|
1 %!PS-Adobe-2.0 |
|
2 %%Creator: dvips(k) 5.95a Copyright 2005 Radical Eye Software |
|
3 %%Title: last.dvi |
|
4 %%Pages: 27 |
|
5 %%PageOrder: Ascend |
|
6 %%BoundingBox: 0 0 595 842 |
|
7 %%DocumentFonts: Times-Bold Times-Roman Times-Italic |
|
8 %%DocumentPaperSizes: a4 |
|
9 %%EndComments |
|
10 %DVIPSWebPage: (www.radicaleye.com) |
|
11 %DVIPSCommandLine: dvips last.dvi -o last.ps |
|
12 %DVIPSParameters: dpi=600 |
|
13 %DVIPSSource: TeX output 2006.04.27:1426 |
|
14 %%BeginProcSet: tex.pro 0 0 |
|
15 %! |
|
16 /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S |
|
17 N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 |
|
18 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 |
|
19 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ |
|
20 landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize |
|
21 mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ |
|
22 matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round |
|
23 exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ |
|
24 statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] |
|
25 N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin |
|
26 /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array |
|
27 /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 |
|
28 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N |
|
29 df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A |
|
30 definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get |
|
31 }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} |
|
32 B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr |
|
33 1 add N}if}B/CharBuilder{save 3 1 roll S A/base get 2 index get S |
|
34 /BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy |
|
35 setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]{Ci}imagemask |
|
36 restore}B/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn |
|
37 /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put |
|
38 }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ |
|
39 bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A |
|
40 mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ |
|
41 SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ |
|
42 userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X |
|
43 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 |
|
44 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N |
|
45 /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ |
|
46 /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) |
|
47 (LaserWriter 16/600)]{A length product length le{A length product exch 0 |
|
48 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse |
|
49 end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask |
|
50 grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} |
|
51 imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round |
|
52 exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto |
|
53 fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p |
|
54 delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} |
|
55 B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ |
|
56 p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S |
|
57 rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end |
|
58 |
|
59 %%EndProcSet |
|
60 %%BeginProcSet: pstricks.pro 0 0 |
|
61 %! |
|
62 % PostScript prologue for pstricks.tex. |
|
63 % Version 97 patch 4, 04/05/10 |
|
64 % For distribution, see pstricks.tex. |
|
65 % |
|
66 /tx@Dict 200 dict def tx@Dict begin |
|
67 /ADict 25 dict def |
|
68 /CM { matrix currentmatrix } bind def |
|
69 /SLW /setlinewidth load def |
|
70 /CLW /currentlinewidth load def |
|
71 /CP /currentpoint load def |
|
72 /ED { exch def } bind def |
|
73 /L /lineto load def |
|
74 /T /translate load def |
|
75 /TMatrix { } def |
|
76 /RAngle { 0 } def |
|
77 /Atan { /atan load stopped { pop pop 0 } if } def |
|
78 /Div { dup 0 eq { pop } { div } ifelse } def |
|
79 /NET { neg exch neg exch T } def |
|
80 /Pyth { dup mul exch dup mul add sqrt } def |
|
81 /PtoC { 2 copy cos mul 3 1 roll sin mul } def |
|
82 /PathLength@ { /z z y y1 sub x x1 sub Pyth add def /y1 y def /x1 x def } |
|
83 def |
|
84 /PathLength { flattenpath /z 0 def { /y1 ED /x1 ED /y2 y1 def /x2 x1 def |
|
85 } { /y ED /x ED PathLength@ } {} { /y y2 def /x x2 def PathLength@ } |
|
86 /pathforall load stopped { pop pop pop pop } if z } def |
|
87 /STP { .996264 dup scale } def |
|
88 /STV { SDict begin normalscale end STP } def |
|
89 % |
|
90 %%-------------- DG begin patch 15 ---------------%% |
|
91 %/DashLine { dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def |
|
92 %PathLength } ifelse /b ED /x ED /y ED /z y x add def b a .5 sub 2 mul y |
|
93 %mul sub z Div round z mul a .5 sub 2 mul y mul add b exch Div dup y mul |
|
94 %/y ED x mul /x ED x 0 gt y 0 gt and { [ y x ] 1 a sub y mul } { [ 1 0 ] |
|
95 %0 } ifelse setdash stroke } def |
|
96 /DashLine { |
|
97 dup 0 gt { /a .5 def PathLength exch div } { pop /a 1 def PathLength } ifelse |
|
98 /b ED /x1 ED /y1 ED /x ED /y ED |
|
99 /z y x add y1 add x1 add def |
|
100 /Coef b a .5 sub 2 mul y mul sub z Div round |
|
101 z mul a .5 sub 2 mul y mul add b exch Div def |
|
102 /y y Coef mul def /x x Coef mul def /y1 y1 Coef mul def /x1 x1 Coef mul def |
|
103 x1 0 gt y1 0 gt x 0 gt y 0 gt and { [ y x y1 x1 ] 1 a sub y mul} |
|
104 { [ 1 0] 0 } ifelse setdash stroke |
|
105 } def |
|
106 %%-------------- DG end patch 15 ---------------%% |
|
107 /DotLine { /b PathLength def /a ED /z ED /y CLW def /z y z add def a 0 gt |
|
108 { /b b a div def } { a 0 eq { /b b y sub def } { a -3 eq { /b b y add |
|
109 def } if } ifelse } ifelse [ 0 b b z Div round Div dup 0 le { pop 1 } if |
|
110 ] a 0 gt { 0 } { y 2 div a -2 gt { neg } if } ifelse setdash 1 |
|
111 setlinecap stroke } def |
|
112 /LineFill { gsave abs CLW add /a ED a 0 dtransform round exch round exch |
|
113 2 copy idtransform exch Atan rotate idtransform pop /a ED .25 .25 |
|
114 % DG/SR modification begin - Dec. 12, 1997 - Patch 2 |
|
115 %itransform translate pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a |
|
116 itransform pathbbox /y2 ED a Div ceiling cvi /x2 ED /y1 ED a |
|
117 % DG/SR modification end |
|
118 Div cvi /x1 ED /y2 y2 y1 sub def clip newpath 2 setlinecap systemdict |
|
119 /setstrokeadjust known { true setstrokeadjust } if x2 x1 sub 1 add { x1 |
|
120 % DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis) |
|
121 % a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore } |
|
122 % def |
|
123 a mul y1 moveto 0 y2 rlineto stroke /x1 x1 1 add def } repeat grestore |
|
124 pop pop } def |
|
125 % DG/SR modification end |
|
126 /BeginArrow { ADict begin /@mtrx CM def gsave 2 copy T 2 index sub neg |
|
127 exch 3 index sub exch Atan rotate newpath } def |
|
128 /EndArrow { @mtrx setmatrix CP grestore end } def |
|
129 /Arrow { CLW mul add dup 2 div /w ED mul dup /h ED mul /a ED { 0 h T 1 -1 |
|
130 scale } if w neg h moveto 0 0 L w h L w neg a neg rlineto gsave fill |
|
131 grestore } def |
|
132 /Tbar { CLW mul add /z ED z -2 div CLW 2 div moveto z 0 rlineto stroke 0 |
|
133 CLW moveto } def |
|
134 /Bracket { CLW mul add dup CLW sub 2 div /x ED mul CLW add /y ED /z CLW 2 |
|
135 div def x neg y moveto x neg CLW 2 div L x CLW 2 div L x y L stroke 0 |
|
136 CLW moveto } def |
|
137 /RoundBracket { CLW mul add dup 2 div /x ED mul /y ED /mtrx CM def 0 CLW |
|
138 2 div T x y mul 0 ne { x y scale } if 1 1 moveto .85 .5 .35 0 0 0 |
|
139 curveto -.35 0 -.85 .5 -1 1 curveto mtrx setmatrix stroke 0 CLW moveto } |
|
140 def |
|
141 /SD { 0 360 arc fill } def |
|
142 /EndDot { { /z DS def } { /z 0 def } ifelse /b ED 0 z DS SD b { 0 z DS |
|
143 CLW sub SD } if 0 DS z add CLW 4 div sub moveto } def |
|
144 /Shadow { [ { /moveto load } { /lineto load } { /curveto load } { |
|
145 /closepath load } /pathforall load stopped { pop pop pop pop CP /moveto |
|
146 load } if ] cvx newpath 3 1 roll T exec } def |
|
147 /NArray { aload length 2 div dup dup cvi eq not { exch pop } if /n exch |
|
148 cvi def } def |
|
149 /NArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop } if |
|
150 f { ] aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def |
|
151 /Line { NArray n 0 eq not { n 1 eq { 0 0 /n 2 def } if ArrowA /n n 2 sub |
|
152 def n { Lineto } repeat CP 4 2 roll ArrowB L pop pop } if } def |
|
153 /Arcto { /a [ 6 -2 roll ] cvx def a r /arcto load stopped { 5 } { 4 } |
|
154 ifelse { pop } repeat a } def |
|
155 /CheckClosed { dup n 2 mul 1 sub index eq 2 index n 2 mul 1 add index eq |
|
156 and { pop pop /n n 1 sub def } if } def |
|
157 /Polygon { NArray n 2 eq { 0 0 /n 3 def } if n 3 lt { n { pop pop } |
|
158 repeat } { n 3 gt { CheckClosed } if n 2 mul -2 roll /y0 ED /x0 ED /y1 |
|
159 ED /x1 ED x1 y1 /x1 x0 x1 add 2 div def /y1 y0 y1 add 2 div def x1 y1 |
|
160 moveto /n n 2 sub def n { Lineto } repeat x1 y1 x0 y0 6 4 roll Lineto |
|
161 Lineto pop pop closepath } ifelse } def |
|
162 /Diamond { /mtrx CM def T rotate /h ED /w ED dup 0 eq { pop } { CLW mul |
|
163 neg /d ED /a w h Atan def /h d a sin Div h add def /w d a cos Div w add |
|
164 def } ifelse mark w 2 div h 2 div w 0 0 h neg w neg 0 0 h w 2 div h 2 |
|
165 div /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx |
|
166 setmatrix } def |
|
167 % DG modification begin - Jan. 15, 1997 |
|
168 %/Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup 0 eq { |
|
169 %pop } { CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2 |
|
170 %div dup cos exch sin Div mul sub def } ifelse mark 0 d w neg d 0 h w d 0 |
|
171 %d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx |
|
172 %setmatrix } def |
|
173 /Triangle { /mtrx CM def translate rotate /h ED 2 div /w ED dup |
|
174 CLW mul /d ED /h h d w h Atan sin Div sub def /w w d h w Atan 2 |
|
175 div dup cos exch sin Div mul sub def mark 0 d w neg d 0 h w d 0 |
|
176 d /ArrowA { moveto } def /ArrowB { } def false Line closepath mtrx |
|
177 % DG/SR modification begin - Jun. 1, 1998 - Patch 3 (from Michael Vulis) |
|
178 % setmatrix } def |
|
179 setmatrix pop } def |
|
180 % DG/SR modification end |
|
181 /CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth |
|
182 def } def |
|
183 /CCA { /y ED /x ED 2 copy y sub /dy1 ED x sub /dx1 ED /l1 dx1 dy1 Pyth |
|
184 def } def |
|
185 /CC { /l0 l1 def /x1 x dx sub def /y1 y dy sub def /dx0 dx1 def /dy0 dy1 |
|
186 def CCA /dx dx0 l1 c exp mul dx1 l0 c exp mul add def /dy dy0 l1 c exp |
|
187 mul dy1 l0 c exp mul add def /m dx0 dy0 Atan dx1 dy1 Atan sub 2 div cos |
|
188 abs b exp a mul dx dy Pyth Div 2 div def /x2 x l0 dx mul m mul sub def |
|
189 /y2 y l0 dy mul m mul sub def /dx l1 dx mul m mul neg def /dy l1 dy mul |
|
190 m mul neg def } def |
|
191 /IC { /c c 1 add def c 0 lt { /c 0 def } { c 3 gt { /c 3 def } if } |
|
192 ifelse /a a 2 mul 3 div 45 cos b exp div def CCA /dx 0 def /dy 0 def } |
|
193 def |
|
194 /BOC { IC CC x2 y2 x1 y1 ArrowA CP 4 2 roll x y curveto } def |
|
195 /NC { CC x1 y1 x2 y2 x y curveto } def |
|
196 /EOC { x dx sub y dy sub 4 2 roll ArrowB 2 copy curveto } def |
|
197 /BAC { IC CC x y moveto CC x1 y1 CP ArrowA } def |
|
198 /NAC { x2 y2 x y curveto CC x1 y1 } def |
|
199 /EAC { x2 y2 x y ArrowB curveto pop pop } def |
|
200 /OpenCurve { NArray n 3 lt { n { pop pop } repeat } { BOC /n n 3 sub def |
|
201 n { NC } repeat EOC } ifelse } def |
|
202 /AltCurve { { false NArray n 2 mul 2 roll [ n 2 mul 3 sub 1 roll ] aload |
|
203 /Points ED n 2 mul -2 roll } { false NArray } ifelse n 4 lt { n { pop |
|
204 pop } repeat } { BAC /n n 4 sub def n { NAC } repeat EAC } ifelse } def |
|
205 /ClosedCurve { NArray n 3 lt { n { pop pop } repeat } { n 3 gt { |
|
206 CheckClosed } if 6 copy n 2 mul 6 add 6 roll IC CC x y moveto n { NC } |
|
207 repeat closepath pop pop } ifelse } def |
|
208 /SQ { /r ED r r moveto r r neg L r neg r neg L r neg r L fill } def |
|
209 /ST { /y ED /x ED x y moveto x neg y L 0 x L fill } def |
|
210 /SP { /r ED gsave 0 r moveto 4 { 72 rotate 0 r L } repeat fill grestore } |
|
211 def |
|
212 /FontDot { DS 2 mul dup matrix scale matrix concatmatrix exch matrix |
|
213 rotate matrix concatmatrix exch findfont exch makefont setfont } def |
|
214 /Rect { x1 y1 y2 add 2 div moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto |
|
215 x1 y1 lineto closepath } def |
|
216 /OvalFrame { x1 x2 eq y1 y2 eq or { pop pop x1 y1 moveto x2 y2 L } { y1 |
|
217 y2 sub abs x1 x2 sub abs 2 copy gt { exch pop } { pop } ifelse 2 div |
|
218 exch { dup 3 1 roll mul exch } if 2 copy lt { pop } { exch pop } ifelse |
|
219 /b ED x1 y1 y2 add 2 div moveto x1 y2 x2 y2 b arcto x2 y2 x2 y1 b arcto |
|
220 x2 y1 x1 y1 b arcto x1 y1 x1 y2 b arcto 16 { pop } repeat closepath } |
|
221 ifelse } def |
|
222 /Frame { CLW mul /a ED 3 -1 roll 2 copy gt { exch } if a sub /y2 ED a add |
|
223 /y1 ED 2 copy gt { exch } if a sub /x2 ED a add /x1 ED 1 index 0 eq { |
|
224 pop pop Rect } { OvalFrame } ifelse } def |
|
225 /BezierNArray { /f ED counttomark 2 div dup cvi /n ED n eq not { exch pop |
|
226 } if n 1 sub neg 3 mod 3 add 3 mod { 0 0 /n n 1 add def } repeat f { ] |
|
227 aload /Points ED } { n 2 mul 1 add -1 roll pop } ifelse } def |
|
228 /OpenBezier { BezierNArray n 1 eq { pop pop } { ArrowA n 4 sub 3 idiv { 6 |
|
229 2 roll 4 2 roll curveto } repeat 6 2 roll 4 2 roll ArrowB curveto } |
|
230 ifelse } def |
|
231 /ClosedBezier { BezierNArray n 1 eq { pop pop } { moveto n 1 sub 3 idiv { |
|
232 6 2 roll 4 2 roll curveto } repeat closepath } ifelse } def |
|
233 /BezierShowPoints { gsave Points aload length 2 div cvi /n ED moveto n 1 |
|
234 sub { lineto } repeat CLW 2 div SLW [ 4 4 ] 0 setdash stroke grestore } |
|
235 def |
|
236 /Parab { /y0 exch def /x0 exch def /y1 exch def /x1 exch def /dx x0 x1 |
|
237 sub 3 div def /dy y0 y1 sub 3 div def x0 dx sub y0 dy add x1 y1 ArrowA |
|
238 x0 dx add y0 dy add x0 2 mul x1 sub y1 ArrowB curveto /Points [ x1 y1 x0 |
|
239 y0 x0 2 mul x1 sub y1 ] def } def |
|
240 /Grid { newpath /a 4 string def /b ED /c ED /n ED cvi dup 1 lt { pop 1 } |
|
241 if /s ED s div dup 0 eq { pop 1 } if /dy ED s div dup 0 eq { pop 1 } if |
|
242 /dx ED dy div round dy mul /y0 ED dx div round dx mul /x0 ED dy div |
|
243 round cvi /y2 ED dx div round cvi /x2 ED dy div round cvi /y1 ED dx div |
|
244 round cvi /x1 ED /h y2 y1 sub 0 gt { 1 } { -1 } ifelse def /w x2 x1 sub |
|
245 0 gt { 1 } { -1 } ifelse def b 0 gt { /z1 b 4 div CLW 2 div add def |
|
246 /Helvetica findfont b scalefont setfont /b b .95 mul CLW 2 div add def } |
|
247 if systemdict /setstrokeadjust known { true setstrokeadjust /t { } def } |
|
248 { /t { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add |
|
249 exch itransform } bind def } ifelse gsave n 0 gt { 1 setlinecap [ 0 dy n |
|
250 div ] dy n div 2 div setdash } { 2 setlinecap } ifelse /i x1 def /f y1 |
|
251 dy mul n 0 gt { dy n div 2 div h mul sub } if def /g y2 dy mul n 0 gt { |
|
252 dy n div 2 div h mul add } if def x2 x1 sub w mul 1 add dup 1000 gt { |
|
253 pop 1000 } if { i dx mul dup y0 moveto b 0 gt { gsave c i a cvs dup |
|
254 stringwidth pop /z2 ED w 0 gt {z1} {z1 z2 add neg} ifelse h 0 gt {b neg} |
|
255 {z1} ifelse rmoveto show grestore } if dup t f moveto g t L stroke /i i |
|
256 w add def } repeat grestore gsave n 0 gt |
|
257 % DG/SR modification begin - Nov. 7, 1997 - Patch 1 |
|
258 %{ 1 setlinecap [ 0 dx n div ] dy n div 2 div setdash } |
|
259 { 1 setlinecap [ 0 dx n div ] dx n div 2 div setdash } |
|
260 % DG/SR modification end |
|
261 { 2 setlinecap } ifelse /i y1 def /f x1 dx mul |
|
262 n 0 gt { dx n div 2 div w mul sub } if def /g x2 dx mul n 0 gt { dx n |
|
263 div 2 div w mul add } if def y2 y1 sub h mul 1 add dup 1000 gt { pop |
|
264 1000 } if { newpath i dy mul dup x0 exch moveto b 0 gt { gsave c i a cvs |
|
265 dup stringwidth pop /z2 ED w 0 gt {z1 z2 add neg} {z1} ifelse h 0 gt |
|
266 {z1} {b neg} ifelse rmoveto show grestore } if dup f exch t moveto g |
|
267 exch t L stroke /i i h add def } repeat grestore } def |
|
268 /ArcArrow { /d ED /b ED /a ED gsave newpath 0 -1000 moveto clip newpath 0 |
|
269 1 0 0 b grestore c mul /e ED pop pop pop r a e d PtoC y add exch x add |
|
270 exch r a PtoC y add exch x add exch b pop pop pop pop a e d CLW 8 div c |
|
271 mul neg d } def |
|
272 /Ellipse { /mtrx CM def T scale 0 0 1 5 3 roll arc mtrx setmatrix } def |
|
273 /Rot { CP CP translate 3 -1 roll neg rotate NET } def |
|
274 /RotBegin { tx@Dict /TMatrix known not { /TMatrix { } def /RAngle { 0 } |
|
275 def } if /TMatrix [ TMatrix CM ] cvx def /a ED a Rot /RAngle [ RAngle |
|
276 dup a add ] cvx def } def |
|
277 /RotEnd { /TMatrix [ TMatrix setmatrix ] cvx def /RAngle [ RAngle pop ] |
|
278 cvx def } def |
|
279 /PutCoor { gsave CP T CM STV exch exec moveto setmatrix CP grestore } def |
|
280 /PutBegin { /TMatrix [ TMatrix CM ] cvx def CP 4 2 roll T moveto } def |
|
281 /PutEnd { CP /TMatrix [ TMatrix setmatrix ] cvx def moveto } def |
|
282 /Uput { /a ED add 2 div /h ED 2 div /w ED /s a sin def /c a cos def /b s |
|
283 abs c abs 2 copy gt dup /q ED { pop } { exch pop } ifelse def /w1 c b |
|
284 div w mul def /h1 s b div h mul def q { w1 abs w sub dup c mul abs } { |
|
285 h1 abs h sub dup s mul abs } ifelse } def |
|
286 /UUput { /z ED abs /y ED /x ED q { x s div c mul abs y gt } { x c div s |
|
287 mul abs y gt } ifelse { x x mul y y mul sub z z mul add sqrt z add } { q |
|
288 { x s div } { x c div } ifelse abs } ifelse a PtoC h1 add exch w1 add |
|
289 exch } def |
|
290 /BeginOL { dup (all) eq exch TheOL eq or { IfVisible not { Visible |
|
291 /IfVisible true def } if } { IfVisible { Invisible /IfVisible false def |
|
292 } if } ifelse } def |
|
293 /InitOL { /OLUnit [ 3000 3000 matrix defaultmatrix dtransform ] cvx def |
|
294 /Visible { CP OLUnit idtransform T moveto } def /Invisible { CP OLUnit |
|
295 neg exch neg exch idtransform T moveto } def /BOL { BeginOL } def |
|
296 /IfVisible true def } def |
|
297 end |
|
298 % END pstricks.pro |
|
299 |
|
300 %%EndProcSet |
|
301 %%BeginProcSet: pst-dots.pro 0 0 |
|
302 %!PS-Adobe-2.0 |
|
303 %%Title: Dot Font for PSTricks |
|
304 %%Creator: Timothy Van Zandt <tvz@Princeton.EDU> |
|
305 %%Creation Date: May 7, 1993 |
|
306 %% Version 97 patch 1, 99/12/16 |
|
307 %% Modified by Etienne Riga <etienne.riga@skynet.be> - Dec. 16, 1999 |
|
308 %% to add /Diamond, /SolidDiamond and /BoldDiamond |
|
309 10 dict dup begin |
|
310 /FontType 3 def |
|
311 /FontMatrix [ .001 0 0 .001 0 0 ] def |
|
312 /FontBBox [ 0 0 0 0 ] def |
|
313 /Encoding 256 array def |
|
314 0 1 255 { Encoding exch /.notdef put } for |
|
315 Encoding |
|
316 dup (b) 0 get /Bullet put |
|
317 dup (c) 0 get /Circle put |
|
318 dup (C) 0 get /BoldCircle put |
|
319 dup (u) 0 get /SolidTriangle put |
|
320 dup (t) 0 get /Triangle put |
|
321 dup (T) 0 get /BoldTriangle put |
|
322 dup (r) 0 get /SolidSquare put |
|
323 dup (s) 0 get /Square put |
|
324 dup (S) 0 get /BoldSquare put |
|
325 dup (q) 0 get /SolidPentagon put |
|
326 dup (p) 0 get /Pentagon put |
|
327 dup (P) 0 get /BoldPentagon put |
|
328 % DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga |
|
329 dup (l) 0 get /SolidDiamond put |
|
330 dup (d) 0 get /Diamond put |
|
331 (D) 0 get /BoldDiamond put |
|
332 % DG/SR modification end |
|
333 /Metrics 13 dict def |
|
334 Metrics begin |
|
335 /Bullet 1000 def |
|
336 /Circle 1000 def |
|
337 /BoldCircle 1000 def |
|
338 /SolidTriangle 1344 def |
|
339 /Triangle 1344 def |
|
340 /BoldTriangle 1344 def |
|
341 /SolidSquare 886 def |
|
342 /Square 886 def |
|
343 /BoldSquare 886 def |
|
344 /SolidPentagon 1093.2 def |
|
345 /Pentagon 1093.2 def |
|
346 /BoldPentagon 1093.2 def |
|
347 % DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga |
|
348 /SolidDiamond 1008 def |
|
349 /Diamond 1008 def |
|
350 /BoldDiamond 1008 def |
|
351 % DG/SR modification end |
|
352 /.notdef 0 def |
|
353 end |
|
354 /BBoxes 13 dict def |
|
355 BBoxes begin |
|
356 /Circle { -550 -550 550 550 } def |
|
357 /BoldCircle /Circle load def |
|
358 /Bullet /Circle load def |
|
359 /Triangle { -571.5 -330 571.5 660 } def |
|
360 /BoldTriangle /Triangle load def |
|
361 /SolidTriangle /Triangle load def |
|
362 /Square { -450 -450 450 450 } def |
|
363 /BoldSquare /Square load def |
|
364 /SolidSquare /Square load def |
|
365 /Pentagon { -546.6 -465 546.6 574.7 } def |
|
366 /BoldPentagon /Pentagon load def |
|
367 /SolidPentagon /Pentagon load def |
|
368 % DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga |
|
369 /Diamond { -428.5 -742.5 428.5 742.5 } def |
|
370 /BoldDiamond /Diamond load def |
|
371 /SolidDiamond /Diamond load def |
|
372 % DG/SR modification end |
|
373 /.notdef { 0 0 0 0 } def |
|
374 end |
|
375 /CharProcs 20 dict def |
|
376 CharProcs begin |
|
377 /Adjust { |
|
378 2 copy dtransform floor .5 add exch floor .5 add exch idtransform |
|
379 3 -1 roll div 3 1 roll exch div exch scale |
|
380 } def |
|
381 /CirclePath { 0 0 500 0 360 arc closepath } def |
|
382 /Bullet { 500 500 Adjust CirclePath fill } def |
|
383 /Circle { 500 500 Adjust CirclePath .9 .9 scale CirclePath |
|
384 eofill } def |
|
385 /BoldCircle { 500 500 Adjust CirclePath .8 .8 scale CirclePath |
|
386 eofill } def |
|
387 /BoldCircle { CirclePath .8 .8 scale CirclePath eofill } def |
|
388 /TrianglePath { 0 660 moveto -571.5 -330 lineto 571.5 -330 lineto |
|
389 closepath } def |
|
390 /SolidTriangle { TrianglePath fill } def |
|
391 /Triangle { TrianglePath .85 .85 scale TrianglePath eofill } def |
|
392 /BoldTriangle { TrianglePath .7 .7 scale TrianglePath eofill } def |
|
393 /SquarePath { -450 450 moveto 450 450 lineto 450 -450 lineto |
|
394 -450 -450 lineto closepath } def |
|
395 /SolidSquare { SquarePath fill } def |
|
396 /Square { SquarePath .89 .89 scale SquarePath eofill } def |
|
397 /BoldSquare { SquarePath .78 .78 scale SquarePath eofill } def |
|
398 /PentagonPath { |
|
399 -337.8 -465 moveto |
|
400 337.8 -465 lineto |
|
401 546.6 177.6 lineto |
|
402 0 574.7 lineto |
|
403 -546.6 177.6 lineto |
|
404 closepath |
|
405 } def |
|
406 /SolidPentagon { PentagonPath fill } def |
|
407 /Pentagon { PentagonPath .89 .89 scale PentagonPath eofill } def |
|
408 /BoldPentagon { PentagonPath .78 .78 scale PentagonPath eofill } def |
|
409 % DG/SR modification begin - Dec. 16, 1999 - From Etienne Riga |
|
410 /DiamondPath { 0 742.5 moveto -428.5 0 lineto 0 -742.5 lineto |
|
411 428.5 0 lineto closepath } def |
|
412 /SolidDiamond { DiamondPath fill } def |
|
413 /Diamond { DiamondPath .85 .85 scale DiamondPath eofill } def |
|
414 /BoldDiamond { DiamondPath .7 .7 scale DiamondPath eofill } def |
|
415 % DG/SR modification end |
|
416 /.notdef { } def |
|
417 end |
|
418 /BuildGlyph { |
|
419 exch |
|
420 begin |
|
421 Metrics 1 index get exec 0 |
|
422 BBoxes 3 index get exec |
|
423 setcachedevice |
|
424 CharProcs begin load exec end |
|
425 end |
|
426 } def |
|
427 /BuildChar { |
|
428 1 index /Encoding get exch get |
|
429 1 index /BuildGlyph get exec |
|
430 } bind def |
|
431 end |
|
432 /PSTricksDotFont exch definefont pop |
|
433 %END pst-dots.pro |
|
434 |
|
435 %%EndProcSet |
|
436 %%BeginProcSet: pst-node.pro 0 0 |
|
437 %! |
|
438 % PostScript prologue for pst-node.tex. |
|
439 % Version 97 patch 1, 97/05/09. |
|
440 % For distribution, see pstricks.tex. |
|
441 % |
|
442 /tx@NodeDict 400 dict def tx@NodeDict begin |
|
443 tx@Dict begin /T /translate load def end |
|
444 /NewNode { gsave /next ED dict dup 3 1 roll def exch { dup 3 1 roll def } |
|
445 if begin tx@Dict begin STV CP T exec end /NodeMtrx CM def next end |
|
446 grestore } def |
|
447 /InitPnode { /Y ED /X ED /NodePos { NodeSep Cos mul NodeSep Sin mul } def |
|
448 } def |
|
449 /InitCnode { /r ED /Y ED /X ED /NodePos { NodeSep r add dup Cos mul exch |
|
450 Sin mul } def } def |
|
451 /GetRnodePos { Cos 0 gt { /dx r NodeSep add def } { /dx l NodeSep sub def |
|
452 } ifelse Sin 0 gt { /dy u NodeSep add def } { /dy d NodeSep sub def } |
|
453 ifelse dx Sin mul abs dy Cos mul abs gt { dy Cos mul Sin div dy } { dx |
|
454 dup Sin mul Cos Div } ifelse } def |
|
455 /InitRnode { /Y ED /X ED X sub /r ED /l X neg def Y add neg /d ED Y sub |
|
456 /u ED /NodePos { GetRnodePos } def } def |
|
457 /DiaNodePos { w h mul w Sin mul abs h Cos mul abs add Div NodeSep add dup |
|
458 Cos mul exch Sin mul } def |
|
459 /TriNodePos { Sin s lt { d NodeSep sub dup Cos mul Sin Div exch } { w h |
|
460 mul w Sin mul h Cos abs mul add Div NodeSep add dup Cos mul exch Sin mul |
|
461 } ifelse } def |
|
462 /InitTriNode { sub 2 div exch 2 div exch 2 copy T 2 copy 4 index index /d |
|
463 ED pop pop pop pop -90 mul rotate /NodeMtrx CM def /X 0 def /Y 0 def d |
|
464 sub abs neg /d ED d add /h ED 2 div h mul h d sub Div /w ED /s d w Atan |
|
465 sin def /NodePos { TriNodePos } def } def |
|
466 /OvalNodePos { /ww w NodeSep add def /hh h NodeSep add def Sin ww mul Cos |
|
467 hh mul Atan dup cos ww mul exch sin hh mul } def |
|
468 /GetCenter { begin X Y NodeMtrx transform CM itransform end } def |
|
469 /XYPos { dup sin exch cos Do /Cos ED /Sin ED /Dist ED Cos 0 gt { Dist |
|
470 Dist Sin mul Cos div } { Cos 0 lt { Dist neg Dist Sin mul Cos div neg } |
|
471 { 0 Dist Sin mul } ifelse } ifelse Do } def |
|
472 /GetEdge { dup 0 eq { pop begin 1 0 NodeMtrx dtransform CM idtransform |
|
473 exch atan sub dup sin /Sin ED cos /Cos ED /NodeSep ED NodePos NodeMtrx |
|
474 dtransform CM idtransform end } { 1 eq {{exch}} {{}} ifelse /Do ED pop |
|
475 XYPos } ifelse } def |
|
476 /AddOffset { 1 index 0 eq { pop pop } { 2 copy 5 2 roll cos mul add 4 1 |
|
477 roll sin mul sub exch } ifelse } def |
|
478 /GetEdgeA { NodeSepA AngleA NodeA NodeSepTypeA GetEdge OffsetA AngleA |
|
479 AddOffset yA add /yA1 ED xA add /xA1 ED } def |
|
480 /GetEdgeB { NodeSepB AngleB NodeB NodeSepTypeB GetEdge OffsetB AngleB |
|
481 AddOffset yB add /yB1 ED xB add /xB1 ED } def |
|
482 /GetArmA { ArmTypeA 0 eq { /xA2 ArmA AngleA cos mul xA1 add def /yA2 ArmA |
|
483 AngleA sin mul yA1 add def } { ArmTypeA 1 eq {{exch}} {{}} ifelse /Do ED |
|
484 ArmA AngleA XYPos OffsetA AngleA AddOffset yA add /yA2 ED xA add /xA2 ED |
|
485 } ifelse } def |
|
486 /GetArmB { ArmTypeB 0 eq { /xB2 ArmB AngleB cos mul xB1 add def /yB2 ArmB |
|
487 AngleB sin mul yB1 add def } { ArmTypeB 1 eq {{exch}} {{}} ifelse /Do ED |
|
488 ArmB AngleB XYPos OffsetB AngleB AddOffset yB add /yB2 ED xB add /xB2 ED |
|
489 } ifelse } def |
|
490 /InitNC { /b ED /a ED /NodeSepTypeB ED /NodeSepTypeA ED /NodeSepB ED |
|
491 /NodeSepA ED /OffsetB ED /OffsetA ED tx@NodeDict a known tx@NodeDict b |
|
492 known and dup { /NodeA a load def /NodeB b load def NodeA GetCenter /yA |
|
493 ED /xA ED NodeB GetCenter /yB ED /xB ED } if } def |
|
494 /LPutLine { 4 copy 3 -1 roll sub neg 3 1 roll sub Atan /NAngle ED 1 t sub |
|
495 mul 3 1 roll 1 t sub mul 4 1 roll t mul add /Y ED t mul add /X ED } def |
|
496 /LPutLines { mark LPutVar counttomark 2 div 1 sub /n ED t floor dup n gt |
|
497 { pop n 1 sub /t 1 def } { dup t sub neg /t ED } ifelse cvi 2 mul { pop |
|
498 } repeat LPutLine cleartomark } def |
|
499 /BezierMidpoint { /y3 ED /x3 ED /y2 ED /x2 ED /y1 ED /x1 ED /y0 ED /x0 ED |
|
500 /t ED /cx x1 x0 sub 3 mul def /cy y1 y0 sub 3 mul def /bx x2 x1 sub 3 |
|
501 mul cx sub def /by y2 y1 sub 3 mul cy sub def /ax x3 x0 sub cx sub bx |
|
502 sub def /ay y3 y0 sub cy sub by sub def ax t 3 exp mul bx t t mul mul |
|
503 add cx t mul add x0 add ay t 3 exp mul by t t mul mul add cy t mul add |
|
504 y0 add 3 ay t t mul mul mul 2 by t mul mul add cy add 3 ax t t mul mul |
|
505 mul 2 bx t mul mul add cx add atan /NAngle ED /Y ED /X ED } def |
|
506 /HPosBegin { yB yA ge { /t 1 t sub def } if /Y yB yA sub t mul yA add def |
|
507 } def |
|
508 /HPosEnd { /X Y yyA sub yyB yyA sub Div xxB xxA sub mul xxA add def |
|
509 /NAngle yyB yyA sub xxB xxA sub Atan def } def |
|
510 /HPutLine { HPosBegin /yyA ED /xxA ED /yyB ED /xxB ED HPosEnd } def |
|
511 /HPutLines { HPosBegin yB yA ge { /check { le } def } { /check { ge } def |
|
512 } ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { dup Y check { exit |
|
513 } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark HPosEnd |
|
514 } def |
|
515 /VPosBegin { xB xA lt { /t 1 t sub def } if /X xB xA sub t mul xA add def |
|
516 } def |
|
517 /VPosEnd { /Y X xxA sub xxB xxA sub Div yyB yyA sub mul yyA add def |
|
518 /NAngle yyB yyA sub xxB xxA sub Atan def } def |
|
519 /VPutLine { VPosBegin /yyA ED /xxA ED /yyB ED /xxB ED VPosEnd } def |
|
520 /VPutLines { VPosBegin xB xA ge { /check { le } def } { /check { ge } def |
|
521 } ifelse /xxA xA def /yyA yA def mark xB yB LPutVar { 1 index X check { |
|
522 exit } { /yyA ED /xxA ED } ifelse } loop /yyB ED /xxB ED cleartomark |
|
523 VPosEnd } def |
|
524 /HPutCurve { gsave newpath /SaveLPutVar /LPutVar load def LPutVar 8 -2 |
|
525 roll moveto curveto flattenpath /LPutVar [ {} {} {} {} pathforall ] cvx |
|
526 def grestore exec /LPutVar /SaveLPutVar load def } def |
|
527 /NCCoor { /AngleA yB yA sub xB xA sub Atan def /AngleB AngleA 180 add def |
|
528 GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 xA1 yA1 ] cvx def /LPutPos { |
|
529 LPutVar LPutLine } def /HPutPos { LPutVar HPutLine } def /VPutPos { |
|
530 LPutVar VPutLine } def LPutVar } def |
|
531 /NCLine { NCCoor tx@Dict begin ArrowA CP 4 2 roll ArrowB lineto pop pop |
|
532 end } def |
|
533 /NCLines { false NArray n 0 eq { NCLine } { 2 copy yA sub exch xA sub |
|
534 Atan /AngleA ED n 2 mul dup index exch index yB sub exch xB sub Atan |
|
535 /AngleB ED GetEdgeA GetEdgeB /LPutVar [ xB1 yB1 n 2 mul 4 add 4 roll xA1 |
|
536 yA1 ] cvx def mark LPutVar tx@Dict begin false Line end /LPutPos { |
|
537 LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def } |
|
538 ifelse } def |
|
539 /NCCurve { GetEdgeA GetEdgeB xA1 xB1 sub yA1 yB1 sub Pyth 2 div dup 3 -1 |
|
540 roll mul /ArmA ED mul /ArmB ED /ArmTypeA 0 def /ArmTypeB 0 def GetArmA |
|
541 GetArmB xA2 yA2 xA1 yA1 tx@Dict begin ArrowA end xB2 yB2 xB1 yB1 tx@Dict |
|
542 begin ArrowB end curveto /LPutVar [ xA1 yA1 xA2 yA2 xB2 yB2 xB1 yB1 ] |
|
543 cvx def /LPutPos { t LPutVar BezierMidpoint } def /HPutPos { { HPutLines |
|
544 } HPutCurve } def /VPutPos { { VPutLines } HPutCurve } def } def |
|
545 /NCAngles { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate |
|
546 def xA2 yA2 mtrx transform pop xB2 yB2 mtrx transform exch pop mtrx |
|
547 itransform /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA2 |
|
548 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end /LPutVar [ xB1 |
|
549 yB1 xB2 yB2 x0 y0 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { LPutLines } def |
|
550 /HPutPos { HPutLines } def /VPutPos { VPutLines } def } def |
|
551 /NCAngle { GetEdgeA GetEdgeB GetArmB /mtrx AngleA matrix rotate def xB2 |
|
552 yB2 mtrx itransform pop xA1 yA1 mtrx itransform exch pop mtrx transform |
|
553 /y0 ED /x0 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 x0 y0 xA1 yA1 |
|
554 tx@Dict begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 x0 y0 xA1 yA1 ] |
|
555 cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos { |
|
556 VPutLines } def } def |
|
557 /NCBar { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate def |
|
558 xA2 yA2 mtrx itransform pop xB2 yB2 mtrx itransform pop sub dup 0 mtrx |
|
559 transform 3 -1 roll 0 gt { /yB2 exch yB2 add def /xB2 exch xB2 add def } |
|
560 { /yA2 exch neg yA2 add def /xA2 exch neg xA2 add def } ifelse mark ArmB |
|
561 0 ne { xB1 yB1 } if xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict |
|
562 begin false Line end /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx |
|
563 def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos { |
|
564 VPutLines } def } def |
|
565 /NCDiag { GetEdgeA GetEdgeB GetArmA GetArmB mark ArmB 0 ne { xB1 yB1 } if |
|
566 xB2 yB2 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false Line end |
|
567 /LPutVar [ xB1 yB1 xB2 yB2 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { |
|
568 LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def } |
|
569 def |
|
570 /NCDiagg { GetEdgeA GetArmA yB yA2 sub xB xA2 sub Atan 180 add /AngleB ED |
|
571 GetEdgeB mark xB1 yB1 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin |
|
572 false Line end /LPutVar [ xB1 yB1 xA2 yA2 xA1 yA1 ] cvx def /LPutPos { |
|
573 LPutLines } def /HPutPos { HPutLines } def /VPutPos { VPutLines } def } |
|
574 def |
|
575 /NCLoop { GetEdgeA GetEdgeB GetArmA GetArmB /mtrx AngleA matrix rotate |
|
576 def xA2 yA2 mtrx transform loopsize add /yA3 ED /xA3 ED /xB3 xB2 yB2 |
|
577 mtrx transform pop def xB3 yA3 mtrx itransform /yB3 ED /xB3 ED xA3 yA3 |
|
578 mtrx itransform /yA3 ED /xA3 ED mark ArmB 0 ne { xB1 yB1 } if xB2 yB2 |
|
579 xB3 yB3 xA3 yA3 xA2 yA2 ArmA 0 ne { xA1 yA1 } if tx@Dict begin false |
|
580 Line end /LPutVar [ xB1 yB1 xB2 yB2 xB3 yB3 xA3 yA3 xA2 yA2 xA1 yA1 ] |
|
581 cvx def /LPutPos { LPutLines } def /HPutPos { HPutLines } def /VPutPos { |
|
582 VPutLines } def } def |
|
583 % DG/SR modification begin - May 9, 1997 - Patch 1 |
|
584 %/NCCircle { 0 0 NodesepA nodeA \tx@GetEdge pop xA sub 2 div dup 2 exp r |
|
585 %r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add |
|
586 %exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360 |
|
587 %mul add dup 5 1 roll 90 sub \tx@PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED |
|
588 /NCCircle { NodeSepA 0 NodeA 0 GetEdge pop 2 div dup 2 exp r |
|
589 r mul sub abs sqrt atan 2 mul /a ED r AngleA 90 add PtoC yA add exch xA add |
|
590 exch 2 copy /LPutVar [ 4 2 roll r AngleA ] cvx def /LPutPos { LPutVar t 360 |
|
591 mul add dup 5 1 roll 90 sub PtoC 3 -1 roll add /Y ED add /X ED /NAngle ED |
|
592 % DG/SR modification end |
|
593 } def /HPutPos { LPutPos } def /VPutPos { LPutPos } def r AngleA 90 sub a add |
|
594 AngleA 270 add a sub tx@Dict begin /angleB ED /angleA ED /r ED /c 57.2957 r |
|
595 Div def /y ED /x ED } def |
|
596 /NCBox { /d ED /h ED /AngleB yB yA sub xB xA sub Atan def /AngleA AngleB |
|
597 180 add def GetEdgeA GetEdgeB /dx d AngleB sin mul def /dy d AngleB cos |
|
598 mul neg def /hx h AngleB sin mul neg def /hy h AngleB cos mul def |
|
599 /LPutVar [ xA1 hx add yA1 hy add xB1 hx add yB1 hy add xB1 dx add yB1 dy |
|
600 add xA1 dx add yA1 dy add ] cvx def /LPutPos { LPutLines } def /HPutPos |
|
601 { xB yB xA yA LPutLine } def /VPutPos { HPutPos } def mark LPutVar |
|
602 tx@Dict begin false Polygon end } def |
|
603 /NCArcBox { /l ED neg /d ED /h ED /a ED /AngleA yB yA sub xB xA sub Atan |
|
604 def /AngleB AngleA 180 add def /tA AngleA a sub 90 add def /tB tA a 2 |
|
605 mul add def /r xB xA sub tA cos tB cos sub Div dup 0 eq { pop 1 } if def |
|
606 /x0 xA r tA cos mul add def /y0 yA r tA sin mul add def /c 57.2958 r div |
|
607 def /AngleA AngleA a sub 180 add def /AngleB AngleB a add 180 add def |
|
608 GetEdgeA GetEdgeB /AngleA tA 180 add yA yA1 sub xA xA1 sub Pyth c mul |
|
609 sub def /AngleB tB 180 add yB yB1 sub xB xB1 sub Pyth c mul add def l 0 |
|
610 eq { x0 y0 r h add AngleA AngleB arc x0 y0 r d add AngleB AngleA arcn } |
|
611 { x0 y0 translate /tA AngleA l c mul add def /tB AngleB l c mul sub def |
|
612 0 0 r h add tA tB arc r h add AngleB PtoC r d add AngleB PtoC 2 copy 6 2 |
|
613 roll l arcto 4 { pop } repeat r d add tB PtoC l arcto 4 { pop } repeat 0 |
|
614 0 r d add tB tA arcn r d add AngleA PtoC r h add AngleA PtoC 2 copy 6 2 |
|
615 roll l arcto 4 { pop } repeat r h add tA PtoC l arcto 4 { pop } repeat } |
|
616 ifelse closepath /LPutVar [ x0 y0 r AngleA AngleB h d ] cvx def /LPutPos |
|
617 { LPutVar /d ED /h ED /AngleB ED /AngleA ED /r ED /y0 ED /x0 ED t 1 le { |
|
618 r h add AngleA 1 t sub mul AngleB t mul add dup 90 add /NAngle ED PtoC } |
|
619 { t 2 lt { /NAngle AngleB 180 add def r 2 t sub h mul t 1 sub d mul add |
|
620 add AngleB PtoC } { t 3 lt { r d add AngleB 3 t sub mul AngleA 2 t sub |
|
621 mul add dup 90 sub /NAngle ED PtoC } { /NAngle AngleA 180 add def r 4 t |
|
622 sub d mul t 3 sub h mul add add AngleA PtoC } ifelse } ifelse } ifelse |
|
623 y0 add /Y ED x0 add /X ED } def /HPutPos { LPutPos } def /VPutPos { |
|
624 LPutPos } def } def |
|
625 /Tfan { /AngleA yB yA sub xB xA sub Atan def GetEdgeA w xA1 xB sub yA1 yB |
|
626 sub Pyth Pyth w Div CLW 2 div mul 2 div dup AngleA sin mul yA1 add /yA1 |
|
627 ED AngleA cos mul xA1 add /xA1 ED /LPutVar [ xA1 yA1 m { xB w add yB xB |
|
628 w sub yB } { xB yB w sub xB yB w add } ifelse xA1 yA1 ] cvx def /LPutPos |
|
629 { LPutLines } def /VPutPos@ { LPutVar flag { 8 4 roll pop pop pop pop } |
|
630 { pop pop pop pop 4 2 roll } ifelse } def /VPutPos { VPutPos@ VPutLine } |
|
631 def /HPutPos { VPutPos@ HPutLine } def mark LPutVar tx@Dict begin |
|
632 /ArrowA { moveto } def /ArrowB { } def false Line closepath end } def |
|
633 /LPutCoor { NAngle tx@Dict begin /NAngle ED end gsave CM STV CP Y sub neg |
|
634 exch X sub neg exch moveto setmatrix CP grestore } def |
|
635 /LPut { tx@NodeDict /LPutPos known { LPutPos } { CP /Y ED /X ED /NAngle 0 |
|
636 def } ifelse LPutCoor } def |
|
637 /HPutAdjust { Sin Cos mul 0 eq { 0 } { d Cos mul Sin div flag not { neg } |
|
638 if h Cos mul Sin div flag { neg } if 2 copy gt { pop } { exch pop } |
|
639 ifelse } ifelse s add flag { r add neg } { l add } ifelse X add /X ED } |
|
640 def |
|
641 /VPutAdjust { Sin Cos mul 0 eq { 0 } { l Sin mul Cos div flag { neg } if |
|
642 r Sin mul Cos div flag not { neg } if 2 copy gt { pop } { exch pop } |
|
643 ifelse } ifelse s add flag { d add } { h add neg } ifelse Y add /Y ED } |
|
644 def |
|
645 end |
|
646 % END pst-node.pro |
|
647 |
|
648 %%EndProcSet |
|
649 %%BeginProcSet: 8r.enc 0 0 |
|
650 % File 8r.enc TeX Base 1 Encoding Revision 2.0 2002-10-30 |
|
651 % |
|
652 % @@psencodingfile@{ |
|
653 % author = "S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry, |
|
654 % W. Schmidt, P. Lehman", |
|
655 % version = "2.0", |
|
656 % date = "30 October 2002", |
|
657 % filename = "8r.enc", |
|
658 % email = "tex-fonts@@tug.org", |
|
659 % docstring = "This is the encoding vector for Type1 and TrueType |
|
660 % fonts to be used with TeX. This file is part of the |
|
661 % PSNFSS bundle, version 9" |
|
662 % @} |
|
663 % |
|
664 % The idea is to have all the characters normally included in Type 1 fonts |
|
665 % available for typesetting. This is effectively the characters in Adobe |
|
666 % Standard encoding, ISO Latin 1, Windows ANSI including the euro symbol, |
|
667 % MacRoman, and some extra characters from Lucida. |
|
668 % |
|
669 % Character code assignments were made as follows: |
|
670 % |
|
671 % (1) the Windows ANSI characters are almost all in their Windows ANSI |
|
672 % positions, because some Windows users cannot easily reencode the |
|
673 % fonts, and it makes no difference on other systems. The only Windows |
|
674 % ANSI characters not available are those that make no sense for |
|
675 % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen |
|
676 % (173). quotesingle and grave are moved just because it's such an |
|
677 % irritation not having them in TeX positions. |
|
678 % |
|
679 % (2) Remaining characters are assigned arbitrarily to the lower part |
|
680 % of the range, avoiding 0, 10 and 13 in case we meet dumb software. |
|
681 % |
|
682 % (3) Y&Y Lucida Bright includes some extra text characters; in the |
|
683 % hopes that other PostScript fonts, perhaps created for public |
|
684 % consumption, will include them, they are included starting at 0x12. |
|
685 % These are /dotlessj /ff /ffi /ffl. |
|
686 % |
|
687 % (4) hyphen appears twice for compatibility with both ASCII and Windows. |
|
688 % |
|
689 % (5) /Euro was assigned to 128, as in Windows ANSI |
|
690 % |
|
691 % (6) Missing characters from MacRoman encoding incorporated as follows: |
|
692 % |
|
693 % PostScript MacRoman TeXBase1 |
|
694 % -------------- -------------- -------------- |
|
695 % /notequal 173 0x16 |
|
696 % /infinity 176 0x17 |
|
697 % /lessequal 178 0x18 |
|
698 % /greaterequal 179 0x19 |
|
699 % /partialdiff 182 0x1A |
|
700 % /summation 183 0x1B |
|
701 % /product 184 0x1C |
|
702 % /pi 185 0x1D |
|
703 % /integral 186 0x81 |
|
704 % /Omega 189 0x8D |
|
705 % /radical 195 0x8E |
|
706 % /approxequal 197 0x8F |
|
707 % /Delta 198 0x9D |
|
708 % /lozenge 215 0x9E |
|
709 % |
|
710 /TeXBase1Encoding [ |
|
711 % 0x00 |
|
712 /.notdef /dotaccent /fi /fl |
|
713 /fraction /hungarumlaut /Lslash /lslash |
|
714 /ogonek /ring /.notdef /breve |
|
715 /minus /.notdef /Zcaron /zcaron |
|
716 % 0x10 |
|
717 /caron /dotlessi /dotlessj /ff |
|
718 /ffi /ffl /notequal /infinity |
|
719 /lessequal /greaterequal /partialdiff /summation |
|
720 /product /pi /grave /quotesingle |
|
721 % 0x20 |
|
722 /space /exclam /quotedbl /numbersign |
|
723 /dollar /percent /ampersand /quoteright |
|
724 /parenleft /parenright /asterisk /plus |
|
725 /comma /hyphen /period /slash |
|
726 % 0x30 |
|
727 /zero /one /two /three |
|
728 /four /five /six /seven |
|
729 /eight /nine /colon /semicolon |
|
730 /less /equal /greater /question |
|
731 % 0x40 |
|
732 /at /A /B /C |
|
733 /D /E /F /G |
|
734 /H /I /J /K |
|
735 /L /M /N /O |
|
736 % 0x50 |
|
737 /P /Q /R /S |
|
738 /T /U /V /W |
|
739 /X /Y /Z /bracketleft |
|
740 /backslash /bracketright /asciicircum /underscore |
|
741 % 0x60 |
|
742 /quoteleft /a /b /c |
|
743 /d /e /f /g |
|
744 /h /i /j /k |
|
745 /l /m /n /o |
|
746 % 0x70 |
|
747 /p /q /r /s |
|
748 /t /u /v /w |
|
749 /x /y /z /braceleft |
|
750 /bar /braceright /asciitilde /.notdef |
|
751 % 0x80 |
|
752 /Euro /integral /quotesinglbase /florin |
|
753 /quotedblbase /ellipsis /dagger /daggerdbl |
|
754 /circumflex /perthousand /Scaron /guilsinglleft |
|
755 /OE /Omega /radical /approxequal |
|
756 % 0x90 |
|
757 /.notdef /.notdef /.notdef /quotedblleft |
|
758 /quotedblright /bullet /endash /emdash |
|
759 /tilde /trademark /scaron /guilsinglright |
|
760 /oe /Delta /lozenge /Ydieresis |
|
761 % 0xA0 |
|
762 /.notdef /exclamdown /cent /sterling |
|
763 /currency /yen /brokenbar /section |
|
764 /dieresis /copyright /ordfeminine /guillemotleft |
|
765 /logicalnot /hyphen /registered /macron |
|
766 % 0xD0 |
|
767 /degree /plusminus /twosuperior /threesuperior |
|
768 /acute /mu /paragraph /periodcentered |
|
769 /cedilla /onesuperior /ordmasculine /guillemotright |
|
770 /onequarter /onehalf /threequarters /questiondown |
|
771 % 0xC0 |
|
772 /Agrave /Aacute /Acircumflex /Atilde |
|
773 /Adieresis /Aring /AE /Ccedilla |
|
774 /Egrave /Eacute /Ecircumflex /Edieresis |
|
775 /Igrave /Iacute /Icircumflex /Idieresis |
|
776 % 0xD0 |
|
777 /Eth /Ntilde /Ograve /Oacute |
|
778 /Ocircumflex /Otilde /Odieresis /multiply |
|
779 /Oslash /Ugrave /Uacute /Ucircumflex |
|
780 /Udieresis /Yacute /Thorn /germandbls |
|
781 % 0xE0 |
|
782 /agrave /aacute /acircumflex /atilde |
|
783 /adieresis /aring /ae /ccedilla |
|
784 /egrave /eacute /ecircumflex /edieresis |
|
785 /igrave /iacute /icircumflex /idieresis |
|
786 % 0xF0 |
|
787 /eth /ntilde /ograve /oacute |
|
788 /ocircumflex /otilde /odieresis /divide |
|
789 /oslash /ugrave /uacute /ucircumflex |
|
790 /udieresis /yacute /thorn /ydieresis |
|
791 ] def |
|
792 |
|
793 |
|
794 %%EndProcSet |
|
795 %%BeginProcSet: texps.pro 0 0 |
|
796 %! |
|
797 TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 |
|
798 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll |
|
799 exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]FontType 0 |
|
800 ne{/Metrics exch def dict begin Encoding{exch dup type/integertype ne{ |
|
801 pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get |
|
802 div def}ifelse}forall Metrics/Metrics currentdict end def}{{1 index type |
|
803 /nametype eq{exit}if exch pop}loop}ifelse[2 index currentdict end |
|
804 definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{dup |
|
805 sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll |
|
806 mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[ |
|
807 exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}if} |
|
808 forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}def |
|
809 end |
|
810 |
|
811 %%EndProcSet |
|
812 %%BeginProcSet: special.pro 0 0 |
|
813 %! |
|
814 TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N |
|
815 /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N |
|
816 /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N |
|
817 /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ |
|
818 /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho |
|
819 X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B |
|
820 /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ |
|
821 /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known |
|
822 {userdict/md get type/dicttype eq{userdict begin md length 10 add md |
|
823 maxlength ge{/md md dup length 20 add dict copy def}if end md begin |
|
824 /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S |
|
825 atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ |
|
826 itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll |
|
827 transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll |
|
828 curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf |
|
829 pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} |
|
830 if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 |
|
831 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 |
|
832 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip |
|
833 yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub |
|
834 neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ |
|
835 noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop |
|
836 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get |
|
837 neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr |
|
838 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr |
|
839 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 |
|
840 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S |
|
841 TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ |
|
842 Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale |
|
843 }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState |
|
844 save N userdict maxlength dict begin/magscale true def normalscale |
|
845 currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts |
|
846 /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x |
|
847 psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx |
|
848 psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub |
|
849 TR/showpage{}N/erasepage{}N/setpagedevice{pop}N/copypage{}N/p 3 def |
|
850 @MacSetUp}N/doclip{psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll |
|
851 newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto |
|
852 closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N |
|
853 /@beginspecial{SDict begin/SpecialSave save N gsave normalscale |
|
854 currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N} |
|
855 N/@setspecial{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs |
|
856 neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate |
|
857 rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse |
|
858 scale llx neg lly neg TR}{rhiSeen{rhi ury lly sub div dup scale llx neg |
|
859 lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx |
|
860 ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N |
|
861 /setpagedevice{pop}N/copypage{}N newpath}N/@endspecial{count ocount sub{ |
|
862 pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave |
|
863 restore end}N/@defspecial{SDict begin}N/@fedspecial{end}B/li{lineto}B |
|
