Nominal/users.html
changeset 638 bc23b95d3b2d
parent 633 4863462b8ff0
equal deleted inserted replaced
637:eb530e39145d 638:bc23b95d3b2d
   163 <li>
   163 <li>
   164 <A HREF="http://www.joachim-breitner.de/blog/" target="_top">Joachim Breitner</A>
   164 <A HREF="http://www.joachim-breitner.de/blog/" target="_top">Joachim Breitner</A>
   165 proved the correctness of a GHC compiler transformation using Nominal2.
   165 proved the correctness of a GHC compiler transformation using Nominal2.
   166 This work appeared at the
   166 This work appeared at the
   167 <A HREF="https://www.haskell.org/haskell-symposium/2015/">Haskell Symposium 2015</A>.
   167 <A HREF="https://www.haskell.org/haskell-symposium/2015/">Haskell Symposium 2015</A>.
       
   168 
       
   169 <li>
       
   170   <A HREF="https://www.isa-afp.org/authors/brun">Matthias Brun</A> and
       
   171   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A> formalised
       
   172   Generic Authenticated Data Structures using Nominal Isabelle.
       
   173   The AFP entry is <a href="https://www.isa-afp.org/entries/Modal_Logics_for_NTS.html">here</a>.
       
   174   This work appeared in the Proceedings of the International Conference on Concurrency Theory (CONCUR 2015).  
       
   175 
       
   176 <li>
       
   177   <A HREF="https://www.isa-afp.org/authors/weber/">Tjark Weber</A> et al formalise a uniform
       
   178   semantic substrate for a wide variety of process calculi where states and action labels can be from
       
   179   arbitrary nominal sets. This includes a Hennessy-Milner logic for these systems.
       
   180   The AFP entry is <a href="https://www.isa-afp.org/entries/Modal_Logics_for_NTS.html">here</a>.
       
   181   This work appeared in the Proceedings of the International Conference on Concurrency Theory (CONCUR 2015).
       
   182 
       
   183 <li>
       
   184   <A HREF="https://www.andreipopescu.uk">Andrei Popescu</A> and
       
   185   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A>
       
   186   gave a Formally Verified Abstract Account of Gödel's Incompleteness Theorems using Nominal Isabelle.
       
   187   The AFP entries are
       
   188   <a href="https://www.isa-afp.org/entries/Goedel_Incompleteness.html">here</a>,
       
   189   <a href="https://www.isa-afp.org/entries/Goedel_HFSet_Semantic.html">here</a> and
       
   190   <a href="https://www.isa-afp.org/entries/Goedel_HFSet_Semanticless.html">here</a>.
       
   191   This work appeared in the Proceedings of the International Conference on Automated Deduction (CADE 2019).  
       
   192 
       
   193 <li>
       
   194   <A HREF="https://www.isa-afp.org/authors/brun">Matthias Brun</A> and
       
   195   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A> formalised
       
   196   Generic Authenticated Data Structures using Nominal Isabelle.
       
   197   The AFP entry is <a href="https://www.isa-afp.org/entries/LambdaAuth.html">here</a>.
       
   198   This work appeared in the Proceedings of International Conference on Interactive Theorem Proving (ITP 2019).
       
   199 
       
   200 
       
   201 <li>
       
   202   <A HREF="https://www.andreipopescu.uk">Andrei Popescu</A> and
       
   203   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A>
       
   204   formalise Robinson Arithmetic. This includes unary term-for-var substitution for two syntactic
       
   205   categories (terms and formulas) and proves 15 delicate theorems: compositionality of substitution
       
   206   w.r.t. itself, freshness, constructors. The AFP entry is
       
   207   <a href="https://www.isa-afp.org/entries/Robinson_Arithmetic.html">here</a>.
       
   208   This work appeared in the Proceedings of the International Conference on Automated Deduction (CADE 2019).  
       
   209   
   168 </ul>
   210 </ul>
   169 </P>
   211 </P>
   170 
   212 
   171 
   213 
   172 <H3>Entries in the Archive of Formal Proofs (AFP) using Nominal Isabelle</H3>
   214 <H3>Entries in the Archive of Formal Proofs (AFP) using Nominal Isabelle</H3>
   173 
   215 
   174 <ul>
   216 <ul>
       
   217 <li>
       
   218 <A HREF="http://www.joachim-breitner.de/blog/" target="_top">Joachim Breitner</A>
       
   219 proved the correctness of a GHC compiler transformation using Nominal2.
       
   220 The AFP
       
   221 entry
       
   222 is <a href="https://www.isa-afp.org/entries/Call_Arity.html">here</a>.
       
