are)g(instances)i(of)e
+(Lafont')-5 b(s)30 b(e)o(xample)h(\(see)321 3077 y(P)o(age)20
+b(4\).)28 b(Each)20 b(of)g(them)g(may)g(reduce)i(to)e(one)h(of)f(its)g
+(subproofs.)31 b(Furthermore,)22 b(assume)f(the)g(lo)n(wer)321
+3190 y(cut)k(is)f(a)g(commuting)h(cut,)g(which)f(may)g(reduce)i(to)e
+(the)g(left)h(or)f(to)g(the)h(right.)31 b(Let)24 b(the)g(cut-formula,)
+321 3303 y Ga(B)5 b Gg(,)37 b(of)e(this)h(cut)g(be)f(introduced)k(on)c
+(both)h(sides)h(some)n(where)f(in)f(one)h(of)f(the)h(subproofs)i(of)d
+(the)321 3416 y(corresponding)f(upper)c(cut,)h(then)f(which)g(normal)g
+(form)f(we)f(recei)n(v)o(e)j(depends)g(on)e(the)h(reduction)321
+3529 y(we)k(apply)h(for)f(the)g(tw)o(o)g(upper)h(cuts.)61
+b(In)34 b(one)h(case)f(the)h(lo)n(wer)f(cut)g(will)g(e)n(v)o(entually)i
+(become)f(a)321 3642 y(logical)f(cut,)h(and)e(in)f(another)i(it)e(will)
+g(be)h(eliminated)h(in)e(a)g(single)i(step)f(because)h(the)f(subproofs)
+321 3755 y(where)24 b Ga(B)j Gg(w)o(as)d(introduced)i(v)n(anished.)462
+3884 y(Similarly)e(the)g(normal)g(forms)f(we)f(recei)n(v)o(e)i(by)g
+(reducing)h(the)e(upper)i(cuts)f(depend)g(on)g(ho)n(w)e(we)321
+3997 y(reduce)27 b(the)e(lo)n(wer)g(cut.)34 b(F)o(or)24
+b(e)o(xample,)j(if)d(the)i(lo)n(wer)f(cut)g(is)g(reduced)i(to)e(the)h
+(left)f(creating)j(se)n(v)o(eral)321 4110 y(copies)22
+b(of)e(its)g(right)g(subproof,)j(then)e(we)e(recei)n(v)o(e)i(dif)n
+(ferent)h(normal)e(forms)h(depending)h(on)f(whether)321
+4223 y(we)i(reduce)i(the)f(upper)h(cut)e(\(Suf)n(\002x)g(3\))h(before)h
+(reducing)h(the)d(lo)n(wer)h(cut)g(or)f(after)-5 b(.)462
+4352 y(Since)26 b(we)f(do)h(not)h(yet)f(kno)n(w)f(which)i(choices)g
+(lead)g(to)e(dif)n(ferent)j(normal)f(forms,)f(a)f(na)m(\250)-27
+b(\021v)o(e)27 b(im-)321 4465 y(plementation)22 b(w)o(ould)e(ha)n(v)o
+(e)g(to)f(e)o(xplore,)j(or)d(backtrack)j(o)o(v)o(er)l(,)e(all)f
+(possible)j(choices.)29 b(This)19 b(could)i(be)321 4578
+y(done)j(using)g(techniques)j(from)22 b(logic)j(programming,)f(for)g(e)
+o(xample)g(the)f(proof)h(search)g(algorithms)321 4691
+y(based)32 b(on)e(continuation)k(passing)e(\(see)f(for)f(instance)i
+([Carlsson,)g(1984,)f(Urban,)f(1998]\).)50 b(These)321
+4804 y(techniques)39 b(of)n(fer)d(ef)n(fecti)n(v)o(e)g(implementations)
+j(for)c(our)h(cut-elimination)j(procedures,)i(b)n(ut)36
+b(are)321 4917 y(substantially)d(more)c(complicated)i(than)f(the)f
+(simple)g(e)n(v)n(aluation)j(function)f(of)d(the)i(simply-typed)321
+5030 y(lambda)25 b(calculus.)462 5159 y(In)32 b(the)h(rest)f(of)g(this)
+h(section)g(we)e(shall)i(de)n(v)o(elop)h(a)d(simple)i(implementation)i
+(for)d(the)g(reduc-)321 5272 y(tion)39 b(system)g F4(\()p
+FY(T)t Ga(;)943 5235 y Gc(aux)923 5272 y F6(\000)-32
+b(\000)h(!)p F4(\))p Gg(.)72 b(Using)38 b(terminology)j(from)d(logic)h
+(programming,)k(we)38 b(will)f(achie)n(v)o(e)321 5385
+y(this)31 b(by)g(transforming)i(the)d(\223don')n(t)i(kno)n(w\224)f
+(non-determinism)j(of)2548 5348 y Gc(aux)2528 5385 y
+F6(\000)-32 b(\000)h(!)29 b Gg(into)i(\223don')n(t)h(care\224)g(non-)
+321 5498 y(determinism.)44 b(In)27 b(the)i(end,)g(some)n(what)f
+(surprisingly)-6 b(,)32 b(we)c(can)g(implement)h(a)e(completely)j
+(deter)n(-)p Black Black eop end
+%%Page: 103 115
+TeXDict begin 103 114 bop Black 277 51 a Gb(4.1)23 b(Implementation)
+2798 b(103)p 277 88 3691 4 v Black 277 388 a Gg(ministic)27
+b(e)n(v)n(aluation)g(function,)h(which,)e(gi)n(v)o(en)g(a)f(proof,)i
+(computes)g(all)e(normal)h(forms)g(reachable)277 501
+y(by)411 464 y Gc(aux)391 501 y F6(\000)-31 b(\000)f(!)23
+b Gg(without)h(the)g(need)g(of)g(backtracking.)418 631
+y(First,)e(we)f(observ)o(e)i(that)f(a)f(leftmost-outermost)k(reduction)
+f(strate)o(gy)g(is)d(suf)n(\002cient)i(to)e(compute)277
+744 y(all)e(normal)h(forms.)28 b(This)18 b(reduction)k(strate)o(gy)f
+(restricts)g(the)e(conte)o(xts)i(in)e(which)g(an)2978
+707 y Gc(aux)2958 744 y F6(\000)-31 b(\000)g(!)p Gg(-reduction)277
+857 y(may)23 b(be)g(performed)h(such)g(that)f(not)h(more)e(than)i(a)e
+(single)j(rede)o(x)e(needs)h(to)f(be)g(considered:)32
+b(there)24 b(is)277 970 y(either)k(none)g(\(in)f(the)g(case)h(of)f(a)f
+(normal)i(form\),)g(or)e(only)i(one)f(leftmost-outermost)k(rede)o(x.)40
+b(Some)277 1083 y(clauses)30 b(of)f(the)f(leftmost-outermost)33
+b(reduction)e(strate)o(gy)-6 b(,)31 b(denoted)f(by)p
+2686 1008 119 3 v 2686 1046 a Gc(aux)2666 1083 y F6(\000)-31
+b(\000)f(!)p Gg(,)29 b(are)f(gi)n(v)o(en)h(in)g(Fig-)277
+1196 y(ure)j(4.1.)53 b(T)-7 b(o)31 b(sho)n(w)g(that)h(all)g(normal)h
+(forms)e(reachable)k(by)2300 1159 y Gc(aux)2279 1196
+y F6(\000)-31 b(\000)g(!)30 b Gg(are)i(in)g(f)o(act)g(reachable)i(by)e
+(the)277 1309 y(strate)o(gy)p 604 1234 V 604 1272 a Gc(aux)584
+1309 y F6(\000)-32 b(\000)h(!)p Gg(,)20 b(we)g(shall)i(\002rst)e(\002x)
+h(some)f(terminology)k(and)d(pro)o(v)o(e)h(a)e(lemma)h(sho)n(wing)g
+(that)h(certain)277 1422 y(reductions)27 b(can)c(be)h(rearranged)i(in)e
+(a)f(reduction)j(sequence.)p Black 277 1609 a Gb(T)-8
+b(erminology)25 b(4.1.1:)p Black 34 w Gg(A)e(reduction)k(is)c(said)i
+(to)f(be)g F7(bad)p Gg(,)g(denoted)i(by)2583 1572 y Gc(bad)2556
+1609 y F6(\000)-31 b(\000)f(!)p Gg(,)23 b(if)h(and)g(only)h(if)f(it)g
+(is)f(of)277 1722 y(the)28 b(form)639 1685 y Gc(aux)619
+1722 y F6(\000)-31 b(\000)f(!)p Gg(,)28 b(b)n(ut)g(not)p
+1145 1648 V 1145 1685 a Gc(aux)1125 1722 y F6(\000)-32
+b(\000)h(!)p Gg(.)41 b(This)27 b(means)i(the)f(reduction)i(violates)g
+(the)e(restrictions)j(imposed)277 1835 y(on)p 411 1760
+V 411 1798 a Gc(aux)391 1835 y F6(\000)-31 b(\000)f(!)p
+Gg(.)p Black 277 2073 a Gb(Lemma)23 b(4.1.2:)p Black
+34 w Gg(F)o(or)g(e)n(v)o(ery)h(reduction)i(sequence)g(of)e(the)g(form)f
+Ga(M)2454 2087 y F9(1)2547 2035 y Gc(bad)2519 2073 y
+F6(\000)-31 b(\000)g(!)25 b Ga(M)2803 2087 y F9(2)p 2888
+1998 V 2888 2035 a Gc(aux)2868 2073 y F6(\000)-31 b(\000)f(!)26
+b Ga(M)3152 2087 y F9(3)3191 2073 y Gg(,)d(there)i(is)277
+2185 y(a)e(reduction)j(sequence)g(of)e(the)f(form)h Ga(M)1582
+2199 y F9(1)p 1667 2111 V 1667 2148 a Gc(aux)1647 2185
+y F6(\000)-31 b(\000)f(!)25 b Ga(M)1940 2152 y FX(0)2009
+2148 y Gc(aux)1989 2185 y F6(\000)-31 b(\000)f(!)2159
+2152 y FX(\003)2224 2185 y Ga(M)2312 2199 y F9(3)2352
+2185 y Gg(.)p Black 277 2398 a F7(Pr)l(oof)o(.)p Black
+34 w Gg(By)23 b(induction)j(on)d(the)h(structure)i(of)d
+Ga(M)1804 2412 y F9(1)1867 2398 y Gg(\(details)i(on)f(P)o(age)f(167\).)
+p 3436 2398 4 62 v 3440 2340 55 4 v 3440 2398 V 3494
+2398 4 62 v 277 2603 a(No)n(w)18 b(we)g(can)i(pro)o(v)o(e)f(that)h(e)n
+(v)o(ery)g(normal)g(form)f(that)g(can)h(be)f(reached)i(by)2638
+2566 y Gc(aux)2617 2603 y F6(\000)-31 b(\000)g(!)18 b
+Gg(can)i(also)f(be)h(reached)277 2716 y(by)k(the)g(strate)o(gy)p
+854 2641 119 3 v 854 2679 a Gc(aux)834 2716 y F6(\000)-31
+b(\000)f(!)p Gg(.)p Black 277 2903 a Gb(Theor)n(em)24
+b(4.1.3:)p Black 34 w Gg(F)o(or)f(all)g Ga(M)5 b(;)15
+b(N)36 b F6(2)25 b FY(T)e Gg(with)g Ga(N)33 b Gg(being)24
+b(a)f(normal)i(form,)p Black Black 927 3110 a(if)e Ga(M)1149
+3073 y Gc(aux)1129 3110 y F6(\000)-32 b(\000)h(!)1299
+3077 y FX(\003)1364 3110 y Ga(N)10 b Gg(,)22 b(then)i(there)h(is)e(a)g
+(reduction)j Ga(M)p 2532 3035 V 2532 3073 a Gc(aux)2512
+3110 y F6(\000)-32 b(\000)h(!)2682 3077 y FX(\003)2747
+3110 y Ga(N)10 b Gg(.)p Black 277 3323 a F7(Pr)l(oof)o(.)p
+Black 34 w Gg(By)32 b(induction)k(on)e(the)g(length)h(of)e(the)h
+(reduction)i(sequence)f(of)2699 3285 y Gc(aux)2679 3323
+y F6(\000)-32 b(\000)h(!)p Gg(,)35 b(which)f(by)f(Theo-)277
+3435 y(rem)23 b(2.3.19)h(is)g(al)o(w)o(ays)g(\002nite)g(\(details)h(on)
+f(P)o(age)f(167\).)p 3436 3435 4 62 v 3440 3377 55 4
+v 3440 3435 V 3494 3435 4 62 v 277 3640 a(W)-7 b(e)23
+b(ha)n(v)o(e)i(sho)n(wn)f(that)g(the)g(leftmost-outermost)k(reduction)f
+(strate)o(gy)-6 b(,)p 2591 3566 119 3 v 2591 3603 a Gc(aux)2570
+3640 y F6(\000)-31 b(\000)g(!)p Gg(,)23 b(does)h(not)h(restrict)g(the)
+277 3753 y(collection)30 b(of)d(normal)h(forms)g(reachable)i(from)d(a)g
+(classical)i(proof.)41 b(Ho)n(we)n(v)o(er)l(,)28 b(notice)h(that,)f(e)n
+(v)o(en)277 3866 y(though)p 574 3791 V 574 3829 a Gc(aux)554
+3866 y F6(\000)-32 b(\000)h(!)24 b Gg(is)g(a)h(strate)o(gy)-6
+b(,)26 b(it)f(is)f(non-deterministic.)37 b(W)-7 b(e)24
+b(can)h(identify)i(three)f(types)g(of)e(terms)h(as)277
+3979 y(source)g(for)f(non-determinism.)p Black 373 4211
+a(\(i\))p Black 46 w(There)19 b(are)f(tw)o(o)g(cut-reductions)k(that)d
+(apply)g(to)f FL(Cut)p F4(\()2186 4199 y FX(h)2214 4211
+y Ga(a)2262 4199 y FX(i)2289 4211 y FL(Ax)p F4(\()p Ga(x;)d(a)p
+F4(\))q Ga(;)2643 4199 y F9(\()2671 4211 y Ga(y)2719
+4199 y F9(\))2746 4211 y FL(Ax)o F4(\()p Ga(y)s(;)g(b)p
+F4(\))q(\))p Gg(.)27 b(One)18 b(yields)504 4324 y FL(Ax)p
+F4(\()p Ga(x;)d(a)p F4(\)[)p Ga(a)10 b F6(7!)g Ga(b)p
+F4(])24 b Gg(and)g(the)g(other)h FL(Ax)o F4(\()p Ga(y)s(;)15
+b(b)p F4(\)[)p Ga(y)e F6(7!)d Ga(x)p F4(])p Gg(.)p Black
+348 4514 a(\(ii\))p Black 46 w(The)21 b(cut-reduction)k(for)c
+(commuting)h(cuts)g(may)f(reduce)h(the)f(term)g FL(Cut)p
+F4(\()2828 4502 y FX(h)2856 4514 y Ga(a)2904 4502 y FX(i)2931
+4514 y Ga(M)11 b(;)3070 4502 y F9(\()3097 4514 y Ga(x)3149
+4502 y F9(\))3177 4514 y Ga(N)f F4(\))20 b Gg(to)h(ei-)504
+4627 y(ther)j Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)994
+4615 y F9(\()1021 4627 y Ga(x)1073 4615 y F9(\))1101
+4627 y Ga(N)p F6(g)c Gg(or)h Ga(N)5 b F6(f)-7 b Ga(x)26
+b F4(:=)1654 4615 y F9(\()1681 4627 y Ga(a)1729 4615
+y F9(\))1757 4627 y Ga(M)p F6(g)d Gg(pro)o(vided)h Ga(M)32
+b Gg(and)23 b Ga(N)32 b Gg(do)23 b(not)g(freshly)h(introduce)504
+4740 y Ga(a)f Gg(and)h Ga(x)p Gg(,)f(respecti)n(v)o(ely)-6
+b(.)p Black 323 4930 a(\(iii\))p Black 46 w(F)o(or)32
+b(logical)i(cuts)f(with)g(a)f(cut-formula)j(of)d(the)h(form)g
+Ga(B)5 b F6(\033)o Ga(C)38 b Gg(we)32 b(ha)n(v)o(e)h(included)i(tw)o(o)
+d(re-)504 5043 y(ductions)24 b(\(see)d(Figure)h(2.5\).)28
+b(Thus)21 b FL(Cut)p F4(\()1826 5031 y FX(h)1853 5043
+y Ga(b)1892 5031 y FX(i)1920 5043 y FL(Imp)2064 5065
+y Gc(R)2122 5043 y F4(\()2157 5031 y F9(\()2185 5043
+y Ga(x)2237 5031 y F9(\))p FX(h)2292 5043 y Ga(a)2340
+5031 y FX(i)2367 5043 y Ga(M)10 b(;)15 b(b)p F4(\))q
+Ga(;)2620 5031 y F9(\()2648 5043 y Ga(z)2694 5031 y F9(\))2722
+5043 y FL(Imp)2866 5065 y Gc(L)2918 5043 y F4(\()2953
+5031 y FX(h)2981 5043 y Ga(c)3020 5031 y FX(i)3048 5043
+y Ga(N)10 b(;)3171 5031 y F9(\()3198 5043 y Ga(y)3246
+5031 y F9(\))3274 5043 y Ga(P)j(;)i(z)t F4(\))q(\))504
+5156 y Gg(reduces)26 b(to)d(either)682 5362 y FL(Cut)p
+F4(\()855 5350 y FX(h)883 5362 y Ga(a)931 5350 y FX(i)959
+5362 y FL(Cut)o F4(\()1131 5350 y FX(h)1159 5362 y Ga(c)1198
+5350 y FX(i)1226 5362 y Ga(N)10 b(;)1349 5350 y F9(\()1377
+5362 y Ga(x)1429 5350 y F9(\))1456 5362 y Ga(M)g F4(\))q
+Ga(;)1630 5350 y F9(\()1658 5362 y Ga(y)1706 5350 y F9(\))1733
+5362 y Ga(P)j F4(\))101 b Gg(or)h FL(Cut)p F4(\()2290
+5350 y FX(h)2318 5362 y Ga(c)2357 5350 y FX(i)2384 5362
+y Ga(N)10 b(;)2507 5350 y F9(\()2535 5362 y Ga(x)2587
+5350 y F9(\))2615 5362 y FL(Cut)o F4(\()2787 5350 y FX(h)2815
+5362 y Ga(a)2863 5350 y FX(i)2891 5362 y Ga(M)g(;)3029
+5350 y F9(\()3057 5362 y Ga(y)3105 5350 y F9(\))3132
+5362 y Ga(P)j F4(\)\))26 b Ga(:)p Black Black eop end
+%%Page: 104 116
+TeXDict begin 104 115 bop Black -144 51 a Gb(104)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black Black -144 300 V -144 1259 4 959 v 1112
+429 a FU(M)1244 394 y FS(aux)1224 429 y FT(\000)-24 b(\000)f(!)23
+b FU(N)55 b Gd(on)20 b(the)g(outermost)f(le)n(v)o(el)p
+1112 450 1159 4 v 1503 535 a FU(M)p 1635 466 113 3 v
+1635 500 a FS(aux)1616 535 y FT(\000)-25 b(\000)g(!)23
+b FU(N)587 717 y(M)p 719 648 V 719 682 a FS(aux)699 717
+y FT(\000)-24 b(\000)f(!)23 b FU(M)976 687 y FQ(0)p -46
+737 1678 4 v -46 822 a FF(And)95 834 y FS(R)150 822 y
+FG(\()182 810 y FQ(h)209 822 y FU(a)253 810 y FQ(i)279
+822 y FU(M)9 b(;)406 810 y FQ(h)433 822 y FU(b)469 810
+y FQ(i)495 822 y FU(N)g(;)14 b(c)p FG(\))p 719 753 113
+3 v 719 787 a FS(aux)699 822 y FT(\000)-24 b(\000)f(!)23
+b FF(And)1027 834 y FS(R)1082 822 y FG(\()1114 810 y
+FQ(h)1141 822 y FU(a)1185 810 y FQ(i)1212 822 y FU(M)1302
+792 y FQ(0)1324 822 y FU(;)1361 810 y FQ(h)1388 822 y
+FU(b)1424 810 y FQ(i)1451 822 y FU(N)8 b(;)14 b(c)p FG(\))2073
+716 y FU(M)32 b Gd(is)21 b(normal)220 b FU(N)p 2837 647
+V 2837 681 a FS(aux)2818 716 y FT(\000)-25 b(\000)g(!)23
+b FU(N)3080 686 y FQ(0)p 1750 737 1678 4 v 1750 822 a
+FF(And)1891 834 y FS(R)1945 822 y FG(\()1977 810 y FQ(h)2004
+822 y FU(a)2048 810 y FQ(i)2075 822 y FU(M)9 b(;)2202
+810 y FQ(h)2229 822 y FU(b)2265 810 y FQ(i)2291 822 y
+FU(N)g(;)14 b(c)p FG(\))p 2515 753 113 3 v 2515 787 a
+FS(aux)2495 822 y FT(\000)-25 b(\000)h(!)23 b FF(And)2823
+834 y FS(R)2877 822 y FG(\()2909 810 y FQ(h)2936 822
+y FU(a)2980 810 y FQ(i)3007 822 y FU(M)9 b(;)3134 810
+y FQ(h)3161 822 y FU(b)3197 810 y FQ(i)3223 822 y FU(N)3299
+792 y FQ(0)3322 822 y FU(;)14 b(c)p FG(\))1484 1027 y
+FU(M)p 1617 958 V 1617 992 a FS(aux)1597 1027 y FT(\000)-24
+b(\000)f(!)23 b FU(M)1874 997 y FQ(0)p 1049 1047 1283
+4 v 1049 1139 a FF(And)1190 1102 y FS(i)1190 1160 y(L)1240
+1139 y FG(\()1272 1127 y FJ(\()1298 1139 y FU(x)1345
+1127 y FJ(\))1372 1139 y FU(M)8 b(;)14 b(y)s FG(\))p
+1617 1070 113 3 v 1617 1104 a FS(aux)1597 1139 y FT(\000)-24
+b(\000)f(!)23 b FF(And)1925 1102 y FS(i)1925 1160 y(L)1975
+1139 y FG(\()2007 1127 y FJ(\()2033 1139 y FU(x)2080
+1127 y FJ(\))2106 1139 y FU(M)2196 1109 y FQ(0)2219 1139
+y FU(;)14 b(y)s FG(\))p 3543 1259 4 959 v -144 1262 3691
+4 v 321 1416 a Gg(Figure)23 b(4.1:)29 b(Excerpt)23 b(from)f(the)h
+(reduction)i(system)e(for)f(the)h(leftmost-outermost)k(reduction)e
+(strat-)321 1529 y(e)o(gy)f(of)593 1492 y Gc(aux)572
+1529 y F6(\000)-31 b(\000)g(!)p Gg(.)p Black 321 1937
+a(In)28 b(the)g(\002rst)g(case)g(it)f(is)h(not)g(dif)n(\002cult)h(to)f
+(see)g(that)g(the)g(choice)h(does)g(not)f(matter:)38
+b(both)29 b(rules)g(yield)321 2050 y(the)g(normal)h(form)f
+FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(.)46 b(In)28
+b(the)i(second)g(we)e(recei)n(v)o(e,)j(in)e(general,)j(dif)n(ferent)f
+(normal)e(forms)321 2163 y(depending)36 b(on)d(which)h(choice)g(is)f
+(made.)57 b(So)32 b(both)i(choices)h(need)f(to)f(be)g(e)o(xplored)i(in)
+e(order)h(to)321 2276 y(compute)k(all)f(normal)h(forms)f(reachable)i
+(from)e(a)f(proof.)70 b(Also)37 b(in)g(the)g(third)g(case)h(the)f
+(choice)321 2388 y(matters)26 b(with)f(respect)i(to)e(the)h(reachable)h
+(normal)f(forms,)g(as)f(illustrated)j(in)d(Figure)h(4.2.)33
+b(If)25 b(we)f(do)321 2501 y(not)g(e)o(xplore)h(both)g(choices,)g(we)d
+(may)i(\223lose\224)h(some)e(normal)h(forms.)462 2631
+y(T)-7 b(o)30 b(a)n(v)n(oid)j(backtracking)i(o)o(v)o(er)c(the)g
+(choices)i(in)e(Cases)h(\(ii\))f(and)g(\(iii\))h(we)e(add)i(the)f(ne)n
+(w)g(term)321 2744 y(constructor)1719 2857 y FL(Mix)o
+F4(\()p Ga(M)5 b(;)15 b(N)10 b F4(\))321 3015 y Gg(to)24
+b(the)g(grammar)f(of)h(terms)g(and,)f(correspondingly)-6
+b(,)29 b(add)24 b(the)g(rule)1330 3181 y F4(\000)1387
+3195 y F9(1)1451 3169 y Gc(.)1506 3181 y Ga(M)1629 3169
+y Gc(.)1684 3181 y F4(\001)1760 3195 y F9(1)1890 3181
+y F4(\000)1947 3195 y F9(2)2012 3169 y Gc(.)2067 3181
+y Ga(N)2175 3169 y Gc(.)2230 3181 y F4(\001)2306 3195
+y F9(2)p 1290 3214 1095 4 v 1290 3299 a F4(\000)1347
+3313 y F9(1)1386 3299 y Ga(;)15 b F4(\000)1483 3313 y
+F9(2)1548 3287 y Gc(.)1603 3299 y FL(Mix)o F4(\()p Ga(M)5
+b(;)15 b(N)10 b F4(\))2059 3287 y Gc(.)2114 3299 y F4(\001)2190
+3313 y F9(1)2229 3299 y Ga(;)15 b F4(\001)2345 3313 y
+F9(2)2426 3245 y Gg(Mix)321 3487 y(to)26 b(the)f(set)h(of)f(rules)h
+(for)f(forming)i(typing)g(judgements.)36 b(W)-7 b(e)24
+b(shall)i(denote)h(the)f(corresponding)j(set)321 3600
+y(of)23 b(well-typed)i(terms)e(by)h FY(T)1229 3567 y
+Gc(m)1291 3600 y Gg(.)k(There)23 b(are)g(no)g(reduction)j(rules)e(that)
+f(apply)i(to)e(Mix,)f(b)n(ut)i(using)g(this)321 3713
+y(ne)n(w)g(term)g(constructor)k(we)c(can)h(reformulate)h(the)f
+(reductions)j(that)d(apply)g(in)g(Cases)g(\(ii\))f(and)h(\(iii\).)321
+3826 y(The)e(ne)n(w)g(reductions)k(are)c(listed)i(belo)n(w)-6
+b(.)p Black Black 371 4104 a FL(Cut)p F4(\()544 4092
+y FX(h)572 4104 y Ga(a)620 4092 y FX(i)647 4104 y Ga(M)10
+b(;)785 4092 y F9(\()813 4104 y Ga(x)865 4092 y F9(\))893
+4104 y Ga(N)g F4(\))502 4227 y Gc(c)533 4203 y FC(000)462
+4264 y F6(\000)-31 b(\000)f(!)100 b Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)1058 4252 y F9(\()1086 4264 y Ga(x)1138
+4252 y F9(\))1165 4264 y Ga(N)q F6(g)142 b Gg(if)23 b
+Ga(N)33 b Gg(freshly)25 b(introduces)h Ga(x)p Gg(,)d(b)n(ut)h
+Ga(M)33 b Gg(does)24 b(not)g Ga(a)p Gg(,)53 b(or)502
+4375 y Gc(c)533 4352 y FC(000)462 4412 y F6(\000)-31
+b(\000)f(!)100 b Ga(N)5 b F6(f)-7 b Ga(x)26 b F4(:=)1047
+4400 y FX(h)1074 4412 y Ga(a)1122 4400 y FX(i)1150 4412
+y Ga(M)q F6(g)142 b Gg(if)23 b Ga(M)33 b Gg(freshly)25
+b(introduces)h Ga(a)p Gg(,)d(b)n(ut)h Ga(N)33 b Gg(does)24
+b(not)g Ga(x)p Gg(,)53 b(or)502 4524 y Gc(c)533 4500
+y FC(000)462 4561 y F6(\000)-31 b(\000)f(!)100 b FL(Mix)o
+F4(\()p Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1237 4549
+y F9(\()1264 4561 y Ga(x)1316 4549 y F9(\))1344 4561
+y Ga(N)p F6(g)15 b Ga(;)31 b(N)5 b F6(f)-7 b Ga(x)26
+b F4(:=)1848 4549 y FX(h)1876 4561 y Ga(a)1924 4549 y
+FX(i)1951 4561 y Ga(M)q F6(g)p F4(\))1426 4697 y Gg(if)d
+Ga(M)33 b Gg(and)24 b Ga(N)32 b Gg(do)24 b(not,)g(respecti)n(v)o(ely)-6
+b(,)26 b(freshly)f(introduce)h Ga(a)d Gg(and)h Ga(x)371
+4928 y FL(Cut)p F4(\()544 4916 y FX(h)572 4928 y Ga(b)611
+4916 y FX(i)638 4928 y FL(Imp)783 4950 y Gc(R)840 4928
+y F4(\()875 4916 y F9(\()903 4928 y Ga(x)955 4916 y F9(\))q
+FX(h)1010 4928 y Ga(a)1058 4916 y FX(i)1086 4928 y Ga(M)10
+b(;)15 b(b)p F4(\))p Ga(;)1338 4916 y F9(\()1366 4928
+y Ga(z)1412 4916 y F9(\))1440 4928 y FL(Imp)1584 4950
+y Gc(L)1637 4928 y F4(\()1672 4916 y FX(h)1699 4928 y
+Ga(c)1738 4916 y FX(i)1766 4928 y Ga(N)10 b(;)1889 4916
+y F9(\()1917 4928 y Ga(y)1965 4916 y F9(\))1992 4928
+y Ga(P)j(;)i(z)t F4(\))q(\))516 5040 y Gc(l)538 5016
+y FC(00)462 5077 y F6(\000)-31 b(\000)f(!)100 b FL(Mix)o
+F4(\()p FL(Cut)p F4(\()1083 5065 y FX(h)1111 5077 y Ga(a)1159
+5065 y FX(i)1187 5077 y FL(Cut)o F4(\()1359 5065 y FX(h)1387
+5077 y Ga(c)1426 5065 y FX(i)1454 5077 y Ga(N)10 b(;)1577
+5065 y F9(\()1605 5077 y Ga(x)1657 5065 y F9(\))1684
+5077 y Ga(M)g F4(\))q Ga(;)1858 5065 y F9(\()1886 5077
+y Ga(y)1934 5065 y F9(\))1961 5077 y Ga(P)j F4(\))i Ga(;)31
+b FL(Cut)p F4(\()2311 5065 y FX(h)2339 5077 y Ga(c)2378
+5065 y FX(i)2405 5077 y Ga(N)10 b(;)2528 5065 y F9(\()2556
+5077 y Ga(x)2608 5065 y F9(\))2636 5077 y FL(Cut)o F4(\()2808
+5065 y FX(h)2836 5077 y Ga(a)2884 5065 y FX(i)2912 5077
+y Ga(M)g(;)3050 5065 y F9(\()3078 5077 y Ga(y)3126 5065
+y F9(\))3153 5077 y Ga(P)j F4(\)\)\))1426 5213 y Gg(if)23
+b FL(Imp)1648 5235 y Gc(R)1706 5213 y F4(\()1741 5201
+y F9(\()1769 5213 y Ga(x)1821 5201 y F9(\))p FX(h)1876
+5213 y Ga(a)1924 5201 y FX(i)1951 5213 y Ga(M)10 b(;)15
+b(b)p F4(\))24 b Gg(freshly)h(introduces)i Ga(b)22 b
+Gg(and)1426 5326 y(if)h FL(Imp)1648 5348 y Gc(L)1701
+5326 y F4(\()1736 5314 y FX(h)1763 5326 y Ga(c)1802 5314
+y FX(i)1830 5326 y Ga(N)10 b(;)1953 5314 y F9(\()1981
+5326 y Ga(y)2029 5314 y F9(\))2056 5326 y Ga(P)j(;)i(z)t
+F4(\))24 b Gg(freshly)h(introduces)i Ga(z)p Black Black
+eop end
+%%Page: 105 117
+TeXDict begin 105 116 bop Black 277 51 a Gb(4.1)23 b(Implementation)
+2798 b(105)p 277 88 3691 4 v Black Black 277 1079 V 277
+3771 4 2693 v Black Black 1270 1171 322 4 v 1270 1244
+a FU(A;)14 b(B)p 1455 1232 10 38 v 1465 1216 42 4 v 93
+w(B)p 1211 1280 440 4 v 1211 1354 a(A)p FT(^)q FU(A;)g(B)p
+1514 1342 10 38 v 1523 1325 42 4 v 92 w(B)1692 1293 y
+FT(^)1747 1305 y FS(L)1793 1313 y FP(2)p 1198 1390 467
+4 v 1198 1463 a FU(A)p FT(^)p FU(A)p 1396 1451 10 38
+v 1406 1434 42 4 v 88 w(B)t FT(\033)p FU(B)1706 1406
+y FT(\033)1770 1418 y FS(R)p 1974 1203 223 4 v 1974 1276
+a FU(B)p 2059 1264 10 38 v 2069 1248 42 4 v 92 w(B)p
+1912 1296 345 4 v 1912 1370 a(B)t FT(^)q FU(B)p 2121
+1358 10 38 v 2130 1341 42 4 v 92 w(B)2299 1309 y FT(^)2354
+1322 y FS(L)2400 1330 y FP(1)p 2580 1203 223 4 v 2580
+1276 a FU(B)p 2666 1264 10 38 v 2676 1248 42 4 v 93 w(B)p
+2519 1296 345 4 v 2519 1370 a(B)p 2605 1358 10 38 v 2614
+1341 42 4 v 92 w(B)t FT(_)q FU(B)2905 1309 y FT(_)2961
+1322 y FS(R)3011 1330 y FP(1)p 1912 1390 952 4 v 2037
+1463 a FU(B)t FT(\033)o FU(B)t(;)g(B)t FT(^)q FU(B)p
+2481 1451 10 38 v 2490 1434 42 4 v 92 w(B)t FT(_)q FU(B)2905
+1406 y FT(\033)2970 1418 y FS(L)p 1198 1499 1543 4 v
+1627 1572 a FU(A)p FT(^)p FU(A;)g(B)t FT(^)q FU(B)p 2052
+1560 10 38 v 2061 1544 42 4 v 92 w(B)t FT(_)q FU(B)2781
+1527 y Gd(Cut)1247 1785 y FN(.)1511 b(&)p 400 2050 223
+4 v 400 2123 a FU(B)p 485 2111 10 38 v 495 2095 42 4
+v 92 w(B)p 338 2143 345 4 v 338 2217 a(B)t FT(^)q FU(B)p
+546 2205 10 38 v 556 2188 42 4 v 92 w(B)711 2156 y FT(^)766
+2169 y FS(L)812 2177 y FP(1)p 948 2034 322 4 v 948 2107
+a FU(A;)14 b(B)p 1133 2095 10 38 v 1143 2079 42 4 v 93
+w(B)p 890 2143 440 4 v 890 2217 a(A)p FT(^)p FU(A;)g(B)p
+1192 2205 10 38 v 1202 2188 42 4 v 93 w(B)1356 2156 y
+FT(^)1412 2169 y FS(L)1458 2177 y FP(2)p 338 2253 991
+4 v 553 2326 a FU(A)p FT(^)p FU(A;)g(B)t FT(^)q FU(B)p
+978 2314 10 38 v 987 2298 42 4 v 92 w(B)1356 2281 y Gd(Cut)p
+1610 2160 223 4 v 1610 2233 a FU(B)p 1696 2221 10 38
+v 1706 2204 42 4 v 92 w(B)p 1549 2253 345 4 v 1549 2326
+a(B)p 1635 2314 10 38 v 1644 2298 42 4 v 92 w(B)t FT(_)q
+FU(B)1922 2265 y FT(_)1977 2278 y FS(R)2027 2286 y FP(1)p
+553 2362 1342 4 v 881 2436 a FU(A)p FT(^)q FU(A;)g(B)t
+FT(^)q FU(B)p 1306 2424 10 38 v 1316 2407 42 4 v 92 w(B)t
+FT(_)p FU(B)1922 2390 y Gd(Cut)p 2243 2160 223 4 v 2243
+2233 a FU(B)p 2328 2221 10 38 v 2338 2204 42 4 v 92 w(B)p
+2182 2253 345 4 v 2182 2326 a(B)t FT(^)p FU(B)p 2390
+2314 10 38 v 2399 2298 42 4 v 92 w(B)2554 2265 y FT(^)2609
+2278 y FS(L)2655 2286 y FP(1)p 2806 2034 322 4 v 2806
+2107 a FU(A;)g(B)p 2990 2095 10 38 v 3000 2079 42 4 v
+92 w(B)p 2747 2143 440 4 v 2747 2217 a(A)p FT(^)p FU(A;)g(B)p
+3049 2205 10 38 v 3059 2188 42 4 v 93 w(B)3213 2156 y
+FT(^)3269 2169 y FS(L)3315 2177 y FP(2)p 3454 2050 223
+4 v 3454 2123 a FU(B)p 3539 2111 10 38 v 3549 2095 42
+4 v 92 w(B)p 3392 2143 345 4 v 3392 2217 a(B)p 3478 2205
+10 38 v 3488 2188 42 4 v 92 w(B)t FT(_)q FU(B)3765 2156
+y FT(_)3820 2169 y FS(R)3870 2177 y FP(1)p 2747 2253
+991 4 v 2961 2326 a FU(B)t(;)g(A)p FT(^)q FU(A)p 3264
+2314 10 38 v 3273 2298 42 4 v 88 w(B)t FT(_)q FU(B)3765
+2281 y Gd(Cut)p 2182 2362 1342 4 v 2510 2436 a FU(A)p
+FT(^)q FU(A;)g(B)t FT(^)p FU(B)p 2935 2424 10 38 v 2945
+2407 42 4 v 92 w(B)t FT(_)q FU(B)3550 2390 y Gd(Cut)1171
+2648 y FN(#)1783 b(#)1186 2740 y FM(.)1186 2773 y(.)1186
+2806 y(.)3029 2740 y(.)3029 2773 y(.)3029 2806 y(.)1171
+2919 y FN(#)g(#)p 948 3168 322 4 v 948 3242 a FU(A;)14
+b(B)p 1133 3230 10 38 v 1143 3213 42 4 v 93 w(B)p 890
+3278 440 4 v 890 3351 a(A)p FT(^)p FU(A;)g(B)p 1192 3339
+10 38 v 1202 3322 42 4 v 93 w(B)1370 3290 y FT(^)1426
+3303 y FS(L)1472 3311 y FP(2)p 828 3387 562 4 v 828 3460
+a FU(A)p FT(^)q FU(A;)g(B)t FT(^)q FU(B)p 1253 3448 10
+38 v 1263 3432 42 4 v 92 w(B)1431 3400 y FT(^)1487 3412
+y FS(L)1533 3420 y FP(1)p 767 3496 684 4 v 767 3570 a
+FU(A)p FT(^)q FU(A;)g(B)t FT(^)p FU(B)p 1192 3558 10
+38 v 1202 3541 42 4 v 93 w(B)t FT(_)p FU(B)1493 3509
+y FT(_)1548 3522 y FS(R)1598 3530 y FP(1)p 2794 3168
+322 4 v 2794 3242 a FU(A;)g(B)p 2979 3230 10 38 v 2988
+3213 42 4 v 92 w(B)p 2735 3278 440 4 v 2735 3351 a(A)p
+FT(^)q FU(A;)g(B)p 3038 3339 10 38 v 3047 3322 42 4 v
+92 w(B)3216 3290 y FT(^)3271 3303 y FS(L)3317 3311 y
+FP(2)p 2674 3387 562 4 v 2674 3460 a FU(A)p FT(^)q FU(A;)g(B)p
+2976 3448 10 38 v 2986 3432 42 4 v 92 w(B)t FT(_)p FU(B)3277
+3400 y FT(_)3332 3412 y FS(R)3382 3420 y FP(1)p 2613
+3496 684 4 v 2613 3570 a FU(A)p FT(^)p FU(A;)g(B)t FT(^)q
+FU(B)p 3038 3558 10 38 v 3047 3541 42 4 v 92 w(B)t FT(_)q
+FU(B)3338 3509 y FT(^)3393 3522 y FS(L)3439 3530 y FP(1)p
+3965 3771 4 2693 v 277 3774 3691 4 v 277 3928 a Gg(Figure)22
+b(4.2:)29 b(The)21 b(cut)h(in)g(the)g(upper)g(proof)h(is)f(replaced)i
+(by)e(tw)o(o)f(cuts)h(on)g(smaller)h(formulae.)29 b(There)277
+4041 y(are)22 b(tw)o(o)f(possibilites)k(of)d(ho)n(w)f(to)h(nest)g(the)g
+(resulting)i(cuts,)f(as)e(is)h(sho)n(wn)g(in)f(the)h(second)h(line.)29
+b(From)277 4154 y(these)d(proofs)g(the)f(normal)h(forms)f(gi)n(v)o(en)g
+(belo)n(w)g(can)g(be)g(reached.)35 b(The)24 b(normal)i(form)e(on)h(the)
+g(left,)277 4267 y(ho)n(we)n(v)o(er)l(,)e(cannot)g(be)f(reached)h(from)
+f(the)g(proof)h(in)f(the)g(second)h(line)g(on)e(the)i(right,)f(and)h
+(the)f(normal)277 4380 y(form)f(on)h(the)f(right)i(not)e(from)h(the)f
+(proof)i(in)e(the)h(second)h(line)e(on)h(the)g(left.)28
+b(Thus)21 b(the)h(choice)h(of)e(ho)n(w)277 4493 y(to)28
+b(nest)h(the)g(cuts)g(when)g(applying)h(a)e(logical)i(cut)f
+F6(\033)1985 4507 y Gc(R)2042 4493 y Ga(=)p F6(\033)2159
+4507 y Gc(L)2238 4493 y Gg(matters)g(with)g(respect)h(to)e(the)h
+(normal)277 4606 y(forms)24 b(that)g(can)g(be)f(reached.)p
+Black Black Black eop end
+%%Page: 106 118
+TeXDict begin 106 117 bop Black -144 51 a Gb(106)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black 321 388 a Gg(It)d(is)g(not)h(hard)g(to)f(see)g(that)h
+(the)f(reformulation)k(does)d(not)f(af)n(fect)h(the)g(beha)n(viour)i
+(of)d(cut-elimination)321 501 y(with)g(respect)i(to)f(strong)h
+(normalisation.)31 b(The)21 b(corresponding)k(ne)n(w)c(strate)o(gy)i
+(is)e(denoted)i(by)p 3366 427 119 3 v 3366 464 a Gc(aux)3496
+441 y FC(0)3351 501 y F6(\000)-31 b(\000)f(!)p Gg(;)321
+614 y(the)32 b(ne)n(w)f(reduction)j(system)e(is)g(denoted)h(by)f
+F4(\()p FY(T)1928 581 y Gc(m)1991 614 y Ga(;)p 2046 539
+V 2046 577 a Gc(aux)2176 554 y FC(0)2031 614 y F6(\000)-31
+b(\000)g(!)o F4(\))p Gg(.)53 b(T)-7 b(o)30 b(ensure)j(that)f(we)f(do)h
+(not)f(ha)n(v)o(e)i(to)321 727 y(e)o(xplore)25 b(an)o(y)f(choices)h(in)
+f F4(\()p FY(T)1253 694 y Gc(m)1316 727 y Ga(;)p 1371
+652 V 1371 690 a Gc(aux)1501 666 y FC(0)1356 727 y F6(\000)-31
+b(\000)f(!)p F4(\))p Gg(,)23 b(we)g(sho)n(w)g(that)p
+2122 652 V 2122 690 a Gc(aux)2252 666 y FC(0)2107 727
+y F6(\000)-31 b(\000)g(!)22 b Gg(is)i(con\003uent.)p
+Black 321 915 a Gb(Pr)n(oposition)h(4.1.4:)p Black 34
+w Gg(The)e(reduction)p 1582 840 V 1582 878 a Gc(aux)1712
+854 y FC(0)1567 915 y F6(\000)-31 b(\000)g(!)22 b Gg(is)i(con\003uent.)
+p Black 321 1127 a F7(Pr)l(oof)o(.)p Black 34 w Gg(By)f(inspection)j
+(of)e(the)f(reduction)k(rules:)j(the)24 b(only)g(critical)h(pair)f(is)f
+(of)h(the)g(form)1399 1392 y FL(Cut)p F4(\()1572 1380
+y FX(h)1600 1392 y Ga(a)1648 1380 y FX(i)1676 1392 y
+FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)2029 1380
+y F9(\()2057 1392 y Ga(y)2105 1380 y F9(\))2132 1392
+y FL(Ax)p F4(\()p Ga(y)s(;)g(b)p F4(\))q(\))321 1637
+y Gg(which)24 b(in)g(both)g(cases)h(reduces)g(to)e FL(Ax)p
+F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(.)p 3480 1637 4 62
+v 3484 1579 55 4 v 3484 1637 V 3538 1637 4 62 v 321 1848
+a(Consequently)-6 b(,)24 b(it)c(does)h(not)g(matter)f(which)p
+1758 1773 119 3 v 1758 1811 a Gc(aux)1887 1787 y FC(0)1743
+1848 y F6(\000)-32 b(\000)h(!)p Gg(-reduction)23 b(we)c(apply:)29
+b(we)19 b(recei)n(v)o(e)i(only)g(a)f(single)321 1961
+y(normal)i(form,)g(which)f(of)h(course)h(in)e(general)i(contains)g
+(instances)h(of)d FL(Mix)p Gg(.)27 b(This)21 b(normal)h(form)f(can)321
+2074 y(be)28 b(seen)h(as)f(a)f(compact)i(encoding)i(of)c(the)i
+(collection)h(of)e(all)g(normal)h(forms)f(reachable)i(by)p
+3374 1999 V 3374 2037 a Gc(aux)3353 2074 y F6(\000)-31
+b(\000)g(!)p Gg(,)321 2187 y(and)35 b(thus)h(also)f(by)997
+2149 y Gc(aux)976 2187 y F6(\000)-31 b(\000)g(!)33 b
+Gg(and)1376 2149 y Gc(cut)1345 2187 y F6(\000)-31 b(\000)g(!)p
+Gg(.)61 b(In)34 b(order)i(to)e(distinguish)k(them)d(from)f(the)h
+(normal)g(forms)321 2299 y(reachable,)30 b(for)c(e)o(xample,)i(in)e
+F4(\()p FY(T)t Ga(;)p 1455 2225 V 1455 2262 a Gc(aux)1435
+2299 y F6(\000)-31 b(\000)g(!)p F4(\))p Gg(,)26 b(we)g(shall)h
+(henceforth)i(refer)f(to)e(the)h(normal)g(forms)g(with)321
+2412 y(instances)h(of)c FL(Mix)g Gg(as)g F7(mix-normal)j(forms)p
+Gg(.)33 b(An)24 b(\223unwinding\224)j(function)g(will)e(allo)n(w)g(us)g
+(to)f(e)o(xtract)321 2525 y(the)g(collection)i(of)e(\223real\224)h
+(normal)f(forms)g(from)f(a)g(mix-normal)i(form.)462 2661
+y(Notice)j(that)f(the)g(\223trick\224)h(with)f(the)g(mix)g(term)f
+(constructor)k(cannot)e(be)f(used)h(in)e F4(\()p FY(T)t
+Ga(;)3245 2624 y Gc(aux)3225 2661 y F6(\000)-31 b(\000)g(!)p
+F4(\))p Gg(:)35 b(if)321 2774 y(we)28 b(replace)803 2737
+y Gc(c)834 2713 y FC(0)745 2774 y F6(\000)-32 b(\000)h(!)27
+b Gg(with)1172 2737 y Gc(c)1203 2713 y FC(000)1131 2774
+y F6(\000)-31 b(\000)g(!)27 b Gg(in)h F4(\()p FY(T)t
+Ga(;)1580 2737 y Gc(aux)1560 2774 y F6(\000)-31 b(\000)f(!)p
+F4(\))p Gg(,)29 b(we)e(do)h F7(not)h Gg(obtain)h(a)e(con\003uent)h
+(reduction)i(system,)321 2887 y(as)24 b(demonstrated)i(in)e(the)g(e)o
+(xample)g(belo)n(w)-6 b(.)p Black 321 3074 a Gb(Example)26
+b(4.1.5:)p Black 34 w Gg(Suppose)i Ga(M)10 b Gg(,)26
+b Ga(N)35 b Gg(and)27 b Ga(P)38 b Gg(are)27 b(cut-free)h(terms)e(and)h
+(assume:)35 b(\(i\))26 b Ga(a)k F6(62)g Ga(F)13 b(C)7
+b F4(\()p Ga(M)j F4(\))p Gg(,)321 3187 y(\(ii\))27 b
+Ga(M)36 b Gg(freshly)28 b(introduces)h Ga(b)p Gg(,)d(\(iii\))h
+Ga(y)33 b F6(62)d Ga(F)13 b(N)d F4(\()p Ga(P)j F4(\))27
+b Gg(and)f(\(i)n(v\))h Ga(N)35 b Gg(freshly)28 b(introduces)i
+Ga(x)p Gg(.)36 b(Consider)321 3300 y(then)25 b(the)e(follo)n(wing)i
+(term)1330 3565 y FL(Cut)p F4(\()1503 3553 y FX(h)1531
+3565 y Ga(b)1570 3553 y FX(i)1597 3565 y FL(Cut)p F4(\()1770
+3553 y FX(h)1798 3565 y Ga(a)1846 3553 y FX(i)1874 3565
+y Ga(M)10 b(;)2012 3553 y F9(\()2040 3565 y Ga(x)2092
+3553 y F9(\))2119 3565 y Ga(N)g F4(\))p Ga(;)2277 3553
+y F9(\()2305 3565 y Ga(y)2353 3553 y F9(\))2380 3565
+y Ga(P)j F4(\))26 b Ga(:)321 3810 y Gg(Reducing)f(\002rst)f(the)f
+(outer)i(cut,)f(we)e(recei)n(v)o(e)j(the)f(follo)n(wing)h(reduction)h
+(sequence.)p Black Black 982 4064 a FL(Cut)p F4(\()1155
+4052 y FX(h)1183 4064 y Ga(b)1222 4052 y FX(i)1249 4064
+y FL(Cut)p F4(\()1422 4052 y FX(h)1450 4064 y Ga(a)1498
+4052 y FX(i)1526 4064 y Ga(M)10 b(;)1664 4052 y F9(\()1692
+4064 y Ga(x)1744 4052 y F9(\))1771 4064 y Ga(N)g F4(\))p
+Ga(;)1929 4052 y F9(\()1957 4064 y Ga(y)2005 4052 y F9(\))2032
+4064 y Ga(P)j F4(\))733 4140 y Gc(aux)712 4177 y F6(\000)-31
+b(\000)g(!)99 b FL(Mix)p F4(\()p FL(Cut)p F4(\()1334
+4165 y FX(h)1362 4177 y Ga(a)1410 4165 y FX(i)1437 4177
+y FL(Cut)p F4(\()1610 4165 y FX(h)1638 4177 y Ga(b)1677
+4165 y FX(i)1704 4177 y Ga(M)10 b(;)1842 4165 y F9(\()1870
+4177 y Ga(y)1918 4165 y F9(\))1945 4177 y Ga(P)j F4(\))q
+Ga(;)2092 4165 y F9(\()2120 4177 y Ga(x)2172 4165 y F9(\))2199
+4177 y Ga(N)d F4(\))15 b Ga(;)31 b(P)13 b F4(\))123 b
+Gg(by)24 b(\(ii\))g(and)g(\(iii\))733 4253 y Gc(aux)712
+4290 y F6(\000)-31 b(\000)g(!)99 b FL(Mix)p F4(\()p FL(Cut)p
+F4(\()1334 4278 y FX(h)1362 4290 y Ga(a)1410 4278 y FX(i)1437
+4290 y Ga(P)13 b(;)1548 4278 y F9(\()1576 4290 y Ga(x)1628
+4278 y F9(\))1655 4290 y Ga(N)d F4(\))15 b Ga(;)31 b(P)13
+b F4(\))667 b Gg(by)24 b(\(ii\))g(and)g(\(iii\))733 4366
+y Gc(aux)712 4403 y F6(\000)-31 b(\000)g(!)99 b FL(Mix)p
+F4(\()p Ga(P)28 b(;)j(P)13 b F4(\))1208 b Gg(by)24 b(\(i\))g(and)g(\(i)
+n(v\))321 4654 y(Reducing)h(the)f(inner)h(cut)f(\002rst,)f(we)f(recei)n
+(v)o(e)j(a)e(slightly)i(dif)n(ferent)h(reduction)g(sequence.)p
+Black Black 982 4908 a FL(Cut)p F4(\()1155 4896 y FX(h)1183
+4908 y Ga(b)1222 4896 y FX(i)1249 4908 y FL(Cut)p F4(\()1422
+4896 y FX(h)1450 4908 y Ga(a)1498 4896 y FX(i)1526 4908
+y Ga(M)10 b(;)1664 4896 y F9(\()1692 4908 y Ga(x)1744
+4896 y F9(\))1771 4908 y Ga(N)g F4(\))p Ga(;)1929 4896
+y F9(\()1957 4908 y Ga(y)2005 4896 y F9(\))2032 4908
+y Ga(P)j F4(\))733 4984 y Gc(aux)712 5021 y F6(\000)-31
+b(\000)g(!)99 b FL(Cut)p F4(\()1155 5009 y FX(h)1183
+5021 y Ga(b)1222 5009 y FX(i)1249 5021 y Ga(M)11 b(;)1388
+5009 y F9(\()1415 5021 y Ga(y)1463 5009 y F9(\))1491
+5021 y Ga(P)i F4(\))1020 b Gg(by)24 b(\(i\))g(and)g(\(i)n(v\))733
+5097 y Gc(aux)712 5134 y F6(\000)-31 b(\000)g(!)99 b
+Ga(P)1577 b Gg(by)24 b(\(ii\))g(and)g(\(iii\))321 5385
+y(So)f(the)h(restrictions)j(imposed)d(by)g(the)g(strate)o(gy)h(are)f
+(necessary)i(for)e(con\003uence.)p Black Black eop end
+%%Page: 107 119
+TeXDict begin 107 118 bop Black 277 51 a Gb(4.1)23 b(Implementation)
+2798 b(107)p 277 88 3691 4 v Black 277 388 a Fq(4.1.1)99
+b(The)26 b(Code)277 596 y Gg(Let)j(us)h(no)n(w)g(gi)n(v)o(e)g(some)g
+(details)i(of)d(the)i(code.)49 b(Figure)30 b(4.3)g(sho)n(ws)g(the)g
+(main)g(datatypes)j(imple-)277 709 y(menting)25 b(the)f(follo)n(wing)h
+(design)g(decisions:)p Black 414 981 a F6(\017)p Black
+45 w Gg(names,)f(co-names)h(and)f(v)n(ariables)i(are)e(implemented)h
+(as)e(strings,)p Black 414 1202 a F6(\017)p Black 45
+w Gg(in)30 b(e)n(v)o(ery)g(cut)f(we)g(record)i(e)o(xplicitly)g(the)f
+(cut-formula)i(\(a)d(typing)i(algorithm)g(for)f(terms)g(is)504
+1315 y(then)25 b(rather)f(simple,)g(b)n(ut)g(be)o(yond)h(the)f(scope)h
+(of)e(this)h(thesis\),)h(and)p Black 414 1537 a F6(\017)p
+Black 45 w Gg(there)k(are)f(four)g(syntactic)i(cate)o(gories)h(of)c
+(terms:)38 b(terms,)29 b(named)f(terms,)h(co-named)g(terms)504
+1650 y(and)24 b(double-bounded)29 b(terms.)277 1922 y(The)24
+b(double-bounded)29 b(terms)c(implement)g(the)f(special)i(binding)g
+(operation)h(in)d(terms)h(of)f(the)g(form)277 2034 y
+FL(Imp)422 2056 y Gc(R)479 2034 y F4(\()514 2022 y F9(\()542
+2034 y Ga(x)594 2022 y F9(\))p FX(h)649 2034 y Ga(a)697
+2022 y FX(i)724 2034 y Ga(M)11 b(;)k(b)p F4(\))p Gg(.)27
+b(Some)19 b(e)o(xamples)h(of)f(ho)n(w)g(these)i(datatypes)h(relate)e
+(to)g(our)f(formal)h(de\002nitions)277 2147 y(are)k(gi)n(v)o(en)g(belo)
+n(w)-6 b(.)p 277 2335 V 277 3745 4 1410 v Black Black
+354 2496 a(Example)923 b(Code)354 2678 y(e)o(xpression)27
+b FL(f)6 b F4(\()p FL(g)q F4(\()p FL(x)p F4(\)\))572
+b Fm(F\("f",[F\("g",[Var\("x"\)]\)]\))354 2814 y Gg(formula)25
+b F6(8)p FL(x)p Ga(:)p F4(\()p Ga(A)15 b F6(^)g Ga(B)5
+b FL(x)p F4(\))471 b Fm(Forall\("x",And\(Atm\("A"\),Pre\("B",[Var\()o
+("x"\)])o(\)\)\))354 2949 y Gg(term)24 b FL(And)698 2913
+y Gc(i)698 2973 y(L)750 2949 y F4(\()785 2937 y F9(\()813
+2949 y Ga(x)865 2937 y F9(\))893 2949 y Ga(M)10 b(;)15
+b(y)s F4(\))485 b Fm(AndL\(t,m,"y"\))97 b Gg(where)24
+b Fm(t)15 b F6(2)25 b(f)p Fm(I)p Gg(,)p Fm(II)p F6(g)e
+Gg(and)2346 3085 y Fm(m)g Gg(is)g(the)h(code)h(of)2929
+3073 y F9(\()2956 3085 y Ga(x)3008 3073 y F9(\))3036
+3085 y Ga(M)354 3220 y Gg(term)f FL(Imp)688 3242 y Gc(R)746
+3220 y F4(\()781 3208 y F9(\()809 3220 y Ga(x)861 3208
+y F9(\))p FX(h)916 3220 y Ga(a)964 3208 y FX(i)991 3220
+y Ga(M)10 b(;)15 b(b)p F4(\))396 b Fm(ImpR\(m,"b"\))197
+b Gg(where)24 b Fm(m)f Gg(is)g(the)h(code)g(of)3174 3208
+y F9(\()3201 3220 y Ga(x)3253 3208 y F9(\))q FX(h)3308
+3220 y Ga(a)3356 3208 y FX(i)3384 3220 y Ga(M)364 3356
+y Gg(named)g(term)819 3344 y F9(\()846 3356 y Ga(x)898
+3344 y F9(\))926 3356 y Ga(M)579 b Fm(\("x",m\))364 3491
+y Gg(co-named)25 b(term)935 3479 y FX(h)962 3491 y Ga(a)1010
+3479 y FX(i)1038 3491 y Ga(M)467 b Fm(\("a",m\))364 3627
+y Gg(double-bounded)29 b(term)1167 3615 y F9(\()1195
+3627 y Ga(x)1247 3615 y F9(\))p FX(h)1302 3627 y Ga(a)1350
+3615 y FX(i)1377 3627 y Ga(M)128 b Fm(\("x","a",m\))2216
+3273 y FK(9)2216 3355 y(>)2216 3382 y(=)2216 3546 y(>)2216
+3573 y(;)2360 3487 y Gg(where)23 b Fm(m)g Gg(is)g(the)h(code)h(of)e
+Ga(M)p 3965 3745 V 277 3748 3691 4 v 277 3975 a Gg(Ne)o(xt)h(we)g(gi)n
+(v)o(e)h(the)g(details)h(for)e(the)h(cut-reductions)k(and)c(the)g(e)n
+(v)n(aluation)i(function.)34 b(The)o(y)24 b(call)h(six)277
+4088 y(subsidiary)i(functions,)e F7(viz.)p Black Black
+Black 414 4359 a F6(\017)p Black 45 w Fm(rename)p Gg(,)d(which)i
+(handles)h(the)f(renaming)h(of)e(names)h(and)g(co-names,)p
+Black 414 4581 a F6(\017)p Black 45 w Fm(substL)e Gg(and)i
+Fm(substR)p Gg(,)d(which)j(perform)h(the)f(proof)g(substitution)j
+F6(f)p 2732 4581 28 4 v 2750 4581 V 2768 4581 V 65 w(g)p
+Gg(,)p Black 414 4803 a F6(\017)p Black 45 w Fm(is)p
+609 4803 25 4 v 30 w(logical)p 989 4803 V 29 w(cut)p
+Gg(,)21 b(which)j(determines)i(whether)e(a)g(term)f(is)g(a)g(logical)j
+(cut,)d(and)p Black 414 5025 a F6(\017)p Black 45 w Fm(is)p
+609 5025 V 30 w(fresh)p 889 5025 V 29 w(nm)f Gg(and)i
+Fm(is)p 1294 5025 V 29 w(fresh)p 1573 5025 V 29 w(co)p
+Gg(,)e(which)i(test)f(whether)i(a)e(name)g(or)g(co-name)i(is)e(freshly)
+504 5137 y(introduced.)p Black Black eop end
+%%Page: 108 120
+TeXDict begin 108 119 bop Black -144 51 a Gb(108)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black Black 321 686 3226 4 v 321 4823 4 4138
+v Black Black Black Black 372 924 a Fl(type)44 b(name)224
+b(=)44 b(string;;)372 1015 y(type)g(coname)134 b(=)44
+b(string;;)372 1107 y(type)g(variable)g(=)g(string;;)372
+1289 y(type)g(tag)269 b(=)44 b(I)h(|)g(II;;)372 1472
+y(type)f(expr)g(=)551 1563 y(Var)89 b(of)45 b(variable)462
+1655 y(|)f(F)179 b(of)45 b(string)1224 1668 y(*)1313
+1655 y(expr)g(list)372 1746 y(;;)372 1928 y(type)f(form)g(=)551
+2020 y(Atm)314 b(of)44 b(string)462 2111 y(|)g(Pre)314
+b(of)44 b(string)1448 2124 y(*)1538 2111 y(expr)g(list)462
+2202 y(|)g(And)314 b(of)44 b(form)1358 2215 y(*)1448
+2202 y(form)462 2294 y(|)g(Or)359 b(of)44 b(form)1358
+2307 y(*)1448 2294 y(form)462 2385 y(|)g(Imp)314 b(of)44
+b(form)1358 2398 y(*)1448 2385 y(form)462 2476 y(|)g(Neg)314
+b(of)44 b(form)462 2568 y(|)g(Forall)179 b(of)44 b(variable)1538
+2581 y(*)1627 2568 y(form)462 2659 y(|)g(Exists)179 b(of)44
+b(variable)1538 2672 y(*)1627 2659 y(form)372 2750 y(;;)372
+2933 y(type)g(term)g(=)551 3024 y(Ax)314 b(of)44 b(name)1403
+3037 y(*)1538 3024 y(coname)462 3116 y(|)g(Cut)269 b(of)44
+b(form)1403 3129 y(*)1538 3116 y(cterm)1851 3129 y(*)1986
+3116 y(nterm)462 3207 y(|)g(NotL)224 b(of)44 b(cterm)1403
+3220 y(*)1538 3207 y(name)462 3298 y(|)g(NotR)224 b(of)44
+b(nterm)1403 3311 y(*)1538 3298 y(coname)462 3390 y(|)g(AndR)224
+b(of)44 b(cterm)1403 3403 y(*)1538 3390 y(cterm)1851
+3403 y(*)1986 3390 y(coname)462 3481 y(|)g(AndL)224 b(of)44
+b(tag)1403 3494 y(*)1538 3481 y(nterm)1851 3494 y(*)1986
+3481 y(name)462 3572 y(|)g(OrR)269 b(of)44 b(tag)1403
+3585 y(*)1538 3572 y(cterm)1851 3585 y(*)1986 3572 y(coname)462
+3664 y(|)g(OrL)269 b(of)44 b(nterm)1403 3677 y(*)1538
+3664 y(nterm)1851 3677 y(*)1986 3664 y(name)462 3755
+y(|)g(ImpR)224 b(of)44 b(ncterm)1403 3768 y(*)1538 3755
+y(name)462 3846 y(|)g(ImpL)224 b(of)44 b(cterm)1403 3859
+y(*)1538 3846 y(nterm)1851 3859 y(*)1986 3846 y(name)462
+3938 y(|)g(ForallL)89 b(of)44 b(nterm)1403 3951 y(*)1538
+3938 y(expr)1986 3951 y(*)2120 3938 y(name)462 4029 y(|)g(ForallR)89
+b(of)44 b(cterm)1403 4042 y(*)1538 4029 y(variable)1986
+4042 y(*)2120 4029 y(coname)462 4120 y(|)g(ExistsL)89
+b(of)44 b(nterm)1403 4133 y(*)1538 4120 y(variable)1986
+4133 y(*)2120 4120 y(name)462 4212 y(|)g(ExistsR)89 b(of)44
+b(cterm)1403 4225 y(*)1538 4212 y(expr)1986 4225 y(*)2120
+4212 y(coname)462 4303 y(|)g(Mix)269 b(of)44 b(term)1403
+4316 y(*)1493 4303 y(term)372 4394 y(and)g(nterm)134
+b(=)45 b(name)1313 4407 y(*)1403 4394 y(term)372 4486
+y(and)f(cterm)134 b(=)45 b(coname)1313 4499 y(*)1403
+4486 y(term)372 4577 y(and)f(ncterm)89 b(=)45 b(name)1313
+4590 y(*)1403 4577 y(coname)1717 4590 y(*)1806 4577 y(term)372
+4668 y(;;)p 3543 4823 V 321 4826 3226 4 v Black 1263
+4980 a Gg(Figure)24 b(4.3:)29 b(Code)24 b(for)g(main)f(datatypes.)p
+Black Black Black Black eop end
+%%Page: 109 121
+TeXDict begin 109 120 bop Black 277 51 a Gb(4.1)23 b(Implementation)
+2798 b(109)p 277 88 3691 4 v Black 277 388 a Gg(Here)23
+b(is)h(a)f(fragment)i(of)e(the)h(code)g(that)h(implements)g(the)e
+(cut-reductions.)p Black Black Black Black 277 604 a
+Fl(let)44 b(rec)h(aux_redu)e(term)h(=)367 695 y(match)g(term)g(with)456
+878 y(Cut\(f,\(b,Ax\(x,a\)\),\(z,m\)\))636 969 y(when)g(\(b=a)g(&)h
+(is_logical_cut)d(term\))636 1060 y(->)i(rename)g(m)h(z)f(x)367
+1243 y(|)g(Cut\(Or\(f1,f2\),\(c,OrR\(t,\(a,m\),b\)\),\(z,OrL\(\(x)o
+(1,n1\),)o(\(x2,n2)o(\),y\)\)\))636 1334 y(when)g(\(c=b)g(&)h(z=y)f(&)h
+(is_logical_cut)d(term\))i(->)636 1426 y(if)g(t=I)h(then)f
+(Cut\(f1,\(a,m\),\(x1,n1\)\))950 1517 y(else)g
+(Cut\(f2,\(a,m\),\(x2,n2\)\))367 1700 y(|)g(Cut\(f,\(a,m\),\(x,n\)\))
+636 1791 y(when)g(\(not)g(\(is_fresh_co)f(m)i(a\)\))f(&)h
+(\(is_fresh_nm)d(n)j(x\))636 1882 y(->)f(substL)g(m)h(\(a,f\))f
+(\(x,n\))367 2065 y(|)g(Cut\(f,\(a,m\),\(x,n\)\))636
+2156 y(when)g(\(not)g(\(is_fresh_co)f(m)i(a\)\))f(&)h(\(not)f
+(\(is_fresh_nm)f(n)h(x\)\))636 2248 y(->)g(Mix\(substL)f(m)i(\(a,f\))f
+(\(x,n\),substR)f(n)i(\(x,f\))f(\(a,m\)\))367 2430 y(|)g(...)277
+2522 y(;;)277 2759 y Gg(The)25 b(\002rst)f(pattern)j(case)f(is)e(for)i
+(logical)g(cuts)g(with)f(axioms,)h(the)f(second)h(for)g(logical)g(cuts)
+g F6(_)3264 2773 y Gc(R)3321 2759 y Ga(=)p F6(_)3427
+2773 y Gc(L)3479 2759 y Gg(,)277 2872 y(the)f(third)g(is)f(for)h
+(commuting)h(cuts)f(where)f(only)h(the)g(right)g(subproof)i(introduces)
+g(the)e(cut-formula)277 2985 y(freshly)-6 b(,)25 b(and)f(the)f(last)h
+(is)f(for)h(commuting)g(cuts)g(where)g(both)g(subproofs)i(do)d(not)h
+(freshly)h(introduce)277 3098 y(the)f(cut-formula.)418
+3229 y(As)e(mentioned)j(earlier)l(,)g(the)e(reason)i(for)e(restricting)
+i F4(\()p FY(T)t Ga(;)2285 3192 y Gc(aux)2265 3229 y
+F6(\000)-31 b(\000)g(!)o F4(\))23 b Gg(w)o(as)g(to)f(obtain)j(a)d
+(simple)i(e)n(v)n(al-)277 3342 y(uation)e(function)h(that)f(computes)g
+(all)f(normal)g(forms.)28 b(It)21 b(is)f(the)h(follo)n(wing)i
+(tail-recursi)n(v)o(e)g(function.)p Black Black Black
+Black 277 3557 a Fl(let)44 b(rec)h(eval)f(term)g(=)367
+3649 y(match)g(term)g(with)546 3831 y(Cut\(f,m,n\))447
+b(->)44 b(eval)g(\(aux_redu)g(\(Cut\(f,m,n\)\)\))456
+3923 y(|)h(Ax\(x,a\))582 b(->)44 b(Ax\(x,a\))456 4014
+y(|)h(NotL\(\(a,m\),x\))312 b(->)44 b(NotL\(\(a,eval)f(m\),x\))456
+4105 y(|)i(AndR\(\(a,m\),\(b,n\),c\))d(->)i(AndR\(\(a,eval)f
+(m\),\(b,eval)g(n\),c\))456 4196 y(|)i(...)456 4288 y(|)g
+(ImpR\(\(x,a,m\),b\))222 b(->)44 b(ImpR\(\(x,a,eval)f(m\),b\))456
+4379 y(|)i(Mix\(m,n\))537 b(->)44 b(Mix\(eval)g(m,eval)g(n\))277
+4470 y(;;)277 4708 y Gg(This)32 b(e)n(v)n(aluation)j(function)g
+(generates)g(for)d(e)n(v)o(ery)h(term)g(a)f(mix-normal)h(form.)56
+b(From)31 b(this)i(mix-)277 4821 y(normal)23 b(form)e(the)h(collection)
+j(of)c(the)h(\223real\224)h(normal)g(forms)f(can)g(be)g(e)o(xtracted)h
+(using)g(the)f(unwind-)277 4933 y(ing)g(function)i(gi)n(v)o(en)f(belo)n
+(w)-6 b(,)22 b(which)g(returns)i(the)e(normal)h(forms)f(as)g(a)f(list)h
+(of)g(terms.)28 b(This)22 b(function)277 5046 y(calls)i(tw)o(o)g
+(subsidiary)i(function:)31 b Fm(pair)p 1582 5046 25 4
+v 30 w(up)p 1712 5046 V 29 w(lists)p Gg(,)21 b(which)j(returns)h(a)e
+(list)h(that)g(contains)i(all)e(pos-)277 5159 y(sible)i(combinations)i
+(of)d(forming)h(pairs)g(from)f(tw)o(o)g(lists,)g(and)h
+Fm(map)p Gg(,)e(which)h(applies)i(a)d(function)j(to)277
+5272 y(all)d(elements)h(of)e(a)g(gi)n(v)o(en)h(list.)p
+Black Black eop end
+%%Page: 110 122
+TeXDict begin 110 121 bop Black -144 51 a Gb(110)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black Black Black Black Black 321 388 a Fl(let)45
+b(rec)f(unwind)g(term)89 b(=)411 480 y(match)44 b(term)g(with)590
+571 y(Ax\(x,a\))178 b(->)45 b([Ax\(x,a\)])501 662 y(|)f
+(NotL\(\(a,m\),x\))1083 754 y(->)h(map)f(\(fun)g(m)h(->)g
+(\(NotL\(\(a,m\),x\)\)\))d(\(unwind)h(m\))501 845 y(|)h
+(AndR\(\(a,m\),\(b,n\),c\))1083 936 y(->)h(let)f(plist)g(=)h
+(pair_up_lists)e(\(unwind)g(m\))i(\(unwind)e(n\))i(in)1218
+1028 y(map)f(\(fun)g(\(m,n\))g(->)h(\(AndR\(\(a,m\),\(b,n\),c\)\)\))c
+(plist)501 1119 y(|)j(...)501 1210 y(|)g(ImpR\(\(x,a,m\),b\))1083
+1301 y(->)h(map)f(\(fun)g(m)h(->)g(\(ImpR\(\(x,a,m\),b\)\)\))c
+(\(unwind)j(m\))501 1393 y(|)g(Mix\(m,n\))133 b(->)45
+b(\(unwind)f(m\))g(@)h(\(unwind)e(n\))321 1484 y(;;)321
+1726 y Gg(The)25 b(ne)o(xt)g(function)i(calculates)h(the)d(number)h(of)
+e(normal)i(forms)f(encoded)i(in)e(a)f(mix-normal)j(form)321
+1839 y(without)d(actually)g(e)o(xtracting)h(the)e(normal)g(forms.)29
+b(This)22 b(function)j(is)d(useful)i(for)e(analysing)k(e)o(xam-)321
+1952 y(ples.)p Black Black Black Black 321 2173 a Fl(let)45
+b(rec)f(count)g(term)89 b(=)411 2264 y(match)44 b(term)g(with)590
+2355 y(Ax\(x,a\))582 b(->)44 b(1)501 2447 y(|)g(NotL\(\(a,m\),x\))312
+b(->)44 b(\(count)g(m\))501 2538 y(|)g(AndR\(\(a,m\),\(b,n\),c\))e(->)i
+(\(count)g(m\))2070 2551 y(*)2159 2538 y(\(count)g(n\))501
+2629 y(|)g(...)501 2720 y(|)g(ImpR\(\(x,a,m\),b\))222
+b(->)44 b(\(count)g(m\))501 2812 y(|)g(Mix\(m,n\))537
+b(->)44 b(\(count)g(m\))h(+)f(\(count)g(n\))321 2903
+y(;;)462 3145 y Gg(W)-7 b(e)25 b(should)i(no)n(w)d(lik)o(e)i(to)f(e)o
+(xamine)h(an)f(e)o(xample.)35 b(Consider)26 b(the)g(proof)g(in)f(which)
+h(for)f(bre)n(vity)321 3258 y(all)f(names)g(and)g(co-names)h(are)f
+(omitted.)p 584 3494 293 4 v 584 3568 a FU(A)p FF(a)p
+704 3556 10 38 v 714 3539 42 4 v 88 w FU(A)p FF(a)p 959
+3493 299 4 v 83 w FU(A)p FF(b)p 1082 3556 10 38 v 1092
+3539 42 4 v 88 w FU(A)p FF(b)p 584 3588 674 4 v 623 3662
+a FU(A)p FF(a)p FT(_)p FU(A)p FF(b)p 904 3650 10 38 v
+914 3633 42 4 v 89 w FU(A)p FF(a)p FU(;)14 b(A)p FF(b)1257
+3604 y FT(_)1312 3617 y FS(L)p 537 3698 768 4 v 537 3777
+a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)p FU(A)p
+FF(b)p FG(\))p 990 3765 10 38 v 1000 3748 42 4 v 89 w
+FU(A)p FF(a)p FU(;)g(A)p FF(b)1304 3720 y FT(8)1351 3732
+y FS(L)p 508 3817 825 4 v 508 3896 a FT(8)p FF(x)p FU(:)p
+FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p
+FG(\))p 1019 3884 10 38 v 1028 3868 42 4 v 89 w FU(A)p
+FF(a)p FU(;)g(A)p FF(b)1332 3840 y FT(8)1379 3852 y FS(L)p
+455 3937 931 4 v 455 4016 a FT(8)p FF(x)p FU(:)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p
+966 4004 10 38 v 975 3987 42 4 v 88 w FU(A)p FF(b)p FU(;)g
+FT(8)p FF(x)p FU(:A)p FF(x)1385 3960 y FT(8)1432 3972
+y FS(R)p 403 4056 1036 4 v 403 4135 a FT(8)p FF(x)p FU(:)p
+FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p
+FG(\))p 913 4123 10 38 v 923 4107 42 4 v 89 w FT(8)p
+FF(x)p FU(:A)p FF(x)p FU(;)g FT(8)p FF(y)q FU(:A)p FF(y)1438
+4079 y FT(8)1485 4091 y FS(R)p 1637 3747 287 4 v 1637
+3821 a FU(A)p FF(c)p 1754 3809 10 38 v 1764 3792 42 4
+v 88 w FU(A)p FF(c)p 2006 3746 299 4 v 83 w FU(A)p FF(d)p
+2130 3809 10 38 v 2139 3792 42 4 v 88 w FU(A)p FF(d)p
+1637 3840 668 4 v 1676 3915 a FU(A)p FF(c)p FU(;)g(A)p
+FF(d)p 1936 3903 10 38 v 1945 3886 42 4 v 88 w FU(A)p
+FF(c)p FT(^)q FU(A)p FF(d)2304 3857 y FT(^)2360 3870
+y FS(R)p 1622 3951 698 4 v 1622 4025 a FU(A)p FF(d)p
+FU(;)g FT(8)p FF(x)p FU(:A)p FF(x)p 1990 4013 10 38 v
+2000 3996 42 4 v 88 w FU(A)p FF(c)p FT(^)p FU(A)p FF(d)2319
+3973 y FT(8)2366 3985 y FS(L)p 1622 4061 698 4 v 1693
+4135 a FT(8)p FF(x)p FU(:A)p FF(x)p 1919 4123 10 38 v
+1929 4107 42 4 v 88 w FU(A)p FF(c)p FT(^)p FU(A)p FF(d)2319
+4080 y FT(8)2388 4050 y Fy(?)2366 4103 y FS(L)p 403 4176
+1846 4 v 782 4255 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p
+FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p 1293
+4243 10 38 v 1302 4226 42 4 v 89 w FT(8)p FF(y)q FU(:A)p
+FF(y)q FU(;)g(A)p FF(c)p FT(^)q FU(A)p FF(d)2248 4204
+y Gd(Cut)p 2532 3867 287 4 v 2532 3940 a FU(A)p FF(e)p
+2650 3928 10 38 v 2659 3911 42 4 v 88 w FU(A)p FF(e)p
+2901 3866 275 4 v 83 w FU(A)p FF(f)p 3013 3928 10 38
+v 3023 3911 42 4 v 95 w FU(A)p FF(f)p 2532 3960 645 4
+v 2571 4034 a FU(A)p FF(e)p FU(;)g(A)p FF(f)p 2819 4022
+10 38 v 2829 4006 42 4 v 95 w FU(A)p FF(e)p FT(^)p FU(A)p
+FF(f)3176 3977 y FT(^)3232 3989 y FS(R)p 2516 4070 677
+4 v 2516 4145 a FU(A)p FF(f)6 b FU(;)14 b FT(8)p FF(y)q
+FU(:A)p FF(y)p 2875 4133 10 38 v 2884 4116 42 4 v 89
+w FU(A)p FF(e)p FT(^)q FU(A)p FF(f)3192 4093 y FT(8)3239
+4105 y FS(L)p 2516 4181 677 4 v 2581 4255 a FT(8)p FF(y)q
+FU(:A)p FF(y)p 2810 4243 10 38 v 2819 4226 42 4 v 89
+w FU(A)p FF(e)p FT(^)q FU(A)p FF(f)3192 4200 y FT(8)3261
+4170 y Fy(?)3239 4223 y FS(L)p 782 4296 2346 4 v 1392
+4374 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p
+FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p 1903 4362 10 38 v
+1912 4346 42 4 v 88 w FU(A)p FF(c)p FT(^)q FU(A)p FF(d)p
+FU(;)g(A)p FF(e)p FT(^)p FU(A)p FF(f)3127 4323 y Gd(Cut)p
+Black 3387 4374 a(\(4.1\))p Black 321 4708 a Gg(One)26
+b(of)h(its)f(normal)i(forms)e(is)h(gi)n(v)o(en)g(in)f(Figure)h(4.4.)37
+b(Ho)n(we)n(v)o(er)26 b(let)h(us)f(analyse)j(the)d(collection)k(of)321
+4821 y(all)d(normal)g(forms)g(reachable)i(from)e(this)g(proof.)38
+b(As)26 b(can)h(be)g(seen,)g(the)g(proof)h(contains)h(tw)o(o)d(cuts)321
+4933 y(and)i(tw)o(o)f(implicit)i(contractions)i(\(in)c(the)h(inference)
+i(rules)e(mark)o(ed)g(with)g(a)e(star\).)41 b(If)28 b(we)e(feed)i(the)
+321 5046 y(corresponding)33 b(term)28 b(into)h(our)f(e)n(v)n(aluation)j
+(function)f(and)f(count)g(all)g(normal)g(forms)f(that)h(can)g(be)321
+5159 y(e)o(xtracted)34 b(from)d(the)h(corresponding)k(mix-normal)d
+(form,)g(we)e(recei)n(v)o(e)h(the)g(number)g(1,618,912!)321
+5272 y(Although)h(the)f(normal)g(forms)g(are)g(all)f(moderately)j
+(small,)f(we)e(are)g(confronted)k(with)c(a)g(serious)321
+5385 y(problem:)58 b(the)37 b(collection)j(of)d(normal)h(forms)f(does)h
+(not)f(\002t)g(into)g(the)h(memory)f(of)g(an)g(a)n(v)o(erage)p
+Black Black eop end
+%%Page: 111 123
+TeXDict begin 111 122 bop Black 277 51 a Gb(4.1)23 b(Implementation)
+2798 b(111)p 277 88 3691 4 v Black 277 388 a Gg(computer)-5
+b(.)636 355 y F5(1)726 388 y Gg(If)30 b(we)g(w)o(ant)h(to)g(analyse)i
+(the)e(normal)g(forms)g(with)g(re)o(gard)h(to)e(their)i(computational)
+277 501 y(content,)c(we)c(ha)n(v)o(e)i(to)g(alle)n(viate)h(this)f
+(problem.)36 b(There)25 b(are)h(tw)o(o)f(reasons)i(for)f(this)g(\223e)o
+(xplosion\224)i(in)277 614 y(the)c(number)g(of)g(normal)g(forms:)p
+Black 414 836 a F6(\017)p Black 45 w Gg(First,)34 b(in)e(case)g(of)g
+(commuting)h(cuts)g(whose)f(cut-formula)i(is)e(not)g(freshly)h
+(introduced)i(on)504 949 y(either)i(side,)h(the)d(reduction)1533
+911 y Gc(c)1564 888 y FC(0)1475 949 y F6(\000)-32 b(\000)h(!)34
+b Gg(leads,)k(in)d(general,)40 b(to)34 b(dif)n(ferent)j(normal)f
+(forms,)i(and)504 1061 y(thus)29 b(the)f(reduct)h(of)1218
+1024 y Gc(c)1249 1001 y FC(000)1178 1061 y F6(\000)-31
+b(\000)f(!)27 b Gg(includes)j(an)e(instance)i(of)e FL(Mix)o
+Gg(.)40 b(In)28 b(some)g(cases,)i(ho)n(we)n(v)o(er)l(,)f(this)504
+1174 y(reduction)37 b(does)e(not)g(generate)h(dif)n(ferent)g(normal)f
+(forms.)62 b(Consider)l(,)38 b(for)d(e)o(xample,)i(the)504
+1287 y(follo)n(wing)25 b(proof.)p 1075 1448 315 4 v 1075
+1521 a FU(A)p 1155 1509 10 38 v 1165 1493 42 4 v 88 w(A;)14
+b(C)p 1472 1448 311 4 v 89 w(C)q(;)g(A)p 1651 1509 10
+38 v 1660 1493 42 4 v 89 w(A)p 1075 1557 708 4 v 1322
+1631 a(A)p 1403 1619 10 38 v 1413 1602 42 4 v 89 w(A)1824
+1585 y Gd(Cut)p 2027 1448 331 4 v 2027 1521 a FU(B)p
+2113 1509 10 38 v 2122 1493 42 4 v 92 w(B)t(;)g(D)p 2440
+1448 331 4 v 85 w(D)r(;)g(B)p 2634 1509 10 38 v 2643
+1493 42 4 v 92 w(B)p 2027 1557 744 4 v 2288 1631 a(B)p
+2373 1619 10 38 v 2383 1602 42 4 v 92 w(B)2812 1585 y
+Gd(Cut)p 1322 1651 1188 4 v 1697 1724 a FU(A;)g(B)p 1881
+1712 10 38 v 1891 1695 42 4 v 92 w(A)p FT(^)p FU(B)2551
+1668 y FT(^)2607 1680 y FS(R)504 2063 y Gg(Our)32 b(e)n(v)n(aluation)i
+(function)g(calculates)g(a)e(mix-normal)h(form)f(for)g(this)g(proof)h
+(from)f(which)504 2176 y(four)25 b(normal)f(forms)g(can)g(be)f(e)o
+(xtracted.)31 b(But)23 b(all)h(of)f(them)h(stand)g(for)g(the)g(proof)p
+1646 2336 213 4 v 1646 2410 a FU(A)p 1726 2398 10 38
+v 1736 2381 42 4 v 88 w(A)p 1941 2336 223 4 v 83 w(B)p
+2027 2398 10 38 v 2036 2381 42 4 v 92 w(B)p 1646 2430
+518 4 v 1685 2503 a(A;)14 b(B)p 1870 2491 10 38 v 1879
+2474 42 4 v 92 w(A)p FT(^)q FU(B)2205 2446 y FT(^)2260
+2459 y FS(R)2338 2446 y FU(:)504 2842 y Gg(W)-7 b(e)19
+b(could)i(alle)n(viate)h(our)e(problem)h(by)e(letting)2051
+2805 y Gc(c)2082 2781 y FC(000)2011 2842 y F6(\000)-32
+b(\000)h(!)19 b Gg(only)h(reduce)i(to)d FL(Mix)o F4(\()p
+Ga(M)5 b(;)15 b(N)10 b F4(\))20 b Gg(pro)o(vided)504
+2955 y Ga(M)42 b F6(6\021)31 b Ga(N)10 b Gg(.)38 b(Ho)n(we)n(v)o(er)l
+(,)28 b(in)e(the)i(e)o(xamples)g(we)e(analysed)j(this)f(did)f(not)g
+(reduce)i(substantially)504 3067 y(the)24 b(number)h(of)e(normal)h
+(forms.)p Black 414 3253 a F6(\017)p Black 45 w Gg(The)35
+b(second)i(reason)f(is)f(more)g(subtle.)65 b(T)-7 b(o)34
+b(e)o(xplain)i(the)g(issues)g(we)e(gi)n(v)o(e)i(the)f(reader)h(an)504
+3365 y(e)o(xample.)30 b(Consider)25 b(the)f(proof)p 1535
+3526 213 4 v 1535 3600 a FU(A)p 1616 3588 10 38 v 1625
+3571 42 4 v 88 w(A)p 1474 3620 335 4 v 1474 3693 a(A)p
+FT(^)p FU(B)p 1677 3681 10 38 v 1686 3664 42 4 v 92 w(A)1850
+3642 y FT(^)1906 3612 y FJ(1)1906 3665 y FS(L)p 2099
+3526 213 4 v 2099 3600 a FU(A)p 2179 3588 10 38 v 2189
+3571 42 4 v 88 w(A)p 2038 3620 334 4 v 2038 3693 a(A)p
+2119 3681 10 38 v 2129 3664 42 4 v 88 w(A)p FT(_)q FU(C)2413
+3642 y FT(_)2468 3612 y FJ(1)2468 3665 y FS(R)p 1474
+3713 898 4 v 1695 3786 a FU(A)p FT(^)p FU(B)p 1898 3774
+10 38 v 1907 3757 42 4 v 92 w(A)p FT(_)q FU(C)2413 3741
+y Gd(Cut)504 4125 y Gg(and)33 b(let)e(us)h(calculate)i(the)e(normal)h
+(forms)f(reachable)i(from)d(this)i(proof\227we)f(recei)n(v)o(e)h(the)
+504 4238 y(follo)n(wing)25 b(tw)o(o)f(proofs)p Black
+Black 1355 4414 213 4 v 1355 4487 a FU(A)p 1436 4475
+10 38 v 1445 4459 42 4 v 88 w(A)p 1295 4507 334 4 v 1295
+4580 a(A)p 1375 4568 10 38 v 1385 4552 42 4 v 88 w(A)p
+FT(_)q FU(C)1669 4529 y FT(_)1725 4499 y FJ(1)1725 4552
+y FS(R)p 1233 4600 456 4 v 1233 4674 a FU(A)p FT(^)q
+FU(B)p 1437 4662 10 38 v 1446 4645 42 4 v 92 w(A)p FT(_)q
+FU(C)1731 4623 y FT(^)1786 4593 y FJ(1)1786 4646 y FS(L)1935
+4603 y Gg(and)p 2288 4414 213 4 v 2288 4487 a FU(A)p
+2368 4475 10 38 v 2378 4459 42 4 v 88 w(A)p 2226 4507
+335 4 v 2226 4580 a(A)p FT(^)q FU(B)p 2430 4568 10 38
+v 2439 4552 42 4 v 92 w(A)2603 4529 y FT(^)2658 4499
+y FJ(1)2658 4552 y FS(L)p 2166 4600 456 4 v 2166 4674
+a FU(A)p FT(^)q FU(B)p 2369 4662 10 38 v 2379 4645 42
+4 v 92 w(A)p FT(_)p FU(C)2663 4623 y FT(_)2719 4593 y
+FJ(1)2719 4646 y FS(R)504 4902 y Gg(which)30 b(dif)n(fer)h(only)g(in)e
+(the)h(order)h(of)f(their)g(inferences)j(and)d(can)g(be)g(identi\002ed)
+h(by)f(simple)504 5015 y(permutation)d(rules)d(introduced)j(by)d
+(Kleene)g([1952b].)32 b(In)23 b(what)h(follo)n(ws,)g(we)f(shall)i
+(restrict)504 5128 y(the)32 b(reduction)1061 5091 y Gc(c)1092
+5067 y FC(000)1021 5128 y F6(\000)-32 b(\000)h(!)31 b
+Gg(such)h(that)h(in)e(the)h(e)o(xamples)h(of)f(the)g(kind)h(abo)o(v)o
+(e)f(only)g(one)h(normal)p Black 277 5206 1290 4 v 383
+5262 a F3(1)412 5294 y F2(If)19 b(we)h(assume)h(that)f(e)n(v)o(ery)h
+(normal)g(form)f(occupies)i(100)f(Bytes)f(of)g(memory)-5
+b(,)21 b(which)g(is)e(an)i(optimistic)f(estimation)277
+5385 y(for)f(the)g(smallest)g(of)f(these)i(normal)f(forms,)g(we)g(need)
+g(a)g(computer)h(with)f(more)g(than)g(150)h(MByte)f(of)g(RAM.)p
+Black Black Black eop end
+%%Page: 112 124
+TeXDict begin 112 123 bop Black -144 51 a Gb(112)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black Black 321 569 3226 4 v 321 4940 4 4371
+v 1914 641 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1914 641 a 2146 -345 287 4 v 2146 -272 a
+FU(A)p FF(c)p 2264 -284 10 38 v 2273 -301 42 4 v 88 w
+FU(A)p FF(c)p 2515 -345 287 4 v 83 w FU(A)p FF(e)p 2633
+-284 10 38 v 2642 -301 42 4 v 88 w FU(A)p FF(e)p 2146
+-252 656 4 v 2185 -179 a FU(A)p FF(c)p FT(_)q FU(A)p
+FF(e)p 2457 -191 10 38 v 2467 -207 42 4 v 88 w FU(A)p
+FF(c)p FU(;)14 b(A)p FF(e)2802 -235 y FT(_)2857 -223
+y FS(L)p 2097 -143 753 4 v 2097 -64 a FT(8)p FF(y)q FU(:)p
+FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(e)p FG(\))p 2545
+-76 10 38 v 2555 -92 42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p
+FF(e)2850 -120 y FT(8)2897 -108 y FS(L)p 2066 -23 816
+4 v 2066 56 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p
+FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p 2577 44 10
+38 v 2586 27 42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p FF(e)2881
+-1 y FT(8)2928 11 y FS(L)p 3137 -347 299 4 v 3137 -273
+a FU(A)p FF(d)p 3261 -285 10 38 v 3270 -302 42 4 v 88
+w FU(A)p FF(d)p 3518 -346 287 4 v 83 w FU(A)p FF(e)p
+3636 -285 10 38 v 3646 -302 42 4 v 89 w FU(A)p FF(e)p
+3137 -253 668 4 v 3176 -179 a FU(A)p FF(d)p FT(_)q FU(A)p
+FF(e)p 3455 -191 10 38 v 3464 -207 42 4 v 88 w FU(A)p
+FF(d)p FU(;)g(A)p FF(e)3805 -236 y FT(_)3860 -224 y FS(L)p
+3092 -143 759 4 v 3092 -64 a FT(8)p FF(y)q FU(:)p FG(\()p
+FU(A)p FF(y)q FT(_)q FU(A)p FF(e)p FG(\))p 3539 -76 10
+38 v 3549 -92 42 4 v 88 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3850
+-120 y FT(8)3897 -108 y FS(L)p 3060 -23 822 4 v 3060
+56 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p
+FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p 3571 44 10 38 v 3580
+27 42 4 v 88 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3882 -1
+y FT(8)3929 11 y FS(L)p 2066 96 1816 4 v 2418 175 a FT(8)p
+FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q
+FU(A)p FF(x)p FG(\))p 2928 163 10 38 v 2938 147 42 4
+v 89 w FU(A)p FF(e)p FU(;)g(A)p FF(e)p FU(;)g(A)p FF(c)p
+FT(^)q FU(A)p FF(d)3882 113 y FT(^)3937 126 y FS(R)p
+4157 -346 287 4 v 4157 -273 a FU(A)p FF(c)p 4275 -285
+10 38 v 4284 -302 42 4 v 88 w FU(A)p FF(c)p 4526 -347
+275 4 v 83 w FU(A)p FF(f)p 4638 -285 10 38 v 4648 -302
+42 4 v 95 w FU(A)p FF(f)p 4157 -253 645 4 v 4197 -179
+a FU(A)p FF(c)p FT(_)p FU(A)p FF(f)p 4463 -191 10 38
+v 4472 -207 42 4 v 94 w FU(A)p FF(c)p FU(;)g(A)p FF(f)4801
+-236 y FT(_)4857 -224 y FS(L)p 4109 -143 742 4 v 4109
+-64 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q
+FU(A)p FF(f)6 b FG(\))p 4551 -76 10 38 v 4560 -92 42
+4 v 88 w FU(A)p FF(c)p FU(;)14 b(A)p FF(f)4850 -120 y
+FT(8)4897 -108 y FS(L)p 4074 -23 810 4 v 4074 56 a FT(8)p
+FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)r
+FU(A)p FF(x)p FG(\))p 4585 44 10 38 v 4595 27 42 4 v
+88 w FU(A)p FF(c)p FU(;)g(A)p FF(f)4884 -1 y FT(8)4931
+11 y FS(L)p 5143 -347 299 4 v 5143 -273 a FU(A)p FF(d)p
+5266 -285 10 38 v 5276 -302 42 4 v 88 w FU(A)p FF(d)p
+5524 -347 275 4 v 83 w FU(A)p FF(f)p 5636 -285 10 38
+v 5645 -302 42 4 v 94 w FU(A)p FF(f)p 5143 -253 657 4
+v 5182 -179 a FU(A)p FF(d)p FT(_)p FU(A)p FF(f)p 5454
+-191 10 38 v 5464 -207 42 4 v 95 w FU(A)p FF(d)p FU(;)g(A)p
+FF(f)5799 -236 y FT(_)5854 -224 y FS(L)p 5097 -143 748
+4 v 5097 -64 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
+FT(_)q FU(A)p FF(f)6 b FG(\))p 5539 -76 10 38 v 5549
+-92 42 4 v 89 w FU(A)p FF(d)p FU(;)14 b(A)p FF(f)5844
+-120 y FT(8)5891 -108 y FS(L)p 5063 -23 816 4 v 5063
+56 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p
+FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p 5573 44 10 38 v 5583
+27 42 4 v 89 w FU(A)p FF(d)p FU(;)g(A)p FF(f)5878 -1
+y FT(8)5925 11 y FS(L)p 4074 96 1804 4 v 4426 175 a FT(8)p
+FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q
+FU(A)p FF(x)p FG(\))p 4937 163 10 38 v 4946 147 42 4
+v 89 w FU(A)p FF(f)6 b FU(;)14 b(A)p FF(f)6 b FU(;)14
+b(A)p FF(c)p FT(^)q FU(A)p FF(d)5878 113 y FT(^)5934
+126 y FS(R)p 2418 216 3109 4 v 3277 295 a FT(8)p FF(x)p
+FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p
+FF(x)p FG(\))p 3787 283 10 38 v 3797 266 42 4 v 89 w
+FU(A)p FF(e)p FU(;)g(A)p FF(f)6 b FU(;)14 b(A)p FF(c)p
+FT(^)q FU(A)p FF(d)p FU(;)g(A)p FF(e)p FT(^)p FU(A)p
+FF(f)5527 233 y FT(^)5582 245 y FS(R)2066 350 y FI(|)p
+2103 350 1887 10 v 1887 w({z)p 4064 350 V 1887 w(})3998
+429 y FS(X)p 2044 938 287 4 v 2044 1012 a FU(A)p FF(c)p
+2161 1000 10 38 v 2171 983 42 4 v 88 w FU(A)p FF(c)p
+2413 938 287 4 v 83 w FU(A)p FF(e)p 2531 1000 10 38 v
+2540 983 42 4 v 88 w FU(A)p FF(e)p 2044 1032 656 4 v
+2083 1105 a FU(A)p FF(c)p FT(_)q FU(A)p FF(e)p 2355 1093
+10 38 v 2365 1076 42 4 v 88 w FU(A)p FF(c)p FU(;)g(A)p
+FF(e)2699 1049 y FT(_)2755 1061 y FS(L)p 1995 1141 753
+4 v 1995 1220 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
+FT(_)q FU(A)p FF(e)p FG(\))p 2443 1208 10 38 v 2453 1191
+42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p FF(e)2748 1164 y
+FT(8)2795 1176 y FS(L)p 1964 1261 816 4 v 1964 1340 a
+FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
+FT(_)q FU(A)p FF(x)p FG(\))p 2474 1328 10 38 v 2484 1311
+42 4 v 89 w FU(A)p FF(c)p FU(;)g(A)p FF(e)2779 1283 y
+FT(8)2826 1295 y FS(L)p 3035 937 299 4 v 3035 1011 a
+FU(A)p FF(d)p 3159 999 10 38 v 3168 982 42 4 v 88 w FU(A)p
+FF(d)p 3416 938 287 4 v 83 w FU(A)p FF(e)p 3534 999 10
+38 v 3543 982 42 4 v 88 w FU(A)p FF(e)p 3035 1031 668
+4 v 3074 1105 a FU(A)p FF(d)p FT(_)q FU(A)p FF(e)p 3352
+1093 10 38 v 3362 1076 42 4 v 88 w FU(A)p FF(d)p FU(;)g(A)p
+FF(e)3702 1048 y FT(_)3758 1060 y FS(L)p 2989 1141 759
+4 v 2989 1220 a FT(8)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
+FT(_)q FU(A)p FF(e)p FG(\))p 3437 1208 10 38 v 3447 1191
+42 4 v 89 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3748 1164 y
+FT(8)3795 1176 y FS(L)p 2958 1261 822 4 v 2958 1340 a
+FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
+FT(_)q FU(A)p FF(x)p FG(\))p 3469 1328 10 38 v 3478 1311
+42 4 v 89 w FU(A)p FF(d)p FU(;)g(A)p FF(e)3779 1283 y
+FT(8)3826 1295 y FS(L)p 1964 1380 1816 4 v 2384 1459
+a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q
+FT(_)q FU(A)p FF(x)p FG(\))p 2894 1447 10 38 v 2904 1430
+42 4 v 89 w FU(A)p FF(e)p FU(;)g(A)p FF(c)p FT(^)p FU(A)p
+FF(d)3779 1397 y FT(^)3835 1410 y FS(R)4023 1166 y Gd(.)4023
+1199 y(.)4023 1232 y(.)4023 1265 y(.)3995 1340 y FU(X)p
+4259 818 287 4 v 4259 891 a(A)p FF(c)p 4377 879 10 38
+v 4387 863 42 4 v 88 w FU(A)p FF(c)p 4629 817 275 4 v
+84 w FU(A)p FF(f)p 4741 879 10 38 v 4750 863 42 4 v 94
+w FU(A)p FF(f)p 4259 911 645 4 v 4299 985 a FU(A)p FF(c)p
+FT(_)p FU(A)p FF(f)p 4565 973 10 38 v 4575 957 42 4 v
+95 w FU(A)p FF(c)p FU(;)g(A)p FF(f)4903 928 y FT(_)4959
+941 y FS(L)p 4211 1022 742 4 v 4211 1100 a FT(8)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(f)6 b FG(\))p
+4653 1088 10 38 v 4663 1072 42 4 v 88 w FU(A)p FF(c)p
+FU(;)14 b(A)p FF(f)4952 1044 y FT(8)4999 1056 y FS(L)p
+4177 1141 810 4 v 4177 1220 a FT(8)p FF(x)p FU(:)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p
+4687 1208 10 38 v 4697 1191 42 4 v 89 w FU(A)p FF(c)p
+FU(;)g(A)p FF(f)4986 1164 y FT(8)5033 1176 y FS(L)p 5245
+817 299 4 v 5245 891 a FU(A)p FF(d)p 5368 879 10 38 v
+5378 863 42 4 v 88 w FU(A)p FF(d)p 5626 817 275 4 v 83
+w FU(A)p FF(f)p 5738 879 10 38 v 5747 863 42 4 v 94 w
+FU(A)p FF(f)p 5245 911 657 4 v 5284 985 a FU(A)p FF(d)p
+FT(_)q FU(A)p FF(f)p 5556 973 10 38 v 5566 957 42 4 v
+94 w FU(A)p FF(d)p FU(;)g(A)p FF(f)5901 928 y FT(_)5956
+941 y FS(L)p 5199 1022 748 4 v 5199 1100 a FT(8)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(f)6 b FG(\))p
+5641 1088 10 38 v 5651 1072 42 4 v 89 w FU(A)p FF(d)p
+FU(;)14 b(A)p FF(f)5946 1044 y FT(8)5993 1056 y FS(L)p
+5165 1141 816 4 v 5165 1220 a FT(8)p FF(x)p FU(:)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p
+5676 1208 10 38 v 5685 1191 42 4 v 89 w FU(A)p FF(d)p
+FU(;)g(A)p FF(f)5981 1164 y FT(8)6028 1176 y FS(L)p 4177
+1261 1804 4 v 4528 1340 a FT(8)p FF(x)p FU(:)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)r FU(A)p FF(x)p FG(\))p
+5039 1328 10 38 v 5049 1311 42 4 v 89 w FU(A)p FF(f)6
+b FU(;)14 b(A)p FF(f)6 b FU(;)14 b(A)p FF(c)p FT(^)q
+FU(A)p FF(d)5981 1278 y FT(^)6036 1290 y FS(R)p 3972
+1380 1657 4 v 4173 1459 a FT(8)p FF(x)p FU(:)p FF(y)q
+FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p FF(x)p FG(\))p
+4684 1447 10 38 v 4693 1430 42 4 v 89 w FU(A)p FF(f)6
+b FU(;)14 b(A)p FF(c)p FT(^)q FU(A)p FF(d)p FU(;)g(A)p
+FF(e)p FT(^)q FU(A)p FF(f)5629 1397 y FT(^)5684 1410
+y FS(R)p 2384 1500 3045 4 v 3344 1579 a FT(8)p FF(x)p
+FU(:)p FF(y)q FU(:)p FG(\()p FU(A)p FF(y)q FT(_)q FU(A)p
+FF(x)p FG(\))p 3854 1567 10 38 v 3864 1550 42 4 v 89
+w FU(A)p FF(c)p FT(^)p FU(A)p FF(d)p FU(;)g(A)p FF(e)p
+FT(^)q FU(A)p FF(f)5428 1517 y FT(^)5483 1529 y FS(R)6140
+641 y
+ currentpoint grestore moveto
+ 6140 641 a 3543 4940 4 4371 v 321 4943 3226 4 v
+Black 812 5096 a Gg(Figure)24 b(4.4:)29 b(A)22 b(normal)j(form)e(of)h
+(Proof)f(\(4.1\))h(sho)n(wn)g(on)g(P)o(age)f(110.)p Black
+Black Black Black eop end
+%%Page: 113 125
+TeXDict begin 113 124 bop Black 277 51 a Gb(4.2)23 b(Non-Deterministic)
+i(Computation:)k(Case)23 b(Study)1667 b(113)p 277 88
+3691 4 v Black 504 388 a Gg(form)26 b(is)f(calculated.)38
+b(W)-7 b(e)24 b(thus)j(restrict)g(the)f(collection)i(of)d(normal)i
+(forms)e(reachable)j(from)504 501 y(a)h(classical)j(proof,)g(b)n(ut)e
+(it)f(is)g(commonly)i(accepted)g(that)f(this)g(restriction)i(does)f
+(not)f(af)n(fect)504 614 y(the)24 b(computational)j(content)f(of)d
+(classical)j(proofs.)k(The)23 b(restriction)j(allo)n(ws)e(us)g(to)f
+(consider)504 727 y(lar)n(ger)29 b(e)o(xamples)g(and)e(study)i(their)f
+(computational)i(content.)42 b(\(A)26 b(similar)i(remark)g(applies)504
+840 y(to)h(the)g(mix-instance)j(introduced)g(when)d(reducing)i(a)e
+(logical)h(cut)f F6(\033)2782 854 y Gc(L)2834 840 y Ga(=)p
+F6(\033)2950 854 y Gc(R)3008 840 y Gg(.)44 b(The)29 b(normal)504
+953 y(forms)h(that)f(are)g(generated)j(by)d(e)o(xploring)i(both)f(w)o
+(ays)f(of)g(nesting)i(the)e(cuts)h(in)f(the)g(reduct)504
+1066 y(dif)n(fer)c(only)f(in)g(the)f(order)i(of)e(their)i(inference)h
+(rules.\))277 1278 y(In)21 b(our)h(implementation)i(we)d(thus)h(modify)
+g(the)f(code)h(for)g(commuting)g(cuts)g(whose)g(cut-formula)i(is)277
+1391 y(not)d(freshly)g(introduced)j(on)c(either)h(side.)29
+b(If)19 b(in)h(both)h(subterms)h(the)f(\(co-\)name)g(of)g(the)f
+(cut-formula)277 1504 y(occurs)37 b(freely)g(just)g(once,)i(then)d(it)g
+(is)g(not)g(hard)g(to)g(sho)n(w)f(that)i(the)f(normal)g(forms)g(we)f
+(recei)n(v)o(e)277 1617 y(by)e(reducing)h(the)f(cut)f(e)o(xploring)j
+(both)e(choices)h(can)f(be)f(identi\002ed)i(using)g(simple)f
+(permutation)277 1730 y(rules.)47 b(Therefore)31 b(we)d(do)i(not)f(e)o
+(xplore)i(both)f(choices;)k(instead)d(we)e(reduce)i(the)e(cut)h(by)f(a)
+g(single)277 1843 y(substitution.)j(The)23 b(modi\002ed)h(code)h(is)e
+(as)h(follo)n(ws.)p Black Black Black Black 277 2034
+a Fl(let)44 b(rec)h(aux_redu)e(term)h(=)367 2125 y(match)g(term)g(with)
+456 2217 y(...)367 2308 y(|)g(Cut\(f,\(a,m\),\(x,n\)\))636
+2399 y(when)g(\(not)g(\(is_fresh_co)f(m)i(a\)\))f(&)h(\(not)f
+(\(is_fresh_nm)f(n)h(x\)\))636 2490 y(->)g(if)h(\(free_occ_co)e(a)h(m)h
+(=)g(1\))f(&)h(\(free_occ_na)e(x)h(n)h(=)g(1\))770 2582
+y(then)f(substR)g(n)h(\(x,f\))f(\(a,m\))770 2673 y(else)g(Mix\(substL)g
+(m)g(\(a,f\))g(\(x,n\),substR)f(n)i(\(x,f\))f(\(a,m\)\))367
+2764 y(|)g(...)277 2856 y(;;)277 3068 y Gg(This)25 b(function)j(calls)f
+Fm(free)p 1188 3068 25 4 v 29 w(occ)p 1367 3068 V 29
+w(na)d Gg(and)i Fm(free)p 1876 3068 V 30 w(occ)p 2056
+3068 V 29 w(co)p Gg(,)e(which)i(calculate)i(the)e(number)g(of)g(free)
+277 3181 y(occurrences)h(of)c(a)g(name)h(and)g(co-name,)h(respecti)n(v)
+o(ely)-6 b(.)418 3311 y(Returning)26 b(to)e(our)h(e)o(xample)g(proof)g
+(gi)n(v)o(en)g(in)f(\(4.1\))h(we)e(\002nd)h(that)h(the)f(modi\002ed)h
+(implementa-)277 3424 y(tion)c(returns)i(10)e(normal)g(forms,)g(one)h
+(of)e(which)h(w)o(as)g(sho)n(wn)g(in)f(Figure)i(4.4.)27
+b(Our)20 b(implementation)277 3537 y(is)k(no)n(w)g(streamlined)j
+(enough)f(to)e(be)g(a)g(useful)i(tool)f(for)f(analysing)j(the)e
+(computational)i(content)f(of)277 3649 y(bigger)f(classical)h(proofs.)
+277 3956 y Ge(4.2)119 b(Non-Deterministic)31 b(Computation:)37
+b(Case)30 b(Study)277 4179 y Gg(Hitherto)20 b(we)e(were)g(mainly)i
+(concerned)h(with)e(the)f(proof)i(theory)g(of)f(classical)i(logic.)28
+b(In)18 b(this)i(section)277 4292 y(and)j(the)h(ne)o(xt)f(we)f(shall)i
+(study)g(ho)n(w)e(cut-elimination)27 b(relates)d(to)f(computation.)31
+b(W)-7 b(e)22 b(started)i(in)f(the)277 4405 y(introduction)30
+b(ar)n(guing)e(that)f(the)f(process)i(of)e(cut-elimination)k(in)c
+(classical)i(logic)f(should)h(be)e(seen)277 4518 y(as)20
+b(non-deterministic)25 b(computation.)30 b(W)-7 b(e)20
+b(moti)n(v)n(ated)h(this)g(vie)n(wpoint)g(with)g(the)f(problems)i
+(arising)277 4631 y(from)28 b(Lafont')-5 b(s)29 b(e)o(xample)g(\(see)g
+(P)o(age)f(4\).)42 b(Ho)n(we)n(v)o(er)28 b(there)h(is)f(an)g(ob)o
+(vious)i(question)g(whether)f(we)277 4744 y(can)34 b(support)h(this)e
+(vie)n(wpoint)i(with)e(con)l(vincing)j(e)o(xamples.)59
+b(First,)35 b(recall)f(that)g(via)f(the)h(Curry-)277
+4857 y(Ho)n(w)o(ard)d(correspondence)36 b(reduction)e(can)e(be)f(seen)h
+(as)f(a)g(form)g(of)g(computation)j(and)e(a)f(normal)277
+4970 y(form)24 b(as)f(a)g(result)i(of)e(a)g(computation.)32
+b(No)n(w)-6 b(,)22 b(consider)k(the)d(\(intuitionistic\))28
+b(proof)p 1131 5109 233 4 v 1131 5188 a Ga(A)p 1219 5176
+11 41 v 1230 5158 46 5 v 96 w(A)p 1454 5109 233 4 v 91
+w(A)p 1543 5176 11 41 v 1553 5158 46 5 v 97 w(A)p 1131
+5208 557 4 v 1228 5286 a(A)p F6(_)p Ga(A)p 1445 5274
+11 41 v 1456 5256 46 5 v 97 w(A)1729 5226 y F6(_)1789
+5240 y Gc(L)p 1932 5109 233 4 v 1932 5188 a Ga(A)p 2021
+5176 11 41 v 2031 5158 46 5 v 97 w(A)p 2256 5109 233
+4 v 91 w(A)p 2344 5176 11 41 v 2355 5158 46 5 v 96 w(A)p
+1932 5208 557 4 v 2030 5286 a(A)p 2118 5274 11 41 v 2129
+5256 46 5 v 96 w(A)p F6(^)p Ga(A)2530 5226 y F6(^)2591
+5240 y Gc(R)p 1228 5306 1163 4 v 1565 5385 a Ga(A)p F6(_)o
+Ga(A)p 1782 5373 11 41 v 1792 5355 46 5 v 97 w(A)p F6(^)p
+Ga(A)2433 5337 y Gg(Cut)p Black Black eop end
+%%Page: 114 126
+TeXDict begin 114 125 bop Black -144 51 a Gb(114)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black 321 388 a Gg(which,)h(using)h(our)f(cut-elimination)j
+(procedures,)g(can)d(be)f(reduced)j(to)d(one)h(of)g(the)g(follo)n(wing)
+h(tw)o(o)321 501 y(normal)f(forms)p 394 762 233 4 v 394
+841 a Ga(A)p 482 829 11 41 v 493 811 46 5 v 96 w(A)p
+717 762 233 4 v 91 w(A)p 806 829 11 41 v 816 811 46 5
+v 97 w(A)p 394 861 557 4 v 491 940 a(A)p F6(_)p Ga(A)p
+708 928 11 41 v 719 909 46 5 v 97 w(A)961 879 y F6(_)1022
+893 y Gc(L)p 1165 762 233 4 v 1165 841 a Ga(A)p 1253
+829 11 41 v 1264 811 46 5 v 97 w(A)p 1489 762 233 4 v
+91 w(A)p 1577 829 11 41 v 1587 811 46 5 v 96 w(A)p 1165
+861 557 4 v 1262 940 a(A)p F6(_)p Ga(A)p 1480 928 11
+41 v 1490 909 46 5 v 97 w(A)1732 879 y F6(_)1793 893
+y Gc(L)p 491 959 1133 4 v 812 1038 a Ga(A)p F6(_)p Ga(A)p
+1030 1026 11 41 v 1040 1008 46 5 v 97 w(A)p F6(^)p Ga(A)1635
+978 y F6(^)1696 992 y Gc(R)p 2011 762 233 4 v 2011 841
+a Ga(A)p 2100 829 11 41 v 2110 811 46 5 v 97 w(A)p 2335
+762 233 4 v 91 w(A)p 2423 829 11 41 v 2434 811 46 5 v
+96 w(A)p 2011 861 557 4 v 2109 940 a(A)p 2197 928 11
+41 v 2208 909 46 5 v 96 w(A)p F6(^)p Ga(A)2579 879 y
+F6(^)2639 893 y Gc(R)p 2788 762 233 4 v 2788 841 a Ga(A)p
+2876 829 11 41 v 2887 811 46 5 v 96 w(A)p 3112 762 233
+4 v 92 w(A)p 3200 829 11 41 v 3210 811 46 5 v 96 w(A)p
+2788 861 557 4 v 2885 940 a(A)p 2974 928 11 41 v 2984
+909 46 5 v 97 w(A)p F6(^)p Ga(A)3355 879 y F6(^)3416
+893 y Gc(R)p 2109 959 1139 4 v 2433 1038 a Ga(A)p F6(_)o
+Ga(A)p 2650 1026 11 41 v 2660 1008 46 5 v 97 w(A)p F6(^)p
+Ga(A)3258 978 y F6(_)3319 992 y Gc(L)p Black 3372 1142
+a Gg(\(4.2\))p Black 321 1275 a(The)g(main)g(feature)h(of)f(our)h
+(cut-elimination)i(procedures)g(is)d(that)h(one)f(can)h
+(non-deterministically)321 1388 y(choose)k(to)d(which)h(normal)h(form)e
+(the)h(proof)h(can)f(be)g(reduced.)43 b(Consequently)-6
+b(,)32 b(one)c(could)h(ar)n(gue)321 1501 y(that)34 b(via)g(the)g
+(Curry-Ho)n(w)o(ard)h(correspondence)j(the)c(cut-elimination)j(process)
+e(in)f(intuitionistic)321 1614 y(logic)29 b(corresponds)i(to)c
+(non-deterministic)32 b(computation,)f(since)d(we)f(recei)n(v)o(e)h(tw)
+o(o)f(dif)n(ferent)j(nor)n(-)321 1726 y(mal)c(forms)g(\(results\).)37
+b(Ho)n(we)n(v)o(er)l(,)26 b(this)h(ar)n(gument)g(as)f(it)f(stands)j(is)
+d(not)i(v)o(ery)f(strong:)35 b(one)26 b(recei)n(v)o(es)321
+1839 y(se)n(v)o(eral)21 b(normal)g(forms)f(starting)h(from)f(the)g
+(proof)h(abo)o(v)o(e,)g(b)n(ut)f(if)g(we)f(interpret)j(these)f(normal)f
+(forms)321 1952 y(as)32 b(terms)f(in)h(the)g(simply-typed)i(lambda)e
+(calculus,)k(we)30 b(\002nd)h(the)o(y)h(all)g(correspond)i(to)e(the)g
+(same)321 2065 y(v)n(alue)c(and)g(computation)h(\(see)f(Example)f
+(3.1.3\).)40 b(This)26 b(means)i(we)e(cannot)j(decide)f(whether)g(cut-)
+321 2178 y(elimination)22 b(corresponds)h(to)c(non-deterministic)24
+b(computation)e(just)e(by)f(looking)i(at)e(features)j(such)321
+2291 y(as)i(size)g(and)g(shape)h(of)e(the)h(normal)g(forms.)462
+2423 y(So)31 b(in)g(this)h(section)h(we)e(shall)h(present)h(a)e
+(classical)j(proof)e(and)g(use)g(our)f(implementation)k(to)321
+2536 y(compute)g(tw)o(o)f(of)f(its)h(normal)h(forms.)59
+b(W)-7 b(e)33 b(shall)h(sho)n(w)g(that)g(the)g(tw)o(o)g(normal)g(forms)
+g(dif)n(fer)h(in)321 2649 y(\223essential\224)e(features;)j(trying)31
+b(to)f(identify)j(them)d(is)g(doomed)h(to)f(tri)n(viality)i(\(the)f
+(notion)g(of)f(proof)321 2762 y(w)o(ould)f(coincide)h(with)d(the)h
+(notion)h(of)f(pro)o(v)n(ability\).)44 b(The)27 b(classical)j(proof)f
+(which)f(we)f(present)j(is)321 2875 y(adapted)35 b(from)e(w)o(ork)g
+(presented)j(by)d(Barbanera)i(et)e(al.)f([1997],)37 b(b)n(ut)d
+(originates)h(from)e(w)o(ork)g(by)321 2988 y(Stolzenber)n(g)27
+b([Coquand,)e(1995,)f(Herbelin,)g(1995].)462 3120 y(Suppose)30
+b(we)e(are)h(gi)n(v)o(en)g(an)g(in\002nite)g(tape)g(where)g(each)g
+(cell)g(contains)i(either)f(a)e(`)p FL(0)p Gg(')h(or)f(a)h(`)p
+FL(1)p Gg(',)321 3233 y(for)24 b(e)o(xample)p Black Black
+1539 3370 790 4 v 1537 3483 4 113 v 1589 3449 a FL(1)p
+1683 3483 V 100 w(0)p 1828 3483 V 100 w(0)p 1973 3483
+V 100 w(1)p 2118 3483 V 100 w Gg(.)14 b(.)g(.)p 1539
+3487 790 4 v 321 3666 a(F)o(or)24 b(the)h(sak)o(e)g(of)g(notational)i
+(simplicity)-6 b(,)26 b(we)e(shall)i(in)e(what)h(follo)n(ws)g
+(represent)i(a)d(tape)h(as)f(a)h(func-)321 3779 y(tion,)f(denoted)i(by)
+d FL(f)6 b Gg(,)23 b(from)g(inte)o(gers)j(to)d(booleans.)31
+b(Thus)24 b(we)e(kno)n(w)i(about)h(the)e(tape)i(that)1533
+3992 y F6(8)p FL(x)p Ga(:)o F4(\()p FL(fx)h F4(=)e FL(0)15
+b F6(_)h FL(fx)25 b F4(=)g FL(1)p F4(\))h Ga(:)p Black
+1037 w Gg(\(4.3\))p Black 321 4205 a(This)21 b(is)h(a)e(\002rst-order)j
+(formula)g(in)e(which)h F4(=)e Gg(is)h(a)g(predicate)i(standing)h(for)e
+(`equality')h(between)g(tw)o(o)321 4318 y(booleans.)31
+b(As)23 b(is)g(common,)g(we)g(write)g(this)h(predicate)i(symbol)e(in)f
+(in\002x)g(notation.)31 b(Using)24 b(\(4.3\))g(as)321
+4431 y(assumption,)i(we)d(are)g(going)i(to)f(pro)o(v)o(e)g(the)f
+(proposition)1475 4644 y F6(9)p FL(n)p Ga(:)p FL(m)p
+Ga(:)p F4(\()p FL(n)j Ga(<)e FL(m)16 b F6(^)f FL(fn)25
+b F4(=)g FL(fm)p F4(\))p Black 979 w Gg(\(4.4\))p Black
+321 4877 a(where)30 b Ga(<)f Gg(is)h(a)f(predicate,)34
+b(written)c(again)h(in)e(in\002x)h(notation,)j(which)e(stands)g(for)f
+(`less)g(than')h(be-)321 4990 y(tween)d(tw)o(o)f(inte)o(gers.)41
+b(Later)l(,)29 b(we)d(shall)i(also)g(use)g F6(\024)p
+Gg(,)f(which)h(stands)g(for)g(`less)g(than)g(or)f(equal)i(to'.)321
+5103 y(The)c(proposition)k(just)c(gi)n(v)o(en)h(may)f(be)g(summarised)i
+(in)e(English)h(as)f(on)g(e)n(v)o(ery)h(tape)f(there)i(are)e(tw)o(o)321
+5216 y(cells)g(that)f(ha)n(v)o(e)g(the)g(same)f(content.)p
+Black Black eop end
+%%Page: 115 127
+TeXDict begin 115 126 bop Black 277 51 a Gb(4.2)23 b(Non-Deterministic)
+i(Computation:)k(Case)23 b(Study)1667 b(115)p 277 88
+3691 4 v Black 418 388 a Gg(In)37 b(order)i(to)e(pro)o(v)o(e)g(the)h
+(proposition,)43 b(we)37 b(need)h(some)f(principles)j(from)d
+(arithmetic.)71 b(F)o(or)277 501 y(e)o(xample)24 b(the)g(principle)i
+(of)e(transiti)n(vity)i(of)e(equality)-6 b(,)25 b(i.e.,)e(the)g
+(implication)p Black Black 1210 680 a(if)48 b FL(fn)25
+b F4(=)g FL(i)48 b Gg(and)h FL(fm)25 b F4(=)g FL(i)p
+Gg(,)d(then)50 b FL(fn)25 b F4(=)g FL(fm)p Gg(.)277 860
+y(W)-7 b(e)23 b(could)h(add)g(this)h(principle)g(to)f(classical)i
+(logic)e(as)g(the)f(non-logical)k(axiom)p 1279 966 1221
+4 v 1279 1050 a F4(\000)p 1357 1038 11 41 v 1367 1020
+46 5 v 97 w(\001)p Ga(;)15 b F4(\()p FL(fy)26 b F4(=)f
+FL(i)15 b F6(^)g FL(fx)25 b F4(=)g FL(i)p F4(\))15 b
+F6(\033)g FL(fx)25 b F4(=)g FL(fy)277 1221 y Gg(or)f(as)f(the)h
+(inference)i(rule)1214 1352 y F4(\000)p 1291 1340 11
+41 v 1301 1322 46 5 v 96 w(\001)p Ga(;)15 b FL(fy)26
+b F4(=)f FL(i)91 b F4(\000)p 1865 1340 11 41 v 1875 1322
+46 5 v 96 w(\001)p Ga(;)15 b FL(fx)25 b F4(=)g FL(i)p
+1214 1389 1057 4 v 1476 1469 a F4(\000)p 1553 1457 11
+41 v 1564 1439 46 5 v 96 w(\001)p Ga(;)15 b FL(fx)25
+b F4(=)g FL(fy)2311 1419 y Gg(T)m(rans)h Ga(:)277 1640
+y Gg(Ho)n(we)n(v)o(er)k(we)g(shall)i(refrain)g(from)f(adding)i(either)f
+(of)e(them,)j(because)g(it)d(w)o(ould)i(require)g(a)e(fresh)277
+1753 y(cut-elimination)24 b(proof)e(\(cut-elimination)i(in)c(the)h
+(presence)h(of)f(non-logical)i(axioms)e(or)g(additional)277
+1866 y(inference)28 b(rules)e(is)g(non-tri)n(vial\).)37
+b(Instead,)28 b(we)c(shall)j(represent)g(principles)i(of)c(arithmetic)i
+(as)f(for)n(-)277 1979 y(mulae,)f(which)g(we)f(add)h(to)g(our)g
+(assumptions.)35 b(T)m(ransiti)n(vity)-6 b(,)27 b(for)e(e)o(xample,)g
+(is)g(represented)i(as)e(the)277 2092 y(formula)1237
+2221 y F6(8)p FL(i)p Ga(:)p FL(x)p Ga(:)p FL(y)q Ga(:)p
+F4(\(\()p FL(fy)i F4(=)e FL(i)15 b F6(^)g FL(fx)25 b
+F4(=)f FL(i)p F4(\))15 b F6(\033)h FL(fx)25 b F4(=)f
+FL(fy)q F4(\))i Ga(:)p Black 786 w Gg(\(4.5\))p Black
+277 2396 a(Other)i(principles)h(we)e(need)h(concern)h(the)e(predicates)
+j Ga(<)c Gg(and)i F6(\024)p Gg(.)39 b(The)26 b(corresponding)32
+b(formulae)277 2509 y(are)1570 2664 y F6(8)p FL(x)p Ga(:)p
+FL(y)q Ga(:)p F4(\()p FL(sx)25 b F6(\024)g FL(y)17 b
+F6(\033)e FL(x)25 b Ga(<)g FL(y)q F4(\))p Black 953 w
+Gg(\(4.6\))p Black 1570 2802 a F6(8)p FL(y)q Ga(:)p FL(x)p
+Ga(:)p F4(\()p FL(x)h F6(\024)f FL(m)2027 2764 y Fu(x)p
+Gc(;)p Fu(y)2117 2802 y F4(\))p Black 1176 w Gg(\(4.7\))p
+Black 1570 2939 a F6(8)p FL(y)q Ga(:)p FL(x)p Ga(:)p
+F4(\()p FL(y)i F6(\024)e FL(m)2028 2902 y Fu(x)p Gc(;)p
+Fu(y)2118 2939 y F4(\))p Black 1175 w Gg(\(4.8\))p Black
+277 3110 a(in)d(which)g FL(s)e Gg(denotes)k(the)e(successor)i(function)
+g(and)e FL(m)2015 3077 y Fu(x)p Gc(;)p Fu(y)2126 3110
+y Gg(denotes)i(the)e(maximum)f(function)j(of)e(tw)o(o)277
+3223 y(inte)o(gers,)33 b FL(x)d Gg(and)h FL(y)q Gg(.)48
+b(F)o(or)29 b(instance)k FL(m)1518 3190 y Fu(s0)p Gc(;)p
+Fu(0)1669 3223 y Gg(is)45 b FL(s0)p Gg(.)j(In)31 b(the)f(sequel,)j(we)d
+(shall)h(abbre)n(viate)48 b FL(s0)p Gg(,)e FL(ss0)p Gg(,)277
+3336 y FL(sss0)23 b Gg(as)g FL(1)p Gg(,)g FL(2)g Gg(and)h
+FL(3)p Gg(,)f(respecti)n(v)o(ely)-6 b(.)32 b(A)22 b(proof)j(of)e(the)h
+(statement)41 b FL(0)10 b Ga(<)g FL(1)23 b Gg(is)g(then)i(as)e(follo)n
+(ws.)924 3808 y Ga(\031)1016 3439 y FI(8)1016 3513 y(>)1016
+3538 y(>)1016 3563 y(>)1016 3588 y(>)1016 3613 y(>)1016
+3638 y(>)1016 3663 y(>)1016 3688 y(>)1016 3713 y(<)1016
+3862 y(>)1016 3887 y(>)1016 3912 y(>)1016 3937 y(>)1016
+3962 y(>)1016 3987 y(>)1016 4012 y(>)1016 4036 y(>)1016
+4061 y(:)p 1420 3450 421 4 v 1420 3521 a FF(1)9 b FT(\024)g
+FF(1)p 1604 3509 10 38 v 1614 3492 42 4 v 87 w(1)g FT(\024)g
+FF(1)p 1289 3552 683 4 v 1275 3637 a FT(8)p FF(x)p FU(:)p
+FG(\()p FF(x)g FT(\024)g FF(m)1602 3607 y Ft(x)p FS(;)p
+Ft(0)1685 3637 y FG(\))p 1736 3625 10 38 v 1745 3608
+42 4 v 88 w FF(1)g FT(\024)g FF(1)1985 3575 y FT(8)2032
+3587 y FS(L)p 1237 3678 786 4 v 1237 3757 a FT(8)p FF(y)q
+FU(:)p FF(x)p FU(:)p FG(\()p FF(x)24 b FT(\024)f FF(m)1655
+3726 y Ft(x)p FS(;)p Ft(y)1736 3757 y FG(\))p 1787 3745
+10 38 v 1797 3728 42 4 v 88 w FF(1)9 b FT(\024)g FF(1)2036
+3700 y FT(8)2083 3712 y FS(L)p 2215 3686 421 4 v 2215
+3757 a FF(0)g FU(<)g FF(1)p 2400 3745 10 38 v 2409 3728
+42 4 v 87 w(0)g FU(<)g FF(1)p 1237 3797 1398 4 v 1327
+3876 a(1)g FT(\024)g FF(1)p FT(\033)o FF(0)g FU(<)g FF(1)p
+FU(;)14 b FT(8)p FF(y)q FU(:)p FF(x)p FU(:)o FG(\()p
+FF(x)23 b FT(\024)g FF(m)2178 3846 y Ft(x)p FS(;)p Ft(y)2259
+3876 y FG(\))p 2310 3864 10 38 v 2320 3848 42 4 v 89
+w FF(0)9 b FU(<)g FF(1)2649 3813 y FT(\033)2714 3826
+y FS(L)p 1249 3917 1374 4 v 1236 3996 a FT(8)p FF(y)q
+FU(:)p FG(\()p FF(1)g FT(\024)g FF(y)q FT(\033)o FF(0)g
+FU(<)g FF(y)q FG(\))p FU(;)14 b FT(8)p FF(y)q FU(:)p
+FF(x)p FU(:)p FG(\()p FF(x)24 b FT(\024)e FF(m)2255 3966
+y Ft(x)p FS(;)p Ft(y)2337 3996 y FG(\))p 2388 3984 10
+38 v 2397 3967 42 4 v 88 w FF(0)9 b FU(<)g FF(1)2637
+3939 y FT(8)2684 3951 y FS(L)p 1158 4036 1558 4 v 1158
+4115 a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p FF(sx)23
+b FT(\024)g FF(y)15 b FT(\033)e FF(x)24 b FU(<)e FF(y)q
+FG(\))p FU(;)14 b FT(8)p FF(y)q FU(:)p FF(x)p FU(:)q
+FG(\()p FF(x)24 b FT(\024)e FF(m)2347 4085 y Ft(x)p FS(;)p
+Ft(y)2429 4115 y FG(\))p 2480 4103 10 38 v 2489 4087
+42 4 v 88 w FF(0)9 b FU(<)g FF(1)2729 4059 y FT(8)2776
+4071 y FS(L)277 4318 y Gg(There)30 b(are)g(se)n(v)o(eral)h(w)o(ays)g
+(of)e(ho)n(w)h(to)g(formalise)h(a)f(proof)h(of)f FL(0)c
+Ga(<)f FL(1)p Gg(;)33 b(it)c(will,)i(ho)n(we)n(v)o(er)l(,)h(become)277
+4431 y(clear)d(later)g(on)f(why)g(we)f(ha)n(v)o(e)i(chosen)g(this)g
+(particular)i(formalisation.)45 b(Before)29 b(we)e(proceed,)k(let)277
+4544 y(us)24 b(introduce)i(some)d(abbre)n(viations)28
+b(for)23 b(the)h(formulae)h(gi)n(v)o(en)f(in)g(\(4.3\))g(to)f(\(4.8\).)