864 /rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 |
|
865 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY |
|
866 moveto}N/ellipse{/endangle X/startangle X/yrad X/xrad X/savematrix |
|
867 matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc |
|
868 savematrix setmatrix}N end |
|
869 |
|
870 %%EndProcSet |
|
871 %%BeginProcSet: color.pro 0 0 |
|
872 %! |
|
873 TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop |
|
874 setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll |
|
875 }repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def |
|
876 /TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{ |
|
877 setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{ |
|
878 /currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch |
|
879 known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC |
|
880 /Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC |
|
881 /Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0 |
|
882 setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0 |
|
883 setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61 |
|
884 0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC |
|
885 /Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0 |
|
886 setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87 |
|
887 0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{ |
|
888 0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{ |
|
889 0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC |
|
890 /Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0 |
|
891 setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0 |
|
892 setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90 |
|
893 0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC |
|
894 /Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0 |
|
895 setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0 |
|
896 0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{ |
|
897 0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{ |
|
898 0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC |
|
899 /BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0 |
|
900 setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC |
|
901 /CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0 |
|
902 0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1 |
|
903 0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11 |
|
904 0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0 |
|
905 setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0 |
|
906 0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC |
|
907 /Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0 |
|
908 setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0 |
|
909 0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0 |
|
910 1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC |
|
911 /PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0 |
|
912 setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{ |
|
913 0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor} |
|
914 DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70 |
|
915 setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0 |
|
916 setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1 |
|
917 setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end |
|
918 |
|
919 %%EndProcSet |
|
920 TeXDict begin 39139632 55387786 1000 600 600 (last.dvi) |
|
921 @start |
|
922 %DVIPSBitmapFont: Fa msbm10 12 1 |
|
923 /Fa 1 68 df<00000001FFE000300000003FFFFC0078000001FFFFFF007800000FFFFFFF |
|
924 C0F800003FFFC07FF8F80000FFFE000FFFF80001FFF80003FFF80007FBF00001FFF8000F |
|
925 E7E000007FF8001F87C000003F78003F0F8000001F78007E1F8000000FF800FC1F000000 |
|
926 0FF801F83E00000007F803F03E00000003F807E07C00000003F807C07C00000001F80F80 |
|
927 7800000001F80F80F800000000F81F00F800000000F81F00F000000000783E01F0000000 |
|
928 00783E01F000000000783C01E000000000787C01E000000000307C01E000000000007801 |
|
929 E000000000007803E00000000000F803E00000000000F803C00000000000F003C0000000 |
|
930 0000F003C00000000000F003C00000000000F003C00000000000F003C00000000000F003 |
|
931 C00000000000F003C00000000000F003C00000000000F003C00000000000F003C0000000 |
|
932 0000F003C00000000000F003C00000000000F803C00000000000F803C000000000007803 |
|
933 E000000000007803E000000000007C01E000000000007C01E000000000003C01E0000000 |
|
934 00003E01F000000000003E01F000000000001F00F000000000001F00F000000000000F80 |
|
935 F800000000000F80F8000000000607C07C000000000F07E07C000000001F03F03E000000 |
|
936 003F01F83E000000007E00FC1F000000007C007E1F80000000FC003F0F80000001F8001F |
|
937 87C0000007F0000FE7E000000FE00007FBF800003FC00001FFFE0001FF800000FFFFC00F |
|
938 FE0000003FFFFFFFFC0000000FFFFFFFF000000001FFFFFFC0000000003FFFFE00000000 |
|
939 0001FFF0000040487CC52E>67 D E |
|
940 %EndDVIPSBitmapFont |
|
941 %DVIPSBitmapFont: Fb cmbx12 12 7 |
|
942 /Fb 7 122 df<000000001F8000000000000000001F8000000000000000003FC0000000 |
|
943 00000000003FC000000000000000007FE000000000000000007FE000000000000000007F |
|
944 E00000000000000000FFF00000000000000000FFF00000000000000001FFF80000000000 |
|
945 000001FFF80000000000000001FFF80000000000000003FFFC0000000000000003FFFC00 |
|
946 00000000000007FFFE0000000000000007FFFE0000000000000007FFFE00000000000000 |
|
947 0FFFFF000000000000000F9FFF000000000000001F9FFF800000000000001F1FFF800000 |
|
948 000000001F0FFF800000000000003F0FFFC00000000000003E07FFC00000000000007E07 |
|
949 FFE00000000000007C07FFE00000000000007C03FFE0000000000000FC03FFF000000000 |
|
950 0000F801FFF0000000000001F801FFF8000000000001F001FFF8000000000001F000FFF8 |
|
951 000000000003F000FFFC000000000003E0007FFC000000000007E0007FFE000000000007 |
|
952 C0007FFE000000000007C0003FFE00000000000FC0003FFF00000000000F80001FFF0000 |
|
953 0000001F80001FFF80000000001F00000FFF80000000001F00000FFF80000000003F0000 |
|
954 0FFFC0000000003E000007FFC0000000007E000007FFE0000000007FFFFFFFFFE0000000 |
|
955 007FFFFFFFFFE000000000FFFFFFFFFFF000000000FFFFFFFFFFF000000001FFFFFFFFFF |
|
956 F800000001F0000000FFF800000001F0000000FFF800000003F0000000FFFC00000003E0 |
|
957 0000007FFC00000007E00000007FFE00000007C00000003FFE00000007C00000003FFE00 |
|
958 00000F800000003FFF0000000F800000001FFF0000001F800000001FFF8000001F000000 |
|
959 000FFF8000003F000000000FFFC000003E000000000FFFC000007E0000000007FFC000FF |
|
960 FFFF00000FFFFFFFF0FFFFFF00000FFFFFFFF0FFFFFF00000FFFFFFFF0FFFFFF00000FFF |
|
961 FFFFF0FFFFFF00000FFFFFFFF04C457CC455>65 D<FFFFFFFFFFFF000000FFFFFFFFFFFF |
|
962 F00000FFFFFFFFFFFFFE0000FFFFFFFFFFFFFF8000FFFFFFFFFFFFFFE000001FFF00000F |
|
963 FFF000001FFF000001FFF800001FFF0000007FFC00001FFF0000003FFE00001FFF000000 |
|
964 1FFF00001FFF0000000FFF80001FFF0000000FFF80001FFF0000000FFFC0001FFF000000 |
|
965 07FFC0001FFF00000007FFC0001FFF00000007FFE0001FFF00000007FFE0001FFF000000 |
|
966 07FFE0001FFF00000007FFE0001FFF00000007FFE0001FFF00000007FFE0001FFF000000 |
|
967 07FFE0001FFF00000007FFE0001FFF00000007FFE0001FFF00000007FFC0001FFF000000 |
|
968 07FFC0001FFF0000000FFF80001FFF0000000FFF80001FFF0000000FFF00001FFF000000 |
|
969 1FFF00001FFF0000003FFE00001FFF0000007FFC00001FFF000001FFF800001FFF00000F |
|
970 FFF000001FFFFFFFFFFFC000001FFFFFFFFFFF0000001FFFFFFFFFFC0000001FFFFFFFFF |
|
971 C00000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000 |
|
972 000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000 |
|
973 000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000 |
|
974 000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000 |
|
975 000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000 |
|
976 000000001FFF000000000000001FFF000000000000001FFF000000000000001FFF000000 |
|
977 000000001FFF000000000000FFFFFFFFE000000000FFFFFFFFE000000000FFFFFFFFE000 |
|
978 000000FFFFFFFFE000000000FFFFFFFFE00000000043447DC34D>80 |
|
979 D<007FC000FFFFC000FFFFC000FFFFC000FFFFC000FFFFC00003FFC00001FFC00001FFC0 |
|
980 0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0 |
|
981 0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0 |
|
982 0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0 |
|
983 0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0 |
|
984 0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0 |
|
985 0001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC00001FFC0 |
|
986 0001FFC000FFFFFF80FFFFFF80FFFFFF80FFFFFF80FFFFFF8019457CC420>108 |
|
987 D<00001FFC0000000001FFFFC000000007FFFFF00000001FFFFFFC0000007FF80FFF0000 |
|
988 00FFC001FF800001FF8000FFC00003FE00003FE00007FE00003FF0000FFC00001FF8000F |
|
989 F800000FF8001FF800000FFC001FF800000FFC003FF800000FFE003FF0000007FE007FF0 |
|
990 000007FF007FF0000007FF007FF0000007FF007FF0000007FF00FFF0000007FF80FFF000 |
|
991 0007FF80FFF0000007FF80FFF0000007FF80FFF0000007FF80FFF0000007FF80FFF00000 |
|
992 07FF80FFF0000007FF80FFF0000007FF80FFF0000007FF807FF0000007FF007FF0000007 |
|
993 FF007FF0000007FF007FF0000007FF003FF800000FFE003FF800000FFE001FF800000FFC |
|
994 001FFC00001FFC000FFC00001FF80007FE00003FF00007FE00003FF00003FF8000FFE000 |
|
995 01FFC001FFC000007FF80FFF0000003FFFFFFE0000000FFFFFF800000001FFFFC0000000 |
|
996 001FFC000000312F7DAD38>111 D<0001E000000001E000000001E000000001E0000000 |
|
997 01E000000003E000000003E000000003E000000003E000000007E000000007E00000000F |
|
998 E00000000FE00000001FE00000001FE00000003FE00000007FE0000000FFE0000003FFE0 |
|
999 00000FFFFFFF80FFFFFFFF80FFFFFFFF80FFFFFFFF80FFFFFFFF8000FFE0000000FFE000 |
|
1000 0000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE00000 |
|
1001 00FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000 |
|
1002 FFE0000000FFE0000000FFE0000000FFE0000000FFE0000000FFE001E000FFE001E000FF |
|
1003 E001E000FFE001E000FFE001E000FFE001E000FFE001E000FFE001E000FFE001E000FFE0 |
|
1004 03E000FFF003C0007FF003C0007FF007C0003FF80F80001FFC1F00000FFFFF000007FFFC |
|
1005 000001FFF80000003FE00023407EBE2C>116 D<007FC00001FF00FFFFC003FFFF00FFFF |
|
1006 C003FFFF00FFFFC003FFFF00FFFFC003FFFF00FFFFC003FFFF0003FFC0000FFF0001FFC0 |
|
1007 0007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC000 |
|
1008 07FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007 |
|
1009 FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF |
|
1010 0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF00 |
|
1011 01FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001FFC00007FF0001 |
|
1012 FFC0000FFF0001FFC0000FFF0001FFC0001FFF0001FFC0001FFF0001FFC0003FFF0000FF |
|
1013 C0003FFF0000FFE0007FFF80007FE001F7FFFE007FF807E7FFFE003FFFFFC7FFFE000FFF |
|
1014 FF07FFFE0003FFFE07FFFE00007FF007FC00372E7CAC3E>I<FFFFFF0003FFFCFFFFFF00 |
|
1015 03FFFCFFFFFF0003FFFCFFFFFF0003FFFCFFFFFF0003FFFC01FFE000003E0000FFE00000 |
|
1016 3C0000FFF000003C00007FF000007800007FF800007800007FF80000F800003FF80000F0 |
|
1017 00003FFC0001F000001FFC0001E000001FFE0003E000000FFE0003C000000FFF0007C000 |
|
1018 0007FF000780000007FF800F80000003FF800F00000003FFC00F00000003FFC01F000000 |
|
1019 01FFE01E00000001FFE03E00000000FFE03C00000000FFF07C000000007FF07800000000 |
|
1020 7FF8F8000000003FF8F0000000003FFDF0000000001FFDE0000000001FFFE0000000000F |
|
1021 FFC0000000000FFFC0000000000FFFC00000000007FF800000000007FF800000000003FF |
|
1022 000000000003FF000000000001FE000000000001FE000000000000FC000000000000FC00 |
|
1023 00000000007800000000000078000000000000F8000000000000F0000000000001F00000 |
|
1024 00000001E00000001F0003E00000003F8003C00000007FC007C0000000FFE00780000000 |
|
1025 FFE00F80000000FFE00F00000000FFE01F00000000FFE03E00000000FFC07C000000007F |
|
1026 C1F8000000007F07F0000000003FFFE0000000001FFFC00000000007FF000000000001FC |
|
1027 000000000036407EAB3B>121 D E |
|
1028 %EndDVIPSBitmapFont |
|
1029 %DVIPSBitmapFont: Fc cmmi5 5 3 |
|
1030 /Fc 3 68 df<00000380000000038000000007800000000F800000000FC00000001FC000 |
|
1031 000037C000000037C000000067C0000000C7E0000000C7E000000183E000000303E00000 |
|
1032 0303E000000603E000000C03F000000C03F000001801F000003FFFF000007FFFF0000060 |
|
1033 01F00000C001F80001C000F800018000F800030000F800070000F8000F0000F800FFC00F |
|
1034 FFC0FFC00FFF80221D7C9C2B>65 D<03FFFFF80003FFFFFE00003E001F80003E000FC000 |
|
1035 3E0007C0003E0003C0007C0003C0007C0007C0007C0007C0007C000F8000F8001F0000F8 |
|
1036 007E0000FFFFF80000FFFFF00001F001F80001F0007E0001F0003E0001F0001F0003E000 |
|
1037 1F0003E0001F0003E0001F0003E0001E0007C0003E0007C0007C0007C000F80007C007F0 |
|
1038 00FFFFFFC000FFFFFE0000221C7C9B2B>I<00007F80400007FFE0C0001FC071C0003E00 |
|
1039 1B8000F8000F8001E0000F8003C000078007800007000F000007001F000007003E000007 |
|
1040 003E000006007C000000007C000000007C00000000F800000000F800000000F800000000 |
|
1041 F800000000F800001800F800001800780000180078000030003C000060003C0000E0001E |
|
1042 0001C0000F8007000007E01E000001FFF80000003FC00000221E7C9C29>I |
|
1043 E |
|
1044 %EndDVIPSBitmapFont |
|
1045 %DVIPSBitmapFont: Fd cmr6 6 2 |
|
1046 /Fd 2 106 df<00000F000000FF000000FF0000001F0000000F0000000F0000000F0000 |
|
1047 000F0000000F0000000F0000000F0000000F0000000F0000FF0F0003FFCF0007C0FF000F |
|
1048 003F001E001F003C000F007C000F0078000F00F8000F00F8000F00F8000F00F8000F00F8 |
|
1049 000F00F8000F00F8000F0078000F007C000F003C000F003E001F001F003F800FC1EFF003 |
|
1050 FF8FF000FE0F001C247DA222>100 D<0C003F003F003F003F000C000000000000000000 |
|
1051 0000000000000F00FF00FF001F000F000F000F000F000F000F000F000F000F000F000F00 |
|
1052 0F000F000F000F000F00FFE0FFE00B237DA212>105 D E |
|
1053 %EndDVIPSBitmapFont |
|
1054 %DVIPSBitmapFont: Fe cmmi6 6 1 |
|
1055 /Fe 1 106 df<0038007C007C00780070000000000000000000000000000007801FC038 |
|
1056 E030E060F0C1E0C1E0C1E003C003C003C0078007800F000F040F061E0C1E0C1E181C181E |
|
1057 700FE007800F237DA116>105 D E |
|
1058 %EndDVIPSBitmapFont |
|
1059 %DVIPSBitmapFont: Ff cmex10 10 2 |
|
1060 /Ff 2 88 df<0000000E000000000000001F000000000000003F000000000000003F0000 |
|
1061 00000000007F800000000000007F800000000000007F80000000000000FFC00000000000 |
|
1062 00FFC0000000000000FFC0000000000001FFE0000000000001FFE0000000000001FFE000 |
|
1063 0000000003FFF0000000000003F3F0000000000003F3F0000000000007F3F80000000000 |
|
1064 07E1F8000000000007E1F800000000000FE1FC00000000000FC0FC00000000000FC0FC00 |
|
1065 000000001FC0FE00000000001F807E00000000001F807E00000000003F807F0000000000 |
|
1066 3F003F00000000003F003F00000000007F003F80000000007E001F80000000007E001F80 |
|
1067 00000000FE001FC000000000FC000FC000000000FC000FC000000001FC000FE000000001 |
|
1068 F80007E000000001F80007E000000003F80007F000000003F00003F000000003F00003F0 |
|
1069 00000007F00003F800000007E00001F80000000FE00001FC0000000FC00000FC0000000F |
|
1070 C00000FC0000001FC00000FE0000001F8000007E0000001F8000007E0000003F8000007F |
|
1071 0000003F0000003F0000003F0000003F0000007F0000003F8000007E0000001F8000007E |
|
1072 0000001F800000FE0000001FC00000FC0000000FC00000FC0000000FC00001FC0000000F |
|
1073 E00001F800000007E00001F800000007E00003F800000007F00003F000000003F00003F0 |
|
1074 00000003F00007F000000003F80007E000000001F80007E000000001F8000FE000000001 |
|
1075 FC000FC000000000FC000FC000000000FC001FC000000000FE001F80000000007E001F80 |
|
1076 000000007E003F80000000007F003F00000000003F003F00000000003F007F0000000000 |
|
1077 3F807E00000000001F807E00000000001F80FE00000000001FC0FC00000000000FC0FC00 |
|
1078 000000000FC0F8000000000007C078000000000003803A537B7F45>86 |
|
1079 D<7800000000000380F8000000000007C0FC00000000000FC0FC00000000000FC0FE0000 |
|
1080 0000001FC07E00000000001F807E00000000001F807F00000000003F803F00000000003F |
|
1081 003F00000000003F003F80000000007F001F80000000007E001F80000000007E001FC000 |
|
1082 000000FE000FC000000000FC000FC000000000FC000FE000000001FC0007E000000001F8 |
|
1083 0007E000000001F80007F000000003F80003F000000003F00003F000000003F00003F800 |
|
1084 000007F00001F800000007E00001F800000007E00001FC0000000FE00000FC0000000FC0 |
|
1085 0000FC0000000FC00000FE0000001FC000007E0000001F8000007E0000001F8000007F00 |
|
1086 00003F8000003F0000003F0000003F0000003F0000003F8000007F0000001F8000007E00 |
|
1087 00001F8000007E0000001FC00000FE0000000FC00000FC0000000FC00000FC0000000FE0 |
|
1088 0001FC00000007E00001F800000007F00003F800000003F00003F000000003F00003F000 |
|
1089 000003F80007F000000001F80007E000000001F80007E000000001FC000FE000000000FC |
|
1090 000FC000000000FC000FC000000000FE001FC0000000007E001F80000000007E001F8000 |
|
1091 0000007F003F80000000003F003F00000000003F003F00000000003F807F00000000001F |
|
1092 807E00000000001F807E00000000001FC0FE00000000000FC0FC00000000000FC0FC0000 |
|
1093 0000000FE1FC000000000007E1F8000000000007E1F8000000000007F3F8000000000003 |
|
1094 F3F0000000000003F3F0000000000003FFF0000000000001FFE0000000000001FFE00000 |
|
1095 00000001FFE0000000000000FFC0000000000000FFC0000000000000FFC0000000000000 |
|
1096 7F800000000000007F800000000000007F800000000000003F000000000000003F000000 |
|
1097 000000001F000000000000000E000000003A537B7F45>I E |
|
1098 %EndDVIPSBitmapFont |
|
1099 %DVIPSBitmapFont: Fg cmsy6 6 2 |
|
1100 /Fg 2 49 df<006000007000006000006000406020E06070F861F07E67E01FFF8007FE00 |
|
1101 00F00007FE001FFF807E67E0F861F0E0607040602000600000600000700000600014157B |
|
1102 9620>3 D<01E003F003F003F003F007E007E007C00FC00FC00F800F801F001F001E001E |
|
1103 003E003C003C007800780078007000F000E00060000C1A7E9B12>48 |
|
1104 D E |
|
1105 %EndDVIPSBitmapFont |
|
1106 %DVIPSBitmapFont: Fh cmsy10 10.95 5 |
|
1107 /Fh 5 97 df<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFF |
|
1108 FFE00000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1109 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1110 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1111 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1112 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1113 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1114 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1115 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1116 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1117 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1118 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1119 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1120 00000000000F0000000000000006000000003C3C7BBB47>62 D<00000006000000000000 |
|
1121 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1122 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1123 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1124 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1125 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1126 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1127 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1128 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1129 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1130 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1131 000F000000000000000F000000000000000F000000000000000F000000000000000F0000 |
|
1132 00000000000F000000000000000F000000000000000F000000000000000F000000000000 |
|
1133 000F000000007FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFFFF |
|
1134 FFE03C3C7BBB47>I<000000C0000000000001E0000000000003F0000000000003F00000 |
|
1135 00000007F8000000000007F8000000000007F800000000000FFC00000000000FFC000000 |
|
1136 00001F3E00000000001F3E00000000003E1F00000000003E1F00000000003C0F00000000 |
|
1137 007C0F80000000007C0F8000000000F807C000000000F807C000000001F003E000000001 |
|
1138 F003E000000001E001E000000003E001F000000003E001F000000007C000F800000007C0 |
|
1139 00F80000000F80007C0000000F80007C0000001F00003E0000001F00003E0000001E0000 |
|
1140 1E0000003E00001F0000003E00001F0000007C00000F8000007C00000F800000F8000007 |
|
1141 C00000F8000007C00000F0000003C00001F0000003E00001F0000003E00003E0000001F0 |
|
1142 0003E0000001F00007C0000000F80007C0000000F800078000000078000F800000007C00 |
|
1143 0F800000007C001F000000003E001F000000003E003E000000001F003E000000001F003C |
|
1144 000000000F007C000000000F807C000000000F80F80000000007C0F80000000007C0F000 |
|
1145 00000003C06000000000018032397BB63D>94 D<60000000000180F00000000003C0F800 |
|
1146 00000007C0F80000000007C07C000000000F807C000000000F803C000000000F003E0000 |
|
1147 00001F003E000000001F001F000000003E001F000000003E000F800000007C000F800000 |
|
1148 007C000780000000780007C0000000F80007C0000000F80003E0000001F00003E0000001 |
|
1149 F00001F0000003E00001F0000003E00000F0000003C00000F8000007C00000F8000007C0 |
|
1150 00007C00000F8000007C00000F8000003E00001F0000003E00001F0000001E00001E0000 |
|
1151 001F00003E0000001F00003E0000000F80007C0000000F80007C00000007C000F8000000 |
|
1152 07C000F800000003E001F000000003E001F000000001E001E000000001F003E000000001 |
|
1153 F003E000000000F807C000000000F807C0000000007C0F80000000007C0F80000000003C |
|
1154 0F00000000003E1F00000000003E1F00000000001F3E00000000001F3E00000000000FFC |
|
1155 00000000000FFC000000000007F8000000000007F8000000000007F8000000000003F000 |
|
1156 0000000003F0000000000001E0000000000000C000000032397BB63D>I<600000000000 |
|
1157 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1158 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1159 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1160 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1161 F00000000000F00000000000F00000000000F00000000000FFFFFFFFFFF0FFFFFFFFFFF8 |
|
1162 FFFFFFFFFFF8FFFFFFFFFFF8F00000000000F00000000000F00000000000F00000000000 |
|
1163 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1164 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1165 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1166 F00000000000F00000000000F00000000000F00000000000F00000000000F00000000000 |
|
1167 F000000000006000000000002D3F7BBE38>I E |
|
1168 %EndDVIPSBitmapFont |
|
1169 %DVIPSBitmapFont: Fi cmr10 10.95 15 |
|
1170 /Fi 15 119 df<FFFFFFFFFFFE00FFFFFFFFFFFE00FFFFFFFFFFFE0001FFC0000FFE0000 |
|
1171 7F800001FE00007F8000007F00007F8000003F00007F8000001F00007F8000001F00007F |
|
1172 8000000F00007F8000000F00007F8000000700007F8000000700007F8000000700007F80 |
|
1173 00000700007F8000000700007F8000000380007F8000000380007F8000000380007F8000 |
|
1174 000380007F8000000380007F8000000000007F8000000000007F8000000000007F800000 |
|
1175 0000007F8000000000007F8000000000007F8000000000007F8000000000007F80000000 |
|
1176 00007F8000000000007F8000000000007F8000000000007F8000000000007F8000000000 |
|
1177 007F8000000000007F8000000000007F8000000000007F8000000000007F800000000000 |
|
1178 7F8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F |
|
1179 8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F80 |
|
1180 00000000007F8000000000007F8000000000007F8000000000007F8000000000007F8000 |
|
1181 000000007F8000000000007F800000000001FFE000000000FFFFFFF8000000FFFFFFF800 |
|
1182 0000FFFFFFF8000000313E7DBD39>0 D<00000000E00000000000000001F00000000000 |
|
1183 000001F00000000000000003F80000000000000003F80000000000000007FC0000000000 |
|
1184 000007FC000000000000000FFE000000000000000FFE000000000000001DFF0000000000 |
|
1185 00001DFF0000000000000038FF8000000000000038FF80000000000000787FC000000000 |
|
1186 0000707FC0000000000000F03FE0000000000000E03FE0000000000001E01FF000000000 |
|
1187 0001C01FF0000000000003C00FF8000000000003800FF80000000000078007FC00000000 |
|
1188 00070007FC00000000000F0003FE00000000000E0003FE00000000001E0001FF00000000 |
|
1189 001C0001FF00000000003C0000FF8000000000380000FF80000000007800007FC0000000 |
|
1190 007000007FC000000000F000003FE000000000E000003FE000000001E000001FF0000000 |
|
1191 01C000001FF000000003C000000FF8000000038000000FF80000000780000007FC000000 |
|
1192 0700000007FC0000000F00000003FE0000000E00000003FE0000001E00000001FF000000 |
|
1193 1C00000001FF0000003C00000000FF8000003800000000FF80000078000000007FC00000 |
|
1194 70000000007FC00000F0000000003FE00000E0000000003FE00001E0000000001FF00001 |
|
1195 C0000000001FF00003C0000000000FF8000380000000000FF80007800000000007FC0007 |
|
1196 000000000007FC000F000000000003FE000E000000000003FE001E000000000001FF001F |
|
1197 FFFFFFFFFFFFFF003FFFFFFFFFFFFFFF803FFFFFFFFFFFFFFF807FFFFFFFFFFFFFFFC07F |
|
1198 FFFFFFFFFFFFFFC0FFFFFFFFFFFFFFFFE0FFFFFFFFFFFFFFFFE043417CC04C>I<000000 |
|
1199 3C0000000000003C0000000000003C0000000000007E0000000000007E0000000000007E |
|
1200 000000000000FF000000000000FF000000000000FF000000000001FF800000000001FF80 |
|
1201 0000000001FF800000000003FFC00000000003FFC00000000003BFC00000000003BFC000 |
|
1202 000000073FE000000000071FE000000000071FE0000000000E1FF0000000000E0FF00000 |
|
1203 00000E0FF0000000001C0FF8000000001C07F8000000001C07F8000000003C07FC000000 |
|
1204 003803FC000000003803FC000000007803FE000000007003FE000000007001FE00000000 |
|
1205 7001FE00000000E001FF00000000E000FF00000000E000FF00000001C000FF80000001C0 |
|
1206 007F80000001C0007F8000000380007FC000000380003FC000000380003FC00000078000 |
|
1207 3FE000000700001FE000000700001FE000000F00001FF000000E00000FF000000E00000F |
|
1208 F000001E00000FF800001C00000FF800001C000007F800001C000007F8000038000007FC |
|
1209 000038000003FC000038000003FC000070000003FE000070000001FE000070000001FE00 |
|
1210 00F0000001FF0000F0000000FF0001F0000000FF0003F8000001FF800FFE000007FFC0FF |
|
1211 FFE000FFFFFFFFFFE000FFFFFFFFFFE000FFFFFF38417DC03F>3 |
|
1212 D<FFFFFFFFFFFFFFF8FFFFFFFFFFFFFFF8FFFFFFFFFFFFFFF801FF8000000FFC00007F80 |
|
1213 00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0 |
|
1214 00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80 |
|
1215 00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0 |
|
1216 00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80 |
|
1217 00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0 |
|
1218 00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80 |
|
1219 00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0 |
|
1220 00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80 |
|
1221 00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0 |
|
1222 00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F80 |
|
1223 00000FF000007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF0 |
|
1224 00007F8000000FF000007F8000000FF000007F8000000FF000007F8000000FF00001FFE0 |
|
1225 00003FFC00FFFFFFC01FFFFFF8FFFFFFC01FFFFFF8FFFFFFC01FFFFFF83D3E7DBD44>5 |
|
1226 D<0000300000700000E00001C0000380000780000F00001E00003E00003C0000780000F8 |
|
1227 0000F00001F00001E00003E00003E00007C00007C0000FC0000F80000F80001F80001F00 |
|
1228 001F00003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C00 |
|
1229 00FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC00 |
|
1230 00FC0000FC0000FC0000FC0000FC0000FC00007C00007E00007E00007E00007E00007E00 |
|
1231 007E00003E00003F00003F00003F00001F00001F00001F80000F80000F80000FC00007C0 |
|
1232 0007C00003E00003E00001E00001F00000F00000F800007800003C00003E00001E00000F |
|
1233 000007800003800001C00000E0000070000030145A77C323>40 D<C00000E00000700000 |
|
1234 3800001C00001E00000F000007800007C00003C00001E00001F00000F00000F800007800 |
|
1235 007C00007C00003E00003E00003F00001F00001F00001F80000F80000F80000FC0000FC0 |
|
1236 000FC00007C00007E00007E00007E00007E00007E00007E00003E00003F00003F00003F0 |
|
1237 0003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F00003F0 |
|
1238 0003F00003F00003F00003E00007E00007E00007E00007E00007E00007E00007C0000FC0 |
|
1239 000FC0000FC0000F80000F80001F80001F00001F00003F00003E00003E00007C00007C00 |
|
1240 00780000F80000F00001F00001E00003C00007C0000780000F00001E00001C0000380000 |
|
1241 700000E00000C00000145A7BC323>I<1E007F807F80FFC0FFC0FFC0FFC07F807F801E00 |
|
1242 000000000000000000000000000000000000000000000000000000000000000000000000 |
|
1243 00001E007F00FF80FF80FFC0FFC0FFC0FFC07FC01EC000C000C000C000C001C001800180 |
|
1244 018003800300070006000E000C001C003800300030000A3979A619>59 |
|
1245 D<0000003FF00006000003FFFE000E00000FFFFF801E00003FF007E03E0000FF8000F83E |
|
1246 0003FE00007C7E0007F800001EFE000FF000000FFE003FE0000007FE007FC0000003FE00 |
|
1247 FF80000003FE00FF00000001FE01FE00000000FE03FE00000000FE07FC000000007E07F8 |
|
1248 000000007E0FF8000000003E0FF8000000003E1FF0000000001E1FF0000000001E3FF000 |
|
1249 0000001E3FE0000000001E3FE0000000000E7FE0000000000E7FE0000000000E7FE00000 |
|
1250 00000E7FC00000000000FFC00000000000FFC00000000000FFC00000000000FFC0000000 |
|
1251 0000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC000000000 |
|
1252 00FFC00000000000FFC00000000000FFC000000000007FC000000000007FE00000000000 |
|
1253 7FE0000000000E7FE0000000000E3FE0000000000E3FE0000000000E3FF0000000000E1F |
|
1254 F0000000001E1FF0000000001C0FF8000000001C0FF8000000001C07F8000000003C07FC |
|
1255 000000003803FE000000007801FE000000007000FF00000000F000FF80000001E0007FC0 |
|
1256 000001C0003FE0000003C0000FF0000007800007F800001F000003FE00003E000000FF80 |
|
1257 00F80000003FF007F00000000FFFFFC000000003FFFF00000000003FF0000037427BBF42 |
|
1258 >67 D<3FFFFFFFFFFFFF803FFFFFFFFFFFFF803FFFFFFFFFFFFF803FF0007FE001FF803F |
|
1259 80003FC0003F807F00003FC0001FC07E00003FC00007C07C00003FC00007C07800003FC0 |
|
1260 0003C07800003FC00003C07800003FC00003C07000003FC00001C07000003FC00001C070 |
|
1261 00003FC00001C07000003FC00001C07000003FC00001C0E000003FC00000E0E000003FC0 |
|
1262 0000E0E000003FC00000E0E000003FC00000E0E000003FC00000E00000003FC000000000 |
|
1263 00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0 |
|
1264 0000000000003FC00000000000003FC00000000000003FC00000000000003FC000000000 |
|
1265 00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0 |
|
1266 0000000000003FC00000000000003FC00000000000003FC00000000000003FC000000000 |
|
1267 00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0 |
|
1268 0000000000003FC00000000000003FC00000000000003FC00000000000003FC000000000 |
|
1269 00003FC00000000000003FC00000000000003FC00000000000003FC00000000000003FC0 |
|
1270 0000000000003FC00000000000003FC00000000000007FE0000000000000FFF000000000 |
|
1271 07FFFFFFFE00000007FFFFFFFE00000007FFFFFFFE00003B3D7DBC42>84 |
|
1272 D<FFFFFFC000FFFFF8FFFFFFC000FFFFF8FFFFFFC000FFFFF801FFE0000007FF00007F80 |
|
1273 000001FC00007F80000000F800007F800000007000007F800000007000007F8000000070 |
|
1274 00007F800000007000007F800000007000007F800000007000007F800000007000007F80 |
|
1275 0000007000007F800000007000007F800000007000007F800000007000007F8000000070 |
|
1276 00007F800000007000007F800000007000007F800000007000007F800000007000007F80 |
|
1277 0000007000007F800000007000007F800000007000007F800000007000007F8000000070 |
|
1278 00007F800000007000007F800000007000007F800000007000007F800000007000007F80 |
|
1279 0000007000007F800000007000007F800000007000007F800000007000007F8000000070 |
|
1280 00007F800000007000007F800000007000007F800000007000007F800000007000007F80 |
|
1281 0000007000007F800000007000007F800000007000007F800000007000007F8000000070 |
|
1282 00007F800000007000003F80000000F000003FC0000000E000003FC0000000E000003FC0 |
|
1283 000001E000001FC0000001C000001FE0000001C000000FE0000003C000000FF000000780 |
|
1284 000007F000000700000003F800000F00000001FC00001E00000000FE00003C000000007F |
|
1285 0000F8000000003F8001F0000000000FF00FE00000000003FFFF800000000000FFFE0000 |
|
1286 000000001FF00000003D407DBD44>I<00000001FC00000000FFFC00000000FFFC000000 |
|
1287 00FFFC0000000007FC0000000003FC0000000001FC0000000001FC0000000001FC000000 |
|
1288 0001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC000000 |
|
1289 0001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC000000 |
|
1290 0001FC0000000001FC000000FF01FC000007FFE1FC00001F80F9FC00007E003DFC0000FC |
|
1291 001FFC0003F80007FC0007F00007FC0007E00003FC000FC00001FC001FC00001FC003FC0 |
|
1292 0001FC003F800001FC007F800001FC007F800001FC007F000001FC007F000001FC00FF00 |
|
1293 0001FC00FF000001FC00FF000001FC00FF000001FC00FF000001FC00FF000001FC00FF00 |
|
1294 0001FC00FF000001FC00FF000001FC00FF000001FC007F000001FC007F800001FC007F80 |
|
1295 0001FC003F800001FC003F800001FC001FC00001FC000FC00003FC000FE00003FC0007E0 |
|
1296 0007FC0003F0000FFE0001F8001FFF00007C0079FFF8003F01F1FFF8000FFFC1FFF80001 |
|
1297 FE01FC002D407DBE33>100 D<0001FE0000000FFFC000003F03F00000FC01F80001F800 |
|
1298 FC0003F0007E0007E0003F000FE0003F800FC0001F801FC0001FC03F80000FC03F80000F |
|
1299 C07F80000FC07F80000FE07F00000FE07F00000FE0FF00000FE0FF00000FE0FFFFFFFFE0 |
|
1300 FFFFFFFFE0FF00000000FF00000000FF00000000FF00000000FF00000000FF000000007F |
|
1301 000000007F000000007F800000003F800000003F800000E01FC00000E01FC00001E00FC0 |
|
1302 0001C007E00003C007F000078003F800070000FC001E00007E003C00001F80F8000007FF |
|
1303 E0000000FF0000232A7EA828>I<01E00007F80007F8000FFC000FFC000FFC000FFC0007 |
|
1304 F80007F80001E00000000000000000000000000000000000000000000000000000000000 |
|
1305 000000000000000001FC007FFC007FFC007FFC0007FC0003FC0001FC0001FC0001FC0001 |
|
1306 FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001 |
|
1307 FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001 |
|
1308 FC0001FC0001FC0003FE00FFFFF0FFFFF0FFFFF0143E7DBD1A>105 |
|
1309 D<003FC06001FFF8E007C03FE01F000FE03E0007E03C0003E07C0003E0780001E0F80001 |
|
1310 E0F80000E0F80000E0FC0000E0FE0000E0FF0000E0FF8000007FF800007FFFC0003FFFF8 |
|
1311 001FFFFE000FFFFF0007FFFF8001FFFFC0003FFFE00003FFF000001FF000000FF8E00003 |
|
1312 F8E00003F8E00001F8F00001F8F00000F8F00000F8F80000F8F80000F0FC0000F0FC0001 |
|
1313 F0FE0001E0FF0003C0FF800780F3E01F00E0FFFC00C01FE0001D2A7DA824>115 |
|
1314 D<FFFFE00FFFE0FFFFE00FFFE0FFFFE00FFFE007FE0003FF0003FC0000FC0003FC0000F8 |
|
1315 0001FC0000F00001FE0000F00000FE0000E00000FE0000E00000FF0001E000007F0001C0 |
|
1316 00007F0001C000003F80038000003F80038000003FC0078000001FC0070000001FC00700 |
|
1317 00000FE00E0000000FE00E0000000FF01E00000007F01C00000007F01C00000003F83800 |
|
1318 000003F83800000003FC7800000001FC7000000001FC7000000001FEF000000000FEE000 |
|
1319 000000FEE0000000007FC0000000007FC0000000007FC0000000003F80000000003F8000 |
|
1320 0000001F00000000001F00000000001F00000000000E0000002B287EA630>118 |
|
1321 D E |
|
1322 %EndDVIPSBitmapFont |
|
1323 %DVIPSBitmapFont: Fj cmmi10 10.95 7 |
|
1324 /Fj 7 70 df<1E007F807F80FFC0FFC0FFC0FFC07F807F801E000A0A798919>58 |
|
1325 D<1E007F80FF80FFC0FFC0FFE0FFE0FFE07FE01E60006000600060006000E000C000C000 |
|
1326 C001C001800380030007000E001C001800380030000B1C798919>I<0000000000070000 |
|
1327 00000000000F000000000000000F800000000000001F800000000000001F800000000000 |
|
1328 003F800000000000007F800000000000007F80000000000000FF80000000000000FF8000 |
|
1329 0000000001FF80000000000003FF80000000000003FF800000000000077FC00000000000 |
|
1330 077FC000000000000E3FC000000000001E3FC000000000001C3FC00000000000383FC000 |
|
1331 00000000383FC00000000000703FC00000000000703FC00000000000E03FC00000000001 |
|
1332 C03FC00000000001C03FE00000000003803FE00000000003801FE00000000007001FE000 |
|
1333 0000000F001FE0000000000E001FE0000000001C001FE0000000001C001FE00000000038 |
|
1334 001FE00000000078001FE00000000070001FE000000000E0001FE000000000E0001FF000 |
|
1335 000001C0001FF000000001C0000FF00000000380000FF00000000700000FF000000007FF |
|
1336 FFFFF00000000FFFFFFFF00000000FFFFFFFF00000001C00000FF00000003C00000FF000 |
|
1337 00003800000FF00000007000000FF80000007000000FF8000000E0000007F8000001E000 |
|
1338 0007F8000001C0000007F800000380000007F800000380000007F800000700000007F800 |
|
1339 000F00000007F800000E00000007F800001E00000007F800003C00000007FC00007C0000 |
|
1340 0007FC0000FE00000007FC0007FF0000001FFE00FFFFF00007FFFFFCFFFFF00007FFFFFC |
|
1341 FFFFF00007FFFFF83E417DC044>65 D<0001FFFFFFFFF800000001FFFFFFFFFF00000001 |
|
1342 FFFFFFFFFFE000000001FE00003FF000000001FE000007F800000001FC000003FC000000 |
|
1343 01FC000001FE00000001FC000001FF00000003FC000000FF00000003F8000000FF000000 |
|
1344 03F8000000FF80000003F8000000FF80000007F80000007F80000007F0000000FF800000 |
|
1345 07F0000000FF80000007F0000000FF8000000FF0000000FF0000000FE0000001FF000000 |
|
1346 0FE0000001FE0000000FE0000003FE0000001FE0000003FC0000001FC0000007F8000000 |
|
1347 1FC000000FF80000001FC000001FE00000003FC000003FC00000003F8000007F80000000 |
|
1348 3F800001FE000000003F800007F8000000007F80007FE0000000007FFFFFFF0000000000 |
|
1349 7FFFFFFFE0000000007F000007F800000000FF000001FE00000000FE000000FF00000000 |
|
1350 FE0000007F80000000FE0000003FC0000001FE0000003FC0000001FC0000003FE0000001 |
|
1351 FC0000001FE0000001FC0000001FE0000003FC0000001FE0000003F80000001FF0000003 |
|
1352 F80000001FF0000003F80000001FF0000007F80000001FE0000007F00000003FE0000007 |
|
1353 F00000003FE0000007F00000003FC000000FF00000007FC000000FE00000007F8000000F |
|
1354 E0000000FF8000000FE0000001FF0000001FE0000001FE0000001FC0000003FE0000001F |
|
1355 C0000007FC0000003FC000001FF00000003FC000003FE00000003F800000FFC00000007F |
|
1356 800007FF000000FFFFFFFFFFFC000000FFFFFFFFFFF0000000FFFFFFFFFF00000000413E |
|
1357 7DBD45>I<000000001FF8000700000001FFFE00070000000FFFFF800E0000007FF007E0 |
|
1358 1E000001FF0000F03E000003FC0000787E00000FF000003CFC00003FC000001FFC00007F |
|
1359 8000000FFC0000FF0000000FFC0001FE00000007F80007F800000007F8000FF000000003 |
|
1360 F8001FF000000003F8001FE000000003F0003FC000000001F0007F8000000001F000FF80 |
|
1361 00000001F001FF0000000001E001FE0000000001E003FE0000000001E007FC0000000001 |
|
1362 E007FC0000000001C00FF80000000001C00FF80000000001C01FF00000000001C01FF000 |
|
1363 00000000003FF00000000000003FE00000000000003FE00000000000007FE00000000000 |
|
1364 007FC00000000000007FC00000000000007FC0000000000000FFC0000000000000FF8000 |
|
1365 0000000000FF80000000000000FF80000000000000FF80000000000000FF800000000000 |
|
1366 00FF00000000000000FF00000000003C00FF00000000003C00FF00000000003800FF0000 |
|
1367 0000003800FF00000000007800FF00000000007000FF0000000000F0007F8000000000E0 |
|
1368 007F8000000001E0007F8000000003C0003F800000000380003FC00000000780003FC000 |
|
1369 00000F00001FC00000001E00000FE00000003C00000FF000000078000007F8000000F000 |
|
1370 0003F8000001E0000001FE000007C0000000FF00000F000000007FC0007E000000001FF8 |
|
1371 03F80000000007FFFFE00000000001FFFF8000000000001FF80000000040427BBF41>I< |
|
1372 0001FFFFFFFFF800000001FFFFFFFFFF00000001FFFFFFFFFFC000000001FF00003FF000 |
|
1373 000001FF00000FF800000001FE000003FC00000001FE000000FE00000001FE0000007F00 |
|
1374 000003FE0000003F80000003FC0000003F80000003FC0000001FC0000003FC0000001FC0 |
|
1375 000007FC0000000FE0000007F80000000FE0000007F80000000FF0000007F80000000FF0 |
|
1376 00000FF800000007F000000FF000000007F000000FF000000007F000000FF000000007F8 |
|
1377 00001FF000000007F800001FE000000007F800001FE000000007F800001FE00000000FF8 |
|
1378 00003FE00000000FF800003FC00000000FF800003FC00000000FF800003FC00000000FF0 |
|
1379 00007FC00000000FF000007F800000001FF000007F800000001FF000007F800000001FF0 |
|
1380 0000FF800000001FE00000FF000000003FE00000FF000000003FE00000FF000000003FC0 |
|
1381 0001FF000000007FC00001FE000000007FC00001FE000000007F800001FE00000000FF80 |
|
1382 0003FE00000000FF000003FC00000000FF000003FC00000001FE000003FC00000001FC00 |
|
1383 0007FC00000003FC000007F800000003F8000007F800000007F0000007F80000000FF000 |
|
1384 000FF80000001FE000000FF00000001FC000000FF00000003F8000000FF00000007F0000 |
|
1385 001FF0000000FE0000001FE0000001FC0000001FE0000007F80000003FE000000FE00000 |
|
1386 003FE000003FC00000003FC00001FF000000007FC0000FFC000000FFFFFFFFFFF0000000 |
|
1387 FFFFFFFFFFC0000000FFFFFFFFFC00000000453E7DBD4B>I<0001FFFFFFFFFFFFC00001 |
|
1388 FFFFFFFFFFFFC00001FFFFFFFFFFFFC0000001FF000001FFC0000001FF0000003FC00000 |
|
1389 01FE0000001FC0000001FE0000000FC0000001FE0000000F80000003FE00000007800000 |
|
1390 03FC0000000780000003FC0000000780000003FC0000000780000007FC00000007800000 |
|
1391 07F80000000780000007F80000000700000007F8000000070000000FF800000007000000 |
|
1392 0FF0000700070000000FF0000700070000000FF0000F000F0000001FF0000E000E000000 |
|
1393 1FE0000E00000000001FE0001E00000000001FE0001E00000000003FE0003C0000000000 |
|
1394 3FC0003C00000000003FC0007C00000000003FC001FC00000000007FFFFFF80000000000 |
|
1395 7FFFFFF800000000007FFFFFF800000000007F8003F80000000000FF8001F00000000000 |
|
1396 FF0000F00000000000FF0000F00000000000FF0000F00000000001FF0000E00000000001 |
|
1397 FE0000E00000000001FE0000E00038000001FE0001E00078000003FE0001C00070000003 |
|
1398 FC0001C000F0000003FC00000000E0000003FC00000000E0000007FC00000001E0000007 |
|
1399 F800000001C0000007F800000003C0000007F8000000038000000FF8000000078000000F |
|
1400 F00000000F0000000FF00000000F0000000FF00000001F0000001FF00000003E0000001F |
|
1401 E00000007E0000001FE0000000FC0000003FE0000001FC0000003FE0000003F80000003F |
|
1402 C000000FF80000007FC00000FFF80000FFFFFFFFFFFFF00000FFFFFFFFFFFFF00000FFFF |
|
1403 FFFFFFFFE00000423E7DBD43>I E |
|
1404 %EndDVIPSBitmapFont |
|
1405 %DVIPSBitmapFont: Fk cmmi8 8 16 |
|
1406 /Fk 16 116 df<3C007E00FF00FF00FF80FF807F803D8001800180018003800300030007 |
|
1407 0006000E001C0038007000600009157A8714>59 D<0000C000000000C000000000C00000 |
|
1408 0000C000000000C000000001E000000001E000000001E000000001E000000001E0000000 |
|
1409 01E000000001E00000F001E003C0FF83F07FC03FFFFFFF000FFFFFFC0001FFFFE000007F |
|
1410 FF8000001FFE00000007F80000000FFC0000000FFC0000001FFE0000003F3F0000003E1F |
|
1411 0000007C0F8000007807800000F003C00000F003C00001E001E00003C000F00003800070 |
|
1412 000300003000222180A023>63 D<00000000700000000000700000000000F00000000001 |
|
1413 F00000000001F00000000003F80000000003F80000000007F8000000000DF8000000000D |
|
1414 F80000000019F80000000039F80000000031F80000000061FC0000000060FC00000000C0 |
|
1415 FC0000000180FC0000000180FC0000000300FC0000000700FC0000000600FC0000000C00 |
|
1416 FE0000000C007E00000018007E00000030007E00000030007E00000060007E000000E000 |
|
1417 7E000000C0007E00000180007F000001FFFFFF000003FFFFFF00000600003F0000060000 |
|
1418 3F00000C00003F00001C00003F00001800003F00003000003F80003000001F8000600000 |
|
1419 1F8000C000001F8001C000001F8003C000001F8007C000001F800FC000003FC0FFF80007 |
|
1420 FFFEFFF80007FFFE2F2F7DAE35>65 D<003FFFFFFF00003FFFFFFFC00000FE0007F00000 |
|
1421 FE0001F80000FC0000FC0000FC00007E0001FC00007E0001FC00007F0001F800007F0001 |
|
1422 F800007F0003F800007F0003F800007E0003F00000FE0003F00000FE0007F00001FC0007 |
|
1423 F00001F80007E00003F00007E00007E0000FE0001FC0000FE0007F00000FC003FC00000F |
|
1424 FFFFF800001FFFFFFE00001FC0003F80001F80000FC0001F80000FE0003F800007E0003F |
|
1425 800007F0003F000007F0003F000003F0007F000003F0007F000003F0007E000007F0007E |
|
1426 000007F000FE000007E000FE00000FE000FC00000FC000FC00001FC001FC00003F8001FC |
|
1427 00007F0001F80000FE0001F80003F80003F8000FF000FFFFFFFFC000FFFFFFFC0000302D |
|
1428 7CAC35>I<0000007FC003000003FFF80700001FC03E0F00007E00071F0001F80003BF00 |
|
1429 03F00001FE000FC00000FE001F8000007E003F0000007E007E0000007C00FC0000003C01 |
|
1430 F80000003C03F80000003C07F0000000380FE0000000380FE0000000381FC0000000381F |
|
1431 C0000000303F80000000003F80000000007F80000000007F00000000007F00000000007F |
|
1432 0000000000FF0000000000FE0000000000FE0000000000FE0000000000FE0000000000FE |
|
1433 0000000000FE0000000180FE0000000380FE0000000300FE00000003007E00000007007E |
|
1434 00000006007E0000000E003F0000001C003F00000038001F80000070000F800000E00007 |
|
1435 C00001C00003E00007800001F8001E0000007E00F80000001FFFE000000003FF00000030 |
|
1436 2F7CAD32>I<003FFFFFFE0000003FFFFFFFC0000000FE0007F0000000FE0001F8000000 |
|
1437 FC00007E000000FC00003F000001FC00001F000001FC00001F800001F800000F800001F8 |
|
1438 00000FC00003F8000007C00003F8000007E00003F0000007E00003F0000007E00007F000 |
|
1439 0007E00007F0000007E00007E0000007E00007E0000007E0000FE0000007E0000FE00000 |
|
1440 07E0000FC000000FE0000FC000000FE0001FC000000FE0001FC000000FC0001F8000001F |
|
1441 C0001F8000001FC0003F8000001F80003F8000003F80003F0000003F00003F0000003F00 |
|
1442 007F0000007E00007F0000007E00007E000000FC00007E000000F80000FE000001F80000 |
|
1443 FE000003F00000FC000007E00000FC00000FC00001FC00001F000001FC00003E000001F8 |
|
1444 0000FC000001F80003F0000003F8001FC00000FFFFFFFF000000FFFFFFF8000000332D7C |
|
1445 AC3A>I<003FFFFFFFFF80003FFFFFFFFF800000FE00007F800000FE00000F800000FC00 |
|
1446 0007800000FC000007800001FC000003800001FC000003000001F8000003000001F80000 |
|
1447 03000003F8000003000003F8000003000003F0000003000003F0003003000007F0007003 |
|
1448 000007F0007000000007E0006000000007E000E00000000FE000E00000000FE001E00000 |
|
1449 000FC007C00000000FFFFFC00000001FFFFFC00000001FC007C00000001F800380000000 |
|
1450 1F8003800000003F8003800000003F8003800000003F0003000C00003F0003000C00007F |
|
1451 0003001C00007F0000001800007E0000003800007E000000300000FE000000700000FE00 |
|
1452 0000E00000FC000000E00000FC000001C00001FC000003C00001FC000007800001F80000 |
|
1453 0F800001F800001F800003F80001FF0000FFFFFFFFFF0000FFFFFFFFFE0000312D7DAC34 |
|
1454 >I<003FFFFFFFFF003FFFFFFFFF0000FE00007F0000FE00001F0000FC00000F0000FC00 |
|
1455 000F0001FC0000070001FC0000060001F80000060001F80000060003F80000060003F800 |
|
1456 00060003F00000060003F00030060007F00070060007F00070000007E00060000007E000 |
|
1457 E000000FE000E000000FE001E000000FC007C000000FFFFFC000001FFFFFC000001FC007 |
|
1458 C000001F80038000001F80038000003F80038000003F80038000003F00030000003F0003 |
|
1459 0000007F00030000007F00000000007E00000000007E0000000000FE0000000000FE0000 |
|
1460 000000FC0000000000FC0000000001FC0000000001FC0000000001F80000000001F80000 |
|
1461 000003F800000000FFFFF0000000FFFFF0000000302D7DAC2D>I<003FFFFC003FFFFC00 |
|
1462 00FE000000FE000000FC000000FC000001FC000001FC000001F8000001F8000003F80000 |
|
1463 03F8000003F0000003F0000007F0000007F0000007E0000007E000000FE000000FE00000 |
|
1464 0FC000000FC000001FC000001FC000001F8000001F8000003F8000003F8000003F000000 |
|
1465 3F0000007F0000007F0000007E0000007E000000FE000000FE000000FC000000FC000001 |
|
1466 FC000001FC000001F8000001F8000003F80000FFFFE000FFFFE0001E2D7DAC1F>73 |
|
1467 D<0000007C00000001FF00000007C38000000F878000000F0F8000001F1F8000001F1F80 |
|
1468 00001F1F8000003E0E0000003E000000003E000000003E000000007E000000007C000000 |
|
1469 007C000000007C000000007C00000000FC0000003FFFF800003FFFF8000000F800000000 |
|
1470 F800000000F800000001F800000001F000000001F000000001F000000001F000000003F0 |
|
1471 00000003E000000003E000000003E000000003E000000007E000000007C000000007C000 |
|
1472 000007C000000007C000000007C00000000FC00000000F800000000F800000000F800000 |
|
1473 000F800000001F800000001F000000001F000000001F000000001F000000003E00000000 |
|
1474 3E000000003E000000383C000000FC3C000000FC78000000FC78000000FCF0000000F0F0 |
|
1475 000000E1E00000007FC00000001F00000000213D7CAE22>102 D<0000FC000003FF0000 |
|
1476 0F839C001F01BC003E01FC007C00FC00F800FC01F800FC03F000FC03F000F807E000F807 |
|
1477 E001F80FE001F80FC001F00FC001F00FC003F01FC003F01F8003E01F8003E01F8007E01F |
|
1478 8007E01F8007C01F8007C00F800FC00F801FC007803F8007C07F8003E1FF8000FF9F8000 |
|
1479 3E1F0000001F0000003F0000003F0000003E0000003E0000007E0038007C00FC00FC00FC |
|
1480 00F800FC01F000F807E000F00F80007FFE00001FF800001E2C7E9D22>I<000700000F80 |
|
1481 001FC0001FC0000F80000700000000000000000000000000000000000000000000000000 |
|
1482 00000001E00007F8000E3C001C3E00383E00303E00703E00607E00E07C00C07C00C0FC00 |
|
1483 80F80000F80001F80001F00003F00003E00003E00007E00007C04007C0C00FC0C00F80C0 |
|
1484 0F81C01F01801F03801F07000F06000F1E0007F80001F000122E7EAC18>105 |
|
1485 D<001F000003FF000003FF0000003F0000003F0000003E0000003E0000007E0000007E00 |
|
1486 00007C0000007C000000FC000000FC000000F8000000F8000001F8000001F800F801F003 |
|
1487 FC01F00F0E03F01C1E03F0387E03E0707E03E0E07E07E1C07E07E3803807C7000007CE00 |
|
1488 000FDC00000FF800000FF800000FFF80001F9FE0001F83F0001F01F8001F00F8003F00F8 |
|
1489 043F00F80C3E00F80C3E00F80C7E00F81C7E00F8187C00F0387C00F830FC00F870FC0078 |
|
1490 E0F8003FC070000F801F2F7DAD25>107 D<0001F800000FFF00003F0780007C03C001F8 |
|
1491 03E003F001F007E001F00FC001F80F8000F81F8000F83F0000F83F0001F87F0001F87E00 |
|
1492 01F87E0001F87E0003F8FE0003F0FC0003F0FC0003F0FC0007E0FC0007E0FC000FC0FC00 |
|
1493 0FC07C001F807C001F007C003E003E007C001F01F8000F83E00003FF800000FC00001D1F |
|
1494 7D9D22>111 D<007C01F80000FE07FE0001CF8E0F0003879C07800307B807C00707F007 |
|
1495 C00607E003E0060FC003E00E0F8003E00C0F8003E00C0F8003E0081F8007E0001F8007E0 |
