
λ →

∀
=n

o
m

in
al

β
α

Isabelle

Nominal Isabelle1

Christian Urban Stefan Berghofer

with contributions from Julien Narboux

December 22, 2008

1This manual is released while being written. The hope is that it is still useful to
others.

Contents

1 Introduction 3

1.1 Installation . 4

2 A Quick Example 6

3 Nominal Reasoning Infrastructure 19

3.1 Preliminaries . 19

3.2 Atom Declarations . 20

3.3 Permutations . 21

3.4 Support . 24

3.5 Freshness . 26

3.6 Permutation Types and Finitely Supported Types 27

3.7 Abstractions and Alpha-Equivalence 29

4 Nominal Datatypes 30

4.1 Declaration . 30

4.2 Strong Structural Inductions 33

4.3 Equivariance Lemmas . 36

4.4 Function Definitions . 37

4.5 Inductive Definitions and Strong Rule Induction Principles . . 38

5 Advanced Topics 46

5.1 Functions That Need to Generate Fresh Names 46

6 Examples 48

1

A Frequently Asked Questions 50

A.1 The atom decl command does not work. 50

A.2 Can one avoid typing \<guillemotleft>? 50

A.3 I want to prove something about support or freshness, but
theorems which should be trivial cannot be proved. 50

B Infrastructure 52

B.1 Equivariance Lemmas . 52

2

Chapter 1

Introduction

Dealing with binders, renaming of bound variables, capture-avoiding sub-
stitution, etc., is very often a major problem in formal proofs, especially
in proofs by structural and rule induction. Nominal Isabelle is designed to
make such proofs easy to formalise: it provides an infrastructure for declar-
ing nominal datatypes (that is alpha-equivalence classes) and for defin-
ing functions over them by structural recursion. It also provides induction
principles that have Barendregt’s variable convention already built in. At
present Nominal Isabelle is still under heavy development, and also the-
oretical and implementation issues still remain unsolved. Nevertheless it
can and has already been used to formalise a number of results about lan-
guages involving binders. This includes the standard strong normalisation
proof for the simply-typed lambda-calculus, the Tait/Martin-Löf proof and
Takahshi/Pollack proof for the Church-Rosser property of beta-reduction,
typical proofs from structural operational semantics, a chapter by Crary on
logical relations, a paper by Harper and Pfenning on LF and parts of the
PoplMark Challenge. Urban also used it to verify the results in his PhD-
thesis on strong normalisation of cut-elimination in classical logic.

There is a mailing list for Nominal Isabelle to which users are very welcome
to subsribe. Details can be found under “Mailing List” at

http://isabelle.in.tum.de/nominal

A great source of information about Isabelle and its old-style proof-scripts is
the tutorial by Nipkow et al. [2002]. It can be downloaded in the “Docu-
mentation” section at

http://isabelle.in.tum.de/documentation.html

In the same place is a short tutorial about the Isar proof-language devel-
oped by Wenzel. This manual assumes that the reader is familiar with Is-

3

http://isabelle.in.tum.de/nominal
http://isabelle.in.tum.de/documentation.html

abelle (more precisely Isabelle/HOL) or learns it by using these notes as a
source of examples and by consulting the material referred above for further
information.

1.1 Installation

To run Nominal Isabelle you need four packages: PolyML, Isabelle, an emacs
and Proof-General. Nominal Isabelle is part of the Isabelle distribution,
which you can find at

http://isabelle.in.tum.de

We make occasionally “nominal” releases, which can be downloaded from
the “Download” section at

http://isabelle.in.tum.de/nominal

To unpack and install Nominal Isabelle and the additional packages (such
as Proof-General and PolyML) follow the installation notes of Isabelle. You
can find them in the file

[ISABELLE HOME]/INSTALL

where [ISABELLE HOME] refers to the directory in which you have unpacked
the Isabelle sources. The build process for Nominal Isabelle needs to be
started inside this directory with the command:

./build -m HOL-Nominal

There are no pre-compiled heap files for Nominal Isabelle. After the build
completes (this can take a few minutes), the files need to be installed with
the command

./bin/isabelle install -p name-of-a-directory

where the directory is a place in which the system can find executable files.
Under Linux this is typically /usr/local/bin.