+p Black Black 700 4744 a Ga(A)833 4693 y F5(def)840 4744
+y F4(=)66 b F6(8)p FL(x)p Ga(:)p F4(\()p FL(fx)25 b F4(=)g
+FL(0)15 b F6(_)h FL(fx)24 b F4(=)h FL(1)p F4(\))693 b
+Gg(assumption)103 b(\(4.3\))699 4884 y Ga(P)833 4832
+y F5(def)840 4884 y F4(=)66 b F6(9)p FL(n)p Ga(:)p FL(m)p
+Ga(:)p F4(\()p FL(n)26 b Ga(<)f FL(m)15 b F6(^)g FL(fn)25
+b F4(=)g FL(fm)p F4(\))526 b Gg(proposition)104 b(\(4.4\))701
+5024 y Ga(T)833 4972 y F5(def)840 5024 y F4(=)66 b F6(8)p
+FL(i)p Ga(:)p FL(x)p Ga(:)p FL(y)q Ga(:)p F4(\(\()p FL(fy)27
+b F4(=)e FL(i)15 b F6(^)g FL(fx)25 b F4(=)g FL(i)p F4(\))15
+b F6(\033)g FL(fx)25 b F4(=)g FL(fy)q F4(\))189 b Gg(transiti)n(vity)
+126 b(\(4.5\))704 5164 y Ga(S)833 5112 y F5(def)840 5164
+y F4(=)66 b F6(8)p FL(x)p Ga(:)p FL(y)q Ga(:)p F4(\()p
+FL(sx)26 b F6(\024)f FL(y)16 b F6(\033)f FL(x)25 b Ga(<)g
+FL(y)q F4(\))639 b Gg(successor)169 b(\(4.6\))670 5303
+y Ga(M)758 5317 y F9(1)833 5252 y F5(def)840 5303 y F4(=)66
+b F6(8)p FL(y)q Ga(:)p FL(x)p Ga(:)p F4(\()p FL(x)26
+b F6(\024)f FL(m)1434 5270 y Fu(x)p Gc(;)p Fu(y)1524
+5303 y F4(\))862 b Gg(maximum)2789 5317 y F9(1)2935 5303
+y Gg(\(4.7\))670 5443 y Ga(M)758 5457 y F9(2)833 5392
+y F5(def)840 5443 y F4(=)66 b F6(8)p FL(y)q Ga(:)p FL(x)p
+Ga(:)p F4(\()p FL(y)27 b F6(\024)e FL(m)1435 5410 y Fu(x)p
+Gc(;)p Fu(y)1525 5443 y F4(\))861 b Gg(maximum)2789 5457
+y F9(2)2935 5443 y Gg(\(4.8\))p Black Black eop end
+%%Page: 116 128
+TeXDict begin 116 127 bop Black -144 51 a Gb(116)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black 321 388 a Gg(The)f(sequent)j(that)e(we)f(are)g(going)i
+(to)f(pro)o(v)o(e)g(is)p Black Black 421 561 a FT(8)p
+FF(y)q FU(:)p FF(x)p FU(:)p FG(\()p FF(x)f FT(\024)g
+FF(m)838 530 y Ft(x)p FS(;)p Ft(y)920 561 y FG(\))p Gd(,)d
+FT(8)p FF(y)q FU(:)p FF(x)p FU(:)p FG(\()p FF(y)25 b
+FT(\024)e FF(m)1412 530 y Ft(x)p FS(;)p Ft(y)1493 561
+y FG(\))p Gd(,)e FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\()p
+FF(sx)i FT(\024)g FF(y)15 b FT(\033)f FF(x)23 b FU(<)g
+FF(y)q FG(\))p FU(;)421 660 y FT(8)p FF(i)p FU(:)p FF(x)p
+FU(:)p FF(y)q FU(:)p FG(\(\()p FF(fy)i FG(=)e FF(i)14
+b FT(^)f FF(fx)24 b FG(=)f FF(i)p FG(\))14 b FT(\033)f
+FF(fx)24 b FG(=)f FF(fy)q FG(\))p Gd(,)421 760 y FT(8)p
+FF(x)p FU(:)o FG(\()p FF(fx)h FG(=)f FF(0)14 b FT(_)f
+FF(fx)24 b FG(=)f FF(1)p FG(\))p 2434 649 20 78 v 2454
+614 87 8 v 2579 637 a F6(9)p FL(n)p Ga(:)p FL(m)p Ga(:)p
+F4(\()p FL(n)i Ga(<)g FL(m)16 b F6(^)e FL(fn)25 b F4(=)g
+FL(fm)p F4(\))321 935 y Gg(or)f(using)g(our)g(abbre)n(viations)1524
+1047 y Ga(M)1612 1061 y F9(1)1652 1047 y Ga(;)15 b(M)1780
+1061 y F9(2)1820 1047 y Ga(;)g(S;)g(T)8 b(;)15 b(A)p
+2146 1035 11 41 v 2156 1017 46 5 v 97 w(P)38 b(:)p Black
+1029 w Gg(\(4.9\))p Black 462 1221 a(W)-7 b(e)26 b(turn)h(no)n(w)f(to)h
+(the)g(question)h(of)f(ho)n(w)f(one)h(might)g(pro)o(v)o(e)g(the)g
+(sequent)h(just)f(gi)n(v)o(en.)38 b(As)26 b(one)321 1334
+y(may)d(e)o(xpect,)i(there)f(are)f(se)n(v)o(eral)i(possibilities.)32
+b(W)-7 b(e)23 b(\002rst)g(consider)i(proofs)g(that)f(\223perform\224)h
+(a)e(case)321 1447 y(analysis;)37 b(by)31 b(this)h(we)e(mean)h(the)o(y)
+g(consist)i(of)e(a)f(number)i(of)f(tests,)i(which)f(check)g(whether)g
+(tw)o(o)321 1560 y(cells)25 b(on)e(a)g(gi)n(v)o(en)h(tape)h(ha)n(v)o(e)
+f(the)g(same)f(content.)31 b(T)-7 b(ak)o(e)23 b(for)h(e)o(xample)g(the)
+g(follo)n(wing)h(tape.)p Black Black 1539 1689 790 4
+v 1537 1802 4 113 v 1589 1768 a FL(1)p 1683 1802 V 100
+w(0)p 1828 1802 V 100 w(0)p 1973 1802 V 100 w(1)p 2118
+1802 V 100 w Gg(.)14 b(.)g(.)p 1539 1806 790 4 v 321
+1978 a(Here)25 b(the)g(test)g FL(f1)g F4(=)g FL(f2)h
+F4(=)e FL(0)q Gg(,)g(or)g FL(f0)i F4(=)f FL(f3)g F4(=)g
+FL(1)q Gg(,)e(is)i(suf)n(\002cient)h(to)e(sho)n(w)g Ga(P)37
+b Gg(for)25 b(this)g(particular)i(tape.)321 2091 y(Ho)n(we)n(v)o(er)l
+(,)c(both)i(tests)f(f)o(ail)g(for)g(the)g(tape)p Black
+Black 1539 2220 V 1537 2333 4 113 v 1589 2299 a FL(1)p
+1683 2333 V 100 w(1)p 1828 2333 V 100 w(0)p 1973 2333
+V 100 w(0)p 2118 2333 V 100 w Gg(.)14 b(.)g(.)p 1539
+2337 790 4 v 321 2509 a(Since)30 b(we)e(w)o(ant)h(to)g(sho)n(w)g
+Ga(P)42 b Gg(for)29 b(all)g(tapes,)i(we)e(ha)n(v)o(e)h(to)f(do)g(some)g
+(more)g(tests.)47 b(It)29 b(is)g(left)g(to)g(the)321
+2622 y(reader)c(to)f(v)o(erify)g(that)g(the)g(follo)n(wing)h(tests)1340
+2838 y FL(f0)g F4(=)g FL(f1)h F4(=)f FL(0)1340 2951 y(f0)g
+F4(=)g FL(f2)h F4(=)f FL(0)1340 3064 y(f1)g F4(=)g FL(f2)h
+F4(=)f FL(0)2093 2838 y(f0)h F4(=)f FL(f1)g F4(=)g FL(1)2093
+2951 y(f0)h F4(=)f FL(f2)g F4(=)g FL(1)2093 3064 y(f1)h
+F4(=)f FL(f2)g F4(=)g FL(1)p Black 3327 2951 a Gg(\(4.10\))p
+Black 321 3230 a(guarantee)f(that)e(there)g(is)f(an)g
+FL(n)f Gg(and)i FL(m)f Gg(such)h(that)f FL(n)26 b Ga(<)f
+FL(m)20 b Gg(and)i FL(fn)j F4(=)g FL(fm)20 b Gg(for)h
+F7(e)o(very)h Gg(tape.)29 b(Ob)o(viously)321 3343 y(the)e(collection)j
+(of)c(tests)i(gi)n(v)o(en)f(abo)o(v)o(e)g(is)g(not)g(the)f(only)i(one)f
+(to)g(establish)i(the)e(proposition)j(for)c(all)321 3456
+y(tapes.)j(W)-7 b(e)20 b(could,)i(for)e(e)o(xample,)i(test)f(the)g
+(13th,)g(101th)h(and)f(999th)h(cell,)f(instead)i(of)d(the)h(\002rst)f
+(three.)321 3569 y(Also,)j(we)g(might)h(consider)l(,)i(as)d(we)g(shall)
+i(see)e(later)l(,)i(more)e(than)i(just)f(three)g(cells.)462
+3698 y(Let)g(us)f(sho)n(w)h(ho)n(w)f(a)g(test)i(translates)h(into)e(a)f
+(sequent)j(proof.)k(Belo)n(w)24 b(we)e(gi)n(v)o(e)i(a)g(proof,)g(which)
+321 3811 y(corresponds)j(to)d(the)g(test)39 b FL(f0)25
+b F4(=)g FL(f1)h F4(=)f FL(0)p Gg(.)181 4806 y FU(\031)-12
+4880 y(M)69 4892 y FJ(1)106 4880 y FU(;)14 b(S)p 217
+4868 10 38 v 226 4851 42 4 v 92 w FF(0)-5 b FU(<)g FF(1)p
+419 3998 471 4 v 419 4073 a(f1)10 b FG(=)f FF(0)p 629
+4061 10 38 v 639 4044 42 4 v 87 w(f1)g FG(=)g FF(0)p
+973 3998 471 4 v 82 w(f1)g FG(=)g FF(1)p 1183 4061 10
+38 v 1193 4044 42 4 v 88 w(f1)g FG(=)g FF(1)p 419 4093
+1025 4 v 459 4167 a(f1)g FG(=)g FF(0)p FT(_)p FF(f1)g
+FG(=)g FF(1)p 915 4155 10 38 v 925 4138 42 4 v 87 w(f1)g
+FG(=)g FF(0)p FU(;)14 b FF(f1)8 b FG(=)h FF(1)1444 4112
+y FT(_)1499 4082 y Fz(\016)1499 4135 y FS(L)p 383 4203
+1098 4 v 369 4282 a FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)h
+FG(=)f FF(0)p FT(_)o FF(fx)h FG(=)f FF(1)p FG(\))p 991
+4270 10 38 v 1001 4253 42 4 v 88 w FF(f1)g FG(=)g FF(0)p
+FU(;)14 b FF(f1)8 b FG(=)h FF(1)1481 4223 y FT(8)1528
+4193 y Fz(\016)1528 4246 y FS(L)p 1696 3998 471 4 v 1696
+4073 a FF(f0)g FG(=)g FF(0)p 1906 4061 10 38 v 1915 4044
+42 4 v 87 w(f0)g FG(=)g FF(0)p 2250 3998 471 4 v 83 w(f0)g
+FG(=)g FF(1)p 2460 4061 10 38 v 2469 4044 42 4 v 87 w(f0)g
+FG(=)g FF(1)p 1696 4093 1025 4 v 1735 4167 a(f0)g FG(=)g
+FF(0)p FT(_)p FF(f0)g FG(=)g FF(1)p 2192 4155 10 38 v
+2201 4138 42 4 v 87 w(f0)g FG(=)g FF(0)p FU(;)14 b FF(f0)9
+b FG(=)g FF(1)2720 4112 y FT(_)2776 4082 y Fz(\016)2776
+4135 y FS(L)p 1659 4203 1098 4 v 1646 4282 a FT(8)p FF(x)p
+FU(:)p FG(\()p FF(fx)g FG(=)g FF(0)p FT(_)p FF(fx)h FG(=)f
+FF(1)p FG(\))p 2268 4270 10 38 v 2277 4253 42 4 v 87
+w FF(f0)g FG(=)g FF(0)p FU(;)14 b FF(f0)9 b FG(=)g FF(1)2757
+4223 y FT(8)2804 4193 y Fz(\016)2804 4246 y FS(L)p 383
+4322 2375 4 v 770 4401 a FT(8)p FF(x)p FU(:)p FG(\()p
+FF(fx)g FG(=)g FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
+1392 4389 10 38 v 1402 4373 42 4 v 87 w FF(f1)h FG(=)f
+FF(0)p FT(^)o FF(f0)g FG(=)g FF(0)p FU(;)14 b FF(f1)9
+b FG(=)g FF(1)p FU(;)14 b FF(f0)8 b FG(=)h FF(1)2743
+4342 y FT(^)2798 4312 y Fz(\017)2798 4365 y FS(R)p 2936
+4327 522 4 v 2936 4401 a FF(f0)g FG(=)g FF(f1)p 3171
+4389 10 38 v 3181 4373 42 4 v 88 w(f0)g FG(=)g FF(f1)p
+784 4442 2674 4 v 0.75 TeXcolorgray 0.75 TeXcolorgray
+1034 4542 785 84 v 0.75 TeXcolorgray Black 1034 4521
+a FG(\()p FF(f1)h FG(=)f FF(0)p FT(^)o FF(f0)h FG(=)f
+FF(0)p FG(\))p FT(\033)o FF(f0)g FG(=)g FF(f1)p 0.75
+TeXcolorgray Black FU(;)p FT(8)p FF(x)p FU(:)p FG(\()p
+FF(fx)g FG(=)g FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
+2464 4509 10 38 v 2473 4492 42 4 v 87 w FF(f0)g FG(=)g
+FF(f1)p FU(;)14 b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8
+b FG(=)h FF(1)3444 4462 y FT(\033)3508 4432 y Fz(\017)3508
+4485 y FS(L)p 957 4562 2328 4 v 943 4640 a FT(8)p FF(y)q
+FU(:)p FG(\(\()p FF(fy)i FG(=)e FF(0)p FT(^)p FF(f0)g
+FG(=)g FF(0)p FG(\))p FT(\033)o FF(f0)g FG(=)g FF(fy)r
+FG(\))p FU(;)p FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)h FG(=)f
+FF(0)p FT(_)o FF(fx)h FG(=)f FF(1)p FG(\))p 2541 4628
+10 38 v 2551 4612 42 4 v 88 w FF(f0)g FG(=)g FF(f1)p
+FU(;)14 b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8 b
+FG(=)h FF(1)3284 4581 y FT(8)3331 4551 y Fz(\017)3331
+4604 y FS(L)p 929 4681 2383 4 v 916 4760 a FT(8)p FF(x)p
+FU(:)p FF(y)q FU(:)p FG(\(\()p FF(fy)i FG(=)e FF(0)p
+FT(^)p FF(fx)h FG(=)f FF(0)p FG(\))p FT(\033)o FF(fx)h
+FG(=)f FF(fy)q FG(\))p FU(;)p FT(8)p FF(x)p FU(:)p FG(\()p
+FF(fx)h FG(=)f FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
+2569 4748 10 38 v 2578 4731 42 4 v 87 w FF(f0)g FG(=)g
+FF(f1)p FU(;)14 b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8
+b FG(=)h FF(1)3312 4701 y FT(8)3359 4671 y Fz(\017)3359
+4724 y FS(L)p 929 4801 2383 4 v 1385 4880 a FU(T)e(;)14
+b FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)9 b FG(=)g FF(0)p
+FT(_)p FF(fx)g FG(=)g FF(1)p FG(\))p 2099 4868 10 38
+v 2109 4851 42 4 v 88 w FF(f0)g FG(=)g FF(f1)p FU(;)14
+b FF(f1)9 b FG(=)g FF(1)p FU(;)14 b FF(f0)8 b FG(=)h
+FF(1)3312 4820 y FT(8)3359 4790 y Fz(\017)3359 4843 y
+FS(L)p -12 4920 2855 4 v 427 4999 a FU(M)508 5011 y FJ(1)544
+4999 y FU(;)14 b(S;)g(T)7 b(;)14 b FT(8)p FF(x)p FU(:)p
+FG(\()p FF(fx)9 b FG(=)g FF(0)14 b FT(_)g FF(fx)9 b FG(=)g
+FF(1)p FG(\))p 1411 4987 10 38 v 1421 4970 42 4 v 88
+w FF(0)-5 b FU(<)g FF(1)14 b FT(^)f FF(f0)d FG(=)f FF(f1)o
+FU(;)28 b FF(f1)9 b FG(=)g FF(1)p FU(;)27 b FF(f0)9 b
+FG(=)g FF(1)2842 4941 y FT(^)2898 4911 y Fk(?)2898 4964
+y FS(R)p 302 5040 2226 4 v 302 5119 a FU(M)383 5131 y
+FJ(1)420 5119 y FU(;)14 b(S;)g(T)7 b(;)14 b FT(8)p FF(x)p
+FU(:)p FG(\()p FF(fx)9 b FG(=)g FF(0)14 b FT(_)f FF(fx)d
+FG(=)f FF(1)p FG(\))p 1287 5107 10 38 v 1297 5090 42
+4 v 88 w FT(9)p FF(m)p FU(:)p FG(\()p FF(0)-5 b FU(<)g
+FF(m)14 b FT(^)g FF(f0)9 b FG(=)g FF(fm)p FG(\))p FU(;)28
+b FF(f1)9 b FG(=)g FF(1)p FU(;)27 b FF(f0)9 b FG(=)g
+FF(1)2528 5061 y FT(9)2574 5031 y Fk(?)2574 5084 y FS(R)p
+254 5159 2322 4 v 254 5238 a FU(M)335 5250 y FJ(1)372
+5238 y FU(;)14 b(S;)g(T)7 b(;)14 b FT(8)p FF(x)p FU(:)p
+FG(\()p FF(fx)9 b FG(=)g FF(0)14 b FT(_)f FF(fx)d FG(=)f
+FF(1)p FG(\))590 5294 y FI(|)p 627 5294 241 10 v 241
+w({z)p 942 5294 V 241 w(})874 5389 y FU(A)p 1253 5226
+10 38 v 1262 5210 42 4 v 1336 5238 a FT(9)p FF(n)p FU(:)p
+FF(m)p FU(:)p FG(\()p FF(n)-5 b FU(<)g FF(m)14 b FT(^)h
+FF(fn)9 b FG(=)g FF(fm)p FG(\))1336 5294 y FI(|)p 1373
+5294 304 10 v 304 w({z)p 1751 5294 V 304 w(})1682 5389
+y FU(P)2092 5238 y(;)27 b FF(f1)10 b FG(=)f FF(1)p FU(;)27
+b FF(f0)9 b FG(=)g FF(1)2576 5181 y FT(9)2622 5150 y
+Fk(?)2622 5203 y FS(R)p Black Black eop end
+%%Page: 117 129
+TeXDict begin 117 128 bop Black 277 51 a Gb(4.2)23 b(Non-Deterministic)
+i(Computation:)k(Case)23 b(Study)1667 b(117)p 277 88
+3691 4 v Black 277 388 a Gg(In)27 b(this)h(proof,)i(the)d(inference)j
+(rules)e(mark)o(ed)h(with)e(a)g(star)h(are)f(concerned)j(with)e(the)f
+(proposition,)277 501 y Ga(P)13 b Gg(,)31 b(the)f(inference)i(rules)f
+(mark)o(ed)g(with)f(a)f(circle)j(are)e(concerned)i(with)e(the)g
+(assumption,)k Ga(A)p Gg(,)d(and)277 614 y(the)f(inference)j(rules)e
+(mark)o(ed)g(with)f(a)f(disk)i(concern)h(the)e(formula)h(for)f
+(transiti)n(vity)-6 b(,)35 b Ga(T)13 b Gg(.)47 b(Clearly)-6
+b(,)277 727 y(the)29 b(order)h(of)f(the)g(inference)i(rules)e(is)g(not)
+g(important)i(with)d(respect)j(to)d(which)h(test)h(is)e(made:)40
+b(the)277 840 y(inference)29 b(rules)f(can)f(be)g(easily)h(rearranged.)
+41 b(Ho)n(we)n(v)o(er)26 b(it)h(is)f(relati)n(v)o(ely)j(simple)e(to)g
+(determine)h(in)277 953 y(an)o(y)d(proof)h(of)f(this)g(kind)h(which)f
+(test)g(is)g(made:)32 b(one)25 b(only)h(has)f(to)g(\002nd)f(the)h
+(place)h(where)f(the)g(proof)277 1066 y(deals)31 b(with)e(the)h
+(transiti)n(vity)i(\(shaded)f(formula\).)48 b(So)29 b(in)g(the)h(proof)
+g(gi)n(v)o(en)g(abo)o(v)o(e,)h(the)f(inference)277 1179
+y(rule)p Black Black 1090 1360 a FU(:)14 b(:)g(:)p 1219
+1348 10 38 v 1228 1331 42 4 v 101 w FF(f1)23 b FG(=)g
+FF(0)14 b FT(^)f FF(f0)23 b FG(=)g FF(0)p FU(;)14 b(:)g(:)g(:)174
+b FF(f1)9 b FG(=)g FF(f0)p 2354 1348 10 38 v 2363 1331
+42 4 v 102 w FU(:)14 b(:)g(:)p 1090 1396 1445 4 v 1177
+1474 a FG(\()p FF(f1)24 b FG(=)e FF(0)14 b FT(^)g FF(f0)23
+b FG(=)f FF(0)p FG(\))14 b FT(\033)f FF(f0)23 b FG(=)g
+FF(f1)p FU(;)14 b(:)g(:)g(:)p 2266 1462 10 38 v 2275
+1446 42 4 v 115 w(:)g(:)g(:)2575 1412 y FT(\033)2640
+1424 y FS(L)277 1701 y Gg(is)29 b(an)h(indicator)i(for)e(the)f(test)46
+b FL(f0)25 b F4(=)g FL(f1)g F4(=)g FL(0)30 b Gg(being)g
+(\223performed\224.)50 b(Note)29 b(that)h(the)g(tw)o(o)f(formulae)277
+1814 y FL(f1)d F4(=)f FL(1)h Gg(and)g FL(f0)g F4(=)f
+FL(0)p Gg(,)h(which)h(appear)h(in)e(the)h(endsequent,)j(are)c
+F7(not)h Gg(part)g(of)f(the)h(test)42 b FL(f0)26 b F4(=)f
+FL(f1)g F4(=)g FL(0)p Gg(,)277 1927 y(b)n(ut)30 b(ha)n(v)o(e)f(to)g(be)
+g(used)h(in)f(other)h(tests.)46 b(T)-7 b(w)o(o)28 b(proofs)i(for)g(the)
+f(sequent)i Ga(M)2682 1941 y F9(1)2722 1927 y Ga(;)15
+b(M)2850 1941 y F9(2)2890 1927 y Ga(;)g(S;)g(T)8 b(;)15
+b(A)p 3216 1915 11 41 v 3226 1897 46 5 v 97 w(P)41 b
+Gg(are)277 2040 y(gi)n(v)o(en)34 b(in)f(Appendix)h(A.)56
+b(Each)33 b(of)g(them)g(corresponds)j(to)d(a)g(particular)i(collection)
+h(of)d(tests,)i(as)277 2153 y(indicated)26 b(belo)n(w)-6
+b(.)p Black Black 672 2355 a(Proof)24 b(on)f(P)o(ages)h(132\226134)597
+2516 y FL(f0)i F4(=)f FL(f1)g F4(=)g FL(0)597 2628 y(f1)h
+F4(=)f FL(f2)g F4(=)g FL(0)597 2741 y(f0)h F4(=)f FL(f2)g
+F4(=)g FL(0)597 2854 y(f1)h F4(=)f FL(f3)g F4(=)g FL(0)1202
+2572 y(f0)h F4(=)f FL(f1)g F4(=)g FL(1)1202 2685 y(f2)h
+F4(=)f FL(f3)g F4(=)g FL(1)1202 2798 y(f1)h F4(=)f FL(f2)g
+F4(=)g FL(1)2217 2355 y Gg(Proof)f(on)g(P)o(ages)f(135\226140)2143
+2572 y FL(f0)i F4(=)g FL(f1)h F4(=)f FL(0)2143 2685 y(f2)g
+F4(=)g FL(f3)h F4(=)f FL(0)2143 2798 y(f1)g F4(=)g FL(f2)h
+F4(=)f FL(0)2748 2516 y(f0)g F4(=)g FL(f1)h F4(=)f FL(1)2748
+2628 y(f1)g F4(=)g FL(f2)h F4(=)f FL(1)2748 2741 y(f0)g
+F4(=)g FL(f2)h F4(=)f FL(1)2748 2854 y(f1)g F4(=)g FL(f3)h
+F4(=)f FL(1)418 3072 y Gg(No)n(w)d(we)h(return)i(to)e(the)g(question)j
+(whether)f(cut-elimination)i(in)c(classical)i(logic)g(corresponds)277
+3185 y(to)i(non-deterministic)k(computation:)39 b(the)27
+b(preceding)i(discussion)h(suggests)f(the)e(follo)n(wing)h(intu-)277
+3298 y(iti)n(v)o(e)c(criterion)i(for)d(deciding)j(whether)f(tw)o(o)e
+(proofs)i(are)f(dif)n(ferent.)p Black Black 504 3525
+a Gb(Criterion:)45 b Gg(Gi)n(v)o(en)30 b(tw)o(o)g(cut-free)j(proofs)f
+(of)f(the)g(sequent)h Ga(M)2571 3539 y F9(1)2611 3525
+y Ga(;)15 b(M)2739 3539 y F9(2)2779 3525 y Ga(;)g(S;)g(T)8
+b(;)15 b(A)p 3105 3513 11 41 v 3116 3495 46 5 v 97 w(P)e
+Gg(.)504 3638 y(These)24 b(proofs)h(are)f(said)g(to)g(be)f
+F7(dif)n(fer)m(ent)p Gg(,)j(if)d(the)o(y)h(consist)h(of)f(dif)n(ferent)
+h(tests.)277 3865 y(According)j(to)d(this)i(criterion,)h(the)e(tw)o(o)f
+(proofs)i(gi)n(v)o(en)g(in)e(Appendix)j(A)c(are)i(dif)n(ferent,)i
+(since)f(the)o(y)277 3978 y(consist)32 b(of)e(dif)n(ferent)i(tests.)50
+b(Let)30 b(us)g(point)h(out)g(that)g(our)f(criterion)j(is)d(suf)n
+(\002cient)i(for)e(tw)o(o)g(proofs)277 4091 y(being)25
+b(dif)n(ferent,)g(b)n(ut)f(it)f(is)h(by)f(no)h(means)g(a)f(necessary)j
+(one.)418 4220 y(In)g(the)g(rest)g(of)g(this)h(section)g(we)e(shall)i
+(gi)n(v)o(e)f(a)f(proof)i(of)f(Sequent)h(\(4.9\),)g(whose)f(collection)
+i(of)277 4333 y(normal)21 b(forms)g(includes)i(the)d(tw)o(o)g(proofs)i
+(gi)n(v)o(en)f(in)g(Appendix)h(A.)k(This)21 b(proof)g(contains)i
+(instances)277 4446 y(of)h(the)f(cut-rule)j(and)e(is)f(based)i(upon)f
+(the)g(three)h(observ)n(ations)i(listed)d(belo)n(w:)p
+Black 373 4673 a(\(i\))p Black 46 w(From)31 b(the)g(assumption,)k
+Ga(A)p Gg(,)e(one)e(can)h(pro)o(v)o(e)f(that)h(there)g(are)g
+(in\002nitely)g(man)o(y)f(`)p FL(0)p Gg(')-5 b(s)32 b(or)f(in-)504
+4786 y(\002nitely)25 b(man)o(y)e(`)p FL(1)p Gg(')-5 b(s)24
+b(on)g(the)g(tape.)p Black 348 4972 a(\(ii\))p Black
+46 w(If)h(on)h(the)f(tape)h(there)h(are)e(in\002nitely)i(man)o(y)e(`)p
+FL(0)p Gg(')-5 b(s,)26 b(then)g(there)g(are)g(tw)o(o)f(cells)h(with)f
+(the)g(same)504 5085 y(content.)p Black 323 5272 a(\(iii\))p
+Black 46 w(Similarly)-6 b(,)24 b(if)g(on)f(the)h(tape)g(there)g(are)g
+(in\002nitely)h(man)o(y)e(`)p FL(1)p Gg(')-5 b(s,)24
+b(then)g(there)h(are)e(tw)o(o)g(cells)i(with)504 5385
+y(the)f(same)g(content.)p Black Black eop end
+%%Page: 118 130
+TeXDict begin 118 129 bop Black -144 51 a Gb(118)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black 321 388 a Gg(The)f(formulae)h(that)g(represent)h(the)e
+(statements)i(\223there)f(are)g(in\002nitely)g(man)o(y)f(`)p
+FL(0)p Gg(')-5 b(s\224)24 b(and)f(\223there)h(are)321
+501 y(in\002nitely)h(man)o(y)f(`)p FL(1)p Gg(')-5 b(s\224)24
+b(are)p Black Black 574 736 a F6(1)665 750 y F9(0)745
+685 y F5(def)752 737 y F4(=)870 736 y F6(8)p FL(n)p Ga(:)p
+F6(9)p FL(k)p Ga(:)p F4(\()p FL(n)i F6(\024)e FL(k)15
+b F6(^)h FL(fk)25 b F4(=)g FL(0)q F4(\))118 b Gg(and)i
+F6(1)2185 750 y F9(1)2264 685 y F5(def)2271 737 y F4(=)2390
+736 y F6(8)p FL(n)p Ga(:)o F6(9)p FL(k)p Ga(:)p F4(\()p
+FL(n)26 b F6(\024)f FL(k)15 b F6(^)g FL(fk)26 b F4(=)f
+FL(1)p F4(\))h Gg(.)321 946 y(The)d(sequent)j(that)e(corresponds)j(to)c
+(the)h(\002rst)f(observ)n(ation)k(is)1533 1179 y Ga(M)1621
+1193 y F9(1)1661 1179 y Ga(;)15 b(M)1789 1193 y F9(2)1829
+1179 y Ga(;)g(A)p 1957 1167 11 41 v 1968 1149 46 5 v
+97 w F6(1)2125 1193 y F9(0)2164 1179 y Ga(;)g F6(1)2295
+1193 y F9(1)321 1394 y Gg(for)27 b(which)f(a)g(proof,)h(denoted)h(by)f
+Ga(\034)10 b Gg(,)25 b(is)h(gi)n(v)o(en)h(in)f(Figure)h(4.5.)36
+b(The)25 b(sequent)j(that)f(corresponds)j(to)321 1506
+y(the)24 b(observ)n(ations)j(stated)e(in)e(\(ii\))h(and)g(\(iii\))g(is)
+1689 1737 y F6(1)1780 1751 y Gc(i)1808 1737 y Ga(;)15
+b(S;)g(T)p 2031 1725 11 41 v 2042 1706 46 5 v 110 w(P)321
+1951 y Gg(where)23 b Ga(i)i F6(2)g(f)p F4(0)p Ga(;)15
+b F4(1)p F6(g)p Gg(.)30 b(A)21 b(proof)i(of)g(this)f(sequent,)j
+(denoted)f(by)e Ga(")2321 1965 y Gc(i)2350 1951 y Gg(,)f(is)h(gi)n(v)o
+(en)h(in)f(Figure)h(4.5,)f(too.)29 b(No)n(w)321 2063
+y(we)23 b(can)h(use)g(the)g(cut-rule)h(for)f(forming)g(the)g(follo)n
+(wing)h(proof)g(for)f(Sequent)g(4.9.)486 2690 y Ga(\033)582
+2286 y FK(8)582 2368 y(>)582 2395 y(>)582 2422 y(>)582
+2449 y(>)582 2477 y(>)582 2504 y(>)582 2531 y(>)582 2559
+y(>)582 2586 y(<)582 2749 y(>)582 2777 y(>)582 2804 y(>)582
+2831 y(>)582 2859 y(>)582 2886 y(>)582 2913 y(>)582 2940
+y(>)582 2968 y(:)867 2710 y @beginspecial 179 @llx 477
+@lly 318 @urx 605 @ury 639 @rwi @clip @setspecial
+%%BeginDocument: pics/tau.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: tau.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o tau.ps tau.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.10:0010
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (tau.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi12 24.88 1
+/Fb 1 29 df<033FBA12FE4ABCFC02071B805C143F5C91BDFC491C004963496349634901
+80C700FCCBFCD93FFCC8FCD97FF04A5A14C0495A4848C81203485A495E485A484815075B
+485A4D5A48C9FC127E171F5A485F1270CA123FA34D5AA317FFA295CCFCA25EA34C5AA316
+07A25F160FA44C5AA3163FA25F167FA44C5AA35DA25F5DA44B5BA35DA294CDFC5DA44B5A
+A45E5E6F5A6F5A615B7BD858>28 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 841 3165 a
+ tx@Dict begin CP CP translate 0.65 0.65 scale NET end
+ 841 3165 a @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 139.41826 139.41826 184.94283 213.39557 156.49008
+284.52744 91.04869 301.59924 56.90549 256.07469 62.59595 199.1692 102.43004
+139.41826 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0
+SLW 0 setgray 0 setlinecap stroke grestore end
+
+@endspecial 841 3165 a
+ tx@Dict begin CP CP translate 1 0.65 div 1 0.65 div scale NET end
+ 841 3165 a 1430 2028
+a Fb(\034)p Black 1918 5251 a Fa(1)p Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 732 2788 a Ga(M)820 2802 y F9(1)860 2788
+y Ga(;)15 b(M)988 2802 y F9(2)1028 2788 y Ga(;)g(A)p
+1157 2776 11 41 v 1167 2758 46 5 v 97 w F6(1)1324 2802
+y F9(0)1363 2788 y Ga(;)g F6(1)1494 2802 y F9(1)1625
+2710 y @beginspecial 365 @llx 477 @lly 519 @urx 605 @ury
+708 @rwi @clip @setspecial
+%%BeginDocument: pics/eps0.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: eps0.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o eps0.ps eps0.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.10:0010
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (eps0.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 2
+/Fa 2 50 df<14FF010713E090381F81F890383E007C01FC133F4848EB1F8049130F4848
+EB07C04848EB03E0A2000F15F0491301001F15F8A2003F15FCA390C8FC4815FEA54815FF
+B3A46C15FEA56D1301003F15FCA3001F15F8A26C6CEB03F0A36C6CEB07E0000315C06D13
+0F6C6CEB1F806C6CEB3F00013E137C90381F81F8903807FFE0010090C7FC28447CC131>
+48 D<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6FCA320
+4278C131>I E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi12 24.88 1
+/Fb 1 35 df<943801FFFC053FEBFFE00403B612FC041F15FF93B812C0030317F0030F83
+033F17FE4B834AB526F8001F14804A49C712014A01E0EC003F021F90C9120FDA3FF81603
+DA7FE004001300DAFF80177E4990CB123C02FC95C7FC495A495A5C495A5C131F91CEFCA3
+5B133EA2133F7FA380130F806D7E6D6C90B512F8902601F80F14FE902600FE7F80027FB7
+7E6E903880001FDA1FFCC748C9FC913A7FFFF80FFF91B75A902603FC7F5C902607F80714
+F090280FE0000FF8CAFC494890CCFC49CEFC137E5B485A485A5B1207485A5B121F90CFFC
+5A123E127E127CA312FC5AA57E1A181A3C7E007E197C007F61A26C6C4D5A6DEF07E06C6C
+4D5A01F8173FD80FFEEFFF806C6C6C030790C8FC6C01F0ED3FFE6CD9FFC090380FFFF86C
+91B75A6D5F6D17806D94C9FC010716FC010116E06D6C1580020F02F8CAFCDA007F90CBFC
+51617BDC5F>34 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 1360 3165 a
+ tx@Dict begin CP CP translate 0.65 0.65 scale NET end
+ 1360 3165 a @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 310.13472 139.41826 384.11203 227.62195 372.73111
+284.52744 312.98018 298.7538 241.84831 213.39557 290.2179 139.41826
+ 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0 SLW 0 setgray
+0 setlinecap stroke grestore end
+
+@endspecial 1360 3165 a
+ tx@Dict begin CP CP translate 1 0.65 div 1 0.65 div scale NET end
+ 1360 3165 a 2995
+2017 a Fb(")3090 2039 y Fa(0)p Black 1918 5251 a(1)p
+Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 1670 2788 a F6(1)1761 2802 y F9(1)1800 2788
+y Ga(;)g(S;)g(T)p 2023 2776 11 41 v 2034 2758 46 5 v
+110 w(P)p 732 2826 1438 4 v 986 2905 a(M)1074 2919 y
+F9(1)1114 2905 y Ga(;)g(M)1242 2919 y F9(2)1282 2905
+y Ga(;)g(S;)g(T)8 b(;)15 b(A)p 1608 2893 11 41 v 1619
+2875 46 5 v 97 w(P)s(;)g F6(1)1876 2919 y F9(0)2212 2856
+y Gg(Cut)2434 2826 y @beginspecial 365 @llx 477 @lly
+519 @urx 605 @ury 708 @rwi @clip @setspecial
+%%BeginDocument: pics/eps1.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: eps1.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o eps1.ps eps1.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.10:0010
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (eps1.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi12 24.88 1
+/Fb 1 35 df<943801FFFC053FEBFFE00403B612FC041F15FF93B812C0030317F0030F83
+033F17FE4B834AB526F8001F14804A49C712014A01E0EC003F021F90C9120FDA3FF81603
+DA7FE004001300DAFF80177E4990CB123C02FC95C7FC495A495A5C495A5C131F91CEFCA3
+5B133EA2133F7FA380130F806D7E6D6C90B512F8902601F80F14FE902600FE7F80027FB7
+7E6E903880001FDA1FFCC748C9FC913A7FFFF80FFF91B75A902603FC7F5C902607F80714
+F090280FE0000FF8CAFC494890CCFC49CEFC137E5B485A485A5B1207485A5B121F90CFFC
+5A123E127E127CA312FC5AA57E1A181A3C7E007E197C007F61A26C6C4D5A6DEF07E06C6C
+4D5A01F8173FD80FFEEFFF806C6C6C030790C8FC6C01F0ED3FFE6CD9FFC090380FFFF86C
+91B75A6D5F6D17806D94C9FC010716FC010116E06D6C1580020F02F8CAFCDA007F90CBFC
+51617BDC5F>34 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 1360 3165 a
+ tx@Dict begin CP CP translate 0.65 0.65 scale NET end
+ 1360 3165 a @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 2.0 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 310.13472 139.41826 384.11203 227.62195 372.73111
+284.52744 312.98018 298.7538 241.84831 213.39557 290.2179 139.41826
+ 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 2.0 SLW 0 setgray
+0 setlinecap stroke grestore end
+
+@endspecial 1360 3165 a
+ tx@Dict begin CP CP translate 1 0.65 div 1 0.65 div scale NET end
+ 1360 3165 a 2995
+2017 a Fb(")3090 2039 y Fa(1)p Black 1918 5251 a(1)p
+Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 2479 2905 a F6(1)2570 2919 y F9(0)2609 2905
+y Ga(;)g(S;)g(T)p 2832 2893 11 41 v 2843 2875 46 5 v
+110 w(P)p 986 2942 1993 4 v 1598 3021 a(M)1686 3035 y
+F9(1)1726 3021 y Ga(;)g(M)1854 3035 y F9(2)1894 3021
+y Ga(;)g(S;)g(T)8 b(;)15 b(A)p 2220 3009 11 41 v 2231
+2991 46 5 v 97 w(P)3021 2973 y Gg(Cut)p Black 3327 2690
+a(\(4.11\))p Black 321 3240 a(If)33 b(we)f(feed)i(the)f(term)g(that)g
+(corresponds)k(to)c(this)g(proof)h(into)g(the)f(e)n(v)n(aluation)j
+(function)f(of)e(Sec-)321 3353 y(tion)f(4.1,)h(we)d(obtain)j(a)e
+(collection)j(of)d(normal)h(forms.)53 b(As)30 b(mentioned)j(earlier)l
+(,)i(this)d(collection)321 3466 y(includes)26 b(the)e(proofs)h(gi)n(v)o
+(en)f(in)f(Appendix)j(A.)462 3595 y(Recall)h(the)f(point)h(we)f(made)g
+(at)f(the)i(be)o(ginning)h(of)e(this)h(section,)h(where)e(we)f(ar)n
+(gued)j(that)f(tw)o(o)321 3708 y(dif)n(ferent)38 b(normal)e(forms)f
+(may)g(correspond)k(to)c(the)h(same)f(v)n(alue)h(and)g(the)g(same)f
+(computation.)321 3821 y(This)30 b(point)h(does)g(not)g(apply)g(to)f
+(the)g(tw)o(o)g(normal)h(forms)f(gi)n(v)o(en)h(in)f(Appendix)h(A;)i
+(these)e(normal)321 3934 y(forms)19 b(dif)n(fer)g(in)g
+(\223essential\224)i(features)g(\(identifying)h(them)c(w)o(ould)h
+(result)h(into)f(the)g(\223inconsistenc)o(y\224)321 4047
+y(described)26 b(in)e(the)g(introduction\).)462 4176
+y(T)-7 b(o)27 b(sum)h(up,)g(let)g(us)g(tak)o(e)g(a)g(step)g(back)h(and)
+f(analyse)h(a)f(more)g(global)h(picture.)43 b(Starting)29
+b(from)321 4289 y(the)20 b(classical)j(proof,)e Ga(\033)s
+Gg(,)f(we)f(can)h(using)h(our)f(cut-elimination)k(procedures)f(reach,)e
+(amongst)g(others,)321 4402 y(one)34 b(of)f(the)g(tw)o(o)g(normal)g
+(forms)h(gi)n(v)o(en)f(in)g(Appendix)i(A,)f(by)f(choosing)j
+(non-deterministically)321 4515 y(which)26 b(reductions)i(we)c(apply)-6
+b(.)35 b(This)25 b(will)g(enable)i(us)e(to)g(encode)i(an)e(erratic)i
+(choice)g(operator)g(into)321 4628 y(classical)f(logic.)k(W)-7
+b(e)22 b(shall)j(tak)o(e)f(up)g(this)g(point)g(in)g(the)g(ne)o(xt)g
+(section.)321 4936 y Ge(4.3)119 b(A)31 b(Simple,)f(Non-Deterministic)h
+(Pr)n(ogramming)e(Language)321 5159 y Gg(In)24 b(this)g(section)i(we)d
+(address)i(the)f(question)i(of)e(what)g(is)f(the)h(computational)k
+(meaning)d(of)e(classical)321 5272 y(logic.)42 b(Clearly)-6
+b(,)29 b(there)g(are)e(numerous)j(w)o(ays)d(of)h(ho)n(w)f(to)g
+(approach)j(an)e(answer)g(to)f(this)i(question.)321 5385
+y(Ho)n(we)n(v)o(er)l(,)e(the)g(discussion)i(in)e(this)g(section)h(will)
+e(be)h(restricted)h(to)f(only)g(one:)36 b(we)25 b(shall)j(present)g(a)
+321 5498 y(small)21 b(programming)i(language,)g(whose)e(type)g
+(annotations)j(correspond)g(to)c(some)h(sequent)h(proofs)p
+Black Black eop end
+%%Page: 119 131
+TeXDict begin 119 130 bop Black 277 51 a Gb(4.3)23 b(A)g(Simple,)f
+(Non-Deterministic)j(Pr)n(ogramming)f(Language)1327 b(119)p
+277 88 3691 4 v Black Black 277 718 V 277 4791 4 4073
+v 384 893 a Fj(\034)462 844 y F5(def)467 893 y Fi(=)p
+378 1088 711 4 v 378 1183 a FF(n)421 1152 y FQ(0)453
+1183 y FT(\024)9 b FF(m)593 1152 y Ft(n)p FS(;)p Ft(n)677
+1127 y Fh(0)p 707 1171 10 38 v 717 1154 42 4 v 777 1183
+a FF(n)820 1152 y FQ(0)852 1183 y FT(\024)g FF(m)992
+1152 y Ft(n)p FS(;)p Ft(n)1076 1127 y Fh(0)p 326 1214
+815 4 v 326 1309 a FT(8)p FF(x)p FU(:)p FF(n)477 1278
+y FQ(0)508 1309 y FT(\024)g FF(m)648 1278 y Ft(x)p FS(;)p
+Ft(n)728 1253 y Fh(0)p 760 1297 10 38 v 769 1280 42 4
+v 829 1309 a FF(n)872 1278 y FQ(0)904 1309 y FT(\024)g
+FF(m)1044 1278 y Ft(n)p FS(;)p Ft(n)1128 1253 y Fh(0)1140
+1236 y FT(8)1187 1248 y FS(L)p 326 1340 815 4 v 474 1435
+a FU(M)555 1447 y FJ(2)p 611 1423 10 38 v 620 1406 42
+4 v 680 1435 a FF(n)723 1405 y FQ(0)756 1435 y FT(\024)g
+FF(m)896 1405 y Ft(n)p FS(;)p Ft(n)980 1379 y Fh(0)1140
+1362 y FT(8)1187 1374 y FS(L)p 1387 943 665 4 v 1387
+1038 a FF(n)g FT(\024)g FF(m)1579 1007 y Ft(n)p FS(;)p
+Ft(n)1663 982 y Fh(0)p 1694 1026 10 38 v 1704 1009 42
+4 v 1764 1038 a FF(n)g FT(\024)g FF(m)1956 1007 y Ft(n)p
+FS(;)p Ft(n)2040 982 y Fh(0)p 1292 1069 856 4 v 1292
+1164 a FT(8)p FF(x)p FU(:)p FG(\()p FF(x)23 b FT(\024)f
+FF(m)1646 1133 y Ft(x)p FS(;)p Ft(n)1726 1108 y Fh(0)1739
+1164 y FG(\))p 1790 1152 10 38 v 1799 1135 42 4 v 88
+w FF(n)9 b FT(\024)g FF(m)2051 1133 y Ft(n)p FS(;)p Ft(n)2135
+1108 y Fh(0)2147 1091 y FT(8)2194 1103 y FS(L)p 1292
+1204 856 4 v 1473 1299 a FU(M)1554 1311 y FJ(1)p 1609
+1287 10 38 v 1618 1270 42 4 v 1678 1299 a FF(n)g FT(\024)g
+FF(m)1870 1269 y Ft(n)p FS(;)p Ft(n)1954 1244 y Fh(0)2147
+1227 y FT(8)2194 1239 y FS(L)p 2299 959 713 4 v 2299
+1053 a FF(fm)2390 1023 y Ft(n)p FS(;)p Ft(n)2474 998
+y Fh(0)2495 1053 y FG(=)g FF(0)p 2629 1041 10 38 v 2639
+1025 42 4 v 88 w(fm)2790 1023 y Ft(n)p FS(;)p Ft(n)2874
+998 y Fh(0)2896 1053 y FG(=)g FF(0)p 3094 959 713 4 v
+82 w(fm)3185 1023 y Ft(n)p FS(;)p Ft(n)3269 998 y Fh(0)3291
+1053 y FG(=)g FF(1)p 3424 1041 10 38 v 3434 1025 42 4
+v 87 w(fm)3585 1023 y Ft(n)p FS(;)p Ft(n)3669 998 y Fh(0)3691
+1053 y FG(=)g FF(1)p 2299 1073 1508 4 v 2338 1168 a(fm)2429
+1138 y Ft(n)p FS(;)p Ft(n)2513 1113 y Fh(0)2535 1168
+y FG(=)g FF(0)p FT(_)o FF(fm)2796 1138 y Ft(n)p FS(;)p
+Ft(n)2880 1113 y Fh(0)2902 1168 y FG(=)g FF(1)p 3036
+1156 10 38 v 3046 1140 42 4 v 88 w(fm)3197 1138 y Ft(n)p
+FS(;)p Ft(n)3281 1113 y Fh(0)3302 1168 y FG(=)g FF(0)p
+FU(;)14 b FF(fm)3546 1138 y Ft(n)p FS(;)p Ft(n)3630 1113
+y Fh(0)3651 1168 y FG(=)9 b FF(1)3806 1090 y FT(_)3861
+1103 y FS(L)p 2338 1204 1429 4 v 2376 1299 a FT(8)p FF(x)p
+FU(:)p FG(\()p FF(fx)h FG(=)f FF(0)p FT(_)o FF(fx)h FG(=)f
+FF(1)p FG(\))p 2998 1287 10 38 v 3008 1270 42 4 v 88
+w FF(fm)3159 1269 y Ft(n)p FS(;)p Ft(n)3243 1244 y Fh(0)3264
+1299 y FG(=)g FF(0)p FU(;)14 b FF(fm)3508 1269 y Ft(n)p
+FS(;)p Ft(n)3592 1244 y Fh(0)3613 1299 y FG(=)9 b FF(1)3767
+1227 y FT(8)3814 1239 y FS(L)p 1473 1340 2257 4 v 1675
+1435 a FU(M)1756 1447 y FJ(1)1793 1435 y FU(;)14 b FT(8)p
+FF(x)p FU(:)p FG(\()p FF(fx)c FG(=)f FF(0)p FT(_)o FF(fx)h
+FG(=)f FF(1)p FG(\))p 2452 1423 10 38 v 2462 1406 42
+4 v 88 w FF(n)g FT(\024)g FF(m)2714 1405 y Ft(n)p FS(;)p
+Ft(n)2798 1379 y Fh(0)2810 1435 y FT(^)p FF(fm)2956 1405
+y Ft(n)p FS(;)p Ft(n)3040 1379 y Fh(0)3062 1435 y FG(=)g
+FF(0)p FU(;)14 b FF(fm)3306 1405 y Ft(n)p FS(;)p Ft(n)3390
+1379 y Fh(0)3411 1435 y FG(=)9 b FF(1)3729 1357 y FT(^)3784
+1369 y FS(R)p 474 1475 3052 4 v 814 1570 a FU(M)895 1582
+y FJ(1)932 1570 y FU(;)14 b(M)1050 1582 y FJ(2)1087 1570
+y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)9 b FG(=)g
+FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p 1746 1558
+10 38 v 1755 1542 42 4 v 87 w FF(n)g FT(\024)g FF(m)2007
+1540 y Ft(n)p FS(;)p Ft(n)2091 1515 y Fh(0)2103 1570
+y FT(^)q FF(fm)2250 1540 y Ft(n)p FS(;)p Ft(n)2334 1515
+y Fh(0)2355 1570 y FG(=)g FF(0)p FU(;)14 b FF(n)2551
+1540 y FQ(0)2583 1570 y FT(\024)9 b FF(m)2723 1540 y
+Ft(n)p FS(;)p Ft(n)2807 1515 y Fh(0)2819 1570 y FT(^)p
+FF(fm)2965 1540 y Ft(n)p FS(;)p Ft(n)3049 1515 y Fh(0)3071
+1570 y FG(=)g FF(1)3526 1492 y FT(^)3582 1505 y FS(R)p
+814 1611 2373 4 v 849 1706 a FU(M)930 1718 y FJ(1)966
+1706 y FU(;)14 b(M)1084 1718 y FJ(2)1121 1706 y FU(;)g
+FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)c FG(=)f FF(0)p FT(_)o
+FF(fx)h FG(=)f FF(1)p FG(\))p 1780 1694 10 38 v 1790
+1677 42 4 v 88 w FT(9)p FF(k)p FU(:)p FG(\()p FF(n)g
+FT(\024)g FF(k)p FT(^)p FF(fk)g FG(=)g FF(0)p FG(\))p
+FU(;)14 b FF(n)2517 1676 y FQ(0)2549 1706 y FT(\024)9
+b FF(m)2689 1676 y Ft(n)p FS(;)p Ft(n)2773 1651 y Fh(0)2785
+1706 y FT(^)p FF(fm)2931 1676 y Ft(n)p FS(;)p Ft(n)3015
+1651 y Fh(0)3037 1706 y FG(=)g FF(1)3187 1633 y FT(9)3233
+1645 y FS(R)p 848 1746 2305 4 v 848 1825 a FU(M)929 1837
+y FJ(1)966 1825 y FU(;)14 b(M)1084 1837 y FJ(2)1121 1825
+y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)9 b FG(=)g
+FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p 1780 1813
+10 38 v 1789 1797 42 4 v 87 w FT(9)p FF(k)p FU(:)p FG(\()p
+FF(n)g FT(\024)g FF(k)p FT(^)p FF(fk)g FG(=)g FF(0)p
+FG(\))p FU(;)14 b FT(9)p FF(k)2560 1795 y FQ(0)2583 1825
+y FU(:)p FG(\()p FF(n)2681 1795 y FQ(0)2713 1825 y FT(\024)9
+b FF(k)2828 1795 y FQ(0)2851 1825 y FT(^)q FF(fk)2973
+1795 y FQ(0)3005 1825 y FG(=)g FF(1)p FG(\))3153 1769
+y FT(9)3199 1781 y FS(R)p 792 1866 2417 4 v 792 1945
+a FU(M)873 1957 y FJ(1)910 1945 y FU(;)14 b(M)1028 1957
+y FJ(2)1064 1945 y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p
+FF(fx)c FG(=)f FF(0)p FT(_)p FF(fx)h FG(=)f FF(1)p FG(\))p
+1724 1933 10 38 v 1733 1916 42 4 v 87 w FT(8)p FF(n)p
+FU(:)p FT(9)p FF(k)p FU(:)p FG(\()p FF(n)g FT(\024)g
+FF(k)p FT(^)o FF(fk)g FG(=)g FF(0)p FG(\))p FU(;)14 b
+FT(9)p FF(k)2616 1915 y FQ(0)2639 1945 y FU(:)p FG(\()p
+FF(n)2737 1915 y FQ(0)2770 1945 y FT(\024)9 b FF(k)2885
+1915 y FQ(0)2907 1945 y FT(^)q FF(fk)3029 1915 y FQ(0)3061
+1945 y FG(=)g FF(1)p FG(\))3209 1889 y FT(8)3256 1901
+y FS(R)p 704 1986 2594 4 v 704 2069 a FU(M)785 2081 y
+FJ(1)821 2069 y FU(;)14 b(M)939 2081 y FJ(2)976 2069
+y FU(;)g FT(8)p FF(x)p FU(:)p FG(\()p FF(fx)c FG(=)f
+FF(0)p FT(_)o FF(fx)h FG(=)f FF(1)p FG(\))1013 2125 y
+FI(|)p 1050 2125 228 10 v 228 w({z)p 1352 2125 V 228
+w(})1284 2220 y FU(A)p 1649 2057 10 38 v 1659 2040 42
+4 v 1732 2069 a FT(8)p FF(n)p FU(:)p FT(9)p FF(k)p FU(:)p
+FG(\()p FF(n)g FT(\024)g FF(k)p FT(^)o FF(fk)g FG(=)g
+FF(0)p FG(\))1732 2125 y FI(|)p 1769 2125 275 10 v 275
+w({z)p 2118 2125 V 275 w(})2022 2199 y FT(1)2105 2211
+y FJ(0)2431 2069 y FU(;)28 b FT(8)p FF(n)2572 2035 y
+FQ(0)2594 2069 y FU(:)p FT(9)p FF(k)2704 2035 y FQ(0)2727
+2069 y FU(:)p FG(\()p FF(n)2825 2035 y FQ(0)2858 2069
+y FT(\024)9 b FF(k)2973 2035 y FQ(0)2996 2069 y FT(^)p
+FF(fk)3117 2035 y FQ(0)3149 2069 y FG(=)g FF(1)p FG(\))2482
+2125 y FI(|)p 2519 2125 333 10 v 333 w({z)p 2926 2125
+V 333 w(})2829 2199 y FT(1)2912 2211 y FJ(1)3297 2008
+y FT(8)3344 2020 y FS(R)366 2588 y Fj(")429 2606 y FH(i)467
+2539 y F5(def)472 2588 y Fi(=)p 504 2876 536 4 v 504
+2945 a FF(sn)g FT(\024)g FF(m)p 746 2933 10 38 v 756
+2917 42 4 v 88 w(sn)g FT(\024)g FF(m)p 1123 2880 472
+4 v 83 w(n)g FU(<)g FF(m)p 1333 2933 10 38 v 1342 2917
+42 4 v 87 w(n)g FU(<)g FF(m)p 504 2977 1091 4 v 539 3046
+a(sn)g FT(\024)g FF(m)p FT(\033)o FF(n)g FU(<)g FF(m)p
+FU(;)14 b FF(sn)9 b FT(\024)g FF(m)p 1298 3034 10 38
+v 1308 3017 42 4 v 88 w(n)g FU(<)g FF(m)1608 2993 y FT(\033)1673
+3005 y FS(L)p 479 3082 1141 4 v 479 3161 a FT(8)p FF(y)q
+FU(:)p FG(\()p FF(sn)g FT(\024)g FF(y)q FT(\033)p FF(n)g
+FU(<)g FF(y)q FG(\))p FU(;)14 b FF(sn)9 b FT(\024)g FF(m)p
+1358 3149 10 38 v 1368 3132 42 4 v 88 w(n)g FU(<)g FF(m)1633
+3105 y FT(8)1680 3117 y FS(L)p 479 3202 1141 4 v 751
+3275 a FF(sn)g FT(\024)g FF(m)p FU(;)14 b(S)p 1086 3263
+10 38 v 1095 3246 42 4 v 92 w FF(n)9 b FU(<)g FF(m)1633
+3224 y FT(8)1680 3236 y FS(L)p 1812 2638 459 4 v 1812
+2712 a FF(fn)h FG(=)f Fg(i)p 2016 2700 10 38 v 2025 2683
+42 4 v 96 w FF(fn)h FG(=)f Fg(i)p 2354 2638 505 4 v 92
+w FF(fm)g FG(=)g Fg(i)p 2580 2700 10 38 v 2590 2683 42
+4 v 97 w FF(fm)g FG(=)g Fg(i)p 1812 2732 1046 4 v 1852
+2806 a FF(fm)g FG(=)g Fg(i)f FU(;)14 b FF(fn)c FG(=)f
+Fg(i)p 2300 2794 10 38 v 2310 2777 42 4 v 97 w FF(fn)g
+FG(=)g Fg(i)f FT(^)r FF(fm)h FG(=)g Fg(i)2872 2749 y
+FT(^)2927 2761 y FS(R)p 3065 2732 574 4 v 3065 2806 a
+FF(fn)g FG(=)g FF(fm)p 3326 2794 10 38 v 3335 2777 42
+4 v 88 w(fn)h FG(=)f FF(fm)p 1852 2842 1787 4 v 1936
+2921 a FG(\()p FF(fn)g FG(=)g Fg(i)f FT(^)q FF(fm)i FG(=)f
+Fg(i)f FG(\))p FT(\033)q FF(fn)h FG(=)g FF(fm)p FU(;)14
+b FF(fm)c FG(=)f Fg(i)f FU(;)14 b FF(fn)c FG(=)f Fg(i)p
+3242 2909 10 38 v 3251 2892 42 4 v 96 w FF(fn)h FG(=)f
+FF(fm)3652 2858 y FT(\033)3716 2871 y FS(L)p 1876 2962
+1739 4 v 1876 3041 a FT(8)p FF(y)q FU(:)p FG(\(\()p FF(fn)g
+FG(=)g Fg(i)f FT(^)q FF(fy)j FG(=)e Fg(i)f FG(\))p FT(\033)q
+FF(fn)h FG(=)g FF(fy)r FG(\))p FU(;)14 b FF(fm)c FG(=)f
+Fg(i)f FU(;)14 b FF(fn)c FG(=)f Fg(i)p 3302 3029 10 38
+v 3312 3012 42 4 v 96 w FF(fn)h FG(=)f FF(fm)3628 2984
+y FT(8)3675 2996 y FS(L)p 1849 3081 1791 4 v 1849 3160
+a FT(8)p FF(x)p FU(:)p FF(y)q FU(:)p FG(\(\()p FF(fx)i
+FG(=)e Fg(i)f FT(^)q FF(fy)j FG(=)e Fg(i)f FG(\))p FT(\033)q
+FF(fx)h FG(=)g FF(fy)r FG(\))p FU(;)14 b FF(fm)c FG(=)f
+Fg(i)f FU(;)14 b FF(fn)c FG(=)f Fg(i)p 3328 3148 10 38
+v 3338 3131 42 4 v 97 w FF(fn)g FG(=)g FF(fm)3654 3104
+y FT(8)3701 3116 y FS(L)p 1849 3201 1791 4 v 2316 3275
+a FF(fm)g FG(=)g Fg(i)f FU(;)14 b FF(fn)d FG(=)e Fg(i)f
+FU(;)14 b(T)p 2862 3263 10 38 v 2871 3246 42 4 v 99 w
+FF(fn)c FG(=)f FF(fm)3654 3223 y FT(8)3701 3235 y FS(L)p
+751 3311 2423 4 v 1236 3385 a FF(fm)g FG(=)g Fg(i)f FU(;)14
+b FF(sn)c FT(\024)f FF(m)p FU(;)14 b FF(fn)9 b FG(=)g
+Fg(i)f FU(;)14 b(S;)g(T)p 2130 3373 10 38 v 2140 3357
+42 4 v 99 w FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g
+FF(fm)3188 3328 y FT(^)3243 3340 y FS(R)p 1226 3421 1473
+4 v 1226 3496 a FF(fn)h FG(=)f Fg(i)f FU(;)14 b FF(sn)9
+b FT(\024)g FF(m)p FT(^)q FF(fm)g FG(=)g Fg(i)f FU(;)14
+b(S;)g(T)p 2139 3484 10 38 v 2149 3467 42 4 v 100 w FF(n)9
+b FU(<)g FF(m)p FT(^)p FF(fn)g FG(=)g FF(fm)2712 3441
+y FT(^)2768 3411 y FQ(0)2768 3464 y FS(L)p 1115 3532
+1695 4 v 1115 3606 a FF(sn)g FT(\024)g FF(m)p FT(^)p
+FF(fm)h FG(=)f Fg(i)f FU(;)14 b FF(0)9 b FT(\024)g FF(n)p
+FT(^)p FF(fn)g FG(=)g Fg(i)f FU(;)14 b(S;)g(T)p 2251
+3594 10 38 v 2260 3577 42 4 v 100 w FF(n)9 b FU(<)g FF(m)p
+FT(^)p FF(fn)h FG(=)f FF(fm)2824 3544 y FT(^)2879 3557
+y FS(L)2925 3565 y FP(2)p 1015 3642 1895 4 v 1015 3721
+a FF(sn)g FT(\024)g FF(m)p FT(^)p FF(fm)h FG(=)f Fg(i)f
+FU(;)14 b FF(0)9 b FT(\024)g FF(n)p FT(^)p FF(fn)h FG(=)f
+Fg(i)f FU(;)14 b(S;)g(T)p 2151 3709 10 38 v 2160 3692
+42 4 v 99 w FT(9)p FF(m)p FU(:)p FG(\()p FF(n)9 b FU(<)g
+FF(m)p FT(^)q FF(fn)g FG(=)g FF(fm)p FG(\))2924 3665
+y FT(9)2970 3677 y FS(R)p 982 3762 1961 4 v 982 3840
+a FF(sn)g FT(\024)g FF(m)p FT(^)p FF(fm)h FG(=)f Fg(i)f
+FU(;)14 b FF(0)9 b FT(\024)g FF(n)p FT(^)p FF(fn)h FG(=)f
+Fg(i)f FU(;)14 b(S;)g(T)p 2118 3828 10 38 v 2127 3812
+42 4 v 99 w FT(9)p FF(n)p FU(:)p FF(m)p FU(:)p FG(\()p
+FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g FF(fm)p
+FG(\))2957 3784 y FT(9)3003 3796 y FS(R)p 920 3881 2085
+4 v 920 3960 a FT(9)p FF(k)p FU(:)p FG(\()p FF(sn)g FT(\024)g
+FF(k)p FT(^)p FF(fk)g FG(=)g Fg(i)f FG(\))p FU(;)14 b
+FF(0)9 b FT(\024)g FF(n)p FT(^)q FF(fn)g FG(=)g Fg(i)f
+FU(;)14 b(S;)g(T)p 2180 3948 10 38 v 2189 3931 42 4 v
+100 w FT(9)p FF(n)p FU(:)p FF(m)p FU(:)p FG(\()p FF(n)9
+b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g FF(fm)p FG(\))3018
+3904 y FT(9)3064 3916 y FS(L)p 880 4001 2165 4 v 880
+4080 a FF(0)g FT(\024)g FF(n)p FT(^)p FF(fn)h FG(=)f
+Fg(i)f FU(;)14 b FT(8)p FF(n)p FU(:)p FT(9)p FF(k)p FU(:)p
+FG(\()p FF(n)9 b FT(\024)g FF(k)p FT(^)o FF(fk)g FG(=)g
+Fg(i)f FG(\))p FU(;)14 b(S;)g(T)p 2220 4068 10 38 v 2229
+4051 42 4 v 100 w FT(9)p FF(n)p FU(:)p FF(m)p FU(:)p
+FG(\()p FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g FG(=)g
+FF(fm)p FG(\))3059 4023 y FT(8)3106 4035 y FS(L)p 795
+4120 2335 4 v 795 4199 a FT(9)p FF(k)p FU(:)p FG(\()p
+FF(0)g FT(\024)g FF(k)p FT(^)p FF(fk)g FG(=)g Fg(i)f
+FG(\))p FU(;)14 b FT(8)p FF(n)p FU(:)p FT(9)p FF(k)p
+FU(:)p FG(\()p FF(n)9 b FT(\024)g FF(k)p FT(^)p FF(fk)g
+FG(=)g Fg(i)f FG(\))p FU(;)14 b(S;)g(T)p 2305 4187 10
+38 v 2314 4171 42 4 v 100 w FT(9)p FF(n)p FU(:)p FF(m)p
+FU(:)p FG(\()p FF(n)9 b FU(<)g FF(m)p FT(^)q FF(fn)g
+FG(=)g FF(fm)p FG(\))3143 4143 y FT(9)3189 4155 y FS(L)p
+795 4240 2335 4 v 1096 4319 a FT(8)p FF(n)p FU(:)p FT(9)p
+FF(k)p FU(:)p FG(\()p FF(n)g FT(\024)g FF(k)p FT(^)o
+FF(fk)g FG(=)g Fg(i)g FG(\))1096 4374 y FI(|)p 1133 4374
+271 10 v 271 w({z)p 1478 4374 V 271 w(})1386 4449 y FT(1)1469
+4461 y FS(i)1787 4319 y FU(;)14 b(S;)g(T)p 1990 4307
+10 38 v 2000 4290 42 4 v 113 w FT(9)p FF(n)p FU(:)p FF(m)p
+FU(:)p FG(\()p FF(n)9 b FU(<)g FF(m)p FT(^)p FF(fn)h
+FG(=)f FF(fm)p FG(\))2074 4374 y FI(|)p 2111 4374 304
+10 v 304 w({z)p 2489 4374 V 304 w(})2419 4470 y FU(P)3143
+4262 y FT(8)3190 4274 y FS(L)p Black Black 1844 4623
+a Gd(where)20 b FU(i)i FT(2)i(f)p FF(0)p FU(;)14 b FF(1)n
+FT(g)p 3965 4791 4 4073 v 277 4794 3691 4 v Black 1156
+4948 a Gg(Figure)24 b(4.5:)29 b(The)24 b(sequent)h(proofs)g
+Ga(\034)33 b Gg(and)24 b Ga(")2572 4962 y Gc(i)2600 4948
+y Gg(.)p Black Black Black Black eop end
+%%Page: 120 132
+TeXDict begin 120 131 bop Black -144 51 a Gb(120)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black 321 388 a Gg(of)31 b(the)g F6(\033)p Gg(-fragment)i(of)e
+(classical)i(logic)f(and)f(whose)h(computations)i(can)d(be)g(simulated)
+i(by)e(cut-)321 501 y(elimination.)462 632 y(As)f(we)g(metioned)i(in)f
+(the)g(introduction,)k(the)c(simply-typed)j(lambda)d(calculus)i(can)e
+(be)g(seen)321 745 y(as)k(a)g(prototypical)k(programming)e(language)h
+(in)d(which)g(program)i(e)o(x)o(ecution)g(\(beta-reduction\))321
+858 y(is)30 b(a)f(form)h(of)g(sequential)i(computation.)51
+b(In)30 b(Section)g(3.1,)h(we)e(sho)n(wed)i(that)f(this)g(programming)
+321 971 y(language)37 b(gi)n(v)o(es)e(a)f(computational)k(meaning)e(to)
+e(the)h F6(\033)p Gg(-fragment)h(of)e(intuitionistic)39
+b(logic)c(\(we)321 1084 y(de\002ned)24 b(translations)h(between)f
+(simply-typed)h(lambda)f(terms)e(and)h(proofs)h(in)e(this)h(fragment,)h
+(and)321 1197 y(sho)n(wed)k(that)f(beta-reduction)k(and)c
+(cut-elimination)j(can)d(simulate)h(each)f(other\).)40
+b(Consequently)-6 b(,)321 1310 y(we)36 b(kno)n(w)h(that)g
+(cut-elimination)k(captures)e(features)g(of)d(sequential)k
+(computation.)71 b(The)37 b(main)321 1423 y(result)d(of)e(the)h
+(preceding)i(section)f(w)o(as)e(that)g(cut-elimination)k(in)d
+(classical)h(logic)f(captures)i(also)321 1535 y(features)28
+b(of)e(non-deterministic)31 b(computation.)39 b(In)26
+b(this)h(section)g(we)f(shall)h(combine)g(both)g(results)321
+1648 y(by)e(e)o(xtending)h(the)e(simply-typed)k(lambda)d(calculus)h
+(with)e(an)g(erratic)h(choice)h(operator)g(and)f(sho)n(w)321
+1761 y(an)h(analogous)i(result)e(to)f(that)h(gi)n(v)o(en)g(in)f
+(Proposition)j(3.2.4.)34 b(As)24 b(will)h(be)g(seen)h(shortly)-6
+b(,)28 b(this)d(result)321 1874 y(requires)h(classical)g(logic:)k(the)
+24 b(erratic)h(choice)g(operator)h(cannot)f(be)e(represented)k(in)d
+(intuitionistic)321 1987 y(logic.)462 2118 y(Hereafter)l(,)f(we)d
+(shall)i(refer)f(to)g(the)f(simply-typed)k(lambda)e(calculus)g(e)o
+(xtended)h(with)d(an)h(erratic)321 2231 y(choice)27 b(operator)g(as)e
+Ga(\025)1063 2245 y F9(+)1122 2231 y Gg(-calculus,)j(or)d
+Ga(\025)1651 2245 y F9(+)1735 2231 y Gg(for)g(short.)35
+b(Intuiti)n(v)o(ely)-6 b(,)28 b(a)c(term)h(of)g Ga(\025)2929
+2245 y F9(+)3012 2231 y Gg(corresponds)k(to)321 2344
+y(a)36 b(sequential)i(program,)i(which)c(e)o(x)o(ecuted)h(may)e
+(produce)j(dif)n(ferent)f(results)h(\(see)e(for)g(e)o(xample)321
+2457 y([Hennessy)26 b(and)e(Ashcroft,)g(1980]\).)31 b(The)23
+b(ra)o(w)f(terms)i(of)f Ga(\025)2237 2471 y F9(+)2318
+2457 y Gg(are)h(gi)n(v)o(en)g(by)g(the)g(grammar)p Black
+Black 1179 2689 a Ga(M)5 b(;)15 b(N)110 b F4(::=)100
+b Ga(x)429 b Gg(v)n(ariable)1543 2802 y F6(j)148 b Ga(\025x:M)263
+b Gg(abstraction)1543 2914 y F6(j)148 b Ga(M)25 b(N)295
+b Gg(application)1543 3027 y F6(j)148 b Ga(M)30 b F4(+)20
+b Ga(N)199 b Gg(erratic)25 b(choice)321 3257 y(As)e(usual,)h(we)f(are)h
+(interested)i(in)d(only)i(the)f(set)f(of)h(well-typed)h(terms)f(of)g
+Ga(\025)2743 3271 y F9(+)2802 3257 y Gg(;)f(that)h(is)f(in)h(the)f(set)
+p Black Black 499 3516 a F4(\003)562 3530 y F9(+)720
+3464 y F5(def)728 3515 y F4(=)905 3414 y FK(n)991 3516
+y Ga(M)1136 3411 y FK(\014)1136 3465 y(\014)1136 3520
+y(\014)1214 3516 y F4(\000)1296 3504 y Gc(.)1351 3516
+y Ga(M)k F4(:)17 b Ga(B)28 b Gg(is)23 b(deri)n(v)n(able)i(using)g(the)f
+(rules)g(gi)n(v)o(en)g(in)g(Figure)g(4.6)3308 3414 y
+FK(o)321 3770 y Gg(There)35 b(are)g(tw)o(o)g(reduction)i(rules)f
+(associated)h(with)e Ga(\025)2126 3784 y F9(+)2185 3770
+y Gg(:)51 b(one)35 b(is)g(the)g(beta-reduction)k(rule)c(\(see)321
+3883 y(P)o(age)23 b(72\))h(and)g(the)g(other)h(is)p Black
+Black 1427 4093 a Ga(M)30 b F4(+)20 b Ga(N)1880 4044
+y FV(+)1818 4093 y F6(\000)-31 b(\000)g(!)99 b Ga(M)58
+b Gg(or)49 b Ga(N)321 4303 y Gg(The)26 b(reduction)k(system)d(of)f
+Ga(\025)1290 4317 y F9(+)1375 4303 y Gg(is)h(thus)g(de\002ned)g(as)g
+F4(\(\003)2132 4317 y F9(+)2191 4303 y Ga(;)2272 4266
+y Gc(\014)2315 4254 y FV(+)2232 4303 y F6(\000)-31 b(\000)f(!)p
+F4(\))p Gg(,)27 b(where)2775 4266 y Gc(\014)2818 4254
+y FV(+)2735 4303 y F6(\000)-32 b(\000)h(!)26 b Gg(consists)i(of)3409
+4266 y Gc(\014)3346 4303 y F6(\000)-31 b(\000)f(!)p Gg(-)321
+4416 y(reductions)29 b(and)942 4367 y FV(+)880 4416 y
+F6(\000)-31 b(\000)g(!)p Gg(-reductions,)28 b(which)e(both)g(are)g
+(assumed)h(to)e(be)g(closed)i(under)g(term)e(forma-)321
+4529 y(tion.)462 4660 y(Recall)20 b(Lafont')-5 b(s)21
+b(e)o(xample)g(gi)n(v)o(en)f(on)f(P)o(age)g(4,)h(and)g(consider)i(the)e
+(term)f Ga(M)d F4(+)5 b Ga(N)10 b Gg(.)26 b(The)19 b(dynamic)321
+4773 y(beha)n(viour)24 b(of)d(this)g(term)g(corresponds)j(e)o(xactly)f
+(to)d(the)h(beha)n(viour)j(of)d(cut-elimination)k(in)20
+b(Lafont')-5 b(s)321 4886 y(e)o(xample.)30 b(Thus)23
+b(the)h(translation)j F6(j)p 1451 4886 28 4 v 1469 4886
+V 1486 4886 V 65 w(j)1539 4853 y Fu(s)p FV(+)1642 4886
+y F4(:)e(\003)1755 4900 y F9(+)1840 4886 y F6(!)g FY(T)e
+Gg(is)g(as)h(follo)n(ws.)p Black Black 890 5147 a F6(j)p
+Ga(x)p F6(j)992 5114 y Fu(s)p FV(+)992 5169 y Gc(c)1169
+5095 y F5(def)1176 5147 y F4(=)107 b FL(Ax)o F4(\()p
+Ga(x;)15 b(c)p F4(\))713 5287 y F6(j)p Ga(\025x:M)10
+b F6(j)991 5254 y Fu(s)p FV(+)991 5309 y Gc(c)1169 5235
+y F5(def)1176 5287 y F4(=)107 b FL(Imp)1498 5309 y Gc(R)1556
+5287 y F4(\()1591 5275 y F9(\()1619 5287 y Ga(x)1671
+5275 y F9(\))p FX(h)1726 5287 y Ga(a)1774 5275 y FX(i)1816
+5287 y F6(j)p Ga(M)10 b F6(j)1964 5254 y Fu(s)p FV(+)1964
+5309 y Gc(a)2043 5287 y Ga(;)15 b(c)p F4(\))735 5426
+y F6(j)p Ga(M)36 b(N)10 b F6(j)992 5393 y Fu(s)p FV(+)992
+5449 y Gc(c)1169 5375 y F5(def)1176 5426 y F4(=)107 b
+F6(j)p Ga(M)10 b F6(j)1502 5393 y Fu(s)p FV(+)1502 5449
+y Gc(a)1580 5426 y F4([)p Ga(a)26 b F4(:=)1800 5414 y
+F9(\()1827 5426 y Ga(y)1875 5414 y F9(\))1903 5426 y
+FL(Imp)2047 5448 y Gc(L)2099 5426 y F4(\()2134 5414 y
+FX(h)2162 5426 y Ga(b)2201 5414 y FX(i)2229 5426 y F6(j)p
+Ga(N)10 b F6(j)2362 5388 y Fu(s)p FV(+)2362 5456 y Gc(b)2440
+5426 y Ga(;)2480 5414 y F9(\()2508 5426 y Ga(z)2554 5414
+y F9(\))2581 5426 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p
+F4(\))r Ga(;)g(y)s F4(\)])3124 5393 y F9(\(1\))649 5566
+y F6(j)p Ga(M)31 b F4(+)20 b Ga(N)10 b F6(j)992 5533
+y Fu(s)p FV(+)992 5589 y Gc(c)1169 5515 y F5(def)1176
+5566 y F4(=)107 b FL(Cut)p F4(\()1527 5554 y FX(h)1555
+5566 y Ga(a)1603 5554 y FX(i)1630 5566 y F6(j)p Ga(M)10
+b F6(j)1778 5533 y Fu(s)p FV(+)1778 5589 y Gc(c)1856
+5566 y Ga(;)1896 5554 y F9(\()1924 5566 y Ga(x)1976 5554
+y F9(\))2004 5566 y F6(j)p Ga(N)g F6(j)2137 5533 y Fu(s)p
+FV(+)2137 5589 y Gc(c)2215 5566 y F4(\))3124 5533 y F9(\(2\))p
+Black Black eop end
+%%Page: 121 133
+TeXDict begin 121 132 bop Black 277 51 a Gb(4.3)23 b(A)g(Simple,)f
+(Non-Deterministic)j(Pr)n(ogramming)f(Language)1327 b(121)p
+277 88 3691 4 v Black Black 277 300 3226 4 v 277 1198
+4 898 v 1439 392 548 4 v 1439 471 a Ga(x)17 b F4(:)g
+Ga(B)5 b(;)15 b F4(\000)1746 459 y Gc(.)1801 471 y Ga(x)i
+F4(:)h Ga(B)746 662 y(x)g F4(:)f Ga(B)5 b(;)15 b F4(\000)1054
+650 y Gc(.)1109 662 y Ga(M)27 b F4(:)18 b Ga(C)p 722
+699 641 4 v 722 779 a F4(\000)804 767 y Gc(.)859 779
+y Ga(\025x:M)27 b F4(:)18 b Ga(B)5 b F6(\033)o Ga(C)1404
+730 y Gg(Abs)1905 677 y F4(\000)1987 665 y Gc(.)2042
+677 y Ga(M)27 b F4(:)18 b Ga(B)5 b F6(\033)o Ga(C)97
+b F4(\000)2588 665 y Gc(.)2643 677 y Ga(N)27 b F4(:)18
+b Ga(B)p 1905 700 955 4 v 2150 779 a F4(\000)2232 767
+y Gc(.)2287 779 y Ga(M)25 b(N)i F4(:)18 b Ga(C)2901 721
+y Gg(App)1427 993 y F4(\000)1510 981 y Gc(.)1564 993
+y Ga(M)28 b F4(:)17 b Ga(B)96 b F4(\000)1969 981 y Gc(.)2024
+993 y Ga(N)27 b F4(:)17 b Ga(B)p 1427 1013 813 4 v 1552
+1092 a F4(\000)1634 1080 y Gc(.)1689 1092 y Ga(M)31 b
+F4(+)20 b Ga(N)27 b F4(:)17 b Ga(B)2281 1036 y F4(+)p
+3499 1198 4 898 v 277 1201 3226 4 v Black 1306 1369 a
+Gg(Figure)24 b(4.6:)29 b(T)-7 b(yping)24 b(rules)g(for)g
+Ga(\025)2392 1332 y F9(+)2451 1369 y Gg(.)p Black Black
+277 1789 a(where)j(in)g F4(\(1\))h Ga(y)34 b F6(62)e
+Ga(F)13 b(N)d F4(\()p F6(j)p Ga(N)g F6(j)1259 1751 y
+Fu(s)p FV(+)1259 1818 y Gc(b)1338 1789 y F4(\))p Gg(,)27
+b(and)g(in)g F4(\(2\))h Ga(a)j F6(62)h Ga(F)13 b(C)7
+b F4(\()p F6(j)p Ga(M)j F6(j)2318 1756 y Fu(s)p FV(+)2318
+1811 y Gc(a)2396 1789 y F4(\))27 b Gg(and)g Ga(x)32 b
+F6(62)f Ga(F)13 b(N)d F4(\()p F6(j)p Ga(M)g F6(j)3128
+1756 y Fu(s)p FV(+)3128 1811 y Gc(a)3207 1789 y F4(\))p
+Gg(.)39 b(Ne)o(xt,)277 1902 y(we)23 b(w)o(ould)h(lik)o(e)g(to)g(sho)n
+(w)f(that)h(this)g(reduction)i(respects)g(typing)f(judgements.)p
+Black 277 2089 a Gb(Pr)n(oposition)g(4.3.1:)p Black 277
+2202 a Gg(If)37 b Ga(M)60 b F6(2)49 b F4(\003)695 2216
+y F9(+)790 2202 y Gg(with)37 b(the)g(typing)h(judgement)h
+F4(\000)1905 2190 y Gc(.)1960 2202 y Ga(M)27 b F4(:)18
+b Ga(B)t Gg(,)39 b(then)f F6(j)p Ga(M)10 b F6(j)2594
+2169 y Fu(s)p FV(+)2594 2225 y Gc(a)2722 2202 y F6(2)49
+b FY(T)36 b Gg(with)h(the)g(typing)277 2315 y(judgement)26
+b F4(\000)766 2303 y Gc(.)821 2315 y F6(j)p Ga(M)10 b
+F6(j)969 2282 y Fu(s)p FV(+)969 2338 y Gc(a)1072 2303
+y(.)1127 2315 y Ga(a)17 b F4(:)h Ga(B)t Gg(.)p Black
+277 2553 a F7(Pr)l(oof.)p Black 46 w Gg(By)23 b(routine)i(induction)i
+(on)c(the)h(structure)i(of)d Ga(M)10 b Gg(.)p 3436 2553
+4 62 v 3440 2495 55 4 v 3440 2553 V 3494 2553 4 62 v
+277 2760 a(Finally)-6 b(,)24 b(we)f(can)h(pro)o(v)o(e)g(that)g
+(cut-elimination)j(in)d FY(T)f Gg(can)g(simulate)i(normalisation)i(in)c
+Ga(\025)3138 2774 y F9(+)3197 2760 y Gg(.)p Black 277
+2947 a Gb(Theor)n(em)h(4.3.2:)p Black Black Black 504
+3166 a Gg(If)g Ga(M)5 b(;)15 b(N)35 b F6(2)25 b F4(\003)978
+3180 y F9(+)1060 3166 y Gg(and)f Ga(M)1378 3129 y Gc(\014)1421
+3117 y FV(+)1337 3166 y F6(\000)-31 b(\000)g(!)25 b Ga(N)10
+b Gg(,)22 b(then)j(for)e(all)h(co-names)h Ga(a)p Gg(,)e
+F6(j)p Ga(M)10 b F6(j)2696 3133 y Fu(s)p FV(+)2696 3188
+y Gc(a)2830 3129 y(cut)2799 3166 y F6(\000)-31 b(\000)g(!)2969
+3133 y F9(+)3054 3166 y F6(j)p Ga(N)10 b F6(j)3187 3133
+y Fu(s)p FV(+)3187 3188 y Gc(a)3265 3166 y Gg(.)p Black
+277 3403 a F7(Pr)l(oof.)p Black 46 w Gg(Analogous)26
+b(to)d(proof)i(of)e(Proposition)j(3.2.4.)p 3436 3403
+V 3440 3345 55 4 v 3440 3403 V 3494 3403 4 62 v 418 3610
+a(On)k(P)o(age)h(14)g(we)f(introduced)k(three)e(criteria)g(for)f
+(designing)j(a)c(cut-elimination)35 b(procedure.)277
+3723 y(Let)23 b(us)h(analyse)h(these)g(criteria)g(with)e(respect)i(to)f
+(the)g(simulation)h(result)g(just)f(gi)n(v)o(en.)29 b(In)24
+b(particular)l(,)277 3836 y(let)k(us)g(analyse)h(whether)g(we)e(w)o
+(ould)h(ha)n(v)o(e,)h(gi)n(v)o(en)f(analogous)i(translations,)i
+(obtained)e(the)e(simu-)277 3949 y(lation)d(result)g(with)f(an)g(e)o
+(xisting)h(cut-elimination)j(procedure)e(for)e(classical)i(logic.)31
+b(W)-7 b(e)23 b(analyse)i(in)277 4062 y(turn)f(three)h(procedures)h(by)
+e(Gentzen)h([1935],)f(Dragalin)h([1988])g(and)f(Danos)g(et)f(al.)g
+([1997].)p Black 414 4293 a F6(\017)p Black 45 w Gg(Gentzen')-5
+b(s)39 b(original)f(cut-elimination)j(procedure)e(is)d(de\002ned)i(as)e
+(innermost)i(reductions)504 4406 y(strate)o(gy)-6 b(.)35
+b(Consequently)-6 b(,)28 b(we)c(w)o(ould)i(ha)n(v)o(e)g(obtained)h(the)
+e(weak)o(er)h(result)g(saying)g(that)g(cut-)504 4519
+y(elimination)38 b(can)d(simulate)i(only)e(a)g(reduction)j(strate)o(gy)
+e(in)f Ga(\025)2582 4533 y F9(+)2641 4519 y Gg(.)63 b(Ho)n(we)n(v)o(er)
+l(,)37 b(as)e(soon)h(as)504 4632 y(we)25 b(impose)h(an)f(innermost)j
+(strate)o(gy)f(on)e(the)h(reductions)i(of)d Ga(\025)2539
+4646 y F9(+)2598 4632 y Gg(,)g(we)f(\223lose\224)j(some)f(normal)504
+4744 y(forms;)d(by)f(this)h(we)e(mean)h(that)g(gi)n(v)o(en)g(a)g(term)f
+Ga(M)36 b F6(2)25 b F4(\003)2271 4758 y F9(+)2351 4744
+y Gg(some)d(of)g(its)g(normal)g(forms)g(are)g(no)504
+4857 y(longer)j(reachable.)p Black 414 5046 a F6(\017)p
+Black 45 w Gg(Dragalin')-5 b(s)32 b(cut-elimination)j(procedure)e(is)d
+(strongly)j(normalising,)i(and)c(thus)g(we)f(w)o(ould)504
+5159 y(hope)g(that)g(this)g(procedure)i(is)d(able)g(to)g(simulate)i(e)n
+(v)o(ery)e(reduction)j(in)d Ga(\025)2880 5173 y F9(+)2939
+5159 y Gg(;)j(unfortunately)-6 b(,)504 5272 y(Dragalin)34
+b(does)f(not)g(consider)i(rules)e(that)g(allo)n(w)g(cuts)g(to)f(be)h
+(permuted)h(with)e(other)i(cuts.)504 5385 y(Ho)n(we)n(v)o(er)l(,)23
+b(this,)h(as)g(remark)o(ed)h(in)e(Section)i(3.2,)e(is)g(necessary)j(to)
+e(simulate)h(beta-reduction.)p Black Black eop end
+%%Page: 122 134
+TeXDict begin 122 133 bop Black -144 51 a Gb(122)2310
+b(A)n(pplications)23 b(of)h(Cut-Elimination)p -144 88
+3691 4 v Black Black 458 388 a F6(\017)p Black 46 w Gg(The)j
+(cut-elimination)32 b(procedure)e(de)n(v)o(eloped)g(by)e(Danos)g(et.)g
+(al.)f(for)h(LK)2950 355 y Gc(tq)3040 388 y Gg(allo)n(ws)g(cuts)h(to)
+549 501 y(be)20 b(permuted)i(with)e(other)h(cuts)g(and)f(is)g(strongly)
+j(normalising,)g(b)n(ut)e(e)n(v)o(ery)f(formula)i(requires)549
+614 y(a)d(colour)i(annotation)i(predetermining)h(ho)n(w)19
+b(commuting)j(cuts)e(are)g(reduced.)30 b(Notice,)21 b(ho)n(w-)549
+727 y(e)n(v)o(er)l(,)k(that)h(there)g(is)g(no)f(possibility)j(of)e
+(predetermining)i(the)e(beha)n(viour)i(of)d(a)g(term)g(with)h(an)549
+840 y(erratic)e(choice.)31 b(So)22 b(also)j(in)e(this)h(case)g(an)g
+(analogous)i(simulation)g(result)f(w)o(ould)f(f)o(ail.)321
+1019 y(As)29 b(f)o(ar)g(as)g(I)g(ha)n(v)o(e)h(been)g(able)g(to)f
+(ascertain,)k(no)c(other)h(cut-elimination)j(procedure)f(for)d
+(classical)321 1132 y(logic)c(gi)n(v)o(es)f(a)f(simulation)j(result)e
+(with)g Ga(\025)1669 1146 y F9(+)1728 1132 y Gg(.)462
+1262 y(Clearly)-6 b(,)36 b(the)c(fragment)i(of)e(classical)i(logic)g
+(into)f(which)f(we)g(translated)j F4(\003)2955 1276 y
+F9(+)3045 1262 y Gg(is)e(v)o(ery)f(weak:)321 1374 y(no)e(ne)n(w)e
+(sequents)k(are)e(deri)n(v)n(able)h(in)e(comparison)j(with)d
+(intuitionistic)k(logic.)47 b(Important)31 b(future)321
+1487 y(w)o(ork)h(is)f(to)g(e)o(xtend)i(suitably)h(the)d(programming)j
+(language)g Ga(\025)2400 1501 y F9(+)2489 1487 y Gg(so)e(that)g(a)f
+(simulation)i(result)g(is)321 1600 y(obtained)e(for)e(lar)n(ger)h
+(fragments)g(of)e(classical)j(logic.)45 b(Good)28 b(candidates)k(for)c
+(e)o(xtensions)k(are)c(the)321 1713 y(control)j(operators)g
+F6(A)d Gg(and)h F6(C)5 b Gg(,)30 b(which)f(were)g(studied)h(pre)n
+(viously)i(in)d(the)g(conte)o(xt)h(of)f Ga(\025\026)f
+Gg(\(see)h(for)321 1826 y(e)o(xample)c([Bierman,)e(1998]\).)321
+2127 y Ge(4.4)119 b(Notes)321 2351 y Gg(In)19 b(order)g(to)f(sho)n(w)g
+(that)h(the)g(tw)o(o)f(normal)h(forms)f(gi)n(v)o(en)h(in)f(Appendix)i
+(A)e(dif)n(fer)h(in)f(essential)j(features)321 2463 y(we)26
+b(had)i(to)f(e)o(xtract)h(some)f(kind)h(of)f(data)h(from)e(them.)40
+b(Kreisel)27 b([1958,)i(P)o(age)e(163])h(demonstrated)321
+2576 y(that)f(e)o(xtracting)i(data)f(from)e(classical)j(proofs)f(is)e
+F7(not)h Gg(possible)i(in)e(general.)39 b(But)26 b(it)h(is)f(kno)n(wn)h
+(that)321 2689 y(data)c(can)f(al)o(w)o(ays)h(be)e(e)o(xtracted)j(in)e
+(certain)h(fragments)h(of)e(classical)i(logic,)f(as)e(sho)n(wn)h(for)g
+(instance)321 2802 y(by)h(Friedman)g([1978].)30 b(Our)21
+b(e)o(xample)i(f)o(alls)h(into)f(such)g(a)f(fragment)h(of)f(classical)j
+(logic,)e(and)g(so)f(the)321 2915 y(non-determinism,)k(which)e(we)e
+(inferred)j(from)e(the)g(e)o(xistence)i(of)e(tw)o(o)f(dif)n(ferent)j
+(normal)f(forms,)f(is)321 3028 y(independent)33 b(from)c(the)g(result)h
+(by)f(Kreisel.)46 b(Let)28 b(us)h(conclude)i(this)f(chapter)g(with)f
+(sho)n(wing)h(that)321 3141 y(the)24 b(colour)h(annotation)i
+(introduced)f(in)e(LK)1744 3108 y Gc(tq)1829 3141 y Gg(completely)i
+(hides)e(this)h(non-determinism.)321 3398 y Fq(4.4.1)99
+b(A)25 b(Beautiful)h(Theory)g(f)n(or)e(the)i(Colours)f(in)g(LK)2392
+3362 y Fy(tq)2466 3398 y Fq(,)g(Slain)g(by)g(A)g(F)n(act)321
+3589 y Gg(The)c(cut-elimination)k(procedure)e(in)e(LK)1655
+3556 y Gc(tq)1738 3589 y Gg(has)h(three)g(remarkable)h(properties:)31
+b(it)21 b(is)f(strongly)k(nor)n(-)321 3702 y(malising,)g(con\003uent,)f
+(and)f(there)h(is)f(a)f(strong)j(connection)g(to)e(linear)h(logic)g
+(since)g(there)g(is)e(a)h(simple)321 3815 y(translation)35
+b(between)e(LK)1192 3782 y Gc(tq)1255 3815 y Gg(-proofs)h(and)e(proof)i
+(nets.)54 b(Furthermore,)36 b(cut-elimination)g(in)c(LK)3484
+3782 y Gc(tq)321 3928 y Gg(has)i(a)e(similar)i(dynamic)g(beha)n(viour)h
+(as)e(cut-elimination)k(in)c(proof)h(nets)f([Danos)h(et)e(al.,)h
+(1997].)321 4041 y(P)o(articularly)j(interesting)h(is)d(the)g
+(con\003uence)i(property)g(of)e(LK)2431 4008 y Gc(tq)2494
+4041 y Gg(:)49 b(it)34 b(precludes)i(the)f(\223inconsis-)321
+4154 y(tenc)o(y\224)h(described)i(in)d(the)g(introduction.)67
+b(This)35 b(property)i(holds)f(in)f(LK)2750 4121 y Gc(tq)2847
+4154 y Gg(because)i(the)e(colour)321 4267 y(annotations)27
+b(constrain)f(the)e(cut-reductions)k(so)23 b(that)h(critical)i(pairs)e
+(cannot)h(arise.)462 4396 y(Interestingly)-6 b(,)37 b(the)31
+b(colour)i(annotation)h(in)d(LK)2012 4363 y Gc(tq)2105
+4396 y Gg(acts)h(as)f(a)f(\223selector\224,)36 b(in)31
+b(that)g(it)g(predeter)n(-)321 4509 y(mines)37 b(the)g(normal)g(form)f
+(to)g(be)h(reached)h(by)e(cut-elimination.)71 b(Let)36
+b(us)g(illustrate)j(this)e(point.)321 4622 y(Starting)e(from)f(a)f
+(classical)j(proof)f(our)f(cut-elimination)k(procedures)f(gi)n(v)o(e,)f
+(in)e(general,)j(rise)e(to)321 4735 y(se)n(v)o(eral)25
+b(normal)f(forms,)g(as)f(sho)n(wn)h(belo)n(w)-6 b(.)p
+Black Black 1435 5438 a @beginspecial 185 @llx 380 @lly
+445 @urx 545 @ury 1196 @rwi @clip @setspecial
+%%BeginDocument: pics/4.5.0.Possibilities.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: 4.5.0.Possibilities.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips 4.5.0.Possibilities.dvi -o
+%+ 4.5.0.Possibilities.ps
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.05.11:0241
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (4.5.0.Possibilities.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmib10 14.4 1
+/Fb 1 59 df<EA03F8EA0FFE487E4813804813C0A2B512E0A76C13C0A26C13806C13006C
+5AEA03F81313779226>58 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fc cmbx12 17.28 3
+/Fc 3 118 df<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC0131F4BB800F0
+133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113C3020702C0
+9138007FE74A91C9001FB5FC023F01FC16074A01F08291B54882490280824991CB7E4949
+8449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A4A1A3F5AA3
+48491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A1F6C1D80A2
+6C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D4E5A6D6E17
+1F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8020102F8ED
+7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C16E0040716
+80DC007F02F8C9FC050191CAFC626677E375>67 D<EC07E0A6140FA5141FA3143FA2147F
+A214FF5BA25B5B5B5B137F48B5FC000F91B512FEB8FCA5D8001F01E0C8FCB3AFEF0FC0AC
+171F6D6D1480A2173F6D16006F5B6D6D137E6D6D5B6DEBFF836EEBFFF86E5C020F14C002
+035C9126003FFCC7FC325C7DDA3F>116 D<902607FFC0ED3FFEB60207B5FCA6C6EE0007
+6D826D82B3B3A260A360A2607F60183E6D6D147E4E7F6D6D4948806D6DD907F0ECFF806D
+01FFEB3FE06D91B55A6E1500021F5C020314F8DA003F018002F0C7FC51427BC05A>I
+E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black 1013 4228 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 119.50143 240.42558 142.26372 264.6106 129.46007 278.83696 113.81097
+275.99152 108.1205 257.4974 119.50143 240.42558 /currentpoint load
+stopped pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave .5
+ setgray fill grestore gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+ grestore end
+
+
+@endspecial 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 213.39557 179.25237 156.49008 179.25237 /Lineto
+/lineto load def false Line gsave 1.8 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial
+2273 2316 a Fc(Cut)1863 2393 y Fb(::)p 1970 2381 14 52
+v 1983 2358 59 6 v 133 w(::)494 5055 y @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 83.9355 240.42558 101.00732 258.92014 91.04869 278.83696 75.39958
+275.99152 69.70912 257.4974 83.9355 240.42558 /currentpoint load stopped
+pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 1.8 SLW 0
+setgray 0 setlinecap stroke grestore end
+
+@endspecial 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 105.27505 76.82231 65.44139 76.82231 /Lineto /lineto
+load def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+
+@endspecial 1036 3220 a(::)p 1143 3208 14 52 v 1156
+3185 59 6 v 133 w(::)-522 4937 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 275.99152 226.19922 284.52744 250.38422 275.99152 264.6106 261.76515
+264.6106 254.65196 250.38422 275.99152 226.19922 /currentpoint load
+stopped pop 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 1.8
+SLW 0 setgray 0 setlinecap stroke grestore end
+
+
+@endspecial 470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 176.40692 76.82231 136.57324 76.82231 /Lineto /lineto
+load def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial
+1626 3220 a(::)p 1733 3208 14 52 v 1747 3185 59 6 v 134
+w(::)234 4937 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray 1.8 SLW 0 setgray
+/ArrowA { /lineto load stopped { moveto } if } def /ArrowB { } def
+[ 312.98018 226.19922 327.20654 233.31241 335.74245 250.38422 327.20654
+261.76515 312.98018 261.76515 301.59924 250.38422 305.86699 236.15785
+312.98018 226.19922 /currentpoint load stopped pop 1. 0.1 0. /c ED
+/b ED /a ED false OpenCurve gsave 1.8 SLW 0 setgray 0 setlinecap
+stroke grestore end
+
+@endspecial
+470 3755 a @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 304.44426 76.82231 264.6106 76.82231 /Lineto /lineto
+load def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke
+grestore end
+
+@endspecial 2689
+3220 a(::)p 2796 3208 14 52 v 2810 3185 59 6 v 134 w(::)2303
+3127 y(:::)470 3755 y @beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow
+ } def [ 105.27505 133.7278 147.95418 153.64464 /Lineto /lineto load
+def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial
+@beginspecial @setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow
+ } def [ 153.64464 133.7278 167.871 153.64464 /Lineto /lineto load
+def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 1.8 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { BeginArrow 1. 1. scale false 0.4 1.4 1.5 2. Arrow EndArrow
+ } def [ 270.30106 133.7278 227.62195 153.64464 /Lineto /lineto load
+def false Line gsave 1.8 SLW 0 setgray 0 setlinecap stroke grestore
+end
+
+@endspecial Black 1918 5251 a Fa(1)p Black
+eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial Black Black eop end
+%%Page: 123 135
+TeXDict begin 123 134 bop Black 277 51 a Gb(4.4)23 b(Notes)3202
+b(123)p 277 88 3691 4 v Black 277 388 a Gg(In)32 b(contrast,)37
+b(the)c(cut-elimination)j(procedure)f(in)d(LK)2078 355
+y Gc(tq)2172 388 y Gg(gi)n(v)o(es)h(rise)g(to)f(only)i
+F7(one)f Gg(normal)g(form.)277 501 y(Ho)n(we)n(v)o(er)l(,)e(by)f
+(changing)i(the)e(colour)i(annotation,)i(we)29 b(can)h(obtain)h
+(another)h(normal)e(forms.)48 b(An)277 614 y(appealing)39
+b(e)o(xplanation)f(of)e(the)g(colour)h(annotations)j(w)o(ould)c(thus)g
+(be)g(to)g(interpret)i(a)d(classical)277 727 y(proof)25
+b(as)f(a)f(juxtaposition)28 b(of)23 b(a)h(collection)i(of)e
+(\223programs\224)i(and)e(to)f(re)o(gard)i(the)f(colours)h(as)f(means)
+277 840 y(of)g(selecting)h(one)f(of)g(these)g(\223programs\224.)418
+969 y(Unfortunately)-6 b(,)28 b(this)d(e)o(xplanation)i(f)o(ades)f(in)e
+(the)h(light)h(of)e(the)h(follo)n(wing)h(e)o(xample.)32
+b(Consider)277 1082 y(the)24 b(cut-instance)1284 1454
+y @beginspecial 179 @llx 477 @lly 318 @urx 605 @ury 472
+@rwi @clip @setspecial
+%%BeginDocument: pics/sigma.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: sigma.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o sigma.ps sigma.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.10:0010
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (sigma.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi12 24.88 1
+/Fb 1 28 df<0507BAFC057F19800403BB12C0160F163F93BCFC15034B1B80031F1B004B
+624B624AB5D8F80302C0C9FC4A912680007F7F4A01FCC7121F4A01F002077F4A01C0804A
+496E7F4A48C9FC4A48707E5D4949163F4949834949161F495B92CAFC4985495A4A83137F
+495AA2485BA2485BA2485B625A5CA25A91CBFC6248625BA21A7F007F625BA21AFF00FF62
+5BA24F5BA263495FA24F5BA2634F90CAFCA24F5AA2007F4E5A62197F4F5A003F614E5B6D
+4C5B001F96CBFC4E5A6C6C4C5A4E5A6C6C4C5A4E5A6C6C4C5A6C04035B6C6D4A90CCFC6D
+6CEC1FFC6D6C4A5AD91FF8ECFFE0D90FFE01071380902707FFC03F90CDFC010190B512F8
+6D6C14E0020F91CEFC020113F06A5B78D873>27 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black -3258 4866 a
+ tx@Dict begin CP CP translate 1.71 1.71 scale NET end
+ -3258 4866 a @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 0.9 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 338.58746 170.71646 358.50473 213.39557 341.43292
+233.31241 312.98018 227.62195 312.98018 192.05602 338.58746 170.71646
+ 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.9 SLW 0 setgray
+0 setlinecap stroke grestore end
+
+@endspecial -3258 4866 a
+ tx@Dict begin CP CP translate 1 1.71 div 1 1.71 div scale NET end
+ -3258 4866 a 1425
+2028 a Fb(\033)p Black 1918 5251 a Fa(1)p Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 1096 1533 a Ga(M)1184 1547 y F9(1)1224 1533
+y Ga(;)15 b(M)1352 1547 y F9(2)1392 1533 y Ga(;)g(S;)g(T)8
+b(;)15 b(A)p 1718 1521 11 41 v 1728 1503 46 5 v 97 w(P)p
+1956 1356 239 4 v 1956 1434 a(P)p 2047 1422 11 41 v 2058
+1404 46 5 v 109 w(P)p 2285 1356 239 4 v 104 w(P)p 2376
+1422 11 41 v 2387 1404 46 5 v 109 w(P)p 1956 1454 568
+4 v 2055 1533 a(P)p 2146 1521 11 41 v 2156 1503 46 5
+v 109 w(P)e F6(^)p Ga(P)2565 1472 y F6(^)2626 1487 y
+Gc(R)p 1096 1571 1329 4 v 1310 1649 a Ga(M)1398 1663
+y F9(1)1438 1649 y Ga(;)i(M)1566 1663 y F9(2)1606 1649
+y Ga(;)g(S;)g(T)8 b(;)15 b(A)p 1932 1637 11 41 v 1942
+1619 46 5 v 97 w(P)e F6(^)p Ga(P)2466 1601 y Gg(Cut)277
+1816 y(where)22 b Ga(\033)i Gg(is)e(the)g(classical)i(proof)e(gi)n(v)o
+(en)h(in)e(Section)i(4.2.)28 b(One)21 b(possibility)k(for)d
+(eliminating)i(the)e(cut)277 1929 y(is)h(to)h(replace)h(the)f(axioms)g
+(by)g(tw)o(o)f(instances)j(of)e Ga(\033)s Gg(,)e(as)i(illustrated)i(in)
+d(the)h(follo)n(wing)h(proof.)1183 2411 y @beginspecial
+179 @llx 477 @lly 318 @urx 605 @ury 472 @rwi @clip @setspecial
+%%BeginDocument: pics/sigma.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: sigma.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o sigma.ps sigma.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.10:0010
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (sigma.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi12 24.88 1
+/Fb 1 28 df<0507BAFC057F19800403BB12C0160F163F93BCFC15034B1B80031F1B004B
+624B624AB5D8F80302C0C9FC4A912680007F7F4A01FCC7121F4A01F002077F4A01C0804A
+496E7F4A48C9FC4A48707E5D4949163F4949834949161F495B92CAFC4985495A4A83137F
+495AA2485BA2485BA2485B625A5CA25A91CBFC6248625BA21A7F007F625BA21AFF00FF62
+5BA24F5BA263495FA24F5BA2634F90CAFCA24F5AA2007F4E5A62197F4F5A003F614E5B6D
+4C5B001F96CBFC4E5A6C6C4C5A4E5A6C6C4C5A4E5A6C6C4C5A6C04035B6C6D4A90CCFC6D
+6CEC1FFC6D6C4A5AD91FF8ECFFE0D90FFE01071380902707FFC03F90CDFC010190B512F8
+6D6C14E0020F91CEFC020113F06A5B78D873>27 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black -3258 4866 a
+ tx@Dict begin CP CP translate 1.71 1.71 scale NET end
+ -3258 4866 a @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 0.9 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 338.58746 170.71646 358.50473 213.39557 341.43292
+233.31241 312.98018 227.62195 312.98018 192.05602 338.58746 170.71646
+ 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.9 SLW 0 setgray
+0 setlinecap stroke grestore end
+
+@endspecial -3258 4866 a
+ tx@Dict begin CP CP translate 1 1.71 div 1 1.71 div scale NET end
+ -3258 4866 a 1425
+2028 a Fb(\033)p Black 1918 5251 a Fa(1)p Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 995 2490 a Ga(M)1083 2504 y F9(1)1123 2490
+y Ga(;)15 b(M)1251 2504 y F9(2)1291 2490 y Ga(;)g(S;)g(T)8
+b(;)15 b(A)p 1617 2478 11 41 v 1628 2460 46 5 v 97 w(P)2043
+2411 y @beginspecial 179 @llx 477 @lly 318 @urx 605 @ury
+472 @rwi @clip @setspecial
+%%BeginDocument: pics/sigma.ps
+%!PS-Adobe-2.0
+%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software
+%%Title: sigma.dvi
+%%Pages: 1
+%%PageOrder: Ascend
+%%BoundingBox: 0 0 596 842
+%%EndComments
+%DVIPSWebPage: (www.radicaleye.com)
+%DVIPSCommandLine: dvips -o sigma.ps sigma.dvi
+%DVIPSParameters: dpi=600, compressed
+%DVIPSSource: TeX output 2000.03.10:0010
+%%BeginProcSet: texc.pro
+%!
+/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
+N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
+mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
+0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
+landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
+mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
+matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
+exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
+statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
+N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
+/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
+/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
+array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
+df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
+definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
+}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
+B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
+1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
+1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
+0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
+sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
+rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
+gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
+/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
+/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
+A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
+get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
+ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
+fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
+{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
+chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
+1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
+forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
+/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
+}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
+bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
+mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
+SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
+userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
+1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
+index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
+/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
+/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
+(LaserWriter 16/600)]{A length product length le{A length product exch 0
+exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
+end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
+grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
+imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
+exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
+fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
+delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
+B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
+p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
+rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end
+
+%%EndProcSet
+%%BeginProcSet: pstricks.pro
+%!
+% PostScript prologue for pstricks.tex.
+% Version 97 patch 3, 98/06/01
+% For distribution, see pstricks.tex.
+%
+/tx@Dict 200 dict def tx@Dict begin
+/ADict 25 dict def
+/CM { matrix currentmatrix } bind def
+/SLW /setlinewidth load def
+/CLW /currentlinewidth load def
+/CP /currentpoint load def
+/ED { exch def } bind def
+/L /lineto load def
+/T /translate load def
+/TMatrix { } def
+/RAngle { 0 } def
+/Atan { /atan load stopped { pop pop 0 } if } def
+/Div { dup 0 eq { pop } { div } ifelse } def
+/NET { neg exch neg exch T } def
+/Pyth { dup mul exch dup mul add sqrt } def
+/PtoC { 2 copy cos mul 3 1 roll sin mul } def
+/PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def }
+def
+/PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def
+} { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ }
+/pathforall load stopped { pop pop pop pop } if z } def
+/STP { .996264 dup scale } def
+/STV { SDict begin normalscale end STP } def
+/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def
+PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y
+mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul
+/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ]
+0 } ifelse setdash stroke } def
+/DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt
+{ /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add
+def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if
+] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1
+setlinecap stroke } def
+/LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch
+2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25
+% DG/SR modification begin - Dec. 12, 1997 - Patch 2
+%itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a
+% DG/SR modification end
+Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict
+/setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore }
+% def
+a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore
+pop pop } def
+% DG/SR modification end
+/BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg
+exch 3 index sub exch Atan rotate newpath } def
+/EndArrow { @mtrx setmatrix CP grestore end } def
+/Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1
+scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill
+grestore } def
+/Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0
+CLW moveto } def
+/Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2
+div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0
+CLW moveto } def
+/RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW
+2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0
+curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto }
+def
+/SD { 0 360 arc fill } def
+/EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS
+CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def
+/Shadow { [ { /moveto load } { /lineto load } { /curveto load } {
+/closepath load } /pathforall load stopped { pop pop pop pop CP /moveto
+load } if ] cvx newpath 3 1 roll T exec } def
+/NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch
+cvi def } def
+/NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if
+f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub
+def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def
+/Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 }
+ifelse { pop } repeat a } def
+/CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq
+and { pop pop /n n 1 sub def } if } def
+/Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop }
+repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1
+ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1
+moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto
+Lineto pop pop closepath } ifelse } def
+/Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul
+neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add
+def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2
+div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+setmatrix } def
+% DG modification begin - Jan. 15, 1997
+%/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq {
+%pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+%div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0
+%d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+%setmatrix } def
+/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup
+CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2
+div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0
+d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx
+% DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis)
+% setmatrix } def
+setmatrix pop } def
+% DG/SR modification end
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth
+def } def
+/CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1
+def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp
+mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos
+abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def
+/y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul
+m mul neg def } def
+/IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if }
+ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def }
+def
+/BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def
+/NC { CC x1 y1 x2 y2 x y curveto } def
+/EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def
+/BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def
+/NAC { x2 y2 x y curveto CC x1 y1 } def
+/EAC { x2 y2 x y ArrowB curveto pop pop } def
+/OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def
+n { NC } repeat EOC } ifelse } def
+/AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload
+/Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop
+pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def
+/ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt {
+CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC }
+repeat closepath pop pop } ifelse } def
+/SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def
+/ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def
+/SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore }
+def
+/FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix
+rotate matrix concatmatrix exch findfont exch makefont setfont } def
+/Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto
+x1 y1 lineto closepath } def
+/OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1
+y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div
+exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse
+/b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto
+x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath }
+ifelse } def
+/Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add
+/y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq {
+pop pop Rect } { OvalFrame } ifelse } def
+/BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop
+} if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ]
+aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def
+/OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6
+2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto }
+ifelse } def
+/ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv {
+6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def
+/BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1
+sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore }
+def
+/Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1
+sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA
+x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0
+y0 x0 2 mul x1 sub y1 ] def } def
+/Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 }
+if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if
+/dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div
+round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div
+round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub
+0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def
+/Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def }
+if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def }
+{ /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add
+exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n
+div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1
+dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt {
+dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt {
+pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup
+stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg}
+{z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i
+w add def } repeat grestore gsave n 0 gt
+% DG/SR modification begin - Nov. 7, 1997 - Patch 1
+%{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash }
+{ 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash }
+% DG/SR modification end
+{ 2 setlinecap } ifelse /i y1 def /f x1 dx mul
+n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n
+div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop
+1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs
+dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt
+{z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g
+exch t L stroke /i i h add def } repeat grestore } def
+/ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0
+1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add
+exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c
+mul neg d } def
+/Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def
+/Rot { CP CP translate 3 -1 roll neg rotate NET } def
+/RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 }
+def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle
+dup a add ] cvx def } def
+/RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ]
+cvx def } def
+/PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def
+/PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def
+/PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def
+/Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s
+abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b
+div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } {
+h1 abs h sub dup s mul abs } ifelse } def
+/UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s
+mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q
+{ x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add
+exch } def
+/BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible
+/IfVisible true def } if } { IfVisible { Invisible /IfVisible false def
+} if } ifelse } def
+/InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def
+/Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit
+neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def
+/IfVisible true def } def
+end
+% END pstricks.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-dots.pro
+%!PS-Adobe-2.0
+%%Title: Dot Font for PSTricks 97 - Version 97, 93/05/07.
+%%Creator: Timothy Van Zandt <tvz@Princeton.EDU>
+%%Creation Date: May 7, 1993
+10 dict dup begin
+ /FontType 3 def
+ /FontMatrix [ .001 0 0 .001 0 0 ] def
+ /FontBBox [ 0 0 0 0 ] def
+ /Encoding 256 array def
+ 0 1 255 { Encoding exch /.notdef put } for
+ Encoding
+ dup (b) 0 get /Bullet put
+ dup (c) 0 get /Circle put
+ dup (C) 0 get /BoldCircle put
+ dup (u) 0 get /SolidTriangle put
+ dup (t) 0 get /Triangle put
+ dup (T) 0 get /BoldTriangle put
+ dup (r) 0 get /SolidSquare put
+ dup (s) 0 get /Square put
+ dup (S) 0 get /BoldSquare put
+ dup (q) 0 get /SolidPentagon put
+ dup (p) 0 get /Pentagon put
+ (P) 0 get /BoldPentagon put
+ /Metrics 13 dict def
+ Metrics begin
+ /Bullet 1000 def
+ /Circle 1000 def
+ /BoldCircle 1000 def
+ /SolidTriangle 1344 def
+ /Triangle 1344 def
+ /BoldTriangle 1344 def
+ /SolidSquare 886 def
+ /Square 886 def
+ /BoldSquare 886 def
+ /SolidPentagon 1093.2 def
+ /Pentagon 1093.2 def
+ /BoldPentagon 1093.2 def
+ /.notdef 0 def
+ end
+ /BBoxes 13 dict def
+ BBoxes begin
+ /Circle { -550 -550 550 550 } def
+ /BoldCircle /Circle load def
+ /Bullet /Circle load def
+ /Triangle { -571.5 -330 571.5 660 } def
+ /BoldTriangle /Triangle load def
+ /SolidTriangle /Triangle load def
+ /Square { -450 -450 450 450 } def
+ /BoldSquare /Square load def
+ /SolidSquare /Square load def
+ /Pentagon { -546.6 -465 546.6 574.7 } def
+ /BoldPentagon /Pentagon load def
+ /SolidPentagon /Pentagon load def
+ /.notdef { 0 0 0 0 } def
+ end
+ /CharProcs 20 dict def
+ CharProcs begin
+ /Adjust {
+ 2 copy dtransform floor .5 add exch floor .5 add exch idtransform
+ 3 -1 roll div 3 1 roll exch div exch scale
+ } def
+ /CirclePath { 0 0 500 0 360 arc closepath } def
+ /Bullet { 500 500 Adjust CirclePath fill } def
+ /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath eofill } def
+ /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath eofill } def
+ /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def
+ /TrianglePath {
+ 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto closepath
+ } def
+ /SolidTriangle { TrianglePath fill } def
+ /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def
+ /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def
+ /SquarePath {
+ -450 450 moveto 450 450 lineto 450 -450 lineto -450 -450 lineto
+ closepath
+ } def
+ /SolidSquare { SquarePath fill } def
+ /Square { SquarePath .89 .89 scale SquarePath eofill } def
+ /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def
+ /PentagonPath {
+ -337.8 -465 moveto
+ 337.8 -465 lineto
+ 546.6 177.6 lineto
+ 0 574.7 lineto
+ -546.6 177.6 lineto
+ closepath
+ } def
+ /SolidPentagon { PentagonPath fill } def
+ /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def
+ /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def
+ /.notdef { } def
+ end
+ /BuildGlyph {
+ exch
+ begin
+ Metrics 1 index get exec 0
+ BBoxes 3 index get exec
+ setcachedevice
+ CharProcs begin load exec end
+ end
+ } def
+ /BuildChar {
+ 1 index /Encoding get exch get
+ 1 index /BuildGlyph get exec
+ } bind def
+end
+/PSTricksDotFont exch definefont pop
+% END pst-dots.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-node.pro
+%!
+% PostScript prologue for pst-node.tex.
+% Version 97 patch 1, 97/05/09.
+% For distribution, see pstricks.tex.
+%
+/tx@NodeDict 400 dict def tx@NodeDict begin
+tx@Dict begin /T /translate load def end
+/NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def }
+if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end
+grestore } def
+/InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def
+} def
+/InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch
+Sin mul } def } def
+/GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def
+} ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def }
+ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx
+dup Sin mul Cos Div } ifelse } def
+/InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub
+/u ED /NodePos { GetRnodePos } def } def
+/DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup
+Cos mul exch Sin mul } def
+/TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h
+mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul
+} ifelse } def
+/InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d
+ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d
+sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan
+sin def /NodePos { TriNodePos } def } def
+/OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos
+hh mul Atan dup cos ww mul exch sin hh mul } def
+/GetCenter { begin X Y NodeMtrx transform CM itransform end } def
+/XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist
+Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg }
+{ 0 Dist Sin mul } ifelse } ifelse Do } def
+/GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform
+exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx
+dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop
+XYPos } ifelse } def
+/AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1
+roll sin mul sub exch } ifelse } def
+/GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA
+AddOffset yA add /yA1 ED xA add /xA1 ED } def
+/GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB
+AddOffset yB add /yB1 ED xB add /xB1 ED } def
+/GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA
+AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED
+ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED
+} ifelse } def
+/GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB
+AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED
+ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED
+} ifelse } def
+/InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED
+/NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b
+known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA
+ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def
+/LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub
+mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def
+/LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt
+{ pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop
+} repeat LPutLine cleartomark } def
+/BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED
+/t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3
+mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx
+sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul
+add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add
+y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul
+mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def
+/HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def
+} def
+/HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def
+/HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit
+} { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd
+} def
+/VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def
+} def
+/VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def
+/NAngle yyB yyA sub xxB xxA sub Atan def } def
+/VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def
+/VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def
+} ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check {
+exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark
+VPosEnd } def
+/HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2
+roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx
+def grestore exec /LPutVar /SaveLPutVar load def } def
+/NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def
+GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos {
+LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos {
+LPutVar VPutLine } def LPutVar } def
+/NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop
+end } def
+/NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub
+Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan
+/AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1
+yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+ifelse } def
+/NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1
+roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA
+GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict
+begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ]
+cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines
+} HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def
+/NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx
+itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2
+yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1
+yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def
+/HPutPos { HPutLines } def /VPutPos { VPutLines } def } def
+/NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2
+yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform
+/y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1
+tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def
+xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx
+transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def }
+{ /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB
+0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict
+begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx
+def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+/NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if
+xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end
+/LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED
+GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin
+false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos {
+LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def }
+def
+/NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate
+def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2
+mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3
+mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2
+xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false
+Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ]
+cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos {
+VPutLines } def } def
+% DG/SR modification begin - May 9, 1997 - Patch 1
+%/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r
+%r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+%exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+%mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+/NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r
+r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add
+exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360
+mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED
+% DG/SR modification end
+} def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add
+AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r
+Div def /y ED /x ED } def
+/NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB
+180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos
+mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def
+/LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy
+add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos
+{ xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar
+tx@Dict begin false Polygon end } def
+/NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan
+def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2
+mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def
+/x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div
+def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def
+GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul
+sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0
+eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn }
+{ x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def
+0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0
+0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2
+roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat }
+ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos
+{ LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le {
+r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC }
+{ t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add
+add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub
+mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t
+sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse
+y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos {
+LPutPos } def } def
+/Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB
+sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1
+ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB
+w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos
+{ LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop }
+{ pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine }
+def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin
+/ArrowA { moveto } def /ArrowB { } def false Line closepath end } def
+/LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg
+exch X sub neg exch moveto setmatrix CP grestore } def
+/LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0
+def } ifelse LPutCoor } def
+/HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg }
+if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED }
+def
+/VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if
+r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop }
+ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED }
+def
+end
+% END pst-node.pro
+
+%%EndProcSet
+%%BeginProcSet: pst-text.pro
+%!
+% PostScript header file pst-text.pro
+% Version 97, 94/04/20
+% For distribution, see pstricks.tex.
+
+/tx@TextPathDict 40 dict def
+tx@TextPathDict begin
+
+% Syntax: <dist> PathPosition -
+% Function: Searches for position of currentpath distance <dist> from
+% beginning. Sets (X,Y)=position, and Angle=tangent.
+/PathPosition
+{ /targetdist exch def
+ /pathdist 0 def
+ /continue true def
+ /X { newx } def /Y { newy } def /Angle 0 def
+ gsave
+ flattenpath
+ { movetoproc } { linetoproc } { } { firstx firsty linetoproc }
+ /pathforall load stopped { pop pop pop pop /X 0 def /Y 0 def } if
+ grestore
+} def
+
+/movetoproc { continue { @movetoproc } { pop pop } ifelse } def
+
+/@movetoproc
+{ /newy exch def /newx exch def
+ /firstx newx def /firsty newy def
+} def
+
+/linetoproc { continue { @linetoproc } { pop pop } ifelse } def
+
+/@linetoproc
+{
+ /oldx newx def /oldy newy def
+ /newy exch def /newx exch def
+ /dx newx oldx sub def
+ /dy newy oldy sub def
+ /dist dx dup mul dy dup mul add sqrt def
+ /pathdist pathdist dist add def
+ pathdist targetdist ge
+ { pathdist targetdist sub dist div dup
+ dy mul neg newy add /Y exch def
+ dx mul neg newx add /X exch def
+ /Angle dy dx atan def
+ /continue false def
+ } if
+} def
+
+/TextPathShow
+{ /String exch def
+ /CharCount 0 def
+ String length
+ { String CharCount 1 getinterval ShowChar
+ /CharCount CharCount 1 add def
+ } repeat
+} def
+
+% Syntax: <pathlength> <position> InitTextPath -
+/InitTextPath
+{ gsave
+ currentpoint /Y exch def /X exch def
+ exch X Hoffset sub sub mul
+ Voffset Hoffset sub add
+ neg X add /Hoffset exch def
+ /Voffset Y def
+ grestore
+} def
+
+/Transform
+{ PathPosition
+ dup
+ Angle cos mul Y add exch
+ Angle sin mul neg X add exch
+ translate
+ Angle rotate
+} def
+
+/ShowChar
+{ /Char exch def
+ gsave
+ Char end stringwidth
+ tx@TextPathDict begin
+ 2 div /Sy exch def 2 div /Sx exch def
+ currentpoint
+ Voffset sub Sy add exch
+ Hoffset sub Sx add
+ Transform
+ Sx neg Sy neg moveto
+ Char end tx@TextPathSavedShow
+ tx@TextPathDict begin
+ grestore
+ Sx 2 mul Sy 2 mul rmoveto
+} def
+
+end
+% END pst-text.pro
+
+%%EndProcSet
+%%BeginProcSet: special.pro
+%!
+TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
+/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
+/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
+/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
+/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
+X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
+/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
+/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
+{userdict/md get type/dicttype eq{userdict begin md length 10 add md
+maxlength ge{/md md dup length 20 add dict copy def}if end md begin
+/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
+atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
+itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
+transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
+curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
+pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
+if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
+-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
+get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
+yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
+neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
+noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
+90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
+neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
+1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
+2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
+-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
+TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
+Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
+}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
+save N userdict maxlength dict begin/magscale true def normalscale
+currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
+/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
+psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
+psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
+TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
+psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
+roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
+moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
+begin/SpecialSave save N gsave normalscale currentpoint TR
+@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
+CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
+closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
+sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
+}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
+CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
+lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
+/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
+repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
+/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
+currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
+moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
+/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
+1 startangle endangle arc savematrix setmatrix}N end
+
+%%EndProcSet
+%%BeginProcSet: color.pro
+%!
+TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
+setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
+}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
+/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
+setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
+/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
+known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
+/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
+/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
+setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
+setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
+0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
+/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
+setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
+0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
+0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
+0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
+/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
+setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
+setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
+0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
+/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
+setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
+0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
+0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
+0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
+/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
+setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
+/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
+0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
+0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
+0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
+setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
+0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
+/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
+setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
+0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
+1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
+/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
+setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
+0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
+DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
+setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
+setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
+setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end
+
+%%EndProcSet
+TeXDict begin 39158280 55380996 1000 600 600 (sigma.dvi)
+@start
+%DVIPSBitmapFont: Fa cmr12 12 1
+/Fa 1 50 df<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6
+FCA3204278C131>49 D E
+%EndDVIPSBitmapFont
+%DVIPSBitmapFont: Fb cmmi12 24.88 1
+/Fb 1 28 df<0507BAFC057F19800403BB12C0160F163F93BCFC15034B1B80031F1B004B
+624B624AB5D8F80302C0C9FC4A912680007F7F4A01FCC7121F4A01F002077F4A01C0804A
+496E7F4A48C9FC4A48707E5D4949163F4949834949161F495B92CAFC4985495A4A83137F
+495AA2485BA2485BA2485B625A5CA25A91CBFC6248625BA21A7F007F625BA21AFF00FF62
+5BA24F5BA263495FA24F5BA2634F90CAFCA24F5AA2007F4E5A62197F4F5A003F614E5B6D
+4C5B001F96CBFC4E5A6C6C4C5A4E5A6C6C4C5A4E5A6C6C4C5A6C04035B6C6D4A90CCFC6D
+6CEC1FFC6D6C4A5AD91FF8ECFFE0D90FFE01071380902707FFC03F90CDFC010190B512F8
+6D6C14E0020F91CEFC020113F06A5B78D873>27 D E
+%EndDVIPSBitmapFont
+end
+%%EndProlog
+%%BeginSetup
+%%Feature: *Resolution 600dpi
+TeXDict begin
+%%PaperSize: A4
+
+%%EndSetup
+%%Page: 1 1
+1 0 bop Black Black -3258 4866 a
+ tx@Dict begin CP CP translate 1.71 1.71 scale NET end
+ -3258 4866 a @beginspecial
+@setspecial
+ tx@Dict begin STP newpath 0.9 SLW 0 setgray /ArrowA { moveto } def
+/ArrowB { } def [ 338.58746 170.71646 358.50473 213.39557 341.43292
+233.31241 312.98018 227.62195 312.98018 192.05602 338.58746 170.71646
+ 1. 0.1 0. /c ED /b ED /a ED false OpenCurve gsave 0.9 SLW 0 setgray
+0 setlinecap stroke grestore end
+
+@endspecial -3258 4866 a
+ tx@Dict begin CP CP translate 1 1.71 div 1 1.71 div scale NET end
+ -3258 4866 a 1425
+2028 a Fb(\033)p Black 1918 5251 a Fa(1)p Black eop
+%%Trailer
+end
+userdict /end-hook known{end-hook}if
+%%EOF
+
+%%EndDocument
+ @endspecial 1855 2490 a(M)1943 2504 y F9(1)1983 2490
+y Ga(;)g(M)2111 2504 y F9(2)2151 2490 y Ga(;)g(S;)g(T)8
+b(;)15 b(A)p 2477 2478 11 41 v 2488 2460 46 5 v 97 w(P)p
+995 2527 1629 4 v 1359 2606 a(M)1447 2620 y F9(1)1487
+2606 y Ga(;)g(M)1615 2620 y F9(2)1655 2606 y Ga(;)g(S;)g(T)8
+b(;)15 b(A)p 1981 2594 11 41 v 1992 2576 46 5 v 97 w(P)e
+F6(^)p Ga(P)2666 2546 y F6(^)2726 2560 y Gc(R)277 2810
+y Gg(No)n(w)20 b(let)h(one)g(cop)o(y)h(of)f Ga(\033)i
+Gg(reduce)g(to)e(the)g(\002rst)g(normal)g(form)g(sho)n(wn)g(in)g
+(Appendix)i(A)d(and)h(the)g(other)277 2923 y(to)27 b(the)h(second)h
+(normal)f(form.)41 b(Barbanera)29 b(et)e(al.)g([1997])i(sho)n(wed)f
+(that)g(this)g(particular)i(dynamic)277 3036 y(beha)n(viour)j(of)d
+(cut-elimination)k(cannot)d(be)f(achie)n(v)o(ed)i(using)f(a)e
+(cut-elimination)34 b(procedure)f(that)277 3149 y(depends)28
+b(on)e(colour)h(annotations\227the)j(normal)c(form)g(outlined)i(abo)o
+(v)o(e)e(is)g(not)g(reachable.)37 b(Ho)n(w-)277 3262
+y(e)n(v)o(er)l(,)23 b(using)h(our)f(intuiti)n(v)o(e)h(interpretation)j
+(gi)n(v)o(en)c(in)g(Section)g(4.2,)g(this)g(normal)g(form)g
+(corresponds)277 3375 y(to)33 b(a)g(pair)h(of)f(case)h(analyses.)60
+b(T)-7 b(aking)34 b(into)g(account)h(that)f(we)f(obtained)i(strongly)h
+(normalising)277 3488 y(cut-elimination)e(procedures)f
+F7(not)f Gg(depending)h(on)d(colour)i(annotations,)i(we)c(re)o(gard)g
+(the)h(colours)277 3601 y(of)e(Danos)g(et)f(al.)g([1997])i(as)e(a)g
+(restriction)k(that)d(simpli\002es)g(the)g(task)g(of)g(pro)o(ving)h
+(the)f(strong)h(nor)n(-)277 3714 y(malisation)24 b(property)g(\(it)e
+(enabled)i(them)e(to)g(appeal)i(to)e(the)g(strong)i(normalisation)h
+(proof)e(for)f(proof)277 3827 y(nets\).)p Black Black
+eop end
+%%Page: 124 136
+TeXDict begin 124 135 bop Black Black Black Black eop
+end
+%%Page: 125 137
+TeXDict begin 125 136 bop Black Black 277 1029 a F8(Chapter)44
+b(5)277 1462 y Gf(Conclusion)p Black Black Black Black
+1294 1882 a Gd(...it)21 b(used)e(to)i(be)f(said)g(that)h(classical)g
+(proof)d(theory)h(does)h(not)g(really)g(e)o(xist.)2893
+2082 y(\227J.)h(M.)f(E.)h(Hyland)2234 2182 y(in)f(Proof)f(Theory)g(in)h
+(the)h(Abstract,)e(2000.)277 2526 y Gg(The)32 b(theme)g(running)j
+(through)f(this)f(thesis)g(w)o(as)f(that)h(non-determinism)i(should)f
+(be)e(seen)h(as)f(an)277 2639 y F7(intrinsic)d Gg(property)g(of)d
+(classical)j(logic.)39 b(In)26 b(ef)n(fect,)i(we)e(departed)j(from)d
+(the)h(traditional)j(doctrine,)277 2752 y(pre)n(v)n(ailing)g(in)e
+(intuitionistic)k(and)c(linear)h(logic,)g(that)g(considers)h
+(cut-elimination)i(as)27 b(an)h(equality)277 2865 y(preserving)39
+b(operation)g(on)d(proofs.)67 b(A)35 b(pleasing)j(consequence)i(of)c
+(our)g(point)h(of)f(vie)n(w)g(is)g(that)277 2978 y(the)c
+(\223inconsistenc)o(y\224)k(problem)d(arising)h(from)e(Lafont')-5
+b(s)33 b(e)o(xample)f(\(see)g(P)o(age)g(4\))g(is)f(completely)277
+3090 y(bypassed.)418 3222 y(T)-7 b(o)24 b(support)j(our)e(point)g(of)g
+(vie)n(w)-6 b(,)24 b(we)g(reconsidered)29 b(the)c(proof)g(theory)i(of)d
+(classical)j(logic)f(and)277 3335 y(de)n(v)o(eloped)f(se)n(v)o(eral)f
+(strongly)h(normalising)h(cut-elimination)h(procedures)f(\(Chapter)e
+(2\).)k(One)23 b(fea-)277 3447 y(ture)31 b(recurring)i(in)d(all)g
+(these)i(procedures)h(is)d(that)h(a)f(subderi)n(v)n(ation)j(of)e(a)f
+(commuting)h(cut)g(has)f(to)277 3560 y(be)j(permuted)i(directly)g(to)e
+(the)h(place)g(or)f(places)h(where)g(the)f(cut-formula)j(is)d
+(introduced.)61 b(This)277 3673 y(feature)26 b(w)o(as)e(tak)o(en)i
+(from)e(the)h(strongly)h(normalising)h(cut-elimination)i(procedure)e
+(de)n(v)o(eloped)f(by)277 3786 y(Danos)f(et)f(al.)h([1997])h(for)e(LK)
+1252 3753 y Gc(tq)1315 3786 y Gg(;)h(ho)n(we)n(v)o(er)l(,)g(we)e(sho)n
+(wed)j(that)f(their)g(colour)h(annotation,)i(a)c(restric-)277
+3899 y(tion)i(the)o(y)f(imposed,)h(is)f(not)g(necessary)i(to)e(ensure)h
+(strong)h(normalisation.)35 b(In)25 b(f)o(act,)h(no)f(additional)277
+4012 y(information)30 b(to)d(guide)i(the)f(re)n(write)g(system)g(is)f
+(required)j(at)d(all)h(for)f(strong)i(normalisation.)44
+b(As)27 b(a)277 4125 y(pleasing)f(consequence,)i(more)23
+b(normal)i(forms)f(are)g(often)h(reachable)h(from)e(classical)i(proofs)
+g(con-)277 4238 y(taining)g(cuts)f(\(see)f(Figure)h(2.1)f(for)g(an)g(e)
+o(xample\).)32 b(Owing)24 b(to)g(the)g(smaller)h(number)g(of)f
+(constraints)277 4351 y(of)k(our)g(cut-elimination)k(procedures,)f
+(strong)e(normalisation)i(cannot)f(be)e(pro)o(v)o(ed)g(by)g
+(translating)277 4464 y(e)n(v)o(ery)h(cut-reduction)j(onto)d(a)f
+(series)i(of)e(cut-reductions)k(of)d(proof-nets,)j(as)c(w)o(as)g(done)h
+(for)g(LK)3417 4431 y Gc(tq)3479 4464 y Gg(.)277 4577
+y(F)o(ortunately)-6 b(,)23 b(the)d(use)h(of)f(term)g(annotations)j(for)
+d(sequent)i(proofs)g(enabled)g(us)e(to)g(adapt)h(proof)g(tech-)277
+4689 y(niques)26 b(from)e(term)g(re)n(writing)h([Barbanera)h(and)f
+(Berardi,)f(1994,)h(Bloo)f(and)h(Geuv)o(ers,)g(1999],)g(and)277
+4802 y(thus)f(we)f(were)g(able)i(to)e(gi)n(v)o(e)h(direct)g(proofs)h
+(for)f(strong)h(normalisation.)418 4933 y(Another)31
+b(pleasing)i(feature)e(of)f(our)h(cut-elimination)j(procedures)f(is)c
+(that)i(via)f(simple)h(trans-)277 5046 y(lations)38 b(the)o(y)f(imply)g
+(strong)h(normalisation)i(of)d(beta-reduction)k(in)36
+b(the)h(simply-typed)j(lambda)277 5159 y(calculus)26
+b(\(Chapter)f(3\).)j(This)23 b(w)o(as)h(achie)n(v)o(ed)h(by)e
+(considering)k(reduction)f(rules)f(that)f(allo)n(w)f(cuts)h(to)277
+5272 y(be)d(permuted)i(with)f(other)g(cuts.)29 b(If)21
+b(these)h(reduction)i(rules)e(are)g(de\002ned)g(na)m(\250)-27
+b(\021v)o(ely)-6 b(,)23 b(the)o(y)f(cause)g(loops)277
+5385 y(and)27 b(thereby)i(break)f(the)f(strong)h(normalisation)i
+(property)-6 b(.)41 b(W)-7 b(e)26 b(ho)n(we)n(v)o(er)h(retained)i(this)
+e(property)277 5498 y(by)i(introducing)j(syntactic)g(means)d(\(e.g.,)h
+(labelled)h(cuts\))f(which)f(pre)n(v)o(ent)h(interference)i(between)p
+Black Black eop end
+%%Page: 126 138
+TeXDict begin 126 137 bop Black -144 51 a Gb(126)3121
+b(Conclusion)p -144 88 3691 4 v Black 321 388 a Gg(these)28
+b(rules)g(and)g(rules)g(that)f(simply)h(permute)g(a)e(cut)i(upw)o(ards)
+g(in)f(a)f(proof.)41 b(Because)28 b(of)f(the)g(gen-)321
+501 y(erality)i(of)e(our)g(cut-elimination)k(procedures,)g(we)26
+b(could)i(answer)g(the)g(correspondence)j(question)321
+614 y(between)20 b(cut-elimination)i(and)c(normalisation)k(positi)n(v)o
+(ely)e(for)f(all)f(connecti)n(v)o(es)j(in)d(classical)j(logic.)321
+727 y(This)j(result)g(impro)o(v)o(es)h(upon)f(w)o(ork)g(presented)i(by)
+e(Zuck)o(er)g([1974].)462 856 y(In)33 b(Chapter)g(4)f(we)g(studied)i
+(applications)i(of)c(cut-elimination.)59 b(F)o(or)31
+b(one)i(of)f(our)h(cut-elimi-)321 969 y(nation)28 b(procedures)h(we)c
+(presented)k(an)d(implementation,)k(which)c(we)g(emplo)o(yed)i(to)e
+(calculate)i(for)321 1082 y(a)22 b(particular)i(classical)g(proof)g(tw)
+o(o)d(cut-free)j(proofs.)30 b(W)-7 b(e)21 b(sho)n(wed)h(that)h(these)g
+(tw)o(o)e(proofs)j(dif)n(fer)f(in)321 1195 y(essential)28
+b(features)f(and)e(therefore)j(should)f(not)e(be)g(identi\002ed.)36
+b(Consequently)-6 b(,)28 b(in)d(classical)j(logic)321
+1308 y(the)c(process)g(of)f(cut-elimination)k(corresponds)g(to)c
+(non-deterministic)k(computation.)k(In)23 b(the)h(light)321
+1421 y(of)h(this)g(result,)g(we)f(proposed)i(a)e(dif)n(ferent)j(and)d
+(more)h(positi)n(v)o(e)h(reading)g(for)e(Lafont')-5 b(s)26
+b(e)o(xample:)32 b(it)321 1534 y(is)23 b(an)g(erratic)i(choice)f
+(operator)l(,)h(which,)f(for)f(e)o(xample,)h(has)f(an)g(intuiti)n(v)o
+(e)i(computational)h(meaning)321 1647 y(in)h(concurrenc)o(y)i(theory)-6
+b(.)39 b(W)-7 b(e)26 b(demonstrated)j(that)e(if)g(one)g(adds)g(Lafont')
+-5 b(s)28 b(e)o(xample)f(to)f(the)h(impli-)321 1760 y(cational)h
+(fragment)e(of)f(intuitionistic)k(logic,)e(then)f(this)g(fragment)g
+(can)g(simulate)g(reduction)i(in)d(the)321 1873 y(simply-typed)i
+(lambda)d(calculus)i(enriched)g(with)d(the)h(erratic)h(choice)g
+(operator)-5 b(.)462 2002 y(It)38 b(is)g(hoped)h(that)f(the)g(reader)i
+(will)d(no)n(w)g(be)h(con)l(vinced)j(of)d(the)g(point)h(of)f(vie)n(w)f
+(that)i(non-)321 2115 y(determinism)31 b F7(is)e Gg(an)f(intrinsic)j
+(feature)g(of)e(classical)i(logic.)45 b(This)29 b(point)h(of)f(vie)n(w)
+f(w)o(as)h(\002rst)f(tak)o(en)321 2228 y(by)f(Barbanera)h(and)e
+(Berardi)h([1994],)i(and)d(later)h(analysed)i(from)d(a)g(programming)i
+(point)g(of)e(vie)n(w)321 2341 y(by)21 b(Barbanera)h(et)e(al.)f
+([1997];)1282 2308 y F5(1)1346 2341 y Gg(it)h(w)o(as)g(also)h(hinted)g
+(at)f(by)h(Coquand)g([1995])h(and)f(Herbelin)g([1995],)321
+2454 y(and)i(more)f(recently)h(suggested)i(by)d(Girard)g([2001,)i(P)o
+(age)d(88])h(and)h(adv)n(ocated)i(by)d(Hyland)g([2000].)321
+2761 y Ge(5.1)119 b(Further)31 b(W)-9 b(ork)321 2985
+y Gg(There)25 b(are)f(man)o(y)g(areas)h(for)f(further)i(w)o(ork.)31
+b(W)-7 b(e)23 b(list)h(some)h(of)f(them)g(belo)n(w)-6
+b(,)24 b(roughly)i(in)e(the)h(order)321 3098 y(as)f(the)o(y)g(appear)h
+(in)e(the)h(thesis.)462 3227 y(Pleasant)35 b(though)g(our)f(strong)h
+(normalisation)i(result)d(for)g(cut-elimination)j(is,)f(it)d(is)g(not)h
+(the)321 3340 y(strongest)f(result)e(we)e(could)i(hoped)h(for:)42
+b(our)30 b(strong)i(normalisation)h(theorems)e(say)f(little)h(about)321
+3453 y(strong)c(normalisation)g(of)e(cut-elimination)k(in)24
+b(second-order)29 b(classical)e(logic.)33 b(Clearly)-6
+b(,)25 b(it)g(w)o(ould)321 3566 y(be)i(nice)g(to)f(ha)n(v)o(e)h(the)f
+(stronger)j(result:)36 b(for)26 b(e)o(xample)h(it)f(can)h(sa)n(v)o(e)g
+(lengthy)h(strong)f(normalisation)321 3679 y(proofs)h(from)e(\002rst)g
+(principles)j(for)d(other)h(term)f(re)n(write)g(systems)i(\(see)e
+([Benton,)h(1995]\).)38 b(T)-7 b(o)25 b(gi)n(v)o(e)321
+3792 y(a)36 b(proof)g(of)g(the)g(stronger)i(result,)i(one)c(has)g(to)g
+(e)o(xtend)g(the)g(notion)i(of)d(symmetric)i(reducibility)321
+3904 y(candidates)c(using)d(what)f(is)g(by)h(Gallier)g([1990])g
+(referred)i(to)d(as)g(\223Girard')-5 b(s)31 b(trick\224.)47
+b(W)-7 b(e)28 b(ha)n(v)o(e)i(not)321 4017 y(check)o(ed)f(whether)f
+(this)g(e)o(xtension)h(is)e(possible)i(gi)n(v)o(en)f(the)f(\002x)o(ed)g
+(point)h(operation)h(we)e(emplo)o(yed)321 4130 y(in)d(the)g
+(propositional)j(and)d(\002rst-order)h(case.)462 4260
+y(There)h(are)g(se)n(v)o(eral)g(possibilities)j(of)c(ho)n(w)g(to)h(e)o
+(xtend)g(our)g(sequent)h(calculus)h(in)d(order)i(to)e(cap-)321
+4373 y(ture,)f(for)g(e)o(xample,)g(features)h(of)f(recursi)n(v)o(e)h
+(computation.)32 b(One)23 b(is)g(to)h(add)g(the)f(induction)k(rule)1150
+4566 y Ga(B)5 b F4([)p FL(x)25 b F4(:=)g FL(y)q F4(])p
+Ga(;)15 b F4(\000)p 1623 4554 11 41 v 1634 4536 46 5
+v 97 w(\001)p Ga(;)g(B)5 b F4([)p FL(x)25 b F4(:=)h FL(y)21
+b F4(+)f FL(1)p F4(])p 1150 4608 1178 4 v 1232 4693 a
+Ga(B)5 b F4([)p FL(x)25 b F4(:=)h FL(0)p F4(])p Ga(;)15
+b F4(\000)p 1708 4681 11 41 v 1718 4663 46 5 v 97 w(\001)p
+Ga(;)g(B)5 b F4([)p FL(x)25 b F4(:=)g FL(t)p F4(])2369
+4639 y Gg(Induction)321 4903 y(where)i FL(y)g Gg(is)g(an)f(eigen)l(v)n
+(ariable)31 b(not)c(occurring)i(else)n(where)f(in)f(the)f(premise,)j
+(and)e FL(t)e Gg(is)i(an)f(arbitrary)321 5016 y(e)o(xpression.)48
+b(Another)30 b(is)f(to)g(allo)n(w)g(non-logical)j(axioms)e(of)f(the)g
+(form)p 2699 4937 246 4 v 29 w Ga(C)p 2790 5004 11 41
+v 2801 4986 46 5 v 103 w(D)r Gg(.)45 b(In)28 b(general,)k(the)321
+5129 y(latter)21 b(means)e(that)h(some)f(cuts)h(cannot)h(be)e
+(eliminated.)29 b(T)-7 b(o)18 b(a)n(v)n(oid)j(this)f(problem)g(one)g
+(has)g(to)f(impose)p Black 321 5206 1290 4 v 427 5262
+a F3(1)456 5294 y F2(The)k(main)g(technical)g(no)o(v)o(elty)g(in)g
+(this)g(thesis)f(is)h(that)f(we)h(sho)n(wed)h(the)f(non-determinism)h
+(using)f(a)g(standard)h(for)o(-)321 5385 y(mulation)c(of)f(classical)f
+(logic;)h(for)g(this)g(we)g(had)g(to)g(e)o(xtend)h(their)e(results)h
+(in)g(order)g(to)g(deal)g(with)g(all)f(connecti)n(v)o(es.)p
+Black Black Black eop end
+%%Page: 127 139
+TeXDict begin 127 138 bop Black 277 51 a Gb(5.1)23 b(Further)g(W)-7
+b(ork)2867 b(127)p 277 88 3691 4 v Black 277 388 a Gg(suitable)33
+b(constraints)h(on)e(the)f(form)g(of)g(the)g(non-logical)k(axioms.)52
+b(Both)31 b(e)o(xtensions)j(ha)n(v)o(e)e(been)277 501
+y(in)l(v)o(estigated)23 b(in)c(an)g(intuitionistic)k(setting)e(by)f
+(McDo)n(well)f(and)h(Miller)g([2000],)h(and)f(the)o(y)g(seem)f(not)277
+614 y(to)g(pose)g(an)o(y)g(dif)n(\002culties)h(with)f(respect)h(to)f
+(our)g(strong)h(normalisation)h(proof)f(based)g(on)f(candidates.)418
+751 y(W)-7 b(e)34 b(designed)i(our)f(cut-elimination)j(procedures)f(so)
+d(that)h(restrictions)i(imposed)f(in)e(earlier)277 864
+y(cut-elimination)h(procedures)f(are)d(remo)o(v)o(ed,)i(b)n(ut)e
+(without)h(breaking)i(the)d(strong)h(normalisation)277
+977 y(property)-6 b(.)46 b(F)o(or)27 b(e)o(xample,)j(we)e(sho)n(wed)h
+(that)g(the)g(colour)h(annotations)h(of)e(LK)2827 944
+y Gc(tq)2917 977 y Gg(are)f(not)h(required)277 1090 y(for)c(strong)g
+(normalisation.)35 b(But,)24 b(we)f(k)o(ept)i(one)g(restriction)i(of)d
+(LK)2465 1057 y Gc(tq)2528 1090 y Gg(:)30 b(commuting)c(cuts)f(can)g
+(only)277 1202 y(be)j(permuted)i(into)e(one)h(direction)h(and)f(not)f
+(into)h(alternating)i(ones.)43 b(One)27 b(side)i(ef)n(fect)g(of)f(this)
+g(re-)277 1315 y(striction)d(is)d(that)h(some)f(normal)h(forms)g(are)g
+(not)f(reachable,)j(which)e(w)o(ould)g(ho)n(we)n(v)o(er)f(be)h
+(reachable)277 1428 y(using)28 b(a)e(completely)i(unrestricted)i(\(and)
+d(thus)g(not)g(strongly)h(normalising\))i(cut-elimination)g(pro-)277
+1541 y(cedure.)36 b(Consider)27 b(again)g(the)f(in\002nite)g(reduction)
+i(sequence)g(outlined)g(in)d(Example)h(2.1.3.)35 b(Start-)277
+1654 y(ing)30 b(from)f(the)g(\002rst)g(proof,)j(one)d(can)h(reach)g
+(the)g(normal)g(form)f(gi)n(v)o(en)h(in)f(Figure)h(5.1,)g(b)n(ut)g(we)e
+(are)277 1767 y(not)33 b(a)o(w)o(are)f(of)g(an)o(y)g(strongly)j
+(normalising)f(cut-elimination)i(procedure)f(with)d(which)h(we)e(could)
+277 1880 y(reach)36 b(it.)581 1847 y F5(2)679 1880 y
+Gg(The)e(only)h(normal)g(forms)g(that)g(can)f(be)h(reached)h(using)f
+(our)g(strongly)i(normalising)277 1993 y(cut-elimination)27
+b(procedures)g(are)p Black Black 289 2193 213 4 v 289
+2267 a FU(A)p 369 2255 10 38 v 379 2238 42 4 v 88 w(A)p
+584 2193 213 4 v 83 w(A)p 665 2255 10 38 v 674 2238 42
+4 v 88 w(A)p 289 2287 509 4 v 328 2360 a(A)p FT(_)q FU(A)p
+526 2348 10 38 v 536 2331 42 4 v 88 w(A;)14 b(A)811 2303
+y FT(_)866 2316 y FS(L)p 328 2396 430 4 v 378 2469 a
+FU(A)p FT(_)p FU(A)p 576 2457 10 38 v 586 2441 42 4 v
+88 w(A)799 2418 y Gd(Contr)989 2430 y FS(R)p 1098 2193
+213 4 v 1098 2267 a FU(A)p 1178 2255 10 38 v 1188 2238
+42 4 v 88 w(A)p 1393 2193 213 4 v 83 w(A)p 1474 2255
+10 38 v 1484 2238 42 4 v 89 w(A)p 1098 2287 509 4 v 1137
+2360 a(A)p FT(_)q FU(A)p 1335 2348 10 38 v 1345 2331
+42 4 v 88 w(A;)g(A)1620 2303 y FT(_)1675 2316 y FS(L)p
+1137 2396 430 4 v 1187 2469 a FU(A)p FT(_)p FU(A)p 1385
+2457 10 38 v 1395 2441 42 4 v 89 w(A)1608 2418 y Gd(Contr)1798
+2430 y FS(R)p 378 2489 1140 4 v 615 2563 a FU(A)p FT(_)q
+FU(A;)g(A)p FT(_)p FU(A)p 1030 2551 10 38 v 1040 2534
+42 4 v 89 w(A)p FT(^)p FU(A)1531 2506 y FT(^)1586 2519
+y FS(R)p 615 2599 665 4 v 723 2672 a FU(A)p FT(_)q FU(A)p
+922 2660 10 38 v 931 2643 42 4 v 88 w(A)p FT(^)q FU(A)1321
+2621 y Gd(Contr)1511 2633 y FS(L)p 1937 2193 213 4 v
+1937 2267 a FU(A)p 2018 2255 10 38 v 2028 2238 42 4 v
+89 w(A)p 2233 2193 213 4 v 83 w(A)p 2314 2255 10 38 v
+2323 2238 42 4 v 88 w(A)p 1937 2287 509 4 v 1977 2360
+a(A;)g(A)p 2157 2348 10 38 v 2166 2331 42 4 v 88 w(A)p
+FT(^)q FU(A)2459 2303 y FT(^)2514 2316 y FS(R)p 1977
+2396 430 4 v 2026 2469 a FU(A)p 2107 2457 10 38 v 2117
+2441 42 4 v 88 w(A)p FT(^)q FU(A)2447 2418 y Gd(Contr)2637
+2430 y FS(L)p 2742 2193 213 4 v 2742 2267 a FU(A)p 2822
+2255 10 38 v 2832 2238 42 4 v 88 w(A)p 3037 2193 213
+4 v 83 w(A)p 3118 2255 10 38 v 3127 2238 42 4 v 88 w(A)p
+2742 2287 509 4 v 2781 2360 a(A;)g(A)p 2961 2348 10 38
+v 2970 2331 42 4 v 88 w(A)p FT(^)q FU(A)3263 2303 y FT(^)3319
+2316 y FS(R)p 2781 2396 430 4 v 2831 2469 a FU(A)p 2911
+2457 10 38 v 2921 2441 42 4 v 88 w(A)p FT(^)p FU(A)3252
+2418 y Gd(Contr)3442 2430 y FS(L)p 2026 2489 1135 4 v
+2261 2563 a FU(A)p FT(_)q FU(A)p 2460 2551 10 38 v 2469
+2534 42 4 v 88 w(A)p FT(^)q FU(A;)g(A)p FT(^)p FU(A)3175
+2506 y FT(_)3230 2519 y FS(L)p 2261 2599 665 4 v 2370
+2672 a FU(A)p FT(_)p FU(A)p 2568 2660 10 38 v 2577 2643
+42 4 v 88 w(A)p FT(^)q FU(A)2967 2621 y Gd(Contr)3157
+2633 y FS(R)277 2925 y Gg(W)-7 b(e)23 b(\002nd)h(it)f(is)h(highly)i
+(desirable)g(to)e(ha)n(v)o(e)g(a)g(con)l(vincing)j(e)o(xplanation)g
+(for)d(what)g(it)g(means)g(compu-)277 3038 y(tationally)i(that)e(the)g
+(normal)g(form)f(gi)n(v)o(en)h(in)f(Figure)h(5.1)f(is)g(not)h
+(reachable)h(using)g(our)f(procedures.)277 3151 y(Because)30
+b(there)f(are)g(some)f(similarities)j(between)e(the)g(tw)o(o)f(normal)h
+(forms)g(gi)n(v)o(en)g(abo)o(v)o(e)g(and)g(the)277 3264
+y(one)c(in)g(Figure)h(5.1,)f(an)f(appealing)k(e)o(xplanation)g(w)o
+(ould)d(be)g(that)h(using)g(our)f(cut-elimination)k(pro-)277
+3376 y(cedure)f(only)f(\223essential\224)i(normal)e(forms)g(can)f(be)h
+(reached.)39 b(Ho)n(we)n(v)o(er)25 b(at)h(present,)j(this)e(is)f(only)h
+(a)277 3489 y(v)n(ague)e(hope.)418 3626 y(In)39 b(Section)h(4.1)f(we)g
+(de)n(v)o(eloped)i(an)e(implementation)j(of)d(the)h(cut-elimination)j
+(procedure)277 3739 y F4(\()p FY(T)t Ga(;)430 3702 y
+Gc(aux)410 3739 y F6(\000)-31 b(\000)f(!)p F4(\))36 b
+Gg(in)h(OCaml.)66 b(A)36 b(more)g(suitable)j(programming)f(language)h
+(for)e(this)g(kind)g(of)g(imple-)277 3852 y(mentations)25
+b(has)f(been)g(recently)h(proposed)h(by)d(Pitts)g(and)g(Gabbay)h
+([2000].)31 b(In)23 b(this)g(programming)277 3965 y(language,)29
+b(named)e(FreshML,)f(one)h(does)g(not)g(ha)n(v)o(e)g(to)g(deal)g(e)o
+(xplicitly)i(with)d(alpha-con)l(v)o(ersions,)277 4078
+y(and)j(thus)g(one)g(can)g(write)g(much)f(clearer)i(code)f(reminiscent)
+i(of)e(the)f(simple)i(de\002nitions)g(we)e(pre-)277 4191
+y(sented)f(in)f(this)g(thesis.)36 b(As)25 b(soon)i(as)e(there)i(is)e(a)
+g(w)o(orking)i(prototype)i(a)n(v)n(ailable)e(for)f(FreshML,)f(we)277
+4304 y(hope)g(to)e(pro)o(vide)i(a)e(simpli\002ed)i(implementation)h(of)
+e F4(\()p FY(T)t Ga(;)2164 4267 y Gc(aux)2143 4304 y
+F6(\000)-31 b(\000)g(!)p F4(\))p Gg(.)418 4440 y(Grif)n(\002n)34
+b([1990])j(noted)f(a)e(correspondence)39 b(between)d(classical)h(logic)
+f(and)f(functional)j(pro-)277 4553 y(gramming)21 b(languages)j(with)c
+(control)i(operators.)30 b(This)20 b(observ)n(ation)k(has)c(been)i(e)o
+(xploited)g(in)f(man)o(y)277 4666 y(w)o(orks,)34 b(for)e(e)o(xample)g
+([Murthy,)g(1990,)g(Ber)n(ger)h(et)e(al.,)g(2000],)k(where)c(programs)j
+(are)d(e)o(xtracted)277 4779 y(from)h(classical)j(proofs)f(via)e
+(double)i(ne)o(gation)g(translations.)59 b(An)31 b(interesting)36
+b(twist)c(of)g(this)h(ap-)277 4892 y(proach)25 b(has)f(been)g(studied)h
+(by)e(Coquand)i([1995])g(and)e(Herbelin)i([1995].)30
+b(The)o(y)23 b(analyse)i(a)e(v)n(ariant)277 5005 y(of)31
+b(the)g(classical)j(proof)e(gi)n(v)o(en)f(in)g(Section)h(4.2)f(and)h(e)
+o(xtract)g(tw)o(o)e(dif)n(ferent)j(programs)g(by)e(using)p
+Black 277 5115 1290 4 v 383 5171 a F3(2)412 5202 y F2(The)e(strongly)h
+(normalising)g(cut-elimination)g(procedure)h(seems)f(not)g(to)f(be)h
+(meaningful,)j(where)c(one)i(can)e(do)277 5294 y(\002nitely)23
+b(man)o(y)g(steps)h(\223ho)n(we)n(v)o(er)g(one)g(w)o(ants\224,)g(and)g
+(then)f(annotate)h(colours)g(and)g(reduce)g(the)f(proof)g(according)i
+(to)e(the)277 5385 y(cut-elimination)c(procedure)i(of)e(LK)1251
+5353 y FZ(tq)1308 5385 y F2(.)p Black Black Black eop
+end
+%%Page: 128 140
+TeXDict begin 128 139 bop Black -144 51 a Gb(128)3121
+b(Conclusion)p -144 88 3691 4 v Black Black 321 300 3226
+4 v 321 1438 4 1139 v 646 607 233 4 v 646 686 a Ga(A)p
+734 674 11 41 v 745 656 46 5 v 96 w(A)p 969 607 233 4
+v 91 w(A)p 1058 674 11 41 v 1068 656 46 5 v 97 w(A)p
+646 706 557 4 v 689 785 a(A;)15 b(A)p 886 773 11 41 v
+896 754 46 5 v 97 w(A)p F6(^)p Ga(A)1243 724 y F6(^)1304
+738 y Gc(R)p 689 822 471 4 v 743 901 a Ga(A)p 831 889
+11 41 v 842 871 46 5 v 97 w(A)p F6(^)o Ga(A)1200 846
+y Gg(Contr)1406 860 y Gc(L)p 1601 607 233 4 v 1601 686
+a Ga(A)p 1689 674 11 41 v 1700 656 46 5 v 97 w(A)p 1925
+392 233 4 v 1925 471 a(A)p 2013 459 11 41 v 2023 441
+46 5 v 96 w(A)p 2248 392 233 4 v 91 w(A)p 2337 459 11
+41 v 2347 441 46 5 v 97 w(A)p 1925 491 557 4 v 1968 570
+a(A;)g(A)p 2165 558 11 41 v 2175 539 46 5 v 97 w(A)p
+F6(^)p Ga(A)2522 509 y F6(^)2583 523 y Gc(R)p 1968 607
+471 4 v 2022 686 a Ga(A)p 2110 674 11 41 v 2121 656 46
+5 v 97 w(A)p F6(^)o Ga(A)2479 631 y Gg(Contr)2685 645
+y Gc(L)p 1601 706 783 4 v 1693 785 a Ga(A)p F6(_)p Ga(A)p
+1910 773 11 41 v 1920 754 46 5 v 96 w(A;)g(A)p F6(^)p
+Ga(A)2425 724 y F6(_)2486 738 y Gc(L)p 2829 706 233 4
+v 2829 785 a Ga(A)p 2918 773 11 41 v 2928 754 46 5 v
+97 w(A)p 1693 822 1370 4 v 1959 901 a(A;)g(A)p F6(_)q
+Ga(A)p 2285 889 11 41 v 2296 871 46 5 v 96 w(A)p F6(^)p
+Ga(A;)g(A)p F6(^)p Ga(A)3104 840 y F6(^)3164 855 y Gc(R)p
+743 939 2053 4 v 1168 1017 a Ga(A)p F6(_)p Ga(A;)g(A)p
+F6(_)p Ga(A)p 1623 1005 11 41 v 1633 987 46 5 v 97 w(A)p
+F6(^)p Ga(A;)g(A)p F6(^)p Ga(A;)g(A)p F6(^)p Ga(A)2837
+957 y F6(_)2898 971 y Gc(L)p 1168 1055 1203 4 v 1287
+1134 a Ga(A)p F6(_)p Ga(A)p 1504 1122 11 41 v 1514 1103
+46 5 v 96 w(A)p F6(^)p Ga(A;)g(A)p F6(^)p Ga(A;)g(A)p
+F6(^)q Ga(A)2412 1079 y Gg(Contr)2618 1093 y Gc(L)p 1287
+1171 966 4 v 1406 1250 a Ga(A)p F6(_)o Ga(A)p 1623 1238
+11 41 v 1633 1220 46 5 v 97 w(A)p F6(^)p Ga(A;)g(A)p
+F6(^)p Ga(A)2293 1195 y Gg(Contr)2499 1209 y Gc(R)p 1406
+1288 728 4 v 1524 1366 a Ga(A)p F6(_)p Ga(A)p 1741 1354
+11 41 v 1752 1336 46 5 v 96 w(A)p F6(^)p Ga(A)2175 1312
+y Gg(Contr)2381 1326 y Gc(R)p 3543 1438 4 1139 v 321
+1441 3226 4 v 321 1595 a Gg(Figure)21 b(5.1:)28 b(A)19
+b(normal)i(form)f(of)h(the)f(LK-proof)h(gi)n(v)o(en)g(in)f(Example)h
+(2.1.3,)g(P)o(age)f(15.)28 b(This)20 b(normal)321 1708
+y(form)25 b(is)f(reachable)j(only)f(if)e(commuting)i(cuts)f(can)g
+(\223change\224)i(the)e(direction)i(into)e(which)g(the)o(y)g(are)321
+1821 y(permuted.)p Black 321 2226 a(tw)o(o)30 b(dif)n(ferent)i(double)g
+(ne)o(gation)g(translations.)52 b(W)-7 b(e)29 b(conjecture)k(that)e
+(double)h(ne)o(gation)g(transla-)321 2339 y(tions)21
+b(correspond)i(to)d(particular)j(strate)o(gies)f(of)e(cut-elimination.)
+32 b(This)19 b(conjecture)k(does)e(not)g(seem)321 2452
+y(dif)n(\002cult)k(to)e(v)o(erify)-6 b(,)24 b(b)n(ut)g(the)g(details)h
+(remain)g(future)f(w)o(ork.)462 2581 y(Important)36 b(future)f(w)o(ork)
+f(is)g(to)g(reconsider)j(the)d(proof)h(theory)h(of)e(classical)i(logic)
+f(in)f(a)f(set-)321 2694 y(ting)23 b(where)f(proofs)h(are)f
+(identi\002ed)h(up)f(to)f F7(Kleene)i(permutations)h
+Gg([Kleene,)f(1952b],)g(analogous)i(to)321 2807 y(proof)j(nets)f(for)f
+(linear)h(logic)h([Girard,)e(1987a].)39 b(One)26 b(practical)i(reason)g
+(for)f(this)f(identi\002cation)k(is)321 2920 y(the)d(huge)h(number)f
+(of)f(normal)i(forms)f(we)e(found)j(by)f(feeding)h(the)f(classical)i
+(proof)e(gi)n(v)o(en)g(in)g(Sec-)321 3033 y(tion)22 b(4.2)e(into)h(our)
+g(implementation.)31 b(W)-7 b(e)20 b(conjecture)j(man)o(y)e(of)f(these)
+i(normal)f(forms)g(are)g(equal)g(up)321 3146 y(to)i(Kleene)h
+(permutations.)31 b(In)23 b(our)h(implementation)i(we)c(introduced)k
+(some)d F7(ad)h(hoc)f Gg(assumptions,)321 3259 y(which)29
+b(reduced)g(the)g(number)f(of)g(normal)h(forms)f(some)n(what,)h(b)n(ut)
+g(we)e(felt)h(that)g(we)f(did)i(not)f(ha)n(v)o(e)321
+3372 y(much)f(control)h(o)o(v)o(er)e(the)h(cut-elimination)j(process.)
+39 b(Identi\002cation)29 b(up)d(to)h(Kleene)g(permutations)321
+3485 y(might)e(alle)n(viate)i(this)e(problem.)34 b(Unfortunately)-6
+b(,)28 b(syntactic)f(methods)f(\(e.g.)e(additional)k(reduction)321
+3597 y(rules\))g(to)f(achie)n(v)o(e)g(this)h(identi\002cation)h(are)e
+(rather)h(dif)n(\002cult)f(to)g(obtain)h([Schwichtenber)n(g,)i(1999].)
+321 3710 y(So)g(one)g(might)h(ha)n(v)o(e)g(to)f(resort)i(to)e
+(semantical)i(methods,)h(as)d(proposed)j(by)d(Hyland)h([2000],)i(in-)
+321 3823 y(stead.)462 3953 y(The)d(most)f(interesting)k(future)d(w)o
+(ork)g(concerns)i(the)e(computational)j(interpretation)g(of)d(clas-)321
+4066 y(sical)h(proofs.)48 b(In)30 b(Section)g(4.3)g(we)f(ga)n(v)o(e)g
+(an)h(encoding)i(into)e(classical)i(logic)f(of)e(a)h(simply-typed)321
+4179 y(lambda)g(calculus)h(enriched)g(with)d(an)h(erratic)h(choice)h
+(operator)-5 b(.)46 b(This)29 b(result)h(should)g(be)f(seen)h(as)321
+4291 y(proof)d(of)e(concept:)36 b(it)25 b(barely)i(scratches)h(at)d
+(the)h(surf)o(ace)h(of)f(what)f(can)h(be)g(encoded)h(into)f(classical)
+321 4404 y(logic.)k(F)o(or)22 b(e)o(xample,)h(we)f(did)h(not)h
+(consider)h(an)d(encoding)k(of)c(a)h(\(weak\))g(form)g(of)g
+(communication)321 4517 y(into)h(classical)i(logic)f(using)f
+(quanti\002ers.)31 b(F)o(or)23 b(e)o(xample)h(the)g(cut-instance)1140
+4695 y Ga(:)15 b(:)g(:)p 1281 4683 11 41 v 1292 4664
+46 5 v 128 w(:)g(:)g(:)h(;)f(B)5 b FL(a)p 1082 4732 628
+4 v 1082 4812 a Ga(:)15 b(:)g(:)p 1223 4800 11 41 v 1234
+4782 46 5 v 128 w(:)g(:)g(:)h(;)f F6(8)p FL(x)p Ga(:B)5
+b FL(x)1751 4757 y F6(8)1802 4771 y Gc(R)2064 4695 y
+Ga(B)g FL(t)p Ga(;)15 b(:)g(:)g(:)p 2352 4683 11 41 v
+2363 4664 46 5 v 127 w(:)g(:)g(:)p 2001 4732 613 4 v
+2001 4812 a F6(8)p FL(x)p Ga(:B)5 b FL(x)p Ga(;)15 b(:)g(:)g(:)p
+2415 4800 11 41 v 2426 4782 46 5 v 127 w(:)g(:)g(:)2654
+4757 y F6(8)2705 4771 y Gc(L)p 1082 4850 1531 4 v 1678
+4919 a Ga(:)g(:)g(:)p 1819 4907 11 41 v 1830 4889 46
+5 v 128 w(:)g(:)g(:)2654 4880 y Gg(Cut)321 5119 y(which)24
+b(reduces)i(to)1284 5278 y Ga(:)15 b(:)g(:)p 1425 5266
+11 41 v 1435 5248 46 5 v 127 w(:)g(:)g(:)i(;)e(B)5 b
+FL(t)141 b Ga(B)5 b FL(t)p Ga(;)15 b(:)g(:)g(:)p 2214
+5266 11 41 v 2224 5248 46 5 v 127 w(:)g(:)g(:)p 1284
+5316 1128 4 v 1678 5385 a(:)g(:)g(:)p 1819 5373 11 41
+v 1830 5355 46 5 v 128 w(:)g(:)g(:)2453 5346 y Gg(Cut)p
+Black Black eop end
+%%Page: 129 141
+TeXDict begin 129 140 bop Black 277 51 a Gb(5.1)23 b(Further)g(W)-7
+b(ork)2867 b(129)p 277 88 3691 4 v Black 277 388 a Gg(can)30
+b(be)f(understood)k(as)c(communicating)j(the)e(e)o(xpression)i
+FL(t)c Gg(from)h(the)h(proof)g(on)g(the)f(right-hand)277
+501 y(side)34 b(to)f(the)g(one)h(on)f(the)g(left-hand)i(side.)58
+b(Using)34 b(multiple)g(quanti\002ers,)j(one)d(can)f(also)h(encode)277
+614 y(certain)25 b(dependencies)j(between)c(communications,)j(as)c
+(illustrated)k(with)c(the)h(cut-instance)948 813 y Ga(:)15
+b(:)g(:)p 1090 801 11 41 v 1100 783 46 5 v 128 w(:)g(:)g(:)h(;)f(B)20
+b FL(a)15 b(t)1523 827 y Fu(1)p 890 851 730 4 v 890 930
+a Ga(:)g(:)g(:)p 1032 918 11 41 v 1042 900 46 5 v 128
+w(:)g(:)g(:)h(;)f F6(8)p FL(x)p Ga(:B)20 b FL(x)15 b(t)1581
+944 y Fu(1)1662 875 y F6(8)1713 889 y Gc(R)p 845 968
+820 4 v 845 1048 a Ga(:)g(:)g(:)p 987 1036 11 41 v 997
+1018 46 5 v 128 w(:)g(:)g(:)h(;)f F6(9)p FL(y)q Ga(:)p
+F6(8)p FL(x)p Ga(:B)20 b FL(x)15 b(y)1707 993 y F6(9)1758
+1007 y Gc(R)2058 813 y Ga(B)k FL(t)2179 827 y Fu(2)2234
+813 y FL(b)p Ga(;)c(:)g(:)g(:)p 2462 801 11 41 v 2473
+783 46 5 v 128 w(:)g(:)g(:)p 2014 851 690 4 v 2014 930
+a F6(8)p FL(x)p Ga(:B)k FL(x)c(b)p Ga(;)g(:)g(:)g(:)p
+2506 918 11 41 v 2517 900 46 5 v 128 w(:)g(:)g(:)2745
+875 y F6(8)2796 889 y Gc(L)p 1956 968 805 4 v 1956 1048
+a F6(9)p FL(y)q Ga(:)p F6(8)p FL(x)p Ga(:B)20 b FL(x)15
+b(y)q Ga(;)g(:)g(:)g(:)p 2564 1036 11 41 v 2574 1018
+46 5 v 128 w(:)g(:)g(:)2803 993 y F6(9)2854 1007 y Gc(L)p
+845 1085 1916 4 v 1634 1155 a Ga(:)g(:)g(:)p 1775 1143
+11 41 v 1786 1124 46 5 v 128 w(:)g(:)g(:)2803 1116 y
+Gg(Cut)277 1375 y(which)20 b(reduces)i(so)e(that)g(\002rst)g
+FL(t)1264 1389 y Fu(1)1322 1375 y Gg(is)g(communicated)i(to)e(the)g
+(proof)h(on)f(the)g(right-hand)j(side)d(and)h(then)277
+1488 y FL(t)310 1502 y Fu(2)367 1488 y Gg(to)e(the)g(one)h(on)f(the)g
+(left-hand)i(side.)28 b(Our)18 b(cut-elimination)23 b(procedures)f(pro)
+o(vide)e(a)f(frame)n(w)o(ork)g(to)277 1601 y(study)24
+b(this)e(idea)h(further)-5 b(.)30 b(In)22 b(terms)h(of)f(a)g
+(computational)j(interpretation,)h(most)d(unclear)l(,)h(ho)n(we)n(v)o
+(er)l(,)277 1714 y(are)g(cut-instances)j(whose)d(cut-formula)i(is)d
+(contracted)k(on)c(both)i(sides.)978 1944 y Ga(:)15 b(:)g(:)p
+1120 1932 11 41 v 1130 1913 46 5 v 128 w(:)g(:)g(:)h(;)f(C)q(;)g(C)p
+978 1981 573 4 v 1032 2060 a(:)g(:)g(:)p 1173 2048 11
+41 v 1183 2030 46 5 v 127 w(:)g(:)g(:)h(;)f(C)1592 2005
+y Gg(Contr)1798 2019 y Gc(R)1948 1944 y Ga(C)q(;)g(C)q(;)g(:)g(:)g(:)p
+2303 1932 11 41 v 2314 1913 46 5 v 129 w(:)g(:)g(:)p
+1948 1981 553 4 v 2001 2060 a(C)q(;)g(:)g(:)g(:)p 2250
+2048 11 41 v 2260 2030 46 5 v 129 w(:)g(:)g(:)2542 2005
+y Gg(Contr)2748 2019 y Gc(L)p 1032 2097 1416 4 v 1570
+2167 a Ga(:)g(:)g(:)p 1711 2155 11 41 v 1722 2137 46
+5 v 128 w(:)g(:)g(:)2488 2128 y Gg(Cut)p Black Black
+eop end
+%%Page: 130 142
+TeXDict begin 130 141 bop Black Black Black Black eop
+end
+%%Page: 131 143
+TeXDict begin 131 142 bop Black Black 277 1027 a F8(A)l(ppendix)43
+b(A)277 1459 y Gf(Experimental)52 b(Data)277 1920 y Gg(In)20
+b(this)g(appendix)j(we)c(shall)i(gi)n(v)o(e)f(tw)o(o)f(normal)i(forms)f
+(for)g(the)g(proof,)i Ga(\033)s Gg(,)d(gi)n(v)o(en)i(on)f(P)o(age)f
+(118.)28 b(Both)277 2020 y(normal)c(forms)g(pro)o(v)o(e,)f(by)g
+(analysing)j(some)e(cases,)g(Sequent)g(\(4.9\))g(sho)n(wn)f(on)h(P)o
+(age)e(116.)30 b(T)-7 b(o)22 b(\002nd)277 2119 y(which)i(cases)h(are)e
+(analysed,)j(one)e(has)g(to)f(look)i(for)e(proof)i(fragments)g(of)f
+(the)f(follo)n(wing)i(form.)1811 2218 y Gd(.)1811 2251
+y(.)1811 2284 y(.)1811 2317 y(.)1113 2397 y FU(:)14 b(:)g(:)g(;)g
+FG(\()p FF(f1)23 b FG(=)f FF(1)14 b FT(^)g FF(f0)23 b
+FG(=)f FF(1)p FG(\))14 b FT(\033)f FF(f0)23 b FG(=)g
+FF(f1)p FU(;)14 b(:)g(:)g(:)p 2349 2385 10 38 v 2358
+2369 42 4 v 115 w(:)g(:)g(:)p 1028 2438 1586 4 v 1028
+2517 a(:)g(:)g(:)g(;)g FT(8)p FF(y)q FU(:)p FG(\(\()p
+FF(fy)25 b FG(=)e FF(1)14 b FT(^)f FF(f1)23 b FG(=)g
+FF(1)p FG(\))14 b FT(\033)f FF(f0)23 b FG(=)f FF(fy)r
+FG(\))p FU(;)14 b(:)g(:)g(:)p 2433 2505 10 38 v 2443
+2488 42 4 v 116 w(:)g(:)g(:)2655 2461 y FT(8)2702 2473
+y FS(L)p 1001 2558 1641 4 v 1001 2636 a FU(:)g(:)g(:)g(;)g
+FT(8)p FF(x)p FU(:)p FF(y)p FU(:)p FG(\(\()p FF(fy)26
+b FG(=)c FF(1)14 b FT(^)g FF(fx)24 b FG(=)e FF(1)p FG(\))14
+b FT(\033)f FF(fx)24 b FG(=)f FF(fy)r FG(\))p FU(;)14
+b(:)g(:)g(:)p 2461 2624 10 38 v 2470 2608 42 4 v 115
+w(:)g(:)g(:)2683 2580 y FT(8)2730 2592 y FS(L)p 1001
+2677 1641 4 v 1001 2756 a FU(:)g(:)g(:)g(;)g FT(8)p FF(i)p
+FU(:)p FF(x)p FU(:)p FF(y)p FU(:)p FG(\(\()p FF(fy)26
+b FG(=)d FF(i)14 b FT(^)f FF(fx)24 b FG(=)f FF(i)p FG(\))14
+b FT(\033)f FF(fx)24 b FG(=)f FF(fy)q FG(\))p FU(;)14
+b(:)g(:)g(:)p 2461 2744 10 38 v 2470 2727 42 4 v 116
+w(:)g(:)g(:)2683 2700 y FT(8)2730 2712 y FS(L)277 3044
+y Gg(This)27 b(particular)i(proof)e(fragment)h(indicates)h(that)f(the)f
+(case)g FL(f0)k F4(=)g FL(f1)g F4(=)g(1)26 b Gg(is)g(analysed.)41
+b(The)26 b(\002rst)277 3157 y(normal)e(form)g(\(P)o(ages)g
+(132\226134\))i(analyses)f(the)f(cases)p Black Black
+803 3335 a FL(f0)i F4(=)f FL(f1)g F4(=)g FL(0)100 b(f1)26
+b F4(=)f FL(f2)g F4(=)g FL(0)237 b(f0)25 b F4(=)g FL(f1)h
+F4(=)f FL(1)100 b(f2)25 b F4(=)g FL(f3)h F4(=)f FL(1)803
+3448 y(f0)h F4(=)f FL(f2)g F4(=)g FL(0)100 b(f1)26 b
+F4(=)f FL(f3)g F4(=)g FL(0)237 b(f1)25 b F4(=)g FL(f2)h
+F4(=)f FL(1)277 3623 y Gg(and)f(the)g(second)h(\(P)o(ages)f
+(135\226140\))i(the)e(cases)p Black Black 803 3801 a
+FL(f0)i F4(=)f FL(f1)g F4(=)g FL(0)100 b(f2)26 b F4(=)f
+FL(f3)g F4(=)g FL(0)237 b(f0)25 b F4(=)g FL(f1)h F4(=)f
+FL(1)100 b(f1)25 b F4(=)g FL(f2)h F4(=)f FL(1)803 3914
+y(f1)h F4(=)f FL(f2)g F4(=)g FL(0)771 b(f0)25 b F4(=)g
+FL(f2)h F4(=)f FL(1)100 b(f1)25 b F4(=)g FL(f3)h F4(=)f
+FL(1)277 4090 y Gg(W)-7 b(e)23 b(tak)o(e)i(this)f(as)g(e)n(vidence)i
+(that)f(both)g(normal)f(forms)h(are)f(\223essentially\224)k(dif)n
+(ferent)e(\(see)e(the)g(crite-)277 4203 y(rion)h(gi)n(v)o(en)g(on)f(P)o
+(age)g(117\).)31 b(Because)25 b(of)g(their)g(size,)f(the)h(tw)o(o)e
+(normal)i(forms)g(are)f(spread)i(o)o(v)o(er)e(the)277
+4316 y(follo)n(wing)h(nine)f(\002gures.)414 4462 y(1)164
+b(First)23 b(normal)h(form)g(and)g(Subproof)h Ga(X)1882
+4476 y F9(6)1922 4462 y Gg(.)59 b(.)46 b(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)
+g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black 43
+w(132)p Black 414 4592 a(2)164 b(Subproofs)25 b Ga(X)1094
+4606 y F9(1)1157 4592 y Gg(and)f Ga(X)1386 4606 y F9(2)1425
+4592 y Gg(.)79 b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g
+(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 43 w(133)p Black 414 4721 a(3)164 b(Subproofs)25
+b Ga(X)1094 4735 y F9(3)1134 4721 y Gg(,)d Ga(X)1254
+4735 y F9(4)1317 4721 y Gg(and)i Ga(X)1546 4735 y F9(5)1585
+4721 y Gg(.)55 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f
+(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+43 w(134)p Black 414 4851 a(4)164 b(Second)24 b(normal)g(form)g(and)g
+(Subproof)h Ga(Y)1961 4865 y F9(8)2000 4851 y Gg(.)50
+b(.)45 b(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)
+h(.)f(.)p Black 43 w(135)p Black 414 4980 a(5)164 b(Subproofs)25
+b Ga(Y)1072 4994 y F9(6)1134 4980 y Gg(and)f Ga(Y)1341
+4994 y F9(7)1380 4980 y Gg(.)56 b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
+h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h
+(.)f(.)p Black 43 w(136)p Black 414 5110 a(6)164 b(Subproofs)25
+b Ga(Y)1072 5124 y F9(4)1134 5110 y Gg(and)f Ga(Y)1341
+5124 y F9(5)1380 5110 y Gg(.)56 b(.)45 b(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)
+h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h
+(.)f(.)p Black 43 w(137)p Black 414 5239 a(7)164 b(Subproofs)25
+b Ga(Y)1072 5253 y F9(1)1111 5239 y Gg(,)e Ga(Y)1210
+5253 y F9(2)1272 5239 y Gg(and)h Ga(Y)1479 5253 y F9(3)1518
+5239 y Gg(.)54 b(.)45 b(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h
+(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p
+Black 43 w(138)p Black 414 5369 a(8)164 b(Subproofs)25
+b Ga(Y)1072 5383 y F9(12)1169 5369 y Gg(and)f Ga(Y)1376
+5383 y F9(13)1451 5369 y Gg(.)53 b(.)45 b(.)g(.)h(.)f(.)g(.)g(.)g(.)h
+(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)
+f(.)p Black 43 w(139)p Black 414 5498 a(9)164 b(Subproofs)25
+b Ga(Y)1072 5512 y F9(9)1111 5498 y Gg(,)e Ga(Y)1210
+5512 y F9(10)1307 5498 y Gg(and)h Ga(Y)1514 5512 y F9(11)1588
+5498 y Gg(.)52 b(.)46 b(.)f(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f
+(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)h(.)f(.)p Black
+43 w(140)p Black Black Black eop end
+%%Page: 132 144
+TeXDict begin 132 143 bop Black -144 51 a Gb(132)2816
+b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
+321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1927 465
+a 2583 -821 247 4 v 2583 -769 a Ff(3)l FC(\024)l Ff(3)p
+2691 -781 6 23 v 2697 -791 25 3 v 61 w(3)l FC(\024)l
+Ff(3)p 2490 -739 433 4 v 2479 -675 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(3)l FC(\024)l Ff(m)2689 -696 y Fe(x)p Fd(;)p
+Fe(3)2746 -675 y FV(\))p 2784 -687 6 23 v 2790 -697 25
+3 v 59 w Ff(3)l FC(\024)l Ff(3)2922 -728 y FC(8)2957
+-717 y Fd(L)p 2490 -642 433 4 v 2585 -591 a FZ(M)2643
+-581 y FP(2)p 2689 -603 6 23 v 2695 -613 25 3 v 2734
+-591 a Ff(3)l FC(\024)l Ff(3)2922 -631 y FC(8)2957 -620
+y Fd(L)p 3050 -641 247 4 v 3050 -591 a Ff(2)l FZ(<)l
+Ff(3)p 3158 -603 6 23 v 3164 -613 25 3 v 61 w(2)l FZ(<)l
+Ff(3)p 2585 -561 713 4 v 2687 -509 a(3)l FC(\024)l Ff(3)p
+FC(\033)q Ff(2)l FZ(<)l Ff(3)p FZ(;)13 b(M)3010 -499
+y FP(2)p 3056 -521 6 23 v 3062 -531 25 3 v 3101 -509
+a Ff(2)l FZ(<)l Ff(3)3296 -552 y FC(\033)3344 -540 y
+Fd(L)p 2630 -479 622 4 v 2619 -425 a FC(8)p Ff(y)q FZ(:)p
+FV(\()p Ff(3)l FC(\024)l Ff(y)q FC(\033)r Ff(2)l FZ(<)l
+Ff(y)q FV(\))p FZ(;)f(M)3067 -415 y FP(2)p 3113 -437
+6 23 v 3119 -447 25 3 v 3158 -425 a Ff(2)l FZ(<)l Ff(3)3251
+-467 y FC(8)3286 -456 y Fd(L)p 2630 -393 622 4 v 2784
+-342 a FZ(M)2842 -332 y FP(2)2875 -342 y FZ(;)e(S)p 2959
+-354 6 23 v 2964 -364 25 3 v 61 w Ff(2)l FZ(<)l Ff(3)3251
+-381 y FC(8)3286 -370 y Fd(L)4423 -835 y F3(.)4423 -802
+y(.)4423 -769 y(.)4423 -736 y(.)4388 -684 y FZ(X)4438
+-674 y FP(2)p 4538 -736 351 4 v 4538 -684 a Ff(f2)e FV(=)f
+Ff(f3)p 4698 -696 6 23 v 4704 -706 25 3 v 59 w(f2)h FV(=)f
+Ff(f3)p 3514 -655 2232 4 v 3514 -601 a FV(\()p Ff(f3)h
+FV(=)f Ff(1)p FC(^)o Ff(f2)h FV(=)f Ff(1)p FV(\))p FC(\033)p
+Ff(f2)h FV(=)f Ff(f3)p FZ(;)k(M)4145 -591 y FP(1)4177
+-601 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4774 -613 6 23 v 4780 -623 25 3 v 68 w Ff(f2)d FV(=)g
+Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g
+Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e FV(=)f
+Ff(f2)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5745 -646 y FC(\033)5793
+-635 y Fd(L)p 3457 -569 2346 4 v 3447 -515 a FC(8)p Ff(y)q
+FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(1)p FC(^)p Ff(f2)g
+FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(f2)h FV(=)f Ff(fy)q
+FV(\))p FZ(;)k(M)4202 -505 y FP(1)4234 -515 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o
+Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4831
+-527 6 23 v 4837 -537 25 3 v 68 w Ff(f2)d FV(=)g Ff(f3)q
+FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
+FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
+FZ(;)k Ff(f1)d FV(=)f Ff(1)5802 -557 y FC(8)5837 -546
+y Fd(L)p 3438 -482 2385 4 v 3427 -428 a FC(8)p Ff(x)p
+FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(1)p
+FC(^)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(fx)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)4221 -418 y FP(1)4253
+-428 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+4850 -440 6 23 v 4856 -450 25 3 v 67 w Ff(f2)d FV(=)f
+Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
+Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
+Ff(f2)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5821 -471 y FC(8)5856
+-460 y Fd(L)p 3438 -396 2385 4 v 3800 -342 a FZ(M)3858
+-332 y FP(1)3891 -342 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4488 -354 6 23 v 4493 -364 25 3 v
+67 w Ff(f2)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
+FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5821
+-384 y FC(8)5856 -373 y Fd(L)p 2784 -310 2676 4 v 3165
+-256 a FZ(M)3223 -246 y FP(1)3255 -256 y FZ(;)k(M)3343
+-246 y FP(2)3375 -256 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 3972 -268 6 23 v 3978 -277 25 3 v
+68 w Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)e FV(=)f Ff(f2)p
+FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)d FV(=)g Ff(f3)q
+FZ(;)j Ff(f1)e FV(=)f Ff(1)5459 -301 y FC(^)5500 -290
+y Fd(R)p 3083 -223 2079 4 v 3083 -169 a FZ(M)3141 -159
+y FP(1)3173 -169 y FZ(;)j(M)3260 -159 y FP(2)3293 -169
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+3890 -181 6 23 v 3895 -191 25 3 v 57 w FC(9)p Ff(m)p
+FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)q Ff(f1)c FV(=)g
+Ff(fm)p FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
+FV(=)f Ff(f2)p FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d
+FV(=)f Ff(f3)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5160 -212 y
+FC(9)5195 -201 y Fd(R)p 3059 -137 2127 4 v 3059 -83 a
+FZ(M)3117 -73 y FP(1)3149 -83 y FZ(;)j(M)3236 -73 y FP(2)3269
+-83 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+3866 -95 6 23 v 3871 -105 25 3 v 67 w Ff(1)l FZ(<)l Ff(2)p
+FC(^)r Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(2)l FZ(<)l Ff(3)p
+FC(^)r Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(f1)e FV(=)f Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5184
+-125 y FC(9)5219 -114 y Fd(R)p 2976 -51 2292 4 v 2976
+3 a FZ(M)3034 13 y FP(1)3067 3 y FZ(;)j(M)3154 13 y FP(2)3186
+3 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+3783 -9 6 23 v 3789 -18 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)p Ff(f1)d FV(=)f Ff(fm)p
+FV(\))p FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)e FV(=)f
+Ff(f3)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5267 -39 y FC(9)5302 -28
+y Fd(R)p 2976 36 2292 4 v 3214 90 a FZ(M)3272 100 y FP(1)3304
+90 y FZ(;)k(M)3392 100 y FP(2)3424 90 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4021 78 6 23
+v 4027 68 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e
+FV(=)f Ff(f3)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p FZ(;)p FC(9)p
+Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p
+FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5267 48 y FC(9)5302
+59 y Fd(R)p 3132 122 1981 4 v 3132 176 a FZ(M)3190 186
+y FP(1)3222 176 y FZ(;)k(M)3310 186 y FP(2)3342 176 y
+FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p
+FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+3939 164 6 23 v 3945 154 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(2)l FZ(<)l Ff(m)p FC(^)q Ff(f2)e FV(=)f Ff(fm)o
+FV(\))p FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)g FV(=)g Ff(fm)p FV(\))5111 134 y FC(9)5146 145
+y Fd(R)p 3132 209 1981 4 v 3369 262 a FZ(M)3427 272 y
+FP(1)3460 262 y FZ(;)j(M)3547 272 y FP(2)3579 262 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p
+Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4176
+250 6 23 v 4182 241 25 3 v 67 w Ff(f1)d FV(=)f Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))5111
+220 y FC(9)5146 231 y Fd(R)6003 112 y F3(.)6003 145 y(.)6003
+178 y(.)6003 211 y(.)5968 262 y FZ(X)6018 272 y FP(5)p
+3369 295 2699 4 v 3880 349 a FZ(M)3938 359 y FP(1)3971
+349 y FZ(;)j(M)4058 359 y FP(2)4090 349 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4687 337 6 23
+v 4693 327 25 3 v 67 w Ff(f1)d FV(=)f Ff(1)p FC(^)p Ff(f0)g
+FV(=)g Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p
+FV(\))6067 303 y FC(^)6108 314 y Fd(R)2490 393 y Fc(|)p
+2514 393 1785 8 v 1785 w({z)p 4347 393 V 1785 w(})4283
+455 y Fd(X)4329 467 y FP(6)p 2567 627 247 4 v 2567 678
+a Ff(1)l FC(\024)l Ff(1)p 2675 666 6 23 v 2680 656 25
+3 v 61 w(1)l FC(\024)l Ff(1)p 2474 708 433 4 v 2463 773
+a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(m)2673
+752 y Fe(x)p Fd(;)p Fe(1)2730 773 y FV(\))p 2768 761
+6 23 v 2774 751 25 3 v 59 w Ff(1)l FC(\024)l Ff(1)2906
+720 y FC(8)2941 731 y Fd(L)p 2474 805 433 4 v 2569 857
+a FZ(M)2627 867 y FP(2)p 2673 845 6 23 v 2679 835 25
+3 v 2718 857 a Ff(1)l FC(\024)l Ff(1)2906 817 y FC(8)2941
+828 y Fd(L)p 3034 806 247 4 v 3034 857 a Ff(0)l FZ(<)l
+Ff(1)p 3142 845 6 23 v 3148 835 25 3 v 61 w(0)l FZ(<)l
+Ff(1)p 2569 887 713 4 v 2671 939 a(1)l FC(\024)l Ff(1)p
+FC(\033)q Ff(0)l FZ(<)l Ff(1)p FZ(;)13 b(M)2994 949 y
+FP(2)p 3040 927 6 23 v 3046 917 25 3 v 3085 939 a Ff(0)l
+FZ(<)l Ff(1)3280 896 y FC(\033)3328 907 y Fd(L)p 2614
+969 622 4 v 2603 1023 a FC(8)p Ff(y)q FZ(:)p FV(\()p
+Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l Ff(y)q
+FV(\))p FZ(;)f(M)3051 1033 y FP(2)p 3097 1011 6 23 v
+3103 1001 25 3 v 3142 1023 a Ff(0)l FZ(<)l Ff(1)3235
+980 y FC(8)3270 991 y Fd(L)p 2614 1055 622 4 v 2768 1106
+a FZ(M)2826 1116 y FP(2)2858 1106 y FZ(;)f(S)p 2942 1094
+6 23 v 2948 1084 25 3 v 61 w Ff(0)l FZ(<)l Ff(1)3235
+1067 y FC(8)3270 1078 y Fd(L)4338 612 y F3(.)4338 646
+y(.)4338 679 y(.)4338 712 y(.)4303 763 y FZ(X)4353 773
+y FP(6)p 4453 712 351 4 v 4453 763 a Ff(f0)d FV(=)f Ff(f1)p
+4613 751 6 23 v 4619 741 25 3 v 59 w(f0)h FV(=)f Ff(f1)p
+3498 793 2094 4 v 3498 847 a FV(\()p Ff(f1)h FV(=)f Ff(1)p
+FC(^)o Ff(f0)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(f0)h
+FV(=)f Ff(f1)p FZ(;)k(M)4129 857 y FP(1)4161 847 y FZ(;)f(M)4248
+857 y FP(2)4281 847 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4878 835 6 23 v 4883 825 25 3 v 67
+w Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)p FV(\))5591 802 y FC(\033)5639 813 y Fd(L)p
+3441 879 2208 4 v 3430 933 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p
+Ff(fy)i FV(=)e Ff(1)p FC(^)o Ff(f0)h FV(=)f Ff(1)p FV(\))p
+FC(\033)p Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)4185
+943 y FP(1)4218 933 y FZ(;)g(M)4305 943 y FP(2)4337 933
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4934 921 6 23 v 4940 911 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5648
+891 y FC(8)5683 902 y Fd(L)p 3421 965 2247 4 v 3411 1019
+a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(1)p FC(^)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)p FV(\))p FZ(;)k(M)4205 1029 y FP(1)4237
+1019 y FZ(;)g(M)4325 1029 y FP(2)4357 1019 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4954 1007 6
+23 v 4960 998 25 3 v 68 w Ff(f0)e FV(=)f Ff(f1)p FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5667 977 y
+FC(8)5702 988 y Fd(L)p 3421 1052 2247 4 v 3784 1106 a
+FZ(M)3842 1116 y FP(1)3874 1106 y FZ(;)k(M)3962 1116
+y FP(2)3994 1106 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)g(T)p 4591 1094 6 23 v 4597 1084 25 3 v
+67 w Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)o FV(\))5667 1064 y FC(8)5702 1075 y Fd(L)p
+2768 1138 2538 4 v 3209 1192 a FZ(M)3267 1202 y FP(1)3299
+1192 y FZ(;)j(M)3386 1202 y FP(2)3419 1192 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4016 1180 6
+23 v 4021 1170 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r
+Ff(f0)c FV(=)g Ff(f1)q FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p
+FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g
+Ff(fm)p FV(\))5304 1146 y FC(^)5346 1158 y Fd(R)p 3126
+1225 1821 4 v 3126 1278 a FZ(M)3184 1288 y FP(1)3217
+1278 y FZ(;)j(M)3304 1288 y FP(2)3336 1278 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3933 1266 6
+23 v 3939 1257 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p FV(\()p
+Ff(0)l FZ(<)l Ff(m)p FC(^)p Ff(f0)d FV(=)f Ff(fm)p FV(\))p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))4946
+1236 y FC(9)4981 1247 y Fd(R)p 3126 1311 1821 4 v 3364
+1365 a FZ(M)3422 1375 y FP(1)3454 1365 y FZ(;)k(M)3542
+1375 y FP(2)3574 1365 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4171 1353 6 23 v 4177 1343 25 3 v
+57 w FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)e FV(=)f Ff(fm)p FV(\))4946
+1323 y FC(9)4981 1334 y Fd(R)2026 1612 y Gc(M)2094 1621
+y FV(1)2148 1612 y F9(=)20 b FX(8)p Fu(y)q Gc(:)p Fu(x)p
+Gc(:)m F9(\()p Fu(x)8 b FX(\024)g Fu(m)2555 1588 y Ff(x)p
+FZ(;)p Ff(y)2626 1612 y F9(\))101 b Gc(T)30 b F9(=)19
+b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p
+Fu(fy)i F9(=)e Fu(i)p FX(^)p Fu(fx)g F9(=)g Fu(i)p F9(\))12
+b FX(\033)g Fu(fx)19 b F9(=)g Fu(fy)p F9(\))2026 1738
+y Gc(M)2094 1747 y FV(2)2148 1738 y F9(=)h FX(8)p Fu(y)q
+Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(y)9 b FX(\024)f Fu(m)2556
+1714 y Ff(x)p FZ(;)p Ff(y)2627 1738 y F9(\))100 b Gc(S)23
+b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
+b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6506
+465 y
+ currentpoint grestore moveto
+ 6506 465 a 3543 5116 4 4724 v 321 5119 3226 4 v
+Black 1093 5273 a Gg(Figure)25 b(1:)j(First)c(normal)g(form)g(and)g
+(Subproof)h Ga(X)2712 5287 y F9(6)2751 5273 y Gg(.)p
+Black Black eop end
+%%Page: 133 145
+TeXDict begin 133 144 bop Black 3831 51 a Gb(133)p 277
+88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
+v 1882 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1882 465 a 2677 -559 247 4 v 2677 -507 a
+Ff(2)l FC(\024)l Ff(2)p 2785 -519 6 23 v 2791 -529 25
+3 v 61 w(2)l FC(\024)l Ff(2)p 2585 -477 431 4 v 2574
+-412 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(x)l FC(\024)l
+Ff(m)2782 -433 y Fe(x)p Fd(;)p Fe(0)2839 -412 y FV(\))p
+2877 -424 6 23 v 2883 -434 25 3 v 59 w Ff(2)l FC(\024)l
+Ff(2)3015 -466 y FC(8)3050 -455 y Fd(L)p 2585 -380 431
+4 v 2679 -329 a FZ(M)2737 -319 y FP(1)p 2783 -341 6 23
+v 2789 -350 25 3 v 2828 -329 a Ff(2)l FC(\024)l Ff(2)3015
+-368 y FC(8)3050 -357 y Fd(L)p 3143 -379 247 4 v 3143
+-329 a Ff(1)l FZ(<)l Ff(2)p 3251 -341 6 23 v 3257 -350
+25 3 v 61 w(1)l FZ(<)l Ff(2)p 2679 -299 712 4 v 2780
+-247 a(2)l FC(\024)l Ff(2)p FC(\033)r Ff(1)l FZ(<)l Ff(2)p
+FZ(;)12 b(M)3103 -237 y FP(1)p 3150 -259 6 23 v 3155
+-269 25 3 v 3195 -247 a Ff(1)l FZ(<)l Ff(2)3389 -289
+y FC(\033)3437 -278 y Fd(L)p 2723 -217 622 4 v 2713 -163
+a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(y)q
+FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)3160
+-153 y FP(1)p 3207 -175 6 23 v 3212 -185 25 3 v 3251
+-163 a Ff(1)l FZ(<)l Ff(2)3344 -205 y FC(8)3379 -194
+y Fd(L)p 2723 -131 622 4 v 2878 -80 a FZ(M)2936 -70 y
+FP(1)2968 -80 y FZ(;)f(S)p 3052 -92 6 23 v 3058 -102
+25 3 v 61 w Ff(1)l FZ(<)l Ff(2)3344 -119 y FC(8)3379
+-108 y Fd(L)p 3567 -717 319 4 v 3567 -666 a Ff(f2)d FV(=)f
+Ff(0)p 3711 -678 6 23 v 3717 -688 25 3 v 59 w(f2)h FV(=)f
+Ff(0)p 3936 -717 319 4 v 50 w(f2)h FV(=)f Ff(1)p 4080
+-678 6 23 v 4086 -688 25 3 v 59 w(f2)g FV(=)g Ff(1)p
+3567 -646 687 4 v 3586 -595 a(f2)h FV(=)f Ff(0)p FC(_)p
+Ff(f2)g FV(=)g Ff(1)p 3902 -607 6 23 v 3907 -617 25 3
+v 59 w(f2)h FV(=)f Ff(0)p FZ(;)k Ff(f2)c FV(=)g Ff(1)4254
+-638 y FC(_)4295 -627 y Fd(L)p 3531 -565 761 4 v 3520
+-511 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 3957 -523 6 23 v
+3963 -533 25 3 v 59 w Ff(f2)h FV(=)f Ff(0)p FZ(;)k Ff(f2)c
+FV(=)g Ff(1)4290 -554 y FC(8)4325 -543 y Fd(L)p 4456
+-717 319 4 v 4456 -666 a Ff(f1)h FV(=)f Ff(0)p 4600 -678
+6 23 v 4606 -688 25 3 v 59 w(f1)h FV(=)f Ff(0)p 4824
+-717 319 4 v 49 w(f1)h FV(=)f Ff(1)p 4968 -678 6 23 v
+4974 -688 25 3 v 59 w(f1)h FV(=)f Ff(1)p 4456 -646 687
+4 v 4475 -595 a(f1)h FV(=)f Ff(0)p FC(_)o Ff(f1)h FV(=)f
+Ff(1)p 4790 -607 6 23 v 4796 -617 25 3 v 59 w(f1)h FV(=)f
+Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5142 -638 y FC(_)5184
+-627 y Fd(L)p 4419 -565 761 4 v 4409 -511 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 4846 -523 6 23 v 4852 -533 25 3 v 59 w
+Ff(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5179
+-554 y FC(8)5214 -543 y Fd(L)p 3531 -479 1650 4 v 3799
+-425 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 4236 -437 6 23 v
+4242 -447 25 3 v 59 w Ff(f2)h FV(=)f Ff(0)p FC(^)p Ff(f1)g
+FV(=)g Ff(0)p FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(f1)e
+FV(=)f Ff(1)5179 -471 y FC(^)5221 -460 y Fd(R)p 5317
+-476 351 4 v 5317 -425 a Ff(f1)h FV(=)f Ff(f2)p 5478
+-437 6 23 v 5483 -447 25 3 v 59 w(f1)h FV(=)f Ff(f2)p
+3810 -393 1859 4 v 3984 -339 a FV(\()p Ff(f2)h FV(=)f
+Ff(0)p FC(^)p Ff(f1)g FV(=)g Ff(0)p FV(\))p FC(\033)q
+Ff(f1)g FV(=)g Ff(f2)q FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4984 -351 6 23 v 4990 -361 25 3 v 59 w Ff(f1)g FV(=)g
+Ff(f2)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g
+Ff(1)5667 -384 y FC(\033)5715 -373 y Fd(L)p 3928 -306
+1623 4 v 3917 -252 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
+FV(=)f Ff(0)p FC(^)p Ff(f1)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f1)g FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 5041 -264 6 23 v 5047 -274 25 3 v 59 w Ff(f1)g
+FV(=)g Ff(f2)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)j Ff(f1)e
+FV(=)f Ff(1)5549 -295 y FC(8)5584 -284 y Fd(L)p 3908
+-220 1662 4 v 3897 -166 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
+FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)p Ff(fx)g
+FV(=)g Ff(0)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
+FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 5060 -178
+6 23 v 5066 -188 25 3 v 59 w Ff(f1)h FV(=)f Ff(f2)p FZ(;)k
+Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5569
+-208 y FC(8)5604 -197 y Fd(L)p 3908 -134 1662 4 v 4223
+-80 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(T)p 4735
+-92 6 23 v 4740 -102 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p
+FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)5569
+-122 y FC(8)5604 -111 y Fd(L)p 2878 -47 2367 4 v 3395
+7 a FZ(M)3453 17 y FP(1)3485 7 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g
+Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4082 -5 6 23 v 4088
+-15 25 3 v 67 w Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f1)e FV(=)f
+Ff(1)5243 -39 y FC(^)5285 -28 y Fd(R)2585 51 y Fc(|)p
+2609 51 1540 8 v 1540 w({z)p 4197 51 V 1540 w(})4133
+113 y Fd(X)4179 125 y FP(1)p 2549 485 247 4 v 2549 537
+a Ff(2)l FC(\024)l Ff(3)p 2657 525 6 23 v 2663 515 25
+3 v 61 w(2)l FC(\024)l Ff(3)p 2457 567 431 4 v 2447 632
+a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)2655
+611 y Fe(x)p Fd(;)p Fe(3)2711 632 y FV(\))p 2749 620
+6 23 v 2755 610 25 3 v 59 w Ff(2)l FC(\024)l Ff(3)2887
+578 y FC(8)2922 589 y Fd(L)p 2457 664 431 4 v 2551 715
+a FZ(M)2609 725 y FP(1)p 2656 703 6 23 v 2661 694 25
+3 v 2700 715 a Ff(2)l FC(\024)l Ff(3)2887 676 y FC(8)2922
+687 y Fd(L)p 3016 665 247 4 v 3016 715 a Ff(1)l FZ(<)l
+Ff(3)p 3124 703 6 23 v 3130 694 25 3 v 61 w(1)l FZ(<)l
+Ff(3)p 2551 745 712 4 v 2653 797 a(2)l FC(\024)l Ff(3)p
+FC(\033)r Ff(1)l FZ(<)l Ff(3)p FZ(;)12 b(M)2976 807 y
+FP(1)p 3022 785 6 23 v 3028 775 25 3 v 3067 797 a Ff(1)l
+FZ(<)l Ff(3)3261 755 y FC(\033)3309 766 y Fd(L)p 2596
+827 622 4 v 2585 881 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l
+FC(\024)l Ff(y)q FC(\033)r Ff(1)l FZ(<)l Ff(y)q FV(\))p
+FZ(;)g(M)3033 891 y FP(1)p 3079 869 6 23 v 3085 859 25
+3 v 3124 881 a Ff(1)l FZ(<)l Ff(3)3217 839 y FC(8)3252
+850 y Fd(L)p 2596 913 622 4 v 2750 964 a FZ(M)2808 974
+y FP(1)2841 964 y FZ(;)e(S)p 2925 952 6 23 v 2930 942
+25 3 v 61 w Ff(1)l FZ(<)l Ff(3)3217 925 y FC(8)3252 936
+y Fd(L)p 3440 327 319 4 v 3440 378 a Ff(f3)e FV(=)f Ff(0)p
+3584 366 6 23 v 3590 356 25 3 v 59 w(f3)g FV(=)g Ff(0)p
+3808 327 319 4 v 50 w(f3)h FV(=)f Ff(1)p 3952 366 6 23
+v 3958 356 25 3 v 59 w(f3)h FV(=)f Ff(1)p 3440 398 687
+4 v 3459 449 a(f3)h FV(=)f Ff(0)p FC(_)o Ff(f3)h FV(=)f
+Ff(1)p 3774 437 6 23 v 3780 427 25 3 v 59 w(f3)h FV(=)f
+Ff(0)p FZ(;)j Ff(f3)e FV(=)f Ff(1)4126 406 y FC(_)4168
+417 y Fd(L)p 3403 479 761 4 v 3392 532 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 3830 520 6 23 v 3836 511 25 3 v 59 w Ff(f3)g
+FV(=)g Ff(0)p FZ(;)k Ff(f3)d FV(=)f Ff(1)4163 490 y FC(8)4198
+501 y Fd(L)p 4329 327 319 4 v 4329 378 a Ff(f1)g FV(=)g
+Ff(0)p 4473 366 6 23 v 4478 356 25 3 v 59 w(f1)h FV(=)f
+Ff(0)p 4697 327 319 4 v 50 w(f1)h FV(=)f Ff(1)p 4841
+366 6 23 v 4847 356 25 3 v 59 w(f1)g FV(=)g Ff(1)p 4329
+398 687 4 v 4347 449 a(f1)h FV(=)f Ff(0)p FC(_)p Ff(f1)g
+FV(=)g Ff(1)p 4663 437 6 23 v 4668 427 25 3 v 60 w(f1)g
+FV(=)g Ff(0)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5015 406 y FC(_)5056
+417 y Fd(L)p 4292 479 761 4 v 4281 532 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g
+Ff(1)p FV(\))p 4719 520 6 23 v 4724 511 25 3 v 59 w Ff(f1)h
+FV(=)f Ff(0)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5052 490 y FC(8)5087
+501 y Fd(L)p 3403 565 1650 4 v 3671 619 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 4109 607 6 23 v 4115 597 25 3 v 59 w Ff(f3)g
+FV(=)g Ff(0)p FC(^)p Ff(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f3)e
+FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5052 573 y FC(^)5093
+584 y Fd(R)p 5190 568 351 4 v 5190 619 a Ff(f1)h FV(=)f
+Ff(f3)p 5350 607 6 23 v 5356 597 25 3 v 59 w(f1)g FV(=)g
+Ff(f3)p 3682 651 1859 4 v 3857 705 a FV(\()p Ff(f3)h
+FV(=)f Ff(0)p FC(^)o Ff(f1)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f1)h FV(=)f Ff(f3)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+4856 693 6 23 v 4862 683 25 3 v 59 w Ff(f1)h FV(=)f Ff(f3)p
+FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5540
+660 y FC(\033)5588 671 y Fd(L)p 3800 738 1623 4 v 3789
+792 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
+FC(^)o Ff(f1)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(f1)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4913 780 6 23 v 4919 770 25 3 v 59 w Ff(f1)h FV(=)f Ff(f3)p
+FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)5422
+749 y FC(8)5457 760 y Fd(L)p 3780 824 1662 4 v 3770 878
+a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)p FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 4933 866 6 23 v 4939 856 25 3 v 59 w Ff(f1)g
+FV(=)g Ff(f3)q FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c
+FV(=)g Ff(1)5441 836 y FC(8)5476 847 y Fd(L)p 3780 910
+1662 4 v 4096 964 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(T)p
+4607 952 6 23 v 4613 942 25 3 v 68 w Ff(f1)e FV(=)f Ff(f3)p
+FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5441
+922 y FC(8)5476 933 y Fd(L)p 2750 997 2367 4 v 3267 1051
+a FZ(M)3325 1061 y FP(1)3358 1051 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3955 1039 6 23 v 3960
+1029 25 3 v 67 w Ff(f3)d FV(=)f Ff(1)p FZ(;)k Ff(1)l
+FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(f1)c
+FV(=)g Ff(1)5116 1005 y FC(^)5157 1016 y Fd(R)5734 900
+y F3(.)5734 933 y(.)5734 966 y(.)5734 999 y(.)5699 1051
+y FZ(X)5749 1061 y FP(1)p 3267 1083 2532 4 v 3626 1137
+a FZ(M)3684 1147 y FP(1)3716 1137 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4313 1125 6 23 v 4319
+1115 25 3 v 67 w Ff(f3)d FV(=)f Ff(1)p FC(^)p Ff(f2)g
+FV(=)g Ff(1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d
+FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
+FV(=)f Ff(f2)p FZ(;)k Ff(f1)c FV(=)g Ff(1)5798 1091 y
+FC(^)5840 1102 y Fd(R)2457 1182 y Fc(|)p 2481 1182 1667
+8 v 1667 w({z)p 4196 1182 V 1667 w(})4133 1243 y Fd(X)4179
+1255 y FP(2)1982 1492 y Gc(M)2050 1501 y FV(1)2104 1492
+y F9(=)19 b FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
+Fu(x)8 b FX(\024)g Fu(m)2511 1469 y Ff(x)p FZ(;)p Ff(y)2582
+1492 y F9(\))101 b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p
+Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h
+F9(=)g Fu(i)p FX(^)p Fu(fx)e F9(=)i Fu(i)p F9(\))12 b
+FX(\033)g Fu(fx)18 b F9(=)i Fu(fy)p F9(\))1982 1618 y
+Gc(M)2050 1627 y FV(2)2104 1618 y F9(=)f FX(8)p Fu(y)q
+Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(y)9 b FX(\024)f Fu(m)2512
+1595 y Ff(x)p FZ(;)p Ff(y)2583 1618 y F9(\))100 b Gc(S)23
+b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
+b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6462
+465 y
+ currentpoint grestore moveto
+ 6462 465 a 3499 5116 4 4724 v 277 5119 3226 4 v
+Black 1297 5273 a Gg(Figure)25 b(2:)j(Subproofs)e Ga(X)2128
+5287 y F9(1)2190 5273 y Gg(and)e Ga(X)2419 5287 y F9(2)2459
+5273 y Gg(.)p Black Black eop end
+%%Page: 134 146
+TeXDict begin 134 145 bop Black -144 51 a Gb(134)2816
+b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
+321 383 V 321 5012 4 4630 v 2159 408 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 2159 408 a 3367
+-1151 247 4 v 3367 -1100 a Ff(1)l FC(\024)l Ff(1)p 3475
+-1112 6 23 v 3481 -1122 25 3 v 61 w(1)l FC(\024)l Ff(1)p
+3275 -1070 431 4 v 3265 -1005 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(x)l FC(\024)l Ff(m)3473 -1026 y Fe(x)p Fd(;)p
+Fe(0)3529 -1005 y FV(\))p 3567 -1017 6 23 v 3573 -1027
+25 3 v 59 w Ff(1)l FC(\024)l Ff(1)3705 -1058 y FC(8)3740
+-1047 y Fd(L)p 3275 -973 431 4 v 3369 -921 a FZ(M)3427
+-911 y FP(1)p 3474 -933 6 23 v 3479 -943 25 3 v 3518
+-921 a Ff(1)l FC(\024)l Ff(1)3705 -961 y FC(8)3740 -950
+y Fd(L)p 3834 -972 247 4 v 3834 -921 a Ff(0)l FZ(<)l
+Ff(1)p 3942 -933 6 23 v 3947 -943 25 3 v 60 w(0)l FZ(<)l
+Ff(1)p 3369 -891 712 4 v 3471 -840 a(1)l FC(\024)l Ff(1)p
+FC(\033)q Ff(0)l FZ(<)l Ff(1)p FZ(;)13 b(M)3794 -830
+y FP(1)p 3840 -852 6 23 v 3846 -861 25 3 v 3885 -840
+a Ff(0)l FZ(<)l Ff(1)4079 -882 y FC(\033)4127 -871 y
+Fd(L)p 3414 -810 622 4 v 3403 -756 a FC(8)p Ff(y)q FZ(:)p
+FV(\()p Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l
+Ff(y)q FV(\))p FZ(;)f(M)3851 -746 y FP(1)p 3897 -768
+6 23 v 3903 -777 25 3 v 3942 -756 a Ff(0)l FZ(<)l Ff(1)4035
+-798 y FC(8)4070 -787 y Fd(L)p 3414 -723 622 4 v 3568
+-672 a FZ(M)3626 -662 y FP(1)3659 -672 y FZ(;)e(S)p 3743
+-684 6 23 v 3748 -694 25 3 v 61 w Ff(0)l FZ(<)l Ff(1)4035
+-712 y FC(8)4070 -701 y Fd(L)p 4258 -1310 319 4 v 4258
+-1259 a Ff(f1)e FV(=)f Ff(0)p 4402 -1271 6 23 v 4408
+-1281 25 3 v 59 w(f1)g FV(=)g Ff(0)p 4626 -1310 319 4
+v 50 w(f1)h FV(=)f Ff(1)p 4770 -1271 6 23 v 4776 -1281
+25 3 v 59 w(f1)h FV(=)f Ff(1)p 4258 -1239 687 4 v 4277
+-1188 a(f1)g FV(=)g Ff(0)p FC(_)p Ff(f1)h FV(=)f Ff(1)p
+4592 -1200 6 23 v 4598 -1210 25 3 v 59 w(f1)h FV(=)f
+Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)4944 -1231 y FC(_)4985
+-1219 y Fd(L)p 4221 -1158 761 4 v 4210 -1104 a FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p 4648 -1116 6 23 v 4654 -1126 25
+3 v 59 w Ff(f1)g FV(=)g Ff(0)p FZ(;)k Ff(f1)d FV(=)f
+Ff(1)4981 -1146 y FC(8)5016 -1135 y Fd(L)p 5146 -1310
+319 4 v 5146 -1259 a Ff(f0)h FV(=)f Ff(0)p 5290 -1271
+6 23 v 5296 -1281 25 3 v 59 w(f0)h FV(=)f Ff(0)p 5515
+-1310 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5659 -1271 6 23
+v 5665 -1281 25 3 v 59 w(f0)g FV(=)g Ff(1)p 5146 -1239
+687 4 v 5165 -1188 a(f0)h FV(=)f Ff(0)p FC(_)p Ff(f0)g
+FV(=)g Ff(1)p 5481 -1200 6 23 v 5486 -1210 25 3 v 59
+w(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5833
+-1231 y FC(_)5874 -1219 y Fd(L)p 5110 -1158 761 4 v 5099
+-1104 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 5536 -1116 6 23
+v 5542 -1126 25 3 v 59 w Ff(f0)h FV(=)f Ff(0)p FZ(;)k
+Ff(f0)c FV(=)g Ff(1)5869 -1146 y FC(8)5904 -1135 y Fd(L)p
+4221 -1072 1650 4 v 4489 -1018 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 4927 -1030 6 23 v 4933 -1040 25 3 v 59 w Ff(f1)g
+FV(=)g Ff(0)p FC(^)p Ff(f0)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e
+FV(=)f Ff(1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5869 -1063 y
+FC(^)5911 -1052 y Fd(R)p 6008 -1069 351 4 v 6008 -1018
+a Ff(f0)g FV(=)g Ff(f1)p 6168 -1030 6 23 v 6174 -1040
+25 3 v 60 w(f0)g FV(=)g Ff(f1)p 4500 -985 1859 4 v 4675
+-931 a FV(\()p Ff(f1)h FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f
+Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(f1)p FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o
+Ff(fx)h FV(=)f Ff(1)p FV(\))p 5674 -943 6 23 v 5680 -953
+25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p FZ(;)k Ff(f1)c FV(=)g
+Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)6358 -976 y FC(\033)6406
+-965 y Fd(L)p 4618 -899 1623 4 v 4607 -845 a FC(8)p Ff(y)q
+FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)o Ff(f0)h
+FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(fy)q
+FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 5731 -857
+6 23 v 5737 -867 25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p FZ(;)k
+Ff(f1)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)6240
+-887 y FC(8)6275 -876 y Fd(L)p 4598 -813 1662 4 v 4588
+-759 a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
+FV(=)f Ff(0)p FC(^)p Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(fx)g FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 5751 -771 6 23 v 5757 -781 25 3 v 59 w Ff(f0)g
+FV(=)g Ff(f1)q FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)j Ff(f0)e
+FV(=)f Ff(1)6259 -801 y FC(8)6294 -790 y Fd(L)p 4598
+-726 1662 4 v 4914 -672 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(T)p 5425 -684 6 23 v 5431 -694 25 3 v 68 w Ff(f0)e
+FV(=)f Ff(f1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c
+FV(=)g Ff(1)6259 -715 y FC(8)6294 -704 y Fd(L)p 3568
+-640 2367 4 v 4085 -586 a FZ(M)4143 -576 y FP(1)4176
+-586 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)g FV(=)g
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4773 -598 6 23 v 4778 -608 25 3 v 67 w Ff(f1)d FV(=)f
+Ff(1)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
+Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5934 -632 y FC(^)5975
+-621 y Fd(R)3275 -541 y Fc(|)p 3299 -541 1540 8 v 1540
+w({z)p 4887 -541 V 1540 w(})4823 -480 y Fd(X)4869 -468
+y FP(3)p 2885 -224 247 4 v 2885 -172 a Ff(1)l FC(\024)l
+Ff(2)p 2993 -184 6 23 v 2999 -194 25 3 v 61 w(1)l FC(\024)l
+Ff(2)p 2793 -142 431 4 v 2783 -77 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(x)l FC(\024)l Ff(m)2991 -98 y Fe(x)p Fd(;)p
+Fe(2)3047 -77 y FV(\))p 3086 -89 6 23 v 3091 -99 25 3
+v 59 w Ff(1)l FC(\024)l Ff(2)3223 -130 y FC(8)3258 -119
+y Fd(L)p 2793 -45 431 4 v 2887 7 a FZ(M)2945 17 y FP(1)p
+2992 -5 6 23 v 2997 -15 25 3 v 3036 7 a Ff(1)l FC(\024)l
+Ff(2)3223 -33 y FC(8)3258 -22 y Fd(L)p 3352 -44 247 4
+v 3352 7 a Ff(0)l FZ(<)l Ff(2)p 3460 -5 6 23 v 3466 -15
+25 3 v 61 w(0)l FZ(<)l Ff(2)p 2887 37 712 4 v 2989 88
+a(1)l FC(\024)l Ff(2)p FC(\033)r Ff(0)l FZ(<)l Ff(2)p
+FZ(;)12 b(M)3312 98 y FP(1)p 3358 76 6 23 v 3364 66 25
+3 v 3403 88 a Ff(0)l FZ(<)l Ff(2)3598 46 y FC(\033)3646
+57 y Fd(L)p 2932 118 622 4 v 2921 172 a FC(8)p Ff(y)q
+FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l
+FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)3369 182 y FP(1)p 3415
+160 6 23 v 3421 150 25 3 v 3460 172 a Ff(0)l FZ(<)l Ff(2)3553
+130 y FC(8)3588 141 y Fd(L)p 2932 205 622 4 v 3086 255
+a FZ(M)3144 265 y FP(1)3177 255 y FZ(;)e(S)p 3261 243
+6 23 v 3266 233 25 3 v 61 w Ff(0)l FZ(<)l Ff(2)3553 216
+y FC(8)3588 227 y Fd(L)p 3776 -382 319 4 v 3776 -331
+a Ff(f2)e FV(=)f Ff(0)p 3920 -343 6 23 v 3926 -353 25
+3 v 59 w(f2)h FV(=)f Ff(0)p 4144 -382 319 4 v 49 w(f2)h
+FV(=)f Ff(1)p 4288 -343 6 23 v 4294 -353 25 3 v 59 w(f2)h
+FV(=)f Ff(1)p 3776 -311 687 4 v 3795 -260 a(f2)h FV(=)f
+Ff(0)p FC(_)o Ff(f2)h FV(=)f Ff(1)p 4110 -272 6 23 v
+4116 -282 25 3 v 59 w(f2)h FV(=)f Ff(0)p FZ(;)j Ff(f2)e
+FV(=)f Ff(1)4462 -303 y FC(_)4504 -292 y Fd(L)p 3739
+-230 761 4 v 3729 -176 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4166 -188 6 23 v 4172 -198 25 3 v 59 w Ff(f2)h FV(=)f
+Ff(0)p FZ(;)j Ff(f2)e FV(=)f Ff(1)4499 -219 y FC(8)4534
+-208 y Fd(L)p 4665 -382 319 4 v 4665 -331 a Ff(f0)g FV(=)g
+Ff(0)p 4809 -343 6 23 v 4814 -353 25 3 v 59 w(f0)h FV(=)f
+Ff(0)p 5033 -382 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5177
+-343 6 23 v 5183 -353 25 3 v 59 w(f0)h FV(=)f Ff(1)p
+4665 -311 687 4 v 4684 -260 a(f0)g FV(=)g Ff(0)p FC(_)p
+Ff(f0)h FV(=)f Ff(1)p 4999 -272 6 23 v 5005 -282 25 3
+v 59 w(f0)g FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5351
+-303 y FC(_)5392 -292 y Fd(L)p 4628 -230 761 4 v 4617
+-176 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 5055 -188 6 23 v
+5060 -198 25 3 v 59 w Ff(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c
+FV(=)g Ff(1)5388 -219 y FC(8)5423 -208 y Fd(L)p 3739
+-144 1650 4 v 4007 -90 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4445 -102 6 23 v 4451 -112 25 3 v 59 w Ff(f2)g FV(=)g
+Ff(0)p FC(^)p Ff(f0)h FV(=)f Ff(0)p FZ(;)j Ff(f2)e FV(=)f
+Ff(1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5388 -136 y FC(^)5429
+-125 y Fd(R)p 5526 -141 351 4 v 5526 -90 a Ff(f0)h FV(=)f
+Ff(f2)p 5686 -102 6 23 v 5692 -112 25 3 v 59 w(f0)h FV(=)f
+Ff(f2)p 4018 -58 1859 4 v 4193 -4 a FV(\()p Ff(f2)h FV(=)f
+Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f0)h FV(=)f Ff(f2)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+5192 -16 6 23 v 5198 -26 25 3 v 59 w Ff(f0)h FV(=)f Ff(f2)p
+FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5876
+-49 y FC(\033)5924 -37 y Fd(L)p 4136 29 1623 4 v 4126
+83 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(0)p
+FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p Ff(f0)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+5249 71 6 23 v 5255 61 25 3 v 59 w Ff(f0)h FV(=)f Ff(f2)p
+FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5758
+40 y FC(8)5793 51 y Fd(L)p 4117 115 1662 4 v 4106 169
+a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 5269 157 6 23 v 5275 147 25 3 v 59 w Ff(f0)g
+FV(=)g Ff(f2)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c
+FV(=)g Ff(1)5777 127 y FC(8)5812 138 y Fd(L)p 4117 201
+1662 4 v 4432 255 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(T)p
+4943 243 6 23 v 4949 233 25 3 v 67 w Ff(f0)d FV(=)f Ff(f2)p
+FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5777
+213 y FC(8)5812 224 y Fd(L)p 3086 288 2367 4 v 3603 342
+a FZ(M)3661 352 y FP(1)3694 342 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4291 330 6 23 v 4297
+320 25 3 v 68 w Ff(f2)d FV(=)g Ff(1)p FZ(;)k Ff(0)l FZ(<)l
+Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g
+Ff(1)5452 296 y FC(^)5493 307 y Fd(R)6070 191 y F3(.)6070
+224 y(.)6070 257 y(.)6070 290 y(.)6035 342 y FZ(X)6085
+352 y FP(3)p 3603 374 2532 4 v 3962 428 a FZ(M)4020 438
+y FP(1)4052 428 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4649 416 6 23 v 4655 406 25 3 v 67
+w Ff(f2)d FV(=)f Ff(1)p FC(^)p Ff(f1)g FV(=)g Ff(1)p
+FZ(;)k Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p
+FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)k Ff(f0)c FV(=)g Ff(1)6134 382 y FC(^)6176 394 y
+Fd(R)2793 473 y Fc(|)p 2817 473 1667 8 v 1667 w({z)p
+4532 473 V 1667 w(})4469 534 y Fd(X)4515 546 y FP(4)p
+2660 648 247 4 v 2660 699 a Ff(2)l FC(\024)l Ff(2)p 2768
+687 6 23 v 2773 678 25 3 v 61 w(2)l FC(\024)l Ff(2)p
+2567 729 433 4 v 2556 794 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(2)l FC(\024)l Ff(m)2766 773 y Fe(x)p Fd(;)p Fe(2)2823
+794 y FV(\))p 2861 782 6 23 v 2867 772 25 3 v 59 w Ff(2)l
+FC(\024)l Ff(2)2999 741 y FC(8)3034 752 y Fd(L)p 2567
+827 433 4 v 2662 878 a FZ(M)2720 888 y FP(2)p 2766 866
+6 23 v 2772 856 25 3 v 2811 878 a Ff(2)l FC(\024)l Ff(2)2999
+838 y FC(8)3034 849 y Fd(L)p 3127 827 247 4 v 3127 878
+a Ff(1)l FZ(<)l Ff(2)p 3235 866 6 23 v 3241 856 25 3
+v 61 w(1)l FZ(<)l Ff(2)p 2662 908 713 4 v 2764 960 a(2)l
+FC(\024)l Ff(2)p FC(\033)q Ff(1)l FZ(<)l Ff(2)p FZ(;)13
+b(M)3087 970 y FP(2)p 3133 948 6 23 v 3139 938 25 3 v
+3178 960 a Ff(1)l FZ(<)l Ff(2)3373 917 y FC(\033)3421
+928 y Fd(L)p 2707 990 622 4 v 2696 1044 a FC(8)p Ff(y)q
+FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(y)q FC(\033)r Ff(1)l
+FZ(<)l Ff(y)q FV(\))p FZ(;)f(M)3144 1054 y FP(2)p 3190
+1032 6 23 v 3196 1022 25 3 v 3235 1044 a Ff(1)l FZ(<)l
+Ff(2)3328 1001 y FC(8)3363 1012 y Fd(L)p 2707 1076 622
+4 v 2861 1127 a FZ(M)2919 1137 y FP(2)2951 1127 y FZ(;)f(S)p
+3035 1115 6 23 v 3041 1105 25 3 v 61 w Ff(1)l FZ(<)l
+Ff(2)3328 1088 y FC(8)3363 1099 y Fd(L)4500 634 y F3(.)4500
+667 y(.)4500 700 y(.)4500 733 y(.)4465 784 y FZ(X)4515
+794 y FP(4)p 4615 733 351 4 v 4615 784 a Ff(f1)d FV(=)f
+Ff(f2)p 4775 772 6 23 v 4781 763 25 3 v 59 w(f1)h FV(=)f
+Ff(f2)p 3591 814 2232 4 v 3591 868 a FV(\()p Ff(f2)h
+FV(=)f Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p
+Ff(f1)h FV(=)f Ff(f2)p FZ(;)k(M)4222 878 y FP(1)4254
+868 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4851 856 6 23 v 4857 846 25 3 v 68 w Ff(f1)d FV(=)g Ff(f2)q
+FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
+FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)k Ff(f0)d FV(=)f Ff(1)5822 823 y FC(\033)5870 834
+y Fd(L)p 3534 900 2346 4 v 3523 954 a FC(8)p Ff(y)q FZ(:)p
+FV(\(\()p Ff(fy)i FV(=)e Ff(1)p FC(^)o Ff(f1)h FV(=)f
+Ff(1)p FV(\))p FC(\033)p Ff(f1)h FV(=)f Ff(fy)q FV(\))p
+FZ(;)j(M)4278 964 y FP(1)4311 954 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4908 942 6 23 v 4913
+932 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l
+FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l
+FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c
+FV(=)g Ff(1)5879 912 y FC(8)5914 923 y Fd(L)p 3514 987
+2385 4 v 3504 1041 a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p
+FV(\(\()p Ff(fy)i FV(=)e Ff(1)p FC(^)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)p FV(\))p
+FZ(;)k(M)4298 1051 y FP(1)4330 1041 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g
+Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4927 1029 6 23 v 4933
+1019 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l
+FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)j Ff(0)l
+FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(f0)e
+FV(=)f Ff(1)5898 998 y FC(8)5933 1009 y Fd(L)p 3514 1073
+2385 4 v 3877 1127 a FZ(M)3935 1137 y FP(1)3967 1127
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4565 1115 6 23 v 4570 1105 25 3 v 67 w Ff(f1)d FV(=)f
+Ff(f2)p FZ(;)k Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f
+Ff(f2)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
+Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5898 1085 y FC(8)5933
+1096 y Fd(L)p 2861 1159 2676 4 v 3242 1213 a FZ(M)3300
+1223 y FP(1)3332 1213 y FZ(;)j(M)3419 1223 y FP(2)3452
+1213 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4049 1201 6 23 v 4054 1191 25 3 v 68 w Ff(0)l FZ(<)l
+Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)j Ff(0)l FZ(<)l
+Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f
+Ff(1)5535 1168 y FC(^)5577 1179 y Fd(R)p 3159 1246 2079
+4 v 3159 1300 a FZ(M)3217 1310 y FP(1)3250 1300 y FZ(;)j(M)3337
+1310 y FP(2)3369 1300 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 3966 1288 6 23 v 3972 1278 25 3 v
+57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(0)l FZ(<)l Ff(m)p
+FC(^)q Ff(f0)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)e FV(=)f Ff(f2)p FZ(;)j Ff(f0)e FV(=)f
+Ff(1)5237 1257 y FC(9)5272 1268 y Fd(R)p 3135 1332 2127
+4 v 3135 1386 a FZ(M)3193 1396 y FP(1)3226 1386 y FZ(;)j(M)3313
+1396 y FP(2)3345 1386 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 3943 1374 6 23 v 3948 1364 25 3 v
+67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c FV(=)g Ff(f1)q
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e FV(=)f Ff(f2)p
+FZ(;)k Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
+FV(=)g Ff(fm)p FV(\))5261 1344 y FC(9)5296 1355 y Fd(R)p
+3053 1418 2292 4 v 3053 1472 a FZ(M)3111 1482 y FP(1)3143
+1472 y FZ(;)k(M)3231 1482 y FP(2)3263 1472 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3860 1460 6
+23 v 3866 1450 25 3 v 56 w FC(9)p Ff(m)p FZ(:)p FV(\()p
+Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)d FV(=)f Ff(fm)p FV(\))p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
+FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)o FV(\))5343 1430 y FC(9)5378 1441 y Fd(R)p
+3053 1505 2292 4 v 3291 1559 a FZ(M)3349 1569 y FP(1)3381
+1559 y FZ(;)k(M)3469 1569 y FP(2)3501 1559 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4098 1547 6
+23 v 4104 1537 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p FC(^)q
+Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5343 1516
+y FC(9)5378 1527 y Fd(R)p 3209 1591 1981 4 v 3209 1645
+a FZ(M)3267 1655 y FP(1)3299 1645 y FZ(;)j(M)3386 1655
+y FP(2)3419 1645 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4016 1633 6 23 v 4021 1623 25 3 v
+57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p
+FC(^)q Ff(f1)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(f0)d
+FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
+FV(\))5188 1603 y FC(9)5223 1614 y Fd(R)p 3209 1677 1981
+4 v 3446 1731 a FZ(M)3504 1741 y FP(1)3537 1731 y FZ(;)j(M)3624
+1741 y FP(2)3656 1731 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)g(T)p 4253 1719 6 23 v 4259 1709 25 3 v
+67 w Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
+FV(=)g Ff(fm)p FV(\))5188 1689 y FC(9)5223 1700 y Fd(R)2567
+1776 y Fc(|)p 2591 1776 1658 8 v 1658 w({z)p 4297 1776
+V 1658 w(})4233 1838 y Fd(X)4279 1850 y FP(5)2259 1970
+y Gc(M)2327 1979 y FV(1)2381 1970 y F9(=)19 b FX(8)p
+Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(x)8 b FX(\024)g
+Fu(m)2788 1947 y Ff(x)p FZ(;)p Ff(y)2859 1970 y F9(\))101
+b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p
+Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h F9(=)g Fu(i)p FX(^)p
+Fu(fx)f F9(=)g Fu(i)p F9(\))12 b FX(\033)g Fu(fx)18 b
+F9(=)i Fu(fy)p F9(\))2259 2097 y Gc(M)2327 2106 y FV(2)2381
+2097 y F9(=)f FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
+Fu(y)9 b FX(\024)f Fu(m)2789 2073 y Ff(x)p FZ(;)p Ff(y)2860
+2097 y F9(\))100 b Gc(S)23 b F9(=)d FX(8)p Fu(x)p Gc(:)p
+Fu(y)q Gc(:)m F9(\()p Fu(sx)8 b FX(\024)g Fu(y)k FX(\033)g
+Fu(x)c Gc(<)g Fu(y)q F9(\))6739 408 y
+ currentpoint grestore moveto
+ 6739 408 a 4009
+5012 4 4630 v 321 5015 3691 4 v Black 1262 5283 a Gg(Figure)24
+b(3:)29 b(Subproofs)c Ga(X)2092 5297 y F9(3)2132 5283
+y Gg(,)d Ga(X)2252 5297 y F9(4)2315 5283 y Gg(and)i Ga(X)2544
+5297 y F9(5)2583 5283 y Gg(.)p Black Black eop end
+%%Page: 135 147
+TeXDict begin 135 146 bop Black 3831 51 a Gb(135)p 277
+88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
+v 1882 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1882 465 a 2724 -868 247 4 v 2724 -816 a
+Ff(2)l FC(\024)l Ff(2)p 2832 -828 6 23 v 2837 -838 25
+3 v 60 w(2)l FC(\024)l Ff(2)p 3020 -867 247 4 v 52 w(1)l
+FZ(<)l Ff(2)p 3128 -828 6 23 v 3134 -838 25 3 v 61 w(1)l
+FZ(<)l Ff(2)p 2724 -786 543 4 v 2739 -734 a(2)l FC(\024)l
+Ff(2)p FC(\033)r Ff(1)l FZ(<)l Ff(2)p FZ(;)12 b Ff(2)l
+FC(\024)l Ff(2)p 3112 -746 6 23 v 3118 -756 25 3 v 61
+w(1)l FZ(<)l Ff(2)3266 -777 y FC(\033)3314 -766 y Fd(L)p
+2682 -704 626 4 v 2672 -650 a FC(8)p Ff(y)q FZ(:)p FV(\()p
+Ff(2)l FC(\024)l Ff(y)q FC(\033)q Ff(1)l FZ(<)l Ff(y)q
+FV(\))p FZ(;)g Ff(2)l FC(\024)l Ff(2)p 3169 -662 6 23
+v 3175 -672 25 3 v 61 w(1)l FZ(<)l Ff(2)3307 -693 y FC(8)3342
+-682 y Fd(L)p 2682 -618 626 4 v 2837 -566 a Ff(2)l FC(\024)l
+Ff(2)p FZ(;)g(S)p 3015 -578 6 23 v 3020 -588 25 3 v 61
+w Ff(1)l FZ(<)l Ff(2)3307 -606 y FC(8)3342 -595 y Fd(L)p
+3448 -1029 319 4 v 3448 -977 a Ff(f2)c FV(=)f Ff(0)p
+3592 -989 6 23 v 3598 -999 25 3 v 59 w(f2)h FV(=)f Ff(0)p
+3817 -1029 319 4 v 50 w(f1)g FV(=)g Ff(0)p 3961 -989
+6 23 v 3966 -999 25 3 v 59 w(f1)h FV(=)f Ff(0)p 3448
+-958 687 4 v 3467 -906 a(f2)h FV(=)f Ff(0)p FZ(;)k Ff(f1)c
+FV(=)g Ff(0)p 3770 -918 6 23 v 3776 -928 25 3 v 59 w(f2)h
+FV(=)f Ff(0)p FC(^)p Ff(f1)g FV(=)g Ff(0)4134 -949 y
+FC(^)4176 -938 y Fd(R)p 4273 -958 351 4 v 4273 -906 a
+Ff(f1)g FV(=)g Ff(f2)p 4433 -918 6 23 v 4439 -928 25
+3 v 60 w(f1)g FV(=)g Ff(f2)p 3467 -877 1157 4 v 3512
+-823 a FV(\()p Ff(f2)h FV(=)f Ff(0)p FC(^)o Ff(f1)h FV(=)f
+Ff(0)p FV(\))p FC(\033)p Ff(f1)h FV(=)f Ff(f2)p FZ(;)k
+Ff(f2)c FV(=)g Ff(0)p FZ(;)k Ff(f1)d FV(=)f Ff(0)p 4388
+-835 6 23 v 4394 -845 25 3 v 59 w(f1)g FV(=)g Ff(f2)4623
+-868 y FC(\033)4671 -856 y Fd(L)p 3455 -790 1181 4 v
+3445 -736 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
+Ff(0)p FC(^)p Ff(f1)g FV(=)g Ff(0)p FV(\))p FC(\033)p
+Ff(f1)h FV(=)f Ff(fy)q FV(\))p FZ(;)k Ff(f2)c FV(=)g
+Ff(0)p FZ(;)k Ff(f1)d FV(=)f Ff(0)p 4445 -748 6 23 v
+4451 -758 25 3 v 59 w(f1)g FV(=)g Ff(f2)4635 -779 y FC(8)4670
+-768 y Fd(L)p 3436 -704 1220 4 v 3425 -650 a FC(8)p Ff(x)p
+FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
+FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f2)e FV(=)f Ff(0)p FZ(;)j
+Ff(f1)e FV(=)f Ff(0)p 4464 -662 6 23 v 4470 -672 25 3
+v 59 w(f1)h FV(=)f Ff(f2)4654 -692 y FC(8)4689 -681 y
+Fd(L)p 3436 -618 1220 4 v 3761 -566 a Ff(f2)h FV(=)f
+Ff(0)p FZ(;)k Ff(f1)c FV(=)g Ff(0)p FZ(;)k(T)p 4139 -578
+6 23 v 4144 -588 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)4654
+-606 y FC(8)4689 -595 y Fd(L)p 2837 -537 1493 4 v 3136
+-485 a Ff(f2)h FV(=)f Ff(0)p FZ(;)k Ff(2)l FC(\024)l
+Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p
+3704 -497 6 23 v 3709 -507 25 3 v 68 w Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)4329 -528 y FC(^)4370
+-517 y Fd(R)4829 -636 y F3(.)4829 -603 y(.)4829 -569
+y(.)4829 -536 y(.)4801 -485 y FZ(Y)4837 -475 y FP(7)p
+2660 -455 2705 4 v 2660 -401 a Ff(f2)g FV(=)g Ff(0)p
+FC(_)p Ff(f2)h FV(=)f Ff(1)p FZ(;)j Ff(2)l FC(\024)l
+Ff(2)p FZ(;)j Ff(1)l FC(\024)l Ff(2)p FZ(;)f Ff(f1)c
+FV(=)f Ff(0)p FZ(;)j(M)3454 -391 y FP(1)3487 -401 y FZ(;)g(M)3574
+-391 y FP(2)3606 -401 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4203 -413 6 23 v 4209 -423 25 3 v
+67 w Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q
+FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5363
+-447 y FC(_)5404 -435 y Fd(L)p 2660 -369 2705 4 v 2825
+-315 a Ff(2)l FC(\024)l Ff(2)p FZ(;)12 b Ff(1)l FC(\024)l
+Ff(2)p FZ(;)h Ff(f1)7 b FV(=)g Ff(0)p FZ(;)k(M)3289 -305
+y FP(1)3321 -315 y FZ(;)g(M)3409 -305 y FP(2)3441 -315
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4038 -327 6 23 v 4044 -337 25 3 v 68 w Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l
+Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5363 -357 y FC(8)5398 -346
+y Fd(L)p 2733 -282 2558 4 v 2722 -218 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)2930 -238 y Fe(x)p
+Fd(;)p Fe(1)2987 -218 y FV(\))p FZ(;)j Ff(1)l FC(\024)l
+Ff(2)p FZ(;)j Ff(f1)7 b FV(=)g Ff(0)p FZ(;)k(M)3381 -208
+y FP(1)3413 -218 y FZ(;)g(M)3501 -208 y FP(2)3533 -218
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+4130 -230 6 23 v 4136 -239 25 3 v 67 w Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l
+Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5290 -271 y FC(8)5325 -260
+y Fd(L)p 2733 -185 2558 4 v 2887 -131 a Ff(1)l FC(\024)l
+Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f Ff(0)p FZ(;)j(M)3227
+-121 y FP(1)3260 -131 y FZ(;)g(M)3347 -121 y FP(2)3379
+-131 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+3976 -143 6 23 v 3982 -153 25 3 v 67 w Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l
+Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)p FV(\))5290 -173 y FC(8)5325 -162
+y Fd(L)p 2794 -99 2437 4 v 2783 -34 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(1)l FC(\024)l Ff(m)2993 -55 y Fe(x)p Fd(;)p
+Fe(1)3050 -34 y FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(0)p
+FZ(;)j(M)3320 -24 y FP(1)3353 -34 y FZ(;)g(M)3440 -24
+y FP(2)3473 -34 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4070 -46 6 23 v 4075 -56 25 3 v 67
+w Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q
+FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5229
+-87 y FC(8)5264 -76 y Fd(L)p 2794 -2 2437 4 v 2948 52
+a Ff(f1)h FV(=)f Ff(0)p FZ(;)k(M)3166 62 y FP(1)3198
+52 y FZ(;)f(M)3285 62 y FP(2)3318 52 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3915 40 6 23
+v 3920 30 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
+FV(=)f Ff(f2)p FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d
+FV(=)g Ff(f2)q FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
+FV(\))5229 10 y FC(8)5264 21 y Fd(L)2660 97 y Fc(|)p
+2684 97 1347 8 v 1347 w({z)p 4079 97 V 1347 w(})4021
+159 y Fd(Y)4055 171 y FP(8)p 2140 531 247 4 v 2140 583
+a Ff(1)l FC(\024)l Ff(1)p 2248 571 6 23 v 2253 561 25
+3 v 60 w(1)l FC(\024)l Ff(1)p 2047 613 433 4 v 2036 678
+a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(m)2246
+657 y Fe(x)p Fd(;)p Fe(1)2303 678 y FV(\))p 2341 666
+6 23 v 2347 656 25 3 v 59 w Ff(1)l FC(\024)l Ff(1)2478
+624 y FC(8)2513 635 y Fd(L)p 2047 710 433 4 v 2142 761
+a FZ(M)2200 771 y FP(2)p 2246 749 6 23 v 2252 740 25
+3 v 2291 761 a Ff(1)l FC(\024)l Ff(1)2478 722 y FC(8)2513
+733 y Fd(L)p 2607 711 247 4 v 2607 761 a Ff(0)l FZ(<)l
+Ff(1)p 2715 749 6 23 v 2721 740 25 3 v 61 w(0)l FZ(<)l
+Ff(1)p 2142 791 713 4 v 2244 843 a(1)l FC(\024)l Ff(1)p
+FC(\033)q Ff(0)l FZ(<)l Ff(1)p FZ(;)13 b(M)2567 853 y
+FP(2)p 2613 831 6 23 v 2619 821 25 3 v 2658 843 a Ff(0)l
+FZ(<)l Ff(1)2853 801 y FC(\033)2901 812 y Fd(L)p 2187
+873 622 4 v 2176 927 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l
+FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l Ff(y)q FV(\))p
+FZ(;)f(M)2624 937 y FP(2)p 2670 915 6 23 v 2676 905 25
+3 v 2715 927 a Ff(0)l FZ(<)l Ff(1)2808 885 y FC(8)2843
+896 y Fd(L)p 2187 959 622 4 v 2341 1010 a FZ(M)2399 1020
+y FP(2)2431 1010 y FZ(;)f(S)p 2515 998 6 23 v 2521 988
+25 3 v 61 w Ff(0)l FZ(<)l Ff(1)2808 971 y FC(8)2843 982
+y Fd(L)4033 258 y F3(.)4033 291 y(.)4033 324 y(.)4033
+357 y(.)4005 409 y FZ(Y)4041 419 y FP(8)p 4141 357 319
+4 v 4141 409 a Ff(f1)c FV(=)g Ff(1)p 4285 397 6 23 v
+4290 387 25 3 v 59 w(f1)h FV(=)f Ff(1)p 2994 438 2458
+4 v 2994 492 a(f1)h FV(=)f Ff(0)p FC(_)p Ff(f1)g FV(=)g
+Ff(1)p FZ(;)k(M)3383 502 y FP(1)3415 492 y FZ(;)g(M)3503
+502 y FP(2)3535 492 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)g(T)p 4132 480 6 23 v 4138 470 25 3 v 67
+w Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r
+Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q
+Ff(f0)e FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p
+FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f
+Ff(fm)p FV(\))5451 446 y FC(_)5492 458 y Fd(L)p 2994
+525 2458 4 v 3160 578 a FZ(M)3218 588 y FP(1)3250 578
+y FZ(;)k(M)3338 588 y FP(2)3370 578 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 3967 566 6 23 v 3973
+557 25 3 v 68 w Ff(f1)d FV(=)g Ff(1)p FZ(;)k Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l
+Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5451 536 y FC(8)5486 547
+y Fd(L)5646 428 y F3(.)5646 461 y(.)5646 494 y(.)5646
+527 y(.)5604 578 y FZ(Y)5640 588 y FP(13)p 3160 611 2559
+4 v 3290 665 a FZ(M)3348 675 y FP(1)3380 665 y FZ(;)k(M)3468
+675 y FP(2)3500 665 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4097 653 6 23 v 4103 643 25 3 v 68
+w Ff(f1)e FV(=)f Ff(1)p FC(^)o Ff(f0)h FV(=)f Ff(1)p
+FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
+FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5717
+619 y FC(^)5759 630 y Fd(R)p 5856 614 351 4 v 5856 665
+a Ff(f0)g FV(=)g Ff(f1)p 6016 653 6 23 v 6021 643 25
+3 v 60 w(f0)g FV(=)g Ff(f1)p 3290 697 2917 4 v 3390 751
+a FV(\()p Ff(f1)h FV(=)f Ff(1)p FC(^)p Ff(f0)h FV(=)f
+Ff(1)p FV(\))p FC(\033)p Ff(f0)g FV(=)g Ff(f1)q FZ(;)j(M)4021
+761 y FP(1)4053 751 y FZ(;)h(M)4141 761 y FP(2)4173 751
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+4770 739 6 23 v 4776 729 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)e FV(=)f Ff(f2)p
+FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))6206
+706 y FC(\033)6254 717 y Fd(L)p 3334 784 2830 4 v 3323
+838 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(1)p
+FC(^)p Ff(f0)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(f0)h
+FV(=)f Ff(fy)p FV(\))p FZ(;)k(M)4078 848 y FP(1)4110
+838 y FZ(;)g(M)4198 848 y FP(2)4230 838 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4827 826 6 23
+v 4833 816 25 3 v 68 w Ff(f0)e FV(=)f Ff(f1)p FZ(;)j
+Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j
+Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)p Ff(fn)h FV(=)f Ff(fm)p FV(\))6162 795 y
+FC(8)6197 806 y Fd(L)p 3314 870 2869 4 v 3303 924 a FC(8)p
+Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e
+Ff(1)p FC(^)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)k(M)4098 934 y FP(1)4130
+924 y FZ(;)f(M)4217 934 y FP(2)4250 924 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4847 912 6 23
+v 4852 902 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
+Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k
+Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)d FV(=)f Ff(f2)p FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))6182 882 y
+FC(8)6217 893 y Fd(L)p 3314 956 2869 4 v 3677 1010 a
+FZ(M)3735 1020 y FP(1)3767 1010 y FZ(;)k(M)3855 1020
+y FP(2)3887 1010 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4484 998 6 23 v 4490 988 25 3 v 68