   223 This work appeared at the
       
   224 <A HREF="https://www.haskell.org/haskell-symposium/2015/">Haskell Symposium 2015</A>.  
       
   225 
       
   226   
   175 <li>
   227 <li>
   176 <A HREF="https://www.cl.cam.ac.uk/~mpew2/">Mark Wassell</A>, Alasdair
   228 <A HREF="https://www.cl.cam.ac.uk/~mpew2/">Mark Wassell</A>, Alasdair
   177 Armstrong, Neel Krishnaswami and Peter Sewell mechanised the
   229 Armstrong, Neel Krishnaswami and Peter Sewell mechanised the
   178 Metatheory for the MiniSail ISA Specification Language using Nominal
   230 Metatheory for the MiniSail ISA Specification Language using Nominal
   179 Isabelle. They needed Nominal Isabelle for handling binding.  The AFP
   231 Isabelle. They needed Nominal Isabelle for handling binding.  The AFP
   181 is <a href="https://www.isa-afp.org/entries/MiniSail.html">here</a>.
   233 is <a href="https://www.isa-afp.org/entries/MiniSail.html">here</a>.
   182 This work appeared in the Proceedings of the 48th International
   234 This work appeared in the Proceedings of the 48th International
   183 Symposium on Microarchitecture MICRO-48 (2015) and at the Automated
   235 Symposium on Microarchitecture MICRO-48 (2015) and at the Automated
   184 Reasoning Workshop (ARW 2018).
   236 Reasoning Workshop (ARW 2018).
   185 
   237 
   186 <li>
   238 
   187   <A HREF="https://www.andreipopescu.uk">Andrei Popescu</A> and
   239 <li>
   188   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A>
   240   <A HREF="https://www.isa-afp.org/authors/felgenhauer/">Bertram Felgenhauer</A> et al formalise the
   189   gave a Formally Verified Abstract Account of Gödel's Incompleteness Theorems using Nominal Isabelle.
   241   Z property introduced by Dehornoy and van Oostrom using Nominal 2.
   190   The AFP entries are
   242   The AFP entry is <a href="https://www.isa-afp.org/entries/Rewriting_Z.html">here</a>.
   191   <a href="https://www.isa-afp.org/entries/Goedel_Incompleteness.html">here</a>,
   243 
   192   <a href="https://www.isa-afp.org/entries/Goedel_HFSet_Semantic.html">here</a> and
   244 
   193   <a href="https://www.isa-afp.org/entries/Goedel_HFSet_Semanticless.html">here</a>.
   245   
   194   This work appeared in the Proceedings of the International Conference on Automated Deduction (CADE 2019).  
   246 
   195 
   247 </ul>
   196 <li>
   248 </P>
   197   <A HREF="https://www.isa-afp.org/authors/brun">Matthias Brun</A> and
   249 
   198   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A> formalised
   250 <H3>Entries in the Archive of Formal that had to work around the current limitations of Nominal</H3>
   199   Generic Authenticated Data Structures using Nominal Isabelle.
   251 
   200   The AFP entry is <a href="https://www.isa-afp.org/entries/LambdaAuth.html">here</a>.
   252 <ul>
   201   This work appeared in the Proceedings of International Conference on Interactive Theorem Proving (ITP 2019).
   253 <li>
   202 
   254 <A HREF="https://www.isa-afp.org/authors/felgenhauer">Bertram Felgenhauer</A>
   203 <li>
   255 formalised a higher-order term algebra, generalizing the notions of free variables, matching, and substitution.
   204   <A HREF="https://www.isa-afp.org/authors/brun">Matthias Brun</A> and
   256 The Nominal framework provides support for reasoning over fresh names, but unfortunately,
   205   <A HREF="https://traytel.bitbucket.io/">Dmitriy Traytel</A> formalised
   257 its definitions are not executable. The AFP entry
   206   Generic Authenticated Data Structures using Nominal Isabelle.
   258 is <a href="https://www.isa-afp.org/entries/Higher_Order_Terms.html">here</a>.
   207   The AFP entry is <a href="https://www.isa-afp.org/entries/Modal_Logics_for_NTS.html">here</a>.
   259 </ul>
   208   This work appeared in the Proceedings of the International Conference on Concurrency Theory (CONCUR 2015).  
   260 </P>
   209 </ul>
       
   210 </P>
       
   211 
       
   212 
       
   213 
       
   214 
   261 
   215 </TABLE>
   262 </TABLE>
   216 </CENTER>
   263 </CENTER>
   217 
   264 
   218 <P>
   265 <P>