|
1496 001F0007E0001F0007E0003F000FE0003F000FC0003E000FC0003E000FC0007E001F8000 |
|
1497 7E001F80007C001F00007C003F0000FC003E0000FC007C0000FC00FC0000FE01F80001FF |
|
1498 03E00001FB87C00001F1FF000001F0FC000003F000000003F000000003E000000003E000 |
|
1499 000007E000000007E000000007C000000007C00000000FC00000000FC0000000FFFC0000 |
|
1500 00FFFC000000232B829D24>I<0007E0003FF800781E00F00601E00703C00F03C01F03C0 |
|
1501 1F07C01E07C00C07E00007F80007FF8003FFE001FFF000FFF8003FFC0001FC0000FC0000 |
|
1502 7C78003CFC003CFC003CFC007CF80078E000F8E000F06001E07807C01FFF0007F800181F |
|
1503 7C9D21>115 D E |
|
1504 %EndDVIPSBitmapFont |
|
1505 %DVIPSBitmapFont: Fl cmsy8 8 6 |
|
1506 /Fl 6 96 df<000C0000001E0000001E0000001E0000001E0000001E0000601E0180781E |
|
1507 0780FC0C0FC07F0C3F803F8C7F0007CCF80001FFE000007F8000001E0000007F800001FF |
|
1508 E00007CCF8003F8C7F007F0C3F80FC0C0FC0781E0780601E0180001E0000001E0000001E |
|
1509 0000001E0000001E0000000C00001A1D7C9E23>3 D<007800FE01FE01FE01FE03FE03FC |
|
1510 03FC03FC07F807F807F807F007F00FE00FE00FE00FC01FC01F801F801F803F003F003F00 |
|
1511 3E007E007C007C007C00F800F800F800F0000F227EA413>48 D<7FFFFFFFFFFEFFFFFFFF |
|
1512 FFFE7FFFFFFFFFFE00000380000000000380000000000380000000000380000000000380 |
|
1513 000000000380000000000380000000000380000000000380000000000380000000000380 |
|
1514 000000000380000000000380000000000380000000000380000000000380000000000380 |
|
1515 000000000380000000000380000000000380000000000380000000000380000000000380 |
|
1516 000000000380000000000380000000000380000000000380000000000380000000000380 |
|
1517 000000000380000000000380000000000380000000000380000000000380000000000380 |
|
1518 000000000380000000000380000000000380000000000380000000000380000000000380 |
|
1519 00000000038000000000018000002F2E7CAD38>62 D<0000018000000000038000000000 |
|
1520 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
1521 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
1522 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
1523 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
1524 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
1525 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
1526 038000000000038000000000038000000000038000000000038000007FFFFFFFFFFEFFFF |
|
1527 FFFFFFFE7FFFFFFFFFFE2F2E7CAD38>I<0000300000000078000000007800000000FC00 |
|
1528 000000FC00000001FE00000001CE00000001CE00000003CF000000038700000007878000 |
|
1529 0007038000000F03C000000E01C000001E01E000001C00E000003C00F000003800700000 |
|
1530 780078000070003800007000380000F0003C0000E0001C0001E0001E0001C0000E0003C0 |
|
1531 000F000380000700078000078007000003800F000003C00E000001C01E000001E01C0000 |
|
1532 00E01C000000E03C000000F0380000007078000000787000000038F00000003CE0000000 |
|
1533 1CE00000000C26297CA72F>94 D<E00000000CE00000001CF00000003C70000000387800 |
|
1534 00007838000000703C000000F01C000000E01C000000E01E000001E00E000001C00F0000 |
|
1535 03C007000003800780000780038000070003C0000F0001C0000E0001E0001E0000E0001C |
|
1536 0000F0003C000070003800007000380000780078000038007000003C00F000001C00E000 |
|
1537 001E01E000000E01C000000F03C0000007038000000787800000038700000003CF000000 |
|
1538 01CE00000001CE00000001FE00000000FC00000000FC0000000078000000007800000000 |
|
1539 30000026297CA72F>I E |
|
1540 %EndDVIPSBitmapFont |
|
1541 %DVIPSBitmapFont: Fm cmr12 12 23 |
|
1542 /Fm 23 127 df<FFFFFFFFFFFF80FFFFFFFFFFFF80FFFFFFFFFFFF8001FFC00003FF8000 |
|
1543 7F8000003FC0007F8000001FC0007F80000007C0007F80000003C0007F80000003C0007F |
|
1544 80000001C0007F80000001C0007F80000000E0007F80000000E0007F80000000E0007F80 |
|
1545 00000060007F8000000060007F8000000060007F8000000060007F8000000070007F8000 |
|
1546 000030007F8000000030007F8000000030007F8000000000007F8000000000007F800000 |
|
1547 0000007F8000000000007F8000000000007F8000000000007F8000000000007F80000000 |
|
1548 00007F8000000000007F8000000000007F8000000000007F8000000000007F8000000000 |
|
1549 007F8000000000007F8000000000007F8000000000007F8000000000007F800000000000 |
|
1550 7F8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F |
|
1551 8000000000007F8000000000007F8000000000007F8000000000007F8000000000007F80 |
|
1552 00000000007F8000000000007F8000000000007F8000000000007F8000000000007F8000 |
|
1553 000000007F8000000000007F8000000000007F8000000000007F8000000000007F800000 |
|
1554 0000007F8000000000007F8000000000007FC00000000001FFE000000000FFFFFFF80000 |
|
1555 00FFFFFFF8000000FFFFFFF800000034447CC33D>0 D<00000000180000000000000000 |
|
1556 3C00000000000000003C00000000000000007E00000000000000007E0000000000000000 |
|
1557 FF0000000000000000FF0000000000000001FF8000000000000001FF8000000000000003 |
|
1558 7FC0000000000000037FC0000000000000063FE0000000000000063FE00000000000000C |
|
1559 1FF00000000000000C1FF0000000000000180FF8000000000000180FF800000000000038 |
|
1560 07FC0000000000003007FC0000000000007003FE0000000000006003FE000000000000E0 |
|
1561 01FF000000000000C001FF000000000001C000FF8000000000018000FF80000000000380 |
|
1562 007FC0000000000300007FC0000000000700003FE0000000000600003FE0000000000E00 |
|
1563 001FF0000000000C00001FF0000000001C00000FF8000000001800000FF8000000003800 |
|
1564 0007FC0000000030000007FC0000000070000003FE0000000060000003FE00000000E000 |
|
1565 0001FF00000000C0000001FF00000001C0000000FF8000000180000000FF800000038000 |
|
1566 00007FC0000003000000007FC0000003000000003FC0000006000000003FE00000060000 |
|
1567 00001FE000000C000000001FF000000C000000000FF0000018000000000FF80000180000 |
|
1568 000007F80000300000000007FC0000300000000003FC0000600000000003FE0000600000 |
|
1569 000003FE0000C00000000001FF0000C00000000001FF0001800000000000FF8001800000 |
|
1570 000000FF80030000000000007FC0030000000000007FC0060000000000003FE006000000 |
|
1571 0000003FE00C0000000000001FF00C0000000000001FF01FFFFFFFFFFFFFFFF81FFFFFFF |
|
1572 FFFFFFFFF83FFFFFFFFFFFFFFFFC3FFFFFFFFFFFFFFFFC7FFFFFFFFFFFFFFFFE7FFFFFFF |
|
1573 FFFFFFFFFEFFFFFFFFFFFFFFFFFF48477CC651>I<000000070000000000000007000000 |
|
1574 0000000007000000000000000F800000000000000F800000000000000F80000000000000 |
|
1575 1FC00000000000001FC00000000000001FC00000000000003FE00000000000003FE00000 |
|
1576 000000003FE00000000000007FF00000000000006FF00000000000006FF0000000000000 |
|
1577 EFF8000000000000C7F8000000000000C7F8000000000001C7FC00000000000187FC0000 |
|
1578 0000000183FC00000000000383FE00000000000303FE00000000000301FE000000000007 |
|
1579 01FF00000000000601FF00000000000600FF00000000000E00FF80000000000C00FF8000 |
|
1580 0000000C007F80000000000C007F800000000018007FC00000000018003FC00000000018 |
|
1581 003FC00000000030003FE00000000030001FE00000000030001FE00000000060001FF000 |
|
1582 00000060000FF00000000060000FF000000000C0000FF800000000C00007F800000000C0 |
|
1583 0007F800000001800007FC00000001800003FC00000001800003FC00000003000003FE00 |
|
1584 000003000001FE00000003000001FE00000006000001FF00000006000000FF0000000600 |
|
1585 0000FF0000000C000000FF8000000C0000007F8000000C0000007F800000180000007FC0 |
|
1586 0000180000003FC00000180000003FC00000300000003FE00000300000001FE000003000 |
|
1587 00001FE00000700000001FF00000600000001FF00000E00000000FF00000F00000000FF8 |
|
1588 0001F00000000FF80003F80000000FFC000FFE0000003FFE00FFFFC00007FFFFF8FFFFC0 |
|
1589 0007FFFFF8FFFFC00007FFFFF83D477DC644>3 D<FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
|
1590 FFFFFFFFFFFFFFFFFF01FF80000001FF80007F80000001FE00007F80000001FE00007F80 |
|
1591 000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE |
|
1592 00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80 |
|
1593 000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE |
|
1594 00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80 |
|
1595 000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE |
|
1596 00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80 |
|
1597 000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE |
|
1598 00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80 |
|
1599 000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE |
|
1600 00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80 |
|
1601 000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE |
|
1602 00007F80000001FE00007F80000001FE00007F80000001FE00007F80000001FE00007F80 |
|
1603 000001FE00007F80000001FE00007F80000001FE00007F80000001FE0001FFE0000007FF |
|
1604 80FFFFFFC003FFFFFFFFFFFFC003FFFFFFFFFFFFC003FFFFFF40447CC349>5 |
|
1605 D<FFFFFFFFFFFFFF00FFFFFFFFFFFFFF00FFFFFFFFFFFFFF007FE00000003FFF007FE000 |
|
1606 000003FF803FF0000000007F801FF8000000003F801FF8000000001F800FFC000000000F |
|
1607 8007FE00000000078007FE00000000038003FF0000000003C001FF0000000001C001FF80 |
|
1608 00000001C000FFC000000001C0007FC000000000C0007FE000000000C0003FF000000000 |
|
1609 C0001FF000000000E0001FF80000000060000FFC00000000600007FC00000000600007FE |
|
1610 00000000000003FF00000000000001FF00000000000001FF80000000000000FFC0000000 |
|
1611 0000007FC00000000000007FE00000000000003FF00000000000001FF00000000000001F |
|
1612 F80000000000000FFC00000000000007FC00000000000007FC00000000000003FC000000 |
|
1613 00000001F800000000000001F000000000000000E000000000000001C000000000000003 |
|
1614 80000000000000030000000000000007000000000000000E000000000000001C00000000 |
|
1615 00000038000000006000007000000000600000E000000000600000C000000000E00001C0 |
|
1616 00000000C000038000000000C000070000000000C0000E0000000001C0001C0000000001 |
|
1617 C000380000000001C000700000000003C0006000000000038000E000000000078001C000 |
|
1618 0000000F800380000000001F800700000000003F800E00000000007F801C0000000003FF |
|
1619 8018000000007FFF803FFFFFFFFFFFFF007FFFFFFFFFFFFF00FFFFFFFFFFFFFF00FFFFFF |
|
1620 FFFFFFFF003B447BC346>I<00000C00001C0000380000700000E00001C00003C0000780 |
|
1621 000F00000F00001E00003C00003C0000780000F80000F00001F00001E00003E00003E000 |
|
1622 07C00007C00007C0000F80000F80000F80001F00001F00001F00003F00003F00003E0000 |
|
1623 3E00007E00007E00007E00007E00007C00007C00007C0000FC0000FC0000FC0000FC0000 |
|
1624 FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000 |
|
1625 FC0000FC0000FC0000FC00007C00007C00007C00007E00007E00007E00007E00003E0000 |
|
1626 3E00003F00003F00001F00001F00001F00000F80000F80000F800007C00007C00007C000 |
|
1627 03E00003E00001E00001F00000F00000F800007800003C00003C00001E00000F00000F00 |
|
1628 0007800003C00001C00000E000007000003800001C00000C166476CA26>40 |
|
1629 D<C00000E000007000003800001C00000E00000F000007800003C00003C00001E00000F0 |
|
1630 0000F000007800007C00003C00003E00001E00001F00001F00000F80000F80000F800007 |
|
1631 C00007C00007C00003E00003E00003E00003F00003F00001F00001F00001F80001F80001 |
|
1632 F80001F80000F80000F80000F80000FC0000FC0000FC0000FC0000FC0000FC0000FC0000 |
|
1633 FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000 |
|
1634 FC0000F80000F80000F80001F80001F80001F80001F80001F00001F00003F00003F00003 |
|
1635 E00003E00003E00007C00007C00007C0000F80000F80000F80001F00001F00001E00003E |
|
1636 00003C00007C0000780000F00000F00001E00003C00003C0000780000F00000E00001C00 |
|
1637 00380000700000E00000C0000016647BCA26>I<0000FF00000007FFE000001F81F80000 |
|
1638 3E007C0000FC003F0001F8001F8001F0000F8003E00007C007C00003E007C00003E00FC0 |
|
1639 0003F00F800001F01F800001F81F800001F83F800001FC3F800001FC3F800001FC3F0000 |
|
1640 00FC7F000000FE7F000000FE7F000000FE7F000000FE7F000000FEFF000000FFFF000000 |
|
1641 FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FF |
|
1642 FF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF |
|
1643 000000FFFF000000FFFF000000FFFF000000FFFF000000FFFF000000FF7F000000FE7F00 |
|
1644 0000FE7F000000FE7F000000FE7F000000FE7F800001FE3F800001FC3F800001FC3F8000 |
|
1645 01FC1F800001F81F800001F80FC00003F00FC00003F00FC00003F007E00007E003E00007 |
|
1646 C003F0000FC001F8001F8000FC003F00003E007C00001F81F8000007FFE0000000FF0000 |
|
1647 28447CC131>48 D<000030000000F0000001F0000003F000001FF00000FFF000FFFFF000 |
|
1648 FFE7F000FF07F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000 |
|
1649 0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000 |
|
1650 0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000 |
|
1651 0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000 |
|
1652 0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000 |
|
1653 0007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F000 |
|
1654 000FF800001FFC007FFFFFFF7FFFFFFF7FFFFFFF204278C131>I<0003FE0000001FFFC0 |
|
1655 00007FFFF00001F80FFC0003C001FE00078000FF000E00007F801C00003FC01C00001FE0 |
|
1656 3800001FF03000000FF07000000FF860000007F86C000007F8FF000007FCFF800007FCFF |
|
1657 C00007FCFFC00003FCFFC00003FCFFC00003FCFFC00003FC7F800007FC3F000007FC0000 |
|
1658 0007FC00000007F800000007F80000000FF80000000FF00000001FF00000001FE0000000 |
|
1659 1FE00000003FC00000007F800000007F00000000FF00000000FE00000001FC00000003F8 |
|
1660 00000007F000000007E00000000FC00000001F800000003F000000007C00000000F80000 |
|
1661 0000F000000001E000000003C000000007800000000F00000C001E00000C003C00000C00 |
|
1662 38000018007000001800E000001801C0000018038000003807000000300E000000701FFF |
|
1663 FFFFF01FFFFFFFF03FFFFFFFF07FFFFFFFF0FFFFFFFFE0FFFFFFFFE0FFFFFFFFE026427B |
|
1664 C131>I<1E007F807F80FFC0FFC0FFC0FFC07F807F801E00000000000000000000000000 |
|
1665 000000000000000000000000000000000000000000000000000000000000000000001E00 |
|
1666 7F807F80FFC0FFC0FFC0FFC07F807F801E000A2B78AA1B>58 D<1E007F807F80FFC0FFC0 |
|
1667 FFC0FFC07F807F801E000000000000000000000000000000000000000000000000000000 |
|
1668 00000000000000000000000000000000000000001E007F00FF80FF80FFC0FFC0FFC0FFC0 |
|
1669 7FC01EC000C000C000C000C000C001C001800180018003800300070006000E000C001C00 |
|
1670 3800700060000A3E78AA1B>I<7FFFFFFFFFFFFFFF00FFFFFFFFFFFFFFFF80FFFFFFFFFF |
|
1671 FFFFFF807FFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000 |
|
1672 000000000000000000000000000000000000000000000000000000000000000000000000 |
|
1673 000000000000000000000000000000000000000000000000000000000000000000000000 |
|
1674 000000000000000000000000000000000000000000000000000000000000000000000000 |
|
1675 000000000000000000000000007FFFFFFFFFFFFFFF00FFFFFFFFFFFFFFFF80FFFFFFFFFF |
|
1676 FFFFFF807FFFFFFFFFFFFFFF0041187BA44C>61 D<000C0000001E0000003F0000007F80 |
|
1677 0000F3C00001E1E00003C0F000078078000F003C001E001E003C000F0070000380E00001 |
|
1678 C0400000801A0E75C331>94 D<0007FC000000003FFF80000000F80FE0000003C003F000 |
|
1679 00070001F800000E0000FC00000FC0007E00001FE0007F00001FF0003F80001FF0003F80 |
|
1680 001FF0003F80001FF0001FC0001FF0001FC0000FE0001FC0000380001FC0000000001FC0 |
|
1681 000000001FC0000000001FC0000000001FC00000000FFFC0000001FFFFC000000FFE1FC0 |
|
1682 00003FC01FC00000FF001FC00003FC001FC00007F8001FC0000FF0001FC0001FE0001FC0 |
|
1683 003FC0001FC0007FC0001FC0007F80001FC0007F80001FC060FF00001FC060FF00001FC0 |
|
1684 60FF00001FC060FF00003FC060FF00003FC060FF00003FC060FF80007FC0607F8000EFC0 |
|
1685 607FC000C7E0C03FC001C7E0C01FE00783F1C007F81E03FF8001FFFC01FF00001FE0007C |
|
1686 002B2E7CAC31>97 D<01FC00000000FFFC00000000FFFC00000000FFFC0000000007FC00 |
|
1687 00000003FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC00 |
|
1688 00000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC00 |
|
1689 00000001FC0000000001FC0000000001FC0000000001FC0000000001FC0000000001FC00 |
|
1690 00000001FC0000000001FC0000000001FC03FC000001FC0FFF800001FC3C07E00001FC70 |
|
1691 01F80001FDE0007E0001FD80003F0001FF80001F8001FF00001FC001FE00000FE001FC00 |
|
1692 0007E001FC000007F001FC000007F001FC000003F801FC000003F801FC000003FC01FC00 |
|
1693 0003FC01FC000001FC01FC000001FE01FC000001FE01FC000001FE01FC000001FE01FC00 |
|
1694 0001FE01FC000001FE01FC000001FE01FC000001FE01FC000001FE01FC000001FE01FC00 |
|
1695 0001FE01FC000001FC01FC000003FC01FC000003FC01FC000003F801FC000003F801FC00 |
|
1696 0007F001FC000007F001FE00000FE001FE00000FC001FF00001FC001FB00003F8001F380 |
|
1697 007E0001E1C000FC0001E0F001F80001C03C07E00001801FFF8000000003FC00002F467D |
|
1698 C436>I<000000007F000000003FFF000000003FFF000000003FFF0000000001FF000000 |
|
1699 0000FF00000000007F00000000007F00000000007F00000000007F00000000007F000000 |
|
1700 00007F00000000007F00000000007F00000000007F00000000007F00000000007F000000 |
|
1701 00007F00000000007F00000000007F00000000007F00000000007F00000000007F000000 |
|
1702 00007F00000000007F0000007F807F000003FFF07F00000FC07C7F00003F000E7F00007E |
|
1703 00077F0000FC0003FF0003F80001FF0007F00000FF0007E00000FF000FE000007F001FC0 |
|
1704 00007F001FC000007F003F8000007F003F8000007F007F8000007F007F8000007F007F00 |
|
1705 00007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F00FF00 |
|
1706 00007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F00FF0000007F007F00 |
|
1707 00007F007F8000007F007F8000007F003F8000007F003F8000007F001FC000007F001FC0 |
|
1708 00007F000FC00000FF000FE00000FF0007F00001FF0003F00003FF0001F800077F8000FC |
|
1709 000E7FC0003F001C7FFE000FC0F87FFE0003FFE07FFE00007F007F002F467DC436>100 |
|
1710 D<0001FE00000007FFC000001F03F000007E00FC0000FC007E0001F8003F0003F0003F00 |
|
1711 07E0001F800FE0001FC00FC0000FC01FC0000FC03F80000FE03F800007E03F800007E07F |
|
1712 800007F07F000007F07F000007F0FF000007F0FF000007F0FF000007F0FFFFFFFFF0FFFF |
|
1713 FFFFF0FF00000000FF00000000FF00000000FF00000000FF00000000FF000000007F0000 |
|
1714 00007F000000007F800000007F800000003F800000003F800000301FC00000301FC00000 |
|
1715 700FC00000600FE00000E007F00000C003F00001C001F800038000FC000700003E001E00 |
|
1716 001F80F8000003FFE0000000FF0000242E7DAC2B>I<01E00007F80007F8000FFC000FFC |
|
1717 000FFC000FFC0007F80007F80001E0000000000000000000000000000000000000000000 |
|
1718 0000000000000000000000000000000000000001FC00FFFC00FFFC00FFFC0007FC0003FC |
|
1719 0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC |
|
1720 0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC |
|
1721 0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0001FC0003FE00FFFF |
|
1722 F8FFFFF8FFFFF815437DC21C>105 D<01FC01FE0000FFFC07FFC000FFFC1E07F000FFFC |
|
1723 3801F80007FC7001FC0003FCE000FC0001FDC000FE0001FD8000FE0001FF80007F0001FF |
|
1724 00007F0001FF00007F0001FE00007F0001FE00007F0001FE00007F0001FC00007F0001FC |
|
1725 00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC |
|
1726 00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC |
|
1727 00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC |
|
1728 00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC00007F0001FC |
|
1729 00007F0003FE0000FF80FFFFF83FFFFEFFFFF83FFFFEFFFFF83FFFFE2F2C7DAB36>110 |
|
1730 D<00007F8000000003FFF00000000FC0FC0000003E001F0000007C000F800000F80007C0 |
|
1731 0001F00003E00003E00001F00007C00000F8000FC00000FC000FC00000FC001F8000007E |
|
1732 003F8000007F003F8000007F003F0000003F007F0000003F807F0000003F807F0000003F |
|
1733 807F0000003F80FF0000003FC0FF0000003FC0FF0000003FC0FF0000003FC0FF0000003F |
|
1734 C0FF0000003FC0FF0000003FC0FF0000003FC0FF0000003FC0FF0000003FC07F0000003F |
|
1735 807F0000003F807F8000007F803F8000007F003F8000007F001F8000007E001FC00000FE |
|
1736 000FC00000FC000FE00001FC0007E00001F80003F00003F00001F80007E00000FC000FC0 |
|
1737 00003E001F0000001FC0FE00000007FFF8000000007F8000002A2E7DAC31>I<FFFFF001 |
|
1738 FFFCFFFFF001FFFCFFFFF001FFFC07FF00007FE003FE00001F8001FE00001F0001FE0000 |
|
1739 0E0000FE00000E0000FE00000C00007F00001800007F00001800007F80001800003F8000 |
|
1740 3000003F80003000003FC0007000001FC0006000001FE0006000000FE000C000000FE000 |
|
1741 C000000FF001C0000007F00180000007F00180000003F80300000003F80300000003FC07 |
|
1742 00000001FC0600000001FC0600000000FE0C00000000FE0C00000000FF0C000000007F18 |
|
1743 000000007F18000000007FB8000000003FB0000000003FF0000000001FE0000000001FE0 |
|
1744 000000001FE0000000000FC0000000000FC0000000000780000000000780000000000780 |
|
1745 00000000030000002E2C7EAA33>118 D<00F8000203FE000707FF800E0FFFE01C1F1FF8 |
|
1746 F83807FFF07001FFE0E0007FC040001F00200978C131>126 D E |
|
1747 %EndDVIPSBitmapFont |
|
1748 %DVIPSBitmapFont: Fn cmsy10 12 20 |
|
1749 /Fn 20 107 df<7FFFFFFFFFFFFFE0FFFFFFFFFFFFFFF0FFFFFFFFFFFFFFF07FFFFFFFFF |
|
1750 FFFFE03C04789A4D>0 D<1F003F807FC0FFE0FFE0FFE0FFE0FFE07FC03F801F000B0B78 |
|
1751 9E1C>I<600000000006F8000000000FFC000000001F7E000000003F3F000000007E1F80 |
|
1752 000000FC0FC0000001F807E0000003F003F0000007E001F800000FC000FC00001F80007E |
|
1753 00003F00003F00007E00001F8000FC00000FC001F8000007E003F0000003F007E0000001 |
|
1754 F80FC0000000FC1F800000007E3F000000003F7E000000001FFC000000000FF800000000 |
|
1755 07F00000000007F0000000000FF8000000001FFC000000003F7E000000007E3F00000000 |
|
1756 FC1F80000001F80FC0000003F007E0000007E003F000000FC001F800001F8000FC00003F |
|
1757 00007E00007E00003F0000FC00001F8001F800000FC003F0000007E007E0000003F00FC0 |
|
1758 000001F81F80000000FC3F000000007E7E000000003FFC000000001FF8000000000F6000 |
|
1759 00000006303072B04D>I<00007000000000F800000000F800000000F800000000F80000 |
|
1760 0000F800000000F800000000F800000000F80000000070000078007000F07C007001F0FF |
|
1761 007007F87F80700FF03FE0703FE00FF0707F8003F870FE0000FE73F800003F77E000000F |
|
1762 FF80000003FE00000000F800000003FE0000000FFF8000003F77E00000FE73F80003F870 |
|
1763 FE000FF0707F803FE0703FE07F80700FF0FF007007F87C007001F078007000F000007000 |
|
1764 000000F800000000F800000000F800000000F800000000F800000000F800000000F80000 |
|
1765 0000F800000000700000252B7AAD32>I<0001FF0000000FFFE000003FFFF800007FFFFC |
|
1766 0001FFFFFF0003FFFFFF8007FFFFFFC00FFFFFFFE01FFFFFFFF01FFFFFFFF03FFFFFFFF8 |
|
1767 3FFFFFFFF87FFFFFFFFC7FFFFFFFFC7FFFFFFFFCFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFF |
|
1768 FFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFEFFFFFFFFFE7FFFFFFFFC7FFF |
|
1769 FFFFFC7FFFFFFFFC3FFFFFFFF83FFFFFFFF81FFFFFFFF01FFFFFFFF00FFFFFFFE007FFFF |
|
1770 FFC003FFFFFF8001FFFFFF00007FFFFC00003FFFF800000FFFE0000001FF000027277BAB |
|
1771 32>15 D<0007F0000000000080001FFE0000000001C0007FFF8000000001C000FFFFE000 |
|
1772 000001C001FFFFF000000001C003FFFFF800000001C007F80FFC00000001C00FE001FE00 |
|
1773 000003C01F80007F00000003801F00001FC0000003803E00000FE0000007803C000007F0 |
|
1774 0000070038000003F800000F0078000001FC00001F0070000000FE00003E00700000003F |
|
1775 80007E00F00000001FE001FC00E00000000FFC07F800E000000007FFFFF000E000000003 |
|
1776 FFFFE000E000000001FFFFC000E0000000007FFF8000E0000000001FFE00004000000000 |
|
1777 03F8000042187BA44D>24 D<0000000000000000F00000000000000000000000F0000000 |
|
1778 0000000000000000F00000000000000000000000F8000000000000000000000078000000 |
|
1779 00000000000000007800000000000000000000007C00000000000000000000003C000000 |
|
1780 00000000000000003C00000000000000000000003E00000000000000000000001E000000 |
|
1781 00000000000000001F00000000000000000000000F80000000000000000000000F800000 |
|
1782 000000000000000007C00000000000000000000003E00000000000000000000003F00000 |
|
1783 000000000000000001F80000000000000000000000FC00000000000000000000007E0000 |
|
1784 0000000000000000003F00000000000000000000001F80000000000000000000000FE000 |
|
1785 00000000000000000003F8007FFFFFFFFFFFFFFFFFFFFE00FFFFFFFFFFFFFFFFFFFFFF80 |
|
1786 FFFFFFFFFFFFFFFFFFFFFF807FFFFFFFFFFFFFFFFFFFFE0000000000000000000003F800 |
|
1787 0000000000000000000FE0000000000000000000001F80000000000000000000003F0000 |
|
1788 0000000000000000007E0000000000000000000000FC0000000000000000000001F80000 |
|
1789 000000000000000003F00000000000000000000003E00000000000000000000007C00000 |
|
1790 00000000000000000F80000000000000000000000F80000000000000000000001F000000 |
|
1791 00000000000000001E00000000000000000000003E00000000000000000000003C000000 |
|
1792 00000000000000003C00000000000000000000007C000000000000000000000078000000 |
|
1793 0000000000000000780000000000000000000000F80000000000000000000000F0000000 |
|
1794 0000000000000000F00000000000000000000000F000000059347BB264>33 |
|
1795 D<000000FFFFFF00000007FFFFFF8000003FFFFFFF800000FFFFFFFF000003FF80000000 |
|
1796 0007FC00000000001FE000000000003F8000000000007E000000000000FC000000000001 |
|
1797 F8000000000003F0000000000007E0000000000007C000000000000F8000000000001F80 |
|
1798 00000000001F0000000000003E0000000000003E0000000000003C0000000000007C0000 |
|
1799 000000007C00000000000078000000000000F8000000000000F8000000000000F0000000 |
|
1800 000000F0000000000000FFFFFFFFFFFF00FFFFFFFFFFFF80FFFFFFFFFFFF80FFFFFFFFFF |
|
1801 FF00F0000000000000F0000000000000F8000000000000F8000000000000780000000000 |
|
1802 007C0000000000007C0000000000003C0000000000003E0000000000003E000000000000 |
|
1803 1F0000000000001F8000000000000F80000000000007C0000000000007E0000000000003 |
|
1804 F0000000000001F8000000000000FC0000000000007E0000000000003F8000000000001F |
|
1805 E0000000000007FC000000000003FF800000000000FFFFFFFF0000003FFFFFFF80000007 |
|
1806 FFFFFF80000000FFFFFF00313A78B542>50 D<7FFFFFFFFFFFFFFF80FFFFFFFFFFFFFFFF |
|
1807 C0FFFFFFFFFFFFFFFFC07FFFFFFFFFFFFFFF8000000001E00000000000000001E0000000 |
|
1808 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1809 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1810 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1811 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1812 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1813 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1814 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1815 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1816 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1817 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1818 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1819 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1820 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1821 0000000001E00000000000000001E00000000000000001E00000000000000001E0000000 |
|
1822 0000000001E00000000000000001E00000000000000001E00000000000000000C0000000 |
|
1823 0042427BC14D>62 D<00000000C00000000000000001E00000000000000001E000000000 |
|
1824 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1825 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1826 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1827 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1828 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1829 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1830 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1831 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1832 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1833 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1834 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1835 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1836 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1837 00000001E00000000000000001E00000000000000001E00000000000000001E000000000 |
|
1838 00000001E00000000000000001E00000000000000001E0000000007FFFFFFFFFFFFFFF80 |
|
1839 FFFFFFFFFFFFFFFFC0FFFFFFFFFFFFFFFFC07FFFFFFFFFFFFFFF8042427BC14D>I<0000 |
|
1840 000001FE00000000001FFF8000000001FFFFC000000007FFFFC00000001FFFFFE0000000 |
|
1841 7FFFFFE0000001FE01FFE0000003F0007FE000000FC0003FE000001F00003FE000003E00 |
|
1842 003FC000007C00003FC00000F800003F800001F000003F800003F000007F800007E00000 |
|
1843 7F00000FC00000FF00001F800000FE00001F800000FE00003F000001FC00007F000001FC |
|
1844 0000FE000003F80000FE000003F00001FC000007C00001FC000007000003F80000000000 |
|
1845 03F8000000000007F8000000000007F000000000000FF000000000000FF000000000000F |
|
1846 E000000000001FE000000000001FE000000000001FC000000000003FC000000000003FC0 |
|
1847 00000000003FC000000000007FC000000000007F8000000000007F8000000000007F8000 |
|
1848 000000007F800000000000FF800000000000FF800000000000FF800000000000FF800000 |
|
1849 000000FF800000000000FF800000000000FF800000000000FF800000000000FF80000000 |
|
1850 0000FFC00000000000FFC00000000000FFC00000001E00FFC00000003E007FE0000000FC |
|
1851 007FE0000001F8007FF0000003F0007FF0000003E0003FF8000007C0003FFC00000F8000 |
|
1852 1FFE00001F00001FFF00003E00000FFFC000FC00000FFFF803F0000007FFFFFFE0000003 |
|
1853 FFFFFF80000001FFFFFE00000000FFFFF8000000003FFFC00000000007FC000000003348 |
|
1854 7FC534>67 D<0000001FFFFFC0000000000003FFFFFFFF00000000001FFFFFFFFFE00000 |
|
1855 0000FFFFFFFFFFF800000003FFFFFFFFFFFE0000000FFFFFFFFFFFFF8000003FE07FC03F |
|
1856 FFFFC00000FE007FC000FFFFE00001F8007FC0001FFFF00003E0007F800007FFF80007C0 |
|
1857 007F800001FFF8000FC0007F8000007FFC001F80007F8000003FFE003F8000FF8000001F |
|
1858 FE007F8000FF8000000FFE007F0000FF80000007FF00FE0000FF00000007FF00FC0000FF |
|
1859 00000003FF00F00000FF00000003FF80800000FF00000001FF80000001FF00000001FF80 |
|
1860 000001FF00000001FF80000001FE00000000FF80000001FE00000000FF80000001FE0000 |
|
1861 0000FF80000001FE00000000FF80000003FE00000000FF80000003FC00000000FF800000 |
|
1862 03FC00000000FF80000003FC00000000FF00000003FC00000000FF00000007F800000000 |
|
1863 FF00000007F800000000FF00000007F800000001FE00000007F800000001FE0000000FF0 |
|
1864 00000001FE0000000FF000000001FC0000000FF000000003FC0000000FF000000003F800 |
|
1865 00001FE000000003F80000001FE000000007F00000001FE000000007F00000001FC00000 |
|
1866 000FE00000003FC00000000FC00000003FC00000001FC00000003F800000001F80000000 |
|
1867 7F800000003F000000007F800000007E000000007F000000007C00000000FF00000000F8 |
|
1868 00000000FF00000001F000000000FE00000003E000000001FE00000007C000000001FE00 |
|
1869 00001F8000000001FC0000003E0000000003FC0000007C0000000003F8000001F8000000 |
|
1870 0003F8000007E00000000007F800001FC00000000007F00000FF00000000000FF00007FC |
|
1871 00000000000FE000FFF000000000000FFFFFFFC000000000007FFFFFFE000000000000FF |
|
1872 FFFFF0000000000001FFFFFF80000000000003FFFFF800000000000007FFFF0000000000 |
|
1873 000049447EC34D>I<0000001FFFFFF00000000003FFFFFFFF800000001FFFFFFFFFF000 |
|
1874 0000FFFFFFFFFFFC000003FFFFFFFFFFFF00000FFFFFFFFFFFFF80003FE07FC00FFFFFC0 |
|
1875 00FE007FC0007FFFE001F8007F80000FFFF003E0007F800003FFF007C0007F800000FFF8 |
|
1876 0FC0007F8000007FF81F8000FF8000003FF83F8000FF8000001FFC7F8000FF8000000FFC |
|
1877 7F0000FF8000000FFCFE0000FF0000000FFCFC0000FF00000007FCF00000FF00000007FC |
|
1878 800000FF00000007FC000001FF00000007F8000001FE00000007F8000001FE00000007F8 |
|
1879 000001FE00000007F0000001FE0000000FF0000003FE0000000FE0000003FC0000000FE0 |
|
1880 000003FC0000001FC0000003FC0000001F80000003FC0000003F80000007FC0000003F00 |
|
1881 000007F80000007E00000007F8000000FC00000007F8000000F800000007F8000001F000 |
|
1882 00000FF0000003E00000000FF0000007C00000000FF000001F800000000FF000003E0000 |
|
1883 00001FE00000FC000000001FE00007F0000000001FE0007FE0000000001FC07FFF800000 |
|
1884 00003FC1FFFE00000000003FC7FFF000000000003FCFFF8000000000007F9FFC00000000 |
|
1885 00007F9F800000000000007F80000000000000007F0000000000000000FF000000000000 |
|
1886 0000FF0000000000000000FE0000000000000001FE0000000000000001FE000000000000 |
|
1887 0001FC0000000000000003FC0000000000000003FC0000000000000003F8000000000000 |
|
1888 0007F80000000000000007F00000000000000007F0000000000000000FF0000000000000 |
|
1889 000FE0000000000000001FE0000000000000001FE0000000000000001FC0000000000000 |
|
1890 003FC0000000000000003F80000000000000003F00000000000000007E00000000000000 |
|
1891 007C0000000000000000600000000000000046497EC345>80 D<00000038000000000000 |
|
1892 7C0000000000007C000000000000FE000000000000FE000000000001FF000000000001FF |
|
1893 000000000001EF000000000003EF800000000003EF800000000007C7C00000000007C7C0 |
|
1894 000000000F83E0000000000F83E0000000001F01F0000000001F01F0000000001E00F000 |
|
1895 0000003E00F8000000003E00F8000000007C007C000000007C007C00000000F8003E0000 |
|
1896 0000F8003E00000001F0001F00000001F0001F00000001E0000F00000003E0000F800000 |
|
1897 03E0000F80000007C00007C0000007C00007C000000F800003E000000F800003E000001F |
|
1898 000001F000001F000001F000001E000000F000003E000000F800003E000000F800007C00 |
|
1899 00007C00007C0000007C0000F80000003E0000F80000003E0001F00000001F0001F00000 |
|
1900 001F0003E00000000F8003E00000000F8003C0000000078007C000000007C007C0000000 |
|
1901 07C00F8000000003E00F8000000003E01F0000000001F01F0000000001F03E0000000000 |
|
1902 F83E0000000000F83C0000000000787C00000000007C7C00000000007CF800000000003E |
|
1903 F800000000003EF000000000001E6000000000000C373D7BBA42>94 |
|
1904 D<6000000000000CF000000000001EF800000000003EF800000000003E7C00000000007C |
|
1905 7C00000000007C3C0000000000783E0000000000F83E0000000000F81F0000000001F01F |
|
1906 0000000001F00F8000000003E00F8000000003E007C000000007C007C000000007C003C0 |
|
1907 000000078003E00000000F8003E00000000F8001F00000001F0001F00000001F0000F800 |
|
1908 00003E0000F80000003E00007C0000007C00007C0000007C00003E000000F800003E0000 |
|
1909 00F800001E000000F000001F000001F000001F000001F000000F800003E000000F800003 |
|
1910 E0000007C00007C0000007C00007C0000003E0000F80000003E0000F80000001E0000F00 |
|
1911 000001F0001F00000001F0001F00000000F8003E00000000F8003E000000007C007C0000 |
|
1912 00007C007C000000003E00F8000000003E00F8000000001E00F0000000001F01F0000000 |
|
1913 001F01F0000000000F83E0000000000F83E00000000007C7C00000000007C7C000000000 |
|
1914 03EF800000000003EF800000000001EF000000000001FF000000000001FF000000000000 |
|
1915 FE000000000000FE0000000000007C0000000000007C00000000000038000000373D7BBA |
|
1916 42>I<60000000000000F0000000000000F0000000000000F0000000000000F000000000 |
|
1917 0000F0000000000000F0000000000000F0000000000000F0000000000000F00000000000 |
|
1918 00F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000 |
|
1919 F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000F0 |
|
1920 000000000000F0000000000000F0000000000000F0000000000000F0000000000000F000 |
|
1921 0000000000F0000000000000F0000000000000F0000000000000F0000000000000F00000 |
|
1922 00000000F0000000000000FFFFFFFFFFFF80FFFFFFFFFFFFC0FFFFFFFFFFFFC0FFFFFFFF |
|
1923 FFFFC0F0000000000000F0000000000000F0000000000000F0000000000000F000000000 |
|
1924 0000F0000000000000F0000000000000F0000000000000F0000000000000F00000000000 |
|
1925 00F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000 |
|
1926 F0000000000000F0000000000000F0000000000000F0000000000000F0000000000000F0 |
|
1927 000000000000F0000000000000F0000000000000F0000000000000F0000000000000F000 |
|
1928 0000000000F0000000000000F0000000000000F0000000000000F0000000000000F00000 |
|
1929 00000000F00000000000006000000000000032457BC43D>I<0000000000018000000000 |
|
1930 0003C0000000000003C0000000000003C0000000000003C0000000000003C00000000000 |
|
1931 03C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003 |
|
1932 C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003C0 |
|
1933 000000000003C0000000000003C0000000000003C0000000000003C0000000000003C000 |
|
1934 0000000003C0000000000003C0000000000003C0000000000003C0000000000003C00000 |
|
1935 00000003C0000000000003C0000000000003C0000000000003C0000000000003C03FFFFF |
|
1936 FFFFFFC0FFFFFFFFFFFFC0FFFFFFFFFFFFC0FFFFFFFFFFFFC0000000000003C000000000 |
|
1937 0003C0000000000003C0000000000003C0000000000003C0000000000003C00000000000 |
|
1938 03C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003 |
|
1939 C0000000000003C0000000000003C0000000000003C0000000000003C0000000000003C0 |
|
1940 000000000003C0000000000003C0000000000003C0000000000003C0000000000003C000 |
|
1941 0000000003C0000000000003C0000000000003C0000000000003C0000000000003C00000 |
|
1942 00000003C0000000000003C0000000000003C0000000000003C0000000000003C0000000 |
|
1943 0000018032457BC43D>I<0000000FE0000000FFE0000003FC0000000FE00000003FC000 |
|
1944 00007F80000000FF00000000FE00000001FC00000001FC00000003F800000003F8000000 |
|
1945 03F800000003F800000003F800000003F800000003F800000003F800000003F800000003 |
|
1946 F800000003F800000003F800000003F800000003F800000003F800000003F800000003F8 |
|
1947 00000003F800000003F800000003F800000003F800000003F800000003F800000003F800 |
|
1948 000003F800000003F800000003F800000003F800000003F800000003F800000003F80000 |
|
1949 0007F000000007F00000000FE00000001FE00000003FC00000007F80000000FE00000007 |
|
1950 F8000000FFE0000000FFE000000007F800000000FE000000007F800000003FC00000001F |
|
1951 E00000000FE000000007F000000007F000000003F800000003F800000003F800000003F8 |
|
1952 00000003F800000003F800000003F800000003F800000003F800000003F800000003F800 |
|
1953 000003F800000003F800000003F800000003F800000003F800000003F800000003F80000 |
|
1954 0003F800000003F800000003F800000003F800000003F800000003F800000003F8000000 |
|
1955 03F800000003F800000003F800000003F800000003F800000003F800000001FC00000001 |
|
1956 FC00000000FE00000000FF000000007F800000003FC00000000FE000000003FC00000000 |
|
1957 FFE00000000FE0236479CA32>102 D<FE00000000FFE000000007F800000000FE000000 |
|
1958 007F800000003FC00000001FE00000000FE000000007F000000007F000000003F8000000 |
|
1959 03F800000003F800000003F800000003F800000003F800000003F800000003F800000003 |
|
1960 F800000003F800000003F800000003F800000003F800000003F800000003F800000003F8 |
|
1961 00000003F800000003F800000003F800000003F800000003F800000003F800000003F800 |
|
1962 000003F800000003F800000003F800000003F800000003F800000003F800000003F80000 |
|
1963 0003F800000001FC00000001FC00000000FE00000000FF000000007F800000003FC00000 |
|
1964 000FE000000003FC00000000FFE0000000FFE0000003FC0000000FE00000003FC0000000 |
|
1965 7F80000000FF00000000FE00000001FC00000001FC00000003F800000003F800000003F8 |
|
1966 00000003F800000003F800000003F800000003F800000003F800000003F800000003F800 |
|
1967 000003F800000003F800000003F800000003F800000003F800000003F800000003F80000 |
|
1968 0003F800000003F800000003F800000003F800000003F800000003F800000003F8000000 |
|
1969 03F800000003F800000003F800000003F800000003F800000003F800000003F800000007 |
|
1970 F000000007F00000000FE00000001FE00000003FC00000007F80000000FE00000007F800 |
|
1971 0000FFE0000000FE00000000236479CA32>I<60F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0 |
|
1972 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0 |
|
1973 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0 |
|
1974 F0F0F0F0F0F0F0F0F0F060046474CA1C>106 D E |
|
1975 %EndDVIPSBitmapFont |
|
1976 /Fo 87[33 46[44 44 66 44 50 28 39 39 50 50 50 50 72 28 |
|
1977 44 28 28 50 50 28 44 50 44 50 50 9[83 1[72 55 50 61 1[61 |
|
1978 1[66 83 55 2[33 1[72 61 61 72 66 1[61 6[33 4[50 50 50 |
|
1979 50 50 2[25 33 25 2[33 33 37[50 2[{TeXBase1Encoding ReEncodeFont}54 |
|
1980 99.6264 /Times-Italic rf /Fp 138[45 25 1[30 1[45 45 45 |
|
1981 71 25 2[25 45 2[40 45 40 1[40 12[56 51 2[51 12[61 67[{ |
|
1982 .167 SlantFont TeXBase1Encoding ReEncodeFont}18 90.9091 |
|
1983 /Times-Roman rf |
|
1984 %DVIPSBitmapFont: Fq cmmi12 12 36 |
|
1985 /Fq 36 122 df<000003FC00000000001FFF0000000000FE07C000000003F001F0000000 |
|
1986 07E000F80000001FC000FC000E003F80007C000E007F00003E000C00FE00003F000C01FC |
|
1987 00003F001C03F800001F001807F800001F801807F000001F80380FF000001F80301FE000 |
|
1988 001F80701FE000001FC0603FC000001FC0603FC000001FC0E03FC000000FC0C07F800000 |
|
1989 0FC1C07F8000000FC1807F8000000FC380FF8000000FC700FF0000000FC600FF0000000F |
|
1990 CE00FF0000000FDC00FF0000001FD800FE0000001FF800FE0000001FF000FE0000001FE0 |
|
1991 00FE0000001FC000FE0000001FC000FE0000001FC000FE0000001FC000FE0000001FC000 |
|
1992 7E0000003FC0007E0000007FC0003F000000EFC0383F000003CFC0381F80000F07C0300F |
|
1993 C0001C07C07007E000F803E0E001F00FE001E1C0007FFF0000FF80001FF000003E00372D |
|
1994 7CAB3E>11 D<000000001FE000000000007FFC0000000001E03F0000000007800F800000 |
|
1995 000E0007C00000001C0003E0000000380001E0000000700001F0000000E00000F0000001 |
|
1996 C00000F8000001800000F8000003800000F8000007000000F8000006000000F800000E00 |
|
1997 0000F800000C000001F800001C000001F8000018000001F0000038000003F00000300000 |
|
1998 03E0000030000007E0000070000007C000006000000FC000006000000F800000E000001F |
|
1999 000000C000003E000000C000007C000001C03FF1F800000180FFFFE000000180C01F8000 |
|
2000 000180FFFFC0000003803FF1F0000003000000F8000003000000780000030000007C0000 |
|
2001 070000003E0000060000003E0000060000003E0000060000001F00000E0000001F00000C |
|
2002 0000001F00000C0000001F00000C0000001F00001C0000001F8000180000001F80001800 |
|
2003 00001F8000180000001F8000380000003F0000300000003F0000300000003F0000300000 |
|
2004 003F0000700000007F0000700000007E0000600000007E000060000000FE0000E0000000 |
|
2005 FC0000E0000000FC0000E0000001F80000E0000001F80001E0000003F00001F0000007E0 |
|
2006 0001B000000FC00001B000000F800003B800001F0000031800007E0000031C0000FC0000 |
|
2007 030E0001F0000007070007C000000603C03F0000000600FFFC00000006003FC00000000E |
|
2008 0000000000000C0000000000000C0000000000000C0000000000001C0000000000001800 |
|
2009 000000000018000000000000180000000000003800000000000030000000000000300000 |
|
2010 000000003000000000000070000000000000600000000000006000000000000060000000 |
|
2011 000000E0000000000000E000000000000035597DC537>I<00F80003FC0003FE001FFF00 |
|
2012 071F007C0FC00E0F80E007E01C0FC3C003E01807C70003F01807CE0001F03807DC0001F8 |
|
2013 3007D80001F8300FF80001F8700FF00001F8600FE00001F8600FE00001F8E00FC00003F8 |
|
2014 C01FC00003F0C01F800003F0001F800003F0001F800007F0003F800007F0003F000007E0 |
|
2015 003F000007E0003F00000FE0007F00000FE0007E00000FC0007E00000FC0007E00001FC0 |
|
2016 00FE00001FC000FC00001F8000FC00001F8000FC00003F8001FC00003F8001F800003F00 |
|
2017 01F800003F0001F800007F0003F800007F0003F000007E0003F000007E0003F00000FE00 |
|
2018 07F00000FE0007E00000FC0007E00000FC0007E00001FC000FE00001FC000FC00001F800 |
|
2019 03800001F80000000003F80000000003F80000000003F00000000003F00000000007F000 |
|
2020 00000007F00000000007E00000000007E0000000000FE0000000000FE0000000000FC000 |
|
2021 0000000FC0000000001FC0000000001FC0000000001F80000000001F80000000003F8000 |
|
2022 0000003F80000000003F00000000000E00002D417DAB30>17 D<000007FE0000007FFFC0 |
|
2023 0001FFFFF00007FFFFF8001FF003FE003F00007E007800003E00E000000801C000000003 |
|
2024 800000000300000000070000000006000000000600000000060000000006000000000700 |
|
2025 000000030000000003803E000001E7FFC000007FC1E000007FFFE00001E7FFC000038000 |
|
2026 000007000000000E000000001C0000000038000000007000000000600000000060000000 |
|
2027 00E000000000C000000000C000000000C000000000C000000000C000000180E000000380 |
|
2028 F00000030070000007007800000E003E00003C001FC003F8000FFFFFE00003FFFFC00000 |
|
2029 FFFE0000001FF00000272F7EAC2E>34 D<1E007F807F80FFC0FFC0FFC0FFC07F807F801E |
|
2030 000A0A78891B>58 D<1E007F80FF80FFC0FFC0FFE0FFE0FFE07FE01E6000600060006000 |
|
2031 6000E000C000C000C001C0018003800300070006000E001C003800700060000B1D78891B |
|
2032 >I<000000C0000000000000C0000000000000C0000000000000C0000000000000C00000 |
|
2033 00000001E0000000000001E0000000000001E0000000000001E0000000000001E0000000 |
|
2034 000001E0000000000001E0000000000001E0000000000003F0000000000003F000000000 |
|
2035 0003F0000000000003F0000000000003F0000000FC0003F0000FC07FE003F001FF801FFF |
|
2036 03F03FFE0007FFFBF7FFF80001FFFFFFFFE000003FFFFFFF0000000FFFFFFC00000003FF |
|
2037 FFF000000000FFFFC0000000003FFF00000000001FFE00000000001FFE00000000003FFF |
|
2038 00000000007FFF80000000007FFF8000000000FF3FC000000000FE1FC000000001FC0FE0 |
|
2039 00000001F807E000000003F003F000000007E001F800000007C000F80000000F80007C00 |
|
2040 00000F00003C0000001F00003E0000001E00001E0000003C00000F000000380000070000 |
|
2041 0070000003800000600000018000323081B031>63 D<0000000000003000000000000000 |
|
2042 00700000000000000000F00000000000000000F00000000000000001F000000000000000 |
|
2043 03F00000000000000003F00000000000000007F80000000000000007F800000000000000 |
|
2044 0FF8000000000000001FF8000000000000001FF80000000000000037F800000000000000 |
|
2045 37F80000000000000067F800000000000000E7F800000000000000C7F800000000000001 |
|
2046 87FC0000000000000187FC0000000000000307FC0000000000000703FC00000000000006 |
|
2047 03FC0000000000000C03FC0000000000000C03FC0000000000001803FC00000000000038 |
|
2048 03FC0000000000003003FC0000000000006003FE0000000000006003FE000000000000C0 |
|
2049 03FE000000000001C001FE0000000000018001FE0000000000030001FE00000000000300 |
|
2050 01FE0000000000060001FE00000000000E0001FE00000000000C0001FE00000000001800 |
|
2051 01FE0000000000180001FF0000000000300001FF0000000000700000FF00000000006000 |
|
2052 00FF0000000000C00000FF0000000000C00000FF0000000001800000FF0000000003FFFF |
|
2053 FFFF0000000003FFFFFFFF0000000007FFFFFFFF0000000006000000FF800000000C0000 |
|
2054 00FF800000001C0000007F80000000180000007F80000000300000007F80000000300000 |
|
2055 007F80000000600000007F80000000E00000007F80000000C00000007F80000001800000 |
|
2056 007F80000001800000007FC0000003000000007FC0000007000000003FC0000006000000 |
|
2057 003FC000000E000000003FC000001C000000003FC000003C000000003FC000007C000000 |
|
2058 003FC00000FE000000007FE00007FF00000001FFE0007FFFF000007FFFFFC0FFFFF00000 |
|
2059 7FFFFFC0FFFFE000007FFFFFC042477DC649>65 D<0000FFFFFFFFFF80000000FFFFFFFF |
|
2060 FFF0000000FFFFFFFFFFFC00000000FFC00003FF000000007F800000FF80000000FF8000 |
|
2061 003FC0000000FF8000003FE0000000FF0000001FE0000000FF0000000FF0000000FF0000 |
|
2062 000FF0000001FF0000000FF8000001FE00000007F8000001FE00000007F8000001FE0000 |
|
2063 0007F8000003FE00000007F8000003FC00000007F8000003FC0000000FF8000003FC0000 |
|
2064 000FF8000007FC0000000FF0000007F80000001FF0000007F80000001FE0000007F80000 |
|
2065 003FE000000FF80000003FC000000FF00000007F8000000FF0000000FF0000000FF00000 |
|
2066 01FE0000001FF0000003FC0000001FE0000007F80000001FE000001FF00000001FE00000 |
|
2067 3FC00000003FE00001FF000000003FC0001FFC000000003FFFFFFFF0000000003FFFFFFF |
|
2068 FE000000007FC000007F800000007F8000001FC00000007F8000000FF00000007F800000 |
|
2069 07F8000000FF80000003FC000000FF00000003FC000000FF00000001FE000000FF000000 |
|
2070 01FE000001FF00000001FF000001FE00000001FF000001FE00000001FF000001FE000000 |
|
2071 01FF000003FE00000001FF000003FC00000001FF000003FC00000001FF000003FC000000 |
|
2072 01FF000007FC00000001FE000007F800000003FE000007F800000003FE000007F8000000 |
|
2073 07FC00000FF800000007FC00000FF00000000FF800000FF00000001FF000000FF0000000 |
|
2074 1FF000001FF00000003FE000001FE00000007FC000001FE0000001FF8000003FE0000003 |
|
2075 FE0000003FE000000FFC0000003FC000003FF8000000FFC00001FFE00000FFFFFFFFFFFF |
|
2076 800000FFFFFFFFFFFC000000FFFFFFFFFFC000000045447CC34A>I<0000000001FF8000 |
|
2077 18000000003FFFF0003800000001FFFFFC003800000007FF007E00780000001FF0000F80 |
|
2078 F00000007F800003C1F0000001FE000001C3F0000003FC000000E7F000000FF00000007F |
|
2079 E000001FE00000003FE000003FC00000003FE00000FF000000001FE00001FE000000001F |
|
2080 C00003FC000000000FC00007F8000000000FC0000FF8000000000FC0000FF0000000000F |
|
2081 80001FE0000000000780003FC0000000000780007FC000000000078000FF800000000007 |
|
2082 0000FF0000000000070001FF0000000000070003FE0000000000070003FE000000000006 |
|
2083 0007FC0000000000060007FC000000000006000FF8000000000006000FF8000000000000 |
|
2084 001FF8000000000000001FF0000000000000001FF0000000000000003FF0000000000000 |
|
2085 003FE0000000000000003FE0000000000000003FE0000000000000007FE0000000000000 |
|
2086 007FC0000000000000007FC0000000000000007FC0000000000000007FC0000000000000 |
|
2087 00FF8000000000000000FF8000000000000000FF8000000000000000FF80000000000000 |
|
2088 00FF800000000000C000FF800000000000C000FF800000000001C000FF80000000000180 |
|
2089 007F80000000000180007F80000000000380007F80000000000300007F80000000000700 |
|
2090 007F80000000000600003FC0000000000E00003FC0000000001C00003FC0000000001800 |
|
2091 001FC0000000003800001FE0000000007000000FE000000000E000000FF000000001C000 |
|
2092 0007F80000000380000003F80000000700000001FC0000000E00000000FE0000003C0000 |
|
2093 00007F00000078000000003FC00001E0000000001FF0000FC00000000007FE007F000000 |
|
2094 000001FFFFFC0000000000003FFFE000000000000007FF000000000045487CC546>I<00 |
|
2095 00FFFFFFFFFF8000000000FFFFFFFFFFF000000000FFFFFFFFFFFC0000000000FFC00007 |
|
2096 FF00000000007F8000007FC000000000FF8000001FE000000000FF8000000FF000000000 |
|
2097 FF00000007F800000000FF00000003FC00000000FF00000001FC00000001FF00000000FE |
|
2098 00000001FE00000000FE00000001FE000000007F00000001FE000000007F00000003FE00 |
|
2099 0000003F80000003FC000000003F80000003FC000000003F80000003FC000000003FC000 |