+w Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p
+FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l Ff(2)p
+FC(^)q Ff(f0)e FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)p FV(\))6182 968 y FC(8)6217 979 y Fd(L)p
+2341 1043 3479 4 v 2941 1097 a FZ(M)2999 1107 y FP(1)3032
+1097 y FZ(;)j(M)3119 1107 y FP(2)3151 1097 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3748 1085 6
+23 v 3754 1075 25 3 v 67 w Ff(1)l FZ(<)l Ff(2)p FC(^)r
+Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)q
+Ff(f0)e FV(=)f Ff(f2)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q
+Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p
+FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f
+Ff(fm)p FV(\))5819 1051 y FC(^)5860 1062 y Fd(R)p 2859
+1129 2443 4 v 2859 1183 a FZ(M)2917 1193 y FP(1)2949
+1183 y FZ(;)k(M)3037 1193 y FP(2)3069 1183 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3666 1171 6
+23 v 3672 1161 25 3 v 56 w FC(9)p Ff(m)p FZ(:)p FV(\()p
+Ff(1)l FZ(<)l Ff(m)p FC(^)q Ff(f1)d FV(=)f Ff(fm)p FV(\))p
+FZ(;)j Ff(0)l FZ(<)l Ff(2)p FC(^)r Ff(f0)d FV(=)g Ff(f2)q
+FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5301
+1141 y FC(9)5336 1152 y Fd(R)p 2859 1215 2443 4 v 3097
+1269 a FZ(M)3155 1279 y FP(1)3187 1269 y FZ(;)k(M)3275
+1279 y FP(2)3307 1269 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 3904 1257 6 23 v 3910 1247 25 3 v
+68 w Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
+FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)e FV(=)f Ff(f1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5301
+1227 y FC(9)5336 1238 y Fd(R)p 3015 1302 2132 4 v 3015
+1356 a FZ(M)3073 1366 y FP(1)3105 1356 y FZ(;)j(M)3192
+1366 y FP(2)3225 1356 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 3822 1344 6 23 v 3827 1334 25 3 v
+57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(0)l FZ(<)l Ff(m)p
+FC(^)q Ff(f0)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5145 1313 y FC(9)5180 1324
+y Fd(R)p 3015 1388 2132 4 v 3252 1442 a FZ(M)3310 1452
+y FP(1)3342 1442 y FZ(;)k(M)3430 1452 y FP(2)3462 1442
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+4059 1430 6 23 v 4065 1420 25 3 v 67 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)p FV(\))5145 1400 y FC(9)5180 1411
+y Fd(R)p 3170 1474 1821 4 v 3170 1528 a FZ(M)3228 1538
+y FP(1)3260 1528 y FZ(;)k(M)3348 1538 y FP(2)3380 1528
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+3977 1516 6 23 v 3983 1506 25 3 v 57 w FC(9)p Ff(m)p
+FZ(:)p FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)e FV(=)f
+Ff(fm)p FV(\))p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
+FV(\))4990 1486 y FC(9)5025 1497 y Fd(R)p 3170 1561 1821
+4 v 3408 1615 a FZ(M)3466 1625 y FP(1)3498 1615 y FZ(;)j(M)3585
+1625 y FP(2)3618 1615 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4215 1603 6 23 v 4220 1593 25 3 v
+57 w FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)c FV(=)g Ff(fm)p FV(\))4990
+1572 y FC(9)5025 1583 y Fd(R)1982 1803 y Gc(M)2050 1812
+y FV(1)2104 1803 y F9(=)19 b FX(8)p Fu(y)q Gc(:)p Fu(x)p
+Gc(:)n F9(\()p Fu(x)8 b FX(\024)g Fu(m)2511 1780 y Ff(x)p
+FZ(;)p Ff(y)2582 1803 y F9(\))101 b Gc(T)30 b F9(=)19
+b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p
+Fu(fy)h F9(=)g Fu(i)p FX(^)p Fu(fx)e F9(=)i Fu(i)p F9(\))12
+b FX(\033)g Fu(fx)18 b F9(=)i Fu(fy)p F9(\))1982 1930
+y Gc(M)2050 1939 y FV(2)2104 1930 y F9(=)f FX(8)p Fu(y)q
+Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(y)9 b FX(\024)f Fu(m)2512
+1906 y Ff(x)p FZ(;)p Ff(y)2583 1930 y F9(\))100 b Gc(S)23
+b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
+b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6462
+465 y
+ currentpoint grestore moveto
+ 6462 465 a 3499 5116 4 4724 v 277 5119 3226 4 v
+Black 1010 5273 a Gg(Figure)24 b(4:)29 b(Second)24 b(normal)h(form)e
+(and)h(Subproof)h Ga(Y)2707 5287 y F9(8)2746 5273 y Gg(.)p
+Black Black eop end
+%%Page: 136 148
+TeXDict begin 136 147 bop Black -144 51 a Gb(136)2816
+b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
+321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1927 465
+a 2969 -802 247 4 v 2969 -750 a Ff(1)l FC(\024)l Ff(1)p
+3077 -762 6 23 v 3082 -772 25 3 v 60 w(1)l FC(\024)l
+Ff(1)p 3265 -801 247 4 v 52 w(0)l FZ(<)l Ff(1)p 3373
+-762 6 23 v 3379 -772 25 3 v 61 w(0)l FZ(<)l Ff(1)p 2969
+-720 543 4 v 2984 -669 a(1)l FC(\024)l Ff(1)p FC(\033)r
+Ff(0)l FZ(<)l Ff(1)p FZ(;)12 b Ff(1)l FC(\024)l Ff(1)p
+3357 -681 6 23 v 3363 -691 25 3 v 61 w(0)l FZ(<)l Ff(1)3511
+-711 y FC(\033)3559 -700 y Fd(L)p 2927 -639 626 4 v 2917
+-585 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l FC(\024)l
+Ff(y)q FC(\033)q Ff(0)l FZ(<)l Ff(y)q FV(\))p FZ(;)g
+Ff(1)l FC(\024)l Ff(1)p 3414 -597 6 23 v 3420 -607 25
+3 v 61 w(0)l FZ(<)l Ff(1)3552 -627 y FC(8)3587 -616 y
+Fd(L)p 2927 -552 626 4 v 3082 -501 a Ff(1)l FC(\024)l
+Ff(1)p FZ(;)g(S)p 3260 -513 6 23 v 3265 -523 25 3 v 61
+w Ff(0)l FZ(<)l Ff(1)3552 -541 y FC(8)3587 -530 y Fd(L)p
+3693 -963 319 4 v 3693 -912 a Ff(f1)c FV(=)f Ff(0)p 3837
+-924 6 23 v 3843 -934 25 3 v 59 w(f1)h FV(=)f Ff(0)p
+4062 -963 319 4 v 50 w(f0)g FV(=)g Ff(0)p 4206 -924 6
+23 v 4211 -934 25 3 v 59 w(f0)h FV(=)f Ff(0)p 3693 -892
+687 4 v 3712 -841 a(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f0)e
+FV(=)f Ff(0)p 4015 -853 6 23 v 4021 -862 25 3 v 59 w(f1)h
+FV(=)f Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)4379 -884 y
+FC(^)4421 -872 y Fd(R)p 4518 -892 351 4 v 4518 -841 a
+Ff(f0)g FV(=)g Ff(f1)p 4678 -853 6 23 v 4684 -862 25
+3 v 60 w(f0)g FV(=)g Ff(f1)p 3712 -811 1157 4 v 3757
+-757 a FV(\()p Ff(f1)h FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f
+Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(f1)p FZ(;)k
+Ff(f1)c FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4633
+-769 6 23 v 4639 -779 25 3 v 59 w(f0)g FV(=)g Ff(f1)4868
+-802 y FC(\033)4916 -791 y Fd(L)p 3700 -725 1181 4 v
+3690 -671 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
+Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p
+Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f1)e FV(=)f
+Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4690 -683 6 23 v
+4696 -693 25 3 v 59 w(f0)g FV(=)g Ff(f1)4880 -713 y FC(8)4915
+-702 y Fd(L)p 3681 -638 1220 4 v 3670 -584 a FC(8)p Ff(x)p
+FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
+FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(0)p FZ(;)j
+Ff(f0)e FV(=)f Ff(0)p 4709 -596 6 23 v 4715 -606 25 3
+v 59 w(f0)h FV(=)f Ff(f1)4899 -627 y FC(8)4934 -616 y
+Fd(L)p 3681 -552 1220 4 v 4006 -501 a Ff(f1)h FV(=)f
+Ff(0)p FZ(;)k Ff(f0)c FV(=)g Ff(0)p FZ(;)k(T)p 4384 -513
+6 23 v 4389 -523 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)4899
+-540 y FC(8)4934 -529 y Fd(L)p 3082 -471 1493 4 v 3381
+-419 a Ff(f1)h FV(=)f Ff(0)p FZ(;)k Ff(1)l FC(\024)l
+Ff(1)p FZ(;)h Ff(f0)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p
+3949 -431 6 23 v 3954 -441 25 3 v 67 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)r Ff(f0)d FV(=)f Ff(f1)4573 -462 y FC(^)4615
+-451 y Fd(R)5074 -570 y F3(.)5074 -537 y(.)5074 -504
+y(.)5074 -470 y(.)5046 -419 y FZ(Y)5082 -409 y FP(5)p
+2887 -389 2741 4 v 2887 -335 a Ff(f1)g FV(=)g Ff(0)p
+FC(_)p Ff(f1)h FV(=)f Ff(1)p FZ(;)j Ff(1)l FC(\024)l
+Ff(1)p FZ(;)j Ff(f0)7 b FV(=)g Ff(0)p FZ(;)k(M)3558 -325
+y FP(1)3590 -335 y FZ(;)g(M)3678 -325 y FP(2)3710 -335
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4307 -347 6 23 v 4313 -357 25 3 v 68 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g
+Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
+Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5626
+-381 y FC(_)5667 -370 y Fd(L)p 2887 -303 2741 4 v 3052
+-249 a Ff(1)l FC(\024)l Ff(1)p FZ(;)12 b Ff(f0)c FV(=)f
+Ff(0)p FZ(;)k(M)3393 -239 y FP(1)3425 -249 y FZ(;)f(M)3512
+-239 y FP(2)3545 -249 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4142 -261 6 23 v 4147 -271 25 3 v
+67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
+FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
+FV(=)g Ff(fm)p FV(\))5626 -291 y FC(8)5661 -280 y Fd(L)p
+2960 -216 2594 4 v 2949 -152 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(x)l FC(\024)l Ff(m)3157 -173 y Fe(x)p Fd(;)p Fe(0)3214
+-152 y FV(\))p FZ(;)j Ff(f0)e FV(=)f Ff(0)p FZ(;)k(M)3485
+-142 y FP(1)3517 -152 y FZ(;)f(M)3604 -142 y FP(2)3637
+-152 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4234 -164 6 23 v 4240 -174 25 3 v 68 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f
+Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
+Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))5552
+-205 y FC(8)5587 -194 y Fd(L)p 2960 -119 2594 4 v 3114
+-65 a Ff(f0)g FV(=)g Ff(0)p FZ(;)k(M)3331 -55 y FP(1)3363
+-65 y FZ(;)g(M)3451 -55 y FP(2)3483 -65 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4080 -77 6 23
+v 4086 -87 25 3 v 68 w Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)e
+FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d
+FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p FZ(;)p FC(9)p
+Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p
+FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5552 -108 y FC(8)5587
+-97 y Fd(L)2887 -21 y Fc(|)p 2911 -21 1365 8 v 1365 w({z)p
+4324 -21 V 1365 w(})4266 41 y Fd(Y)4300 53 y FP(6)p 2180
+995 247 4 v 2180 1047 a Ff(1)l FC(\024)l Ff(2)p 2288
+1035 6 23 v 2294 1025 25 3 v 61 w(1)l FC(\024)l Ff(2)p
+2476 996 247 4 v 51 w(0)l FZ(<)l Ff(2)p 2584 1035 6 23
+v 2590 1025 25 3 v 61 w(0)l FZ(<)l Ff(2)p 2180 1077 543
+4 v 2196 1128 a(1)l FC(\024)l Ff(2)p FC(\033)q Ff(0)l
+FZ(<)l Ff(2)p FZ(;)13 b Ff(1)l FC(\024)l Ff(2)p 2569
+1116 6 23 v 2574 1106 25 3 v 60 w(0)l FZ(<)l Ff(2)2722
+1086 y FC(\033)2770 1097 y Fd(L)p 2139 1158 626 4 v 2128
+1212 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l FC(\024)l
+Ff(y)q FC(\033)r Ff(0)l FZ(<)l Ff(y)q FV(\))p FZ(;)f
+Ff(1)l FC(\024)l Ff(2)p 2626 1200 6 23 v 2631 1190 25
+3 v 60 w(0)l FZ(<)l Ff(2)2763 1170 y FC(8)2798 1181 y
+Fd(L)p 2139 1244 626 4 v 2293 1296 a Ff(1)l FC(\024)l
+Ff(2)p FZ(;)h(S)p 2471 1284 6 23 v 2477 1274 25 3 v 61
+w Ff(0)l FZ(<)l Ff(2)2763 1256 y FC(8)2798 1267 y Fd(L)p
+2892 813 319 4 v 2892 864 a Ff(f2)8 b FV(=)f Ff(1)p 3036
+852 6 23 v 3042 842 25 3 v 59 w(f2)g FV(=)g Ff(1)4299
+198 y F3(.)4299 231 y(.)4299 265 y(.)4299 298 y(.)4270
+349 y FZ(Y)4306 359 y FP(6)p 4407 298 319 4 v 4407 349
+a Ff(f0)g FV(=)g Ff(1)p 4551 337 6 23 v 4556 327 25 3
+v 59 w(f0)h FV(=)f Ff(1)p 3260 379 2458 4 v 3260 433
+a(f0)h FV(=)f Ff(0)p FC(_)p Ff(f0)g FV(=)g Ff(1)p FZ(;)k(M)3649
+443 y FP(1)3681 433 y FZ(;)g(M)3769 443 y FP(2)3801 433
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4398 421 6 23 v 4404 411 25 3 v 68 w Ff(0)l FZ(<)l Ff(1)p
+FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5717
+387 y FC(_)5758 398 y Fd(L)p 3260 465 2458 4 v 3426 519
+a FZ(M)3484 529 y FP(1)3516 519 y FZ(;)j(M)3603 529 y
+FP(2)3636 519 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4233 507 6 23 v 4238 497 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p
+FC(^)r Ff(f0)d FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l Ff(2)p
+FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5717
+477 y FC(8)5752 488 y Fd(L)p 3343 551 2292 4 v 3343 605
+a FZ(M)3401 615 y FP(1)3434 605 y FZ(;)j(M)3521 615 y
+FP(2)3553 605 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e
+FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4150 593 6 23 v 4156 583 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)c FV(=)g Ff(fm)p
+FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
+Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)p FV(\))5634 563 y FC(9)5669 574
+y Fd(R)p 3343 638 2292 4 v 3581 692 a FZ(M)3639 702 y
+FP(1)3671 692 y FZ(;)k(M)3759 702 y FP(2)3791 692 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p
+Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4388
+680 6 23 v 4394 670 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5634
+649 y FC(9)5669 660 y Fd(R)p 3499 724 1981 4 v 3499 778
+a FZ(M)3557 788 y FP(1)3589 778 y FZ(;)k(M)3677 788 y
+FP(2)3709 778 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4306 766 6 23 v 4312 756 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)q Ff(f1)e FV(=)f Ff(fm)p
+FV(\))p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)g FV(=)g Ff(fm)p FV(\))5478 736 y FC(9)5513 747
+y Fd(R)p 3499 810 1981 4 v 3736 864 a FZ(M)3794 874 y
+FP(1)3827 864 y FZ(;)j(M)3914 874 y FP(2)3947 864 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p
+Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4544
+852 6 23 v 4549 842 25 3 v 67 w Ff(f0)d FV(=)f Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))5478
+822 y FC(9)5513 833 y Fd(R)p 2892 897 2350 4 v 3149 951
+a Ff(f2)h FV(=)f Ff(1)p FZ(;)j(M)3366 961 y FP(1)3398
+951 y FZ(;)h(M)3486 961 y FP(2)3518 951 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4115 939 6 23
+v 4121 929 25 3 v 67 w Ff(f2)d FV(=)f Ff(1)p FC(^)o Ff(f0)h
+FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p
+FV(\))5241 905 y FC(^)5282 916 y Fd(R)p 5852 899 351
+4 v 5852 951 a Ff(f0)h FV(=)f Ff(f2)p 6012 939 6 23 v
+6018 929 25 3 v 59 w(f0)h FV(=)f Ff(f2)p 3149 983 3054
+4 v 3549 1037 a FV(\()p Ff(f2)h FV(=)f Ff(1)p FC(^)p
+Ff(f0)g FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(f0)h FV(=)f
+Ff(f2)p FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j(M)4339 1047
+y FP(1)4371 1037 y FZ(;)h(M)4459 1047 y FP(2)4491 1037
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+5088 1025 6 23 v 5094 1015 25 3 v 67 w Ff(f0)d FV(=)f
+Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
+Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)o FV(\))6202
+992 y FC(\033)6250 1003 y Fd(L)p 3492 1069 2367 4 v 3482
+1123 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
+Ff(1)p FC(^)p Ff(f0)h FV(=)f Ff(1)p FV(\))p FC(\033)p
+Ff(f0)g FV(=)g Ff(fy)q FV(\))p FZ(;)k Ff(f2)c FV(=)g
+Ff(1)p FZ(;)k(M)4396 1133 y FP(1)4428 1123 y FZ(;)g(M)4516
+1133 y FP(2)4548 1123 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)g(T)p 5145 1111 6 23 v 5151 1101 25 3 v
+67 w Ff(f0)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
+FV(=)g Ff(fm)p FV(\))5858 1081 y FC(8)5893 1092 y Fd(L)p
+3473 1156 2407 4 v 3462 1210 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
+FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(1)p FC(^)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
+FV(\))p FZ(;)j Ff(f2)e FV(=)f Ff(1)p FZ(;)k(M)4416 1220
+y FP(1)4448 1210 y FZ(;)f(M)4535 1220 y FP(2)4568 1210
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+5165 1198 6 23 v 5170 1188 25 3 v 68 w Ff(f0)c FV(=)g
+Ff(f2)q FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
+Ff(n)l FZ(<)l Ff(m)p FC(^)p Ff(fn)h FV(=)f Ff(fm)p FV(\))5878
+1167 y FC(8)5913 1178 y Fd(L)p 3473 1242 2407 4 v 3836
+1296 a Ff(f2)g FV(=)g Ff(1)p FZ(;)k(M)4053 1306 y FP(1)4085
+1296 y FZ(;)g(M)4173 1306 y FP(2)4205 1296 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4802 1284 6
+23 v 4808 1274 25 3 v 68 w Ff(f0)d FV(=)g Ff(f2)q FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5878 1254
+y FC(8)5913 1265 y Fd(L)p 2293 1328 3223 4 v 2935 1382
+a Ff(f2)h FV(=)f Ff(1)p FZ(;)j Ff(1)l FC(\024)l Ff(2)p
+FZ(;)j(M)3276 1392 y FP(1)3308 1382 y FZ(;)e(M)3396 1392
+y FP(2)3428 1382 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4025 1370 6 23 v 4031 1360 25 3 v
+68 w Ff(0)l FZ(<)l Ff(2)p FC(^)q Ff(f0)e FV(=)f Ff(f2)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5515
+1337 y FC(^)5557 1348 y Fd(R)2139 1427 y Fc(|)p 2163
+1427 2030 8 v 2030 w({z)p 4241 1427 V 2030 w(})4183 1489
+y Fd(Y)4217 1501 y FP(7)2026 1738 y Gc(M)2094 1747 y
+FV(1)2148 1738 y F9(=)20 b FX(8)p Fu(y)q Gc(:)p Fu(x)p
+Gc(:)m F9(\()p Fu(x)8 b FX(\024)g Fu(m)2555 1714 y Ff(x)p
+FZ(;)p Ff(y)2626 1738 y F9(\))101 b Gc(T)30 b F9(=)19
+b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p
+Fu(fy)i F9(=)e Fu(i)p FX(^)p Fu(fx)g F9(=)g Fu(i)p F9(\))12
+b FX(\033)g Fu(fx)19 b F9(=)g Fu(fy)p F9(\))2026 1864
+y Gc(M)2094 1873 y FV(2)2148 1864 y F9(=)h FX(8)p Fu(y)q
+Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(y)9 b FX(\024)f Fu(m)2556
+1840 y Ff(x)p FZ(;)p Ff(y)2627 1864 y F9(\))100 b Gc(S)23
+b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
+b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6506
+465 y
+ currentpoint grestore moveto
+ 6506 465 a 3543 5116 4 4724 v 321 5119 3226 4 v
+Black 1364 5273 a Gg(Figure)24 b(5:)29 b(Subproofs)d
+Ga(Y)2173 5287 y F9(6)2235 5273 y Gg(and)e Ga(Y)2442
+5287 y F9(7)2481 5273 y Gg(.)p Black Black eop end
+%%Page: 137 149
+TeXDict begin 137 148 bop Black 3831 51 a Gb(137)p 277
+88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
+v 1882 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1882 465 a 2724 -693 247 4 v 2724 -641 a
+Ff(1)l FC(\024)l Ff(1)p 2832 -653 6 23 v 2837 -663 25
+3 v 60 w(1)l FC(\024)l Ff(1)p 3020 -692 247 4 v 52 w(0)l
+FZ(<)l Ff(1)p 3128 -653 6 23 v 3134 -663 25 3 v 61 w(0)l
+FZ(<)l Ff(1)p 2724 -611 543 4 v 2739 -559 a(1)l FC(\024)l
+Ff(1)p FC(\033)r Ff(0)l FZ(<)l Ff(1)p FZ(;)12 b Ff(1)l
+FC(\024)l Ff(1)p 3112 -571 6 23 v 3118 -581 25 3 v 61
+w(0)l FZ(<)l Ff(1)3266 -602 y FC(\033)3314 -591 y Fd(L)p
+2682 -529 626 4 v 2672 -475 a FC(8)p Ff(y)q FZ(:)p FV(\()p
+Ff(1)l FC(\024)l Ff(y)q FC(\033)q Ff(0)l FZ(<)l Ff(y)q
+FV(\))p FZ(;)g Ff(1)l FC(\024)l Ff(1)p 3169 -487 6 23
+v 3175 -497 25 3 v 61 w(0)l FZ(<)l Ff(1)3307 -518 y FC(8)3342
+-507 y Fd(L)p 2682 -443 626 4 v 2837 -392 a Ff(1)l FC(\024)l
+Ff(1)p FZ(;)g(S)p 3015 -404 6 23 v 3020 -413 25 3 v 61
+w Ff(0)l FZ(<)l Ff(1)3307 -431 y FC(8)3342 -420 y Fd(L)p
+3448 -854 319 4 v 3448 -802 a Ff(f1)c FV(=)f Ff(0)p 3592
+-814 6 23 v 3598 -824 25 3 v 59 w(f1)h FV(=)f Ff(0)p
+3817 -854 319 4 v 50 w(f0)g FV(=)g Ff(0)p 3961 -814 6
+23 v 3966 -824 25 3 v 59 w(f0)h FV(=)f Ff(0)p 3448 -783
+687 4 v 3467 -731 a(f1)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c
+FV(=)g Ff(0)p 3770 -743 6 23 v 3776 -753 25 3 v 59 w(f1)h
+FV(=)f Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)4134 -774 y
+FC(^)4176 -763 y Fd(R)p 4273 -783 351 4 v 4273 -731 a
+Ff(f0)g FV(=)g Ff(f1)p 4433 -743 6 23 v 4439 -753 25
+3 v 60 w(f0)g FV(=)g Ff(f1)p 3467 -702 1157 4 v 3512
+-648 a FV(\()p Ff(f1)h FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f
+Ff(0)p FV(\))p FC(\033)p Ff(f0)h FV(=)f Ff(f1)p FZ(;)k
+Ff(f1)c FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4388
+-660 6 23 v 4394 -670 25 3 v 59 w(f0)g FV(=)g Ff(f1)4623
+-693 y FC(\033)4671 -681 y Fd(L)p 3455 -615 1181 4 v
+3445 -561 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
+Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p
+Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)k Ff(f1)c FV(=)g
+Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(0)p 4445 -573 6 23 v
+4451 -583 25 3 v 59 w(f0)g FV(=)g Ff(f1)4635 -604 y FC(8)4670
+-593 y Fd(L)p 3436 -529 1220 4 v 3425 -475 a FC(8)p Ff(x)p
+FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p
+FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(0)p FZ(;)j
+Ff(f0)e FV(=)f Ff(0)p 4464 -487 6 23 v 4470 -497 25 3
+v 59 w(f0)h FV(=)f Ff(f1)4654 -517 y FC(8)4689 -506 y
+Fd(L)p 3436 -443 1220 4 v 3761 -392 a Ff(f1)h FV(=)f
+Ff(0)p FZ(;)k Ff(f0)c FV(=)g Ff(0)p FZ(;)k(T)p 4139 -404
+6 23 v 4144 -413 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)4654
+-431 y FC(8)4689 -420 y Fd(L)p 2837 -362 1493 4 v 3136
+-310 a Ff(f1)h FV(=)f Ff(0)p FZ(;)k Ff(1)l FC(\024)l
+Ff(1)p FZ(;)h Ff(f0)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p
+3704 -322 6 23 v 3709 -332 25 3 v 68 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)4329 -353 y FC(^)4370
+-342 y Fd(R)4829 -461 y F3(.)4829 -428 y(.)4829 -394
+y(.)4829 -361 y(.)4801 -310 y FZ(Y)4837 -300 y FP(3)p
+2425 -280 3175 4 v 2425 -226 a Ff(f1)g FV(=)g Ff(0)p
+FC(_)p Ff(f1)h FV(=)f Ff(1)p FZ(;)j Ff(1)l FC(\024)l
+Ff(1)p FZ(;)j Ff(f0)7 b FV(=)g Ff(0)p FZ(;)k Ff(2)l FC(\024)l
+Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3379 -216
+y FP(1)3411 -226 y FZ(;)f(M)3498 -216 y FP(2)3531 -226
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4128 -238 6 23 v 4133 -248 25 3 v 67 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)r Ff(f0)d FV(=)f Ff(f1)p FZ(;)j Ff(1)l FZ(<)l
+Ff(3)p FC(^)r Ff(f1)d FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)p
+Ff(fn)h FV(=)f Ff(fm)p FV(\))5598 -272 y FC(_)5639 -261
+y Fd(L)p 2425 -194 3175 4 v 2590 -140 a Ff(1)l FC(\024)l
+Ff(1)p FZ(;)12 b Ff(f0)c FV(=)f Ff(0)p FZ(;)k Ff(2)l
+FC(\024)l Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3213
+-130 y FP(1)3246 -140 y FZ(;)g(M)3333 -130 y FP(2)3365
+-140 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+3962 -152 6 23 v 3968 -162 25 3 v 67 w Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l
+Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5598 -182 y FC(8)5633 -171
+y Fd(L)p 2498 -107 3028 4 v 2487 -43 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)2695 -63 y Fe(x)p
+Fd(;)p Fe(0)2752 -43 y FV(\))p FZ(;)j Ff(f0)e FV(=)f
+Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)j(M)3305 -33 y FP(1)3338 -43 y FZ(;)g(M)3425
+-33 y FP(2)3457 -43 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4054 -55 6 23 v 4060 -64 25 3 v 67
+w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c FV(=)g Ff(f1)q
+FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
+FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5525
+-96 y FC(8)5560 -85 y Fd(L)p 2498 -10 3028 4 v 2652 44
+a Ff(f0)g FV(=)g Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p
+FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3152 54 y FP(1)3184
+44 y FZ(;)f(M)3271 54 y FP(2)3304 44 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3901 32 6 23
+v 3906 22 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c
+FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d
+FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e
+FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p
+FV(\))5525 2 y FC(8)5560 13 y Fd(L)2425 88 y Fc(|)p 2449
+88 1582 8 v 1582 w({z)p 4079 88 V 1582 w(})4021 150 y
+Fd(Y)4055 162 y FP(4)4057 424 y F3(.)4057 457 y(.)4057
+490 y(.)4057 523 y(.)4029 575 y FZ(Y)4065 585 y FP(4)p
+4165 523 319 4 v 4165 575 a Ff(f0)h FV(=)f Ff(1)p 4309
+563 6 23 v 4315 553 25 3 v 59 w(f0)h FV(=)f Ff(1)p 2722
+604 3051 4 v 2722 658 a(f0)h FV(=)f Ff(0)p FC(_)p Ff(f0)g
+FV(=)g Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)k(M)3394 668 y FP(1)3426 658 y FZ(;)g(M)3514
+668 y FP(2)3546 658 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4143 646 6 23 v 4149 636 25 3 v 68
+w Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p
+FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
+FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)o FV(\))5772 612 y FC(_)5814 623 y Fd(L)p
+2722 690 3051 4 v 2888 744 a Ff(2)l FC(\024)l Ff(2)p
+FZ(;)12 b Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3228 754 y FP(1)3261
+744 y FZ(;)g(M)3348 754 y FP(2)3381 744 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3978 732 6 23
+v 3983 722 25 3 v 67 w Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)c
+FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d
+FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)e
+FV(=)f Ff(f2)p FZ(;)k Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p
+Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p
+FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5772 702 y FC(8)5807
+713 y Fd(L)p 2806 777 2885 4 v 2806 831 a Ff(2)l FC(\024)l
+Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3146
+841 y FP(1)3178 831 y FZ(;)h(M)3266 841 y FP(2)3298 831
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p
+3895 819 6 23 v 3901 809 25 3 v 56 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)d FV(=)f Ff(fm)p
+FV(\))p FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g
+Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g
+Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)g FV(=)g Ff(fm)p FV(\))5689 788 y FC(9)5724 799
+y Fd(R)p 2806 863 2885 4 v 3043 917 a Ff(2)l FC(\024)l
+Ff(2)p FZ(;)13 b Ff(f1)7 b FV(=)g Ff(1)p FZ(;)k(M)3384
+927 y FP(1)3416 917 y FZ(;)g(M)3504 927 y FP(2)3536 917
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4133 905 6 23 v 4139 895 25 3 v 68 w Ff(1)l FZ(<)l Ff(3)p
+FC(^)q Ff(f1)e FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5689
+875 y FC(9)5724 886 y Fd(R)p 2961 949 2574 4 v 2961 1003
+a Ff(2)l FC(\024)l Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f Ff(1)p
+FZ(;)k(M)3302 1013 y FP(1)3334 1003 y FZ(;)f(M)3421 1013
+y FP(2)3454 1003 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4051 991 6 23 v 4056 981 25 3 v 57
+w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p FC(^)q
+Ff(f1)c FV(=)g Ff(fm)p FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5534
+961 y FC(9)5569 972 y Fd(R)p 2961 1036 2574 4 v 3199
+1090 a Ff(2)l FC(\024)l Ff(2)p FZ(;)12 b Ff(f1)c FV(=)f
+Ff(1)p FZ(;)j(M)3539 1100 y FP(1)3572 1090 y FZ(;)g(M)3659
+1100 y FP(2)3691 1090 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4288 1078 6 23 v 4294 1068 25 3 v
+67 w Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q
+FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
+FV(=)g Ff(fm)p FV(\))5534 1047 y FC(9)5569 1058 y Fd(R)p
+3106 1122 2285 4 v 3095 1187 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(2)l FC(\024)l Ff(m)3305 1166 y Fe(x)p Fd(;)p Fe(2)3362
+1187 y FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)j(M)3632
+1197 y FP(1)3665 1187 y FZ(;)g(M)3752 1197 y FP(2)3784
+1187 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4382 1175 6 23 v 4387 1165 25 3 v 67 w Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f
+Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
+Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5389
+1134 y FC(8)5424 1145 y Fd(L)p 3106 1219 2285 4 v 3260
+1273 a Ff(f1)h FV(=)f Ff(1)p FZ(;)k(M)3478 1283 y FP(1)3510
+1273 y FZ(;)f(M)3597 1283 y FP(2)3630 1273 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4227 1261 6
+23 v 4232 1251 25 3 v 68 w Ff(1)l FZ(<)l Ff(2)p FC(^)q
+Ff(f1)d FV(=)f Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5389 1231
+y FC(8)5424 1242 y Fd(L)2722 1318 y Fc(|)p 2746 1318
+1520 8 v 1520 w({z)p 4314 1318 V 1520 w(})4257 1379 y
+Fd(Y)4291 1391 y FP(5)1982 1629 y Gc(M)2050 1638 y FV(1)2104
+1629 y F9(=)19 b FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
+Fu(x)8 b FX(\024)g Fu(m)2511 1605 y Ff(x)p FZ(;)p Ff(y)2582
+1629 y F9(\))101 b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p
+Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h
+F9(=)g Fu(i)p FX(^)p Fu(fx)e F9(=)i Fu(i)p F9(\))12 b
+FX(\033)g Fu(fx)18 b F9(=)i Fu(fy)p F9(\))1982 1755 y
+Gc(M)2050 1764 y FV(2)2104 1755 y F9(=)f FX(8)p Fu(y)q
+Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(y)9 b FX(\024)f Fu(m)2512
+1731 y Ff(x)p FZ(;)p Ff(y)2583 1755 y F9(\))100 b Gc(S)23
+b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
+b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6462
+465 y
+ currentpoint grestore moveto
+ 6462 465 a 3499 5116 4 4724 v 277 5119 3226 4 v
+Black 1320 5273 a Gg(Figure)24 b(6:)29 b(Subproofs)c
+Ga(Y)2128 5287 y F9(4)2190 5273 y Gg(and)f Ga(Y)2397
+5287 y F9(5)2437 5273 y Gg(.)p Black Black eop end
+%%Page: 138 150
+TeXDict begin 138 149 bop Black -144 51 a Gb(138)2816
+b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
+321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1927 465
+a 2094 -771 247 4 v 2094 -719 a Ff(2)l FC(\024)l Ff(3)p
+2202 -731 6 23 v 2207 -741 25 3 v 61 w(2)l FC(\024)l
+Ff(3)p 2390 -770 247 4 v 51 w(1)l FZ(<)l Ff(3)p 2498
+-731 6 23 v 2504 -741 25 3 v 61 w(1)l FZ(<)l Ff(3)p 2094
+-689 543 4 v 2109 -637 a(2)l FC(\024)l Ff(3)p FC(\033)r
+Ff(1)l FZ(<)l Ff(3)p FZ(;)13 b Ff(2)l FC(\024)l Ff(3)p
+2483 -649 6 23 v 2488 -659 25 3 v 60 w(1)l FZ(<)l Ff(3)2636
+-680 y FC(\033)2684 -669 y Fd(L)p 2053 -607 626 4 v 2042
+-554 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l
+Ff(y)q FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)f
+Ff(2)l FC(\024)l Ff(3)p 2539 -566 6 23 v 2545 -575 25
+3 v 61 w(1)l FZ(<)l Ff(3)2677 -596 y FC(8)2712 -585 y
+Fd(L)p 2053 -521 626 4 v 2207 -470 a Ff(2)l FC(\024)l
+Ff(3)p FZ(;)g(S)p 2385 -482 6 23 v 2391 -491 25 3 v 62
+w Ff(1)l FZ(<)l Ff(3)2677 -509 y FC(8)2712 -498 y Fd(L)p
+2819 -932 319 4 v 2819 -881 a Ff(f3)7 b FV(=)g Ff(1)p
+2962 -893 6 23 v 2968 -902 25 3 v 59 w(f3)h FV(=)f Ff(1)p
+3187 -932 319 4 v 50 w(f1)h FV(=)f Ff(1)p 3331 -893 6
+23 v 3337 -902 25 3 v 59 w(f1)g FV(=)g Ff(1)p 2819 -861
+687 4 v 2837 -809 a(f3)h FV(=)f Ff(1)p FZ(;)k Ff(f1)c
+FV(=)g Ff(1)p 3141 -821 6 23 v 3146 -831 25 3 v 59 w(f3)h
+FV(=)f Ff(1)p FC(^)p Ff(f1)h FV(=)f Ff(1)3505 -852 y
+FC(^)3546 -841 y Fd(R)p 3643 -861 351 4 v 3643 -809 a
+Ff(f1)h FV(=)f Ff(f3)p 3803 -821 6 23 v 3809 -831 25
+3 v 59 w(f1)g FV(=)g Ff(f3)p 2837 -780 1157 4 v 2882
+-726 a FV(\()p Ff(f3)h FV(=)f Ff(1)p FC(^)p Ff(f1)g FV(=)g
+Ff(1)p FV(\))p FC(\033)p Ff(f1)h FV(=)f Ff(f3)p FZ(;)k
+Ff(f3)d FV(=)f Ff(1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p 3758
+-738 6 23 v 3764 -748 25 3 v 59 w(f1)h FV(=)f Ff(f3)3993
+-771 y FC(\033)4041 -760 y Fd(L)p 2825 -693 1181 4 v
+2815 -639 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f
+Ff(1)p FC(^)p Ff(f1)g FV(=)g Ff(1)p FV(\))p FC(\033)q
+Ff(f1)g FV(=)g Ff(fy)q FV(\))p FZ(;)k Ff(f3)c FV(=)g
+Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)p 3815 -651 6 23 v
+3821 -661 25 3 v 59 w(f1)h FV(=)f Ff(f3)4005 -682 y FC(8)4040
+-671 y Fd(L)p 2806 -607 1220 4 v 2795 -553 a FC(8)p Ff(x)p
+FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(1)p
+FC(^)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FC(\033)p Ff(fx)h
+FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)k
+Ff(f1)c FV(=)g Ff(1)p 3835 -565 6 23 v 3840 -575 25 3
+v 59 w(f1)h FV(=)f Ff(f3)4024 -595 y FC(8)4059 -584 y
+Fd(L)p 2806 -521 1220 4 v 3132 -470 a Ff(f3)g FV(=)g
+Ff(1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j(T)p 3509 -482
+6 23 v 3515 -491 25 3 v 68 w Ff(f1)d FV(=)g Ff(f3)4024
+-509 y FC(8)4059 -498 y Fd(L)p 2207 -440 1493 4 v 2507
+-388 a Ff(f3)g FV(=)g Ff(1)p FZ(;)k Ff(2)l FC(\024)l
+Ff(3)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(S)o(;)f(T)p
+3074 -400 6 23 v 3080 -410 25 3 v 68 w Ff(1)l FZ(<)l
+Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)3699 -431 y FC(^)3740
+-420 y Fd(R)2053 -346 y Fc(|)p 2077 -346 978 8 v 978
+w({z)p 3103 -346 V 978 w(})3045 -284 y Fd(Y)3079 -272
+y FP(1)p 4370 -771 247 4 v 4370 -719 a Ff(2)l FC(\024)l
+Ff(2)p 4478 -731 6 23 v 4484 -741 25 3 v 61 w(2)l FC(\024)l
+Ff(2)p 4667 -770 247 4 v 52 w(1)l FZ(<)l Ff(2)p 4775
+-731 6 23 v 4780 -741 25 3 v 60 w(1)l FZ(<)l Ff(2)p 4370
+-689 543 4 v 4386 -637 a(2)l FC(\024)l Ff(2)p FC(\033)r
+Ff(1)l FZ(<)l Ff(2)p FZ(;)12 b Ff(2)l FC(\024)l Ff(2)p
+4759 -649 6 23 v 4765 -659 25 3 v 61 w(1)l FZ(<)l Ff(2)4912
+-680 y FC(\033)4960 -669 y Fd(L)p 4329 -607 626 4 v 4318
+-554 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l
+Ff(y)q FC(\033)r Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g
+Ff(2)l FC(\024)l Ff(2)p 4816 -566 6 23 v 4822 -575 25
+3 v 61 w(1)l FZ(<)l Ff(2)4954 -596 y FC(8)4989 -585 y
+Fd(L)p 4329 -521 626 4 v 4484 -470 a Ff(2)l FC(\024)l
+Ff(2)p FZ(;)g(S)p 4661 -482 6 23 v 4667 -491 25 3 v 61
+w Ff(1)l FZ(<)l Ff(2)4954 -509 y FC(8)4989 -498 y Fd(L)p
+5095 -932 319 4 v 5095 -881 a Ff(f2)c FV(=)f Ff(1)p 5239
+-893 6 23 v 5245 -902 25 3 v 59 w(f2)g FV(=)g Ff(1)p
+5463 -932 319 4 v 50 w(f1)h FV(=)f Ff(1)p 5607 -893 6
+23 v 5613 -902 25 3 v 59 w(f1)h FV(=)f Ff(1)p 5095 -861
+687 4 v 5114 -809 a(f2)h FV(=)f Ff(1)p FZ(;)j Ff(f1)e
+FV(=)f Ff(1)p 5417 -821 6 23 v 5423 -831 25 3 v 59 w(f2)h
+FV(=)f Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)5781 -852 y
+FC(^)5823 -841 y Fd(R)p 5919 -861 351 4 v 5919 -809 a
+Ff(f1)h FV(=)f Ff(f2)p 6079 -821 6 23 v 6085 -831 25
+3 v 59 w(f1)h FV(=)f Ff(f2)p 5114 -780 1157 4 v 5159
+-726 a FV(\()p Ff(f2)g FV(=)g Ff(1)p FC(^)p Ff(f1)h FV(=)f
+Ff(1)p FV(\))p FC(\033)p Ff(f1)g FV(=)g Ff(f2)q FZ(;)j
+Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p 6035
+-738 6 23 v 6040 -748 25 3 v 59 w(f1)h FV(=)f Ff(f2)6269
+-771 y FC(\033)6317 -760 y Fd(L)p 5102 -693 1181 4 v
+5091 -639 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i FV(=)e
+Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p
+Ff(f1)h FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f2)e FV(=)f
+Ff(1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p 6092 -651 6 23 v
+6097 -661 25 3 v 59 w(f1)h FV(=)f Ff(f2)6281 -682 y FC(8)6316
+-671 y Fd(L)p 5082 -607 1220 4 v 5072 -553 a FC(8)p Ff(x)p
+FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(1)p
+FC(^)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(fx)g
+FV(=)g Ff(fy)q FV(\))p FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k
+Ff(f1)d FV(=)f Ff(1)p 6111 -565 6 23 v 6117 -575 25 3
+v 59 w(f1)h FV(=)f Ff(f2)6301 -595 y FC(8)6336 -584 y
+Fd(L)p 5082 -521 1220 4 v 5408 -470 a Ff(f2)h FV(=)f
+Ff(1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k(T)p 5785 -482
+6 23 v 5791 -491 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)6301
+-509 y FC(8)6336 -498 y Fd(L)p 4484 -440 1493 4 v 4783
+-388 a Ff(f2)h FV(=)f Ff(1)p FZ(;)j Ff(2)l FC(\024)l
+Ff(2)p FZ(;)j Ff(f1)7 b FV(=)g Ff(1)p FZ(;)k(S)o(;)g(T)p
+5350 -400 6 23 v 5356 -410 25 3 v 67 w Ff(1)l FZ(<)l
+Ff(2)p FC(^)r Ff(f1)c FV(=)g Ff(f2)5975 -431 y FC(^)6017
+-420 y Fd(R)4329 -346 y Fc(|)p 4353 -346 978 8 v 978
+w({z)p 5379 -346 V 978 w(})5321 -284 y Fd(Y)5355 -272
+y FP(2)p 2823 91 247 4 v 2823 142 a Ff(3)l FC(\024)l
+Ff(3)p 2931 130 6 23 v 2936 120 25 3 v 60 w(3)l FC(\024)l
+Ff(3)p 3119 92 247 4 v 52 w(2)l FZ(<)l Ff(3)p 3227 130
+6 23 v 3233 120 25 3 v 61 w(2)l FZ(<)l Ff(3)p 2823 172
+543 4 v 2838 224 a(3)l FC(\024)l Ff(3)p FC(\033)r Ff(2)l
+FZ(<)l Ff(3)p FZ(;)12 b Ff(3)l FC(\024)l Ff(3)p 3211
+212 6 23 v 3217 202 25 3 v 61 w(2)l FZ(<)l Ff(3)3365
+181 y FC(\033)3413 193 y Fd(L)p 2781 254 626 4 v 2771
+308 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(3)l FC(\024)l Ff(y)q
+FC(\033)q Ff(2)l FZ(<)l Ff(y)q FV(\))p FZ(;)g Ff(3)l
+FC(\024)l Ff(3)p 3268 296 6 23 v 3274 286 25 3 v 61 w(2)l
+FZ(<)l Ff(3)3406 266 y FC(8)3441 277 y Fd(L)p 2781 340
+626 4 v 2936 392 a Ff(3)l FC(\024)l Ff(3)p FZ(;)g(S)p
+3114 380 6 23 v 3119 370 25 3 v 61 w Ff(2)l FZ(<)l Ff(3)3406
+352 y FC(8)3441 363 y Fd(L)p 3547 -70 319 4 v 3547 -19
+a Ff(f3)c FV(=)f Ff(0)p 3691 -31 6 23 v 3697 -41 25 3
+v 59 w(f3)h FV(=)f Ff(0)p 3916 -70 319 4 v 50 w(f2)g
+FV(=)g Ff(0)p 4060 -31 6 23 v 4065 -41 25 3 v 59 w(f2)h
+FV(=)f Ff(0)p 3547 1 687 4 v 3566 52 a(f3)h FV(=)f Ff(0)p
+FZ(;)k Ff(f2)c FV(=)g Ff(0)p 3869 40 6 23 v 3875 30 25
+3 v 59 w(f3)h FV(=)f Ff(0)p FC(^)p Ff(f2)g FV(=)g Ff(0)4233
+9 y FC(^)4275 20 y Fd(R)p 4372 1 351 4 v 4372 52 a Ff(f2)g
+FV(=)g Ff(f3)p 4532 40 6 23 v 4538 30 25 3 v 60 w(f2)g
+FV(=)g Ff(f3)p 3566 82 1157 4 v 3611 136 a FV(\()p Ff(f3)h
+FV(=)f Ff(0)p FC(^)o Ff(f2)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f2)h FV(=)f Ff(f3)p FZ(;)k Ff(f3)c FV(=)g Ff(0)p FZ(;)k
+Ff(f2)d FV(=)f Ff(0)p 4487 124 6 23 v 4493 114 25 3 v
+59 w(f2)g FV(=)g Ff(f3)4722 91 y FC(\033)4770 102 y Fd(L)p
+3554 168 1181 4 v 3544 222 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p
+Ff(fy)h FV(=)f Ff(0)p FC(^)p Ff(f2)g FV(=)g Ff(0)p FV(\))p
+FC(\033)p Ff(f2)h FV(=)f Ff(fy)q FV(\))p FZ(;)k Ff(f3)c
+FV(=)g Ff(0)p FZ(;)k Ff(f2)d FV(=)f Ff(0)p 4544 210 6
+23 v 4550 200 25 3 v 59 w(f2)g FV(=)g Ff(f3)4734 180
+y FC(8)4769 191 y Fd(L)p 3535 254 1220 4 v 3524 308 a
+FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)j Ff(f3)e FV(=)f
+Ff(0)p FZ(;)j Ff(f2)e FV(=)f Ff(0)p 4563 296 6 23 v 4569
+286 25 3 v 59 w(f2)h FV(=)f Ff(f3)4753 266 y FC(8)4788
+277 y Fd(L)p 3535 341 1220 4 v 3860 392 a Ff(f3)h FV(=)f
+Ff(0)p FZ(;)k Ff(f2)c FV(=)g Ff(0)p FZ(;)k(T)p 4238 380
+6 23 v 4243 370 25 3 v 67 w Ff(f2)d FV(=)f Ff(f3)4753
+352 y FC(8)4788 363 y Fd(L)p 2936 422 1493 4 v 3235 473
+a Ff(f3)h FV(=)f Ff(0)p FZ(;)k Ff(3)l FC(\024)l Ff(3)p
+FZ(;)h Ff(f2)c FV(=)f Ff(0)p FZ(;)j(S)o(;)h(T)p 3803
+461 6 23 v 3808 451 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p
+FC(^)q Ff(f2)d FV(=)f Ff(f3)4428 430 y FC(^)4469 441
+y Fd(R)4928 323 y F3(.)4928 356 y(.)4928 389 y(.)4928
+422 y(.)4900 473 y FZ(Y)4936 483 y FP(1)p 3235 503 1751
+4 v 3282 555 a Ff(f3)g FV(=)g Ff(0)p FC(_)p Ff(f3)h FV(=)f
+Ff(1)p FZ(;)j Ff(3)l FC(\024)l Ff(3)p FZ(;)j Ff(f2)7
+b FV(=)g Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h
+Ff(f1)c FV(=)f Ff(1)p FZ(;)k(S)o(;)f(T)p 4303 543 6 23
+v 4309 533 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e
+FV(=)f Ff(f3)p FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)e
+FV(=)f Ff(f3)4985 512 y FC(_)5027 523 y Fd(L)p 3226 585
+1770 4 v 3226 639 a Ff(3)l FC(\024)l Ff(3)p FZ(;)12 b
+Ff(f2)c FV(=)f Ff(0)p FZ(;)j Ff(2)l FC(\024)l Ff(3)p
+FZ(;)j Ff(f1)7 b FV(=)g Ff(1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p
+FV(\))p FZ(;)j(S)o(;)h(T)p 4359 627 6 23 v 4364 617 25
+3 v 67 w Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)c FV(=)g Ff(f3)q
+FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g Ff(f3)4995
+597 y FC(8)5030 608 y Fd(L)p 3134 671 1954 4 v 3123 736
+a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)3331
+715 y Fe(x)p Fd(;)p Fe(2)3388 736 y FV(\))p FZ(;)j Ff(f2)e
+FV(=)f Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4451 724 6 23 v 4456 714 25 3 v 67 w Ff(2)l FZ(<)l Ff(3)p
+FC(^)r Ff(f2)d FV(=)f Ff(f3)p FZ(;)j Ff(1)l FZ(<)l Ff(3)p
+FC(^)r Ff(f1)d FV(=)g Ff(f3)5087 683 y FC(8)5122 694
+y Fd(L)p 3134 768 1954 4 v 3228 822 a Ff(f2)g FV(=)g
+Ff(0)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)k(M)3728 832 y FP(1)3760 822 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)o
+Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4357
+810 6 23 v 4363 800 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p
+FC(^)q Ff(f2)e FV(=)f Ff(f3)p FZ(;)j Ff(1)l FZ(<)l Ff(3)p
+FC(^)r Ff(f1)e FV(=)f Ff(f3)5087 780 y FC(8)5122 791
+y Fd(L)5261 672 y F3(.)5261 705 y(.)5261 738 y(.)5261
+771 y(.)5233 822 y FZ(Y)5269 832 y FP(2)p 3008 855 2532
+4 v 3008 909 a Ff(f2)h FV(=)f Ff(0)p FC(_)o Ff(f2)h FV(=)f
+Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(3)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)j Ff(2)l FC(\024)l Ff(2)p FZ(;)j Ff(f1)7
+b FV(=)g Ff(1)p FZ(;)k(M)3962 919 y FP(1)3994 909 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p
+Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 4591
+897 6 23 v 4597 887 25 3 v 67 w Ff(2)l FZ(<)l Ff(3)p
+FC(^)q Ff(f2)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
+FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)d FV(=)f Ff(f2)5538 863 y FC(_)5580 874
+y Fd(L)p 3008 941 2532 4 v 3173 995 a Ff(2)l FC(\024)l
+Ff(3)p FZ(;)13 b Ff(f1)7 b FV(=)g Ff(1)p FZ(;)k Ff(2)l
+FC(\024)l Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3797
+1005 y FP(1)3829 995 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4426 983 6 23 v 4432 973 25 3 v 68
+w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e FV(=)f Ff(f3)p
+FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)5538
+953 y FC(8)5573 964 y Fd(L)p 3091 1027 2365 4 v 3091
+1081 a Ff(2)l FC(\024)l Ff(3)p FZ(;)12 b Ff(f1)c FV(=)f
+Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)j(M)3714 1091 y FP(1)3747 1081 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p
+Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4344
+1069 6 23 v 4349 1060 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(2)l FZ(<)l Ff(m)p FC(^)q Ff(f2)c FV(=)g Ff(fm)p
+FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
+Ff(f3)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
+Ff(f2)5455 1039 y FC(9)5490 1050 y Fd(R)p 3067 1114 2413
+4 v 3067 1168 a Ff(2)l FC(\024)l Ff(3)p FZ(;)12 b Ff(f1)c
+FV(=)f Ff(1)p FZ(;)k Ff(2)l FC(\024)l Ff(2)p FZ(;)h Ff(f1)c
+FV(=)f Ff(1)p FZ(;)j(M)3690 1178 y FP(1)3723 1168 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o
+Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4320
+1156 6 23 v 4325 1146 25 3 v 67 w Ff(1)l FZ(<)l Ff(3)p
+FC(^)r Ff(f1)c FV(=)g Ff(f3)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p
+FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g
+FV(=)g Ff(fm)p FV(\))5479 1125 y FC(9)5514 1136 y Fd(R)p
+2974 1200 2600 4 v 2963 1265 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(2)l FC(\024)l Ff(m)3173 1244 y Fe(x)p Fd(;)p Fe(2)3230
+1265 y FV(\))p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(2)l
+FC(\024)l Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)j(M)3783
+1275 y FP(1)3816 1265 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4413 1253 6 23 v 4418 1243 25 3 v
+68 w Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5572
+1212 y FC(8)5607 1223 y Fd(L)p 2974 1297 2600 4 v 3069
+1351 a Ff(f1)g FV(=)g Ff(1)p FZ(;)k Ff(2)l FC(\024)l
+Ff(2)p FZ(;)h Ff(f1)c FV(=)f Ff(1)p FZ(;)k(M)3569 1361
+y FP(1)3601 1351 y FZ(;)g(M)3689 1361 y FP(2)3721 1351
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4318 1339 6 23 v 4324 1329 25 3 v 68 w Ff(1)l FZ(<)l
+Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p FZ(;)k Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)g FV(=)g Ff(fm)p FV(\))5572 1309 y FC(8)5607 1320
+y Fd(L)2781 1396 y Fc(|)p 2805 1396 1387 8 v 1387 w({z)p
+4240 1396 V 1387 w(})4183 1457 y Fd(Y)4217 1469 y FP(3)2026
+1707 y Gc(M)2094 1716 y FV(1)2148 1707 y F9(=)20 b FX(8)p
+Fu(y)q Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(x)8 b FX(\024)g
+Fu(m)2555 1683 y Ff(x)p FZ(;)p Ff(y)2626 1707 y F9(\))101
+b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p
+Fu(y)q Gc(:)m F9(\(\()p Fu(fy)i F9(=)e Fu(i)p FX(^)p
+Fu(fx)g F9(=)g Fu(i)p F9(\))12 b FX(\033)g Fu(fx)19 b
+F9(=)g Fu(fy)p F9(\))2026 1833 y Gc(M)2094 1842 y FV(2)2148
+1833 y F9(=)h FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)m F9(\()p
+Fu(y)9 b FX(\024)f Fu(m)2556 1809 y Ff(x)p FZ(;)p Ff(y)2627
+1833 y F9(\))100 b Gc(S)23 b F9(=)d FX(8)p Fu(x)p Gc(:)p
+Fu(y)q Gc(:)m F9(\()p Fu(sx)8 b FX(\024)g Fu(y)k FX(\033)g
+Fu(x)c Gc(<)g Fu(y)q F9(\))6506 465 y
+ currentpoint grestore moveto
+ 6506 465 a 3543
+5116 4 4724 v 321 5119 3226 4 v Black 1295 5273 a Gg(Figure)24
+b(7:)29 b(Subproofs)d Ga(Y)2104 5287 y F9(1)2143 5273
+y Gg(,)c Ga(Y)2241 5287 y F9(2)2303 5273 y Gg(and)i Ga(Y)2510
+5287 y F9(3)2550 5273 y Gg(.)p Black Black eop end
+%%Page: 139 151
+TeXDict begin 139 150 bop Black 3831 51 a Gb(139)p 277
+88 3691 4 v Black Black 277 393 3226 4 v 277 5116 4 4724
+v 1882 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1882 465 a 2799 -418 a F3(.)2799 -384 y(.)2799
+-351 y(.)2799 -318 y(.)2757 -267 y FZ(Y)2793 -257 y FP(11)p
+3014 -832 247 4 v 3014 -780 a Ff(1)l FC(\024)l Ff(1)p
+3121 -792 6 23 v 3127 -802 25 3 v 60 w(1)l FC(\024)l
+Ff(1)p 2921 -750 431 4 v 2911 -686 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(x)l FC(\024)l Ff(m)3119 -707 y Fe(x)p Fd(;)p
+Fe(0)3175 -686 y FV(\))p 3214 -698 6 23 v 3219 -708 25
+3 v 59 w Ff(1)l FC(\024)l Ff(1)3351 -739 y FC(8)3386
+-728 y Fd(L)p 2921 -653 431 4 v 3015 -602 a FZ(M)3073
+-592 y FP(1)p 3120 -614 6 23 v 3125 -624 25 3 v 3164
+-602 a Ff(1)l FC(\024)l Ff(1)3351 -642 y FC(8)3386 -631
+y Fd(L)p 3480 -653 247 4 v 3480 -602 a Ff(0)l FZ(<)l
+Ff(1)p 3588 -614 6 23 v 3594 -624 25 3 v 61 w(0)l FZ(<)l
+Ff(1)p 3015 -572 712 4 v 3117 -520 a(1)l FC(\024)l Ff(1)p
+FC(\033)r Ff(0)l FZ(<)l Ff(1)p FZ(;)12 b(M)3440 -510
+y FP(1)p 3486 -532 6 23 v 3492 -542 25 3 v 3531 -520
+a Ff(0)l FZ(<)l Ff(1)3726 -563 y FC(\033)3774 -552 y
+Fd(L)p 3060 -490 622 4 v 3049 -436 a FC(8)p Ff(y)q FZ(:)p
+FV(\()p Ff(1)l FC(\024)l Ff(y)q FC(\033)r Ff(0)l FZ(<)l
+Ff(y)q FV(\))p FZ(;)g(M)3497 -426 y FP(1)p 3543 -448
+6 23 v 3549 -458 25 3 v 3588 -436 a Ff(0)l FZ(<)l Ff(1)3681
+-479 y FC(8)3716 -468 y Fd(L)p 3060 -404 622 4 v 3214
+-353 a FZ(M)3272 -343 y FP(1)3305 -353 y FZ(;)e(S)p 3389
+-365 6 23 v 3394 -375 25 3 v 61 w Ff(0)l FZ(<)l Ff(1)3681
+-392 y FC(8)3716 -381 y Fd(L)p 3904 -991 319 4 v 3904
+-939 a Ff(f1)e FV(=)f Ff(0)p 4048 -951 6 23 v 4054 -961
+25 3 v 59 w(f1)h FV(=)f Ff(0)p 4272 -991 319 4 v 49 w(f1)h
+FV(=)f Ff(1)p 4416 -951 6 23 v 4422 -961 25 3 v 59 w(f1)h
+FV(=)f Ff(1)p 3904 -920 687 4 v 3923 -868 a(f1)h FV(=)f
+Ff(0)p FC(_)o Ff(f1)h FV(=)f Ff(1)p 4238 -880 6 23 v
+4244 -890 25 3 v 59 w(f1)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e
+FV(=)f Ff(1)4590 -911 y FC(_)4632 -900 y Fd(L)p 3867
+-839 761 4 v 3857 -785 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4294 -797 6 23 v 4300 -807 25 3 v 59 w Ff(f1)h FV(=)f
+Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)4627 -827 y FC(8)4662
+-816 y Fd(L)p 4793 -991 319 4 v 4793 -939 a Ff(f0)g FV(=)g
+Ff(0)p 4937 -951 6 23 v 4942 -961 25 3 v 59 w(f0)h FV(=)f
+Ff(0)p 5161 -991 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5305
+-951 6 23 v 5311 -961 25 3 v 59 w(f0)h FV(=)f Ff(1)p
+4793 -920 687 4 v 4812 -868 a(f0)g FV(=)g Ff(0)p FC(_)p
+Ff(f0)h FV(=)f Ff(1)p 5127 -880 6 23 v 5133 -890 25 3
+v 59 w(f0)g FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5479
+-911 y FC(_)5520 -900 y Fd(L)p 4756 -839 761 4 v 4745
+-785 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p 5183 -797 6 23 v
+5188 -807 25 3 v 59 w Ff(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f0)c
+FV(=)g Ff(1)5516 -827 y FC(8)5551 -816 y Fd(L)p 3867
+-752 1650 4 v 4136 -698 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)g FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4573 -710 6 23 v 4579 -720 25 3 v 59 w Ff(f1)g FV(=)g
+Ff(0)p FC(^)p Ff(f0)h FV(=)f Ff(0)p FZ(;)j Ff(f1)e FV(=)f
+Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5516 -744 y FC(^)5557
+-733 y Fd(R)p 5654 -750 351 4 v 5654 -698 a Ff(f0)h FV(=)f
+Ff(f1)p 5814 -710 6 23 v 5820 -720 25 3 v 59 w(f0)h FV(=)f
+Ff(f1)p 4146 -666 1859 4 v 4321 -612 a FV(\()p Ff(f1)h
+FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f0)h FV(=)f Ff(f1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+5321 -624 6 23 v 5326 -634 25 3 v 59 w Ff(f0)h FV(=)f
+Ff(f1)p FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(f0)e FV(=)f
+Ff(1)6004 -657 y FC(\033)6052 -646 y Fd(L)p 4264 -580
+1623 4 v 4254 -526 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
+FV(=)f Ff(0)p FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)p
+Ff(f0)h FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p
+FV(\))p 5377 -538 6 23 v 5383 -548 25 3 v 59 w Ff(f0)h
+FV(=)f Ff(f1)p FZ(;)k Ff(f1)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d
+FV(=)f Ff(1)5886 -568 y FC(8)5921 -557 y Fd(L)p 4245
+-493 1662 4 v 4234 -439 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
+FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)o Ff(fx)h
+FV(=)f Ff(0)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
+FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)g FV(=)g
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p 5397 -451
+6 23 v 5403 -461 25 3 v 59 w Ff(f0)g FV(=)g Ff(f1)q FZ(;)j
+Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5906
+-482 y FC(8)5941 -471 y Fd(L)p 4245 -407 1662 4 v 4560
+-353 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(T)p 5071
+-365 6 23 v 5077 -375 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5906
+-395 y FC(8)5941 -384 y Fd(L)p 3214 -321 2367 4 v 3732
+-267 a FZ(M)3790 -257 y FP(1)3822 -267 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4419 -279 6
+23 v 4425 -289 25 3 v 68 w Ff(f1)d FV(=)g Ff(1)p FZ(;)k
+Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
+Ff(f0)c FV(=)g Ff(1)5580 -312 y FC(^)5621 -301 y Fd(R)p
+2624 -234 2556 4 v 2624 -180 a FZ(M)2682 -170 y FP(1)2714
+-180 y FZ(;)j(M)2801 -170 y FP(2)2834 -180 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3431 -192 6
+23 v 3436 -202 25 3 v 67 w Ff(f2)d FV(=)f Ff(1)p FC(^)p
+Ff(f1)h FV(=)f Ff(1)p FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r
+Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)q
+Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q
+Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q
+Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)5178
+-226 y FC(^)5220 -215 y Fd(R)2624 -136 y Fc(|)p 2648
+-136 1689 8 v 1689 w({z)p 4385 -136 V 1689 w(})4312 -74
+y Fd(Y)4346 -62 y FP(12)p 2164 39 247 4 v 2164 91 a Ff(2)l
+FC(\024)l Ff(2)p 2272 79 6 23 v 2278 69 25 3 v 61 w(2)l
+FC(\024)l Ff(2)p 2071 121 433 4 v 2061 186 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(m)2271 165 y Fe(x)p
+Fd(;)p Fe(2)2327 186 y FV(\))p 2365 174 6 23 v 2371 164
+25 3 v 59 w Ff(2)l FC(\024)l Ff(2)2503 133 y FC(8)2538
+144 y Fd(L)p 2071 218 433 4 v 2166 270 a FZ(M)2224 280
+y FP(2)p 2270 258 6 23 v 2276 248 25 3 v 2315 270 a Ff(2)l
+FC(\024)l Ff(2)2503 230 y FC(8)2538 241 y Fd(L)p 2632
+219 247 4 v 2632 270 a Ff(1)l FZ(<)l Ff(2)p 2740 258
+6 23 v 2745 248 25 3 v 60 w(1)l FZ(<)l Ff(2)p 2166 300
+713 4 v 2268 351 a(2)l FC(\024)l Ff(2)p FC(\033)r Ff(1)l
+FZ(<)l Ff(2)p FZ(;)12 b(M)2591 361 y FP(2)p 2638 339
+6 23 v 2643 329 25 3 v 2682 351 a Ff(1)l FZ(<)l Ff(2)2877
+309 y FC(\033)2925 320 y Fd(L)p 2211 381 622 4 v 2201
+435 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l Ff(y)q
+FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)2648
+445 y FP(2)p 2695 423 6 23 v 2700 413 25 3 v 2739 435
+a Ff(1)l FZ(<)l Ff(2)2832 393 y FC(8)2867 404 y Fd(L)p
+2211 468 622 4 v 2366 519 a FZ(M)2424 529 y FP(2)2456
+519 y FZ(;)f(S)p 2540 507 6 23 v 2546 497 25 3 v 61 w
+Ff(1)l FZ(<)l Ff(2)2832 479 y FC(8)2867 490 y Fd(L)4375
+25 y F3(.)4375 58 y(.)4375 92 y(.)4375 125 y(.)4333 176
+y FZ(Y)4369 186 y FP(12)p 4498 125 351 4 v 4498 176 a
+Ff(f1)c FV(=)g Ff(f2)p 4658 164 6 23 v 4663 154 25 3
+v 59 w(f1)h FV(=)f Ff(f2)p 3095 206 2974 4 v 3095 259
+a FV(\()p Ff(f2)h FV(=)f Ff(1)p FC(^)p Ff(f1)g FV(=)g
+Ff(1)p FV(\))p FC(\033)q Ff(f1)g FV(=)g Ff(f2)q FZ(;)j(M)3726
+269 y FP(1)3758 259 y FZ(;)h(M)3846 269 y FP(2)3878 259
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+4475 247 6 23 v 4481 238 25 3 v 68 w Ff(f1)e FV(=)f Ff(f2)p
+FZ(;)j Ff(2)l FZ(<)l Ff(3)p FC(^)r Ff(f2)d FV(=)g Ff(f3)q
+FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q
+FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)e FV(=)f Ff(f3)p
+FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)k Ff(f0)d FV(=)f Ff(1)6068 215 y FC(\033)6116 226
+y Fd(L)p 3039 292 3087 4 v 3028 346 a FC(8)p Ff(y)q FZ(:)p
+FV(\(\()p Ff(fy)h FV(=)f Ff(1)p FC(^)p Ff(f1)h FV(=)f
+Ff(1)p FV(\))p FC(\033)p Ff(f1)g FV(=)g Ff(fy)q FV(\))p
+FZ(;)k(M)3783 356 y FP(1)3815 346 y FZ(;)g(M)3903 356
+y FP(2)3935 346 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4532 334 6 23 v 4538 324 25 3 v 68
+w Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(2)l FZ(<)l Ff(3)p
+FC(^)r Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(0)l FZ(<)l Ff(1)p
+FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
+FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p
+FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c FV(=)g Ff(1)6125
+304 y FC(8)6160 315 y Fd(L)p 3019 378 3127 4 v 3008 432
+a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(1)p FC(^)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)3802 442 y FP(1)3835
+432 y FZ(;)g(M)3922 442 y FP(2)3955 432 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 4552 420 6 23
+v 4557 410 25 3 v 67 w Ff(f1)d FV(=)f Ff(f2)p FZ(;)k
+Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p FZ(;)k
+Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
+Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)j
+Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j
+Ff(f0)e FV(=)f Ff(1)6144 390 y FC(8)6179 401 y Fd(L)p
+3019 465 3127 4 v 3382 519 a FZ(M)3440 529 y FP(1)3472
+519 y FZ(;)j(M)3559 529 y FP(2)3592 519 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4189 507 6 23
+v 4195 497 25 3 v 68 w Ff(f1)d FV(=)g Ff(f2)q FZ(;)j
+Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e FV(=)f Ff(f3)p FZ(;)k
+Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k
+Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k
+Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)j
+Ff(f0)e FV(=)f Ff(1)6144 476 y FC(8)6179 487 y Fd(L)p
+2366 551 3417 4 v 2806 605 a FZ(M)2864 615 y FP(1)2896
+605 y FZ(;)k(M)2984 615 y FP(2)3016 605 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 3613 593 6 23
+v 3619 583 25 3 v 68 w Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)e
+FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d
+FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d
+FV(=)f Ff(f3)p FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d
+FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d
+FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)5781 559 y
+FC(^)5823 570 y Fd(R)p 2724 637 2701 4 v 2724 691 a FZ(M)2782
+701 y FP(1)2814 691 y FZ(;)k(M)2902 701 y FP(2)2934 691
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+3531 679 6 23 v 3537 669 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(2)l FZ(<)l Ff(m)p FC(^)q Ff(f2)e FV(=)f Ff(fm)o
+FV(\))p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
+Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
+Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
+Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f
+Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)5423 649 y FC(9)5458
+660 y Fd(R)p 2700 724 2749 4 v 2700 778 a FZ(M)2758 788
+y FP(1)2790 778 y FZ(;)k(M)2878 788 y FP(2)2910 778 y
+FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p
+FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p
+3507 766 6 23 v 3513 756 25 3 v 68 w Ff(0)l FZ(<)l Ff(1)p
+FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(3)p
+FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)j Ff(0)l FZ(<)l Ff(1)p
+FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(2)p
+FC(^)r Ff(f1)d FV(=)g Ff(f2)q FZ(;)j Ff(f0)e FV(=)f Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5447
+735 y FC(9)5482 746 y Fd(R)p 2618 810 2913 4 v 2618 864
+a FZ(M)2676 874 y FP(1)2708 864 y FZ(;)j(M)2795 874 y
+FP(2)2828 864 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+3425 852 6 23 v 3430 842 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p
+FV(\()p Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)c FV(=)g Ff(fm)p
+FV(\))p FZ(;)k Ff(1)l FZ(<)l Ff(3)p FC(^)q Ff(f1)d FV(=)f
+Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f
+Ff(f1)p FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)e FV(=)f
+Ff(f2)p FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p
+FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q
+Ff(fn)h FV(=)f Ff(fm)o FV(\))5530 822 y FC(9)5565 833
+y Fd(R)p 2618 896 2913 4 v 2855 950 a FZ(M)2913 960 y
+FP(1)2946 950 y FZ(;)j(M)3033 960 y FP(2)3065 950 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p
+Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3662
+938 6 23 v 3668 928 25 3 v 67 w Ff(1)l FZ(<)l Ff(3)p
+FC(^)q Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l Ff(1)p
+FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(1)l FZ(<)l Ff(2)p
+FC(^)q Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)c FV(=)g Ff(1)p
+FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l
+FZ(<)l Ff(m)p FC(^)q Ff(fn)h FV(=)f Ff(fm)p FV(\))5530
+908 y FC(9)5565 919 y Fd(R)p 2773 983 2603 4 v 2773 1037
+a FZ(M)2831 1047 y FP(1)2863 1037 y FZ(;)k(M)2951 1047
+y FP(2)2983 1037 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 3580 1025 6 23 v 3586 1015 25 3 v
+57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p
+FC(^)q Ff(f1)e FV(=)f Ff(fm)p FV(\))p FZ(;)j Ff(0)l FZ(<)l
+Ff(1)p FC(^)r Ff(f0)d FV(=)g Ff(f1)q FZ(;)j Ff(1)l FZ(<)l
+Ff(2)p FC(^)q Ff(f1)e FV(=)f Ff(f2)p FZ(;)k Ff(f0)d FV(=)f
+Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p
+Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5374
+994 y FC(9)5409 1005 y Fd(R)p 2773 1069 2603 4 v 3011
+1123 a FZ(M)3069 1133 y FP(1)3101 1123 y FZ(;)j(M)3188
+1133 y FP(2)3221 1123 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)e FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 3818 1111 6 23 v 3823 1101 25 3 v
+68 w Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)j Ff(1)l FZ(<)l Ff(2)p FC(^)r Ff(f1)d FV(=)g Ff(f2)q
+FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)o FV(\))5374 1081 y FC(9)5409 1092 y Fd(R)p
+2928 1155 2292 4 v 2928 1209 a FZ(M)2986 1219 y FP(1)3019
+1209 y FZ(;)j(M)3106 1219 y FP(2)3138 1209 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f Ff(0)p FC(_)p Ff(fx)h
+FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p 3735 1197 6
+23 v 3741 1187 25 3 v 57 w FC(9)p Ff(m)p FZ(:)p FV(\()p
+Ff(0)l FZ(<)l Ff(m)p FC(^)q Ff(f0)c FV(=)g Ff(fm)p FV(\))p
+FZ(;)k Ff(1)l FZ(<)l Ff(2)p FC(^)q Ff(f1)d FV(=)f Ff(f2)p
+FZ(;)j Ff(f0)e FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)p FV(\))5219 1167 y FC(9)5254 1178 y Fd(R)p
+2928 1242 2292 4 v 3166 1296 a FZ(M)3224 1306 y FP(1)3256
+1296 y FZ(;)k(M)3344 1306 y FP(2)3376 1296 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3973 1284 6
+23 v 3979 1274 25 3 v 67 w Ff(1)l FZ(<)l Ff(2)p FC(^)q
+Ff(f1)d FV(=)f Ff(f2)p FZ(;)k Ff(f0)d FV(=)f Ff(1)p FZ(;)p
+FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l
+Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p FV(\))5219 1253
+y FC(9)5254 1264 y Fd(R)p 3084 1328 1981 4 v 3084 1382
+a FZ(M)3142 1392 y FP(1)3174 1382 y FZ(;)k(M)3262 1392
+y FP(2)3294 1382 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 3891 1370 6 23 v 3897 1360 25 3 v
+57 w FC(9)p Ff(m)p FZ(:)p FV(\()p Ff(1)l FZ(<)l Ff(m)p
+FC(^)q Ff(f1)e FV(=)f Ff(fm)p FV(\))p FZ(;)j Ff(f0)e
+FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p Ff(m)p FZ(:)p
+FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)g FV(=)g Ff(fm)p
+FV(\))5063 1340 y FC(9)5098 1351 y Fd(R)p 3084 1414 1981
+4 v 3322 1468 a FZ(M)3380 1478 y FP(1)3412 1468 y FZ(;)j(M)3499
+1478 y FP(2)3532 1468 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)g Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)j(S)o(;)h(T)p 4129 1456 6 23 v 4134 1446 25 3 v
+67 w Ff(f0)d FV(=)f Ff(1)p FZ(;)p FC(9)p Ff(n)p FZ(:)p
+Ff(m)p FZ(:)p FV(\()p Ff(n)l FZ(<)l Ff(m)p FC(^)q Ff(fn)h
+FV(=)f Ff(fm)p FV(\))5063 1426 y FC(9)5098 1437 y Fd(R)2071
+1513 y Fc(|)p 2095 1513 2028 8 v 2028 w({z)p 4171 1513
+V 2028 w(})4100 1574 y Fd(Y)4134 1586 y FP(13)1982 1765
+y Gc(M)2050 1774 y FV(1)2104 1765 y F9(=)19 b FX(8)p
+Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p Fu(x)8 b FX(\024)g
+Fu(m)2511 1742 y Ff(x)p FZ(;)p Ff(y)2582 1765 y F9(\))101
+b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p Gc(:)p Fu(x)p Gc(:)p
+Fu(y)q Gc(:)m F9(\(\()p Fu(fy)h F9(=)g Fu(i)p FX(^)p
+Fu(fx)e F9(=)i Fu(i)p F9(\))12 b FX(\033)g Fu(fx)18 b
+F9(=)i Fu(fy)p F9(\))1982 1892 y Gc(M)2050 1901 y FV(2)2104
+1892 y F9(=)f FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)n F9(\()p
+Fu(y)9 b FX(\024)f Fu(m)2512 1868 y Ff(x)p FZ(;)p Ff(y)2583
+1892 y F9(\))100 b Gc(S)23 b F9(=)d FX(8)p Fu(x)p Gc(:)p
+Fu(y)q Gc(:)m F9(\()p Fu(sx)8 b FX(\024)g Fu(y)k FX(\033)g
+Fu(x)c Gc(<)g Fu(y)q F9(\))6462 465 y
+ currentpoint grestore moveto
+ 6462 465 a 3499
+5116 4 4724 v 277 5119 3226 4 v Black 1285 5273 a Gg(Figure)24
+b(8:)29 b(Subproofs)c Ga(Y)2093 5287 y F9(12)2190 5273
+y Gg(and)f Ga(Y)2397 5287 y F9(13)2472 5273 y Gg(.)p
+Black Black eop end
+%%Page: 140 152
+TeXDict begin 140 151 bop Black -144 51 a Gb(140)2816
+b(Experimental)24 b(Data)p -144 88 3691 4 v Black Black
+321 393 3226 4 v 321 5116 4 4724 v 1927 465 a
+ gsave currentpoint currentpoint translate -90 neg rotate neg exch
+neg exch translate
+ 1927 465
+a 2283 -864 247 4 v 2283 -813 a Ff(3)l FC(\024)l Ff(3)p
+2391 -825 6 23 v 2396 -835 25 3 v 61 w(3)l FC(\024)l
+Ff(3)p 2191 -783 431 4 v 2180 -718 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(x)l FC(\024)l Ff(m)2388 -739 y Fe(x)p Fd(;)p
+Fe(2)2445 -718 y FV(\))p 2483 -730 6 23 v 2489 -740 25
+3 v 59 w Ff(3)l FC(\024)l Ff(3)2621 -771 y FC(8)2656
+-760 y Fd(L)p 2191 -686 431 4 v 2285 -634 a FZ(M)2343
+-624 y FP(1)p 2389 -646 6 23 v 2395 -656 25 3 v 2434
+-634 a Ff(3)l FC(\024)l Ff(3)2621 -674 y FC(8)2656 -663
+y Fd(L)p 2749 -685 247 4 v 2749 -634 a Ff(2)l FZ(<)l
+Ff(3)p 2857 -646 6 23 v 2863 -656 25 3 v 61 w(2)l FZ(<)l
+Ff(3)p 2285 -604 712 4 v 2386 -552 a(3)l FC(\024)l Ff(3)p
+FC(\033)r Ff(2)l FZ(<)l Ff(3)p FZ(;)12 b(M)2709 -542
+y FP(1)p 2756 -564 6 23 v 2761 -574 25 3 v 2800 -552
+a Ff(2)l FZ(<)l Ff(3)2995 -595 y FC(\033)3043 -584 y
+Fd(L)p 2329 -522 622 4 v 2319 -468 a FC(8)p Ff(y)q FZ(:)p
+FV(\()p Ff(3)l FC(\024)l Ff(y)q FC(\033)q Ff(2)l FZ(<)l
+Ff(y)q FV(\))p FZ(;)g(M)2766 -458 y FP(1)p 2813 -480
+6 23 v 2818 -490 25 3 v 2857 -468 a Ff(2)l FZ(<)l Ff(3)2950
+-511 y FC(8)2985 -500 y Fd(L)p 2329 -436 622 4 v 2484
+-385 a FZ(M)2542 -375 y FP(1)2574 -385 y FZ(;)f(S)p 2658
+-397 6 23 v 2664 -407 25 3 v 61 w Ff(2)l FZ(<)l Ff(3)2950
+-424 y FC(8)2985 -413 y Fd(L)p 3173 -1023 319 4 v 3173
+-972 a Ff(f3)d FV(=)f Ff(0)p 3317 -984 6 23 v 3323 -994
+25 3 v 59 w(f3)h FV(=)f Ff(0)p 3542 -1023 319 4 v 50
+w(f3)g FV(=)g Ff(1)p 3686 -984 6 23 v 3691 -994 25 3
+v 60 w(f3)g FV(=)g Ff(1)p 3173 -952 687 4 v 3192 -900
+a(f3)h FV(=)f Ff(0)p FC(_)p Ff(f3)g FV(=)g Ff(1)p 3508
+-912 6 23 v 3513 -922 25 3 v 59 w(f3)h FV(=)f Ff(0)p
+FZ(;)k Ff(f3)c FV(=)g Ff(1)3859 -943 y FC(_)3901 -932
+y Fd(L)p 3136 -871 761 4 v 3126 -817 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 3563 -829 6 23 v 3569 -839 25 3 v 59 w
+Ff(f3)h FV(=)f Ff(0)p FZ(;)j Ff(f3)e FV(=)f Ff(1)3896
+-859 y FC(8)3931 -848 y Fd(L)p 4062 -1023 319 4 v 4062
+-972 a Ff(f2)h FV(=)f Ff(0)p 4206 -984 6 23 v 4212 -994
+25 3 v 59 w(f2)g FV(=)g Ff(0)p 4430 -1023 319 4 v 50
+w(f2)h FV(=)f Ff(1)p 4574 -984 6 23 v 4580 -994 25 3
+v 59 w(f2)h FV(=)f Ff(1)p 4062 -952 687 4 v 4081 -900
+a(f2)h FV(=)f Ff(0)p FC(_)o Ff(f2)h FV(=)f Ff(1)p 4396
+-912 6 23 v 4402 -922 25 3 v 59 w(f2)h FV(=)f Ff(0)p
+FZ(;)j Ff(f2)e FV(=)f Ff(1)4748 -943 y FC(_)4790 -932
+y Fd(L)p 4025 -871 761 4 v 4014 -817 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 4452 -829 6 23 v 4458 -839 25 3 v 59 w
+Ff(f2)g FV(=)g Ff(0)p FZ(;)k Ff(f2)d FV(=)f Ff(1)4785
+-859 y FC(8)4820 -848 y Fd(L)p 3136 -785 1650 4 v 3405
+-731 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 3842 -743 6 23 v
+3848 -752 25 3 v 59 w Ff(f3)h FV(=)f Ff(0)p FC(^)o Ff(f2)h
+FV(=)f Ff(0)p FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f2)d
+FV(=)f Ff(1)4785 -776 y FC(^)4826 -765 y Fd(R)p 4923
+-782 351 4 v 4923 -731 a Ff(f2)h FV(=)f Ff(f3)p 5083
+-743 6 23 v 5089 -752 25 3 v 59 w(f2)h FV(=)f Ff(f3)p
+3415 -698 1859 4 v 3590 -644 a FV(\()p Ff(f3)h FV(=)f
+Ff(0)p FC(^)p Ff(f2)g FV(=)g Ff(0)p FV(\))p FC(\033)p
+Ff(f2)h FV(=)f Ff(f3)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+4590 -656 6 23 v 4596 -666 25 3 v 59 w Ff(f2)g FV(=)g
+Ff(f3)q FZ(;)j Ff(f3)e FV(=)f Ff(1)p FZ(;)j Ff(f2)e FV(=)f
+Ff(1)5273 -689 y FC(\033)5321 -678 y Fd(L)p 3533 -612
+1623 4 v 3523 -558 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h
+FV(=)f Ff(0)p FC(^)p Ff(f2)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f2)g FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p
+FV(\))p 4647 -570 6 23 v 4652 -580 25 3 v 59 w Ff(f2)h
+FV(=)f Ff(f3)p FZ(;)k Ff(f3)d FV(=)f Ff(1)p FZ(;)j Ff(f2)e
+FV(=)f Ff(1)5155 -600 y FC(8)5190 -589 y Fd(L)p 3514
+-526 1662 4 v 3503 -472 a FC(8)p Ff(x)p FZ(:)p Ff(y)q
+FZ(:)p FV(\(\()p Ff(fy)i FV(=)e Ff(0)p FC(^)p Ff(fx)g
+FV(=)g Ff(0)p FV(\))p FC(\033)p Ff(fx)h FV(=)f Ff(fy)q
+FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f
+Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p 4666 -484
+6 23 v 4672 -493 25 3 v 59 w Ff(f2)h FV(=)f Ff(f3)p FZ(;)k
+Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f2)d FV(=)f Ff(1)5175
+-514 y FC(8)5210 -503 y Fd(L)p 3514 -439 1662 4 v 3829
+-385 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p
+FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(T)p 4340
+-397 6 23 v 4346 -407 25 3 v 67 w Ff(f2)d FV(=)f Ff(f3)p
+FZ(;)k Ff(f3)c FV(=)g Ff(1)p FZ(;)k Ff(f2)d FV(=)f Ff(1)5175
+-427 y FC(8)5210 -416 y Fd(L)p 2484 -353 2367 4 v 3001
+-299 a FZ(M)3059 -289 y FP(1)3091 -299 y FZ(;)p FC(8)p
+Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g
+FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 3688 -311 6
+23 v 3694 -321 25 3 v 68 w Ff(f3)e FV(=)f Ff(1)p FZ(;)j
+Ff(f2)e FV(=)f Ff(1)p FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q
+Ff(f2)d FV(=)f Ff(f3)4849 -345 y FC(^)4891 -333 y Fd(R)2191
+-254 y Fc(|)p 2215 -254 1540 8 v 1540 w({z)p 3803 -254
+V 1540 w(})3745 -193 y Fd(Y)3779 -181 y FP(9)2786 478
+y F3(.)2786 511 y(.)2786 544 y(.)2786 578 y(.)2758 629
+y FZ(Y)2794 639 y FP(9)p 2986 64 247 4 v 2986 115 a Ff(1)l
+FC(\024)l Ff(1)p 3094 103 6 23 v 3099 93 25 3 v 60 w(1)l
+FC(\024)l Ff(1)p 2894 145 431 4 v 2883 210 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(x)l FC(\024)l Ff(m)3091 189 y Fe(x)p
+Fd(;)p Fe(0)3148 210 y FV(\))p 3186 198 6 23 v 3191 188
+25 3 v 58 w Ff(1)l FC(\024)l Ff(1)3323 157 y FC(8)3358
+168 y Fd(L)p 2894 242 431 4 v 2987 294 a FZ(M)3045 304
+y FP(1)p 3092 282 6 23 v 3098 272 25 3 v 3137 294 a Ff(1)l
+FC(\024)l Ff(1)3323 254 y FC(8)3358 265 y Fd(L)p 3452
+243 247 4 v 3452 294 a Ff(0)l FZ(<)l Ff(1)p 3560 282
+6 23 v 3566 272 25 3 v 61 w(0)l FZ(<)l Ff(1)p 2987 324
+712 4 v 3089 375 a(1)l FC(\024)l Ff(1)p FC(\033)r Ff(0)l
+FZ(<)l Ff(1)p FZ(;)12 b(M)3412 385 y FP(1)p 3459 363
+6 23 v 3464 353 25 3 v 3503 375 a Ff(0)l FZ(<)l Ff(1)3698
+333 y FC(\033)3746 344 y Fd(L)p 3032 405 622 4 v 3021
+459 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(1)l FC(\024)l Ff(y)q
+FC(\033)r Ff(0)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)3469
+469 y FP(1)p 3515 447 6 23 v 3521 437 25 3 v 3560 459
+a Ff(0)l FZ(<)l Ff(1)3653 417 y FC(8)3688 428 y Fd(L)p
+3032 492 622 4 v 3187 543 a FZ(M)3245 553 y FP(1)3277
+543 y FZ(;)e(S)p 3361 531 6 23 v 3367 521 25 3 v 62 w
+Ff(0)l FZ(<)l Ff(1)3653 503 y FC(8)3688 514 y Fd(L)p
+3876 -95 319 4 v 3876 -44 a Ff(f1)e FV(=)f Ff(0)p 4020
+-56 6 23 v 4026 -66 25 3 v 59 w(f1)h FV(=)f Ff(0)p 4245
+-95 319 4 v 50 w(f1)g FV(=)g Ff(1)p 4389 -56 6 23 v 4394
+-66 25 3 v 59 w(f1)h FV(=)f Ff(1)p 3876 -24 687 4 v 3895
+27 a(f1)h FV(=)f Ff(0)p FC(_)o Ff(f1)h FV(=)f Ff(1)p
+4210 15 6 23 v 4216 5 25 3 v 59 w(f1)h FV(=)f Ff(0)p
+FZ(;)k Ff(f1)c FV(=)g Ff(1)4562 -16 y FC(_)4604 -5 y
+Fd(L)p 3839 57 761 4 v 3829 111 a FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 4266 99 6 23 v 4272 89 25 3 v 59 w Ff(f1)h FV(=)f
+Ff(0)p FZ(;)j Ff(f1)e FV(=)f Ff(1)4599 69 y FC(8)4634
+80 y Fd(L)p 4765 -95 319 4 v 4765 -44 a Ff(f0)h FV(=)f
+Ff(0)p 4909 -56 6 23 v 4915 -66 25 3 v 59 w(f0)g FV(=)g
+Ff(0)p 5133 -95 319 4 v 50 w(f0)h FV(=)f Ff(1)p 5277
+-56 6 23 v 5283 -66 25 3 v 59 w(f0)h FV(=)f Ff(1)p 4765
+-24 687 4 v 4784 27 a(f0)g FV(=)g Ff(0)p FC(_)p Ff(f0)h
+FV(=)f Ff(1)p 5099 15 6 23 v 5105 5 25 3 v 59 w(f0)g
+FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5451 -16 y FC(_)5492
+-5 y Fd(L)p 4728 57 761 4 v 4717 111 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 5155 99 6 23 v 5161 89 25 3 v 59 w Ff(f0)g
+FV(=)g Ff(0)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5488 69 y FC(8)5523
+80 y Fd(L)p 3839 143 1650 4 v 4108 197 a FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p 4545 185 6 23 v 4551 175 25 3 v 59 w Ff(f1)h
+FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FZ(;)k Ff(f1)c
+FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5488 151 y FC(^)5529
+163 y Fd(R)p 5626 146 351 4 v 5626 197 a Ff(f0)h FV(=)f
+Ff(f1)p 5786 185 6 23 v 5792 175 25 3 v 59 w(f0)h FV(=)f
+Ff(f1)p 4118 230 1859 4 v 4293 284 a FV(\()p Ff(f1)h
+FV(=)f Ff(0)p FC(^)o Ff(f0)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(f0)h FV(=)f Ff(f1)p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+5293 272 6 23 v 5298 262 25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p
+FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(f0)e FV(=)f Ff(1)5976
+239 y FC(\033)6024 250 y Fd(L)p 4236 316 1623 4 v 4226
+370 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)h FV(=)f Ff(0)p
+FC(^)p Ff(f0)g FV(=)g Ff(0)p FV(\))p FC(\033)q Ff(f0)g
+FV(=)g Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+5350 358 6 23 v 5355 348 25 3 v 59 w Ff(f0)h FV(=)f Ff(f1)p
+FZ(;)k Ff(f1)d FV(=)f Ff(1)p FZ(;)j Ff(f0)e FV(=)f Ff(1)5858
+328 y FC(8)5893 339 y Fd(L)p 4217 402 1662 4 v 4206 456
+a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(0)p FC(^)o Ff(fx)h FV(=)f Ff(0)p FV(\))p FC(\033)p
+Ff(fx)h FV(=)f Ff(fy)q FV(\))p FZ(;)p FC(8)p Ff(x)p FZ(:)p
+FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p
+FV(\))p 5369 444 6 23 v 5375 434 25 3 v 59 w Ff(f0)h
+FV(=)f Ff(f1)p FZ(;)j Ff(f1)e FV(=)f Ff(1)p FZ(;)k Ff(f0)c
+FV(=)g Ff(1)5878 414 y FC(8)5913 425 y Fd(L)p 4217 489
+1662 4 v 4532 543 a FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h
+FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)k(T)p
+5043 531 6 23 v 5049 521 25 3 v 67 w Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)k Ff(f1)c FV(=)g Ff(1)p FZ(;)k Ff(f0)d FV(=)f Ff(1)5878
+500 y FC(8)5913 511 y Fd(L)p 3187 575 2367 4 v 3704 629
+a FZ(M)3762 639 y FP(1)3794 629 y FZ(;)p FC(8)p Ff(x)p
+FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f
+Ff(1)p FV(\))p FZ(;)k(S)o(;)f(T)p 4391 617 6 23 v 4397
+607 25 3 v 68 w Ff(f1)d FV(=)g Ff(1)p FZ(;)k Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)d FV(=)f
+Ff(1)5552 583 y FC(^)5593 594 y Fd(R)p 2740 661 2296
+4 v 2901 715 a FZ(M)2959 725 y FP(1)2991 715 y FZ(;)p
+FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)h FV(=)f Ff(0)p FC(_)p
+Ff(fx)g FV(=)g Ff(1)p FV(\))p FZ(;)k(S)o(;)g(T)p 3588
+703 6 23 v 3594 693 25 3 v 67 w Ff(f3)d FV(=)f Ff(1)p
+FC(^)o Ff(f1)h FV(=)f Ff(1)p FZ(;)k Ff(f2)c FV(=)g Ff(1)p
+FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p
+FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)k Ff(f0)c FV(=)g Ff(1)5035 669 y FC(^)5076 681 y
+Fd(R)2740 760 y Fc(|)p 2764 760 1617 8 v 1617 w({z)p
+4429 760 V 1617 w(})4356 821 y Fd(Y)4390 833 y FP(10)p
+2500 935 247 4 v 2500 987 a Ff(2)l FC(\024)l Ff(3)p 2607
+975 6 23 v 2613 965 25 3 v 60 w(2)l FC(\024)l Ff(3)p
+2406 1017 433 4 v 2396 1081 a FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(2)l FC(\024)l Ff(m)2606 1061 y Fe(x)p Fd(;)p Fe(2)2662
+1081 y FV(\))p 2701 1069 6 23 v 2706 1060 25 3 v 59 w
+Ff(2)l FC(\024)l Ff(3)2838 1028 y FC(8)2873 1039 y Fd(L)p
+2406 1114 433 4 v 2501 1165 a FZ(M)2559 1175 y FP(2)p
+2606 1153 6 23 v 2611 1143 25 3 v 2650 1165 a Ff(2)l
+FC(\024)l Ff(3)2838 1125 y FC(8)2873 1136 y Fd(L)p 2967
+1115 247 4 v 2967 1165 a Ff(1)l FZ(<)l Ff(3)p 3075 1153
+6 23 v 3081 1143 25 3 v 61 w(1)l FZ(<)l Ff(3)p 2501 1195
+713 4 v 2603 1247 a(2)l FC(\024)l Ff(3)p FC(\033)r Ff(1)l
+FZ(<)l Ff(3)p FZ(;)12 b(M)2926 1257 y FP(2)p 2973 1235
+6 23 v 2979 1225 25 3 v 3018 1247 a Ff(1)l FZ(<)l Ff(3)3213
+1204 y FC(\033)3261 1216 y Fd(L)p 2546 1277 622 4 v 2536
+1331 a FC(8)p Ff(y)q FZ(:)p FV(\()p Ff(2)l FC(\024)l
+Ff(y)q FC(\033)q Ff(1)l FZ(<)l Ff(y)q FV(\))p FZ(;)g(M)2983
+1341 y FP(2)p 3030 1319 6 23 v 3035 1309 25 3 v 3075
+1331 a Ff(1)l FZ(<)l Ff(3)3167 1289 y FC(8)3202 1300
+y Fd(L)p 2546 1363 622 4 v 2701 1414 a FZ(M)2759 1424
+y FP(2)2791 1414 y FZ(;)f(S)p 2875 1402 6 23 v 2881 1392
+25 3 v 61 w Ff(1)l FZ(<)l Ff(3)3167 1375 y FC(8)3202
+1386 y Fd(L)4420 921 y F3(.)4420 954 y(.)4420 987 y(.)4420
+1020 y(.)4377 1072 y FZ(Y)4413 1082 y FP(10)p 4542 1020
+351 4 v 4542 1072 a Ff(f1)c FV(=)g Ff(f3)p 4702 1060
+6 23 v 4708 1050 25 3 v 60 w(f1)g FV(=)g Ff(f3)p 3431
+1101 2392 4 v 3431 1155 a FV(\()p Ff(f3)g FV(=)g Ff(1)p
+FC(^)p Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p Ff(f1)g
+FV(=)g Ff(f3)q FZ(;)j(M)4061 1165 y FP(1)4094 1155 y
+FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)d FV(=)g Ff(0)p
+FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4691 1143 6 23 v 4696 1133 25 3 v 67 w Ff(f1)d FV(=)f
+Ff(f3)p FZ(;)k Ff(f2)d FV(=)f Ff(1)p FZ(;)j Ff(2)l FZ(<)l
+Ff(3)p FC(^)r Ff(f2)d FV(=)g Ff(f3)q FZ(;)j Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)e FV(=)f Ff(f1)p FZ(;)k Ff(f0)d FV(=)f
+Ff(1)5821 1110 y FC(\033)5869 1121 y Fd(L)p 3374 1187
+2505 4 v 3363 1241 a FC(8)p Ff(y)q FZ(:)p FV(\(\()p Ff(fy)i
+FV(=)e Ff(1)p FC(^)o Ff(f1)h FV(=)f Ff(1)p FV(\))p FC(\033)p
+Ff(f1)h FV(=)f Ff(fy)q FV(\))p FZ(;)j(M)4118 1251 y FP(1)4150
+1241 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+4747 1229 6 23 v 4753 1220 25 3 v 67 w Ff(f1)d FV(=)f
+Ff(f3)p FZ(;)k Ff(f2)c FV(=)g Ff(1)p FZ(;)k Ff(2)l FZ(<)l
+Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p FZ(;)k Ff(0)l FZ(<)l
+Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p FZ(;)k Ff(f0)c FV(=)g
+Ff(1)5878 1199 y FC(8)5913 1210 y Fd(L)p 3354 1274 2544
+4 v 3344 1328 a FC(8)p Ff(x)p FZ(:)p Ff(y)q FZ(:)p FV(\(\()p
+Ff(fy)h FV(=)f Ff(1)p FC(^)p Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FC(\033)p Ff(fx)g FV(=)g Ff(fy)q FV(\))p FZ(;)k(M)4138
+1338 y FP(1)4170 1328 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)d FV(=)f Ff(0)p FC(_)o Ff(fx)h FV(=)f Ff(1)p FV(\))p
+FZ(;)k(S)o(;)f(T)p 4767 1316 6 23 v 4773 1306 25 3 v
+68 w Ff(f1)d FV(=)g Ff(f3)q FZ(;)j Ff(f2)e FV(=)f Ff(1)p
+FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p
+FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)j Ff(f0)e FV(=)f Ff(1)5897 1285 y FC(8)5932 1296
+y Fd(L)p 3354 1360 2544 4 v 3717 1414 a FZ(M)3775 1424
+y FP(1)3807 1414 y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p
+Ff(fx)h FV(=)f Ff(0)p FC(_)p Ff(fx)g FV(=)g Ff(1)p FV(\))p
+FZ(;)k(S)o(;)g(T)p 4404 1402 6 23 v 4410 1392 25 3 v
+67 w Ff(f1)d FV(=)f Ff(f3)p FZ(;)k Ff(f2)c FV(=)g Ff(1)p
+FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f Ff(f3)p
+FZ(;)k Ff(0)l FZ(<)l Ff(1)p FC(^)q Ff(f0)d FV(=)f Ff(f1)p
+FZ(;)k Ff(f0)c FV(=)g Ff(1)5897 1372 y FC(8)5932 1383
+y Fd(L)p 2701 1446 2835 4 v 3081 1500 a FZ(M)3139 1510
+y FP(1)3172 1500 y FZ(;)j(M)3259 1510 y FP(2)3291 1500
+y FZ(;)p FC(8)p Ff(x)p FZ(:)p FV(\()p Ff(fx)e FV(=)f
+Ff(0)p FC(_)p Ff(fx)h FV(=)f Ff(1)p FV(\))p FZ(;)j(S)o(;)h(T)p
+3888 1488 6 23 v 3894 1479 25 3 v 67 w Ff(f2)d FV(=)f
+Ff(1)p FZ(;)k Ff(2)l FZ(<)l Ff(3)p FC(^)q Ff(f2)d FV(=)f
+Ff(f3)p FZ(;)j Ff(0)l FZ(<)l Ff(1)p FC(^)r Ff(f0)d FV(=)g
+Ff(f1)q FZ(;)j Ff(1)l FZ(<)l Ff(3)p FC(^)r Ff(f1)d FV(=)g
+Ff(f3)q FZ(;)j Ff(f0)e FV(=)f Ff(1)5534 1455 y FC(^)5576
+1466 y Fd(R)2406 1545 y Fc(|)p 2430 1545 1737 8 v 1737
+w({z)p 4215 1545 V 1737 w(})4144 1607 y Fd(Y)4178 1619
+y FP(11)2026 1798 y Gc(M)2094 1807 y FV(1)2148 1798 y
+F9(=)20 b FX(8)p Fu(y)q Gc(:)p Fu(x)p Gc(:)m F9(\()p
+Fu(x)8 b FX(\024)g Fu(m)2555 1774 y Ff(x)p FZ(;)p Ff(y)2626
+1798 y F9(\))101 b Gc(T)30 b F9(=)19 b FX(8)p Fu(i)p
+Gc(:)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\(\()p Fu(fy)i
+F9(=)e Fu(i)p FX(^)p Fu(fx)g F9(=)g Fu(i)p F9(\))12 b
+FX(\033)g Fu(fx)19 b F9(=)g Fu(fy)p F9(\))2026 1924 y
+Gc(M)2094 1933 y FV(2)2148 1924 y F9(=)h FX(8)p Fu(y)q
+Gc(:)p Fu(x)p Gc(:)m F9(\()p Fu(y)9 b FX(\024)f Fu(m)2556
+1900 y Ff(x)p FZ(;)p Ff(y)2627 1924 y F9(\))100 b Gc(S)23
+b F9(=)d FX(8)p Fu(x)p Gc(:)p Fu(y)q Gc(:)m F9(\()p Fu(sx)8
+b FX(\024)g Fu(y)k FX(\033)g Fu(x)c Gc(<)g Fu(y)q F9(\))6506
+465 y
+ currentpoint grestore moveto
+ 6506 465 a 3543 5116 4 4724 v 321 5119 3226 4 v
+Black 1260 5273 a Gg(Figure)24 b(9:)29 b(Subproofs)c
+Ga(Y)2068 5287 y F9(9)2108 5273 y Gg(,)d Ga(Y)2206 5287
+y F9(10)2303 5273 y Gg(and)i Ga(Y)2510 5287 y F9(11)2585
+5273 y Gg(.)p Black Black eop end
+%%Page: 141 153
+TeXDict begin 141 152 bop Black Black 277 1027 a F8(A)l(ppendix)43
+b(B)277 1459 y Gf(Details)53 b(f)-5 b(or)51 b(some)h(Pr)l(oofs)277
+1957 y Ge(B.1)119 b(Pr)n(oofs)29 b(of)g(Chapter)i(2)277
+2181 y Gg(In)24 b(this)h(section)h(we)d(are)h(mainly)h(concerned)i
+(with)d(pro)o(ving)i(strong)f(normalisation)j(for)c F4(\()p
+FY(T)t Ga(;)3305 2144 y Gc(cut)3274 2181 y F6(\000)-31
+b(\000)f(!)p F4(\))p Gg(,)277 2294 y F4(\()p FY(T)t Ga(;)430
+2257 y Gc(aux)410 2294 y F6(\000)h(\000)f(!)p F4(\))23
+b Gg(and)h F4(\()p FY(T)888 2261 y FX($)959 2294 y Ga(;)1042
+2257 y Gc(l)q(oc)1000 2294 y F6(\000)-31 b(\000)f(!)p
+F4(\))p Gg(.)p Black 277 2450 a Gb(Pr)n(oof)24 b(of)g(Pr)n(oposition)g
+(2.2.10.)p Black 35 w Gg(One)f(case)h(is)f(as)h(follo)n(ws.)p
+Black 277 2639 a Gb(Case)p Black 46 w Ga(M)60 b F6(\021)50
+b FL(Cut)p F4(\()951 2627 y FX(h)979 2639 y Ga(a)1027
+2627 y FX(i)1054 2639 y Ga(S)5 b(;)1155 2627 y F9(\()1183
+2639 y Ga(x)1235 2627 y F9(\))1262 2639 y Ga(T)13 b F4(\))p
+Gg(:)56 b(Suppose)38 b F4(\000)1845 2653 y F9(1)1909
+2627 y Gc(.)1964 2639 y Ga(S)2050 2627 y Gc(.)2105 2639
+y F4(\001)2181 2653 y F9(1)2256 2639 y Gg(and)g Ga(x)17
+b F4(:)g Ga(B)5 b(;)15 b F4(\000)2706 2653 y F9(2)2771
+2627 y Gc(.)2826 2639 y Ga(T)2917 2627 y Gc(.)2972 2639
+y F4(\001)3048 2653 y F9(2)3123 2639 y Gg(are)37 b(typing)504
+2751 y(judgements)27 b(for)e Ga(S)j Gg(and)d Ga(T)13
+b Gg(,)23 b(respecti)n(v)o(ely)-6 b(.)35 b(Furthermore,)26
+b(assume)f(that)g Ga(a)e Gg(is)i(not)f(free)h(in)f Ga(S)5
+b Gg(.)504 2864 y(By)23 b(the)h(inference)i(rules)e(we)f(ha)n(v)o(e)h
+(for)g(the)g(term)f Ga(M)33 b Gg(the)24 b(typing)h(judgement)1353
+3050 y F4(\000)1410 3064 y F9(1)1450 3050 y Ga(;)15 b
+F4(\000)1547 3064 y F9(2)1611 3038 y Gc(.)1666 3050 y
+FL(Cut)p F4(\()1839 3038 y FX(h)1867 3050 y Ga(a)1915
+3038 y FX(i)1943 3050 y Ga(S)t(;)2043 3038 y F9(\()2071
+3050 y Ga(x)2123 3038 y F9(\))2151 3050 y Ga(T)d F4(\))2277
+3038 y Gc(.)2332 3050 y F4(\001)2408 3064 y F9(1)2447
+3050 y Ga(;)j F4(\001)2563 3064 y F9(2)2628 3050 y Ga(:)504
+3235 y Gg(Let)25 b FL(Cut)p F4(\()823 3223 y FX(h)851
+3235 y Ga(a)899 3223 y FX(i)926 3235 y Ga(S)5 b(;)1027
+3223 y F9(\()1055 3235 y Ga(x)1107 3223 y F9(\))1135
+3235 y Ga(T)12 b F4(\))25 b Gg(reduce)i(to)f Ga(S)5 b
+F4([)p Ga(a)29 b F4(:=)1911 3223 y F9(\()1938 3235 y
+Ga(x)1990 3223 y F9(\))2018 3235 y Ga(T)13 b F4(])p Gg(,)25
+b(which,)h(because)h(we)e(assumed)i(that)f Ga(a)f Gg(is)504
+3348 y(not)g(free)g(in)f Ga(S)5 b Gg(,)24 b(is)g(equi)n(v)n(alent)j(to)
+d Ga(S)5 b Gg(.)31 b(From)24 b(our)g(assumption)j(that)e
+F4(\000)2722 3362 y F9(1)2787 3336 y Gc(.)2842 3348 y
+Ga(S)2928 3336 y Gc(.)2983 3348 y F4(\001)3059 3362 y
+F9(1)3122 3348 y Gg(is)f(a)g(typing)504 3461 y(judgement)f(for)e
+Ga(S)5 b Gg(,)20 b(we)g(ha)n(v)o(e)h(by)g(Lemma)e(2.2.9)i(that)g
+F4(\000)2275 3475 y F9(1)2314 3461 y Ga(;)15 b F4(\000)2411
+3475 y F9(2)2476 3449 y Gc(.)2531 3461 y Ga(S)2617 3449
+y Gc(.)2672 3461 y F4(\001)2748 3475 y F9(1)2787 3461
+y Ga(;)g F4(\001)2903 3475 y F9(2)2963 3461 y Gg(is)20
+b(also)i(a)e(typing)504 3574 y(judgement)26 b(for)e Ga(S)5
+b Gg(.)28 b(Thus)23 b(we)g(are)h(done.)p 3436 3574 4
+62 v 3440 3516 55 4 v 3440 3574 V 3494 3574 4 62 v Black
+277 3811 a Gb(Pr)n(oof)j(of)g(Lemma)f(2.3.1.)p Black
+34 w Gg(The)g(only)h(case)h(that)f(is)g(non-tri)n(vial)i(is)e(where)g
+Ga(M)36 b Gg(is)26 b(an)h(axiom)g(\(since)277 3924 y(axioms)d
+(introduce)j(tw)o(o)c(labels\).)p Black 277 4113 a Gb(Case)h
+Ga(M)35 b F6(\021)25 b FL(Ax)p F4(\()p Ga(x;)15 b(b)p
+F4(\))p Gb(:)p Black 37 w Gg(Suppose)22 b F6(f)p Ga(\033)s
+F6(g)f Gg(and)g F6(f)p Ga(\034)10 b F6(g)21 b Gg(are)g(of)f(the)h(form)
+15 b F6(f)-7 b Ga(x)27 b F4(:=)2669 4101 y FX(h)2696
+4113 y Ga(a)2744 4101 y FX(i)2772 4113 y Ga(P)s F6(g)21
+b Gg(and)15 b F6(f)-7 b Ga(b)27 b F4(:=)3269 4101 y F9(\()3296
+4113 y Ga(y)3344 4101 y F9(\))3372 4113 y Ga(Q)-10 b
+F6(g)p Gg(,)504 4226 y(respecti)n(v)o(ely)k(.)31 b(W)-7
+b(e)20 b(analyse)i(in)f(turn)g(the)g(cases)h FL(Ax)o
+F4(\()p Ga(x;)15 b(b)p F4(\))p F6(f)p Ga(\033)s F6(g)-15
+b(f)p Ga(\034)10 b F6(g)23 b Gg(and)e FL(Ax)o F4(\()p
+Ga(x;)15 b(b)p F4(\))p F6(f)p Ga(\034)10 b F6(g)-15 b(f)p
+Ga(\033)s F6(f)p Ga(\034)10 b F6(gg)p Gg(.)p Black Black
+728 4433 a Ga(M)g F6(f)p Ga(\033)s F6(gf)p Ga(\034)g
+F6(g)32 b(\021)e FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\))-5
+b F6(f)e Ga(x)27 b F4(:=)1781 4421 y FX(h)1808 4433 y
+Ga(a)1856 4421 y FX(i)1884 4433 y Ga(P)s F6(g)-5 b(f)e
+Ga(b)26 b F4(:=)2210 4421 y F9(\()2237 4433 y Ga(y)2285
+4421 y F9(\))2312 4433 y Ga(Q)-9 b F6(g)1143 4570 y F4(=)30
+b FL(Cut)p F4(\()1417 4558 y FX(h)1445 4570 y Ga(a)1493
+4558 y FX(i)1520 4570 y Ga(P)13 b(;)1631 4558 y F9(\()1659
+4570 y Ga(x)1711 4558 y F9(\))1738 4570 y FL(Ax)p F4(\()p
+Ga(x;)i(b)p F4(\))q(\))-5 b F6(f)e Ga(b)26 b F4(:=)2297
+4558 y F9(\()2325 4570 y Ga(y)2373 4558 y F9(\))2400
+4570 y Ga(Q)-9 b F6(g)1143 4706 y F4(=)30 b FL(Cut)p
+F4(\()1417 4694 y FX(h)1445 4706 y Ga(a)1493 4694 y FX(i)1520
+4706 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)1810 4694 y
+F9(\()1838 4706 y Ga(y)1886 4694 y F9(\))1913 4706 y
+Ga(Q)-10 b F6(g)q Ga(;)2061 4694 y F9(\()2089 4706 y
+Ga(y)2137 4694 y F9(\))2164 4706 y Ga(Q)p F4(\))587 4937
+y Ga(M)10 b F6(f)p Ga(\034)g F6(gf)p Ga(\033)s F6(f)p
+Ga(\034)g F6(gg)33 b(\021)d FL(Ax)o F4(\()p Ga(x;)15
+b(b)p F4(\))-5 b F6(f)e Ga(b)27 b F4(:=)1768 4925 y F9(\()1795
+4937 y Ga(y)1843 4925 y F9(\))1870 4937 y Ga(Q)-9 b F6(g)k(f)e
+Ga(x)26 b F4(:=)2210 4925 y FX(h)2238 4937 y Ga(a)2286
+4925 y FX(i)2313 4937 y Ga(P)8 b F6(f)-7 b Ga(b)26 b
+F4(:=)2603 4925 y F9(\()2631 4937 y Ga(y)2679 4925 y
+F9(\))2706 4937 y Ga(Q)-10 b F6(g)i(g)1143 5074 y F4(=)30
+b FL(Cut)p F4(\()1417 5062 y FX(h)1445 5074 y Ga(b)1484
+5062 y FX(i)1511 5074 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p
+F4(\))q Ga(;)1856 5062 y F9(\()1883 5074 y Ga(y)1931
+5062 y F9(\))1959 5074 y Ga(Q)p F4(\))-5 b F6(f)e Ga(x)26
+b F4(:=)2298 5062 y FX(h)2326 5074 y Ga(a)2374 5062 y
+FX(i)2401 5074 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)2691
+5062 y F9(\()2719 5074 y Ga(y)2767 5062 y F9(\))2794
+5074 y Ga(Q)-10 b F6(g)h(g)1143 5210 y F4(=)30 b FL(Cut)p
+F4(\()1417 5198 y FX(h)1445 5210 y Ga(a)1493 5198 y FX(i)1520
+5210 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)1810 5198 y
+F9(\()1838 5210 y Ga(y)1886 5198 y F9(\))1913 5210 y
+Ga(Q)-10 b F6(g)q Ga(;)2061 5198 y F9(\()2089 5210 y
+Ga(y)2137 5198 y F9(\))2164 5210 y Ga(Q)-5 b F6(f)e Ga(x)26
+b F4(:=)2468 5198 y FX(h)2495 5210 y Ga(a)2543 5198 y
+FX(i)2571 5210 y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)2861
+5198 y F9(\()2888 5210 y Ga(y)2936 5198 y F9(\))2964
+5210 y Ga(Q)-10 b F6(g)h(g)q F4(\))1136 5291 y FV(\()p
+FC(\003)p FV(\))1143 5374 y F6(\021)30 b FL(Cut)p F4(\()1417
+5362 y FX(h)1445 5374 y Ga(a)1493 5362 y FX(i)1520 5374
+y Ga(P)8 b F6(f)-7 b Ga(b)26 b F4(:=)1810 5362 y F9(\()1838
+5374 y Ga(y)1886 5362 y F9(\))1913 5374 y Ga(Q)-10 b
+F6(g)q Ga(;)2061 5362 y F9(\()2089 5374 y Ga(y)2137 5362
+y F9(\))2164 5374 y Ga(Q)p F4(\))1060 5505 y F9(\()p
+FX(\003)p F9(\))1177 5538 y Gg(because)26 b(by)e(assumption)h
+Ga(x)h F6(62)e Ga(F)13 b(N)d F4(\()2390 5526 y F9(\()2418
+5538 y Ga(y)2466 5526 y F9(\))2494 5538 y Ga(Q)o F4(\))p
+3436 5645 V 3440 5587 55 4 v 3440 5645 V 3494 5645 4
+62 v Black Black eop end
+%%Page: 142 154
+TeXDict begin 142 153 bop Black -144 51 a Gb(142)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 388 a(Pr)n(oof)h(of)f(Lemma)f(2.3.11.)p
+Black 35 w Gg(W)-7 b(e)23 b(illustrate)j(the)f(proof)g(with)f(tw)o(o)g
+(cases.)31 b(Some)n(what)24 b(surprisingly)-6 b(,)321
+501 y(it)24 b(is)f(possible)j(that)e Ga(M)10 b F6(f)p
+Ga(\033)s F6(g)26 b(\021)f Ga(M)1421 468 y FX(0)1445
+501 y F6(f)p Ga(\033)s F6(g)p Gg(,)e(as)h(sho)n(wn)f(in)h(the)g
+(\002rst)f(case.)p Black 321 762 a Gb(Case)h Ga(M)35
+b F6(\021)25 b FL(Cut)p F4(\()923 750 y FX(h)951 762
+y Ga(a)999 750 y FX(i)1026 762 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(a)p F4(\))q Ga(;)1376 750 y F9(\()1404 762 y Ga(x)1456
+750 y F9(\))1483 762 y Ga(S)5 b F4(\))p Gb(:)p Black
+46 w Gg(Let)25 b Ga(S)k Gg(freshly)e(introduce)h Ga(x)c
+Gg(and)h(suppose)j F6(f)p Ga(\033)s F6(g)d Gg(is)g(of)g(the)549
+875 y(form)31 b F6(f)-7 b Ga(y)53 b F4(:=)1037 863 y
+FX(h)1064 875 y Ga(c)1103 863 y FX(i)1131 875 y Ga(T)s
+F6(g)p Gg(.)67 b(Furthermore,)42 b(assume)37 b Ga(M)2309
+838 y Gc(aux)2289 875 y F6(\000)-31 b(\000)f(!)50 b Ga(M)2607
+842 y FX(0)2666 875 y Gg(with)36 b Ga(M)2961 842 y FX(0)3033
+875 y F6(\021)49 b Ga(S)5 b F4([)p Ga(x)35 b F6(7!)f
+Ga(y)s F4(])p Gg(.)549 988 y(Ob)o(viously)-6 b(,)27 b(we)f(ha)n(v)o(e)g
+Ga(M)1391 955 y FX(0)1414 988 y F6(f)p Ga(\033)s F6(g)31
+b(\021)e Ga(S)5 b F4([)p Ga(x)14 b F6(7!)g Ga(y)s F4(])-5
+b F6(f)e Ga(y)34 b F4(:=)2258 976 y FX(h)2285 988 y Ga(c)2324
+976 y FX(i)2352 988 y Ga(T)s F6(g)p Gg(.)i(In)25 b(the)h(follo)n(wing)i
+(calculation,)549 1101 y(the)23 b(equi)n(v)n(alence)k(\(`0'-case\))f
+(occurs)f(if)e Ga(S)q F6(f)-7 b Ga(y)28 b F4(:=)2138
+1089 y FX(h)2165 1101 y Ga(c)2204 1089 y FX(i)2232 1101
+y Ga(T)s F6(g)c Gg(freshly)h(introduces)h Ga(x)p Gg(.)p
+Black Black 1059 1394 a Ga(M)10 b F6(f)p Ga(\033)s F6(g)206
+b(\021)e FL(Cut)p F4(\()1956 1382 y FX(h)1983 1394 y
+Ga(a)2031 1382 y FX(i)2059 1394 y FL(Ax)o F4(\()p Ga(y)s(;)15
+b(a)p F4(\))q Ga(;)2408 1382 y F9(\()2436 1394 y Ga(x)2488
+1382 y F9(\))2516 1394 y Ga(S)5 b F4(\))-5 b F6(f)e Ga(y)29
+b F4(:=)2840 1382 y FX(h)2867 1394 y Ga(c)2906 1382 y
+FX(i)2934 1394 y Ga(T)s F6(g)1508 1531 y F4(=)204 b FL(Cut)p
+F4(\()1956 1519 y FX(h)1983 1531 y Ga(c)2022 1519 y FX(i)2050
+1531 y Ga(T)13 b(;)2156 1519 y F9(\()2184 1531 y Ga(x)2236
+1519 y F9(\))2263 1531 y Ga(S)q F6(f)-7 b Ga(y)28 b F4(:=)2552
+1519 y FX(h)2580 1531 y Ga(c)2619 1519 y FX(i)2646 1531
+y Ga(T)t F6(g)p F4(\))1423 1634 y Gc(aux)1403 1671 y
+F6(\000)-31 b(\000)f(!)1573 1638 y F9(0)p Gc(=)p F9(1)1783
+1671 y Ga(S)q F6(f)-7 b Ga(y)27 b F4(:=)2072 1659 y FX(h)2099
+1671 y Ga(c)2138 1659 y FX(i)2166 1671 y Ga(T)s F6(g)-5
+b(f)e Ga(x)26 b F4(:=)2500 1659 y FX(h)2527 1671 y Ga(c)2566
+1659 y FX(i)2594 1671 y Ga(T)s F6(g)1501 1752 y FV(\()p
+FC(\003)p FV(\))1508 1835 y F6(\021)204 b Ga(S)5 b F4([)p
+Ga(x)10 b F6(7!)g Ga(y)s F4(])-5 b F6(f)e Ga(y)29 b F4(:=)2333
+1823 y FX(h)2360 1835 y Ga(c)2399 1823 y FX(i)2427 1835
+y Ga(T)t F6(g)792 1951 y F9(\()p FX(\003)p F9(\))986
+1984 y Gg(because)d(by)d(Barendre)o(gt-style)28 b(naming)c(con)l(v)o
+(ention)j Ga(x)e F6(62)g Ga(F)13 b(N)d F4(\()3107 1972
+y FX(h)3135 1984 y Ga(c)3174 1972 y FX(i)3201 1984 y
+Ga(T)j F4(\))p Black 321 2278 a Gb(Case)24 b Ga(M)35
+b F6(\021)25 b FL(Cut)p F4(\()923 2266 y FX(h)951 2278
+y Ga(a)999 2266 y FX(i)1026 2278 y Ga(S)5 b(;)1127 2266
+y F9(\()1155 2278 y Ga(x)1207 2266 y F9(\))1235 2278
+y Ga(T)12 b F4(\))p Gb(:)p Black 46 w Gg(Suppose)35 b(the)e(term)g
+Ga(S)38 b Gg(does)c(not)g(freshly)g(introduce)i Ga(a)d
+Gg(and)g(as-)549 2391 y(sume)23 b Ga(M)907 2354 y Gc(aux)887
+2391 y F6(\000)-32 b(\000)h(!)25 b Ga(M)1180 2358 y FX(0)1226
+2391 y Gg(with)f Ga(M)1509 2358 y FX(0)1557 2391 y F6(\021)h
+Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1942 2379 y FX(h)1970
+2391 y Ga(x)2022 2379 y FX(i)2049 2391 y Ga(T)s F6(g)p
+Gg(.)p Black Black 1111 2685 a Ga(M)10 b F6(f)p Ga(\033)s
+F6(g)151 b(\021)e FL(Cut)p F4(\()1898 2673 y FX(h)1926
+2685 y Ga(a)1974 2673 y FX(i)2001 2685 y Ga(S)5 b(;)2102
+2673 y F9(\()2130 2685 y Ga(x)2182 2673 y F9(\))2210
+2685 y Ga(T)12 b F4(\))p F6(f)p Ga(\033)s F6(g)1505 2821
+y F4(=)149 b FL(Cut)p F4(\()1898 2809 y FX(h)1926 2821
+y Ga(a)1974 2809 y FX(i)2001 2821 y Ga(S)5 b F6(f)p Ga(\033)s
+F6(g)q Ga(;)2248 2809 y F9(\()2276 2821 y Ga(x)2328 2809
+y F9(\))2356 2821 y Ga(T)13 b F6(f)p Ga(\033)s F6(g)q
+F4(\))1476 2921 y Gc(aux)1455 2958 y F6(\000)-31 b(\000)g(!)99
+b Ga(S)5 b F6(f)p Ga(\033)s F6(g)-5 b(f)e Ga(a)27 b F4(:=)2160
+2946 y F9(\()2188 2958 y Ga(x)2240 2946 y F9(\))2267
+2958 y Ga(T)13 b F6(f)p Ga(\033)s F6(g)-8 b(g)1498 3038
+y FV(\()p FC(\003)p FV(\))1505 3122 y F6(\021)149 b Ga(S)q
+F6(f)-7 b Ga(a)25 b F4(:=)2014 3110 y FX(h)2042 3122
+y Ga(x)2094 3110 y FX(i)2121 3122 y Ga(T)s F6(gf)p Ga(\033)s
+F6(g)290 3274 y F9(\()p FX(\003)p F9(\))408 3307 y Gg(by)e(Barendre)o
+(gt-style)28 b(naming)c(con)l(v)o(ention)j Ga(a)e F6(62)g
+Ga(F)13 b(C)7 b F4(\()p Ga(dom)p F4(\()p F6(f)p Ga(\033)s
+F6(g)p F4(\)\))25 b Gg(and)f(hence)h(by)e(Lem.)f(2.3.1)p
+3480 3460 4 62 v 3484 3402 55 4 v 3484 3460 V 3538 3460
+4 62 v Black 321 3673 a Gb(Pr)n(oof)j(of)g(Lemma)e(2.3.12.)p
+Black 34 w Gg(From)h(Lemma)f(2.3.6\(i\),)i(it)g(follo)n(ws)g(that)g(if)
+2708 3661 y FX(h)2735 3673 y Ga(a)r F4(:)r Ga(B)2886
+3661 y FX(i)2913 3673 y Ga(M)37 b F6(2)27 b FB(J)p F6(h)p
+Ga(B)5 b F6(i)p FB(K)o Gg(,)24 b(then)321 3774 y FX(h)349
+3786 y Ga(a)r F4(:)r Ga(B)500 3774 y FX(i)527 3786 y
+Ga(M)45 b F6(2)35 b FW(N)t(E)t(G)916 3804 y FX(h)p Gc(B)s
+FX(i)1033 3786 y F4(\()p FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)p F4(\))p Gg(.)43 b(So)27 b(depending)32 b(on)c(the)h(structure)h
+(of)f Ga(B)j Gg(we)c(need)h(to)f(analyse)i(all)321 3898
+y(possible)36 b(sets)f(\(generated)h(by)e(the)g(set)g(operators\))j
+(where)2297 3886 y FX(h)2324 3898 y Ga(a)r F4(:)r Ga(B)2475
+3886 y FX(i)2502 3898 y Ga(M)44 b Gg(may)33 b(be)h(member)g(in.)59
+b(Six)321 4011 y(cases)25 b(are)f(gi)n(v)o(en)g(for)f(\(i\);)h(the)g
+(ar)n(guments)i(for)e(\(ii\))f(are)h(similar)g(and)g(omitted.)p
+Black 321 4312 a Gb(Case)p Black 49 w FW(A)t(X)t(I)t(O)t(M)t(S)866
+4330 y FX(h)p Gc(B)s FX(i)983 4312 y Gg(:)1036 4300 y
+FX(h)1064 4312 y Ga(a)r F4(:)r Ga(B)1215 4300 y FX(i)1242
+4312 y Ga(M)33 b Gg(cannot)25 b(be)f(in)h FW(A)t(X)t(I)t(O)t(M)t(S)2142
+4330 y FX(h)p Gc(B)s FX(i)2282 4312 y Gg(because)h(axioms)e(do)g(not)g
+(reduce.)p Black 321 4556 a Gb(Case)p Black 49 w FW(B)t(I)t(N)t(D)t(I)t
+(N)t(G)891 4575 y FX(h)p Gc(B)s FX(i)1008 4556 y F4(\()p
+FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)o F4(\))q Gg(:)549
+4748 y(\(1\))754 4736 y FX(h)782 4748 y Ga(a)r F4(:)r
+Ga(B)933 4736 y FX(i)960 4748 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t
+(I)t(N)t(G)1506 4767 y FX(h)p Gc(B)s FX(i)1623 4748 y
+F4(\()p FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)p F4(\))23
+b Gg(and)h Ga(M)2232 4711 y Gc(aux)2211 4748 y F6(\000)-31
+b(\000)g(!)25 b Ga(M)2505 4715 y FX(0)3019 4748 y Gg(by)e(assumption)
+549 4867 y(\(2\))100 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1080
+4855 y F9(\()1108 4867 y Ga(x)r F4(:)r Ga(B)1263 4855
+y F9(\))1290 4867 y Ga(P)t F6(g)f(2)g Ga(S)5 b(N)1642
+4881 y Gc(aux)1787 4867 y Gg(for)24 b(all)2030 4855 y
+F9(\()2057 4867 y Ga(x)r F4(:)r Ga(B)2212 4855 y F9(\))2239
+4867 y Ga(P)39 b F6(2)24 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)220 b Gg(by)24 b(De\002nition)h(2.3.3)549 4986 y(\(3\))100
+b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1080 4974 y F9(\()1108
+4986 y Ga(x)r F4(:)r Ga(B)1263 4974 y F9(\))1290 4986
+y Ga(P)t F6(g)1443 4948 y Gc(aux)1422 4986 y F6(\000)-31
+b(\000)g(!)1593 4953 y F9(0)p Gc(=)p F9(1)1728 4986 y
+Ga(M)1826 4953 y FX(0)1845 4986 y F6(f)-7 b Ga(a)25 b
+F4(:=)2077 4974 y F9(\()2105 4986 y Ga(x)r F4(:)r Ga(B)2260
+4974 y F9(\))2287 4986 y Ga(P)t F6(g)511 b Gg(by)24 b(Lemma)e(2.3.11)
+549 5104 y(\(4\))100 b Ga(M)852 5071 y FX(0)871 5104
+y F6(f)-7 b Ga(a)26 b F4(:=)1104 5092 y F9(\()1131 5104
+y Ga(x)r F4(:)r Ga(B)1286 5092 y F9(\))1313 5104 y Ga(P)t
+F6(g)g(2)f Ga(S)5 b(N)1666 5118 y Gc(aux)1811 5104 y
+Gg(for)23 b(all)2053 5092 y F9(\()2080 5104 y Ga(x)r
+F4(:)r Ga(B)2235 5092 y F9(\))2263 5104 y Ga(P)38 b F6(2)25
+b FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)381 b Gg(by)24
+b(\(2\))f(and)h(\(3\))549 5223 y(\(5\))754 5211 y FX(h)782
+5223 y Ga(a)r F4(:)r Ga(B)933 5211 y FX(i)960 5223 y
+Ga(M)1058 5190 y FX(0)1107 5223 y F6(2)j FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
+1530 5241 y FX(h)p Gc(B)s FX(i)1646 5223 y F4(\()p FB(J)p
+F4(\()p Ga(B)5 b F4(\))q FB(K)o F4(\))925 b Gg(by)24
+b(De\002nition)h(2.3.3)549 5341 y(\(6\))754 5329 y FX(h)782
+5341 y Ga(a)r F4(:)r Ga(B)933 5329 y FX(i)960 5341 y
+Ga(M)1058 5308 y FX(0)1107 5341 y F6(2)g FB(J)p F6(h)p
+Ga(B)5 b F6(i)o FB(K)1449 b Gg(by)24 b(De\002nition)h(2.3.4)p
+Black Black eop end
+%%Page: 143 155
+TeXDict begin 143 154 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(143)p 277 88 3691 4 v Black Black
+277 388 a(Case)p Black 48 w FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)911
+407 y FX(h:)p Gc(C)5 b FX(i)1075 388 y F4(\()p FB(J)p
+F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))p Gg(,)23 b Ga(B)29
+b F6(\021)c(:)p Ga(C)7 b Gg(:)504 544 y(\(1\))101 b Ga(M)35
+b F6(\021)25 b FL(Not)1072 558 y Gc(R)1130 544 y F4(\()1165
+532 y F9(\()1193 544 y Ga(x)1245 532 y F9(\))1272 544
+y Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)48 b Ga(M)1625 511
+y FX(0)1674 544 y F6(\021)25 b FL(Not)1913 558 y Gc(R)1970
+544 y F4(\()2005 532 y F9(\()2033 544 y Ga(x)2085 532
+y F9(\))2113 544 y Ga(S)2174 511 y FX(0)2197 544 y Ga(;)15
+b(a)p F4(\))p Gg(,)48 b Ga(S)2498 507 y Gc(aux)2478 544
+y F6(\000)-32 b(\000)h(!)25 b Ga(S)2734 511 y FX(0)2780
+544 y Gg(and)710 650 y FX(h)737 662 y Ga(a)r F4(:)r F6(:)p
+Ga(C)947 650 y FX(i)974 662 y Ga(M)36 b F6(2)27 b FW(N)t(O)q(T)t(R)t(I)
+t(G)t(H)t(T)1586 681 y FX(h:)p Gc(C)5 b FX(i)1749 662
+y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))939
+b Gg(by)24 b(assumption)504 781 y(\(2\))101 b Ga(M)33
+b Gg(freshly)25 b(introduces)h Ga(a)d Gg(and)1732 769
+y F9(\()1760 781 y Ga(x)r F4(:)r Ga(C)1913 769 y F9(\))1940
+781 y Ga(S)30 b F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F4(\))p
+FB(K)487 b Gg(by)24 b(De\002nition)g(2.3.3)504 899 y(\(3\))101
+b Ga(M)808 866 y FX(0)854 899 y Gg(freshly)25 b(introduces)i
+Ga(a)1327 b Gg(by)24 b(Lemma)e(2.3.8)504 1018 y(\(4\))710
+1006 y F9(\()737 1018 y Ga(x)r F4(:)r Ga(C)890 1006 y
+F9(\))918 1018 y Ga(S)979 985 y FX(0)1027 1018 y F6(2)j
+FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)1716 b Gg(by)24
+b(induction)504 1136 y(\(5\))710 1124 y FX(h)737 1136
+y Ga(a)r F4(:)r F6(:)p Ga(C)947 1124 y FX(i)974 1136
+y Ga(M)1072 1103 y FX(0)1121 1136 y F6(2)j FW(N)t(O)q(T)t(R)t(I)t(G)t
+(H)t(T)1609 1155 y FX(h:)p Gc(C)5 b FX(i)1773 1136 y
+F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o F4(\))323
+b Gg(by)24 b(\(3\),)f(\(4\))h(and)g(De\002nition)g(2.3.3)504
+1255 y(\(6\))710 1243 y FX(h)737 1255 y Ga(a)r F4(:)r
+F6(:)p Ga(C)947 1243 y FX(i)974 1255 y Ga(M)1072 1222
+y FX(0)1121 1255 y F6(2)h FB(J)p F6(h:)p Ga(C)7 b F6(i)o
+FB(K)1332 b Gg(by)24 b(De\002nition)g(2.3.4)p Black 277
+1425 a Gb(Case)p Black 48 w FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)923
+1444 y FX(h)p Gc(C)5 b FX(^)s Gc(D)r FX(i)1146 1425 y
+F4(\()p FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b
+FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)23 b
+Ga(B)29 b F6(\021)c Ga(C)7 b F6(^)o Ga(D)s Gg(:)504 1581
+y(\(1\))101 b Ga(M)35 b F6(\021)25 b FL(And)1084 1595
+y Gc(R)1142 1581 y F4(\()1177 1569 y FX(h)1204 1581 y
+Ga(d)1251 1569 y FX(i)1279 1581 y Ga(S)5 b(;)1380 1569
+y FX(h)1408 1581 y Ga(e)1450 1569 y FX(i)1478 1581 y
+Ga(T)13 b(;)i(a)p F4(\))p Gg(,)48 b Ga(M)1836 1548 y
+FX(0)1885 1581 y F6(\021)25 b FL(And)2135 1595 y Gc(R)2193
+1581 y F4(\()2228 1569 y FX(h)2256 1581 y Ga(d)2303 1569
+y FX(i)2330 1581 y Ga(S)2391 1548 y FX(0)2415 1581 y
+Ga(;)2455 1569 y FX(h)2483 1581 y Ga(e)2525 1569 y FX(i)2552
+1581 y Ga(T)2618 1548 y FX(0)2641 1581 y Ga(;)15 b(a)p
+F4(\))24 b Gg(and)710 1687 y FX(h)737 1699 y Ga(a)r F4(:)r
+Ga(C)7 b F6(^)p Ga(D)1025 1687 y FX(i)1052 1699 y Ga(M)36
+b F6(2)26 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1675 1718
+y FX(h)p Gc(C)5 b FX(^)s Gc(D)r FX(i)1898 1699 y F4(\()p
+FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p
+Ga(D)s F6(i)p FB(K)p F4(\))528 b Gg(by)24 b(assumption)504
+1818 y(\(2\))101 b Ga(S)816 1781 y Gc(aux)796 1818 y
+F6(\000)-31 b(\000)g(!)25 b Ga(S)1053 1785 y FX(0)1099
+1818 y Gg(and)f Ga(T)38 b F6(\021)25 b Ga(T)1506 1785
+y FX(0)1552 1818 y Gg(\(the)f(other)g(case)g(being)h(similar\))306
+b(ne)n(w)23 b(assumption)504 1936 y(\(3\))101 b Ga(M)33
+b Gg(freshly)25 b(introduces)h Ga(a)p Gg(,)1601 1924
+y FX(h)1628 1936 y Ga(d)r F4(:)r Ga(C)1776 1924 y FX(i)1804
+1936 y Ga(S)k F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(i)p
+FB(K)22 b Gg(and)2368 1924 y FX(h)2396 1936 y Ga(e)r
+F4(:)r Ga(D)2545 1924 y FX(i)2573 1936 y Ga(T)38 b F6(2)24
+b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)53 b Gg(by)24 b(Def.)e(2.3.3)504
+2055 y(\(4\))101 b Ga(M)808 2022 y FX(0)854 2055 y Gg(freshly)25
+b(introduces)i Ga(a)1327 b Gg(by)24 b(Lemma)e(2.3.8)504
+2173 y(\(5\))710 2161 y FX(h)737 2173 y Ga(d)r F4(:)r
+Ga(C)885 2161 y FX(i)913 2173 y Ga(S)974 2140 y FX(0)1023
+2173 y F6(2)i FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)1721
+b Gg(by)24 b(induction)504 2292 y(\(6\))710 2280 y FX(h)737
+2292 y Ga(a)r F4(:)r Ga(C)7 b F6(^)p Ga(D)1025 2280 y
+FX(i)1052 2292 y Ga(M)1150 2259 y FX(0)1199 2292 y F6(2)27
+b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1699 2310 y FX(h)p
+Gc(C)5 b FX(^)r Gc(D)r FX(i)1921 2292 y F4(\()p FB(J)p
+F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p Ga(D)s
+F6(i)q FB(K)o F4(\))122 b Gg(by)23 b(\(4\),)h(\(5\))g(and)g(Def.)e
+(2.3.3)504 2411 y(\(7\))710 2399 y FX(h)737 2411 y Ga(a)r
+F4(:)r Ga(C)7 b F6(^)p Ga(D)1025 2399 y FX(i)1052 2411
+y Ga(M)1150 2378 y FX(0)1199 2411 y F6(2)25 b FB(J)p
+F6(h)p Ga(C)7 b F6(^)o Ga(D)s F6(i)p FB(K)1176 b Gg(by)24
+b(De\002nition)g(2.3.4)p Black 277 2589 a Gb(Case)p Black
+48 w FW(O)t(R)t(R)t(I)t(G)t(H)t(T)862 2556 y Gc(i)862
+2621 y FX(h)p Gc(C)939 2630 y FV(1)976 2621 y FX(_)p
+Gc(C)1073 2630 y FV(2)1108 2621 y FX(i)1140 2589 y F4(\()p
+FB(J)p F6(h)p Ga(C)1312 2603 y Gc(i)1340 2589 y F6(i)q
+FB(K)o F4(\))q Gg(,)e Ga(B)30 b F6(\021)25 b Ga(C)1753
+2603 y F9(1)1792 2589 y F6(_)p Ga(C)1918 2603 y F9(2)1957
+2589 y Gg(,)e F4(\()p Ga(i)j F4(=)f(1)p Ga(;)15 b F4(2\))p
+Gg(:)504 2758 y(\(1\))101 b Ga(M)35 b F6(\021)25 b FL(Or)1029
+2721 y Gc(i)1029 2781 y(R)1086 2758 y F4(\()1121 2746
+y FX(h)1149 2758 y Ga(d)1196 2746 y FX(i)1224 2758 y
+Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)48 b Ga(M)1577 2725
+y FX(0)1626 2758 y F6(\021)25 b FL(Or)1821 2721 y Gc(i)1821
+2781 y(R)1879 2758 y F4(\()1914 2746 y FX(h)1942 2758
+y Ga(d)1989 2746 y FX(i)2016 2758 y Ga(S)2077 2725 y
+FX(0)2101 2758 y Ga(;)15 b(a)p F4(\))p Gg(,)48 b Ga(S)2402
+2721 y Gc(aux)2382 2758 y F6(\000)-32 b(\000)h(!)25 b
+Ga(S)2638 2725 y FX(0)2684 2758 y Gg(and)710 2864 y FX(h)737
+2876 y Ga(a)r F4(:)r Ga(C)879 2890 y F9(1)919 2876 y
+F6(_)p Ga(C)1045 2890 y F9(2)1084 2864 y FX(i)1112 2876
+y Ga(M)35 b F6(2)27 b FW(O)t(R)t(R)t(I)t(G)t(H)t(T)1674
+2843 y Gc(i)1674 2908 y FX(h)p Gc(C)1751 2917 y FV(1)1788
+2908 y FX(_)p Gc(C)1885 2917 y FV(2)1920 2908 y FX(i)1951
+2876 y F4(\()p FB(J)p F6(h)p Ga(C)2123 2890 y Gc(i)2152
+2876 y F6(i)p FB(K)p F4(\))715 b Gg(by)24 b(assumption)504
+3007 y(\(2\))101 b Ga(M)33 b Gg(freshly)25 b(introduces)h
+Ga(a)d Gg(and)1732 2995 y FX(h)1760 3007 y Ga(d)r F4(:)r
+Ga(C)1901 3021 y Gc(i)1930 2995 y FX(i)1957 3007 y Ga(S)30
+b F6(2)25 b FB(J)p F6(h)p Ga(C)2266 3021 y Gc(i)2294
+3007 y F6(i)q FB(K)448 b Gg(by)24 b(De\002nition)g(2.3.3)504
+3126 y(\(3\))101 b Ga(M)808 3093 y FX(0)854 3126 y Gg(freshly)25
+b(introduces)i Ga(a)1327 b Gg(by)24 b(Lemma)e(2.3.8)504
+3244 y(\(4\))710 3232 y FX(h)737 3244 y Ga(d)r F4(:)r
+Ga(C)878 3258 y Gc(i)907 3232 y FX(i)935 3244 y Ga(S)996
+3211 y FX(0)1044 3244 y F6(2)j FB(J)p F6(h)p Ga(C)1267
+3258 y Gc(i)1295 3244 y F6(i)q FB(K)1677 b Gg(by)24 b(induction)504
+3363 y(\(5\))710 3351 y FX(h)737 3363 y Ga(a)r F4(:)r
+Ga(C)879 3377 y F9(1)919 3363 y F6(_)p Ga(C)1045 3377
+y F9(2)1084 3351 y FX(i)1112 3363 y Ga(M)1210 3330 y
+FX(0)1258 3363 y F6(2)j FW(O)t(R)t(R)t(I)t(G)t(H)t(T)1697
+3330 y Gc(i)1697 3394 y FX(h)p Gc(C)1774 3403 y FV(1)1811
+3394 y FX(^)p Gc(C)1908 3403 y FV(2)1943 3394 y FX(i)1975
+3363 y F4(\()p FB(J)p F6(h)p Ga(C)2147 3377 y Gc(i)2175
+3363 y F6(i)q FB(K)o F4(\))99 b Gg(by)24 b(\(3\),)f(\(4\))h(and)g
+(De\002nition)g(2.3.3)504 3494 y(\(6\))710 3482 y FX(h)737
+3494 y Ga(a)r F4(:)r Ga(C)879 3508 y F9(1)919 3494 y
+F6(_)p Ga(C)1045 3508 y F9(2)1084 3482 y FX(i)1112 3494
+y Ga(M)1210 3461 y FX(0)1258 3494 y F6(2)h FB(J)p F6(h)p
+Ga(C)1481 3508 y F9(1)1521 3494 y F6(_)o Ga(C)1646 3508
+y F9(2)1686 3494 y F6(i)p FB(K)1057 b Gg(by)24 b(De\002nition)g(2.3.4)p
+Black 277 3709 a Gb(Case)p Black 48 w FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)
+893 3727 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)1126
+3709 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)p F4(\))p Gg(,)22
+b Ga(B)30 b F6(\021)25 b Ga(C)7 b F6(\033)o Ga(D)s Gg(:)504
+3864 y(\(1\))101 b Ga(M)35 b F6(\021)25 b FL(Imp)1074
+3886 y Gc(R)1132 3864 y F4(\()1167 3852 y F9(\()1194
+3864 y Ga(x)1246 3852 y F9(\))q FX(h)1301 3864 y Ga(d)1348
+3852 y FX(i)1376 3864 y Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)48
+b Ga(M)1729 3831 y FX(0)1778 3864 y F6(\021)25 b FL(Imp)2018
+3886 y Gc(R)2076 3864 y F4(\()2111 3852 y F9(\()2139
+3864 y Ga(x)2191 3852 y F9(\))p FX(h)2246 3864 y Ga(d)2293
+3852 y FX(i)2321 3864 y Ga(S)2382 3831 y FX(0)2405 3864
+y Ga(;)15 b(a)p F4(\))p Gg(,)48 b Ga(S)2706 3827 y Gc(aux)2686
+3864 y F6(\000)-32 b(\000)h(!)25 b Ga(S)2942 3831 y FX(0)2988
+3864 y Gg(and)710 3971 y FX(h)737 3983 y Ga(a)r F4(:)r
+Ga(C)7 b F6(\033)p Ga(D)1035 3971 y FX(i)1062 3983 y
+Ga(M)36 b F6(2)26 b FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)1655
+4001 y FX(h)p Gc(C)5 b FX(\033)t Gc(C)g FX(i)1883 3983
+y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))543 b Gg(by)24
+b(assumption)504 4101 y(\(2\))101 b Ga(M)33 b Gg(freshly)25
+b(introduces)h Ga(a)p Gg(,)710 4208 y FX(h)737 4220 y
+Ga(d)r F4(:)r Ga(D)891 4208 y FX(i)919 4220 y Ga(S)q
+F6(f)-7 b Ga(x)25 b F4(:=)1212 4208 y FX(h)1240 4220
+y Ga(e)r F4(:)r Ga(C)1383 4208 y FX(i)1410 4220 y Ga(Q)-9
+b F6(g)26 b(2)e FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)e Gg(for)i(all)2116
+4208 y FX(h)2144 4220 y Ga(e)r F4(:)r Ga(C)2287 4208
+y FX(i)2314 4220 y Ga(Q)h F6(2)g FB(J)p F6(h)p Ga(C)7
+b F6(i)p FB(K)p Gg(,)22 b(and)710 4326 y F9(\()737 4338
+y Ga(x)r F4(:)r Ga(C)890 4326 y F9(\))918 4338 y Ga(S)p
+F6(f)-7 b Ga(d)26 b F4(:=)1206 4326 y F9(\()1234 4338
+y Ga(z)6 b F4(:)r Ga(D)1387 4326 y F9(\))1414 4338 y
+Ga(P)t F6(g)26 b(2)e FB(J)p F4(\()p Ga(C)7 b F4(\))p
+FB(K)23 b Gg(for)g(all)2113 4326 y F9(\()2140 4338 y
+Ga(z)6 b F4(:)r Ga(D)2293 4326 y F9(\))2321 4338 y Ga(P)39
+b F6(2)24 b FB(J)p F4(\()p Ga(D)s F4(\))p FB(K)90 b Gg(by)24
+b(De\002nition)g(2.3.3)504 4457 y(\(3\))101 b Ga(M)808
+4424 y FX(0)854 4457 y Gg(freshly)25 b(introduces)i Ga(a)1327
+b Gg(by)24 b(Lemma)e(2.3.8)504 4576 y(\(4\))101 b Ga(S)q
+F6(f)-7 b Ga(x)25 b F4(:=)1003 4564 y FX(h)1031 4576
+y Ga(e)r F4(:)r Ga(C)1174 4564 y FX(i)1201 4576 y Ga(Q)-9
+b F6(g)1354 4538 y Gc(aux)1334 4576 y F6(\000)-31 b(\000)g(!)1504
+4543 y F9(0)p Gc(=)p F9(1)1640 4576 y Ga(S)1701 4543
+y FX(0)1719 4576 y F6(f)-7 b Ga(x)26 b F4(:=)1956 4564
+y FX(h)1984 4576 y Ga(e)r F4(:)r Ga(C)2127 4564 y FX(i)2154
+4576 y Ga(Q)-9 b F6(g)p Gg(,)710 4694 y Ga(S)q F6(f)i
+Ga(d)25 b F4(:=)998 4682 y F9(\()1026 4694 y Ga(z)6 b
+F4(:)r Ga(D)1179 4682 y F9(\))1207 4694 y Ga(P)s F6(g)1359
+4657 y Gc(aux)1339 4694 y F6(\000)-31 b(\000)f(!)1509
+4661 y F9(0)p Gc(=)p F9(1)1644 4694 y Ga(S)1705 4661
+y FX(0)1724 4694 y F6(f)-7 b Ga(d)26 b F4(:=)1956 4682
+y F9(\()1984 4694 y Ga(z)6 b F4(:)r Ga(D)2137 4682 y
+F9(\))2164 4694 y Ga(P)t F6(g)590 b Gg(by)23 b(Lemma)g(2.3.11)504
+4813 y(\(5\))710 4801 y FX(h)737 4813 y Ga(d)r F4(:)r
+Ga(D)891 4801 y FX(i)919 4813 y Ga(S)980 4780 y FX(0)999
+4813 y F6(f)-7 b Ga(x)25 b F4(:=)1236 4801 y FX(h)1263
+4813 y Ga(e)r F4(:)r Ga(C)1406 4801 y FX(i)1434 4813
+y Ga(Q)-10 b F6(g)26 b(2)f FB(J)p F6(h)p Ga(D)s F6(i)p
+FB(K)d Gg(for)i(all)2140 4801 y FX(h)2167 4813 y Ga(e)r
+F4(:)r Ga(C)2310 4801 y FX(i)2338 4813 y Ga(Q)h F6(2)g
+FB(J)p F6(h)p Ga(C)7 b F6(i)o FB(K)p Gg(,)710 4919 y
+F9(\()737 4931 y Ga(x)r F4(:)r Ga(C)890 4919 y F9(\))918
+4931 y Ga(S)979 4898 y FX(0)997 4931 y F6(f)-7 b Ga(d)26
+b F4(:=)1229 4919 y F9(\()1257 4931 y Ga(z)6 b F4(:)r
+Ga(D)1410 4919 y F9(\))1438 4931 y Ga(P)s F6(g)26 b(2)f
+FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)22 b Gg(for)i(all)2136
+4919 y F9(\()2164 4931 y Ga(z)6 b F4(:)r Ga(D)2317 4919
+y F9(\))2345 4931 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(D)s F4(\))p FB(K)1598 5050 y Gg(by)f(\(2\))f(and)h(\(4\):)30
+b(`0'-case)25 b(tri)n(vial,)g(`1'-case)g(by)f(induction)504
+5168 y(\(6\))710 5156 y FX(h)737 5168 y Ga(a)r F4(:)r
+Ga(C)7 b F6(\033)p Ga(D)1035 5156 y FX(i)1062 5168 y
+Ga(M)1160 5135 y FX(0)1209 5168 y F6(2)27 b FW(I)t(M)t(P)t(R)t(I)t(G)t
+(H)t(T)1679 5187 y FX(h)p Gc(C)5 b FX(\033)t Gc(C)g FX(i)1906
+5168 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))137 b Gg(by)23
+b(\(3\),)h(\(5\))g(and)g(Def.)e(2.3.3)504 5287 y(\(7\))710
+5275 y FX(h)737 5287 y Ga(a)r F4(:)r Ga(C)7 b F6(\033)p
+Ga(D)1035 5275 y FX(i)1062 5287 y Ga(M)1160 5254 y FX(0)1209
+5287 y F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(\033)o Ga(D)s
+F6(i)p FB(K)1156 b Gg(by)24 b(De\002nition)g(2.3.4)p
+3436 5392 4 62 v 3440 5334 55 4 v 3440 5392 V 3494 5392
+4 62 v Black Black eop end
+%%Page: 144 156
+TeXDict begin 144 155 bop Black -144 51 a Gb(144)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 388 a(Pr)n(oof)34 b(of)e(Lemma)g(2.3.13.)p
+Black 34 w Gg(Analogous)j(to)d(the)h(proof)h(of)f(the)g(preceding)i
+(lemma,)f(we)e(need)i(to)321 501 y(analyse)c(all)f(possible)h(sets)f
+(where)1479 489 y FX(h)1506 501 y Ga(a)r F4(:)r Ga(B)1657
+489 y FX(i)1685 501 y Ga(M)37 b Gg(may)28 b(be)h(member)f(in.)43
+b(Six)28 b(cases)h(are)g(gi)n(v)o(en)g(for)f(\(i\);)321
+614 y(the)c(ar)n(guments)i(for)e(\(ii\))f(are)h(similar)g(and)g
+(omitted.)p Black 321 793 a Gb(Case)p Black 49 w FW(A)t(X)t(I)t(O)t(M)t
+(S)866 812 y FX(h)p Gc(B)s FX(i)983 793 y Gg(:)k(In)c(this)g(case)g
+Ga(M)33 b Gg(is)23 b(an)h(axiom)g(and)g(therefore)i(strongly)f
+(normalising.)p Black 321 964 a Gb(Case)p Black 49 w
+FW(B)t(I)t(N)t(D)t(I)t(N)t(G)891 983 y FX(h)p Gc(B)s
+FX(i)1008 964 y F4(\()p FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)o F4(\))q Gg(:)549 1120 y(\(1\))754 1108 y FX(h)782
+1120 y Ga(a)r F4(:)r Ga(B)933 1108 y FX(i)960 1120 y
+Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1506
+1138 y FX(h)p Gc(B)s FX(i)1623 1120 y F4(\()p FB(J)p
+F4(\()p Ga(B)5 b F4(\))p FB(K)p F4(\))1108 b Gg(by)23
+b(assumption)549 1238 y(\(2\))100 b Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)1080 1226 y F9(\()1108 1238 y Ga(x)r
+F4(:)r Ga(B)1263 1226 y F9(\))1290 1238 y Ga(P)t F6(g)f(2)g
+Ga(S)5 b(N)1642 1252 y Gc(aux)1787 1238 y Gg(for)24 b(all)2030
+1226 y F9(\()2057 1238 y Ga(x)r F4(:)r Ga(B)2212 1226
+y F9(\))2239 1238 y Ga(P)39 b F6(2)24 b FB(J)p F4(\()p
+Ga(B)5 b F4(\))p FB(K)220 b Gg(by)24 b(De\002nition)h(2.3.3)549
+1357 y(\(3\))754 1345 y F9(\()782 1357 y Ga(x)r F4(:)r
+Ga(B)937 1345 y F9(\))964 1357 y FL(Ax)o F4(\()p Ga(x;)15
+b(a)p F4(\))27 b F6(2)e FB(J)p F4(\()p Ga(B)5 b F4(\))o
+FB(K)1233 b Gg(by)24 b(Lemma)e(2.3.6\(ii\))549 1475 y(\(4\))100
+b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1080 1463 y F9(\()1108
+1475 y Ga(x)r F4(:)r Ga(B)1263 1463 y F9(\))1290 1475
+y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))-9 b F6(g)26 b(2)f
+Ga(S)5 b(N)1885 1489 y Gc(aux)2493 1475 y Gg(by)23 b(\(2\),)h(\(3\))f
+(and)h Ga(P)39 b F6(\021)25 b FL(Ax)o F4(\()p Ga(x;)15
+b(a)p F4(\))549 1594 y Gg(\(5\))100 b Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)1080 1582 y F9(\()1108 1594 y Ga(x)r
+F4(:)r Ga(B)1263 1582 y F9(\))1290 1594 y FL(Ax)p F4(\()p
+Ga(x;)15 b(a)p F4(\))-9 b F6(g)1685 1557 y Gc(aux)1665
+1594 y F6(\000)-31 b(\000)f(!)1835 1561 y FX(\003)1900
+1594 y Ga(M)962 b Gg(by)24 b(Lemma)f(2.3.9)549 1713 y(\(6\))100
+b Ga(M)36 b F6(2)24 b Ga(S)5 b(N)1097 1727 y Gc(aux)3044
+1713 y Gg(by)24 b(\(4\))f(and)h(\(5\))p Black 321 1883
+a Gb(Case)p Black 49 w FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)956
+1901 y FX(h:)p Gc(C)5 b FX(i)1119 1883 y F4(\()p FB(J)p
+F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))p Gg(,)23 b Ga(B)30
+b F6(\021)25 b(:)p Ga(C)7 b Gg(:)549 2038 y(\(1\))100
+b Ga(M)36 b F6(\021)25 b FL(Not)1116 2052 y Gc(R)1174
+2038 y F4(\()1209 2026 y F9(\()1237 2038 y Ga(x)1289
+2026 y F9(\))1316 2038 y Ga(S)5 b(;)15 b(a)p F4(\))p
+Gg(,)754 2145 y FX(h)782 2157 y Ga(a)r F4(:)r F6(:)p
+Ga(C)992 2145 y FX(i)1019 2157 y Ga(M)35 b F6(2)27 b
+FW(N)t(O)q(T)t(R)t(I)t(G)t(H)t(T)1630 2175 y FX(h:)p
+Gc(C)5 b FX(i)1793 2157 y F4(\()p FB(J)p F4(\()p Ga(C)i
+F4(\))q FB(K)o F4(\))940 b Gg(by)23 b(assumption)549
+2275 y(\(2\))754 2263 y F9(\()782 2275 y Ga(x)r F4(:)r
+Ga(C)935 2263 y F9(\))962 2275 y Ga(S)30 b F6(2)25 b
+FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)1509 b Gg(by)24
+b(De\002nition)h(2.3.3)549 2394 y(\(3\))100 b Ga(S)30
+b F6(2)25 b Ga(S)5 b(N)1060 2408 y Gc(aux)3089 2394 y
+Gg(by)24 b(induction)549 2512 y(\(4\))100 b FL(Not)897
+2526 y Gc(R)955 2512 y F4(\()990 2500 y F9(\()1017 2512
+y Ga(x)1069 2500 y F9(\))1097 2512 y Ga(S)5 b(;)15 b(a)p
+F4(\))26 b F6(2)f Ga(S)5 b(N)1527 2526 y Gc(aux)3327
+2512 y Gg(by)23 b(\(3\))p Black 321 2683 a Gb(Case)p
+Black 49 w FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)968 2701
+y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1190 2683 y F4(\()p
+FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p
+Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)23 b Ga(B)30 b F6(\021)25
+b Ga(C)7 b F6(^)o Ga(D)s Gg(:)549 2838 y(\(1\))100 b
+Ga(M)36 b F6(\021)25 b FL(And)1128 2852 y Gc(R)1186 2838
+y F4(\()1221 2826 y FX(h)1249 2838 y Ga(d)1296 2826 y
+FX(i)1323 2838 y Ga(S)5 b(;)1424 2826 y FX(h)1452 2838
+y Ga(e)1494 2826 y FX(i)1522 2838 y Ga(T)13 b(;)i(a)p
+F4(\))p Gg(,)754 2945 y FX(h)782 2957 y Ga(a)r F4(:)r
+Ga(C)7 b F6(^)o Ga(D)1069 2945 y FX(i)1096 2957 y Ga(M)36
+b F6(2)27 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1720 2975
+y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1942 2957 y F4(\()p
+FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15 b FB(J)p F6(h)p
+Ga(D)s F6(i)p FB(K)p F4(\))529 b Gg(by)23 b(assumption)549
+3075 y(\(2\))754 3063 y FX(h)782 3075 y Ga(d)r F4(:)r
+Ga(C)930 3063 y FX(i)957 3075 y Ga(S)30 b F6(2)25 b FB(J)p
+F6(h)p Ga(C)7 b F6(i)p FB(K)22 b Gg(and)1521 3063 y FX(h)1549
+3075 y Ga(e)r F4(:)r Ga(D)1698 3063 y FX(i)1726 3075
+y Ga(T)38 b F6(2)25 b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)734
+b Gg(by)24 b(De\002nition)h(2.3.3)549 3194 y(\(3\))100
+b Ga(S;)15 b(T)39 b F6(2)24 b Ga(S)5 b(N)1161 3208 y
+Gc(aux)3089 3194 y Gg(by)24 b(induction)549 3312 y(\(4\))100
+b FL(And)909 3326 y Gc(R)966 3312 y F4(\()1001 3300 y
+FX(h)1029 3312 y Ga(d)1076 3300 y FX(i)1104 3312 y Ga(S)5
+b(;)1205 3300 y FX(h)1233 3312 y Ga(e)1275 3300 y FX(i)1303
+3312 y Ga(T)12 b(;)j(a)p F4(\))26 b F6(2)f Ga(S)5 b(N)1737
+3326 y Gc(aux)3327 3312 y Gg(by)23 b(\(3\))p Black 321
+3491 a Gb(Case)p Black 49 w FW(O)t(R)t(R)t(I)t(G)t(H)t(T)907
+3458 y Gc(i)907 3523 y FX(h)p Gc(C)984 3532 y FV(1)1021
+3523 y FX(_)p Gc(C)1118 3532 y FV(2)1152 3523 y FX(i)1184
+3491 y F4(\()p FB(J)p F6(h)p Ga(C)1356 3505 y Gc(i)1385
+3491 y F6(i)p FB(K)p F4(\))p Gg(,)f Ga(B)30 b F6(\021)25
+b Ga(C)1797 3505 y F9(1)1836 3491 y F6(_)p Ga(C)1962
+3505 y F9(2)2001 3491 y Gg(,)e F4(\()p Ga(i)j F4(=)f(1)p
+Ga(;)15 b F4(2\))p Gg(:)549 3659 y(\(1\))100 b Ga(M)36
+b F6(\021)25 b FL(Or)1073 3623 y Gc(i)1073 3683 y(R)1130
+3659 y F4(\()1165 3647 y FX(h)1193 3659 y Ga(d)1240 3647
+y FX(i)1268 3659 y Ga(S)5 b(;)15 b(a)p F4(\))p Gg(,)754
+3766 y FX(h)782 3778 y Ga(a)r F4(:)r Ga(C)924 3792 y
+F9(1)963 3778 y F6(_)p Ga(C)1089 3792 y F9(2)1128 3766
+y FX(i)1156 3778 y Ga(M)35 b F6(2)27 b FW(O)t(R)t(R)t(I)t(G)t(H)t(T)
+1718 3745 y Gc(i)1718 3809 y FX(h)p Gc(C)1795 3818 y
+FV(1)1832 3809 y FX(_)p Gc(C)1929 3818 y FV(2)1964 3809
+y FX(i)1996 3778 y F4(\()p FB(J)p F6(h)p Ga(C)2168 3792
+y Gc(i)2196 3778 y F6(i)p FB(K)p F4(\))716 b Gg(by)23
+b(assumption)549 3909 y(\(2\))754 3897 y FX(h)782 3909
+y Ga(d)r F4(:)r Ga(C)923 3923 y Gc(i)951 3897 y FX(i)979
+3909 y Ga(S)30 b F6(2)25 b FB(J)p F6(h)p Ga(C)1288 3923
+y Gc(i)1316 3909 y F6(i)p FB(K)1471 b Gg(by)24 b(De\002nition)h(2.3.3)
+549 4028 y(\(3\))100 b Ga(S)30 b F6(2)25 b Ga(S)5 b(N)1060
+4042 y Gc(aux)3089 4028 y Gg(by)24 b(induction)549 4146
+y(\(4\))100 b FL(Or)853 4109 y Gc(i)853 4169 y(R)911
+4146 y F4(\()946 4134 y FX(h)974 4146 y Ga(d)1021 4134
+y FX(i)1049 4146 y Ga(S)5 b(;)15 b(a)p F4(\))26 b F6(2)f
+Ga(S)5 b(N)1479 4160 y Gc(aux)3327 4146 y Gg(by)23 b(\(3\))p
+Black 321 4316 a Gb(Case)p Black 49 w FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)
+938 4335 y FX(h)p Gc(C)5 b FX(\033)s Gc(D)r FX(i)1170
+4316 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)23
+b Ga(B)29 b F6(\021)c Ga(C)7 b F6(\033)o Ga(D)s Gg(:)549
+4472 y(\(1\))100 b Ga(M)36 b F6(\021)25 b FL(Imp)1118
+4494 y Gc(R)1176 4472 y F4(\()1211 4460 y F9(\()1238
+4472 y Ga(x)1290 4460 y F9(\))q FX(h)1345 4472 y Ga(d)1392
+4460 y FX(i)1420 4472 y Ga(S)5 b(;)15 b(a)p F4(\))p Ga(;)754
+4578 y FX(h)782 4590 y Ga(a)r F4(:)r Ga(C)7 b F6(\033)o
+Ga(D)1079 4578 y FX(i)1106 4590 y Ga(M)36 b F6(2)27 b
+FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)1700 4609 y FX(h)p Gc(C)5
+b FX(\033)s Gc(C)g FX(i)1927 4590 y F4(\()p FB(J)p F4(\()p
+Ga(C)i F4(\))p FB(K)p Ga(;)15 b FB(J)p F6(h)p Ga(D)s
+F6(i)p FB(K)p F4(\))544 b Gg(by)23 b(assumption)549 4709
+y(\(2\))754 4697 y F9(\()782 4709 y Ga(x)r F4(:)r Ga(C)935
+4697 y F9(\))962 4709 y Ga(S)p F6(f)-7 b Ga(d)26 b F4(:=)1250
+4697 y F9(\()1278 4709 y Ga(z)6 b F4(:)r Ga(D)1431 4697
+y F9(\))1459 4709 y Ga(P)s F6(g)26 b(2)f FB(J)p F4(\()p
+Ga(C)7 b F4(\))o FB(K)23 b Gg(for)h(all)2157 4697 y F9(\()2185
+4709 y Ga(z)6 b F4(:)r Ga(D)2338 4697 y F9(\))2365 4709
+y Ga(P)39 b F6(2)25 b FB(J)p F4(\()p Ga(D)s F4(\))p FB(K)89
+b Gg(by)24 b(De\002nition)h(2.3.3)549 4827 y(\(3\))754
+4815 y F9(\()782 4827 y Ga(z)6 b F4(:)r Ga(D)935 4815
+y F9(\))962 4827 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(d)p
+F4(\))27 b F6(2)e FB(J)p F4(\()p Ga(D)s F4(\))p FB(K)1236
+b Gg(by)24 b(Lemma)e(2.3.6\(ii\))549 4946 y(\(4\))754
+4934 y F9(\()782 4946 y Ga(x)r F4(:)r Ga(C)935 4934 y
+F9(\))962 4946 y Ga(S)q F6(f)-7 b Ga(d)25 b F4(:=)1250
+4934 y F9(\()1278 4946 y Ga(z)6 b F4(:)r Ga(D)1431 4934
+y F9(\))1459 4946 y FL(Ax)o F4(\()p Ga(z)t(;)15 b(d)p
+F4(\))-8 b F6(g)26 b(2)f FB(J)p F4(\()p Ga(C)7 b F4(\))p
+FB(K)370 b Gg(by)24 b(\(2\),)f(\(3\))h(and)g Ga(P)38
+b F6(\021)25 b FL(Ax)p F4(\()p Ga(z)t(;)15 b(d)p F4(\))549
+5064 y Gg(\(5\))100 b Ga(S)q F6(f)-7 b Ga(d)25 b F4(:=)1043
+5052 y F9(\()1070 5064 y Ga(z)6 b F4(:)r Ga(D)1223 5052
+y F9(\))1251 5064 y FL(Ax)o F4(\()p Ga(z)t(;)15 b(d)p
+F4(\))-7 b F6(g)25 b(2)g Ga(S)5 b(N)1839 5078 y Gc(aux)3089
+5064 y Gg(by)24 b(induction)549 5183 y(\(6\))100 b Ga(S)q
+F6(f)-7 b Ga(d)25 b F4(:=)1043 5171 y F9(\()1070 5183
+y Ga(z)6 b F4(:)r Ga(D)1223 5171 y F9(\))1251 5183 y
+FL(Ax)o F4(\()p Ga(z)t(;)15 b(d)p F4(\))-7 b F6(g)1640
+5146 y Gc(aux)1619 5183 y F6(\000)-31 b(\000)g(!)1790
+5150 y FX(\003)1854 5183 y Ga(S)1040 b Gg(by)24 b(Lemma)f(2.3.9)549
+5302 y(\(7\))100 b Ga(S)30 b F6(2)25 b Ga(S)5 b(N)1060
+5316 y Gc(aux)3044 5302 y Gg(by)24 b(\(5\))f(and)h(\(6\))549
+5420 y(\(8\))100 b FL(Imp)899 5442 y Gc(R)956 5420 y
+F4(\()991 5408 y F9(\()1019 5420 y Ga(x)1071 5408 y F9(\))q
+FX(h)1126 5420 y Ga(d)1173 5408 y FX(i)1201 5420 y Ga(S)5
+b(;)15 b(a)p F4(\))26 b F6(2)f Ga(S)5 b(N)1631 5434 y
+Gc(aux)3327 5420 y Gg(by)23 b(\(7\))p 3480 5525 4 62
+v 3484 5467 55 4 v 3484 5525 V 3538 5525 4 62 v Black
+Black eop end
+%%Page: 145 157
+TeXDict begin 145 156 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(145)p 277 88 3691 4 v Black Black
+277 388 a(Pr)n(oof)28 b(of)g(Lemma)e(2.3.14.)p Black
+34 w Gg(The)h(induction)j(proceeds)g(o)o(v)o(er)e(the)f(le)o
+(xicographically)33 b(ordered)c(in-)277 501 y(duction)d(v)n(alue)e
+F4(\()p Ga(\016)n(;)15 b(\026;)g(\027)6 b F4(\))24 b
+Gg(assigned)i(to)e(each)g(term)f(of)h(the)f(form)h FL(Cut)p
+F4(\()2521 489 y FX(h)2548 501 y Ga(a)r F4(:)r Ga(B)2699
+489 y FX(i)2727 501 y Ga(M)10 b(;)2865 489 y F9(\()2893
+501 y Ga(x)r F4(:)r Ga(B)3048 489 y F9(\))3075 501 y
+Ga(N)g F4(\))p Gg(;)23 b Ga(\016)k Gg(is)c(the)277 614
+y(de)o(gree)i(of)e(the)g(cut-formula)j Ga(B)5 b Gg(,)22
+b(and)h Ga(\026)g Gg(and)g Ga(\027)29 b Gg(are)23 b(the)h(longest)h
+(reduction)h(sequences)g(\(relati)n(v)o(e)e(to)297 690
+y Gc(aux)277 727 y F6(\000)-31 b(\000)f(!)p Gg(\))27
+b(starting)j(from)d Ga(M)37 b Gg(and)28 b Ga(N)10 b Gg(,)28
+b(respecti)n(v)o(ely)-6 b(.)43 b(By)27 b(assumption)j(both)f
+Ga(\026)d Gg(and)i Ga(\027)33 b Gg(are)27 b(\002nite.)41
+b(W)-7 b(e)277 840 y(shall)34 b(sho)n(w)e(that)h(e)n(v)o(ery)g
+(immediate)h(reduct)f(to)g(which)g FL(Cut)p F4(\()2304
+828 y FX(h)2332 840 y Ga(a)2380 828 y FX(i)2407 840 y
+Ga(M)10 b(;)2545 828 y F9(\()2573 840 y Ga(x)2625 828
+y F9(\))2652 840 y Ga(N)g F4(\))32 b Gg(reduces)j(is)d(strongly)277
+953 y(normalising.)277 1086 y(First,)23 b(we)g(shall)h(gi)n(v)o(e)g
+(one)g(case)g(where)g(an)g(inner)g(reduction)i(occurs.)p
+Black 277 1333 a Gb(Inner)d(Reduction:)p Black 504 1474
+a Gg(\(1\))101 b FL(Cut)p F4(\()883 1462 y FX(h)911 1474
+y Ga(a)959 1462 y FX(i)986 1474 y Ga(M)10 b(;)1124 1462
+y F9(\()1152 1474 y Ga(x)1204 1462 y F9(\))1232 1474
+y Ga(N)g F4(\))1395 1437 y Gc(aux)1375 1474 y F6(\000)-31
+b(\000)f(!)26 b FL(Cut)o F4(\()1743 1462 y FX(h)1771
+1474 y Ga(a)1819 1462 y FX(i)1847 1474 y Ga(M)1945 1441
+y FX(0)1968 1474 y Ga(;)2008 1462 y F9(\()2036 1474 y
+Ga(x)2088 1462 y F9(\))2115 1474 y Ga(N)10 b F4(\))p
+Ga(;)710 1586 y FX(h)737 1598 y Ga(a)r F4(:)r Ga(B)888
+1586 y FX(i)916 1598 y Ga(M)35 b F6(2)25 b FB(J)p F6(h)p
+Ga(B)5 b F6(i)p FB(K)22 b Gg(and)1519 1586 y F9(\()1547
+1598 y Ga(x)r F4(:)r Ga(B)1702 1586 y F9(\))1729 1598
+y Ga(N)35 b F6(2)25 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)833 b Gg(by)24 b(assumption)504 1723 y(\(2\))101
+b Ga(M)854 1685 y Gc(aux)833 1723 y F6(\000)-31 b(\000)g(!)25
+b Ga(M)1127 1690 y FX(0)3283 1723 y Gg(by)e(\(1\))504
+1847 y(\(3\))710 1835 y FX(h)737 1847 y Ga(a)r F4(:)r
+Ga(B)888 1835 y FX(i)916 1847 y Ga(M)1014 1814 y FX(0)1062
+1847 y F6(2)i FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)1495
+b Gg(by)23 b(Lemma)g(2.3.12)504 1971 y(\(4\))101 b Ga(M)808
+1938 y FX(0)857 1971 y F6(2)25 b Ga(S)5 b(N)1077 1985
+y Gc(aux)2861 1971 y Gg(by)23 b(Lemma)g(2.3.13)504 2095
+y(\(5\))101 b FL(Cut)p F4(\()883 2083 y FX(h)911 2095
+y Ga(a)959 2083 y FX(i)986 2095 y Ga(M)1084 2062 y FX(0)1108
+2095 y Ga(;)1148 2083 y F9(\()1175 2095 y Ga(x)1227 2083
+y F9(\))1255 2095 y Ga(N)10 b F4(\))25 b F6(2)g Ga(S)5
+b(N)1618 2109 y Gc(aux)3022 2095 y Gg(by)24 b(induction,)915
+2219 y(the)g(de)o(gree)h(of)e(the)h(cut-formula)i(is)d(equal)i(in)e
+(both)i(terms,)e(b)n(ut)h Ga(l)r F4(\()p Ga(M)3124 2186
+y FX(0)3148 2219 y F4(\))h Ga(<)g(l)r F4(\()p Ga(M)10
+b F4(\))277 2461 y Gg(Ne)o(xt,)23 b(we)g(shall)h(gi)n(v)o(e)g(one)g
+(case)g(where)g(a)f(commuting)i(reduction)h(occurs)f(on)e(the)h(top-le)
+n(v)o(el.)p Black 277 2708 a Gb(Commuting)e(Reduction:)p
+Black 504 2852 a Gg(\(1\))101 b FL(Cut)p F4(\()883 2840
+y FX(h)911 2852 y Ga(a)959 2840 y FX(i)986 2852 y Ga(M)10
+b(;)1124 2840 y F9(\()1152 2852 y Ga(x)1204 2840 y F9(\))1232
+2852 y Ga(N)g F4(\))1434 2815 y Gc(c)1465 2791 y FC(0)1375
+2852 y F6(\000)-31 b(\000)f(!)26 b Ga(M)5 b F6(f)-7 b
+Ga(a)26 b F4(:=)1897 2840 y F9(\()1924 2852 y Ga(x)1976
+2840 y F9(\))2004 2852 y Ga(N)p F6(g)d Gg(and)2299 2840
+y FX(h)2327 2852 y Ga(a)r F4(:)r Ga(B)2478 2840 y FX(i)2505
+2852 y Ga(M)36 b F6(2)24 b FB(J)p F6(h)p Ga(B)5 b F6(i)p
+FB(K)42 b Gg(by)24 b(assumption)504 3007 y(W)-7 b(e)28
+b(kno)n(w)h(that)h(only)f(the)h(commuting)g(reduction)h(is)e
+(applicable,)k(if)28 b Ga(M)39 b Gg(does)29 b(not)h(freshly)504
+3120 y(introduce)f Ga(a)p Gg(.)34 b(This)25 b(implies)i(that)f(there)g
+(are)g(only)g(tw)o(o)g(possibilities)j(for)2897 3108
+y FX(h)2924 3120 y Ga(a)r F4(:)r Ga(B)3075 3108 y FX(i)3102
+3120 y Ga(M)35 b Gg(to)26 b(be)f(in)504 3233 y FB(J)p
+F6(h)p Ga(B)5 b F6(i)p FB(K)p Gg(:)28 b(it)c(can)f(be)h(in)h
+FW(A)t(X)t(I)t(O)t(M)t(S)1511 3252 y FX(h)p Gc(B)s FX(i)1652
+3233 y Gg(or)e(in)i FW(B)t(I)t(N)t(D)t(I)t(N)t(G)2180
+3252 y FX(h)p Gc(B)s FX(i)2297 3233 y F4(\()p FB(J)p
+F4(\()p Ga(B)5 b F4(\))q FB(K)o F4(\))q Gg(.)504 3391
+y(In)27 b(the)g(\002rst)g(case)g Ga(M)36 b Gg(is)27 b(an)f(axiom)i
+(that)f(does)h(not)f(introduce)i Ga(a)p Gg(.)38 b(Thus)26
+b Ga(M)5 b F6(f)-7 b Ga(a)33 b F4(:=)3190 3379 y F9(\()3217
+3391 y Ga(x)3269 3379 y F9(\))3297 3391 y Ga(N)p F6(g)27
+b Gg(is)504 3503 y(equi)n(v)n(alent)f(to)e Ga(M)10 b
+Gg(,)22 b(which)i(we)f(kno)n(w)g(by)h(assumption)i(is)d(strongly)j
+(normalising.)504 3661 y(The)d(proof)i(for)f(the)g(second)h(case)f(is)f
+(as)h(follo)n(ws.)p Black Black 504 3935 a(\(2\))710
+3923 y FX(h)737 3935 y Ga(a)r F4(:)r Ga(B)888 3923 y
+FX(i)916 3935 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1462
+3953 y FX(h)p Gc(B)s FX(i)1579 3935 y F4(\()p FB(J)p
+F4(\()p Ga(B)5 b F4(\))p FB(K)p F4(\))1049 b Gg(ne)n(w)23
+b(assumption)504 4059 y(\(3\))101 b Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)1036 4047 y F9(\()1064 4059 y Ga(y)5
+b F4(:)r Ga(B)1215 4047 y F9(\))1242 4059 y Ga(P)s F6(g)26
+b(2)f Ga(S)5 b(N)1594 4073 y Gc(aux)1739 4059 y Gg(for)24
+b(all)1981 4047 y F9(\()2009 4059 y Ga(y)5 b F4(:)r Ga(B)2160
+4047 y F9(\))2187 4059 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(B)5 b F4(\))p FB(K)228 b Gg(by)24 b(De\002nition)g(2.3.3)504
+4183 y(\(4\))710 4171 y F9(\()737 4183 y Ga(x)r F4(:)r
+Ga(B)892 4171 y F9(\))920 4183 y Ga(N)35 b F6(2)25 b
+FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)1642 b Gg(by)24
+b(assumption)504 4307 y(\(5\))101 b Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)1036 4295 y F9(\()1064 4307 y Ga(x)r
+F4(:)r Ga(B)1219 4295 y F9(\))1246 4307 y Ga(N)p F6(g)g(2)f
+Ga(S)5 b(N)1610 4321 y Gc(aux)2470 4307 y Gg(by)23 b(\(3\),)h(\(4\))f
+(and)3017 4295 y F9(\()3045 4307 y Ga(y)3093 4295 y F9(\))3120
+4307 y Ga(P)38 b F6(\021)3312 4295 y F9(\()3340 4307
+y Ga(x)3392 4295 y F9(\))3419 4307 y Ga(N)277 4573 y
+Gg(It)d(remains)i(to)e(check)i(for)f(e)n(v)o(ery)g(logical)h
+(cut-reduction)j(rule)c(that)g(the)g(immediate)g(reducts)h(of)277
+4686 y FL(Cut)p F4(\()450 4674 y FX(h)478 4686 y Ga(a)526
+4674 y FX(i)553 4686 y Ga(M)10 b(;)691 4674 y F9(\()719
+4686 y Ga(x)771 4674 y F9(\))799 4686 y Ga(N)g F4(\))34
+b Gg(are)h(strongly)i(normalising.)65 b(W)-7 b(e)34 b(shall)i(gi)n(v)o
+(e)f(three)g(cases)h(to)f(illustrate)i(the)277 4799 y(proof.)29
+b(The)20 b(dif)n(\002cult)h(case)g(is)g(the)f(logical)j(reduction)g
+F6(\033)2078 4813 y Gc(R)2136 4799 y Ga(=)p F6(\033)2252
+4813 y Gc(L)2304 4799 y Gg(,)d(because)j(both)e(immediate)h(reducts)277
+4912 y(ha)n(v)o(e)i(tw)o(o)f(nested)i(cuts.)p Black 277
+5159 a Gb(Logical)g(Reduction)d(with)h(Axioms:)p Black
+47 w FL(Cut)o F4(\()1745 5147 y FX(h)1773 5159 y Ga(a)1821
+5147 y FX(i)1849 5159 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p
+F4(\))q Ga(;)2198 5147 y F9(\()2226 5159 y Ga(x)2278
+5147 y F9(\))2306 5159 y Ga(N)9 b F4(\))24 b Gg(reduces)h(to)39
+b Ga(N)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])16 b Gg(.)28
+b(By)23 b(as-)504 5272 y(sumption)h(we)d(kno)n(w)h(that)g
+Ga(N)31 b Gg(is)21 b(strongly)j(normalising,)h(and)d(therefore)i
+Ga(N)10 b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])22 b Gg(must)f(be)504
+5385 y(strongly)26 b(normalising.)p Black Black eop end
+%%Page: 146 158
+TeXDict begin 146 157 bop Black -144 51 a Gb(146)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 388 a(Logical)h(Reduction)e Fb(^)1123
+402 y Fy(R)1189 388 y FO(=)p Fb(^)1311 402 y Fy(L)1364
+410 y Fa(1)1407 388 y Gb(,)f FO(B)34 b Fb(\021)29 b FO(C)6
+b Fb(^)p FO(D)s Gb(:)p Black 549 546 a Gg(\(1\))100 b
+FL(Cut)p F4(\()927 534 y FX(h)955 546 y Ga(c)994 534
+y FX(i)1022 546 y Ga(M)10 b(;)1160 534 y F9(\()1188 546
+y Ga(y)1236 534 y F9(\))1263 546 y Ga(N)g F4(\))1481
+509 y Gc(l)1406 546 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
+F4(\()1775 534 y FX(h)1803 546 y Ga(a)1851 534 y FX(i)1878
+546 y Ga(S)5 b(;)1979 534 y F9(\()2007 546 y Ga(x)2059
+534 y F9(\))2086 546 y Ga(U)10 b F4(\))p Gg(,)754 670
+y Ga(M)36 b F6(\021)25 b FL(And)1128 684 y Gc(R)1186
+670 y F4(\()1221 658 y FX(h)1249 670 y Ga(a)1297 658
+y FX(i)1324 670 y Ga(S)5 b(;)1425 658 y FX(h)1453 670
+y Ga(b)1492 658 y FX(i)1519 670 y Ga(T)13 b(;)i(c)p F4(\))p
+Gg(,)49 b Ga(N)35 b F6(\021)25 b FL(And)2130 633 y F9(1)2130
+693 y Gc(L)2182 670 y F4(\()2217 658 y F9(\()2245 670
+y Ga(x)2297 658 y F9(\))2324 670 y Ga(U)10 b(;)15 b(y)s
+F4(\))p Gg(,)754 794 y Ga(M)33 b Gg(and)24 b Ga(N)33
+b Gg(freshly)25 b(introduce)h Ga(c)d Gg(and)h Ga(y)s
+Gg(,)e(respecti)n(v)o(ely)-6 b(,)754 906 y FX(h)782 918
+y Ga(c)r F4(:)r Ga(C)7 b F6(^)o Ga(D)1060 906 y FX(i)1088
+918 y Ga(M)35 b F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(^)o
+Ga(D)s F6(i)p FB(K)22 b Gg(and)1827 906 y F9(\()1855
+918 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o Ga(D)2142 906 y F9(\))2169
+918 y Ga(N)36 b F6(2)24 b FB(J)p F4(\()p Ga(C)7 b F6(^)o
+Ga(D)s F4(\))q FB(K)301 b Gg(by)23 b(assumption)549 1066
+y(Since)g Ga(M)33 b Gg(and)24 b Ga(N)33 b Gg(are)24 b(not)f(axioms,)i
+(it)e(follo)n(ws)h(from)f(Lemma)g(2.3.6\(i\))h(that)549
+1213 y FX(h)576 1225 y Ga(c)r F4(:)r Ga(C)7 b F6(^)p
+Ga(D)855 1213 y FX(i)882 1225 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t
+(I)t(N)t(G)1428 1243 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r
+FX(i)1651 1225 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(^)o
+Ga(D)s F4(\))p FB(K)p F4(\))46 b F6([)h FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t
+(T)2641 1243 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)2863
+1225 y F4(\()p FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)p Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))549 1348 y
+F9(\()576 1360 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o Ga(D)863
+1348 y F9(\))891 1360 y Ga(N)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t
+(G)1422 1379 y F9(\()p Gc(C)5 b FX(^)q Gc(D)r F9(\))1644
+1360 y F4(\()p FB(J)p F6(h)p Ga(C)i F6(^)o Ga(D)s F6(i)p
+FB(K)p F4(\))46 b F6([)h FW(A)t(N)t(D)t(L)t(E)t(F)t(T)2579
+1327 y F9(1)2579 1391 y(\()p Gc(C)5 b FX(^)t Gc(D)r F9(\))2804
+1360 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)o F4(\))549
+1518 y Gg(No)n(w)27 b(our)h(ar)n(gument)j(splits)e(into)h(tw)o(o)e
+(cases)h(depending)i(on)e(whether)g(at)g(least)g(one)g(of)f(the)549
+1619 y FX(h)576 1631 y Ga(c)r F4(:)r Ga(C)7 b F6(^)p
+Ga(D)855 1619 y FX(i)882 1631 y Ga(M)35 b Gg(and)1161
+1619 y F9(\()1189 1631 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o
+Ga(D)1476 1619 y F9(\))1503 1631 y Ga(N)35 b Gg(belong)27
+b(to)h FW(B)t(I)t(N)t(D)t(I)t(N)t(G)r Gg(.)35 b(Let)25
+b(us)h(assume)2919 1619 y FX(h)2946 1631 y Ga(c)r F4(:)r
+Ga(C)7 b F6(^)p Ga(D)3225 1619 y FX(i)3252 1631 y Ga(M)35
+b Gg(is)26 b(an)549 1744 y(element)e(in)i FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
+1290 1762 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1512 1744
+y F4(\()p FB(J)p F4(\()p Ga(C)i F6(^)o Ga(D)s F4(\))q
+FB(K)o F4(\))p Gg(.)549 1914 y(\(2.1\))822 1902 y FX(h)850
+1914 y Ga(c)r F4(:)r Ga(C)g F6(^)p Ga(D)1129 1902 y FX(i)1156
+1914 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1702
+1932 y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)1924 1914 y
+F4(\()p FB(J)p F4(\()p Ga(C)i F6(^)p Ga(D)s F4(\))p FB(K)p
+F4(\))611 b Gg(ne)n(w)23 b(assumption)549 2038 y(\(2.2\))100
+b Ga(M)5 b F6(f)-7 b Ga(c)27 b F4(:=)1140 2026 y F9(\()1167
+2038 y Ga(z)1213 2026 y F9(\))1241 2038 y Ga(P)t F6(g)e(2)g
+Ga(S)5 b(N)1593 2052 y Gc(aux)1738 2038 y Gg(for)24 b(all)1981
+2026 y F9(\()2008 2038 y Ga(z)6 b F4(:)r Ga(C)h F6(^)p
+Ga(D)2294 2026 y F9(\))2321 2038 y Ga(P)38 b F6(2)25
+b FB(J)p F4(\()p Ga(C)7 b F6(^)o Ga(D)s F4(\))p FB(K)212
+b Gg(by)24 b(Def.)f(2.3.3)549 2162 y(\(2.3\))100 b Ga(M)5
+b F6(f)-7 b Ga(c)27 b F4(:=)1140 2150 y F9(\()1167 2162
+y Ga(y)1215 2150 y F9(\))1243 2162 y Ga(N)p F6(g)f(2)f
+Ga(S)5 b(N)1607 2176 y Gc(aux)2451 2162 y Gg(by)24 b(\(1\),)f(\(2.2\))h
+(and)3067 2150 y F9(\()3095 2162 y Ga(z)3141 2150 y F9(\))3168
+2162 y Ga(P)39 b F6(\021)3361 2150 y F9(\()3388 2162
+y Ga(y)3436 2150 y F9(\))3463 2162 y Ga(N)549 2286 y
+Gg(\(2.4\))100 b(The)23 b(follo)n(wing)i(calculation)i(sho)n(ws)d(that)
+g FL(Cut)p F4(\()2362 2274 y FX(h)2390 2286 y Ga(c)2429
+2274 y FX(i)2456 2286 y Ga(M)10 b(;)2594 2274 y F9(\()2622
+2286 y Ga(y)2670 2274 y F9(\))2698 2286 y Ga(N)g F4(\))25
+b F6(2)g Ga(S)5 b(N)3061 2300 y Gc(aux)3183 2286 y Gg(.)p
+Black Black 643 2458 a Ga(M)g F6(f)-7 b Ga(c)27 b F4(:=)961
+2446 y F9(\()988 2458 y Ga(y)1036 2446 y F9(\))1064 2458
+y Ga(N)p F6(g)k(\021)f FL(And)1468 2472 y Gc(R)1526 2458
+y F4(\()1561 2446 y FX(h)1589 2458 y Ga(a)1637 2446 y
+FX(i)1664 2458 y Ga(S)5 b(;)1765 2446 y FX(h)1793 2458
+y Ga(b)1832 2446 y FX(i)1860 2458 y Ga(T)12 b(;)j(c)p
+F4(\))-5 b F6(f)e Ga(c)28 b F4(:=)2260 2446 y F9(\()2287
+2458 y Ga(y)2335 2446 y F9(\))2363 2458 y Ga(N)p F6(g)1213
+2594 y F4(=)i FL(Cut)p F4(\()1487 2582 y FX(h)1514 2594
+y Ga(c)1553 2582 y FX(i)1581 2594 y FL(And)1736 2608
+y Gc(R)1793 2594 y F4(\()1828 2582 y FX(h)1856 2594 y
+Ga(a)1904 2582 y FX(i)1932 2594 y Ga(S)q F6(f)-7 b Ga(c)25
+b F4(:=)2212 2582 y F9(\()2240 2594 y Ga(y)2288 2582
+y F9(\))2315 2594 y Ga(N)p F6(g)q Ga(;)2474 2582 y FX(h)2502
+2594 y Ga(b)2541 2582 y FX(i)2568 2594 y Ga(T)8 b F6(f)-7
+b Ga(c)26 b F4(:=)2853 2582 y F9(\()2881 2594 y Ga(y)2929
+2582 y F9(\))2956 2594 y Ga(N)q F6(g)p Ga(;)15 b(c)p
+F4(\))q Ga(;)3230 2582 y F9(\()3258 2594 y Ga(y)3306
+2582 y F9(\))3333 2594 y Ga(N)10 b F4(\))1206 2675 y
+FV(\()p FC(\003)p FV(\))1213 2758 y F6(\021)30 b FL(Cut)p
+F4(\()1487 2746 y FX(h)1514 2758 y Ga(c)1553 2746 y FX(i)1581
+2758 y FL(And)1736 2772 y Gc(R)1793 2758 y F4(\()1828
+2746 y FX(h)1856 2758 y Ga(a)1904 2746 y FX(i)1932 2758
+y Ga(S)5 b(;)2033 2746 y FX(h)2061 2758 y Ga(b)2100 2746
+y FX(i)2127 2758 y Ga(T)13 b(;)i(c)p F4(\))q Ga(;)2348
+2746 y F9(\()2376 2758 y Ga(y)2424 2746 y F9(\))2451
+2758 y Ga(N)10 b F4(\))1213 2895 y F6(\021)30 b FL(Cut)p
+F4(\()1487 2883 y FX(h)1514 2895 y Ga(c)1553 2883 y FX(i)1581
+2895 y Ga(M)10 b(;)1719 2883 y F9(\()1747 2895 y Ga(y)1795
+2883 y F9(\))1822 2895 y Ga(N)g F4(\))1106 3002 y F9(\()p
+FX(\003)p F9(\))1314 3035 y Gg(because)25 b Ga(M)33 b
+Gg(freshly)25 b(introduces)i Ga(c)p Gg(.)549 3192 y(If)h
+FL(Cut)p F4(\()810 3180 y FX(h)838 3192 y Ga(c)877 3180
+y FX(i)905 3192 y Ga(M)10 b(;)1043 3180 y F9(\()1071
+3192 y Ga(y)1119 3180 y F9(\))1146 3192 y Ga(N)g F4(\))29
+b Gg(is)g(strongly)i(normalising,)i(then)d(its)f(reduct)h
+FL(Cut)p F4(\()2922 3180 y FX(h)2950 3192 y Ga(a)2998
+3180 y FX(i)3026 3192 y Ga(S)5 b(;)3127 3180 y F9(\()3154
+3192 y Ga(x)3206 3180 y F9(\))3234 3192 y Ga(U)10 b F4(\))29
+b Gg(must)549 3305 y(be)d(strongly)j(normalising)h(too.)38
+b(In)27 b(case)1906 3293 y F9(\()1933 3305 y Ga(y)5 b
+F4(:)r Ga(C)i F6(^)o Ga(D)2220 3293 y F9(\))2247 3305
+y Ga(N)36 b Gg(is)27 b(in)i FW(B)t(I)t(N)t(D)t(I)t(N)t(G)2877
+3324 y F9(\()p Gc(C)5 b FX(^)r Gc(D)r F9(\))3099 3305
+y F4(\()p FB(J)p F6(h)p Ga(C)i F6(^)o Ga(D)s F6(i)q FB(K)o
+F4(\))q Gg(,)549 3418 y(we)22 b(reason)j(analogous.)549
+3571 y(If)c(neither)902 3559 y FX(h)930 3571 y Ga(c)r
+F4(:)r Ga(C)7 b F6(^)p Ga(D)1209 3559 y FX(i)1236 3571
+y Ga(M)30 b Gg(nor)1496 3559 y F9(\()1523 3571 y Ga(y)5
+b F4(:)r Ga(C)i F6(^)p Ga(D)1811 3559 y F9(\))1838 3571
+y Ga(N)30 b Gg(are)21 b(in)j FW(B)t(I)t(N)t(D)t(I)t(N)t(G)r
+Gg(,)e(then)g(we)e(proceed)j(as)e(follo)n(ws.)549 3725
+y(\(3.1\))822 3713 y FX(h)850 3725 y Ga(c)r F4(:)r Ga(C)7
+b F6(^)p Ga(D)1129 3713 y FX(i)1156 3725 y Ga(M)35 b
+F6(2)27 b FW(A)t(N)t(D)t(R)t(I)t(G)t(H)t(T)1779 3744
+y FX(h)p Gc(C)5 b FX(^)r Gc(D)r FX(i)2002 3725 y F4(\()p
+FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)o Ga(;)15 b FB(J)p F6(h)p
+Ga(D)s F6(i)q FB(K)o F4(\))q Gg(,)822 3838 y F9(\()850
+3850 y Ga(y)5 b F4(:)r Ga(C)i F6(^)o Ga(D)1137 3838 y
+F9(\))1164 3850 y Ga(N)36 b F6(2)26 b FW(A)t(N)t(D)t(L)t(E)t(F)t(T)1717
+3817 y F9(1)1717 3881 y(\()p Gc(C)5 b FX(^)t Gc(D)r F9(\))1942
+3850 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p F4(\))732
+b Gg(ne)n(w)23 b(assumption)549 3984 y(\(3.2\))822 3972
+y FX(h)850 3984 y Ga(a)17 b F4(:)h Ga(C)1030 3972 y FX(i)1056
+3984 y Ga(S)31 b F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(i)o
+FB(K)23 b Gg(and)1621 3972 y F9(\()1648 3984 y Ga(x)17
+b F4(:)h Ga(C)1832 3972 y F9(\))1859 3984 y Ga(U)35 b
+F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)601 b
+Gg(by)24 b(De\002nition)h(2.3.3)549 4109 y(\(3.3\))100
+b Ga(S;)15 b(U)36 b F6(2)25 b Ga(S)5 b(N)1236 4123 y
+Gc(aux)2905 4109 y Gg(by)24 b(Lemma)e(2.3.13)549 4233
+y(\(3.4\))100 b FL(Cut)p F4(\()995 4221 y FX(h)1023 4233
+y Ga(a)r F4(:)r Ga(C)1172 4221 y FX(i)1199 4233 y Ga(S)5
+b(;)1300 4221 y F9(\()1328 4233 y Ga(x)r F4(:)r Ga(C)1481
+4221 y F9(\))1508 4233 y Ga(U)10 b F4(\))26 b F6(2)f
+Ga(S)5 b(N)1861 4247 y Gc(aux)2250 4233 y Gg(by)24 b(induction)i(\(the)
+e(de)o(gree)h(decreased\))p Black 321 4426 a Gb(Logical)g(Reduction)e
+Fb(\033)1135 4440 y Fy(R)1200 4426 y FO(=)p Fb(\033)1334
+4440 y Fy(L)1391 4426 y Gb(,)g FO(B)33 b Fb(\021)d FO(C)6
+b Fb(\033)p FO(D)s Gb(:)p Black 549 4583 a Gg(\(1\))100
+b Ga(M)36 b F6(\021)25 b FL(Imp)1118 4605 y Gc(R)1176
+4583 y F4(\()1211 4571 y F9(\()1238 4583 y Ga(x)1290
+4571 y F9(\))q FX(h)1345 4583 y Ga(a)1393 4571 y FX(i)1421
+4583 y Ga(S)5 b(;)15 b(b)p F4(\))p Gg(,)23 b Ga(N)60
+b F6(\021)25 b FL(Imp)2016 4605 y Gc(L)2068 4583 y F4(\()2103
+4571 y FX(h)2131 4583 y Ga(c)2170 4571 y FX(i)2198 4583
+y Ga(T)12 b(;)2303 4571 y F9(\()2331 4583 y Ga(y)2379
+4571 y F9(\))2407 4583 y Ga(U)d(;)15 b(z)t F4(\))p Gg(,)754
+4708 y Ga(M)33 b Gg(and)24 b Ga(N)33 b Gg(freshly)25
+b(introduce)h Ga(b)d Gg(and)h Ga(z)t Gg(,)e(respecti)n(v)o(ely)-6
+b(,)754 4820 y FX(h)782 4832 y Ga(c)r F4(:)r Ga(C)7 b
+F6(\033)p Ga(D)1071 4820 y FX(i)1098 4832 y Ga(M)35 b
+F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(\033)o Ga(D)s F6(i)p
+FB(K)23 b Gg(and)1848 4820 y F9(\()1875 4832 y Ga(y)5
+b F4(:)r Ga(C)i F6(\033)o Ga(D)2172 4820 y F9(\))2200
+4832 y Ga(N)35 b F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F6(\033)o
+Ga(D)s F4(\))p FB(K)261 b Gg(by)23 b(assumption)549 4985
+y(The)g(term)g FL(Cut)p F4(\()1075 4973 y FX(h)1103 4985
+y Ga(b)1142 4973 y FX(i)1169 4985 y Ga(M)10 b(;)1307
+4973 y F9(\()1335 4985 y Ga(z)1381 4973 y F9(\))1409
+4985 y Ga(N)g F4(\))23 b Gg(reduces)i(to)f(either:)p
+Black Black 757 5216 a FL(Cut)p F4(\()930 5204 y FX(h)958
+5216 y Ga(a)1006 5204 y FX(i)1059 5216 y FL(Cut)p F4(\()1232
+5204 y FX(h)1259 5216 y Ga(c)1298 5204 y FX(i)1326 5216
+y Ga(T)13 b(;)1432 5204 y F9(\()1460 5216 y Ga(x)1512
+5204 y F9(\))1539 5216 y Ga(S)5 b F4(\))q Ga(;)1676 5204
+y F9(\()1703 5216 y Ga(y)1751 5204 y F9(\))1779 5216
+y Ga(U)10 b F4(\))100 b Gg(or)g FL(Cut)p F4(\()2334 5204
+y FX(h)2362 5216 y Ga(c)2401 5204 y FX(i)2428 5216 y
+Ga(T)13 b(;)2534 5204 y F9(\()2562 5216 y Ga(x)2614 5204
+y F9(\))2667 5216 y FL(Cut)p F4(\()2840 5204 y FX(h)2867
+5216 y Ga(a)2915 5204 y FX(i)2943 5216 y Ga(S)5 b(;)3044
+5204 y F9(\()3072 5216 y Ga(y)3120 5204 y F9(\))3147
+5216 y Ga(U)10 b F4(\)\))26 b Gg(.)p Black Black eop
+end
+%%Page: 147 159
+TeXDict begin 147 158 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(147)p 277 88 3691 4 v Black 504 388
+a Gg(W)-7 b(e)34 b(ha)n(v)o(e)i(to)e(sho)n(w)h(that)g(both)h(reducts)g
+(are)f(strongly)i(normalising.)65 b(W)-7 b(e)34 b(shall)h(gi)n(v)o(e)g
+(the)504 501 y(details)25 b(for)f(the)g(\002rst)f(case.)504
+659 y(Since)h Ga(M)33 b Gg(and)24 b Ga(N)33 b Gg(are)23
+b(not)h(axioms,)g(it)g(follo)n(ws)g(from)f(Lemma)g(2.3.6\(i\))h(that)
+504 812 y FX(h)532 824 y Ga(b)r F4(:)r Ga(C)7 b F6(\033)o
+Ga(D)820 812 y FX(i)848 824 y Ga(M)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)
+t(N)t(G)1394 842 y FX(h)p Gc(C)5 b FX(\033)r Gc(D)r FX(i)1624
+824 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(\033)p Ga(D)s
+F4(\))p FB(K)o F4(\))46 b F6([)h FW(I)t(M)t(P)t(R)t(I)t(G)t(H)t(T)2594
+842 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)2826 824
+y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))q FB(K)o Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)o F4(\))504 947 y
+F9(\()532 959 y Ga(z)6 b F4(:)r Ga(C)h F6(\033)p Ga(D)828
+947 y F9(\))855 959 y Ga(N)35 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t(G)
+1386 978 y F9(\()p Gc(C)5 b FX(\033)r Gc(D)r F9(\))1616
+959 y F4(\()p FB(J)p F6(h)p Ga(C)i F6(\033)p Ga(D)s F6(i)p
+FB(K)o F4(\))46 b F6([)h FW(I)t(M)t(P)t(L)t(E)t(F)t(T)2531
+978 y F9(\()p Gc(C)5 b FX(\033)h Gc(D)r F9(\))2766 959
+y F4(\()p FB(J)p F6(h)p Ga(C)h F6(i)p FB(K)o Ga(;)15
+b FB(J)p F4(\()p Ga(D)s F4(\))q FB(K)o F4(\))504 1115
+y Gg(Again)35 b(the)g(proof)h(splits)g(into)g(tw)o(o)e(cases)i
+(depending)i(on)d(whether)h(the)f(co-named)i(term)504
+1216 y FX(h)532 1228 y Ga(b)17 b F4(:)g Ga(C)7 b F6(\033)p
+Ga(D)851 1216 y FX(i)878 1228 y Ga(M)38 b Gg(or)28 b(the)g(named)h
+(term)1709 1216 y F9(\()1737 1228 y Ga(z)21 b F4(:)d
+Ga(C)7 b F6(\033)o Ga(D)2063 1216 y F9(\))2090 1228 y
+Ga(N)38 b Gg(belong)30 b(to)g FW(B)t(I)t(N)t(D)t(I)t(N)t(G)r
+Gg(.)44 b(Let)27 b(us)i(assume)504 1329 y FX(h)532 1341
+y Ga(b)r F4(:)r Ga(C)7 b F6(\033)o Ga(D)820 1329 y FX(i)848
+1341 y Ga(M)32 b Gg(is)24 b(an)f(element)i(in)g FW(B)t(I)t(N)t(D)t(I)t
+(N)t(G)1901 1360 y FX(h)p Gc(C)5 b FX(\033)r Gc(D)r FX(i)2132
+1341 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(\033)o Ga(D)s
+F4(\))p FB(K)p F4(\))p Gg(.)504 1517 y(\(2.1\))778 1505
+y FX(h)806 1517 y Ga(b)r F4(:)r Ga(C)g F6(\033)o Ga(D)1094
+1505 y FX(i)1121 1517 y Ga(M)36 b F6(2)27 b FW(B)t(I)t(N)t(D)t(I)t(N)t
+(G)1668 1535 y FX(h)p Gc(C)5 b FX(\033)q Gc(D)r FX(i)1898
+1517 y F4(\()p FB(J)p F4(\()p Ga(C)i F6(\033)o Ga(D)s
+F4(\))q FB(K)o F4(\))584 b Gg(ne)n(w)23 b(assumption)504
+1641 y(\(2.2\))101 b Ga(M)5 b F6(f)-7 b Ga(b)26 b F4(:=)1095
+1629 y F9(\()1123 1641 y Ga(v)1170 1629 y F9(\))1198
+1641 y Ga(P)s F6(g)g(2)f Ga(S)5 b(N)1550 1655 y Gc(aux)1695
+1641 y Gg(for)23 b(all)1937 1629 y F9(\()1965 1641 y
+Ga(v)5 b F4(:)r Ga(C)i F6(\033)o Ga(D)2261 1629 y F9(\))2289
+1641 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p Ga(C)7 b F6(\033)o
+Ga(D)s F4(\))p FB(K)190 b Gg(by)24 b(Def.)e(2.3.3)504
+1765 y(\(2.3\))101 b Ga(M)5 b F6(f)-7 b Ga(b)26 b F4(:=)1095
+1753 y F9(\()1123 1765 y Ga(z)1169 1753 y F9(\))1197
+1765 y Ga(N)p F6(g)g(2)f Ga(S)5 b(N)1561 1779 y Gc(aux)2408
+1765 y Gg(by)23 b(\(1\),)h(\(2.2\))g(and)3024 1753 y
+F9(\()3051 1765 y Ga(v)3098 1753 y F9(\))3126 1765 y
+Ga(P)38 b F6(\021)3318 1753 y F9(\()3345 1765 y Ga(z)3391
+1753 y F9(\))3419 1765 y Ga(N)504 1889 y Gg(\(2.4\))101
+b(The)23 b(follo)n(wing)i(calculation)i(sho)n(ws)d(that)g
+FL(Cut)p F4(\()2318 1877 y FX(h)2345 1889 y Ga(c)2384
+1877 y FX(i)2412 1889 y Ga(M)10 b(;)2550 1877 y F9(\()2578
+1889 y Ga(z)2624 1877 y F9(\))2652 1889 y Ga(N)g F4(\))25
+b F6(2)g Ga(S)5 b(N)3015 1903 y Gc(aux)3138 1889 y Gg(.)p
+Black Black 874 2104 a Ga(M)g F6(f)-7 b Ga(b)26 b F4(:=)1192
+2092 y F9(\()1219 2104 y Ga(z)1265 2092 y F9(\))1293
+2104 y Ga(N)p F6(g)31 b(\021)f FL(Imp)1687 2125 y Gc(R)1745
+2104 y F4(\()1780 2092 y F9(\()1808 2104 y Ga(x)1860
+2092 y F9(\))p FX(h)1915 2104 y Ga(a)1963 2092 y FX(i)1990
+2104 y Ga(S)5 b(;)15 b(b)p F4(\))-5 b F6(f)e Ga(b)27
+b F4(:=)2385 2092 y F9(\()2413 2104 y Ga(z)2459 2092
+y F9(\))2486 2104 y Ga(N)q F6(g)1442 2240 y F4(=)j FL(Cut)p
+F4(\()1716 2228 y FX(h)1744 2240 y Ga(b)1783 2228 y FX(i)1810
+2240 y FL(Imp)1954 2262 y Gc(R)2012 2240 y F4(\()2047
+2228 y F9(\()2075 2240 y Ga(x)2127 2228 y F9(\))p FX(h)2182
+2240 y Ga(a)2230 2228 y FX(i)2257 2240 y Ga(S)q F6(f)-7
+b Ga(b)25 b F4(:=)2537 2228 y F9(\()2565 2240 y Ga(z)2611
+2228 y F9(\))2639 2240 y Ga(N)p F6(g)q Ga(;)15 b(b)p
+F4(\))p Ga(;)2912 2228 y F9(\()2940 2240 y Ga(z)2986
+2228 y F9(\))3014 2240 y Ga(N)10 b F4(\))1435 2320 y
+FV(\()p FC(\003)p FV(\))1442 2404 y F6(\021)30 b FL(Cut)p
+F4(\()1716 2392 y FX(h)1744 2404 y Ga(b)1783 2392 y FX(i)1810
+2404 y FL(Imp)1954 2426 y Gc(R)2012 2404 y F4(\()2047
+2392 y F9(\()2075 2404 y Ga(x)2127 2392 y F9(\))p FX(h)2182
+2404 y Ga(a)2230 2392 y FX(i)2257 2404 y Ga(S)5 b(;)15
+b(b)p F4(\))q Ga(;)2473 2392 y F9(\()2501 2404 y Ga(z)2547
+2392 y F9(\))2575 2404 y Ga(N)10 b F4(\))1442 2541 y
+F6(\021)30 b FL(Cut)p F4(\()1716 2529 y FX(h)1744 2541
+y Ga(b)1783 2529 y FX(i)1810 2541 y Ga(M)10 b(;)1948
+2529 y F9(\()1976 2541 y Ga(z)2022 2529 y F9(\))2050
+2541 y Ga(N)g F4(\))1336 2672 y F9(\()p FX(\003)p F9(\))1543
+2705 y Gg(because)25 b Ga(M)33 b Gg(freshly)25 b(introduces)i
+Ga(b)p Gg(.)504 2905 y(Therefore)37 b(we)e(kno)n(w)g(that)h(the)f(term)
+g FL(Cut)p F4(\()1962 2893 y FX(h)1990 2905 y Ga(b)2029
+2893 y FX(i)2056 2905 y Ga(M)11 b(;)2195 2893 y F9(\()2222
+2905 y Ga(z)2268 2893 y F9(\))2296 2905 y Ga(N)f F4(\))35
+b Gg(is)g(strongly)i(normalising,)k(and)504 3018 y(hence)26
+b(its)e(reduct)i FL(Cut)p F4(\()1273 3006 y FX(h)1300
+3018 y Ga(a)1348 3006 y FX(i)1401 3018 y FL(Cut)p F4(\()1574
+3006 y FX(h)1602 3018 y Ga(c)1641 3006 y FX(i)1669 3018
+y Ga(T)12 b(;)1774 3006 y F9(\()1802 3018 y Ga(x)1854
+3006 y F9(\))1882 3018 y Ga(S)5 b F4(\))p Ga(;)2018 3006
+y F9(\()2046 3018 y Ga(y)2094 3006 y F9(\))2121 3018
+y Ga(U)10 b F4(\))24 b Gg(must)g(be)g(strongly)j(normalising,)f(too.)
+504 3130 y(In)34 b(f)o(act)h(both)g(reducts)g(must)f(be)g(strongly)j
+(normalising.)62 b(The)34 b(case)g(where)3069 3118 y
+F9(\()3096 3130 y Ga(z)6 b F4(:)r Ga(C)h F6(\033)p Ga(D)3392
+3118 y F9(\))3419 3130 y Ga(N)504 3243 y Gg(belongs)26
+b(to)f FW(B)t(I)t(N)t(D)t(I)t(N)t(G)1240 3262 y F9(\()p
+Gc(C)5 b FX(\033)r Gc(D)r F9(\))1471 3243 y F4(\()p FB(J)p
+F6(h)p Ga(C)i F6(\033)o Ga(D)s F6(i)p FB(K)p F4(\))23
+b Gg(is)g(similar)-5 b(.)504 3401 y(W)e(e)34 b(no)n(w)f(ha)n(v)o(e)i
+(to)f(sho)n(w)g(that)h(the)g(reduct)g(is)f(strongly)j(normalising)g(in)
+d(the)g(case)h(where)504 3502 y FX(h)532 3514 y Ga(b)17
+b F4(:)g Ga(C)7 b F6(\033)p Ga(D)851 3502 y FX(i)878
+3514 y Ga(M)45 b Gg(and)1178 3502 y F9(\()1205 3514 y
+Ga(z)22 b F4(:)17 b Ga(C)7 b F6(\033)o Ga(D)1531 3502
+y F9(\))1558 3514 y Ga(N)46 b Gg(belong)37 b(to)h FW(I)t(M)t(P)t(R)t(I)
+t(G)t(H)t(T)2449 3533 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r
+FX(i)2681 3514 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))q
+FB(K)o Ga(;)15 b FB(J)p F6(h)p Ga(D)s F6(i)q FB(K)o F4(\))36
+b Gg(and)g(to)506 3627 y FW(I)t(M)t(P)t(L)t(E)t(F)t(T)833
+3646 y F9(\()p Gc(C)6 b FX(\033)f Gc(D)r F9(\))1068 3627
+y F4(\()p FB(J)p F6(h)p Ga(C)i F6(i)p FB(K)o Ga(;)15
+b FB(J)p F4(\()p Ga(D)s F4(\))q FB(K)p F4(\))p Gg(,)22
+b(respecti)n(v)o(ely)-6 b(.)504 3785 y(W)f(e)23 b(\002rst)g(sho)n(w)h
+(that)g(the)f(inner)i(cut)f(of)f(the)h(reduct)h(is)e(strongly)j
+(normalising.)504 3945 y(\(3.1\))778 3933 y FX(h)806
+3945 y Ga(b)17 b F4(:)g Ga(C)7 b F6(\033)o Ga(D)1124
+3933 y FX(i)1152 3945 y Ga(M)35 b F6(2)27 b FW(I)t(M)t(P)t(R)t(I)t(G)t
+(H)t(T)1745 3964 y FX(h)p Gc(C)5 b FX(\033)t Gc(D)r FX(i)1977
+3945 y F4(\()p FB(J)p F4(\()p Ga(C)i F4(\))p FB(K)p Ga(;)15
+b FB(J)p F6(h)p Ga(D)s F6(i)p FB(K)p F4(\))p Gg(,)778
+4058 y F9(\()806 4070 y Ga(z)21 b F4(:)d Ga(C)7 b F6(\033)o
+Ga(D)1132 4058 y F9(\))1159 4070 y Ga(N)35 b F6(2)27
+b FW(I)t(M)t(P)t(L)t(E)t(F)t(T)1682 4088 y F9(\()p Gc(C)5
+b FX(\033)h Gc(D)r F9(\))1916 4070 y F4(\()p FB(J)p F6(h)p
+Ga(C)h F6(i)p FB(K)p Ga(;)15 b FB(J)p F4(\()p Ga(D)s
+F4(\))q FB(K)o F4(\))452 b Gg(ne)n(w)23 b(assumption)504
+4194 y(\(3.2\))778 4182 y F9(\()806 4194 y Ga(x)17 b
+F4(:)g Ga(C)989 4182 y F9(\))1016 4194 y Ga(S)q F6(f)-7
+b Ga(a)25 b F4(:=)1305 4182 y F9(\()1333 4194 y Ga(v)5
+b F4(:)r Ga(D)1487 4182 y F9(\))1515 4194 y Ga(P)s F6(g)26
+b(2)f FB(J)p F4(\()p Ga(C)7 b F4(\))p FB(K)22 b Gg(for)i(all)2213
+4182 y F9(\()2241 4194 y Ga(v)5 b F4(:)r Ga(D)2395 4182
+y F9(\))2423 4194 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(D)s F4(\))p FB(K)o Gg(,)778 4306 y FX(h)806 4318 y
+Ga(c)r F4(:)r Ga(C)946 4306 y FX(i)973 4318 y Ga(T)38
+b F6(2)25 b FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)1449 b
+Gg(by)24 b(De\002nition)g(2.3.3)504 4442 y(\(3.3\))101
+b Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1067 4430 y F9(\()1095
+4442 y Ga(v)5 b F4(:)r Ga(D)1249 4430 y F9(\))1277 4442
+y Ga(P)s F6(g)p Ga(;)15 b(T)39 b F6(2)25 b Ga(S)5 b(N)1735
+4456 y Gc(aux)2861 4442 y Gg(by)23 b(Lemma)g(2.3.13)504
+4567 y(\(3.4\))101 b FL(Cut)p F4(\()951 4555 y FX(h)979
+4567 y Ga(c)1018 4555 y FX(i)1046 4567 y Ga(T)12 b(;)1151
+4555 y F9(\()1179 4567 y Ga(x)1231 4555 y F9(\))1259
+4567 y Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1548 4555 y F9(\()1575
+4567 y Ga(v)5 b F4(:)r Ga(D)1729 4555 y F9(\))1757 4567
+y Ga(P)t F6(g)p F4(\))26 b F6(2)f Ga(S)5 b(N)2145 4581
+y Gc(aux)2411 4567 y Gg(by)23 b(ind.)h(\(the)g(de)o(gree)h(decreased\))
+504 4719 y(As)j(stated)h(in)f(Remark)g(2.2.7,)h(we)e(require)i(that)g
+Ga(a)e Gg(is)h(not)g(free)h(in)2671 4707 y FX(h)2699
+4719 y Ga(c)2738 4707 y FX(i)2766 4719 y Ga(T)12 b Gg(,)28
+b(and)h(therefore)h(we)504 4832 y(may)24 b(mo)o(v)o(e)f(the)g
+(substitution)28 b(on)23 b(the)h(top-le)n(v)o(el.)30
+b(Thus)24 b(we)f(ha)n(v)o(e)h(that)796 5048 y FL(Cut)p
+F4(\()969 5036 y FX(h)997 5048 y Ga(c)1036 5036 y FX(i)1064
+5048 y Ga(T)12 b(;)1169 5036 y F9(\()1197 5048 y Ga(x)1249
+5036 y F9(\))1277 5048 y Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)1566
+5036 y F9(\()1593 5048 y Ga(v)5 b F4(:)r Ga(D)1747 5036
+y F9(\))1775 5048 y Ga(P)t F6(g)p F4(\))26 b F6(\021)f
+FL(Cut)p F4(\()2212 5036 y FX(h)2239 5048 y Ga(c)2278
+5036 y FX(i)2306 5048 y Ga(T)13 b(;)2412 5036 y F9(\()2440
+5048 y Ga(x)2492 5036 y F9(\))2519 5048 y Ga(S)5 b F4(\))-5
+b F6(f)e Ga(a)26 b F4(:=)2844 5036 y F9(\()2871 5048
+y Ga(v)5 b F4(:)r Ga(D)3025 5036 y F9(\))3053 5048 y
+Ga(P)s F6(g)26 b Ga(:)522 5269 y Gg(\(3.5\))100 b FL(Cut)p
+F4(\()968 5257 y FX(h)996 5269 y Ga(c)1035 5257 y FX(i)1063
+5269 y Ga(T)13 b(;)1169 5257 y F9(\()1197 5269 y Ga(x)1249
+5257 y F9(\))1276 5269 y Ga(S)5 b F4(\))-5 b F6(f)e Ga(a)26
+b F4(:=)1600 5257 y F9(\()1628 5269 y Ga(v)5 b F4(:)r
+Ga(D)1782 5257 y F9(\))1810 5269 y Ga(P)s F6(g)26 b(2)f
+Ga(S)5 b(N)2162 5283 y Gc(aux)2307 5269 y Gg(for)24 b(all)2549
+5257 y F9(\()2577 5269 y Ga(v)5 b F4(:)r Ga(D)2731 5257
+y F9(\))2759 5269 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(D)s F4(\))p FB(K)69 b Gg(by)23 b(\(3.4\))522 5394
+y(\(3.6\))795 5382 y FX(h)823 5394 y Ga(a)r F4(:)r Ga(D)978
+5382 y FX(i)1006 5394 y FL(Cut)o F4(\()1178 5382 y FX(h)1206
+5394 y Ga(c)1245 5382 y FX(i)1273 5394 y Ga(T)13 b(;)1379
+5382 y F9(\()1407 5394 y Ga(x)1459 5382 y F9(\))1486
+5394 y Ga(S)5 b F4(\))26 b F6(2)e FB(J)p F6(h)p Ga(D)s
+F6(i)q FB(K)917 b Gg(by)23 b(De\002nition)i(2.3.3)p Black
+Black eop end
+%%Page: 148 160
+TeXDict begin 148 159 bop Black -144 51 a Gb(148)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 549 388 a Gg(No)n(w)e(we)g(sho)n(w)i(that)g(the)g(outer)g
+(cut)g(is)f(strongly)j(normalising.)549 592 y(\(3.7\))822
+580 y F9(\()850 592 y Ga(y)5 b F4(:)r Ga(D)1005 580 y
+F9(\))1032 592 y Ga(U)35 b F6(2)25 b FB(J)p F4(\()p Ga(D)s
+F4(\))p FB(K)1072 b Gg(by)23 b(\(3.1\))h(and)g(De\002nition)h(2.3.3)549
+716 y(\(3.8\))100 b FL(Cut)p F4(\()995 704 y FX(h)1023
+716 y Ga(c)1062 704 y FX(i)1090 716 y Ga(T)13 b(;)1196
+704 y F9(\()1223 716 y Ga(x)1275 704 y F9(\))1303 716
+y Ga(S)5 b F4(\))p Ga(;)15 b(U)36 b F6(2)25 b Ga(S)5
+b(N)1757 730 y Gc(aux)2905 716 y Gg(by)24 b(Lemma)e(2.3.13)549
+840 y(\(3.9\))100 b FL(Cut)p F4(\()995 828 y FX(h)1023
+840 y Ga(a)1071 828 y FX(i)1099 840 y FL(Cut)o F4(\()1271
+828 y FX(h)1299 840 y Ga(c)1338 828 y FX(i)1366 840 y
+Ga(T)13 b(;)1472 828 y F9(\()1500 840 y Ga(x)1552 828
+y F9(\))1579 840 y Ga(S)5 b F4(\))p Ga(;)1715 828 y F9(\()1743
+840 y Ga(y)1791 828 y F9(\))1818 840 y Ga(U)10 b F4(\))26
+b F6(2)f Ga(S)5 b(N)2171 854 y Gc(aux)2455 840 y Gg(by)23
+b(ind.)h(\(the)g(de)o(gree)h(decreased\))549 986 y(W)-7
+b(e)22 b(reason)j(analogous)i(in)c(the)h(case)g(where)1035
+1249 y FL(Cut)p F4(\()1208 1237 y FX(h)1236 1249 y Ga(b)1275
+1237 y FX(i)1302 1249 y Ga(M)10 b(;)1440 1237 y F9(\()1468
+1249 y Ga(z)1514 1237 y F9(\))1542 1249 y Ga(N)g F4(\))1759
+1212 y Gc(l)1685 1249 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
+F4(\()2054 1237 y FX(h)2081 1249 y Ga(c)2120 1237 y FX(i)2148
+1249 y Ga(T)13 b(;)2254 1237 y F9(\()2282 1249 y Ga(x)2334
+1237 y F9(\))2387 1249 y FL(Cut)o F4(\()2559 1237 y FX(h)2587
+1249 y Ga(a)2635 1237 y FX(i)2663 1249 y Ga(S)5 b(;)2764
+1237 y F9(\()2792 1249 y Ga(y)2840 1237 y F9(\))2867
+1249 y Ga(U)10 b F4(\)\))26 b Ga(:)321 1492 y Gg(W)-7
+b(e)23 b(ha)n(v)o(e)h(sho)n(wn)f(that)h(all)f(immediate)i(reducts)g(of)
+e FL(Cut)p F4(\()2146 1480 y FX(h)2174 1492 y Ga(a)2222
+1480 y FX(i)2249 1492 y Ga(M)10 b(;)2387 1480 y F9(\()2415
+1492 y Ga(x)2467 1480 y F9(\))2494 1492 y Ga(N)g F4(\))23
+b Gg(are)h(strongly)h(normalising.)321 1605 y(Consequently)-6
+b(,)27 b FL(Cut)p F4(\()1034 1593 y FX(h)1062 1605 y
+Ga(a)1110 1593 y FX(i)1137 1605 y Ga(M)10 b(;)1275 1593
+y F9(\()1303 1605 y Ga(x)1355 1593 y F9(\))1382 1605
+y Ga(N)g F4(\))23 b Gg(must)h(be)g(strongly)h(normalising.)31
+b(Thus)24 b(we)f(are)g(done.)p 3480 1605 4 62 v 3484
+1547 55 4 v 3484 1605 V 3538 1605 4 62 v Black 321 1818
+a Gb(Pr)n(oof)h(of)f(Lemma)e(2.3.18.)p Black 35 w Gg(W)-7
+b(e)22 b(shall)h(gi)n(v)o(e)g(\002)n(v)o(e)f(representati)n(v)o(e)k
+(cases,)e(in)f(which)g(the)g(e)o(xpression)326 1931 y
+F4(^)-50 b Ga(\033)t(;)15 b F6(f)p Ga(\033)s F6(g)24
+b Gg(will)f(stand)i(for)e(the)h(set)29 b F4(^)-50 b Ga(\033)23
+b F6([)d(f)p Ga(\033)s F6(g)k Gg(with)f F6(f)p Ga(\033)s
+F6(g)k(62)i F4(^)-50 b Ga(\033)t Gg(.)p Black 321 2162
+a Gb(Case)24 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))p
+Gb(:)p Black 47 w Gg(W)-7 b(e)27 b(ha)n(v)o(e)h(to)f(pro)o(v)o(e)h
+(that)g FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))39 b(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)34 b F4(:=)2440 2150
+y FX(h)2468 2162 y Ga(b)2507 2150 y FX(i)2534 2162 y
+Ga(P)t F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)34 b F4(:=)2924
+2150 y F9(\()2951 2162 y Ga(y)2999 2150 y F9(\))3027
+2162 y Ga(Q)-10 b F6(g)27 b Gg(is)g(strongly)549 2275
+y(normalising)f(for)d(arbitrary)j(\(co-\)named)g(terms)2137
+2263 y FX(h)2164 2275 y Ga(b)r F4(:)r Ga(B)2306 2263
+y FX(i)2333 2275 y Ga(P)39 b F6(2)24 b FB(J)p F6(h)p
+Ga(B)5 b F6(i)p FB(K)23 b Gg(and)2910 2263 y F9(\()2937
+2275 y Ga(y)5 b F4(:)r Ga(B)3088 2263 y F9(\))3115 2275
+y Ga(Q)25 b F6(2)g FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)p
+Gg(.)549 2428 y(\(1\))48 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p
+F4(\))32 b(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)26
+b F4(:=)1368 2416 y FX(h)1396 2428 y Ga(b)1435 2416 y
+FX(i)1462 2428 y Ga(P)t F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27
+b F4(:=)1838 2416 y F9(\()1865 2428 y Ga(y)1913 2416
+y F9(\))1941 2428 y Ga(Q)-10 b F6(g)26 b F4(=)f FL(Cut)p
+F4(\()2343 2416 y FX(h)2370 2428 y Ga(b)2409 2416 y FX(i)2437
+2428 y Ga(P)13 b(;)2548 2416 y F9(\()2576 2428 y Ga(y)2624
+2416 y F9(\))2651 2428 y Ga(Q)p F4(\))239 b Gg(by)24
+b(Def.)e(of)i F6(f)p 3438 2428 28 4 v 3456 2428 V 3474
+2428 V 65 w(g)549 2549 y Gg(\(2\))702 2537 y FX(h)729
+2549 y Ga(b)r F4(:)r Ga(B)871 2537 y FX(i)899 2549 y
+Ga(P)38 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)22
+b Gg(and)1475 2537 y F9(\()1502 2549 y Ga(y)5 b F4(:)r
+Ga(B)1653 2537 y F9(\))1680 2549 y Ga(Q)26 b F6(2)e FB(J)p
+F4(\()p Ga(B)5 b F4(\))p FB(K)938 b Gg(by)23 b(assumption)549
+2670 y(\(3\))48 b Ga(P)38 b F6(2)25 b Ga(S)5 b(N)1018
+2684 y Gc(aux)1163 2670 y Gg(and)24 b Ga(Q)h F6(2)g Ga(S)5
+b(N)1634 2684 y Gc(aux)2905 2670 y Gg(by)24 b(Lemma)e(2.3.13)549
+2791 y(\(4\))48 b FL(Cut)p F4(\()875 2779 y FX(h)903
+2791 y Ga(b)942 2779 y FX(i)969 2791 y Ga(P)13 b(;)1080
+2779 y F9(\()1108 2791 y Ga(y)1156 2779 y F9(\))1183
+2791 y Ga(Q)p F4(\))26 b F6(2)e Ga(S)5 b(N)1535 2805
+y Gc(aux)2905 2791 y Gg(by)24 b(Lemma)e(2.3.14)549 2912
+y(\(5\))48 b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))32
+b(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)26 b F4(:=)1368
+2900 y FX(h)1396 2912 y Ga(b)1435 2900 y FX(i)1462 2912
+y Ga(P)t F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27 b F4(:=)1838
+2900 y F9(\()1865 2912 y Ga(y)1913 2900 y F9(\))1941
+2912 y Ga(Q)-10 b F6(g)26 b(2)f Ga(S)5 b(N)2294 2926
+y Gc(aux)3044 2912 y Gg(by)24 b(\(1\))f(and)h(\(4\))p
+Black 321 3148 a Gb(Case)g FL(And)685 3162 y Gc(R)743
+3148 y F4(\()778 3136 y FX(h)806 3148 y Ga(a)854 3136
+y FX(i)881 3148 y Ga(M)11 b(;)1020 3136 y FX(h)1047 3148
+y Ga(b)1086 3136 y FX(i)1114 3148 y Ga(N)f(;)15 b(c)p
+F4(\))p Gb(:)p Black 47 w Gg(W)-7 b(e)24 b(ha)n(v)o(e)i(to)f(pro)o(v)o
+(e)h(that)g FL(And)2363 3162 y Gc(R)2421 3148 y F4(\()2456
+3136 y FX(h)2484 3148 y Ga(a)2532 3136 y FX(i)2559 3148
+y Ga(M)10 b(;)2697 3136 y FX(h)2725 3148 y Ga(b)2764
+3136 y FX(i)2792 3148 y Ga(N)f(;)15 b(c)p F4(\))35 b(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)30 b F4(:=)3339 3136
+y F9(\()3367 3148 y Ga(z)3413 3136 y F9(\))3441 3148
+y Ga(R)-9 b F6(g)549 3261 y Gg(is)23 b(strongly)j(normalising)g(for)d
+(an)h(arbitrary)i(named)e(term)2437 3249 y F9(\()2465
+3261 y Ga(z)6 b F4(:)r Ga(B)f F6(^)o Ga(C)2746 3249 y
+F9(\))2773 3261 y Ga(R)26 b F6(2)f FB(J)p F4(\()p Ga(B)5
+b F6(^)o Ga(C)i F4(\))p FB(K)p Gg(.)549 3414 y(\(1\))48
+b FL(And)856 3428 y Gc(R)914 3414 y F4(\()949 3402 y
+FX(h)977 3414 y Ga(a)1025 3402 y FX(i)1052 3414 y Ga(M)10
+b(;)1190 3402 y FX(h)1218 3414 y Ga(b)1257 3402 y FX(i)1285
+3414 y Ga(N)g(;)15 b(c)p F4(\))21 b(^)-51 b Ga(\033)t(;)10
+b F6(f)-7 b Ga(c)10 b F4(:=)1781 3402 y F9(\()1810 3414
+y Ga(z)1856 3402 y F9(\))1884 3414 y Ga(R)-9 b F6(g)26
+b F4(=)702 3535 y FL(Cut)p F4(\()875 3523 y FX(h)903
+3535 y Ga(c)942 3523 y FX(i)969 3535 y FL(And)1124 3549
+y Gc(R)1182 3535 y F4(\()1217 3523 y FX(h)1244 3535 y
+Ga(a)1292 3523 y FX(i)1345 3535 y Ga(M)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1758 3523
+y F9(\()1786 3535 y Ga(z)1832 3523 y F9(\))1859 3535
+y Ga(R)-8 b F6(g)p Ga(;)2005 3523 y FX(h)2033 3535 y
+Ga(b)2072 3523 y FX(i)2125 3535 y Ga(N)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)2523 3523
+y F9(\()2550 3535 y Ga(z)2596 3523 y F9(\))2624 3535
+y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p F4(\))q Ga(;)2885 3523
+y F9(\()2913 3535 y Ga(z)2959 3523 y F9(\))2986 3535
+y Ga(R)q F4(\))35 b Gg(Def.)23 b(of)8 b F6(f)p 3438 3535
+V 3456 3535 V 3474 3535 V 65 w(g)549 3656 y Gg(\(2\))48
+b Ga(M)40 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27
+b F4(:=)1140 3644 y F9(\()1168 3656 y Ga(z)1214 3644
+y F9(\))1241 3656 y Ga(R)-8 b F6(g)p Ga(;)10 b F6(f)-7
+b Ga(a)26 b F4(:=)1616 3644 y F9(\()1643 3656 y Ga(y)1691
+3644 y F9(\))1718 3656 y Ga(P)t F6(g)g(2)f Ga(S)5 b(N)2071
+3670 y Gc(aux)2216 3656 y Gg(for)23 b(arbitrary)2680
+3644 y F9(\()2707 3656 y Ga(y)5 b F4(:)r Ga(B)2858 3644
+y F9(\))2886 3656 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(B)5 b F4(\))o FB(K)p Gg(,)702 3777 y Ga(N)40 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1125 3765
+y F9(\()1153 3777 y Ga(z)1199 3765 y F9(\))1226 3777
+y Ga(R)-8 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(b)26 b F4(:=)1592
+3765 y F9(\()1619 3777 y Ga(x)1671 3765 y F9(\))1698
+3777 y Ga(Q)-9 b F6(g)25 b(2)g Ga(S)5 b(N)2051 3791 y
+Gc(aux)2196 3777 y Gg(for)24 b(arbitrary)2661 3765 y
+F9(\()2688 3777 y Ga(x)r F4(:)r Ga(C)2841 3765 y F9(\))2868
+3777 y Ga(Q)i F6(2)e FB(J)p F4(\()p Ga(C)7 b F4(\))p
+FB(K)3089 3898 y Gg(by)24 b(induction)549 4018 y(\(3\))48
+b F4(\()p Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
+b Ga(c)27 b F4(:=)1150 4006 y F9(\()1178 4018 y Ga(z)1224
+4006 y F9(\))1252 4018 y Ga(R)-9 b F6(g)p F4(\))k F6(f)e
+Ga(a)27 b F4(:=)1621 4006 y F9(\()1648 4018 y Ga(y)1696
+4006 y F9(\))1723 4018 y Ga(P)t F6(g)f(2)f Ga(S)5 b(N)2076
+4032 y Gc(aux)2198 4018 y Gg(,)702 4139 y F4(\()p Ga(N)15
+b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1135
+4127 y F9(\()1163 4139 y Ga(z)1209 4127 y F9(\))1236
+4139 y Ga(R)-8 b F6(g)p F4(\))j F6(f)e Ga(b)26 b F4(:=)1597
+4127 y F9(\()1624 4139 y Ga(x)1676 4127 y F9(\))1703
+4139 y Ga(Q)-9 b F6(g)26 b(2)e Ga(S)5 b(N)2056 4153 y
+Gc(aux)3044 4139 y Gg(by)24 b(\(2\))f(and)h(sss)549 4260
+y(\(4\))702 4248 y FX(h)729 4260 y Ga(a)r F4(:)r Ga(B)880
+4248 y FX(i)908 4260 y F4(\()p Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(c)27 b F4(:=)1356 4248 y F9(\()1384 4260
+y Ga(z)1430 4248 y F9(\))1457 4260 y Ga(R)-8 b F6(g)p
+F4(\))26 b F6(2)e FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)p
+Gg(,)702 4369 y FX(h)729 4381 y Ga(b)r F4(:)r Ga(C)869
+4369 y FX(i)897 4381 y F4(\()p Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(c)27 b F4(:=)1330 4369 y F9(\()1357 4381
+y Ga(z)1403 4369 y F9(\))1431 4381 y Ga(R)-9 b F6(g)p
+F4(\))26 b F6(2)f FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)960
+b Gg(by)24 b(De\002nition)h(2.3.3)549 4502 y(\(5\))48
+b FL(And)856 4516 y Gc(R)914 4502 y F4(\()949 4490 y
+FX(h)977 4502 y Ga(a)1025 4490 y FX(i)1052 4502 y Ga(M)15
+b F4(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(c)26 b F4(:=)1466
+4490 y F9(\()1493 4502 y Ga(z)1539 4490 y F9(\))1567
+4502 y Ga(R)-9 b F6(g)p Ga(;)1712 4490 y FX(h)1740 4502
+y Ga(b)1779 4490 y FX(i)1807 4502 y Ga(N)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)2205 4490
+y F9(\()2232 4502 y Ga(z)2278 4490 y F9(\))2306 4502
+y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p F4(\))23 b Gg(freshly)j(introduces)g
+Ga(c)62 b Gg(by)23 b(\(1\))549 4622 y(\(6\))702 4610
+y FX(h)729 4622 y Ga(c)r F4(:)r Ga(B)5 b F6(^)p Ga(C)1004
+4610 y FX(i)1031 4622 y FL(And)1186 4636 y Gc(R)1243
+4622 y F4(\()1278 4610 y FX(h)1306 4622 y Ga(a)1354 4610
+y FX(i)1382 4622 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(c)26 b F4(:=)1795 4610 y F9(\()1822 4622
+y Ga(z)1868 4610 y F9(\))1896 4622 y Ga(R)-9 b F6(g)q
+Ga(;)2042 4610 y FX(h)2069 4622 y Ga(b)2108 4610 y FX(i)2136
+4622 y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
+b Ga(c)27 b F4(:=)2534 4610 y F9(\()2561 4622 y Ga(z)2607
+4610 y F9(\))2635 4622 y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p
+F4(\))26 b F6(2)f FB(J)p F6(h)p Ga(B)5 b F6(^)o Ga(C)i
+F6(i)p FB(K)2425 4743 y Gg(by)24 b(\(4\),)f(\(5\))h(and)g(De\002nition)
+h(2.3.3)549 4864 y(\(7\))48 b FL(And)856 4878 y Gc(R)914
+4864 y F4(\()949 4852 y FX(h)977 4864 y Ga(a)1025 4852
+y FX(i)1052 4864 y Ga(M)15 b F4(^)-50 b Ga(\033)t(;)10
+b F6(f)-7 b Ga(c)26 b F4(:=)1466 4852 y F9(\()1493 4864
+y Ga(z)1539 4852 y F9(\))1567 4864 y Ga(R)-9 b F6(g)p
+Ga(;)1712 4852 y FX(h)1740 4864 y Ga(b)1779 4852 y FX(i)1807
+4864 y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
+b Ga(c)27 b F4(:=)2205 4852 y F9(\()2232 4864 y Ga(z)2278
+4852 y F9(\))2306 4864 y Ga(R)-9 b F6(g)q Ga(;)15 b(c)p
+F4(\))26 b F6(2)f Ga(S)5 b(N)2772 4878 y Gc(aux)2894
+4864 y Gg(,)702 4985 y Ga(R)26 b F6(2)f Ga(S)5 b(N)1017
+4999 y Gc(aux)2905 4985 y Gg(by)24 b(Lemma)e(2.3.13)549
+5106 y(\(8\))48 b FL(Cut)p F4(\()875 5094 y FX(h)903
+5106 y Ga(c)942 5094 y FX(i)969 5106 y FL(And)1124 5120
+y Gc(R)1182 5106 y F4(\()1217 5094 y FX(h)1244 5106 y
+Ga(a)1292 5094 y FX(i)1320 5106 y Ga(M)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)1733 5094
+y F9(\()1760 5106 y Ga(z)1806 5094 y F9(\))1834 5106
+y Ga(R)-9 b F6(g)q Ga(;)1980 5094 y FX(h)2008 5106 y
+Ga(b)2047 5094 y FX(i)2074 5106 y Ga(N)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(c)27 b F4(:=)2472 5094
+y F9(\()2500 5106 y Ga(z)2546 5094 y F9(\))2573 5106
+y Ga(R)-8 b F6(g)p Ga(;)15 b(c)p F4(\))q Ga(;)2834 5094
+y F9(\()2862 5106 y Ga(z)2908 5094 y F9(\))2936 5106
+y Ga(R)q F4(\))25 b F6(2)g Ga(S)5 b(N)3286 5120 y Gc(aux)2905
+5226 y Gg(by)24 b(Lemma)e(2.3.14)549 5347 y(\(9\))48
+b FL(And)856 5361 y Gc(R)914 5347 y F4(\()949 5335 y
+FX(h)977 5347 y Ga(a)1025 5335 y FX(i)1052 5347 y Ga(M)10
+b(;)1190 5335 y FX(h)1218 5347 y Ga(b)1257 5335 y FX(i)1285
+5347 y Ga(N)g(;)15 b(c)p F4(\))31 b(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(c)27 b F4(:=)1823 5335 y F9(\()1851 5347
+y Ga(z)1897 5335 y F9(\))1924 5347 y Ga(R)-8 b F6(g)25
+b(2)g Ga(S)5 b(N)2275 5361 y Gc(aux)3044 5347 y Gg(by)24
+b(\(1\))f(and)h(\(8\))p Black Black eop end
+%%Page: 149 161
+TeXDict begin 149 160 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(149)p 277 88 3691 4 v Black Black
+277 388 a(Case)24 b FL(And)641 351 y Gc(i)641 411 y(L)693
+388 y F4(\()728 376 y F9(\()756 388 y Ga(x)808 376 y
+F9(\))836 388 y Ga(M)10 b(;)15 b(y)s F4(\))23 b(\()p
+Ga(i)j F4(=)f(1)p Ga(;)15 b F4(2\))p Gb(:)p Black 47
+w Gg(W)-7 b(e)28 b(ha)n(v)o(e)h(to)f(pro)o(v)o(e)h(that)g
+FL(And)2502 351 y Gc(i)2502 411 y(L)2554 388 y F4(\()2589
+376 y F9(\()2616 388 y Ga(x)2668 376 y F9(\))2696 388
+y Ga(M)10 b(;)15 b(y)s F4(\))40 b(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(y)38 b F4(:=)3293 376 y FX(h)3321 388
+y Ga(a)3369 376 y FX(i)3396 388 y Ga(R)-8 b F6(g)504
+501 y Gg(is)21 b(strongly)h(normalising)h(for)e(an)f(arbitrary)i
+(co-named)g(term)2484 489 y FX(h)2511 501 y Ga(a)r F4(:)r
+Ga(C)2653 515 y F9(1)2693 501 y F6(^)o Ga(C)2818 515
+y F9(2)2858 489 y FX(i)2885 501 y Ga(R)k F6(2)f FB(J)p
+F6(h)p Ga(C)3203 515 y F9(1)3242 501 y F6(^)p Ga(C)3368
+515 y F9(2)3407 501 y F6(i)q FB(K)o Gg(.)504 733 y(\(1\))49
+b FL(And)812 696 y Gc(i)812 756 y(L)864 733 y F4(\()899
+721 y F9(\()927 733 y Ga(x)979 721 y F9(\))1007 733 y
+Ga(M)10 b(;)15 b(y)s F4(\))20 b(^)-50 b Ga(\033)t(;)10
+b F6(f)-7 b Ga(y)29 b F4(:=)1567 721 y FX(h)1594 733
+y Ga(a)1642 721 y FX(i)1670 733 y Ga(R)-9 b F6(g)26 b
+F4(=)658 850 y FL(Cut)p F4(\()831 838 y FX(h)858 850
+y Ga(a)906 838 y FX(i)934 850 y Ga(R)q(;)1044 838 y F9(\()1071
+850 y Ga(y)1119 838 y F9(\))1147 850 y FL(And)1301 813
+y Gc(i)1301 873 y(L)1353 850 y F4(\()1388 838 y F9(\()1416
+850 y Ga(x)1468 838 y F9(\))1496 850 y Ga(M)k F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(y)29 b F4(:=)1932 838
+y FX(h)1960 850 y Ga(a)2008 838 y FX(i)2035 850 y Ga(R)-8
+b F6(g)p Ga(;)15 b(y)s F4(\))q(\))443 b Gg(by)24 b(De\002nition)g(of)g
+F6(f)p 3394 850 28 4 v 3412 850 V 3429 850 V 65 w(g)504
+968 y Gg(\(2\))49 b Ga(M)40 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(y)29 b F4(:=)1105 956 y FX(h)1132 968
+y Ga(a)1180 956 y FX(i)1208 968 y Ga(R)-9 b F6(g)p Ga(;)10
+b F6(f)-7 b Ga(x)26 b F4(:=)1586 956 y FX(h)1613 968
+y Ga(b)1652 956 y FX(i)1680 968 y Ga(P)s F6(g)g(2)f Ga(S)5
+b(N)2032 982 y Gc(aux)2177 968 y Gg(for)23 b(arbitrary)2641
+956 y FX(h)2669 968 y Ga(b)r F4(:)r Ga(C)2802 982 y Gc(i)2830
+956 y FX(i)2858 968 y Ga(P)38 b F6(2)25 b FB(J)p F6(h)p
+Ga(C)3177 982 y Gc(i)3205 968 y F6(i)p FB(K)3045 1085
+y Gg(by)f(induction)504 1202 y(\(3\))49 b F4(\()p Ga(M)40
+b F4(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(y)29 b F4(:=)1140
+1190 y FX(h)1167 1202 y Ga(a)1215 1190 y FX(i)1243 1202
+y Ga(R)-9 b F6(g)p F4(\))k F6(f)e Ga(x)27 b F4(:=)1616
+1190 y FX(h)1643 1202 y Ga(b)1682 1190 y FX(i)1710 1202
+y Ga(P)s F6(g)f(2)f Ga(S)5 b(N)2062 1216 y Gc(aux)3000
+1202 y Gg(by)23 b(\(2\))h(and)g(sss)504 1320 y(\(4\))658
+1308 y F9(\()685 1320 y Ga(x)r F4(:)r Ga(C)831 1334 y
+Gc(i)860 1308 y F9(\))887 1320 y F4(\()p Ga(M)15 b F4(^)-50
+b Ga(\033)t(;)10 b F6(f)-7 b Ga(y)29 b F4(:=)1344 1308
+y FX(h)1371 1320 y Ga(a)1419 1308 y FX(i)1447 1320 y
+Ga(R)-9 b F6(g)p F4(\))26 b F6(2)f FB(J)p F4(\()p Ga(C)1836
+1334 y Gc(i)1864 1320 y F4(\))q FB(K)878 b Gg(by)24 b(De\002nition)g
+(2.3.3)504 1437 y(\(5\))49 b FL(And)812 1400 y Gc(i)812
+1460 y(L)864 1437 y F4(\()899 1425 y F9(\()927 1437 y
+Ga(x)979 1425 y F9(\))1007 1437 y Ga(M)30 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(y)13 b F4(:=)1412 1425
+y FX(h)1440 1437 y Ga(a)1488 1425 y FX(i)1516 1437 y
+Ga(R)-9 b F6(g)q Ga(;)15 b(y)s F4(\))23 b Gg(freshly)i(introduces)i
+Ga(y)793 b Gg(by)23 b(\(1\))504 1555 y(\(6\))658 1543
+y F9(\()685 1555 y Ga(y)5 b F4(:)r Ga(C)827 1569 y F9(1)867
+1555 y F6(^)o Ga(C)992 1569 y F9(2)1032 1543 y(\))1059
+1555 y FL(And)1214 1518 y Gc(i)1214 1578 y(L)1266 1555
+y F4(\()1301 1543 y F9(\()1329 1555 y Ga(x)1381 1543
+y F9(\))1408 1555 y Ga(M)30 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(y)13 b F4(:=)1813 1543 y FX(h)1842 1555
+y Ga(a)1890 1543 y FX(i)1917 1555 y Ga(R)-8 b F6(g)p
+Ga(;)15 b(y)s F4(\))26 b F6(2)f FB(J)p F4(\()p Ga(C)2395
+1569 y F9(1)2434 1555 y F6(^)p Ga(C)2560 1569 y F9(2)2599
+1555 y F4(\))q FB(K)2591 1672 y Gg(by)e(\(4\),)h(\(5\))g(and)g(Def.)e
+(2.3.3)504 1790 y(\(7\))49 b FL(And)812 1753 y Gc(i)812
+1813 y(L)864 1790 y F4(\()899 1778 y F9(\()927 1790 y
+Ga(x)979 1778 y F9(\))1007 1790 y Ga(M)30 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(y)13 b F4(:=)1412 1778
+y FX(h)1440 1790 y Ga(a)1488 1778 y FX(i)1516 1790 y
+Ga(R)-9 b F6(g)q Ga(;)15 b(y)s F4(\))p Ga(;)41 b(R)26
+b F6(2)f Ga(S)5 b(N)2126 1804 y Gc(aux)2861 1790 y Gg(by)23
+b(Lemma)g(2.3.13)504 1907 y(\(8\))49 b FL(Cut)p F4(\()831
+1895 y FX(h)858 1907 y Ga(a)906 1895 y FX(i)934 1907
+y Ga(R)q(;)1044 1895 y F9(\()1071 1907 y Ga(y)1119 1895
+y F9(\))1147 1907 y FL(And)1301 1870 y Gc(i)1301 1930
+y(L)1353 1907 y F4(\()1388 1895 y F9(\()1416 1907 y Ga(x)1468
+1895 y F9(\))1496 1907 y Ga(M)30 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(y)13 b F4(:=)1901 1895 y FX(h)1930 1907
+y Ga(a)1978 1895 y FX(i)2005 1907 y Ga(R)-9 b F6(g)q
+Ga(;)15 b(y)s F4(\)\))26 b F6(2)f Ga(S)5 b(N)2515 1921
+y Gc(aux)2861 1907 y Gg(by)23 b(Lemma)g(2.3.14)504 2024
+y(\(9\))49 b FL(And)812 1988 y Gc(i)812 2047 y(L)864
+2024 y F4(\()899 2012 y F9(\()927 2024 y Ga(x)979 2012
+y F9(\))1007 2024 y Ga(M)10 b(;)15 b(y)s F4(\))20 b(^)-50
+b Ga(\033)t(;)10 b F6(f)-7 b Ga(y)13 b F4(:=)1536 2012
+y FX(h)1564 2024 y Ga(a)1612 2012 y FX(i)1640 2024 y
+Ga(R)-9 b F6(g)26 b(2)e Ga(S)5 b(N)1990 2038 y Gc(aux)3000
+2024 y Gg(by)23 b(\(1\))h(and)g(\(8\))p Black 277 2420
+a Gb(Case)g FL(Imp)631 2442 y Gc(R)689 2420 y F4(\()724
+2408 y F9(\()752 2420 y Ga(x)804 2408 y F9(\))p FX(h)858
+2420 y Ga(a)906 2408 y FX(i)934 2420 y Ga(M)10 b(;)15
+b(b)p F4(\))p Gb(:)p Black 47 w Gg(W)-7 b(e)36 b(pro)o(v)o(e)h(that)g
+FL(Imp)1935 2442 y Gc(R)1992 2420 y F4(\()2027 2408 y
+F9(\()2055 2420 y Ga(x)2107 2408 y F9(\))q FX(h)2162
+2420 y Ga(a)2210 2408 y FX(i)2238 2420 y Ga(M)10 b(;)15
+b(b)p F4(\))55 b(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(b)51
+b F4(:=)2865 2408 y F9(\()2892 2420 y Ga(z)2938 2408
+y F9(\))2966 2420 y Ga(R)-9 b F6(g)36 b Gg(is)h(strongly)504
+2533 y(normalising)26 b(for)e(an)g(arbitrary)h(named)g(term)1989
+2521 y F9(\()2016 2533 y Ga(z)6 b F4(:)r Ga(B)f F6(\033)p
+Ga(C)2308 2521 y F9(\))2335 2533 y Ga(R)24 b Gg(that)g(belongs)h(to)f
+FB(J)p F4(\()p Ga(B)5 b F6(\033)o Ga(C)i F4(\))p FB(K)o
+Gg(.)504 2765 y(\(1\))49 b FL(Imp)802 2787 y Gc(R)860
+2765 y F4(\()895 2753 y F9(\()923 2765 y Ga(x)975 2753
+y F9(\))p FX(h)1029 2765 y Ga(a)1077 2753 y FX(i)1105
+2765 y Ga(M)10 b(;)15 b(b)p F4(\))31 b(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(b)27 b F4(:=)1658 2753 y F9(\()1685 2765
+y Ga(z)1731 2753 y F9(\))1759 2765 y Ga(R)-9 b F6(g)26
+b F4(=)658 2884 y FL(Cut)p F4(\()831 2872 y FX(h)858
+2884 y Ga(c)897 2872 y FX(i)925 2884 y FL(Imp)1070 2906
+y Gc(R)1127 2884 y F4(\()1162 2872 y F9(\()1190 2884
+y Ga(x)1242 2872 y F9(\))p FX(h)1297 2884 y Ga(a)1345
+2872 y FX(i)1372 2884 y Ga(M)15 b F4(^)-50 b Ga(\033)t(;)10
+b F6(f)-7 b Ga(b)26 b F4(:=)1785 2872 y F9(\()1813 2884
+y Ga(z)1859 2872 y F9(\))1886 2884 y Ga(R)-8 b F6(g)p
+Ga(;)15 b(b)p F4(\))q Ga(;)2147 2872 y F9(\()2175 2884
+y Ga(z)2221 2872 y F9(\))2248 2884 y Ga(R)q F4(\))390
+b Gg(by)24 b(De\002nition)g(of)g F6(f)p 3394 2884 V 3412
+2884 V 3429 2884 V 65 w(g)504 3002 y Gg(\(2\))49 b Ga(M)40
+b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1096
+2990 y F9(\()1123 3002 y Ga(z)1169 2990 y F9(\))1197
+3002 y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27 b
+F4(:=)1571 2990 y F9(\()1599 3002 y Ga(y)1647 2990 y
+F9(\))1674 3002 y Ga(P)s F6(g)p Ga(;)10 b F6(f)-7 b Ga(x)27
+b F4(:=)2053 2990 y FX(h)2081 3002 y Ga(c)2120 2990 y
+FX(i)2148 3002 y Ga(Q)-10 b F6(g)26 b(2)f Ga(S)5 b(N)2501
+3016 y Gc(aux)658 3121 y Gg(for)23 b(arbitrary)1122 3109
+y F9(\()1150 3121 y Ga(y)5 b F4(:)r Ga(B)1301 3109 y
+F9(\))1328 3121 y Ga(P)38 b F6(2)25 b FB(J)p F4(\()p
+Ga(B)5 b F4(\))p FB(K)22 b Gg(and)1904 3109 y FX(h)1931
+3121 y Ga(c)r F4(:)r Ga(C)2071 3109 y FX(i)2099 3121
+y Ga(Q)j F6(2)g FB(J)p F6(h)p Ga(C)7 b F6(i)p FB(K)547
+b Gg(by)24 b(induction)504 3239 y(\(3\))49 b F4(\()p
+Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27
+b F4(:=)1106 3227 y F9(\()1133 3239 y Ga(z)1179 3227
+y F9(\))1207 3239 y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7
+b Ga(x)27 b F4(:=)1585 3227 y FX(h)1613 3239 y Ga(c)1652
+3227 y FX(i)1679 3239 y Ga(Q)-9 b F6(g)p F4(\))k F6(f)e
+Ga(a)27 b F4(:=)2051 3227 y F9(\()2078 3239 y Ga(y)2126
+3227 y F9(\))2154 3239 y Ga(P)s F6(g)f(2)f Ga(S)5 b(N)2506
+3253 y Gc(aux)2628 3239 y Gg(,)658 3358 y F4(\()p Ga(M)15
+b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1106
+3346 y F9(\()1133 3358 y Ga(z)1179 3346 y F9(\))1207
+3358 y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(a)27 b
+F4(:=)1581 3346 y F9(\()1609 3358 y Ga(y)1657 3346 y
+F9(\))1684 3358 y Ga(P)t F6(g)p F4(\))-5 b F6(f)e Ga(x)26
+b F4(:=)2058 3346 y FX(h)2086 3358 y Ga(c)2125 3346 y
+FX(i)2153 3358 y Ga(Q)-10 b F6(g)26 b(2)f Ga(S)5 b(N)2506
+3372 y Gc(aux)3000 3358 y Gg(by)23 b(\(2\))h(and)g(sss)504
+3476 y(\(4\))658 3464 y FX(h)685 3476 y Ga(a)r F4(:)r
+Ga(B)836 3464 y FX(i)889 3476 y Ga(M)15 b F4(^)-50 b
+Ga(\033)s(;)10 b F6(f)-7 b Ga(b)26 b F4(:=)1302 3464
+y F9(\()1329 3476 y Ga(z)1375 3464 y F9(\))1403 3476
+y Ga(R)-9 b F6(g)p Ga(;)10 b F6(f)-7 b Ga(x)27 b F4(:=)1781
+3464 y FX(h)1808 3476 y Ga(c)1847 3464 y FX(i)1875 3476
+y Ga(Q)-9 b F6(g)25 b(2)g FB(J)p F6(h)p Ga(B)5 b F6(i)p
+FB(K)658 3583 y F9(\()685 3595 y Ga(x)r F4(:)r Ga(C)838
+3583 y F9(\))891 3595 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(b)26 b F4(:=)1303 3583 y F9(\()1331 3595
+y Ga(z)1377 3583 y F9(\))1405 3595 y Ga(R)-9 b F6(g)p
+Ga(;)10 b F6(f)-7 b Ga(a)27 b F4(:=)1779 3583 y F9(\()1806
+3595 y Ga(y)1854 3583 y F9(\))1882 3595 y Ga(P)s F6(g)f(2)f
+FB(J)p F4(\()p Ga(C)7 b F4(\))o FB(K)500 b Gg(by)24 b(De\002nition)g
+(2.3.3)504 3714 y(\(5\))49 b FL(Imp)802 3735 y Gc(R)860
+3714 y F4(\()895 3702 y F9(\()923 3714 y Ga(x)975 3702
+y F9(\))p FX(h)1029 3714 y Ga(a)1077 3702 y FX(i)1105
+3714 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7
+b Ga(b)27 b F4(:=)1518 3702 y F9(\()1545 3714 y Ga(z)1591
+3702 y F9(\))1619 3714 y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p
+F4(\))23 b Gg(freshly)i(introduces)i Ga(b)705 b Gg(by)23
+b(\(1\))504 3832 y(\(6\))658 3820 y FX(h)685 3832 y Ga(b)r
+F4(:)r Ga(B)5 b F6(\033)p Ga(C)970 3820 y FX(i)997 3832
+y FL(Imp)1141 3854 y Gc(R)1199 3832 y F4(\()1234 3820
+y F9(\()1262 3832 y Ga(x)1314 3820 y F9(\))p FX(h)1368
+3832 y Ga(a)1416 3820 y FX(i)1444 3832 y Ga(M)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1857 3820
+y F9(\()1884 3832 y Ga(z)1930 3820 y F9(\))1958 3832
+y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p F4(\))26 b F6(2)e FB(J)p
+F6(h)p Ga(B)5 b F6(\033)p Ga(C)i F6(i)p FB(K)2250 3951
+y Gg(by)23 b(\(4\))h(and)g(\(5\))g(and)g(De\002nition)g(2.3.3)504
+4069 y(\(7\))49 b FL(Imp)802 4091 y Gc(R)860 4069 y F4(\()895
+4057 y F9(\()923 4069 y Ga(x)975 4057 y F9(\))p FX(h)1029
+4069 y Ga(a)1077 4057 y FX(i)1105 4069 y Ga(M)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1518 4057
+y F9(\()1545 4069 y Ga(z)1591 4057 y F9(\))1619 4069
+y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p F4(\))p Ga(;)41 b(R)26
+b F6(2)f Ga(S)5 b(N)2220 4083 y Gc(aux)2861 4069 y Gg(by)23
+b(Lemma)g(2.3.13)504 4188 y(\(8\))49 b FL(Cut)p F4(\()831
+4176 y FX(h)858 4188 y Ga(b)897 4176 y FX(i)925 4188
+y FL(Imp)1069 4210 y Gc(R)1127 4188 y F4(\()1162 4176
+y F9(\()1190 4188 y Ga(x)1242 4176 y F9(\))p FX(h)1297
+4188 y Ga(a)1345 4176 y FX(i)1372 4188 y Ga(M)15 b F4(^)-50
+b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27 b F4(:=)1785 4176
+y F9(\()1812 4188 y Ga(z)1858 4176 y F9(\))1886 4188
+y Ga(R)-9 b F6(g)q Ga(;)15 b(b)p F4(\))q Ga(;)2147 4176
+y F9(\()2174 4188 y Ga(z)2220 4176 y F9(\))2248 4188
+y Ga(R)q F4(\))25 b F6(2)g Ga(S)5 b(N)2598 4202 y Gc(aux)2861
+4188 y Gg(by)23 b(Lemma)g(2.3.14)504 4306 y(\(9\))49
+b FL(Imp)802 4328 y Gc(R)860 4306 y F4(\()895 4294 y
+F9(\()923 4306 y Ga(x)975 4294 y F9(\))p FX(h)1029 4306
+y Ga(a)1077 4294 y FX(i)1105 4306 y Ga(M)10 b(;)15 b(b)p
+F4(\))31 b(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(b)27
+b F4(:=)1658 4294 y F9(\()1685 4306 y Ga(z)1731 4294
+y F9(\))1759 4306 y Ga(R)-9 b F6(g)26 b(2)f Ga(S)5 b(N)2110
+4320 y Gc(aux)3000 4306 y Gg(by)23 b(\(1\))h(and)g(\(8\))p
+Black 277 4702 a Gb(Case)g FL(Cut)p F4(\()660 4690 y
+FX(h)687 4702 y Ga(a)735 4690 y FX(i)763 4702 y Ga(M)10
+b(;)901 4690 y F9(\()929 4702 y Ga(x)981 4690 y F9(\))1008
+4702 y Ga(N)g F4(\))p Gb(:)p Black 46 w Gg(Since)20 b(we)f(introduced)k
+(in)d(the)g(de\002nition)i(of)e F6(f)p 2686 4702 V 2704
+4702 V 2722 4702 V 65 w(g)f Gg(tw)o(o)h(special)i(clauses)504
+4815 y(for)i(cuts)g(with)g(an)f(axiom)h(as)g(immediate)g(subterm,)h(we)
+d(ha)n(v)o(e)i(to)g(distinguish)j(tw)o(o)c(cases.)504
+5046 y Gb(Subcase)h(I:)h Ga(M)34 b Gg(is)25 b(an)f(axiom)h(that)h
+(freshly)g(introduces)i(the)d(label)g(of)g(the)g(cut-formula)i(\(the)
+504 5159 y(case)35 b(where)g Ga(N)43 b Gg(is)34 b(such)h(an)f(axiom)h
+(is)f(similar\).)61 b(W)-7 b(e)33 b(ha)n(v)o(e)i(to)f(sho)n(w)g(that)h
+(for)f(arbitrary)504 5260 y FX(h)532 5272 y Ga(b)r F4(:)r
+Ga(B)674 5260 y FX(i)701 5272 y Ga(R)h F6(2)g FB(J)p
+F6(h)p Ga(B)5 b F6(i)o FB(K)28 b Gg(the)h(term)f FL(Cut)p
+F4(\()1652 5260 y FX(h)1680 5272 y Ga(a)1728 5260 y FX(i)1755
+5272 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)2109
+5260 y F9(\()2137 5272 y Ga(y)2185 5260 y F9(\))2212
+5272 y Ga(N)10 b F4(\))40 b(^)-50 b Ga(\033)s(;)10 b
+F6(f)-7 b Ga(x)36 b F4(:=)2711 5260 y FX(h)2738 5272
+y Ga(b)2777 5260 y FX(i)2805 5272 y Ga(R)-9 b F6(g)28
+b Gg(is)h(strongly)i(nor)n(-)504 5385 y(malising.)p Black
+Black eop end
+%%Page: 150 162
+TeXDict begin 150 161 bop Black -144 51 a Gb(150)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 549 380 a Gg(\(1\))48 b FL(Cut)p F4(\()875
+368 y FX(h)903 380 y Ga(a)951 368 y FX(i)978 380 y FL(Ax)p
+F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)1332 368 y F9(\()1359
+380 y Ga(y)1407 368 y F9(\))1435 380 y Ga(N)10 b F4(\))30
+b(^)-50 b Ga(\033)t(;)10 b F6(f)-7 b Ga(x)26 b F4(:=)1906
+368 y FX(h)1933 380 y Ga(b)1972 368 y FX(i)2000 380 y
+Ga(R)-9 b F6(g)26 b F4(=)702 498 y FL(Cut)p F4(\()875
+486 y FX(h)903 498 y Ga(b)942 486 y FX(i)969 498 y Ga(R)q(;)1079
+486 y F9(\()1107 498 y Ga(y)1155 486 y F9(\))1207 498
+y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(x)26
+b F4(:=)1618 486 y FX(h)1645 498 y Ga(b)1684 486 y FX(i)1712
+498 y Ga(R)-9 b F6(g)p F4(\))935 b Gg(by)24 b(De\002nition)g(of)g
+F6(f)p 3438 498 28 4 v 3456 498 V 3474 498 V 65 w(g)549
+617 y Gg(\(2\))48 b Ga(N)40 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(x)26 b F4(:=)1138 605 y FX(h)1165 617
+y Ga(b)1204 605 y FX(i)1232 617 y Ga(R)-9 b F6(g)p Ga(;)10
+b F6(f)-7 b Ga(y)29 b F4(:=)1606 605 y FX(h)1633 617
+y Ga(c)1672 605 y FX(i)1700 617 y Ga(P)s F6(g)d(2)f Ga(S)5
+b(N)2052 631 y Gc(aux)2197 617 y Gg(for)24 b(arbitrary)2661
+605 y FX(h)2689 617 y Ga(c)r F4(:)r Ga(B)2831 605 y FX(i)2859
+617 y Ga(P)38 b F6(2)25 b FB(J)p F6(h)p Ga(B)5 b F6(i)o
+FB(K)3089 736 y Gg(by)24 b(induction)549 854 y(\(3\))48
+b F4(\()p Ga(N)40 b F4(^)-50 b Ga(\033)t(;)10 b F6(f)-7
+b Ga(x)26 b F4(:=)1173 842 y FX(h)1201 854 y Ga(b)1240
+842 y FX(i)1267 854 y Ga(R)-9 b F6(g)p F4(\))k F6(f)e
+Ga(y)30 b F4(:=)1636 842 y FX(h)1663 854 y Ga(c)1702
+842 y FX(i)1730 854 y Ga(P)t F6(g)25 b(2)g Ga(S)5 b(N)2082
+868 y Gc(aux)3044 854 y Gg(by)24 b(\(2\))f(and)h(sss)549
+973 y(\(4\))702 961 y F9(\()729 973 y Ga(y)5 b F4(:)18
+b Ga(B)896 961 y F9(\))948 973 y Ga(N)d F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(x)26 b F4(:=)1358 961 y FX(h)1386 973
+y Ga(b)1425 961 y FX(i)1452 973 y Ga(R)-8 b F6(g)25 b(2)g
+FB(J)p F4(\()p Ga(B)5 b F4(\))p FB(K)972 b Gg(by)24 b(De\002nition)h
+(2.3.3)549 1091 y(\(5\))48 b Ga(N)40 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(x)26 b F4(:=)1138 1079 y FX(h)1165 1091
+y Ga(b)1204 1079 y FX(i)1232 1091 y Ga(R)-9 b F6(g)26
+b(2)e Ga(S)5 b(N)1582 1105 y Gc(aux)1727 1091 y Gg(and)24
+b Ga(R)i F6(2)f Ga(S)5 b(N)2196 1105 y Gc(aux)2905 1091
+y Gg(by)24 b(Lemma)e(2.3.13)549 1210 y(\(6\))48 b FL(Cut)p
+F4(\()875 1198 y FX(h)903 1210 y Ga(b)942 1198 y FX(i)969
+1210 y Ga(R)q(;)1079 1198 y F9(\()1107 1210 y Ga(y)1155
+1198 y F9(\))1207 1210 y Ga(N)15 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(x)26 b F4(:=)1618 1198 y FX(h)1645 1210
+y Ga(b)1684 1198 y FX(i)1712 1210 y Ga(R)-9 b F6(g)p
+F4(\))26 b F6(2)f Ga(S)5 b(N)2098 1224 y Gc(aux)2905
+1210 y Gg(by)24 b(Lemma)e(2.3.14)549 1328 y(\(7\))48
+b FL(Cut)p F4(\()875 1316 y FX(h)903 1328 y Ga(a)951
+1316 y FX(i)978 1328 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p
+F4(\))q Ga(;)1332 1316 y F9(\()1359 1328 y Ga(y)1407
+1316 y F9(\))1435 1328 y Ga(N)10 b F4(\))30 b(^)-50 b
+Ga(\033)t(;)10 b F6(f)-7 b Ga(x)26 b F4(:=)1906 1316
+y FX(h)1933 1328 y Ga(b)1972 1316 y FX(i)2000 1328 y
+Ga(R)-9 b F6(g)26 b(2)f Ga(S)5 b(N)2351 1342 y Gc(aux)3044
+1328 y Gg(by)24 b(\(1\))f(and)h(\(6\))549 1511 y Gb(Subcase)29
+b(II:)h Ga(M)39 b Gg(and)30 b Ga(N)39 b Gg(are)29 b(not)h(axioms)h
+(that)f(freshly)i(introduce)g(the)e(label)g(of)g(the)g(cut-)549
+1624 y(formula.)f(W)-7 b(e)23 b(ha)n(v)o(e)h(to)g(pro)o(v)o(e)g(that)g
+FL(Cut)p F4(\()1873 1612 y FX(h)1900 1624 y Ga(a)1948
+1612 y FX(i)1976 1624 y Ga(M)10 b(;)2114 1612 y F9(\()2142
+1624 y Ga(x)2194 1612 y F9(\))2221 1624 y Ga(N)g F4(\))21
+b(^)-51 b Ga(\033)27 b Gg(is)c(strongly)j(normalising.)549
+1767 y(\(1\))48 b FL(Cut)p F4(\()875 1755 y FX(h)903
+1767 y Ga(a)951 1755 y FX(i)978 1767 y Ga(M)10 b(;)1116
+1755 y F9(\()1144 1767 y Ga(x)1196 1755 y F9(\))1223
+1767 y Ga(N)g F4(\))31 b(^)-50 b Ga(\033)28 b F4(=)d
+FL(Cut)p F4(\()1716 1755 y FX(h)1744 1767 y Ga(a)1792
+1755 y FX(i)1820 1767 y Ga(M)15 b F4(^)-50 b Ga(\033)s(;)2013
+1755 y F9(\()2041 1767 y Ga(x)2093 1755 y F9(\))2120
+1767 y Ga(N)15 b F4(^)-50 b Ga(\033)s F4(\))494 b Gg(by)24
+b(De\002nition)g(of)g F6(f)p 3438 1767 V 3456 1767 V
+3474 1767 V 65 w(g)549 1886 y Gg(\(2\))48 b Ga(M)40 b
+F4(^)-50 b Ga(\033)s(;)10 b F6(f)-7 b Ga(a)27 b F4(:=)1149
+1874 y F9(\()1176 1886 y Ga(y)1224 1874 y F9(\))1252
+1886 y Ga(S)-5 b F6(g)26 b(2)f Ga(S)5 b(N)1594 1900 y
+Gc(aux)1739 1886 y Gg(for)23 b(arbitrary)2203 1874 y
+F9(\()2231 1886 y Ga(y)5 b F4(:)r Ga(B)2382 1874 y F9(\))2409
+1886 y Ga(S)30 b F6(2)25 b FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)o Gg(,)702 2004 y Ga(N)40 b F4(^)-50 b Ga(\033)s(;)10
+b F6(f)-7 b Ga(x)26 b F4(:=)1138 1992 y FX(h)1165 2004
+y Ga(b)1204 1992 y FX(i)1232 2004 y Ga(T)s F6(g)g(2)e
+Ga(S)5 b(N)1578 2018 y Gc(aux)1723 2004 y Gg(for)24 b(arbitrary)2188
+1992 y FX(h)2215 2004 y Ga(b)r F4(:)r Ga(B)2357 1992
+y FX(i)2385 2004 y Ga(T)38 b F6(2)25 b FB(J)p F6(h)p
+Ga(B)5 b F6(i)o FB(K)310 b Gg(by)24 b(induction)549 2123
+y(\(3\))48 b F4(\()p Ga(M)15 b F4(^)-50 b Ga(\033)s F4(\))-5
+b F6(f)e Ga(a)27 b F4(:=)1154 2111 y F9(\()1181 2123
+y Ga(y)1229 2111 y F9(\))1257 2123 y Ga(S)-5 b F6(g)26
+b(2)f Ga(S)5 b(N)1599 2137 y Gc(aux)1744 2123 y Gg(and)24
+b F4(\()p Ga(N)15 b F4(^)-50 b Ga(\033)s F4(\))-5 b F6(f)e
+Ga(x)27 b F4(:=)2339 2111 y FX(h)2366 2123 y Ga(b)2405
+2111 y FX(i)2433 2123 y Ga(T)s F6(g)f(2)f Ga(S)5 b(N)2780
+2137 y Gc(aux)3044 2123 y Gg(by)24 b(\(2\))f(and)h(sss)549
+2241 y(\(4\))702 2229 y FX(h)729 2241 y Ga(a)r F4(:)r
+Ga(B)880 2229 y FX(i)933 2241 y Ga(M)15 b F4(^)-50 b
+Ga(\033)28 b F6(2)d FB(J)p F6(h)p Ga(B)5 b F6(i)p FB(K)22
+b Gg(and)1591 2229 y F9(\()1619 2241 y Ga(x)r F4(:)r
+Ga(B)1774 2229 y F9(\))1826 2241 y Ga(N)15 b F4(^)-50
+b Ga(\033)29 b F6(2)c FB(J)p F4(\()p Ga(B)5 b F4(\))p
+FB(K)565 b Gg(by)24 b(De\002nition)h(2.3.3)549 2360 y(\(5\))48
+b Ga(M)15 b F4(^)-50 b Ga(\033)28 b F6(2)d Ga(S)5 b(N)1100
+2374 y Gc(aux)1245 2360 y Gg(and)24 b Ga(N)15 b F4(^)-50
+b Ga(\033)29 b F6(2)24 b Ga(S)5 b(N)1782 2374 y Gc(aux)2905
+2360 y Gg(by)24 b(Lemma)e(2.3.13)549 2478 y(\(6\))48
+b FL(Cut)p F4(\()875 2466 y FX(h)903 2478 y Ga(a)951
+2466 y FX(i)1003 2478 y Ga(M)15 b F4(^)-50 b Ga(\033)t(;)1197
+2466 y F9(\()1224 2478 y Ga(x)1276 2466 y F9(\))1329
+2478 y Ga(N)15 b F4(^)-50 b Ga(\033)s F4(\))26 b F6(2)f
+Ga(S)5 b(N)1748 2492 y Gc(aux)2905 2478 y Gg(by)24 b(Lemma)e(2.3.14)549
+2597 y(\(7\))48 b FL(Cut)p F4(\()875 2585 y FX(h)903
+2597 y Ga(a)951 2585 y FX(i)978 2597 y Ga(M)10 b(;)1116
+2585 y F9(\()1144 2597 y Ga(x)1196 2585 y F9(\))1223
+2597 y Ga(N)g F4(\))31 b(^)-50 b Ga(\033)28 b F6(2)d
+Ga(S)5 b(N)1667 2611 y Gc(aux)3044 2597 y Gg(by)24 b(\(1\))f(and)h
+(\(6\))p 3480 2684 4 62 v 3484 2626 55 4 v 3484 2684
+V 3538 2684 4 62 v Black 321 2922 a Gb(Pr)n(oof)j(of)g(Lemma)e(2.3.20.)