|
2100 0007FC000000003FC0000007F8000000003FC0000007F8000000003FC0000007F8000000 |
|
2101 003FC000000FF8000000003FC000000FF0000000003FE000000FF0000000003FE000000F |
|
2102 F0000000003FE000001FF0000000003FE000001FE0000000003FC000001FE0000000003F |
|
2103 C000001FE0000000003FC000003FE0000000003FC000003FC0000000007FC000003FC000 |
|
2104 0000007FC000003FC0000000007FC000007FC0000000007F8000007F8000000000FF8000 |
|
2105 007F8000000000FF8000007F8000000000FF800000FF8000000000FF000000FF00000000 |
|
2106 01FF000000FF0000000001FE000000FF0000000001FE000001FF0000000003FE000001FE |
|
2107 0000000003FC000001FE0000000007FC000001FE0000000007F8000003FE000000000FF0 |
|
2108 000003FC000000000FF0000003FC000000001FE0000003FC000000001FC0000007FC0000 |
|
2109 00003FC0000007F8000000003F80000007F8000000007F00000007F800000000FE000000 |
|
2110 0FF800000001FC0000000FF000000003FC0000000FF000000007F80000000FF00000000F |
|
2111 E00000001FF00000001FC00000001FE00000003F800000001FE0000000FF000000003FE0 |
|
2112 000001FC000000003FE000000FF8000000003FC000003FE000000000FFC00003FF800000 |
|
2113 00FFFFFFFFFFFE00000000FFFFFFFFFFF000000000FFFFFFFFFF00000000004B447CC351 |
|
2114 >I<0000FFFFFFFFFFFFFC0000FFFFFFFFFFFFFC0000FFFFFFFFFFFFFC000000FFC00000 |
|
2115 3FFC0000007F80000003F8000000FF80000001F8000000FF80000000F8000000FF000000 |
|
2116 0078000000FF0000000078000000FF0000000038000001FF0000000038000001FE000000 |
|
2117 0038000001FE0000000038000001FE0000000038000003FE0000000030000003FC000000 |
|
2118 0030000003FC0000000030000003FC0000000030000007FC0000000030000007F8000060 |
|
2119 0030000007F80000600030000007F80000E0003000000FF80000C0000000000FF00000C0 |
|
2120 000000000FF00000C0000000000FF00001C0000000001FF0000180000000001FE0000380 |
|
2121 000000001FE0000780000000001FE0000F80000000003FE0007F00000000003FFFFFFF00 |
|
2122 000000003FFFFFFF00000000003FFFFFFF00000000007FC0007E00000000007F80001E00 |
|
2123 000000007F80001E00000000007F80000E0000000000FF80000C0000000000FF00000C00 |
|
2124 00000000FF00000C0000000000FF00001C0000000001FF0000180003000001FE00001800 |
|
2125 03000001FE0000180007000001FE0000180006000003FE0000000006000003FC00000000 |
|
2126 0E000003FC000000000C000003FC000000001C000007FC0000000018000007F800000000 |
|
2127 38000007F80000000030000007F8000000007000000FF8000000007000000FF000000000 |
|
2128 E000000FF000000001E000000FF000000001C000001FF000000003C000001FE000000007 |
|
2129 C000001FE00000000F8000003FE00000003F8000003FE00000007F0000003FC0000003FF |
|
2130 000000FFC000003FFE0000FFFFFFFFFFFFFE0000FFFFFFFFFFFFFE0000FFFFFFFFFFFFFC |
|
2131 000046447CC348>I<0000FFFFFFFFFFFFF80000FFFFFFFFFFFFF80000FFFFFFFFFFFFF8 |
|
2132 000000FFC000003FF80000007F80000007F0000000FF80000003F0000000FF80000001F0 |
|
2133 000000FF00000000F0000000FF00000000F0000000FF0000000070000001FF0000000070 |
|
2134 000001FE0000000070000001FE0000000070000001FE0000000070000003FE0000000060 |
|
2135 000003FC0000000060000003FC0000000060000003FC0000000060000007FC0000000060 |
|
2136 000007F80000000060000007F80000C00060000007F80001C0006000000FF80001800000 |
|
2137 00000FF0000180000000000FF0000180000000000FF0000380000000001FF00003000000 |
|
2138 00001FE0000700000000001FE0000700000000001FE0000F00000000003FE0001E000000 |
|
2139 00003FC000FE00000000003FFFFFFE00000000003FFFFFFE00000000007FFFFFFC000000 |
|
2140 00007F8000FC00000000007F80003C00000000007F80003C0000000000FF800018000000 |
|
2141 0000FF0000180000000000FF0000180000000000FF0000380000000001FF000030000000 |
|
2142 0001FE0000300000000001FE0000300000000001FE0000700000000003FE000060000000 |
|
2143 0003FC0000000000000003FC0000000000000003FC0000000000000007FC000000000000 |
|
2144 0007F80000000000000007F80000000000000007F8000000000000000FF8000000000000 |
|
2145 000FF0000000000000000FF0000000000000000FF0000000000000001FF0000000000000 |
|
2146 001FE0000000000000001FE0000000000000003FE0000000000000003FE0000000000000 |
|
2147 003FE000000000000000FFE0000000000000FFFFFFF80000000000FFFFFFF80000000000 |
|
2148 FFFFFFF8000000000045447CC33F>I<0000000001FF800018000000003FFFF000380000 |
|
2149 0001FFFFFC003800000007FF007E00780000001FF0000F80F00000007F800003C1F00000 |
|
2150 01FE000001C3F0000003FC000000E7F000000FF00000007FE000001FE00000003FE00000 |
|
2151 3FC00000003FE00000FF000000001FE00001FE000000001FC00003FC000000000FC00007 |
|
2152 F8000000000FC0000FF8000000000FC0000FF0000000000F80001FE0000000000780003F |
|
2153 C0000000000780007FC000000000078000FF8000000000070000FF0000000000070001FF |
|
2154 0000000000070003FE0000000000070003FE0000000000060007FC0000000000060007FC |
|
2155 000000000006000FF8000000000006000FF8000000000000001FF8000000000000001FF0 |
|
2156 000000000000001FF0000000000000003FF0000000000000003FE0000000000000003FE0 |
|
2157 000000000000003FE0000000000000007FE0000000000000007FC0000000000000007FC0 |
|
2158 000000000000007FC0000000000000007FC000000000000000FF8000000000000000FF80 |
|
2159 000001FFFFFF80FF80000003FFFFFF80FF80000003FFFFFF80FF8000000000FFE000FF80 |
|
2160 000000007FC000FF80000000007FC000FF80000000007FC0007F80000000007F80007F80 |
|
2161 000000007F80007F8000000000FF80007F8000000000FF00007F8000000000FF00003FC0 |
|
2162 00000000FF00003FC000000001FF00003FC000000001FE00001FE000000001FE00001FE0 |
|
2163 00000001FE00000FE000000003FE00000FF000000003FC000007F800000007FC000003F8 |
|
2164 0000000FFC000001FC0000001FFC000000FE0000003DF80000007F80000078F80000003F |
|
2165 C00001E0F80000001FF00007C07800000007FE007F007000000001FFFFFC003000000000 |
|
2166 3FFFF000000000000007FF000000000045487CC54D>I<0000FFFFFFFFFE00000000FFFF |
|
2167 FFFFFFE0000000FFFFFFFFFFF800000000FFC0000FFE000000007F800001FF00000000FF |
|
2168 8000007F80000000FF8000003FC0000000FF0000001FE0000000FF0000001FE0000001FF |
|
2169 0000000FF0000001FF0000000FF0000001FE0000000FF0000001FE0000000FF8000003FE |
|
2170 0000000FF8000003FE0000000FF8000003FC0000000FF8000003FC0000000FF8000007FC |
|
2171 0000000FF8000007FC0000001FF0000007F80000001FF0000007F80000001FF000000FF8 |
|
2172 0000003FE000000FF80000003FE000000FF00000003FC000000FF00000007FC000001FF0 |
|
2173 0000007F8000001FF0000000FF0000001FE0000001FE0000001FE0000003FC0000003FE0 |
|
2174 000007F80000003FE000000FF00000003FC000003FC00000003FC00000FF000000007FC0 |
|
2175 0007FC000000007FFFFFFFF0000000007FFFFFFF80000000007F8000000000000000FF80 |
|
2176 00000000000000FF8000000000000000FF0000000000000000FF0000000000000001FF00 |
|
2177 00000000000001FF0000000000000001FE0000000000000001FE0000000000000003FE00 |
|
2178 00000000000003FE0000000000000003FC0000000000000003FC0000000000000007FC00 |
|
2179 00000000000007FC0000000000000007F80000000000000007F8000000000000000FF800 |
|
2180 0000000000000FF8000000000000000FF0000000000000000FF0000000000000001FF000 |
|
2181 0000000000001FF0000000000000001FE0000000000000001FE0000000000000003FE000 |
|
2182 0000000000003FE0000000000000003FC000000000000000FFE0000000000000FFFFFFE0 |
|
2183 0000000000FFFFFFE00000000000FFFFFFE0000000000045447CC33F>80 |
|
2184 D<00000000FF80018000000007FFF003800000003FFFFC0380000000FF007E0780000001 |
|
2185 F8000F0F80000007E000079F0000000FC00003FF0000001F000001FF0000003E000000FF |
|
2186 0000007C000000FE0000007C0000007E000000F80000007E000001F00000007E000001F0 |
|
2187 0000003C000003E00000003C000003E00000003C000007E00000003C000007C000000038 |
|
2188 000007C000000038000007C00000003800000FC00000003800000FC00000003000000FE0 |
|
2189 0000003000000FE00000003000000FE00000000000000FF000000000000007F800000000 |
|
2190 000007FC00000000000007FF00000000000003FFE0000000000003FFFC000000000001FF |
|
2191 FFC00000000000FFFFFC00000000007FFFFF00000000003FFFFFC0000000000FFFFFE000 |
|
2192 00000003FFFFF800000000003FFFF8000000000007FFFC0000000000007FFE0000000000 |
|
2193 000FFE00000000000003FE00000000000001FF00000000000000FF000000000000007F00 |
|
2194 0000000000007F000000000000003F000000000000003F000006000000003F0000060000 |
|
2195 00003F000006000000003F000006000000003F00000E000000003E00000E000000003E00 |
|
2196 000C000000003E00000C000000007E00001E000000007C00001E000000007C00001E0000 |
|
2197 0000F800001E00000000F000003F00000001F000003F00000003E000003F80000007C000 |
|
2198 003F8000000F8000007FC000001F0000007FE000003E0000007CF800007C000000787E00 |
|
2199 01F8000000F01FC00FE0000000E007FFFF80000000E001FFFE00000000C0003FF0000000 |
|
2200 0039487BC53C>83 D<00000FC0000000007FF000000001F8381C000007E01C7E00000FC0 |
|
2201 0E7E00003F0007FE00007F0003FC0000FE0003FC0001FC0003FC0001F80001FC0003F800 |
|
2202 01F80007F00001F8000FF00001F8000FE00003F8001FE00003F0001FE00003F0003FC000 |
|
2203 03F0003FC00007F0007FC00007E0007F800007E0007F800007E0007F80000FE000FF8000 |
|
2204 0FC000FF00000FC000FF00000FC000FF00001FC000FF00001F8000FE00001F8000FE0000 |
|
2205 1F8000FE00003F8030FE00003F0070FE00003F0060FE00003F0060FE00007F00E0FE0000 |
|
2206 7F00C0FE0000FE00C07E0001FE00C07E0003FE01C03E00073E01803F000E3E03801F001C |
|
2207 3E03000F80381F070007C0F00F0E0001FFC007FC00007F0001F0002C2D7CAB33>97 |
|
2208 D<000007F80000003FFF000000FC07C00003F000E00007E00070001F800030003F000070 |
|
2209 007E0003F800FE0007F801FC0007F803F8000FF007F8000FF007F0000FF00FF00007C01F |
|
2210 E00000001FE00000003FC00000003FC00000007FC00000007F800000007F800000007F80 |
|
2211 000000FF80000000FF00000000FF00000000FF00000000FF00000000FE00000000FE0000 |
|
2212 0000FE00000000FE00000000FE00000000FE00000018FE00000038FE000000707E000000 |
|
2213 E07E000001C03F000003803F000007001F80001E000F8000380007C001F00003F00FC000 |
|
2214 00FFFE0000001FF00000252D7CAB2A>99 D<0000000001FC00000000FFFC00000000FFFC |
|
2215 00000000FFFC0000000003F80000000001F80000000003F80000000003F80000000003F0 |
|
2216 0000000003F00000000007F00000000007F00000000007E00000000007E0000000000FE0 |
|
2217 000000000FE0000000000FC0000000000FC0000000001FC0000000001FC0000000001F80 |
|
2218 000000001F80000000003F80000000003F80000000003F0000000FC03F0000007FF07F00 |
|
2219 0001F8387F000007E01C7E00000FC00E7E00003F0007FE00007F0003FE0000FE0003FC00 |
|
2220 01FC0003FC0001F80001FC0003F80001FC0007F00001F8000FF00001F8000FE00003F800 |
|
2221 1FE00003F8001FE00003F0003FC00003F0003FC00007F0007FC00007F0007F800007E000 |
|
2222 7F800007E0007F80000FE000FF80000FE000FF00000FC000FF00000FC000FF00001FC000 |
|
2223 FF00001FC000FE00001F8000FE00001F8000FE00003F8030FE00003F8070FE00003F0060 |
|
2224 FE00003F0060FE00007F00E0FE00007F00C0FE0000FE00C07E0001FE00C07E0003FE01C0 |
|
2225 3E00073E01803F000E3E03801F001C3E03000F80381F070007C0F00F0E0001FFC007FC00 |
|
2226 007F0001F0002E467CC433>I<000007F80000003FFE000001FC07800003F003C0000FC0 |
|
2227 01E0001F8000E0007F0000E000FE00007001FC00007003F80000F007F80000E007F00000 |
|
2228 E00FF00001E01FE00001C01FE00003C03FC00007803FC0001F003FC000FC007FC01FF000 |
|
2229 7FFFFF80007FFFF000007F80000000FF80000000FF00000000FF00000000FF00000000FF |
|
2230 00000000FF00000000FE00000000FE00000000FE00000000FE00000000FE000000187E00 |
|
2231 0000387E000000707F000000E03F000001C03F000003801F000007000F80001E000FC000 |
|
2232 380007E001F00001F00FC000007FFE0000001FF00000252D7CAB2D>I<0000000007E000 |
|
2233 0000001FF8000000007C1C00000000F80E00000001F03E00000003E07F00000003E0FF00 |
|
2234 000007E1FF00000007C1FF00000007C1FE0000000FC0FC0000000FC0780000000FC00000 |
|
2235 00001F80000000001F80000000001F80000000001F80000000003F80000000003F000000 |
|
2236 00003F00000000003F00000000003F00000000007F00000000007E00000000007E000000 |
|
2237 00007E00000000007E00000000FFFFFF800000FFFFFF800000FFFFFF80000000FC000000 |
|
2238 0000FC0000000000FC0000000001FC0000000001F80000000001F80000000001F8000000 |
|
2239 0001F80000000003F80000000003F00000000003F00000000003F00000000003F0000000 |
|
2240 0007F00000000007E00000000007E00000000007E00000000007E0000000000FE0000000 |
|
2241 000FC0000000000FC0000000000FC0000000000FC0000000000FC0000000001FC0000000 |
|
2242 001F80000000001F80000000001F80000000001F80000000003F80000000003F00000000 |
|
2243 003F00000000003F00000000003F00000000007F00000000007E00000000007E00000000 |
|
2244 007E00000000007E0000000000FC0000000000FC0000000000FC0000000000FC00000000 |
|
2245 00F80000000001F80000000001F80000000001F00000000001F00000001C03F00000007F |
|
2246 03E0000000FF03E0000000FF03C0000000FF07C0000000FF0780000000FE0F00000000F8 |
|
2247 0F00000000601E00000000783C000000001FF00000000007C000000000305A7BC530>I< |
|
2248 0000007E0000000003FF800000000FC1E0E000001F0073F000007E0033F00000FC003FF0 |
|
2249 0001F8001FF00003F8001FE00007F0000FE0000FE0000FE0000FE0000FE0001FC0000FC0 |
|
2250 003FC0000FC0003F80001FC0007F80001FC0007F00001F8000FF00001F8000FF00003F80 |
|
2251 01FF00003F8001FE00003F0001FE00003F0001FE00007F0003FE00007F0003FC00007E00 |
|
2252 03FC00007E0003FC0000FE0003FC0000FE0003F80000FC0003F80000FC0003F80001FC00 |
|
2253 03F80001FC0003F80001F80003F80001F80003F80003F80003F80007F80001F80007F000 |
|
2254 01F8000FF00000F8001FF00000FC003FF000007C0077E000003E01E7E000001F078FE000 |
|
2255 0007FE0FE0000001F80FC0000000000FC0000000001FC0000000001FC0000000001F8000 |
|
2256 0000001F80000000003F80000000003F80000000003F00000000003F00001C00007E0000 |
|
2257 7F0000FE0000FF0000FC0000FF0001F80000FF0003F80000FE0007F00000FE000FC00000 |
|
2258 F8001F8000007C00FE0000001FFFF800000003FFC00000002C407EAB2F>I<0000FE0000 |
|
2259 00007FFE000000007FFE000000007FFE0000000001FC0000000000FC0000000001FC0000 |
|
2260 000001FC0000000001F80000000001F80000000003F80000000003F80000000003F00000 |
|
2261 000003F00000000007F00000000007F00000000007E00000000007E0000000000FE00000 |
|
2262 00000FE0000000000FC0000000000FC0000000001FC0000000001FC0000000001F800000 |
|
2263 00001F803FC000003F81FFF000003F87C0FC00003F0E007E00003F3C003E00007F70003F |
|
2264 00007FE0001F00007FC0001F80007F80001F8000FF80001F8000FF00001F8000FE00001F |
|
2265 8000FE00001F8001FC00003F8001FC00003F0001F800003F0001F800003F0003F800007F |
|
2266 0003F800007E0003F000007E0003F000007E0007F00000FE0007F00000FC0007E00000FC |
|
2267 0007E00001FC000FE00001F8000FE00001F8000FC00003F8000FC00003F0001FC00003F0 |
|
2268 071FC00007F0061F800007E0061F80000FE0063F80000FC00E3F80000FC00C3F00000FC0 |
|
2269 1C3F00000F80187F00000F80387F00000F80307E00000F80707E00000F80E0FE00000781 |
|
2270 C0FE000007C380FC000001FF00380000007C0030467BC438>I<00001E0000003F000000 |
|
2271 7F000000FF000000FF000000FF0000007E00000038000000000000000000000000000000 |
|
2272 000000000000000000000000000000000000000000000000000000000000000000000000 |
|
2273 000000000000003E000000FF800001C3C0000781E0000601F0000E01F0001C01F0001803 |
|
2274 F0003803F0003003F0003003F0007007F0006007E0006007E000E00FE000C00FC000001F |
|
2275 C000001F8000001F8000003F8000003F0000003F0000007F0000007E000000FE000000FC |
|
2276 000000FC000001FC000001F8000001F8038003F8030003F0030007F0030007E0070007E0 |
|
2277 060007E00E0007E00C0007C01C0007C0180007C0380007C0700003C0E00003E1C00000FF |
|
2278 8000003E000019437DC121>I<0000FE000000007FFE000000007FFE000000007FFE0000 |
|
2279 000001FC0000000000FC0000000001FC0000000001FC0000000001F80000000001F80000 |
|
2280 000003F80000000003F80000000003F00000000003F00000000007F00000000007F00000 |
|
2281 000007E00000000007E0000000000FE0000000000FE0000000000FC0000000000FC00000 |
|
2282 00001FC0000000001FC0000000001F80000000001F80003F00003F8000FFC0003F8003C0 |
|
2283 E0003F000703E0003F001E0FE0007F00380FE0007F00701FE0007E00E01FE0007E01C01F |
|
2284 E000FE01801FC000FE0380070000FC0700000000FC0E00000001FC1C00000001FC380000 |
|
2285 0001F87000000001F8E000000003FBC000000003FF0000000003FF8000000003FFF80000 |
|
2286 0007F1FE00000007F03F80000007E00FE0000007E007F000000FE003F000000FE003F800 |
|
2287 000FC001F800000FC001F800001FC001F801C01FC001F801801F8001F801801F8001F801 |
|
2288 803F8001F803803F8001F803003F0001F003003F0001F007007F0001F006007F0001F00E |
|
2289 007E0001F00C007E0001F01C00FE0000F03800FE0000787000FC00003FE0003800000F80 |
|
2290 002B467BC433>107 D<0003F801FFF801FFF801FFF80007F00003F00007F00007F00007 |
|
2291 E00007E0000FE0000FE0000FC0000FC0001FC0001FC0001F80001F80003F80003F80003F |
|
2292 00003F00007F00007F00007E00007E0000FE0000FE0000FC0000FC0001FC0001FC0001F8 |
|
2293 0001F80003F80003F80003F00003F00007F00007F00007E00007E0000FE0000FE0000FC0 |
|
2294 000FC0001FC0001FC0001F80001F80003F80003F80003F00003F00007F00607F00E07E00 |
|
2295 C07E00C07E01C0FE0180FC0180FC0180FC03807C03007C07007C06003E0E001E1C000FF8 |
|
2296 0003E00015467CC41D>I<00F80003FC00007F800003FE001FFF0003FFE000071F007C0F |
|
2297 C00F81F8000E0F80E007E01C00FC001C0FC3C003E078007C001807C70003F0E0007E0018 |
|
2298 07CE0001F1C0003E003807DC0001FB80003F003007D80001FB00003F00300FF80001FF00 |
|
2299 003F00700FF00001FE00003F00600FE00001FC00003F00600FE00001FC00003F00E00FC0 |
|
2300 0003F800007F00C01FC00003F800007E00C01F800003F000007E00001F800003F000007E |
|
2301 00001F800007F00000FE00003F800007F00000FC00003F000007E00000FC00003F000007 |
|
2302 E00000FC00003F00000FE00001FC00007F00000FE00001F800007E00000FC00001F80000 |
|
2303 7E00000FC00003F800007E00001FC00003F00000FE00001FC00003F00000FC00001F8000 |
|
2304 07F00000FC00001F800007E00000FC00003F800007E00E01FC00003F80000FE00C01F800 |
|
2305 003F00000FC00C01F800003F00001FC00C01F800007F00001F801C03F800007F00001F80 |
|
2306 1803F000007E00001F803803F000007E00001F003003F00000FE00001F007007F00000FE |
|
2307 00001F006007E00000FC00001F00E007E00000FC00001F01C007E00001FC00000F03800F |
|
2308 E00001FC00000F87000FC00001F8000003FE000380000070000000F8004F2D7DAB55>I< |
|
2309 000003FC000000003FFF00000000FE07C0000003F003F0000007E001F800001FC000FC00 |
|
2310 003F00007C00007F00007E0000FE00007F0001FC00003F0003F800003F0007F800003F80 |
|
2311 07F000003F800FF000003F801FE000003F801FE000003F803FC000003F803FC000007F80 |
|
2312 7FC000007F807F8000007F807F8000007F807F800000FF80FF800000FF00FF000000FF00 |
|
2313 FF000000FF00FF000001FF00FF000001FE00FE000001FE00FE000003FC00FE000003FC00 |
|
2314 FE000003F800FE000007F800FE000007F000FE00000FE000FE00001FE0007E00001FC000 |
|
2315 7E00003F80003F00007F00003F0000FE00001F8001F800000FC003F0000007E00FC00000 |
|
2316 01F03F80000000FFFC000000001FE0000000292D7CAB2F>111 D<0003E0003F8000000F |
|
2317 F800FFE000001C7C03C0F80000383E07007C0000703F1E007E0000601F38003F0000601F |
|
2318 70003F0000E01F60001F8000C01FE0001F8000C03FC0001F8001C03F80001FC001803F00 |
|
2319 001FC001803F00001FC003807F00001FC003007F00001FC003007E00001FC000007E0000 |
|
2320 1FC00000FE00003FC00000FE00003FC00000FC00003FC00000FC00003FC00001FC00007F |
|
2321 C00001FC00007F800001F800007F800001F800007F800003F80000FF800003F80000FF00 |
|
2322 0003F00000FF000003F00000FE000007F00001FE000007F00001FC000007E00003FC0000 |
|
2323 07E00003F800000FE00007F800000FE00007F000000FE0000FE000000FE0000FC000001F |
|
2324 F0001F8000001FF0003F0000001FB8007E0000001F9800FC0000003F9C01F80000003F8F |
|
2325 07E00000003F03FF800000003F00FC000000007F0000000000007F0000000000007E0000 |
|
2326 000000007E000000000000FE000000000000FE000000000000FC000000000000FC000000 |
|
2327 000001FC000000000001FC000000000001F8000000000001F8000000000003F800000000 |
|
2328 0003F8000000000007F80000000000FFFFF000000000FFFFF000000000FFFFE000000000 |
|
2329 323F83AB31>I<00F8000FC003FE007FF0070F00F0380E0F83C07C0C07C701FC1C07CE01 |
|
2330 FC1807DC03FC3807D803FC3007F803FC300FF003F8700FE000E0600FE00000600FC00000 |
|
2331 E00FC00000C01FC00000C01F800000001F800000001F800000003F800000003F00000000 |
|
2332 3F000000003F000000007F000000007E000000007E000000007E00000000FE00000000FC |
|
2333 00000000FC00000000FC00000001FC00000001F800000001F800000001F800000003F800 |
|
2334 000003F000000003F000000003F000000007F000000007E000000007E000000007E00000 |
|
2335 000FE00000000FC00000000380000000262D7DAB2C>114 D<00000FF00000007FFE0000 |
|
2336 01F00F8000078001C0000F0000E0001E000060003C000060003C0001F000780007F00078 |
|
2337 0007F000F8000FE000F0000FE000F8000FE000F800038000FC00000000FE00000000FF00 |
|
2338 000000FFF80000007FFF8000007FFFE000003FFFF800001FFFFC000007FFFE000000FFFE |
|
2339 00000007FF00000000FF000000007F000000003F800000001F800E00001F803F00000F00 |
|
2340 7F80000F007F80000F007F80001F00FF00001E00FF00001E00FC00003C006000003C0060 |
|
2341 00007800700000F000380001E0001C0007C0000F803F000003FFFC0000007FE00000242D |
|
2342 7BAB2E>I<00001C0000007E0000007E0000007E000000FE000000FC000000FC000000FC |
|
2343 000001FC000001F8000001F8000001F8000003F8000003F0000003F0000003F0000007F0 |
|
2344 000007E0000007E0007FFFFFFCFFFFFFFCFFFFFFF8000FC000000FC000001FC000001F80 |
|
2345 00001F8000001F8000003F8000003F0000003F0000003F0000007F0000007E0000007E00 |
|
2346 00007E000000FE000000FC000000FC000000FC000001FC000001F8000001F8000001F800 |
|
2347 0003F8000003F0000003F0000003F0007007F0006007E0006007E000E007E000C00FE001 |
|
2348 C00FC001800FC003800FC0070007C0060007C00E0007C01C0003E0380001E0F00000FFC0 |
|
2349 00003F00001E3F7EBD23>I<003E000000000000FF800000E00003C3C00003F0000703E0 |
|
2350 0003F0000601F00003F0000E01F00007F0001C01F00007F0001803F00007E0003803F000 |
|
2351 07E0003003F0000FE0003003F0000FE0007007F0000FC0006007E0000FC0006007E0001F |
|
2352 C000E00FE0001FC000C00FC0001F8000001FC0001F8000001F80003F8000001F80003F80 |
|
2353 00003F80003F0000003F00003F0000003F00007F0000007F00007F0000007E00007E0000 |
|
2354 007E00007E0000007E0000FE000000FE0000FE000000FC0000FC000000FC0000FC000000 |
|
2355 FC0001FC018000FC0001FC038001F80001F8030001F80001F8030001F80001F8070001F8 |
|
2356 0003F8060001F80003F0060000F80007F0060000F8000FF00E0000FC000DF00C00007C00 |
|
2357 1DF01C00007C0039F01800003E00F0F83800001F03C07870000007FF803FE0000001FC00 |
|
2358 0F8000312D7DAB38>I<003E00000E0000FF80003F8003C3C0007F800703E0007F800601 |
|
2359 F0007F800E01F0007F801C01F0007F801803F0003F803803F0001F803003F0000F803003 |
|
2360 F0000F807007F00007806007E00007806007E0000780E00FE0000700C00FC0000300001F |
|
2361 C0000300001F80000700001F80000600003F80000600003F00000600003F00000E00007F |
|
2362 00000C00007E00000C00007E00000C00007E00001C0000FE0000180000FC0000180000FC |
|
2363 0000380000FC0000300000FC0000700001F80000600001F80000E00001F80000C00001F8 |
|
2364 0001C00000F80001800000F80003800000FC0007000000FC00060000007C000E0000007E |
|
2365 001C0000003F00780000000F81E000000007FFC000000000FE000000292D7DAB2F>I<00 |
|
2366 3E00000000003800FF800001C000FC03C3C00007E001FE0703E00007E001FE0601F00007 |
|
2367 E001FE0E01F0000FE001FE1C01F0000FC001FE1803F0000FC000FE3803F0000FC0007E30 |
|
2368 03F0001FC0003E7003F0001F80003E6007F0001F80001E6007E0001F80001E6007E0003F |
|
2369 80001EE00FE0003F00001CC00FC0003F00000C001FC0003F00000C001F80007F00001C00 |
|
2370 1F80007E000018003F80007E000018003F00007E000018003F0000FE000038007F0000FE |
|
2371 000030007E0000FC000030007E0000FC000030007E0001FC00007000FE0001FC00006000 |
|
2372 FC0001F800006000FC0001F80000E000FC0001F80000C000FC0001F80000C000F80003F0 |
|
2373 0001C000F80003F000018000F80003F000038000F80003F000030000F80003F000070000 |
|
2374 FC0007F000060000FC0007F8000E00007C000FF8001C00007E000CF8001800003E001CFC |
|
2375 003800001F00387E00F000000FC0F01F01C0000003FFC00FFF800000007F0001FE00003F |
|
2376 2D7DAB46>I<003E0000000000FF800000E003C3C00003F00703E00003F00601F00003F0 |
|
2377 0E01F00007F01C01F00007E01803F00007E03803F00007E03003F0000FE07003F0000FC0 |
|
2378 6007F0000FC06007E0000FC06007E0001FC0E00FE0001F80C00FC0001F80001FC0001F80 |
|
2379 001F80003F80001F80003F00003F80003F00003F00003F00003F00007F00007F00007E00 |
|
2380 007E00007E00007E00007E00007E0000FE0000FE0000FC0000FC0000FC0000FC0000FC00 |
|
2381 00FC0001FC0000FC0001F80001F80001F80001F80001F80001F80003F80001F80003F000 |
|
2382 01F80003F00000F80007F00000F8000FF00000FC000FE000007C001FE000007C003FE000 |
|
2383 003E00FFE000001F03CFC0000007FF8FC0000001FC0FC0000000001FC0000000001F8000 |
|
2384 0000001F80000000003F80000000003F000007C0007F00001FE0007E00001FE000FC0000 |
|
2385 1FE000FC00003FC001F800003FC003F000003F8003E00000380007C0000018000F800000 |
|
2386 1C001F0000000E007C0000000781F800000003FFE0000000007F000000002C407DAB30> |
|
2387 121 D E |
|
2388 %EndDVIPSBitmapFont |
|
2389 /Fr 87[33 45[44 50 50 72 50 50 28 39 33 50 50 50 50 78 |
|
2390 28 50 28 28 50 50 33 44 50 44 50 44 33 2[33 1[33 2[72 |
|
2391 94 1[72 61 55 66 1[55 72 72 89 61 72 1[33 72 72 55 61 |
|
2392 72 66 66 72 1[44 1[56 1[28 28 50 50 50 50 50 50 50 50 |
|
2393 50 50 1[25 33 25 2[33 33 33 5[33 29[55 55 2[{ |
|
2394 TeXBase1Encoding ReEncodeFont}74 99.6264 /Times-Roman |
|
2395 rf /Fs 134[50 50 72 50 55 33 39 44 1[55 50 55 83 28 55 |
|
2396 1[28 55 50 33 44 55 44 1[50 8[72 3[66 55 72 1[61 1[72 |
|
2397 94 66 2[39 3[66 72 72 1[72 6[33 50 50 50 50 50 50 50 |
|
2398 50 50 50 1[25 43[55 2[{TeXBase1Encoding ReEncodeFont}48 |
|
2399 99.6264 /Times-Bold rf /Ft 87[30 19[40 40 24[40 45 45 |
|
2400 66 45 45 25 35 30 45 45 45 45 71 25 45 25 25 45 45 30 |
|
2401 40 45 40 45 40 3[30 1[30 1[66 1[86 66 66 56 51 61 66 |
|
2402 51 66 66 81 56 66 35 30 66 66 51 56 66 61 61 66 1[40 |
|
2403 4[25 45 45 45 45 45 45 45 45 45 45 1[23 30 23 2[30 30 |
|
2404 37[51 2[{TeXBase1Encoding ReEncodeFont}73 90.9091 /Times-Roman |
|
2405 rf /Fu 139[30 35 40 14[40 51 45 31[66 11[45 45 45 45 |
|
2406 45 45 48[{TeXBase1Encoding ReEncodeFont}13 90.9091 /Times-Bold |
|
2407 rf /Fv 134[40 1[61 40 45 25 35 35 1[45 45 45 66 25 2[25 |
|
2408 45 45 25 40 45 40 45 45 11[66 51 45 56 66 56 1[61 76 |
|
2409 51 61 1[30 1[66 56 56 66 61 1[56 6[30 11[23 1[23 2[30 |
|
2410 30 40[{TeXBase1Encoding ReEncodeFont}43 90.9091 /Times-Italic |
|
2411 rf |
|
2412 %DVIPSBitmapFont: Fw cmr8 8 13 |
|
2413 /Fw 13 106 df<FFFFFFFFF0FFFFFFFFF003F80007F001F80001F001F80000F801F80000 |
|
2414 7801F800003801F800003801F800001801F800001801F800001801F800001C01F800000C |
|
2415 01F800000C01F800000C01F800000001F800000001F800000001F800000001F800000001 |
|
2416 F800000001F800000001F800000001F800000001F800000001F800000001F800000001F8 |
|
2417 00000001F800000001F800000001F800000001F800000001F800000001F800000001F800 |
|
2418 000001F800000001F800000001F800000001F800000001F800000001F800000001F80000 |
|
2419 0003FC000000FFFFF80000FFFFF80000262D7EAC2C>0 D<00000060000000000000F000 |
|
2420 0000000000F0000000000001F8000000000003FC000000000003FC000000000007FE0000 |
|
2421 00000006FE00000000000E7F00000000000C7F00000000001C3F8000000000183F800000 |
|
2422 0000301FC000000000300FC000000000600FE0000000006007E000000000C007F0000000 |
|
2423 00C003F0000000018003F8000000018001F8000000030001FC000000070000FE00000006 |
|
2424 0000FE0000000E00007F0000000C00007F0000001C00003F8000001800003F8000003800 |
|
2425 001FC000003000001FC000006000000FE0000060000007E00000C0000007F00000C00000 |
|
2426 03F0000180000003F8000180000001F8000300000001FC000700000000FE000600000000 |
|
2427 FE000E000000007F000C000000007F001C000000003F8018000000003F803FFFFFFFFFFF |
|
2428 C03FFFFFFFFFFFC07FFFFFFFFFFFE07FFFFFFFFFFFE0FFFFFFFFFFFFF0342F7DAE3B>I< |
|
2429 00030007000E001C0038007000F001E001C003C0078007800F000F001E001E001E003C00 |
|
2430 3C003C003C0078007800780078007800F800F800F000F000F000F000F000F000F000F000 |
|
2431 F000F000F000F800F800780078007800780078003C003C003C003C001E001E001E000F00 |
|
2432 0F000780078003C001C001E000F000700038001C000E0007000310437AB11B>40 |
|
2433 D<C000E000700038001C000E000F000780038003C001E001E000F000F000780078007800 |
|
2434 3C003C003C003C001E001E001E001E001E001F001F000F000F000F000F000F000F000F00 |
|
2435 0F000F000F000F001F001F001E001E001E001E001E003C003C003C003C00780078007800 |
|
2436 F000F001E001E003C0038007800F000E001C0038007000E000C00010437CB11B>I<0000 |
|
2437 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
2438 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
2439 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
2440 03800000000003800000000003800000000003800000FFFFFFFFFFFCFFFFFFFFFFFCFFFF |
|
2441 FFFFFFFC0000038000000000038000000000038000000000038000000000038000000000 |
|
2442 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
2443 038000000000038000000000038000000000038000000000038000000000038000000000 |
|
2444 038000000000038000000000038000000000038000000000038000002E2F7CA737>43 |
|
2445 D<000C00003C00007C0003FC00FFFC00FC7C00007C00007C00007C00007C00007C00007C |
|
2446 00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C |
|
2447 00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C |
|
2448 00007C00007C00007C00007C00007C0000FE007FFFFE7FFFFE172C7AAB23>49 |
|
2449 D<007F800001FFF0000780FC000E003F001C001F8038000FC070000FC0600007E0F00007 |
|
2450 E0FC0007F0FE0007F0FE0003F0FE0003F0FE0003F07C0007F0000007F0000007F0000007 |
|
2451 E000000FE000000FC000001FC000001F8000003F0000007E0000007C000000F8000001F0 |
|
2452 000003E0000007C000000F8000001E0000003C00000078000000F0003000E0003001C000 |
|
2453 3003800060070000600E0000E01FFFFFE03FFFFFE07FFFFFC0FFFFFFC0FFFFFFC01C2C7D |
|
2454 AB23>I<003FC00001FFF00007C0FC000E007E001C003F001C001F803F001FC03F001FC0 |
|
2455 3F800FC03F000FC03F000FC00C001FC000001FC000001F8000001F8000003F0000003E00 |
|
2456 00007C000000F8000003F00000FFC00000FFF0000000FC0000003F0000001F8000001FC0 |
|
2457 00000FC000000FE000000FE0000007F0000007F0380007F07C0007F0FE0007F0FE0007F0 |
|
2458 FE0007F0FE000FE0F8000FE060000FC070001FC038001F801E003F000780FC0001FFF000 |
|
2459 007FC0001C2D7DAB23>I<00FF000007FFC0000F01F0001C00F8003F007C003F003E003F |
|
2460 003E003F003F001E001F0000001F0000001F0000001F0000001F000007FF00007FFF0001 |
|
2461 FE1F0007F01F001FC01F003F801F007F001F007E001F00FE001F06FC001F06FC001F06FC |
|
2462 001F06FC003F06FE003F067E007F067F00EF8C1F83C7FC0FFF03F801FC01E01F207D9E23 |
|
2463 >97 D<07C0000000FFC0000000FFC00000000FC000000007C000000007C000000007C000 |
|
2464 000007C000000007C000000007C000000007C000000007C000000007C000000007C00000 |
|
2465 0007C000000007C000000007C0FE000007C7FF800007CF03E00007DC01F00007F8007C00 |
|
2466 07F0007E0007E0003E0007C0001F0007C0001F8007C0001F8007C0000F8007C0000FC007 |
|
2467 C0000FC007C0000FC007C0000FC007C0000FC007C0000FC007C0000FC007C0000FC007C0 |
|
2468 000FC007C0001F8007C0001F8007C0001F0007C0003F0007E0003E0007F0007C0007B000 |
|
2469 F80007BC01F000070E07E0000607FF80000001FC0000222F7EAD27>I<001FE000007FFC |
|
2470 0001F01E0003E0070007C01F800F801F801F001F803F001F803E000F007E0000007E0000 |
|
2471 007C000000FC000000FC000000FC000000FC000000FC000000FC000000FC000000FC0000 |
|
2472 00FC0000007E0000007E0000007E0000C03F0000C01F0001C01F8001800FC0038007E007 |
|
2473 0001F03E00007FF800001FC0001A207E9E1F>I<000000F80000001FF80000001FF80000 |
|
2474 0001F800000000F800000000F800000000F800000000F800000000F800000000F8000000 |
|
2475 00F800000000F800000000F800000000F800000000F800000000F800000FE0F800007FF8 |
|
2476 F80001F81EF80003E007F80007C003F8000F8001F8001F0001F8003F0000F8003E0000F8 |
|
2477 007E0000F8007E0000F800FC0000F800FC0000F800FC0000F800FC0000F800FC0000F800 |
|
2478 FC0000F800FC0000F800FC0000F800FC0000F8007C0000F8007E0000F8007E0000F8003E |
|
2479 0001F8001F0001F8001F8003F8000F8007F80003E00EFC0001F03CFFC0007FF0FFC0001F |
|
2480 C0F800222F7EAD27>I<07800FC01FE01FE01FE01FE00FC0078000000000000000000000 |
|
2481 00000000000007C0FFC0FFC00FC007C007C007C007C007C007C007C007C007C007C007C0 |
|
2482 07C007C007C007C007C007C007C007C007C007C007C007C00FE0FFFCFFFC0E2E7EAD14> |
|
2483 105 D E |
|
2484 %EndDVIPSBitmapFont |
|
2485 %DVIPSBitmapFont: Fx cmr10 10 3 |
|
2486 /Fx 3 100 df<001FE0000000FFFC000003E03F000007000F80000F8007E0001FC003F0 |
|
2487 001FE003F0001FE001F8001FE001F8001FE000FC000FC000FC00078000FC00000000FC00 |
|
2488 000000FC00000000FC00000000FC0000007FFC000007FFFC00003FE0FC0000FE00FC0003 |
|
2489 F800FC000FF000FC001FC000FC003FC000FC007F8000FC007F0000FC007F0000FC0CFE00 |
|
2490 00FC0CFE0000FC0CFE0000FC0CFE0001FC0CFE0001FC0CFF0003FC0C7F00077C0C7F8006 |
|
2491 3E183FC01E3E180FE0781FF003FFF00FE0007F8007C026277DA52A>97 |
|
2492 D<03F0000000FFF0000000FFF0000000FFF00000000FF000000003F000000003F0000000 |
|
2493 03F000000003F000000003F000000003F000000003F000000003F000000003F000000003 |
|
2494 F000000003F000000003F000000003F000000003F000000003F000000003F000000003F0 |
|
2495 1FE00003F07FF80003F1E03E0003F3801F8003F7000FC003FE0007E003FC0003F003F800 |
|
2496 01F803F00001F803F00000FC03F00000FC03F00000FE03F00000FE03F000007E03F00000 |
|
2497 7F03F000007F03F000007F03F000007F03F000007F03F000007F03F000007F03F000007F |
|
2498 03F000007F03F000007F03F000007E03F00000FE03F00000FE03F00000FC03F00001FC03 |
|
2499 F80001F803F80003F003FC0003F003EE0007E003C6000FC003C7801F000381E07E000300 |
|
2500 FFF80000001FC000283B7EB92E>I<0003FC00001FFF80007E03E001F8007003F000F807 |
|
2501 E001FC0FC003FC0FC003FC1F8003FC3F8003FC3F0001F87F0000F07F0000007F0000007E |
|
2502 000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE000000FE |
|
2503 000000FE0000007E0000007F0000007F0000003F0000063F8000061F80000E1FC0000C0F |
|
2504 C0001C07E0003803F0007001F800E0007C07C0001FFF000007F8001F277DA525>I |
|
2505 E |
|
2506 %EndDVIPSBitmapFont |
|
2507 /Fy 134[60 3[60 33 47 40 2[60 60 93 33 2[33 60 60 1[53 |
|
2508 60 1[60 53 11[86 2[80 4[106 4[86 86 1[73 1[80 80 66[{ |
|
2509 TeXBase1Encoding ReEncodeFont}24 119.552 /Times-Roman |
|
2510 rf /Fz 134[72 3[80 48 56 64 1[80 72 80 1[40 2[40 80 72 |
|
2511 48 64 1[64 1[72 12[96 3[88 12[104 67[{TeXBase1Encoding ReEncodeFont}19 |
|
2512 143.462 /Times-Bold rf end |
|
2513 %%EndProlog |
|
2514 %%BeginSetup |
|
2515 %%Feature: *Resolution 600dpi |
|
2516 TeXDict begin |
|
2517 %%PaperSize: A4 |
|
2518 end |
|
2519 %%EndSetup |
|
2520 %%Page: 1 1 |
|
2521 TeXDict begin 1 0 bop 0 TeXcolorgray Black 0 TeXcolorgray |
|
2522 1 TeXcolorgray 0 TeXcolorgray 1 TeXcolorgray 0 TeXcolorgray |
|
2523 0 TeXcolorgray 0 TeXcolorgray 1 TeXcolorgray 0 TeXcolorgray |
|
2524 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray |
|
2525 0 TeXcolorgray 0 TeXcolorgray 0.25 TeXcolorgray 0 TeXcolorgray |
|
2526 0.5 TeXcolorgray 0 TeXcolorgray 150 315 a Fz(Categorical)33 |
|
2527 b(Pr)m(oof)i(Theory)f(of)h(Classical)f(Pr)m(opositional)1446 |
|
2528 497 y(Calculus)409 950 y Fy(Gianluigi)d(Bellin)1203 907 |
|
2529 y Fx(a)1279 950 y Fy(Martin)f(Hyland)2006 907 y Fx(b)2086 |
|
2530 950 y Fy(Edmund)f(Robinson)2999 907 y Fx(a)1313 1099 |
|
2531 y Fy(Christian)g(Urban)2100 1056 y Fx(c)977 1266 y Fw(a)1017 |
|
2532 1299 y Fv(Queen)24 b(Mary)-5 b(,)23 b(Univer)o(sity)j(of)d(London,)h |
|
2533 (UK)1159 1412 y Fw(b)1203 1445 y Fv(Univer)o(sity)h(of)f(Cambridg)o(e)o |
|
2534 (,)g(UK)936 1558 y Fw(c)971 1591 y Fv(T)-8 b(ec)o(hnical)25 |
|
2535 b(Univer)o(sity)g(of)f(Munic)o(h)g(\(TUM\),)e(D)p 83 |
|
2536 1871 3454 4 v 83 2000 a Fu(Abstract)83 2206 y Ft(W)-7 |
|
2537 b(e)28 b(in)l(v)o(estigate)j(semantics)f(for)f(classical)h(proof)g |
|
2538 (based)f(on)g(the)f(sequent)j(calculus.)f(W)-7 b(e)27 |
|
2539 b(sho)n(w)i(that)83 2319 y(the)24 b(propositional)i(connecti)n(v)o(es)g |
|
2540 (are)d(not)g(quite)h(well-beha)n(v)o(ed)i(from)d(a)f(traditional)k |
|
2541 (cate)o(gorical)f(per)n(-)83 2432 y(specti)n(v)o(e,)34 |
|
2542 b(and)f(gi)n(v)o(e)g(a)g(more)f(re\002ned,)h(b)n(ut)h(necessarily)h |
|
2543 (comple)o(x,)f(analysis)h(of)d(ho)n(w)g(connecti)n(v)o(es)83 |
|
2544 2545 y(may)25 b(be)h(characterised)j(abstractly)-6 b(.)27 |
|
2545 b(Finally)f(we)f(e)o(xplain)h(the)g(consequences)j(of)c(insisting)j(on) |
|
2546 d(more)83 2658 y(f)o(amiliar)g(cate)o(gorical)h(beha)n(viour)-5 |
|
2547 b(.)83 2925 y Fv(K)m(e)m(y)24 b(wor)m(ds:)46 b Ft(classical)26 |
|
2548 b(logic,)e(proof)h(theory)-6 b(,)25 b(cate)o(gory)g(theory)p |
|
2549 83 3031 V 83 3342 a Fs(1)100 b(Intr)n(oduction)83 3639 |
|
2550 y Fr(In)34 b(this)e(paper)h(we)h(describe)f(the)g(shape)g(of)g(a)h |
|
2551 (semantics)e(for)h(classical)g(proof)g(in)g(accord)g(with)83 |
|
2552 3759 y(Gentzen')-5 b(s)20 b(sequent)f(calculus.)h(F)o(or)g(constructi)n |
|
2553 (v)o(e)e(proof)i(we)g(ha)n(v)o(e)g(the)g(f)o(amiliar)f(correspondence) |
|
2554 83 3879 y(between)k(deductions)e(in)h(minimal)e(logic)i(and)g(terms)g |
|
2555 (of)g(a)h(typed)e(lambda)h(calculus.)g(Deductions)83 |
|
2556 4000 y(in)h(minimal)e(logic)h(\(as)h(in)g(most)f(constructi)n(v)o(e)f |
|
2557 (systems\))g(reduce)j(to)e(a)i(unique)e(normal)g(form,)h(and)83 |
|
2558 4120 y(around)36 b(1970)e(Per)j(Martin-L)8 b(\250)-41 |
|
2559 b(of)34 b(\(see)i([18]\))g(suggested)e(using)h(equality)f(of)i(normal)e |
|
2560 (forms)h(as)83 4241 y(the)26 b(identity)e(criterion)i(for)g(proof)f |
|
2561 (objects)h(in)f(his)g(constructi)n(v)o(e)f(T)-8 b(ype)26 |
|
2562 b(Theories:)f(normal)g(forms)83 4361 y(serv)o(e)30 b(as)h(the)f |
|
2563 (semantics)f(of)h(proof.)g(But)h Fq(\014)6 b(\021)t Fr(-normal)29 |
|
2564 b(forms)g(for)i(typed)e(lambda)h(calculus)g(gi)n(v)o(e)83 |
|
2565 4481 y(maps)23 b(in)f(a)i(free)g(cartesian)f(closed)f(cate)o(gory;)h |
|
2566 (so)f(we)i(get)f(a)g(whole)f(range)i(of)f(cate)o(gorical)g(models)83 |
|
2567 4602 y(of)29 b(constructi)n(v)o(e)e(proof.)h(This)g(is)g(the)g(circle)h |
|
2568 (of)f(connections)g(surrounding)f(the)h(Curry-Ho)n(w)o(ard)83 |
|
2569 4722 y(isomorphism.)22 b(W)-8 b(e)24 b(seek)g(analogues)g(of)g(these)f |
|
2570 (ideas)h(for)g(classical)g(proof.)g(There)g(are)h(a)f(number)83 |
|
2571 4842 y(of)h(immediate)f(problems.)83 5019 y(The)37 b(established)d |
|
2572 (term)i(languages)g(for)g(classical)g(proofs)g(are)h(either)f |
|
2573 (incompatible)e(with)i(the)83 5139 y(symmetries)22 b(apparent)h(in)f |
|
2574 (the)h(sequent)f(calculus)g(\(P)o(arigot)h([16]\))g(or)g(in)f |
|
2575 (reconciling)g(themselv)o(es)83 5259 y(to)29 b(that)f(symmetry)g(at)h |
|
2576 (least)f(mak)o(e)h(e)n(v)n(aluation)e(deterministic)g(\(cf)j(Danos)e |
|
2577 (et)h(al)g([5,21]\).)g(Either)83 5380 y(w)o(ay)20 b(the)f(ideas,)g |
|
2578 (which)g(deri)n(v)o(e)g(from)g(analyses)g(of)h(continuations)d(in)i |
|
2579 (programming)f(\(Grif)n(\002n)h([9],)p 0 TeXcolorgray |
|
2580 106 5712 a Fp(Preprint)25 b(accepted)g(in)f(Theoretical)i(Computer)e |
|
2581 (Science)p 0 TeXcolorgray eop end |
|
2582 %%Page: 2 2 |
|
2583 TeXDict begin 2 1 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
2584 TeXcolorgray 83 83 a Fr(Murthy)28 b([15]\))h(can)h(be)f(thought)f(of)h |
|
2585 (as)g(reducing)g(classical)f(proof)h(to)g(constructi)n(v)o(e)e(proof)i |
|
2586 (via)g(a)83 203 y(double)38 b(ne)o(gation)e(translation.)g(\(A)i(cate)o |
|
2587 (gorical)g(semantics)f(is)g(described)h(in)f(Selinger)h([23].\))83 |
|
2588 324 y(There)c(are)g(term)f(calculi)g(associated)g(directly)g(with)f |
|
2589 (the)h(sequent)g(calculus)g(\(Urban)h([25]\))f(b)n(ut)83 |
|
2590 444 y(it)e(is)g(not)f(clear)i(ho)n(w)e(to)h(formulate)g(mathematically) |
|
2591 e(appealing)i(criteria)g(for)h(identity)e(of)h(such)83 |
|
2592 565 y(terms.)j(What)h(we)g(do)f(here)h(suggests)e(man)o(y)h(commutati)n |
|
2593 (v)o(e)e(con)l(v)o(ersions)h(for)i(Urban')-5 b(s)34 b(terms,)83 |
|
2594 685 y(b)n(ut)g(the)g(matter)f(is)h(not)f(straightforw)o(ard.)g(Also)h |
|
2595 (since)f(reductions)g(of)h(classical)g(proofs)g(in)f(se-)83 |
|
2596 805 y(quent)26 b(calculus)f(form)h(are)h(highly)d(non-deterministic,)g |
|
2597 (normal)h(forms)h(do)f(not)h(readily)g(pro)o(vide)83 |
|
2598 926 y(a)g(criterion)e(for)h(identity)e(of)i(such)g(proofs.)83 |
|
2599 1287 y(There)g(are)f(problems)f(at)h(the)g(le)n(v)o(el)e(of)i |
|
2600 (semantics.)f(There)h(are)h(more)e(or)h(less)g(de)o(generate)g(models) |
|
2601 83 1407 y(gi)n(ving)33 b(in)l(v)n(ariants)f(of)j(proofs)e(\([7])i(and)f |
|
2602 ([12]\))g(and)g(we)h(kno)n(w)e(ho)n(w)g(to)h(construct)f(some)h(more)83 |
|
2603 1528 y(general)41 b(models.)f(But)g(all)h(that)f(is)g(parasitic)h(on)f |
|
2604 (e)o(xperience)h(with)f(Linear)g(Logic.)g(W)-8 b(e)41 |
|
2605 b(lack)83 1648 y(con)l(vincing)35 b(e)o(xamples)f(of)h(models)f |
|
2606 (sensiti)n(v)o(e)f(to)i(the)h(issues)e(on)h(which)g(we)g(focus)h(here.) |
|
2607 f(The)83 1768 y(connection)25 b(with)f(established)g(w)o(ork)h(on)g |
|
2608 (polarised)g(logic,)f(modelling)f(both)i(call-by-name)g(and)83 |
|
2609 1889 y(call-by-v)n(alue)36 b(reduction)g(strate)o(gies)g(\([23],)h |
|
2610 ([26],)f([10]\),)h(is)f(also)g(problematic.)g(Ev)o(en)g(if)h(one)83 |
|
2611 2009 y(considers)c(a)h(system)e(\(as)h(in)g([5]\))h(that)f(mix)o(es)e |
|
2612 (the)j(tw)o(o)e(and)i(considers)e(all)h(the)g(normal)g(forms)83 |
|
2613 2130 y(reachable)j(from)e(representations)g(in)g(it)g(of)h(a)g(proof,)f |
|
2614 (one)h(still)e(does)h(not)g(e)o(xhaust)g(all)g(normal)83 |
|
2615 2250 y(forms)29 b(to)g(which)g(a)h(proof)g(in)f(the)g(sequent)g |
|
2616 (calculus)g(can)h(reduce)g(\(see)g(for)f(e)o(xample)g([24,)g(P)o(age)83 |
|
2617 2370 y(127]\).)22 b(Moreo)o(v)o(er)l(,)e(there)i(is)f(no)h(easy)g(w)o |
|
2618 (ay)f(to)h(e)o(xtract)f(models)f(for)i(our)g(system)e(from)i(cate)o |
|
2619 (gorical)83 2491 y(models)i(in)h(the)f(style)g(of)h(Selinger)-5 |
|
2620 b(.)83 2852 y(The)33 b(project)f(on)h(which)f(we)h(report)g(here)g(w)o |
|
2621 (as)g(moti)n(v)n(ated)d(by)i(Urban')-5 b(s)33 b(strong)e(normalisation) |
|
2622 83 2972 y(result)19 b(\([25])h(and)f([24]\))g(for)h(a)g(formulation)d |
|
2623 (of)j(classical)f(proof.)g(In)g([11],)g(one)h(of)f(us)g(then)g |
|
2624 (outlined)83 3093 y(a)33 b(proposal)f(for)h(a)g(semantics.)f |
|
2625 (Unfortunately)-6 b(,)31 b(the)i(axioms)f(of)g([11])h(entail)f(full)h |
|
2626 (naturality)e(of)83 3213 y(logical)23 b(operations)g(contrary)g(to)g |
|
2627 (the)h(clear)g(intentions)e(of)h(the)g(paper)-5 b(.)24 |
|
2628 b(Here)g(we)g(mak)o(e)f(that)g(good)83 3333 y(and)34 |
|
2629 b(analyse)g(the)g(issue.)f(Since)h(then,)g(another)f(of)h(us)g |
|
2630 (suggested)f(in)g([19])h(basing)f(analysis)g(of)83 3454 |
|
2631 y(classical)c(proof)g(on)f(a)i(simple)d(\(box-free\))j(notion)e(of)h |
|
2632 (proof)f(net.)h(Such)g(systems)f(ha)n(v)o(e)g(implicit)83 |
|
2633 3574 y(naturalities)i(b)n(uilt)f(in)h(so)g(this)g(is)g(in)g(contrast)g |
|
2634 (with)f([11].)i(In)f([6])h(F)8 b(\250)-41 b(uhrmann)30 |
|
2635 b(and)g(Pym)h(analyse)83 3694 y(Robinson')-5 b(s)23 b(proposal)f |
|
2636 (further)-5 b(.)24 b(The)o(y)f(gi)n(v)o(e)f(cate)o(gorical)h |
|
2637 (combinators,)f(add)i Fq(\021)t Fr(-equalities)e(to)i(the)83 |
|
2638 3815 y(implicit)35 b(naturalities)g(and)i(succeed)g(in)f(axiomatizing)f |
|
2639 (reduction.)g(The)i(interaction)e(between)83 3935 y(the)29 |
|
2640 b(equalities)e(and)i(reduction)f(presents)g(computational)e(dif)n |
|
2641 (\002culties,)i(so)g(this)f(is)h(a)h(substantial)83 4056 |
|
2642 y(achie)n(v)o(ement.)35 b(The)g(proof)h(net)g(model)f(is)g(better)h |
|
2643 (dynamically)e(than)h(feared,)i(and)f(suggests)e(a)83 |
|
2644 4176 y(notion)e(of)h(model)g(of)g(classical)f(proof)h(simpler)g(than)f |
|
2645 (that)h(analysed)g(here.)g(W)-8 b(e)34 b(gi)n(v)o(e)d(an)j(e)o(xact)83 |
|
2646 4296 y(account)f(of)f(the)g(relation)g(between)g(the)g(tw)o(o,)g(and)g |
|
2647 (sho)n(w)g(in)g(what)g(sense)g(the)g(F)8 b(\250)-41 b(uhrmann-Pym)83 |
|
2648 4417 y(equalities)24 b(identify)g(proofs)g(which)h(dif)n(fer)g(on)f(a)h |
|
2649 (sequent)f(calculus)h(reading.)83 4778 y(The)33 b(question)e(of)i(what) |
|
2650 f(are)i(the)e(sensible)g(criteria)g(for)h(identity)e(of)i(proofs)f(is)g |
|
2651 (a)h(delicate)g(one.)83 4898 y(The)e(referee)h(rightly)d(stressed)h |
|
2652 (that)g(this)f(is)h(true)h(also)f(of)g(constructi)n(v)o(e)f(proofs,)h |
|
2653 (the)g(dif)n(ference)83 5019 y(between)36 b(the)f(classical)g(and)g |
|
2654 (constructi)n(v)o(e)f(case)i(being)f(that)f(in)h(the)h(latter)f(we)h |
|
2655 (ha)n(v)o(e)f(a)g(rob)n(ust)83 5139 y(semantic)e(notion)g(which)g(is)g |
|
2656 (generally)g(agreed)h(on.)g(W)-8 b(e)34 b(do)f(not)g(e)o(xpect)g(that)g |
|
2657 (in)g(the)h(classical)83 5259 y(case.)e(At)g(the)f(v)o(ery)h(least)f |
|
2658 (dif)n(ferent)g(systems)f(of)i(proof)g(can)g(be)f(e)o(xpected)h(to)f |
|
2659 (lead)h(to)f(dif)n(ferent)83 5380 y(semantics.)19 b(A)g(compelling)f(e) |
|
2660 o(xample)g(is)h(the)g(recent)h(w)o(ork)f(of)h(Lamarche)g(and)f(Strassb) |
|
2661 n(ur)n(ger)h([14].)p 0 TeXcolorgray 1773 5712 a(2)p 0 |
|
2662 TeXcolorgray eop end |
|
2663 %%Page: 3 3 |
|
2664 TeXDict begin 3 2 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
2665 TeXcolorgray 83 83 a Fs(2)100 b(Modelling)24 b(classical)g(pr)n(oofs)83 |
|
2666 380 y Fo(2.1)100 b(Sequent)24 b(Calculus)g(and)g(P)-8 |
|
2667 b(olycate)l(gories)83 677 y Fr(It)29 b(is)f(a)g(f)o(amiliar)g(idea)h |
|
2668 (that)f(what)g(the)g(sequent)g(calculus)g(pro)o(vides)f(is)h(not)g(a)h |
|
2669 (collection)e(of)i(ideal)83 798 y(proofs-in-themselv)o(es,)j(b)n(ut)i |
|
2670 (something)e(more)i(lik)o(e)g(instructions)e(for)j(b)n(uilding)d |
|
2671 (proofs.)i(W)l(ith)83 918 y(this)24 b(in)h(mind)e(we)i(formulate)g |
|
2672 (design)f(criteria)h(for)g(our)g(semantics.)p 0 TeXcolorgray |
|
2673 123 1095 a(\(1\))p 0 TeXcolorgray 50 w(Associati)n(vity)-6 |
|
2674 b(.)22 b(Cut)j(should)e(be)i(an)g(associati)n(v)o(e)e(operation)i(on)f |
|
2675 (proofs.)p 0 TeXcolorgray 123 1215 a(\(2\))p 0 TeXcolorgray |
|
2676 50 w(Identities.)k(W)-8 b(e)28 b(require)h(that)f(there)h(be)f(a)h |
|
2677 (canonical)f(axiom)g(\(identity)f(proof\))i Fq(A)34 b |
|
2678 Fn(`)h Fq(A)28 b Fr(for)289 1336 y(all)d Fq(A)p Fr(,)g(and)g(that)f(it) |
|
2679 g(should)g(act)h(as)g(an)g(identity)e(under)i(cut.)p |
|
2680 0 TeXcolorgray 123 1456 a(\(3\))p 0 TeXcolorgray 50 w(de)g(Mor)n(gan)f |
|
2681 (Duality)-6 b(.)24 b(W)-8 b(e)25 b(tak)o(e)g(a)g(strict)f(duality)g(on) |
|
2682 g(propositions)f(and)h(proofs.)83 1633 y(Of)33 b(these)g(the)f(\002rst) |
|
2683 h(tw)o(o)f(seem)g(compelling)f(while)h(the)h(third)e(could)h(be)h(re)o |
|
2684 (garded)f(as)h(a)g(matter)83 1753 y(of)38 b(con)l(v)o(enience.)e(While) |
|
2685 h(we)h(ha)n(v)o(e)f(not)g(written)f(out)h(the)g(details,)g(it)f(is)h |
|
2686 (our)g(impression)f(that)83 1874 y(the)29 b(basics)f(of)g(our)h |
|
2687 (analysis)e(w)o(ould)h(not)g(need)g(to)g(change)h(if)g(we)f(did)g(not)g |
|
2688 (tak)o(e)h(full)f(de)g(Mor)n(gan)83 1994 y(duality)-6 |
|
2689 b(.)83 2296 y Fo(2.1.1)99 b(P)-8 b(olycate)l(gories)83 |
|
2690 2473 y Fr(The)28 b(general)f(cate)o(gory-lik)o(e)g(structure)g(which)g |
|
2691 (encapsulates)g(the)g(\002rst)h(tw)o(o)f(criteria)h(is)e(Szabo')-5 |
|
2692 b(s)83 2594 y(notion)25 b(of)h(a)f(polycate)o(gory)g(\(Szabo)h([22]\).) |
|
2693 g(Rather)g(than)g(being)f(de\002niti)n(v)o(e,)f(in)h(the)h(w)o(ay)f |
|
2694 (that)h(the)83 2714 y(notion)c(of)i(an)f(ordinary)g(cate)o(gory)g(is)g |
|
2695 (de\002niti)n(v)o(e,)f(there)h(are)h(an)o(y)f(number)g(of)g(v)n |
|
2696 (ariants)g(adapted)g(to)83 2834 y(particular)i(conte)o(xts)e(\(recent)j |
|
2697 (treatments)e(include)g([4])h(and)g([2]\).)p 0 TeXcolorgray |
|
2698 83 3011 a Fs(De\002nition)g(2.1.)p 0 TeXcolorgray 39 |
|
2699 w Fr(A)f Fo(symmetric)f(polycate)l(gory)g Fr(\(henceforth)h(just)f |
|
2700 (polycate)o(gory\))g Fn(P)32 b Fr(consists)22 b(of)p |
|
2701 0 TeXcolorgray 83 3188 a Fn(\017)p 0 TeXcolorgray 50 |
|
2702 w Fr(A)29 b(collection)f Fm(ob)p Fn(P)38 b Fr(of)29 b(objects)g(of)g |
|
2703 Fn(P)8 b Fr(;)29 b(and)g(for)h(each)f(pair)g(of)h(\002nite)f(sequences) |
|
2704 g Fm(\000)g Fr(and)g Fm(\001)g Fr(of)183 3308 y(objects,)24 |
|
2705 b(a)h(collection)f Fn(P)8 b Fm(\(\000;)17 b(\001\))25 |
|
2706 b Fr(of)g(\(poly\)maps)f(from)g Fm(\000)h Fr(to)g Fm(\001)p |
|
2707 Fr(.)p 0 TeXcolorgray 83 3429 a Fn(\017)p 0 TeXcolorgray |
|
2708 50 w Fr(F)o(or)i(each)g(re-ordering)f(of)h(the)f(sequence)h |
|
2709 Fm(\000)g Fr(to)f(produce)g(the)h(sequence)g Fm(\000)2821 |
|
2710 3393 y Fl(0)2844 3429 y Fr(,)f(an)h(isomorphism)183 3549 |
|
2711 y(from)e Fn(P)8 b Fm(\(\000)578 3513 y Fl(0)601 3549 |
|
2712 y Fm(;)17 b(\001\))25 b Fr(to)f Fn(P)8 b Fm(\(\000;)17 |
|
2713 b(\001\))p Fr(,)26 b(functorial)e(in)g(its)g(action,)h(and)f(dually)g |
|
2714 (for)h Fm(\001)p Fr(.)p 0 TeXcolorgray 83 3670 a Fn(\017)p |
|
2715 0 TeXcolorgray 50 w Fr(An)g(identity)e Fm(id)740 3685 |
|
2716 y Fk(A)825 3670 y Fn(2)28 b(P)8 b Fm(\()p Fq(A)p Fm(;)17 |
|
2717 b Fq(A)p Fm(\))25 b Fr(for)g(each)h(object)e Fq(A)p Fr(;)h(and)g(a)g |
|
2718 (composition)958 3893 y Fn(P)8 b Fm(\(\000;)17 b(\001)p |
|
2719 Fq(;)g(A)p Fm(\))22 b Fn(\002)g(P)8 b Fm(\()p Fq(A;)17 |
|
2720 b Fm(\005;)g(\006\))29 b Fn(!)e(P)8 b Fm(\(\000)p Fq(;)17 |
|
2721 b Fm(\005;)g(\001)p Fq(;)g Fm(\006\))g Fq(:)183 4116 |
|
2722 y Fr(for)25 b(each)g Fm(\000)p Fr(,)g Fm(\001)p Fr(,)g |
|
2723 Fq(A)p Fr(,)g Fm(\005)p Fr(,)g Fm(\006)p Fr(,)h(coherent)e(with)g |