+p Black 34 w Gg(The)h(non-tri)n(vial)j(cases)f(are)e(where)h(the)g
+(de\002nitions)h(of)e F6(f)p 3140 2922 28 4 v 3159 2922
+V 3176 2922 V 65 w(g)g Gg(and)h F4([)p 3458 2922 V 3476
+2922 V 3494 2922 V 65 w(])321 3034 y Gg(dif)n(fer;)e(tw)o(o)e(of)h
+(them)f(are)h(listed)h(belo)n(w)-6 b(.)p Black 321 3197
+a Gb(Case)24 b Ga(M)35 b F6(\021)25 b FL(Ax)p F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))p Gb(:)p Black 46 w Gg(Consider)25
+b(the)f(substitutions:)p Black Black 792 3369 a Ga(M)5
+b F6(f)-7 b Ga(a)26 b F4(:=)1119 3357 y F9(\()1146 3369
+y Ga(x)1198 3357 y F9(\))1225 3369 y Ga(N)q F6(g)51 b(\021)f
+FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))-5 b F6(f)e Ga(a)27
+b F4(:=)2054 3357 y F9(\()2081 3369 y Ga(x)2133 3357
+y F9(\))2161 3369 y Ga(N)p F6(g)51 b F4(=)f FL(Cut)p
+F4(\()2624 3357 y FX(h)2652 3369 y Ga(a)2700 3357 y FX(i)2727
+3369 y FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q Ga(;)3077
+3357 y F9(\()3105 3369 y Ga(x)3157 3357 y F9(\))3184
+3369 y Ga(N)10 b F4(\))792 3494 y Ga(M)g F4([)p Ga(a)26
+b F4(:=)1110 3482 y F9(\()1138 3494 y Ga(x)1190 3482
+y F9(\))1217 3494 y Ga(N)10 b F4(])66 b F6(\021)50 b
+FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)26 b
+F4(:=)2041 3482 y F9(\()2069 3494 y Ga(x)2121 3482 y
+F9(\))2148 3494 y Ga(N)10 b F4(])81 b(=)50 b Ga(N)10
+b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])549 3661 y Gg(W)-7
+b(e)31 b(ha)n(v)o(e)i(tw)o(o)g(cases)g(depending)j(on)c(whether)i
+Ga(N)41 b Gg(freshly)35 b(introduces)g Ga(x)p Gg(.)55
+b(If)32 b Ga(N)42 b Gg(freshly)549 3774 y(introduces)30
+b Ga(x)p Gg(,)e(then)h FL(Cut)p F4(\()1414 3762 y FX(h)1442
+3774 y Ga(a)1490 3762 y FX(i)1517 3774 y FL(Ax)p F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))q Ga(;)1867 3762 y F9(\()1895
+3774 y Ga(x)1947 3762 y F9(\))1974 3774 y Ga(N)10 b F4(\))2146
+3737 y Gc(aux)2126 3774 y F6(\000)-31 b(\000)f(!)34 b
+Ga(N)10 b F4([)p Ga(x)18 b F6(7!)g Ga(y)s F4(])27 b Gg(by)i(a)e
+(logical)j(reduction;)549 3887 y(in)23 b(the)h(other)g(case)773
+4041 y FL(Cut)p F4(\()946 4029 y FX(h)974 4041 y Ga(a)1022
+4029 y FX(i)1050 4041 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p
+F4(\))q Ga(;)1399 4029 y F9(\()1427 4041 y Ga(x)1479
+4029 y F9(\))1506 4041 y Ga(N)10 b F4(\))1670 4004 y
+Gc(aux)1650 4041 y F6(\000)-31 b(\000)f(!)25 b Ga(N)5
+b F6(f)-7 b Ga(x)26 b F4(:=)2160 4029 y FX(h)2188 4041
+y Ga(a)2236 4029 y FX(i)2263 4041 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(a)p F4(\))-8 b F6(g)2689 4004 y Gc(aux)2659 4041 y
+F6(\000)-27 b(\000)f(!)2618 4101 y F5(\(by)17 b(2.3.9\))2837
+4003 y FX(\003)2927 4041 y Ga(N)10 b F4([)p Ga(x)g F6(7!)g
+Ga(y)s F4(])25 b Ga(:)549 4243 y Gg(Thus)e(we)g(ha)n(v)o(e)h(that)g
+FL(Ax)p F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)26 b
+F4(:=)1761 4231 y F9(\()1789 4243 y Ga(x)1841 4231 y
+F9(\))1868 4243 y Ga(N)10 b F4(])2022 4206 y Gc(aux)2002
+4243 y F6(\000)-32 b(\000)h(!)2172 4210 y FX(\003)2237
+4243 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))-5 b F6(f)e
+Ga(a)27 b F4(:=)2774 4231 y F9(\()2802 4243 y Ga(x)2854
+4231 y F9(\))2881 4243 y Ga(N)q F6(g)p Gg(.)p Black 321
+4414 a Gb(Case)d Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()923
+4402 y FX(h)951 4414 y Ga(b)990 4402 y FX(i)1017 4414
+y Ga(P)13 b(;)1128 4402 y F9(\()1156 4414 y Ga(y)1204
+4402 y F9(\))1231 4414 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p
+F4(\))q(\))p Gb(:)p Black 46 w Gg(Consider)25 b(the)f(substitutions:)p
+Black Black 674 4586 a Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)1001
+4574 y F9(\()1028 4586 y Ga(x)1080 4574 y F9(\))1108
+4586 y Ga(N)p F6(g)189 b(\021)f FL(Cut)p F4(\()1847 4574
+y FX(h)1875 4586 y Ga(b)1914 4574 y FX(i)1941 4586 y
+Ga(P)13 b(;)2052 4574 y F9(\()2080 4586 y Ga(y)2128 4574
+y F9(\))2155 4586 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p F4(\))q(\))-5
+b F6(f)e Ga(a)26 b F4(:=)2729 4574 y F9(\()2756 4586
+y Ga(x)2808 4574 y F9(\))2835 4586 y Ga(N)q F6(g)1415
+4723 y F4(=)188 b FL(Cut)p F4(\()1847 4711 y FX(h)1875
+4723 y Ga(b)1914 4711 y FX(i)1967 4723 y Ga(P)8 b F6(f)-7
+b Ga(a)26 b F4(:=)2266 4711 y F9(\()2293 4723 y Ga(x)2345
+4711 y F9(\))2373 4723 y Ga(N)p F6(g)q Ga(;)2532 4711
+y F9(\()2559 4723 y Ga(x)2611 4711 y F9(\))2639 4723
+y Ga(N)10 b F4(\))1372 4822 y Gc(aux)1326 4859 y F6(\000)-37
+b(\000)-20 b(\000)-38 b(!)1332 4920 y F5(\(by)17 b(IH\))1535
+4826 y FX(\003)1674 4859 y FL(Cut)p F4(\()1847 4847 y
+FX(h)1875 4859 y Ga(b)1914 4847 y FX(i)1967 4859 y Ga(P)c
+F4([)p Ga(a)25 b F4(:=)2257 4847 y F9(\()2285 4859 y
+Ga(x)2337 4847 y F9(\))2364 4859 y Ga(N)10 b F4(])p Ga(;)2512
+4847 y F9(\()2540 4859 y Ga(x)2592 4847 y F9(\))2620
+4859 y Ga(N)g F4(\))694 5022 y Ga(M)g F4([)p Ga(a)25
+b F4(:=)1011 5010 y F9(\()1039 5022 y Ga(x)1091 5010
+y F9(\))1118 5022 y Ga(N)10 b F4(])189 b F6(\021)f FL(Cut)p
+F4(\()1847 5010 y FX(h)1875 5022 y Ga(b)1914 5010 y FX(i)1941
+5022 y Ga(P)13 b(;)2052 5010 y F9(\()2080 5022 y Ga(y)2128
+5010 y F9(\))2155 5022 y FL(Ax)p F4(\()p Ga(y)s(;)i(a)p
+F4(\))q(\)[)p Ga(a)26 b F4(:=)2720 5010 y F9(\()2748
+5022 y Ga(x)2800 5010 y F9(\))2827 5022 y Ga(N)10 b F4(])1415
+5159 y(=)188 b FL(Cut)p F4(\()1847 5147 y FX(h)1875 5159
+y Ga(b)1914 5147 y FX(i)1967 5159 y Ga(P)13 b F4([)p
+Ga(a)25 b F4(:=)2257 5147 y F9(\()2285 5159 y Ga(x)2337
+5147 y F9(\))2364 5159 y Ga(N)10 b F4(])p Ga(;)2512 5147
+y F9(\()2540 5159 y Ga(y)2588 5147 y F9(\))2641 5159
+y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)27
+b F4(:=)3170 5147 y F9(\()3198 5159 y Ga(x)3250 5147
+y F9(\))3277 5159 y Ga(N)10 b F4(]\))1415 5295 y(=)188
+b FL(Cut)p F4(\()1847 5283 y FX(h)1875 5295 y Ga(b)1914
+5283 y FX(i)1967 5295 y Ga(P)13 b F4([)p Ga(a)25 b F4(:=)2257
+5283 y F9(\()2285 5295 y Ga(x)2337 5283 y F9(\))2364
+5295 y Ga(N)10 b F4(])p Ga(;)2512 5283 y F9(\()2540 5295
+y Ga(y)2588 5283 y F9(\))2641 5295 y Ga(N)g F4([)p Ga(x)g
+F6(7!)g Ga(y)s F4(]\))1408 5352 y FV(\()p FC(\003)p FV(\))1415
+5436 y F6(\021)188 b FL(Cut)p F4(\()1847 5424 y FX(h)1875
+5436 y Ga(b)1914 5424 y FX(i)1967 5436 y Ga(P)13 b F4([)p
+Ga(a)25 b F4(:=)2257 5424 y F9(\()2285 5436 y Ga(x)2337
+5424 y F9(\))2364 5436 y Ga(N)10 b F4(])p Ga(;)2512 5424
+y F9(\()2540 5436 y Ga(x)2592 5424 y F9(\))2620 5436
+y Ga(N)g F4(\))510 5528 y F9(\()p FX(\003)p F9(\))674
+5561 y Gg(because)25 b(by)f(the)g(Barendre)o(gt-style)j(naming)d(con)l
+(v)o(ention)j Ga(y)f Gg(cannot)f(be)e(free)h(in)3278
+5549 y F9(\()3305 5561 y Ga(x)3357 5549 y F9(\))3385
+5561 y Ga(N)10 b Gg(.)p 3480 5699 4 62 v 3484 5641 55
+4 v 3484 5699 V 3538 5699 4 62 v Black Black eop end
+%%Page: 151 163
+TeXDict begin 151 162 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(151)p 277 88 3691 4 v Black Black
+277 388 a(Pr)n(oof)24 b(of)g(Lemma)e(2.3.21.)p Black
+35 w Gg(W)-7 b(e)22 b(shall)j(analyse)g(all)f(possible)h(cases)g(of)
+2627 351 y Gc(cut)2596 388 y F6(\000)-31 b(\000)g(!)p
+Gg(-reductions.)p Black 277 589 a Gb(Inner)23 b(Reduction:)p
+Black 46 w Gg(Gi)n(v)o(en)i(that)g Ga(M)1553 552 y Gc(cut)1522
+589 y F6(\000)-32 b(\000)h(!)28 b Ga(N)10 b Gg(,)25 b(there)h(is)f(a)f
+(proper)j(subterm)f(in)f Ga(M)10 b Gg(,)25 b(say)h Ga(S)5
+b Gg(,)24 b(which)504 702 y(reduces)g(to)e Ga(S)956 669
+y FX(0)979 702 y Gg(.)27 b(This)22 b(term)g Ga(S)1461
+669 y FX(0)1505 702 y Gg(is)g(a)f(subterm)i(of)f Ga(N)10
+b Gg(.)27 b(W)-7 b(e)21 b(kno)n(w)h(by)g(induction)i(that)f
+Ga(S)3293 665 y Gc(aux)3273 702 y F6(\000)-31 b(\000)f(!)3443
+669 y F9(+)504 815 y Ga(S)565 782 y FX(0)611 815 y Gg(and)24
+b(by)g(conte)o(xt)h(closure)g(that)f Ga(M)1756 778 y
+Gc(aux)1736 815 y F6(\000)-31 b(\000)f(!)1906 782 y F9(+)1990
+815 y Ga(N)10 b Gg(.)p Black 277 1002 a Gb(Logical)25
+b(Reduction:)p Black 45 w Gg(This)e(case)g(is)g(ob)o(vious,)h(because)g
+(both)2362 965 y Gc(cut)2331 1002 y F6(\000)-31 b(\000)f(!)22
+b Gg(and)2696 965 y Gc(aux)2676 1002 y F6(\000)-31 b(\000)f(!)22
+b Gg(perform)h(the)g(same)504 1115 y(logical)j(reductions.)p
+Black 277 1301 a Gb(Commuting)c(Reduction:)p Black 46
+w Gg(Suppose)36 b Ga(M)1796 1264 y Gc(c)1726 1301 y F6(\000)-31
+b(\000)f(!)47 b Ga(N)d Gg(with)34 b Ga(M)57 b F6(\021)46
+b FL(Cut)p F4(\()2690 1289 y FX(h)2718 1301 y Ga(a)2766
+1289 y FX(i)2793 1301 y Ga(S)5 b(;)2894 1289 y F9(\()2922
+1301 y Ga(x)2974 1289 y F9(\))3001 1301 y Ga(T)13 b F4(\))35
+b Gg(and)g Ga(N)56 b F6(\021)504 1414 y Ga(S)5 b F4([)p
+Ga(a)29 b F4(:=)792 1402 y F9(\()819 1414 y Ga(x)871
+1402 y F9(\))899 1414 y Ga(T)12 b F4(])p Gg(,)25 b(then)i(we)d(kno)n(w)
+h(that)h Ga(M)1920 1377 y Gc(c)1951 1353 y FC(0)1861
+1414 y F6(\000)-31 b(\000)f(!)29 b Ga(S)q F6(f)-7 b Ga(a)28
+b F4(:=)2356 1402 y F9(\()2383 1414 y Ga(x)2435 1402
+y F9(\))2462 1414 y Ga(T)t F6(g)p Gg(.)34 b(From)24 b(Lemma)g(2.3.20)i
+(we)504 1527 y(ha)n(v)o(e)g(that)g Ga(S)q F6(f)-7 b Ga(a)29
+b F4(:=)1155 1515 y F9(\()1182 1527 y Ga(x)1234 1515
+y F9(\))1262 1527 y Ga(T)s F6(g)1412 1490 y Gc(aux)1392
+1527 y F6(\000)-31 b(\000)f(!)1562 1494 y FX(\003)1631
+1527 y Ga(N)34 b Gg(and)26 b(therefore)i Ga(M)2394 1490
+y Gc(aux)2374 1527 y F6(\000)-32 b(\000)h(!)2544 1494
+y F9(+)2632 1527 y Ga(N)10 b Gg(.)33 b(The)25 b(symmetric)i(case)504
+1640 y(is)d(analogous.)p 3436 1640 4 62 v 3440 1582 55
+4 v 3440 1640 V 3494 1640 4 62 v Black 277 1852 a Gb(Pr)n(oof)g(of)g
+(Lemma)e(2.6.4.)p Black 34 w Gg(The)h(follo)n(wing)i(measure)g(reduces)
+g(in)f(e)n(v)o(ery)2716 1815 y Gc(x)2651 1852 y F6(\000)-32
+b(\000)h(!)p Gg(-reduction.)p Black Black 749 2020 a
+Fs([)p FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))p Fs(])1161
+1969 y F5(def)1168 2020 y F4(=)39 b(1)498 2164 y Fs([)q
+FL(Not)673 2178 y Gc(R)731 2164 y F4(\()766 2152 y F9(\()794
+2164 y Ga(x)846 2152 y F9(\))873 2164 y Ga(M)10 b(;)15
+b(a)p F4(\))p Fs(])1161 2112 y F5(def)1168 2164 y F4(=)39
+b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)282 2307 y Fs([)p
+FL(And)469 2321 y Gc(R)526 2307 y F4(\()561 2295 y FX(h)589
+2307 y Ga(a)637 2295 y FX(i)665 2307 y Ga(M)10 b(;)803
+2295 y FX(h)831 2307 y Ga(b)870 2295 y FX(i)897 2307
+y Ga(N)g(;)15 b(c)p F4(\))p Fs(])1161 2255 y F5(def)1168
+2307 y F4(=)39 b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f Fs([)p
+Ga(N)10 b Fs(])21 b F4(+)f(1)554 2450 y Fs([)q FL(Or)686
+2413 y Gc(i)686 2473 y(R)744 2450 y F4(\()779 2438 y
+FX(h)807 2450 y Ga(a)855 2438 y FX(i)882 2450 y Ga(M)10
+b(;)15 b(b)p F4(\))p Fs(])1161 2398 y F5(def)1168 2450
+y F4(=)39 b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)402 2593
+y Fs([)q FL(Imp)579 2615 y Gc(R)637 2593 y F4(\()672
+2581 y F9(\()700 2593 y Ga(x)752 2581 y F9(\))p FX(h)807
+2593 y Ga(a)855 2581 y FX(i)882 2593 y Ga(M)10 b(;)15
+b(b)p F4(\))p Fs(])1161 2542 y F5(def)1168 2593 y F4(=)39
+b Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)421 2760 y Fs([)p
+FL(Cut)532 2713 y FC(!)593 2760 y F4(\()628 2748 y FX(h)656
+2760 y Ga(a)704 2748 y FX(i)731 2760 y Ga(M)11 b(;)870
+2748 y F9(\()897 2760 y Ga(x)949 2748 y F9(\))977 2760
+y Ga(N)f F4(\))p Fs(])1161 2708 y F5(def)1168 2760 y
+F4(=)39 b(\()p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1\))h
+F6(\001)f F4(\(4)p Fs([)r Ga(N)10 b Fs(])20 b F4(+)g(1\))2231
+2020 y Fs([)q FL(Cut)o F4(\()2436 2008 y FX(h)2464 2020
+y Ga(a)2512 2008 y FX(i)2540 2020 y Ga(M)10 b(;)2678
+2008 y F9(\()2706 2020 y Ga(x)2758 2008 y F9(\))2785
+2020 y Ga(N)g F4(\))p Fs(])2969 1969 y F5(def)2976 2020
+y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f Fs([)p
+Ga(N)10 b Fs(])21 b F4(+)f(1)2312 2164 y Fs([)p FL(Not)2487
+2178 y Gc(L)2539 2164 y F4(\()2574 2152 y FX(h)2602 2164
+y Ga(a)2650 2152 y FX(i)2678 2164 y Ga(M)10 b(;)15 b(x)p
+F4(\))p Fs(])2969 2112 y F5(def)2976 2164 y F4(=)40 b
+Fs([)p Ga(M)10 b Fs(])21 b F4(+)f(1)2300 2307 y Fs([)q
+FL(And)2487 2270 y Gc(i)2487 2330 y(L)2540 2307 y F4(\()2575
+2295 y F9(\()2602 2307 y Ga(x)2654 2295 y F9(\))2682
+2307 y Ga(M)10 b(;)15 b(y)s F4(\))p Fs(])2969 2255 y
+F5(def)2976 2307 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21
+b F4(+)f(1)2131 2450 y Fs([)q FL(Or)2263 2464 y Gc(L)2315
+2450 y F4(\()2350 2438 y F9(\()2378 2450 y Ga(x)2430
+2438 y F9(\))2457 2450 y Ga(M)10 b(;)2595 2438 y F9(\()2623
+2450 y Ga(y)2671 2438 y F9(\))2698 2450 y Ga(N)g(;)15
+b(z)t F4(\))p Fs(])2969 2398 y F5(def)2976 2450 y F4(=)40
+b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f Fs([)p Ga(N)10 b
+Fs(])21 b F4(+)f(1)2084 2593 y Fs([)q FL(Imp)2261 2615
+y Gc(L)2313 2593 y F4(\()2348 2581 y FX(h)2376 2593 y
+Ga(a)2424 2581 y FX(i)2452 2593 y Ga(M)10 b(;)2590 2581
+y F9(\()2617 2593 y Ga(x)2669 2581 y F9(\))2697 2593
+y Ga(N)g(;)15 b(y)s F4(\))p Fs(])2969 2542 y F5(def)2976
+2593 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f Fs([)p
+Ga(N)10 b Fs(])21 b F4(+)f(1)2229 2760 y Fs([)q FL(Cut)2341
+2713 y FC( )2401 2760 y F4(\()2436 2748 y FX(h)2464 2760
+y Ga(a)2512 2748 y FX(i)2540 2760 y Ga(M)10 b(;)2678
+2748 y F9(\()2706 2760 y Ga(x)2758 2748 y F9(\))2785
+2760 y Ga(N)g F4(\))p Fs(])2969 2708 y F5(def)2976 2760
+y F4(=)40 b(\(4)p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1\))h
+F6(\001)f F4(\()p Fs([)q Ga(N)10 b Fs(])21 b F4(+)f(1\))p
+3436 2912 V 3440 2854 55 4 v 3440 2912 V 3494 2912 4
+62 v Black 277 3124 a Gb(Pr)n(oof)k(of)e(Lemma)g(2.6.10.)p
+Black 34 w Gg(The)h(calculation)i(for)e(\(i\))g(is)g(as)f(follo)n(ws,)i
+(where)f F4(\()p F6(\003)p F4(\))g Gg(is)f(by)h(con\003uence)277
+3237 y(of)441 3200 y Gc(x)376 3237 y F6(\000)-32 b(\000)h(!)p
+Gg(.)483 3465 y F6(j)p FL(Cut)587 3417 y FC( )648 3465
+y F4(\()683 3453 y FX(h)711 3465 y Ga(a)759 3453 y FX(i)786
+3465 y Ga(M)10 b(;)924 3453 y F9(\()952 3465 y Ga(x)1004
+3453 y F9(\))1032 3465 y Ga(N)g F4(\))p F6(j)1175 3479
+y Gc(x)1244 3381 y FV(\()p FC(\003)p FV(\))1251 3465
+y F6(\021)31 b(j)p FL(Cut)1458 3417 y FC( )1518 3465
+y F4(\()1553 3453 y FX(h)1581 3465 y Ga(a)1629 3453 y
+FX(i)1672 3465 y F6(j)p Ga(M)10 b F6(j)1820 3479 y Gc(x)1864
+3465 y Ga(;)1904 3453 y F9(\()1932 3465 y Ga(x)1984 3453
+y F9(\))2027 3465 y F6(j)p Ga(N)g F6(j)2160 3479 y Gc(x)2204
+3465 y F4(\))p F6(j)2264 3479 y Gc(x)2334 3381 y FV(\(2)p
+FZ(:)p FV(6)p FZ(:)p FV(9\))2389 3465 y F6(\021)80 b(j)p
+Ga(M)10 b F6(j)2688 3479 y Gc(x)2728 3465 y F6(f)-7 b
+Ga(a)26 b F4(:=)2961 3453 y F9(\()2988 3465 y Ga(x)3040
+3453 y F9(\))3083 3465 y F6(j)p Ga(N)10 b F6(j)3216 3479
+y Gc(x)3251 3465 y F6(g)p 3436 3665 V 3440 3607 55 4
+v 3440 3665 V 3494 3665 4 62 v Black 277 3878 a Gb(Pr)n(oof)24
+b(of)g(Lemma)e(2.6.11.)p Black 35 w Gg(W)-7 b(e)22 b(shall)j(analyse)g
+(same)f(cases)g(of)2413 3841 y Gc(l)q(oc)2372 3878 y
+F6(\000)-32 b(\000)h(!)p Gg(-reductions.)p Black 277
+4079 a Gb(Inner)23 b(Reduction:)p Black 46 w Gg(W)-7
+b(e)22 b(gi)n(v)o(e)i(tw)o(o)f(cases.)504 4231 y Ga(M)36
+b F6(\021)25 b FL(And)878 4245 y Gc(R)936 4231 y F4(\()971
+4219 y FX(h)999 4231 y Ga(a)1047 4219 y FX(i)1074 4231
+y Ga(S)5 b(;)1175 4219 y FX(h)1203 4231 y Ga(x)1255 4219
+y FX(i)1283 4231 y Ga(T)12 b(;)j(b)p F4(\))24 b Gg(and)g
+Ga(N)35 b F6(\021)25 b FL(And)1998 4245 y Gc(R)2056 4231
+y F4(\()2091 4219 y FX(h)2119 4231 y Ga(a)2167 4219 y
+FX(i)2194 4231 y Ga(S)2255 4198 y FX(0)2279 4231 y Ga(;)2319
+4219 y FX(h)2347 4231 y Ga(x)2399 4219 y FX(i)2426 4231
+y Ga(T)13 b(;)i(b)p F4(\))504 4355 y Gg(\(1\))101 b Ga(S)838
+4318 y Gc(l)q(oc)796 4355 y F6(\000)-31 b(\000)g(!)25
+b Ga(S)1053 4322 y FX(0)2974 4355 y Gg(by)f(assumption)504
+4479 y(\(2\))101 b F6(j)p Ga(M)10 b F6(j)858 4493 y Gc(x)928
+4479 y F6(\021)25 b FL(And)1178 4493 y Gc(R)1236 4479
+y F4(\()1271 4467 y FX(h)1299 4479 y Ga(a)1347 4467 y
+FX(i)1374 4479 y F6(j)p Ga(S)5 b F6(j)1485 4493 y Gc(x)1530
+4479 y Ga(;)1570 4467 y FX(h)1597 4479 y Ga(x)1649 4467
+y FX(i)1677 4479 y F6(j)p Ga(T)13 b F6(j)1793 4493 y
+Gc(x)1837 4479 y Ga(;)i(b)p F4(\))955 b Gg(by)24 b(Lemma)e(2.6.7)504
+4603 y(\(3\))101 b FL(And)865 4617 y Gc(R)922 4603 y
+F4(\()957 4591 y FX(h)985 4603 y Ga(a)1033 4591 y FX(i)1061
+4603 y F6(j)p Ga(S)5 b F6(j)1172 4617 y Gc(x)1216 4603
+y Ga(;)1256 4591 y FX(h)1284 4603 y Ga(x)1336 4591 y
+FX(i)1363 4603 y F6(j)p Ga(T)13 b F6(j)1479 4617 y Gc(x)1523
+4603 y Ga(;)i(b)p F4(\))1684 4566 y Gc(aux)1663 4603
+y F6(\000)-31 b(\000)g(!)1834 4570 y FX(\003)1898 4603
+y FL(And)2053 4617 y Gc(R)2111 4603 y F4(\()2146 4591
+y FX(h)2173 4603 y Ga(a)2221 4591 y FX(i)2249 4603 y
+F6(j)p Ga(S)2335 4570 y FX(0)2358 4603 y F6(j)2383 4617
+y Gc(x)2428 4603 y Ga(;)2468 4591 y FX(h)2495 4603 y
+Ga(x)2547 4591 y FX(i)2575 4603 y F6(j)p Ga(T)13 b F6(j)2691
+4617 y Gc(x)2735 4603 y Ga(;)i(b)p F4(\))196 b Gg(by)24
+b(induction)504 4727 y(\(4\))101 b FL(And)865 4741 y
+Gc(R)922 4727 y F4(\()957 4715 y FX(h)985 4727 y Ga(a)1033
+4715 y FX(i)1061 4727 y F6(j)p Ga(S)1147 4694 y FX(0)1170
+4727 y F6(j)1195 4741 y Gc(x)1239 4727 y Ga(;)1279 4715
+y FX(h)1307 4727 y Ga(x)1359 4715 y FX(i)1386 4727 y
+F6(j)p Ga(T)13 b F6(j)1502 4741 y Gc(x)1547 4727 y Ga(;)i(b)p
+F4(\))26 b F6(\021)f(j)p Ga(N)10 b F6(j)1916 4741 y Gc(x)2906
+4727 y Gg(by)24 b(Lemma)e(2.6.7)504 4897 y Ga(M)36 b
+F6(\021)25 b FL(Cut)803 4849 y FC( )863 4897 y F4(\()898
+4885 y FX(h)926 4897 y Ga(a)974 4885 y FX(i)1002 4897
+y Ga(S)5 b(;)1103 4885 y F9(\()1131 4897 y Ga(x)1183
+4885 y F9(\))1210 4897 y Ga(T)13 b F4(\))23 b Gg(and)h
+Ga(N)35 b F6(\021)25 b FL(Cut)1771 4849 y FC( )1832 4897
+y F4(\()1867 4885 y FX(h)1894 4897 y Ga(a)1942 4885 y
+FX(i)1970 4897 y Ga(S)2031 4864 y FX(0)2054 4897 y Ga(;)2094
+4885 y F9(\()2122 4897 y Ga(x)2174 4885 y F9(\))2201
+4897 y Ga(T)13 b F4(\))504 5021 y Gg(\(1\))101 b Ga(S)838
+4984 y Gc(l)q(oc)796 5021 y F6(\000)-31 b(\000)g(!)25
+b Ga(S)1053 4988 y FX(0)2974 5021 y Gg(by)f(assumption)504
+5145 y(\(2\))101 b F6(j)p Ga(M)10 b F6(j)858 5159 y Gc(x)928
+5145 y F6(\021)25 b(j)p Ga(S)5 b F6(j)1135 5159 y Gc(x)1174
+5145 y F6(f)-7 b Ga(a)26 b F4(:=)1407 5133 y F9(\()1435
+5145 y Ga(x)1487 5133 y F9(\))1529 5145 y F6(j)p Ga(T)13
+b F6(j)1645 5159 y Gc(x)1680 5145 y F6(g)1136 b Gg(by)23
+b(Lemma)g(2.6.10)504 5269 y(\(3\))101 b F6(j)p Ga(S)5
+b F6(j)821 5283 y Gc(x)861 5269 y F6(f)-7 b Ga(a)25 b
+F4(:=)1094 5257 y F9(\()1121 5269 y Ga(x)1173 5257 y
+F9(\))1216 5269 y F6(j)p Ga(T)13 b F6(j)1332 5283 y Gc(x)1366
+5269 y F6(g)1457 5232 y Gc(aux)1437 5269 y F6(\000)-31
+b(\000)f(!)1607 5236 y FX(\003)1672 5269 y F6(j)p Ga(S)1758
+5236 y FX(0)1781 5269 y F6(j)1806 5283 y Gc(x)1846 5269
+y F6(f)-7 b Ga(a)25 b F4(:=)2079 5257 y F9(\()2106 5269
+y Ga(x)2158 5257 y F9(\))2201 5269 y F6(j)p Ga(T)13 b
+F6(j)2317 5283 y Gc(x)2351 5269 y F6(g)56 b Gg(by)23
+b(induction)k(and)d(Lem)e(2.3.11)504 5394 y(\(4\))101
+b F6(j)p Ga(S)796 5361 y FX(0)820 5394 y F6(j)845 5408
+y Gc(x)884 5394 y F6(f)-7 b Ga(a)26 b F4(:=)1117 5382
+y F9(\()1144 5394 y Ga(x)1196 5382 y F9(\))1239 5394
+y F6(j)p Ga(T)13 b F6(j)1355 5408 y Gc(x)1390 5394 y
+F6(g)25 b(\021)g(j)p Ga(N)10 b F6(j)1689 5408 y Gc(x)2861
+5394 y Gg(by)23 b(Lemma)g(2.6.10)p Black Black eop end
+%%Page: 152 164
+TeXDict begin 152 163 bop Black -144 51 a Gb(152)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 388 a(Commuting)f(Reduction:)p Black
+45 w Gg(W)-7 b(e)23 b(gi)n(v)o(e)h(one)g(case.)549 562
+y Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()941 550 y FX(h)969
+562 y Ga(a)1017 550 y FX(i)1044 562 y Ga(S)5 b(;)1145
+550 y F9(\()1173 562 y Ga(x)1225 550 y F9(\))1252 562
+y Ga(T)13 b F4(\))23 b Gg(and)h Ga(N)35 b F6(\021)25
+b FL(Cut)1813 515 y FC( )1874 562 y F4(\()1909 550 y
+FX(h)1937 562 y Ga(a)1985 550 y FX(i)2012 562 y Ga(S)5
+b(;)2113 550 y F9(\()2141 562 y Ga(x)2193 550 y F9(\))2221
+562 y Ga(T)12 b F4(\))549 686 y Gg(\(1\))100 b F6(j)p
+Ga(M)10 b F6(j)902 700 y Gc(x)972 686 y F6(\021)25 b
+FL(Cut)p F4(\()1241 674 y FX(h)1269 686 y Ga(a)1317 674
+y FX(i)1344 686 y F6(j)p Ga(S)5 b F6(j)1455 700 y Gc(x)1499
+686 y Ga(;)1539 674 y F9(\()1567 686 y Ga(x)1619 674
+y F9(\))1647 686 y F6(j)p Ga(T)13 b F6(j)1763 700 y Gc(x)1807
+686 y F4(\))1108 b Gg(by)24 b(Lemma)f(2.6.7)549 810 y(\(2\))100
+b FL(Cut)p F4(\()927 798 y FX(h)955 810 y Ga(a)1003 798
+y FX(i)1030 810 y F6(j)p Ga(S)5 b F6(j)1141 824 y Gc(x)1186
+810 y Ga(;)1226 798 y F9(\()1254 810 y Ga(x)1306 798
+y F9(\))1333 810 y F6(j)p Ga(T)13 b F6(j)1449 824 y Gc(x)1493
+810 y F4(\))1574 773 y Gc(aux)1554 810 y F6(\000)-31
+b(\000)f(!)1724 777 y F9(0)p Gc(=)p F9(1)1859 810 y F6(j)p
+Ga(S)5 b F6(j)1970 824 y Gc(x)2010 810 y F6(f)-7 b Ga(a)26
+b F4(:=)2243 798 y F9(\()2270 810 y Ga(x)2322 798 y F9(\))2365
+810 y F6(j)p Ga(T)13 b F6(j)2481 824 y Gc(x)2515 810
+y F6(g)2219 935 y Gg(`0'-case:)31 b(if)24 b F6(j)p Ga(S)5
+b F6(j)2755 949 y Gc(x)2822 935 y Gg(freshly)25 b(introduces)h
+Ga(a)549 1059 y Gg(\(3\))100 b F6(j)p Ga(S)5 b F6(j)865
+1073 y Gc(x)905 1059 y F6(f)-7 b Ga(a)26 b F4(:=)1138
+1047 y F9(\()1165 1059 y Ga(x)1217 1047 y F9(\))1260
+1059 y F6(j)p Ga(T)13 b F6(j)1376 1073 y Gc(x)1410 1059
+y F6(g)26 b(\021)f(j)p Ga(N)10 b F6(j)1710 1073 y Gc(x)2905
+1059 y Gg(by)24 b(Lemma)e(2.6.10)p Black 321 1290 a Gb(Labelled)h(Cut)g
+(Reduction:)p Black 45 w Gg(T)m(ri)n(vial,)h(because)h(if)f
+Ga(M)2161 1253 y Gc(x)2096 1290 y F6(\000)-32 b(\000)h(!)-5
+b Ga(N)10 b Gg(,)22 b(we)h(ha)n(v)o(e)h F6(j)p Ga(M)10
+b F6(j)2857 1304 y Gc(x)2927 1290 y F6(\021)25 b(j)p
+Ga(N)10 b F6(j)3156 1304 y Gc(x)3200 1290 y Gg(.)p Black
+321 1521 a Gb(Logical)25 b(Reduction:)p Black 46 w Gg(Routine)f
+(calculation)j(using)e(Lemma)d(2.6.7.)p Black 321 1751
+a Gb(Garbage)i(Reduction:)p Black 46 w Gg(T)-7 b(ak)o(e)22
+b(for)h(e)o(xample)h Ga(M)35 b F6(\021)25 b FL(Cut)2107
+1704 y FC( )2168 1751 y F4(\()2203 1739 y FX(h)2231 1751
+y Ga(a)2279 1739 y FX(i)2306 1751 y Ga(S)5 b(;)2407 1739
+y F9(\()2435 1751 y Ga(x)2487 1739 y F9(\))2514 1751
+y Ga(T)13 b F4(\))22 b Gg(with)h Ga(a)e Gg(not)i(free)h(in)e
+Ga(S)5 b Gg(,)22 b(then)549 1864 y(by)h(Lemma)g(2.6.10)h
+F6(j)p Ga(M)10 b F6(j)1361 1878 y Gc(x)1430 1864 y F6(\021)25
+b(j)p Ga(N)10 b F6(j)1659 1878 y Gc(x)1704 1864 y Gg(.)p
+3480 1864 4 62 v 3484 1806 55 4 v 3484 1864 V 3538 1864
+4 62 v Black 321 2077 a Gb(Pr)n(oof)33 b(of)f(Lemma)g(2.6.16.)p
+Black 34 w Gg(W)-7 b(e)31 b(shall)i(analyse)h(in)f(detail)g(one)g(case)
+g(where)f(an)3068 2040 y Gc(x)3002 2077 y F6(\000)-31
+b(\000)g(!)p Gg(-reduction)321 2190 y(occurs)25 b(on)f(the)g(top-le)n
+(v)o(el.)30 b(Suppose)p Black Black 1051 2431 a Ga(M)20
+b F6(\021)10 b FL(Cut)1318 2383 y FC( )1379 2431 y F4(\()1414
+2419 y FX(h)1442 2431 y Ga(a)1490 2419 y FX(i)1518 2431
+y FL(Not)1660 2445 y Gc(R)1718 2431 y F4(\()1753 2419
+y F9(\()1781 2431 y Ga(x)1833 2419 y F9(\))1860 2431
+y Ga(S)5 b(;)15 b(a)p F4(\))q Ga(;)2085 2419 y F9(\()2113
+2431 y Ga(y)2161 2419 y F9(\))2188 2431 y Ga(T)e F4(\))48
+b Gg(and)1051 2567 y Ga(N)20 b F6(\021)10 b FL(Cut)o
+F4(\()1397 2555 y FX(h)1425 2567 y Ga(a)1473 2555 y FX(i)1501
+2567 y FL(Not)1643 2581 y Gc(R)1701 2567 y F4(\()1736
+2555 y F9(\()1764 2567 y Ga(x)1816 2555 y F9(\))1843
+2567 y FL(Cut)1922 2520 y FC( )1983 2567 y F4(\()2018
+2555 y FX(h)2046 2567 y Ga(a)2094 2555 y FX(i)2121 2567
+y Ga(S)5 b(;)2222 2555 y F9(\()2250 2567 y Ga(y)2298
+2555 y F9(\))2325 2567 y Ga(T)13 b F4(\))p Ga(;)i(a)p
+F4(\))q Ga(;)2590 2555 y F9(\()2618 2567 y Ga(y)2666
+2555 y F9(\))2693 2567 y Ga(T)e F4(\))p Gg(.)321 2806
+y(Hence)24 b(we)f(ha)n(v)o(e)h Ga(M)1085 2769 y Gc(x)1019
+2806 y F6(\000)-31 b(\000)g(!)25 b Ga(N)10 b Gg(.)28
+b(The)23 b(subterms)i(of)e Ga(N)33 b Gg(are:)p Black
+Black 944 3064 a(\(1\))101 b(all)23 b(subterms)i(of)f
+Ga(S)j Gg(and)d Ga(T)13 b Gg(,)944 3177 y(\(2\))101 b
+FL(Cut)1228 3130 y FC( )1289 3177 y F4(\()1324 3165 y
+FX(h)1352 3177 y Ga(a)1400 3165 y FX(i)1428 3177 y Ga(S)5
+b(;)1529 3165 y F9(\()1556 3177 y Ga(y)1604 3165 y F9(\))1632
+3177 y Ga(T)12 b F4(\))p Gg(,)944 3290 y(\(3\))101 b
+FL(Not)1292 3304 y Gc(R)1350 3290 y F4(\()1385 3278 y
+F9(\()1413 3290 y Ga(x)1465 3278 y F9(\))1492 3290 y
+FL(Cut)1571 3243 y FC( )1632 3290 y F4(\()1667 3278 y
+FX(h)1695 3290 y Ga(a)1743 3278 y FX(i)1770 3290 y Ga(S)5
+b(;)1871 3278 y F9(\()1899 3290 y Ga(y)1947 3278 y F9(\))1974
+3290 y Ga(T)13 b F4(\))p Ga(;)i(a)p F4(\))24 b Gg(and)944
+3403 y(\(4\))101 b Ga(N)35 b F6(\021)25 b FL(Cut)p F4(\()1527
+3391 y FX(h)1554 3403 y Ga(a)1602 3391 y FX(i)1630 3403
+y FL(Not)1773 3417 y Gc(R)1830 3403 y F4(\()1865 3391
+y F9(\()1893 3403 y Ga(x)1945 3391 y F9(\))1972 3403
+y FL(Cut)2051 3355 y FC( )2112 3403 y F4(\()2147 3391
+y FX(h)2175 3403 y Ga(a)2223 3391 y FX(i)2250 3403 y
+Ga(S)5 b(;)2351 3391 y F9(\()2379 3403 y Ga(y)2427 3391
+y F9(\))2455 3403 y Ga(T)12 b F4(\))q Ga(;)j(a)p F4(\))p
+Ga(;)2719 3391 y F9(\()2747 3403 y Ga(y)2795 3391 y F9(\))2823
+3403 y Ga(T)d F4(\))321 3677 y Gg(W)-7 b(e)33 b(ha)n(v)o(e)i(to)e(sho)n
+(w)h(that)g(their)h Ga(x)p Gg(-normal)g(form)e(is)h(an)g(element)h(in)e
+Ga(S)5 b(N)2723 3691 y Gc(aux)2846 3677 y Gg(.)58 b(Case)34
+b(\(1\))g(follo)n(ws)321 3790 y(by)28 b(assumption:)40
+b(the)27 b Ga(x)p Gg(-normal)i(form)e(of)h(e)n(v)o(ery)g(subterm)g(of)g
+Ga(M)37 b Gg(is)27 b(an)g(element)i(in)e Ga(S)5 b(N)3242
+3804 y Gc(aux)3365 3790 y Gg(,)27 b(and)321 3903 y(therefore)j(the)e
+Ga(x)p Gg(-normal)g(form)g(of)f(e)n(v)o(ery)h(subterm)g(of)g
+Ga(S)j Gg(and)d Ga(T)40 b Gg(must)27 b(be)h(in)f Ga(S)5
+b(N)3018 3917 y Gc(aux)3140 3903 y Gg(,)28 b(too.)41
+b(Case)321 4016 y(\(4\))20 b(follo)n(ws)h(by)f(Lemma)f(2.6.11,)i(which)
+f(says)h(that)f F6(j)p Ga(M)10 b F6(j)2133 4030 y Gc(x)2223
+3978 y(aux)2203 4016 y F6(\000)-31 b(\000)f(!)2373 3983
+y FX(\003)2438 4016 y F6(j)p Ga(N)10 b F6(j)2571 4030
+y Gc(x)2615 4016 y Gg(,)20 b(and)g(thus)h F6(j)p Ga(N)10
+b F6(j)3112 4030 y Gc(x)3181 4016 y F6(2)25 b Ga(S)5
+b(N)3401 4030 y Gc(aux)3524 4016 y Gg(.)321 4128 y(By)23
+b(Lemma)g(2.6.7)g(we)g(ha)n(v)o(e)h(the)g(identities)p
+Black Black 1140 4370 a F6(j)p FL(Cut)p F4(\()1338 4358
+y FX(h)1366 4370 y Ga(a)1414 4358 y FX(i)1441 4370 y
+FL(Not)1584 4384 y Gc(R)1641 4370 y F4(\()1676 4358 y
+F9(\()1704 4370 y Ga(x)1756 4358 y F9(\))1784 4370 y
+FL(Cut)1862 4322 y FC( )1923 4370 y F4(\()1958 4358 y
+FX(h)1986 4370 y Ga(a)2034 4358 y FX(i)2062 4370 y Ga(S)5
+b(;)2163 4358 y F9(\()2190 4370 y Ga(y)2238 4358 y F9(\))2266
+4370 y Ga(T)12 b F4(\))q Ga(;)j(a)p F4(\))q Ga(;)2531
+4358 y F9(\()2558 4370 y Ga(y)2606 4358 y F9(\))2634
+4370 y Ga(T)e F4(\))p F6(j)2760 4384 y Gc(x)969 4483
+y F6(\021)100 b FL(Cut)o F4(\()1312 4471 y FX(h)1340
+4483 y Ga(a)1388 4471 y FX(i)1416 4483 y F6(j)p FL(Not)1584
+4497 y Gc(R)1641 4483 y F4(\()1676 4471 y F9(\()1704
+4483 y Ga(x)1756 4471 y F9(\))1784 4483 y FL(Cut)1862
+4435 y FC( )1923 4483 y F4(\()1958 4471 y FX(h)1986 4483
+y Ga(a)2034 4471 y FX(i)2062 4483 y Ga(S)5 b(;)2163 4471
+y F9(\()2190 4483 y Ga(y)2238 4471 y F9(\))2266 4483
+y Ga(T)12 b F4(\))q Ga(;)j(a)p F4(\))p F6(j)2515 4497
+y Gc(x)2560 4483 y Ga(;)2600 4471 y F9(\()2628 4483 y
+Ga(y)2676 4471 y F9(\))2703 4483 y F6(j)p Ga(T)e F6(j)2819
+4497 y Gc(x)2863 4483 y F4(\))969 4595 y F6(\021)100
+b FL(Cut)o F4(\()1312 4583 y FX(h)1340 4595 y Ga(a)1388
+4583 y FX(i)1416 4595 y FL(Not)1558 4609 y Gc(R)1616
+4595 y F4(\()1651 4583 y F9(\()1679 4595 y Ga(x)1731
+4583 y F9(\))1758 4595 y F6(j)p FL(Cut)1862 4548 y FC( )1923
+4595 y F4(\()1958 4583 y FX(h)1986 4595 y Ga(a)2034 4583
+y FX(i)2062 4595 y Ga(S)5 b(;)2163 4583 y F9(\()2190
+4595 y Ga(y)2238 4583 y F9(\))2266 4595 y Ga(T)12 b F4(\))p
+F6(j)2391 4609 y Gc(x)2436 4595 y Ga(;)j(a)p F4(\))q
+Ga(;)2600 4583 y F9(\()2628 4595 y Ga(y)2676 4583 y F9(\))2703
+4595 y F6(j)p Ga(T)e F6(j)2819 4609 y Gc(x)2863 4595
+y F4(\))321 4834 y Gg(and)24 b(therefore)i(the)e Ga(x)p
+Gg(-normal)g(form)g(of)f(\(2\))h(and)g(\(3\))g(are)g(in)f
+Ga(S)5 b(N)2393 4848 y Gc(aux)2515 4834 y Gg(;)23 b(so)h(we)e(are)i
+(done.)p 3480 4834 V 3484 4776 55 4 v 3484 4834 V 3538
+4834 4 62 v Black 321 5046 a Gb(Pr)n(oof)34 b(of)f(Lemma)f(2.6.20.)p
+Black 34 w Gg(F)o(or)g(e)n(v)o(ery)h(reduction)j(we)c(ha)n(v)o(e)h(to)g
+(do)g(check)h(whether)g(the)f(corre-)321 5159 y(sponding)27
+b(terms)e(are)g(ordered)h(decreasingly)i(according)g(to)c(de\002nition)
+i(of)f Ga(>)2843 5126 y Gc(r)r(po)2950 5159 y Gg(.)31
+b(Since)25 b(there)g(are)321 5272 y(man)o(y)19 b(cases,)i(we)e(shall)h
+(present)h(only)f(a)f(fe)n(w)f(representati)n(v)o(e)23
+b(of)c(them.)27 b(W)-7 b(e)19 b(write)g(rpo)h(as)f(shorthand)321
+5385 y(for)24 b(De\002nition)g(2.6.12.)p Black Black
+eop end
+%%Page: 153 165
+TeXDict begin 153 164 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(153)p 277 88 3691 4 v Black Black
+277 388 a(Inner)23 b(Reduction:)p Black 46 w Gg(W)-7
+b(e)22 b(gi)n(v)o(e)i(one)g(case.)504 533 y Ga(M)36 b
+F6(\021)25 b FL(Cut)p F4(\()897 521 y FX(h)924 533 y
+Ga(a)972 521 y FX(i)1000 533 y Ga(S)5 b(;)1101 521 y
+F9(\()1129 533 y Ga(x)1181 521 y F9(\))1208 533 y Ga(T)13
+b F4(\))1376 496 y Gc(l)q(oc)1334 533 y F6(\000)-31 b(\000)g(!)25
+b FL(Cut)p F4(\()1703 521 y FX(h)1731 533 y Ga(a)1779
+521 y FX(i)1806 533 y Ga(S)1867 500 y FX(0)1890 533 y
+Ga(;)1930 521 y F9(\()1958 533 y Ga(x)2010 521 y F9(\))2038
+533 y Ga(T)12 b F4(\))26 b F6(\021)f Ga(N)504 646 y Gg(\(1\))101
+b Ga(S)838 608 y Gc(l)q(oc)796 646 y F6(\000)-31 b(\000)g(!)25
+b Ga(S)1053 613 y FX(0)1099 646 y Gg(and)f Ga(S)p 1253
+661 61 4 v 30 w(>)1410 613 y Gc(r)r(po)1543 646 y Ga(S)1604
+613 y FX(0)p 1543 661 85 4 v 2454 646 a Gg(by)g(assumption)i(and)e
+(induction)504 758 y(\(2\))101 b Ga(M)p 710 773 99 4
+v 35 w F4(=)25 b Ga(S)p 929 773 61 4 v 26 w F6(\001)1036
+772 y Gc(m)1123 758 y Ga(T)p 1123 773 66 4 v 60 w Gg(and)50
+b Ga(N)p 1416 773 83 4 v 35 w F4(=)25 b Ga(S)1681 725
+y FX(0)p 1620 773 85 4 v 1724 758 a F6(\001)1749 772
+y Gc(n)1817 758 y Ga(T)p 1817 773 66 4 v 900 w Gg(by)e(De\002nition)i
+(2.6.17)504 871 y(\(3\))101 b Ga(m)25 b F6(\025)g Ga(n)1809
+b Gg(by)24 b(Lemma)e(2.6.19\(i\))504 984 y(\(4\))101
+b Ga(S)p 710 999 61 4 v 25 w F6(\001)816 998 y Gc(m)903
+984 y Ga(T)p 903 999 66 4 v 38 w(>)1065 951 y Gc(r)r(po)1198
+984 y Ga(S)1259 951 y FX(0)p 1198 999 85 4 v 1330 984
+a Gg(and)49 b Ga(S)p 1509 999 61 4 v 25 w F6(\001)1615
+998 y Gc(m)1703 984 y Ga(T)p 1703 999 66 4 v 38 w(>)1865
+951 y Gc(r)r(po)1997 984 y Ga(T)p 1997 999 V 849 w Gg(by)23
+b(\(1\))h(and)g(rpo\(i\))504 1097 y(\(5\))101 b F6(f)-24
+b(j)p Ga(S)p 756 1112 61 4 v 6 w(;)15 b(T)p 858 1112
+66 4 v 13 w F6(j)-24 b(g)27 b Ga(>)1068 1053 y Gc(r)r(po)1068
+1127 y(mul)q(t)1247 1097 y F6(f)-24 b(j)p Ga(S)1354 1064
+y FX(0)p 1293 1112 85 4 v 1379 1097 a Ga(;)15 b(T)p 1419
+1112 66 4 v 13 w F6(j)-24 b(g)1368 b Gg(by)23 b(\(1\))h(and)g(rpo\(i\))
+504 1210 y(\(6\))101 b Ga(M)p 710 1225 99 4 v 35 w(>)904
+1177 y Gc(r)r(po)1037 1210 y Ga(N)p 1037 1225 83 4 v
+1180 w Gg(if)23 b Ga(m)i F4(=)g Ga(n)p Gg(,)d(then)i(by)g(\(5\))g(and)g
+(rpo\(iii\))2315 1323 y(if)f Ga(m)i(>)g(n)p Gg(,)d(then)j(by)e(\(4\))h
+(and)g(rpo\(ii\))p Black 277 1503 a Gb(Labelled)f(Cut)f(Reduction:)p
+Black 46 w Gg(W)-7 b(e)23 b(gi)n(v)o(e)g(\002)n(v)o(e)g(typical)i
+(cases.)504 1655 y Ga(M)36 b F6(\021)22 b FL(Cut)800
+1608 y FC( )861 1655 y F4(\()896 1643 y FX(h)924 1655
+y Ga(c)963 1643 y FX(i)990 1655 y FL(And)1145 1669 y
+Gc(R)1203 1655 y F4(\()1238 1643 y FX(h)1266 1655 y Ga(a)1314
+1643 y FX(i)1341 1655 y Ga(S)5 b(;)1442 1643 y FX(h)1470
+1655 y Ga(b)1509 1643 y FX(i)1536 1655 y Ga(T)13 b(;)i(c)p
+F4(\))q Ga(;)1757 1643 y F9(\()1785 1655 y Ga(x)1837
+1643 y F9(\))1864 1655 y Ga(U)10 b F4(\))782 1742 y Gc(x)717
+1779 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o F4(\()1085
+1767 y FX(h)1113 1779 y Ga(c)1152 1767 y FX(i)1180 1779
+y FL(And)1335 1793 y Gc(R)1392 1779 y F4(\()1427 1767
+y FX(h)1455 1779 y Ga(a)1503 1767 y FX(i)1531 1779 y
+FL(Cut)1609 1732 y FC( )1670 1779 y F4(\()1705 1767 y
+FX(h)1733 1779 y Ga(c)1772 1767 y FX(i)1800 1779 y Ga(S)5
+b(;)1901 1767 y F9(\()1929 1779 y Ga(x)1981 1767 y F9(\))2008
+1779 y Ga(U)10 b F4(\))p Ga(;)2155 1767 y FX(h)2183 1779
+y Ga(b)2222 1767 y FX(i)2250 1779 y FL(Cut)2329 1732
+y FC( )2389 1779 y F4(\()2424 1767 y FX(h)2452 1779 y
+Ga(c)2491 1767 y FX(i)2519 1779 y Ga(T)j(;)2625 1767
+y F9(\()2653 1779 y Ga(x)2705 1767 y F9(\))2732 1779
+y Ga(U)d F4(\))p Ga(;)15 b(c)p F4(\))q Ga(;)2994 1767
+y F9(\()3022 1779 y Ga(x)3074 1767 y F9(\))3102 1779
+y Ga(U)10 b F4(\))25 b F6(\021)g Ga(N)504 1903 y Gg(\(1\))146
+b Ga(M)p 755 1918 99 4 v 36 w F4(=)25 b FB(L)p Ga(S)p
+1010 1918 61 4 v 5 w(;)15 b(T)p 1111 1918 66 4 v 13 w
+FB(M)g F6(h)p Ga(U)p 1262 1918 72 4 v 11 w F6(i)1370
+1917 y Gc(m)1485 1903 y Gg(and)49 b Ga(N)p 1664 1918
+83 4 v 36 w F4(=)24 b FB(L)p Ga(S)p 1903 1918 61 4 v
+6 w F6(h)p Ga(U)p 2000 1918 72 4 v 10 w F6(i)2107 1917
+y Gc(r)2145 1903 y Ga(;)15 b(T)p 2185 1918 66 4 v 14
+w F6(h)p Ga(U)p 2287 1918 72 4 v 10 w F6(i)2394 1917
+y Gc(s)2431 1903 y FB(M)21 b F6(\001)2512 1917 y Gc(t)2562
+1903 y Ga(U)p 2562 1918 V 146 w Gg(by)i(De\002nition)i(2.6.17)504
+2027 y(\(2\))146 b Ga(m)26 b F6(\025)f Ga(t;)15 b(r)m(;)g(s)1551
+b Gg(by)23 b(Lemma)g(2.6.19\(i,ii\))504 2152 y(\(3\))p
+758 2152 28 4 v 775 2152 V 793 2152 V 211 w F6(h)p 857
+2152 V 875 2152 V 893 2152 V 65 w(i)955 2166 y Gc(m)1047
+2152 y F6(\035)p 1165 2152 V 1183 2152 V 1201 2152 V
+110 w(\001)1273 2166 y Gc(t)p 1325 2152 V 1343 2152 V
+1360 2152 V 2487 2152 a Gg(by)h(\(2\))f(and)h(De\002nition)h(2.6.14)504
+2276 y(\(4\))146 b FB(L)p Ga(S)p 790 2291 61 4 v 6 w(;)15
+b(T)p 892 2291 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1028
+2291 72 4 v 11 w F6(i)1136 2290 y Gc(m)1228 2276 y Ga(>)1299
+2243 y Gc(r)r(po)1431 2276 y Ga(S)p 1431 2291 61 4 v
+53 w Gg(and)50 b FB(L)p Ga(S)p 1755 2291 V 5 w(;)15 b(T)p
+1856 2291 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1992 2291
+72 4 v 11 w F6(i)2100 2290 y Gc(m)2192 2276 y Ga(>)2263
+2243 y Gc(r)r(po)2396 2276 y Ga(U)p 2396 2291 V 724 w
+Gg(by)23 b(rpo\(i\))504 2400 y(\(5\))146 b F6(f)-24 b(j)p
+FB(L)p Ga(S)p 836 2415 61 4 v 7 w(;)15 b(T)p 939 2415
+66 4 v 13 w FB(M)p Ga(;)g(U)p 1080 2415 72 4 v 11 w F6(j)-24
+b(g)26 b Ga(>)1296 2356 y Gc(r)r(po)1296 2429 y(mul)q(t)1476
+2400 y F6(f)-24 b(j)p Ga(S)p 1522 2415 61 4 v 6 w(;)15
+b(U)p 1624 2415 72 4 v 10 w F6(j)-24 b(g)1440 b Gg(by)23
+b(rpo\(i\))504 2524 y(\(6\))146 b FB(L)p Ga(S)p 790 2539
+61 4 v 6 w(;)15 b(T)p 892 2539 66 4 v 13 w FB(M)p F6(h)p
+Ga(U)p 1028 2539 72 4 v 11 w F6(i)1136 2538 y Gc(m)1228
+2524 y Ga(>)1299 2491 y Gc(r)r(po)1431 2524 y Ga(S)p
+1431 2539 61 4 v 5 w F6(h)p Ga(U)p 1527 2539 72 4 v 11
+w F6(i)1635 2538 y Gc(r)2301 2524 y Gg(if)23 b Ga(m)i
+F4(=)g Ga(r)s Gg(,)d(then)i(by)g(\(5\))g(and)g(rpo\(iii\))2326
+2648 y(if)f Ga(m)i(>)g(r)s Gg(,)d(then)j(by)e(\(4\))h(and)g(rpo\(ii\))
+504 2773 y(\(7\))146 b FB(L)p Ga(S)p 790 2788 61 4 v
+6 w(;)15 b(T)p 892 2788 66 4 v 13 w FB(M)p F6(h)p Ga(U)p
+1028 2788 72 4 v 11 w F6(i)1136 2787 y Gc(m)1228 2773
+y Ga(>)1299 2740 y Gc(r)r(po)1431 2773 y Ga(T)p 1431
+2788 66 4 v 13 w F6(h)p Ga(U)p 1532 2788 72 4 v 10 w
+F6(i)1639 2787 y Gc(s)2775 2773 y Gg(analogous)26 b(to)e(\(4,5,6\))504
+2897 y(\(8\))146 b FB(L)p Ga(S)p 790 2912 61 4 v 6 w(;)15
+b(T)p 892 2912 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1028
+2912 72 4 v 11 w F6(i)1136 2911 y Gc(m)1228 2897 y Ga(>)1299
+2864 y Gc(r)r(po)1431 2897 y FB(L)p Ga(S)p 1466 2912
+61 4 v 6 w F6(h)p Ga(U)p 1563 2912 72 4 v 10 w F6(i)1670
+2911 y Gc(r)1708 2897 y Ga(;)g(T)p 1748 2912 66 4 v 14
+w F6(h)p Ga(U)p 1850 2912 72 4 v 10 w F6(i)1957 2911
+y Gc(s)1994 2897 y FB(M)776 b Gg(by)24 b(\(6,7\))g(and)g(rpo\(ii\))504
+3021 y(\(9\))146 b FB(L)p Ga(S)p 790 3036 61 4 v 6 w(;)15
+b(T)p 892 3036 66 4 v 13 w FB(M)p F6(h)p Ga(U)p 1028
+3036 72 4 v 11 w F6(i)1136 3035 y Gc(m)1228 3021 y Ga(>)1299
+2988 y Gc(r)r(po)1431 3021 y Ga(U)p 1431 3036 V 1689
+w Gg(by)23 b(rpo\(i\))504 3145 y(\(10\))101 b Ga(M)p
+755 3160 99 4 v 36 w(>)950 3112 y Gc(r)r(po)1082 3145
+y Ga(N)p 1082 3160 83 4 v 1582 w Gg(by)24 b(\(3,8,9\))g(and)g
+(rpo\(ii\))504 3386 y Ga(M)36 b F6(\021)25 b FL(Cut)803
+3339 y FC( )863 3386 y F4(\()898 3374 y FX(h)926 3386
+y Ga(d)973 3374 y FX(i)1001 3386 y FL(And)1156 3400 y
+Gc(R)1213 3386 y F4(\()1248 3374 y FX(h)1276 3386 y Ga(a)1324
+3374 y FX(i)1352 3386 y Ga(S)5 b(;)1453 3374 y FX(h)1480
+3386 y Ga(b)1519 3374 y FX(i)1547 3386 y Ga(T)13 b(;)i(c)p
+F4(\))q Ga(;)1768 3374 y F9(\()1796 3386 y Ga(x)1848
+3374 y F9(\))1875 3386 y Ga(U)10 b F4(\))782 3473 y Gc(x)717
+3510 y F6(\000)-31 b(\000)f(!)26 b FL(And)1067 3524 y
+Gc(R)1125 3510 y F4(\()1160 3498 y FX(h)1188 3510 y Ga(a)1236
+3498 y FX(i)1263 3510 y FL(Cut)1342 3463 y FC( )1403
+3510 y F4(\()1438 3498 y FX(h)1466 3510 y Ga(d)1513 3498
+y FX(i)1540 3510 y Ga(S)5 b(;)1641 3498 y F9(\()1669
+3510 y Ga(x)1721 3498 y F9(\))1749 3510 y Ga(U)10 b F4(\))p
+Ga(;)1896 3498 y FX(h)1924 3510 y Ga(b)1963 3498 y FX(i)1990
+3510 y FL(Cut)2069 3463 y FC( )2130 3510 y F4(\()2165
+3498 y FX(h)2193 3510 y Ga(d)2240 3498 y FX(i)2267 3510
+y Ga(T)j(;)2373 3498 y F9(\()2401 3510 y Ga(x)2453 3498
+y F9(\))2480 3510 y Ga(U)d F4(\))q Ga(;)15 b(c)p F4(\))26
+b F6(\021)f Ga(N)504 3634 y Gg(\(1\))101 b Ga(M)p 710
+3649 99 4 v 35 w F4(=)25 b FB(L)p Ga(S)p 964 3649 61
+4 v 6 w(;)15 b(T)p 1066 3649 66 4 v 13 w FB(M)g F6(h)p
+Ga(U)p 1217 3649 72 4 v 11 w F6(i)1325 3648 y Gc(m)1440
+3634 y Gg(and)49 b Ga(N)p 1619 3649 83 4 v 35 w F4(=)25
+b FB(L)p Ga(S)p 1858 3649 61 4 v 5 w F6(h)p Ga(U)p 1954
+3649 72 4 v 11 w F6(i)2062 3648 y Gc(r)2100 3634 y Ga(;)15
+b(T)p 2140 3649 66 4 v 13 w F6(h)p Ga(U)p 2241 3649 72
+4 v 10 w F6(i)2348 3648 y Gc(s)2386 3634 y FB(M)349 b
+Gg(by)23 b(De\002nition)i(2.6.17)504 3759 y(\(2\))101
+b Ga(m)25 b F6(\025)g Ga(r)m(;)15 b(s)1670 b Gg(by)23
+b(Lemma)g(2.6.19\(i,ii\))504 3883 y(\(3\))101 b FB(L)p
+Ga(S)p 745 3898 61 4 v 5 w(;)15 b(T)p 846 3898 66 4 v
+14 w FB(M)p F6(h)p Ga(U)p 983 3898 72 4 v 10 w F6(i)1090
+3897 y Gc(m)1182 3883 y Ga(>)1253 3850 y Gc(r)r(po)1386
+3883 y Ga(S)p 1386 3898 61 4 v 53 w Gg(and)49 b FB(L)p
+Ga(S)p 1709 3898 V 5 w(;)15 b(T)p 1810 3898 66 4 v 14
+w FB(M)p F6(h)p Ga(U)p 1947 3898 72 4 v 10 w F6(i)2054
+3897 y Gc(m)2147 3883 y Ga(>)2218 3850 y Gc(r)r(po)2350
+3883 y Ga(U)p 2350 3898 V 770 w Gg(by)23 b(rpo\(i\))504
+4007 y(\(4\))101 b F6(f)-24 b(j)p FB(L)p Ga(S)p 791 4022
+61 4 v 6 w(;)15 b(T)p 893 4022 66 4 v 14 w FB(M)p Ga(;)g(U)p
+1035 4022 72 4 v 10 w F6(j)-24 b(g)27 b Ga(>)1251 3963
+y Gc(r)r(po)1251 4036 y(mul)q(t)1430 4007 y F6(f)-24
+b(j)p Ga(S)p 1476 4022 61 4 v 6 w(;)15 b(U)p 1578 4022
+72 4 v 11 w F6(j)-24 b(g)1485 b Gg(by)23 b(rpo\(i\))504
+4131 y(\(5\))101 b FB(L)p Ga(S)p 745 4146 61 4 v 5 w(;)15
+b(T)p 846 4146 66 4 v 14 w FB(M)p F6(h)p Ga(U)p 983 4146
+72 4 v 10 w F6(i)1090 4145 y Gc(m)1182 4131 y Ga(>)1253
+4098 y Gc(r)r(po)1386 4131 y Ga(S)p 1386 4146 61 4 v
+5 w F6(h)p Ga(U)p 1482 4146 72 4 v 10 w F6(i)1589 4145
+y Gc(r)2301 4131 y Gg(if)23 b Ga(m)i F4(=)g Ga(r)s Gg(,)d(then)i(by)g
+(\(4\))g(and)g(rpo\(iii\))2326 4255 y(if)f Ga(m)i(>)g(r)s
+Gg(,)d(then)j(by)e(\(3\))h(and)g(rpo\(ii\))504 4380 y(\(6\))101
+b FB(L)p Ga(S)p 745 4395 61 4 v 5 w(;)15 b(T)p 846 4395
+66 4 v 14 w FB(M)p F6(h)p Ga(U)p 983 4395 72 4 v 10 w
+F6(i)1090 4394 y Gc(m)1182 4380 y Ga(>)1253 4347 y Gc(r)r(po)1386
+4380 y Ga(T)p 1386 4395 66 4 v 13 w F6(h)p Ga(U)p 1487
+4395 72 4 v 10 w F6(i)1594 4394 y Gc(s)2775 4380 y Gg(analogous)26
+b(to)e(\(3,4,5\))504 4504 y(\(7\))101 b Ga(M)p 710 4519
+99 4 v 35 w(>)904 4471 y Gc(r)r(po)1037 4504 y Ga(N)p
+1037 4519 83 4 v 1695 w Gg(by)24 b(\(5,6\))g(and)g(rpo\(ii\))504
+4745 y Ga(M)36 b F6(\021)25 b FL(Cut)803 4697 y FC( )863
+4745 y F4(\()898 4733 y FX(h)926 4745 y Ga(a)974 4733
+y FX(i)1002 4745 y FL(Cut)p F4(\()1175 4733 y FX(h)1202
+4745 y Ga(b)1241 4733 y FX(i)1269 4745 y Ga(S)5 b(;)1370
+4733 y F9(\()1398 4745 y Ga(x)1450 4733 y F9(\))1477
+4745 y Ga(T)13 b F4(\))p Ga(;)1618 4733 y F9(\()1646
+4745 y Ga(y)1694 4733 y F9(\))1721 4745 y Ga(U)d F4(\))782
+4832 y Gc(x)717 4869 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o
+F4(\()1085 4857 y FX(h)1113 4869 y Ga(b)1152 4857 y FX(i)1180
+4869 y FL(Cut)1258 4821 y FC( )1319 4869 y F4(\()1354
+4857 y FX(h)1382 4869 y Ga(a)1430 4857 y FX(i)1458 4869
+y Ga(S)5 b(;)1559 4857 y F9(\()1586 4869 y Ga(y)1634
+4857 y F9(\))1662 4869 y Ga(U)10 b F4(\))p Ga(;)1809
+4857 y F9(\()1837 4869 y Ga(x)1889 4857 y F9(\))1916
+4869 y FL(Cut)1995 4821 y FC( )2056 4869 y F4(\()2091
+4857 y FX(h)2119 4869 y Ga(a)2167 4857 y FX(i)2194 4869
+y Ga(T)j(;)2300 4857 y F9(\()2328 4869 y Ga(y)2376 4857
+y F9(\))2403 4869 y Ga(U)d F4(\))q(\))25 b F6(\021)g
+Ga(N)504 4993 y Gg(\(1\))101 b Ga(M)p 710 5008 99 4 v
+35 w F4(=)25 b(\()p Ga(S)p 964 5008 61 4 v 26 w F6(\001)1071
+5007 y Gc(m)1158 4993 y Ga(T)p 1158 5008 66 4 v 13 w
+F4(\))p F6(h)p Ga(U)p 1294 5008 72 4 v 10 w F6(i)1401
+5007 y Gc(n)1497 4993 y Gg(and)49 b Ga(N)p 1676 5008
+83 4 v 35 w F4(=)25 b Ga(S)p 1880 5008 61 4 v 5 w F6(h)p
+Ga(U)p 1976 5008 72 4 v 10 w F6(i)2083 5007 y Gc(r)2142
+4993 y F6(\001)2167 5007 y Gc(s)2224 4993 y Ga(T)p 2224
+5008 66 4 v 13 w F6(h)p Ga(U)p 2325 5008 72 4 v 10 w
+F6(i)2432 5007 y Gc(t)2770 4993 y Gg(by)e(De\002nition)i(2.6.17)504
+5117 y(\(2\))101 b Ga(n)25 b F6(\025)g Ga(s;)15 b(r)m(;)g(t)1622
+b Gg(by)23 b(Lemma)g(2.6.19\(i,ii\))504 5241 y(\(3\))p
+712 5241 28 4 v 730 5241 V 747 5241 V 166 w F6(h)p 812
+5241 V 830 5241 V 847 5241 V 64 w(i)909 5255 y Gc(n)982
+5241 y F6(\035)p 1100 5241 V 1118 5241 V 1135 5241 V
+110 w(\001)1208 5255 y Gc(s)p 1267 5241 V 1285 5241 V
+1302 5241 V 2487 5241 a Gg(by)h(\(2\))f(and)h(De\002nition)h(2.6.14)p
+Black Black eop end
+%%Page: 154 166
+TeXDict begin 154 165 bop Black -144 51 a Gb(154)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 549 384 a Gg(\(4\))100 b F4(\()p Ga(S)p 789
+399 61 4 v 26 w F6(\001)896 398 y Gc(m)983 384 y Ga(T)p
+983 399 66 4 v 13 w F4(\))p F6(h)p Ga(U)p 1119 399 72
+4 v 10 w F6(i)1226 398 y Gc(n)1299 384 y Ga(>)1370 351
+y Gc(r)r(po)1502 384 y Ga(S)p 1502 399 61 4 v 53 w Gg(and)50
+b F4(\()p Ga(S)p 1826 399 V 25 w F6(\001)1932 398 y Gc(m)2019
+384 y Ga(T)p 2019 399 66 4 v 13 w F4(\))p F6(h)p Ga(U)p
+2155 399 72 4 v 11 w F6(i)2263 398 y Gc(n)2335 384 y
+Ga(>)2406 351 y Gc(r)r(po)2539 384 y Ga(U)p 2539 399
+V 625 w Gg(by)23 b(rpo\(i\))549 508 y(\(5\))100 b F6(f)-24
+b(j)p F4(\()p Ga(S)p 835 523 61 4 v 27 w F6(\001)943
+522 y Gc(m)1030 508 y Ga(T)p 1030 523 66 4 v 13 w F4(\))p
+Ga(;)15 b(U)p 1171 523 72 4 v 10 w F6(j)-24 b(g)27 b
+Ga(>)1387 464 y Gc(r)r(po)1387 537 y(mul)q(t)1566 508
+y F6(f)-24 b(j)p Ga(S)p 1612 523 61 4 v 6 w(;)15 b(U)p
+1714 523 72 4 v 11 w F6(j)-24 b(g)1393 b Gg(by)23 b(rpo\(i\))549
+632 y(\(6\))100 b F4(\()p Ga(S)p 789 647 61 4 v 26 w
+F6(\001)896 646 y Gc(m)983 632 y Ga(T)p 983 647 66 4
+v 13 w F4(\))p F6(h)p Ga(U)p 1119 647 72 4 v 10 w F6(i)1226
+646 y Gc(n)1299 632 y Ga(>)1370 599 y Gc(r)r(po)1502
+632 y Ga(S)p 1502 647 61 4 v 5 w F6(h)p Ga(U)p 1598 647
+72 4 v 11 w F6(i)1706 646 y Gc(r)2370 632 y Gg(if)23
+b Ga(n)i F4(=)g Ga(r)s Gg(,)d(then)i(by)g(\(5\))g(and)g(rpo\(iii\))2395
+756 y(if)g Ga(n)g(>)h(r)s Gg(,)d(then)j(by)e(\(4\))h(and)g(rpo\(ii\))
+549 881 y(\(7\))100 b F4(\()p Ga(S)p 789 896 61 4 v 26
+w F6(\001)896 895 y Gc(m)983 881 y Ga(T)p 983 896 66
+4 v 13 w F4(\))p F6(h)p Ga(U)p 1119 896 72 4 v 10 w F6(i)1226
+895 y Gc(n)1299 881 y Ga(>)1370 848 y Gc(r)r(po)1502
+881 y Ga(T)p 1502 896 66 4 v 13 w F6(h)p Ga(U)p 1603
+896 72 4 v 10 w F6(i)1710 895 y Gc(t)2819 881 y Gg(analogous)27
+b(to)c(\(4,5,6\))549 1005 y(\(8\))100 b Ga(M)p 754 1020
+99 4 v 36 w(>)949 972 y Gc(r)r(po)1081 1005 y Ga(N)p
+1081 1020 83 4 v 1627 w Gg(by)24 b(\(3,6,7\))g(and)g(rpo\(ii\))549
+1294 y Ga(M)35 b F6(\021)25 b FL(Cut)847 1247 y FC( )908
+1294 y F4(\()943 1282 y FX(h)970 1294 y Ga(a)1018 1282
+y FX(i)1046 1294 y FL(Cut)p F4(\()1219 1282 y FX(h)1247
+1294 y Ga(b)1286 1282 y FX(i)1313 1294 y Ga(S)5 b(;)1414
+1282 y F9(\()1442 1294 y Ga(x)1494 1282 y F9(\))1521
+1294 y FL(Ax)p F4(\()p Ga(x;)15 b(a)p F4(\))q(\))p Ga(;)1910
+1282 y F9(\()1938 1294 y Ga(y)1986 1282 y F9(\))2013
+1294 y Ga(U)10 b F4(\))826 1381 y Gc(x)761 1418 y F6(\000)-31
+b(\000)g(!)25 b FL(Cut)p F4(\()1130 1406 y FX(h)1157
+1418 y Ga(b)1196 1406 y FX(i)1224 1418 y FL(Cut)1303
+1371 y FC( )1364 1418 y F4(\()1399 1406 y FX(h)1426 1418
+y Ga(a)1474 1406 y FX(i)1502 1418 y Ga(S)5 b(;)1603 1406
+y F9(\()1631 1418 y Ga(y)1679 1406 y F9(\))1706 1418
+y Ga(U)10 b F4(\))p Ga(;)1853 1406 y F9(\()1881 1418
+y Ga(y)1929 1406 y F9(\))1956 1418 y Ga(U)g F4(\))26
+b F6(\021)f Ga(N)549 1543 y Gg(\(1\))100 b Ga(M)p 754
+1558 99 4 v 36 w F4(=)25 b(\()p Ga(S)p 1009 1558 61 4
+v 25 w F6(\001)1115 1557 y Gc(m)1202 1543 y Ga(?)p F4(\))p
+F6(h)p Ga(U)p 1317 1558 72 4 v 11 w F6(i)1425 1557 y
+Gc(n)1521 1543 y Gg(and)49 b Ga(N)p 1700 1558 83 4 v
+35 w F4(=)25 b Ga(S)p 1904 1558 61 4 v 5 w F6(h)p Ga(U)p
+2000 1558 72 4 v 10 w F6(i)2107 1557 y Gc(r)2166 1543
+y F6(\001)2191 1557 y Gc(s)2248 1543 y Ga(U)p 2248 1558
+V 504 w Gg(by)f(De\002nition)g(2.6.17)549 1667 y(\(2\))100
+b Ga(n)25 b F6(\025)g Ga(s;)15 b(r)1692 b Gg(by)24 b(Lemma)e
+(2.6.19\(i,ii\))549 1791 y(\(3\))p 756 1791 28 4 v 774
+1791 V 791 1791 V 165 w F6(h)p 856 1791 V 874 1791 V
+891 1791 V 65 w(i)954 1805 y Gc(n)1026 1791 y F6(\035)p
+1144 1791 V 1162 1791 V 1180 1791 V 110 w(\001)1252 1805
+y Gc(s)p 1311 1791 V 1329 1791 V 1347 1791 V 2531 1791
+a Gg(by)i(\(2\))g(and)g(De\002nition)g(2.6.14)549 1915
+y(\(4\))100 b F4(\()p Ga(S)p 789 1930 61 4 v 26 w F6(\001)896
+1929 y Gc(m)983 1915 y Ga(?)p F4(\))p F6(h)p Ga(U)p 1098
+1930 72 4 v 11 w F6(i)1206 1929 y Gc(n)1278 1915 y Ga(>)1349
+1882 y Gc(r)r(po)1482 1915 y Ga(S)p 1482 1930 61 4 v
+53 w Gg(and)49 b F4(\()p Ga(S)p 1805 1930 V 26 w F6(\001)1912
+1929 y Gc(m)1999 1915 y Ga(?)p F4(\))p F6(h)p Ga(U)p
+2114 1930 72 4 v 11 w F6(i)2222 1929 y Gc(n)2295 1915
+y Ga(>)2366 1882 y Gc(r)r(po)2498 1915 y Ga(U)p 2498
+1930 V 666 w Gg(by)23 b(rpo\(i\))549 2040 y(\(5\))100
+b F6(f)-24 b(j)p F4(\()p Ga(S)p 835 2055 61 4 v 27 w
+F6(\001)943 2054 y Gc(m)1030 2040 y Ga(?)p F4(\))p Ga(;)15
+b(U)p 1150 2055 72 4 v 11 w F6(j)-24 b(g)26 b Ga(>)1366
+1995 y Gc(r)r(po)1366 2069 y(mul)q(t)1546 2040 y F6(f)-24
+b(j)p Ga(S)p 1592 2055 61 4 v 6 w(;)15 b(U)p 1694 2055
+72 4 v 11 w F6(j)-24 b(g)1413 b Gg(by)23 b(rpo\(i\))549
+2164 y(\(6\))100 b F4(\()p Ga(S)p 789 2179 61 4 v 26
+w F6(\001)896 2178 y Gc(m)983 2164 y Ga(?)p F4(\))p F6(h)p
+Ga(U)p 1098 2179 72 4 v 11 w F6(i)1206 2178 y Gc(n)1278
+2164 y Ga(>)1349 2131 y Gc(r)r(po)1482 2164 y Ga(S)p
+1482 2179 61 4 v 5 w F6(h)p Ga(U)p 1578 2179 72 4 v 10
+w F6(i)1685 2178 y Gc(r)2370 2164 y Gg(if)23 b Ga(n)i
+F4(=)g Ga(r)s Gg(,)d(then)i(by)g(\(5\))g(and)g(rpo\(iii\))2395
+2288 y(if)g Ga(n)g(>)h(r)s Gg(,)d(then)j(by)e(\(4\))h(and)g(rpo\(ii\))
+549 2412 y(\(7\))100 b Ga(M)p 754 2427 99 4 v 36 w(>)949
+2379 y Gc(r)r(po)1081 2412 y Ga(N)p 1081 2427 83 4 v
+1627 w Gg(by)24 b(\(3,4,6\))g(and)g(rpo\(ii\))549 2702
+y Ga(M)35 b F6(\021)25 b FL(Cut)847 2654 y FC( )908 2702
+y F4(\()943 2690 y FX(h)970 2702 y Ga(a)1018 2690 y FX(i)1046
+2702 y FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\))r Ga(;)1400
+2690 y F9(\()1427 2702 y Ga(y)1475 2690 y F9(\))1503
+2702 y Ga(S)5 b F4(\))1690 2664 y Gc(x)1624 2702 y F6(\000)-31
+b(\000)g(!)25 b FL(Cut)p F4(\()1993 2690 y FX(h)2020
+2702 y Ga(a)2068 2690 y FX(i)2096 2702 y FL(Ax)o F4(\()p
+Ga(x;)15 b(a)p F4(\))r Ga(;)2450 2690 y F9(\()2477 2702
+y Ga(y)2525 2690 y F9(\))2553 2702 y Ga(S)5 b F4(\))25
+b F6(\021)g Ga(N)549 2826 y Gg(\(1\))100 b Ga(M)p 754
+2841 99 4 v 36 w F4(=)25 b Ga(?)15 b F6(h)p Ga(S)p 1069
+2841 61 4 v 5 w F6(i)1165 2840 y Gc(m)1280 2826 y Gg(and)50
+b Ga(N)p 1460 2841 83 4 v 35 w F4(=)25 b Ga(?)20 b F6(\001)1754
+2840 y Gc(n)1822 2826 y Ga(S)p 1822 2841 61 4 v 936 w
+Gg(by)k(De\002nition)g(2.6.17)549 2950 y(\(2\))100 b
+Ga(m)25 b F6(\025)g Ga(n)1809 b Gg(by)24 b(Lemma)e(2.6.19\(i\))549
+3074 y(\(3\))p 756 3074 28 4 v 774 3074 V 791 3074 V
+165 w F6(h)p 856 3074 V 874 3074 V 891 3074 V 65 w(i)954
+3088 y Gc(m)1046 3074 y F6(\035)p 1164 3074 V 1182 3074
+V 1199 3074 V 110 w(\001)1272 3088 y Gc(n)p 1341 3074
+V 1359 3074 V 1376 3074 V 2531 3074 a Gg(by)i(\(2\))g(and)g
+(De\002nition)g(2.6.14)549 3198 y(\(4\))100 b Ga(?)15
+b F6(h)p Ga(S)p 849 3213 61 4 v 6 w F6(i)946 3212 y Gc(m)1038
+3198 y Ga(>)1109 3165 y Gc(r)r(po)1242 3198 y Ga(?)48
+b Gg(and)i Ga(?)15 b F6(h)p Ga(S)p 1610 3213 V 6 w F6(i)1707
+3212 y Gc(m)1799 3198 y Ga(>)1870 3165 y Gc(r)r(po)2002
+3198 y Ga(S)p 2002 3213 V 1168 w Gg(by)23 b(rpo\(i\))549
+3323 y(\(5\))100 b Ga(M)p 754 3338 99 4 v 36 w(>)949
+3290 y Gc(r)r(po)1081 3323 y Ga(N)p 1081 3338 83 4 v
+1696 w Gg(by)23 b(\(3,4\))h(and)g(rpo\(ii\))p Black 321
+3603 a Gb(Commuting)f(Reduction:)p Black 45 w Gg(One)h(case)g(is)f(as)h
+(follo)n(ws.)549 3803 y Ga(M)35 b F6(\021)25 b FL(Cut)p
+F4(\()941 3791 y FX(h)969 3803 y Ga(a)1017 3791 y FX(i)1044
+3803 y Ga(S)5 b(;)1145 3791 y F9(\()1173 3803 y Ga(x)1225
+3791 y F9(\))1252 3803 y Ga(T)13 b F4(\))1428 3766 y
+Gc(c)1459 3742 y FC(00)1379 3803 y F6(\000)-32 b(\000)h(!)25
+b FL(Cut)1653 3755 y FC( )1714 3803 y F4(\()1749 3791
+y FX(h)1777 3803 y Ga(a)1825 3791 y FX(i)1852 3803 y
+Ga(S)5 b(;)1953 3791 y F9(\()1981 3803 y Ga(x)2033 3791
+y F9(\))2060 3803 y Ga(T)13 b F4(\))26 b F6(\021)f Ga(N)549
+3927 y Gg(\(1\))100 b Ga(M)p 754 3942 99 4 v 36 w F4(=)25
+b Ga(S)p 974 3942 61 4 v 25 w F6(\001)1080 3941 y Gc(m)1167
+3927 y Ga(T)p 1167 3942 66 4 v 60 w Gg(and)50 b Ga(N)p
+1460 3942 83 4 v 35 w F4(=)25 b Ga(S)p 1664 3942 61 4
+v 5 w F6(h)p Ga(T)p 1760 3942 66 4 v 13 w F6(i)1861 3941
+y Gc(n)2814 3927 y Gg(by)f(De\002nition)g(2.6.17)549
+4051 y(\(2\))100 b Ga(m)25 b(>)g(n)1759 b Gg(by)23 b(Lemma)g
+(2.6.19\(iii\))549 4175 y(\(3\))p 756 4175 28 4 v 774
+4175 V 791 4175 V 185 w F6(\001)864 4189 y Gc(m)p 953
+4175 V 971 4175 V 988 4175 V 1041 4175 a F6(\035)p 1159
+4175 V 1177 4175 V 1194 4175 V 89 w(h)p 1258 4175 V 1277
+4175 V 1294 4175 V 65 w(i)1356 4189 y Gc(n)2531 4175
+y Gg(by)h(\(2\))g(and)g(De\002nition)g(2.6.14)549 4299
+y(\(4\))100 b Ga(S)p 754 4314 61 4 v 25 w F6(\001)860
+4313 y Gc(m)947 4299 y Ga(T)p 947 4314 66 4 v 38 w(>)1109
+4266 y Gc(r)r(po)1242 4299 y Ga(S)p 1242 4314 61 4 v
+53 w Gg(and)49 b Ga(S)p 1530 4314 V 25 w F6(\001)1636
+4313 y Gc(m)1723 4299 y Ga(T)p 1723 4314 66 4 v 38 w(>)1885
+4266 y Gc(r)r(po)2018 4299 y Ga(T)p 2018 4314 V 1155
+w Gg(by)23 b(rpo\(i\))549 4424 y(\(5\))100 b Ga(M)p 754
+4439 99 4 v 36 w(>)949 4391 y Gc(r)r(po)1081 4424 y Ga(N)p
+1081 4439 83 4 v 1696 w Gg(by)23 b(\(3,4\))h(and)g(rpo\(ii\))p
+Black 321 4704 a Gb(Logical)h(Reduction:)p Black 46 w
+Gg(W)-7 b(e)22 b(tackle)j(three)g(representati)n(v)o(e)i(cases.)549
+4905 y Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()941 4893
+y FX(h)969 4905 y Ga(a)1017 4893 y FX(i)1044 4905 y FL(Ax)p
+F4(\()p Ga(x;)15 b(a)p F4(\))q Ga(;)1398 4893 y F9(\()1426
+4905 y Ga(y)1474 4893 y F9(\))1501 4905 y Ga(S)5 b F4(\))1697
+4868 y Gc(l)1622 4905 y F6(\000)-31 b(\000)g(!)25 b Ga(S)5
+b F4([)p Ga(y)13 b F6(7!)d Ga(x)p F4(])26 b F6(\021)f
+Ga(N)549 5029 y Gg(\(1\))100 b Ga(M)p 754 5044 99 4 v
+36 w F4(=)25 b Ga(?)20 b F6(\001)1064 5043 y Gc(n)1132
+5029 y Ga(S)p 1132 5044 61 4 v 53 w Gg(and)49 b Ga(N)p
+1420 5044 83 4 v 35 w F4(=)25 b Ga(S)p 1624 5044 61 4
+v 1134 w Gg(by)f(De\002nition)g(2.6.17)549 5153 y(\(2\))100
+b Ga(M)p 754 5168 99 4 v 36 w(>)949 5120 y Gc(r)r(po)1081
+5153 y Ga(N)p 1081 5168 83 4 v 1764 w Gg(by)23 b(\(1\))h(and)g
+(rpo\(ii\))p Black Black eop end
+%%Page: 155 167
+TeXDict begin 155 166 bop Black 277 51 a Gb(B.1)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(2)2639 b(155)p 277 88 3691 4 v Black 504 384
+a Ga(M)36 b F6(\021)25 b FL(Cut)p F4(\()897 372 y FX(h)924
+384 y Ga(c)963 372 y FX(i)991 384 y FL(And)1146 398 y
+Gc(R)1203 384 y F4(\()1238 372 y FX(h)1266 384 y Ga(a)1314
+372 y FX(i)1342 384 y Ga(S)5 b(;)1443 372 y FX(h)1471
+384 y Ga(b)1510 372 y FX(i)1537 384 y Ga(T)13 b(;)i(c)p
+F4(\))q Ga(;)1758 372 y F9(\()1786 384 y Ga(y)1834 372
+y F9(\))1861 384 y FL(And)2016 347 y F9(1)2016 407 y
+Gc(L)2068 384 y F4(\()2103 372 y F9(\()2130 384 y Ga(x)2182
+372 y F9(\))2210 384 y Ga(U)10 b(;)15 b(y)s F4(\)\))2540
+347 y Gc(l)2466 384 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o
+F4(\()2834 372 y FX(h)2862 384 y Ga(a)2910 372 y FX(i)2938
+384 y Ga(S)5 b(;)3039 372 y F9(\()3067 384 y Ga(x)3119
+372 y F9(\))3146 384 y Ga(U)10 b F4(\))26 b F6(\021)f
+Ga(N)504 508 y Gg(\(1\))101 b Ga(M)p 710 523 99 4 v 35
+w F4(=)25 b FB(L)p Ga(S)p 964 523 61 4 v 6 w(;)15 b(T)p
+1066 523 66 4 v 13 w FB(M)20 b F6(\001)1212 522 y Gc(m)1299
+508 y FB(L)p Ga(U)p 1334 523 72 4 v 11 w FB(M)j Gg(and)h
+Ga(N)p 1619 523 83 4 v 35 w F4(=)h Ga(S)p 1823 523 61
+4 v 25 w F6(\001)1929 522 y Gc(n)1997 508 y Ga(U)p 1997
+523 72 4 v 711 w Gg(by)e(De\002nition)i(2.6.17)504 632
+y(\(2\))101 b Ga(m)25 b(>)g(n)1758 b Gg(by)24 b(Lemma)f(2.6.19\(iii\))
+504 756 y(\(3\))101 b FB(L)p Ga(S)p 745 771 61 4 v 5
+w(;)15 b(T)p 846 771 66 4 v 14 w FB(M)20 b F6(\001)993
+770 y Gc(m)1080 756 y FB(L)p Ga(U)p 1115 771 72 4 v 10
+w FB(M)26 b Ga(>)1319 723 y Gc(r)r(po)1452 756 y Ga(S)p
+1452 771 61 4 v 53 w Gg(,)47 b FB(L)p Ga(S)p 1666 771
+V 6 w(;)15 b(T)p 1768 771 66 4 v 13 w FB(M)20 b F6(\001)1914
+770 y Gc(m)2001 756 y FB(L)p Ga(U)p 2036 771 72 4 v 11
+w FB(M)25 b Ga(>)2240 723 y Gc(r)r(po)2373 756 y Ga(U)p
+2373 771 V 747 w Gg(by)e(rpo\(i\))504 881 y(\(4\))101
+b Ga(M)p 710 896 99 4 v 35 w(>)904 848 y Gc(r)r(po)1037
+881 y Ga(N)p 1037 896 83 4 v 1695 w Gg(by)24 b(\(2,3\))g(and)g
+(rpo\(ii\))504 1116 y Ga(M)36 b F6(\021)25 b FL(Cut)p
+F4(\()897 1104 y FX(h)924 1116 y Ga(b)963 1104 y FX(i)991
+1116 y FL(Imp)1135 1138 y Gc(R)1193 1116 y F4(\()1228
+1104 y F9(\()1256 1116 y Ga(x)1308 1104 y F9(\))p FX(h)1363
+1116 y Ga(a)1411 1104 y FX(i)1438 1116 y Ga(S)5 b(;)15
+b(b)p F4(\))q Ga(;)1654 1104 y F9(\()1682 1116 y Ga(z)1728
+1104 y F9(\))1755 1116 y FL(Imp)1900 1138 y Gc(L)1952
+1116 y F4(\()1987 1104 y FX(h)2015 1116 y Ga(c)2054 1104
+y FX(i)2082 1116 y Ga(T)d(;)2187 1104 y F9(\()2215 1116
+y Ga(y)2263 1104 y F9(\))2291 1116 y Ga(U)e(;)15 b(z)t
+F4(\))q(\))791 1203 y Gc(l)717 1240 y F6(\000)-31 b(\000)f(!)26
+b FL(Cut)o F4(\()1085 1228 y FX(h)1113 1240 y Ga(a)1161
+1228 y FX(i)1189 1240 y FL(Cut)p F4(\()1362 1228 y FX(h)1389
+1240 y Ga(c)1428 1228 y FX(i)1456 1240 y Ga(T)13 b(;)1562
+1228 y F9(\()1590 1240 y Ga(x)1642 1228 y F9(\))1669
+1240 y Ga(S)5 b F4(\))p Ga(;)1805 1228 y F9(\()1833 1240
+y Ga(y)1881 1228 y F9(\))1909 1240 y Ga(U)10 b F4(\))25
+b F6(\021)g Ga(N)504 1364 y Gg(\(1\))101 b Ga(M)p 710
+1379 99 4 v 35 w F4(=)25 b FB(L)p Ga(S)p 964 1379 61
+4 v 6 w FB(M)20 b F6(\001)1106 1378 y Gc(m)1193 1364
+y FB(L)p Ga(T)p 1228 1379 66 4 v 13 w(;)15 b(U)p 1334
+1379 72 4 v 11 w FB(M)23 b Gg(and)h Ga(N)p 1619 1379
+83 4 v 35 w F4(=)h(\()p Ga(T)p 1858 1379 66 4 v 33 w
+F6(\001)1969 1378 y Gc(s)2027 1364 y Ga(S)p 2027 1379
+61 4 v 5 w F4(\))20 b F6(\001)2168 1378 y Gc(t)2218 1364
+y Ga(U)p 2218 1379 72 4 v 490 w Gg(by)j(De\002nition)i(2.6.17)504
+1488 y(\(2\))101 b Ga(m)25 b(>)g(s;)15 b(t)1624 b Gg(by)24
+b(Lemma)e(2.6.19\(iii,ii\))504 1613 y(\(3\))101 b FB(L)p
+Ga(S)p 745 1628 61 4 v 5 w FB(M)21 b F6(\001)887 1627
+y Gc(m)974 1613 y FB(L)p Ga(T)p 1009 1628 66 4 v 13 w(;)15
+b(U)p 1115 1628 72 4 v 10 w FB(M)26 b Ga(>)1319 1580
+y Gc(r)r(po)1452 1613 y Ga(S)p 1452 1628 61 4 v 53 w
+Gg(,)47 b FB(L)p Ga(S)p 1666 1628 V 6 w FB(M)20 b F6(\001)1808
+1627 y Gc(m)1895 1613 y FB(L)p Ga(T)p 1930 1628 66 4
+v 13 w(;)15 b(U)p 2036 1628 72 4 v 11 w FB(M)25 b Ga(>)2240
+1580 y Gc(r)r(po)2373 1613 y Ga(T)p 2373 1628 66 4 v
+756 w Gg(by)e(rpo\(i\))504 1737 y(\(4\))101 b FB(L)p
+Ga(S)p 745 1752 61 4 v 5 w FB(M)21 b F6(\001)887 1751
+y Gc(m)974 1737 y FB(L)p Ga(T)p 1009 1752 66 4 v 13 w(;)15
+b(U)p 1115 1752 72 4 v 10 w FB(M)26 b Ga(>)1319 1704
+y Gc(r)r(po)1452 1737 y Ga(T)p 1452 1752 66 4 v 33 w
+F6(\001)1563 1751 y Gc(s)1620 1737 y Ga(S)p 1620 1752
+61 4 v 1129 w Gg(by)e(\(2,3\))g(and)g(rpo\(ii\))504 1861
+y(\(5\))101 b FB(L)p Ga(S)p 745 1876 V 5 w FB(M)21 b
+F6(\001)887 1875 y Gc(m)974 1861 y FB(L)p Ga(T)p 1009
+1876 66 4 v 13 w(;)15 b(U)p 1115 1876 72 4 v 10 w FB(M)26
+b Ga(>)1319 1828 y Gc(r)r(po)1452 1861 y Ga(U)p 1452
+1876 V 1170 w Gg(by)e(De\002nition)g(2.6.12\(i\))504
+1985 y(\(6\))101 b Ga(M)p 710 2000 99 4 v 35 w(>)904
+1952 y Gc(r)r(po)1037 1985 y Ga(N)p 1037 2000 83 4 v
+1627 w Gg(by)24 b(\(2,4,5\))g(and)g(rpo\(ii\))p Black
+277 2157 a Gb(Garbage)g(Reduction:)p Black 46 w Gg(Finally)-6
+b(,)23 b(we)e(gi)n(v)o(e)h(one)h(case)g(where)f(a)g(garbage)h
+(reduction)i(is)d(performed.)504 2303 y Ga(M)36 b F6(\021)25
+b FL(Cut)803 2256 y FC( )863 2303 y F4(\()898 2291 y
+FX(h)926 2303 y Ga(a)974 2291 y FX(i)1002 2303 y Ga(S)5
+b(;)1103 2291 y F9(\()1131 2303 y Ga(x)1183 2291 y F9(\))1210
+2303 y Ga(T)13 b F4(\))1388 2266 y Gc(g)r(c)1336 2303
+y F6(\000)-31 b(\000)g(!)25 b Ga(S)30 b F6(\021)25 b
+Ga(N)504 2427 y Gg(\(1\))101 b Ga(M)p 710 2442 99 4 v
+35 w F4(=)25 b Ga(S)p 929 2442 61 4 v 5 w F6(h)p Ga(T)p
+1025 2442 66 4 v 13 w F6(i)1126 2441 y Gc(m)1241 2427
+y Gg(and)50 b Ga(N)p 1421 2442 83 4 v 35 w F4(=)25 b
+Ga(S)p 1625 2442 61 4 v 1089 w Gg(by)e(De\002nition)i(2.6.17)504
+2552 y(\(2\))101 b Ga(M)p 710 2567 99 4 v 35 w(>)904
+2519 y Gc(r)r(po)1037 2552 y Ga(N)p 1037 2567 83 4 v
+1789 w Gg(by)23 b(\(1\))h(and)g(rpo\(i\))p 3436 2659
+4 62 v 3440 2600 55 4 v 3440 2659 V 3494 2659 4 62 v
+Black 277 2871 a Gb(Pr)n(oof)k(of)g(Lemma)f(2.6.22.)p
+Black 34 w Gg(W)-7 b(e)27 b(gi)n(v)o(e)g(the)h(details)h(of)f(ho)n(w)f
+(to)g(replace)j FL(Cut)2707 2824 y FC( )2767 2871 y Gg(-instances.)44
+b(Suppose)277 2984 y FL(Cut)356 2937 y FC( )417 2984
+y F4(\()452 2972 y FX(h)480 2984 y Ga(a)528 2972 y FX(i)555
+2984 y Ga(S)5 b(;)656 2972 y F9(\()684 2984 y Ga(x)736
+2972 y F9(\))763 2984 y Ga(T)13 b F4(\))23 b Gg(is)h(a)f(subterm)h(of)g
+Ga(M)33 b Gg(with)23 b(the)h(typing)h(judgement)1271
+3151 y F4(\000)1328 3165 y F9(1)1393 3139 y Gc(.)1448
+3151 y Ga(S)1534 3139 y Gc(.)1589 3151 y F4(\001)1665
+3165 y F9(1)1845 3151 y F4(\000)1902 3165 y F9(2)1967
+3139 y Gc(.)2022 3151 y Ga(T)2113 3139 y Gc(.)2168 3151
+y F4(\001)2244 3165 y F9(2)p 1151 3184 1252 4 v 1151
+3269 a F4(\000)1208 3283 y F9(1)1248 3269 y Ga(;)15 b
+F4(\000)1345 3283 y F9(2)1410 3257 y Gc(.)1464 3269 y
+FL(Cut)1543 3222 y FC( )1604 3269 y F4(\()1639 3257 y
+FX(h)1667 3269 y Ga(a)1715 3257 y FX(i)1742 3269 y Ga(S)5
+b(;)1843 3257 y F9(\()1871 3269 y Ga(x)1923 3257 y F9(\))1951
+3269 y Ga(T)12 b F4(\))2077 3257 y Gc(.)2132 3269 y F4(\001)2208
+3283 y F9(1)2247 3269 y Ga(;)j F4(\001)2363 3283 y F9(2)2444
+3217 y Gg(Cut)2516 3170 y FC( )2603 3217 y Ga(:)277 3456
+y Gg(Our)23 b(ar)n(gument)j(splits)e(into)h(tw)o(o)e(cases:)p
+Black 414 3650 a F6(\017)p Black 45 w Gg(If)35 b(the)g(subterm)h
+Ga(S)j Gg(does)c(not)h(freshly)g(introduce)h Ga(a)p Gg(,)g(then)e(we)f
+(replace)j FL(Cut)2994 3603 y FC( )3055 3650 y F4(\()3090
+3638 y FX(h)3117 3650 y Ga(a)3165 3638 y FX(i)3193 3650
+y Ga(S)5 b(;)3294 3638 y F9(\()3322 3650 y Ga(x)3374
+3638 y F9(\))3401 3650 y Ga(T)13 b F4(\))504 3763 y Gg(simply)31
+b(by)f FL(Cut)p F4(\()1074 3751 y FX(h)1102 3763 y Ga(a)1150
+3751 y FX(i)1177 3763 y Ga(S)5 b(;)1278 3751 y F9(\()1306
+3763 y Ga(x)1358 3751 y F9(\))1385 3763 y Ga(T)13 b F4(\))29
+b Gg(\(both)i(terms)f(ha)n(v)o(e)h(the)f(same)g(typing)h(judgement\).)
+50 b(In)30 b(this)504 3876 y(case)25 b(we)d(ha)n(v)o(e)i
+FL(Cut)p F4(\()1176 3864 y FX(h)1204 3876 y Ga(a)1252
+3864 y FX(i)1280 3876 y Ga(S)5 b(;)1381 3864 y F9(\()1409
+3876 y Ga(x)1461 3864 y F9(\))1488 3876 y Ga(T)13 b F4(\))1664
+3839 y Gc(c)1695 3816 y FC(00)1614 3876 y F6(\000)-31
+b(\000)g(!)25 b FL(Cut)1889 3829 y FC( )1949 3876 y F4(\()1984
+3864 y FX(h)2012 3876 y Ga(a)2060 3864 y FX(i)2088 3876
+y Ga(S)5 b(;)2189 3864 y F9(\()2217 3876 y Ga(x)2269
+3864 y F9(\))2296 3876 y Ga(T)13 b F4(\))p Gg(.)p Black
+414 4052 a F6(\017)p Black 45 w Gg(The)24 b(more)g(interesting)k(case)c
+(is)h(where)f Ga(S)k Gg(freshly)e(introduces)h Ga(a)p
+Gg(.)j(Here)24 b(we)g(cannot)i(simply)504 4165 y(replace)e
+FL(Cut)867 4118 y FC( )948 4165 y Gg(with)e FL(Cut)p
+Gg(,)f(because)j(there)e(is)g(no)g(reduction)i(that)e(gi)n(v)o(es)h
+Ga(N)2899 4128 y Gc(l)q(oc)2857 4165 y F6(\000)-31 b(\000)f(!)3027
+4132 y F9(+)3111 4165 y Ga(M)10 b Gg(.)28 b(There-)504
+4278 y(fore)k(we)e(replace)j FL(Cut)1189 4231 y FC( )1250
+4278 y F4(\()1285 4266 y FX(h)1312 4278 y Ga(a)1360 4266
+y FX(i)1388 4278 y Ga(S)5 b(;)1489 4266 y F9(\()1517
+4278 y Ga(x)1569 4266 y F9(\))1596 4278 y Ga(T)13 b F4(\))30
+b Gg(by)i FL(Cut)p F4(\()2022 4266 y FX(h)2049 4278 y
+Ga(a)2097 4266 y FX(i)2125 4278 y FL(Cut)p F4(\()2298
+4266 y FX(h)2325 4278 y Ga(b)2364 4266 y FX(i)2392 4278
+y Ga(S)5 b(;)2493 4266 y F9(\()2521 4278 y Ga(y)2569
+4266 y F9(\))2596 4278 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(c)p F4(\))q(\))p Ga(;)2972 4266 y F9(\()3000 4278 y
+Ga(x)3052 4266 y F9(\))3079 4278 y Ga(T)e F4(\))31 b
+Gg(where)g Ga(b)504 4391 y Gg(and)i Ga(c)f Gg(are)h(fresh)g(co-names)h
+(that)f(do)g(not)f(occur)i(an)o(ywhere)f(else.)56 b(On)32
+b(the)h(le)n(v)o(el)f(of)h(type)504 4504 y(deri)n(v)n(ations)27
+b(this)d(means)g(that)g(an)f(instance)j(of)d(the)h(form)1410
+4652 y F4(\000)1467 4666 y F9(1)1532 4640 y Gc(.)1587
+4652 y Ga(S)1673 4640 y Gc(.)1728 4652 y F4(\001)1804
+4666 y F9(1)1984 4652 y F4(\000)2041 4666 y F9(2)2106
+4640 y Gc(.)2161 4652 y Ga(T)2252 4640 y Gc(.)2307 4652
+y F4(\001)2383 4666 y F9(2)p 1290 4686 V 1290 4770 a
+F4(\000)1347 4784 y F9(1)1387 4770 y Ga(;)15 b F4(\000)1484
+4784 y F9(2)1548 4758 y Gc(.)1603 4770 y FL(Cut)1682
+4723 y FC( )1743 4770 y F4(\()1778 4758 y FX(h)1806 4770
+y Ga(a)1854 4758 y FX(i)1881 4770 y Ga(S)5 b(;)1982 4758
+y F9(\()2010 4770 y Ga(x)2062 4758 y F9(\))2090 4770
+y Ga(T)12 b F4(\))2216 4758 y Gc(.)2271 4770 y F4(\001)2347
+4784 y F9(1)2386 4770 y Ga(;)j F4(\001)2502 4784 y F9(2)2583
+4718 y Gg(Cut)2655 4671 y FC( )504 4940 y Gg(is)24 b(replaced)h(by)782
+5130 y F4(\000)839 5144 y F9(1)903 5118 y Gc(.)958 5130
+y Ga(S)1044 5118 y Gc(.)1099 5130 y F4(\001)1175 5144
+y F9(1)1215 5130 y Ga(;)15 b(b)i F4(:)h Ga(B)p 1518 5045
+815 4 v 95 w(y)i F4(:)d Ga(B)1724 5118 y Gc(.)1779 5130
+y FL(Ax)p F4(\()p Ga(y)s(;)e(c)p F4(\))2105 5118 y Gc(.)2160
+5130 y Ga(c)j F4(:)f Ga(B)p 782 5173 1551 4 v 861 5258
+a F4(\000)918 5272 y F9(1)983 5246 y Gc(.)1038 5258 y
+FL(Cut)o F4(\()1210 5246 y FX(h)1238 5258 y Ga(b)1277
+5246 y FX(i)1305 5258 y Ga(S)5 b(;)1406 5246 y F9(\()1434
+5258 y Ga(y)1482 5246 y F9(\))1509 5258 y FL(Ax)o F4(\()p
+Ga(y)s(;)15 b(c)p F4(\))r(\))1870 5246 y Gc(.)1925 5258
+y F4(\001)2001 5272 y F9(1)2040 5258 y Ga(;)g(c)j F4(:)g
+Ga(B)2374 5203 y Gg(Cut)2596 5258 y F4(\000)2653 5272
+y F9(2)2718 5246 y Gc(.)2773 5258 y Ga(T)2864 5246 y
+Gc(.)2919 5258 y F4(\001)2995 5272 y F9(2)p 843 5300
+2209 4 v 843 5385 a F4(\000)900 5399 y F9(1)939 5385
+y Ga(;)d F4(\000)1036 5399 y F9(2)1101 5373 y Gc(.)1156
+5385 y FL(Cut)p F4(\()1329 5373 y FX(h)1357 5385 y Ga(a)1405
+5373 y FX(i)1432 5385 y FL(Cut)p F4(\()1605 5373 y FX(h)1633
+5385 y Ga(b)1672 5373 y FX(i)1699 5385 y Ga(S)5 b(;)1800
+5373 y F9(\()1828 5385 y Ga(y)1876 5373 y F9(\))1904
+5385 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(c)p F4(\))q(\))q
+Ga(;)2280 5373 y F9(\()2308 5385 y Ga(x)2360 5373 y F9(\))2387
+5385 y Ga(T)e F4(\))2513 5373 y Gc(.)2568 5385 y F4(\001)2644
+5399 y F9(1)2683 5385 y Ga(;)i F4(\001)2799 5399 y F9(2)2839
+5385 y Ga(;)g(c)j F4(:)f Ga(B)3093 5331 y Gg(Cut)p Black
+Black eop end
+%%Page: 156 168
+TeXDict begin 156 167 bop Black -144 51 a Gb(156)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 549 388 a Gg(It)j(is)g(routine)i(to)e(v)o(erify)h(that)g(the)
+f(ne)n(w)g(cut-instances)k(are)c(all)h(well-typed.)41
+b(No)n(w)26 b(we)h(sho)n(w)549 501 y(ho)n(w)35 b(the)h(ne)n(w)f(term)h
+(can)g(reduce.)67 b(Because)37 b FL(Cut)p F4(\()2272
+489 y FX(h)2299 501 y Ga(b)2338 489 y FX(i)2366 501 y
+Ga(S)5 b(;)2467 489 y F9(\()2495 501 y Ga(y)2543 489
+y F9(\))2570 501 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(c)p
+F4(\))r(\))35 b Gg(does)i(not)f(freshly)549 614 y(introduce)26
+b Ga(a)p Gg(,)c(we)h(can)h(\002rst)f(perform)i(a)e(commuting)i
+(reduction)604 768 y FL(Cut)p F4(\()777 756 y FX(h)805
+768 y Ga(a)853 756 y FX(i)880 768 y FL(Cut)p F4(\()1053
+756 y FX(h)1081 768 y Ga(b)1120 756 y FX(i)1148 768 y
+Ga(S)5 b(;)1249 756 y F9(\()1276 768 y Ga(y)1324 756
+y F9(\))1352 768 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(c)p
+F4(\))q(\))q Ga(;)1728 756 y F9(\()1756 768 y Ga(x)1808
+756 y F9(\))1835 768 y Ga(T)e F4(\))2011 731 y Gc(c)2042
+708 y FC(00)1961 768 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)2236
+721 y FC( )2297 768 y F4(\()2332 756 y FX(h)2359 768
+y Ga(a)2407 756 y FX(i)2435 768 y FL(Cut)p F4(\()2608
+756 y FX(h)2636 768 y Ga(b)2675 756 y FX(i)2702 768 y
+Ga(S)5 b(;)2803 756 y F9(\()2831 768 y Ga(y)2879 756
+y F9(\))2906 768 y FL(Ax)p F4(\()p Ga(y)s(;)15 b(c)p
+F4(\))q(\))p Ga(;)3282 756 y F9(\()3310 768 y Ga(x)3362
+756 y F9(\))3390 768 y Ga(T)d F4(\))549 923 y Gg(and)19
+b(subsequently)24 b(we)18 b(can)i(remo)o(v)o(e)g(the)g(cut)f(on)h(the)f
+(axiom)h(by)g(a)2712 886 y Gc(c)2743 862 y FC(00)2663
+923 y F6(\000)-31 b(\000)f(!)p Gg(-reduction)22 b(follo)n(wed)549
+1036 y(by)h(a)777 999 y Gc(g)r(c)725 1036 y F6(\000)-31
+b(\000)g(!)p Gg(-reduction.)p Black Black 1515 1205 a
+FL(Cut)1593 1158 y FC( )1654 1205 y F4(\()1689 1193 y
+FX(h)1717 1205 y Ga(a)1765 1193 y FX(i)1793 1205 y FL(Cut)o
+F4(\()1965 1193 y FX(h)1993 1205 y Ga(b)2032 1193 y FX(i)2060
+1205 y Ga(S)5 b(;)2161 1193 y F9(\()2189 1205 y Ga(y)2237
+1193 y F9(\))2264 1205 y FL(Ax)o F4(\()p Ga(y)s(;)15
+b(c)p F4(\))r(\))p Ga(;)2640 1193 y F9(\()2668 1205 y
+Ga(x)2720 1193 y F9(\))2747 1205 y Ga(T)e F4(\))1294
+1293 y Gc(c)1325 1269 y FC(00)1245 1330 y F6(\000)-32
+b(\000)h(!)100 b FL(Cut)1593 1283 y FC( )1654 1330 y
+F4(\()1689 1318 y FX(h)1717 1330 y Ga(a)1765 1318 y FX(i)1793
+1330 y FL(Cut)1871 1283 y FC( )1932 1330 y F4(\()1967
+1318 y FX(h)1995 1330 y Ga(b)2034 1318 y FX(i)2062 1330
+y Ga(S)5 b(;)2163 1318 y F9(\()2190 1330 y Ga(y)2238
+1318 y F9(\))2266 1330 y FL(Ax)o F4(\()p Ga(y)s(;)15
+b(c)p F4(\))q(\))q Ga(;)2642 1318 y F9(\()2670 1330 y
+Ga(x)2722 1318 y F9(\))2749 1330 y Ga(T)e F4(\))1297
+1417 y Gc(g)r(c)1245 1455 y F6(\000)-32 b(\000)h(!)100
+b FL(Cut)1593 1407 y FC( )1654 1455 y F4(\()1689 1443
+y FX(h)1717 1455 y Ga(a)1765 1443 y FX(i)1793 1455 y
+Ga(S)5 b(;)1894 1443 y F9(\()1921 1455 y Ga(x)1973 1443
+y F9(\))2001 1455 y Ga(T)13 b F4(\))549 1621 y Gg(Thus)23
+b(we)g(are)h(done.)p 3480 1621 4 62 v 3484 1563 55 4
+v 3484 1621 V 3538 1621 4 62 v 321 1922 a Ge(B.2)119
+b(Pr)n(oofs)29 b(of)g(Chapter)i(3)321 2146 y Gg(In)25
+b(this)g(section)i(we)c(are)i(mainly)h(concerned)h(with)e(translations)
+j(between)d(natural)i(deduction)g(cal-)321 2258 y(culi)d(and)g(sequent)
+i(calculi.)k(First)24 b(let)f(us)h(gi)n(v)o(e)f(tw)o(o)h(f)o(acts,)g
+(which)g(will)f(be)g(useful)i(later)-5 b(.)p Black 321
+2479 a Gb(F)n(act)23 b(B.2.1:)p Black Black 417 2655
+a Gg(\(i\))p Black 47 w FL(Cut)o F4(\()721 2643 y FX(h)749
+2655 y Ga(a)797 2643 y FX(i)825 2655 y Ga(T)13 b(;)931
+2643 y F9(\()958 2655 y Ga(x)1010 2643 y F9(\))1038 2655
+y Ga(S)5 b F4(\))1198 2618 y Gc(int)1159 2655 y F6(\000)-31
+b(\000)g(!)1330 2622 y FX(\003)1394 2655 y Ga(T)13 b
+F4([)p Ga(a)26 b F4(:=)1680 2643 y F9(\()1707 2655 y
+Ga(x)1759 2643 y F9(\))1787 2655 y Ga(S)5 b F4(])p Black
+392 2797 a Gg(\(ii\))p Black 47 w FL(Cut)o F4(\()721
+2785 y FX(h)749 2797 y Ga(a)797 2785 y FX(i)825 2797
+y Ga(T)13 b(;)931 2785 y F9(\()958 2797 y Ga(x)1010 2785
+y F9(\))1038 2797 y Ga(S)5 b F4(\))1198 2760 y Gc(int)1159
+2797 y F6(\000)-31 b(\000)g(!)1330 2764 y FX(\003)1394
+2797 y Ga(S)5 b F4([)p Ga(x)26 b F4(:=)1679 2785 y FX(h)1706
+2797 y Ga(a)1754 2785 y FX(i)1782 2797 y Ga(T)13 b F4(])p
+Black 321 3010 a F7(Pr)l(oof)o(.)p Black 34 w Gg(W)-7
+b(e)22 b(gi)n(v)o(e)g(the)h(details)h(for)f(\(i\).)29
+b(If)22 b Ga(T)34 b Gg(does)24 b(not)f(freshly)h(introduce)h
+Ga(a)p Gg(,)d(then)h(by)g(a)f(commuting)321 3123 y(reduction)29
+b FL(Cut)p F4(\()863 3111 y FX(h)891 3123 y Ga(a)939
+3111 y FX(i)967 3123 y Ga(T)12 b(;)1072 3111 y F9(\()1100
+3123 y Ga(x)1152 3111 y F9(\))1180 3123 y Ga(S)5 b F4(\))1346
+3085 y Gc(int)1307 3123 y F6(\000)-32 b(\000)h(!)31 b
+Ga(T)13 b F4([)p Ga(a)30 b F4(:=)1804 3111 y F9(\()1831
+3123 y Ga(x)1883 3111 y F9(\))1911 3123 y Ga(S)5 b F4(])p
+Gg(.)37 b(Otherwise,)28 b(if)e Ga(T)38 b Gg(freshly)28
+b(introduces)i Ga(a)p Gg(,)c(b)n(ut)321 3235 y(is)31
+b(not)g(an)f(axiom,)i(then)g FL(Cut)p F4(\()1314 3223
+y FX(h)1341 3235 y Ga(a)1389 3223 y FX(i)1417 3235 y
+Ga(T)13 b(;)1523 3223 y F9(\()1550 3235 y Ga(x)1602 3223
+y F9(\))1630 3235 y Ga(S)5 b F4(\))38 b F6(\021)g Ga(T)13
+b F4([)p Ga(a)38 b F4(:=)2185 3223 y F9(\()2212 3235
+y Ga(x)2264 3223 y F9(\))2291 3235 y Ga(S)5 b F4(])p
+Gg(;)34 b(if)c Ga(T)43 b Gg(is)30 b(an)h(axiom,)h(for)f(e)o(xample)321
+3348 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))p Gg(,)24
+b(then)920 3503 y FL(Cut)p F4(\()1093 3491 y FX(h)1120
+3503 y Ga(a)1168 3491 y FX(i)1196 3503 y Ga(T)13 b(;)1302
+3491 y F9(\()1330 3503 y Ga(x)1382 3491 y F9(\))1409
+3503 y Ga(S)5 b F4(\))1569 3466 y Gc(int)1531 3503 y
+F6(\000)-32 b(\000)h(!)1701 3465 y F9(+)1785 3503 y Ga(S)5
+b F4([)p Ga(x)10 b F6(7!)g Ga(z)t F4(])26 b(=)f FL(Ax)p
+F4(\()p Ga(z)t(;)15 b(a)p F4(\)[)p Ga(a)27 b F4(:=)2755
+3491 y F9(\()2782 3503 y Ga(x)2834 3491 y F9(\))2862
+3503 y Ga(S)5 b F4(])321 3657 y Gg(by)34 b(a)f(logical)i(reduction)h
+(or)d(by)g(a)g(commuting)i(reduction)h(and)e(Lemma)e(2.2.11.)58
+b(Thus)34 b(we)e(are)321 3770 y(done.)p 3480 3770 V 3484
+3712 55 4 v 3484 3770 V 3538 3770 4 62 v Black 321 3958
+a Gb(Pr)n(oof)24 b(of)g(Lemma)f(3.2.1.)p Black 33 w Gg(The)g(dif)n
+(\002cult)i(case)f(is)f(as)h(follo)n(ws.)p Black Black
+1196 4096 a FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\)[)p Ga(a)27
+b F4(:=)1729 4084 y F9(\()1756 4096 y Ga(y)1804 4084
+y F9(\))1832 4096 y Ga(S)5 b F4(][)p Ga(x)25 b F4(:=)2142
+4084 y FX(h)2169 4096 y Ga(b)2208 4084 y FX(i)2235 4096
+y Ga(T)13 b F4(])1078 4209 y(=)47 b Ga(S)5 b F4([)p Ga(y)13
+b F6(7!)d Ga(x)p F4(][)p Ga(x)25 b F4(:=)1742 4197 y
+FX(h)1769 4209 y Ga(b)1808 4197 y FX(i)1836 4209 y Ga(T)12
+b F4(])1078 4322 y F6(\021)47 b Ga(S)5 b F4([)p Ga(y)28
+b F4(:=)1476 4310 y FX(h)1504 4322 y Ga(b)1543 4310 y
+FX(i)1570 4322 y Ga(T)13 b F4(][)p Ga(x)25 b F4(:=)1885
+4310 y FX(h)1912 4322 y Ga(b)1951 4310 y FX(i)1979 4322
+y Ga(T)12 b F4(])1078 4439 y(=)47 b FL(Cut)o F4(\()1368
+4427 y FX(h)1396 4439 y Ga(b)1435 4427 y FX(i)1463 4439
+y Ga(T)12 b(;)1568 4427 y F9(\()1596 4439 y Ga(y)1644
+4427 y F9(\))1672 4439 y Ga(S)5 b F4(\)[)p Ga(x)25 b
+F4(:=)1992 4427 y FX(h)2019 4439 y Ga(b)2058 4427 y FX(i)2085
+4439 y Ga(T)13 b F4(])2835 4406 y F9(\(1\))1078 4552
+y F4(=)47 b FL(Cut)o F4(\()1368 4540 y FX(h)1396 4552
+y Ga(b)1435 4540 y FX(i)1463 4552 y Ga(T)12 b(;)1568
+4540 y F9(\()1596 4552 y Ga(y)1644 4540 y F9(\))1672
+4552 y Ga(S)5 b F4([)p Ga(x)25 b F4(:=)1956 4540 y FX(h)1984
+4552 y Ga(b)2023 4540 y FX(i)2050 4552 y Ga(T)13 b F4(]\))978
+4631 y Gc(int)939 4668 y F6(\000)-32 b(\000)h(!)1109
+4635 y FX(\003)1196 4668 y Ga(T)13 b F4([)p Ga(b)25 b
+F4(:=)1472 4656 y F9(\()1499 4668 y Ga(y)1547 4656 y
+F9(\))1575 4668 y Ga(S)5 b F4([)p Ga(x)25 b F4(:=)1859
+4656 y FX(h)1887 4668 y Ga(b)1926 4656 y FX(i)1953 4668
+y Ga(T)13 b F4(]])2835 4635 y F9(\(2\))1078 4785 y F6(\021)47
+b Ga(T)13 b F4([)p Ga(b)d F6(7!)g Ga(a)p F4(][)p Ga(a)26
+b F4(:=)1730 4773 y F9(\()1757 4785 y Ga(y)1805 4773
+y F9(\))1832 4785 y Ga(S)5 b F4([)p Ga(x)26 b F4(:=)2117
+4773 y FX(h)2145 4785 y Ga(b)2184 4773 y FX(i)2211 4785
+y Ga(T)13 b F4(]])2835 4752 y F9(\(3\))1078 4898 y F4(=)47
+b FL(Ax)o F4(\()p Ga(x;)15 b(a)p F4(\)[)p Ga(x)27 b F4(:=)1733
+4886 y FX(h)1760 4898 y Ga(b)1799 4886 y FX(i)1827 4898
+y Ga(T)13 b F4(][)p Ga(a)25 b F4(:=)2138 4886 y F9(\()2165
+4898 y Ga(y)2213 4886 y F9(\))2240 4898 y Ga(S)5 b F4([)p
+Ga(x)26 b F4(:=)2525 4886 y FX(h)2552 4898 y Ga(b)2591
+4886 y FX(i)2619 4898 y Ga(T)13 b F4(]])p Black Black
+790 5056 a F9(\(1\))984 5089 y Gg(by)24 b(assumption)i
+Ga(S)h Gg(freshly)e(introduces)i Ga(y)e Gg(and)f(is)g(not)g(an)f(axiom)
+790 5173 y F9(\(2\))984 5206 y Gg(by)h(F)o(act)f(B.2.1)790
+5289 y F9(\(3\))984 5322 y Gg(by)h(assumption)i Ga(a)f
+F6(62)g Ga(F)13 b(C)7 b F4(\()1872 5310 y FX(h)1899 5322
+y Ga(b)1938 5310 y FX(i)1966 5322 y Ga(T)12 b F4(\))p
+3480 5492 V 3484 5434 55 4 v 3484 5492 V 3538 5492 4
+62 v Black Black eop end
+%%Page: 157 169
+TeXDict begin 157 168 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(3)2639 b(157)p 277 88 3691 4 v Black Black
+277 388 a(Pr)n(oof)28 b(of)e(Lemma)g(3.2.3.)p Black 34
+w Gg(If)h Ga(M)36 b Gg(is)27 b(a)f(v)n(ariable,)j(then)f(the)f(lemma)f
+(is)h(by)g(routine)i(calculation.)41 b(In)277 501 y(case)27
+b Ga(M)36 b Gg(corresponds)30 b(to)d(a)f(term)g(gi)n(v)o(en)h(in)f
+(Lemma)g(3.2.2,)h(then)g F6(j)p Ga(M)10 b F6(j)2588 468
+y Fu(s)2588 524 y Gc(a)2656 501 y Gg(cannot)28 b(introduce)h
+Ga(x)d Gg(and)277 614 y(hence)f(the)e(substitution)k(is)c(mo)o(v)o(ed)h
+(inside)h(the)e(subterm\(s\).)31 b(In)23 b(consequence,)k(one)d(can)f
+(apply)i(the)277 727 y(induction)30 b(hypothesis.)41
+b(Otherwise,)28 b(the)f(top-le)n(v)o(el)h(term)f(constructor)j(of)c
+Ga(M)36 b Gg(corresponds)31 b(to)26 b(an)277 840 y(elimination)g(rule,)
+e(for)g(which)f(we)g(illustrate)j(the)e(lemma)f(with)g(one)h(case.)p
+Black 277 1044 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25
+b Ga(S)20 b(T)13 b Gg(:)582 1174 y F6(j)p Ga(S)20 b(T)13
+b F6(j)774 1141 y Fu(s)774 1196 y Gc(a)816 1174 y F4([)p
+Ga(\033)s F4(])1659 b Gg(with)24 b F4([)p Ga(\033)s F4(])i
+F6(\021)f F4([)p Ga(x)g F4(:=)3215 1162 y FX(h)3243 1174
+y Ga(b)3282 1162 y FX(i)3309 1174 y F6(j)p Ga(N)10 b
+F6(j)3442 1141 y Fu(s)3442 1201 y Gc(b)3477 1174 y F4(])439
+1298 y(=)72 b F6(j)p Ga(S)5 b F6(j)693 1265 y Fu(s)693
+1320 y Gc(c)728 1298 y F4([)p Ga(c)26 b F4(:=)939 1286
+y F9(\()967 1298 y Ga(y)1015 1286 y F9(\))1042 1298 y
+FL(Imp)1186 1320 y Gc(L)1238 1298 y F4(\()1273 1286 y
+FX(h)1301 1298 y Ga(d)1348 1286 y FX(i)1376 1298 y F6(j)p
+Ga(T)13 b F6(j)1492 1265 y Fu(s)1492 1326 y Gc(d)1533
+1298 y Ga(;)1573 1286 y F9(\()1601 1298 y Ga(z)1647 1286
+y F9(\))1674 1298 y FL(Ax)p F4(\()p Ga(z)t(;)i(a)p F4(\))q
+Ga(;)g(y)s F4(\))q(][)p Ga(\033)s F4(])779 b Gg(by)24
+b(\(6\))f(of)h F6(j)p 3383 1298 28 4 v 3401 1298 V 3418
+1298 V 65 w(j)3471 1265 y Fu(s)378 1385 y Gc(int)339
+1422 y F6(\000)-31 b(\000)f(!)519 1389 y FX(\003)582
+1422 y F6(j)p Ga(S)5 b F6(j)693 1389 y Fu(s)693 1445
+y Gc(c)728 1422 y F4([)p Ga(\033)s F4(][)p Ga(c)27 b
+F4(:=)1045 1410 y F9(\()1072 1422 y Ga(y)1120 1410 y
+F9(\))1148 1422 y FL(Imp)1292 1444 y Gc(L)1344 1422 y
+F4(\()1379 1410 y FX(h)1407 1422 y Ga(d)1454 1410 y FX(i)1482
+1422 y F6(j)p Ga(T)13 b F6(j)1598 1389 y Fu(s)1598 1450
+y Gc(d)1638 1422 y Ga(;)1678 1410 y F9(\()1706 1422 y
+Ga(z)1752 1410 y F9(\))1780 1422 y FL(Ax)o F4(\()p Ga(z)t(;)i(a)p
+F4(\))r Ga(;)g(y)s F4(\)[)p Ga(\033)s F4(]])565 b Gg(by)24
+b(Lemma)e(3.2.1)439 1546 y F4(=)72 b F6(j)p Ga(S)5 b
+F6(j)693 1513 y Fu(s)693 1569 y Gc(c)728 1546 y F4([)p
+Ga(\033)s F4(][)p Ga(c)27 b F4(:=)1045 1534 y F9(\()1072
+1546 y Ga(y)1120 1534 y F9(\))1148 1546 y FL(Imp)1292
+1568 y Gc(L)1344 1546 y F4(\()1379 1534 y FX(h)1407 1546
+y Ga(d)1454 1534 y FX(i)1482 1546 y F6(j)p Ga(T)13 b
+F6(j)1598 1513 y Fu(s)1598 1574 y Gc(d)1638 1546 y F4([)p
+Ga(\033)s F4(])q Ga(;)1784 1534 y F9(\()1812 1546 y Ga(z)1858
+1534 y F9(\))1886 1546 y FL(Ax)o F4(\()p Ga(z)t(;)i(a)p
+F4(\))r Ga(;)g(y)s F4(\)])378 1633 y Gc(int)339 1671
+y F6(\000)-31 b(\000)f(!)519 1638 y FX(\003)582 1671
+y F6(j)p Ga(S)5 b F4([)p Ga(x)26 b F4(:=)f Ga(N)10 b
+F4(])p F6(j)1025 1638 y Fu(s)1025 1693 y Gc(c)1060 1671
+y F4([)p Ga(c)26 b F4(:=)1271 1659 y F9(\()1298 1671
+y Ga(y)1346 1659 y F9(\))1374 1671 y FL(Imp)1518 1692
+y Gc(L)1570 1671 y F4(\()1605 1659 y FX(h)1633 1671 y
+Ga(d)1680 1659 y FX(i)1708 1671 y F6(j)p Ga(T)13 b F4([)p
+Ga(x)25 b F4(:=)g Ga(N)10 b F4(])p F6(j)2155 1638 y Fu(s)2155
+1698 y Gc(d)2196 1671 y Ga(;)2236 1659 y F9(\()2264 1671
+y Ga(z)2310 1659 y F9(\))2338 1671 y FL(Ax)p F4(\()p
+Ga(z)t(;)15 b(a)p F4(\))q Ga(;)g(y)s F4(\))q(])498 b
+Gg(by)23 b(IH)439 1795 y F4(=)72 b F6(j)p Ga(S)5 b F4([)p
+Ga(x)26 b F4(:=)f Ga(N)10 b F4(])25 b Ga(T)13 b F4([)p
+Ga(x)25 b F4(:=)h Ga(N)10 b F4(])p F6(j)1448 1762 y Fu(s)1448
+1817 y Gc(a)3015 1795 y Gg(by)24 b(\(6\))f(of)h F6(j)p
+3383 1795 V 3401 1795 V 3418 1795 V 65 w(j)3471 1762
+y Fu(s)439 1919 y F6(\021)72 b(j)p F4(\()p Ga(S)21 b(T)13
+b F4(\)[)p Ga(x)25 b F4(:=)g Ga(N)10 b F4(])p F6(j)1176
+1886 y Fu(s)1176 1941 y Gc(a)p 3436 2026 4 62 v 3440
+1968 55 4 v 3440 2026 V 3494 2026 4 62 v Black 277 2238
+a Gb(Pr)n(oof)32 b(of)f(Pr)n(oposition)i(3.2.4.)p Black
+33 w Gg(W)-7 b(e)31 b(shall)h(be)o(gin)g(by)f(gi)n(ving)i(in)e(turn)h
+(the)f(details)i(where)f(a)e(beta-)277 2351 y(reduction)c(occurs)f(on)f
+(the)g(top-le)n(v)o(el.)p Black 277 2555 a Gb(Case)p
+Black 46 w Ga(M)36 b F6(\021)25 b F4(\()p Ga(\025x:S)5
+b F4(\))15 b Ga(T)1160 2518 y Gc(\014)1097 2555 y F6(\000)-31
+b(\000)f(!)25 b Ga(S)5 b F4([)p Ga(x)26 b F4(:=)f Ga(T)13
+b F4(])25 b F6(\021)g Ga(M)1887 2522 y FX(0)1911 2555
+y Gg(:)315 2706 y(\(i\))201 b F6(j)p F4(\()p Ga(\025)q(x:S)5
+b F4(\))15 b Ga(T)e F6(j)994 2673 y Fu(s)994 2729 y Gc(c)439
+2830 y F4(=)91 b FL(Imp)746 2852 y Gc(R)804 2830 y F4(\()839
+2818 y F9(\()866 2830 y Ga(x)918 2818 y F9(\))q FX(h)973
+2830 y Ga(a)1021 2818 y FX(i)1049 2830 y F6(j)p Ga(S)5
+b F6(j)1160 2797 y Fu(s)1160 2853 y Gc(a)1202 2830 y
+Ga(;)15 b(b)p F4(\)[)p Ga(b)26 b F4(:=)1527 2818 y F9(\()1555
+2830 y Ga(y)1603 2818 y F9(\))1630 2830 y FL(Imp)1774
+2852 y Gc(L)1827 2830 y F4(\()1862 2818 y FX(h)1889 2830
+y Ga(d)1936 2818 y FX(i)1964 2830 y F6(j)p Ga(T)13 b
+F6(j)2080 2797 y Fu(s)2080 2858 y Gc(d)2121 2830 y Ga(;)2161
+2818 y F9(\()2189 2830 y Ga(z)2235 2818 y F9(\))2262
+2830 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))r Ga(;)g(y)s
+F4(\)])237 b Gg(by)24 b(\(2,6\))f(of)h F6(j)p 3383 2830
+28 4 v 3401 2830 V 3418 2830 V 65 w(j)3471 2797 y Fu(s)439
+2955 y F4(=)91 b FL(Cut)p F4(\()774 2943 y FX(h)802 2955
+y Ga(b)841 2943 y FX(i)869 2955 y FL(Imp)1013 2976 y
+Gc(R)1071 2955 y F4(\()1106 2943 y F9(\()1133 2955 y
+Ga(x)1185 2943 y F9(\))q FX(h)1240 2955 y Ga(a)1288 2943
+y FX(i)1316 2955 y F6(j)p Ga(S)5 b F6(j)1427 2922 y Fu(s)1427
+2977 y Gc(a)1469 2955 y Ga(;)15 b(b)p F4(\))q Ga(;)1624
+2943 y F9(\()1652 2955 y Ga(y)1700 2943 y F9(\))1727
+2955 y FL(Imp)1871 2976 y Gc(L)1923 2955 y F4(\()1958
+2943 y FX(h)1986 2955 y Ga(d)2033 2943 y FX(i)2061 2955
+y F6(j)p Ga(T)e F6(j)2177 2922 y Fu(s)2177 2982 y Gc(d)2218
+2955 y Ga(;)2258 2943 y F9(\()2286 2955 y Ga(z)2332 2943
+y F9(\))2359 2955 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))r
+Ga(;)g(y)s F4(\)\))178 b Gg(by)23 b(Lem.)f(3.2.2)378
+3042 y Gc(int)339 3079 y F6(\000)-31 b(\000)f(!)92 b
+FL(Cut)p F4(\()774 3067 y FX(h)802 3079 y Ga(a)850 3067
+y FX(i)878 3079 y FL(Cut)o F4(\()1050 3067 y FX(h)1078
+3079 y Ga(d)1125 3067 y FX(i)1153 3079 y F6(j)p Ga(T)13
+b F6(j)1269 3046 y Fu(s)1269 3107 y Gc(d)1310 3079 y
+Ga(;)1350 3067 y F9(\()1378 3079 y Ga(x)1430 3067 y F9(\))1457
+3079 y F6(j)p Ga(S)5 b F6(j)1568 3046 y Fu(s)1568 3101
+y Gc(a)1610 3079 y F4(\))p Ga(;)1685 3067 y F9(\()1713
+3079 y Ga(z)1759 3067 y F9(\))1787 3079 y FL(Ax)p F4(\()p
+Ga(z)t(;)15 b(c)p F4(\))q(\))53 b Ga(y)26 b Gg(is)d(freshly)j
+(introduced)g(by)e(\(6\))f(of)h F6(j)p 3383 3079 V 3401
+3079 V 3418 3079 V 65 w(j)3471 3046 y Fu(s)378 3166 y
+Gc(int)339 3203 y F6(\000)-31 b(\000)f(!)519 3170 y F9(+)601
+3203 y FL(Cut)p F4(\()774 3191 y FX(h)802 3203 y Ga(d)849
+3191 y FX(i)877 3203 y F6(j)p Ga(T)13 b F6(j)993 3170
+y Fu(s)993 3231 y Gc(d)1034 3203 y Ga(;)1074 3191 y F9(\()1101
+3203 y Ga(x)1153 3191 y F9(\))1181 3203 y F6(j)p Ga(S)5
+b F6(j)1292 3170 y Fu(s)1292 3226 y Gc(a)1334 3203 y
+F4(\)[)p Ga(a)10 b F6(7!)g Ga(c)p F4(])476 b Gg(by)24
+b(a)f(comm.)g(reduction)j(and)e(Lem.)e(2.2.11)439 3327
+y F6(\021)91 b FL(Cut)p F4(\()774 3315 y FX(h)802 3327
+y Ga(d)849 3315 y FX(i)877 3327 y F6(j)p Ga(T)13 b F6(j)993
+3294 y Fu(s)993 3355 y Gc(d)1034 3327 y Ga(;)1074 3315
+y F9(\()1101 3327 y Ga(x)1153 3315 y F9(\))1181 3327
+y F6(j)p Ga(S)5 b F6(j)1292 3294 y Fu(s)1292 3350 y Gc(c)1327
+3327 y F4(\))880 b Ga(a)25 b F6(62)g Ga(F)13 b(C)7 b
+F4(\()2579 3315 y FX(h)2607 3327 y Ga(d)2654 3315 y FX(i)2681
+3327 y F6(j)p Ga(T)13 b F6(j)2797 3294 y Fu(s)2797 3355
+y Gc(d)2838 3327 y F4(\))23 b Gg(by)h(Remark)f(2.2.7)378
+3414 y Gc(int)339 3451 y F6(\000)-31 b(\000)f(!)519 3418
+y FX(\003)601 3451 y F6(j)p Ga(S)5 b F6(j)712 3418 y
+Fu(s)712 3474 y Gc(c)748 3451 y F4([)p Ga(x)25 b F4(:=)971
+3439 y FX(h)999 3451 y Ga(d)1046 3439 y FX(i)1073 3451
+y F6(j)p Ga(T)13 b F6(j)1189 3418 y Fu(s)1189 3479 y
+Gc(d)1230 3451 y F4(])1759 b Gg(by)23 b(F)o(act)g(B.2.1)378
+3539 y Gc(int)339 3576 y F6(\000)-31 b(\000)f(!)519 3543
+y FX(\003)601 3576 y F6(j)p Ga(S)5 b F4([)p Ga(x)26 b
+F4(:=)f Ga(T)13 b F4(])p F6(j)1027 3543 y Fu(s)1027 3598
+y Gc(c)2906 3576 y Gg(by)24 b(Lemma)e(3.2.3)315 3741
+y(\(ii\))157 b F6(j)p F4(\()p Ga(\025x:S)5 b F4(\))15
+b Ga(T)e F6(j)974 3708 y Fu(s)974 3764 y Gc(c)1010 3741
+y F4([)p Ga(\033)s F4(])1554 b Gg(with)23 b F4([)p Ga(\033)s
+F4(])j F6(\021)f F4([)p Ga(c)h F4(:=)3291 3729 y F9(\()3319
+3741 y Ga(y)3367 3729 y F9(\))3394 3741 y Ga(N)10 b F4(])439
+3866 y(=)72 b FL(Imp)726 3887 y Gc(R)784 3866 y F4(\()819
+3854 y F9(\()847 3866 y Ga(x)899 3854 y F9(\))p FX(h)954
+3866 y Ga(c)993 3854 y FX(i)1020 3866 y F6(j)p Ga(S)5
+b F6(j)1131 3833 y Fu(s)1131 3888 y Gc(c)1167 3866 y
+Ga(;)15 b(a)p F4(\)[)p Ga(a)26 b F4(:=)1510 3854 y F9(\()1538
+3866 y Ga(z)1584 3854 y F9(\))1611 3866 y FL(Imp)1756
+3887 y Gc(L)1808 3866 y F4(\()1843 3854 y FX(h)1871 3866
+y Ga(b)1910 3854 y FX(i)1937 3866 y F6(j)p Ga(T)13 b
+F6(j)2053 3833 y Fu(s)2053 3893 y Gc(b)2088 3866 y Ga(;)2128
+3854 y F9(\()2156 3866 y Ga(x)2208 3854 y F9(\))2235
+3866 y FL(Ax)p F4(\()p Ga(x;)i(c)p F4(\))q Ga(;)g(z)t
+F4(\))q(][)p Ga(\033)s F4(])155 b Gg(by)24 b(\(2,6\))f(of)h
+F6(j)p 3383 3866 V 3401 3866 V 3418 3866 V 65 w(j)3471
+3833 y Fu(s)439 3990 y F4(=)72 b FL(Cut)p F4(\()755 3978
+y FX(h)782 3990 y Ga(a)830 3978 y FX(i)858 3990 y FL(Imp)1002
+4012 y Gc(R)1060 3990 y F4(\()1095 3978 y F9(\()1123
+3990 y Ga(x)1175 3978 y F9(\))p FX(h)1230 3990 y Ga(c)1269
+3978 y FX(i)1297 3990 y F6(j)p Ga(S)5 b F6(j)1408 3957
+y Fu(s)1408 4012 y Gc(c)1443 3990 y Ga(;)15 b(a)p F4(\))q
+Ga(;)1607 3978 y F9(\()1634 3990 y Ga(z)1680 3978 y F9(\))1708
+3990 y FL(Imp)1853 4012 y Gc(L)1905 3990 y F4(\()1940
+3978 y FX(h)1968 3990 y Ga(b)2007 3978 y FX(i)2034 3990
+y F6(j)p Ga(T)e F6(j)2150 3957 y Fu(s)2150 4017 y Gc(b)2185
+3990 y Ga(;)2225 3978 y F9(\()2252 3990 y Ga(x)2304 3978
+y F9(\))2332 3990 y FL(Ax)o F4(\()p Ga(x;)i(c)p F4(\))r
+Ga(;)g(z)t F4(\))q(\)[)p Ga(\033)s F4(])96 b Gg(by)23
+b(Lem.)f(3.2.2)439 4114 y F4(=)72 b FL(Cut)p F4(\()755
+4102 y FX(h)782 4114 y Ga(a)830 4102 y FX(i)858 4114
+y FL(Imp)1002 4136 y Gc(R)1060 4114 y F4(\()1095 4102
+y F9(\()1123 4114 y Ga(x)1175 4102 y F9(\))p FX(h)1230
+4114 y Ga(c)1269 4102 y FX(i)1297 4114 y F6(j)p Ga(S)5
+b F6(j)1408 4081 y Fu(s)1408 4136 y Gc(c)1443 4114 y
+Ga(;)15 b(a)p F4(\))q Ga(;)1607 4102 y F9(\()1634 4114
+y Ga(z)1680 4102 y F9(\))1708 4114 y FL(Imp)1853 4136
+y Gc(L)1905 4114 y F4(\()1940 4102 y FX(h)1968 4114 y
+Ga(b)2007 4102 y FX(i)2034 4114 y F6(j)p Ga(T)e F6(j)2150
+4081 y Fu(s)2150 4142 y Gc(b)2185 4114 y Ga(;)2225 4102
+y F9(\()2252 4114 y Ga(y)2300 4102 y F9(\))2328 4114
+y Ga(N)d(;)15 b(z)t F4(\))q(\))45 b Ga(c)26 b F6(62)f
+Ga(F)13 b(C)7 b F4(\()2942 4102 y FX(h)2969 4114 y Ga(b)3008
+4102 y FX(i)3035 4114 y F6(j)p Ga(T)13 b F6(j)3151 4081
+y Fu(s)3151 4142 y Gc(b)3186 4114 y Ga(;)3226 4102 y
+FX(h)3254 4114 y Ga(c)3293 4102 y FX(i)3321 4114 y F6(j)p
+Ga(S)5 b F6(j)3432 4081 y Fu(s)3432 4136 y Gc(c)3467
+4114 y F4(\))378 4201 y Gc(int)339 4238 y F6(\000)-31
+b(\000)f(!)73 b FL(Cut)p F4(\()755 4226 y FX(h)782 4238
+y Ga(b)821 4226 y FX(i)849 4238 y F6(j)p Ga(T)13 b F6(j)965
+4205 y Fu(s)965 4266 y Gc(b)1000 4238 y Ga(;)1040 4226
+y F9(\()1067 4238 y Ga(x)1119 4226 y F9(\))1147 4238
+y FL(Cut)p F4(\()1320 4226 y FX(h)1347 4238 y Ga(c)1386
+4226 y FX(i)1414 4238 y F6(j)p Ga(S)5 b F6(j)1525 4205
+y Fu(s)1525 4261 y Gc(c)1560 4238 y Ga(;)1600 4226 y
+F9(\()1628 4238 y Ga(y)1676 4226 y F9(\))1704 4238 y
+Ga(N)10 b F4(\)\))319 b Ga(z)27 b Gg(is)c(freshly)j(introduced)g(by)e
+(\(6\))f(of)h F6(j)p 3383 4238 V 3401 4238 V 3418 4238
+V 65 w(j)3471 4205 y Fu(s)378 4325 y Gc(int)339 4362
+y F6(\000)-31 b(\000)f(!)73 b FL(Cut)p F4(\()755 4350
+y FX(h)782 4362 y Ga(c)821 4350 y FX(i)849 4362 y F6(j)p
+Ga(S)5 b F6(j)960 4329 y Fu(s)960 4385 y Gc(c)995 4362
+y Ga(;)1035 4350 y F9(\()1063 4362 y Ga(y)1111 4350 y
+F9(\))1139 4362 y Ga(N)10 b F4(\)[)p Ga(x)25 b F4(:=)1481
+4350 y FX(h)1508 4362 y Ga(b)1547 4350 y FX(i)1574 4362
+y F6(j)p Ga(T)13 b F6(j)1690 4329 y Fu(s)1690 4390 y
+Gc(b)1725 4362 y F4(])439 4487 y(=)72 b FL(Cut)p F4(\()755
+4475 y FX(h)782 4487 y Ga(c)821 4475 y FX(i)849 4487
+y F6(j)p Ga(S)5 b F6(j)960 4454 y Fu(s)960 4509 y Gc(c)995
+4487 y F4([)p Ga(x)26 b F4(:=)1219 4475 y FX(h)1247 4487
+y Ga(b)1286 4475 y FX(i)1313 4487 y F6(j)p Ga(T)13 b
+F6(j)1429 4454 y Fu(s)1429 4514 y Gc(b)1464 4487 y F4(])p
+Ga(;)1529 4475 y F9(\()1557 4487 y Ga(y)1605 4475 y F9(\))1632
+4487 y Ga(N)d F4(\))550 b Ga(x)25 b F6(62)g Ga(F)13 b(N)d
+F4(\()2652 4475 y F9(\()2680 4487 y Ga(y)2728 4475 y
+F9(\))2755 4487 y Ga(N)g F4(\))23 b Gg(by)h(Remark)f(2.2.7)378
+4574 y Gc(int)339 4611 y F6(\000)-31 b(\000)f(!)519 4578
+y FX(\003)582 4611 y FL(Cut)p F4(\()755 4599 y FX(h)782
+4611 y Ga(c)821 4599 y FX(i)849 4611 y F6(j)p Ga(S)5
+b F4([)p Ga(x)26 b F4(:=)f Ga(T)13 b F4(])p F6(j)1275
+4578 y Fu(s)1275 4633 y Gc(c)1310 4611 y Ga(;)1350 4599
+y F9(\()1378 4611 y Ga(y)1426 4599 y F9(\))1453 4611
+y Ga(N)d F4(\))1335 b Gg(by)24 b(Lemma)e(3.2.3)378 4698
+y Gc(int)339 4735 y F6(\000)-31 b(\000)f(!)519 4702 y
+FX(\003)582 4735 y F6(j)p Ga(S)5 b F4([)p Ga(x)26 b F4(:=)f
+Ga(T)13 b F4(])p F6(j)1008 4702 y Fu(s)1008 4757 y Gc(c)1043
+4735 y F4([)p Ga(\033)s F4(])1866 b Gg(by)23 b(F)o(act)g(B.2.1)277
+4933 y(W)-7 b(e)21 b(omit)g(the)g(other)i(base)f(cases)g(and)g(proceed)
+h(with)e(the)g(details)i(for)f(inner)g(reductions.)31
+b(In)21 b(case)h Ga(M)277 5046 y Gg(corresponds)29 b(to)d(a)f(term)g
+(gi)n(v)o(en)i(in)e(Lemma)g(3.2.2,)h(\(i\))f(and)i(\(ii\))e(are)h(by)g
+(routine)h(calculation)i(using)277 5159 y(the)f(induction)j(hypothesis)
+g(\(note)d(in)g(\(ii\))h F6(j)p Ga(M)10 b F6(j)1800 5126
+y Fu(s)1800 5182 y Gc(c)1835 5159 y F4([)p Ga(c)34 b
+F4(:=)2062 5147 y F9(\()2090 5159 y Ga(x)2142 5147 y
+F9(\))2169 5159 y Ga(N)10 b F4(])27 b Gg(e)o(xpands)j(to)e(a)f(cut\).)
+43 b(W)-7 b(e)27 b(are)h(left)g(to)277 5272 y(check)d(the)f(cases)h
+(where)f(the)g(top-le)n(v)o(el)h(term)f(constructor)j(of)c
+Ga(M)33 b Gg(corresponds)28 b(to)23 b(an)h(elimination)277
+5385 y(rule.)p Black Black eop end
+%%Page: 158 170
+TeXDict begin 158 169 bop Black -144 51 a Gb(158)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 388 a(Case)p Black 47 w Ga(M)35 b
+F6(\021)25 b Ga(S)20 b(T)1004 351 y Gc(\014)940 388 y
+F6(\000)-31 b(\000)f(!)26 b Ga(S)1197 355 y FX(0)1235
+388 y Ga(T)38 b F6(\021)25 b Ga(M)1520 355 y FX(0)1566
+388 y Gg(with)e Ga(S)1900 351 y Gc(\014)1837 388 y F6(\000)-32
+b(\000)h(!)25 b Ga(S)2093 355 y FX(0)2116 388 y Gg(:)549
+539 y(By)k(IH)g(we)g(ha)n(v)o(e)h F6(j)p Ga(S)5 b F6(j)1252
+506 y Fu(s)1252 562 y Gc(c)1363 502 y(int)1324 539 y
+F6(\000)-31 b(\000)g(!)1494 506 y F9(+)1590 539 y F6(j)p
+Ga(S)5 b F6(j)1701 506 y Fu(s)1701 562 y Gc(c)1766 539
+y Gg(and)30 b F6(j)p Ga(S)5 b F6(j)2037 506 y Fu(s)2037
+562 y Gc(c)2072 539 y F4([)p Ga(c)38 b F4(:=)2306 527
+y F9(\()2334 539 y Ga(y)2382 527 y F9(\))2409 539 y Ga(P)13
+b F4(])2581 502 y Gc(int)2542 539 y F6(\000)-31 b(\000)g(!)2713
+506 y F9(+)2808 539 y F6(j)p Ga(S)2894 506 y FX(0)2918
+539 y F6(j)2943 506 y Fu(s)2943 562 y Gc(c)2978 539 y
+F4([)p Ga(c)37 b F4(:=)3212 527 y F9(\()3240 539 y Ga(y)3288
+527 y F9(\))3315 539 y Ga(P)13 b F4(])29 b Gg(for)549
+652 y(an)o(y)22 b(substitution)j(where)d Ga(P)35 b Gg(freshly)23
+b(introduces)i Ga(y)f Gg(and)e(is)g(not)g(an)g(axiom.)29
+b(T)-7 b(ak)o(e)3174 640 y F9(\()3201 652 y Ga(y)3249
+640 y F9(\))3276 652 y Ga(P)35 b Gg(to)22 b(be)549 753
+y F9(\()576 765 y Ga(y)624 753 y F9(\))651 765 y FL(Imp)796
+787 y Gc(L)848 765 y F4(\()883 753 y FX(h)911 765 y Ga(b)950
+753 y FX(i)977 765 y F6(j)p Ga(T)13 b F6(j)1093 732 y
+Fu(s)1093 793 y Gc(b)1128 765 y Ga(;)1168 753 y F9(\()1196
+765 y Ga(z)1242 753 y F9(\))1269 765 y FL(Ax)p F4(\()p
+Ga(z)t(;)i(c)p F4(\))r Ga(;)g(y)s F4(\))p Gg(,)23 b(then)h(we)f(ha)n(v)
+o(e)h(the)g(follo)n(wing)h(reduction.)360 926 y(\(i\))201
+b F6(j)p Ga(S)20 b(T)13 b F6(j)838 893 y Fu(s)838 949
+y Gc(c)483 1051 y F4(=)92 b F6(j)p Ga(S)5 b F6(j)757
+1018 y Fu(s)757 1073 y Gc(a)799 1051 y F4([)p Ga(a)25
+b F4(:=)1018 1039 y F9(\()1046 1051 y Ga(y)1094 1039
+y F9(\))1121 1051 y FL(Imp)1266 1072 y Gc(L)1318 1051
+y F4(\()1353 1039 y FX(h)1381 1051 y Ga(b)1420 1039 y
+FX(i)1447 1051 y F6(j)p Ga(T)13 b F6(j)1563 1018 y Fu(s)1563
+1078 y Gc(b)1598 1051 y Ga(;)1638 1039 y F9(\()1665 1051
+y Ga(z)1711 1039 y F9(\))1739 1051 y FL(Ax)p F4(\()p
+Ga(z)t(;)i(c)p F4(\))q Ga(;)g(y)s F4(\))q(])872 b Gg(by)24
+b(\(6\))g(of)f F6(j)p 3427 1051 28 4 v 3445 1051 V 3463
+1051 V 65 w(j)3515 1018 y Fu(s)422 1138 y Gc(int)383
+1175 y F6(\000)-31 b(\000)g(!)563 1142 y F9(+)646 1175
+y F6(j)p Ga(S)732 1142 y FX(0)755 1175 y F6(j)780 1142
+y Fu(s)780 1197 y Gc(a)822 1175 y F4([)p Ga(a)26 b F4(:=)1042
+1163 y F9(\()1069 1175 y Ga(y)1117 1163 y F9(\))1144
+1175 y FL(Imp)1289 1197 y Gc(L)1341 1175 y F4(\()1376
+1163 y FX(h)1404 1175 y Ga(b)1443 1163 y FX(i)1470 1175
+y F6(j)p Ga(T)13 b F6(j)1586 1142 y Fu(s)1586 1203 y
+Gc(b)1621 1175 y Ga(;)1661 1163 y F9(\()1689 1175 y Ga(z)1735
+1163 y F9(\))1762 1175 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p
+F4(\))r Ga(;)g(y)s F4(\)])1127 b Gg(by)23 b(IH)483 1299
+y F4(=)92 b F6(j)p Ga(S)732 1266 y FX(0)770 1299 y Ga(T)13
+b F6(j)861 1266 y Fu(s)861 1322 y Gc(c)3059 1299 y Gg(by)24
+b(\(6\))g(of)f F6(j)p 3427 1299 V 3445 1299 V 3463 1299
+V 65 w(j)3515 1266 y Fu(s)549 1451 y Gg(In)g(\(ii\))h(we)f(tak)o(e)1083
+1439 y F9(\()1110 1451 y Ga(y)1158 1439 y F9(\))1186
+1451 y Ga(P)35 b Gg(to)24 b(be)1481 1439 y F9(\()1509
+1451 y Ga(z)1555 1439 y F9(\))1582 1451 y FL(Imp)1727
+1473 y Gc(L)1779 1451 y F4(\()1814 1439 y FX(h)1842 1451
+y Ga(b)1881 1439 y FX(i)1908 1451 y F6(j)p Ga(T)13 b
+F6(j)2024 1418 y Fu(s)2024 1479 y Gc(b)2059 1451 y Ga(;)2099
+1439 y F9(\()2127 1451 y Ga(u)2179 1439 y F9(\))2206
+1451 y FL(Ax)p F4(\()p Ga(u;)i(c)p F4(\))q Ga(;)g(z)t
+F4(\))q([)p Ga(c)26 b F4(:=)2844 1439 y F9(\()2872 1451
+y Ga(y)2920 1439 y F9(\))2947 1451 y Ga(N)10 b F4(])p
+Gg(.)360 1612 y(\(ii\))176 b F6(j)p Ga(S)20 b(T)13 b
+F6(j)838 1579 y Fu(s)838 1635 y Gc(c)873 1612 y F4([)p
+Ga(c)26 b F4(:=)1084 1600 y F9(\()1111 1612 y Ga(y)1159
+1600 y F9(\))1186 1612 y Ga(N)10 b F4(])483 1736 y(=)92
+b F6(j)p Ga(S)5 b F6(j)757 1704 y Fu(s)757 1759 y Gc(a)799
+1736 y F4([)p Ga(a)25 b F4(:=)1018 1724 y F9(\()1046
+1736 y Ga(z)1092 1724 y F9(\))1120 1736 y FL(Imp)1264
+1758 y Gc(L)1316 1736 y F4(\()1351 1724 y FX(h)1379 1736
+y Ga(b)1418 1724 y FX(i)1445 1736 y F6(j)p Ga(T)13 b
+F6(j)1561 1704 y Fu(s)1561 1764 y Gc(b)1596 1736 y Ga(;)1636
+1724 y F9(\()1664 1736 y Ga(u)1716 1724 y F9(\))1743
+1736 y FL(Ax)p F4(\()p Ga(u;)i(c)p F4(\))q Ga(;)g(z)t
+F4(\))q(][)p Ga(c)27 b F4(:=)2407 1724 y F9(\()2434 1736
+y Ga(y)2482 1724 y F9(\))2509 1736 y Ga(N)10 b F4(])442
+b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 1736 V 3445 1736
+V 3463 1736 V 65 w(j)3515 1704 y Fu(s)483 1861 y F6(\021)92
+b(j)p Ga(S)5 b F6(j)757 1828 y Fu(s)757 1883 y Gc(a)799
+1861 y F4([)p Ga(a)25 b F4(:=)1018 1849 y F9(\()1046
+1861 y Ga(z)1092 1849 y F9(\))1120 1861 y FL(Imp)1264
+1883 y Gc(L)1316 1861 y F4(\()1351 1849 y FX(h)1379 1861
+y Ga(b)1418 1849 y FX(i)1445 1861 y F6(j)p Ga(T)13 b
+F6(j)1561 1828 y Fu(s)1561 1888 y Gc(b)1596 1861 y Ga(;)1636
+1849 y F9(\()1664 1861 y Ga(u)1716 1849 y F9(\))1743
+1861 y FL(Ax)p F4(\()p Ga(u;)i(c)p F4(\))q Ga(;)g(z)t
+F4(\))q([)p Ga(c)26 b F4(:=)2382 1849 y F9(\()2409 1861
+y Ga(y)2457 1849 y F9(\))2484 1861 y Ga(N)10 b F4(]])422
+1948 y Gc(int)383 1985 y F6(\000)-31 b(\000)g(!)563 1952
+y F9(+)646 1985 y F6(j)p Ga(S)732 1952 y FX(0)755 1985
+y F6(j)780 1952 y Fu(s)780 2007 y Gc(a)822 1985 y F4([)p
+Ga(a)26 b F4(:=)1042 1973 y F9(\()1069 1985 y Ga(z)1115
+1973 y F9(\))1143 1985 y FL(Imp)1287 2007 y Gc(L)1340
+1985 y F4(\()1375 1973 y FX(h)1402 1985 y Ga(b)1441 1973
+y FX(i)1469 1985 y F6(j)p Ga(T)13 b F6(j)1585 1952 y
+Fu(s)1585 2013 y Gc(b)1619 1985 y Ga(;)1659 1973 y F9(\()1687
+1985 y Ga(u)1739 1973 y F9(\))1767 1985 y FL(Ax)o F4(\()p
+Ga(u;)i(c)p F4(\))r Ga(;)g(z)t F4(\))q([)p Ga(c)26 b
+F4(:=)2405 1973 y F9(\()2432 1985 y Ga(y)2480 1973 y
+F9(\))2508 1985 y Ga(N)9 b F4(]])697 b Gg(by)23 b(IH)483
+2109 y F6(\021)92 b(j)p Ga(S)732 2076 y FX(0)755 2109
+y F6(j)780 2076 y Fu(s)780 2132 y Gc(a)822 2109 y F4([)p
+Ga(a)26 b F4(:=)1042 2097 y F9(\()1069 2109 y Ga(z)1115
+2097 y F9(\))1143 2109 y FL(Imp)1287 2131 y Gc(L)1340
+2109 y F4(\()1375 2097 y FX(h)1402 2109 y Ga(b)1441 2097
+y FX(i)1469 2109 y F6(j)p Ga(T)13 b F6(j)1585 2076 y
+Fu(s)1585 2137 y Gc(b)1619 2109 y Ga(;)1659 2097 y F9(\()1687
+2109 y Ga(u)1739 2097 y F9(\))1767 2109 y FL(Ax)o F4(\()p
+Ga(u;)i(c)p F4(\))r Ga(;)g(z)t F4(\))q(][)p Ga(c)26 b
+F4(:=)2430 2097 y F9(\()2458 2109 y Ga(y)2506 2097 y
+F9(\))2533 2109 y Ga(N)10 b F4(])483 2233 y(=)92 b F6(j)p
+Ga(S)732 2200 y FX(0)770 2233 y Ga(T)13 b F6(j)861 2200
+y Fu(s)861 2256 y Gc(c)896 2233 y F4([)p Ga(c)26 b F4(:=)1107
+2221 y F9(\()1134 2233 y Ga(y)1182 2221 y F9(\))1210
+2233 y Ga(N)10 b F4(])1741 b Gg(by)24 b(\(6\))g(of)f
+F6(j)p 3427 2233 V 3445 2233 V 3463 2233 V 65 w(j)3515
+2200 y Fu(s)p Black 321 2425 a Gb(Case)p Black 47 w Ga(M)35
+b F6(\021)25 b Ga(S)20 b(T)1004 2388 y Gc(\014)940 2425
+y F6(\000)-31 b(\000)f(!)26 b Ga(S)20 b(T)1278 2392 y
+FX(0)1326 2425 y F6(\021)25 b Ga(M)1520 2392 y FX(0)1566
+2425 y Gg(with)e Ga(T)1905 2388 y Gc(\014)1841 2425 y
+F6(\000)-31 b(\000)g(!)25 b Ga(T)2103 2392 y FX(0)2126
+2425 y Gg(:)549 2577 y(By)j(IH)g(we)g(ha)n(v)o(e)i F6(j)p
+Ga(T)13 b F6(j)1254 2544 y Fu(s)1254 2599 y Gc(c)1363
+2539 y(int)1324 2577 y F6(\000)-31 b(\000)f(!)1494 2544
+y F9(+)1588 2577 y F6(j)p Ga(T)13 b F6(j)1704 2544 y
+Fu(s)1704 2599 y Gc(c)1768 2577 y Gg(and)29 b F6(j)p
+Ga(T)13 b F6(j)2043 2544 y Fu(s)2043 2599 y Gc(c)2078
+2577 y F4([)p Ga(c)36 b F4(:=)2309 2565 y F9(\()2336
+2577 y Ga(y)2384 2565 y F9(\))2412 2577 y Ga(P)13 b F4(])2582
+2539 y Gc(int)2543 2577 y F6(\000)-31 b(\000)g(!)2714
+2544 y F9(+)2808 2577 y F6(j)p Ga(T)2899 2544 y FX(0)2922
+2577 y F6(j)2947 2544 y Fu(s)2947 2599 y Gc(c)2982 2577
+y F4([)p Ga(c)36 b F4(:=)3213 2565 y F9(\()3241 2577
+y Ga(y)3289 2565 y F9(\))3316 2577 y Ga(P)13 b F4(])28
+b Gg(for)549 2689 y(an)o(y)23 b(substitution)k(where)d
+Ga(P)36 b Gg(freshly)25 b(introduces)h Ga(y)g Gg(and)e(is)f(not)h(an)g
+(axiom.)360 2843 y(\(i\))201 b F6(j)p Ga(S)20 b(T)13
+b F6(j)838 2810 y Fu(s)838 2865 y Gc(c)483 2967 y F4(=)92
+b F6(j)p Ga(S)5 b F6(j)757 2934 y Fu(s)757 2989 y Gc(a)799
+2967 y F4([)p Ga(a)25 b F4(:=)1018 2955 y F9(\()1046
+2967 y Ga(y)1094 2955 y F9(\))1121 2967 y FL(Imp)1266
+2989 y Gc(L)1318 2967 y F4(\()1353 2955 y FX(h)1381 2967
+y Ga(b)1420 2955 y FX(i)1447 2967 y F6(j)p Ga(T)13 b
+F6(j)1563 2934 y Fu(s)1563 2994 y Gc(b)1598 2967 y Ga(;)1638
+2955 y F9(\()1665 2967 y Ga(z)1711 2955 y F9(\))1739
+2967 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))q Ga(;)g(y)s
+F4(\))q(])872 b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 2967
+V 3445 2967 V 3463 2967 V 65 w(j)3515 2934 y Fu(s)422
+3054 y Gc(int)383 3091 y F6(\000)-31 b(\000)g(!)563 3058
+y F9(+)646 3091 y F6(j)p Ga(S)5 b F6(j)757 3058 y Fu(s)757
+3113 y Gc(a)799 3091 y F4([)p Ga(a)25 b F4(:=)1018 3079
+y F9(\()1046 3091 y Ga(y)1094 3079 y F9(\))1121 3091
+y FL(Imp)1266 3113 y Gc(L)1318 3091 y F4(\()1353 3079
+y FX(h)1381 3091 y Ga(b)1420 3079 y FX(i)1447 3091 y
+F6(j)p Ga(T)1538 3058 y FX(0)1561 3091 y F6(j)1586 3058
+y Fu(s)1586 3119 y Gc(b)1621 3091 y Ga(;)1661 3079 y
+F9(\()1689 3091 y Ga(z)1735 3079 y F9(\))1762 3091 y
+FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))r Ga(;)g(y)s
+F4(\)])1127 b Gg(by)23 b(IH)483 3215 y F4(=)92 b F6(j)p
+Ga(S)20 b(T)813 3182 y FX(0)836 3215 y F6(j)861 3182
+y Fu(s)861 3238 y Gc(c)3059 3215 y Gg(by)k(\(6\))g(of)f
+F6(j)p 3427 3215 V 3445 3215 V 3463 3215 V 65 w(j)3515
+3182 y Fu(s)360 3386 y Gg(\(ii\))176 b F6(j)p Ga(S)20
+b(T)13 b F6(j)838 3353 y Fu(s)838 3408 y Gc(c)873 3386
+y F4([)p Ga(c)26 b F4(:=)1084 3374 y F9(\()1111 3386
+y Ga(y)1159 3374 y F9(\))1186 3386 y Ga(N)10 b F4(])483
+3510 y(=)92 b F6(j)p Ga(S)5 b F6(j)757 3477 y Fu(s)757
+3533 y Gc(a)799 3510 y F4([)p Ga(a)25 b F4(:=)1018 3498
+y F9(\()1046 3510 y Ga(y)1094 3498 y F9(\))1121 3510
+y FL(Imp)1266 3532 y Gc(L)1318 3510 y F4(\()1353 3498
+y FX(h)1381 3510 y Ga(b)1420 3498 y FX(i)1447 3510 y
+F6(j)p Ga(T)13 b F6(j)1563 3477 y Fu(s)1563 3538 y Gc(b)1598
+3510 y Ga(;)1638 3498 y F9(\()1665 3510 y Ga(z)1711 3498
+y F9(\))1739 3510 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))q
+Ga(;)g(y)s F4(\))q(][)p Ga(c)26 b F4(:=)2398 3498 y F9(\()2426
+3510 y Ga(y)2474 3498 y F9(\))2501 3510 y Ga(N)10 b F4(])450
+b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 3510 V 3445 3510
+V 3463 3510 V 65 w(j)3515 3477 y Fu(s)483 3634 y F6(\021)92
+b(j)p Ga(S)5 b F6(j)757 3601 y Fu(s)757 3657 y Gc(a)799
+3634 y F4([)p Ga(a)25 b F4(:=)1018 3622 y F9(\()1046
+3634 y Ga(y)1094 3622 y F9(\))1121 3634 y FL(Imp)1266
+3656 y Gc(L)1318 3634 y F4(\()1353 3622 y FX(h)1381 3634
+y Ga(b)1420 3622 y FX(i)1447 3634 y F6(j)p Ga(T)13 b
+F6(j)1563 3601 y Fu(s)1563 3662 y Gc(b)1598 3634 y Ga(;)1638
+3622 y F9(\()1665 3634 y Ga(z)1711 3622 y F9(\))1739
+3634 y FL(Ax)p F4(\()p Ga(z)t(;)i(c)p F4(\))q Ga(;)g(y)s
+F4(\))q([)p Ga(c)26 b F4(:=)2373 3622 y F9(\()2401 3634
+y Ga(y)2449 3622 y F9(\))2476 3634 y Ga(N)10 b F4(]])422
+3722 y Gc(int)383 3759 y F6(\000)-31 b(\000)g(!)563 3726
+y F9(+)646 3759 y F6(j)p Ga(S)5 b F6(j)757 3726 y Fu(s)757
+3781 y Gc(a)799 3759 y F4([)p Ga(a)25 b F4(:=)1018 3747
+y F9(\()1046 3759 y Ga(y)1094 3747 y F9(\))1121 3759
+y FL(Imp)1266 3780 y Gc(L)1318 3759 y F4(\()1353 3747
+y FX(h)1381 3759 y Ga(b)1420 3747 y FX(i)1447 3759 y
+F6(j)p Ga(T)1538 3726 y FX(0)1561 3759 y F6(j)1586 3726
+y Fu(s)1586 3786 y Gc(b)1621 3759 y Ga(;)1661 3747 y
+F9(\()1689 3759 y Ga(z)1735 3747 y F9(\))1762 3759 y
+FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))r Ga(;)g(y)s
+F4(\)[)p Ga(c)26 b F4(:=)2396 3747 y F9(\()2424 3759
+y Ga(y)2472 3747 y F9(\))2499 3759 y Ga(N)10 b F4(]])705
+b Gg(by)23 b(IH)483 3883 y F6(\021)92 b(j)p Ga(S)5 b
+F6(j)757 3850 y Fu(s)757 3905 y Gc(a)799 3883 y F4([)p
+Ga(a)25 b F4(:=)1018 3871 y F9(\()1046 3883 y Ga(y)1094
+3871 y F9(\))1121 3883 y FL(Imp)1266 3905 y Gc(L)1318
+3883 y F4(\()1353 3871 y FX(h)1381 3883 y Ga(b)1420 3871
+y FX(i)1447 3883 y F6(j)p Ga(T)1538 3850 y FX(0)1561
+3883 y F6(j)1586 3850 y Fu(s)1586 3910 y Gc(b)1621 3883
+y Ga(;)1661 3871 y F9(\()1689 3883 y Ga(z)1735 3871 y
+F9(\))1762 3883 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p F4(\))r
+Ga(;)g(y)s F4(\)][)p Ga(c)26 b F4(:=)2422 3871 y F9(\()2449
+3883 y Ga(y)2497 3871 y F9(\))2524 3883 y Ga(N)10 b F4(])483
+4007 y(=)92 b F6(j)p Ga(S)20 b(T)813 3974 y FX(0)836
+4007 y F6(j)861 3974 y Fu(s)861 4029 y Gc(c)896 4007
+y F4([)p Ga(c)26 b F4(:=)1107 3995 y F9(\()1134 4007
+y Ga(y)1182 3995 y F9(\))1210 4007 y Ga(N)10 b F4(])1741
+b Gg(by)24 b(\(6\))g(of)f F6(j)p 3427 4007 V 3445 4007
+V 3463 4007 V 65 w(j)3515 3974 y Fu(s)p 3480 4114 4 62
+v 3484 4056 55 4 v 3484 4114 V 3538 4114 4 62 v Black
+321 4351 a Gb(Pr)n(oof)29 b(of)g(Pr)n(oposition)h(3.2.5.)p
+Black 33 w Gg(By)e(induction)j(on)e(the)g(de\002nition)h(of)2689
+4314 y Gc(\015)2624 4351 y F6(\000)-32 b(\000)h(!)p Gg(.)43
+b(Here)28 b(the)h(induction)321 4464 y(steps)c(are)f(tri)n(vial.)29
+b(W)-7 b(e)23 b(illustrate)j(the)e(proof)g(with)g(one)g(base)g(case.)p
+Black 321 4670 a Gb(Case)p Black 47 w Fp(case)n F4(\()p
+Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
+b F4(\))31 b Ga(Q)1582 4633 y Gc(\015)1517 4670 y F6(\000)-32
+b(\000)h(!)25 b Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:)p
+F4(\()p Ga(M)26 b(Q)p F4(\))p Ga(;)15 b(\025y)s(:)p F4(\()p
+Ga(N)26 b(Q)p F4(\)\))p Gg(:)487 4827 y F6(j)p Fp(case)o
+F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
+b F4(\))15 b Ga(Q)p F6(j)1460 4794 y Fu(s)1460 4849 y
+Gc(c)3059 4827 y Gg(by)24 b(\(6\))g(of)f F6(j)p 3427
+4827 28 4 v 3445 4827 V 3463 4827 V 65 w(j)3515 4794
+y Fu(s)383 4951 y F4(=)33 b F6(j)p Fp(case)o F4(\()p
+Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15 b(\025)q(y)s(:N)10
+b F4(\))p F6(j)1373 4918 y Fu(s)1373 4973 y Gc(a)1430
+4951 y F4([)p Ga(\033)s F4(])205 b Gg(with)24 b F4([)p
+Ga(\033)s F4(])i F6(\021)f F4([)p Ga(a)g F4(:=)2371 4939
+y F9(\()2399 4951 y Ga(y)2447 4939 y F9(\))2474 4951
+y FL(Imp)2619 4973 y Gc(L)2671 4951 y F4(\()2706 4939
+y FX(h)2733 4951 y Ga(b)2772 4939 y FX(i)2800 4951 y
+F6(j)p Ga(Q)p F6(j)2922 4918 y Fu(s)2922 4978 y Gc(b)2957
+4951 y Ga(;)2997 4939 y F9(\()3025 4951 y Ga(z)3071 4939
+y F9(\))3098 4951 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(c)p
+F4(\))q Ga(;)g(y)s F4(\))q(])383 5075 y(=)33 b F6(j)p
+Ga(P)13 b F6(j)608 5042 y Fu(s)608 5103 y Gc(d)664 5075
+y F4([)p Ga(d)26 b F4(:=)883 5063 y F9(\()911 5075 y
+Ga(u)963 5063 y F9(\))990 5075 y FL(Or)1089 5089 y Gc(L)1141
+5075 y F4(\()1176 5063 y F9(\()1204 5075 y Ga(x)1256
+5063 y F9(\))1284 5075 y F6(j)p Ga(M)10 b F6(j)1432 5042
+y Fu(s)1432 5097 y Gc(a)1474 5075 y Ga(;)1514 5063 y
+F9(\()1542 5075 y Ga(y)1590 5063 y F9(\))1617 5075 y
+F6(j)p Ga(N)g F6(j)1750 5042 y Fu(s)1750 5097 y Gc(a)1792
+5075 y Ga(;)15 b(u)p F4(\))q(])g([)p Ga(\033)s F4(])994
+b Gg(by)24 b(\(9\))g(of)f F6(j)p 3427 5075 V 3445 5075
+V 3463 5075 V 65 w(j)3515 5042 y Fu(s)383 5199 y F6(\021)33
+b(j)p Ga(P)13 b F6(j)608 5166 y Fu(s)608 5227 y Gc(d)664
+5199 y F4([)p Ga(d)26 b F4(:=)883 5187 y F9(\()911 5199
+y Ga(u)963 5187 y F9(\))990 5199 y FL(Or)1089 5213 y
+Gc(L)1141 5199 y F4(\()1176 5187 y F9(\()1204 5199 y
+Ga(x)1256 5187 y F9(\))1299 5199 y F6(j)p Ga(M)10 b F6(j)1447
+5166 y Fu(s)1447 5222 y Gc(a)1489 5199 y F4([)p Ga(\033)s
+F4(])q Ga(;)1635 5187 y F9(\()1663 5199 y Ga(y)1711 5187
+y F9(\))1753 5199 y F6(j)p Ga(N)g F6(j)1886 5166 y Fu(s)1886
+5222 y Gc(a)1928 5199 y F4([)p Ga(\033)s F4(])q Ga(;)15
+b(u)p F4(\))q(])383 5323 y(=)33 b F6(j)p Ga(P)13 b F6(j)608
+5290 y Fu(s)608 5351 y Gc(d)664 5323 y F4([)p Ga(d)26
+b F4(:=)883 5311 y F9(\()911 5323 y Ga(u)963 5311 y F9(\))990
+5323 y FL(Or)1089 5337 y Gc(L)1141 5323 y F4(\()1176
+5311 y F9(\()1204 5323 y Ga(x)1256 5311 y F9(\))1284
+5323 y F6(j)p Ga(M)f(Q)p F6(j)1519 5290 y Fu(s)1519 5346
+y Gc(c)1554 5323 y Ga(;)1594 5311 y F9(\()1622 5323 y
+Ga(y)1670 5311 y F9(\))1697 5323 y F6(j)p Ga(N)g(Q)p
+F6(j)1917 5290 y Fu(s)1917 5346 y Gc(c)1952 5323 y Ga(;)15
+b(u)p F4(\))q(])954 b Gg(by)24 b(\(6\))g(of)f F6(j)p
+3427 5323 V 3445 5323 V 3463 5323 V 65 w(j)3515 5290
+y Fu(s)383 5448 y F4(=)33 b F6(j)p Fp(case)o F4(\()p
+Ga(P)s(;)15 b(\025)q(x:)p F4(\()p Ga(M)26 b(Q)p F4(\))p
+Ga(;)15 b(\025y)s(:)p F4(\()p Ga(N)26 b(Q)p F4(\)\))p
+F6(j)1693 5415 y Fu(s)1693 5470 y Gc(c)3059 5448 y Gg(by)e(\(9\))g(of)f
+F6(j)p 3427 5448 V 3445 5448 V 3463 5448 V 65 w(j)3515
+5415 y Fu(s)p 3480 5554 4 62 v 3484 5496 55 4 v 3484
+5554 V 3538 5554 4 62 v Black Black eop end
+%%Page: 159 171
+TeXDict begin 159 170 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(3)2639 b(159)p 277 88 3691 4 v Black Black
+277 388 a(Pr)n(oof)24 b(of)g(Theor)n(em)f(3.2.6.)p Black
+34 w Gg(The)g(follo)n(wing)i(measure)g(reduces)g(in)f(e)n(v)o(ery)2770
+351 y Gc(\015)2705 388 y F6(\000)-32 b(\000)h(!)p Gg(-reduction.)p
+Black Black 613 541 a Fs([)p Ga(x)p Fs(])763 489 y F5(def)770
+541 y F4(=)40 b(1)436 680 y Fs([)q Ga(\025x:M)10 b Fs(])763
+629 y F5(def)770 680 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21
+b F4(+)f(1)378 820 y Fs([)p F6(h)p Ga(M)5 b(;)15 b(N)10
+b F6(i)p Fs(])763 769 y F5(def)770 820 y F4(=)40 b Fs([)p
+Ga(M)10 b Fs(])21 b F4(+)f Fs([)p Ga(N)10 b Fs(])21 b
+F4(+)f(1)353 960 y Fs([)p Fp(inl)o F4(\()p Ga(M)10 b
+F4(\))p Fs(])763 908 y F5(def)770 960 y F4(=)40 b Fs([)p
+Ga(M)10 b Fs(])21 b F4(+)f(1)353 1100 y Fs([)p Fp(inr)o
+F4(\()p Ga(M)10 b F4(\))p Fs(])763 1048 y F5(def)770
+1100 y F4(=)40 b Fs([)p Ga(M)10 b Fs(])21 b F4(+)f(1)2193
+646 y Fs([)q Ga(M)25 b(N)10 b Fs(])2487 594 y F5(def)2494
+646 y F4(=)40 b Fs([)q Ga(M)10 b Fs(])21 b F6(\003)f
+F4(\()p Fs([)q Ga(N)10 b Fs(])21 b F4(+)f(1\))2077 786
+y Fs([)q Fp(fst)o F4(\()p Ga(M)10 b F4(\))p Fs(])2487
+734 y F5(def)2494 786 y F4(=)40 b(3)p Fs([)q Ga(M)10
+b Fs(])21 b F4(+)f(1)2077 925 y Fs([)q Fp(snd)o F4(\()p
+Ga(M)10 b F4(\))p Fs(])2487 874 y F5(def)2494 925 y F4(=)40
+b(3)p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f(1)1554 1065 y
+Fs([)p Fp(case)o F4(\()p Ga(P)s(;)15 b(\025)q(x:M)5 b(;)15
+b(\025y)s(:N)10 b F4(\))p Fs(])2487 1014 y F5(def)2494
+1065 y F4(=)40 b Fs([)q Ga(P)13 b Fs(])20 b F6(\003)h
+F4(\()p Fs([)q Ga(M)10 b Fs(])21 b F4(+)f Fs([)p Ga(N)10
+b Fs(])21 b F4(+)f(1\))p 3436 1191 4 62 v 3440 1133 55
+4 v 3440 1191 V 3494 1191 4 62 v Black 277 1404 a Gb(Pr)n(oof)30
+b(of)f(Lemma)f(3.2.7.)p Black 34 w Gg(Both)h(by)g(induction)i(on)e(the)
+h(structure)h(of)e Ga(M)10 b Gg(.)44 b(W)-7 b(e)28 b(\002rst)h(tackle)h
+(three)277 1517 y(cases)25 b(of)e(\(i\).)p Black 277
+1701 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25 b FL(Ax)o
+F4(\()p Ga(x;)15 b(b)p F4(\))p Gg(:)658 1848 y F6(j)p
+FL(Ax)p F4(\()p Ga(x;)g(b)p F4(\)[)p Ga(x)26 b F4(:=)1212
+1836 y FX(h)1239 1848 y Ga(a)1287 1836 y FX(i)1314 1848
+y Ga(N)10 b F4(])p F6(j)1447 1815 y Fu(n)554 1966 y F4(=)33
+b F6(j)p Ga(N)10 b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p
+F6(j)1039 1933 y Fu(n)554 2085 y F6(\021)33 b(j)p Ga(N)10
+b F6(j)791 2052 y Fu(n)554 2204 y F6(\021)33 b Ga(x)p
+F4([)p Ga(x)25 b F4(:=)h F6(j)p Ga(N)10 b F6(j)1067 2171
+y Fu(n)1108 2204 y F4(])554 2322 y(=)33 b F6(j)p FL(Ax)p
+F4(\()p Ga(x;)15 b(b)p F4(\))p F6(j)1012 2289 y Fu(n)1054
+2322 y F4([)p Ga(x)25 b F4(:=)g F6(j)p Ga(N)10 b F6(j)1410
+2289 y Fu(n)1451 2322 y F4(])1530 b Gg(by)23 b(\(1\))h(of)g
+F6(j)p 3374 2322 28 4 v 3391 2322 V 3409 2322 V 64 w(j)3461
+2289 y Fu(n)p Black 277 2501 a Gb(Case)p Black 46 w Ga(M)58
+b F6(\021)47 b FL(Imp)918 2523 y Gc(L)970 2501 y F4(\()1005
+2489 y FX(h)1033 2501 y Ga(b)1072 2489 y FX(i)1099 2501
+y Ga(S)5 b(;)1200 2489 y F9(\()1228 2501 y Ga(y)1276
+2489 y F9(\))1303 2501 y Ga(T)13 b(;)i(z)t F4(\))p Gg(:)53
+b(Let)35 b F4([)p Ga(\033)s F4(])h Gg(and)g F4([)p Ga(\033)s
+F4(])2136 2468 y Fu(n)2212 2501 y Gg(be)f F4([)p Ga(x)48
+b F4(:=)2600 2489 y FX(h)2628 2501 y Ga(a)2676 2489 y
+FX(i)2703 2501 y Ga(N)10 b F4(])35 b Gg(and)h F4([)p
+Ga(x)48 b F4(:=)f F6(j)p Ga(N)10 b F6(j)3413 2468 y Fu(n)3454
+2501 y F4(])p Gg(,)504 2614 y(respecti)n(v)o(ely)-6 b(.)658
+2772 y F6(j)p FL(Imp)828 2794 y Gc(L)880 2772 y F4(\()915
+2760 y FX(h)943 2772 y Ga(b)982 2760 y FX(i)1009 2772
+y Ga(S)5 b(;)1110 2760 y F9(\()1138 2772 y Ga(y)1186
+2760 y F9(\))1213 2772 y Ga(T)13 b(;)i(z)t F4(\)[)p Ga(\033)s
+F4(])p F6(j)1530 2739 y Fu(n)554 2890 y F4(=)33 b F6(j)p
+FL(Imp)828 2912 y Gc(L)880 2890 y F4(\()915 2878 y FX(h)943
+2890 y Ga(b)982 2878 y FX(i)1024 2890 y Ga(S)5 b F4([)p
+Ga(\033)s F4(])q Ga(;)1231 2878 y F9(\()1259 2890 y Ga(y)1307
+2878 y F9(\))1349 2890 y Ga(T)13 b F4([)p Ga(\033)s F4(])q
+Ga(;)i(z)t F4(\))p F6(j)1667 2857 y Fu(n)554 3009 y F4(=)33
+b F6(j)p Ga(T)13 b F4([)p Ga(\033)s F4(])p F6(j)879 2976
+y Fu(n)921 3009 y F4([)p Ga(y)28 b F4(:=)d Ga(z)20 b
+F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1418 2976
+y Fu(n)1459 3009 y F4(])1476 b Gg(by)24 b(\(10\))g(of)g
+F6(j)p 3374 3009 V 3391 3009 V 3409 3009 V 64 w(j)3461
+2976 y Fu(n)554 3128 y F6(\021)33 b(j)p Ga(T)13 b F6(j)774
+3095 y Fu(n)815 3128 y F4([)p Ga(\033)s F4(])920 3095
+y Fu(n)961 3128 y F4([)p Ga(y)28 b F4(:=)e Ga(z)19 b
+F6(j)p Ga(S)5 b F6(j)1353 3095 y Fu(n)1394 3128 y F4([)p
+Ga(\033)s F4(])1499 3095 y Fu(n)1541 3128 y F4(])1727
+b Gg(by)23 b(IH)554 3246 y F6(\021)33 b(j)p Ga(T)13 b
+F6(j)774 3213 y Fu(n)815 3246 y F4([)p Ga(y)28 b F4(:=)d
+Ga(z)20 b F6(j)p Ga(S)5 b F6(j)1207 3213 y Fu(n)1248
+3246 y F4(][)p Ga(\033)s F4(])1378 3213 y Fu(n)554 3365
+y F4(=)33 b F6(j)p FL(Imp)828 3386 y Gc(L)880 3365 y
+F4(\()915 3353 y FX(h)943 3365 y Ga(b)982 3353 y FX(i)1009
+3365 y Ga(S)5 b(;)1110 3353 y F9(\()1138 3365 y Ga(y)1186
+3353 y F9(\))1213 3365 y Ga(T)13 b(;)i(z)t F4(\))p F6(j)1425
+3332 y Fu(n)1467 3365 y F4([)p Ga(\033)s F4(])1572 3332
+y Fu(n)2960 3365 y Gg(by)24 b(\(10\))g(of)g F6(j)p 3374
+3365 V 3391 3365 V 3409 3365 V 64 w(j)3461 3332 y Fu(n)p
+Black 277 3543 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25
+b FL(Imp)873 3565 y Gc(L)925 3543 y F4(\()960 3531 y
+FX(h)988 3543 y Ga(b)1027 3531 y FX(i)1055 3543 y Ga(S)5
+b(;)1156 3531 y F9(\()1183 3543 y Ga(y)1231 3531 y F9(\))1259
+3543 y Ga(T)12 b(;)j(x)p F4(\))p Gg(:)30 b(Again,)23
+b(let)g F4([)p Ga(\033)s F4(])g Gg(and)h F4([)p Ga(\033)s
+F4(])2273 3510 y Fu(n)2337 3543 y Gg(be)f F4([)p Ga(x)j
+F4(:=)2669 3531 y FX(h)2696 3543 y Ga(a)2744 3531 y FX(i)2772
+3543 y Ga(N)10 b F4(])23 b Gg(and)g F4([)p Ga(x)j F4(:=)f
+F6(j)p Ga(N)10 b F6(j)3413 3510 y Fu(n)3454 3543 y F4(])p
+Gg(,)504 3656 y(respecti)n(v)o(ely)-6 b(.)658 3814 y
+F6(j)p FL(Imp)828 3836 y Gc(L)880 3814 y F4(\()915 3802
+y FX(h)943 3814 y Ga(b)982 3802 y FX(i)1009 3814 y Ga(S)5
+b(;)1110 3802 y F9(\()1138 3814 y Ga(y)1186 3802 y F9(\))1213
+3814 y Ga(T)13 b(;)i(x)p F4(\)[)p Ga(\033)s F4(])p F6(j)1536
+3781 y Fu(n)554 3933 y F4(=)33 b F6(j)p FL(Cut)p F4(\()856
+3921 y FX(h)884 3933 y Ga(a)932 3921 y FX(i)959 3933
+y Ga(N)10 b(;)1082 3921 y F9(\()1110 3933 y Ga(x)1162
+3921 y F9(\))1190 3933 y FL(Imp)1334 3955 y Gc(L)1386
+3933 y F4(\()1421 3921 y FX(h)1449 3933 y Ga(b)1488 3921
+y FX(i)1531 3933 y Ga(S)5 b F4([)p Ga(\033)s F4(])p Ga(;)1737
+3921 y F9(\()1765 3933 y Ga(y)1813 3921 y F9(\))1856
+3933 y Ga(T)13 b F4([)p Ga(\033)s F4(])p Ga(;)i(x)p F4(\))q(\))p
+F6(j)2215 3900 y Fu(n)554 4051 y F4(=)33 b F6(j)p Ga(T)13
+b F4([)p Ga(\033)s F4(])p F6(j)879 4018 y Fu(n)921 4051
+y F4([)p Ga(y)28 b F4(:=)d Ga(x)15 b F6(j)p Ga(S)5 b
+F4([)p Ga(\033)s F4(])p F6(j)1423 4018 y Fu(n)1465 4051
+y F4(][)p Ga(x)26 b F4(:=)f F6(j)p Ga(N)10 b F6(j)1847
+4018 y Fu(n)1888 4051 y F4(])979 b Gg(by)24 b(\(2,10\))g(of)g
+F6(j)p 3374 4051 V 3391 4051 V 3409 4051 V 64 w(j)3461
+4018 y Fu(n)554 4170 y F4(=)33 b F6(j)p Ga(T)13 b F4([)p
+Ga(\033)s F4(])p F6(j)879 4137 y Fu(n)921 4170 y F4([)p
+Ga(y)28 b F4(:=)d F6(j)p Ga(N)10 b F6(j)1273 4137 y Fu(n)1344
+4170 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1560
+4137 y Fu(n)1602 4170 y F4(])936 b Ga(x)26 b F6(62)e
+Ga(F)13 b(V)21 b F4(\()p F6(j)p Ga(T)13 b F4([)p Ga(\033)s
+F4(])p F6(j)3127 4137 y Fu(n)3169 4170 y Ga(;)i F6(j)p
+Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)3425 4137 y Fu(n)3467
+4170 y F4(\))554 4289 y F6(\021)33 b(j)p Ga(T)13 b F6(j)774
+4256 y Fu(n)815 4289 y F4([)p Ga(\033)s F4(])920 4256
+y Fu(n)961 4289 y F4([)p Ga(y)28 b F4(:=)e F6(j)p Ga(N)10
+b F6(j)1314 4256 y Fu(n)1385 4289 y F6(j)p Ga(S)5 b F6(j)1496
+4256 y Fu(n)1537 4289 y F4([)p Ga(\033)s F4(])1642 4256
+y Fu(n)1683 4289 y F4(])1585 b Gg(by)23 b(IH)554 4407
+y F6(\021)33 b(j)p Ga(T)13 b F6(j)774 4374 y Fu(n)815
+4407 y F4([)p Ga(y)28 b F4(:=)d Ga(x)15 b F6(j)p Ga(S)5
+b F6(j)1212 4374 y Fu(n)1254 4407 y F4(][)p Ga(\033)s
+F4(])1384 4374 y Fu(n)554 4526 y F4(=)33 b F6(j)p FL(Imp)828
+4547 y Gc(L)880 4526 y F4(\()915 4514 y FX(h)943 4526
+y Ga(b)982 4514 y FX(i)1009 4526 y Ga(S)5 b(;)1110 4514
+y F9(\()1138 4526 y Ga(y)1186 4514 y F9(\))1213 4526
+y Ga(T)13 b(;)i(x)p F4(\))p F6(j)1431 4493 y Fu(n)1473
+4526 y F4([)p Ga(\033)s F4(])1578 4493 y Fu(n)2960 4526
+y Gg(by)24 b(\(10\))g(of)g F6(j)p 3374 4526 V 3391 4526
+V 3409 4526 V 64 w(j)3461 4493 y Fu(n)277 4709 y Gg(W)-7
+b(e)23 b(proceed)i(with)f(three)g(cases)h(of)e(\(ii\).)29
+b(Notice)24 b(that)g Ga(a)i F6(2)e Ga(F)13 b(C)7 b F4(\()p
+Ga(M)j F4(\))p Gg(.)p Black 277 4892 a Gb(Case)p Black
+46 w Ga(M)36 b F6(\021)25 b FL(Ax)o F4(\()p Ga(x;)15
+b(a)p F4(\))p Gg(:)658 5040 y F6(j)p FL(Ax)p F4(\()p
+Ga(y)s(;)g(a)p F4(\)[)p Ga(a)26 b F4(:=)1213 5028 y F9(\()1240
+5040 y Ga(x)1292 5028 y F9(\))1319 5040 y Ga(N)10 b F4(])p
+F6(j)1452 5007 y Fu(n)554 5158 y F4(=)33 b F6(j)p Ga(N)10
+b F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])p F6(j)1052 5125
+y Fu(n)554 5277 y F6(\021)33 b(j)p Ga(N)10 b F6(j)791
+5244 y Fu(n)832 5277 y F4([)p Ga(x)26 b F4(:=)f Ga(y)s
+F4(])554 5395 y(=)33 b F6(j)p Ga(N)10 b F6(j)791 5362
+y Fu(n)832 5395 y F4([)p Ga(x)26 b F4(:=)f F6(j)p FL(Ax)p
+F4(\()p Ga(y)s(;)15 b(a)p F4(\))p F6(j)1415 5362 y Fu(n)1456
+5395 y F4(])1525 b Gg(by)23 b(\(1\))h(of)g F6(j)p 3374
+5395 V 3391 5395 V 3409 5395 V 64 w(j)3461 5362 y Fu(n)p
+Black Black eop end
+%%Page: 160 172
+TeXDict begin 160 171 bop Black -144 51 a Gb(160)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 388 a(Case)p Black 47 w Ga(M)35 b
+F6(\021)25 b FL(And)927 402 y Gc(R)985 388 y F4(\()1020
+376 y FX(h)1048 388 y Ga(c)1087 376 y FX(i)1115 388 y
+Ga(S)5 b(;)1216 376 y FX(h)1244 388 y Ga(d)1291 376 y
+FX(i)1318 388 y Ga(T)13 b(;)i(a)p F4(\))p Gg(:)29 b(Notice)24
+b(that)h Ga(M)32 b Gg(has)24 b(to)g(freshly)h(introduce)h
+Ga(a)p Gg(.)702 550 y F6(j)p FL(And)882 564 y Gc(R)940
+550 y F4(\()975 538 y FX(h)1002 550 y Ga(c)1041 538 y
+FX(i)1069 550 y Ga(S)5 b(;)1170 538 y FX(h)1198 550 y
+Ga(d)1245 538 y FX(i)1273 550 y Ga(T)13 b(;)i(a)p F4(\)[)p
+Ga(a)26 b F4(:=)1682 538 y F9(\()1710 550 y Ga(x)1762
+538 y F9(\))1789 550 y Ga(N)10 b F4(])p F6(j)1922 517
+y Fu(n)598 668 y F4(=)33 b F6(j)p FL(Cut)p F4(\()900
+656 y FX(h)928 668 y Ga(a)976 656 y FX(i)1004 668 y Ga(M)10
+b(;)1142 656 y F9(\()1170 668 y Ga(x)1222 656 y F9(\))1249
+668 y Ga(N)g F4(\))p F6(j)1392 635 y Fu(n)598 787 y F4(=)33
+b F6(j)p Ga(N)10 b F6(j)835 754 y Fu(n)876 787 y F4([)p
+Ga(x)26 b F4(:=)f F6(j)p Ga(M)10 b F6(j)1248 754 y Fu(n)1289
+787 y F4(])1736 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3418
+787 28 4 v 3436 787 V 3453 787 V 64 w(j)3505 754 y Fu(n)p
+Black 321 957 a Gb(Case)p Black 47 w Ga(M)35 b F6(\021)25
+b FL(Cut)p F4(\()946 945 y FX(h)974 957 y Ga(c)1013 945
+y FX(i)1040 957 y Ga(S)5 b(;)1141 945 y F9(\()1169 957
+y Ga(y)1217 945 y F9(\))1244 957 y Ga(T)13 b F4(\))p
+Gg(:)702 1118 y F6(j)p FL(Cut)p F4(\()900 1106 y FX(h)928
+1118 y Ga(c)967 1106 y FX(i)995 1118 y Ga(S)5 b(;)1096
+1106 y F9(\()1124 1118 y Ga(y)1172 1106 y F9(\))1199
+1118 y Ga(T)13 b F4(\)[)p Ga(a)26 b F4(:=)1520 1106 y
+F9(\()1547 1118 y Ga(x)1599 1106 y F9(\))1627 1118 y
+Ga(N)10 b F4(])p F6(j)1760 1085 y Fu(n)598 1237 y F4(=)33
+b F6(j)p FL(Cut)p F4(\()900 1225 y FX(h)928 1237 y Ga(c)967
+1225 y FX(i)995 1237 y Ga(S)5 b(;)1096 1225 y F9(\()1124
+1237 y Ga(y)1172 1225 y F9(\))1214 1237 y Ga(T)13 b F4([)p
+Ga(a)25 b F4(:=)1500 1225 y F9(\()1527 1237 y Ga(x)1579
+1225 y F9(\))1607 1237 y Ga(N)9 b F4(])q(\))p F6(j)1775
+1204 y Fu(n)2250 1237 y Ga(a)25 b F6(62)g Ga(F)13 b(C)7
+b F4(\()2587 1225 y FX(h)2614 1237 y Ga(c)2653 1225 y
+FX(i)2681 1237 y Ga(S)e F4(\))23 b Gg(because)j Ga(M)35
+b F6(2)25 b FY(J)3366 1204 y F9(\()p FX(\033)p Gc(;)p
+FX(^)p F9(\))598 1355 y F6(\021)33 b(j)p Ga(T)13 b F4([)p
+Ga(a)26 b F4(:=)1013 1343 y F9(\()1040 1355 y Ga(x)1092
+1343 y F9(\))1120 1355 y Ga(N)10 b F4(])p F6(j)1253 1322
+y Fu(n)1294 1355 y F4([)p Ga(y)28 b F4(:=)d F6(j)p Ga(S)5
+b F6(j)1624 1322 y Fu(n)1665 1355 y F4(])1360 b Gg(by)24
+b(\(2\))f(of)h F6(j)p 3418 1355 V 3436 1355 V 3453 1355
+V 64 w(j)3505 1322 y Fu(n)598 1474 y F4(=)33 b F6(j)p
+Ga(N)10 b F6(j)835 1441 y Fu(n)876 1474 y F4([)p Ga(x)26
+b F4(:=)f F6(j)p Ga(T)13 b F6(j)1216 1441 y Fu(n)1257
+1474 y F4(][)p Ga(y)28 b F4(:=)e F6(j)p Ga(S)5 b F6(j)1613
+1441 y Fu(n)1654 1474 y F4(])1658 b Gg(by)23 b(IH)598
+1592 y F6(\021)33 b(j)p Ga(N)10 b F6(j)835 1559 y Fu(n)876
+1592 y F4([)p Ga(x)26 b F4(:=)f F6(j)p Ga(T)13 b F6(j)1216
+1559 y Fu(n)1257 1592 y F4([)p Ga(y)28 b F4(:=)d F6(j)p
+Ga(S)5 b F6(j)1587 1559 y Fu(n)1628 1592 y F4(]])1043
+b Ga(y)29 b F6(62)24 b Ga(F)13 b(N)d F4(\()3069 1580
+y F9(\()3097 1592 y Ga(x)3149 1580 y F9(\))3177 1592
+y Ga(N)g F4(\))23 b Gg(by)g F4([)p 3458 1592 V 3476 1592
+V 3494 1592 V 65 w(])598 1711 y(=)33 b F6(j)p Ga(N)10
+b F6(j)835 1678 y Fu(n)876 1711 y F4([)p Ga(x)26 b F4(:=)f
+F6(j)p FL(Cut)p F4(\()1298 1699 y FX(h)1326 1711 y Ga(c)1365
+1699 y FX(i)1393 1711 y Ga(S)5 b(;)1494 1699 y F9(\()1521
+1711 y Ga(y)1569 1699 y F9(\))1597 1711 y Ga(T)12 b F4(\))p
+F6(j)1722 1678 y Fu(n)1764 1711 y F4(])1261 b Gg(by)24
+b(\(2\))f(of)h F6(j)p 3418 1711 V 3436 1711 V 3453 1711
+V 64 w(j)3505 1678 y Fu(n)p 3480 1816 4 62 v 3484 1758
+55 4 v 3484 1816 V 3538 1816 4 62 v Black 321 2029 a
+Gb(Pr)n(oof)k(of)f(Pr)n(oposition)h(3.2.8.)p Black 34
+w Gg(The)e(inducti)n(v)o(e)j(steps)f(are)g(quite)g(routine;)j
+(therefore)e(we)d(gi)n(v)o(e)h(the)321 2142 y(calculations)g(for)d
+(four)g(base)g(cases)h(only)-6 b(.)p Black 321 2304 a
+Gb(Logical)25 b(Cut)d(with)h(Axiom:)p Black 549 2417
+a FL(Cut)o F4(\()721 2405 y FX(h)749 2417 y Ga(a)797
+2405 y FX(i)825 2417 y Ga(M)10 b(;)963 2405 y F9(\()991
+2417 y Ga(x)1043 2405 y F9(\))1070 2417 y FL(Ax)p F4(\()p
+Ga(x;)15 b(b)p F4(\))q(\))1474 2380 y Gc(int)1435 2417
+y F6(\000)-31 b(\000)g(!)25 b Ga(M)10 b F4([)p Ga(a)g
+F6(7!)g Ga(b)p F4(])808 2564 y F6(j)p FL(Cut)p F4(\()1006
+2552 y FX(h)1034 2564 y Ga(a)1082 2552 y FX(i)1110 2564
+y Ga(M)g(;)1248 2552 y F9(\()1276 2564 y Ga(x)1328 2552
+y F9(\))1355 2564 y FL(Ax)p F4(\()p Ga(x;)15 b(b)p F4(\))q(\))p
+F6(j)1720 2531 y Fu(n)686 2688 y F4(=)51 b Ga(x)p F4([)p
+Ga(x)26 b F4(:=)f F6(j)p Ga(M)10 b F6(j)1232 2655 y Fu(n)1273
+2688 y F4(])1684 b Gg(by)23 b(\(1,2\))h(of)g F6(j)p 3418
+2688 28 4 v 3436 2688 V 3453 2688 V 64 w(j)3505 2655
+y Fu(n)686 2813 y F4(=)51 b F6(j)p Ga(M)10 b F6(j)956
+2780 y Fu(n)686 2937 y F6(\021)51 b(j)p Ga(M)10 b F4([)p
+Ga(a)g F6(7!)g Ga(b)p F4(])p F6(j)1204 2904 y Fu(n)p
+Black 321 3109 a Gb(Logical)25 b(Cut)d Fb(^)871 3123
+y Fy(R)936 3109 y FO(=)p Fb(^)1058 3123 y Fy(L)1111 3131
+y Fa(1)1154 3109 y Gb(:)p Black 549 3238 a FL(Cut)o F4(\()721
+3226 y FX(h)749 3238 y Ga(c)788 3226 y FX(i)816 3238
+y FL(And)971 3252 y Gc(R)1028 3238 y F4(\()1063 3226
+y FX(h)1091 3238 y Ga(a)1139 3226 y FX(i)1167 3238 y
+Ga(M)10 b(;)1305 3226 y FX(h)1333 3238 y Ga(b)1372 3226
+y FX(i)1399 3238 y Ga(N)g(;)15 b(c)p F4(\))q Ga(;)1637
+3226 y F9(\()1665 3238 y Ga(y)1713 3226 y F9(\))1740
+3238 y FL(And)1895 3201 y F9(1)1895 3261 y Gc(L)1947
+3238 y F4(\()1982 3226 y F9(\()2010 3238 y Ga(x)2062
+3226 y F9(\))2089 3238 y Ga(P)e(;)i(y)s F4(\))q(\))2383
+3201 y Gc(int)2344 3238 y F6(\000)-31 b(\000)g(!)25 b
+FL(Cut)p F4(\()2713 3226 y FX(h)2740 3238 y Ga(a)2788
+3226 y FX(i)2816 3238 y Ga(M)10 b(;)2954 3226 y F9(\()2982
+3238 y Ga(x)3034 3226 y F9(\))3061 3238 y Ga(P)j F4(\))810
+3385 y F6(j)p FL(Cut)p F4(\()1008 3373 y FX(h)1036 3385
+y Ga(c)1075 3373 y FX(i)1103 3385 y FL(And)1257 3399
+y Gc(R)1315 3385 y F4(\()1350 3373 y FX(h)1378 3385 y
+Ga(a)1426 3373 y FX(i)1454 3385 y Ga(M)d(;)1592 3373
+y FX(h)1619 3385 y Ga(b)1658 3373 y FX(i)1686 3385 y
+Ga(N)g(;)15 b(c)p F4(\))q Ga(;)1924 3373 y F9(\()1952
+3385 y Ga(y)2000 3373 y F9(\))2027 3385 y FL(And)2182
+3349 y F9(1)2182 3409 y Gc(L)2234 3385 y F4(\()2269 3373
+y F9(\()2297 3385 y Ga(x)2349 3373 y F9(\))2376 3385
+y Ga(P)e(;)i(y)s F4(\))q(\))p F6(j)2631 3352 y Fu(n)648
+3510 y F4(=)91 b F6(j)p Ga(P)13 b F6(j)931 3477 y Fu(n)972
+3510 y F4([)p Ga(x)26 b F4(:=)f Fp(fst)o F4(\()p Ga(y)s
+F4(\)][)p Ga(y)k F4(:=)d F6(hj)p Ga(M)10 b F6(j)1886
+3477 y Fu(n)1927 3510 y Ga(;)15 b F6(j)p Ga(N)10 b F6(j)2100
+3477 y Fu(n)2142 3510 y F6(i)p F4(])712 b Gg(by)23 b(\(2,3,7\))h(of)g
+F6(j)p 3418 3510 V 3436 3510 V 3453 3510 V 64 w(j)3505
+3477 y Fu(n)648 3634 y F6(\021)91 b(j)p Ga(P)13 b F6(j)931
+3601 y Fu(n)972 3634 y F4([)p Ga(x)26 b F4(:=)f Fp(fst)o
+F4(\()p F6(hj)p Ga(M)10 b F6(j)1557 3601 y Fu(n)1599
+3634 y Ga(;)15 b F6(j)p Ga(N)10 b F6(j)1772 3601 y Fu(n)1814
+3634 y F6(i)p F4(\)])250 b Ga(y)28 b F6(62)d Ga(F)13
+b(V)20 b F4(\()p F6(j)p Ga(P)13 b F6(j)2618 3601 y Fu(n)2659
+3634 y F4(\))24 b Gg(by)f(logical)i(cut)f F6(^)3296 3648
+y Gc(R)3354 3634 y Ga(=)p F6(^)3460 3648 y Gc(L)3508
+3657 y FV(1)621 3721 y Gc(\023)549 3758 y F6(\000)-32
+b(\000)h(!)728 3725 y FX(\003)810 3758 y F6(j)p Ga(P)13
+b F6(j)931 3725 y Fu(n)972 3758 y F4([)p Ga(x)26 b F4(:=)f
+F6(j)p Ga(M)10 b F6(j)1344 3725 y Fu(n)1385 3758 y F4(])648
+3882 y(=)91 b F6(j)p FL(Cut)p F4(\()1008 3870 y FX(h)1036
+3882 y Ga(a)1084 3870 y FX(i)1112 3882 y Ga(M)10 b(;)1250
+3870 y F9(\()1278 3882 y Ga(x)1330 3870 y F9(\))1357
+3882 y Ga(P)j F4(\))p F6(j)1488 3849 y Fu(n)3050 3882
+y Gg(by)24 b(\(2\))f(of)h F6(j)p 3418 3882 V 3436 3882
+V 3453 3882 V 64 w(j)3505 3849 y Fu(n)p Black 321 4054
+a Gb(Logical)h(Cut)d Fb(\033)882 4068 y Fy(R)948 4054
+y FO(=)p Fb(\033)1081 4068 y Fy(L)1139 4054 y Gb(:)p
+Black 598 4181 a FL(Cut)p F4(\()771 4169 y FX(h)799 4181
+y Ga(b)838 4169 y FX(i)866 4181 y FL(Imp)1010 4203 y
+Gc(R)1068 4181 y F4(\()1103 4169 y F9(\()1130 4181 y
+Ga(x)1182 4169 y F9(\))q FX(h)1237 4181 y Ga(a)1285 4169
+y FX(i)1313 4181 y Ga(M)10 b(;)15 b(b)p F4(\))q Ga(;)1566
+4169 y F9(\()1594 4181 y Ga(z)1640 4169 y F9(\))1667
+4181 y FL(Imp)1812 4203 y Gc(L)1864 4181 y F4(\()1899
+4169 y FX(h)1927 4181 y Ga(c)1966 4169 y FX(i)1993 4181
+y Ga(P)e(;)2104 4169 y F9(\()2132 4181 y Ga(y)2180 4169
+y F9(\))2208 4181 y Ga(Q)o(;)i(z)t F4(\))q(\))728 4257
+y Gc(int)689 4294 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p
+F4(\()1058 4282 y FX(h)1085 4294 y Ga(a)1133 4282 y FX(i)1161
+4294 y FL(Cut)p F4(\()1334 4282 y FX(h)1362 4294 y Ga(c)1401
+4282 y FX(i)1428 4294 y Ga(P)13 b(;)1539 4282 y F9(\()1567
+4294 y Ga(x)1619 4282 y F9(\))1647 4294 y Ga(M)d F4(\))p
+Ga(;)1820 4282 y F9(\()1848 4294 y Ga(y)1896 4282 y F9(\))1923
+4294 y Ga(Q)p F4(\))74 b Gg(or)728 4370 y Gc(int)689
+4407 y F6(\000)-31 b(\000)g(!)25 b FL(Cut)p F4(\()1058
+4395 y FX(h)1085 4407 y Ga(c)1124 4395 y FX(i)1152 4407
+y Ga(P)13 b(;)1263 4395 y F9(\()1291 4407 y Ga(x)1343
+4395 y F9(\))1371 4407 y FL(Cut)o F4(\()1543 4395 y FX(h)1571
+4407 y Ga(a)1619 4395 y FX(i)1647 4407 y Ga(M)d(;)1785
+4395 y F9(\()1813 4407 y Ga(y)1861 4395 y F9(\))1888
+4407 y Ga(Q)p F4(\)\))598 4561 y Gg(F)o(or)23 b(the)h(\002rst)f(reduct)
+i(we)e(ha)n(v)o(e:)810 4679 y F6(j)p FL(Cut)p F4(\()1008
+4667 y FX(h)1036 4679 y Ga(b)1075 4667 y FX(i)1103 4679
+y FL(Imp)1247 4701 y Gc(R)1305 4679 y F4(\()1340 4667
+y F9(\()1368 4679 y Ga(x)1420 4667 y F9(\))p FX(h)1474
+4679 y Ga(a)1522 4667 y FX(i)1550 4679 y Ga(M)10 b(;)15
+b(b)p F4(\))q Ga(;)1803 4667 y F9(\()1831 4679 y Ga(z)1877
+4667 y F9(\))1904 4679 y FL(Imp)2049 4701 y Gc(L)2101
+4679 y F4(\()2136 4667 y FX(h)2164 4679 y Ga(c)2203 4667
+y FX(i)2231 4679 y Ga(P)e(;)2342 4667 y F9(\()2369 4679
+y Ga(y)2417 4667 y F9(\))2445 4679 y Ga(Q;)i(z)t F4(\))q(\))p
+F6(j)2699 4646 y Fu(n)648 4798 y F4(=)91 b F6(j)p Ga(Q)p
+F6(j)932 4765 y Fu(n)973 4798 y F4([)p Ga(y)29 b F4(:=)c(\()p
+Ga(z)45 b F6(j)p Ga(P)13 b F6(j)1436 4765 y Fu(n)1477
+4798 y F4(\)][)p Ga(z)30 b F4(:=)25 b Ga(\025x:)p F6(j)p
+Ga(M)10 b F6(j)2033 4765 y Fu(n)2075 4798 y F4(])768
+b Gg(by)24 b(\(2,6,10\))g(of)g F6(j)p 3418 4798 V 3436
+4798 V 3453 4798 V 64 w(j)3505 4765 y Fu(n)648 4917 y
+F6(\021)91 b(j)p Ga(Q)p F6(j)932 4884 y Fu(n)973 4917
+y F4([)p Ga(y)29 b F4(:=)c(\()p Ga(\025x:)p F6(j)p Ga(M)10
+b F6(j)1506 4884 y Fu(n)1548 4917 y F4(\))40 b F6(j)p
+Ga(P)13 b F6(j)1744 4884 y Fu(n)1785 4917 y F4(])481
+b Gg(by)23 b(logical)j(cut)d Ga(z)30 b F6(62)25 b Ga(F)13
+b(V)20 b F4(\()p F6(j)p Ga(Q)p F6(j)3267 4884 y Fu(n)3308
+4917 y Ga(;)15 b F6(j)p Ga(P)e F6(j)3469 4884 y Fu(n)3511
+4917 y F4(\))621 4998 y Gc(\023)549 5035 y F6(\000)-32
+b(\000)h(!)728 5002 y FX(\003)810 5035 y F6(j)p Ga(Q)p
+F6(j)932 5002 y Fu(n)973 5035 y F4([)p Ga(y)29 b F4(:=)c
+F6(j)p Ga(M)10 b F6(j)1341 5002 y Fu(n)1382 5035 y F4([)p
+Ga(x)25 b F4(:=)h F6(j)p Ga(P)13 b F6(j)1727 5002 y Fu(n)1768
+5035 y F4(]])648 5154 y(=)91 b F6(j)p FL(Cut)p F4(\()1008
+5142 y FX(h)1036 5154 y Ga(a)1084 5142 y FX(i)1112 5154
+y FL(Cut)p F4(\()1285 5142 y FX(h)1312 5154 y Ga(c)1351
+5142 y FX(i)1379 5154 y Ga(P)13 b(;)1490 5142 y F9(\()1518
+5154 y Ga(x)1570 5142 y F9(\))1597 5154 y Ga(M)d F4(\))q
+Ga(;)1771 5142 y F9(\()1799 5154 y Ga(y)1847 5142 y F9(\))1874
+5154 y Ga(Q)p F4(\))p F6(j)2006 5121 y Fu(n)3050 5154
+y Gg(by)24 b(\(2\))f(of)h F6(j)p 3418 5154 V 3436 5154
+V 3453 5154 V 64 w(j)3505 5121 y Fu(n)598 5319 y Gg(F)o(or)f(the)h
+(other)g(reduct)h(we)e(ha)n(v)o(e:)810 5438 y F6(j)p
+FL(Cut)p F4(\()1008 5426 y FX(h)1036 5438 y Ga(c)1075
+5426 y FX(i)1103 5438 y Ga(P)13 b(;)1214 5426 y F9(\()1242
+5438 y Ga(x)1294 5426 y F9(\))1321 5438 y FL(Cut)p F4(\()1494
+5426 y FX(h)1522 5438 y Ga(a)1570 5426 y FX(i)1597 5438
+y Ga(M)d(;)1735 5426 y F9(\()1763 5438 y Ga(y)1811 5426
+y F9(\))1839 5438 y Ga(Q)o F4(\))q(\))p F6(j)2006 5405
+y Fu(n)648 5557 y F4(=)91 b F6(j)p Ga(Q)p F6(j)932 5524
+y Fu(n)973 5557 y F4([)p Ga(y)29 b F4(:=)c F6(j)p Ga(M)10
+b F6(j)1341 5524 y Fu(n)1382 5557 y F4(][)p Ga(x)26 b
+F4(:=)f F6(j)p Ga(P)13 b F6(j)1752 5524 y Fu(n)1793 5557
+y F4(])1232 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3418 5557
+V 3436 5557 V 3453 5557 V 64 w(j)3505 5524 y Fu(n)648
+5675 y F6(\021)91 b(j)p Ga(Q)p F6(j)932 5642 y Fu(n)973
+5675 y F4([)p Ga(y)29 b F4(:=)c F6(j)p Ga(M)10 b F6(j)1341
+5642 y Fu(n)1382 5675 y F4([)p Ga(x)25 b F4(:=)h F6(j)p
+Ga(P)13 b F6(j)1727 5642 y Fu(n)1768 5675 y F4(]])559
+b Ga(x)25 b F6(62)g Ga(F)13 b(V)20 b F4(\()p F6(j)p Ga(Q)p
+F6(j)2841 5642 y Fu(n)2882 5675 y F4(\))j Gg(by)h(Remark)g(2.2.7)p
+Black Black eop end
+%%Page: 161 173
+TeXDict begin 161 172 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(3)2639 b(161)p 277 88 3691 4 v Black Black
+277 388 a(Commuting)22 b(Cut:)p Black 554 525 a FL(Cut)p
+F4(\()727 513 y FX(h)755 525 y Ga(a)803 513 y FX(i)830
+525 y Ga(M)11 b(;)969 513 y F9(\()996 525 y Ga(x)1048
+513 y F9(\))1076 525 y Ga(N)f F4(\))1333 488 y Gc(int)1294
+525 y F6(\000)-32 b(\000)h(!)100 b Ga(M)10 b F4([)p Ga(a)25
+b F4(:=)1881 513 y F9(\()1909 525 y Ga(x)1961 513 y F9(\))1988
+525 y Ga(N)10 b F4(])74 b Gg(or)1333 601 y Gc(int)1294
+638 y F6(\000)-32 b(\000)h(!)100 b Ga(N)10 b F4([)p Ga(x)25
+b F4(:=)1870 626 y FX(h)1898 638 y Ga(a)1946 626 y FX(i)1973
+638 y Ga(M)10 b F4(])556 872 y F6(j)p FL(Cut)q F4(\()755
+860 y FX(h)782 872 y Ga(a)830 860 y FX(i)858 872 y Ga(M)g(;)996
+860 y F9(\()1024 872 y Ga(x)1076 860 y F9(\))1103 872
+y Ga(N)g F4(\))p F6(j)1246 839 y Fu(n)1313 872 y F4(=)25
+b F6(j)p Ga(N)10 b F6(j)1542 839 y Fu(n)1583 872 y F4([)p
+Ga(x)25 b F4(:=)g F6(j)p Ga(M)10 b F6(j)1954 839 y Fu(n)1995
+872 y F4(])49 b F6(\021)2190 743 y FK(\032)2258 813 y
+F6(j)p Ga(M)10 b F4([)p Ga(a)26 b F4(:=)2601 801 y F9(\()2629
+813 y Ga(x)2681 801 y F9(\))2708 813 y Ga(N)10 b F4(])p
+F6(j)2841 780 y Fu(n)2258 932 y F6(j)p Ga(N)g F4([)p
+Ga(x)26 b F4(:=)2590 920 y FX(h)2617 932 y Ga(a)2665
+920 y FX(i)2693 932 y Ga(M)10 b F4(])p F6(j)2841 899
+y Fu(n)2995 872 y Gg(by)23 b(Lem.)f(3.2.7)p 3436 1048
+4 62 v 3440 990 55 4 v 3440 1048 V 3494 1048 4 62 v Black
+277 1260 a Gb(Pr)n(oof)30 b(of)f(Lemma)g(3.4.1.)p Black
+33 w Gg(First)h(we)e(notice)j(that)f(whene)n(v)o(er)g
+F6(j)p Ga(M)10 b F6(j)2461 1227 y Fu(S)2533 1260 y Gg(does)30
+b(not)g(introduce)i Ga(a)p Gg(,)e(then)277 1373 y(the)d(substitution)j
+F4([)p 891 1373 28 4 v 909 1373 V 926 1373 V 64 w(])c
+Gg(is)g(pushed)i(inside)g(the)f(subterms)h(and)e(the)h(lemma)f(is)g(by)
+h(routine)h(induction)277 1486 y(and)h(calculation.)47
+b(So)28 b(we)g(are)h(left)g(with)f(the)h(cases)h(where)e
+F6(j)p Ga(M)10 b F6(j)2392 1453 y Fu(S)2464 1486 y Gg(introduces)32
+b Ga(a)p Gg(.)43 b(If)28 b Ga(M)38 b Gg(is)29 b(of)f(the)277
+1599 y(form)c FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))p
+Gg(,)23 b(we)g(reason)i(as)e(follo)n(ws.)p Black 277
+1860 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25 b FL(Id)p
+F4(\()p Ga(y)s(;)15 b(a)p F4(\))675 2024 y F6(j)p FL(Id)p
+F4(\()p Ga(y)s(;)g(a)p F4(\))p F6(j)1003 1991 y Fu(S)1048
+2024 y F4([)p Ga(a)25 b F4(:=)1268 2012 y F9(\()1295
+2024 y Ga(x)1347 2012 y F9(\))1374 2024 y F6(j)p Ga(N)10
+b F6(j)1507 1991 y Fu(S)1551 2024 y F4(])504 2142 y(=)100
+b FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p Ga(a)27
+b F4(:=)1204 2130 y F9(\()1231 2142 y Ga(x)1283 2130
+y F9(\))1311 2142 y F6(j)p Ga(N)10 b F6(j)1444 2109 y
+Fu(S)1488 2142 y F4(])1490 b Gg(by)24 b(\(1\))f(of)h
+F6(j)p 3371 2142 V 3389 2142 V 3406 2142 V 65 w(j)3459
+2109 y Fu(S)504 2261 y F4(=)100 b F6(j)p Ga(N)10 b F6(j)808
+2228 y Fu(S)852 2261 y F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])504
+2379 y F6(\021)100 b(j)p Ga(N)10 b F4([)p Ga(x)g F6(7!)g
+Ga(y)s F4(])p F6(j)1069 2346 y Fu(S)504 2498 y F4(=)100
+b F6(j)p FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))p Fs(\()-5
+b Ga(a)25 b F4(:=)1199 2486 y F9(\()1227 2498 y Ga(x)1279
+2486 y F9(\))1306 2498 y Ga(N)s Fs(\))p F6(j)1439 2465
+y Fu(S)3032 2498 y Gg(by)f(\(2\))f(of)h Fs(\()p 3407
+2498 V 3425 2498 V 3442 2498 V 65 w(\))277 2769 y Gg(F)o(or)j(the)g
+(other)i(cases)f(we)e(illustrate)k(the)e(calculations)j(with)c(one)h(e)
+o(xample.)41 b(Let)26 b F4([)p Ga(\033)s F4(])3041 2736
+y Fu(S)3112 2769 y Gg(and)i Fs(\()p Ga(\033)s Fs(\))f
+Gg(be)277 2882 y F4([)p Ga(a)f F4(:=)497 2870 y F9(\()524
+2882 y Ga(x)576 2870 y F9(\))604 2882 y F6(j)p Ga(N)10
+b F6(j)737 2849 y Fu(S)781 2882 y F4(])23 b Gg(and)h
+Fs(\()-7 b Ga(a)25 b F4(:=)1202 2870 y F9(\()1230 2882
+y Ga(x)1282 2870 y F9(\))1309 2882 y Ga(N)s Fs(\))q Gg(,)d(respecti)n
+(v)o(ely)-6 b(.)p Black 277 3142 a Gb(Case)p Black 46
+w Ga(M)36 b F6(\021)25 b FL(And)883 3156 y Gc(I)923 3142
+y F4(\()958 3130 y FX(h)986 3142 y Ga(c)1025 3130 y FX(i)1053
+3142 y Ga(S)5 b(;)1154 3130 y FX(h)1182 3142 y Ga(b)1221
+3130 y FX(i)1248 3142 y Ga(T)13 b(;)i(a)p F4(\))675 3306
+y F6(j)p FL(And)855 3320 y Gc(I)894 3306 y F4(\()929
+3294 y FX(h)957 3306 y Ga(c)996 3294 y FX(i)1024 3306
+y Ga(S)5 b(;)1125 3294 y FX(h)1153 3306 y Ga(b)1192 3294
+y FX(i)1219 3306 y Ga(T)13 b(;)i(a)p F4(\))p F6(j)1433
+3273 y Fu(S)1478 3306 y F4([)p Ga(\033)s F4(])1583 3273
+y Fu(S)504 3425 y F4(=)100 b FL(And)829 3439 y Gc(R)887
+3425 y F4(\()922 3413 y FX(h)950 3425 y Ga(c)989 3413
+y FX(i)1017 3425 y F6(j)p Ga(S)5 b F6(j)1128 3392 y Fu(S)1171
+3425 y Ga(;)1211 3413 y FX(h)1239 3425 y Ga(b)1278 3413
+y FX(i)1306 3425 y F6(j)p Ga(T)13 b F6(j)1422 3392 y
+Fu(S)1465 3425 y Ga(;)i(a)p F4(\)[)p Ga(\033)s F4(])1693
+3392 y Fu(S)3003 3425 y Gg(by)24 b(\(3\))f(of)h F6(j)p
+3371 3425 V 3389 3425 V 3406 3425 V 65 w(j)3459 3392
+y Fu(S)504 3543 y F4(=)100 b FL(Cut)p F4(\()848 3531
+y FX(h)875 3543 y Ga(a)923 3531 y FX(i)951 3543 y FL(And)1105
+3557 y Gc(R)1163 3543 y F4(\()1198 3531 y FX(h)1226 3543
+y Ga(c)1265 3531 y FX(i)1293 3543 y F6(j)p Ga(S)5 b F6(j)1404
+3510 y Fu(S)1448 3543 y F4([)p Ga(\033)s F4(])1553 3510
+y Fu(S)1597 3543 y Ga(;)1637 3531 y FX(h)1665 3543 y
+Ga(b)1704 3531 y FX(i)1731 3543 y F6(j)p Ga(T)13 b F6(j)1847
+3510 y Fu(S)1891 3543 y F4([)p Ga(\033)s F4(])1996 3510
+y Fu(S)2040 3543 y Ga(;)i(a)p F4(\))p Ga(;)2203 3531
+y F9(\()2231 3543 y Ga(x)2283 3531 y F9(\))2311 3543
+y F6(j)p Ga(N)10 b F6(j)2444 3510 y Fu(S)2488 3543 y
+F4(\))504 3662 y F6(\021)100 b FL(Cut)p F4(\()848 3650
+y FX(h)875 3662 y Ga(a)923 3650 y FX(i)951 3662 y FL(And)1105
+3676 y Gc(R)1163 3662 y F4(\()1198 3650 y FX(h)1226 3662
+y Ga(c)1265 3650 y FX(i)1293 3662 y F6(j)p Ga(S)5 b Fs(\()p
+Ga(\033)s Fs(\))q F6(j)1524 3629 y Fu(S)1568 3662 y Ga(;)1608
+3650 y FX(h)1636 3662 y Ga(b)1675 3650 y FX(i)1702 3662
+y F6(j)p Ga(T)13 b Fs(\()q Ga(\033)s Fs(\))p F6(j)1938
+3629 y Fu(S)1982 3662 y Ga(;)i(a)p F4(\))q Ga(;)2146
+3650 y F9(\()2173 3662 y Ga(x)2225 3650 y F9(\))2253
+3662 y F6(j)p Ga(N)10 b F6(j)2386 3629 y Fu(S)2430 3662
+y F4(\))828 b Gg(by)23 b(IH)504 3780 y F4(=)100 b F6(j)p
+FL(Subst)o F4(\()947 3768 y FX(h)975 3780 y Ga(a)1023
+3768 y FX(i)1050 3780 y FL(And)1205 3794 y Gc(I)1245
+3780 y F4(\()1280 3768 y FX(h)1308 3780 y Ga(c)1347 3768
+y FX(i)1374 3780 y Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q
+Ga(;)1596 3768 y FX(h)1623 3780 y Ga(b)1662 3768 y FX(i)1690
+3780 y Ga(T)13 b Fs(\()p Ga(\033)s Fs(\))q Ga(;)i(a)p
+F4(\))q Ga(;)2040 3768 y F9(\()2067 3780 y Ga(x)2119
+3768 y F9(\))2147 3780 y Ga(N)10 b F4(\))p F6(j)2290
+3747 y Fu(S)2935 3780 y Gg(by)23 b(\(2,3\))h(of)g F6(j)p
+3371 3780 V 3389 3780 V 3406 3780 V 65 w(j)3459 3747
+y Fu(S)504 3899 y F4(=)100 b F6(j)p FL(And)855 3913 y
+Gc(I)894 3899 y F4(\()929 3887 y FX(h)957 3899 y Ga(c)996
+3887 y FX(i)1024 3899 y Ga(S)5 b(;)1125 3887 y FX(h)1153
+3899 y Ga(b)1192 3887 y FX(i)1219 3899 y Ga(T)13 b(;)i(a)p
+F4(\))p Fs(\()q Ga(\033)s Fs(\))q F6(j)1554 3866 y Fu(S)3032
+3899 y Gg(by)24 b(\(3\))f(of)h Fs(\()p 3407 3899 V 3425
+3899 V 3442 3899 V 65 w(\))p 3436 4004 4 62 v 3440 3946
+55 4 v 3440 4004 V 3494 4004 4 62 v Black 277 4217 a
+Gb(Pr)n(oof)c(of)f(Lemma)f(3.4.2.)p Black 33 w Gg(Again,)i(whene)n(v)o
+(er)g F6(j)p Ga(M)10 b F6(j)1938 4184 y Fu(S)2000 4217
+y Gg(does)19 b(not)h(introduce)h Ga(x)p Gg(,)e(then)h(the)f
+(substitution)277 4330 y F4([)p 304 4330 28 4 v 322 4330
+V 340 4330 V 65 w(])24 b Gg(is)h(pushed)i(inside)g(the)e(subterms)i
+(and)e(the)h(lemma)e(is)h(by)g(routine)i(induction)h(and)e
+(calculation.)277 4443 y(So)g(we)f(are)i(left)g(with)f(the)h(cases)g
+(where)g F6(j)p Ga(M)10 b F6(j)1751 4410 y Fu(S)1820
+4443 y Gg(introduces)30 b Ga(x)p Gg(.)36 b(If)26 b Ga(M)36
+b Gg(is)26 b(of)h(the)f(form)h FL(Id)p F4(\()p Ga(x;)15
+b(b)p F4(\))p Gg(,)27 b(we)277 4555 y(reason)e(as)f(follo)n(ws.)p
+Black 277 4785 a Gb(Case)p Black 46 w Ga(M)36 b F6(\021)25
+b FL(Id)p F4(\()p Ga(x;)15 b(b)p F4(\))675 4945 y F6(j)p
+FL(Id)p F4(\()p Ga(x;)g(b)p F4(\))p F6(j)998 4912 y Fu(S)1043
+4945 y F4([)p Ga(x)25 b F4(:=)1267 4933 y FX(h)1294 4945
+y Ga(a)1342 4933 y FX(i)1370 4945 y F6(j)p Ga(N)10 b
+F6(j)1503 4912 y Fu(S)1546 4945 y F4(])504 5058 y(=)100
+b FL(Ax)o F4(\()p Ga(x;)15 b(b)p F4(\)[)p Ga(x)27 b F4(:=)1203
+5046 y FX(h)1230 5058 y Ga(a)1278 5046 y FX(i)1306 5058
+y F6(j)p Ga(N)10 b F6(j)1439 5025 y Fu(S)1483 5058 y
+F4(])1495 b Gg(by)24 b(\(1\))f(of)h F6(j)p 3371 5058
+V 3389 5058 V 3406 5058 V 65 w(j)3459 5025 y Fu(S)504
+5171 y F4(=)100 b F6(j)p Ga(N)10 b F6(j)808 5138 y Fu(S)852
+5171 y F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])504 5284 y F6(\021)100
+b(j)p Ga(N)10 b F4([)p Ga(a)g F6(7!)g Ga(b)p F4(])p F6(j)1056
+5251 y Fu(S)504 5397 y F4(=)100 b F6(j)p FL(Id)p F4(\()p
+Ga(x;)15 b(b)p F4(\))p Fs(\()-5 b Ga(x)25 b F4(:=)1198
+5385 y FX(h)1226 5397 y Ga(a)1274 5385 y FX(i)1301 5397
+y Ga(N)s Fs(\))p F6(j)1434 5364 y Fu(S)3032 5397 y Gg(by)f(\(1\))f(of)h
+Fs(\()p 3407 5397 V 3425 5397 V 3442 5397 V 65 w(\))p
+Black Black eop end
+%%Page: 162 174
+TeXDict begin 162 173 bop Black -144 51 a Gb(162)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 321 388 a Gg(The)e(only)g(other)h(cases)g(which)f(need)h(to)e
+(be)h(considered)j(are)d(where)g F6(j)p Ga(M)10 b F6(j)2659
+355 y Fu(S)2724 388 y Gg(introduces)24 b Ga(x)d Gg(and)i(is)e(not)321
+501 y(an)30 b(axiom.)49 b(W)-7 b(e)29 b(illustrate)j(the)e
+(calculations)k(with)c Ga(M)47 b F6(\021)37 b FL(And)2421
+464 y Gc(i)2421 524 y(E)2481 501 y F4(\()2516 489 y FX(h)2544
+501 y Ga(b)2583 489 y FX(i)2610 501 y FL(Id)p F4(\()p
+Ga(x;)15 b(b)p F4(\))q Ga(;)2924 489 y F9(\()2952 501
+y Ga(y)3000 489 y F9(\))3028 501 y Ga(S)5 b F4(\))p Gg(.)47
+b(There)30 b(are)321 614 y(tw)o(o)23 b(subcases)i(depending)h(on)d
+(whether)h Ga(N)32 b Gg(is)22 b(an)h(axiom)h(that)f(introduces)j
+Ga(a)p Gg(.)i(Let)22 b F4([)p Ga(\033)s F4(])3099 581
+y Fu(S)3165 614 y Gg(and)h Fs(\()q Ga(\033)s Fs(\))g
+Gg(be)321 727 y F4([)p Ga(x)j F4(:=)545 715 y FX(h)572
+727 y Ga(a)620 715 y FX(i)648 727 y F6(j)p Ga(N)10 b
+F6(j)781 694 y Fu(S)825 727 y F4(])23 b Gg(and)h Fs(\()-7
+b Ga(x)25 b F4(:=)1251 715 y FX(h)1278 727 y Ga(a)1326
+715 y FX(i)1353 727 y Ga(N)s Fs(\))q Gg(,)d(respecti)n(v)o(ely)-6
+b(.)p Black 321 931 a Gb(Subcase)p Black 46 w Ga(M)35
+b F6(\021)25 b FL(And)1054 894 y Gc(i)1054 954 y(E)1113
+931 y F4(\()1148 919 y FX(h)1176 931 y Ga(b)1215 919
+y FX(i)1243 931 y FL(Id)p F4(\()p Ga(x;)15 b(b)p F4(\))q
+Ga(;)1557 919 y F9(\()1585 931 y Ga(y)1633 919 y F9(\))1660
+931 y Ga(S)5 b F4(\))23 b Gg(and)h Ga(N)35 b F6(\021)25
+b FL(Id)q F4(\()p Ga(z)t(;)15 b(a)p F4(\))794 1076 y
+F6(j)p FL(And)973 1039 y Gc(i)973 1099 y(E)1033 1076
+y F4(\()1068 1064 y FX(h)1096 1076 y Ga(b)1135 1064 y
+FX(i)1162 1076 y FL(Id)q F4(\()p Ga(x;)g(b)p F4(\))q
+Ga(;)1477 1064 y F9(\()1504 1076 y Ga(y)1552 1064 y F9(\))1580
+1076 y Ga(S)5 b F4(\))p F6(j)1701 1043 y Fu(S)1745 1076
+y F4([)p Ga(\033)s F4(])1850 1043 y Fu(S)648 1190 y F4(=)75
+b FL(And)948 1154 y Gc(i)948 1214 y(L)1000 1190 y F4(\()1035
+1178 y F9(\()1063 1190 y Ga(y)1111 1178 y F9(\))1138
+1190 y F6(j)p Ga(S)5 b F6(j)1249 1157 y Fu(S)1293 1190
+y Ga(;)15 b(x)p F4(\)[)p Ga(\033)s F4(])1525 1157 y Fu(S)3047
+1190 y Gg(by)24 b(\(7\))f(of)h F6(j)p 3415 1190 28 4
+v 3433 1190 V 3450 1190 V 65 w(j)3503 1157 y Fu(S)648
+1305 y F4(=)75 b FL(Cut)p F4(\()967 1293 y FX(h)994 1305
+y Ga(a)1042 1293 y FX(i)1070 1305 y F6(j)p FL(Id)p F4(\()p
+Ga(z)t(;)15 b(a)p F4(\))p F6(j)1396 1272 y Fu(S)1441
+1305 y Ga(;)1481 1293 y F9(\()1509 1305 y Ga(x)1561 1293
+y F9(\))1589 1305 y FL(And)1743 1268 y Gc(i)1743 1328
+y(L)1795 1305 y F4(\()1830 1293 y F9(\()1858 1305 y Ga(y)1906
+1293 y F9(\))1933 1305 y F6(j)p Ga(S)5 b F6(j)2044 1272
+y Fu(S)2088 1305 y F4([)p Ga(\033)s F4(])2193 1272 y
+Fu(S)2237 1305 y Ga(;)15 b(x)p F4(\))q(\))619 b Gg(by)23
+b(assumption)579 1383 y Gc(cut)549 1420 y F6(\000)-32
+b(\000)h(!)731 1387 y FX(\003)794 1420 y FL(Cut)p F4(\()967
+1408 y FX(h)994 1420 y Ga(a)1042 1408 y FX(i)1070 1420
+y F6(j)p FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))p F6(j)1396
+1387 y Fu(S)1441 1420 y Ga(;)1481 1408 y F9(\()1509 1420
+y Ga(x)1561 1408 y F9(\))1589 1420 y FL(And)1743 1383
+y Gc(i)1743 1443 y(L)1795 1420 y F4(\()1830 1408 y F9(\()1858
+1420 y Ga(y)1906 1408 y F9(\))1933 1420 y F6(j)p Ga(S)5
+b Fs(\()q Ga(\033)s Fs(\))q F6(j)2165 1387 y Fu(S)2208
+1420 y Ga(;)15 b(x)p F4(\))q(\))966 b Gg(by)23 b(IH)579
+1497 y Gc(cut)549 1534 y F6(\000)-32 b(\000)h(!)75 b
+FL(And)948 1497 y Gc(i)948 1557 y(L)1000 1534 y F4(\()1035
+1522 y F9(\()1063 1534 y Ga(y)1111 1522 y F9(\))1138
+1534 y F6(j)p Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q F6(j)1370
+1501 y Fu(S)1413 1534 y Ga(;)15 b(x)p F4(\)[)p Ga(x)10
+b F6(7!)g Ga(z)t F4(])648 1649 y F6(\021)75 b FL(And)948
+1612 y Gc(i)948 1672 y(L)1000 1649 y F4(\()1035 1637
+y F9(\()1063 1649 y Ga(y)1111 1637 y F9(\))1138 1649
+y F6(j)p Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q F6(j)1370
+1616 y Fu(S)1413 1649 y Ga(;)15 b(z)t F4(\))1350 b Ga(x)25
+b F6(62)g Ga(F)13 b(N)d F4(\()p F6(j)p Ga(S)5 b Fs(\()q
+Ga(\033)s Fs(\))p F6(j)3467 1616 y Fu(S)3511 1649 y F4(\))648
+1764 y(=)75 b F6(j)p FL(And)973 1727 y Gc(i)973 1787
+y(E)1033 1764 y F4(\()1068 1752 y FX(h)1096 1764 y Ga(a)1144
+1752 y FX(i)1171 1764 y FL(Id)q F4(\()p Ga(z)t(;)15 b(a)p
+F4(\))q Ga(;)1489 1752 y F9(\()1517 1764 y Ga(y)1565
+1752 y F9(\))1592 1764 y Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))p
+F4(\))p F6(j)1833 1731 y Fu(S)3047 1764 y Gg(by)24 b(\(7\))f(of)h
+F6(j)p 3415 1764 V 3433 1764 V 3450 1764 V 65 w(j)3503
+1731 y Fu(S)648 1878 y F4(=)75 b F6(j)p FL(And)973 1841
+y Gc(i)973 1901 y(E)1033 1878 y F4(\()1068 1866 y FX(h)1096
+1878 y Ga(b)1135 1866 y FX(i)1162 1878 y FL(Id)q F4(\()p
+Ga(x;)15 b(b)p F4(\))q Ga(;)1477 1866 y F9(\()1504 1878
+y Ga(y)1552 1866 y F9(\))1580 1878 y Ga(S)5 b F4(\))p
+Fs(\()q Ga(\033)s Fs(\))p F6(j)1821 1845 y Fu(S)321 2073
+y Gg(Otherwise)25 b(the)e(lemma)h(follo)n(ws)g(by)f(the)h(calculation)j
+(gi)n(v)o(en)d(belo)n(w)-6 b(.)p Black 321 2277 a Gb(Subcase)p
+Black 46 w Ga(M)35 b F6(\021)25 b FL(And)1054 2240 y
+Gc(i)1054 2300 y(E)1113 2277 y F4(\()1148 2265 y FX(h)1176
+2277 y Ga(b)1215 2265 y FX(i)1243 2277 y FL(Id)p F4(\()p
+Ga(x;)15 b(b)p F4(\))q Ga(;)1557 2265 y F9(\()1585 2277
+y Ga(y)1633 2265 y F9(\))1660 2277 y Ga(S)5 b F4(\))23
+b Gg(and)h Ga(N)35 b F6(6\021)25 b FL(Id)q F4(\()p Ga(z)t(;)15
+b(a)p F4(\))794 2422 y F6(j)p FL(And)973 2385 y Gc(i)973
+2445 y(E)1033 2422 y F4(\()1068 2410 y FX(h)1096 2422
+y Ga(b)1135 2410 y FX(i)1162 2422 y FL(Id)q F4(\()p Ga(x;)g(b)p
+F4(\))q Ga(;)1477 2410 y F9(\()1504 2422 y Ga(y)1552
+2410 y F9(\))1580 2422 y Ga(S)5 b F4(\))p F6(j)1701 2389
+y Fu(S)1745 2422 y F4([)p Ga(\033)s F4(])1850 2389 y
+Fu(S)648 2536 y F4(=)75 b FL(And)948 2500 y Gc(i)948
+2560 y(L)1000 2536 y F4(\()1035 2524 y F9(\()1063 2536
+y Ga(y)1111 2524 y F9(\))1138 2536 y F6(j)p Ga(S)5 b
+F6(j)1249 2503 y Fu(S)1293 2536 y Ga(;)15 b(x)p F4(\)[)p
+Ga(\033)s F4(])1525 2503 y Fu(S)3047 2536 y Gg(by)24
+b(\(7\))f(of)h F6(j)p 3415 2536 V 3433 2536 V 3450 2536
+V 65 w(j)3503 2503 y Fu(S)648 2651 y F4(=)75 b FL(Cut)p
+F4(\()967 2639 y FX(h)994 2651 y Ga(a)1042 2639 y FX(i)1070
+2651 y F6(j)p Ga(N)10 b F6(j)1203 2618 y Fu(S)1247 2651
+y Ga(;)1287 2639 y F9(\()1315 2651 y Ga(x)1367 2639 y
+F9(\))1394 2651 y FL(And)1548 2614 y Gc(i)1548 2674 y(L)1601
+2651 y F4(\()1636 2639 y F9(\()1663 2651 y Ga(y)1711
+2639 y F9(\))1739 2651 y F6(j)p Ga(S)5 b F6(j)1850 2618
+y Fu(S)1894 2651 y F4([)p Ga(\033)s F4(])1999 2618 y
+Fu(S)2043 2651 y Ga(;)15 b(x)p F4(\)\))814 b Gg(by)23
+b(assumption)579 2729 y Gc(cut)549 2766 y F6(\000)-32
+b(\000)h(!)731 2733 y FX(\003)794 2766 y FL(Cut)p F4(\()967
+2754 y FX(h)994 2766 y Ga(a)1042 2754 y FX(i)1070 2766
+y F6(j)p Ga(N)10 b F6(j)1203 2733 y Fu(S)1247 2766 y
+Ga(;)1287 2754 y F9(\()1315 2766 y Ga(x)1367 2754 y F9(\))1394
+2766 y FL(And)1548 2729 y Gc(i)1548 2789 y(L)1601 2766
+y F4(\()1636 2754 y F9(\()1663 2766 y Ga(y)1711 2754
+y F9(\))1739 2766 y F6(j)p Ga(S)5 b Fs(\()p Ga(\033)s
+Fs(\))q F6(j)1970 2733 y Fu(S)2014 2766 y Ga(;)15 b(x)p
+F4(\)\))1161 b Gg(by)23 b(IH)648 2880 y F4(=)75 b F6(j)p
+FL(And)973 2843 y Gc(i)973 2903 y(E)1033 2880 y F4(\()1068
+2868 y FX(h)1096 2880 y Ga(a)1144 2868 y FX(i)1171 2880
+y Ga(N)10 b(;)1294 2868 y F9(\()1322 2880 y Ga(y)1370
+2868 y F9(\))1397 2880 y Ga(S)5 b Fs(\()q Ga(\033)s Fs(\))q
+F4(\))p F6(j)1639 2847 y Fu(S)3002 2880 y Gg(by)23 b(\(11\))h(of)g
+F6(j)p 3415 2880 V 3433 2880 V 3450 2880 V 65 w(j)3503
+2847 y Fu(S)648 2995 y F4(=)75 b F6(j)p FL(And)973 2958
+y Gc(i)973 3018 y(E)1033 2995 y F4(\()1068 2983 y FX(h)1096
+2995 y Ga(b)1135 2983 y FX(i)1162 2995 y FL(Id)q F4(\()p
+Ga(x;)15 b(b)p F4(\))q Ga(;)1477 2983 y F9(\()1504 2995
+y Ga(y)1552 2983 y F9(\))1580 2995 y Ga(S)5 b F4(\))p
+Fs(\()q Ga(\033)s Fs(\))p F6(j)1821 2962 y Fu(S)p 3480
+3098 4 62 v 3484 3040 55 4 v 3484 3098 V 3538 3098 4
+62 v Black 321 3311 a Gb(Pr)n(oof)21 b(of)f(Lemma)f(3.4.3.)p
+Black 34 w Gg(As)g(in)h(Lemma)g(3.4.1,)g(the)g(dif)n(\002cult)h(cases)h
+(are)e(where)g F6(j)p Ga(M)10 b F6(j)3104 3278 y Fu(S)3168
+3311 y Gg(introduces)321 3424 y Ga(a)p Gg(.)58 b(W)-7
+b(e)32 b(illustrate)k(the)e(calculations)j(with)c(tw)o(o)g(e)o
+(xamples.)59 b(Let)33 b Fs(^)p Ga(\033)s Fs(_)h Gg(and)g
+F4([)p Ga(\033)s F4(])2923 3391 y Fu(S)2999 3424 y Gg(be)g(of)f(the)h
+(form)321 3537 y Fs(^)q FL(And)508 3500 y Gc(i)508 3560
+y(E)568 3537 y F4(\()603 3525 y FX(h)631 3537 y Ga(a)679
+3525 y FX(i)p 708 3537 28 4 v 726 3537 V 743 3537 V 771
+3537 a Ga(;)811 3525 y F9(\()839 3537 y Ga(x)891 3525
+y F9(\))918 3537 y Ga(N)10 b F4(\))p Fs(_)23 b Gg(and)h
+F4([)p Ga(a)i F4(:=)1465 3525 y F9(\()1493 3537 y Ga(z)1539
+3525 y F9(\))1566 3537 y FL(And)1721 3500 y Gc(i)1721
+3560 y(L)1773 3537 y F4(\()1808 3525 y F9(\()1836 3537
+y Ga(x)1888 3525 y F9(\))1915 3537 y F6(j)p Ga(N)10 b
+F6(j)2048 3504 y Fu(S)2092 3537 y Ga(;)15 b(z)t F4(\))q(])p
+Gg(,)23 b(respecti)n(v)o(ely)-6 b(.)p Black 321 3740
+a Gb(Case)p Black 47 w Ga(M)35 b F6(\021)25 b FL(Id)p
+F4(\()p Ga(y)s(;)15 b(a)p F4(\))662 3887 y F6(j)p FL(Id)p
+F4(\()p Ga(y)s(;)g(a)p F4(\))p F6(j)990 3854 y Fu(S)1035
+3887 y F4([)p Ga(\033)s F4(])1140 3854 y Fu(S)549 4006
+y F4(=)42 b FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\)[)p
+Ga(a)27 b F4(:=)1191 3994 y F9(\()1219 4006 y Ga(z)1265
+3994 y F9(\))1292 4006 y FL(And)1447 3969 y Gc(i)1447
+4029 y(L)1499 4006 y F4(\()1534 3994 y F9(\()1562 4006
+y Ga(x)1614 3994 y F9(\))1641 4006 y F6(j)p Ga(N)10 b
+F6(j)1774 3973 y Fu(S)1818 4006 y Ga(;)15 b(z)t F4(\))q(])1082
+b Gg(by)24 b(\(1\))f(of)h F6(j)p 3415 4006 V 3433 4006
+V 3450 4006 V 65 w(j)3503 3973 y Fu(S)549 4125 y F4(=)42
+b FL(And)816 4088 y Gc(i)816 4148 y(L)869 4125 y F4(\()904
+4113 y F9(\()931 4125 y Ga(x)983 4113 y F9(\))1011 4125
+y F6(j)p Ga(N)10 b F6(j)1144 4092 y Fu(S)1188 4125 y
+Ga(;)15 b(y)s F4(\))1019 b Gg(by)24 b(assumption)i Ga(z)j
+F6(62)c Ga(F)13 b(N)d F4(\()3227 4113 y F9(\()3255 4125
+y Ga(x)3307 4113 y F9(\))3334 4125 y F6(j)p Ga(N)g F6(j)3467
+4092 y Fu(S)3511 4125 y F4(\))549 4243 y(=)42 b F6(j)p
+FL(And)842 4206 y Gc(i)842 4266 y(E)901 4243 y F4(\()936
+4231 y FX(h)964 4243 y Ga(a)1012 4231 y FX(i)1039 4243
+y FL(Id)q F4(\()p Ga(y)s(;)15 b(a)p F4(\))q Ga(;)1359
+4231 y F9(\()1387 4243 y Ga(x)1439 4231 y F9(\))1466
+4243 y Ga(N)10 b F4(\))p F6(j)1609 4210 y Fu(S)549 4362
+y F4(=)42 b F6(j)p FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p
+F4(\))p Fs(^)r Ga(\033)s Fs(_)p F6(j)1111 4329 y Fu(S)3076
+4362 y Gg(by)24 b(\(1\))f(of)h Fs(^)p 3451 4362 V 3469
+4362 V 3487 4362 V 65 w(_)p Black 321 4540 a Gb(Case)p
+Black 47 w Ga(M)35 b F6(\021)25 b FL(And)927 4554 y Gc(I)967
+4540 y F4(\()1002 4528 y FX(h)1030 4540 y Ga(c)1069 4528
+y FX(i)1097 4540 y Ga(S)5 b(;)1198 4528 y FX(h)1226 4540
+y Ga(d)1273 4528 y FX(i)1301 4540 y Ga(T)12 b(;)j(a)p
+F4(\))662 4687 y F6(j)p FL(And)842 4701 y Gc(I)882 4687
+y F4(\()917 4675 y FX(h)944 4687 y Ga(c)983 4675 y FX(i)1011
+4687 y F6(j)p Ga(S)5 b F6(j)1122 4654 y Fu(S)1166 4687
+y Ga(;)1206 4675 y FX(h)1234 4687 y Ga(d)1281 4675 y
+FX(i)1309 4687 y F6(j)p Ga(T)13 b F6(j)1425 4654 y Fu(S)1468
+4687 y Ga(;)i(a)p F4(\))p F6(j)1616 4654 y Fu(S)1661
+4687 y F4([)p Ga(\033)s F4(])1766 4654 y Fu(S)549 4806
+y F4(=)42 b FL(And)816 4820 y Gc(R)874 4806 y F4(\()909
+4794 y FX(h)937 4806 y Ga(c)976 4794 y FX(i)1004 4806
+y F6(j)p Ga(S)5 b F6(j)1115 4773 y Fu(S)1158 4806 y Ga(;)1198
+4794 y FX(h)1226 4806 y Ga(d)1273 4794 y FX(i)1301 4806
+y F6(j)p Ga(T)13 b F6(j)1417 4773 y Fu(S)1461 4806 y
+Ga(;)i(a)p F4(\)[)p Ga(\033)s F4(])1689 4773 y Fu(S)3047
+4806 y Gg(by)24 b(\(3\))f(of)h F6(j)p 3415 4806 V 3433
+4806 V 3450 4806 V 65 w(j)3503 4773 y Fu(S)549 4924 y
+F4(=)42 b FL(Cut)p F4(\()835 4912 y FX(h)862 4924 y Ga(a)910
+4912 y FX(i)938 4924 y FL(And)1093 4938 y Gc(R)1150 4924
+y F4(\()1185 4912 y FX(h)1213 4924 y Ga(c)1252 4912 y
+FX(i)1280 4924 y F6(j)p Ga(S)5 b F6(j)1391 4891 y Fu(S)1435
+4924 y F4([)p Ga(\033)s F4(])1540 4891 y Fu(S)1584 4924
+y Ga(;)1624 4912 y FX(h)1652 4924 y Ga(d)1699 4912 y
+FX(i)1726 4924 y F6(j)p Ga(T)13 b F6(j)1842 4891 y Fu(S)1886
+4924 y F4([)p Ga(\033)s F4(])1991 4891 y Fu(S)2035 4924
+y Ga(;)i(a)p F4(\))q Ga(;)2199 4912 y F9(\()2227 4924
+y Ga(z)2273 4912 y F9(\))2300 4924 y FL(And)2455 4887
+y Gc(i)2455 4947 y(L)2507 4924 y F4(\()2542 4912 y F9(\()2570
+4924 y Ga(x)2622 4912 y F9(\))2649 4924 y F6(j)p Ga(N)10
+b F6(j)2782 4891 y Fu(S)2826 4924 y Ga(;)15 b(z)t F4(\))q(\))549
+5043 y F6(\021)42 b FL(Cut)p F4(\()835 5031 y FX(h)862
+5043 y Ga(a)910 5031 y FX(i)938 5043 y FL(And)1093 5057
+y Gc(R)1150 5043 y F4(\()1185 5031 y FX(h)1213 5043 y
+Ga(c)1252 5031 y FX(i)1280 5043 y F6(j)p Ga(S)5 b Fs(^)q
+Ga(\033)s Fs(_)p F6(j)1511 5010 y Fu(S)1555 5043 y Ga(;)1595
+5031 y FX(h)1623 5043 y Ga(d)1670 5031 y FX(i)1697 5043
+y F6(j)p Ga(T)13 b Fs(^)q Ga(\033)s Fs(_)q F6(j)1934
+5010 y Fu(S)1977 5043 y Ga(;)i(a)p F4(\))q Ga(;)2141
+5031 y F9(\()2169 5043 y Ga(z)2215 5031 y F9(\))2243
+5043 y FL(And)2397 5006 y Gc(i)2397 5066 y(L)2449 5043
+y F4(\()2484 5031 y F9(\()2512 5043 y Ga(x)2564 5031
+y F9(\))2591 5043 y F6(j)p Ga(N)10 b F6(j)2724 5010 y
+Fu(S)2768 5043 y Ga(;)15 b(z)t F4(\))q(\))412 b Gg(by)23
+b(IH)549 5161 y F4(=)42 b F6(j)p FL(And)842 5124 y Gc(i)842
+5184 y(E)901 5161 y F4(\()936 5149 y FX(h)964 5161 y
+Ga(a)1012 5149 y FX(i)1039 5161 y FL(And)1194 5175 y
+Gc(I)1234 5161 y F4(\()1269 5149 y FX(h)1297 5161 y Ga(c)1336
+5149 y FX(i)1364 5161 y Ga(S)5 b Fs(^)p Ga(\033)s Fs(_)q
+Ga(;)1585 5149 y FX(h)1613 5161 y Ga(d)1660 5149 y FX(i)1687
+5161 y Ga(T)13 b Fs(^)p Ga(\033)s Fs(_)q Ga(;)i(a)p F4(\))q
+Ga(;)2037 5149 y F9(\()2065 5161 y Ga(x)2117 5149 y F9(\))2144
+5161 y Ga(N)10 b F4(\))p F6(j)2287 5128 y Fu(S)2933 5161
+y Gg(by)24 b(\(2,11\))g(of)g F6(j)p 3415 5161 V 3433
+5161 V 3450 5161 V 65 w(j)3503 5128 y Fu(S)549 5280 y
+F4(=)42 b F6(j)p FL(And)842 5294 y Gc(I)882 5280 y F4(\()917
+5268 y FX(h)944 5280 y Ga(c)983 5268 y FX(i)1011 5280
+y Ga(S)5 b(;)1112 5268 y FX(h)1140 5280 y Ga(d)1187 5268
+y FX(i)1215 5280 y Ga(T)12 b(;)j(a)p F4(\))p Fs(^)r Ga(\033)s
+Fs(_)p F6(j)1549 5247 y Fu(S)3076 5280 y Gg(by)24 b(\(2\))f(of)h
+Fs(^)p 3451 5280 V 3469 5280 V 3487 5280 V 65 w(_)p 3480
+5385 4 62 v 3484 5327 55 4 v 3484 5385 V 3538 5385 4
+62 v Black Black eop end
+%%Page: 163 175
+TeXDict begin 163 174 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(3)2639 b(163)p 277 88 3691 4 v Black Black
+277 388 a(Pr)n(oof)24 b(of)g(Theor)n(em)f(3.4.4.)p Black
+34 w Gg(W)-7 b(e)23 b(gi)n(v)o(e)g(some)h(illustrati)n(v)o(e)i(e)o
+(xamples.)p Black 277 612 a Gb(Beta-Reduction:)p Black
+410 748 a FL(Imp)554 770 y Gc(E)614 748 y F4(\()649 736
+y FX(h)677 748 y Ga(b)716 736 y FX(i)743 748 y FL(Imp)888
+770 y Gc(I)928 748 y F4(\()963 736 y F9(\()990 748 y
+Ga(x)1042 736 y F9(\))q FX(h)1097 748 y Ga(a)1145 736
+y FX(i)1173 748 y Ga(M)10 b(;)15 b(b)p F4(\))q Ga(;)1426
+736 y FX(h)1453 748 y Ga(c)1492 736 y FX(i)1520 748 y
+Ga(N)10 b(;)1643 736 y F9(\()1671 748 y Ga(y)1719 736
+y F9(\))1746 748 y Ga(P)j F4(\))1940 711 y Gc(\014)1876
+748 y F6(\000)-31 b(\000)g(!)23 b FL(Subst)o F4(\()2317
+736 y FX(h)2345 748 y Ga(c)2384 736 y FX(i)2412 748 y
+Ga(N)10 b(;)2535 736 y F9(\()2563 748 y Ga(x)2615 736
+y F9(\))2642 748 y FL(Subst)o F4(\()2889 736 y FX(h)2917
+748 y Ga(a)2965 736 y FX(i)2992 748 y Ga(M)h(;)3131 736
+y F9(\()3158 748 y Ga(y)3206 736 y F9(\))3234 748 y Ga(P)i
+F4(\)\))698 920 y F6(j)p FL(Imp)868 942 y Gc(E)928 920
+y F4(\()963 908 y FX(h)990 920 y Ga(b)1029 908 y FX(i)1057
+920 y FL(Imp)1201 942 y Gc(I)1241 920 y F4(\()1276 908
+y F9(\()1304 920 y Ga(x)1356 908 y F9(\))p FX(h)1411
+920 y Ga(a)1459 908 y FX(i)1486 920 y Ga(M)d(;)15 b(b)p
+F4(\))q Ga(;)1739 908 y FX(h)1767 920 y Ga(c)1806 908
+y FX(i)1834 920 y Ga(N)10 b(;)1957 908 y F9(\()1985 920
+y Ga(y)2033 908 y F9(\))2060 920 y Ga(P)j F4(\))p F6(j)2191
+887 y Fu(S)604 1039 y F4(=)23 b FL(Cut)p F4(\()871 1027
+y FX(h)899 1039 y Ga(b)938 1027 y FX(i)965 1039 y FL(Imp)1110
+1061 y Gc(R)1168 1039 y F4(\()1203 1027 y F9(\()1230
+1039 y Ga(x)1282 1027 y F9(\))q FX(h)1337 1039 y Ga(a)1385
+1027 y FX(i)1413 1039 y F6(j)p Ga(M)10 b F6(j)1561 1006
+y Fu(S)1605 1039 y Ga(;)15 b(b)p F4(\))p Ga(;)1759 1027
+y F9(\()1787 1039 y Ga(z)1833 1027 y F9(\))1861 1039
+y FL(Imp)2005 1061 y Gc(L)2058 1039 y F4(\()2093 1027
+y FX(h)2120 1039 y Ga(c)2159 1027 y FX(i)2187 1039 y
+F6(j)p Ga(N)10 b F6(j)2320 1006 y Fu(S)2364 1039 y Ga(;)2404
+1027 y F9(\()2432 1039 y Ga(y)2480 1027 y F9(\))2507
+1039 y F6(j)p Ga(P)j F6(j)2628 1006 y Fu(S)2672 1039
+y Ga(;)i(z)t F4(\))q(\))60 b Gg(by)24 b(\(5,13\))g(of)g
+F6(j)p 3371 1039 28 4 v 3389 1039 V 3406 1039 V 65 w(j)3459
+1006 y Fu(S)535 1120 y Gc(cut)504 1157 y F6(\000)-31
+b(\000)g(!)23 b FL(Cut)p F4(\()871 1145 y FX(h)899 1157
+y Ga(c)938 1145 y FX(i)966 1157 y F6(j)p Ga(N)10 b F6(j)1099
+1124 y Fu(S)1143 1157 y Ga(;)1183 1145 y F9(\()1210 1157
+y Ga(x)1262 1145 y F9(\))1290 1157 y FL(Cut)p F4(\()1463
+1145 y FX(h)1490 1157 y Ga(a)1538 1145 y FX(i)1566 1157
+y F6(j)p Ga(M)g F6(j)1714 1124 y Fu(S)1758 1157 y Ga(;)1798
+1145 y F9(\()1826 1157 y Ga(y)1874 1145 y F9(\))1901
+1157 y F6(j)p Ga(P)j F6(j)2022 1124 y Fu(S)2066 1157
+y F4(\)\))1575 1276 y Ga(z)27 b Gg(is)d(freshly)h(introduced)i(by)c
+(side-condition)28 b(\(13\))c(of)g F6(j)p 3371 1276 V
+3389 1276 V 3406 1276 V 65 w(j)3459 1243 y Fu(S)2232
+1394 y Gg(and)g Ga(b)f Gg(is)h(freshly)h(introduced)h(by)3396
+1357 y Gc(\014)3332 1394 y F6(\000)-31 b(\000)f(!)604
+1513 y F4(=)23 b F6(j)p FL(Subst)p F4(\()971 1501 y FX(h)998
+1513 y Ga(c)1037 1501 y FX(i)1065 1513 y Ga(N)10 b(;)1188
+1501 y F9(\()1216 1513 y Ga(x)1268 1501 y F9(\))1295
+1513 y FL(Subst)p F4(\()1543 1501 y FX(h)1570 1513 y
+Ga(a)1618 1501 y FX(i)1646 1513 y Ga(M)g(;)1784 1501
+y F9(\()1812 1513 y Ga(y)1860 1501 y F9(\))1887 1513
+y Ga(P)j F4(\)\))p F6(j)2053 1480 y Fu(S)3003 1513 y
+Gg(by)24 b(\(2\))f(of)h F6(j)p 3371 1513 V 3389 1513
+V 3406 1513 V 65 w(j)3459 1480 y Fu(S)p Black 277 1713
+a Gb(Commuting)e(Reduction:)p Black 504 1850 a FL(And)659
+1813 y Gc(i)659 1873 y(E)719 1850 y F4(\()754 1838 y
+FX(h)781 1850 y Ga(a)829 1838 y FX(i)857 1850 y Ga(M)10
+b(;)995 1838 y F9(\()1023 1850 y Ga(x)1075 1838 y F9(\))1102
+1850 y Ga(N)g F4(\))1311 1813 y Gc(\015)1246 1850 y F6(\000)-31
+b(\000)f(!)25 b Ga(M)10 b Fs(^)q FL(And)1726 1813 y Gc(i)1726
+1873 y(E)1786 1850 y F4(\()1821 1838 y FX(h)1849 1850
+y Ga(a)1897 1838 y FX(i)p 1926 1850 V 1944 1850 V 1962
+1850 V 1989 1850 a Ga(;)2029 1838 y F9(\()2057 1850 y
+Ga(x)2109 1838 y F9(\))2136 1850 y Ga(N)g F4(\))p Fs(_)717
+2011 y F6(j)p FL(And)897 1974 y Gc(i)897 2034 y(E)957
+2011 y F4(\()992 1999 y FX(h)1019 2011 y Ga(a)1067 1999
+y FX(i)1095 2011 y Ga(M)g(;)1233 1999 y F9(\()1261 2011
+y Ga(x)1313 1999 y F9(\))1340 2011 y Ga(N)g F4(\))p F6(j)1483
+1978 y Fu(S)604 2130 y F4(=)42 b FL(Cut)p F4(\()890 2118
+y FX(h)918 2130 y Ga(a)966 2118 y FX(i)993 2130 y F6(j)p
+Ga(M)10 b F6(j)1141 2097 y Fu(S)1185 2130 y Ga(;)1225
+2118 y F9(\()1253 2130 y Ga(z)1299 2118 y F9(\))1327
+2130 y FL(And)1481 2093 y Gc(i)1481 2153 y(L)1534 2130
+y F4(\()1569 2118 y F9(\()1596 2130 y Ga(x)1648 2118
+y F9(\))1676 2130 y F6(j)p Ga(N)g F6(j)1809 2097 y Fu(S)1853
+2130 y Ga(;)15 b(z)t F4(\))q(\))947 b Gg(by)24 b(\(11\))g(of)g
+F6(j)p 3371 2130 V 3389 2130 V 3406 2130 V 65 w(j)3459
+2097 y Fu(S)535 2211 y Gc(cut)504 2248 y F6(\000)-31
+b(\000)g(!)42 b(j)p Ga(M)10 b F6(j)865 2215 y Fu(S)909
+2248 y F4([)p Ga(a)26 b F4(:=)1129 2236 y F9(\()1156
+2248 y Ga(z)1202 2236 y F9(\))1230 2248 y FL(And)1385
+2211 y Gc(i)1385 2271 y(L)1437 2248 y F4(\()1472 2236
+y F9(\()1500 2248 y Ga(x)1552 2236 y F9(\))1579 2248
+y F6(j)p Ga(N)10 b F6(j)1712 2215 y Fu(S)1756 2248 y
+Ga(;)15 b(z)t F4(\))q(])335 b Ga(a)23 b Gg(is)h(not)g(freshly)h
+(introduced)h(by)3397 2211 y Gc(\015)3332 2248 y F6(\000)-31
+b(\000)f(!)604 2367 y(\021)42 b(j)p Ga(M)10 b Fs(^)q
+FL(And)1028 2330 y Gc(i)1028 2390 y(E)1087 2367 y F4(\()1122
+2355 y FX(h)1150 2367 y Ga(a)1198 2355 y FX(i)p 1228
+2367 V 1245 2367 V 1263 2367 V 1290 2367 a Ga(;)1330
+2355 y F9(\()1358 2367 y Ga(x)1410 2355 y F9(\))1437
+2367 y Ga(N)g F4(\))p Fs(_)q F6(j)1613 2334 y Fu(S)2906
+2367 y Gg(by)24 b(Lemma)e(3.4.3)p Black 277 2567 a Gb(Substitution)h
+(Elimination:)p Black 504 2704 a FL(Subst)p F4(\()752
+2692 y FX(h)779 2704 y Ga(a)827 2692 y FX(i)855 2704
+y Ga(M)10 b(;)993 2692 y F9(\()1021 2704 y Ga(x)1073
+2692 y F9(\))1100 2704 y Ga(N)g F4(\))1382 2667 y Gc(\033)1318
+2704 y F6(\000)-31 b(\000)f(!)100 b Ga(M)10 b Fs(\()-7
+b Ga(a)26 b F4(:=)1906 2692 y F9(\()1933 2704 y Ga(x)1985
+2692 y F9(\))2013 2704 y Ga(N)s Fs(\))717 2880 y F6(j)p
+FL(Subst)p F4(\()990 2868 y FX(h)1017 2880 y Ga(a)1065
+2868 y FX(i)1093 2880 y Ga(M)10 b(;)1231 2868 y F9(\()1259
+2880 y Ga(x)1311 2868 y F9(\))1338 2880 y Ga(N)g F4(\))p
+F6(j)1481 2847 y Fu(S)604 3004 y F4(=)42 b FL(Cut)p F4(\()890
+2992 y FX(h)918 3004 y Ga(a)966 2992 y FX(i)993 3004
+y F6(j)p Ga(M)10 b F6(j)1141 2971 y Fu(S)1185 3004 y
+Ga(;)1225 2992 y F9(\()1253 3004 y Ga(x)1305 2992 y F9(\))1333
+3004 y F6(j)p Ga(N)g F6(j)1466 2971 y Fu(S)1509 3004
+y F4(\))1459 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3371 3004
+V 3389 3004 V 3406 3004 V 65 w(j)3459 2971 y Fu(S)535
+3091 y Gc(cut)504 3128 y F6(\000)-31 b(\000)g(!)42 b(j)p
+Ga(M)10 b F6(j)865 3095 y Fu(S)909 3128 y F4([)p Ga(a)26
+b F4(:=)1129 3116 y F9(\()1156 3128 y Ga(x)1208 3116
+y F9(\))1236 3128 y F6(j)p Ga(N)10 b F6(j)1369 3095 y
+Fu(S)1413 3128 y F4(])800 b Ga(a)23 b Gg(is)h(not)g(freshly)h
+(introduced)h(by)3396 3091 y Gc(\033)3332 3128 y F6(\000)-31
+b(\000)f(!)604 3252 y(\021)42 b(j)p Ga(M)10 b Fs(\()-6
+b Ga(a)25 b F4(:=)1060 3240 y F9(\()1088 3252 y Ga(x)1140
+3240 y F9(\))1167 3252 y Ga(N)s Fs(\))q F6(j)1301 3219
+y Fu(S)2906 3252 y Gg(by)f(Lemma)e(3.4.1)504 3424 y FL(Subst)p
+F4(\()752 3412 y FX(h)779 3424 y Ga(a)827 3412 y FX(i)855
+3424 y Ga(M)10 b(;)993 3412 y F9(\()1021 3424 y Ga(x)1073
+3412 y F9(\))1100 3424 y Ga(N)g F4(\))1382 3387 y Gc(\033)1318
+3424 y F6(\000)-31 b(\000)f(!)100 b Ga(N)10 b Fs(\()-7
+b Ga(x)26 b F4(:=)1895 3412 y FX(h)1922 3424 y Ga(a)1970
+3412 y FX(i)1998 3424 y Ga(M)s Fs(\))741 3600 y F6(j)p
+FL(Subst)p F4(\()1014 3588 y FX(h)1042 3600 y Ga(a)1090
+3588 y FX(i)1117 3600 y Ga(M)10 b(;)1255 3588 y F9(\()1283
+3600 y Ga(x)1335 3588 y F9(\))1362 3600 y Ga(N)g F4(\))p
+F6(j)1505 3567 y Fu(S)628 3724 y F4(=)42 b FL(Cut)p F4(\()914
+3712 y FX(h)942 3724 y Ga(a)990 3712 y FX(i)1018 3724
+y F6(j)p Ga(M)10 b F6(j)1166 3691 y Fu(S)1210 3724 y
+Ga(;)1250 3712 y F9(\()1277 3724 y Ga(x)1329 3712 y F9(\))1357
+3724 y F6(j)p Ga(N)g F6(j)1490 3691 y Fu(S)1534 3724
+y F4(\))1434 b Gg(by)24 b(\(2\))f(of)h F6(j)p 3371 3724
+V 3389 3724 V 3406 3724 V 65 w(j)3459 3691 y Fu(S)559
+3811 y Gc(cut)529 3848 y F6(\000)-32 b(\000)h(!)42 b(j)p
+Ga(N)10 b F6(j)874 3815 y Fu(S)918 3848 y F4([)p Ga(x)26
+b F4(:=)1142 3836 y FX(h)1169 3848 y Ga(a)1217 3836 y
+FX(i)1245 3848 y F6(j)p Ga(M)10 b F6(j)1393 3815 y Fu(S)1437
+3848 y F4(])773 b Ga(x)22 b Gg(is)i(not)g(freshly)h(introduced)h(by)
+3396 3811 y Gc(\033)3332 3848 y F6(\000)-31 b(\000)f(!)550
+3936 y Gc(cut)520 3973 y F6(\000)g(\000)h(!)690 3940
+y FX(\003)741 3973 y F6(j)p Ga(N)10 b Fs(\()-6 b Ga(x)25
+b F4(:=)1073 3961 y FX(h)1101 3973 y Ga(a)1149 3961 y
+FX(i)1176 3973 y Ga(M)s Fs(\))q F6(j)1325 3940 y Fu(S)2906
+3973 y Gg(by)f(Lemma)e(3.4.2)p Black 277 4175 a Gb(Inner)h(Reduction:)p
+Black 46 w Gg(The)38 b(non-tri)n(vial)k(cases)d(are)g(where)g
+Ga(M)49 b Gg(is)38 b(translated)k(using)e(the)f(clauses)504
+4288 y(\(11\)\226\(14\))26 b(of)e F6(j)p 1001 4288 V
+1019 4288 V 1036 4288 V 65 w(j)1089 4255 y Fu(S)1132
+4288 y Gg(,)f(while)h Ga(N)32 b Gg(using)25 b(\(7\)\226\(10\).)31
+b(W)-7 b(e)22 b(gi)n(v)o(e)i(one)g(case.)504 4447 y FL(And)659
+4411 y Gc(i)659 4471 y(E)719 4447 y F4(\()754 4435 y
+FX(h)781 4447 y Ga(a)829 4435 y FX(i)857 4447 y Ga(S)5
+b(;)958 4435 y F9(\()986 4447 y Ga(x)1038 4435 y F9(\))1065
+4447 y Ga(T)13 b F4(\))1256 4410 y Gc(\024)1191 4447
+y F6(\000)-31 b(\000)g(!)25 b FL(And)1541 4411 y Gc(i)1541
+4471 y(E)1601 4447 y F4(\()1636 4435 y FX(h)1664 4447
+y Ga(a)1712 4435 y FX(i)1739 4447 y Ga(S)1800 4414 y
+FX(0)1824 4447 y Ga(;)1864 4435 y F9(\()1891 4447 y Ga(x)1943
+4435 y F9(\))1971 4447 y Ga(T)13 b F4(\))23 b Gg(with)g
+Ga(S)2340 4414 y FX(0)2389 4447 y F6(\021)i FL(Id)p F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))741 4609 y F6(j)p FL(And)921
+4572 y Gc(i)921 4632 y(E)981 4609 y F4(\()1016 4597 y
+FX(h)1044 4609 y Ga(a)1092 4597 y FX(i)1119 4609 y Ga(S)5
+b(;)1220 4597 y F9(\()1248 4609 y Ga(x)1300 4597 y F9(\))1327
+4609 y Ga(T)13 b F4(\))p F6(j)1453 4576 y Fu(S)628 4727
+y F4(=)42 b FL(Cut)p F4(\()914 4715 y FX(h)942 4727 y
+Ga(a)990 4715 y FX(i)1018 4727 y F6(j)p Ga(S)5 b F6(j)1129
+4694 y Fu(S)1172 4727 y Ga(;)1212 4715 y F9(\()1240 4727
+y Ga(z)1286 4715 y F9(\))1314 4727 y FL(And)1469 4691
+y Gc(i)1469 4750 y(L)1521 4727 y F4(\()1556 4715 y F9(\()1584
+4727 y Ga(x)1636 4715 y F9(\))1663 4727 y F6(j)p Ga(T)13
+b F6(j)1779 4694 y Fu(S)1823 4727 y Ga(;)i(z)t F4(\))q(\))977
+b Gg(by)24 b(\(11\))g(of)g F6(j)p 3371 4727 V 3389 4727
+V 3406 4727 V 65 w(j)3459 4694 y Fu(S)550 4809 y Gc(cut)520
+4846 y F6(\000)-32 b(\000)h(!)690 4813 y FX(\003)741
+4846 y FL(Cut)p F4(\()914 4834 y FX(h)942 4846 y Ga(a)990
+4834 y FX(i)1018 4846 y F6(j)p Ga(S)1104 4813 y FX(0)1127
+4846 y F6(j)1152 4813 y Fu(S)1196 4846 y Ga(;)1236 4834
+y F9(\()1264 4846 y Ga(z)1310 4834 y F9(\))1337 4846
+y FL(And)1492 4809 y Gc(i)1492 4869 y(L)1544 4846 y F4(\()1579
+4834 y F9(\()1607 4846 y Ga(x)1659 4834 y F9(\))1686
+4846 y F6(j)p Ga(T)13 b F6(j)1802 4813 y Fu(S)1846 4846
+y Ga(;)i(z)t F4(\))q(\))1290 b Gg(by)23 b(IH)559 4927
+y Gc(cut)529 4964 y F6(\000)-32 b(\000)h(!)42 b FL(And)896
+4928 y Gc(i)896 4988 y(L)948 4964 y F4(\()983 4952 y
+F9(\()1011 4964 y Ga(x)1063 4952 y F9(\))1090 4964 y
+F6(j)p Ga(T)13 b F6(j)1206 4931 y Fu(S)1250 4964 y Ga(;)i(z)t
+F4(\)[)p Ga(z)f F6(7!)c Ga(y)s F4(])628 5083 y F6(\021)42
+b FL(And)896 5046 y Gc(i)896 5106 y(L)948 5083 y F4(\()983
+5071 y F9(\()1011 5083 y Ga(x)1063 5071 y F9(\))1090
+5083 y F6(j)p Ga(T)13 b F6(j)1206 5050 y Fu(S)1250 5083
+y Ga(;)i(y)s F4(\))1020 b Ga(z)30 b F6(62)24 b Ga(F)13
+b(N)d F4(\()p F6(j)p Ga(T)j F6(j)2855 5050 y Fu(S)2899
+5083 y F4(\))23 b Gg(by)h(\(11\))g(of)g F6(j)p 3371 5083
+V 3389 5083 V 3406 5083 V 65 w(j)3459 5050 y Fu(S)628
+5202 y F4(=)42 b F6(j)p FL(And)921 5165 y Gc(i)921 5225
+y(E)981 5202 y F4(\()1016 5190 y FX(h)1044 5202 y Ga(a)1092
+5190 y FX(i)1119 5202 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p
+F4(\))q Ga(;)1438 5190 y F9(\()1466 5202 y Ga(x)1518
+5190 y F9(\))1546 5202 y Ga(T)d F4(\))p F6(j)1671 5169
+y Fu(S)1741 5202 y F6(\021)25 b(j)p Ga(N)10 b F6(j)1970
+5169 y Fu(S)3003 5202 y Gg(by)24 b(\(7\))f(of)h F6(j)p
+3371 5202 V 3389 5202 V 3406 5202 V 65 w(j)3459 5169
+y Fu(S)p 3436 5307 4 62 v 3440 5249 55 4 v 3440 5307
+V 3494 5307 4 62 v Black Black eop end
+%%Page: 164 176
+TeXDict begin 164 175 bop Black -144 51 a Gb(164)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black Black 321 412 a(Pr)n(oof)i(of)f(Lemma)f(3.4.6.)p
+Black 34 w Gg(The)h(cases)h(corresponding)j(to)c(the)g(clauses)i
+(\(1\)\226\(5\))g(and)f(\(14\))f(of)g F6(j)p 3404 412
+28 4 v 3422 412 V 3440 412 V 65 w(j)3492 379 y Fu(N)321
+525 y Gg(are)j(routine.)43 b(Belo)n(w)27 b(we)f(gi)n(v)o(e)i(the)g
+(details)h(for)f(the)g(clauses)h(\(6\))f(and)g(\(10\).)41
+b(Let)27 b F4([)p Ga(\033)s F4(])h Gg(and)g Fs(\()p Ga(\033)s
+Fs(\))3380 483 y Fu(N)3461 525 y Gg(be)321 638 y F4([)p
+Ga(x)e F4(:=)545 626 y FX(h)572 638 y Ga(a)620 626 y
+FX(i)648 638 y Ga(N)10 b F4(])23 b Gg(and)h Fs(\()-7
+b Ga(x)25 b F4(:=)1157 626 y FX(h)1184 638 y Ga(a)1232
+626 y FX(i)1260 638 y F6(j)p Ga(N)10 b F6(j)1393 605
+y Fu(N)1440 638 y Fs(\))p Gg(,)23 b(respecti)n(v)o(ely)-6
+b(.)p Black 321 907 a Gb(Case)p Black 47 w Ga(M)35 b
+F6(\021)25 b FL(And)927 870 y Gc(i)927 930 y(L)980 907
+y F4(\()1015 895 y F9(\()1042 907 y Ga(y)1090 895 y F9(\))1118
+907 y Ga(S)5 b(;)15 b(x)p F4(\))674 1074 y F6(j)p FL(And)853
+1038 y Gc(i)853 1098 y(L)906 1074 y F4(\()941 1062 y
+F9(\()968 1074 y Ga(y)1016 1062 y F9(\))1044 1074 y Ga(S)5
+b(;)15 b(x)p F4(\)[)p Ga(\033)s F4(])p F6(j)1362 1042
+y Fu(N)549 1193 y F4(=)54 b F6(j)p FL(Cut)p F4(\()872
+1181 y FX(h)900 1193 y Ga(a)948 1181 y FX(i)975 1193
+y Ga(N)10 b(;)1098 1181 y F9(\()1126 1193 y Ga(x)1178
+1181 y F9(\))1205 1193 y FL(And)1360 1156 y Gc(i)1360
+1216 y(L)1412 1193 y F4(\()1447 1181 y F9(\()1475 1193
+y Ga(y)1523 1181 y F9(\))1550 1193 y Ga(S)5 b F4([)p
+Ga(\033)s F4(])q Ga(;)15 b(x)p F4(\)\))p F6(j)1904 1160
+y Fu(N)549 1312 y F4(=)54 b FL(And)828 1275 y Gc(i)828
+1335 y(E)888 1312 y F4(\()923 1300 y FX(h)951 1312 y
+Ga(a)999 1300 y FX(i)1026 1312 y F6(j)p Ga(N)10 b F6(j)1159
+1279 y Fu(N)1213 1312 y Ga(;)1253 1300 y F9(\()1281 1312
+y Ga(y)1329 1300 y F9(\))1357 1312 y F6(j)p Ga(S)5 b
+F4([)p Ga(\033)s F4(])p F6(j)1573 1279 y Fu(N)1628 1312
+y F4(\))1328 b Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 1312
+V 3422 1312 V 3440 1312 V 65 w(j)3492 1279 y Fu(N)549
+1435 y F6(\021)54 b FL(And)828 1398 y Gc(i)828 1458 y(E)888
+1435 y F4(\()923 1423 y FX(h)951 1435 y Ga(a)999 1423
+y FX(i)1026 1435 y F6(j)p Ga(N)10 b F6(j)1159 1402 y
+Fu(N)1213 1435 y Ga(;)1253 1423 y F9(\()1281 1435 y Ga(y)1329
+1423 y F9(\))1357 1435 y F6(j)p Ga(S)5 b F6(j)1468 1402
+y Fu(N)1522 1435 y Fs(\()q Ga(\033)s Fs(\))1642 1393
+y Fu(N)1696 1435 y F4(\))1606 b Gg(by)23 b(IH)549 1559
+y F6(\021)54 b FL(And)828 1522 y Gc(i)828 1582 y(E)888
+1559 y F4(\()923 1547 y FX(h)951 1559 y Ga(a)999 1547
+y FX(i)1026 1559 y FL(Id)p F4(\()p Ga(x;)15 b(a)p F4(\))p
+Fs(\()r Ga(\033)s Fs(\))1430 1517 y Fu(N)1483 1559 y
+Ga(;)1523 1547 y F9(\()1551 1559 y Ga(y)1599 1547 y F9(\))1627
+1559 y F6(j)p Ga(S)5 b F6(j)1738 1526 y Fu(N)1792 1559
+y Fs(\()q Ga(\033)s Fs(\))1912 1517 y Fu(N)1966 1559
+y F4(\))549 1682 y(=)54 b FL(And)828 1646 y Gc(i)828
+1705 y(E)888 1682 y F4(\()923 1670 y FX(h)951 1682 y
+Ga(a)999 1670 y FX(i)1026 1682 y FL(Id)p F4(\()p Ga(x;)15
+b(a)p F4(\))q Ga(;)1349 1670 y F9(\()1377 1682 y Ga(y)1425
+1670 y F9(\))1453 1682 y F6(j)p Ga(S)5 b F6(j)1564 1649
+y Fu(N)1618 1682 y F4(\))p Fs(\()q Ga(\033)s Fs(\))1773
+1640 y Fu(N)549 1806 y F4(=)54 b F6(j)p FL(And)853 1769
+y Gc(i)853 1829 y(L)906 1806 y F4(\()941 1794 y F9(\()968
+1806 y Ga(y)1016 1794 y F9(\))1044 1806 y Ga(S)5 b(;)15
+b(x)p F4(\))p F6(j)1257 1773 y Fu(N)1312 1806 y Fs(\()p
+Ga(\033)s Fs(\))1432 1764 y Fu(N)3036 1806 y Gg(by)24
+b(\(6\))g(of)f F6(j)p 3404 1806 V 3422 1806 V 3440 1806
+V 65 w(j)3492 1773 y Fu(N)p Black 321 2037 a Gb(Case)p
+Black 47 w Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()946
+2025 y FX(h)974 2037 y Ga(b)1013 2025 y FX(i)1040 2037
+y Ga(S)5 b(;)1141 2025 y F9(\()1169 2037 y Ga(y)1217
+2025 y F9(\))1244 2037 y FL(And)1399 2000 y Gc(i)1399
+2060 y(L)1451 2037 y F4(\()1486 2025 y F9(\()1514 2037
+y Ga(z)1560 2025 y F9(\))1587 2037 y Ga(T)13 b(;)i(y)s
+F4(\))q(\))674 2205 y F6(j)p FL(Cut)p F4(\()872 2193
+y FX(h)900 2205 y Ga(b)939 2193 y FX(i)966 2205 y Ga(S)5
+b(;)1067 2193 y F9(\()1095 2205 y Ga(y)1143 2193 y F9(\))1170
+2205 y FL(And)1325 2168 y Gc(i)1325 2228 y(L)1377 2205
+y F4(\()1412 2193 y F9(\()1440 2205 y Ga(z)1486 2193
+y F9(\))1513 2205 y Ga(T)13 b(;)i(y)s F4(\))q(\)[)p Ga(\033)s
+F4(])p F6(j)1868 2172 y Fu(N)549 2324 y F4(=)54 b F6(j)p
+FL(Cut)p F4(\()872 2312 y FX(h)900 2324 y Ga(b)939 2312
+y FX(i)966 2324 y Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1173
+2312 y F9(\()1201 2324 y Ga(y)1249 2312 y F9(\))1276
+2324 y FL(And)1430 2287 y Gc(i)1430 2347 y(L)1483 2324
+y F4(\()1518 2312 y F9(\()1545 2324 y Ga(z)1591 2312
+y F9(\))1619 2324 y Ga(T)13 b F4([)p Ga(\033)s F4(])q
+Ga(;)i(y)s F4(\)\))p F6(j)1974 2291 y Fu(N)549 2442 y
+F4(=)54 b FL(And)828 2405 y Gc(i)828 2465 y(E)888 2442
+y F4(\()923 2430 y FX(h)951 2442 y Ga(b)990 2430 y FX(i)1017
+2442 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1233
+2409 y Fu(N)1288 2442 y Ga(;)1328 2430 y F9(\()1356 2442
+y Ga(z)1402 2430 y F9(\))1430 2442 y F6(j)p Ga(T)13 b
+F4([)p Ga(\033)s F4(])p F6(j)1651 2409 y Fu(N)1706 2442
+y F4(\))1250 b Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 2442
+V 3422 2442 V 3440 2442 V 65 w(j)3492 2409 y Fu(N)549
+2566 y F6(\021)54 b FL(And)828 2529 y Gc(i)828 2589 y(E)888
+2566 y F4(\()923 2554 y FX(h)951 2566 y Ga(b)990 2554
+y FX(i)1017 2566 y F6(j)p Ga(S)5 b F6(j)1128 2533 y Fu(N)1182
+2566 y Fs(\()q Ga(\033)s Fs(\))1303 2524 y Fu(N)1357
+2566 y Ga(;)1397 2554 y F9(\()1424 2566 y Ga(z)1470 2554
+y F9(\))1498 2566 y F6(j)p Ga(T)13 b F6(j)1614 2533 y
+Fu(N)1668 2566 y Fs(\()q Ga(\033)s Fs(\))1788 2524 y
+Fu(N)1842 2566 y F4(\))1460 b Gg(by)23 b(IH)549 2689
+y F4(=)54 b FL(And)828 2652 y Gc(i)828 2712 y(E)888 2689
+y F4(\()923 2677 y FX(h)951 2689 y Ga(b)990 2677 y FX(i)1017
+2689 y F6(j)p Ga(S)5 b F6(j)1128 2656 y Fu(N)1182 2689
+y Ga(;)1222 2677 y F9(\()1250 2689 y Ga(z)1296 2677 y
+F9(\))1324 2689 y F6(j)p Ga(T)13 b F6(j)1440 2656 y Fu(N)1494
+2689 y F4(\))p Fs(\()q Ga(\033)s Fs(\))1650 2647 y Fu(N)549
+2813 y F4(=)54 b F6(j)p FL(Cut)p F4(\()872 2801 y FX(h)900
+2813 y Ga(b)939 2801 y FX(i)966 2813 y Ga(S)5 b(;)1067
+2801 y F9(\()1095 2813 y Ga(y)1143 2801 y F9(\))1170
+2813 y FL(And)1325 2776 y Gc(i)1325 2836 y(L)1377 2813
+y F4(\()1412 2801 y F9(\()1440 2813 y Ga(z)1486 2801
+y F9(\))1513 2813 y Ga(T)13 b(;)i(y)s F4(\))q(\))p F6(j)1763
+2780 y Fu(N)1817 2813 y Fs(\()q Ga(\033)s Fs(\))1937
+2771 y Fu(N)2991 2813 y Gg(by)24 b(\(10\))g(of)f F6(j)p
+3404 2813 V 3422 2813 V 3440 2813 V 65 w(j)3492 2780
+y Fu(N)p 3480 2918 4 62 v 3484 2860 55 4 v 3484 2918
+V 3538 2918 4 62 v Black 321 3131 a Gb(Pr)n(oof)32 b(of)g(Lemma)e
+(3.4.7.)p Black 34 w Gg(There)i(are)f(23)h(cases)g(to)f(be)h
+(considered,)k(three)c(of)g(which)f(are)h(gi)n(v)o(en)321
+3244 y(belo)n(w)-6 b(.)76 b(W)-7 b(e)38 b(assume)i(that)f
+F4([)p Ga(\033)s F4(])g Gg(and)h Fs(^)p Ga(\033)s Fs(_)1704
+3202 y Fu(N)1796 3244 y Gg(are)g(of)f(the)g(form)g F4([)p
+Ga(a)54 b F4(:=)2701 3232 y F9(\()2729 3244 y Ga(x)2781
+3232 y F9(\))2808 3244 y FL(And)2963 3207 y Gc(i)2963
+3267 y(L)3015 3244 y F4(\()3050 3232 y F9(\()3078 3244
+y Ga(y)3126 3232 y F9(\))3153 3244 y Ga(P)13 b(;)i(x)p
+F4(\))q(])38 b Gg(and)321 3356 y Fs(^)q FL(And)508 3320
+y Gc(i)508 3380 y(E)568 3356 y F4(\()603 3344 y FX(h)631
+3356 y Ga(a)679 3344 y FX(i)p 708 3356 28 4 v 726 3356
+V 743 3356 V 771 3356 a Ga(;)811 3344 y F9(\()839 3356
+y Ga(y)887 3344 y F9(\))914 3356 y F6(j)p Ga(P)13 b F6(j)1035
+3323 y Fu(N)1089 3356 y F4(\))p Fs(_)q Gg(,)23 b(respecti)n(v)o(ely)-6
+b(.)p Black 321 3593 a Gb(Case)p Black 47 w Ga(M)35 b
+F6(\021)25 b FL(And)927 3607 y Gc(R)985 3593 y F4(\()1020
+3581 y FX(h)1048 3593 y Ga(d)1095 3581 y FX(i)1123 3593
+y Ga(S)5 b(;)1224 3581 y FX(h)1252 3593 y Ga(e)1294 3581
+y FX(i)1321 3593 y Ga(T)13 b(;)i(a)p F4(\))813 3765 y
+F6(j)p FL(And)992 3779 y Gc(R)1050 3765 y F4(\()1085
+3753 y FX(h)1113 3765 y Ga(d)1160 3753 y FX(i)1188 3765
+y Ga(S)5 b(;)1289 3753 y FX(h)1316 3765 y Ga(e)1358 3753
+y FX(i)1386 3765 y Ga(T)13 b(;)i(a)p F4(\))p F6(j)1600
+3732 y Fu(N)1655 3765 y Fs(^)q Ga(\033)s Fs(_)1775 3723
+y Fu(N)648 3890 y F4(=)94 b FL(And)967 3904 y Gc(I)1007
+3890 y F4(\()1042 3878 y FX(h)1070 3890 y Ga(d)1117 3878
+y FX(i)1145 3890 y F6(j)p Ga(S)5 b F6(j)1256 3857 y Fu(N)1310
+3890 y Ga(;)1350 3878 y FX(h)1378 3890 y Ga(e)1420 3878
+y FX(i)1448 3890 y F6(j)p Ga(T)13 b F6(j)1564 3857 y