|
2724 (re-ordering.)83 4293 y(This)g(data)h(should)f(satisfy)g(identity)f |
|
2725 (and)i(associati)n(vity)e(la)o(ws,)h(which)g(we)h(do)g(not)f(gi)n(v)o |
|
2726 (e)f(here.)83 4470 y(One)41 b(thinks)f(of)g Fn(P)8 b |
|
2727 Fm(\(\000;)17 b(\001\))42 b Fr(as)e(the)h(collection)f(of)g(abstract)h |
|
2728 (proofs)f(of)h Fm(\000)57 b Fn(`)g Fm(\001)p Fr(.)41 |
|
2729 b(W)-8 b(e)42 b(write)e(a)83 4590 y(polymap)24 b Fq(f)38 |
|
2730 b Fn(2)28 b(P)8 b Fm(\(\000;)17 b(\001\))26 b Fr(as)f |
|
2731 Fq(f)38 b Fm(:)28 b(\000)f Fn(!)h Fm(\001)p Fr(.)d(W)-8 |
|
2732 b(e)25 b(picture)g(it)f(as)h(a)g(box)1692 4939 y @beginspecial |
|
2733 @setspecial |
|
2734 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
2735 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
2736 setlinecap stroke grestore end |
|
2737 |
|
2738 @endspecial @beginspecial @setspecial |
|
2739 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
2740 } def /ArrowB { } def [ 8.5359 19.91682 2.84544 19.91682 /Lineto /lineto |
|
2741 load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap stroke |
|
2742 grestore end |
|
2743 |
|
2744 @endspecial |
|
2745 @beginspecial @setspecial |
|
2746 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
2747 } def /ArrowB { } def [ 25.60728 19.91682 19.91682 19.91682 /Lineto |
|
2748 /lineto load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap |
|
2749 stroke grestore end |
|
2750 |
|
2751 @endspecial @beginspecial |
|
2752 @setspecial |
|
2753 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
2754 } def /ArrowB { } def [ 8.5359 8.5359 2.84544 8.5359 /Lineto /lineto |
|
2755 load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap stroke |
|
2756 grestore end |
|
2757 |
|
2758 @endspecial @beginspecial @setspecial |
|
2759 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
2760 } def /ArrowB { } def [ 25.60728 8.5359 19.91682 8.5359 /Lineto /lineto |
|
2761 load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap stroke |
|
2762 grestore end |
|
2763 |
|
2764 @endspecial |
|
2765 1673 4849 a Fm(\000)142 b(\001)-176 b Fq(f)83 5139 y |
|
2766 Fr(with)32 b(input)f(wires)h Fm(\000)g Fr(and)g(output)f(wires)h |
|
2767 Fm(\001)p Fr(.)g(W)-8 b(e)32 b(ha)n(v)o(e)g(e)o(xplicit)f(identities)f |
|
2768 Fm(id)2907 5154 y Fk(A)2964 5139 y Fr(.)j(Composition)83 |
|
2769 5259 y(corresponds)g(to)f(cut:)h(in)f(particular)h(maps)f(are)i |
|
2770 (plugged)e(together)g(at)h(a)h(single)e(object,)g(not)g(an)83 |
|
2771 5380 y(entire)24 b(sequence.)f(W)-8 b(e)24 b(adopt)e(a)i(lazy)f |
|
2772 (algebraic)h(notation)e(for)h(composition.)e(F)o(or)i |
|
2773 Fq(f)39 b Fm(:)27 b(\000)h Fn(!)f Fm(\001)p Fq(;)17 b(A)p |
|
2774 0 TeXcolorgray 1773 5712 a Fr(3)p 0 TeXcolorgray eop |
|
2775 end |
|
2776 %%Page: 4 4 |
|
2777 TeXDict begin 4 3 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
2778 TeXcolorgray 83 83 a Fr(and)27 b Fq(g)36 b Fm(:)c Fq(A;)17 |
|
2779 b Fm(\005)31 b Fn(!)h Fm(\006)27 b Fr(we)h(write)f(the)g(composite)e |
|
2780 (in)i(the)g(diagrammatic)f(order)h(as)h Fq(f)11 b Fm(;)17 |
|
2781 b Fq(g)34 b Fm(:)e(\000)p Fq(;)17 b Fm(\005)32 b Fn(!)83 |
|
2782 203 y Fm(\001)p Fq(;)17 b Fm(\006)p Fr(.)30 b(W)-8 b(e)30 |
|
2783 b(do)e(not)h(introduce)f(a)i(formal)f(notation)f(for)h(composing)f(man) |
|
2784 o(y)g(polymaps,)f(b)n(ut)i(note)83 324 y(that)35 b(such)g(compositions) |
|
2785 e(are)j(determined)e(by)h(trees.)g(Ho)n(we)n(v)o(er)f(it)h(is)g(useful) |
|
2786 f(to)h(ha)n(v)o(e)g(a)h(little)83 444 y(home-spun)24 |
|
2787 b(notation)f(for)j(simple)d(cases.)i(W)-8 b(e)25 b(write)1538 |
|
2788 660 y Fn(f)p Fq(f)5 b(;)17 b(g)t Fn(g)p Fm(;)g Fn(f)p |
|
2789 Fq(h;)g(k)s Fn(g)83 875 y Fr(to)29 b(indicate)g(compositions)d(in)l(v)n |
|
2790 (olving)i(the)h(four)g(multimaps)e Fq(f)11 b Fr(,)29 |
|
2791 b Fq(g)t Fr(,)f Fq(h)i Fr(and)f Fq(k)s Fr(,)g(where)h(the)f |
|
2792 Fq(f)40 b Fr(and)83 996 y Fq(g)33 b Fr(come)d(before)g(the)g |
|
2793 Fq(h)g Fr(and)g Fq(k)s Fr(.)f(F)o(or)h(e)o(xample)f Fq(f)41 |
|
2794 b Fr(and)29 b Fq(g)k Fr(might)c(plug)g(into)f Fq(h)i |
|
2795 Fr(and)g Fq(g)j Fr(also)d(into)e Fq(k)s Fr(.)83 1116 |
|
2796 y(\(There)f(are)f(essentially)f(four)h(distinct)e(cases.\))i(It)g(will) |
|
2797 f(al)o(w)o(ays)h(be)g(possible)e(to)h(determine)h(what)83 |
|
2798 1236 y(we)f(mean)g(from)g(the)f(conte)o(xt.)83 1532 y |
|
2799 Fo(2.1.2)99 b Fn(\003)p Fo(-polycate)l(gories)83 1707 |
|
2800 y Fr(Our)25 b(third)g(design)f(criterion)g(amounts)g(to)g(the)h |
|
2801 (simplifying)e(decision)h(to)g(treat)h(ne)o(gation)f(implic-)83 |
|
2802 1827 y(itly)-6 b(.)24 b(In)g(proof)h(theoretic)g(terms)f(that)g(is)h |
|
2803 (to)f(tak)o(e)h(a)g(formulation)e(with)h(an)h(in)l(v)n(olutory)f(ne)o |
|
2804 (gation)1330 2043 y Fm(\()p Fn(\000)p Fm(\))1483 2002 |
|
2805 y Fl(\003)1551 2043 y Fm(:)k Fq(p)f Fn(!)h Fq(p)1859 |
|
2806 2002 y Fl(\003)1926 2043 y Fq(;)44 b(p)2046 2002 y Fl(\003)2113 |
|
2807 2043 y Fn(!)27 b Fq(p)83 2258 y Fr(on)e(atomic)f(formulae,)g(and)h(e)o |
|
2808 (xtend)f(it)h(to)f(all)g(formulae)h(by)g(setting)1141 |
|
2809 2510 y Fn(>)1218 2474 y Fl(\003)1285 2510 y Fm(=)j Fn(?)644 |
|
2810 b(?)2187 2474 y Fl(\003)2255 2510 y Fm(=)27 b Fn(>)17 |
|
2811 b Fq(;)878 2690 y Fm(\()p Fq(A)22 b Fn(^)g Fq(B)5 b Fm(\))1216 |
|
2812 2654 y Fl(\003)1284 2690 y Fm(=)27 b Fq(B)1466 2654 y |
|
2813 Fl(\003)1528 2690 y Fn(_)22 b Fq(A)1689 2654 y Fl(\003)1847 |
|
2814 2690 y Fm(\()p Fq(A)g Fn(_)h Fq(B)5 b Fm(\))2186 2654 |
|
2815 y Fl(\003)2253 2690 y Fm(=)28 b Fq(B)2436 2654 y Fl(\003)2497 |
|
2816 2690 y Fn(^)23 b Fq(A)2659 2654 y Fl(\003)2715 2690 y |
|
2817 Fq(;)83 2916 y Fr(that)j(is,)g(more)g(or)h(less,)f(by)g(de)g(Mor)n(gan) |
|
2818 g(duality)-6 b(.)24 b(The)j(c)o(yclic)f(choice)g(of)h(order)f(may)g(be) |
|
2819 h(f)o(amiliar)83 3036 y(from)37 b(non-commutati)n(v)o(e)e(linear)i |
|
2820 (logic)g(\(Ruet)g([20]\).)h(It)f(is)g(not)g(strictly)f(necessary)h |
|
2821 (here,)h(b)n(ut)83 3157 y(serv)o(es)25 b(as)f(there)h(to)g(preserv)o(e) |
|
2822 g(a)g(strict)f(duality)f(at)i(the)g(le)n(v)o(el)e(of)i(proofs.)f(Exact) |
|
2823 h(duality)e(permits)h(a)83 3277 y(purely)k(one-sided)f(sequent)h |
|
2824 (calculus)f(as)h(in)g(Girard)g([8],)g(b)n(ut)g(we)g(prefer)h(to)e(k)o |
|
2825 (eep)h(both)g(sides)f(in)83 3397 y(play)e(at)g(the)f(semantic)g(le)n(v) |
|
2826 o(el.)g(Abstractly)g(we)h(get)g(a)g Fn(\003)p Fo(-polycate)l(gory)p |
|
2827 Fr(.)p 0 TeXcolorgray 83 3572 a Fs(De\002nition)34 b(2.2.)p |
|
2828 0 TeXcolorgray 46 w Fr(A)f Fo(symmetric)g Fn(\003)p Fo(-polycate)l |
|
2829 (gory)f Fr(\(henceforth)i(just)e Fn(\003)p Fo(-polycate)l(gory)p |
|
2830 Fr(\))h Fn(P)41 b Fr(con-)83 3693 y(sists)36 b(of)i(a)f(polycate)o |
|
2831 (gory)f Fn(P)46 b Fr(equipped)37 b(with)f(an)i(in)l(v)n(olutory)d(ne)o |
|
2832 (gation)h Fm(\()p Fn(\000)p Fm(\))2892 3657 y Fl(\003)2969 |
|
2833 3693 y Fr(on)h(objects)g(to-)83 3813 y(gether)f(with)f(for)h(each)g |
|
2834 Fm(\000)p Fr(,)f Fm(\001)p Fr(,)h Fq(A)p Fr(,)g(an)f(isomorphism)e |
|
2835 Fn(P)8 b Fm(\(\000;)17 b(\001)p Fq(;)g(A)p Fm(\))2537 |
|
2836 3786 y Fn(\030)2538 3817 y Fm(=)2662 3813 y Fn(P)8 b |
|
2837 Fm(\()p Fq(A)2850 3777 y Fl(\003)2890 3813 y Fq(;)17 |
|
2838 b Fm(\000;)g(\001\))35 b Fr(coherent)83 3934 y(with)24 |
|
2839 b(re-ordering)h(and)g(composition.)83 4109 y(W)l(ith)k(this)f(in)h |
|
2840 (place)g(one)g(should)f(not)g(tak)o(e)i(the)f(talk)f(of)h(input)f(and)h |
|
2841 (output)f(abo)o(v)o(e)g(too)h(literally:)83 4229 y(according)c(to)g |
|
2842 (the)g Fn(\003)p Fr(-polycate)o(gorical)f(perspecti)n(v)o(e)f(an)j |
|
2843 (input)d(wire)j(of)f(kind)f Fq(A)h Fr(is)g(ef)n(fecti)n(v)o(ely)e(an)83 |
|
2844 4350 y(output)j(wire)i(of)f(type)g Fq(A)952 4313 y Fl(\003)991 |
|
2845 4350 y Fr(.)g(W)-8 b(e)28 b(shall)e(not)h(need)g(to)g(pay)g(much)f |
|
2846 (attention)g(to)h(the)g Fm(\()p Fn(\000)p Fm(\))3093 |
|
2847 4313 y Fl(\003)3160 4350 y Fr(operation)83 4470 y(which)33 |
|
2848 b(tak)o(es)g(polymaps)f Fm(\000)44 b Fn(!)f Fm(\001)p |
|
2849 Fq(;)17 b(B)39 b Fr(to)33 b(polymaps)e Fq(B)2114 4434 |
|
2850 y Fl(\003)2154 4470 y Fq(;)17 b Fm(\000)43 b Fn(!)g Fm(\001)p |
|
2851 Fr(.)34 b(Ho)n(we)n(v)o(er)e(we)i(shall)e(need)83 4590 |
|
2852 y(notation)24 b(for)h(v)n(ariants)f(of)h(the)f(identity)g |
|
2853 Fm(id)1579 4605 y Fk(A)1664 4590 y Fm(:)j Fq(A)h Fn(!)f |
|
2854 Fq(A)p Fr(.)e(W)-8 b(e)26 b(write)e(these)h(as)918 4806 |
|
2855 y Fm(in)999 4821 y Fk(A)1084 4806 y Fm(:)j Fn(\000)g(!)f |
|
2856 Fq(A)1444 4765 y Fl(\003)1500 4806 y Fq(;)17 b(A)100 |
|
2857 b Fr(and)f Fm(ev)2057 4821 y Fk(A)2141 4806 y Fm(:)28 |
|
2858 b Fq(A;)17 b(A)2386 4765 y Fl(\003)2453 4806 y Fn(!)27 |
|
2859 b(\000)17 b Fq(:)83 5021 y Fr(These)25 b(can)g(be)g(pictured)g(as)g |
|
2860 (follo)n(ws.)1385 5382 y @beginspecial @setspecial |
|
2861 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
2862 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
2863 setlinecap stroke grestore end |
|
2864 |
|
2865 @endspecial |
|
2866 1550 5215 a |
|
2867 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A |
|
2868 16 {InitRnode } NewNode end end |
|
2869 1550 5215 a 1645 5215 a |
|
2870 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
2871 16 {InitRnode } NewNode end end |
|
2872 1645 5215 a 1550 |
|
2873 5314 a |
|
2874 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
2875 16 {InitRnode } NewNode end end |
|
2876 1550 5314 a 1645 5314 a |
|
2877 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
2878 16 {InitRnode } NewNode end end |
|
2879 1645 5314 a 1385 5382 |
|
2880 a |
|
2881 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
2882 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
2883 0.0 0 0 /N@A /N@B InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
2884 0 setlinecap stroke grestore grestore end |
|
2885 1385 5382 a 1385 5382 a |
|
2886 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
2887 1385 5382 a 1385 5382 a |
|
2888 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 16.11903 |
|
2889 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
2890 exch } PutCoor PutBegin end |
|
2891 1385 |
|
2892 5382 a 1339 5417 a Fq(A)1412 5380 y Fl(\003)1385 5382 |
|
2893 y |
|
2894 tx@Dict begin PutEnd end |
|
2895 1385 5382 a 1385 5382 a |
|
2896 tx@Dict begin PutEnd end |
|
2897 1385 5382 a 1385 5382 a |
|
2898 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
2899 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
2900 0.0 0 0 /N@C /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
2901 0 setlinecap stroke grestore grestore end |
|
2902 1385 |
|
2903 5382 a 1385 5382 a |
|
2904 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
2905 1385 5382 a 1385 5382 a |
|
2906 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 8.80824 |
|
2907 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
2908 exch } PutCoor PutBegin end |
|
2909 1385 5382 |
|
2910 a 1348 5417 a Fq(A)1385 5382 y |
|
2911 tx@Dict begin PutEnd end |
|
2912 1385 5382 a 1385 5382 |
|
2913 a |
|
2914 tx@Dict begin PutEnd end |
|
2915 1385 5382 a 1462 5288 a Fm(in)1999 5382 y @beginspecial |
|
2916 @setspecial |
|
2917 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
2918 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
2919 setlinecap stroke grestore end |
|
2920 |
|
2921 @endspecial 1975 5215 a |
|
2922 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A |
|
2923 16 {InitRnode } NewNode end end |
|
2924 1975 5215 a 2070 |
|
2925 5215 a |
|
2926 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
2927 16 {InitRnode } NewNode end end |
|
2928 2070 5215 a 1975 5314 a |
|
2929 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
2930 16 {InitRnode } NewNode end end |
|
2931 1975 5314 a 2070 5314 |
|
2932 a |
|
2933 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
2934 16 {InitRnode } NewNode end end |
|
2935 2070 5314 a 1999 5382 a |
|
2936 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
2937 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
2938 0.0 0 0 /N@A /N@B InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
2939 0 setlinecap stroke grestore grestore end |
|
2940 1999 5382 a 1999 5382 a |
|
2941 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
2942 1999 |
|
2943 5382 a 1999 5382 a |
|
2944 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 13.5583 |
|
2945 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
2946 exch } PutCoor PutBegin end |
|
2947 1999 5382 a 1943 5417 a Fq(A)2016 |
|
2948 5380 y Fl(\003)1999 5382 y |
|
2949 tx@Dict begin PutEnd end |
|
2950 1999 5382 a 1999 5382 a |
|
2951 tx@Dict begin PutEnd end |
|
2952 1999 |
|
2953 5382 a 1999 5382 a |
|
2954 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
2955 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
2956 0.0 0 0 /N@C /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
2957 0 setlinecap stroke grestore grestore end |
|
2958 1999 5382 a 1999 5382 a |
|
2959 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
2960 1999 5382 |
|
2961 a 1999 5382 a |
|
2962 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 8.80824 |
|
2963 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
2964 exch } PutCoor PutBegin end |
|
2965 1999 5382 a 1962 5417 a Fq(A)1999 5382 |
|
2966 y |
|
2967 tx@Dict begin PutEnd end |
|
2968 1999 5382 a 1999 5382 a |
|
2969 tx@Dict begin PutEnd end |
|
2970 1999 5382 a 2069 5288 a Fm(ev)p |
|
2971 0 TeXcolorgray 1773 5712 a Fr(4)p 0 TeXcolorgray eop |
|
2972 end |
|
2973 %%Page: 5 5 |
|
2974 TeXDict begin 5 4 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
2975 TeXcolorgray 83 83 a Fr(W)-8 b(e)32 b(note)g(that)f(the)g(operation)g |
|
2976 (taking)g(a)h(polymap)f Fq(f)51 b Fm(:)40 b(\000)g Fn(!)g |
|
2977 Fm(\001)p Fq(;)17 b(B)37 b Fr(to)31 b Fq(f)2740 47 y |
|
2978 Fl(\003)2820 83 y Fm(:)40 b Fq(B)2966 47 y Fl(\003)3006 |
|
2979 83 y Fq(;)17 b Fm(\000)40 b Fn(!)g Fm(\001)32 b Fr(say)83 |
|
2980 203 y(is)26 b(implemented)f(by)h(composition:)e(one)i(has)h |
|
2981 Fq(f)1785 167 y Fl(\003)1855 203 y Fm(=)j Fq(f)11 b Fm(;)17 |
|
2982 b(in)o Fr(.)26 b(Similarly)g(for)g(the)h(operation)e(taking)83 |
|
2983 324 y Fq(g)36 b Fm(:)c Fq(A;)17 b Fm(\000)32 b Fn(!)g |
|
2984 Fm(\001)27 b Fr(to)g Fq(g)831 288 y Fl(\003)902 324 y |
|
2985 Fm(:)32 b(\000)g Fn(!)g Fm(\001)p Fq(;)17 b(A)1384 288 |
|
2986 y Fl(\003)1424 324 y Fr(,)27 b(one)g(has)g Fq(g)1858 |
|
2987 288 y Fl(\003)1929 324 y Fm(=)32 b(ev)r(;)17 b Fq(g)t |
|
2988 Fr(.)27 b(In)g(particular)g(we)h(ha)n(v)o(e)f(equations)83 |
|
2989 444 y(of)e(the)g(form)f Fm(in;)17 b(ev)29 b(=)f(id)c |
|
2990 Fr(as)h(in)f(the)h(follo)n(wing)e(picture.)2100 408 y |
|
2991 Fw(1)1369 772 y @beginspecial @setspecial |
|
2992 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
2993 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
2994 setlinecap stroke grestore end |
|
2995 |
|
2996 @endspecial |
|
2997 @beginspecial @setspecial |
|
2998 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 31.29819 |
|
2999 11.38092 42.67911 -5.69046 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3000 setlinecap stroke grestore end |
|
3001 |
|
3002 @endspecial 1535 796 a |
|
3003 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A |
|
3004 16 {InitRnode } NewNode end end |
|
3005 1535 |
|
3006 796 a 1629 796 a |
|
3007 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3008 16 {InitRnode } NewNode end end |
|
3009 1629 796 a 1535 702 a |
|
3010 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
3011 16 {InitRnode } NewNode end end |
|
3012 1535 702 a 1629 |
|
3013 702 a |
|
3014 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
3015 16 {InitRnode } NewNode end end |
|
3016 1629 702 a 1535 607 a |
|
3017 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E |
|
3018 16 {InitRnode } NewNode end end |
|
3019 1535 607 a 1629 607 a |
|
3020 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F |
|
3021 16 {InitRnode } NewNode end end |
|
3022 1629 |
|
3023 607 a 1369 772 a |
|
3024 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3025 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3026 0.0 0 0 /N@A /N@B InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3027 0 setlinecap stroke grestore grestore end |
|
3028 1369 772 a 1369 772 a |
|
3029 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3030 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3031 0.0 0 0 /N@C /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3032 0 setlinecap stroke grestore grestore end |
|
3033 1369 772 a 1369 |
|
3034 772 a |
|
3035 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3036 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3037 0.0 0 0 /N@E /N@F InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3038 0 setlinecap stroke grestore grestore end |
|
3039 1369 772 a 1447 678 a Fm(in)1628 772 y(ev)1892 |
|
3040 765 y Fr(=)2014 820 y @beginspecial @setspecial |
|
3041 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
3042 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3043 setlinecap stroke grestore end |
|
3044 |
|
3045 @endspecial |
|
3046 @beginspecial @setspecial |
|
3047 tx@Dict begin STP newpath 0.85358 SLW 0 setgray /ArrowA { moveto |
|
3048 } def /ArrowB { } def [ 8.5359 14.22636 0.0 14.22636 /Lineto /lineto |
|
3049 load def false Line gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
3050 grestore end |
|
3051 |
|
3052 @endspecial @beginspecial |
|
3053 @setspecial |
|
3054 tx@Dict begin STP newpath 0.85358 SLW 0 setgray /ArrowA { moveto |
|
3055 } def /ArrowB { } def [ 28.45274 14.22636 19.91682 14.22636 /Lineto |
|
3056 /lineto load def false Line gsave 0.85358 SLW 0 setgray 0 setlinecap |
|
3057 stroke grestore end |
|
3058 |
|
3059 @endspecial 2092 730 a Fm(id)83 1060 y Fr(The)38 |
|
3060 b(notion)e(of)i(a)f Fn(\003)p Fr(-polycate)o(gory)f(satis\002es)i(our)f |
|
3061 (design)g(criteria)g(and)h(so)f(gi)n(v)o(es)f(a)h(\002rst)h(step)83 |
|
3062 1180 y(to)n(w)o(ards)28 b(a)i(de\002nition)e(of)h(a)h(model)e(for)h |
|
3063 (classical)g(proof.)g(It)g(describes)g(a)g(notion)f(of)h(proof)g(with) |
|
3064 83 1300 y(associati)n(v)o(e)d(cut,)i(identities)e(and)h(strict)g |
|
3065 (duality)-6 b(,)26 b(b)n(ut)h(without)g(logical)g(operations)f(and)i |
|
3066 (without)83 1421 y(structural)21 b(rules.)g(F)o(or)h(classical)f(logic) |
|
3067 f(we)i(need)g(to)f(add)g(the)g(propositional)e(connecti)n(v)o(es)h(and) |
|
3068 i(the)83 1541 y(structural)j(rules)f(of)h(weak)o(ening)g(and)f |
|
3069 (contraction.)g(W)-8 b(e)26 b(treat)e(these)h(tw)o(o)f(in)h(turn.)83 |
|
3070 1863 y Fo(2.2)100 b(Lo)o(gical)24 b(rules)83 2163 y Fr(W)-8 |
|
3071 b(e)40 b(consider)f(ho)n(w)f(rules)h(of)g(inference)h(for)g(the)f |
|
3072 (classical)f(connecti)n(v)o(es)g(should)g(be)h(treated.)83 |
|
3073 2284 y(W)-8 b(e)33 b(\002rst)g(describe)f(the)h(operations)e(together)h |
|
3074 (with)g(the)g(properties)g(\(naturality)-6 b(,)31 b(commutati)n(v)o(e) |
|
3075 83 2404 y(con)l(v)o(ersions\))26 b(which)g(we)h(re)o(gard)g(as)g |
|
3076 (implicit;)d(and)j(then)g(we)g(consider)f(which)g(proof)h(diagrams)83 |
|
3077 2524 y(should)d(further)h(be)g(identi\002ed)f(as)h(a)g(result)g(of)f |
|
3078 (meaning)g(preserving)h(reductions.)83 2839 y Fo(2.2.1)99 |
|
3079 b(Lo)o(gical)25 b(oper)o(ations)83 3019 y Fr(As)e(logical)g(operators)g |
|
3080 (we)g(consider)g(only)g Fn(>)p Fr(,)h Fn(^)p Fr(,)f(and)g(their)g(de)h |
|
3081 (Mor)n(gan)e(duals,)h Fn(?)p Fr(,)g Fn(_)p Fr(.)h(Ne)o(gation)83 |
|
3082 3139 y(is)f(de\002ned)g(implicitly)d(by)j(de)g(Mor)n(gan)f(duality)-6 |
|
3083 b(,)21 b(and)i(other)g(logical)f(operators)g(in)h(terms)f(of)h(those)83 |
|
3084 3260 y(gi)n(v)o(en.)83 3432 y(W)-8 b(e)26 b(recall)f(the)f(rules)h(for) |
|
3085 g Fn(^)g Fr(and)g Fn(>)h Fr(in)e(sequent)g(calculus)h(form.)301 |
|
3086 3631 y Fj(A;)15 b(B)5 b(;)15 b Fi(\000)26 b Fh(`)f Fi(\001)p |
|
3087 271 3669 522 4 v 271 3749 a Fj(A)20 b Fh(^)g Fj(B)5 b(;)15 |
|
3088 b Fi(\000)25 b Fh(`)g Fi(\001)834 3699 y Fh(^)p Ft(-L)1122 |
|
3089 3631 y Fi(\000)g Fh(`)g Fi(\001)p Fj(;)15 b(C)98 b Fi(\005)25 |
|
3090 b Fh(`)g Fi(\003)p Fj(;)15 b(D)p 1122 3669 797 4 v 1150 |
|
3091 3749 a Fi(\000)p Fj(;)g Fi(\005)26 b Fh(`)f Fi(\001)p |
|
3092 Fj(;)15 b Fi(\003)p Fj(;)g(C)27 b Fh(^)20 b Fj(D)1961 |
|
3093 3699 y Fh(^)p Ft(-R)2310 3649 y Fi(\000)25 b Fh(`)g Fi(\001)p |
|
3094 2254 3669 350 4 v 2254 3749 a Fh(>)p Fj(;)15 b Fi(\000)25 |
|
3095 b Fh(`)g Fi(\001)2645 3700 y Fh(>)p Ft(-L)p 2944 3669 |
|
3096 152 4 v 2944 3749 a Fh(`)f(>)3137 3700 y(>)p Ft(-R)h |
|
3097 Fj(:)83 3982 y Fr(W)-8 b(e)26 b(recast)f(these)f(rules)h(in)f(terms)h |
|
3098 (of)g Fn(\003)p Fr(-polycate)o(gories.)e(So)i(we)g(require)g |
|
3099 (operations)860 4247 y Fn(P)8 b Fm(\()p Fq(A;)17 b(B)5 |
|
3100 b(;)17 b Fm(\000;)g(\001\))27 b Fn(\000)-16 b(!)27 b(P)8 |
|
3101 b Fm(\()p Fq(A)23 b Fn(^)g Fq(B)5 b(;)17 b Fm(\000;)g(\001\))55 |
|
3102 b(:)g Fq(h)28 b Fn(!)p 2649 4168 57 4 v 27 w Fq(h)g(;)361 |
|
3103 4428 y Fn(P)8 b Fm(\(\000;)17 b(\001)p Fq(;)g(C)7 b Fm(\))22 |
|
3104 b Fn(\002)h(P)8 b Fm(\(\005;)17 b(\003)p Fq(;)g(D)s Fm(\))27 |
|
3105 b Fn(\000)-16 b(!)27 b(P)8 b Fm(\(\000)p Fq(;)17 b Fm(\005;)g(\001)p |
|
3106 Fq(;)g Fm(\003)p Fq(;)g(C)29 b Fn(^)22 b Fq(D)s Fm(\))55 |
|
3107 b(:)h(\()p Fq(f)5 b(;)17 b(g)t Fm(\))26 b Fn(!)i Fq(f)33 |
|
3108 b Fn(\001)21 b Fq(g)31 b(;)1043 4608 y Fn(P)8 b Fm(\(\000;)17 |
|
3109 b(\001\))28 b Fn(\000)-17 b(!)28 b(P)8 b Fm(\()p Fn(>)p |
|
3110 Fq(;)17 b Fm(\000;)g(\001\))56 b(:)f Fq(h)28 b Fn(!)f |
|
3111 Fq(h)2463 4572 y Fw(+)2550 4608 y Fq(;)1546 4789 y(?)h |
|
3112 Fn(2)g(P)8 b Fm(\()28 b(;)17 b Fn(>)p Fm(\))28 b Fq(;)83 |
|
3113 5030 y Fr(encapsulating)c(the)h Fn(^)p Fr(-L,)g Fn(^)p |
|
3114 Fr(-R,)h Fn(>)p Fr(-L)g(and)f Fn(>)p Fr(-R)h(rules.)e(This)h(imprecise) |
|
3115 f(notation)f(will)i(serv)o(e)f(for)p 0 TeXcolorgray 83 |
|
3116 5169 299 4 v 83 5233 a Fw(1)174 5266 y Ft(T)-7 b(o)22 |
|
3117 b(a)n(v)n(oid)j(misunderstanding)i(we)22 b(stress)i(that)g(there)g(is)e |
|
3118 (no)h(composition)j(of)d(the)g(form)g Fi(ev)r(;)15 b(id)o |
|
3119 Ft(.)22 b(There)h(is)83 5379 y(nothing)j(to)d(plug)i(into.)p |
|
3120 0 TeXcolorgray 0 TeXcolorgray 1773 5712 a Fr(5)p 0 TeXcolorgray |
|
3121 eop end |
|
3122 %%Page: 6 6 |
|
3123 TeXDict begin 6 5 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
3124 TeXcolorgray 83 83 a Fr(this)24 b(paper)-5 b(.)25 b(W)-8 |
|
3125 b(e)25 b(can)g(picture)g(the)f(rules)h(thus.)978 528 |
|
3126 y @beginspecial @setspecial |
|
3127 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 5.69046 |
|
3128 5.69046 17.07181 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3129 setlinecap stroke grestore end |
|
3130 |
|
3131 @endspecial 1044 438 a Fq(h)854 |
|
3132 437 y |
|
3133 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
3134 } false /N@A 16 {InitRnode } NewNode end end |
|
3135 854 437 a 20 w @beginspecial @setspecial |
|
3136 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
3137 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
3138 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
3139 grestore end |
|
3140 |
|
3141 @endspecial |
|
3142 Fn(^)1025 362 y |
|
3143 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3144 16 {InitRnode } NewNode end end |
|
3145 1025 362 a 1025 457 a |
|
3146 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
3147 16 {InitRnode } NewNode end end |
|
3148 1025 457 a 978 |
|
3149 528 a |
|
3150 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3151 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3152 0.0 0 0 /N@A /N@B InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
3153 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3154 grestore grestore end |
|
3155 978 528 a 978 528 a |
|
3156 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3157 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3158 0.0 0 0 /N@A /N@C InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
3159 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3160 grestore grestore end |
|
3161 978 528 a 623 410 a |
|
3162 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
3163 16 {InitRnode } NewNode end end |
|
3164 623 410 |
|
3165 a 978 528 a |
|
3166 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3167 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3168 0.0 0 0 /N@A /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3169 0 setlinecap stroke grestore grestore end |
|
3170 978 528 a 978 528 a |
|
3171 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3172 978 528 a 978 528 a |
|
3173 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 33.67334 |
|
3174 8.2 0.0 NAngle 90 sub Uput exch pop add a PtoC h1 add exch w1 add |
|
3175 exch } PutCoor PutBegin end |
|
3176 978 |
|
3177 528 a 838 562 a Fq(A)d Fn(^)h Fq(B)978 528 y |
|
3178 tx@Dict begin PutEnd end |
|
3179 978 528 |
|
3180 a 978 528 a |
|
3181 tx@Dict begin PutEnd end |
|
3182 978 528 a 1280 410 a @beginspecial @setspecial |
|
3183 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 11.38092 |
|
3184 5.69046 22.76227 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3185 setlinecap stroke grestore end |
|
3186 |
|
3187 |
|
3188 @endspecial 1393 320 a Fq(f)1280 410 y @beginspecial |
|
3189 @setspecial |
|
3190 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 11.38092 |
|
3191 -5.69046 22.76227 -22.76227 .5 Frame gsave 0.85358 SLW 0 setgray |
|
3192 0 setlinecap stroke grestore end |
|
3193 |
|
3194 @endspecial 1397 556 a(g)1534 437 y |
|
3195 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
3196 } false /N@A 16 {InitRnode } NewNode end end |
|
3197 1534 |
|
3198 437 a 20 w @beginspecial @setspecial |
|
3199 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
3200 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
3201 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
3202 grestore end |
|
3203 |
|
3204 @endspecial Fn(^)1469 |
|
3205 292 y |
|
3206 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3207 16 {InitRnode } NewNode end end |
|
3208 1469 292 a 1469 528 a |
|
3209 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
3210 16 {InitRnode } NewNode end end |
|
3211 1469 528 a 1280 410 a |
|
3212 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3213 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3214 0.0 0 0 /N@A /N@B InitNC { /AngleA 170. def /AngleB 0. def 0.67 |
|
3215 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3216 grestore grestore end |
|
3217 1280 |
|
3218 410 a 1280 410 a |
|
3219 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3220 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3221 0.0 0 0 /N@A /N@C InitNC { /AngleA 190. def /AngleB 0. def 0.67 |
|
3222 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3223 grestore grestore end |
|
3224 1280 410 a 1871 410 a |
|
3225 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
3226 16 {InitRnode } NewNode end end |
|
3227 1871 410 a 1280 |
|
3228 410 a |
|
3229 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3230 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3231 0.0 0 0 /N@A /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3232 0 setlinecap stroke grestore grestore end |
|
3233 1280 410 a 1280 410 a |
|
3234 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3235 1280 410 a 1280 410 a |
|
3236 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 34.68361 |
|
3237 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
3238 exch } PutCoor PutBegin end |
|
3239 1280 |
|
3240 410 a 1153 444 a Fq(C)29 b Fn(^)23 b Fq(D)1280 410 y |
|
3241 tx@Dict begin PutEnd end |
|
3242 |
|
3243 1280 410 a 1280 410 a |
|
3244 tx@Dict begin PutEnd end |
|
3245 1280 410 a 2136 551 a @beginspecial |
|
3246 @setspecial |
|
3247 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
3248 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3249 setlinecap stroke grestore end |
|
3250 |
|
3251 @endspecial @beginspecial @setspecial |
|
3252 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
3253 } def /ArrowB { } def [ 8.5359 19.91682 2.84544 19.91682 /Lineto /lineto |
|
3254 load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap stroke |
|
3255 grestore end |
|
3256 |
|
3257 @endspecial |
|
3258 @beginspecial @setspecial |
|
3259 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
3260 } def /ArrowB { } def [ 25.60728 19.91682 19.91682 19.91682 /Lineto |
|
3261 /lineto load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap |
|
3262 stroke grestore end |
|
3263 |
|
3264 @endspecial @beginspecial |
|
3265 @setspecial |
|
3266 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
3267 } def /ArrowB { } def [ 8.5359 8.5359 2.84544 8.5359 /Lineto /lineto |
|
3268 load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap stroke |
|
3269 grestore end |
|
3270 |
|
3271 @endspecial @beginspecial @setspecial |
|
3272 tx@Dict begin STP newpath 0.42677 SLW 0 setgray /ArrowA { moveto |
|
3273 } def /ArrowB { } def [ 25.60728 8.5359 19.91682 8.5359 /Lineto /lineto |
|
3274 load def false Line gsave 0.42677 SLW 0 setgray 0 setlinecap stroke |
|
3275 grestore end |
|
3276 |
|
3277 @endspecial |
|
3278 2106 462 a Fm(\000)165 b(\001)-186 b Fq(h)2255 362 y |
|
3279 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A |
|
3280 16 {InitRnode } NewNode end end |
|
3281 |
|
3282 2255 362 a 2255 292 a |
|
3283 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3284 16 {InitRnode } NewNode end end |
|
3285 2255 292 a 2136 292 a |
|
3286 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
3287 16 {InitRnode } NewNode end end |
|
3288 2136 292 |
|
3289 a 2136 551 a |
|
3290 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3291 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3292 0.0 0 0 /N@A /N@B InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3293 0 setlinecap stroke grestore grestore end |
|
3294 2136 551 a 2136 551 a |
|
3295 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3296 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3297 0.0 0 0 /N@B /N@C InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3298 0 setlinecap stroke grestore grestore end |
|
3299 2136 551 a 2136 551 |
|
3300 a |
|
3301 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3302 2136 551 a 2136 551 a |
|
3303 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 9.33336 |
|
3304 8.33333 0.0 NAngle 90 sub Uput exch pop add a PtoC h1 add exch w1 |
|
3305 add exch } PutCoor PutBegin end |
|
3306 2136 551 a 2097 586 a Fn(>)2136 |
|
3307 551 y |
|
3308 tx@Dict begin PutEnd end |
|
3309 2136 551 a 2136 551 a |
|
3310 tx@Dict begin PutEnd end |
|
3311 2136 551 a 506 w @beginspecial |
|
3312 @setspecial |
|
3313 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
3314 8.5359 19.91682 19.91682 .5 Frame gsave 0.85358 SLW 0 setgray 0 setlinecap |
|
3315 stroke grestore end |
|
3316 |
|
3317 @endspecial 2736 457 a Fq(?)2807 433 y |
|
3318 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@A |
|
3319 16 {InitRnode } NewNode end end |
|
3320 2807 |
|
3321 433 a 2949 433 a |
|
3322 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3323 16 {InitRnode } NewNode end end |
|
3324 2949 433 a 2642 551 a |
|
3325 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3326 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3327 0.0 0 0 /N@A /N@B InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3328 0 setlinecap stroke grestore grestore end |
|
3329 2642 551 a 2642 |
|
3330 551 a |
|
3331 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3332 2642 551 a 2642 551 a |
|
3333 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 9.33336 |
|
3334 8.33333 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 |
|
3335 add exch } PutCoor PutBegin end |
|
3336 2642 551 a 2603 586 a Fn(>)2642 |
|
3337 551 y |
|
3338 tx@Dict begin PutEnd end |
|
3339 2642 551 a 2642 551 a |
|
3340 tx@Dict begin PutEnd end |
|
3341 2642 551 a 83 837 a Fr(A)31 |
|
3342 b(notion)f(of)i(duality)d(is)i(b)n(uilt)f(into)g(the)h(notion)f(of)h |
|
3343 Fn(\003)p Fr(-polycate)o(gory)-6 b(.)30 b(So)h(gi)n(v)o(en)f(what)g(we) |
|
3344 i(ha)n(v)o(e)83 957 y(said)26 b(about)f(the)g(operations)g |
|
3345 Fn(>)h Fr(and)g Fn(^)p Fr(,)g(there)g(is)f(no)g(need)h(for)g |
|
3346 (substantial)e(discussion)g(of)i(the)f(de)83 1078 y(Mor)n(gan)f(duals)h |
|
3347 Fn(?)g Fr(and)g Fn(_)p Fr(.)g(W)-8 b(e)25 b(may)g(as)g(well)f(o)o(v)o |
|
3348 (erload)g(the)g(notation)g(and)g(tak)o(e)h(operations)881 |
|
3349 1342 y Fn(P)8 b Fm(\(\000;)17 b(\001)p Fq(;)g(C)r(;)g(D)s |
|
3350 Fm(\))27 b Fn(\000)-16 b(!)27 b(P)8 b Fm(\(\000;)17 b(\001)p |
|
3351 Fq(;)g(C)29 b Fn(_)23 b Fq(D)s Fm(\))55 b(:)g Fq(h)28 |
|
3352 b Fn(!)p 2682 1263 57 4 v 27 w Fq(h)397 1522 y Fn(P)8 |
|
3353 b Fm(\()p Fq(A;)17 b Fm(\000;)g(\001\))22 b Fn(\002)h(P)8 |
|
3354 b Fm(\()p Fq(B)d(;)17 b Fm(\005;)g(\003\))27 b Fn(\000)-16 |
|
3355 b(!)28 b(P)8 b Fm(\()p Fq(A)22 b Fn(_)h Fq(B)5 b(;)17 |
|
3356 b Fm(\000)p Fq(;)g Fm(\005;)g(\001)p Fq(;)g Fm(\003\))54 |
|
3357 b(:)i(\()p Fq(f)5 b(;)17 b(g)t Fm(\))26 b Fn(!)i Fq(f)33 |
|
3358 b Fn(\001)21 b Fq(g)1070 1703 y Fn(P)8 b Fm(\(\000;)17 |
|
3359 b(\001\))28 b Fn(\000)-16 b(!)27 b(P)8 b Fm(\(\000;)17 |
|
3360 b(\001)p Fq(;)g Fn(?)p Fm(\))56 b(:)f Fq(h)28 b Fn(!)g |
|
3361 Fq(h)2491 1667 y Fw(+)1573 1884 y Fq(?)g Fn(2)g(P)8 b |
|
3362 Fm(\()p Fn(?)p Fm(;)45 b(\))83 2122 y Fr(each)26 b(being)e(the)h(dual)f |
|
3363 (of)h(the)g(corresponding)f(operation)g(abo)o(v)o(e.)83 |
|
3364 2433 y Fo(2.2.2)99 b(Natur)o(ality)83 2613 y Fr(Composition)30 |
|
3365 b(in)h(a)h Fn(\003)p Fr(-polycate)o(gory)e(corresponds)h(to)g(Cut,)g |
|
3366 (so)g(the)h(general)f(naturality)g(condi-)83 2733 y(tions)e(implicit)g |
|
3367 (in)g(proof)h(nets)g(are)h(clear)-5 b(.)30 b(T)-8 b(w)o(o)30 |
|
3368 b(in)l(v)n(olv)o(e)f(a)h(local)g(operation)g(on)f(just)h(one)g(proof,) |
|
3369 83 2853 y(and)25 b(are)h(compelling.)d(In)i(our)f(imprecise)h |
|
3370 (notation,)e(these)i(are)g(as)g(follo)n(ws.)p 0 TeXcolorgray |
|
3371 83 3033 a Fn(\017)p 0 TeXcolorgray 50 w Fr(Naturality)33 |
|
3372 b(for)i Fn(^)p Fr(-L.)g(Suppose)f Fq(h)45 b Fm(:)h Fq(A;)17 |
|
3373 b(B)50 b Fn(!)45 b Fq(E)6 b Fr(.)34 b(Then)g(for)h Fq(w)48 |
|
3374 b Fm(:)d Fq(E)51 b Fn(!)45 b Fq(E)2987 2997 y Fl(0)3045 |
|
3375 3033 y Fr(we)35 b(ha)n(v)o(e)f(the)183 3153 y(naturality)24 |
|
3376 b(condition)p 1594 3203 V 1594 3282 a Fq(h)q Fm(;)17 |
|
3377 b Fq(w)29 b Fm(=)p 1898 3203 173 4 v 28 w Fq(h)p Fm(;)17 |
|
3378 b Fq(w)30 b(:)p 0 TeXcolorgray 83 3439 a Fn(\017)p 0 |
|
3379 TeXcolorgray 50 w Fr(Naturality)20 b(for)i Fn(>)p Fr(-L.)f(Suppose)g |
|
3380 Fq(h)28 b Fm(:)g Fq(A)g Fn(!)f Fq(B)5 b Fr(.)21 b(Then)g(for)g |
|
3381 Fq(v)32 b Fm(:)c Fq(B)k Fn(!)c Fq(B)2624 3403 y Fl(0)2668 |
|
3382 3439 y Fr(we)22 b(ha)n(v)o(e)f(the)g(naturality)183 3560 |
|
3383 y(condition)1519 3688 y Fq(h)1575 3647 y Fw(+)1634 3688 |
|
3384 y Fm(;)c Fq(v)31 b Fm(=)d(\()p Fq(h)p Fm(;)17 b Fq(v)t |
|
3385 Fm(\))2087 3647 y Fw(+)2173 3688 y Fq(:)83 3868 y Fr(\(W)-8 |
|
3386 b(e)26 b(omit)d(irrele)n(v)n(ant)h(conte)o(xts.\))g(By)h(duality)e |
|
3387 (that)i(gi)n(v)o(es)e(us)h(naturality)g(as)h(follo)n(ws)1060 |
|
3388 4096 y Fq(w)s Fm(;)p 1177 4017 57 4 v 17 w Fq(h)i Fm(=)p |
|
3389 1363 4017 173 4 v 27 w Fq(w)s Fm(;)17 b Fq(h)99 b Fr(and)h |
|
3390 Fq(v)t Fm(;)17 b Fq(h)2030 4055 y Fw(+)2116 4096 y Fm(=)28 |
|
3391 b(\()p Fq(v)t Fm(;)17 b Fq(h)p Fm(\))2447 4055 y Fw(+)2533 |
|
3392 4096 y Fq(;)83 4324 y Fr(in)25 b(the)f(right)h(rules)f(for)h |
|
3393 Fn(_)h Fr(and)e Fn(?)p Fr(.)i(W)-8 b(e)25 b(adopt)f(these)h(naturality) |
|
3394 e(equations.)83 4503 y(On)i(the)g(other)f(hand)h(we)g(shall)f(ar)n(gue) |
|
3395 h(against)f(adopting)g(the)g(follo)n(wing)f(condition.)p |
|
3396 0 TeXcolorgray 83 4683 a Fn(\017)p 0 TeXcolorgray 50 |
|
3397 w Fr(Naturality)30 b(for)i Fn(^)p Fr(-R.)h(Suppose)e |
|
3398 Fq(f)50 b Fm(:)41 b Fq(A)f Fn(!)f Fq(C)7 b Fr(,)32 b |
|
3399 Fq(g)43 b Fm(:)d Fq(B)45 b Fn(!)39 b Fq(D)s Fr(.)32 b(Then)f(for)g |
|
3400 Fq(u)40 b Fm(:)g Fq(A)3085 4646 y Fl(0)3148 4683 y Fn(!)g |
|
3401 Fq(A)32 b Fr(and)183 4803 y Fq(v)f Fm(:)d Fq(B)395 4767 |
|
3402 y Fl(0)446 4803 y Fn(!)g Fq(B)i Fr(we)25 b(ha)n(v)o(e)f(the)h |
|
3403 (naturality)f(equation)1256 5031 y Fn(f)p Fq(u;)17 b(v)t |
|
3404 Fn(g)p Fm(;)g(\()p Fq(f)31 b Fn(\001)22 b Fq(g)t Fm(\))27 |
|
3405 b(=)g(\()p Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(\001)h |
|
3406 Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t Fm(\))183 5259 y Fr(where)28 |
|
3407 b(on)f(the)g(right)f(we)i(ha)n(v)o(e)f(the)g(ob)o(vious)e(composition)g |
|
3408 (of)i Fq(f)35 b Fn(\001)24 b Fq(g)35 b Fm(:)d Fq(A;)17 |
|
3409 b(B)37 b Fn(!)32 b Fq(C)f Fn(^)24 b Fq(D)30 b Fr(with)183 |
|
3410 5380 y Fq(u)24 b Fr(and)h Fq(v)t Fr(.)p 0 TeXcolorgray |
|
3411 1773 5712 a(6)p 0 TeXcolorgray eop end |
|
3412 %%Page: 7 7 |
|
3413 TeXDict begin 7 6 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
3414 TeXcolorgray 83 83 a Fr(\(Note)25 b(that)f(there)g(is)g(no)g(conte)o |
|
3415 (xt)g(in)g Fn(>)p Fr(-R)h(and)f(so)g(no)h(corresponding)e(naturality)-6 |
|
3416 b(.\))23 b(The)h(problem)83 203 y(which)35 b(we)f(will)g(come)h(to)f |
|
3417 (in)g(4.3)g(is)h(that)f(tak)o(en)g(together)g(with)g(contraction)g(and) |
|
3418 h(weak)o(ening)83 324 y(this)22 b(naturality)g(equation)g(identi\002es) |
|
3419 g(proofs)h(with)f(essentially)f(dif)n(ferent)i(collections)e(of)i |
|
3420 (normal)83 444 y(forms.)83 624 y(Ho)n(we)n(v)o(er)c(there)h(are)h |
|
3421 (cases)f(where)h(that)e(cannot)h(happen;)f(and)h(it)g(does)f(seem)h |
|
3422 (reasonable)g(to)g(allo)n(w)83 745 y(some)30 b(maps)f |
|
3423 Fq(u)h Fr(and)g Fq(v)j Fr(to)d(slip)f(harmlessly)g(past)g(the)h |
|
3424 (imagined)f(box)g(around)h Fm(\()p Fq(f)37 b Fn(\001)25 |
|
3425 b Fq(g)t Fm(\))p Fr(.)30 b(After)g(all)83 865 y(we)25 |
|
3426 b(ine)n(vitably)e(ha)n(v)o(e)966 1096 y Fn(f)p Fm(id)o |
|
3427 Fq(;)17 b Fm(id)o Fn(g)p Fm(;)g(\()p Fq(f)33 b Fn(\001)21 |
|
3428 b Fq(g)t Fm(\))27 b(=)h Fq(f)33 b Fn(\001)22 b Fq(g)31 |
|
3429 b Fm(=)c(\(id)o(;)17 b Fq(f)11 b Fm(\))22 b Fn(\001)g |
|
3430 Fm(\(id)o(;)17 b Fq(g)t Fm(\))26 b Fq(:)83 1326 y Fr(So)k(we)f(adopt)f |
|
3431 (a)h(restricted)g(form)g(of)g(an)g(idea)g(from)f([11].)h(W)-8 |
|
3432 b(e)29 b(call)g(maps)g Fq(u)p Fr(,)f Fq(v)33 b Fr(for)c(which)f(both)83 |
|
3433 1446 y(the)d Fn(^)g Fr(equations)99 1677 y Fq(u)p Fm(;)17 |
|
3434 b(\()p Fq(f)32 b Fn(\001)22 b Fq(g)t Fm(\))27 b(=)g(\()p |
|
3435 Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(\001)h Fq(g)e(;)44 |
|
3436 b(v)t Fm(;)17 b(\()p Fq(f)33 b Fn(\001)21 b Fq(g)t Fm(\))27 |
|
3437 b(=)h(\()p Fq(f)11 b Fm(\))22 b Fn(\001)f Fm(\()p Fq(v)t |
|
3438 Fm(;)c Fq(g)t Fm(\))g Fq(;)43 b Fr(and)25 b(so)i Fn(f)p |
|
3439 Fq(u;)17 b(v)t Fn(g)p Fm(;)g(\()p Fq(f)31 b Fn(\001)22 |
|
3440 b Fq(g)t Fm(\))27 b(=)g(\()p Fq(u)p Fm(;)17 b Fq(f)11 |
|
3441 b Fm(\))21 b Fn(\001)h Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t |
|
3442 Fm(\))83 1907 y Fr(and)31 b(the)f(dual)g(equations)f(for)h |
|
3443 Fn(_)h Fr(hold)e Fo(linear)p Fr(.)h(\(This)f(de\002nition)h(does)g(mak) |
|
3444 o(e)g(sense!\))g(W)-8 b(e)31 b(ha)n(v)o(e)83 2028 y(the)25 |
|
3445 b(follo)n(wing.)83 2168 y Fs(Additional)38 b(assumption)g |
|
3446 Fo(Linear)f(maps)g(ar)l(e)g(closed)g(under)g(the)g(lo)o(gical)g(oper)o |
|
3447 (ations)e(intr)l(o-)83 2288 y(duced)25 b(abo)o(ve)o(.)83 |
|
3448 2429 y Fr(In)36 b(vie)n(w)e(of)i(the)f(other)g(naturalities,)f(the)i |
|
3449 (essential)e(assumption)f(is)i(that)g Fq(?)g Fr(is)g(linear)h(and)f |
|
3450 (that)83 2549 y(linear)25 b(maps)f(are)i(closed)e(under)h |
|
3451 Fn(\000)e(\001)f(\000)p Fr(.)83 2865 y Fo(2.2.3)99 b(Commutation:)24 |
|
3452 b(lo)o(gical)f(rules)83 3045 y Fr(The)33 b(polycate)o(gorical)f |
|
3453 (perspecti)n(v)o(e)g(supports)g(equalities)g(arising)g(from)h(the)g |
|
3454 (commuting)e(con-)83 3166 y(v)o(ersions)d(in)h(sequent)g(calculus.)f(W) |
|
3455 -8 b(e)30 b(sk)o(etch,)f(again)f(using)g(our)h(imprecise)g(notation,)f |
|
3456 (the)h(basic)83 3286 y(phenomena)c(for)g(the)f(binary)h(operators.)83 |
|
3457 3466 y(First)g(gi)n(v)o(en)e(proofs)597 3697 y Fq(f)39 |
|
3458 b Fm(:)27 b(\000)799 3712 y Fw(1)866 3697 y Fn(!)h Fm(\001)1075 |
|
3459 3712 y Fw(1)1115 3697 y Fq(;)17 b(A;)g(B)32 b(;)116 b(g)31 |
|
3460 b Fm(:)d(\000)1719 3712 y Fw(2)1786 3697 y Fn(!)f Fm(\001)1994 |
|
3461 3712 y Fw(2)2034 3697 y Fq(;)17 b(C)34 b(;)117 b(h)27 |
|
3462 b Fm(:)h(\000)2525 3712 y Fw(3)2592 3697 y Fn(!)g Fm(\001)2801 |
|
3463 3712 y Fw(3)2840 3697 y Fq(;)17 b(D)30 b(;)83 3927 y |
|
3464 Fr(we)25 b(ha)n(v)o(e)g(\(perhaps)g(modulo)e(e)o(xchange\))i(an)g |
|
3465 (equality)f(of)h(the)f(form)861 4157 y Fm(\()p Fq(f)33 |
|
3466 b Fn(\001)22 b Fq(g)t Fm(\))f Fn(\001)h Fq(h)28 b Fm(=)g(\()p |
|
3467 Fq(f)k Fn(\001)22 b Fq(h)p Fm(\))g Fn(\001)g Fq(g)31 |
|
3468 b Fm(:)d(\000)g Fn(!)f Fm(\001)p Fq(;)17 b(A)22 b Fn(^)h |
|
3469 Fq(C)r(;)17 b(B)26 b Fn(^)d Fq(D)83 4388 y Fr(\(with)28 |
|
3470 b Fm(\000)p Fr(,)h Fm(\001)p Fr(,)g(the)f(sum)g(of)h(the)f |
|
3471 Fm(\000)1240 4403 y Fk(i)1297 4388 y Fr(and)g Fm(\001)1550 |
|
3472 4403 y Fk(i)1608 4388 y Fr(respecti)n(v)o(ely\).)f(Of)i(course)f(there) |
|
3473 h(are)g(other)g(v)o(ersions)83 4508 y(obtained)24 b(by)h(duality)83 |
|
3474 4689 y(Secondly)g(gi)n(v)o(en)e(proofs)940 4919 y Fq(f)38 |
|
3475 b Fm(:)28 b Fq(A;)17 b(B)5 b(;)17 b Fm(\000)1382 4934 |
|
3476 y Fw(1)1449 4919 y Fn(!)27 b Fm(\001)1657 4934 y Fw(1)1697 |
|
3477 4919 y Fq(;)17 b(C)34 b(;)117 b(g)31 b Fm(:)c(\000)2182 |
|
3478 4934 y Fw(2)2249 4919 y Fn(!)h Fm(\001)2458 4934 y Fw(2)2497 |
|
3479 4919 y Fq(;)17 b(D)31 b(;)83 5149 y Fr(we)25 b(ha)n(v)o(e)g(an)g |
|
3480 (equality)f(of)h(form)p 1063 5301 59 4 v 1063 5380 a |
|
3481 Fq(f)32 b Fn(\001)22 b Fq(g)31 b Fm(=)p 1375 5301 181 |
|
3482 4 v 28 w Fq(f)i Fn(\001)21 b Fq(g)31 b Fm(:)d Fq(A)22 |
|
3483 b Fn(^)h Fq(B)5 b(;)17 b Fm(\000)27 b Fn(!)h Fm(\001)p |
|
3484 Fq(;)17 b(C)29 b Fn(^)22 b Fq(D)p 0 TeXcolorgray 1773 |
|
3485 5712 a Fr(7)p 0 TeXcolorgray eop end |
|
3486 %%Page: 8 8 |
|
3487 TeXDict begin 8 7 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
3488 TeXcolorgray 83 83 a Fr(\(with)36 b Fm(\000)p Fr(,)g |
|
3489 Fm(\001)p Fr(,)h(the)f(sum)f(of)i(the)f Fm(\000)1294 |
|
3490 98 y Fk(i)1358 83 y Fr(and)g Fm(\001)1619 98 y Fk(i)1684 |
|
3491 83 y Fr(respecti)n(v)o(ely\).)f(As)h(before)h(there)f(are)h(v)n |
|
3492 (ariants)f(by)83 203 y(duality)-6 b(.)83 379 y(Finally)25 |
|
3493 b(from)f(a)h(proof)1322 499 y Fq(f)39 b Fm(:)27 b Fq(A;)17 |
|
3494 b(B)5 b(;)17 b Fm(\000)28 b Fn(!)f Fm(\001)p Fq(;)17 |
|
3495 b(C)r(;)g(D)30 b(;)83 646 y Fr(we)25 b(can)h(apply)e(the)h(operation)p |
|
3496 1182 561 104 4 v 24 w Fm(\()i(\))e Fr(in)g(tw)o(o)f(dif)n(ferent)g |
|
3497 (orders)h(getting)f(an)h(equality)f(of)h(the)f(form)p |
|
3498 1157 783 59 4 v 1157 800 V 1157 879 a Fq(f)39 b Fm(=)p |
|
3499 1347 783 V 1347 800 V 27 w Fq(f)g Fm(:)28 b Fq(A)22 b |
|
3500 Fn(^)g Fq(B)5 b(;)17 b Fm(\000)28 b Fn(!)f Fm(\001)p |
|
3501 Fq(;)17 b(C)29 b Fn(_)23 b Fq(D)30 b(:)83 1097 y Fr(There)c(are)f(v)n |
|
3502 (ariants)f(by)h(duality)-6 b(.)23 b(The)h(picture)h(is)f(as)h(follo)n |
|
3503 (ws.)1692 1413 y @beginspecial @setspecial |
|
3504 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 8.5359 |
|
3505 5.69046 19.91682 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3506 setlinecap stroke grestore end |
|
3507 |
|
3508 @endspecial |
|
3509 1781 1323 a Fq(f)1615 1323 y |
|
3510 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
3511 } false /N@A 16 {InitRnode } NewNode end end |
|
3512 1615 1323 a 20 w @beginspecial |
|
3513 @setspecial |
|
3514 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
3515 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
3516 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
3517 grestore end |
|
3518 |
|
3519 @endspecial Fn(^)1763 1248 y |
|
3520 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3521 16 {InitRnode } NewNode end end |
|
3522 1763 1248 a |
|
3523 1763 1342 a |
|
3524 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
3525 16 {InitRnode } NewNode end end |
|
3526 1763 1342 a 1692 1413 a |
|
3527 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3528 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3529 0.0 0 0 /N@A /N@B InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
3530 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3531 grestore grestore end |
|
3532 1692 1413 a 1692 |
|
3533 1413 a |
|
3534 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3535 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3536 0.0 0 0 /N@A /N@C InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
3537 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3538 grestore grestore end |
|
3539 1692 1413 a 1337 1295 a |
|
3540 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
3541 16 {InitRnode } NewNode end end |
|
3542 1337 1295 a 1692 1413 |
|
3543 a |
|
3544 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3545 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3546 0.0 0 0 /N@A /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3547 0 setlinecap stroke grestore grestore end |
|
3548 1692 1413 a 1692 1413 a |
|
3549 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3550 1692 1413 a 1692 1413 a |
|
3551 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 31.67337 |
|
3552 8.2 0.0 NAngle 90 sub Uput exch pop add a PtoC h1 add exch w1 add |
|
3553 exch } PutCoor PutBegin end |
|
3554 1692 |
|
3555 1413 a 1560 1447 a Fq(A)e Fn(^)f Fq(B)1692 1413 y |
|
3556 tx@Dict begin PutEnd end |
|
3557 1692 |
|
3558 1413 a 1692 1413 a |
|
3559 tx@Dict begin PutEnd end |
|
3560 1692 1413 a 1898 1323 a |
|
3561 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
3562 } false /N@E 16 {InitRnode } NewNode end end |
|
3563 1898 1323 |
|
3564 a 20 w @beginspecial @setspecial |
|
3565 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
3566 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
3567 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
3568 grestore end |
|
3569 |
|
3570 @endspecial Fn(_)1857 |
|
3571 1248 y |
|
3572 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F |
|
3573 16 {InitRnode } NewNode end end |
|
3574 1857 1248 a 1857 1342 a |
|
3575 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@G |
|
3576 16 {InitRnode } NewNode end end |
|
3577 1857 1342 a 1692 1413 |
|
3578 a |
|
3579 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3580 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3581 0.0 0 0 /N@E /N@F InitNC { /AngleA 170. def /AngleB 0. def 0.67 |
|
3582 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3583 grestore grestore end |
|
3584 1692 1413 a 1692 1413 a |
|
3585 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3586 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3587 0.0 0 0 /N@E /N@G InitNC { /AngleA 190. def /AngleB 0. def 0.67 |
|
3588 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3589 grestore grestore end |
|
3590 1692 1413 a 2282 1295 a |
|
3591 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@H |
|
3592 16 {InitRnode } NewNode end end |
|
3593 2282 |
|
3594 1295 a 1692 1413 a |
|
3595 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3596 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3597 0.0 0 0 /N@E /N@H InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3598 0 setlinecap stroke grestore grestore end |
|
3599 1692 1413 a 1692 1413 a |
|
3600 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3601 1692 1413 |
|
3602 a 1692 1413 a |
|
3603 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 32.68364 |
|
3604 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
3605 exch } PutCoor PutBegin end |
|
3606 1692 1413 a 1556 1447 a Fq(C)29 b Fn(_)23 |
|
3607 b Fq(D)1692 1413 y |
|
3608 tx@Dict begin PutEnd end |
|
3609 1692 1413 a 1692 1413 a |
|
3610 tx@Dict begin PutEnd end |
|
3611 1692 1413 |
|
3612 a 83 1584 a Fr(So)j(f)o(ar)g(we)g(ha)n(v)o(e)f(only)g(considered)g(the) |
|
3613 g(binary)g(operators.)g(There)h(are)g(man)o(y)e(similar)h(e)o(xamples) |
|
3614 83 1704 y(in)l(v)n(olving)e(also)i(the)f(rules)h(for)g |
|
3615 Fn(>)g Fr(which)g(we)g(merely)f(list.)763 1931 y Fq(f)822 |
|
3616 1890 y Fw(+)903 1931 y Fn(\001)e Fq(g)31 b Fm(=)d(\()p |
|
3617 Fq(f)k Fn(\001)22 b Fq(g)t Fm(\))1392 1890 y Fw(+)1467 |
|
3618 1931 y Fq(;)p 1710 1852 59 4 v 216 w(f)1769 1871 y Fw(+)1855 |
|
3619 1931 y Fm(=)p 1959 1852 118 4 v 28 w Fq(f)2018 1902 y |
|
3620 Fw(+)2093 1931 y Fq(;)216 b(f)2395 1890 y Fw(++)2537 |
|
3621 1931 y Fm(=)27 b Fq(f)2699 1890 y Fw(++)2829 1931 y Fq(:)83 |
|
3622 2148 y Fr(\(The)h(\002nal)g(equation)e(re\003ects)j(the)e(tw)o(o)g(dif) |
|
3623 n(ferent)g(orders)g(of)h(applying)e(rules)h(to)g(obtain)g(a)h(proof)83 |
|
3624 2269 y(of)d Fn(>)p Fq(;)17 b Fm(\000)28 b Fn(`)g Fm(\001)p |
|
3625 Fq(;)17 b Fn(?)p Fr(.\))25 b(W)-8 b(e)25 b(are)h(happ)o(y)e(to)h(adopt) |
|
3626 f(all)g(these)h(equalities.)83 2564 y Fo(2.2.4)99 b(Reduction)83 |
|
3627 2740 y Fr(Most)30 b(of)g(our)h(equalities)e(on)i(proofs)f(k)o(eep)g |
|
3628 (track)h(of)g(inessential)e(re)n(writings,)g(b)n(ut)h(in)g(itself)g |
|
3629 (that)83 2860 y(is)e(dull.)f(The)h(critical)f(equalities)g(tak)o(e)h |
|
3630 (account)g(of)g(meaning)g(preserving)f(reductions.)g(W)-8 |
|
3631 b(e)28 b(tak)o(e)83 2980 y(these)d(to)f(arise)h(from)g(logical)f(cuts.) |
|
3632 83 3148 y(Suppose)j(that)f Fq(f)42 b Fm(:)31 b Fq(A)h |
|
3633 Fn(`)f Fq(C)7 b Fr(,)27 b Fq(g)34 b Fm(:)e Fq(B)k Fn(`)31 |
|
3634 b Fq(D)f Fr(and)c Fq(k)35 b Fm(:)c Fq(C)r(;)17 b(D)33 |
|
3635 b Fn(`)f Fq(E)g Fr(are)c(proofs.)e(\(Again)g(we)h(suppress)83 |
|
3636 3261 y(further)e(conte)o(xts.\))f(W)-8 b(e)25 b(can)g(form)g(the)g |
|
3637 (proof)1090 3472 y Fj(A)g Fh(`)1239 3439 y Fk(f)1309 |
|
3638 3472 y Fj(C)98 b(B)30 b Fh(`)1627 3439 y Fk(g)1692 3472 |
|
3639 y Fj(D)p 1090 3492 680 4 v 1160 3572 a(A;)15 b(B)31 b |
|
3640 Fh(`)25 b Fj(C)h Fh(^)20 b Fj(D)1872 3454 y(C)q(;)15 |
|
3641 b(D)29 b Fh(`)2138 3421 y Fk(k)2205 3454 y Fj(E)p 1860 |
|
3642 3492 429 4 v 1860 3572 a(C)e Fh(^)20 b Fj(D)28 b Fh(`)d |
|
3643 Fj(E)p 1160 3609 1129 4 v 1544 3689 a(A;)15 b(B)31 b |
|
3644 Fh(`)25 b Fj(E)2330 3640 y Fi(CUT)83 3886 y Fr(which)g(reduces)g(to) |
|
3645 1083 3975 y Fj(A)h Fh(`)1233 3942 y Fk(f)1303 3975 y |
|
3646 Fj(C)97 b(B)30 b Fh(`)1620 3942 y Fk(g)1685 3975 y Fj(D)94 |
|
3647 b(C)q(;)15 b(D)29 b Fh(`)2120 3942 y Fk(k)2187 3975 y |
|
3648 Fj(E)p 1083 4013 1177 4 v 1491 4093 a(A;)15 b(B)31 b |
|
3649 Fh(`)24 b Fj(E)2301 4044 y Fi(CUTs)83 4264 y Fr(where)h(by)f(associati) |
|
3650 n(vity)e(we)j(write)f(the)g(tw)o(o)g(Cuts)g(together)-5 |
|
3651 b(.)24 b(This)f(gi)n(v)o(es)g(a)i(simple)e(equation)g(for)83 |
|
3652 4384 y(our)i(polycate)o(gory:)1367 4504 y Fm(\()p Fq(f)33 |
|
3653 b Fn(\001)22 b Fq(g)t Fm(\);)p 1669 4425 55 4 v 17 w |
|
3654 Fq(k)30 b Fm(=)d Fn(f)p Fq(f)5 b(;)17 b(g)t Fn(g)p Fm(;)g |
|
3655 Fq(k)29 b(:)83 4644 y Fr(Similarly)24 b(suppose)g(that)g |
|
3656 Fq(f)39 b Fm(:)28 b Fq(A)f Fn(`)h Fq(B)i Fr(is)24 b(a)h(proof.)g(W)-8 |
|
3657 b(e)25 b(can)g(form)g(the)g(proof)1369 4937 y Fh(`)1425 |
|
3658 4904 y Fk(?)1489 4937 y Fh(>)1684 4838 y Fj(A)g Fh(`)1833 |
|
3659 4805 y Fk(f)1903 4838 y Fj(B)p 1651 4857 359 4 v 1651 |
|
3660 4937 a Fh(>)p Fj(;)15 b(A)25 b Fh(`)g Fj(B)p 1369 4975 |
|
3661 641 4 v 1565 5055 a(A)h Fh(`)f Fj(B)2051 5006 y Fi(CUT)83 |
|
3662 5259 y Fr(and)g(this)f(reduces)h(outright)f(to)1626 5380 |
|
3663 y Fq(A)j Fn(`)1787 5339 y Fk(f)1860 5380 y Fq(B)33 b(:)p |
|
3664 0 TeXcolorgray 1773 5712 a Fr(8)p 0 TeXcolorgray eop |
|
3665 end |
|
3666 %%Page: 9 9 |
|
3667 TeXDict begin 9 8 bop 0 TeXcolorgray 0 TeXcolorgray 0 |
|
3668 TeXcolorgray 83 83 a Fr(This)24 b(gi)n(v)o(es)g(another)g(equation)g |
|
3669 (in)h(our)f(polycate)o(gory:)1582 298 y Fq(?)p Fm(;)17 |
|
3670 b Fq(f)1734 257 y Fw(+)1820 298 y Fm(=)28 b Fq(f)38 b(:)83 |
|
3671 514 y Fr(These)23 b(equations)e(\(and)h(their)g(duals\))g(constitute)f |
|
3672 Fo(the)h(r)l(eduction)g(principle)f(for)h(lo)o(gical)f(cuts)p |
|
3673 Fr(.)h(F)o(or)83 634 y(us)j(the)f(reduction)h(of)g(logical)f(cuts)g(is) |
|
3674 g(meaning)g(preserving.)83 926 y Fo(2.3)100 b(Structur)o(al)22 |
|
3675 b(Rules)83 1222 y(2.3.1)99 b(Implementation)83 1389 y |
|
3676 Fr(The)27 b(structural)g(rule)g(of)g(Exchange)g(is)g(implicit)e(in)i |
|
3677 (our)g(notion)e(of)j(symmetric)d Fn(\003)p Fr(-polycate)o(gory)-6 |
|
3678 b(,)83 1502 y(b)n(ut)25 b(we)g(need)g(to)f(consider)h(W)-8 |
|
3679 b(eak)o(ening)24 b(and)h(Contraction.)294 1690 y Fi(\000)g |
|
3680 Fh(`)g Fi(\001)p 240 1710 348 4 v 240 1790 a Fj(A;)15 |
|
3681 b Fi(\000)26 b Fh(`)e Fi(\001)629 1740 y Ft(W)-6 b(-L)885 |
|
3682 1790 y Fj(;)1074 1690 y Fi(\000)25 b Fh(`)f Fi(\001)p |
|
3683 1017 1710 353 4 v 1017 1790 a(\000)h Fh(`)g Fi(\001)p |
|
3684 Fj(;)15 b(B)1411 1740 y Ft(W)-6 b(-R)1672 1790 y Fj(;)1804 |
|
3685 1673 y(A;)15 b(A;)g Fi(\000)26 b Fh(`)f Fi(\001)p 1804 |
|
3686 1710 456 4 v 1858 1790 a Fj(A;)15 b Fi(\000)26 b Fh(`)f |
|
3687 Fi(\001)2301 1741 y Ft(C-L)2538 1790 y Fj(;)2670 1673 |
|
3688 y Fi(\000)g Fh(`)g Fi(\001)p Fj(;)15 b(B)5 b(;)15 b(B)p |
|
3689 2670 1710 467 4 v 2727 1790 a Fi(\000)25 b Fh(`)g Fi(\001)p |
|
3690 Fj(;)15 b(B)3178 1741 y Ft(C-R)3355 1790 y Fj(:)83 1988 |
|
3691 y Fr(Naturalities)35 b(implicit)e(in)i(proof)g(nets)g(in)g(tandem)g |
|
3692 (with)g(our)g(reduction)g(principle)g(for)g(logical)83 |
|
3693 2108 y(cuts)25 b(suggest)f(a)h(nice)g(w)o(ay)f(to)h(represent)g(these)g |
|
3694 (in)f(our)h Fn(\003)p Fr(-polycate)o(gory)-6 b(.)83 2276 |
|
3695 y(W)e(e)34 b(treat)f(contraction)f(\002rst.)h(F)o(or)g(all)f |
|
3696 Fq(A)p Fr(,)h(`generic')h(instances)e(of)h(contraction)f(gi)n(v)o(e)g |
|
3697 (maps)g Fq(d)42 b Fm(:)83 2389 y Fq(A)28 b Fn(!)f Fq(A)c |
|
3698 Fn(^)f Fq(A)j Fr(and)g Fq(m)j Fm(:)g Fq(A)22 b Fn(_)h |
|
3699 Fq(A)k Fn(!)h Fq(A)d Fr(arising)f(from)g(the)h(proofs)816 |
|
3700 2559 y Fj(A)h Fh(`)f Fj(A)91 b(A)25 b Fh(`)g Fj(A)p 816 |
|
3701 2579 576 4 v 844 2659 a(A;)15 b(A)26 b Fh(`)f Fj(A)20 |
|
3702 b Fh(^)g Fj(A)1434 2609 y Fh(^)p Ft(-R)p 844 2696 521 |
|
3703 4 v 898 2776 a Fj(A)26 b Fh(`)f Fj(A)20 b Fh(^)g Fj(A)1406 |
|
3704 2727 y Ft(C-L)1767 2776 y Fj(;)1989 2559 y(A)26 b Fh(`)e |
|
3705 Fj(A)92 b(A)25 b Fh(`)g Fj(A)p 1989 2579 576 4 v 2017 |
|
3706 2659 a(A)20 b Fh(_)g Fj(A)26 b Fh(`)e Fj(A;)15 b(A)2606 |
|
3707 2609 y Fh(_)p Ft(-L)p 2017 2696 521 4 v 2071 2776 a Fj(A)21 |
|
3708 b Fh(_)e Fj(A)26 b Fh(`)f Fj(A)2579 2727 y Ft(C-R)2778 |
|
3709 2776 y Fj(:)83 2974 y Fr(These)h(are)h(ob)o(viously)d(constructed)h(as) |
|
3710 h(de)g(Mor)n(gan)f(duals,)g(so)h(we)g(assume)f(that)h(the)o(y)f(are)i |
|
3711 (inter)n(-)83 3094 y(changed)e(by)g(the)f(duality)g(in)g(our)h |
|
3712 Fn(\003)p Fr(-polycate)o(gory)-6 b(,)23 b(that)i(is,)1176 |
|
3713 3310 y Fm(\()p Fq(d)1265 3325 y Fk(A)1321 3310 y Fm(\))1359 |
|
3714 3268 y Fl(\003)1426 3310 y Fm(=)j Fq(m)1615 3325 y Fk(A)1668 |
|
3715 3306 y Fg(\003)1725 3310 y Fq(;)116 b Fm(\()p Fq(m)1991 |
|
3716 3325 y Fk(A)2048 3310 y Fm(\))2086 3268 y Fl(\003)2153 |
|
3717 3310 y Fm(=)28 b Fq(d)2308 3325 y Fk(A)2361 3306 y Fg(\003)2417 |
|
3718 3310 y Fq(:)83 3525 y Fr(It)c(is)f(consonant)g(with)g(earlier)h |
|
3719 (assumptions)d(to)i(suppose)g(that)g(we)h(can)g(implement)e(the)h(C-L)h |
|
3720 (rule)83 3645 y(by)31 b(composition)e(with)h(its)h(`generic')g |
|
3721 (instance)g Fq(d)p Fr(:)g(that)f(is,)h(we)g(form)p 2605 |
|
3722 3566 59 4 v 31 w Fq(f)50 b Fm(:)40 b Fq(A)27 b Fn(^)g |
|
3723 Fq(A;)17 b Fm(\000)39 b Fn(`)g Fm(\001)32 b Fr(and)83 |
|
3724 3766 y(then)25 b(compose)f(with)g Fq(d)h Fr(to)f(gi)n(v)o(e)f |
|
3725 Fq(d)p Fm(;)p 1326 3687 V 17 w Fq(f)38 b Fm(:)28 b Fq(A;)17 |
|
3726 b Fm(\000)27 b Fn(`)h Fm(\001)d Fr(as)g(in)g(the)f(follo)n(wing)f |
|
3727 (picture.)2046 4079 y @beginspecial @setspecial |
|
3728 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 5.69046 |
|
3729 5.69046 17.07181 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3730 setlinecap stroke grestore end |
|
3731 |
|
3732 @endspecial |
|
3733 2111 3990 a Fq(f)1946 3989 y |
|
3734 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
3735 } false /N@A 16 {InitRnode } NewNode end end |
|
3736 1946 3989 a 20 w @beginspecial |
|
3737 @setspecial |
|
3738 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
3739 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
3740 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
3741 grestore end |
|
3742 |
|
3743 @endspecial Fn(^)2093 3914 y |
|
3744 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
3745 16 {InitRnode } NewNode end end |
|
3746 2093 3914 a |
|
3747 2093 4009 a |
|
3748 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
3749 16 {InitRnode } NewNode end end |
|
3750 2093 4009 a 2046 4079 a |
|
3751 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3752 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3753 0.0 0 0 /N@A /N@B InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
3754 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3755 grestore grestore end |
|
3756 2046 4079 a 2046 |
|
3757 4079 a |
|
3758 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3759 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3760 0.0 0 0 /N@A /N@C InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
3761 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
3762 grestore grestore end |
|
3763 2046 4079 a 1621 3961 a |
|
3764 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
3765 16 {InitRnode } NewNode end end |
|
3766 1621 3961 a 2046 4079 |
|
3767 a |
|
3768 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3769 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3770 0.0 0 0 /N@A /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3771 0 setlinecap stroke grestore grestore end |
|
3772 2046 4079 a 2046 4079 a |
|
3773 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3774 2046 4079 a 2046 4079 a |
|
3775 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 30.94975 |
|
3776 8.2 0.0 NAngle 90 sub Uput exch pop add a PtoC h1 add exch w1 add |
|
3777 exch } PutCoor PutBegin end |
|
3778 2046 |
|
3779 4079 a 1918 4114 a Fq(A)f Fn(^)g Fq(A)2046 4079 y |
|
3780 tx@Dict begin PutEnd end |
|
3781 2046 |
|
3782 4079 a 2046 4079 a |
|
3783 tx@Dict begin PutEnd end |
|
3784 2046 4079 a 1548 3990 a Fq(d)2046 |
|
3785 4079 y @beginspecial @setspecial |
|
3786 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true -62.59595 |
|
3787 5.69046 -51.21501 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
3788 setlinecap stroke grestore end |
|
3789 |
|
3790 @endspecial 1526 3961 |
|
3791 a |
|
3792 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E |
|
3793 16 {InitRnode } NewNode end end |
|
3794 1526 3961 a 1385 3961 a |
|
3795 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F |
|
3796 16 {InitRnode } NewNode end end |
|
3797 1385 3961 a 2046 4079 a |
|
3798 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
3799 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
3800 0.0 0 0 /N@E /N@F InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
3801 0 setlinecap stroke grestore grestore end |
|
3802 2046 |
|
3803 4079 a 2046 4079 a |
|
3804 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
3805 2046 4079 a 2046 4079 a |
|
3806 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 8.80824 |
|
3807 8.2 0.0 NAngle 90 sub Uput exch pop add a PtoC h1 add exch w1 add |
|
3808 exch } PutCoor PutBegin end |
|
3809 2046 4079 |
|
3810 a 2009 4114 a Fq(A)2046 4079 y |
|
3811 tx@Dict begin PutEnd end |
|
3812 2046 4079 a 2046 4079 |
|
3813 a |
|
3814 tx@Dict begin PutEnd end |
|
3815 2046 4079 a 83 4248 a Fr(Dually)f Fq(m)28 b Fm(:)g |
|
3816 Fq(A)11 b Fn(_)g Fq(A)28 b Fn(!)g Fq(A)22 b Fr(implements)d |
|
3817 (contraction)j(on)f(the)h(right:)e(contracting)h Fq(g)31 |
|
3818 b Fm(:)d Fq(B)33 b Fn(!)27 b Fq(D)s(;)17 b(D)83 4368 |
|
3819 y Fr(on)25 b(the)g(right)f(is)p 659 4315 51 4 v 24 w |
|
3820 Fq(g)s Fm(;)17 b Fq(m)p Fr(.)83 4536 y(Similarly)23 b(we)h(ha)n(v)o(e)g |
|
3821 (a)g(w)o(ay)g(to)g(implement)e(weak)o(ening.)h(In)h(our)g(polycate)o |
|
3822 (gory)f(we)h(should)f(ha)n(v)o(e)83 4649 y(maps)i Fq(t)i |
|
3823 Fm(:)h Fq(A)g Fn(!)f(>)f Fr(and)f Fq(u)i Fm(:)g Fn(?)i(!)e |
|
3824 Fq(A)e Fr(arising)f(from)h(the)f(proofs)p 1096 4787 243 |
|
3825 4 v 1187 4867 a Fh(`)h(>)1380 4819 y(>)p Ft(-R)p 1095 |
|
3826 4887 245 4 v 1095 4967 a Fj(A)g Fh(`)g(>)1382 4917 y |
|
3827 Ft(W)-6 b(-L)1729 4967 y Fj(;)p 1953 4787 243 4 v 1953 |
|
3828 4867 a Fh(?)24 b(`)2236 4819 y(?)p Ft(-L)p 1951 4887 |
|
3829 245 4 v 1951 4967 a Fh(?)h(`)g Fj(A)2238 4917 y Ft(W)-6 |
|
3830 b(-R)2499 4967 y Fj(:)83 5164 y Fr(Again)24 b(these)h(are)g(de)g(Mor)n |
|
3831 (gan)f(duals)h(and)f(should)g(be)h(interchanged)f(by)h(duality:)1221 |
|
3832 5380 y Fm(\()p Fq(t)1294 5395 y Fk(A)1351 5380 y Fm(\))1389 |
|
3833 5339 y Fl(\003)1456 5380 y Fm(=)j Fq(u)1616 5395 y Fk(A)1669 |
|
3834 5376 y Fg(\003)1725 5380 y Fq(;)116 b Fm(\()p Fq(u)1962 |
|
3835 5395 y Fk(A)2018 5380 y Fm(\))2056 5339 y Fl(\003)2124 |
|
3836 5380 y Fm(=)27 b Fq(t)2262 5395 y Fk(A)2315 5376 y Fg(\003)2372 |
|
3837 5380 y Fq(:)p 0 TeXcolorgray 1773 5712 a Fr(9)p 0 TeXcolorgray |
|
3838 eop end |
|
3839 %%Page: 10 10 |
|
3840 TeXDict begin 10 9 bop 0 TeXcolorgray 0 TeXcolorgray |
|
3841 0 TeXcolorgray 83 83 a Fr(No)n(w)27 b(suppose)g(that)h(we)g(ha)n(v)o(e) |
|
3842 f(a)h(proof)g Fq(f)44 b Fm(:)33 b(\000)g Fn(`)g Fm(\001)p |
|
3843 Fr(,)28 b(and)g(we)g(wish)f(to)g(weak)o(en)h(on)g(the)g(left.)f(W)-8 |
|
3844 b(e)83 203 y(form)28 b Fq(f)364 167 y Fw(+)455 203 y |
|
3845 Fm(:)k Fn(>)p Fq(;)17 b Fm(\000)33 b Fn(`)f Fm(\001)c |
|
3846 Fr(and)f(compose)g(with)f Fq(t)i Fr(to)f(gi)n(v)o(e)f |
|
3847 Fq(t)p Fm(;)17 b Fq(f)2189 167 y Fw(+)2280 203 y Fm(:)33 |
|
3848 b Fq(A;)17 b Fm(\000)32 b Fn(`)g Fm(\001)p Fr(.)c(Thus)f |
|
3849 Fq(t)g Fr(can)h(be)g(used)83 324 y(to)e(implement)e(weak)o(ening)i(on)f |
|
3850 (the)h(left.)g(Dually)f Fq(u)g Fr(can)i(be)f(used)f(to)h(implement)e |
|
3851 (weak)o(ening)i(on)83 444 y(the)f(right:)f(in)g(that)h(case)g |
|
3852 Fq(g)j Fr(is)c(weak)o(ened)i(to)e Fq(g)1686 408 y Fw(+)1744 |
|
3853 444 y Fm(;)17 b Fq(u)p Fr(.)83 740 y Fo(2.3.2)99 b(Commuting)24 |
|
3854 b(con)l(ver)o(sions)83 915 y Fr(Implementing)29 b(rules)i(by)f |
|
3855 (composition)e(with)i(generic)h(instances)f(tak)o(es)h(care)g(of)g |
|
3856 (naturality)f(is-)83 1035 y(sues;)d(and)h(some)f(commuting)e(con)l(v)o |
|
3857 (ersions)h(are)j(an)e(immediate)g(consequence)g(of)h(the)g(associa-)83 |
|
3858 1156 y(ti)n(vity)23 b(of)i(composition)e(in)h(a)h(polycate)o(gory)-6 |
|
3859 b(.)23 b(Ho)n(we)n(v)o(er)h(there)h(are)g(more)g(such.)83 |
|
3860 1331 y(W)-8 b(e)28 b(e)o(xpect)g(C-L)g(to)f(enjo)o(y)h(the)f(same)h |
|
3861 (commuting)e(possibilities)e(as)k Fn(^)p Fr(-L.)g(This)f(requires)h |
|
3862 (equa-)83 1451 y(tions)c(of)h(the)g(form)660 1660 y Fm(\()p |
|
3863 Fq(d)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(\001)h Fq(g)31 |
|
3864 b Fm(=)d Fq(d)p Fm(;)17 b(\()p Fq(f)32 b Fn(\001)22 b |
|
3865 Fq(g)t Fm(\))27 b Fq(;)116 b(d)p Fm(;)p 1760 1580 59 |
|
3866 4 v 17 w Fq(f)38 b Fm(=)p 1949 1580 154 4 v 27 w Fq(d)p |
|
3867 Fm(;)17 b Fq(f)38 b(;)116 b(d)p Fm(;)17 b Fq(f)2427 1618 |
|
3868 y Fw(+)2513 1660 y Fm(=)28 b(\()p Fq(d)p Fm(;)17 b Fq(f)11 |
|
3869 b Fm(\))2847 1618 y Fw(+)2932 1660 y Fq(:)83 1868 y Fr(\(In)29 |
|
3870 b(the)g(second)f(equation,)g(the)h(typing)e(should)h(gi)n(v)o(e)f(a)i |
|
3871 (commuting)e(con)l(v)o(ersion)h(in)g Fq(d)p Fm(;)p 3224 |
|
3872 1789 59 4 v 17 w Fq(f)10 b Fr(,)29 b(not)f(a)83 1988 |
|
3873 y(logical)c(cut.\))h(Similar)f(considerations)g(for)h(W)-6 |
|
3874 b(-L)25 b(and)f Fn(>)p Fr(-L)i(gi)n(v)o(e)d(the)i(equations)707 |
|
3875 2197 y Fm(\()p Fq(t)p Fm(;)17 b Fq(f)11 b Fm(\))21 b |
|
3876 Fn(\001)h Fq(g)31 b Fm(=)d Fq(t)p Fm(;)17 b(\()p Fq(f)32 |
|
3877 b Fn(\001)22 b Fq(g)t Fm(\))27 b Fq(;)116 b(t)p Fm(;)p |
|
3878 1759 2118 V 17 w Fq(f)39 b Fm(=)p 1949 2118 138 4 v 27 |
|
3879 w Fq(t)p Fm(;)17 b Fq(f)39 b(;)116 b(t)p Fm(;)17 b Fq(f)2396 |
|
3880 2156 y Fw(+)2482 2197 y Fm(=)28 b(\()p Fq(t)p Fm(;)17 |
|
3881 b Fq(f)11 b Fm(\))2800 2156 y Fw(+)2886 2197 y Fq(:)83 |
|
3882 2405 y Fr(\(In)38 b(the)f(last)g(equation)f(the)h(typing)g(should)f(gi) |
|
3883 n(v)o(e)g(a)h(commuting)e(con)l(v)o(ersion)i(in)f Fq(t)p |
|
3884 Fm(;)17 b Fq(f)3206 2369 y Fw(+)3265 2405 y Fr(,)37 b(not)g(a)83 |
|
3885 2526 y(logical)24 b(cut.\))h(W)-8 b(e)25 b(tak)o(e)g(all)g(these.)83 |
|
3886 2821 y Fo(2.3.3)99 b(Corr)l(ectness)25 b(equations)83 |
|
3887 2996 y Fr(There)20 b(are)g(further)g(issues)f(to)g(consider)g(arising)g |
|
3888 (from)g(the)g(decision)g(to)g(implement)f(the)h(structural)83 |
|
3889 3117 y(rules.)i(W)-8 b(e)21 b(implement)e(contraction)g(via)i |
|
3890 (composition)d(with)i Fq(d)27 b Fm(:)h Fq(A)g Fn(!)f |
|
3891 Fq(A)7 b Fn(^)g Fq(A)21 b Fr(and)f Fq(m)28 b Fm(:)g Fq(A)7 |
|
3892 b Fn(_)g Fq(A)28 b Fn(!)83 3237 y Fq(A)p Fr(.)e(But)f |
|
3893 Fq(d)g Fr(and)h Fq(m)f Fr(are)h(themselv)o(es)e(produced)h(by)g |
|
3894 (contractions)g(on)g(proofs)g Fm(id)2866 3252 y Fk(A)2945 |
|
3895 3237 y Fn(\001)e Fm(id)3077 3252 y Fk(A)3162 3237 y Fm(:)29 |
|
3896 b Fq(A;)17 b(A)29 b Fn(!)83 3357 y Fq(A)14 b Fn(^)g Fq(A)23 |
|
3897 b Fr(and)g Fm(id)594 3372 y Fk(A)665 3357 y Fn(\001)14 |
|
3898 b Fm(id)788 3372 y Fk(A)872 3357 y Fm(:)28 b Fq(A)14 |
|
3899 b Fn(_)g Fq(A)28 b Fn(!)f Fq(A;)17 b(A)23 b Fr(respecti)n(v)o(ely)-6 |
|
3900 b(.)21 b(So)h(we)h(need)g(to)f(mak)o(e)h(these)f(agree.)h(This)83 |
|
3901 3478 y(gi)n(v)o(es)h(us)g(equations:)962 3686 y Fq(d)p |
|
3902 Fm(;)p 1057 3602 425 4 v 17 w(\(id)1175 3701 y Fk(A)1254 |
|
3903 3686 y Fn(\001)e Fm(id)1386 3701 y Fk(A)1443 3686 y Fm(\))27 |
|
3904 b(=)h Fq(d)f(;)p 1833 3602 V 116 w Fm(\(id)1953 3701 |
|
3905 y Fk(A)2032 3686 y Fn(\001)22 b Fm(id)2163 3701 y Fk(A)2220 |
|
3906 3686 y Fm(\);)17 b Fq(m)27 b Fm(=)h Fq(m)g(:)83 3895 |
|
3907 y Fr(Similarly)-6 b(,)25 b(we)i(implement)e(weak)o(ening)h(via)g |
|
3908 (composition)e(with)i Fq(t)31 b Fm(:)g Fq(A)g Fn(!)f(>)d |
|
3909 Fr(and)g Fq(u)j Fm(:)h Fn(?)g(!)f Fq(A)p Fr(.)83 4015 |
|
3910 y(But)40 b(again)f(these)h(are)h(themselv)o(es)d(produced)h(by)h(weak)o |
|
3911 (ening)f(proofs)h Fq(?)55 b Fm(:)g(\()p Fn(\000)p Fm(\))h |
|
3912 Fn(!)f(>)41 b Fr(and)83 4136 y Fq(?)28 b Fm(:)g Fn(?)g(!)f |
|
3913 Fm(\()p Fn(\000)p Fm(\))e Fr(respecti)n(v)o(ely)-6 b(.)23 |
|
3914 b(Making)h(these)h(agree)g(gi)n(v)o(es)e(us)i(equations)1324 |
|
3915 4344 y Fq(t)p Fm(;)17 b Fq(?)1452 4303 y Fw(+)1538 4344 |
|
3916 y Fm(=)27 b Fq(t)h(;)117 b(?)1897 4303 y Fw(+)1956 4344 |
|
3917 y Fm(;)17 b Fq(u)26 b Fm(=)i Fq(u)f(:)83 4600 y Fr(There)j(is)f(a)h |
|
3918 (further)f(delicate)h(point)e(which)h(we)g(mention)f(here.)i(Gi)n(v)o |
|
3919 (en)e Fm(\000)36 b Fn(`)2816 4564 y Fk(f)2898 4600 y |
|
3920 Fm(\001)29 b Fr(there)h(are)g(tw)o(o)83 4713 y(distinct)24 |
|
3921 b(w)o(ays)g(to)h(introduce)f Fn(>)h Fr(on)g(the)f(left:)1164 |
|
3922 4862 y Fi(\000)h Fh(`)g Fi(\001)p 1109 4882 350 4 v 1109 |
|
3923 4962 a Fh(>)p Fj(;)15 b Fi(\000)25 b Fh(`)f Fi(\001)1500 |
|
3924 4914 y Fh(>)p Ft(-L)1682 4962 y Fj(;)1959 4862 y Fi(\000)h |
|
3925 Fh(`)g Fi(\001)p 1904 4882 V 1904 4962 a Fh(>)p Fj(;)15 |
|
3926 b Fi(\000)25 b Fh(`)g Fi(\001)2295 4912 y Ft(W)-6 b(-L)2486 |
|
3927 4962 y Fj(:)83 5139 y Fr(In)33 b(our)f(notation)f(these)h(are)h |
|
3928 Fq(f)1173 5103 y Fw(+)1264 5139 y Fr(and)g Fq(t)p Fm(;)17 |
|
3929 b Fq(f)1579 5103 y Fw(+)1670 5139 y Fr(respecti)n(v)o(ely:)30 |
|
3930 b(the)o(y)i(are)h(not)f(tak)o(en)g(as)g(equal.)g(This)83 |
|
3931 5259 y(decision)25 b(arises)g(from)g(an)h(austere)f(vie)n(w)g(of)g(cut) |
|
3932 h(reductions)e(where)i(a)g(last)e(rule)i(is)f(structural.)f(In)83 |
|
3933 5380 y(this)g(paper)h(we)g(mak)o(e)g(no)g(equality)f(assumptions)e(in)j |
|
3934 (such)f(circumstances.)p 0 TeXcolorgray 1748 5712 a(10)p |
|
3935 0 TeXcolorgray eop end |
|
3936 %%Page: 11 11 |
|
3937 TeXDict begin 11 10 bop 0 TeXcolorgray 0 TeXcolorgray |
|
3938 0 TeXcolorgray 83 83 a Fo(2.3.4)99 b(Structur)o(al)23 |
|
3939 b(congruence)83 258 y Fr(In)j(the)g(interests)f(of)g(simplicity)-6 |
|
3940 b(,)23 b(we)j(subject)f(the)h(structural)f(rules)g(to)h(structural)f |
|
3941 (congruence)h(in)83 379 y(a)g(sense)e(popular)g(in)h(concurrenc)o(y)g |
|
3942 (theory)-6 b(.)83 546 y(Consider)25 b(the)g(process)f(of)h(W)-8 |
|
3943 b(eak)o(ening)25 b(only)f(immediately)f(to)h(Contract:)1611 |
|
3944 727 y Fj(A;)15 b Fi(\000)26 b Fh(`)e Fi(\001)p 1557 765 |
|
3945 456 4 v 1557 845 a Fj(A;)15 b(A;)g Fi(\000)26 b Fh(`)f |
|
3946 Fi(\001)p 1557 882 V 1611 962 a Fj(A;)15 b Fi(\000)26 |
|
3947 b Fh(`)e Fi(\001)80 b Fj(:)83 1171 y Fr(That)27 b(seems)g(as)h |
|
3948 (pointless)d(a)j(detour)f(as)g(a)h(logical)e(Cut,)i(and)f(we)g(allo)n |
|
3949 (w)g(it)g(to)f(be)i(deleted.)f(Gi)n(v)o(en)83 1291 y(the)e(analysis)f |
|
3950 (abo)o(v)o(e)g(we)h(can)g(e)o(xpress)f(this)g(by)h(the)f(equation:)1504 |
|
3951 1510 y Fq(d)p Fm(;)p 1599 1425 273 4 v 17 w(\()p Fq(t)p |
|
3952 Fm(;)17 b Fq(f)1775 1481 y Fw(+)1833 1510 y Fm(\))28 |
|
3953 b(=)f Fq(f)39 b(:)83 1729 y Fr(Similarly)26 b(it)h(seems)f(willful)g |
|
3954 (to)h(distinguish)d(between)j(the)g(v)n(arious)f(w)o(ays)h(in)g(which)f |
|
3955 (a)h(series)g(of)83 1849 y(contractions)d(may)h(be)g(performed.)f(This) |
|
3956 g(pro)o(vides)g(the)h(seemingly)e(pointless)g(equation)1394 |
|
3957 2080 y Fq(d)p Fm(;)17 b(\()p 1527 1985 154 4 v Fq(d)p |
|
3958 Fm(;)p 1622 2001 59 4 v 17 w Fq(f)9 b Fm(\))28 b(=)f |
|
3959 Fq(d)p Fm(;)17 b(\()p 1981 1985 154 4 v Fq(d)p Fm(;)p |
|
3960 2076 2001 59 4 v 17 w Fq(f)10 b Fm(\))27 b Fq(;)83 2299 |
|
3961 y Fr(which)32 b(properly)f(inde)o(x)o(ed)f(is)i(a)g(v)o(ersion)f(of)g |
|
3962 (associati)n(vity)-6 b(.)29 b(Finally)j(there)g(is)f(an)h(issue)f |
|
3963 (relating)83 2420 y(contraction)j(to)g(e)o(xchange:)g(one)h(can)g(e)o |
|
3964 (xchange)f(before)h(contracting)f(tw)o(o)g(copies)g(of)h |
|
3965 Fq(A)p Fr(.)f(One)83 2540 y(may)21 b(as)h(well)e(identify)h(the)g |
|
3966 (proofs.)f(Write)i Fm(\()p Fn(\000)p Fm(\))1750 2504 |
|
3967 y Fk(s)1808 2540 y Fr(to)f(indicate)g(a)g(use)g(of)h(symmetry)-6 |
|
3968 b(.)19 b(Then)i(modulo)83 2660 y(elimination)i(of)i(logical)f(cuts)h |
|
3969 (we)g(can)g(e)o(xpress)f(this)g(by)1137 2879 y Fq(d)p |
|
3970 Fm(;)p 1232 2800 349 4 v 17 w(id)1313 2894 y Fk(A)1392 |
|
3971 2879 y Fn(\001)e Fm(id)1523 2894 y Fk(A)1580 2820 y(s)1645 |
|
3972 2879 y Fm(=)27 b Fq(d)h Fm(:)g Fq(A)f Fn(\000)-16 b(!)28 |
|
3973 b Fq(A)22 b Fn(^)g Fq(A)28 b(:)83 3098 y Fr(Thus)36 b(structural)g |
|
3974 (congruence)g(gi)n(v)o(es)f(us)h(identity)-6 b(,)34 b(associati)n(vity) |
|
3975 g(and)j(commutati)n(vity)c(condi-)83 3219 y(tions.)24 |
|
3976 b(W)-8 b(e)25 b(assume)f(these)h(in)f(the)h(interests)f(of)h |
|
3977 (mathematical)f(ele)o(gance.)83 3574 y Fs(3)100 b(Categorical)24 |
|
3978 b(f)n(ormulation)83 3869 y Fr(In)e(section)f(2)g(we)h(surv)o(e)o(yed)f |
|
3979 (all)g(the)g(structure)h(on)f(a)h Fn(\003)p Fr(-polycate)o(gory)e |
|
3980 (needed)i(to)f(model)g(classical)83 3990 y(proofs,)j(and)g(we)g(ga)n(v) |
|
3981 o(e)f(the)h(equations)f(which)h(we)g(think)f(should)g(hold.)g(This)g |
|
3982 (gi)n(v)o(es)g(us)h(a)g(genuine)83 4110 y(though)34 b(unwieldy)g |
|
3983 (notion)g(of)h(model.)f(W)-8 b(e)35 b(shall)f(not)h(spell)f(it)g(out.)h |
|
3984 (Instead)f(we)i(shall)e(e)o(xtract)83 4230 y(from)d(the)g |
|
3985 Fn(\003)p Fr(-polycate)o(gorical)e(formulation)h(structure)g(on)h(its)f |
|
3986 (underlying)g(cate)o(gory)g(gi)n(ving)f(an)83 4351 y(equi)n(v)n(alent) |
|
3987 23 b(notion)h(of)h(cate)o(gorical)f(model.)83 4526 y(Before)g(we)e(get) |
|
3988 g(do)n(wn)f(to)g(w)o(ork,)h(we)g(note)g(that)g(the)g(in)l(v)n(olutary)e |
|
3989 (ne)o(gation)h Fm(\()p Fn(\000)p Fm(\))2840 4478 y Fl(\003)2901 |
|
3990 4526 y Fr(e)o(xtends)g(to)h(maps)83 4646 y(as)j(we)g(ha)n(v)o(e)g |
|
3991 (\(for)g(e)o(xample\))f(natural)h(isomorphisms)1040 4865 |
|
3992 y Fn(C)6 b Fm(\()p Fq(A)p Fm(;)17 b Fq(B)5 b Fm(\))1398 |
|
3993 4838 y Fn(\030)1399 4869 y Fm(=)1503 4865 y Fn(C)h Fm(\()p |
|
3994 Fn(\000)p Fm(;)17 b Fq(A)1793 4824 y Fl(\003)1833 4865 |
|
3995 y Fq(;)g(B)5 b Fm(\))2022 4838 y Fn(\030)2022 4869 y |
|
3996 Fm(=)2127 4865 y Fn(C)h Fm(\()p Fq(B)2302 4824 y Fl(\003)2342 |
|
3997 4865 y Fm(;)17 b Fq(A)2459 4824 y Fl(\003)2498 4865 y |
|
3998 Fm(\))g Fq(:)83 5084 y Fr(It)25 b(is)f(easy)h(to)g(see)g(that)p |
|
3999 0 TeXcolorgray 83 5259 a Fs(Pr)n(oposition)d(3.1.)p 0 |
|
4000 TeXcolorgray 37 w Fo(The)g(oper)o(ation)e Fm(\()p Fn(\000)p |
|
4001 Fm(\))1515 5223 y Fl(\003)1583 5259 y Fm(:)27 b Fn(C)1695 |
|
4002 5223 y Fk(op)1797 5259 y Fn(!)g(C)i Fo(is)21 b(a)h(strict)e(functorial) |
|
4003 g(self-duality)g(on)i(our)83 5380 y(cate)l(gory)j Fn(C)6 |
|
4004 b Fo(.)p 0 TeXcolorgray 1748 5712 a Fr(11)p 0 TeXcolorgray |
|
4005 eop end |
|
4006 %%Page: 12 12 |
|
4007 TeXDict begin 12 11 bop 0 TeXcolorgray 0 TeXcolorgray |
|
4008 0 TeXcolorgray 83 83 a Fr(The)24 b(duality)f(more)h(or)g(less)f(halv)o |
|
4009 (es)g(the)h(w)o(ork)g(which)f(we)h(no)n(w)g(ha)n(v)o(e)f(to)h(do.)f |
|
4010 (Whene)n(v)o(er)h(we)g(ha)n(v)o(e)83 203 y(structure)h(we)g(shall)f(ha) |
|
4011 n(v)o(e)h(its)f(dual.)83 545 y Fo(3.1)100 b(Cate)l(gorical)23 |
|
4012 b(Pr)l(eliminaries)83 849 y Fr(W)-8 b(e)28 b(start)g(by)f(introducing)f |
|
4013 (some)h(preliminary)g(notions.)f(W)-8 b(e)28 b(consider)f(cate)o |
|
4014 (gories)g Fn(C)34 b Fr(equipped)83 969 y(with)e(a)g(special)g(class)f |
|
4015 (of)h Fn(C)1070 984 y Fw(id)1166 969 y Fr(of)g(idempotents,)e(which)h |
|
4016 (we)i(shall)e(call)h Fo(linear)f(idempotents)p Fr(.)f(In)83 |
|
4017 1089 y(our)24 b(application)f(these)h(will)f(be)h(idempotents)e(\(maps) |
|
4018 h Fq(e)h Fr(with)f Fq(e)p Fm(;)17 b Fq(e)28 b Fm(=)g |
|
4019 Fq(e)p Fr(\))c(which)g(are)g(linear)g(in)g(the)83 1210 |
|
4020 y(sense)31 b(of)g(2.2.2.)f(F)o(or)g(the)h(moment)e(we)i(need)g(assume)f |
|
4021 (nothing)f(be)o(yond)h(the)g(ob)o(vious)f(require-)83 |
|
4022 1330 y(ment)c(that)f(e)n(v)o(ery)g(identity)f(is)i(in)f(the)h(class.)f |
|
4023 (W)-8 b(e)26 b(call)e(such)h(data)g(a)g Fo(guar)l(ded)f(cate)l(gory)p |
|
4024 Fr(.)3168 1294 y Fw(2)p 0 TeXcolorgray 83 1514 a Fs(De\002nition)k |
|
4025 (3.2.)p 0 TeXcolorgray 42 w Fo(A)f(guar)l(ded)f(functor)g |
|
4026 Fq(F)45 b Fm(:)32 b Fn(C)37 b(!)31 b(D)f Fr(between)d(guarded)g(cate)o |
|
4027 (gories)f(consists)f(of)83 1634 y(the)g(usual)g(data)g(for)h(a)g |
|
4028 (functor)f(such)g(that)f Fq(F)39 b Fr(maps)25 b(linear)g(idempotents)f |
|
4029 (to)g(linear)i(idempotents;)83 1755 y(and)f(whene)n(v)o(er)f |
|
4030 Fq(e)h Fr(and)g Fq(e)944 1718 y Fl(0)993 1755 y Fr(are)g(linear)g |
|
4031 (idempotents,)e(then)856 1992 y Fq(F)14 b Fm(\()p Fq(e)p |
|
4032 Fm(\);)j Fq(F)d Fm(\()p Fq(f)d Fm(\);)17 b Fq(F)d Fm(\()p |
|
4033 Fq(g)t Fm(\);)j Fq(F)d Fm(\()p Fq(e)1762 1950 y Fl(0)1783 |
|
4034 1992 y Fm(\))27 b(=)h Fq(F)14 b Fm(\()p Fq(e)p Fm(\);)j |
|
4035 Fq(F)d Fm(\()p Fq(f)d Fm(;)17 b Fq(g)t Fm(\);)g Fq(F)d |
|
4036 Fm(\()p Fq(e)2705 1950 y Fl(0)2725 1992 y Fm(\))83 2229 |
|
4037 y Fr(W)-8 b(e)27 b(say)g(that)f(a)h(guarded)f(functor)g |
|
4038 Fq(F)41 b Fr(is)26 b Fo(domain)f(absorbing)g Fr(when)h |
|
4039 Fq(F)14 b Fm(\()p Fq(e)p Fm(\);)j Fq(F)d Fm(\()p Fq(f)d |
|
4040 Fm(\))30 b(=)g Fq(F)14 b Fm(\()p Fq(e)p Fm(;)j Fq(f)11 |
|
4041 b Fm(\))26 b Fr(for)83 2349 y(linear)j(idempotents)e |
|
4042 Fq(e)p Fr(;)i(it)f(is)h Fo(codomain)f(absorbing)f Fr(when)h |
|
4043 Fq(F)14 b Fm(\()p Fq(f)d Fm(\);)17 b Fq(F)d Fm(\()p Fq(e)p |
|
4044 Fm(\))34 b(=)h Fq(F)14 b Fm(\()p Fq(f)d Fm(;)17 b Fq(e)p |
|
4045 Fm(\))28 b Fr(for)i(linear)83 2469 y(idempotents)23 b |
|
4046 Fq(e)p Fr(.)83 2653 y(W)-8 b(e)30 b(should)e(interpret)h(this)f(in)g |
|
4047 (the)h(case)h Fn(C)36 b Fr(is)28 b(the)h(tri)n(vial)f(one)h(object)g |
|
4048 (cate)o(gory)g Fm(1)g Fr(with)f(its)g(only)83 2773 y(choice)20 |
|
4049 b(of)g(linear)g(idempotents.)e(A)i(guarded)f(functor)h |
|
4050 Fq(D)31 b Fm(:)c(1)h Fn(!)f(D)c Fr(is)c(a)h(choice)g(of)g(object)f |
|
4051 Fq(D)31 b Fn(2)d(D)83 2894 y Fr(and)d(linear)g(idempotent)e |
|
4052 Fq(e)1022 2909 y Fk(D)1114 2894 y Fm(:)28 b Fq(D)i Fn(!)d |
|
4053 Fq(D)s Fr(.)e(W)-8 b(e)25 b(call)g(this)f(a)h Fo(guar)l(ded)f(object)p |
|
4054 Fr(.)83 3077 y(W)-8 b(e)26 b(also)e(need)h(some)f(notion)g(of)h |
|
4055 Fm(2)p Fr(-cell)f(between)h(guarded)g(functors)p 0 TeXcolorgray |
|
4056 83 3261 a Fs(De\002nition)31 b(3.3.)p 0 TeXcolorgray |
|
4057 43 w Fr(Let)e Fq(F)s(;)17 b(G)36 b Fm(:)g Fn(C)42 b(!)36 |
|
4058 b(D)c Fr(be)d(guarded)h(functors.)e(A)i Fo(guar)l(ded)f(tr)o |
|
4059 (ansformation)c Fr(or)83 3382 y(simply)f Fo(tr)o(ansformation)d |
|
4060 Fr(consists)i(of)i(data)g Fq(\013)1702 3397 y Fk(A)1787 |
|
4061 3382 y Fm(:)j Fq(F)14 b(A)27 b Fn(!)g Fq(GA)e Fr(satisfying)1035 |
|
4062 3619 y Fq(F)14 b Fm(\(id)1231 3634 y Fk(A)1288 3619 y |
|
4063 Fm(\);)j Fq(F)d Fm(\()p Fq(u)p Fm(\);)j Fq(\013)1685 |
|
4064 3634 y Fk(B)1772 3619 y Fm(=)27 b Fq(\013)1937 3634 y |
|
4065 Fk(A)1994 3619 y Fm(;)17 b Fq(G)p Fm(\()p Fq(u)p Fm(\);)g |
|
4066 Fq(G)p Fm(\(id)2486 3634 y Fk(B)2547 3619 y Fm(\))83 |
|
4067 3856 y Fr(for)25 b(all)g Fq(u)i Fm(:)h Fq(A)g Fn(!)f |
|
4068 Fq(B)j Fr(in)24 b Fn(C)6 b Fr(.)83 4039 y(W)-8 b(e)26 |
|
4069 b(do)e(not)g(spell)g(out)h(here)g(the)g(consequences)f(of)h(these)g |
|
4070 (de\002nitions,)e(b)n(ut)i(note)f(the)h(follo)n(wing.)p |
|
4071 0 TeXcolorgray 83 4223 a Fs(Theor)n(em)38 b(3.4.)p 0 |
|
4072 TeXcolorgray 47 w Fo(Guar)l(ded)e(cate)l(gories,)f(guar)l(ded)h |
|
4073 (functor)o(s)e(and)i(tr)o(ansformations)c(form)j(a)h |
|
4074 Fm(2)p Fo(-)83 4343 y(cate)l(gory)-5 b(,)24 b(the)h Fr(guarded)g |
|
4075 Fm(2)p Fr(-cate)o(gory)p Fo(.)83 4527 y Fr(The)30 b(only)e(subtle)h |
|
4076 (point)f(is)h(the)g(composition)e(of)j Fm(2)p Fr(-cells)f(along)g(a)g |
|
4077 Fm(0)p Fr(-cell,)g(where)h(one)g(needs)f(to)83 4647 y(compose)d |
|
4078 (additionally)e(with)h(maps)h(of)g(the)g(form)g Fq(GF)14 |
|
4079 b Fm(\(id)o(\))p Fr(.)26 b(W)-8 b(e)26 b(shall)g(not)f(need)h(that)g |
|
4080 (here.)g(The)83 4768 y(composition)g(of)i Fm(2)p Fr(-cells)g(along)f(a) |
|
4081 i Fm(1)p Fr(-cell)f(by)f(contrast)h(is)g(straightforw)o(ard,)f(and)h |
|
4082 (we)g(shall)f(need)83 4888 y(terminology)c(suggested)h(by)h(it.)p |
|
4083 0 TeXcolorgray 83 5056 299 4 v 83 5120 a Fw(2)174 5153 |
|
4084 y Ft(The)d(terminology)i(is)d(intended)k(to)c(suggest)j(a)d(focus)i(on) |
|
4085 f(good)h(beha)n(viour)h(once)f(we)e(compose)i(with)e(the)83 |
|
4086 5266 y(idempotents)30 b(or)d(guards.)h(There)f(is)g(no)g(stronger)i |
|
4087 (connections)h(with)d(other)h(uses)f(of)g(\223guarded\224)j(in)d(logic) |
|
4088 83 5379 y(or)d(computer)h(science.)p 0 TeXcolorgray 0 |
|
4089 TeXcolorgray 1748 5712 a Fr(12)p 0 TeXcolorgray eop end |
|
4090 %%Page: 13 13 |
|
4091 TeXDict begin 13 12 bop 0 TeXcolorgray 0 TeXcolorgray |
|
4092 0 TeXcolorgray 0 TeXcolorgray 83 83 a Fs(De\002nition)40 |
|
4093 b(3.5.)p 0 TeXcolorgray 48 w Fr(Suppose)e(that)h Fq(\013)53 |
|
4094 b Fm(:)g Fq(F)67 b Fn(!)53 b Fq(G)38 b Fr(and)h Fq(\014)59 |
|
4095 b Fm(:)53 b Fq(G)g Fn(!)f Fq(F)h Fr(are)39 b(\(guarded)g(natural\))83 |
|
4096 203 y(transformations.)c Fq(\013)i Fr(and)f Fq(\014)42 |
|
4097 b Fr(are)37 b Fo(mutually)f(in)l(ver)o(se)g Fr(\()p Fq(\013)h |
|
4098 Fo(in)l(ver)o(se)f(to)g Fq(\014)6 b Fr(\))36 b(just)g(when)g |
|
4099 Fq(\013)3199 218 y Fk(A)3256 203 y Fm(;)17 b Fq(\014)3355 |
|
4100 218 y Fk(A)3461 203 y Fm(=)83 324 y Fq(F)d Fm(\(id)279 |
|
4101 339 y Fk(A)336 324 y Fm(\))25 b Fr(and)g Fq(\014)623 |
|
4102 339 y Fk(A)680 324 y Fm(;)17 b Fq(\013)786 339 y Fk(A)870 |
|
4103 324 y Fm(=)28 b Fq(G)p Fm(\(id)1170 339 y Fk(A)1227 324 |
|
4104 y Fm(\))p Fr(.)83 501 y(This)c(amounts)g(to)g(taking)g(in)l(v)o(erses)g |
|
4105 (of)h Fm(2)p Fr(-cells)g(in)f(the)h(guarded)f Fm(2)p |
|
4106 Fr(-cate)o(gory)-6 b(.)83 807 y Fo(3.2)100 b(Lo)o(gical)24 |
|
4107 b(oper)o(ator)o(s)83 1104 y(3.2.1)99 b(Extension)24 b(to)g(maps)83 |
|
4108 1274 y Fr(Clearly)34 b Fn(C)39 b Fr(must)32 b(be)h(equipped)g(on)g |
|
4109 (objects)f(with)g(the)h(structure,)g Fo(true)p Fr(,)f |
|
4110 Fo(and)p Fr(,)h Fo(false)p Fr(,)f Fo(or)p Fr(,)h Fo(not)f |
|
4111 Fr(of)83 1387 y(classical)39 b(logic:)f(we)i(write)f(this)f(structure)h |
|
4112 (as)g Fm(1)p Fr(,)g Fn(^)p Fr(,)h Fm(0)p Fr(,)f Fn(_)p |
|
4113 Fr(.)g(There)h(is)f(a)g(compelling)f(w)o(ay)h(to)83 1500 |
|
4114 y(e)o(xtend)24 b(the)h(propositional)e(operators)h(to)h(maps.)f(Gi)n(v) |
|
4115 o(en)f(proofs)i Fq(A)i Fn(`)2533 1464 y Fk(f)2606 1500 |
|
4116 y Fq(B)j Fr(and)25 b Fq(C)35 b Fn(`)3045 1464 y Fk(g)3112 |
|
4117 1500 y Fq(D)s Fr(,)25 b(there)g(is)83 1613 y(a)h(canonical)e(proof)h |
|
4118 Fq(A)d Fn(^)h Fq(C)34 b Fn(`)1149 1577 y Fk(f)7 b Fl(^)p |
|
4119 Fk(g)1305 1613 y Fq(B)28 b Fn(^)22 b Fq(D)28 b Fr(gi)n(v)o(en)23 |
|
4120 b(by)i(the)f(follo)n(wing)1513 1803 y Fj(A)h Fh(`)g Fj(B)96 |
|
4121 b(C)31 b Fh(`)25 b Fj(D)p 1513 1823 594 4 v 1541 1903 |
|
4122 a(A;)15 b(C)32 b Fh(`)25 b Fj(B)g Fh(^)19 b Fj(D)p 1510 |
|
4123 1940 600 4 v 1510 2020 a(A)i Fh(^)f Fj(C)31 b Fh(`)25 |
|
4124 b Fj(B)g Fh(^)20 b Fj(D)83 2238 y Fr(Similarly)h(we)h(ha)n(v)o(e)f |
|
4125 Fq(f)g Fn(_)10 b Fq(g)26 b Fr(a)21 b(proof)h(of)g Fq(A)10 |
|
4126 b Fn(_)g Fq(C)35 b Fn(`)28 b Fq(B)15 b Fn(_)10 b Fq(D)s |
|
4127 Fr(.)22 b(So)g(in)f(terms)g(of)h(our)f(algebraic)h(notation)83 |
|
4128 2358 y(we)j(should)f(de\002ne)1059 2482 y Fq(f)33 b Fn(^)22 |
|
4129 b Fq(g)31 b Fm(=)p 1410 2398 257 4 v 28 w(\()p Fq(f)i |
|
4130 Fn(\001)21 b Fq(g)t Fm(\))99 b Fq(;)117 b(f)32 b Fn(_)23 |
|
4131 b Fq(g)31 b Fm(=)p 2260 2398 V 27 w(\()p Fq(f)i Fn(\001)22 |
|
4132 b Fq(g)t Fm(\))16 b Fq(:)83 2636 y Fr(Thus)35 b Fn(C)42 |
|
4133 b Fr(is)35 b(equipped)g(with)f(operations)h Fn(^)h Fr(and)f |
|
4134 Fn(_)h Fr(on)f(maps.)g(It)h(turns)e(out)h(that)g(the)o(y)g(are)h(not)83 |
|
4135 2756 y(functorial,)28 b(b)n(ut)f(in)h(a)g(suitable)f(sense)h(guarded)g |
|
4136 (functorial.)f(T)-8 b(o)28 b(mak)o(e)f(sense)h(of)g(that)g(we)g(need)g |
|
4137 (a)83 2876 y(collection)c(of)h(linear)g(idempotents.)e(W)-8 |
|
4138 b(e)25 b(identify)f(that)g(class)h(as)g(follo)n(ws.)83 |
|
4139 3053 y(W)-8 b(e)29 b(\002rst)e(note)h(a)g(useful)f(computation)f(in)h |
|
4140 (our)h Fn(\003)p Fr(-polycate)o(gories)e(for)i(classical)g(logic.)f(W) |
|
4141 -8 b(e)28 b(gi)n(v)o(e)83 3174 y(just)c(the)h(v)o(ersion)f(for)h |
|
4142 (conjunction)e(as)i(that)f(for)h(disjunction)e(is)h(dual)h(to)f(it.)p |
|
4143 0 TeXcolorgray 83 3351 a Fs(Pr)n(oposition)k(3.6.)p 0 |
|
4144 TeXcolorgray 43 w Fo(Suppose)f(that)g Fq(f)44 b Fm(:)33 |
|
4145 b Fq(A)h Fn(!)f Fq(C)7 b Fo(,)27 b Fq(g)37 b Fm(:)c Fq(B)39 |
|
4146 b Fn(!)33 b Fq(D)s Fo(,)27 b Fq(h)34 b Fm(:)f Fq(C)41 |
|
4147 b Fn(!)33 b Fq(E)h Fo(and)27 b Fq(k)36 b Fm(:)e Fq(D)i |
|
4148 Fn(!)d Fq(F)83 3471 y Fo(ar)l(e)25 b(maps.)g(Then)g Fm(\()p |
|
4149 Fq(f)32 b Fn(^)23 b Fq(g)t Fm(\);)17 b(\()p Fq(h)k Fn(^)i |
|
4150 Fq(k)s Fm(\))k(=)p 1489 3387 549 4 v 28 w Fn(f)p Fq(f)5 |
|
4151 b(;)17 b(g)t Fn(g)p Fm(;)g(\()p Fq(h)k Fn(\001)h Fq(k)s |
|
4152 Fm(\))p Fo(.)83 3648 y Fr(Using)i(also)h(the)f(Additional)f(Assumption) |
|
4153 g(of)i(2.2.2)f(we)h(deduce)g(at)g(once)g(the)g(follo)n(wing.)p |
|
4154 0 TeXcolorgray 83 3825 a Fs(Pr)n(oposition)j(3.7.)p 0 |
|
4155 TeXcolorgray 43 w Fo(If)g Fq(e)929 3840 y Fk(A)1020 3825 |
|
4156 y Fm(:)33 b Fq(A)h Fn(!)f Fq(A)28 b Fo(and)g Fq(e)1644 |
|
4157 3840 y Fk(B)1738 3825 y Fm(:)34 b Fq(B)k Fn(!)c Fq(B)f |
|
4158 Fo(ar)l(e)28 b(linear)f(and)h(idempotent,)e(then)i(so)83 |
|
4159 3946 y(ar)l(e)d Fq(e)282 3961 y Fk(A)362 3946 y Fn(^)d |
|
4160 Fq(e)495 3961 y Fk(B)581 3946 y Fo(and)i Fq(e)800 3961 |
|
4161 y Fk(A)880 3946 y Fn(_)e Fq(e)1013 3961 y Fk(B)1074 3946 |
|
4162 y Fo(.)83 4123 y Fr(W)-8 b(e)21 b(no)n(w)e(associate)g(with)g(our)h |
|
4163 (cate)o(gorical)g(model)f Fn(C)26 b Fr(a)20 b(class)g(of)g(linear)g |
|
4164 (idempotents.)e(W)-8 b(e)20 b(simply)83 4243 y(close)k(the)g |
|
4165 (collection)e(of)i(identity)f(maps)g(under)h(the)f(logical)g |
|
4166 (operations.)g(\(W)-8 b(e)25 b(mak)o(e)e(clear)i(what)83 |
|
4167 4364 y(that)30 b(means)f(in)g(case)i(of)f Fn(>)g Fr(and)g |
|
4168 Fn(?)p Fr(.\))g(W)-8 b(e)30 b(introduce)f(some)h(notation)e(for)i(the)g |
|
4169 Fo(canonical)e(linear)83 4484 y(idempotents)c Fr(which)g(we)h(ha)n(v)o |
|
4170 (e)g(identi\002ed.)f(W)-8 b(e)25 b(write)510 4708 y Fq(e)555 |
|
4171 4723 y Fk(A;B)716 4708 y Fm(=)j Fq(e)865 4723 y Fk(A)p |
|
4172 Fl(^)p Fk(B)1053 4708 y Fm(=)g(id)1238 4723 y Fk(A)1317 |
|
4173 4708 y Fn(^)23 b Fm(id)1487 4723 y Fk(B)1575 4708 y Fq(;)415 |
|
4174 b(e)2062 4723 y Fk(A;B)2223 4708 y Fm(=)28 b Fq(e)2372 |
|
4175 4723 y Fk(A)p Fl(_)p Fk(B)2560 4708 y Fm(=)g(id)2745 |
|
4176 4723 y Fk(A)2824 4708 y Fn(_)23 b Fm(id)2994 4723 y Fk(B)3083 |
|
4177 4708 y Fq(:)83 4932 y Fr(W)-8 b(e)26 b(also)e(tak)o(e)h(a)g(nullary)f |
|
4178 (v)o(ersion)g(of)h(these,)f(setting)1254 5156 y Fq(e)1299 |
|
4179 5171 y Fl(>)1385 5156 y Fm(=)k Fq(?)1538 5115 y Fw(+)2023 |
|
4180 5156 y Fq(e)2068 5171 y Fl(?)2155 5156 y Fm(=)f Fq(?)2307 |
|
4181 5115 y Fw(+)83 5380 y Fr(with)d(the)h(ob)o(vious)e(interpretation)h(in) |
|
4182 g(each)i(case.)p 0 TeXcolorgray 1748 5712 a(13)p 0 TeXcolorgray |
|
4183 eop end |
|
4184 %%Page: 14 14 |
|
4185 TeXDict begin 14 13 bop 0 TeXcolorgray 0 TeXcolorgray |
|
4186 0 TeXcolorgray 0 TeXcolorgray 83 83 a Fs(Theor)n(em)27 |
|
4187 b(3.8.)p 0 TeXcolorgray 41 w Fo(\(i\))e Fn(>)g Fo(with)g |
|
4188 Fq(e)1148 98 y Fl(>)1232 83 y Fo(and)f(dually)g Fn(?)i |
|
4189 Fo(with)e Fq(e)2024 98 y Fl(?)2108 83 y Fo(ar)l(e)h(guar)l(ded)g |
|
4190 (objects.)83 203 y(\(ii\))i(The)h(oper)o(ator)d Fn(^)33 |
|
4191 b Fm(:)f Fn(C)e(\002)24 b(C)39 b(!)31 b(C)j Fo(is)26 |
|
4192 b(a)h(domain)f(absorbing)g(guar)l(ded)g(functor)-11 b(,)26 |
|
4193 b(while)h(dually)83 324 y Fn(_)h Fm(:)g Fn(C)h(\002)22 |
|
4194 b(C)34 b(!)28 b(C)j Fo(is)24 b(a)h(codomain)f(absorbing)f(guar)l(ded)h |
|
4195 (functor)-11 b(.)83 637 y(3.2.2)99 b(Coher)l(ence)83 |
|
4196 817 y Fr(When)28 b(we)g(come)f(to)g(reconstruct)g(a)h |
|
4197 Fn(\003)p Fr(-polycate)o(gory)f(from)g(our)g(cate)o(gory)g(we)h(need)g |
|
4198 (to)f(observ)o(e)83 937 y(some)h(relations)g(between)g(our)g(canonical) |
|
4199 g(linear)h(idempotents.)d(W)-8 b(e)29 b(illustrate)e(the)h(point)f |
|
4200 (here.)83 1057 y(Concentrating)e(on)f(conjunction)g(we)h(ha)n(v)o(e)f |
|
4201 (on)h(the)f(one)h(hand)g(the)f(idempotent)682 1287 y |
|
4202 Fq(e)727 1302 y Fk(A;B)s Fl(^)p Fk(C)990 1287 y Fm(=)k(id)1175 |
|
4203 1302 y Fk(A)1254 1287 y Fn(^)23 b Fm(id)1424 1302 y Fk(B)s |
|
4204 Fl(^)p Fk(C)1614 1287 y Fm(:)28 b Fq(A)22 b Fn(^)h Fm(\()p |
|
4205 Fq(B)k Fn(^)c Fq(C)7 b Fm(\))27 b Fn(\000)-16 b(!)27 |
|
4206 b Fq(A)c Fn(^)f Fm(\()p Fq(B)27 b Fn(^)c Fq(C)7 b Fm(\))83 |
|
4207 1516 y Fr(and)25 b(on)g(the)f(other)556 1745 y Fq(e)601 |
|
4208 1760 y Fk(A;B)s(;C)836 1745 y Fm(=)k(id)1021 1760 y Fk(A)1100 |
|
4209 1745 y Fn(^)23 b Fm(\(id)1308 1760 y Fk(B)1391 1745 y |
|
4210 Fn(^)g Fm(id)1561 1760 y Fk(C)1620 1745 y Fm(\))28 b(:)f |
|
4211 Fq(A)c Fn(^)f Fm(\()p Fq(B)27 b Fn(^)c Fq(C)7 b Fm(\))27 |
|
4212 b Fn(\000)-16 b(!)28 b Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k |
|
4213 Fn(^)22 b Fq(C)7 b Fm(\))28 b Fq(:)83 1974 y Fr(Intuiti)n(v)o(ely)22 |
|
4214 b(the)i(second)f(decomposes)h(things)e(more)i(than)g(the)g(\002rst,)g |
|
4215 (and)g(this)f(is)h(re\003ected)h(in)f(the)83 2094 y(f)o(act)i(that)e |
|
4216 (the)h(second)f(absorbs)g(the)h(\002rst)g(in)f(the)h(sense)g(that)650 |
|
4217 2323 y Fq(e)695 2338 y Fk(A;B)s(;C)903 2323 y Fm(;)17 |
|
4218 b Fq(e)992 2338 y Fk(A;B)s Fl(^)p Fk(C)1254 2323 y Fm(=)28 |
|
4219 b Fq(e)1403 2338 y Fk(A;B)s(;C)1711 2323 y Fr(and)99 |
|
4220 b Fq(e)1999 2338 y Fk(A;B)s Fl(^)p Fk(C)2234 2323 y Fm(;)17 |
|
4221 b Fq(e)2323 2338 y Fk(A;B)s(;C)2559 2323 y Fm(=)27 b |
|
4222 Fq(e)2707 2338 y Fk(A;B)s(;C)2943 2323 y Fq(:)83 2552 |
|
4223 y Fr(The)e(\002rst)f(calculation)f(depends)h(on)g(the)g(linearity)g(of) |
|
4224 g Fm(id)2069 2567 y Fk(B)2150 2552 y Fn(\001)19 b Fm(id)2279 |
|
4225 2567 y Fk(C)2362 2552 y Fr(from)24 b(the)g(Additional)f(Assump-)83 |
|
4226 2673 y(tion)h(of)h(2.2.2.)83 2852 y(Generally)h(the)g(situation)e(is)i |
|
4227 (as)g(follo)n(ws.)e(Gi)n(v)o(en)g(propositions)g Fq(A)2425 |
|
4228 2867 y Fk(i)2479 2852 y Fr(we)j(ha)n(v)o(e)e(man)o(y)g(brack)o(etings) |
|
4229 83 2973 y(to)d(gi)n(v)o(e)f(a)h(conjunction)932 2906 |
|
4230 y Ff(V)1018 2973 y Fq(A)1091 2988 y Fk(i)1119 2973 y |
|
4231 Fr(.)g(Gi)n(v)o(en)f(one)h(such)g(we)g(ha)n(v)o(e)g(a)g(v)n(ariety)g |
|
4232 (of)g(idempotents)e(depending)83 3093 y(on)26 b(ho)n(w)e(deeply)i(we)g |
|
4233 (`analyse)f(the)h(brack)o(etings'.)f(The)g(shallo)n(west)f(analysis)h |
|
4234 (yields)f Fm(id)3200 3059 y Ff(V)3281 3117 y Fk(A)3334 |
|
4235 3127 y Fe(i)3364 3093 y Fr(,)i(the)83 3214 y(deepest)f |
|
4236 Fq(e)452 3179 y Ff(V)533 3237 y Fk(A)586 3247 y Fe(i)644 |
|
4237 3214 y Fm(=)748 3147 y Ff(V)834 3214 y Fm(id)915 3229 |
|
4238 y Fk(A)968 3239 y Fe(i)998 3214 y Fr(.)g(The)g(coherence)h(of)e(these)h |
|
4239 (idempotents)e(is)h(the)h(follo)n(wing)e(f)o(act.)p 0 |
|
4240 TeXcolorgray 83 3393 a Fs(Pr)n(oposition)g(3.9.)p 0 TeXcolorgray |
|
4241 38 w Fo(Suppose)f(in)h(the)f(given)h(situation)e(that)h |
|
4242 Fq(e)2219 3408 y Fw(1)2281 3393 y Fo(is)h(an)f(idempotent)g(corr)l |
|
4243 (esponding)83 3514 y(to)j(a)g(deeper)f(analysis)g(than)g |
|
4244 Fq(e)1155 3529 y Fw(2)1195 3514 y Fo(.)g(Then)i Fq(e)1514 |
|
4245 3529 y Fw(1)1553 3514 y Fm(;)17 b Fq(e)1642 3529 y Fw(2)1709 |
|
4246 3514 y Fm(=)28 b Fq(e)1858 3529 y Fw(1)1925 3514 y Fm(=)g |
|
4247 Fq(e)2074 3529 y Fw(2)2113 3514 y Fm(;)17 b Fq(e)2202 |
|
4248 3529 y Fw(1)2242 3514 y Fo(.)83 3693 y Fr(W)-8 b(e)26 |
|
4249 b(note)e(the)h(nullary)f(v)o(ersion)g(of)g(the)h(proposition:)e |
|
4250 Fq(e)2012 3708 y Fl(>)2071 3693 y Fm(;)17 b(id)2196 3708 |
|
4251 y Fl(>)2283 3693 y Fm(=)27 b Fq(e)2431 3708 y Fl(>)2518 |
|
4252 3693 y Fm(=)h(id)2703 3708 y Fl(>)2762 3693 y Fm(;)17 |
|
4253 b Fq(e)2851 3708 y Fl(>)2910 3693 y Fr(.)83 4013 y Fo(3.3)100 |
|
4254 b(Structur)l(e)83 4313 y(3.3.1)f(Units)24 b(and)g(associator)o(s)83 |
|
4255 4493 y Fr(Our)36 b(logical)f(operations)f(are)i(only)f(guarded)h |
|
4256 (functorial,)e(b)n(ut)h(the)o(y)g(do)g(come)g(equipped)g(with)83 |
|
4257 4613 y(structure)29 b(f)o(amiliar)g(in)g(the)f(case)i(of)f(tensor)g |
|
4258 (products.)f(W)-8 b(e)30 b(concentrate)f(on)g(the)g(case)h(of)f |
|
4259 Fn(>)h Fr(and)83 4734 y Fn(^)p Fr(;)25 b(the)g(case)g(of)g |
|
4260 Fn(?)h Fr(and)e Fn(_)i Fr(follo)n(ws)d(by)i(duality)-6 |
|
4261 b(.)83 4913 y(First)25 b(we)g(can)g(de\002ne)h(maps)776 |
|
4262 5178 y Fq(l)k Fm(=)e Fq(?)22 b Fn(\001)f Fm(id)1141 5193 |
|
4263 y Fk(A)1225 5178 y Fm(:)28 b Fq(A)g Fn(!)f(>)c(^)f Fq(A)1968 |
|
4264 5152 y Fm(~)1969 5178 y Fq(l)30 b Fm(=)p 2131 5085 141 |
|
4265 4 v 27 w(id)2213 5135 y Fw(+)2213 5203 y Fk(A)2299 5178 |
|
4266 y Fm(:)e Fn(>)23 b(^)f Fq(A)28 b Fn(!)f Fq(A)705 5359 |
|
4267 y(r)j Fm(=)d(id)964 5374 y Fk(A)1043 5359 y Fn(\001)22 |
|
4268 b Fq(?)27 b Fm(:)h Fq(A)g Fn(!)f Fq(A)22 b Fn(^)h(>)204 |
|
4269 b Fm(~)-53 b Fq(r)30 b Fm(=)p 2090 5266 253 4 v 27 w(\(id)2210 |
|
4270 5316 y Fw(+)2210 5383 y Fk(A)2269 5359 y Fm(\))2307 5330 |
|
4271 y Fk(s)2371 5359 y Fm(:)e Fq(A)22 b Fn(^)h(>)28 b(!)f |
|
4272 Fq(A)p 0 TeXcolorgray 1748 5712 a Fr(14)p 0 TeXcolorgray |
|
4273 eop end |
|
4274 %%Page: 15 15 |
|
4275 TeXDict begin 15 14 bop 0 TeXcolorgray 0 TeXcolorgray |
|
4276 0 TeXcolorgray 83 83 a Fr(where)35 b(the)f(superscript)g |
|
4277 Fq(s)h Fr(indicates)e(a)i(tacit)f(use)g(of)h(e)o(xchange.)f(W)-8 |
|
4278 b(e)35 b(also)f(ha)n(v)o(e)g(associati)n(vity)83 203 |
|
4279 y(maps)25 b(de\002ned)g(as)g(follo)n(ws)695 471 y Fq(a)j |
|
4280 Fm(=)p 878 370 641 4 v 878 386 V 28 w(\(id)997 486 y |
|
4281 Fk(A)1076 471 y Fn(\001)22 b Fm(id)1207 486 y Fk(B)1268 |
|
4282 471 y Fm(\))g Fn(\001)g Fm(id)1459 486 y Fk(C)1546 471 |
|
4283 y Fm(:)28 b Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k Fn(^)22 b |
|
4284 Fq(C)7 b Fm(\))28 b Fn(\000)-16 b(!)27 b Fm(\()p Fq(A)22 |
|
4285 b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(^)h Fq(C)34 b(;)697 651 |
|
4286 y Fm(~)-51 b Fq(a)28 b Fm(=)p 878 550 V 878 567 V 28 |
|
4287 w(id)959 666 y Fk(A)1038 651 y Fn(\001)22 b Fm(\(id)1207 |
|
4288 666 y Fk(B)1290 651 y Fn(\001)g Fm(id)1421 666 y Fk(C)1480 |
|
4289 651 y Fm(\))28 b(:)g(\()p Fq(A)22 b Fn(^)h Fq(B)5 b Fm(\))22 |
|
4290 b Fn(^)g Fq(C)35 b Fn(\000)-16 b(!)27 b Fq(A)22 b Fn(^)h |
|
4291 Fm(\()p Fq(B)k Fn(^)c Fq(C)7 b Fm(\))27 b Fq(:)83 893 |
|
4292 y Fr(\(There)c(is)e(only)g(one)h(sensible)f(w)o(ay)h(to)g(read)g(those) |
|
4293 g(de\002nitions!\))f(W)-8 b(e)22 b(note)g(at)f(once)i(that)e(all)h |
|
4294 (these)83 1013 y(structural)j(maps)f(are)h(linear)-5 |
|
4295 b(.)83 1194 y(By)26 b(direct)e(computation)f(we)i(sho)n(w)f(the)h |
|
4296 (follo)n(wing.)p 0 TeXcolorgray 83 1375 a Fs(Theor)n(em)k(3.10.)p |
|
4297 0 TeXcolorgray 42 w Fo(The)e(pair)o(s)f(of)g(maps)g Fq(l)k |
|
4298 Fo(and)1720 1349 y Fm(~)1721 1375 y Fq(l)r Fo(,)d Fq(r)j |
|
4299 Fo(and)g Fm(~)-53 b Fq(r)s Fo(,)26 b Fq(a)h Fo(and)h |
|
4300 Fm(~)-50 b Fq(a)p Fo(,)27 b(ar)l(e)g(in)f(eac)o(h)h(case)g(mutually)83 |
|
4301 1496 y(in)l(ver)o(se)e(guar)l(ded)f(tr)o(ansformations.)83 |
|
4302 1676 y Fr(Note)36 b(that)g(the)g(equations)f(gi)n(v)o(en)g(by)g(our)h |
|
4303 (de\002nitions)f(are)i(not)f(quite)f(the)h(f)o(amiliar)g(ones.)g(F)o |
|
4304 (or)83 1797 y(e)o(xample)24 b(since)h Fn(^)g Fr(is)g(domain)e |
|
4305 (absorbing)h(we)h(do)g(ha)n(v)o(e)950 2028 y Fm(\()p |
|
4306 Fq(f)33 b Fn(^)23 b Fq(g)t Fm(\))e Fn(^)h Fq(h)p Fm(;)d(~)-51 |
|
4307 b Fq(a)28 b Fm(=)h(~)-50 b Fq(a)p Fm(;)17 b Fq(f)33 b |
|
4308 Fn(^)22 b Fm(\()p Fq(g)j Fn(^)e Fq(h)p Fm(\);)17 b Fq(e)2285 |
|
4309 2044 y Fk(A)2338 2025 y Fg(0)2360 2044 y Fl(^)p Fw(\()p |
|
4310 Fk(B)2490 2025 y Fg(0)2514 2044 y Fl(^)p Fk(C)2616 2025 |
|
4311 y Fg(0)2638 2044 y Fw(\))83 2260 y Fr(b)n(ut)25 b(we)g(only)f(ha)n(v)o |
|
4312 (e)g(the)h(more)g(f)o(amiliar)1187 2492 y Fm(\()p Fq(f)33 |
|
4313 b Fn(^)22 b Fq(g)t Fm(\))g Fn(^)g Fq(h)p Fm(;)c(~)-50 |
|
4314 b Fq(a)28 b Fm(=)h(~)-51 b Fq(a)q Fm(;)17 b Fq(f)32 b |
|
4315 Fn(^)23 b Fm(\()p Fq(g)i Fn(^)e Fq(h)p Fm(\))83 2723 |
|
4316 y Fr(when)i Fq(f)11 b Fr(,)25 b Fq(g)j Fr(and)d Fq(h)g |
|
4317 Fr(are)g(linear)-5 b(.)83 2904 y(Perhaps)30 b(surprisingly)-6 |
|
4318 b(,)27 b(it)i(is)g(automatic)g(that)g(our)g(associati)n(vities)e |
|
4319 (satisfy)i(the)g(Mac)h(Lane)f(pen-)83 3024 y(tagon)j(condition)f(and)i |
|
4320 (the)f(usual)g(unit)g(conditions)f(on)h(the)g(nose.)g(The)h(diagrams)f |
|
4321 (are)h(f)o(amiliar)83 3145 y(and)25 b(we)g(do)g(not)f(e)o(xhibit)f |
|
4322 (them)h(here.)p 0 TeXcolorgray 83 3326 a Fs(Theor)n(em)j(3.11.)p |
|
4323 0 TeXcolorgray 41 w Fo(The)e(Mac)g(Lane)g(penta)o(gon)f(and)g(unit)g |
|
4324 (conditions)621 3557 y Fq(a)672 3572 y Fk(A;B)s(;C)5 |
|
4325 b Fl(^)p Fk(D)987 3557 y Fm(;)17 b Fq(a)1082 3572 y Fk(A)p |
|
4326 Fl(^)p Fk(B)s(;C)q(;D)1420 3557 y Fm(=)28 b(id)1605 3572 |
|
4327 y Fk(A)1684 3557 y Fn(^)23 b Fq(a)1824 3572 y Fk(B)s(;C)q(;D)2035 |
|
4328 3557 y Fm(;)17 b Fq(a)2130 3572 y Fk(A;B)s Fl(^)p Fk(C)q(;D)2440 |
|
4329 3557 y Fm(;)g Fq(a)2535 3572 y Fk(A;B)s(;C)2765 3557 |
|
4330 y Fn(^)22 b Fm(id)2935 3572 y Fk(D)1257 3800 y Fq(a)1308 |
|
4331 3815 y Fk(A;I)5 b(;C)1495 3800 y Fm(;)17 b Fq(r)1583 |
|
4332 3815 y Fk(A)1662 3800 y Fn(^)23 b Fm(id)1832 3815 y Fk(B)1920 |
|
4333 3800 y Fm(=)28 b(id)2105 3815 y Fk(A)2184 3800 y Fn(^)23 |
|