+Fu(N)1618 3890 y Ga(;)i(a)p F4(\))p Fs(^)q Ga(\033)s
+Fs(_)1862 3848 y Fu(N)3036 3890 y Gg(by)24 b(\(2\))g(of)f
+F6(j)p 3404 3890 V 3422 3890 V 3440 3890 V 65 w(j)3492
+3857 y Fu(N)648 4016 y F4(=)94 b FL(And)967 3979 y Gc(i)967
+4039 y(E)1027 4016 y F4(\()1062 4004 y FX(h)1090 4016
+y Ga(a)1138 4004 y FX(i)1165 4016 y FL(And)1320 4030
+y Gc(I)1360 4016 y F4(\()1395 4004 y FX(h)1422 4016 y
+Ga(d)1469 4004 y FX(i)1497 4016 y F6(j)p Ga(S)5 b F6(j)1608
+3983 y Fu(N)1663 4016 y Fs(^)p Ga(\033)s Fs(_)1783 3974
+y Fu(N)1837 4016 y Ga(;)1877 4004 y FX(h)1904 4016 y
+Ga(e)1946 4004 y FX(i)1974 4016 y F6(j)p Ga(T)13 b F6(j)2090
+3983 y Fu(N)2144 4016 y Fs(^)q Ga(\033)s Fs(_)2265 3974
+y Fu(N)2319 4016 y Ga(;)i(a)p F4(\))p Ga(;)2482 4004
+y F9(\()2510 4016 y Ga(y)2558 4004 y F9(\))2585 4016
+y F6(j)p Ga(P)e F6(j)2706 3983 y Fu(N)2761 4016 y F4(\))280
+b Gg(by)24 b(\(2\))f(of)h Fs(^)p 3451 4016 V 3469 4016
+V 3487 4016 V 65 w(_)613 4103 y Gc(\024)549 4140 y F6(\000)-32
+b(\000)h(!)731 4107 y FX(\003)813 4140 y FL(And)967 4103
+y Gc(i)967 4163 y(E)1027 4140 y F4(\()1062 4128 y FX(h)1090
+4140 y Ga(a)1138 4128 y FX(i)1165 4140 y FL(And)1320
+4154 y Gc(I)1360 4140 y F4(\()1395 4128 y FX(h)1422 4140
+y Ga(d)1469 4128 y FX(i)1497 4140 y F6(j)p Ga(S)5 b F4([)p
+Ga(\033)s F4(])p F6(j)1713 4107 y Fu(N)1768 4140 y Ga(;)1808
+4128 y FX(h)1836 4140 y Ga(e)1878 4128 y FX(i)1906 4140
+y F6(j)p Ga(T)13 b F4([)p Ga(\033)s F4(])p F6(j)2127
+4107 y Fu(N)2182 4140 y Ga(;)i(a)p F4(\))q Ga(;)2346
+4128 y F9(\()2373 4140 y Ga(y)2421 4128 y F9(\))2449
+4140 y F6(j)p Ga(P)e F6(j)2570 4107 y Fu(N)2624 4140
+y F4(\))678 b Gg(by)23 b(IH)648 4264 y F4(=)94 b F6(j)p
+FL(Cut)p F4(\()1011 4252 y FX(h)1039 4264 y Ga(a)1087
+4252 y FX(i)1114 4264 y FL(And)1269 4278 y Gc(R)1326
+4264 y F4(\()1361 4252 y FX(h)1389 4264 y Ga(d)1436 4252
+y FX(i)1464 4264 y Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1671
+4252 y FX(h)1698 4264 y Ga(e)1740 4252 y FX(i)1768 4264
+y Ga(T)13 b F4([)p Ga(\033)s F4(])q Ga(;)i(a)p F4(\))p
+Ga(;)2103 4252 y F9(\()2131 4264 y Ga(x)2183 4252 y F9(\))2211
+4264 y FL(And)2365 4227 y Gc(i)2365 4287 y(L)2417 4264
+y F4(\()2452 4252 y F9(\()2480 4264 y Ga(y)2528 4252
+y F9(\))2555 4264 y Ga(P)e(;)i(x)p F4(\))q(\))p F6(j)2814
+4231 y Fu(N)2923 4264 y Gg(by)23 b(\(2,10\))i(of)e F6(j)p
+3404 4264 V 3422 4264 V 3440 4264 V 65 w(j)3492 4231
+y Fu(N)648 4388 y F4(=)94 b F6(j)p FL(And)992 4402 y
+Gc(R)1050 4388 y F4(\()1085 4376 y FX(h)1113 4388 y Ga(d)1160
+4376 y FX(i)1188 4388 y Ga(S)5 b(;)1289 4376 y FX(h)1316
+4388 y Ga(e)1358 4376 y FX(i)1386 4388 y Ga(T)13 b(;)i(a)p
+F4(\)[)p Ga(\033)s F4(])p F6(j)1705 4355 y Fu(N)p Black
+321 4621 a Gb(Case)p Black 47 w Ga(M)35 b F6(\021)25
+b FL(Cut)p F4(\()946 4609 y FX(h)974 4621 y Ga(b)1013
+4609 y FX(i)1040 4621 y Ga(S)5 b(;)1141 4609 y F9(\()1169
+4621 y Ga(z)1215 4609 y F9(\))1243 4621 y FL(And)1397
+4584 y Gc(i)1397 4644 y(L)1449 4621 y F4(\()1484 4609
+y F9(\()1512 4621 y Ga(u)1564 4609 y F9(\))1592 4621
+y Ga(T)12 b(;)j(z)t F4(\))q(\))813 4794 y F6(j)p FL(Cut)p
+F4(\()1011 4782 y FX(h)1039 4794 y Ga(b)1078 4782 y FX(i)1105
+4794 y Ga(S)5 b(;)1206 4782 y F9(\()1234 4794 y Ga(z)1280
+4782 y F9(\))1308 4794 y FL(And)1462 4757 y Gc(i)1462
+4817 y(L)1514 4794 y F4(\()1549 4782 y F9(\()1577 4794
+y Ga(u)1629 4782 y F9(\))1657 4794 y Ga(T)12 b(;)j(z)t
+F4(\))q(\))p F6(j)1904 4761 y Fu(N)1959 4794 y Fs(^)p
+Ga(\033)s Fs(_)2079 4752 y Fu(N)648 4919 y F4(=)94 b
+FL(And)967 4882 y Gc(i)967 4942 y(E)1027 4919 y F4(\()1062
+4907 y FX(h)1090 4919 y Ga(b)1129 4907 y FX(i)1156 4919
+y F6(j)p Ga(S)5 b F6(j)1267 4886 y Fu(N)1321 4919 y Ga(;)1361
+4907 y F9(\()1389 4919 y Ga(u)1441 4907 y F9(\))1469
+4919 y F6(j)p Ga(T)13 b F6(j)1585 4886 y Fu(N)1639 4919
+y F4(\))p Fs(^)q Ga(\033)s Fs(_)1794 4877 y Fu(N)2991
+4919 y Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 4919 V 3422
+4919 V 3440 4919 V 65 w(j)3492 4886 y Fu(N)648 5045 y
+F4(=)94 b FL(And)967 5008 y Gc(i)967 5068 y(E)1027 5045
+y F4(\()1062 5033 y FX(h)1090 5045 y Ga(b)1129 5033 y
+FX(i)1156 5045 y F6(j)p Ga(S)5 b F6(j)1267 5012 y Fu(N)1321
+5045 y Fs(^)q Ga(\033)s Fs(_)1442 5003 y Fu(N)1496 5045
+y Ga(;)1536 5033 y F9(\()1563 5045 y Ga(u)1615 5033 y
+F9(\))1643 5045 y F6(j)p Ga(T)13 b F6(j)1759 5012 y Fu(N)1813
+5045 y Fs(^)q Ga(\033)s Fs(_)1933 5003 y Fu(N)1987 5045
+y F4(\))613 5132 y Gc(\024)549 5169 y F6(\000)-32 b(\000)h(!)731
+5136 y FX(\003)813 5169 y FL(And)967 5132 y Gc(i)967
+5192 y(E)1027 5169 y F4(\()1062 5157 y FX(h)1090 5169
+y Ga(b)1129 5157 y FX(i)1156 5169 y F6(j)p Ga(S)5 b F4([)p
+Ga(\033)s F4(])p F6(j)1372 5136 y Fu(N)1427 5169 y Ga(;)1467
+5157 y F9(\()1495 5169 y Ga(u)1547 5157 y F9(\))1574
+5169 y F6(j)p Ga(T)13 b F4([)p Ga(\033)s F4(])p F6(j)1795
+5136 y Fu(N)1850 5169 y F4(\))1452 b Gg(by)23 b(IH)648
+5293 y F4(=)94 b F6(j)p FL(Cut)p F4(\()1011 5281 y FX(h)1039
+5293 y Ga(b)1078 5281 y FX(i)1105 5293 y Ga(S)5 b F4([)p
+Ga(\033)s F4(])q Ga(;)1312 5281 y F9(\()1340 5293 y Ga(z)1386
+5281 y F9(\))1413 5293 y FL(And)1568 5256 y Gc(i)1568
+5316 y(L)1620 5293 y F4(\()1655 5281 y F9(\()1683 5293
+y Ga(u)1735 5281 y F9(\))1762 5293 y Ga(T)13 b F4([)p
+Ga(\033)s F4(])q Ga(;)i(z)t F4(\))q(\))p F6(j)2116 5260
+y Fu(N)2991 5293 y Gg(by)24 b(\(10\))g(of)f F6(j)p 3404
+5293 V 3422 5293 V 3440 5293 V 65 w(j)3492 5260 y Fu(N)648
+5417 y F4(=)94 b F6(j)p FL(Cut)p F4(\()1011 5405 y FX(h)1039
+5417 y Ga(b)1078 5405 y FX(i)1105 5417 y Ga(S)5 b(;)1206
+5405 y F9(\()1234 5417 y Ga(z)1280 5405 y F9(\))1308
+5417 y FL(And)1462 5380 y Gc(i)1462 5440 y(L)1514 5417
+y F4(\()1549 5405 y F9(\()1577 5417 y Ga(u)1629 5405
+y F9(\))1657 5417 y Ga(T)12 b(;)j(z)t F4(\))q(\)[)p Ga(\033)s
+F4(])p F6(j)2009 5384 y Fu(N)p Black Black eop end
+%%Page: 165 177
+TeXDict begin 165 176 bop Black 277 51 a Gb(B.2)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(3)2639 b(165)p 277 88 3691 4 v Black Black
+277 412 a(Case)p Black 46 w Ga(M)36 b F6(\021)25 b FL(Cut)p
+F4(\()902 400 y FX(h)929 412 y Ga(b)968 400 y FX(i)996
+412 y Ga(S)5 b(;)1097 400 y F9(\()1125 412 y Ga(z)1171
+400 y F9(\))1198 412 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(a)p
+F4(\))q(\))768 596 y F6(j)p FL(Cut)q F4(\()967 584 y
+FX(h)994 596 y Ga(b)1033 584 y FX(i)1061 596 y Ga(S)5
+b(;)1162 584 y F9(\()1190 596 y Ga(z)1236 584 y F9(\))1263
+596 y FL(Ax)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))q(\))p
+F6(j)1631 563 y Fu(N)1686 596 y Fs(^)p Ga(\033)s Fs(_)1806
+554 y Fu(N)604 722 y F4(=)93 b FL(Subst)p F4(\()1016
+710 y FX(h)1043 722 y Ga(b)1082 710 y FX(i)1110 722 y
+F6(j)p Ga(S)5 b F6(j)1221 689 y Fu(N)1275 722 y Ga(;)1315
+710 y F9(\()1343 722 y Ga(z)1389 710 y F9(\))1417 722
+y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))q(\))p Fs(^)q
+Ga(\033)s Fs(_)1850 680 y Fu(N)2879 722 y Gg(by)23 b(\(1,14\))i(of)e
+F6(j)p 3360 722 28 4 v 3378 722 V 3396 722 V 65 w(j)3448
+689 y Fu(N)604 847 y F4(=)93 b FL(Subst)p F4(\()1016
+835 y FX(h)1043 847 y Ga(b)1082 835 y FX(i)1110 847 y
+F6(j)p Ga(S)5 b F6(j)1221 814 y Fu(N)1275 847 y Fs(^)q
+Ga(\033)s Fs(_)1395 805 y Fu(N)1449 847 y Ga(;)1489 835
+y F9(\()1517 847 y Ga(z)1563 835 y F9(\))1591 847 y FL(And)1745
+810 y Gc(i)1745 870 y(E)1805 847 y F4(\()1840 835 y FX(h)1868
+847 y Ga(a)1916 835 y FX(i)1943 847 y FL(Id)q F4(\()p
+Ga(z)t(;)15 b(a)p F4(\))q Ga(;)2261 835 y F9(\()2289
+847 y Ga(y)2337 835 y F9(\))2364 847 y F6(j)p Ga(P)e
+F6(j)2485 814 y Fu(N)2540 847 y F4(\)\))422 b Gg(by)24
+b(\(1\))f(of)h Fs(^)p 3407 847 V 3425 847 V 3442 847
+V 65 w(_)569 934 y Gc(\024)504 971 y F6(\000)-31 b(\000)g(!)686
+938 y FX(\003)768 971 y FL(Subst)p F4(\()1016 959 y FX(h)1043
+971 y Ga(b)1082 959 y FX(i)1110 971 y F6(j)p Ga(S)5 b
+F4([)p Ga(\033)s F4(])p F6(j)1326 938 y Fu(N)1381 971
+y Ga(;)1421 959 y F9(\()1449 971 y Ga(z)1495 959 y F9(\))1523
+971 y FL(And)1677 934 y Gc(i)1677 994 y(E)1737 971 y
+F4(\()1772 959 y FX(h)1799 971 y Ga(a)1847 959 y FX(i)1875
+971 y FL(Id)p F4(\()p Ga(z)t(;)15 b(a)p F4(\))r Ga(;)2193
+959 y F9(\()2220 971 y Ga(y)2268 959 y F9(\))2296 971
+y F6(j)p Ga(P)e F6(j)2417 938 y Fu(N)2471 971 y F4(\))q(\))751
+b Gg(by)23 b(IH)569 1058 y Gc(\024)504 1095 y F6(\000)-31
+b(\000)g(!)93 b FL(And)923 1058 y Gc(i)923 1118 y(E)983
+1095 y F4(\()1018 1083 y FX(h)1045 1095 y Ga(b)1084 1083
+y FX(i)1112 1095 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p
+F6(j)1328 1062 y Fu(N)1383 1095 y Ga(;)1423 1083 y F9(\()1451
+1095 y Ga(y)1499 1083 y F9(\))1526 1095 y F6(j)p Ga(P)13
+b F6(j)1647 1062 y Fu(N)1702 1095 y F4(\))839 b Ga(z)30
+b F6(62)24 b Ga(F)13 b(N)d F4(\()2922 1083 y F9(\()2950
+1095 y Ga(y)2998 1083 y F9(\))3026 1095 y F6(j)p Ga(P)j
+F6(j)3147 1062 y Fu(N)3201 1095 y F4(\))23 b Gg(by)h
+Fs(^)p 3407 1095 V 3425 1095 V 3442 1095 V 65 w(_)604
+1220 y F4(=)93 b F6(j)p FL(Cut)q F4(\()967 1208 y FX(h)994
+1220 y Ga(b)1033 1208 y FX(i)1061 1220 y Ga(S)5 b F4([)p
+Ga(\033)s F4(])q Ga(;)1268 1208 y F9(\()1295 1220 y Ga(x)1347
+1208 y F9(\))1375 1220 y FL(And)1529 1183 y Gc(i)1529
+1243 y(L)1581 1220 y F4(\()1616 1208 y F9(\()1644 1220
+y Ga(y)1692 1208 y F9(\))1720 1220 y Ga(P)13 b(;)i(x)p
+F4(\)\))p F6(j)1978 1187 y Fu(N)2947 1220 y Gg(by)24
+b(\(10\))g(of)f F6(j)p 3360 1220 V 3378 1220 V 3396 1220
+V 65 w(j)3448 1187 y Fu(N)604 1344 y F4(=)93 b F6(j)p
+FL(Cut)q F4(\()967 1332 y FX(h)994 1344 y Ga(b)1033 1332
+y FX(i)1061 1344 y Ga(S)5 b(;)1162 1332 y F9(\()1190
+1344 y Ga(z)1236 1332 y F9(\))1263 1344 y FL(Ax)p F4(\()p
+Ga(z)t(;)15 b(a)p F4(\))q(\)[)p Ga(\033)s F4(])p F6(j)1736
+1311 y Fu(N)p 3436 1451 4 62 v 3440 1393 55 4 v 3440
+1451 V 3494 1451 4 62 v Black 277 1663 a Gb(Pr)n(oof)20
+b(of)e(Lemma)g(3.4.8.)p Black 34 w Gg(Let)g F4([)p Ga(\033)s
+F4(])h Gg(and)g Fs(\()q Ga(\033)s Fs(\))1690 1621 y Fu(N)1762
+1663 y Gg(be)g F4([)p Ga(a)26 b F4(:=)2086 1651 y F9(\()2114
+1663 y Ga(x)2166 1651 y F9(\))2193 1663 y Ga(N)10 b F4(])18
+b Gg(and)h Fs(\()-6 b Ga(a)25 b F4(:=)2688 1651 y F9(\()2716
+1663 y Ga(x)2768 1651 y F9(\))2795 1663 y F6(j)p Ga(N)10
+b F6(j)2928 1630 y Fu(N)2976 1663 y Fs(\))p Gg(,)19 b(respecti)n(v)o
+(ely)-6 b(.)277 1776 y(There)24 b(are)g(20)f(cases)i(to)e(be)h
+(considered,)i(tw)o(o)d(of)h(which)g(are)f(gi)n(v)o(en)h(belo)n(w)-6
+b(.)p Black 277 2075 a Gb(Case)p Black 46 w Ga(M)36 b
+F6(\021)25 b FL(And)883 2089 y Gc(R)941 2075 y F4(\()976
+2063 y FX(h)1004 2075 y Ga(c)1043 2063 y FX(i)1071 2075
+y Ga(S)5 b(;)1172 2063 y FX(h)1199 2075 y Ga(d)1246 2063
+y FX(i)1274 2075 y Ga(T)13 b(;)i(a)p F4(\))535 2259 y
+F6(j)p FL(And)715 2273 y Gc(R)772 2259 y F4(\()807 2247
+y FX(h)835 2259 y Ga(d)882 2247 y FX(i)910 2259 y Ga(S)5
+b(;)1011 2247 y FX(h)1039 2259 y Ga(e)1081 2247 y FX(i)1109
+2259 y Ga(T)12 b(;)j(a)p F4(\)[)p Ga(\033)s F4(])p F6(j)1427
+2226 y Fu(N)410 2383 y F4(=)54 b F6(j)p FL(Cut)p F4(\()733
+2371 y FX(h)761 2383 y Ga(a)809 2371 y FX(i)836 2383
+y FL(And)991 2397 y Gc(R)1049 2383 y F4(\()1084 2371
+y FX(h)1111 2383 y Ga(d)1158 2371 y FX(i)1186 2383 y
+Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1393 2371 y FX(h)1421
+2383 y Ga(e)1463 2371 y FX(i)1491 2383 y Ga(T)13 b F4([)p
+Ga(\033)s F4(])p Ga(;)i(a)p F4(\))q Ga(;)1826 2371 y
+F9(\()1854 2383 y Ga(x)1906 2371 y F9(\))1933 2383 y
+Ga(N)10 b F4(\))p F6(j)2076 2350 y Fu(N)2177 2383 y Gg(by)23
+b(ass.)h(\(10\22613\))h(of)f F6(j)p 2883 2383 28 4 v
+2901 2383 V 2918 2383 V 65 w(j)2971 2350 y Fu(N)3048
+2383 y Gg(do)f(not)h(apply)410 2507 y F4(=)54 b FL(Subst)o
+F4(\()782 2495 y FX(h)810 2507 y Ga(a)858 2495 y FX(i)885
+2507 y FL(And)1040 2521 y Gc(I)1080 2507 y F4(\()1115
+2495 y FX(h)1143 2507 y Ga(d)1190 2495 y FX(i)1217 2507
+y F6(j)p Ga(S)5 b F4([)p Ga(\033)s F4(])p F6(j)1433 2474
+y Fu(N)1489 2507 y Ga(;)1529 2495 y FX(h)1556 2507 y
+Ga(e)1598 2495 y FX(i)1626 2507 y F6(j)p Ga(T)13 b F4([)p
+Ga(\033)s F4(])p F6(j)1847 2474 y Fu(N)1902 2507 y Ga(;)i(a)p
+F4(\))q Ga(;)2066 2495 y F9(\()2094 2507 y Ga(x)2146
+2495 y F9(\))2173 2507 y F6(j)p Ga(N)10 b F6(j)2306 2474
+y Fu(N)2361 2507 y F4(\))483 b Gg(by)23 b(\(2,14\))i(of)e
+F6(j)p 3360 2507 V 3378 2507 V 3396 2507 V 65 w(j)3448
+2474 y Fu(N)410 2632 y F6(\021)54 b FL(Subst)o F4(\()782
+2620 y FX(h)810 2632 y Ga(a)858 2620 y FX(i)885 2632
+y FL(And)1040 2646 y Gc(I)1080 2632 y F4(\()1115 2620
+y FX(h)1143 2632 y Ga(d)1190 2620 y FX(i)1217 2632 y
+F6(j)p Ga(S)5 b F6(j)1328 2599 y Fu(N)1383 2632 y Fs(\()p
+Ga(\033)s Fs(\))1503 2591 y Fu(N)1557 2632 y Ga(;)1597
+2620 y FX(h)1625 2632 y Ga(e)1667 2620 y FX(i)1695 2632
+y F6(j)p Ga(T)13 b F6(j)1811 2599 y Fu(N)1865 2632 y
+Fs(\()p Ga(\033)s Fs(\))1985 2591 y Fu(N)2039 2632 y
+Ga(;)i(a)p F4(\))q Ga(;)2203 2620 y F9(\()2231 2632 y
+Ga(x)2283 2620 y F9(\))2310 2632 y F6(j)p Ga(N)10 b F6(j)2443
+2599 y Fu(N)2497 2632 y F4(\))761 b Gg(by)23 b(IH)410
+2758 y F4(=)54 b FL(And)690 2772 y Gc(I)729 2758 y F4(\()764
+2746 y FX(h)792 2758 y Ga(d)839 2746 y FX(i)867 2758
+y F6(j)p Ga(S)5 b F6(j)978 2725 y Fu(N)1032 2758 y Ga(;)1072
+2746 y FX(h)1100 2758 y Ga(e)1142 2746 y FX(i)1170 2758
+y F6(j)p Ga(T)13 b F6(j)1286 2725 y Fu(N)1340 2758 y
+Ga(;)i(a)p F4(\))p Fs(\()r Ga(\033)s Fs(\))1584 2716
+y Fu(N)3032 2758 y Gg(by)24 b(\(3\))f(of)h Fs(\()p 3407
+2758 V 3425 2758 V 3442 2758 V 65 w(\))410 2883 y F4(=)54
+b F6(j)p FL(And)715 2897 y Gc(R)772 2883 y F4(\()807
+2871 y FX(h)835 2883 y Ga(d)882 2871 y FX(i)910 2883
+y Ga(S)5 b(;)1011 2871 y FX(h)1039 2883 y Ga(e)1081 2871
+y FX(i)1109 2883 y Ga(T)12 b(;)j(a)p F4(\))p F6(j)1322
+2850 y Fu(N)1377 2883 y Fs(\()q Ga(\033)s Fs(\))1498
+2841 y Fu(N)2992 2883 y Gg(by)24 b(\(2\))g(of)f F6(j)p
+3360 2883 V 3378 2883 V 3396 2883 V 65 w(j)3448 2850
+y Fu(N)p Black 277 3128 a Gb(Case)p Black 46 w Ga(M)36
+b F6(\021)25 b FL(Cut)p F4(\()902 3116 y FX(h)929 3128
+y Ga(b)968 3116 y FX(i)996 3128 y Ga(S)5 b(;)1097 3116
+y F9(\()1125 3128 y Ga(y)1173 3116 y F9(\))1200 3128
+y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(\))535 3311
+y F6(j)p FL(Cut)p F4(\()733 3299 y FX(h)761 3311 y Ga(b)800
+3299 y FX(i)827 3311 y Ga(S)5 b(;)928 3299 y F9(\()956
+3311 y Ga(y)1004 3299 y F9(\))1031 3311 y FL(Ax)p F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))q(\)[)p Ga(\033)s F4(])p F6(j)1506
+3278 y Fu(N)410 3435 y F4(=)54 b F6(j)p FL(Cut)p F4(\()733
+3423 y FX(h)761 3435 y Ga(b)800 3423 y FX(i)827 3435
+y Ga(S)5 b F4([)p Ga(\033)s F4(])q Ga(;)1034 3423 y F9(\()1062
+3435 y Ga(y)1110 3423 y F9(\))1137 3435 y Ga(N)10 b F4([)p
+Ga(x)g F6(7!)g Ga(y)s F4(])q(\))p F6(j)1542 3402 y Fu(N)1942
+3435 y Gg(by)23 b(assumtion)j(\(10\22613\))f(of)f F6(j)p
+2883 3435 V 2901 3435 V 2918 3435 V 65 w(j)2971 3402
+y Fu(N)3048 3435 y Gg(do)f(not)h(apply)410 3559 y F4(=)54
+b FL(Subst)o F4(\()782 3547 y FX(h)810 3559 y Ga(b)849
+3547 y FX(i)876 3559 y F6(j)p Ga(S)5 b F4([)p Ga(\033)s
+F4(])p F6(j)1092 3526 y Fu(N)1148 3559 y Ga(;)1188 3547
+y F9(\()1215 3559 y Ga(y)1263 3547 y F9(\))1291 3559
+y F6(j)p Ga(N)10 b F6(j)1424 3526 y Fu(N)1478 3559 y
+F4([)p Ga(x)g F6(7!)g Ga(y)s F4(]\))1173 b Gg(by)24 b(\(14\))g(of)f
+F6(j)p 3360 3559 V 3378 3559 V 3396 3559 V 65 w(j)3448
+3526 y Fu(N)410 3685 y F6(\021)54 b FL(Subst)o F4(\()782
+3673 y FX(h)810 3685 y Ga(b)849 3673 y FX(i)876 3685
+y F6(j)p Ga(S)5 b F6(j)987 3652 y Fu(N)1042 3685 y Fs(\()p
+Ga(\033)s Fs(\))1162 3643 y Fu(N)1216 3685 y Ga(;)1256
+3673 y F9(\()1284 3685 y Ga(y)1332 3673 y F9(\))1359
+3685 y F6(j)p Ga(N)10 b F6(j)1492 3652 y Fu(N)1546 3685
+y F4([)p Ga(x)g F6(7!)g Ga(y)s F4(])q(\))1450 b Gg(by)23
+b(IH)410 3810 y F4(=)54 b FL(Subst)o F4(\()782 3798 y
+FX(h)810 3810 y Ga(b)849 3798 y FX(i)876 3810 y F6(j)p
+Ga(S)5 b F6(j)987 3777 y Fu(N)1042 3810 y Fs(\()p Ga(\033)s
+Fs(\))1162 3768 y Fu(N)1216 3810 y Ga(;)1256 3798 y F9(\()1284
+3810 y Ga(y)1332 3798 y F9(\))1359 3810 y FL(Id)p F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))p Fs(\()r Ga(\033)s Fs(\))1758
+3768 y Fu(N)1812 3810 y F4(\))410 3935 y(=)54 b FL(Subst)o
+F4(\()782 3923 y FX(h)810 3935 y Ga(b)849 3923 y FX(i)876
+3935 y F6(j)p Ga(S)5 b F6(j)987 3902 y Fu(N)1042 3935
+y Ga(;)1082 3923 y F9(\()1110 3935 y Ga(y)1158 3923 y
+F9(\))1185 3935 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q(\))p
+Fs(\()q Ga(\033)s Fs(\))1620 3893 y Fu(N)410 4061 y F4(=)54
+b F6(j)p FL(Cut)p F4(\()733 4049 y FX(h)761 4061 y Ga(b)800
+4049 y FX(i)827 4061 y Ga(S)5 b(;)928 4049 y F9(\()956
+4061 y Ga(y)1004 4049 y F9(\))1031 4061 y FL(Ax)p F4(\()p
+Ga(y)s(;)15 b(a)p F4(\))q(\))p F6(j)1401 4028 y Fu(N)1456
+4061 y Fs(\()p Ga(\033)s Fs(\))1576 4019 y Fu(N)2879
+4061 y Gg(by)23 b(\(1,14\))i(of)e F6(j)p 3360 4061 V
+3378 4061 V 3396 4061 V 65 w(j)3448 4028 y Fu(N)p 3436
+4233 4 62 v 3440 4175 55 4 v 3440 4233 V 3494 4233 4
+62 v Black 277 4445 a Gb(Pr)n(oof)h(of)g(Theor)n(em)f(3.4.9.)p
+Black 34 w Gg(W)-7 b(e)23 b(\002rst)g(gi)n(v)o(e)h(the)f(calculations)k
+(for)d(some)g(base)g(cases.)p Black 277 4706 a Gb(Logical)h(Cut)d(with)
+g(Axiom:)p Black 504 4861 a Ga(M)36 b F6(\021)25 b FL(Cut)p
+F4(\()897 4849 y FX(h)924 4861 y Ga(a)972 4849 y FX(i)1000
+4861 y Ga(S)5 b(;)1101 4849 y F9(\()1129 4861 y Ga(y)1177
+4849 y F9(\))1204 4861 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(b)p F4(\)\))1596 4824 y Gc(cut)1565 4861 y F6(\000)-31
+b(\000)f(!)26 b Ga(S)5 b F4([)p Ga(a)10 b F6(7!)g Ga(b)p
+F4(])26 b F6(\021)e Ga(N)727 5045 y F6(j)p FL(Cut)p F4(\()925
+5033 y FX(h)953 5045 y Ga(a)1001 5033 y FX(i)1028 5045
+y Ga(M)10 b(;)1166 5033 y F9(\()1194 5045 y Ga(y)1242
+5033 y F9(\))1269 5045 y FL(Ax)p F4(\()p Ga(y)s(;)15
+b(b)p F4(\))q(\))p F6(j)1630 5012 y Fu(N)604 5169 y F4(=)52
+b FL(Subst)o F4(\()974 5157 y FX(h)1002 5169 y Ga(a)1050
+5157 y FX(i)1077 5169 y F6(j)p Ga(S)5 b F6(j)1188 5136
+y Fu(N)1242 5169 y Ga(;)1282 5157 y F9(\()1310 5169 y
+Ga(y)1358 5157 y F9(\))1386 5169 y FL(Id)p F4(\()p Ga(y)s(;)15
+b(b)p F4(\))q(\))1188 b Gg(by)23 b(\(1,14\))i(of)e F6(j)p
+3360 5169 28 4 v 3378 5169 V 3396 5169 V 65 w(j)3448
+5136 y Fu(N)569 5256 y Gc(\024)504 5293 y F6(\000)-31
+b(\000)g(!)52 b(j)p Ga(S)5 b F6(j)838 5260 y Fu(N)892
+5293 y F4([)p Ga(a)10 b F6(7!)g Ga(b)p F4(])604 5417
+y F6(\021)52 b(j)p Ga(S)5 b F4([)p Ga(a)10 b F6(7!)g
+Ga(b)p F4(])p F6(j)1086 5384 y Fu(N)p Black Black eop
+end
+%%Page: 166 178
+TeXDict begin 166 177 bop Black -144 51 a Gb(166)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 549 412 a Ga(M)41 b F6(\021)31 b FL(Cut)o F4(\()952
+400 y FX(h)980 412 y Ga(a)1028 400 y FX(i)1056 412 y
+FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p F4(\))q Ga(;)1405 400
+y F9(\()1433 412 y Ga(x)1485 400 y F9(\))1513 412 y Ga(S)5
+b F4(\))1671 375 y Gc(cut)1640 412 y F6(\000)-31 b(\000)f(!)31
+b Ga(S)5 b F4([)p Ga(x)16 b F6(7!)g Ga(y)s F4(])32 b
+F6(\021)e Ga(N)36 b Gg(and)27 b(one)g(of)g(the)g(clauses)i
+(\(10\22613\))549 525 y(of)23 b F6(j)p 674 525 28 4 v
+692 525 V 710 525 V 65 w(j)762 492 y Fu(N)839 525 y Gg(applies)i(to)e
+Ga(M)10 b Gg(,)23 b(for)h(e)o(xample)g(\(10\):)772 678
+y F6(j)p FL(Cut)p F4(\()970 666 y FX(h)998 678 y Ga(a)1046
+666 y FX(i)1074 678 y FL(Ax)o F4(\()p Ga(y)s(;)15 b(a)p
+F4(\))q Ga(;)1423 666 y F9(\()1451 678 y Ga(x)1503 666
+y F9(\))1530 678 y Ga(S)5 b F4(\))p F6(j)1651 645 y Fu(N)650
+803 y F4(=)51 b FL(And)927 766 y Gc(i)927 826 y(E)986
+803 y F4(\()1021 791 y FX(h)1049 803 y Ga(a)1097 791
+y FX(i)1125 803 y FL(Id)p F4(\()p Ga(y)s(;)15 b(a)p F4(\))q
+Ga(;)1444 791 y F9(\()1472 803 y Ga(x)1524 791 y F9(\))1551
+803 y F6(j)p Ga(S)5 b F6(j)1662 770 y Fu(N)1717 803 y
+F4(\))1171 b Gg(by)23 b(\(1,10\))i(of)e F6(j)p 3404 803
+V 3422 803 V 3440 803 V 65 w(j)3492 770 y Fu(N)650 927
+y F6(\021)51 b(j)p Ga(N)10 b F6(j)905 894 y Fu(N)p Black
+321 1112 a Gb(Logical)25 b(Cut)d Fb(^)871 1126 y Fy(R)936
+1112 y FO(=)p Fb(^)1058 1126 y Fy(L)1111 1134 y Fa(1)1154
+1112 y Gb(:)p Black 549 1267 a Ga(M)35 b F6(\021)25 b
+FL(Cut)p F4(\()941 1255 y FX(h)969 1267 y Ga(c)1008 1255
+y FX(i)1035 1267 y FL(And)1190 1281 y Gc(R)1248 1267
+y F4(\()1283 1255 y FX(h)1310 1267 y Ga(a)1358 1255 y
+FX(i)1386 1267 y Ga(S)5 b(;)1487 1255 y FX(h)1515 1267
+y Ga(b)1554 1255 y FX(i)1581 1267 y Ga(T)13 b(;)i(c)p
+F4(\))q Ga(;)1802 1255 y F9(\()1830 1267 y Ga(y)1878
+1255 y F9(\))1905 1267 y FL(And)2060 1231 y F9(1)2060
+1291 y Gc(L)2112 1267 y F4(\()2147 1255 y F9(\()2175
+1267 y Ga(x)2227 1255 y F9(\))2254 1267 y Ga(P)e(;)i(y)s
+F4(\))q(\))2540 1230 y Gc(cut)2509 1267 y F6(\000)-31
+b(\000)g(!)25 b FL(Cut)p F4(\()2878 1255 y FX(h)2905
+1267 y Ga(a)2953 1255 y FX(i)2981 1267 y Ga(S)5 b(;)3082
+1255 y F9(\()3110 1267 y Ga(x)3162 1255 y F9(\))3189
+1267 y Ga(P)13 b F4(\))26 b F6(\021)f Ga(N)771 1421 y
+F6(j)p FL(Cut)p F4(\()969 1409 y FX(h)997 1421 y Ga(c)1036
+1409 y FX(i)1064 1421 y FL(And)1218 1435 y Gc(R)1276
+1421 y F4(\()1311 1409 y FX(h)1339 1421 y Ga(a)1387 1409
+y FX(i)1414 1421 y Ga(S)5 b(;)1515 1409 y FX(h)1543 1421
+y Ga(b)1582 1409 y FX(i)1609 1421 y Ga(T)13 b(;)i(c)p
+F4(\))q Ga(;)1830 1409 y F9(\()1858 1421 y Ga(y)1906
+1409 y F9(\))1933 1421 y FL(And)2088 1385 y F9(1)2088
+1445 y Gc(L)2140 1421 y F4(\()2175 1409 y F9(\()2203
+1421 y Ga(x)2255 1409 y F9(\))2282 1421 y Ga(P)e(;)i(y)s
+F4(\))q(\))p F6(j)2537 1388 y Fu(N)648 1546 y F4(=)52
+b FL(And)925 1509 y Gc(i)925 1569 y(E)985 1546 y F4(\()1020
+1534 y FX(h)1048 1546 y Ga(c)1087 1534 y FX(i)1115 1546
+y FL(And)1269 1560 y Gc(I)1309 1546 y F4(\()1344 1534
+y FX(h)1372 1546 y Ga(a)1420 1534 y FX(i)1447 1546 y
+F6(j)p Ga(S)5 b F6(j)1558 1513 y Fu(N)1613 1546 y Ga(;)1653
+1534 y FX(h)1681 1546 y Ga(b)1720 1534 y FX(i)1747 1546
+y F6(j)p Ga(T)13 b F6(j)1863 1513 y Fu(N)1917 1546 y
+Ga(;)i(c)p F4(\))q Ga(;)2072 1534 y F9(\()2100 1546 y
+Ga(x)2152 1534 y F9(\))2180 1546 y F6(j)p Ga(P)e F6(j)2301
+1513 y Fu(N)2355 1546 y F4(\))533 b Gg(by)23 b(\(2,10\))i(of)e
+F6(j)p 3404 1546 V 3422 1546 V 3440 1546 V 65 w(j)3492
+1513 y Fu(N)613 1633 y Gc(\024)549 1670 y F6(\000)-32
+b(\000)h(!)52 b FL(Subst)o F4(\()1018 1658 y FX(h)1046
+1670 y Ga(a)1094 1658 y FX(i)1121 1670 y F6(j)p Ga(S)5
+b F6(j)1232 1637 y Fu(N)1287 1670 y Ga(;)1327 1658 y
+F9(\()1355 1670 y Ga(x)1407 1658 y F9(\))1434 1670 y
+F6(j)p Ga(P)13 b F6(j)1555 1637 y Fu(N)1609 1670 y F4(\))786
+b Ga(c)23 b Gg(is)h(freshly)h(introduced)h(by)3407 1633
+y Gc(cut)3376 1670 y F6(\000)-31 b(\000)f(!)549 1813
+y Gg(No)n(w)28 b(we)h(ha)n(v)o(e)i(tw)o(o)f(subcases)i(depending)h(on)d
+(whether)h Ga(P)42 b Gg(freshly)32 b(introduces)h Ga(x)p
+Gg(,)d(b)n(ut)h(is)549 1926 y(not)23 b(an)h(axiom.)29
+b(In)24 b(this)g(case)g(we)f(reason)i(as)e(follo)n(ws.)580
+2181 y FL(Subst)o F4(\()827 2169 y FX(h)855 2181 y Ga(a)903
+2169 y FX(i)930 2181 y F6(j)p Ga(S)5 b F6(j)1041 2148
+y Fu(N)1096 2181 y Ga(;)1136 2169 y F9(\()1164 2181 y
+Ga(x)1216 2169 y F9(\))1243 2181 y F6(j)p Ga(P)13 b F6(j)1364
+2148 y Fu(N)1418 2181 y F4(\))1544 2144 y Gc(\024)1479
+2181 y F6(\000)-31 b(\000)f(!)26 b(j)p Ga(P)13 b F6(j)1796
+2143 y Fu(N)1850 2181 y Fs(\()-7 b Ga(x)26 b F4(:=)2074
+2169 y FX(h)2101 2181 y Ga(a)2149 2169 y FX(i)2177 2181
+y F6(j)p Ga(S)5 b F6(j)2288 2148 y Fu(N)2335 2181 y Fs(\))2393
+2112 y F9(\(3)p Gc(:)p F9(4)p Gc(:)p F9(6\))2457 2181
+y F6(\021)90 b(j)p Ga(P)13 b F4([)p Ga(x)26 b F4(:=)2938
+2169 y FX(h)2965 2181 y Ga(a)3013 2169 y FX(i)3041 2181
+y Ga(S)5 b F4(])p F6(j)3152 2143 y Fu(N)3232 2181 y F6(\021)25
+b(j)p Ga(N)10 b F6(j)3461 2143 y Fu(N)549 2411 y Gg(Otherwise)24
+b(by)g(\(14\))g(of)f F6(j)p 1358 2411 V 1376 2411 V 1394
+2411 V 65 w(j)1446 2378 y Fu(N)1500 2411 y Gg(:)1048
+2663 y FL(Subst)o F4(\()1295 2651 y FX(h)1323 2663 y
+Ga(a)1371 2651 y FX(i)1398 2663 y F6(j)p Ga(S)5 b F6(j)1509
+2630 y Fu(N)1564 2663 y Ga(;)1604 2651 y F9(\()1632 2663
+y Ga(x)1684 2651 y F9(\))1711 2663 y F6(j)p Ga(P)13 b
+F6(j)1832 2630 y Fu(N)1887 2663 y F4(\))25 b(=)g F6(j)p
+FL(Cut)p F4(\()2241 2651 y FX(h)2269 2663 y Ga(a)2317
+2651 y FX(i)2345 2663 y Ga(S)5 b(;)2446 2651 y F9(\()2473
+2663 y Ga(x)2525 2651 y F9(\))2553 2663 y Ga(P)13 b F4(\))p
+F6(j)2684 2626 y Fu(N)2764 2663 y F6(\021)25 b(j)p Ga(N)10
+b F6(j)2993 2626 y Fu(N)p Black 321 2893 a Gb(Logical)25
+b(Cut)d Fb(\033)882 2907 y Fy(R)948 2893 y FO(=)p Fb(\033)1081
+2907 y Fy(L)1139 2893 y Gb(:)p Black 598 3046 a Ga(M)36
+b F6(\021)f FL(Cut)p F4(\()1001 3034 y FX(h)1029 3046
+y Ga(b)1068 3034 y FX(i)1095 3046 y FL(Imp)1239 3068
+y Gc(R)1297 3046 y F4(\()1332 3034 y F9(\()1360 3046
+y Ga(x)1412 3034 y F9(\))p FX(h)1467 3046 y Ga(a)1515
+3034 y FX(i)1542 3046 y Ga(S)5 b(;)15 b(b)p F4(\))q Ga(;)1758
+3034 y F9(\()1786 3046 y Ga(z)1832 3034 y F9(\))1860
+3046 y FL(Imp)2004 3068 y Gc(L)2056 3046 y F4(\()2091
+3034 y FX(h)2119 3046 y Ga(c)2158 3034 y FX(i)2186 3046
+y Ga(T)e(;)2292 3034 y F9(\()2319 3046 y Ga(y)2367 3034
+y F9(\))2395 3046 y Ga(P)g(;)i(z)t F4(\))q(\))859 3122
+y Gc(cut)828 3159 y F6(\000)-31 b(\000)f(!)25 b FL(Cut)p
+F4(\()1196 3147 y FX(h)1224 3159 y Ga(c)1263 3147 y FX(i)1291
+3159 y Ga(T)13 b(;)1397 3147 y F9(\()1424 3159 y Ga(x)1476
+3147 y F9(\))1504 3159 y FL(Cut)p F4(\()1677 3147 y FX(h)1705
+3159 y Ga(a)1753 3147 y FX(i)1780 3159 y Ga(S)5 b(;)1881
+3147 y F9(\()1909 3159 y Ga(y)1957 3147 y F9(\))1984
+3159 y Ga(P)13 b F4(\)\))26 b F6(\021)f Ga(N)771 3324
+y F6(j)p FL(Cut)p F4(\()969 3312 y FX(h)997 3324 y Ga(b)1036
+3312 y FX(i)1063 3324 y FL(Imp)1208 3346 y Gc(R)1265
+3324 y F4(\()1300 3312 y F9(\()1328 3324 y Ga(x)1380
+3312 y F9(\))q FX(h)1435 3324 y Ga(a)1483 3312 y FX(i)1510
+3324 y Ga(S)5 b(;)15 b(b)p F4(\))q Ga(;)1726 3312 y F9(\()1754
+3324 y Ga(z)1800 3312 y F9(\))1828 3324 y FL(Imp)1972
+3346 y Gc(L)2024 3324 y F4(\()2059 3312 y FX(h)2087 3324
+y Ga(c)2126 3312 y FX(i)2154 3324 y Ga(T)e(;)2260 3312
+y F9(\()2288 3324 y Ga(y)2336 3312 y F9(\))2363 3324
+y Ga(P)g(;)i(z)t F4(\))q(\))p F6(j)2616 3291 y Fu(N)648
+3448 y F4(=)52 b FL(Imp)915 3470 y Gc(E)975 3448 y F4(\()1010
+3436 y FX(h)1038 3448 y Ga(b)1077 3436 y FX(i)1104 3448
+y FL(Imp)1249 3470 y Gc(I)1288 3448 y F4(\()1323 3436
+y F9(\()1351 3448 y Ga(x)1403 3436 y F9(\))q FX(h)1458
+3448 y Ga(a)1506 3436 y FX(i)1534 3448 y F6(j)p Ga(S)5
+b F6(j)1645 3415 y Fu(N)1699 3448 y Ga(;)15 b(b)p F4(\))q
+Ga(;)1854 3436 y FX(h)1882 3448 y Ga(c)1921 3436 y FX(i)1948
+3448 y F6(j)p Ga(T)e F6(j)2064 3415 y Fu(N)2119 3448
+y Ga(;)2159 3436 y F9(\()2187 3448 y Ga(y)2235 3436 y
+F9(\))2262 3448 y F6(j)p Ga(P)g F6(j)2383 3415 y Fu(N)2437
+3448 y F4(\))451 b Gg(by)23 b(\(4,12\))i(of)e F6(j)p
+3404 3448 V 3422 3448 V 3440 3448 V 65 w(j)3492 3415
+y Fu(N)613 3535 y Gc(\024)549 3572 y F6(\000)-32 b(\000)h(!)52
+b FL(Subst)o F4(\()1018 3560 y FX(h)1046 3572 y Ga(c)1085
+3560 y FX(i)1113 3572 y F6(j)p Ga(N)10 b F6(j)1246 3539
+y Fu(N)1300 3572 y Ga(;)1340 3560 y F9(\()1368 3572 y
+Ga(x)1420 3560 y F9(\))1447 3572 y FL(Subst)o F4(\()1694
+3560 y FX(h)1722 3572 y Ga(a)1770 3560 y FX(i)1798 3572
+y F6(j)p Ga(M)g F6(j)1946 3539 y Fu(N)2000 3572 y Ga(;)2040
+3560 y F9(\()2068 3572 y Ga(y)2116 3560 y F9(\))2143
+3572 y F6(j)p Ga(P)j F6(j)2264 3539 y Fu(N)2319 3572
+y F4(\)\))42 b Ga(b)22 b Gg(is)i(freshly)h(introduced)h(by)3407
+3535 y Gc(cut)3376 3572 y F6(\000)-31 b(\000)f(!)549
+3715 y Gg(Again)33 b(we)g(ha)n(v)o(e)h(tw)o(o)f(subcases)j(depending)g
+(on)e(whether)g Ga(P)46 b Gg(freshly)35 b(introduces)h
+Ga(x)p Gg(,)f(b)n(ut)549 3828 y(is)f(not)h(an)g(axiom.)62
+b(In)35 b(this)g(case,)j(we)33 b(reason)j(analogous)i(as)c(in)h(the)g
+(case)g(gi)n(v)o(en)g(abo)o(v)o(e.)549 3941 y(Otherwise)24
+b(by)g(\(14\))g(of)f F6(j)p 1358 3941 V 1376 3941 V 1394
+3941 V 65 w(j)1446 3908 y Fu(N)1500 3941 y Gg(:)p Black
+Black 1323 4154 a FL(Subst)o F4(\()1570 4142 y FX(h)1598
+4154 y Ga(c)1637 4142 y FX(i)1665 4154 y F6(j)p Ga(N)10
+b F6(j)1798 4121 y Fu(N)1852 4154 y Ga(;)1892 4142 y
+F9(\()1920 4154 y Ga(x)1972 4142 y F9(\))2000 4154 y
+FL(Subst)o F4(\()2247 4142 y FX(h)2275 4154 y Ga(a)2323
+4142 y FX(i)2350 4154 y F6(j)p Ga(M)g F6(j)2498 4121
+y Fu(N)2553 4154 y Ga(;)2593 4142 y F9(\()2621 4154 y
+Ga(y)2669 4142 y F9(\))2696 4154 y F6(j)p Ga(P)j F6(j)2817
+4121 y Fu(N)2871 4154 y F4(\))q(\))1153 4267 y(=)99 b
+F6(j)p FL(Cut)p F4(\()1521 4255 y FX(h)1549 4267 y Ga(c)1588
+4255 y FX(i)1616 4267 y Ga(N)10 b(;)1739 4255 y F9(\()1767
+4267 y Ga(x)1819 4255 y F9(\))1846 4267 y FL(Cut)p F4(\()2019
+4255 y FX(h)2047 4267 y Ga(a)2095 4255 y FX(i)2122 4267
+y Ga(M)g(;)2260 4255 y F9(\()2288 4267 y Ga(y)2336 4255
+y F9(\))2364 4267 y Ga(P)j F4(\)\))p F6(j)2530 4234 y
+Fu(N)2610 4267 y F6(\021)25 b(j)p Ga(N)10 b F6(j)2839
+4234 y Fu(N)p Black 321 4474 a Gb(Commuting)23 b(Cut:)p
+Black 549 4629 a Ga(M)35 b F6(\021)25 b FL(Cut)p F4(\()941
+4617 y FX(h)969 4629 y Ga(a)1017 4617 y FX(i)1044 4629
+y Ga(S)5 b(;)1145 4617 y F9(\()1173 4629 y Ga(x)1225
+4617 y F9(\))1252 4629 y Ga(T)13 b F4(\))1409 4592 y
+Gc(cut)1379 4629 y F6(\000)-32 b(\000)h(!)25 b Ga(S)5
+b F4([)p Ga(a)26 b F4(:=)1855 4617 y F9(\()1882 4629
+y Ga(x)1934 4617 y F9(\))1962 4629 y Ga(T)13 b F4(])25
+b F6(\021)g Ga(N)549 4778 y Gg(If)33 b(one)g(of)h(the)f(clauses)i
+(\(10\22613\))h(applies)f(to)e Ga(M)10 b Gg(,)35 b(then)f(we)e(ha)n(v)o
+(e)i(for)g(e)o(xample)g(for)f Ga(T)57 b F6(\021)549 4890
+y FL(And)703 4854 y Gc(i)703 4914 y(L)755 4890 y F4(\()790
+4878 y F9(\()818 4890 y Ga(y)866 4878 y F9(\))893 4890
+y Ga(P)13 b(;)i(x)p F4(\))810 5045 y F6(j)p FL(Cut)p
+F4(\()1008 5033 y FX(h)1036 5045 y Ga(a)1084 5033 y FX(i)1112
+5045 y Ga(S)5 b(;)1213 5033 y F9(\()1240 5045 y Ga(x)1292
+5033 y F9(\))1320 5045 y FL(And)1474 5008 y Gc(i)1474
+5068 y(L)1527 5045 y F4(\()1562 5033 y F9(\()1589 5045
+y Ga(y)1637 5033 y F9(\))1665 5045 y Ga(P)13 b(;)i(x)p
+F4(\)\))p F6(j)1923 5012 y Fu(N)648 5169 y F4(=)91 b
+FL(And)965 5132 y Gc(i)965 5192 y(E)1024 5169 y F4(\()1059
+5157 y FX(h)1087 5169 y Ga(a)1135 5157 y FX(i)1163 5169
+y F6(j)p Ga(S)5 b F6(j)1274 5136 y Fu(N)1328 5169 y Ga(;)1368
+5157 y F9(\()1396 5169 y Ga(y)1444 5157 y F9(\))1471
+5169 y F6(j)p Ga(P)13 b F6(j)1592 5136 y Fu(N)1647 5169
+y F4(\))1309 b Gg(by)24 b(\(10\))g(of)f F6(j)p 3404 5169
+V 3422 5169 V 3440 5169 V 65 w(j)3492 5136 y Fu(N)613
+5256 y Gc(\024)549 5293 y F6(\000)-32 b(\000)h(!)91 b(j)p
+Ga(S)5 b F6(j)921 5260 y Fu(N)976 5293 y Fs(^)p FL(And)1163
+5256 y Gc(i)1163 5316 y(E)1222 5293 y F4(\()1257 5281
+y FX(h)1285 5293 y Ga(a)1333 5281 y FX(i)p 1363 5293
+V 1380 5293 V 1398 5293 V 1425 5293 a Ga(;)1465 5281
+y F9(\()1493 5293 y Ga(y)1541 5281 y F9(\))1568 5293
+y F6(j)p Ga(P)13 b F6(j)1689 5260 y Fu(N)1744 5293 y
+F4(\))p Fs(_)613 5380 y Gc(\024)549 5417 y F6(\000)-32
+b(\000)h(!)728 5384 y FX(\003)810 5417 y F6(j)p Ga(S)5
+b F4([)p Ga(a)26 b F4(:=)1116 5405 y F9(\()1144 5417
+y Ga(x)1196 5405 y F9(\))1223 5417 y Ga(T)13 b F4(])p
+F6(j)1339 5384 y Fu(N)1419 5417 y F6(\021)25 b(j)p Ga(N)10
+b F6(j)1648 5384 y Fu(N)2950 5417 y Gg(by)24 b(Lemma)f(3.4.7)p
+Black Black eop end
+%%Page: 167 179
+TeXDict begin 167 178 bop Black 277 51 a Gb(B.3)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(4)2639 b(167)p 277 88 3691 4 v Black 504 412
+a Gg(Otherwise)25 b(we)d(ha)n(v)o(e)727 545 y F6(j)p
+FL(Cut)p F4(\()925 533 y FX(h)953 545 y Ga(a)1001 533
+y FX(i)1028 545 y Ga(S)5 b(;)1129 533 y F9(\()1157 545
+y Ga(x)1209 533 y F9(\))1236 545 y Ga(T)13 b F4(\))p
+F6(j)1362 512 y Fu(N)604 670 y F4(=)52 b FL(Subst)o F4(\()974
+658 y FX(h)1002 670 y Ga(a)1050 658 y FX(i)1077 670 y
+F6(j)p Ga(S)5 b F6(j)1188 637 y Fu(N)1242 670 y Ga(;)1282
+658 y F9(\()1310 670 y Ga(x)1362 658 y F9(\))1390 670
+y F6(j)p Ga(T)13 b F6(j)1506 637 y Fu(N)1560 670 y F4(\))1352
+b Gg(by)24 b(\(14\))g(of)f F6(j)p 3360 670 28 4 v 3378
+670 V 3396 670 V 65 w(j)3448 637 y Fu(N)569 757 y Gc(\024)504
+794 y F6(\000)-31 b(\000)g(!)52 b(j)p Ga(S)5 b F6(j)838
+761 y Fu(N)892 794 y Fs(\()-7 b Ga(a)26 b F4(:=)1112
+782 y F9(\()1139 794 y Ga(x)1191 782 y F9(\))1219 794
+y F6(j)p Ga(T)13 b F6(j)1335 761 y Fu(N)1382 794 y Fs(\))604
+918 y F6(\021)52 b(j)p Ga(S)5 b F4([)p Ga(a)25 b F4(:=)1033
+906 y F9(\()1060 918 y Ga(x)1112 906 y F9(\))1139 918
+y Ga(T)13 b F4(])p F6(j)1255 885 y Fu(N)2906 918 y Gg(by)24
+b(Lemma)e(3.4.8)504 1080 y Ga(M)36 b F6(\021)25 b FL(Cut)p
+F4(\()897 1068 y FX(h)924 1080 y Ga(a)972 1068 y FX(i)1000
+1080 y Ga(S)5 b(;)1101 1068 y F9(\()1129 1080 y Ga(x)1181
+1068 y F9(\))1208 1080 y Ga(T)13 b F4(\))1365 1042 y
+Gc(cut)1334 1079 y F6(\000)-31 b(\000)g(!)1530 1080 y
+Ga(T)13 b F4([)p Ga(x)25 b F4(:=)1819 1068 y FX(h)1847
+1080 y Ga(a)1895 1068 y FX(i)1922 1080 y Ga(S)5 b F4(])26
+b F6(\021)f Ga(N)727 1246 y F6(j)p FL(Cut)p F4(\()925
+1234 y FX(h)953 1246 y Ga(a)1001 1234 y FX(i)1028 1246
+y Ga(S)5 b(;)1129 1234 y F9(\()1157 1246 y Ga(x)1209
+1234 y F9(\))1236 1246 y Ga(T)13 b F4(\))p F6(j)1362
+1213 y Fu(N)604 1370 y F4(=)52 b FL(Subst)o F4(\()974
+1358 y FX(h)1002 1370 y Ga(a)1050 1358 y FX(i)1077 1370
+y F6(j)p Ga(S)5 b F6(j)1188 1337 y Fu(N)1242 1370 y Ga(;)1282
+1358 y F9(\()1310 1370 y Ga(x)1362 1358 y F9(\))1390
+1370 y F6(j)p Ga(T)13 b F6(j)1506 1337 y Fu(N)1560 1370
+y F4(\))1352 b Gg(by)24 b(\(14\))g(of)f F6(j)p 3360 1370
+V 3378 1370 V 3396 1370 V 65 w(j)3448 1337 y Fu(N)569
+1457 y Gc(\024)504 1494 y F6(\000)-31 b(\000)g(!)52 b(j)p
+Ga(T)13 b F6(j)843 1461 y Fu(N)897 1494 y Fs(\()-7 b
+Ga(x)25 b F4(:=)1121 1482 y FX(h)1148 1494 y Ga(a)1196
+1482 y FX(i)1224 1494 y F6(j)p Ga(S)5 b F6(j)1335 1461
+y Fu(N)1382 1494 y Fs(\))604 1618 y F6(\021)52 b(j)p
+Ga(T)13 b F4([)p Ga(x)25 b F4(:=)1041 1606 y FX(h)1069
+1618 y Ga(a)1117 1606 y FX(i)1144 1618 y Ga(S)5 b F4(])p
+F6(j)1255 1585 y Fu(N)1335 1618 y F6(\021)25 b(j)p Ga(N)10
+b F6(j)1564 1585 y Fu(N)2906 1618 y Gg(by)24 b(Lemma)e(3.4.6)p
+Black 277 1800 a Gb(Inner)h(Reduction:)p Black 46 w Gg(The)d(inner)i
+(reductions)i(are)d(by)g(simple)g(induction)j(ar)n(guments)f(e)o(xcept)
+f(where)504 1913 y Ga(M)38 b Gg(is)28 b(translated)j(by)e(clause)g
+(\(14\))g(of)g F6(j)p 1782 1913 V 1800 1913 V 1817 1913
+V 65 w(j)1870 1880 y Fu(N)1951 1913 y Gg(and)g Ga(N)38
+b Gg(by)28 b(one)h(of)f(the)h(clauses)h(\(10\22613\).)45
+b(W)-7 b(e)504 2026 y(gi)n(v)o(e)24 b(the)g(details)h(for)f(one)g(such)
+g(case.)29 b(Suppose)c Ga(y)h Gg(is)d(free)h(in)2496
+2014 y F9(\()2523 2026 y Ga(x)2575 2014 y F9(\))2602
+2026 y Ga(T)13 b Gg(,)23 b(b)n(ut)h(not)g(in)3083 2014
+y F9(\()3111 2026 y Ga(x)3163 2014 y F9(\))3190 2026
+y Ga(T)3256 1993 y FX(0)3279 2026 y Gg(.)504 2176 y Ga(M)36
+b F6(\021)25 b FL(Cut)p F4(\()897 2164 y FX(h)924 2176
+y Ga(c)963 2164 y FX(i)991 2176 y Ga(S)5 b(;)1092 2164
+y F9(\()1120 2176 y Ga(y)1168 2164 y F9(\))1195 2176
+y FL(And)1350 2139 y Gc(i)1350 2199 y(L)1402 2176 y F4(\()1437
+2164 y F9(\()1465 2176 y Ga(x)1517 2164 y F9(\))1544
+2176 y Ga(T)13 b(;)i(y)s F4(\))q(\))1825 2139 y Gc(cut)1794
+2176 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)p F4(\()2163
+2164 y FX(h)2190 2176 y Ga(c)2229 2164 y FX(i)2257 2176
+y Ga(S)5 b(;)2358 2164 y F9(\()2386 2176 y Ga(y)2434
+2164 y F9(\))2461 2176 y FL(And)2616 2139 y Gc(i)2616
+2199 y(L)2668 2176 y F4(\()2703 2164 y F9(\()2731 2176
+y Ga(x)2783 2164 y F9(\))2810 2176 y Ga(T)2876 2143 y
+FX(0)2899 2176 y Ga(;)15 b(y)s F4(\))q(\))25 b F6(\021)g
+Ga(N)766 2331 y F6(j)p FL(Cut)p F4(\()964 2319 y FX(h)992
+2331 y Ga(c)1031 2319 y FX(i)1059 2331 y Ga(S)5 b(;)1160
+2319 y F9(\()1188 2331 y Ga(y)1236 2319 y F9(\))1263
+2331 y FL(And)1417 2294 y Gc(i)1417 2354 y(L)1470 2331
+y F4(\()1505 2319 y F9(\()1532 2331 y Ga(x)1584 2319
+y F9(\))1612 2331 y Ga(T)13 b(;)i(y)s F4(\)\))p F6(j)1861
+2298 y Fu(N)604 2455 y F4(=)91 b FL(Subst)o F4(\()1013
+2443 y FX(h)1041 2455 y Ga(c)1080 2443 y FX(i)1108 2455
+y F6(j)p Ga(S)5 b F6(j)1219 2422 y Fu(N)1273 2455 y Ga(;)1313
+2443 y F9(\()1341 2455 y Ga(y)1389 2443 y F9(\))1416
+2455 y FL(And)1571 2418 y Gc(i)1571 2478 y(E)1630 2455
+y F4(\()1665 2443 y FX(h)1693 2455 y Ga(a)1741 2443 y
+FX(i)1769 2455 y FL(Id)p F4(\()p Ga(a;)15 b(y)s F4(\))q
+Ga(;)2088 2443 y F9(\()2116 2455 y Ga(x)2168 2443 y F9(\))2195
+2455 y F6(j)p Ga(T)e F6(j)2311 2422 y Fu(N)2365 2455
+y F4(\))q(\))443 b Gg(by)23 b(\(6,14\))i(of)e F6(j)p
+3360 2455 V 3378 2455 V 3396 2455 V 65 w(j)3448 2422
+y Fu(N)569 2542 y Gc(\024)504 2580 y F6(\000)-31 b(\000)g(!)684
+2547 y FX(\003)766 2580 y FL(Subst)o F4(\()1013 2568
+y FX(h)1041 2580 y Ga(c)1080 2568 y FX(i)1108 2580 y
+F6(j)p Ga(S)5 b F6(j)1219 2547 y Fu(N)1273 2580 y Ga(;)1313
+2568 y F9(\()1341 2580 y Ga(y)1389 2568 y F9(\))1416
+2580 y FL(And)1571 2543 y Gc(i)1571 2603 y(E)1630 2580
+y F4(\()1665 2568 y FX(h)1693 2580 y Ga(a)1741 2568 y
+FX(i)1769 2580 y FL(Id)p F4(\()p Ga(a;)15 b(y)s F4(\))q
+Ga(;)2088 2568 y F9(\()2116 2580 y Ga(x)2168 2568 y F9(\))2195
+2580 y F6(j)p Ga(T)2286 2547 y FX(0)2310 2580 y F6(j)2335
+2547 y Fu(N)2389 2580 y F4(\)\))834 b Gg(by)23 b(IH)569
+2667 y Gc(\024)504 2704 y F6(\000)-31 b(\000)g(!)91 b
+FL(And)921 2667 y Gc(i)921 2727 y(E)980 2704 y F4(\()1015
+2692 y FX(h)1043 2704 y Ga(a)1091 2692 y FX(i)1118 2704
+y FL(Id)q F4(\()p Ga(a;)15 b(y)s F4(\))q Ga(;)1438 2692
+y F9(\()1466 2704 y Ga(x)1518 2692 y F9(\))1545 2704
+y F6(j)p Ga(T)1636 2671 y FX(0)1659 2704 y F6(j)1684
+2671 y Fu(N)1738 2704 y F4(\))p Fs(\()-6 b Ga(y)28 b
+F4(:=)1993 2692 y FX(h)2021 2704 y Ga(c)2060 2692 y FX(i)2088
+2704 y F6(j)p Ga(S)5 b F6(j)2199 2671 y Fu(N)2246 2704
+y Fs(\))604 2828 y F4(=)91 b FL(And)921 2791 y Gc(i)921
+2851 y(E)980 2828 y F4(\()1015 2816 y FX(h)1043 2828
+y Ga(c)1082 2816 y FX(i)1110 2828 y F6(j)p Ga(S)5 b F6(j)1221
+2795 y Fu(N)1275 2828 y Ga(;)1315 2816 y F9(\()1343 2828
+y Ga(x)1395 2816 y F9(\))1422 2828 y F6(j)p Ga(T)1513
+2795 y FX(0)1537 2828 y F6(j)1562 2795 y Fu(N)1616 2828
+y F4(\))721 b Gg(by)24 b(assumption)i Ga(y)i F6(62)d
+Ga(F)13 b(N)d F4(\()3271 2816 y F9(\()3298 2828 y Ga(x)3350
+2816 y F9(\))3378 2828 y Ga(T)3444 2795 y FX(0)3467 2828
+y F4(\))604 2952 y(=)91 b F6(j)p FL(Cut)p F4(\()964 2940
+y FX(h)992 2952 y Ga(c)1031 2940 y FX(i)1059 2952 y Ga(S)5
+b(;)1160 2940 y F9(\()1188 2952 y Ga(y)1236 2940 y F9(\))1263
+2952 y FL(And)1417 2915 y Gc(i)1417 2975 y(L)1470 2952
+y F4(\()1505 2940 y F9(\()1532 2952 y Ga(x)1584 2940
+y F9(\))1612 2952 y Ga(T)1678 2919 y FX(0)1701 2952 y
+Ga(;)15 b(y)s F4(\)\))p F6(j)1884 2919 y Fu(N)1964 2952
+y F6(\021)25 b(j)p Ga(N)10 b F6(j)2193 2919 y Fu(N)2947
+2952 y Gg(by)24 b(\(10\))g(of)f F6(j)p 3360 2952 V 3378
+2952 V 3396 2952 V 65 w(j)3448 2919 y Fu(N)p 3436 3059
+4 62 v 3440 3001 55 4 v 3440 3059 V 3494 3059 4 62 v
+277 3368 a Ge(B.3)119 b(Pr)n(oofs)29 b(of)g(Chapter)i(4)277
+3591 y Gg(In)i(this)h(section)h(we)e(pro)o(v)o(e)h(that)g(a)e
+(leftmost-outermost)38 b(reduction)e(strate)o(gy)f(of)3004
+3554 y Gc(aux)2984 3591 y F6(\000)-31 b(\000)f(!)33 b
+Gg(does)h(not)277 3704 y(restrict)25 b(the)f(collection)i(of)e
+(cut-free)h(proofs)g(reachable)h(from)e(a)f(gi)n(v)o(en)h(proof.)p
+Black 277 3842 a Gb(Pr)n(oof)i(of)e(Lemma)g(4.1.2.)p
+Black 34 w Gg(By)g(induction)k(on)d(the)g(structure)i(of)e
+Ga(M)2454 3856 y F9(1)2494 3842 y Gg(.)32 b(W)-7 b(e)24
+b(analyse)i(four)g(represen-)277 3955 y(tati)n(v)o(e)e(cases.)p
+Black 414 4157 a F6(\017)p Black 45 w Gg(Suppose)h(we)e(ha)n(v)o(e)h
+(the)g(term)f(with)h(the)f(reduction)k(sequence)649 4415
+y FL(And)804 4429 y Gc(R)861 4415 y F4(\()896 4403 y
+FX(h)924 4415 y Ga(a)972 4403 y FX(i)1000 4415 y Ga(M)10
+b(;)1138 4403 y FX(h)1166 4415 y Ga(b)1205 4403 y FX(i)1232
+4415 y Ga(N)g(;)15 b(c)p F4(\))1483 4378 y Gc(bad)1455
+4415 y F6(\000)-31 b(\000)g(!)25 b FL(And)1805 4429 y
+Gc(R)1863 4415 y F4(\()1898 4403 y FX(h)1926 4415 y Ga(a)1974
+4403 y FX(i)2001 4415 y Ga(M)11 b(;)2140 4403 y FX(h)2167
+4415 y Ga(b)2206 4403 y FX(i)2234 4415 y Ga(S)5 b(;)15
+b(c)p F4(\))p 2455 4340 119 3 v 2455 4378 a Gc(aux)2435
+4415 y F6(\000)-31 b(\000)g(!)25 b FL(And)2785 4429 y
+Gc(R)2843 4415 y F4(\()2878 4403 y FX(h)2906 4415 y Ga(a)2954
+4403 y FX(i)2981 4415 y Ga(T)13 b(;)3087 4403 y FX(h)3115
+4415 y Ga(b)3154 4403 y FX(i)3181 4415 y Ga(S)5 b(;)15
+b(c)p F4(\))504 4654 y Gg(where)31 b(a)e(reduction)j(is)e(performed)i
+(in)e(the)g(right)h(subterm,)h(although)g(the)e(left)h(subterm)g(is)504
+4766 y(not)24 b(yet)g(normal.)30 b(In)23 b(this)h(case)g(we)f
+(transform)i(the)f(reduction)i(sequence)g(into)629 5025
+y FL(And)784 5039 y Gc(R)841 5025 y F4(\()876 5013 y
+FX(h)904 5025 y Ga(a)952 5013 y FX(i)980 5025 y Ga(M)10
+b(;)1118 5013 y FX(h)1146 5025 y Ga(b)1185 5013 y FX(i)1212
+5025 y Ga(N)g(;)15 b(c)p F4(\))p 1456 4950 V 1456 4988
+a Gc(aux)1435 5025 y F6(\000)-31 b(\000)g(!)25 b FL(And)1785
+5039 y Gc(R)1843 5025 y F4(\()1878 5013 y FX(h)1906 5025
+y Ga(a)1954 5013 y FX(i)1981 5025 y Ga(T)13 b(;)2087
+5013 y FX(h)2115 5025 y Ga(b)2154 5013 y FX(i)2181 5025
+y Ga(N)d(;)15 b(c)p F4(\))2425 4988 y Gc(aux)2405 5025
+y F6(\000)-31 b(\000)f(!)25 b FL(And)2755 5039 y Gc(R)2813
+5025 y F4(\()2848 5013 y FX(h)2875 5025 y Ga(a)2923 5013
+y FX(i)2951 5025 y Ga(T)13 b(;)3057 5013 y FX(h)3084
+5025 y Ga(b)3123 5013 y FX(i)3151 5025 y Ga(S)5 b(;)15
+b(c)p F4(\))26 b Ga(:)p Black 414 5263 a F6(\017)p Black
+45 w Gg(Suppose)f(we)e(ha)n(v)o(e)h(a)f(term)h(with)f(the)h(reduction)i
+(sequence)646 5522 y FL(And)800 5536 y Gc(R)858 5522
+y F4(\()893 5510 y FX(h)921 5522 y Ga(a)969 5510 y FX(i)996
+5522 y Ga(M)10 b(;)1134 5510 y FX(h)1162 5522 y Ga(b)1201
+5510 y FX(i)1229 5522 y Ga(N)g(;)15 b(c)p F4(\))1479
+5485 y Gc(bad)1452 5522 y F6(\000)-31 b(\000)f(!)26 b
+FL(And)1802 5536 y Gc(R)1860 5522 y F4(\()1895 5510 y
+FX(h)1923 5522 y Ga(a)1971 5510 y FX(i)1998 5522 y Ga(S)5
+b(;)2099 5510 y FX(h)2127 5522 y Ga(b)2166 5510 y FX(i)2193
+5522 y Ga(N)10 b(;)15 b(c)p F4(\))p 2437 5447 V 2437
+5485 a Gc(aux)2417 5522 y F6(\000)-32 b(\000)h(!)25 b
+FL(And)2767 5536 y Gc(R)2824 5522 y F4(\()2859 5510 y
+FX(h)2887 5522 y Ga(a)2935 5510 y FX(i)2963 5522 y Ga(T)12
+b(;)3068 5510 y FX(h)3096 5522 y Ga(b)3135 5510 y FX(i)3163
+5522 y Ga(N)e(;)15 b(c)p F4(\))p Black Black eop end
+%%Page: 168 180
+TeXDict begin 168 179 bop Black -144 51 a Gb(168)2658
+b(Details)24 b(f)n(or)g(some)g(Pr)n(oofs)p -144 88 3691
+4 v Black 549 412 a Gg(where)30 b(\002rst)g(a)g(bad)h(reduction)h(is)f
+(performed)h(in)e(the)g(left)h(subterm)g(and)g(then)g(a)f(reduction)549
+525 y(in)d(the)h(same)f(term)g(which)h(respects)h(the)f(constraints)i
+(of)e(the)f(strate)o(gy)-6 b(.)42 b(Thus)28 b(we)e(ha)n(v)o(e)i(the)549
+638 y(reduction)21 b(sequence)g Ga(M)1411 601 y Gc(bad)1384
+638 y F6(\000)-31 b(\000)f(!)25 b Ga(S)p 1686 563 119
+3 v 1686 601 a Gc(aux)1666 638 y F6(\000)-32 b(\000)h(!)25
+b Ga(T)13 b Gg(.)26 b(By)18 b(induction)j(hypothesis)g(there)f(is)e(a)g
+(reduction)549 751 y Ga(M)p 692 676 V 692 714 a Gc(aux)672
+751 y F6(\000)-31 b(\000)f(!)25 b Ga(R)983 714 y Gc(aux)962
+751 y F6(\000)-31 b(\000)g(!)1133 718 y FX(\003)1197
+751 y Ga(T)13 b Gg(,)23 b(from)g(which)h(we)f(obtain)i(the)e(reduction)
+k(sequence)641 954 y FL(And)795 968 y Gc(R)853 954 y
+F4(\()888 942 y FX(h)916 954 y Ga(a)964 942 y FX(i)991
+954 y Ga(M)10 b(;)1129 942 y FX(h)1157 954 y Ga(b)1196
+942 y FX(i)1224 954 y Ga(N)f(;)15 b(c)p F4(\))p 1467
+879 V 1467 917 a Gc(aux)1447 954 y F6(\000)-31 b(\000)f(!)25
+b FL(And)1797 968 y Gc(R)1855 954 y F4(\()1890 942 y
+FX(h)1917 954 y Ga(a)1965 942 y FX(i)1993 954 y Ga(R)q(;)2103
+942 y FX(h)2130 954 y Ga(b)2169 942 y FX(i)2197 954 y
+Ga(N)10 b(;)15 b(c)p F4(\))2440 917 y Gc(aux)2420 954
+y F6(\000)-31 b(\000)g(!)2590 916 y FX(\003)2655 954
+y FL(And)2810 968 y Gc(R)2867 954 y F4(\()2902 942 y
+FX(h)2930 954 y Ga(a)2978 942 y FX(i)3006 954 y Ga(T)12
+b(;)3111 942 y FX(h)3139 954 y Ga(b)3178 942 y FX(i)3206
+954 y Ga(N)e(;)15 b(c)p F4(\))26 b Ga(:)p Black 458 1137
+a F6(\017)p Black 46 w Gg(Suppose)e(we)f(ha)n(v)o(e)h(a)f(term)h(with)f
+(the)h(reduction)i(sequence)933 1340 y FL(Cut)p F4(\()1106
+1328 y FX(h)1133 1340 y Ga(a)1181 1328 y FX(i)1209 1340
+y Ga(M)10 b(;)1347 1328 y F9(\()1375 1340 y Ga(x)1427
+1328 y F9(\))1454 1340 y Ga(N)g F4(\))1625 1303 y Gc(bad)1598
+1340 y F6(\000)-31 b(\000)f(!)25 b FL(Cut)p F4(\()1966
+1328 y FX(h)1994 1340 y Ga(a)2042 1328 y FX(i)2070 1340
+y Ga(M)10 b(;)2208 1328 y F9(\()2236 1340 y Ga(x)2288
+1328 y F9(\))2315 1340 y Ga(S)5 b F4(\))p 2457 1266 V
+2457 1303 a Gc(aux)2437 1340 y F6(\000)-32 b(\000)h(!)25
+b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2958 1328 y F9(\()2986
+1340 y Ga(x)3038 1328 y F9(\))3065 1340 y Ga(S)l F6(g)549
+1524 y Gg(which)d(we)g(may)g(transform)j(into)946 1727
+y FL(Cut)p F4(\()1119 1715 y FX(h)1147 1727 y Ga(a)1195
+1715 y FX(i)1222 1727 y Ga(M)10 b(;)1360 1715 y F9(\()1388
+1727 y Ga(x)1440 1715 y F9(\))1468 1727 y Ga(N)f F4(\))p
+1631 1652 V 1631 1690 a Gc(aux)1611 1727 y F6(\000)-31
+b(\000)f(!)26 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2133
+1715 y F9(\()2160 1727 y Ga(x)2212 1715 y F9(\))2240
+1727 y Ga(N)p F6(g)2404 1690 y Gc(aux)2384 1727 y F6(\000)-31
+b(\000)f(!)2554 1690 y FX(\003)2619 1727 y Ga(M)5 b F6(f)-7
+b Ga(a)26 b F4(:=)2945 1715 y F9(\()2973 1727 y Ga(x)3025
+1715 y F9(\))3052 1727 y Ga(S)-5 b F6(g)549 1911 y Gg(using)24
+b(the)g(f)o(act)g(that)g(if)g Ga(N)1426 1873 y Gc(aux)1406
+1911 y F6(\000)-31 b(\000)f(!)25 b Ga(S)j Gg(then)c Ga(M)5
+b F6(f)-7 b Ga(a)26 b F4(:=)2191 1899 y F9(\()2218 1911
+y Ga(x)2270 1899 y F9(\))2297 1911 y Ga(N)q F6(g)2462
+1873 y Gc(aux)2442 1911 y F6(\000)-32 b(\000)h(!)2612
+1878 y FX(\003)2677 1911 y Ga(M)5 b F6(f)-7 b Ga(a)26
+b F4(:=)3003 1899 y F9(\()3030 1911 y Ga(x)3082 1899
+y F9(\))3110 1911 y Ga(S)-5 b F6(g)p Gg(.)p Black 458
+2082 a F6(\017)p Black 46 w Gg(Suppose)24 b(we)f(ha)n(v)o(e)h(a)f(term)
+h(with)f(reduction)j(sequence)948 2285 y FL(Cut)p F4(\()1121
+2273 y FX(h)1149 2285 y Ga(a)1197 2273 y FX(i)1224 2285
+y Ga(M)10 b(;)1362 2273 y F9(\()1390 2285 y Ga(x)1442
+2273 y F9(\))1469 2285 y Ga(N)g F4(\))1640 2248 y Gc(bad)1613
+2285 y F6(\000)-31 b(\000)f(!)26 b FL(Cut)o F4(\()1981
+2273 y FX(h)2009 2285 y Ga(a)2057 2273 y FX(i)2085 2285
+y Ga(S)5 b(;)2186 2273 y F9(\()2214 2285 y Ga(x)2266
+2273 y F9(\))2293 2285 y Ga(N)10 b F4(\))p 2457 2210
+V 2457 2248 a Gc(aux)2437 2285 y F6(\000)-32 b(\000)h(!)25
+b Ga(S)q F6(f)-7 b Ga(a)25 b F4(:=)2921 2273 y F9(\()2949
+2285 y Ga(x)3001 2273 y F9(\))3028 2285 y Ga(N)p F6(g)549
+2468 y Gg(which)e(we)g(may)g(transform)j(into)954 2671
+y FL(Cut)o F4(\()1126 2659 y FX(h)1154 2671 y Ga(a)1202
+2659 y FX(i)1230 2671 y Ga(M)10 b(;)1368 2659 y F9(\()1396
+2671 y Ga(x)1448 2659 y F9(\))1475 2671 y Ga(N)g F4(\))p
+1639 2597 V 1639 2634 a Gc(aux)1619 2671 y F6(\000)-32
+b(\000)h(!)25 b Ga(M)5 b F6(f)-7 b Ga(a)26 b F4(:=)2140
+2659 y F9(\()2168 2671 y Ga(x)2220 2659 y F9(\))2247
+2671 y Ga(N)q F6(g)2412 2634 y Gc(aux)2391 2671 y F6(\000)-31
+b(\000)g(!)2562 2634 y FX(\003)2626 2671 y Ga(S)q F6(f)-7
+b Ga(a)25 b F4(:=)2916 2659 y F9(\()2943 2671 y Ga(x)2995
+2659 y F9(\))3022 2671 y Ga(N)q F6(g)549 2855 y Gg(using)f(Lemma)f
+(2.3.11.)p 3480 2855 4 62 v 3484 2797 55 4 v 3484 2855
+V 3538 2855 4 62 v Black 321 3092 a Gb(Pr)n(oof)31 b(of)f(Theor)n(em)f
+(4.1.3.)p Black 34 w Gg(W)l(ithout)i(loss)g(of)f(generality)i(we)d(may)
+h(assume)g(that)h(the)f(reduction)321 3205 y(sequence)k
+Ga(M)828 3168 y Gc(aux)808 3205 y F6(\000)-31 b(\000)f(!)978
+3172 y FX(\003)1043 3205 y Ga(N)40 b Gg(is)31 b(of)g(the)g(form)g
+Ga(M)p 1858 3131 119 3 v 1858 3168 a Gc(aux)1838 3205
+y F6(\000)-32 b(\000)h(!)2008 3172 y FX(\003)2086 3205
+y Ga(M)2174 3219 y Gc(i)2262 3168 y(aux)2242 3205 y F6(\000)f(\000)h(!)
+2412 3172 y FX(\003)2490 3205 y Ga(N)40 b Gg(where)31
+b(either)i Ga(M)3181 3219 y Gc(i)3248 3205 y F6(\021)39
+b Ga(N)h Gg(or)321 3318 y Ga(M)409 3332 y Gc(i)508 3281
+y(bad)481 3318 y F6(\000)-31 b(\000)f(!)43 b Ga(M)782
+3332 y Gc(i)p F9(+1)901 3318 y Gg(.)57 b(The)33 b(proof)h(then)g
+(proceeds)h(by)f(induction)i(on)d(the)h(number)g(of)f(steps)h(of)f(the)
+321 3431 y(longest)28 b(reduction)g(sequence)g(starting)g(from)e
+Ga(M)1923 3445 y Gc(i)1951 3431 y Gg(,)g(i.e.,)f(on)j
+FW(M)t(A)t(X)t(R)t(E)t(D)2617 3445 y Gc(aux)2739 3431
+y F4(\()p Ga(M)2862 3445 y Gc(i)2891 3431 y F4(\))p Gg(.)35
+b(Since)26 b(we)f(pro)o(v)o(e)321 3544 y(the)30 b(theorem)g(for)f
+(terms)h(belonging)i(to)d FY(T)t Gg(,)c(we)k(kno)n(w)g(their)h(longest)
+h(reduction)h(sequences)g(must)321 3657 y(be)24 b(\002nite.)p
+Black 458 3836 a F6(\017)p Black 46 w Gg(If)g FW(M)t(A)t(X)t(R)t(E)t(D)
+974 3850 y Gc(aux)1096 3836 y F4(\()p Ga(M)1219 3850
+y Gc(i)1247 3836 y F4(\))i(=)f(0)p Gg(,)e(then)g Ga(M)p
+1817 3761 V 1817 3799 a Gc(aux)1797 3836 y F6(\000)-31
+b(\000)f(!)1967 3803 y FX(\003)2032 3836 y Ga(M)2120
+3850 y Gc(i)2173 3836 y F6(\021)25 b Ga(N)33 b Gg(is)22
+b(a)h(sequence)j(which)d(respects)i(the)549 3949 y(restrictions)h
+(imposed)f(on)p 1440 3874 V 1440 3912 a Gc(aux)1420 3949
+y F6(\000)-31 b(\000)f(!)p Gg(.)p Black 458 4120 a F6(\017)p
+Black 46 w Gg(If)28 b FW(M)t(A)t(X)t(R)t(E)t(D)977 4134
+y Gc(aux)1099 4120 y F4(\()p Ga(M)1222 4134 y Gc(i)1251
+4120 y F4(\))j Ga(>)g F4(0)p Gg(,)c(we)f(\002rst)g(observ)o(e)i(that)f
+(the)g(last)g(reduction)i(leading)g(to)d(a)h(nor)n(-)549
+4233 y(mal)e(form)h(must)g(be)g(a)f(reduction)j(of)e(the)g(form)p
+2117 4158 V 2117 4196 a Gc(aux)2097 4233 y F6(\000)-31
+b(\000)f(!)p Gg(.)35 b(Therefore)28 b(the)e(reduction)i(sequence)549
+4346 y Ga(M)637 4360 y Gc(i)724 4309 y(aux)703 4346 y
+F6(\000)-31 b(\000)g(!)874 4313 y FX(\003)951 4346 y
+Ga(N)40 b Gg(contains)33 b(at)d(least)i(one)p 1870 4271
+V 1870 4309 a Gc(aux)1850 4346 y F6(\000)-31 b(\000)f(!)p
+Gg(.)49 b(Let)30 b Ga(M)2331 4360 y Gc(j)2398 4346 y
+Gg(be)g(the)h(leftmost)h(term)f(in)f(this)h(se-)549 4459
+y(quence)e(from)e(which)h(a)f(reduction)p 1742 4384 V
+1742 4422 a Gc(aux)1722 4459 y F6(\000)-32 b(\000)h(!)26
+b Gg(is)i(performed.)42 b(Hence)28 b(the)f(reduction)j(sequence)549
+4572 y Ga(M)637 4586 y Gc(i)723 4535 y(aux)702 4572 y
+F6(\000)-31 b(\000)g(!)873 4539 y FX(\003)949 4572 y
+Ga(N)40 b Gg(is)30 b(of)g(the)g(form)g Ga(M)1691 4586
+y Gc(i)1784 4535 y(bad)1757 4572 y F6(\000)-32 b(\000)h(!)1927
+4539 y F9(+)2023 4572 y Ga(M)2111 4586 y Gc(j)p 2206
+4497 V 2206 4535 a(aux)2185 4572 y F6(\000)g(\000)g(!)37
+b Ga(M)2481 4586 y Gc(j)t F9(+1)2666 4535 y Gc(aux)2645
+4572 y F6(\000)-31 b(\000)g(!)2816 4539 y FX(\003)2892
+4572 y Ga(N)10 b Gg(.)48 b(By)29 b(iterati)n(v)o(ely)549
+4685 y(applying)i(Lemma)d(4.1.2,)j(we)d(can)i(mo)o(v)o(e)f(the)g
+(reduction)p 2484 4610 V 2484 4647 a Gc(aux)2464 4685
+y F6(\000)-31 b(\000)f(!)29 b Gg(ne)o(xt)g(to)h Ga(M)3034
+4699 y Gc(i)3090 4685 y Gg(and)g(obtain)h(a)549 4797
+y(reduction)26 b(sequence)g(of)d(the)h(form)1384 5001
+y Ga(M)1472 5015 y Gc(i)p 1546 4926 V 1546 4964 a(aux)1525
+5001 y F6(\000)-31 b(\000)g(!)25 b Ga(M)1819 4963 y FX(0)1888
+4964 y Gc(aux)1868 5001 y F6(\000)-32 b(\000)h(!)2038
+4963 y FX(\003)2103 5001 y Ga(M)2191 5015 y Gc(j)t F9(+1)2363
+4964 y Gc(aux)2343 5001 y F6(\000)f(\000)h(!)2513 4963
+y FX(\003)2578 5001 y Ga(N)35 b(:)p Black Black eop end
+%%Page: 169 181
+TeXDict begin 169 180 bop Black 277 51 a Gb(B.3)23 b(Pr)n(oofs)h(of)g
+(Chapter)f(4)2639 b(169)p 277 88 3691 4 v Black 504 412
+a Gg(W)l(ithout)26 b(loss)e(of)g(generality)i(we)d(may)h(assume)g(the)h
+(sequence)h Ga(M)2659 379 y FX(0)2728 375 y Gc(aux)2708
+412 y F6(\000)-31 b(\000)f(!)2878 379 y FX(\003)2943
+412 y Ga(M)3031 426 y Gc(j)t F9(+1)3204 375 y Gc(aux)3184
+412 y F6(\000)h(\000)f(!)3354 379 y FX(\003)3419 412
+y Ga(N)504 525 y Gg(is)24 b(of)f(the)h(form)1575 767
+y Ga(M)1673 730 y FX(0)p 1742 693 119 3 v 50 w Gc(aux)1722
+767 y F6(\000)-31 b(\000)f(!)1892 730 y FX(\003)1957
+767 y Ga(M)2045 782 y Gc(k)2133 730 y(aux)2113 767 y
+F6(\000)h(\000)g(!)2283 730 y FX(\003)2348 767 y Ga(N)504
+1009 y Gg(where)34 b(either)g Ga(M)1086 1024 y Gc(k)1173
+1009 y F6(\021)43 b Ga(N)f Gg(or)33 b Ga(M)1598 1024
+y Gc(k)1712 972 y(bad)1685 1009 y F6(\000)-32 b(\000)h(!)43
+b Ga(M)1986 1024 y Gc(k)r F9(+1)2119 1009 y Gg(.)57 b(This)34
+b(means)f Ga(M)2746 1024 y Gc(k)2822 1009 y Gg(is)g(the)g(\002rst)g
+(term)g(in)504 1122 y(this)22 b(reduction)i(sequence)g(from)e(which)f
+(a)g(bad)h(reduction)i(is)e(performed.)30 b(Clearly)-6
+b(,)22 b(we)f(ha)n(v)o(e)506 1235 y FW(M)t(A)t(X)t(R)t(E)t(D)846
+1249 y Gc(aux)969 1235 y F4(\()p Ga(M)1092 1249 y Gc(i)1120
+1235 y F4(\))50 b Ga(>)i FW(M)t(A)t(X)t(R)t(E)t(D)1668
+1249 y Gc(aux)1790 1235 y F4(\()p Ga(M)1923 1202 y FX(0)1947
+1235 y F4(\))e F6(\025)h FW(M)t(A)t(X)t(R)t(E)t(D)2494
+1249 y Gc(aux)2616 1235 y F4(\()p Ga(M)2739 1250 y Gc(k)2782
+1235 y F4(\))p Gg(,)40 b(and)d(thus)g(we)f(can)504 1348
+y(apply)27 b(the)f(induction)j(hypothesis)f(which)e(gi)n(v)o(es)g(us)g
+(a)f(reduction)k(sequence)f Ga(M)3105 1315 y FX(0)p 3178
+1273 V 3178 1311 a Gc(aux)3157 1348 y F6(\000)-31 b(\000)g(!)3328
+1315 y FX(\003)3396 1348 y Ga(N)10 b Gg(.)504 1461 y(W)-7
+b(e)23 b(conclude)j(this)e(case)g(with)g(the)f(reduction)j(sequence)
+1398 1722 y Ga(M)p 1542 1647 V 1542 1685 a Gc(aux)1521
+1722 y F6(\000)-31 b(\000)g(!)1692 1684 y FX(\003)1756
+1722 y Ga(M)1844 1736 y Gc(i)p 1918 1647 V 1918 1685
+a(aux)1898 1722 y F6(\000)g(\000)f(!)25 b Ga(M)2191 1684
+y FX(0)p 2260 1647 V 2260 1685 a Gc(aux)2240 1722 y F6(\000)-31
+b(\000)f(!)2410 1684 y FX(\003)2475 1722 y Ga(N)35 b(:)504
+1964 y Gg(Thus)24 b(we)f(are)g(done.)p 3436 1964 4 62
+v 3440 1905 55 4 v 3440 1964 V 3494 1964 4 62 v Black
+Black eop end
+%%Page: 170 182
+TeXDict begin 170 181 bop Black Black Black Black eop
+end
+%%Page: 171 183
+TeXDict begin 171 182 bop Black Black 277 1093 a Gf(Bibliograph)m(y)p
+Black Black 277 1388 a Gg(Abramsk)o(y)-6 b(,)27 b(S.)d([1993].)43
+b(Computational)28 b(Interpretations)i(of)c(Linear)g(Logic.)41
+b F7(Theor)m(etical)28 b(Com-)368 1501 y(puter)d(Science)p
+Gg(,)g(111\(1\2262\):3\22657.)p Black Black 277 1637
+a(Baader)l(,)j(F)-7 b(.)25 b(and)i(Nipk)o(o)n(w)-6 b(,)27
+b(T)-7 b(.)25 b([1998].)44 b F7(Term)26 b(Re)o(writing)h(and)g(All)f
+(That)p Gg(.)42 b(Cambridge)28 b(Uni)n(v)o(ersity)368
+1750 y(Press.)p Black Black 277 1885 a(Barbanera,)38
+b(F)-7 b(.)32 b(and)j(Berardi,)i(S.)32 b([1994].)68 b(A)33
+b(Symmetric)h(Lambda)g(Calculus)h(for)f(\223Classical\224)368
+1998 y(Program)i(Extraction.)75 b(In)35 b F7(Theor)m(etical)j(Aspects)f
+(of)f(Computer)g(Softwar)m(e)p Gg(,)k(v)n(olume)d(789)f(of)368
+2111 y F7(LNCS)p Gg(,)22 b(pages)i(495\226515.)i(Springer)f(V)-10
+b(erlag.)p Black Black 277 2246 a(Barbanera,)27 b(F)-7
+b(.,)23 b(Berardi,)i(S.,)f(and)h(Schi)n(v)n(alocchi,)i(M.)c([1997].)39
+b(\223Classical\224)27 b(Programming-with-)368 2359 y(Proofs)e(in)f
+Ga(\025)776 2326 y Gc(sy)r(m)913 2359 y Gg(:)30 b(An)24
+b(Analysis)i(of)e(Non-Con\003uence.)39 b(In)24 b F7(Theor)m(etical)j
+(Aspects)e(of)g(Computer)368 2472 y(Softwar)m(e)p Gg(,)f(v)n(olume)h
+(1281)g(of)e F7(LNCS)p Gg(,)f(pages)i(365\226390.)i(Springer)f(V)-10
+b(erlag.)p Black Black 277 2608 a(Barendre)o(gt,)27 b(H.)d([1981].)40
+b F7(The)25 b(Lambda)g(Calculus:)34 b(Its)26 b(Syntax)g(and)g
+(Semantics)p Gg(,)h(v)n(olume)g(103)e(of)368 2721 y F7(Studies)g(in)f
+(Lo)o(gic)g(and)g(the)g(F)-10 b(oundations)26 b(of)e(Mathematics)p
+Gg(.)35 b(North-Holland.)p Black Black 277 2856 a(Barendre)o(gt,)30
+b(H.)c(and)h(Ghilezan,)j(S.)25 b([2000].)47 b(Theoretical)30
+b(Pearls:)37 b(Lambda)27 b(Terms)g(for)h(Natural)368
+2969 y(Deduction,)35 b(Sequent)e(Calculus)f(and)g(Cut)f(Elimination.)60
+b F7(J)n(ournal)33 b(of)e(Functional)j(Pr)l(o)o(gr)o(am-)368
+3082 y(ming)p Gg(,)23 b(10\(1\):121\226134.)p Black Black
+277 3218 a(Benton,)34 b(P)-10 b(.)29 b(N.)g([1995].)59
+b(Strong)32 b(Normalisation)h(for)e(the)h(Linear)f(Term)f(Calculus.)59
+b F7(J)n(ournal)32 b(of)368 3331 y(Functional)26 b(Pr)l(o)o(gr)o
+(amming)p Gg(,)e(5\(1\):65\22680.)p Black Black 277 3466
+a(Benton,)j(P)-10 b(.)24 b(N.,)g(Bierman,)i(G.)e(M.,)g(de)i(P)o(ai)n(v)
+n(a,)f(V)-12 b(.)24 b(C.)g(V)-12 b(.,)25 b(and)g(Hyland,)i(J.)e(M.)f
+(E.)g([1993].)41 b(A)24 b(Term)368 3579 y(Calculus)30
+b(for)f(Intuitionistic)j(Linear)d(Logic.)49 b(In)29 b
+F7(T)-7 b(yped)29 b(Lambda)f(Calculi)i(and)f(Applications)p
+Gg(,)368 3692 y(v)n(olume)c(664)f(of)f F7(LNCS)p Gg(,)f(pages)j
+(75\22690.)f(Springer)n(-V)-10 b(erlag.)p Black Black
+277 3828 a(Ber)n(ger)l(,)29 b(U.,)e(Buchholz,)j(W)-8
+b(.,)26 b(and)i(Schwichtenber)n(g,)j(H.)26 b([2000].)47
+b(Re\002ned)28 b(Program)f(Extraction)368 3941 y(from)c(Classical)i
+(Proofs.)34 b F7(Annals)25 b(of)e(Pur)m(e)g(and)h(Applied)h(Lo)o(gic)p
+Gg(.)33 b(T)-7 b(o)23 b(appear)-5 b(.)p Black Black 277
+4076 a(Bierman,)33 b(G.)d(M.)g([1998].)58 b(A)30 b(Computational)k
+(Interpretation)h(of)c(the)g Ga(\025\026)p Gg(-calculus.)60
+b(In)31 b F7(Math-)368 4189 y(ematical)j(F)-10 b(oundations)36
+b(of)c(Computer)i(Science)p Gg(,)i(v)n(olume)e(1450)f(of)g
+F7(LNCS)p Gg(,)d(pages)k(336\226345.)368 4302 y(Springer)n(-V)-10
+b(erlag.)p Black Black 277 4437 a(Bierman,)30 b(G.)d(M.)g([1999].)50
+b(A)27 b(Classical)j(Linear)e Ga(\025)p Gg(-calculus.)51
+b F7(Theor)m(etical)31 b(Computer)e(Science)p Gg(,)368
+4550 y(227\(1\2262\):43\22678.)p Black Black 277 4686
+a(Bittar)l(,)i(E.)c(T)-7 b(.)28 b([1999].)51 b(Strong)30
+b(Normalisation)h(Proofs)f(for)f(Cut-Elimination)i(in)d(Gentzen')-5
+b(s)31 b(Se-)368 4799 y(quent)25 b(Calculi.)34 b(In)23
+b F7(Lo)o(gic,)h(Alg)o(ebr)o(a)g(and)g(Computer)g(Science)p
+Gg(,)h(v)n(olume)g(46)f(of)f F7(Banac)o(h-Center)368
+4912 y(Publications)p Gg(,)j(pages)f(179\226225.)p Black
+Black 277 5047 a(Bloo,)e(R.)e([1997].)33 b F7(Pr)m(eservation)25
+b(of)e(T)-8 b(ermination)24 b(for)f(Explicit)h(Substitution)p
+Gg(.)35 b(PhD)21 b(thesis,)j(Eind-)368 5160 y(ho)o(v)o(en)g(Uni)n(v)o
+(ersity)h(of)f(T)-6 b(echnology)g(.)p Black Black 277
+5296 a(Bloo,)24 b(R.)f(and)h(Geuv)o(ers,)h(H.)e([1999].)36
+b(Explicit)25 b(Substitution:)33 b(On)24 b(the)g(Edge)g(of)g(Strong)h
+(Normali-)368 5409 y(sation.)35 b F7(Theor)m(etical)25
+b(Computer)g(Science)p Gg(,)g(211\(1\2262\):375\226395.)p
+Black Black eop end
+%%Page: 172 184
+TeXDict begin 172 183 bop Black -144 51 a Gb(172)3046
+b(Bibliograph)o(y)p -144 88 3691 4 v Black Black Black
+321 412 a Gg(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c,)26
+b(B.)e(R.)g([1985].)40 b(On)24 b(Sequence-Conclusion)30
+b(Natural)c(Deduction)h(Systems.)39 b F7(J)n(ournal)27
+b(of)412 525 y(Philosophical)g(Lo)o(gic)p Gg(,)d(14\(4\):359\226377.)p
+Black Black 321 671 a(Buss,)30 b(S.)d(R.,)h(editor)i([1998].)51
+b F7(Handbook)30 b(of)f(Pr)l(oof)g(Theory)p Gg(,)h(v)n(olume)g(137)f
+(of)f F7(Studies)j(in)d(Lo)o(gic)412 784 y(and)c(the)g(F)-10
+b(oundations)27 b(of)c(Mathematics)p Gg(.)35 b(North-Holland.)p
+Black Black 321 929 a(Carlsson,)25 b(M.)e([1984].)36
+b(On)24 b(Implementing)i(Prolog)e(in)g(Functional)i(Programming.)36
+b F7(Ne)o(w)23 b(Gener)n(-)412 1042 y(ation)i(Computing)p
+Gg(,)f(2\(4\):347\226359.)p Black Black 321 1188 a(Cellucci,)29
+b(C.)c([1992].)46 b(Existential)29 b(Instantiation)h(and)d
+(Normalization)j(in)c(Sequent)i(Natural)g(De-)412 1301
+y(duction.)35 b F7(Annals)25 b(of)e(Pur)m(e)g(and)h(Applied)h(Lo)o(gic)
+p Gg(,)e(58:111\226148.)p Black Black 321 1447 a(Cichon,)k(E.)e(A.,)g
+(Rusino)n(witch,)j(M.,)d(and)h(Selhab,)h(S.)d([1996].)43
+b(Cut-Elimination)28 b(and)f(Re)n(writing:)412 1560 y(Termination)e
+(Proofs.)34 b(T)-6 b(echnical)25 b(Report.)p Black Black
+321 1706 a(Coquand,)j(T)-7 b(.)24 b([1995].)42 b(A)25
+b(Semantics)i(of)f(Evidence)h(of)e(Classical)j(Arithmetic.)41
+b F7(J)n(ournal)28 b(of)e(Sym-)412 1819 y(bolic)f(Lo)o(gic)p
+Gg(,)e(60\(1\):325\226337.)p Black Black 321 1965 a(Curry)-6
+b(,)26 b(H.)d(B.)g(and)j(Fe)o(ys,)e(R.)g([1958].)39 b
+F7(Combinatory)27 b(Lo)o(gic)p Gg(,)e(v)n(olume)h(1)e(of)h
+F7(Studies)i(in)e(Lo)o(gic)g(and)412 2077 y(the)f(F)-10
+b(oundations)27 b(of)c(Mathematics)p Gg(.)35 b(North-Holland.)p
+Black Black 321 2223 a(Danos,)27 b(V)-12 b(.,)25 b(Joinet,)j(J.-B.,)d
+(and)i(Schellinx,)h(H.)c([1997].)43 b(A)25 b(Ne)n(w)g(Deconstructi)n(v)
+o(e)k(Logic:)34 b(Linear)412 2336 y(Logic.)g F7(J)n(ournal)25
+b(of)e(Symbolic)i(Lo)o(gic)p Gg(,)f(62\(3\):755\226807.)p
+Black Black 321 2482 a(Da)n(v)o(e)o(y)-6 b(,)23 b(B.)f(A.)f(and)i
+(Priestle)o(y)-6 b(,)24 b(H.)e(A.)f([1990].)34 b F7(Intr)l(oduction)26
+b(to)d(Lattices)h(and)f(Or)m(der)p Gg(.)32 b(Cambridge)412
+2595 y(Uni)n(v)o(ersity)25 b(Press.)p Black Black 321
+2741 a(de)i(Bruijn,)h(N.)d(G.)g([1980].)45 b(A)26 b(Surv)o(e)o(y)h(of)f
+(the)h(Automath)h(Project.)44 b(In)27 b F7(To)e(H.)h(B.)f(Curry:)36
+b(Essays)412 2854 y(on)27 b(Combinatory)j(Lo)o(gic,)e(Lambda)f
+(Calculus)i(and)e(Formalism)p Gg(,)h(pages)h(580\226606.)g(Academic)412
+2967 y(Press.)p Black Black 321 3113 a(Dersho)n(witz,)i(N.)d([1982].)52
+b(Orderings)31 b(for)e(Term)f(Re)n(writing)i(Systems.)51
+b F7(Theor)m(etical)31 b(Computer)412 3226 y(Science)p
+Gg(,)25 b(17:279\226301.)p Black Black 321 3371 a(Dragalin,)31
+b(A.)d(G.)g([1988].)52 b F7(Mathematical)32 b(Intuitionism:)43
+b(Intr)l(oduction)32 b(to)d(Pr)l(oof)h(Theory)p Gg(,)h(v)n(ol-)412
+3484 y(ume)26 b(67)h(of)f F7(T)-5 b(r)o(anslations)29
+b(of)d(Mathematical)j(Mono)o(gr)o(aphs)p Gg(.)45 b(American)27
+b(Mathematical)h(Soci-)412 3597 y(ety)-6 b(.)p Black
+Black 321 3743 a(Dyckhof)n(f,)40 b(R.)34 b(and)i(Pinto,)j(L.)34
+b([1998].)74 b(Cut-Elimination)38 b(and)e(a)f(Permutation-Free)j
+(Sequent)412 3856 y(Calculus)25 b(for)f(Intuitionistic)j(Logic.)34
+b F7(Studia)25 b(Lo)o(gica)p Gg(,)f(60\(1\):107\226118.)p
+Black Black 321 4002 a(Friedman,)h(H.)e([1978].)36 b(Classically)27
+b(and)d(Intuitionistically)30 b(Pro)o(v)n(able)24 b(Recursi)n(v)o(e)i
+(Functions.)37 b(In)412 4115 y F7(Higher)24 b(Set)g(Theory)p
+Gg(,)g(v)n(olume)h(669)f(of)f F7(LNM)p Gg(,)f(pages)j(21\22627.)f
+(Springer)n(-V)-10 b(erlag.)p Black Black 321 4261 a(Gabbay)k(,)31
+b(M.)d(J.)g(and)i(Pitts,)g(A.)d(M.)h([1999].)52 b(A)28
+b(Ne)n(w)f(Approach)k(to)d(Abstract)j(Syntax)e(In)l(v)n(olving)412
+4374 y(Binders.)e(In)19 b F7(Lo)o(gic)i(in)e(Computer)i(Science)p
+Gg(,)h(pages)f(214\226224.)h(IEEE)c(Computer)j(Society)g(Press.)p
+Black Black 321 4519 a(Gallier)l(,)36 b(J.)c([1990].)65
+b(On)33 b(Girard')-5 b(s)34 b(\223Candidats)h(de)e(Reductibilit)5
+b(\264)-35 b(e\224.)66 b(In)33 b F7(Lo)o(gic)g(and)h(Computer)412
+4632 y(Science)p Gg(,)25 b(pages)g(123\226203.)h(Academic)e(Press.)p
+Black Black 321 4778 a(Gallier)l(,)31 b(J.)c([1993].)50
+b(Constructi)n(v)o(e)31 b(Logics.)d(Part)g(I:)g(A)f(Tutorial)j(on)e
+(Proof)h(Systems)f(and)h(Typed)412 4891 y Ga(\025)p Gg(-calculi.)35
+b F7(Theor)m(etical)26 b(Computer)e(Science)p Gg(,)h
+(110\(2\):249\226239.)p Black Black 321 5037 a(Gentzen,)c(G.)c([1935].)
+25 b(Untersuchungen)30 b(\250)-38 b(uber)20 b(das)f(logische)i
+(Schlie\337en)f(I)e(and)i(II.)i F7(Mathematisc)o(he)412
+5150 y(Zeitsc)o(hrift)p Gg(,)j(39:176\226210,)i(405\226431.)p
+Black Black 321 5296 a(Gentzen,)g(G.)c([1936].)40 b(Die)25
+b(Widerspruchsfreiheit)31 b(der)25 b(reinen)i(Zahlentheorie.)41
+b F7(Mathematisc)o(he)412 5409 y(Annalen)p Gg(,)25 b(112:493\226565.)p
+Black Black eop end
+%%Page: 173 185
+TeXDict begin 173 184 bop Black 277 51 a Gb(Bibliograph)o(y)3046
+b(173)p 277 88 3691 4 v Black Black Black 277 412 a Gg(Gentzen,)24
+b(G.)e([1969].)34 b F7(The)23 b(Collected)i(Paper)o(s)f(of)f(Gerhar)m
+(d)h(Gentzen)p Gg(.)34 b(Studies)24 b(in)f(Logic)g(and)h(the)368
+525 y(F)o(oundations)29 b(of)d(Mathematics.)i(North-Holland.)45
+b(English)28 b(translation)h(of)e(Gentzen')-5 b(s)28
+b(papers)368 638 y(edided)d(by)f(M.)e(E.)g(Szabo.)p Black
+Black 277 777 a(Girard,)47 b(J.-Y)-12 b(.)41 b([1972].)95
+b F7(Interpr)1407 778 y(\264)1402 777 y(etation)46 b(Functionelle)f(et)
+d(Elimination)h(des)g(Coupur)m(es)g(dans)368 890 y(l'Arithm)680
+891 y(\264)675 890 y(etique)26 b(d'Or)m(dr)m(e)e(Sup)1375
+891 y(\264)1370 890 y(erieur)m(e)p Gg(.)36 b(PhD)22 b(thesis,)j(Uni)n
+(v)o(ersit)5 b(\264)-35 b(e)25 b(P)o(aris)e(VII.)p Black
+Black 277 1030 a(Girard,)h(J.-Y)-12 b(.)23 b([1987a].)35
+b(Linear)24 b(Logic.)33 b F7(Theor)m(etical)26 b(Computer)e(Science)p
+Gg(,)h(50\(1\):1\226102.)p Black Black 277 1169 a(Girard,)31
+b(J.-Y)-12 b(.)29 b([1987b].)53 b F7(Pr)l(oof)30 b(Theory)g(and)g(Lo)o
+(gical)g(Comple)n(xity)p Gg(.)54 b(Studies)30 b(in)f(Proof)h(Theory)-6
+b(.)368 1282 y(Bibliopolis.)p Black Black 277 1422 a(Girard,)29
+b(J.-Y)-12 b(.)26 b([1991].)47 b(A)26 b(Ne)n(w)g(Constructi)n(v)o(e)j
+(Logic:)37 b(Classical)29 b(Logic.)46 b F7(Mathematical)29
+b(Struc-)368 1535 y(tur)m(es)24 b(in)g(Computer)g(Science)p
+Gg(,)h(1\(3\):255\226296.)p Black Black 277 1674 a(Girard,)44
+b(J.-Y)-12 b(.)39 b([2001].)85 b(Locus)40 b(Solum.)84
+b F7(Mathematical)42 b(Structur)m(es)g(in)d(Computer)i(Science)p
+Gg(,)368 1787 y(11:301\226506.)p Black Black 277 1927
+a(Girard,)22 b(J.-Y)-12 b(.,)20 b(Lafont,)h(Y)-12 b(.,)20
+b(and)i(T)-7 b(aylor)l(,)21 b(P)-10 b(.)19 b([1989].)29
+b F7(Pr)l(oofs)21 b(and)h(Types)p Gg(,)f(v)n(olume)h(7)e(of)h
+F7(Cambridg)o(e)368 2040 y(T)-5 b(r)o(acts)24 b(in)f(Theor)m(etical)j
+(Computer)e(Science)p Gg(.)35 b(Cambridge)25 b(Uni)n(v)o(ersity)g
+(Press.)p Black Black 277 2179 a(Grif)n(\002n,)k(T)-7
+b(.)27 b([1990].)51 b(A)27 b(Formulae-as-Types)k(Notion)f(of)e
+(Control.)50 b(In)28 b F7(Principles)j(of)d(Pr)l(o)o(gr)o(am-)368
+2292 y(ming)c(Langua)o(g)o(es)p Gg(,)h(pages)g(47\22658.)g(A)l(CM)d
+(Press.)p Black Black 277 2432 a(Hennessy)-6 b(,)31 b(M.)c(C.)g(B.)g
+(and)i(Ashcroft,)h(E.)d(A.)g([1980].)50 b(A)27 b(Mathematical)k
+(Semantics)e(for)f(a)g(Non-)368 2545 y(Deterministic)e(Typed)e
+Ga(\025)p Gg(-calculus.)35 b F7(Theor)m(etical)26 b(Computer)e(Science)
+p Gg(,)h(11\(3\):227\226245.)p Black Black 277 2684 a(Herbelin,)31
+b(H.)c([1994].)50 b(A)28 b Ga(\025)p Gg(-calculus)j(Structure)f
+(Isomorphic)g(to)f(Sequent)g(Calculus)h(Structure.)368
+2797 y(In)23 b F7(Computer)i(Science)g(Lo)o(gic)p Gg(,)f(v)n(olume)g
+(933)h(of)e F7(LNCS)p Gg(,)f(pages)i(67\22675.)h(Springer)g(V)-10
+b(erlag.)p Black Black 277 2937 a(Herbelin,)22 b(H.)e([1995].)28
+b F7(S)1088 2938 y(\264)1083 2937 y(equents)23 b(qu'on)f(Calcule:)29
+b(De)20 b(l'Interpr)2394 2938 y(\264)2389 2937 y(etation)26
+b(du)21 b(Calcul)g(des)g(S)3229 2938 y(\264)3224 2937
+y(equents)368 3050 y(comme)34 b(Calcul)h(de)f Ga(\025)p
+F7(-termes)h(et)f(comme)g(Calcul)h(de)g(Str)o(at)2378
+3051 y(\264)2373 3050 y(egies)h(Ga)o(gnantes)p Gg(.)70
+b(PhD)33 b(thesis,)368 3163 y(Uni)n(v)o(ersit)5 b(\264)-35
+b(e)25 b(P)o(aris)e(VII.)p Black Black 277 3302 a(Hindle)o(y)-6
+b(,)30 b(J.)d(R.)g([1969].)50 b(The)27 b(Principal)j(Type)e(Scheme)g
+(of)g(an)g(Object)h(in)f(Combinatory)i(Logic.)368 3415
+y F7(T)-5 b(r)o(ansactions)26 b(of)e(the)f(American)i(Mathematical)g
+(Society)p Gg(,)g(146:29\22640.)p Black Black 277 3555
+a(Ho)n(w)o(ard,)55 b(W)-8 b(.)47 b(A.)h([1980].)115 b(The)49
+b(Formulae-as-Types)j(Notion)d(of)g(Construction.)117
+b(In)49 b F7(To)368 3668 y(H.)25 b(B.)h(Curry:)36 b(Essays)27
+b(on)g(Combinatory)i(Lo)o(gic,)f(Lambda)f(Calculus)h(and)f(F)-10
+b(ormalism)p Gg(,)28 b(pages)368 3781 y(479\226490.)e(Academic)e(Press)
+g(\(the)g(paper)g(w)o(as)f(written)i(in)e(1969\).)p Black
+Black 277 3920 a(Hyland,)f(J.)d(M.)h(E.)f([2000].)28
+b(Proof)20 b(Theory)h(in)g(the)g(Abstract.)27 b F7(Annals)21
+b(of)g(Pur)m(e)f(and)h(Applied)g(Lo)o(gic)p Gg(.)368
+4033 y(T)-7 b(o)23 b(appear)-5 b(.)p Black Black 277
+4173 a(Joinet,)31 b(J.-B.,)d(Schellinx,)j(H.,)c(and)i(T)-7
+b(ortora)29 b(de)f(F)o(alco,)h(L.)e([1998].)50 b(SN)27
+b(and)h(CR)f(for)h(Free-Style)368 4286 y(LK)490 4253
+y Gc(tq)553 4286 y Gg(:)e(Linear)19 b(Decorations)j(and)d(Simulation)h
+(of)f(Normalisation.)26 b(Preprint)20 b(No.)e(1067,)j(Utrecht)368
+4399 y(Uni)n(v)o(ersity)-6 b(,)25 b(Department)g(of)e(Mathematics.)p
+Black Black 277 4538 a(Kleene,)h(S.)e(C.)g([1952a].)35
+b F7(Intr)l(oduction)27 b(to)d(Metamathematics)p Gg(.)36
+b(North-Holland.)p Black Black 277 4678 a(Kleene,)k(S.)34
+b(C.)h([1952b].)76 b(Permutability)38 b(of)e(Inferences)j(in)d
+(Gentzen')-5 b(s)38 b(Calculi)f(LK)e(and)i(LJ.)368 4791
+y F7(Memoir)o(s)24 b(of)f(the)h(American)g(Mathematical)i(Society)p
+Gg(,)f(10:1\22626.)p Black Black 277 4930 a(Kreisel,)31
+b(G.)c([1958].)52 b(Mathematical)31 b(Signi\002cance)f(of)f(Consistenc)
+o(y)i(Proofs.)51 b F7(J)n(ournal)31 b(of)d(Sym-)368 5043
+y(bolic)d(Lo)o(gic)p Gg(,)e(23\(2\):155\226182.)p Black
+Black 277 5183 a(Kreisel,)f(G.)e([1971].)30 b(A)21 b(Surv)o(e)o(y)g(of)
+g(Proof)h(Theory)g(II.)28 b(In)21 b F7(Pr)l(oceedings)j(of)e(the)f(2nd)
+h(Scandinavian)368 5296 y(Lo)o(gic)g(Symposium)p Gg(,)i(v)n(olume)f(63)
+f(of)f F7(Studies)j(in)e(Lo)o(gic)g(and)h(the)f(F)-10
+b(oundations)25 b(of)d(Mathematics)p Gg(,)368 5409 y(pages)j
+(109\226170.)g(North-Holland.)p Black Black eop end
+%%Page: 174 186
+TeXDict begin 174 185 bop Black -144 51 a Gb(174)3046
+b(Bibliograph)o(y)p -144 88 3691 4 v Black Black Black
+321 412 a Gg(Lambek,)39 b(J.)c(and)h(Scott,)j(P)-10 b(.)34
+b(J.)h([1988].)74 b F7(Intr)l(oduction)39 b(to)d(Higher)g(Or)m(der)g
+(Cate)l(gorical)i(Lo)o(gic)p Gg(,)412 525 y(v)n(olume)g(7)f(of)g
+F7(Cambridg)o(e)h(Studies)h(in)e(Advanced)i(Mathematics)p
+Gg(.)78 b(Cambridge)38 b(Uni)n(v)o(ersity)412 638 y(Press.)p
+Black Black 321 788 a(Lei)n(v)n(ant,)26 b(D.)f([1979].)41
+b(Assumption)27 b(Classes)f(in)g(Natural)g(Deduction.)42
+b F7(Zeitsc)o(hrift)27 b(f)3084 789 y(\250)3077 788 y(ur)f(mathema-)412
+901 y(tisc)o(he)f(Lo)o(gik)p Gg(,)e(25:1\2264.)p Black
+Black 321 1051 a(McDo)n(well,)29 b(R.)e(and)i(Miller)l(,)i(D.)c
+([2000].)50 b(Cut-Elimination)31 b(for)d(a)g(Logic)h(with)f
+(De\002nitions)i(and)412 1164 y(Induction.)36 b F7(Theor)m(etical)26
+b(Computer)e(Science)p Gg(,)h(232\(1\2262\):91\226119.)p
+Black Black 321 1314 a(Melli)5 b(\036)-35 b(es,)22 b(P)-10
+b(.)19 b(A.)h([1995].)28 b(Typed)22 b(Lambda)f(Calculi)g(with)g
+(Explicit)h(Substitutions)h(May)e(Not)f(T)-6 b(ermi-)412
+1426 y(nate.)23 b(In)18 b F7(T)-7 b(yped)18 b(Lambda)h(Calculi)g(and)g
+(Applications)p Gg(,)j(v)n(olume)d(902)g(of)f F7(LNCS)p
+Gg(,)e(pages)j(328\226334.)412 1539 y(Springer)25 b(V)-10
+b(erlag.)p Black Black 321 1689 a(Milner)l(,)28 b(R.)d([1978].)43
+b(A)25 b(Theory)i(of)f(Type)g(Polymorphism)i(in)e(Programming.)43
+b F7(J)n(ournal)28 b(of)e(Com-)412 1802 y(puter)f(and)f(System)g
+(Sciences)p Gg(,)i(17:348\226375.)p Black Black 321 1952
+a(Mitchell,)h(J.)e(C.)f([1996].)42 b F7(F)-10 b(oundations)28
+b(for)e(Pr)l(o)o(gr)o(amming)h(Langua)o(g)o(es)p Gg(.)42
+b(F)o(oundations)28 b(of)d(Com-)412 2065 y(puting.)g(MIT)d(Press.)p
+Black Black 321 2215 a(Murthy)-6 b(,)21 b(C.)c(R.)h([1990].)25
+b F7(Extr)o(acting)20 b(Constructive)i(Content)e(fr)l(om)f(Classical)i
+(Pr)l(oofs)p Gg(.)j(PhD)18 b(thesis,)412 2328 y(Cornell)25
+b(Uni)n(v)o(ersity)-6 b(.)p Black Black 321 2478 a(P)o(arigot,)28
+b(M.)e([1991].)45 b(Free)26 b(Deduction:)38 b(An)26 b(Analysis)i(of)f
+(\223Computation\224)j(in)c(Classical)j(Logic.)412 2591
+y(In)22 b F7(Confer)m(ence)i(on)f(Lo)o(gic)f(Pr)l(o)o(gr)o(amming)p
+Gg(,)h(v)n(olume)g(592)g(of)f F7(LNCS)p Gg(,)f(pages)i(361\226380.)h
+(Springer)412 2704 y(V)-10 b(erlag.)p Black Black 321
+2854 a(P)o(arigot,)32 b(M.)c([1992].)54 b Ga(\025\026)p
+Gg(-calculus:)43 b(An)29 b(Algorithmic)i(Interpretation)j(of)29
+b(Classical)i(Logic.)53 b(In)412 2967 y F7(Lo)o(gic)24
+b(Pr)l(o)o(gr)o(amming)g(and)f(A)n(utomated)i(Deduction)p
+Gg(,)g(v)n(olume)f(624)g(of)f F7(LNCS)p Gg(,)e(pages)j(190\226201.)412
+3080 y(Springer)h(V)-10 b(erlag.)p Black Black 321 3230
+a(Pfenning,)33 b(F)-7 b(.)29 b([1995].)56 b(Structural)32
+b(Cut-Elimination.)57 b(In)30 b F7(Lo)o(gic)h(in)f(Computer)h(Science)p
+Gg(,)i(pages)412 3343 y(156\226166.)26 b(IEEE)21 b(Computer)k(Society)
+-6 b(.)p Black Black 321 3493 a(Pitts,)31 b(A.)d(M.)h(and)h(Gabbay)-6
+b(,)31 b(M.)e(J.)g([2000].)54 b(A)28 b(Metalanguage)33
+b(for)d(Programming)g(with)g(Bound)412 3605 y(Names)23
+b(Modulo)h(Renaming.)34 b(In)23 b F7(Mathematics)i(of)e(Pr)l(o)o(gr)o
+(am)g(Construction)p Gg(,)j(v)n(olume)e(1837)h(of)412
+3718 y F7(LNCS)p Gg(,)d(pages)j(230\226255.)g(Springer)g(V)-10
+b(erlag.)p Black Black 321 3868 a(Pottinger)l(,)25 b(G.)d([1977].)35
+b(Normalisation)26 b(as)d(Homomorphic)i(Image)f(of)f(Cut-Elimination.)
+36 b F7(Annals)412 3981 y(of)24 b(Mathematical)h(Lo)o(gic)p
+Gg(,)f(12:323\226357.)p Black Black 321 4131 a(Pra)o(witz,)j(D.)e
+([1965].)44 b F7(Natur)o(al)28 b(Deduction:)37 b(A)25
+b(Pr)l(oof-Theor)m(etical)30 b(Study)p Gg(.)44 b(Almquist)27
+b(and)g(W)l(ik-)412 4244 y(sell.)p Black Black 321 4394
+a(Pra)o(witz,)e(D.)f([1971].)41 b(Ideas)27 b(and)f(Results)g(of)f
+(Proof)h(Theory)-6 b(.)40 b(In)25 b F7(Pr)l(oceedings)j(of)e(the)f(2nd)
+h(Scan-)412 4507 y(dinavian)39 b(Lo)o(gic)d(Symposium)p
+Gg(,)41 b(v)n(olume)c(63)f(of)g F7(Studies)i(in)e(Lo)o(gic)h(and)g(the)
+f(F)-10 b(oundations)40 b(of)412 4620 y(Mathematics)p
+Gg(,)25 b(pages)g(235\226307.)h(North-Holland.)p Black
+Black 321 4770 a(Re)o(ynolds,)33 b(J.)d(C.)f([1974].)57
+b(T)-7 b(o)n(w)o(ards)30 b(a)g(Theory)h(of)f(Type)h(Structure.)56
+b(In)31 b F7(Colloque)h(s)3180 4771 y(\210)3173 4770
+y(ur)e(la)h(Pr)l(o-)412 4883 y(gr)o(ammation)p Gg(,)25
+b(v)n(olume)f(19)g(of)f F7(LNCS)p Gg(,)f(pages)j(408\226425.)h
+(Springer)e(V)-10 b(erlag.)p Black Black 321 5033 a(Rose,)26
+b(K.)f(H.)f([1996].)42 b(Explicit)27 b(Substitution:)36
+b(Tutorial)27 b(&)e(Surv)o(e)o(y)-6 b(.)40 b(T)-6 b(echnical)28
+b(report,)f(BRICS,)412 5146 y(Department)e(of)f(Computer)g(Science,)g
+(Uni)n(v)o(ersity)h(of)e(Aarhus.)p Black Black 321 5296
+a(Schellinx,)f(H.)c([1994].)27 b F7(The)19 b(Noble)h(Art)f(of)g(Linear)
+h(Decor)o(ating)p Gg(.)27 b(PhD)19 b(thesis,)i(Institute)h(for)e
+(Logic,)412 5409 y(Language)25 b(and)f(Computation,)i(Uni)n(v)o(ersity)
+f(of)e(Amsterdam.)34 b(ILLC)21 b(dissertation)27 b(series.)p
+Black Black eop end
+%%Page: 175 187
+TeXDict begin 175 186 bop Black 277 51 a Gb(Bibliograph)o(y)3046
+b(175)p 277 88 3691 4 v Black Black Black 277 412 a Gg(Sch)8
+b(\250)-38 b(utte,)25 b(K.)e([1960].)38 b F7(Be)o(weistheorie)p
+Gg(,)26 b(v)n(olume)g(103)f(of)f F7(Die)g(Grundlehr)m(en)j(der)e
+(mathematisc)o(hen)368 525 y(W)-5 b(issensc)o(haften)27
+b(in)c(Einzeldar)o(stellung)o(en)q Gg(.)38 b(Springer)25
+b(V)-10 b(erlag.)p Black Black 277 665 a(Schwichtenber)n(g,)42
+b(H.)34 b([1999].)74 b(Termination)37 b(of)f(Permutati)n(v)o(e)g(Con)l
+(v)o(ersions)j(in)c(Intuitionistic)368 778 y(Gentzen)25
+b(Calculi.)34 b F7(Theor)m(etical)25 b(Computer)g(Science)p
+Gg(,)g(212\(1\2262\):247\226260.)p Black Black 277 918
+a(Shoesmith,)f(D.)e(and)i(Smile)o(y)-6 b(,)23 b(T)-7
+b(.)22 b([1978].)35 b F7(Multiple-Conclusion)28 b(Lo)o(gic)p
+Gg(.)33 b(Cambridge)25 b(Uni)n(v)o(ersity)368 1031 y(Press.)p
+Black Black 277 1172 a(T)-7 b(ak)o(euti,)26 b(G.)d([1975].)39
+b F7(Pr)l(oof)25 b(Theory)p Gg(,)h(v)n(olume)g(81)f(of)g
+F7(Studies)i(in)d(Lo)o(gic)i(and)f(the)g(F)-10 b(oundations)28
+b(of)368 1285 y(Mathematics)p Gg(.)35 b(North-Holland.)p
+Black Black 277 1425 a(T)m(roelstra,)24 b(A.)e(S.)f(and)j
+(Schwichtenber)n(g,)i(H.)c([1996].)34 b F7(Basic)23 b(Pr)l(oof)g
+(Theory)p Gg(,)h(v)n(olume)g(43)f(of)g F7(Cam-)368 1538
+y(bridg)o(e)i(T)-5 b(r)o(acts)24 b(in)f(Theor)m(etical)j(Computer)e
+(Science)p Gg(.)35 b(Cambridge)25 b(Uni)n(v)o(ersity)g(Press.)p
+Black Black 277 1678 a(Ungar)l(,)36 b(A.)d(M.)f([1992].)67
+b F7(Normalisation,)39 b(Cut-Elimination)d(and)e(the)g(Theory)g(of)g
+(Pr)l(oofs)p Gg(,)j(v)n(ol-)368 1791 y(ume)23 b(28)h(of)f
+F7(CLSI)g(Lectur)m(e)h(Notes)p Gg(.)34 b(Center)24 b(for)f(the)h(Study)
+g(of)g(Language)h(and)f(Information.)p Black Black 277
+1932 a(Urban,)i(C.)e([1998].)40 b(Implementation)28 b(of)d(Proof)g
+(Search)h(in)f(the)h(Imperati)n(v)o(e)g(Programming)h(Lan-)368
+2045 y(guage)k(Pizza.)51 b(In)29 b F7(A)n(utomated)i(Reasoning)g(with)e
+(Analytic)h(T)-8 b(ableaux)30 b(and)g(Related)g(Methods)p
+Gg(,)368 2157 y(v)n(olume)25 b(1397)f(of)g F7(LN)n(AI)p
+Gg(,)d(pages)j(313\226319.)i(Springer)n(-V)-10 b(erlag.)p
+Black Black 277 2298 a(W)j(adler)l(,)37 b(P)-10 b(.)33
+b([1990].)68 b(Linear)34 b(Types)h(can)f(Change)h(the)f(World!)94
+b(In)34 b F7(W)-8 b(orking)35 b(Confer)m(ence)h(on)368
+2411 y(Pr)l(o)o(gr)o(amming)24 b(Concepts)i(and)e(Methods)p
+Gg(,)g(pages)h(561\226581.)h(North-Holland.)p Black Black
+277 2551 a(Zuck)o(er)l(,)39 b(J.)34 b([1974].)71 b(The)35
+b(Correspondence)k(Between)c(Cut-Elimination)i(and)e(Normalisation.)368
+2664 y F7(Annals)24 b(of)g(Mathematical)h(Lo)o(gic)p
+Gg(,)f(7:1\226112.)p Black Black eop end
+%%Page: 176 188
+TeXDict begin 176 187 bop Black Black Black 321 875 a
+Gf(Index)p Black 321 1251 a Gb(Reductions)342 1327 y
+Gc(aux)321 1365 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(32)p
+342 1403 119 3 v 342 1441 a Gc(aux)321 1478 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(103)p 336 1517 V 336 1554 a Gc(aux)466
+1531 y FC(0)321 1592 y F6(\000)-31 b(\000)g(!)p Gg(,)22
+b(106)385 1668 y Gc(\014)321 1705 y F6(\000)-31 b(\000)g(!)p
+Gg(,)22 b(72,)h(89)391 1781 y Gc(c)321 1819 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(29)380 1895 y Gc(c)411 1871 y
+FC(0)321 1932 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(32)371
+2008 y Gc(c)402 1985 y FC(00)321 2046 y F6(\000)-31 b(\000)g(!)p
+Gg(,)22 b(49)362 2122 y Gc(c)393 2098 y FC(000)321 2159
+y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(104)352 2235 y Gc(cut)321
+2272 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(28,)h(43)386
+2349 y Gc(\015)321 2386 y F6(\000)-31 b(\000)g(!)p Gg(,)22
+b(72,)h(90)373 2462 y Gc(g)r(c)321 2499 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(49)360 2576 y Gc(int)321 2613
+y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(47)394 2689 y Gc(\023)321
+2726 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(73,)h(93)386
+2803 y Gc(\024)321 2840 y F6(\000)-31 b(\000)g(!)p Gg(,)22
+b(93)396 2916 y Gc(l)321 2953 y F6(\000)-31 b(\000)g(!)p
+Gg(,)22 b(29)384 3030 y Gc(l)406 3006 y FC(0)321 3067
+y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(49)375 3143 y Gc(l)397
+3120 y FC(00)321 3180 y F6(\000)-31 b(\000)g(!)p Gg(,)22
+b(104)363 3257 y Gc(l)q(oc)321 3294 y F6(\000)-31 b(\000)g(!)p
+Gg(,)22 b(51)385 3370 y Gc(\033)321 3407 y F6(\000)-31
+b(\000)g(!)p Gg(,)22 b(93)334 3484 y Gc(sy)r(m)321 3521
+y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(62)387 3597 y Gc(x)321
+3634 y F6(\000)-31 b(\000)g(!)p Gg(,)22 b(50)321 3841
+y Gb(T)-7 b(ranslations)321 3954 y F6(j)p 348 3954 28
+4 v 366 3954 V 384 3954 V 65 w(j)436 3921 y Gc(\024)481
+3954 y Gg(,)23 b(99)321 4068 y F6(j)p 348 4068 V 366
+4068 V 384 4068 V 65 w(j)436 4035 y Gc(\026)483 4068
+y Gg(,)f(99)321 4181 y F6(j)p 348 4181 V 366 4181 V 384
+4181 V 65 w(j)436 4148 y Fu(n)477 4181 y Gg(,)g(71)321
+4295 y F6(j)p 348 4295 V 366 4295 V 384 4295 V 65 w(j)436
+4262 y Fu(N)490 4295 y Gg(,)h(87)321 4408 y F6(j)p 348
+4408 V 366 4408 V 384 4408 V 65 w(j)436 4375 y Fu(s)468
+4408 y Gg(,)f(71)321 4522 y F6(j)p 348 4522 V 366 4522
+V 384 4522 V 65 w(j)436 4489 y Fu(s)p FV(+)514 4522 y
+Gg(,)h(120)321 4635 y F6(j)p 348 4635 V 366 4635 V 384
+4635 V 65 w(j)436 4602 y Fu(S)480 4635 y Gg(,)f(86)321
+4749 y F6(j)p 348 4749 V 366 4749 V 384 4749 V 65 w(j)436
+4716 y Fu(Sym)568 4749 y Gg(,)h(63)321 4862 y F6(j)p
+348 4862 V 366 4862 V 384 4862 V 65 w(j)436 4876 y Gc(x)480
+4862 y Gg(,)g(53)321 5068 y Gb(T)-8 b(erm)23 b(Calculi)321
+5182 y FY(H)q Gg(,)e(55)321 5295 y FY(I)p Gg(,)i(47)321
+5409 y F4(K)p Gg(,)f(84)p Black Black 2079 1251 a F4(\003)p
+Gg(,)h(69)2079 1364 y F4(\003)2142 1378 y F9(+)2201 1364
+y Gg(,)g(120)2079 1477 y FY(R)p Gg(,)f(21)2079 1590 y
+F4(R)p Gg(,)g(84)2079 1703 y FY(T)t Gg(,)d(22)2079 1816
+y FY(T)2136 1834 y F9(\()p Gc(B)s F9(\))2248 1816 y Gg(,)j(23)2079
+1929 y FY(T)2136 1947 y FX(h)p Gc(B)s FX(i)2248 1929
+y Gg(,)g(23)2079 2041 y FY(T)2140 2008 y FX($)2211 2041
+y Gg(,)g(49)2079 2154 y FY(T)2140 2121 y FX($)2136 2177
+y Gc(<)p FX(1)2262 2154 y Gg(,)h(55)2079 2347 y Gb(Symbols)2079
+2460 y Ga(>)2150 2427 y Gc(r)r(po)2257 2460 y Gg(,)g(54)2081
+2573 y FW(M)t(A)t(X)t(R)t(E)t(D)r Gg(,)h(12)2079 2765
+y Gb(A)2079 2878 y Gg(Abramsk)o(y)-6 b(,)24 b(5,)f(21)2079
+2991 y(antecedent,)j(10)2079 3184 y Gb(B)2079 3297 y
+Gg(Barbanera,)i(6,)e(8,)g(9,)h(19,)f(31,)h(61,)f(114,)h(123,)2411
+3410 y(125,)d(126)2079 3522 y(Barendre)o(gt,)h(21,)e(24,)h(78)2079
+3635 y(Barendre)o(gt-style)f(naming)c(con)l(v)o(ention,)k(24,)2411
+3748 y(30)2079 3861 y(Benton,)h(2,)f(126)2079 3974 y(Bierman,)h(5,)f
+(98,)g(99,)g(122)2079 4087 y(Bloo,)g(51,)h(54,)f(125)2079
+4200 y(Bori)5 b(\020)-35 b(ci)5 b(\264)-35 b(c,)24 b(65,)g(81,)f(82,)g
+(97)2079 4393 y Gb(C)2079 4505 y Gg(co-name,)i(19,)e(22,)g(84)2079
+4618 y(conte)o(xt,)i(19)2245 4731 y(-con)l(v)o(ention,)i(19)2079
+4844 y(Coquand,)e(114,)f(126,)f(127)2079 4957 y(Curry-Ho)n(w)o(ard)i
+(correspondence,)j(1)2079 5070 y(cut)2245 5183 y(commuting,)d(12)2245
+5296 y(labelled,)g(48)2245 5409 y(logical,)g(12,)e(26,)h(43,)f(45)p
+Black Black eop end
+%%Page: 177 189
+TeXDict begin 177 188 bop Black 277 51 a Gb(Index)3332
+b(177)p 277 88 3691 4 v Black 277 412 a Gg(cut-elimination,)27
+b(12,)c(28,)h(32,)f(43,)h(47,)f(51)277 612 y Gb(D)277
+725 y Gg(Danos,)h(4,)f(5,)g(9,)g(15,)g(16,)g(121\226123)277
+838 y(Dragalin,)h(6,)f(9,)g(15,)g(59,)h(121)277 952 y(Dyckhof)n(f,)h
+(16)277 1152 y Gb(E)277 1265 y Gg(e)o(xpression,)h(41)277
+1465 y Gb(F)277 1579 y Gg(formula)443 1692 y(coloured,)g(16)443
+1805 y(cut-,)e(11)443 1918 y(main,)f(10,)h(22)277 2118
+y Gb(G)277 2231 y Gg(G3a,)f(19)277 2345 y(G3c,)g(19)277
+2458 y(Gallier)l(,)h(15,)g(24,)f(41,)g(126)277 2571 y(Gentzen,)h(3,)f
+(10,)h(24,)f(65,)g(66,)h(74,)f(81,)h(121)277 2684 y(Gentzen-Sch)8
+b(\250)-38 b(utte)27 b(system,)d(46)277 2797 y(Girard,)33
+b(2,)e(4\2266,)i(14,)f(17,)h(24,)f(31,)g(72,)g(126,)609
+2910 y(128)277 3023 y(Grif)n(\002n,)23 b(2,)g(127)277
+3224 y Gb(H)277 3337 y Gg(Hauptsatz,)i(9)277 3450 y(Herbelin,)g(15,)e
+(16,)g(78,)h(114,)g(126,)f(127)277 3563 y(Hyland,)h(126,)g(128)277
+3763 y Gb(I)277 3877 y Gg(implicit)h(contractions,)i(19)277
+3990 y(inconsistenc)o(y)-6 b(,)27 b F7(see)d Gg(Lafont')-5
+b(s)25 b(e)o(xample)277 4103 y(inference)h(rule,)e F7(see)g
+Gg(cut)443 4216 y(logical,)h(3,)e(10,)g(44)443 4329 y(structural,)j(3,)
+d(11)277 4529 y Gb(K)277 4643 y Gg(Kleene,)h(19,)f(43,)h(111,)g(128)277
+4756 y(Kreisel,)g(4,)f(73,)g(122)277 4956 y Gb(L)277
+5069 y Ga(\025\026)p Gg(,)f(5,)h(97\226100)277 5182 y
+Ga(\025)330 5146 y Gc(S)t(y)r(m)481 5182 y Gg(,)f(61)277
+5296 y Ga(\025)p F1(x)p Gg(,)g(48,)i(78)277 5409 y(Lafont')-5
+b(s)25 b(e)o(xample,)f(4)p Black Black 2035 412 a(LJ,)e(11)2035
+525 y(LK,)g(9)2035 638 y(LK)2157 605 y Gc(tq)2220 638
+y Gg(,)g(16,)h(122)2035 831 y Gb(M)2035 944 y Gg(maximal)h(se)o(gment,)
+g(88)2035 1057 y(Melli)5 b(\036)-35 b(es,)24 b(48,)f(52)2035
+1249 y Gb(N)2035 1362 y Gg(name,)g(19,)h(22)2035 1475
+y(NJ,)e(67)2035 1588 y(NK,)g(81)2035 1701 y(normal)i(form,)f(12)2201
+1814 y Ga(x)p Gg(-,)g(53)2201 1927 y(mix-,)g(106)2035
+2040 y(normalisation,)j(73,)e(93)2035 2233 y Gb(P)2035
+2346 y Gg(P)o(arigot,)g(5,)f(7,)f(65,)i(82,)f(95,)h(97,)f(99)2035
+2459 y(Pitts,)g(24,)g(127)2035 2572 y(Pottinger)l(,)i(3,)e(21,)g(73,)h
+(74)2035 2684 y(Pra)o(witz,)f(3,)g(38,)g(65,)g(66,)h(73,)f(77,)g(81)
+2035 2797 y(proof)i(substitution,)h(25,)e(27,)f(57,)g(91,)h(92)2201
+2910 y(auxiliary)-6 b(,)26 b(33,)d(58)2035 3023 y(pure-v)n(ariable)k
+(con)l(v)o(ention,)f(43)2035 3216 y Gb(R)2035 3329 y
+Gg(recursi)n(v)o(e)f(path)f(ordering,)i(54)2035 3442
+y(rede)o(x,)e(12)2035 3555 y(reducibility)j(candidate,)f(36)2035
+3668 y(reduction)g(system,)e(12)2035 3861 y Gb(S)2035
+3974 y Gg(Schellinx,)h(5,)e(17)2035 4087 y(Schwichtenber)n(g,)j(6,)d
+(19,)h(43,)f(128)2035 4200 y(sequent,)i(10,)e(19)2035
+4312 y(strong)k(normalisation,)h(12,)e(31,)f(40,)h(41,)g(44,)2367
+4425 y(47,)d(56,)h(57,)f(77,)g(94)2035 4538 y(subformula)j(property)-6
+b(,)25 b(11)2035 4651 y(subject)g(reduction,)h(30,)d(51,)h(73,)f(93)
+2035 4764 y(substitution,)k F7(see)d Gg(proof)g(substitution)2201
+4877 y(safe,)g(38)2201 4990 y(simultaneous,)i(39)2035
+5103 y(succedent,)g(10)2035 5296 y Gb(T)2035 5409 y Gg(term,)d(21,)g
+(42,)h(69)p Black Black eop end
+%%Page: 178 190
+TeXDict begin 178 189 bop Black -144 51 a Gb(178)3333
+b(Index)p -144 88 3691 4 v Black 487 412 a Gg(co-named,)25
+b(23)487 525 y(labelled,)h(49)487 638 y(named,)e(23)487
+751 y(well-typed,)i(22)321 864 y(typing)f(judgement,)h(22,)d(48,)g(69,)
+h(84)321 1059 y Gb(U)321 1172 y Gg(Ungar)l(,)g(7,)f(23,)g(75,)g(95,)h
+(97)321 1368 y Gb(V)321 1481 y Gg(v)n(ariable,)h(41,)f(66)321
+1677 y Gb(W)321 1790 y Gg(weak)g(normalisation,)i(14)321
+1986 y Gb(Z)321 2099 y Gg(Zuck)o(er)l(,)f(3,)e(60,)g(73,)g(74,)h(95,)f
+(126)p Black Black Black Black eop end
+%%Trailer
+
+userdict /end-hook known{end-hook}if
+%%EOF