4334 b Fq(l)2302 3815 y Fk(B)83 3961 y Fo(both)h(hold.)83 |
|
4335 4142 y Fr(Of)g(course)g(man)o(y)e(other)h(v)o(ersion)g(of)g(the)h |
|
4336 (diagrams)f(\(e.g.)g(in)l(v)n(olving)g Fm(~)-50 b Fq(a)p |
|
4337 Fr(,)2623 4116 y Fm(~)2624 4142 y Fq(l)r Fr(,)28 b Fm(~)-54 |
|
4338 b Fq(r)s Fr(\))24 b(hold.)e(Ho)n(we)n(v)o(er)h(the)83 |
|
4339 4263 y(information)28 b(contained)g(in)h(the)g(coherence)h(diagrams)e |
|
4340 (is)h(quite)f(subtle.)g(One)i(needs)f(to)f(bear)i(in)83 |
|
4341 4383 y(mind)23 b(that)h(e.g.)g Fq(a)705 4398 y Fk(A;B)s |
|
4342 Fl(^)p Fk(C)q(;D)1040 4383 y Fr(is)g(not)g(guarded)g(natural)g(in)f |
|
4343 Fq(B)30 b Fr(and)24 b Fq(C)7 b Fr(.)24 b(Let)g(us)g(say)g(that)g(a)g |
|
4344 Fo(mixed)g(path)83 4503 y Fr(in)29 b(the)g(pentagon)g(is)g(one)g(which) |
|
4345 g(in)l(v)n(olv)o(es)e(both)i Fq(a)g Fr(and)i Fm(~)-50 |
|
4346 b Fq(a)p Fr(.)29 b(Man)o(y)f(b)n(ut)h(by)g(no)g(means)g(all)g(mix)o(ed) |
|
4347 83 4624 y(paths)c(are)g(equal.)g(F)o(or)g(e)o(xample,)e(the)i(tw)o(o)f |
|
4348 (maps)838 4855 y Fq(a)k Fm(:)g Fq(A)22 b Fn(^)h Fm(\()p |
|
4349 Fq(B)k Fn(^)c Fm(\()p Fq(C)29 b Fn(^)22 b Fq(D)s Fm(\)\))27 |
|
4350 b Fn(\000)-16 b(!)28 b Fm(\()p Fq(A)22 b Fn(^)g Fq(B)5 |
|
4351 b Fm(\))23 b Fn(^)f Fm(\()p Fq(C)29 b Fn(^)23 b Fq(D)s |
|
4352 Fm(\))83 5087 y Fr(and)444 5219 y Fm(id)525 5234 y Fk(A)604 |
|
4353 5219 y Fn(^)g Fq(a)p Fm(;)17 b Fq(a)p Fm(;)g Fq(a)22 |
|
4354 b Fn(^)g Fm(id)1126 5234 y Fk(D)1190 5219 y Fm(;)17 b(~)-49 |
|
4355 b Fq(a)27 b Fm(:)h Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k Fn(^)22 |
|
4356 b Fm(\()p Fq(C)30 b Fn(^)22 b Fq(D)s Fm(\)\))27 b Fn(\000)-16 |
|
4357 b(!)27 b Fm(\()p Fq(A)c Fn(^)f Fq(B)5 b Fm(\))22 b Fn(^)h |
|
4358 Fm(\()p Fq(C)29 b Fn(^)23 b Fq(D)s Fm(\))83 5380 y Fr(are)j(not)e |
|
4359 (equal.)h(\(There)g(are)h(some)e(similar)g(issues)f(for)j(the)e |
|
4360 (triangle)g(diagrams.\))p 0 TeXcolorgray 1748 5712 a(15)p |
|
4361 0 TeXcolorgray eop end |
|
4362 %%Page: 16 16 |
|
4363 TeXDict begin 16 15 bop 0 TeXcolorgray 0 TeXcolorgray |
|
4364 0 TeXcolorgray 83 83 a Fo(3.3.2)99 b(Symmetry)83 269 |
|
4365 y Fr(W)-8 b(e)32 b(ha)n(v)o(e)g(maps)f(induced)g(by)g(the)h(symmetry)e |
|
4366 (of)h(our)h Fn(\003)p Fr(-polycate)o(gory)-6 b(.)30 b(W)-8 |
|
4367 b(e)32 b(use)f(a)h(superscript)83 389 y Fm(\()c(\))187 |
|
4368 353 y Fk(s)249 389 y Fr(to)c(indicate)g(a)h(use)g(of)g(a)g(symmetry)f |
|
4369 (in)g Fn(P)8 b Fr(,)25 b(and)g(de\002ne)g(a)h(twist)d(map)1051 |
|
4370 631 y Fq(c)28 b Fm(=)p 1225 546 465 4 v 28 w(\(id)1344 |
|
4371 646 y Fk(B)1427 631 y Fn(\001)21 b Fm(id)1558 646 y Fk(A)1615 |
|
4372 631 y Fm(\))1653 602 y Fk(s)1717 631 y Fm(:)28 b Fq(A)22 |
|
4373 b Fn(^)h Fq(B)32 b Fn(\000)-16 b(!)28 b Fq(B)f Fn(^)c |
|
4374 Fq(A)k(:)83 872 y Fr(The)e(picture)g(is)f(as)h(follo)n(ws.)1692 |
|
4375 1113 y @beginspecial @setspecial |
|
4376 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 5.69046 |
|
4377 5.69046 22.76227 22.76227 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4378 setlinecap stroke grestore end |
|
4379 |
|
4380 @endspecial 1742 1023 |
|
4381 a Fi(id)1817 1037 y Fk(B)1692 1113 y @beginspecial @setspecial |
|
4382 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 5.69046 |
|
4383 -5.69046 22.76227 -22.76227 .5 Frame gsave 0.85358 SLW 0 setgray |
|
4384 0 setlinecap stroke grestore end |
|
4385 |
|
4386 |
|
4387 @endspecial 1743 1259 a Fi(id)1819 1273 y Fk(A)1969 |
|
4388 1140 y |
|
4389 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4390 } false /N@A 16 {InitRnode } NewNode end end |
|
4391 1969 1140 a 20 w @beginspecial @setspecial |
|
4392 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4393 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4394 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4395 grestore end |
|
4396 |
|
4397 @endspecial |
|
4398 Fn(^)1544 1140 y |
|
4399 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4400 } false /N@AA 16 {InitRnode } NewNode end end |
|
4401 1544 1140 a 20 w @beginspecial @setspecial |
|
4402 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4403 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4404 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4405 grestore end |
|
4406 |
|
4407 |
|
4408 @endspecial Fn(^)1881 995 y |
|
4409 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@B |
|
4410 16 {InitRnode } NewNode end end |
|
4411 1881 995 a 1881 1231 a |
|
4412 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@C |
|
4413 16 {InitRnode } NewNode end end |
|
4414 1881 |
|
4415 1231 a 1739 995 a |
|
4416 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BB |
|
4417 16 {InitRnode } NewNode end end |
|
4418 1739 995 a 1739 1231 a |
|
4419 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CC |
|
4420 16 {InitRnode } NewNode end end |
|
4421 1739 1231 a |
|
4422 1692 1113 a |
|
4423 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4424 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg -1.13809 |
|
4425 -1.13809 0 0 /N@A /N@B InitNC { /AngleA 230. def /AngleB 0. def 0.67 |
|
4426 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4427 grestore grestore end |
|
4428 1692 1113 a 1692 1113 a |
|
4429 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4430 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg -1.13809 |
|
4431 -1.13809 0 0 /N@A /N@C InitNC { /AngleA 130. def /AngleB 0. def 0.67 |
|
4432 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4433 grestore grestore end |
|
4434 1692 1113 a 1692 |
|
4435 1113 a |
|
4436 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4437 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4438 0.0 0 0 /N@AA /N@BB InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
4439 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4440 grestore grestore end |
|
4441 1692 1113 a 1692 1113 a |
|
4442 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4443 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4444 0.0 0 0 /N@AA /N@CC InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
4445 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4446 grestore grestore end |
|
4447 1692 1113 a 2282 1113 |
|
4448 a |
|
4449 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@D |
|
4450 16 {InitRnode } NewNode end end |
|
4451 2282 1113 a 1337 1113 a |
|
4452 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@DD |
|
4453 16 {InitRnode } NewNode end end |
|
4454 1337 1113 a 1692 1113 a |
|
4455 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4456 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4457 0.0 0 0 /N@AA /N@DD InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4458 0 setlinecap stroke grestore grestore end |
|
4459 1692 |
|
4460 1113 a 1692 1113 a |
|
4461 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
4462 1692 1113 a 1692 1113 a |
|
4463 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 35.00665 |
|
4464 8.2 0.0 NAngle 90 sub Uput exch pop add a PtoC h1 add exch w1 add |
|
4465 exch } PutCoor PutBegin end |
|
4466 1692 1113 |
|
4467 a 1546 1147 a Fq(A)e Fn(^)f Fq(B)1692 1113 y |
|
4468 tx@Dict begin PutEnd end |
|
4469 1692 1113 |
|
4470 a 1692 1113 a |
|
4471 tx@Dict begin PutEnd end |
|
4472 1692 1113 a 1692 1113 a |
|
4473 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4474 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4475 0.0 0 0 /N@A /N@D InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4476 0 setlinecap stroke grestore grestore end |
|
4477 1692 1113 a 1692 |
|
4478 1113 a |
|
4479 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
4480 1692 1113 a 1692 1113 a |
|
4481 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 35.00665 |
|
4482 8.2 0.0 NAngle 90 add Uput exch pop add a PtoC h1 add exch w1 add |
|
4483 exch } PutCoor PutBegin end |
|
4484 1692 1113 a 1574 1147 |
|
4485 a Fq(B)27 b Fn(^)c Fq(A)1692 1113 y |
|
4486 tx@Dict begin PutEnd end |
|
4487 1692 1113 a 1692 |
|
4488 1113 a |
|
4489 tx@Dict begin PutEnd end |
|
4490 1692 1113 a 83 1473 a Fr(W)-8 b(e)26 b(note)e(at)h(once)g(that)f |
|
4491 (this)g(further)h(structural)f(map)h(is)f(linear)-5 b(.)24 |
|
4492 b(W)-8 b(e)25 b(then)g(compute.)p 0 TeXcolorgray 83 1659 |
|
4493 a Fs(Pr)n(oposition)f(3.12.)p 0 TeXcolorgray 38 w Fq(c)878 |
|
4494 1674 y Fk(A;B)1011 1659 y Fm(;)17 b Fq(c)1097 1674 y |
|
4495 Fk(B)s(;A)1258 1659 y Fm(=)28 b Fq(e)1407 1674 y Fk(A)p |
|
4496 Fl(^)p Fk(B)1595 1659 y Fm(:)g Fq(A)17 b Fn(^)g Fq(B)33 |
|
4497 b Fn(\000)-17 b(!)28 b Fq(A)17 b Fn(^)g Fq(B)5 b Fo(,)23 |
|
4498 b(that)g(is,)f Fq(c)i Fo(is)f(a)g(tr)o(ansformation)83 |
|
4499 1779 y(in)l(ver)o(se)i(to)f(itself)g(in)h(the)f(guar)l(ded)g(sense)o(.) |
|
4500 83 1965 y Fr(Finally)h(we)g(look)f(at)h(coherence.)p |
|
4501 0 TeXcolorgray 83 2151 a Fs(Theor)n(em)i(3.13.)p 0 TeXcolorgray |
|
4502 41 w Fo(The)e(Mac)g(Lane)g(he)n(xa)o(gon)f(and)h(unit)f(conditions)248 |
|
4503 2427 y Fq(a)299 2442 y Fk(A;B)s(;C)506 2427 y Fm(;)17 |
|
4504 b Fq(cA)22 b Fn(^)h Fq(B)5 b(;)17 b(C)7 b Fm(;)17 b Fq(a)1071 |
|
4505 2442 y Fk(C)q(;A;B)1302 2427 y Fm(=)28 b(id)1487 2442 |
|
4506 y Fk(A)1566 2427 y Fn(^)23 b Fq(c)1697 2442 y Fk(B)s(;C)1832 |
|
4507 2427 y Fm(;)17 b Fq(a)1927 2442 y Fk(A;C)q(;B)2131 2427 |
|
4508 y Fm(;)g Fq(c)2217 2442 y Fk(A;C)2370 2427 y Fn(^)23 |
|
4509 b Fm(id)2540 2442 y Fk(B)2837 2427 y Fq(c)2879 2442 y |
|
4510 Fl(>)p Fk(;A)3010 2427 y Fm(;)17 b Fq(r)3098 2442 y Fk(A)3183 |
|
4511 2427 y Fm(=)27 b Fq(l)3315 2442 y Fk(A)83 2679 y Fo(both)d(hold.)83 |
|
4512 2865 y Fr(W)-8 b(e)29 b(note)g(a)g(nuance.)f(A)h(symmetry)e(of)i(the)f |
|
4513 (form)h Fq(c)1906 2880 y Fk(A;)p Fw(\()p Fk(B)s Fl(^)p |
|
4514 Fk(C)5 b Fw(\))2230 2865 y Fm(:)35 b Fq(A)25 b Fn(^)g |
|
4515 Fm(\()p Fq(B)30 b Fn(^)c Fq(C)7 b Fm(\))34 b Fn(!)h Fm(\()p |
|
4516 Fq(B)30 b Fn(^)25 b Fq(C)7 b Fm(\))25 b Fn(^)g Fq(A)83 |
|
4517 2985 y Fr(cannot)i(be)h(de\002ned)f(in)g(the)g(usual)g(w)o(ay)g(from)g |
|
4518 (associati)n(vities)e(and)i(symmetries)e Fq(c)3006 3000 |
|
4519 y Fk(A;B)3167 2985 y Fr(and)i Fq(c)3380 3000 y Fk(A;C)3511 |
|
4520 2985 y Fr(.)83 3106 y(Rather)f(one)f(has)f(an)h(equation)f(of)h(the)g |
|
4521 (form)446 3347 y Fq(c)488 3363 y Fk(A;)p Fw(\()p Fk(B)s |
|
4522 Fl(^)p Fk(C)5 b Fw(\))778 3347 y Fm(;)17 b Fq(e)867 3363 |
|
4523 y Fw(\()p Fk(B)s Fl(^)p Fk(C)5 b Fw(\))p Fl(^)p Fk(A)1212 |
|
4524 3347 y Fm(=)27 b Fq(a)1366 3362 y Fk(A;B)s(;C)1574 3347 |
|
4525 y Fm(;)17 b Fq(c)1660 3362 y Fk(A;B)1815 3347 y Fn(^)23 |
|
4526 b Fm(id)1985 3362 y Fk(C)2044 3347 y Fm(;)18 b(~)-50 |
|
4527 b Fq(a)2139 3362 y Fk(B)s(;A;C)2347 3347 y Fm(;)17 b(id)2472 |
|
4528 3362 y Fk(B)2555 3347 y Fn(^)22 b Fq(c)2685 3362 y Fk(A;C)2817 |
|
4529 3347 y Fm(;)17 b Fq(a)2912 3362 y Fk(B)s(;A;C)3147 3347 |
|
4530 y Fq(:)83 3589 y Fr(Thus)30 b(the)g(usual)g(de\002nition)f(holds)g(in)h |
|
4531 (the)g(guarded)g(sense.)g(Ho)n(we)n(v)o(er)f(this)g(is)h(quite)f |
|
4532 (enough)h(to)83 3709 y(establish)24 b(the)h(follo)n(wing.)p |
|
4533 0 TeXcolorgray 83 3895 a Fs(Theor)n(em)i(3.14.)p 0 TeXcolorgray |
|
4534 41 w Fo(The)e(symmetry)g Fq(c)f Fo(satis\002es)g(the)h(standar)l(d)e |
|
4535 (br)o(aid)g(identities.)356 4137 y Fq(c)398 4152 y Fk(A;B)554 |
|
4536 4137 y Fn(^)f Fm(id)723 4152 y Fk(C)783 4137 y Fm(;)17 |
|
4537 b(id)908 4152 y Fk(B)990 4137 y Fn(^)23 b Fq(c)1121 4152 |
|
4538 y Fk(A;C)1252 4137 y Fm(;)17 b Fq(c)1338 4152 y Fk(B)s(;C)1496 |
|
4539 4137 y Fn(^)22 b Fm(id)1665 4152 y Fk(A)1750 4137 y Fm(=)28 |
|
4540 b(id)1935 4152 y Fk(A)2014 4137 y Fn(^)23 b Fq(c)2145 |
|
4541 4152 y Fk(B)s(;C)2280 4137 y Fm(;)17 b Fq(c)2366 4152 |
|
4542 y Fk(A;C)2519 4137 y Fn(^)23 b Fm(id)2689 4152 y Fk(B)2750 |
|
4543 4137 y Fm(;)17 b(id)2875 4152 y Fk(C)2956 4137 y Fn(^)23 |
|
4544 b Fq(c)3087 4152 y Fk(A;B)3236 4137 y Fq(:)83 4474 y |
|
4545 Fo(3.3.3)99 b(Linear)25 b(distrib)n(utivity)83 4660 y |
|
4546 Fr(So)i(f)o(ar)g(we)g(ha)n(v)o(e)f(the)g(operations)g |
|
4547 Fn(>)p Fr(,)h Fn(^)g Fr(and)f Fn(?)p Fr(,)h Fn(_)p Fr(,)g(which)f(are)h |
|
4548 (dual.)f(W)-8 b(e)27 b(need)f(something)f(lik)o(e)83 |
|
4549 4780 y(the)g(usual)f(connection)g(between)h(them)f(from)g(Linear)h |
|
4550 (Logic)f(to)h(capture)g(general)g(polycate)o(gori-)83 |
|
4551 4901 y(cal)g(composition.)e(W)-8 b(e)25 b(de\002ne)326 |
|
4552 5178 y Fq(w)30 b Fm(=)p 530 5077 641 4 v 530 5094 V 28 |
|
4553 w(id)611 5193 y Fk(A)690 5178 y Fn(\001)22 b Fm(\(id)859 |
|
4554 5193 y Fk(B)942 5178 y Fn(\001)g Fm(id)1073 5193 y Fk(C)1133 |
|
4555 5178 y Fm(\))27 b(=)p 1302 5077 V 1302 5094 V 28 w(\(id)1421 |
|
4556 5193 y Fk(A)1500 5178 y Fn(\001)22 b Fm(id)1631 5193 |
|
4557 y Fk(B)1692 5178 y Fm(\))g Fn(\001)g Fm(id)1883 5193 |
|
4558 y Fk(C)1970 5178 y Fm(:)28 b Fq(A)22 b Fn(^)g Fm(\()p |
|
4559 Fq(B)28 b Fn(_)22 b Fq(C)7 b Fm(\))28 b Fn(\000)-16 b(!)27 |
|
4560 b Fm(\()p Fq(A)22 b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(_)g |
|
4561 Fq(C)346 5359 y Fm(~)-69 b Fq(w)30 b Fm(=)p 530 5258 |
|
4562 V 530 5274 V 28 w(\(id)649 5374 y Fk(A)728 5359 y Fn(\001)22 |
|
4563 b Fm(id)859 5374 y Fk(B)920 5359 y Fm(\))g Fn(\001)g |
|
4564 Fm(id)1111 5374 y Fk(C)1198 5359 y Fm(=)p 1302 5258 V |
|
4565 1302 5274 V 28 w(id)1383 5374 y Fk(A)1462 5359 y Fn(\001)g |
|
4566 Fm(\(id)1631 5374 y Fk(B)1714 5359 y Fn(\001)g Fm(id)1845 |
|
4567 5374 y Fk(C)1904 5359 y Fm(\))28 b(:)g(\()p Fq(A)22 b |
|
4568 Fn(_)g Fq(B)5 b Fm(\))23 b Fn(^)f Fq(C)35 b Fn(\000)-16 |
|
4569 b(!)27 b Fq(A)22 b Fn(_)h Fm(\()p Fq(B)k Fn(^)22 b Fq(C)7 |
|
4570 b Fm(\))p 0 TeXcolorgray 1748 5712 a Fr(16)p 0 TeXcolorgray |
|
4571 eop end |
|
4572 %%Page: 17 17 |
|
4573 TeXDict begin 17 16 bop 0 TeXcolorgray 0 TeXcolorgray |
|
4574 0 TeXcolorgray 83 83 a Fr(where)26 b(the)e(man)o(y)g(commuting)f(con)l |
|
4575 (v)o(ersions)g(are)j(indicated)e(in)g(the)h(follo)n(wing)e(pictures.) |
|
4576 771 691 y @beginspecial @setspecial |
|
4577 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 3.9833 |
|
4578 1.99179 15.93352 17.92503 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4579 setlinecap stroke grestore end |
|
4580 |
|
4581 @endspecial 809 |
|
4582 628 a Fd(id)850 639 y Fc(C)771 691 y @beginspecial @setspecial |
|
4583 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 3.9833 |
|
4584 21.90863 15.93352 37.84187 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4585 setlinecap stroke grestore end |
|
4586 |
|
4587 |
|
4588 @endspecial 808 463 a Fd(id)849 474 y Fc(B)771 691 y |
|
4589 @beginspecial @setspecial |
|
4590 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 3.9833 |
|
4591 41.82547 15.93352 57.75871 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4592 setlinecap stroke grestore end |
|
4593 |
|
4594 @endspecial 809 298 a Fd(id)850 |
|
4595 309 y Fc(A)804 608 y |
|
4596 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AL |
|
4597 16 {InitRnode } NewNode end end |
|
4598 804 608 a 804 443 a |
|
4599 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BL |
|
4600 16 {InitRnode } NewNode end end |
|
4601 804 443 a 804 |
|
4602 278 a |
|
4603 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CL |
|
4604 16 {InitRnode } NewNode end end |
|
4605 804 278 a 671 278 a |
|
4606 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CLL |
|
4607 16 {InitRnode } NewNode end end |
|
4608 671 278 a 903 608 a |
|
4609 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AR |
|
4610 16 {InitRnode } NewNode end end |
|
4611 903 608 |
|
4612 a 1035 608 a |
|
4613 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@ARR |
|
4614 16 {InitRnode } NewNode end end |
|
4615 1035 608 a 903 443 a |
|
4616 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BR |
|
4617 16 {InitRnode } NewNode end end |
|
4618 903 443 a 903 278 a |
|
4619 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CR |
|
4620 16 {InitRnode } NewNode end end |
|
4621 |
|
4622 903 278 a 651 553 a |
|
4623 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4624 } false /N@A 16 {InitRnode } NewNode end end |
|
4625 651 553 a 20 w @beginspecial @setspecial |
|
4626 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4627 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4628 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4629 grestore end |
|
4630 |
|
4631 |
|
4632 @endspecial Fn(_)949 388 y |
|
4633 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4634 } false /N@B 16 {InitRnode } NewNode end end |
|
4635 949 388 a 20 w @beginspecial |
|
4636 @setspecial |
|
4637 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4638 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4639 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4640 grestore end |
|
4641 |
|
4642 @endspecial Fn(^)502 429 y |
|
4643 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4644 } false /N@C 16 {InitRnode } NewNode end end |
|
4645 502 429 a 20 |
|
4646 w @beginspecial @setspecial |
|
4647 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4648 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4649 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4650 grestore end |
|
4651 |
|
4652 @endspecial Fn(^)1098 512 |
|
4653 y |
|
4654 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4655 } false /N@D 16 {InitRnode } NewNode end end |
|
4656 1098 512 a 20 w @beginspecial @setspecial |
|
4657 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4658 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4659 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4660 grestore end |
|
4661 |
|
4662 @endspecial |
|
4663 Fn(_)771 691 y |
|
4664 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4665 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4666 0.0 0 0 /N@A /N@AL InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
4667 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4668 grestore grestore end |
|
4669 771 691 a 771 691 a |
|
4670 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4671 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4672 0.0 0 0 /N@A /N@BL InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
4673 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4674 grestore grestore end |
|
4675 771 691 a 771 691 |
|
4676 a |
|
4677 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4678 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4679 0.0 0 0 /N@B /N@CR InitNC { /AngleA 170. def /AngleB 0. def 0.67 |
|
4680 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4681 grestore grestore end |
|
4682 771 691 a 771 691 a |
|
4683 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4684 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4685 0.0 0 0 /N@B /N@BR InitNC { /AngleA 190. def /AngleB 0. def 0.67 |
|
4686 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4687 grestore grestore end |
|
4688 771 691 a 771 691 a |
|
4689 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4690 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4691 0.0 0 0 /N@C /N@CLL InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
4692 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4693 grestore grestore end |
|
4694 771 691 a 771 |
|
4695 691 a |
|
4696 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4697 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4698 0.0 0 0 /N@C /N@A InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
4699 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4700 grestore grestore end |
|
4701 771 691 a 771 691 a |
|
4702 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4703 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4704 0.0 0 0 /N@CL /N@CLL InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4705 0 setlinecap stroke grestore grestore end |
|
4706 771 691 a 771 691 a |
|
4707 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4708 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4709 0.0 0 0 /N@D /N@B InitNC { /AngleA 170. def /AngleB 0. def 0.67 |
|
4710 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4711 grestore grestore end |
|
4712 771 691 |
|
4713 a 771 691 a |
|
4714 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4715 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4716 0.0 0 0 /N@D /N@ARR InitNC { /AngleA 190. def /AngleB 0. def 0.67 |
|
4717 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4718 grestore grestore end |
|
4719 771 691 a 771 691 a |
|
4720 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4721 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4722 0.0 0 0 /N@AR /N@ARR InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4723 0 setlinecap stroke grestore grestore end |
|
4724 771 691 a 1515 484 a |
|
4725 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E |
|
4726 16 {InitRnode } NewNode end end |
|
4727 |
|
4728 1515 484 a 192 402 a |
|
4729 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F |
|
4730 16 {InitRnode } NewNode end end |
|
4731 192 402 a 771 691 a |
|
4732 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4733 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4734 0.0 0 0 /N@D /N@E InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4735 0 setlinecap stroke grestore grestore end |
|
4736 771 691 a 771 |
|
4737 691 a |
|
4738 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
4739 771 691 a 771 691 a |
|
4740 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697 |
|
4741 8.2125 2.73749 NAngle 90 add Uput exch pop add a PtoC h1 add exch |
|
4742 w1 add exch } PutCoor PutBegin end |
|
4743 771 691 a 558 714 a Fi(\()p |
|
4744 Fj(A)5 b Fh(^)g Fj(B)g Fi(\))g Fh(_)g Fj(C)771 691 y |
|
4745 tx@Dict begin PutEnd end |
|
4746 |
|
4747 771 691 a 771 691 a |
|
4748 tx@Dict begin PutEnd end |
|
4749 771 691 a 771 691 a |
|
4750 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4751 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4752 0.0 0 0 /N@C /N@F InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4753 0 setlinecap stroke grestore grestore end |
|
4754 771 691 a 771 |
|
4755 691 a |
|
4756 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
4757 771 691 a 771 691 a |
|
4758 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697 |
|
4759 8.2125 2.73749 NAngle 90 sub Uput exch pop add a PtoC h1 add exch |
|
4760 w1 add exch } PutCoor PutBegin end |
|
4761 771 691 a 558 714 a Fj(A)g |
|
4762 Fh(^)g Fi(\()p Fj(B)10 b Fh(_)5 b Fj(C)i Fi(\))771 691 |
|
4763 y |
|
4764 tx@Dict begin PutEnd end |
|
4765 771 691 a 771 691 a |
|
4766 tx@Dict begin PutEnd end |
|
4767 771 691 a 1488 w @beginspecial |
|
4768 @setspecial |
|
4769 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 3.9833 |
|
4770 1.99179 15.93352 17.92503 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4771 setlinecap stroke grestore end |
|
4772 |
|
4773 @endspecial 2297 628 a Fd(id)2338 639 y |
|
4774 Fc(C)2259 691 y @beginspecial @setspecial |
|
4775 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 3.9833 |
|
4776 21.90863 15.93352 37.84187 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4777 setlinecap stroke grestore end |
|
4778 |
|
4779 @endspecial |
|
4780 2296 463 a Fd(id)2337 474 y Fc(B)2259 691 y @beginspecial |
|
4781 @setspecial |
|
4782 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 0.1 true 3.9833 |
|
4783 41.82547 15.93352 57.75871 .5 Frame gsave 0.85358 SLW 0 setgray 0 |
|
4784 setlinecap stroke grestore end |
|
4785 |
|
4786 @endspecial 2297 298 a Fd(id)2338 309 y |
|
4787 Fc(A)2292 278 y |
|
4788 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AL |
|
4789 16 {InitRnode } NewNode end end |
|
4790 2292 278 a 2292 443 a |
|
4791 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BL |
|
4792 16 {InitRnode } NewNode end end |
|
4793 2292 443 a 2292 |
|
4794 608 a |
|
4795 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CL |
|
4796 16 {InitRnode } NewNode end end |
|
4797 2292 608 a 2159 608 a |
|
4798 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CLL |
|
4799 16 {InitRnode } NewNode end end |
|
4800 2159 608 a 2391 278 a |
|
4801 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@AR |
|
4802 16 {InitRnode } NewNode end end |
|
4803 2391 |
|
4804 278 a 2523 278 a |
|
4805 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@ARR |
|
4806 16 {InitRnode } NewNode end end |
|
4807 2523 278 a 2391 443 a |
|
4808 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@BR |
|
4809 16 {InitRnode } NewNode end end |
|
4810 2391 443 a 2391 |
|
4811 608 a |
|
4812 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@CR |
|
4813 16 {InitRnode } NewNode end end |
|
4814 2391 608 a 2139 388 a |
|
4815 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4816 } false /N@A 16 {InitRnode } NewNode end end |
|
4817 2139 388 a 20 w @beginspecial |
|
4818 @setspecial |
|
4819 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4820 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4821 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4822 grestore end |
|
4823 |
|
4824 @endspecial Fn(_)2437 553 y |
|
4825 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4826 } false /N@B 16 {InitRnode } NewNode end end |
|
4827 2437 553 a 20 |
|
4828 w @beginspecial @setspecial |
|
4829 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4830 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4831 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4832 grestore end |
|
4833 |
|
4834 @endspecial Fn(^)1991 512 |
|
4835 y |
|
4836 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4837 } false /N@C 16 {InitRnode } NewNode end end |
|
4838 1991 512 a 20 w @beginspecial @setspecial |
|
4839 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4840 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4841 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4842 grestore end |
|
4843 |
|
4844 @endspecial |
|
4845 Fn(^)2586 429 y |
|
4846 tx@Dict begin tx@NodeDict begin {9.74438 3.0777 12.82208 6.41104 3.33334 |
|
4847 } false /N@D 16 {InitRnode } NewNode end end |
|
4848 2586 429 a 20 w @beginspecial @setspecial |
|
4849 tx@Dict begin STP newpath 0.85358 SLW 0 setgray 8.00002 2 div 6.66669 |
|
4850 0.0 add 2 div 2 copy 0.0 sub 4 2 roll Pyth 0.28453 add CLW 2 div add |
|
4851 0 360 arc closepath gsave 0.85358 SLW 0 setgray 0 setlinecap stroke |
|
4852 grestore end |
|
4853 |
|
4854 |
|
4855 @endspecial Fn(_)2259 691 y |
|
4856 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4857 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4858 0.0 0 0 /N@A /N@AL InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
4859 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4860 grestore grestore end |
|
4861 2259 691 a 2259 691 a |
|
4862 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4863 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4864 0.0 0 0 /N@A /N@BL InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
4865 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4866 grestore grestore end |
|
4867 2259 |
|
4868 691 a 2259 691 a |
|
4869 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4870 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4871 0.0 0 0 /N@B /N@CR InitNC { /AngleA 190. def /AngleB 0. def 0.67 |
|
4872 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4873 grestore grestore end |
|
4874 2259 691 a 2259 691 a |
|
4875 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4876 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4877 0.0 0 0 /N@B /N@BR InitNC { /AngleA 170. def /AngleB 0. def 0.67 |
|
4878 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4879 grestore grestore end |
|
4880 2259 691 a 2259 |
|
4881 691 a |
|
4882 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4883 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4884 0.0 0 0 /N@C /N@CLL InitNC { /AngleA -10. def /AngleB 180. def 0.67 |
|
4885 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4886 grestore grestore end |
|
4887 2259 691 a 2259 691 a |
|
4888 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4889 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4890 0.0 0 0 /N@C /N@A InitNC { /AngleA 10. def /AngleB 180. def 0.67 |
|
4891 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4892 grestore grestore end |
|
4893 2259 691 a 2259 691 a |
|
4894 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4895 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4896 0.0 0 0 /N@CL /N@CLL InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4897 0 setlinecap stroke grestore grestore end |
|
4898 2259 |
|
4899 691 a 2259 691 a |
|
4900 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4901 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4902 0.0 0 0 /N@D /N@B InitNC { /AngleA 190. def /AngleB 0. def 0.67 |
|
4903 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4904 grestore grestore end |
|
4905 2259 691 a 2259 691 a |
|
4906 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4907 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4908 0.0 0 0 /N@D /N@ARR InitNC { /AngleA 170. def /AngleB 0. def 0.67 |
|
4909 0.67 NCCurve } if end gsave 0.8 SLW 0 setgray 0 setlinecap stroke |
|
4910 grestore grestore end |
|
4911 2259 691 a 2259 |
|
4912 691 a |
|
4913 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4914 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4915 0.0 0 0 /N@AR /N@ARR InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4916 0 setlinecap stroke grestore grestore end |
|
4917 2259 691 a 3003 402 a |
|
4918 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@E |
|
4919 16 {InitRnode } NewNode end end |
|
4920 3003 402 a 1680 484 a |
|
4921 tx@Dict begin tx@NodeDict begin {0.0 0.0 0.0 0.0 0.0 } false /N@F |
|
4922 16 {InitRnode } NewNode end end |
|
4923 1680 |
|
4924 484 a 2259 691 a |
|
4925 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4926 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4927 0.0 0 0 /N@C /N@F InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4928 0 setlinecap stroke grestore grestore end |
|
4929 2259 691 a 2259 691 a |
|
4930 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
4931 2259 691 a 2259 |
|
4932 691 a |
|
4933 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697 |
|
4934 8.2125 2.73749 NAngle 90 sub Uput exch pop add a PtoC h1 add exch |
|
4935 w1 add exch } PutCoor PutBegin end |
|
4936 2259 691 a 2046 714 a Fi(\()p Fj(A)e Fh(_)g Fj(B)g |
|
4937 Fi(\))g Fh(^)g Fj(C)2259 691 y |
|
4938 tx@Dict begin PutEnd end |
|
4939 2259 691 a 2259 691 a |
|
4940 tx@Dict begin PutEnd end |
|
4941 |
|
4942 2259 691 a 2259 691 a |
|
4943 tx@Dict begin gsave STV newpath 0.8 SLW 0 setgray /ArrowA { moveto |
|
4944 } def /ArrowB { } def /NCLW CLW def tx@NodeDict begin 0.0 0.0 neg 0.0 |
|
4945 0.0 0 0 /N@D /N@E InitNC { NCLine } if end gsave 0.8 SLW 0 setgray |
|
4946 0 setlinecap stroke grestore grestore end |
|
4947 2259 691 a 2259 691 a |
|
4948 tx@Dict begin tx@NodeDict begin /t .5 def LPut end PutBegin end |
|
4949 2259 691 |
|
4950 a 2259 691 a |
|
4951 tx@Dict begin { 0.85358 tx@Dict /NCLW known { NCLW add } if 51.22697 |
|
4952 8.2125 2.73749 NAngle 90 add Uput exch pop add a PtoC h1 add exch |
|
4953 w1 add exch } PutCoor PutBegin end |
|
4954 2259 691 a 2046 714 a Fj(A)g Fh(_)g Fi(\()p |
|
4955 Fj(B)10 b Fh(^)5 b Fj(C)i Fi(\))2259 691 y |
|
4956 tx@Dict begin PutEnd end |
|
4957 2259 691 a |
|
4958 2259 691 a |
|
4959 tx@Dict begin PutEnd end |
|
4960 2259 691 a 83 927 a Fr(Note)25 b(that)f(these)h(maps)f(are)i |
|
4961 (linear)-5 b(.)83 1105 y(There)33 b(are)g(tw)o(o)f(distinct)e(kinds)h |
|
4962 (of)i(symmetry)e(at)h(play)g(here.)g(On)g(the)g(one)g(hand)g(we)h(ha)n |
|
4963 (v)o(e)f(the)83 1226 y(follo)n(wing.)p 0 TeXcolorgray |
|
4964 83 1404 a Fs(Pr)n(oposition)25 b(3.15.)p 0 TeXcolorgray |
|
4965 41 w Fq(w)i Fo(and)45 b Fm(~)-69 b Fq(w)27 b Fo(ar)l(e)e(self-dual:)f |
|
4966 (that)g(is,)g(we)h(have)707 1630 y Fm(\()p Fq(w)815 1645 |
|
4967 y Fk(A;B)s(;C)1023 1630 y Fm(\))1061 1589 y Fl(\003)1128 |
|
4968 1630 y Fm(=)i Fq(w)1301 1645 y Fk(C)1356 1626 y Fg(\003)1392 |
|
4969 1645 y Fk(;B)1468 1626 y Fg(\003)1504 1645 y Fk(;A)1577 |
|
4970 1626 y Fg(\003)1716 1630 y Fr(and)100 b Fm(\()19 b(~)-68 |
|
4971 b Fq(w)2068 1645 y Fk(A;B)s(;C)2275 1630 y Fm(\))2313 |
|
4972 1589 y Fl(\003)2380 1630 y Fm(=)47 b(~)-68 b Fq(w)2554 |
|
4973 1645 y Fk(C)2609 1626 y Fg(\003)2644 1645 y Fk(;B)2720 |
|
4974 1626 y Fg(\003)2756 1645 y Fk(;A)2829 1626 y Fg(\003)2886 |
|
4975 1630 y Fq(:)83 1914 y Fr(Essentially)34 b(this)f(follo)n(ws)h(from)g |
|
4976 (the)h(de)g(Mor)n(gan)f(duality)g(of)h(the)f(proof)h(rules.)f(On)h(the) |
|
4977 g(other)83 2035 y(hand)25 b(we)g(ha)n(v)o(e)g(the)f(follo)n(wing.)p |
|
4978 0 TeXcolorgray 83 2213 a Fs(Pr)n(oposition)h(3.16.)p |
|
4979 0 TeXcolorgray 40 w Fq(w)i Fo(and)44 b Fm(~)-69 b Fq(w)27 |
|
4980 b Fo(ar)l(e)d(inter)l(derivable)g(using)f(the)h(symmetry:)h(that)e(is,) |
|
4981 h(we)h(have)g(the)83 2333 y(following)f(equation)f(and)i(its)f(dual.) |
|
4982 680 2559 y Fq(w)750 2574 y Fk(A;B)s(;C)985 2559 y Fm(=)k |
|
4983 Fq(c)1131 2574 y Fk(A;B)s Fl(_)p Fk(C)1366 2559 y Fm(;)17 |
|
4984 b Fq(c)1452 2574 y Fk(B)s(;C)1609 2559 y Fn(^)22 b Fm(id)1779 |
|
4985 2574 y Fk(A)1836 2559 y Fm(;)36 b(~)-68 b Fq(w)1950 2574 |
|
4986 y Fk(C)q(;B)s(;A)2153 2559 y Fm(;)17 b(id)2278 2574 y |
|
4987 Fk(C)2359 2559 y Fn(_)23 b Fq(c)2490 2574 y Fk(A;B)2623 |
|
4988 2559 y Fm(;)17 b Fq(c)2709 2574 y Fk(C)q(;A)p Fl(^)p |
|
4989 Fk(B)83 2843 y Fr(Man)o(y)34 b(other)g(relations)g(between)g |
|
4990 Fq(w)j Fr(and)55 b Fm(~)-69 b Fq(w)37 b Fr(are)e(consequences)f(of)h |
|
4991 (these)f(equations)f(and)i(the)83 2964 y(idempotenc)o(y)23 |
|
4992 b(of)i(the)g(symmetry)e Fq(c)p Fr(.)83 3142 y(The)i(basic)g(result)f |
|
4993 (is)g(as)h(follo)n(ws.)p 0 TeXcolorgray 83 3320 a Fs(Theor)n(em)i |
|
4994 (3.17.)p 0 TeXcolorgray 41 w Fo(The)e(linear)f(distrib)n(utivities)d |
|
4995 (ar)l(e)26 b(guar)l(ded)e(tr)o(ansformations.)83 3498 |
|
4996 y Fr(There)h(are)g(a)g(considerable)f(number)g(of)g(coherence)i |
|
4997 (diagrams)d(for)i(weak)g(distrib)n(uti)n(vities.)20 b(The)o(y)83 |
|
4998 3619 y(are)26 b(clearly)f(laid)f(out)g(in)h([2])g(and)g(we)g(do)f(not)h |
|
4999 (ha)n(v)o(e)f(space)h(to)g(repeat)g(them)f(here.)p 0 |
|
5000 TeXcolorgray 83 3797 a Fs(Theor)n(em)j(3.18.)p 0 TeXcolorgray |
|
5001 41 w Fo(The)e(coher)l(ence)h(dia)o(gr)o(ams)c(for)i(weak)i(distrib)n |
|
5002 (utivities)c(hold.)83 3975 y Fr(The)j(only)e(place)i(where)g(this)f |
|
5003 (bears)g(interpretation)g(is)g(in)g(the)g(case)h(of)f(`Unit)g |
|
5004 (Coherence')i(where)83 4095 y(one)f(\002nds)g(canonical)f(idempotents)f |
|
5005 (\(identities)h(in)g(the)h Fm(2)p Fr(-cate)o(gory)f(of)h(guarded)g |
|
5006 (functors\).)83 4403 y Fo(3.3.4)99 b(Duality)83 4581 |
|
5007 y Fr(A)30 b Fn(\003)p Fr(-polycate)o(gory)f(supports)g(polymaps)f |
|
5008 Fm(in)1684 4596 y Fk(A)1778 4581 y Fm(:)37 b Fn(\000)h(!)f |
|
5009 Fq(A)2167 4545 y Fl(\003)2206 4581 y Fq(;)17 b(A)30 b |
|
5010 Fr(and)g Fm(ev)2623 4596 y Fk(A)2718 4581 y Fm(:)37 b |
|
5011 Fq(A;)17 b(A)2972 4545 y Fl(\003)3048 4581 y Fn(!)37 |
|
5012 b(\000)31 b Fr(which)83 4701 y(enable)25 b(us)g(to)f(de\002ne)i |
|
5013 (something)d(lik)o(e)h(a)h(unit)1053 4928 y Fq(\021)1105 |
|
5014 4886 y Fk(A)1101 4952 y(B)1189 4928 y Fm(=)p 1293 4848 |
|
5015 353 4 v 28 w(in)1374 4943 y Fk(A)1453 4928 y Fn(\001)d |
|
5016 Fm(id)1584 4943 y Fk(B)1672 4928 y Fm(:)28 b Fq(B)33 |
|
5017 b Fn(!)27 b Fq(A)2034 4886 y Fl(\003)2096 4928 y Fn(_)c |
|
5018 Fm(\()p Fq(A)f Fn(^)g Fq(B)5 b Fm(\))17 b Fq(;)83 5154 |
|
5019 y Fr(and)25 b(something)e(lik)o(e)i(a)g(counit)1046 5380 |
|
5020 y Fq(")1092 5339 y Fk(A)1092 5404 y(B)1180 5380 y Fm(=)p |
|
5021 1284 5301 368 4 v 28 w(ev)1380 5395 y Fk(A)1459 5380 |
|
5022 y Fn(\001)d Fm(id)1590 5395 y Fk(B)1679 5380 y Fm(:)27 |
|
5023 b Fq(A)c Fn(^)f Fm(\()p Fq(A)2028 5339 y Fl(\003)2090 |
|
5024 5380 y Fn(_)g Fq(B)5 b Fm(\))28 b Fn(!)g Fq(B)21 b(:)p |
|
5025 0 TeXcolorgray 1748 5712 a Fr(17)p 0 TeXcolorgray eop |
|
5026 end |
|
5027 %%Page: 18 18 |
|
5028 TeXDict begin 18 17 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5029 0 TeXcolorgray 83 83 a Fr(One)34 b(e)o(xpects)e(that)h(the)g(unit)f |
|
5030 (and)h(counit)f(are)i(interchanged)f(by)f(the)h(self-duality)-6 |
|
5031 b(,)32 b(though)g(our)83 203 y(con)l(v)o(entions)f(on)i(duality)e |
|
5032 (require)i(mediating)e(symmetries.)g(\(W)l(ith)i(the)f(other)h(choice)g |
|
5033 (of)f(con-)83 324 y(v)o(ention,)24 b(the)g(problem)g(emer)n(ges)h(else) |
|
5034 n(where!\))p 0 TeXcolorgray 83 518 a Fs(Pr)n(oposition)g(3.19.)p |
|
5035 0 TeXcolorgray 41 w Fo(The)g Fq(\021)k Fo(and)24 b Fq(")h |
|
5036 Fo(ar)l(e)g(dual)f(in)g(the)h(sense)g(that)e(the)i(equations)83 |
|
5037 639 y Fq(c)125 654 y Fk(A)178 635 y Fg(\003)214 654 y |
|
5038 Fk(;B)290 635 y Fg(\003)353 639 y Fn(^)d Fm(id)522 654 |
|
5039 y Fk(A)579 639 y Fm(;)17 b(\()p Fq(\021)713 603 y Fk(A)709 |
|
5040 663 y(B)770 639 y Fm(\))808 603 y Fl(\003)875 639 y Fm(=)27 |
|
5041 b Fq(c)1020 654 y Fk(A)1073 635 y Fg(\003)1109 654 y |
|
5042 Fl(_)p Fk(B)1212 635 y Fg(\003)1249 654 y Fk(;A)1325 |
|
5043 639 y Fm(;)17 b Fq(")1415 603 y Fk(A)1415 663 y(B)1471 |
|
5044 644 y Fg(\003)1536 639 y Fo(and)25 b Fm(\()p Fq(")1795 |
|
5045 603 y Fk(A)1795 663 y(B)1855 639 y Fm(\))1893 603 y Fl(\003)1932 |
|
5046 639 y Fm(;)17 b Fq(c)2018 654 y Fk(A)2071 635 y Fg(\003)2107 |
|
5047 654 y Fk(;B)2183 635 y Fg(\003)2219 654 y Fl(^)p Fk(A)2319 |
|
5048 635 y Fg(\003)2387 639 y Fm(=)27 b Fq(\021)2542 603 y |
|
5049 Fk(A)2538 663 y(B)2594 644 y Fg(\003)2635 639 y Fm(;)17 |
|
5050 b(id)2760 654 y Fk(A)2813 635 y Fg(\003)2875 639 y Fn(_)23 |
|
5051 b Fq(c)3006 654 y Fk(B)3062 635 y Fg(\003)3098 654 y |
|
5052 Fk(;A)3199 639 y Fo(hold.)83 833 y Fr(Finally)i(we)g(get)f(triangle)h |
|
5053 (identities)e(in)h(a)h(guarded)g(sense.)p 0 TeXcolorgray |
|
5054 83 1028 a Fs(Theor)n(em)i(3.20.)p 0 TeXcolorgray 41 w |
|
5055 Fo(W)-9 b(e)25 b(have)g Fm(id)1172 1043 y Fk(A)1251 1028 |
|
5056 y Fn(^)e Fq(\021)1392 991 y Fk(A)1388 1052 y(B)1448 1028 |
|
5057 y Fm(;)17 b Fq(")1538 991 y Fk(A)1538 1052 y(A)p Fl(^)p |
|
5058 Fk(B)1726 1028 y Fm(=)27 b Fq(e)1874 1043 y Fk(A)p Fl(^)p |
|
5059 Fk(B)2060 1028 y Fo(and)d Fq(\021)2286 991 y Fk(A)2282 |
|
5060 1052 y(A)2335 1033 y Fg(\003)2371 1052 y Fl(_)p Fk(B)2479 |
|
5061 1028 y Fm(;)17 b(id)2604 1043 y Fk(A)2657 1024 y Fg(\003)2719 |
|
5062 1028 y Fn(_)23 b Fq(")2854 991 y Fk(A)2854 1052 y(B)2942 |
|
5063 1028 y Fm(=)k Fq(e)3090 1043 y Fk(A)3143 1024 y Fg(\003)3179 |
|
5064 1043 y Fl(_)p Fk(B)3287 1028 y Fo(.)83 1222 y Fr(This)d(essentially)g |
|
5065 (gi)n(v)o(es)f(an)i(adjunction)f(in)g(the)h(guarded)g |
|
5066 Fm(2)p Fr(-cate)o(gory)-6 b(.)83 1593 y Fo(3.3.5)99 b(Alg)o(ebr)o(as)23 |
|
5067 b(and)i(coalg)o(ebr)o(as)83 1788 y Fr(W)-8 b(e)26 b(consider)e(no)n(w)g |
|
5068 (the)h(structural)f(maps)613 2082 y Fq(d)k Fm(:)f Fq(A)h |
|
5069 Fn(!)g Fq(A)22 b Fn(^)g Fq(A)34 b(t)28 b Fm(:)f Fq(A)h |
|
5070 Fn(!)f(>)190 b Fq(m)28 b Fm(:)g Fq(A)22 b Fn(_)g Fq(A)28 |
|
5071 b Fn(!)g Fq(A)33 b(u)27 b Fm(:)h Fn(?)g(!)f Fq(A)83 2351 |
|
5072 y Fr(The)33 b(de)h(Mor)n(gan)e(duality)g(of)h(the)g(proof)g(rules)g |
|
5073 (sho)n(ws)e(that)i(these)g(structures)f(are)i(dual)f(to)g(one)83 |
|
5074 2471 y(another:)759 2631 y Fq(d)810 2589 y Fl(\003)810 |
|
5075 2655 y Fk(A)894 2631 y Fm(=)28 b Fq(m)1083 2646 y Fk(A)1136 |
|
5076 2627 y Fg(\003)1193 2631 y Fq(;)116 b(m)1421 2589 y Fl(\003)1421 |
|
5077 2655 y Fk(A)1506 2631 y Fm(=)28 b Fq(d)1661 2646 y Fk(A)1714 |
|
5078 2627 y Fg(\003)1770 2631 y Fq(;)116 b(t)1948 2589 y Fl(\003)1948 |
|
5079 2655 y Fk(A)2033 2631 y Fm(=)28 b Fq(u)2193 2646 y Fk(A)2246 |
|
5080 2627 y Fg(\003)2302 2631 y Fq(;)116 b(u)2501 2589 y Fl(\003)2501 |
|
5081 2655 y Fk(A)2585 2631 y Fm(=)28 b Fq(t)2724 2646 y Fk(A)2777 |
|
5082 2627 y Fg(\003)2834 2631 y Fq(:)83 2893 y Fr(In)i(f)o(amiliar)e(cate)o |
|
5083 (gory)h(theoretic)g(settings)f(maps)g(of)h(these)g(kinds)g(are)g |
|
5084 (usually)g(associated)f(with)83 3013 y(product)f(and)g(coproduct)g |
|
5085 (structure;)g(b)n(ut)g(here)h(we)f(do)g(not)g(e)n(v)o(en)f(ha)n(v)o(e)h |
|
5086 (guarded)h(naturality)-6 b(.)25 b(But)83 3134 y(the)e(correctness)f |
|
5087 (equations)g(of)h(2.3.3)f(gi)n(v)o(e)f(at)h(once)h(the)f(follo)n(wing)f |
|
5088 (relation)h(to)g(canonical)h(linear)83 3254 y(idempotents.)p |
|
5089 0 TeXcolorgray 83 3449 a Fs(Pr)n(oposition)30 b(3.21.)p |
|
5090 0 TeXcolorgray 44 w Fo(The)g(maps)f Fq(d)p Fo(,)g Fq(t)h |
|
5091 Fo(ar)l(e)g(codomain)f(absorbing)f(while)i Fq(m)g Fo(and)f |
|
5092 Fq(u)h Fo(ar)l(e)g(domain)83 3569 y(absorbing)23 b(in)i(the)f(sense)h |
|
5093 (that)f(following)f(equations)h(hold.)574 3828 y Fq(d)p |
|
5094 Fm(;)17 b Fq(e)714 3843 y Fk(A)p Fl(^)p Fk(A)898 3828 |
|
5095 y Fm(=)27 b Fq(d)17 b(;)116 b(t)p Fm(;)17 b Fq(e)1336 |
|
5096 3843 y Fl(>)1423 3828 y Fm(=)27 b Fq(t)100 b Fr(and)g |
|
5097 Fq(e)1950 3843 y Fk(A)p Fl(_)p Fk(A)2107 3828 y Fm(;)17 |
|
5098 b Fq(m)27 b Fm(=)h Fq(m)17 b(;)116 b(e)2657 3843 y Fl(?)2717 |
|
5099 3828 y Fm(;)17 b Fq(u)26 b Fm(=)i Fq(u)17 b(:)83 4161 |
|
5100 y Fr(Moreo)o(v)o(er)24 b(some)g(structure)h(holds)f(on)g(the)h(nose.)p |
|
5101 0 TeXcolorgray 83 4355 a Fs(Pr)n(oposition)i(3.22.)p |
|
5102 0 TeXcolorgray 41 w Fo(The)g(structur)l(e)e Fm(\()p Fq(A;)17 |
|
5103 b(t)1590 4370 y Fk(A)1647 4355 y Fq(;)g(d)1742 4370 y |
|
5104 Fk(A)1799 4355 y Fm(\))26 b Fo(forms)g(a)g(commutative)f(comonoid,)g |
|
5105 (while)i(the)83 4475 y(structur)l(e)d Fm(\()p Fq(A;)17 |
|
5106 b(m)704 4490 y Fk(A)761 4475 y Fq(;)g(u)861 4490 y Fk(A)918 |
|
5107 4475 y Fm(\))25 b Fo(forms)e(a)i(commutative)f(monoid.)83 |
|
5108 4670 y Fr(W)-8 b(e)26 b(list)d(the)i(equations)f(in)l(v)n(olv)o(ed)f |
|
5109 (in)h(the)h(comonoid)e(case.)979 4965 y Fq(d)p Fm(;)17 |
|
5110 b Fq(t)22 b Fn(^)h Fm(id)1301 4980 y Fk(A)1358 4965 y |
|
5111 Fm(;)e(~)-53 b Fq(r)30 b Fm(=)e(id)1661 4980 y Fk(A)1917 |
|
5112 4965 y Fq(d)p Fm(;)17 b(id)2093 4980 y Fk(A)2172 4965 |
|
5113 y Fn(^)23 b Fq(t)p Fm(;)2339 4938 y(~)2340 4965 y Fq(l)29 |
|
5114 b Fm(=)f(id)2583 4980 y Fk(A)696 5145 y Fq(d)p Fm(;)17 |
|
5115 b(id)872 5160 y Fk(A)951 5145 y Fn(^)22 b Fq(d)p Fm(;)17 |
|
5116 b Fq(a)28 b Fm(=)f Fq(d)p Fm(;)17 b Fq(d)k Fn(^)i Fm(id)1653 |
|
5117 5160 y Fk(A)1910 5145 y Fq(d)p Fm(;)17 b Fq(d)k Fn(^)h |
|
5118 Fm(id)2247 5160 y Fk(A)2304 5145 y Fm(;)17 b(~)-49 b |
|
5119 Fq(a)27 b Fm(=)h Fq(d)p Fm(;)17 b(id)2705 5160 y Fk(A)2785 |
|
5120 5145 y Fn(^)22 b Fq(d)1629 5326 y(d)p Fm(;)17 b Fq(c)27 |
|
5121 b Fm(=)g Fq(d)17 b(:)p 0 TeXcolorgray 1748 5712 a Fr(18)p |
|
5122 0 TeXcolorgray eop end |
|
5123 %%Page: 19 19 |
|
5124 TeXDict begin 19 18 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5125 0 TeXcolorgray 83 83 a Fo(3.4)100 b(The)25 b(de\002nition)83 |
|
5126 379 y Fr(W)-8 b(e)31 b(are)h(no)n(w)d(in)h(a)h(position)e(to)h(e)o |
|
5127 (xplain)f(a)i(notion)e(of)i(cate)o(gorical)f(model)g(for)h(classical)f |
|
5128 (proof.)83 499 y(In)j(the)f(de\002nition)g(one)g(should)f(think)h(of)g |
|
5129 (the)g(hom-sets)g Fn(C)6 b Fm(\()p Fq(A)p Fm(;)17 b Fq(B)5 |
|
5130 b Fm(\))32 b Fr(as)h(being)f(the)g(collection)f(of)83 |
|
5131 619 y(classical)24 b(proofs)f(of)h Fq(A)k Fn(`)g Fq(B)5 |
|
5132 b Fr(.)24 b(Proofs)g(of)g(more)f(comple)o(x)g(sequents)g(are)i(coded)e |
|
5133 (indirectly)g(in)h(the)83 740 y(model.)p 0 TeXcolorgray |
|
5134 83 915 a Fs(De\002nition)36 b(3.23.)p 0 TeXcolorgray |
|
5135 47 w Fr(A)f Fo(\(static\))g(model)g(for)g(classical)f(\(pr)l |
|
5136 (opositional\))e(pr)l(oofs)h Fr(consists)h(of)i(the)83 |
|
5137 1035 y(follo)n(wing)23 b(data)i(satisfying)e(the)i(gi)n(v)o(en)e |
|
5138 (axioms.)p 0 TeXcolorgray 83 1210 a Fn(\017)p 0 TeXcolorgray |
|
5139 50 w Fr(A)i(guarded)g(cate)o(gory)f Fn(C)31 b Fr(equipped)24 |
|
5140 b(with)g(a)i(\(strictly\))e(in)l(v)n(oluti)n(v)o(e)e(self-duality)h |
|
5141 Fm(\()p Fn(\000)p Fm(\))3155 1174 y Fl(\003)3195 1210 |
|
5142 y Fr(.)p 0 TeXcolorgray 83 1331 a Fn(\017)p 0 TeXcolorgray |
|
5143 50 w Fr(Guarded)28 b(objects)e Fn(>)i Fr(and)g Fn(?)g |
|
5144 Fr(of)f Fn(C)34 b Fr(and)28 b(guarded)f(functors)g Fn(^)p |
|
5145 Fr(,)h Fn(_)g Fr(\(respecti)n(v)o(ely)e(domain)h(and)183 |
|
5146 1451 y(codomain)22 b(absorbing\))f(satisfying)h(the)g(usual)g(de)h(Mor) |
|
5147 n(gan)f(la)o(ws)g(with)g(respect)g(to)h(the)f(duality)-6 |
|
5148 b(.)183 1571 y(Linear)25 b(maps)f(are)i(maps)e Fq(u)p |
|
5149 Fr(,)g Fq(v)29 b Fr(such)24 b(that)487 1779 y Fq(u)d |
|
5150 Fn(^)i Fq(v)t Fm(;)17 b Fq(f)32 b Fn(^)23 b Fq(g)31 b |
|
5151 Fm(=)c(\()p Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))21 b Fn(^)i |
|
5152 Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t Fm(\))98 b Fo(and)h Fq(f)33 |
|
5153 b Fn(_)23 b Fq(g)t Fm(;)17 b Fq(u)j Fn(_)j Fq(v)31 b |
|
5154 Fm(=)d(\()p Fq(f)11 b Fm(;)17 b Fq(u)p Fm(\))k Fn(_)h |
|
5155 Fm(\()p Fq(g)t Fm(;)17 b Fq(v)t Fm(\))g Fq(:)p 0 TeXcolorgray |
|
5156 83 1987 a Fn(\017)p 0 TeXcolorgray 50 w Fr(Linear)25 |
|
5157 b(mutually)e(in)l(v)o(erse)h(guarded)h(transformations)e(for)i |
|
5158 Fn(>)h Fr(and)f Fn(^)756 2230 y Fq(l)30 b Fm(:)d Fq(A)h |
|
5159 Fn(!)f(>)c(^)g Fq(A;)2333 2204 y Fm(~)2333 2230 y Fq(l)30 |
|
5160 b Fm(:)e Fn(>)23 b(^)f Fq(A)28 b Fn(!)f Fq(A;)762 2411 |
|
5161 y(r)j Fm(:)e Fq(A)f Fn(!)h Fq(A)22 b Fn(^)h(>)964 b Fm(~)-54 |
|
5162 b Fq(r)31 b Fm(:)c Fq(A)c Fn(^)f(>)28 b(!)g Fq(A)400 |
|
5163 2591 y(a)g Fm(:)g Fq(A)22 b Fn(^)g Fm(\()p Fq(B)28 b |
|
5164 Fn(^)22 b Fq(C)7 b Fm(\))28 b Fn(!)f Fm(\()p Fq(A)22 |
|
5165 b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(^)h Fq(C)244 b Fm(~)-50 |
|
5166 b Fq(a)28 b Fm(:)f(\()p Fq(A)c Fn(^)f Fq(B)5 b Fm(\))22 |
|
5167 b Fn(^)h Fq(C)35 b Fn(!)27 b Fq(A)22 b Fn(^)h Fm(\()p |
|
5168 Fq(B)k Fn(^)22 b Fq(C)7 b Fm(\))183 2809 y Fr(of)37 b(the)g(left)f(and) |
|
5169 h(right)f(unit)g(la)o(ws)g(and)h(associati)n(vity)d(satisfying)i(the)g |
|
5170 (usual)g(pentagon)h(and)183 2930 y(triangle)24 b(la)o(ws)g(.)183 |
|
5171 3050 y(By)h(duality)f(we)h(ha)n(v)o(e)f(also)h(the)f(same)h(structure)g |
|
5172 (for)g Fn(?)g Fr(and)g Fn(_)p Fr(.)p 0 TeXcolorgray 83 |
|
5173 3170 a Fn(\017)p 0 TeXcolorgray 50 w Fr(A)g(linear)g(self-in)l(v)o |
|
5174 (erse)f(guarded)h(transformation)1457 3378 y Fq(c)j Fm(:)f |
|
5175 Fq(A)c Fn(^)f Fq(B)33 b Fn(!)27 b Fq(B)h Fn(^)22 b Fq(A)183 |
|
5176 3586 y Fr(gi)n(ving)h(a)i(symmetry)f(for)h Fn(^)p Fr(,)g(and)g |
|
5177 (satisfying)e(the)i(usual)f(he)o(xagon)g(condition.)183 |
|
5178 3706 y(By)h(duality)f(we)h(ha)n(v)o(e)f(also)h(the)f(same)h(structure)g |
|
5179 (for)g Fn(_)p Fr(.)p 0 TeXcolorgray 83 3826 a Fn(\017)p |
|
5180 0 TeXcolorgray 50 w Fr(Linear)g(guarded)g(transformations)428 |
|
5181 4034 y Fq(w)30 b Fm(:)e Fq(A)22 b Fn(^)h Fm(\()p Fq(B)k |
|
5182 Fn(_)22 b Fq(C)7 b Fm(\))28 b Fn(!)f Fm(\()p Fq(A)22 |
|
5183 b Fn(^)h Fq(B)5 b Fm(\))22 b Fn(_)h Fq(C)r(;)136 b Fm(~)-69 |
|
5184 b Fq(w)30 b Fm(:)e(\()p Fq(A)22 b Fn(_)g Fq(B)5 b Fm(\))22 |
|
5185 b Fn(^)h Fq(C)35 b Fn(!)27 b Fq(A)22 b Fn(_)h Fm(\()p |
|
5186 Fq(B)k Fn(^)c Fq(C)7 b Fm(\))183 4242 y Fr(interchanged)32 |
|
5187 b(by)g(duality)-6 b(,)30 b(interde\002nable)j(using)e(the)h(symmetry)f |
|
5188 (and)h(satisfying)f(standard)183 4362 y(coherence)26 |
|
5189 b(conditions)d(for)i(distrib)n(uti)n(vities.)p 0 TeXcolorgray |
|
5190 83 4482 a Fn(\017)p 0 TeXcolorgray 50 w Fr(Linear)35 |
|
5191 b(and)f(mutually)g(dual)g(guarded)h(transformations)e |
|
5192 Fq(\021)2320 4446 y Fk(A)2316 4507 y(B)2423 4482 y Fm(:)46 |
|
5193 b Fq(B)51 b Fn(!)45 b Fq(A)2839 4446 y Fl(\003)2908 4482 |
|
5194 y Fn(_)30 b Fm(\()p Fq(A)g Fn(^)g Fq(B)5 b Fm(\))35 b |
|
5195 Fr(and)183 4603 y Fq(")229 4567 y Fk(A)229 4627 y(B)317 |
|
5196 4603 y Fm(:)28 b Fq(A)22 b Fn(^)h Fm(\()p Fq(A)667 4567 |
|
5197 y Fl(\003)728 4603 y Fn(_)g Fq(B)5 b Fm(\))28 b Fn(!)f |
|
5198 Fq(B)j Fr(satisfying)23 b(the)i(triangle)f(identities.)p |
|
5199 0 TeXcolorgray 83 4723 a Fn(\017)p 0 TeXcolorgray 50 |
|
5200 w Fr(An)j(association)f(to)h(all)f(objects)h Fq(A)g Fr(of)g(maps)g |
|
5201 Fq(d)k Fm(:)i Fq(A)f Fn(!)f Fq(A)24 b Fn(^)g Fq(A)p Fr(,)k |
|
5202 Fq(t)k Fm(:)g Fq(A)g Fn(!)f Fm(1)p Fr(,)c(and)g(their)g(duals)183 |
|
5203 4844 y Fq(m)32 b Fm(:)g Fq(A)24 b Fn(_)g Fq(A)32 b Fn(!)f |
|
5204 Fq(A)c Fr(and)g Fq(u)k Fm(:)h Fn(?)g(!)g Fq(A)27 b Fr(in)f |
|
5205 Fn(C)6 b Fr(,)28 b(codomain)e(and)h(dually)f(domain)g(absorbing,)g(and) |
|
5206 183 4964 y(gi)n(ving)h(to)i(each)h(object)f Fq(A)g Fr(the)g(structure)g |
|
5207 (of)g(a)g(commutati)n(v)o(e)e(comonoid)h(with)g(respect)h(to)g |
|
5208 Fn(^)183 5084 y Fr(and)c(the)f(structure)h(of)g(a)g(commutati)n(v)o(e)d |
|
5209 (monoid)h(with)i(respect)g(to)f Fn(_)p Fr(.)83 5259 y(This)29 |
|
5210 b(de\002nition)g(may)g(seem)h(substantially)d(more)j(comple)o(x)e(than) |
|
5211 i(analogues)f(for)h(linear)f(logic;)83 5380 y(b)n(ut)36 |
|
5212 b(that)g(may)g(well)g(be)g(more)g(a)h(matter)f(of)g(lack)h(of)f(f)o |
|
5213 (amiliarity)-6 b(.)34 b(Much)i(of)g(the)h(de\002nition)e(is)p |
|
5214 0 TeXcolorgray 1748 5712 a(19)p 0 TeXcolorgray eop end |
|
5215 %%Page: 20 20 |
|
5216 TeXDict begin 20 19 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5217 0 TeXcolorgray 83 83 a Fr(concerned)36 b(to)f(say)g(that)g(one)h(has)f |
|
5218 (a)h Fn(\003)p Fr(-autonomous)d(cate)o(gory)-6 b(,)35 |
|
5219 b(modulo)f(issues)g(of)i(canonical)83 203 y(idempotents.)83 |
|
5220 380 y(W)-8 b(e)25 b(no)n(w)e(e)o(xplain)g(ho)n(w)-6 b(,)23 |
|
5221 b(gi)n(v)o(en)f(a)j(model)e Fn(C)31 b Fr(of)24 b(classical)g(proof)g |
|
5222 (in)f(the)h(sense)g(just)f(described,)h(we)83 501 y(can)d(construct)f |
|
5223 (a)g Fn(\003)p Fr(-polycate)o(gory)f Fn(C)27 b Fr(modelling)19 |
|
5224 b(classical)h(proof)g(in)g(the)g(sense)g(analyzed)h(earlier)-5 |
|
5225 b(.)83 621 y(Splitting)27 b(idempotents)g(is)h(a)h(basic)f(tool)f(in)i |
|
5226 (cate)o(gory)f(theory)-6 b(,)27 b(f)o(amiliar)h(in)g(particular)g(from) |
|
5227 h(the)83 741 y(theory)d(of)h(Morita)e(equi)n(v)n(alence.)h(Here)h(we)f |
|
5228 (could)g(use)g(it)g(for)h(a)g(no)o(v)o(el)d(purpose:)i(splitting)e |
|
5229 (some)83 862 y(canonical)h(idempotents)e(pro)o(vides)h(objects)g |
|
5230 (representing)h(polysets)e(of)i(objects)g(on)f(either)h(sides)83 |
|
5231 982 y(of)f(polymaps.)e(This)h(means)h(that)f(we)h(reco)o(v)o(er)g(the)f |
|
5232 (sets)h(of)g(polymaps)e Fn(C)6 b Fm(\(\000)p Fq(;)17 |
|
5233 b Fm(\001\))p Fr(.)24 b(W)-8 b(e)24 b(e)o(xplain)f(the)83 |
|
5234 1103 y(point)h(in)h(a)g(simple)e(case.)j(W)-8 b(e)25 |
|
5235 b(ha)n(v)o(e)f(canonical)h(polymaps)226 1326 y Fq(i)259 |
|
5236 1341 y Fk(A)p Fl(^)p Fk(B)448 1326 y Fm(=)i(id)633 1341 |
|
5237 y Fk(A)712 1326 y Fn(\001)21 b Fm(id)843 1341 y Fk(B)931 |
|
5238 1326 y Fm(:)28 b Fq(A;)17 b(B)33 b Fn(!)27 b Fq(A)22 |
|
5239 b Fn(^)h Fq(B)104 b Fr(and)c Fq(i)1976 1341 y Fk(C)5 |
|
5240 b Fl(_)p Fk(D)2170 1326 y Fm(=)27 b(id)2355 1341 y Fk(C)2436 |
|
5241 1326 y Fn(\001)22 b Fm(id)2567 1341 y Fk(D)2659 1326 |
|
5242 y Fm(:)28 b Fq(C)h Fn(_)22 b Fq(D)31 b Fn(!)c Fq(C)r(;)17 |
|
5243 b(D)29 b(:)83 1559 y Fr(Since)f Fq(i)365 1574 y Fk(A)p |
|
5244 Fl(^)p Fk(B)526 1559 y Fm(;)p 570 1463 59 4 v 570 1480 |
|
5245 V 17 w Fq(f)11 b Fm(;)17 b Fq(i)706 1574 y Fk(C)5 b Fl(_)p |
|
5246 Fk(D)904 1559 y Fm(=)33 b Fn(f)p Fm(id)1144 1574 y Fk(A)1201 |
|
5247 1559 y Fq(;)17 b Fm(id)1326 1574 y Fk(B)1386 1559 y Fn(g)p |
|
5248 Fm(;)g Fq(f)11 b Fm(;)17 b Fn(f)p Fm(id)1713 1574 y Fk(C)1773 |
|
5249 1559 y Fq(;)g Fm(id)1898 1574 y Fk(D)1962 1559 y Fn(g)32 |
|
5250 b Fm(=)g Fq(f)11 b Fr(,)28 b(we)f(can)h(re)o(gard)f Fn(C)6 |
|
5251 b Fm(\()p Fq(A;)17 b(B)5 b Fm(;)17 b Fq(C)r(;)g(D)s Fm(\))26 |
|
5252 b Fr(as)83 1680 y(arising)e(by)h(splitting)e(the)h(idempotent)1099 |
|
5253 1903 y Fq(g)31 b Fn(!)p 1304 1811 531 4 v 1304 1828 V |
|
5254 27 w Fq(i)1337 1918 y Fk(A)p Fl(^)p Fk(B)1498 1903 y |
|
5255 Fm(;)17 b Fq(g)t Fm(;)g Fq(i)1670 1918 y Fk(C)5 b Fl(_)p |
|
5256 Fk(D)1863 1903 y Fm(=)27 b Fq(e)2011 1918 y Fk(A)p Fl(^)p |
|
5257 Fk(B)2172 1903 y Fm(;)17 b Fq(g)t Fm(;)g Fq(e)2356 1918 |
|
5258 y Fk(C)5 b Fl(_)p Fk(D)83 2127 y Fr(on)25 b Fn(C)6 b |
|
5259 Fm(\()p Fq(A)22 b Fn(^)h Fq(B)5 b Fm(;)17 b Fq(C)29 b |
|
5260 Fn(_)22 b Fq(D)s Fm(\))p Fr(.)83 2303 y(So)39 b(in)f(outline)f(the)g |
|
5261 (construction)g(of)h(the)g(polycate)o(gorical)f(model)h(is)f(as)i |
|
5262 (follo)n(ws.)d(W)-8 b(e)39 b(mak)o(e)83 2424 y(a)i(choice)g(of)g(brack) |
|
5263 o(etings)e(of)i(both)f Fm(\000)h Fr(and)f Fm(\001)p Fr(.)h(This)f(gi)n |
|
5264 (v)o(es)f(us)h(hom-sets)f Fn(C)6 b Fm(\()2956 2357 y |
|
5265 Ff(V)3042 2424 y Fm(\000)p Fq(;)3147 2357 y Ff(W)3233 |
|
5266 2424 y Fm(\001\))41 b Fr(and)83 2544 y(canonical)j(idempotents)e |
|
5267 Fq(e)1085 2510 y Ff(V)1166 2568 y Fw(\000)1258 2544 y |
|
5268 Fr(and)h Fq(e)1490 2510 y Ff(W)1571 2568 y Fw(\001)1634 |
|
5269 2544 y Fr(.)h(W)-8 b(e)44 b(can)g(then)f(tak)o(e)h Fn(C)6 |
|
5270 b Fm(\(\000;)17 b(\001\))43 b Fr(to)h(consist)e(of)i(the)83 |
|
5271 2676 y Fq(f)54 b Fn(2)44 b(C)6 b Fm(\()391 2610 y Ff(V)477 |
|
5272 2676 y Fm(\000)p Fq(;)582 2610 y Ff(W)668 2676 y Fm(\001\))33 |
|
5273 b Fr(such)g(that)g Fq(e)1264 2642 y Ff(V)1345 2700 y |
|
5274 Fw(\000)1393 2676 y Fm(;)17 b Fq(f)11 b Fm(;)17 b Fq(e)1585 |
|
5275 2642 y Ff(W)1666 2700 y Fw(\001)1772 2676 y Fm(=)43 b |
|
5276 Fq(f)11 b Fr(.)33 b(Finally)g(we)g(ha)n(v)o(e)g(a)h(series)f(of)g |
|
5277 (\002ddly)g(b)n(ut)83 2796 y(routine)25 b(tasks.)p 0 |
|
5278 TeXcolorgray 123 2973 a(\(1\))p 0 TeXcolorgray 50 w(W)-8 |
|
5279 b(e)34 b(sho)n(w)d(that)i Fn(C)6 b Fm(\(\000;)17 b(\001\))33 |
|
5280 b Fr(is)f(essentially)g(independent)g(of)h(the)f(brack)o(eting)h |
|
5281 (chosen.)f(This)289 3094 y(follo)n(ws)24 b(from)g(the)h(coherence)h(of) |
|
5282 e(the)h(canonical)g(linear)f(idempotents.)p 0 TeXcolorgray |
|
5283 123 3214 a(\(2\))p 0 TeXcolorgray 50 w(W)-8 b(e)23 b(sho)n(w)f(ho)n(w)g |
|
5284 (to)g(de\002ne)h(composition)e(on)h(the)h(sets)f(of)h(polymaps.)e(This) |
|
5285 h(combines)g(point)289 3334 y(\(1\))36 b(with)f(hea)n(vy)h(use)g(of)g |
|
5286 (the)g(linear)f(distrib)n(uti)n(vities.)d(And)k(we)g(sho)n(w)f(that)g |
|
5287 (the)h(result)f(is)289 3455 y(indeed)25 b(a)g Fn(\003)p |
|
5288 Fr(-polycate)o(gory)-6 b(.)p 0 TeXcolorgray 123 3575 |
|
5289 a(\(3\))p 0 TeXcolorgray 50 w(W)e(e)37 b(de\002ne)f(the)g(logical)f |
|
5290 (operations)g(on)g(the)h(collections)f(of)h(polymaps)e(and)i(deri)n(v)o |
|
5291 (e)f(the)289 3695 y(man)o(y)24 b(equations.)g(This)g(is)g(pretty)g |
|
5292 (much)h(routine.)83 4063 y Fs(4)100 b(Explanation)25 |
|
5293 b(and)h(comparison)83 4360 y Fo(4.1)100 b(Repr)l(esentable)24 |
|
5294 b(polycate)l(gories)83 4658 y Fr(W)-8 b(e)27 b(recall)g(the)f |
|
5295 (relationship)f(between)h Fn(\003)p Fr(-polycate)o(gories)f(and)i |
|
5296 Fn(\003)p Fr(-autonomous)d(cate)o(gories)i(\(see)83 4778 |
|
5297 y([2])e(or)f([11])g(for)g(e)o(xample\).)f(T)-8 b(ak)o(e)23 |
|
5298 b(the)g(ob)o(vious)e Fm(2)p Fr(-cate)o(gories)38 b Fn(\003)15 |
|
5299 b Fb(P)m(oly)23 b Fr(of)g Fn(\003)p Fr(-polycate)o(gories)f(and)83 |
|
5300 4898 y Fn(\003)p Fb(Aut)29 b Fr(of)g Fn(\003)p Fr(-autonomous)f(cate)o |
|
5301 (gories:)g(all)h Fm(2)p Fr(-cells)g(are)h(in)l(v)o(ertible)e(so)h(we)h |
|
5302 (are)g(in)f(the)g(groupoid)83 5019 y(enriched)38 b(setting.)e(An)o(y)h |
|
5303 Fn(\003)p Fr(-autonomous)e(cate)o(gory)i(determines)g(a)g |
|
5304 Fn(\003)p Fr(-polycate)o(gory)-6 b(,)36 b(with)h(the)83 |
|
5305 5139 y(linear)c(tensor)f(and)h(par)g(representing)f(polymaps;)f(so)i |
|
5306 (one)f(sees)h(that)f(there)h(is)g(a)g(groupoid)e(en-)83 |
|
5307 5259 y(riched)h(for)n(getful)g(functor)f Fq(S)6 b(P)14 |
|
5308 b(ol)r(y)43 b Fm(:)d Fn(\003)p Fb(Aut)g Fn(!)g(\003)p |
|
5309 Fb(P)m(oly)p Fr(.)32 b(On)f(the)h(other)f(hand)g(one)h(can)g(freely)83 |
|
5310 5380 y(construct)e(a)h Fn(\003)p Fr(-autonomous)e(cate)o(gory)h |
|
5311 (generated)h(by)g(a)f Fn(\003)p Fr(-polycate)o(gory)-6 |
|
5312 b(,)29 b(subject)h(to)g(ob)o(vious)p 0 TeXcolorgray 1748 |
|
5313 5712 a(20)p 0 TeXcolorgray eop end |
|
5314 %%Page: 21 21 |
|
5315 TeXDict begin 21 20 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5316 0 TeXcolorgray 83 83 a Fr(identi\002cations.)27 b(This)g(gi)n(v)o(es)g |
|
5317 (a)h(groupoid)f(enriched)i(functor)f Fq(S)6 b(Aut)33 |
|
5318 b Fm(:)h Fn(\003)p Fb(P)m(oly)g Fn(!)g(\003)p Fb(Aut)27 |
|
5319 b Fr(and)h(a)83 203 y(groupoid)i(enriched)i(adjunction)d |
|
5320 Fq(S)6 b(Aut)39 b Fn(a)h Fq(S)6 b(P)14 b(ol)r(y)r Fr(.)31 |
|
5321 b(The)g(basic)g(conserv)n(ati)n(vity)e(result)i(pro)o(v)o(ed)83 |
|
5322 324 y(by)22 b(direct)g(syntactic)f(considerations)g(in)h([2])g |
|
5323 (\(though)f(see)h([11])h(for)f(an)g(indication)f(of)h(a)g(semantic)83 |
|
5324 444 y(proof\))j(is)g(as)f(follo)n(ws.)p 0 TeXcolorgray |
|
5325 83 620 a Fs(Theor)n(em)j(4.1.)p 0 TeXcolorgray 41 w Fo(In)e(the)f(gr)l |
|
5326 (oupoid)f(enric)o(hed)h(adjunction)f Fq(S)6 b(Aut)28 |
|
5327 b Fn(a)f Fq(S)6 b(P)14 b(ol)r(y)s Fo(,)24 b(the)h(unit)1366 |
|
5328 840 y Fn(P)37 b(!)27 b Fq(S)6 b(P)14 b(ol)r(y)r(S)6 b(Aut)p |
|
5329 Fm(\()p Fn(P)i Fm(\))83 1060 y Fo(is)25 b(full)f(and)g(faithful)f(for)h |
|
5330 (any)h Fn(\003)p Fo(-polycate)l(gory)f Fn(P)8 b Fo(.)83 |
|
5331 1236 y Fr(When)29 b(does)f(a)h Fn(\003)p Fr(-polycate)o(gory)e |
|
5332 Fn(P)37 b Fr(arise)29 b(from)f(a)h Fn(\003)p Fr(-autonomous)d(cate)o |
|
5333 (gory)-6 b(,)28 b(that)g(is)g(when)g(is)g(it)83 1356 |
|
5334 y(in)d(the)f(essential)g(image)h(of)g Fq(S)6 b(P)14 b(ol)r(y)t |
|
5335 Fr(?)23 b(This)h(occurs)h(just)f(when)h(there)g(are)h(maps)305 |
|
5336 1612 y Fq(i)338 1627 y Fk(A;B)499 1612 y Fm(:)h Fq(A;)17 |
|
5337 b(B)33 b Fn(!)27 b Fq(A)c Fn(^)f Fq(B)39 b(i)1234 1627 |
|
5338 y Fl(>)1321 1612 y Fm(:)27 b Fn(\000)i(!)e(>)237 b Fq(i)1955 |
|
5339 1627 y Fk(C)q(;D)2117 1612 y Fm(:)28 b Fq(C)h Fn(_)23 |
|
5340 b Fq(D)30 b Fn(!)d Fq(C)r(;)17 b(D)35 b(i)2863 1627 y |
|
5341 Fl(?)2950 1612 y Fm(:)28 b Fn(?)g(!)g(\000)83 1843 y |
|
5342 Fr(composition)23 b(with)h(which)g(induces)h(isomorphisms)525 |
|
5343 2099 y Fn(P)8 b Fm(\()p Fq(A)22 b Fn(^)h Fq(B)5 b(;)17 |
|
5344 b Fm(\000;)g(\001\))1198 2072 y Fn(\030)1199 2103 y Fm(=)1304 |
|
5345 2099 y Fn(P)8 b Fm(\()p Fq(A;)17 b(B)5 b(;)17 b Fm(\000;)g(\001\))241 |
|
5346 b Fn(P)8 b Fm(\()p Fn(>)p Fq(;)17 b Fm(\000;)g(\001\))2613 |
|
5347 2072 y Fn(\030)2613 2103 y Fm(=)2718 2099 y Fn(P)8 b |
|
5348 Fm(\(\000;)17 b(\001\))g Fq(;)519 2280 y Fn(P)8 b Fm(\(\000;)17 |
|
5349 b(\001)p Fq(;)g(C)29 b Fn(_)23 b Fq(D)s Fm(\))1201 2252 |
|
5350 y Fn(\030)1202 2284 y Fm(=)1306 2280 y Fn(P)8 b Fm(\(\000;)17 |
|
5351 b(\001)p Fq(;)g(C)r(;)g(D)s Fm(\))249 b Fn(P)8 b Fm(\(\000;)17 |
|
5352 b(\001)g Fn(?)p Fm(\))2599 2252 y Fn(\030)2600 2284 y |
|
5353 Fm(=)2704 2280 y Fn(P)8 b Fm(\(\000;)17 b(\001\))g Fq(:)83 |
|
5354 2517 y Fr(In)34 b(particular)f(for)g(an)o(y)g Fm(\000)p |
|
5355 Fr(,)g Fm(\001)h Fr(we)g(ha)n(v)o(e)f(isomorphisms)d |
|
5356 Fn(C)6 b Fm(\(\000;)17 b(\001\))2498 2489 y Fn(\030)2498 |
|
5357 2521 y Fm(=)2618 2517 y Fn(C)6 b Fm(\()2714 2451 y Ff(V)2800 |
|
5358 2517 y Fm(\000;)2905 2451 y Ff(W)2991 2517 y Fm(\001\))33 |
|
5359 b Fr(where)h(we)83 2637 y(write)322 2571 y Ff(V)408 2637 |
|
5360 y Fm(\000)g Fr(and)681 2571 y Ff(W)767 2637 y Fm(\001)g |
|
5361 Fr(for)g(a)h(conjunction)d(and)i(disjunction)e(according)i(to)g(some)f |
|
5362 (brack)o(etings.)83 2758 y(In)i(these)g(circumstances)f(we)i(say)e |
|
5363 (that)h Fq(i)1577 2773 y Fk(A;B)1710 2758 y Fr(,)g Fq(i)1803 |
|
5364 2773 y Fl(>)1862 2758 y Fr(,)g Fq(i)1955 2773 y Fk(C)q(;D)2125 |
|
5365 2758 y Fr(and)g Fq(i)2337 2773 y Fl(?)2431 2758 y Fo(pr)l(o)o(vide)f(a) |
|
5366 h(r)l(epr)l(esentation)f(of)83 2878 y(polymaps)p Fr(,)24 |
|
5367 b(or)h(more)g(loosely)e(that)i Fn(^)p Fo(,)g Fn(>)p Fo(,)g |
|
5368 Fn(_)p Fo(,)g Fn(?)h Fo(r)l(epr)l(esent)f(polymaps)p |
|
5369 Fr(.)83 3175 y Fo(4.2)100 b(Repr)l(esentability)23 b(and)h |
|
5370 (functoriality)83 3471 y Fr(Consider)j(no)n(w)g(a)g Fn(\003)p |
|
5371 Fr(-polycate)o(gorical)f(model)h Fn(C)33 b Fr(for)28 |
|
5372 b(classical)e(proof:)h(it)g(comes)g(equipped)f(with)83 |
|
5373 3591 y(structure)805 3712 y Fq(i)838 3727 y Fk(A;B)999 |
|
5374 3712 y Fm(=)i Fq(i)1136 3727 y Fk(A)p Fl(^)p Fk(B)1313 |
|
5375 3712 y Fq(;)117 b(i)1490 3727 y Fl(>)1577 3712 y Fm(=)27 |
|
5376 b Fq(?)17 b(;)116 b(i)1922 3727 y Fk(C)q(;D)2084 3712 |
|
5377 y Fm(=)28 b Fq(i)2221 3727 y Fk(C)5 b Fl(_)p Fk(C)2399 |
|
5378 3712 y Fq(;)116 b(i)2575 3727 y Fl(?)2662 3712 y Fm(=)28 |
|
5379 b Fq(?)83 3862 y Fr(\(using)c(earlier)i(notation\))d(potentially)g(pro) |
|
5380 o(viding)g(a)i(representation)g(of)g(polymaps.)83 4037 |
|
5381 y(From)i(our)f(outline)g(of)h(the)f(reconstruction)g(of)h(the)f |
|
5382 Fn(\003)p Fr(-polycate)o(gory)-6 b(,)25 b(we)i(see)g(that)f(we)h(ha)n |
|
5383 (v)o(e)f(rep-)83 4157 y(resentability)e(just)g(when)g(the)h(canonical)g |
|
5384 (linear)f(idempotents)600 4378 y Fq(e)645 4393 y Fk(A)p |
|
5385 Fl(^)p Fk(B)834 4378 y Fm(=)p 937 4302 167 4 v 27 w Fq(i)970 |
|
5386 4393 y Fk(A;B)1120 4378 y Fq(;)117 b(e)1309 4393 y Fl(>)1396 |
|
5387 4378 y Fm(=)27 b(\()p Fq(i)1570 4393 y Fl(>)1629 4378 |
|
5388 y Fm(\))1667 4337 y Fw(+)1743 4378 y Fq(;)116 b(e)1931 |
|
5389 4393 y Fk(C)5 b Fl(_)p Fk(D)2125 4378 y Fm(=)p 2229 4302 |
|
5390 168 4 v 28 w Fq(i)2262 4393 y Fk(C)q(;D)2413 4378 y Fq(;)117 |
|
5391 b(e)2602 4393 y Fl(?)2689 4378 y Fm(=)27 b(\()p Fq(i)2863 |
|
5392 4393 y Fl(?)2922 4378 y Fm(\))2960 4337 y Fw(+)83 4598 |
|
5393 y Fr(are)f(in)e(f)o(act)h(identities.)e(By)i(duality)-6 |
|
5394 b(,)23 b(we)i(only)f(need)h(half)g(of)g(this)e(so)i(representability)e |
|
5395 (is)i(equi)n(v)n(a-)83 4719 y(lent)g(to)f(the)h(conditions)1047 |
|
5396 4939 y Fq(e)1092 4954 y Fl(>)1178 4939 y Fm(=)j(id)1363 |
|
5397 4954 y Fl(>)1522 4939 y Fr(and)99 b Fm(id)1847 4954 y |
|
5398 Fk(A)1926 4939 y Fn(^)22 b Fm(id)2096 4954 y Fk(B)2184 |
|
5399 4939 y Fm(=)28 b(id)2369 4954 y Fk(A)p Fl(^)p Fk(B)2546 |
|
5400 4939 y Fq(:)83 5159 y Fr(Ne)o(xt)c(note)h(that,)f(as)h |
|
5401 Fn(^)g Fr(is)g(guarded)g(domain)e(absorbing,)h(we)h(ha)n(v)o(e)779 |
|
5402 5380 y Fq(f)33 b Fn(^)23 b Fq(g)t Fm(;)17 b Fq(h)k Fn(^)i |
|
5403 Fq(k)s Fm(;)17 b(id)1389 5395 y Fk(E)1471 5380 y Fn(^)22 |
|
5404 b Fm(id)1640 5395 y Fk(F)1727 5380 y Fm(=)27 b(\()p Fq(f)11 |
|
5405 b Fm(;)17 b Fq(h)p Fm(\))22 b Fn(^)g Fm(\()p Fq(h)p Fm(;)17 |
|
5406 b Fq(k)s Fm(\);)g(id)2530 5395 y Fk(E)2612 5380 y Fn(^)22 |
|
5407 b Fm(id)2782 5395 y Fk(F)p 0 TeXcolorgray 1748 5712 a |
|
5408 Fr(21)p 0 TeXcolorgray eop end |
|
5409 %%Page: 22 22 |
|
5410 TeXDict begin 22 21 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5411 0 TeXcolorgray 83 83 a Fr(so)25 b(that)f Fm(id)452 98 |
|
5412 y Fk(E)534 83 y Fn(^)f Fm(id)704 98 y Fk(F)790 83 y Fm(=)28 |
|
5413 b(id)975 98 y Fk(E)t Fl(^)p Fk(F)1161 83 y Fr(gi)n(v)o(es)1215 |
|
5414 303 y Fq(f)k Fn(^)23 b Fq(g)t Fm(;)17 b Fq(h)k Fn(^)i |
|
5415 Fq(k)31 b Fm(=)c(\()p Fq(f)11 b Fm(;)17 b Fq(h)p Fm(\))22 |
|
5416 b Fn(^)g Fm(\()p Fq(h)p Fm(;)17 b Fq(k)s Fm(\))83 524 |
|
5417 y Fr(which)22 b(is)f(functoriality)g(of)g Fn(^)p Fr(.)i(One)f(should)e |
|
5418 (re)o(gard)i Fq(e)1965 539 y Fl(>)2052 524 y Fm(=)27 |
|
5419 b(id)2236 539 y Fl(>)2317 524 y Fr(as)22 b(functoriality)f(of)h |
|
5420 Fn(>)p Fr(.)g(Then)g(one)83 644 y(can)k(summarise)d(the)i(discussion)e |
|
5421 (in)h(the)h(follo)n(wing.)p 0 TeXcolorgray 83 820 a Fs(Theor)n(em)i |
|
5422 (4.2.)p 0 TeXcolorgray 41 w Fo(Let)e Fn(C)31 b Fo(be)25 |
|
5423 b(a)g(model)f(for)g(classical)g(pr)l(oof)o(.)f(Then)i(the)g(following)e |
|
5424 (ar)l(e)i(equivalent.)p 0 TeXcolorgray 123 995 a(\(1\))p |
|
5425 0 TeXcolorgray 50 w(The)h(identity)d(conditions)g Fm(id)1309 |
|
5426 1010 y Fk(A)1388 995 y Fn(^)f Fm(id)1558 1010 y Fk(B)1646 |
|
5427 995 y Fm(=)28 b(id)1831 1010 y Fk(A)p Fl(^)p Fk(B)2016 |
|
5428 995 y Fo(and)d Fq(e)2236 1010 y Fl(>)2323 995 y Fm(=)i(id)2507 |
|
5429 1010 y Fl(>)2567 995 y Fo(.)p 0 TeXcolorgray 123 1115 |
|
5430 a(\(2\))p 0 TeXcolorgray 50 w(Full)d(functoriality)f(of)h |
|
5431 Fn(^)p Fo(,)h(and)g Fn(>)p Fo(.)p 0 TeXcolorgray 123 |
|
5432 1236 a(\(3\))p 0 TeXcolorgray 50 w(Repr)l(esentability)f(of)g(polymaps) |
|
5433 g(by)h Fn(^)p Fo(,)g Fn(>)g Fo(and)g Fn(_)p Fo(,)g Fn(?)p |
|
5434 Fo(.)83 1411 y Fr(This)39 b(mak)o(es)g(clear)g(the)g(o)o(v)o(ersight)e |
|
5435 (in)i([11].)g(There)h(linear)f(maps)f(were)i(assumed)f(to)f(form)h(a)83 |
|
5436 1531 y Fn(\003)p Fr(-autonomous)29 b(cate)o(gory;)h(b)n(ut)g(that)h(gi) |
|
5437 n(v)o(es)e Fm(id)1739 1546 y Fk(A)1823 1531 y Fn(^)e |
|
5438 Fm(id)1997 1546 y Fk(B)2096 1531 y Fm(=)39 b(id)2292 |
|
5439 1546 y Fk(A)p Fl(^)p Fk(B)2483 1531 y Fr(and)31 b(so)f(functoriality)g |
|
5440 (of)h(the)83 1652 y(logical)21 b(operators.)f(Note)h(also)g(that)f(the) |
|
5441 h(condition)e Fq(f)g Fn(^)8 b Fq(g)t Fm(;)17 b Fq(h)8 |
|
5442 b Fn(^)g Fq(k)30 b Fm(=)e(\()p Fq(f)11 b Fm(;)17 b Fq(h)p |
|
5443 Fm(\))8 b Fn(^)g Fm(\()p Fq(h)p Fm(;)17 b Fq(k)s Fm(\))j |
|
5444 Fr(follo)n(ws)g(from)83 1772 y(that)g(naturality)e(of)i(the)g |
|
5445 Fn(^)p Fr(-R)h(rule)f(which)f(we)h(did)f(not)g(adopt.)g(Ho)n(we)n(v)o |
|
5446 (er)g(that)g(condition)f(is)i(weak)o(er)83 1892 y(than)k(full)f |
|
5447 (functoriality)-6 b(.)22 b(It)h(is)h(easy)g(to)f(\002nd)h(models)f(in)g |
|
5448 (which)g(it)g(holds)g(b)n(ut)g Fm(id)2862 1907 y Fk(A)2937 |
|
5449 1892 y Fn(^)18 b Fm(id)3103 1907 y Fk(B)3191 1892 y Fm(=)28 |
|
5450 b(id)3376 1907 y Fk(A)p Fl(^)p Fk(B)83 2013 y Fr(f)o(ails.)83 |
|
5451 2309 y Fo(4.3)100 b(Why)24 b(functoriality)f(should)h(fail)83 |
|
5452 2605 y Fr(As)h(we)g(shall)f(see)h(the)f(assumption)f(of)i |
|
5453 (representability)e(pro)o(vides)g(a)i(substantial)e(simpli\002cation)83 |
|
5454 2726 y(of)i(the)g(notion)e(of)i(cate)o(gorical)g(model.)f(So)h(it)f(is) |
|
5455 g(time)h(to)f(e)o(xplain)g(why)g(we)h(do)f(not)g(adopt)h(it.)83 |
|
5456 2901 y(First)g(we)g(ar)n(gue)g(against)f(the)h(tempting)e(naturality)h |
|
5457 (of)h Fn(^)p Fr(-R)1184 3121 y Fn(f)p Fq(u;)17 b(v)t |
|
5458 Fn(g)p Fm(;)g(\()p Fq(f)31 b Fn(\001)22 b Fq(g)t Fm(\))27 |
|
5459 b(=)h(\()p Fq(u)p Fm(;)17 b Fq(f)11 b Fm(\))20 b Fn(\001)i |
|
5460 Fm(\()p Fq(v)t Fm(;)17 b Fq(g)t Fm(\))g Fq(:)83 3334 |
|
5461 y Fr(Consider)29 b(\002rst)g Fn(f)p Fq(m;)17 b Fm(id)916 |
|
5462 3349 y Fk(B)977 3334 y Fn(g)p Fm(;)g(\(id)1190 3349 y |
|
5463 Fk(A)1247 3334 y Fq(;)g Fm(id)1372 3349 y Fk(B)1432 3334 |
|
5464 y Fm(\))p Fr(.)29 b(Composing)f(with)g Fm(id)2300 3349 |
|
5465 y Fk(B)2390 3334 y Fr(does)g(nothing)g(so)g(this)g(is)h(equal)83 |
|
5466 3447 y(to)c Fq(m)p Fm(;)17 b(\(id)434 3462 y Fk(A)491 |
|
5467 3447 y Fq(;)g Fm(id)616 3462 y Fk(B)677 3447 y Fm(\))p |
|
5468 Fr(,)24 b(which)h(is)f(represented)h(by)g(the)f(proof)1183 |
|
5469 3635 y Fj(A)i Fh(`)f Fj(A)91 b(A)25 b Fh(`)g Fj(A)p 1183 |
|
5470 3655 576 4 v 1211 3735 a(A)20 b Fh(_)g Fj(A)26 b Fh(`)f |
|
5471 Fj(A;)15 b(A)p 1211 3773 521 4 v 1265 3852 a(A)21 b Fh(_)f |
|
5472 Fj(A)25 b Fh(`)g Fj(A)1850 3753 y(A)g Fh(`)g Fj(A)91 |
|
5473 b(B)30 b Fh(`)25 b Fj(B)p 1850 3773 587 4 v 1878 3852 |
|
5474 a(A;)15 b(B)30 b Fh(`)25 b Fj(A)20 b Fh(^)g Fj(B)p 1265 |
|
5475 3890 1144 4 v 1487 3970 a(A)g Fh(_)g Fj(A;)15 b(B)31 |
|
5476 b Fh(`)24 b Fj(A)d Fh(^)f Fj(B)1247 b Ft(\(1\))83 4175 |
|
5477 y Fr(There)26 b(are)f(tw)o(o)f(distinct)g(w)o(ays)g(to)h(eliminate)f |
|
5478 (the)g(Cut.)h(One)g(results)f(in)g(the)h(normal)f(form)1350 |
|
5479 4359 y Fj(A)h Fh(`)g Fj(A)91 b(A)26 b Fh(`)f Fj(A)p 1350 |
|
5480 4379 576 4 v 1378 4459 a(A)20 b Fh(_)g Fj(A)25 b Fh(`)g |
|
5481 Fj(A;)15 b(A)p 1378 4497 521 4 v 1432 4576 a(A)20 b Fh(_)g |
|
5482 Fj(A)26 b Fh(`)f Fj(A)173 b(B)29 b Fh(`)c Fj(B)p 1432 |
|
5483 4596 838 4 v 1501 4676 a(A)20 b Fh(_)g Fj(A;)15 b(B)30 |
|
5484 b Fh(`)25 b Fj(A)c Fh(^)e Fj(B)1234 b Ft(\(2\))83 4881 |
|
5485 y Fr(and)25 b(the)g(other)f(in)h(the)f(normal)h(form)1178 |
|
5486 5045 y Fj(A)g Fh(`)g Fj(A)91 b(B)30 b Fh(`)25 b Fj(B)p |
|
5487 1178 5065 587 4 v 1206 5145 a(A;)15 b(B)30 b Fh(`)25 |
|
5488 b Fj(A)20 b Fh(^)g Fj(B)1855 5045 y(A)26 b Fh(`)f Fj(A)91 |
|
5489 b(B)29 b Fh(`)c Fj(B)p 1855 5065 V 1883 5145 a(A;)15 |
|
5490 b(B)30 b Fh(`)25 b Fj(A)c Fh(^)e Fj(B)p 1206 5183 1209 |
|
5491 4 v 1261 5262 a(A)i Fh(_)f Fj(A;)15 b(B)5 b(;)15 b(B)30 |
|
5492 b Fh(`)25 b Fj(A)20 b Fh(^)g Fj(B)5 b(;)15 b(A)20 b Fh(^)g |
|
5493 Fj(B)p 1261 5300 1098 4 v 1460 5380 a(A)g Fh(_)g Fj(A;)15 |
|
5494 b(B)30 b Fh(`)25 b Fj(A)c Fh(^)e Fj(B)1275 b Ft(\(3\))p |
|
5495 0 TeXcolorgray 1748 5712 a Fr(22)p 0 TeXcolorgray eop |
|
5496 end |
|
5497 %%Page: 23 23 |
|
5498 TeXDict begin 23 22 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5499 0 TeXcolorgray 83 83 a Fr(No)n(w)22 b(consider)g Fm(\()p |
|
5500 Fq(m)p Fm(;)17 b(id)905 98 y Fk(A)962 83 y Fm(\))12 b |
|
5501 Fn(\001)g Fm(\(id)1171 98 y Fk(B)1232 83 y Fm(;)17 b(id)1357 |
|
5502 98 y Fk(B)1417 83 y Fm(\))p Fr(.)22 b(This)g(is)f(clearly)i(equal)f(to) |
|
5503 f Fq(m)12 b Fn(\001)g Fm(id)2640 98 y Fk(B)2723 83 y |
|
5504 Fr(which)22 b(is)f(represented)83 203 y(by)i(the)f(\002rst)g(of)h(the)f |
|
5505 (abo)o(v)o(e)g(tw)o(o)g(normal)g(forms.)f(There)i(is)f(no)h(w)o(ay)f |
|
5506 (to)g(get)g(at)h(the)f(second)g(\(though)83 324 y(that)i(is)f(the)h |
|
5507 (normal)f(form)h(in)g(which)f Fq(m)i Fr(has)e(done)h(its)f(intended)g |
|
5508 (job)h(of)g(cop)o(ying\).)f(No)n(w)g(we)h(tak)o(e)83 |
|
5509 444 y(the)k(vie)n(w)e(that)h(f)o(ailure)h(to)f(ha)n(v)o(e)g(the)g(same) |
|
5510 h(normal)e(forms)h(\(e)n(v)o(en)g(modulo)f(ob)o(vious)g(re)n |
|
5511 (writings\))83 565 y(is)f(a)g(clear)g(sign)f(of)h(non-identity)-6 |
|
5512 b(.)23 b(W)-8 b(e)25 b(conclude)f(that)h(the)f(naturality)g(equation) |
|
5513 914 786 y Fn(f)p Fq(m;)17 b Fm(id)1174 801 y Fk(B)1235 |
|
5514 786 y Fn(g)p Fm(;)g(\(id)1447 801 y Fk(A)1526 786 y Fn(\001)22 |
|
5515 b Fm(id)1658 801 y Fk(B)1718 786 y Fm(\))28 b(=)f(\()p |
|
5516 Fq(m)p Fm(;)17 b(id)2136 801 y Fk(A)2193 786 y Fm(\))22 |
|
5517 b Fn(\001)g Fm(\(id)2422 801 y Fk(B)2482 786 y Fm(;)17 |
|
5518 b(id)2607 801 y Fk(B)2668 786 y Fm(\))83 1008 y Fr(is)25 |
|
5519 b(not)f(f)o(aithful)g(to)h(the)f(notion)g(of)h(proof)f(encapsulated)h |
|
5520 (in)f(the)h(sequent)f(calculus.)83 1184 y(W)-8 b(e)26 |
|
5521 b(e)o(xplain)e(the)i(signi\002cance)f(of)h(this)e(for)i(the)f |
|
5522 (functoriality)f(of)h Fn(^)p Fr(.)h(Consider)g Fm(id)2982 |
|
5523 1199 y Fk(A)3061 1184 y Fn(^)d Fm(id)3232 1199 y Fk(B)3292 |
|
5524 1184 y Fr(.)j(Note)83 1304 y(that)271 1526 y Fm(\()p |
|
5525 Fq(m)d Fn(^)f Fm(id)586 1541 y Fk(B)647 1526 y Fm(\);)17 |
|
5526 b(\(id)848 1541 y Fk(A)927 1526 y Fn(^)23 b Fm(id)1097 |
|
5527 1541 y Fk(B)1158 1526 y Fm(\))k(=)p 1327 1441 843 4 v |
|
5528 28 w Fn(f)p Fq(m;)17 b Fm(id)1587 1541 y Fk(B)1647 1526 |
|
5529 y Fn(g)p Fm(;)g(\(id)1860 1541 y Fk(A)1939 1526 y Fn(\001)22 |
|
5530 b Fm(id)2070 1541 y Fk(B)2131 1526 y Fm(\))100 b(and)f |
|
5531 Fq(m)23 b Fn(^)f Fm(id)2803 1541 y Fk(B)2891 1526 y Fm(=)p |
|
5532 2995 1447 300 4 v 28 w Fq(m)g Fn(\001)g Fm(id)3233 1541 |
|
5533 y Fk(B)3322 1526 y Fq(:)83 1748 y Fr(No)n(w)i(we)i(just)d(ar)n(gued)j |
|
5534 (that)e(we)h(should)f(not)g(ha)n(v)o(e)1146 1970 y Fn(f)p |
|
5535 Fq(m;)17 b Fm(id)1406 1985 y Fk(B)1467 1970 y Fn(g)p |
|
5536 Fm(;)g(\(id)1680 1985 y Fk(A)1759 1970 y Fn(\001)22 b |
|
5537 Fm(id)1890 1985 y Fk(B)1951 1970 y Fm(\))27 b(=)h Fq(m)22 |
|
5538 b Fn(\001)g Fm(id)2358 1985 y Fk(B)2447 1970 y Fq(:)83 |
|
5539 2191 y Fr(But)j(as)g Fq(i)393 2206 y Fk(A)p Fl(^)p Fk(B)554 |
|
5540 2191 y Fm(;)p 598 2112 57 4 v 17 w Fq(h)i Fm(=)h Fq(h)p |
|
5541 Fr(,)d(the)g(operation)p 1439 2107 104 4 v 24 w Fm(\()i(\))e |
|
5542 Fr(is)g(injecti)n(v)o(e.)e(So)i(we)g(cannot)f(ha)n(v)o(e)h(the)f |
|
5543 (equation)1086 2413 y Fm(\()p Fq(m)e Fn(^)h Fm(id)1401 |
|
5544 2428 y Fk(B)1462 2413 y Fm(\);)17 b(\(id)1662 2428 y |
|
5545 Fk(A)1742 2413 y Fn(^)22 b Fm(id)1911 2428 y Fk(B)1972 |
|
5546 2413 y Fm(\))28 b(=)f Fq(m)c Fn(^)f Fm(id)2419 2428 y |
|
5547 Fk(B)2507 2413 y Fq(:)83 2635 y Fr(The)32 b(general)g(point)e(seems)h |
|
5548 (to)g(be)h(this.)e(If)i(we)g(cut)f(a)h(classical)f(proof)g(e)n(v)o(en)g |
|
5549 (with)g(such)g(simple)83 2755 y(proofs)j(as)h(gi)n(v)o(en)e(by)h(our)h |
|
5550 (canonical)f(linear)g(idempotents,)f(then)h(we)h(can,)g(in)f(general,)g |
|
5551 (obtain)83 2876 y(additional)24 b(normal)g(forms)g(that)h(were)g(not)f |
|
5552 (a)n(v)n(ailable)g(from)h(the)g(classical)f(proof)h(on)f(its)g(o)n(wn.) |
|
5553 83 3176 y Fo(4.4)100 b(F)377 3177 y(\250)369 3176 y(uhrmann-Pym)23 |
|
5554 b(Axioms)83 3472 y Fr(W)-8 b(e)31 b(observ)o(ed)f(already)g(that)g(a)h |
|
5555 Fn(\003)p Fr(-polycate)o(gory)e(in)h(which)g(the)g(polymaps)f(are)i |
|
5556 (represented)g(by)83 3592 y Fn(^)c Fr(and)f Fn(_)h Fr(is)e(in)h(ef)n |
|
5557 (fect)g(a)h Fn(\003)p Fr(-autonomous)d(cate)o(gory)-6 |
|
5558 b(.)25 b(If)i(one)f(has)g(a)g(model)f(for)i(classical)e(proof)h(of)83 |
|
5559 3713 y(this)e(kind)g(the)h(structure)f(simpli\002es)g(drastically)-6 |
|
5560 b(.)p 0 TeXcolorgray 83 3889 a Fs(Theor)n(em)36 b(4.3.)p |
|
5561 0 TeXcolorgray 46 w Fo(T)-9 b(o)34 b(give)g(a)f(model)h(of)f(classical) |
|
5562 g(pr)l(oof)f(in)h(whic)o(h)h Fn(^)p Fo(,)g Fn(>)h Fo(and)e |
|
5563 Fn(_)p Fo(,)h Fn(?)g Fo(r)l(epr)l(esent)83 4009 y(polymaps)24 |
|
5564 b(is)g(to)h(give)g(the)f(following)g(data.)p 0 TeXcolorgray |
|
5565 83 4185 a Fn(\017)p 0 TeXcolorgray 50 w Fo(A)h Fn(\003)p |
|
5566 Fo(-autonomous)e(cate)l(gory)h Fa(C)51 b Fo(\(with)25 |
|
5567 b(a)g(strict)e(duality\):)h(tensor)g(is)h Fn(^)g Fo(and)f(par)h |
|
5568 Fn(_)p Fo(.)p 0 TeXcolorgray 83 4306 a Fn(\017)p 0 TeXcolorgray |
|
5569 50 w Fo(The)33 b(equipment)e(on)h(eac)o(h)g(object)g |
|
5570 Fq(A)g Fo(of)g Fa(C)58 b Fo(of)32 b(the)g(structur)l(e)f(of)h(a)g |
|
5571 (commutative)f(comonoid)183 4426 y(with)36 b(r)l(espect)f(to)h(tensor)f |
|
5572 (\(and)g(so)h(dually)f(the)g(structur)l(e)g(of)g(a)h(commutative)f |
|
5573 (monoid)g(with)183 4546 y(r)l(espect)25 b(to)f(par\).)83 |
|
5574 4722 y Fr(This)h(is)g(the)g(equality)g(component)f(of)h(the)g |
|
5575 (structure)h(proposed)e(in)h(F)8 b(\250)-41 b(uhrmann)25 |
|
5576 b(and)h(Pym)f([6].)g(\(It)83 4843 y(is)32 b(not)g(the)g(only)g(simple)f |
|
5577 (possibility)-6 b(.)29 b(W)-8 b(e)32 b(ha)n(v)o(e)g(recently)h(seen)f |
|
5578 (w)o(ork)g([14])g(of)h(Lamarche)g(and)83 4963 y(Strassb)n(ur)n(ger)26 |
|
5579 b(which)e(leads)h(to)f(an)h(e)n(v)o(en)f(more)h(restricti)n(v)o(e)e |
|
5580 (notion.\))83 5139 y(There)k(are)h(a)f(number)f(of)h(further)g |
|
5581 (connections)e(between)i(the)f(F)8 b(\250)-41 b(uhrmann-Pym)27 |
|
5582 b(notion)e(and)i(the)83 5259 y(one)22 b(described)g(in)g(this)f(paper) |
|
5583 -5 b(.)22 b(One)g(simple)e(thought)h(is)g(as)i(follo)n(ws.)d(Suppose)i |
|
5584 (that)f Fn(C)28 b Fr(is)22 b(a)g(model)83 5380 y(for)f(classical)f |
|
5585 (logic)g(in)g(the)g(general)h(sense,)f(freely)h(generated)f(by)h(some)e |
|
5586 (cate)o(gory)h(of)h(objects)f(and)p 0 TeXcolorgray 1748 |
|
5587 5712 a(23)p 0 TeXcolorgray eop end |
|
5588 %%Page: 24 24 |
|
5589 TeXDict begin 24 23 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5590 0 TeXcolorgray 83 83 a Fr(maps.)24 b(\(This)f(mak)o(es)h(sense)g(by)g |
|
5591 (K)n(elly-Po)n(wer)g([13].\))g(W)-8 b(e)24 b(can)h(inducti)n(v)o(ely)d |
|
5592 (de\002ne)i(idempotents)83 203 y Fq(e)128 218 y Fk(A)209 |
|
5593 203 y Fr(on)f(objects)f Fq(A)i Fr(of)f Fn(C)6 b Fr(:)23 |
|
5594 b(we)h(set)e Fq(e)1267 218 y Fk(A)1352 203 y Fm(=)28 |
|
5595 b(id)1537 218 y Fk(A)1617 203 y Fr(for)c(atomic)e(objects)h(\(which)g |
|
5596 (includes)f(the)h(duals)g Fq(A)3464 167 y Fl(\003)3503 |
|
5597 203 y Fr(\))83 324 y(and)g(then)g(set)g Fq(e)624 339 |
|
5598 y Fk(A)p Fl(^)p Fk(B)812 324 y Fm(=)28 b Fq(e)961 339 |
|
5599 y Fk(A)1034 324 y Fn(^)16 b Fq(e)1161 339 y Fk(B)1245 |
|
5600 324 y Fr(and)23 b Fq(e)1457 339 y Fk(A)p Fl(_)p Fk(B)1646 |
|
5601 324 y Fm(=)k Fq(e)1794 339 y Fk(A)1867 324 y Fn(_)16 |
|
5602 b Fq(e)1994 339 y Fk(B)2055 324 y Fr(.)23 b(\(Implicitly)f(we)h(ha)n(v) |
|
5603 o(e)g(tak)o(en)g Fq(e)3183 339 y Fl(>)3265 324 y Fr(and)g |
|
5604 Fq(e)3477 339 y Fl(?)83 444 y Fr(as)i(we)g(found)g(them.\))f(Then)h(we) |
|
5605 g(can)g(de\002ne)g(a)g(quotient)2113 419 y Fm(^)2095 |
|
5606 444 y Fn(C)31 b Fr(of)25 b Fn(C)31 b Fr(with)963 632 |
|
5607 y Fm(^)944 657 y Fn(C)6 b Fm(\()p Fq(A;)17 b(B)5 b Fm(\))28 |
|
5608 b(=)g Fn(f)p Fq(f)38 b Fn(2)28 b(C)6 b Fm(\()p Fq(A;)17 |
|
5609 b(B)5 b Fm(\))17 b Fn(j)g Fq(e)2073 672 y Fk(A)2129 657 |
|
5610 y Fm(;)g Fq(f)11 b Fm(;)17 b Fq(e)2321 672 y Fk(B)2409 |
|
5611 657 y Fm(=)27 b Fq(f)11 b Fn(g)27 b Fq(:)83 870 y Fr(The)e(quotient)f |
|
5612 (functor)g(is)h(gi)n(v)o(en)e(by)992 1083 y Fn(C)6 b |
|
5613 Fm(\()p Fq(A;)17 b(B)5 b Fm(\))27 b Fn(\000)-16 b(!)1556 |
|
5614 1057 y Fm(^)1538 1083 y Fn(C)6 b Fm(\()p Fq(A;)17 b(B)5 |
|
5615 b Fm(\))55 b(:)g Fq(f)39 b Fn(!)27 b Fq(e)2264 1098 y |
|
5616 Fk(A)2321 1083 y Fm(;)17 b Fq(f)11 b Fm(;)17 b Fq(e)2513 |
|
5617 1098 y Fk(B)2601 1083 y Fq(:)83 1296 y Fr(No)n(w)22 b(it)f(is)h(easy)g |
|
5618 (to)f(see)i(that)1101 1270 y Fm(^)1082 1296 y Fn(C)29 |
|
5619 b Fr(has)21 b(on)h(the)g(nose)g(the)g(structure)f(which)h |
|
5620 Fn(C)28 b Fr(has)22 b(up)g(to)f(idempotents.)p 0 TeXcolorgray |
|
5621 83 1471 a Fs(Theor)n(em)26 b(4.4.)p 0 TeXcolorgray 40 |
|
5622 w Fo(If)f Fn(C)30 b Fo(is)24 b(a)g(model)g(for)g(classical)f(pr)l(oof)f |
|
5623 (fr)l(eely)j(g)o(ener)o(ated)e(by)i(a)f(cate)l(gory)-5 |
|
5624 b(,)23 b(then)3497 1445 y Fm(^)3478 1471 y Fn(C)83 1591 |
|
5625 y Fo(is)i(a)f(model)h(in)f(the)h(F)836 1592 y(\250)828 |
|
5626 1591 y(uhrmann-Pym)f(sense)o(.)83 1881 y(4.5)100 b(Semantic)24 |
|
5627 b(possibilities)83 2177 y Fr(W)-8 b(e)28 b(hope)f(to)g(write)g(more)g |
|
5628 (fully)f(about)h(models)f(in)h(further)g(papers,)h(so)e(for)i(no)n(w)e |
|
5629 (we)i(surv)o(e)o(y)e(the)83 2297 y(possibilities.)c(W)-8 |
|
5630 b(e)26 b(distinguish)c(between)j(the)f(follo)n(wing.)p |
|
5631 0 TeXcolorgray 83 2472 a Fn(\017)p 0 TeXcolorgray 50 |
|
5632 w Fr(De)o(generate)33 b(models:)e(that)h(is)g(cate)o(gorical)g(models)f |
|
5633 (based)i(on)f(compact)g(closed)g(cate)o(gories)183 2593 |
|
5634 y(\(and)d(so)f(ignoring)g(the)h(dif)n(ference)g(between)g |
|
5635 Fn(^)g Fr(and)g Fn(_)p Fr(\).)g(W)-8 b(e)30 b(think)d(of)i(these)g(as)g |
|
5636 (abstract)g(in-)183 2713 y(terpretations,)24 b(allo)n(wing)f(one)i(in)f |
|
5637 (particular)h(to)f(associate)h(a)g(v)n(ariety)f(of)h(in)l(v)n(ariants)f |
|
5638 (to)g(proofs.)183 2833 y(Preliminary)g(observ)n(ations)f(are)j(in)e |
|
5639 ([12],)h([7].)p 0 TeXcolorgray 83 2954 a Fn(\017)p 0 |
|
5640 TeXcolorgray 50 w Fr(Cate)o(gorical)37 b(models:)e(that)i(is)f(models)g |
|
5641 (satisfying)f(the)i(F)8 b(\250)-41 b(uhrmann-Pym)37 b(equality)f |
|
5642 (axioms)183 3074 y([6].)29 b(W)-8 b(e)29 b(kno)n(w)f(some)h(e)o |
|
5643 (xamples)e(of)i(these,)g(and)g(ha)n(v)o(e)f(a)i(little)d(theory)-6 |
|
5644 b(,)28 b(b)n(ut)h(there)g(is)f(more)h(to)183 3195 y(do.)p |
|
5645 0 TeXcolorgray 83 3315 a Fn(\017)p 0 TeXcolorgray 50 |
|
5646 w Fr(General)c(models:)d(that)i(is,)g(models)f(which)h(are)g(equi)n(v)n |
|
5647 (alent)f(to)h(polycate)o(gories)e(which)i(do)g(not)183 |
|
5648 3435 y(arise)h(from)g Fn(\003)p Fr(-autonomous)e(cate)o(gories.)h(W)-8 |
|
5649 b(e)25 b(kno)n(w)f(almost)f(nothing)h(about)g(these.)83 |
|
5650 3786 y Fs(5)100 b(Pr)n(o)o(visional)24 b(Conclusions)83 |
|
5651 4081 y Fo(5.1)100 b(Guiding)23 b(Principles)83 4377 y |
|
5652 Fr(The)g(notion)e(of)h(model)f(for)i(classical)f(proof)g(theory)g |
|
5653 (which)g(we)g(ha)n(v)o(e)g(de)n(v)o(eloped)f(has)h(unf)o(amiliar)83 |
|
5654 4497 y(features.)35 b(Hence)g(it)e(seems)h(w)o(orth)g(re\003ecting)g |
|
5655 (on)g(the)g(principles)f(which)h(ha)n(v)o(e)g(informed)g(our)83 |
|
5656 4618 y(analysis.)83 4758 y Fs(Reduction)40 b(principle)f(f)n(or)f |
|
5657 (logical)g(cuts)p Fr(.)g(F)o(or)h(us)f(this)f(is)h(the)g(remnant)g(of)g |
|
5658 (the)g(Martin-L)8 b(\250)-41 b(of)83 4878 y(criterion)30 |
|
5659 b(\(see)h(Pra)o(witz)f([18]\))g(for)g(identity)f(of)h(proofs.)f(At)h |
|
5660 (least)g(some)f(part)h(of)g(normalisation)83 4999 y(preserv)o(es)h |
|
5661 (meaning:)f(we)h(ask)g(that)f(simple)g(detours)g(should)g(not)g(matter) |
|
5662 -5 b(.)30 b(This)g(is)g(an)h(essential)83 5119 y(component)37 |
|
5663 b(of)i(our)f(analysis,)f(without)g(which)h(we)g(w)o(ould)g(not)g(ha)n |
|
5664 (v)o(e)g(interesting)f(equalities)83 5240 y(between)25 |
|
5665 b(\(representations)f(of\))i(proofs.)83 5380 y Fs(Structural)34 |
|
5666 b(congruence)p Fr(.)g(This)d(an)h(idea)g(tak)o(en)g(from)f(concurrenc)o |
|
5667 (y)h(theory)-6 b(.)31 b(W)-8 b(e)32 b(follo)n(w)f(that)p |
|
5668 0 TeXcolorgray 1748 5712 a(24)p 0 TeXcolorgray eop end |
|
5669 %%Page: 25 25 |
|
5670 TeXDict begin 25 24 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5671 0 TeXcolorgray 83 83 a Fr(culture)24 b(in)f(taking)g(the)h(structural)f |
|
5672 (rules)h(of)g(W)-8 b(eak)o(ening)24 b(and)f(Contraction)h(to)f(beha)n |
|
5673 (v)o(e)h(well)f(with)83 203 y(respect)35 b(to)f(themselv)o(es:)f(so)h |
|
5674 (we)h(end)g(up)f(with)g(commutati)n(v)o(e)e(comonoid)h(structure)h(for) |
|
5675 h Fn(>)p Fr(,)g Fn(^)83 324 y Fr(and)h(commutati)n(v)o(e)d(monoid)h |
|
5676 (structure)h(for)g Fn(?)p Fr(,)h Fn(_)p Fr(.)g(Ho)n(we)n(v)o(er)e(not)h |
|
5677 (a)h(great)g(deal)f(rides)g(on)g(this)83 444 y(choice.)24 |
|
5678 b(W)-8 b(e)25 b(note)e(that)h(the)g(optical)f(graphs)h(of)g(Carbone)g |
|
5679 ([3])h(pro)o(vide)d(free)j(models)e(for)h(a)h(notion)83 |
|
5680 565 y(of)g(abstract)g(interpretation)f(in)g(which)g(this)g(choice)h(is) |
|
5681 g(not)f(made.)83 705 y Fs(Computation)e(of)f(v)o(alues)p |
|
5682 Fr(.)g(W)-8 b(e)22 b(tak)o(e)f(something)f(from)g(ideas)h(of)h |
|
5683 (non-determinism:)c(a)k(classical)83 825 y(proof)e(has)g(a)g |
|
5684 (non-deterministic)e(choice)i(as)g(to)f(the)h(normal)f(forms)h(to)f |
|
5685 (which)h(it)f(reduces.)h(W)-8 b(e)20 b(tak)o(e)83 946 |
|
5686 y(account)f(of)g(all)g(plausible)f(commuting)f(con)l(v)o(ersions)h(and) |
|
5687 h(the)g(lik)o(e,)f(with)g(a)i(vie)n(w)e(to)h(ha)n(ving)f(some)83 |
|
5688 1066 y(good)30 b(representation)g(of)h(proofs.)f(F)o(or)g(these)g(we)h |
|
5689 (hope)f(that)g(it)g(is)g(plausible)f(that)h(if)h(proofs)f(are)83 |
|
5690 1186 y(equal)21 b(then)e(the)o(y)h(should)f(ha)n(v)o(e)h(the)g(same)g |
|
5691 (normal)g(forms.)f(Where)i(we)g(ha)n(v)o(e)f(e)n(vidence)g(of)g |
|
5692 (distinct)83 1307 y(normal)30 b(forms)f(we)i(ha)n(v)o(e)e(tak)o(en)h |
|
5693 (it)g(to)g(be)g(e)n(vidence)g(that)f(the)h(proofs)g(are)h(distinct.)d |
|
5694 (Though)h(we)83 1427 y(need)c(to)e(say)h(more)g(about)g(equality)f(to)g |
|
5695 (mak)o(e)h(the)g(claim)g(precise,)g(we)g(belie)n(v)o(e)f(that)g(our)h |
|
5696 (analysis)83 1548 y(is)h(consistent)e(with)h(this)g(principle)g(in)h |
|
5697 (the)f(follo)n(wing)f(sense.)p 0 TeXcolorgray 83 1755 |
|
5698 a Fs(Pr)n(oposition)37 b(5.1.)p 0 TeXcolorgray 48 w Fo(If)g(two)g(pr)l |
|
5699 (oofs)e(ar)l(e)j(equal)e(then)h(the)m(y)g(r)l(educe)g(to)g(the)g(same)g |
|
5700 (collection)p 3029 1769 393 4 v 36 w(of)83 1875 y(normal)24 |
|
5701 b(forms.)83 2344 y(5.2)100 b(Further)23 b(issues)83 2672 |
|
5702 y Fs(Normal)k(f)n(orms)g(and)h(meaning)p Fr(.)g(W)-8 |
|
5703 b(e)27 b(consider)g(the)g(question)f(whether)i(our)f(general)g |
|
5704 (principle)83 2792 y(in)k(the)g(last)g(proposition)e(should)h(be)i(an)f |
|
5705 (equi)n(v)n(alence:)f(does)h(ha)n(ving)f(the)h(same)g(set)g(\(or)h |
|
5706 (maybe)83 2912 y(multiset\))h(of)h(normal)g(forms)f(entail)h(equality)f |
|
5707 (of)h(proofs?)g(At)g(the)g(moment)f(we)i(w)o(ould)e(ar)n(gue)83 |
|
5708 3033 y(against)24 b(that.)83 3173 y Fs(MIX)p Fr(.)39 |
|
5709 b(There)g(is)f(something)f(right)g(about)h(the)h(idea)f(that)h(proofs)f |
|
5710 (in)g(classical)g(logic)g(in)l(v)n(olv)o(e)83 3293 y(some)e(kind)f(of)h |
|
5711 (non-determinism:)e(the)i(computation)e(or)i(reduction)g(process)g(is)g |
|
5712 (in)f(principle)83 3414 y(non-deterministic.)h(But)j(we)f(do)g(not)f |
|
5713 (for)i(e)o(xample)e(ha)n(v)o(e)h(primiti)n(v)o(es)d(for)k |
|
5714 (non-deterministic)83 3534 y(choice.)c(In)g(particular)f(in)g(vie)n(w)g |
|
5715 (of)h([1])g(we)g(should)e(in)l(v)o(estigate)f(an)j(approach)g(to)f(the) |
|
5716 h(idea)f(of)83 3655 y(non-deterministic)23 b(choice)i(in)f(proofs)h |
|
5717 (using)f(the)g(MIX)h(rule.)83 3795 y Fs(Idempotents)p |
|
5718 Fr(.)31 b(While)f(it)f(is)g(not)g(clear)h(whether)g(our)f(formulation)g |
|
5719 (of)g(semantics)g(for)h(classical)83 3915 y(proof)h(is)f(rob)n(ust,)f |
|
5720 (its)h(use)g(of)g(canonical)g(idempotents)f(w)o(ould)g(bear)i(further)g |
|
5721 (in)l(v)o(estigation.)c(W)-8 b(e)83 4036 y(ha)n(v)o(e)23 |
|
5722 b(not)g(space)g(to)g(describe)g(here)h(the)e(consequence)i(of)f |
|
5723 (splitting)e(idempotents)g(in)i(a)g(model)f(for)83 4156 |
|
5724 y(classical)j(proof)f(in)h(our)g(sense.)83 4296 y Fs(Linearity)p |
|
5725 Fr(.)40 b(In)g(this)f(paper)g(we)h(ha)n(v)o(e)f(used)h(a)f(notion)g(of) |
|
5726 g(linearity)g(which)g(has)g(mitigated)f(to)83 4417 y(some)30 |
|
5727 b(e)o(xtent)f(the)h(general)h(f)o(ailure)f(of)g(functoriality)f(of)h |
|
5728 (the)g(logical)f(operations.)h(W)-8 b(e)30 b(ha)n(v)o(e)g(not)83 |
|
5729 4537 y(troubled)e(with)f(natural)h(re\002nements)g(\(linearity)g(in)g |
|
5730 (the)g(domain)f(or)i(codomain\).)e(In)h(a)h(properly)83 |
|
5731 4658 y(algebraic)35 b(formulation)e(we)i(w)o(ould)e(e)o(xpect)h(to)g |
|
5732 (follo)n(w)f(Po)n(wer)i([17])f(and)h(tak)o(e)f(this)g(e)o(xplicitly)83 |
|
5733 4778 y(as)f(part)g(of)g(the)f(structure.)g(Before)i(doing)e(that)g(we)h |
|
5734 (should)f(probably)g(decide)g(just)g(ho)n(w)g(much)83 |
|
5735 4898 y(use)38 b(to)f(mak)o(e)g(of)g(it.)g(In)g([11])h(where)g(already)f |
|
5736 (an)h(e)o(xplicit)d(notion)h(of)i(linearity)e(is)h(proposed,)83 |
|
5737 5019 y(the)c(idea)g(w)o(as)g(that)f(linear)g(maps)h(w)o(ould)f(also)g |
|
5738 (be)h(maps)f(of)h(the)f(commutati)n(v)o(e)e(coalgebra)k(and)83 |
|
5739 5139 y(commutati)n(v)o(e)19 b(algebra)i(structure.)g(It)g(seems)f(that) |
|
5740 h(to)f(mak)o(e)h(good)g(sense)f(of)i(that)e(one)h(must)f(forbid)83 |
|
5741 5259 y(some)i(super\002cially)f(natural)h(w)o(ays)g(to)f(reduce)i |
|
5742 (Cuts.)f(\(F)o(or)g(e)o(xample)f(we)h(w)o(ould)f(allo)n(w)g(to)h |
|
5743 (reduce)83 5380 y(proof)j(\(1\))g(in)g(Section)f(4.3)h(to)f(only)g |
|
5744 (\(2\))h(b)n(ut)g(not)f(\(3\).\))p 0 TeXcolorgray 1748 |
|
5745 5712 a(25)p 0 TeXcolorgray eop end |
|
5746 %%Page: 26 26 |
|
5747 TeXDict begin 26 25 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5748 0 TeXcolorgray 83 83 a Fs(Ackno)o(wledgements:)22 b Fr(W)-8 |
|
5749 b(e)21 b(should)e(lik)o(e)h(to)g(thank)f(colleagues)h(with)g(whom)f(we) |
|
5750 i(ha)n(v)o(e)f(discussed)83 203 y(the)h(matters)g(described)g(here,)h |
|
5751 (and)f(also)f(the)h(anon)o(ymous)f(referee)i(for)g(penetrating)e |
|
5752 (observ)n(ations)83 324 y(to)25 b(which)f(we)h(ha)n(v)o(e)g(tried)f(to) |
|
5753 h(respond)f(as)h(best)f(we)h(are)h(able.)83 693 y Fs(Refer)n(ences)p |
|
5754 0 TeXcolorgray 83 984 a Ft([1])p 0 TeXcolorgray 72 w(G.)56 |
|
5755 b(Bellin.)i(T)-7 b(w)o(o)56 b(paradigms)j(of)f(logical)h(computation)h |
|
5756 (in)e(Af)n(\002ne)f(Logic?)h(In)g(Logic)f(for)260 1097 |
|
5757 y(Concurrenc)o(y)22 b(and)e(Synchronisation)k(\(R.)18 |
|
5758 b(de)i(Queiroz)g(Ed.\),)f(Kluwer)h(T)m(rends)g(in)f(Logic)h(n.18,)g |
|
5759 (2003,)260 1210 y(pp.115-150.)p 0 TeXcolorgray 83 1406 |
|
5760 a([2])p 0 TeXcolorgray 72 w(R.)31 b(F)-7 b(.)32 b(Blute,)h(J.)f(R.)g |
|
5761 (B.)g(Cock)o(ett,)i(R.)d(A.)h(G.)g(Seely)h(and)h(T)-7 |
|
5762 b(.)32 b(H.)f(T)m(rimble.)i(Natural)h(deduction)i(and)260 |
|
5763 1519 y(coherence)f(for)f(weakly)g(distrib)n(uti)n(v)o(e)i(cate)o |
|
5764 (gories.)f(Journal)g(of)e(Pure)f(and)i(Applied)g(Algebra)g |
|
5765 Fu(113)p Ft(,)260 1632 y(\(1996\),)25 b(229-296.)p 0 |
|
5766 TeXcolorgray 83 1829 a([3])p 0 TeXcolorgray 72 w(A.)f(Carbone.)j |
|
5767 (Duplication)i(of)d(directed)i(graphs)g(and)e(e)o(xponential)j(blo)n(w) |
|
5768 d(up)h(of)f(proofs.)h(Annals)g(of)260 1942 y(Pure)c(and)h(Applied)h |
|
5769 (Logic)f Fu(100)p Ft(,)f(\(1999\),)i(1-67.)p 0 TeXcolorgray |
|
5770 83 2139 a([4])p 0 TeXcolorgray 72 w(J.)k(R.)g(B.)g(Cock)o(ett)j(and)f |
|
5771 (R.)e(A.)g(G.)g(Seely)-6 b(.)30 b(W)-7 b(eakly)31 b(distrib)n(uti)n(v)o |
|
5772 (e)j(cate)o(gories.)e(Journal)h(of)d(Pure)g(and)260 2252 |
|
5773 y(Applied)24 b(Algebra)h Fu(114)f Ft(\(1997\),)h(133-173.)p |
|
5774 0 TeXcolorgray 83 2449 a([5])p 0 TeXcolorgray 72 w(V)-12 |
|
5775 b(.)32 b(Danos)j(and)f(J.-B.)f(Joinet)i(and)g(H.)d(Schellinx.)j(LKT)d |
|
5776 (and)i(LKQ:)f(sequent)i(calculi)h(for)e(second)260 2562 |
|
5777 y(order)24 b(logic)h(based)g(upon)g(dual)f(linear)h(decomposition)i(of) |
|
5778 d(classical)i(implication.)g(In:)d Fv(Advances)j(in)260 |
|
5779 2675 y(Linear)e(Lo)o(gic)g Ft(\(J.-Y)-12 b(.)24 b(Girard)g(and)g(Y)-12 |
|
5780 b(.)23 b(Lafont)h(and)g(L.)f(Re)o(gnier)h(eds\),)g(Cambridge)h(Uni)n(v) |
|
5781 o(ersity)g(Press)260 2788 y(\(1995\),)g(43-59.)p 0 TeXcolorgray |
|
5782 83 2985 a([6])p 0 TeXcolorgray 72 w(C.)32 b(F)8 b(\250)-38 |
|
5783 b(uhrmann)34 b(and)g(D.)e(Pym.)g(Order)n(-enriched)37 |
|
5784 b(Cate)o(gorical)e(Models)g(of)e(the)h(Classical)g(Sequent)260 |
|
5785 3098 y(Calculus.)24 b(Journal)i(of)d(Pure)h(and)g(Applied)g(Algebra)h |
|
5786 Fu(204)p Ft(,)f(\(2006\),)g(21-78.)p 0 TeXcolorgray 83 |
|
5787 3295 a([7])p 0 TeXcolorgray 72 w(C.)h(F)8 b(\250)-38 |
|
5788 b(uhrmann)27 b(and)g(D.)f(Pym.)f(On)h(the)h(Geometry)g(of)f |
|
5789 (Interaction)k(for)d(Classical)h(Logic)f(\(Extended)260 |
|
5790 3408 y(Abstract\).)d(In)g(Proceedings)i(of)d(LICS)f(04,)i(IEEE)d |
|
5791 (Computer)k(Society)-6 b(,)24 b(2004,)g(211-220.)p 0 |
|
5792 TeXcolorgray 83 3605 a([8])p 0 TeXcolorgray 72 w(J.-Y)-12 |
|
5793 b(.)22 b(Girard.)i(Linear)g(Logic.)g(Theoretical)h(Computer)g(Science)f |
|
5794 Fu(50)p Ft(,)g(\(1987\),)g(1-102.)p 0 TeXcolorgray 83 |
|
5795 3802 a([9])p 0 TeXcolorgray 72 w(T)-7 b(.)33 b(Grif)n(\002n.)h(A)g(F)o |
|
5796 (ormulae-as-T)-7 b(ypes)38 b(Notion)d(of)g(Control.)h(In)f(Proceedings) |
|
5797 i(of)e(POPL)d(90,)j(A)l(CM)260 3914 y(Press,)23 b(47-78.)p |
|
5798 0 TeXcolorgray 83 4111 a([10])p 0 TeXcolorgray 27 w(H.)35 |
|
5799 b(Herbelin)j(and)g(P)-10 b(.-L.)35 b(Curien.)i(The)f(duality)j(of)e |
|
5800 (computation.)i(In)e Fv(Pr)l(oceedings)j(of)c(the)i(F)l(ifth)260 |
|
5801 4224 y(A)m(CM)20 b(SIGPLAN)f(International)26 b(Confer)m(ence)d(on)f |
|
5802 (Functional)i(Pr)l(o)o(gr)o(amming)o(,)e Ft(M.)f(Odersk)o(y)h(and)g(P) |
|
5803 -10 b(.)260 4337 y(W)j(adler)24 b(\(eds\),)g(A)l(CM)e(Press)i(2000,)g |
|
5804 (233-243.)p 0 TeXcolorgray 83 4534 a([11])p 0 TeXcolorgray |
|
5805 27 w(J.)31 b(M.)h(E.)e(Hyland.)j(Proof)g(Theory)g(in)f(the)h(Abstract.) |
|
5806 h(Annals)f(of)f(Pure)g(and)h(Applied)h(Logic)e Fu(114)p |
|
5807 Ft(,)260 4647 y(\(2002\),)25 b(43-78.)p 0 TeXcolorgray |
|
5808 83 4844 a([12])p 0 TeXcolorgray 27 w(M.)56 b(Hyland.)i(Abstract)h |
|
5809 (Interpretation)j(of)57 b(Proofs:)i(Classical)g(Propositional)i |
|
5810 (Calculus.)e(In)260 4957 y(Computer)30 b(Science)h(Logic,)e(J.)g |
|
5811 (Marcink)o(o)n(wski)j(and)e(A.)f(T)-7 b(arlecki)30 b(\(eds\).)g(LNCS)d |
|
5812 (3210,)k(Springer)n(-)260 5070 y(V)-10 b(erlag)24 b(2004,)g(6-21.)p |
|
5813 0 TeXcolorgray 83 5267 a([13])p 0 TeXcolorgray 27 w(G.)18 |
|
5814 b(M.)g(K)n(elly)i(and)g(A.)e(J.)h(Po)n(wer)-5 b(.)18 |
|
5815 b(Adjunctions)k(whose)e(counits)i(are)e(coequalizers)j(and)d |
|
5816 (presentations)260 5380 y(of)j(enriched)j(monads,)e(Journal)i(of)d |
|
5817 (Pure)g(and)h(Applied)h(Algebra,)f(89)g(\(1993\),)h(163-179.)p |
|
5818 0 TeXcolorgray 1748 5712 a Fr(26)p 0 TeXcolorgray eop |
|
5819 end |
|
5820 %%Page: 27 27 |
|
5821 TeXDict begin 27 26 bop 0 TeXcolorgray 0 TeXcolorgray |
|
5822 0 TeXcolorgray 0 TeXcolorgray 83 83 a Ft([14])p 0 TeXcolorgray |
|
5823 27 w(F)-7 b(.)49 b(Lamarche)i(and)g(L.)e(Strassb)n(ur)n(ger)-5 |
|
5824 b(.)54 b(Naming)c(Proofs)i(in)e(Classical)i(Logic.)f(T)-7 |
|
5825 b(o)50 b(appear)i(in)260 196 y(Proceedings)26 b(of)d(TLCA)e(2005.)p |
|
5826 0 TeXcolorgray 83 382 a([15])p 0 TeXcolorgray 27 w(C.)k(R.)g(Murthy)-6 |
|
5827 b(.)27 b(Classical)i(Proofs)e(as)g(Programs:)g(Ho)n(w)-6 |
|
5828 b(,)26 b(What,)g(and)h(Why)-6 b(.)26 b(LNCS)f(613,)i(Springer)n(-)260 |
|
5829 495 y(V)-10 b(erlag)24 b(1992.)p 0 TeXcolorgray 83 682 |
|
5830 a([16])p 0 TeXcolorgray 27 w(M.)47 b(P)o(arigot.)i(Lambda-mu-calculus:) |
|
5831 k(An)48 b(Algorithmic)j(Interpretation)i(of)c(Classical)h(natural)260 |
|
5832 795 y(Deduction.)26 b(In)f Fv(Lo)o(gic)g(Pr)l(o)o(gr)o(amming)g(and)h |
|
5833 (A)n(utomated)g(Reasoning)g Ft(ed)f(A.)e(V)-12 b(oronk)o(o)o(v)-6 |
|
5834 b(,)27 b(LNCS)22 b(624)260 907 y(Springer)j(1992,)f(190-201.)p |
|
5835 0 TeXcolorgray 83 1094 a([17])p 0 TeXcolorgray 27 w(A.)35 |
|
5836 b(J.)h(Po)n(wer)-5 b(.)35 b(Premonoidal)k(cate)o(gories)g(as)d(cate)o |
|
5837 (gories)j(with)e(algebraic)i(structure.)f(Theoretical)260 |
|
5838 1207 y(Computer)24 b(Science.)g(278\(1-2\),)i(303-321.)p |
|
5839 0 TeXcolorgray 83 1393 a([18])p 0 TeXcolorgray 27 w(D.)g(Pra)o(witz.)h |
|
5840 (Ideas)h(and)g(results)h(in)e(proof)i(theory)-6 b(.)29 |
|
5841 b(In)e Fv(Pr)l(oceedings)j(of)e(the)f(Second)i(Scandinavian)260 |
|
5842 1506 y(Lo)o(gic)24 b(Symposium.)g Ft(J.-E.)f(Fenstad)h(\(ed\),)g |
|
5843 (North-Holland)i(1971,)e(237-309.)p 0 TeXcolorgray 83 |
|
5844 1692 a([19])p 0 TeXcolorgray 27 w(E.)34 b(P)-10 b(.)34 |
|
5845 b(Robinson.)j(Proof)e(Nets)h(for)f(Classical)i(Logic.)f(Journal)h(of)e |
|
5846 (Logic)h(and)g(Computation)i Fu(13)p Ft(,)260 1805 y(2003,)24 |
|
5847 b(777-797.)p 0 TeXcolorgray 83 1992 a([20])p 0 TeXcolorgray |
|
5848 27 w(P)-10 b(.)22 b(Ruet)i(and)h(M.)e(Abrusci.)i(Non-commutati)n(v)o(e) |
|
5849 h(logic)g(I)d(:)h(the)h(multiplicati)n(v)o(e)h(fragment.)g(Annals)f(of) |
|
5850 260 2105 y(Pure)e(and)h(Applied)h(Logic)f(101\(1\):)h(29-64.)p |
|
5851 0 TeXcolorgray 83 2291 a([21])p 0 TeXcolorgray 27 w(H.)46 |
|
5852 b(Schellinx.)j(The)f(Noble)g(Art)g(of)f(Linear)i(Decorating.)g(PhD)e |
|
5853 (Dissertation,)j(Uni)n(v)o(ersity)g(of)260 2404 y(Amsterdam,)23 |
|
5854 b(1994.)p 0 TeXcolorgray 83 2590 a([22])p 0 TeXcolorgray |
|
5855 27 w(M.)f(E.)g(Szabo.)i(Polycate)o(gories.)i(Comm.)c(Alg.)h |
|
5856 Fu(3)g Ft(\(1975\),)i(663-689.)p 0 TeXcolorgray 83 2777 |
|
5857 a([23])p 0 TeXcolorgray 27 w(P)-10 b(.)22 b(Selinger)-5 |
|
5858 b(.)25 b(Control)g(cate)o(gories)i(and)d(duality:)j(on)d(the)g(cate)o |
|
5859 (gorical)j(semantics)f(of)e(the)g(lambda-mu)260 2890 |
|
5860 y(calculus.)h(Mathematical)h(Structures)f(in)f(Computer)g(Science)g |
|
5861 (11\(2\):)h(207-260)h(\(2001\).)p 0 TeXcolorgray 83 3076 |
|
5862 a([24])p 0 TeXcolorgray 27 w(C.)19 b(Urban)j(and)g(G.)d(M.)h(Bierman.)h |
|
5863 (Strong)h(Normalisation)i(of)d(Cut-Elimination)i(in)e(Classical)i |
|
5864 (Logic.)260 3189 y(Fundamenta)i(Informaticae)h Fu(45)p |
|
5865 Ft(,)d(\(2000\))j(123-155.)p 0 TeXcolorgray 83 3375 a([25])p |
|
5866 0 TeXcolorgray 27 w(C.)g(Urban.)i(Classical)h(Logic)f(and)g |
|
5867 (Computation.)h(PhD)d(Dissertation,)k(Uni)n(v)o(ersity)f(of)f |
|
5868 (Cambridge,)260 3488 y(2000.)p 0 TeXcolorgray 83 3675 |
|
5869 a([26])p 0 TeXcolorgray 27 w(P)-10 b(.)41 b(W)-7 b(adler)i(.)44 |
|
5870 b(Call-by-v)n(alue)i(is)d(dual)g(to)g(call-by-name.)j(In)d |
|
5871 Fv(Pr)l(oceedings)j(of)d(the)g(Eighth)h(A)m(CM)260 3787 |
|
5872 y(SIGPLAN)34 b(International)41 b(Confer)m(ence)e(on)e(Functional)j(Pr) |
|
5873 l(o)o(gr)o(amming)o(,)d Ft(C.)f(Runciman)i(and)f(O.)260 |
|
5874 3900 y(Shi)n(v)o(ers)24 b(\(eds\),)g(A)l(CM)e(Press)i(2003,)g(189-201.) |
|
5875 p 0 TeXcolorgray 1748 5712 a Fr(27)p 0 TeXcolorgray eop |
|
5876 end |
|
5877 %%Trailer |
|
5878 |
|
5879 userdict /end-hook known{end-hook}if |
|
5880 %%EOF |