Isabelle together with the Proof-General interface can be started with

4

http://isabelle.in.tum.de
http://isabelle.in.tum.de/nominal

isabelle emacs name-of-a-theory-file &

You might have to explicitly specify where Isabelle can find your emacs by
providing an option -p path-to-emacs.

This way of starting Isabelle means that the nominal theory will be re-
checked when you start your theory. This results in a delay of approximately
30 seconds at the beginning of your interactive session. The delay can be
avoided by enabling the option “HOL-Nominal” in the menu “Isabelle →
Logics”. Unfortunately, one cannot save the state of this option. So if you
always want to have HOL-Nominal turned on, then you can either start Is-
abelle with the command

isabelle emacs -l HOL-Nominal name-of-a-theory-file &

or set the environment variable

ISABELLE_LOGIC="HOL-Nominal"

in your seetings file for Isabelle (usually under ∼/.isabelle/etc).

Also when Isabelle is first started, check that the X-Symbols are enabled (see
“Proof-General → Options”) and save any changes (see “Proof-General →
Options→ Save Options”). The package X-Symbol is not essential for work-
ing with Isabelle, but can greatly enhance the readability of proof scripts.

Nominal Isabelle contains numerous examples of formalisations for proper-
ties about terms with binders. See Chapter 6.

5

Chapter 2

A Quick Example

This chapter provides a quick overview over Nominal Isabelle by giving the
complete proof of the Church-Rosser theorem. The proof we show is due to
Takahashi [1995] with some improvements by Pollack [1995].

Informal reasoning about lambda-terms often starts by stating that there is
a countably infinite supply of variables. The formal equivalent in Nominal
Isabelle for this statement is the declaration

atom decl name

This declaration introduces a type name whose elements can stand for binders.
They are needed when we want to define lambda-terms using the command
nominal datatype.

nominal datatype lam =
Var ”name”
| App ”lam” ”lam”
| Lam ”�name�lam” (”Lam []. ”)

The �name�lam indicates that a name is bound in the term that follows. By
convention we introduce the syntax annotation []. for binders. In this way
we can write Lam [x].t, instead of Lam x t. Other conventions are possible.
Unfortunately, however, the usual syntax λx. t is already used by Isabelle’s
HOL-logic.

The main point of using Nominal Isabelle is that the definition above results
in alpha-equated lambda-terms. We can, for example, show the following
equality:

lemma
shows ”Lam [x].Var x = Lam [y].Var y”
by (auto simp add: lam.inject alpha swap simps fresh atm)

6

This means the HOL-logic allows us without any further ado to replace in
any context a lambda-term by an alpha-equivalent lambda-term. A lot of
convenience in Nominal Isabelle arises from this fact.

The most important operation we need for lambda-terms is capture-avoiding
substitution. This operation can be defined in Nominal Isabelle as total
function using the command nominal primrec:

nominal primrec
subst :: ”lam⇒ name⇒ lam⇒ lam” (” [::=]”)

where
”(Var x)[y::=s] = (if x=y then s else (Var x))”
| ”(App t1 t2)[y::=s] = App (t1[y::=s]) (t2[y::=s])”
| ”x] (y,s) =⇒ (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])”

By convention we use the notation t[y::=s] for writing substitutions (the
more obvious convention t[y:=s] is unfortunately already used in Isabelle
for updating maps).

The crucial line in the definition above is the third one, which includes the
precondition x] (y, s) standing for the variable x being fresh for the vari-
able y and the lambda-term s. Clearly, only in this case we should be able to
move a substitution under the binder, otherwise we defined a function that
does not respect alpha-equivalence. It is actually easy to write down func-
tions over lambda-terms that do not respect alpha-equivalence and thus it
is easy to prove faulty statements. Nominal Isabelle prevents this by requir-
ing us to prove several properties about the definition of substitution. The
corresponding subgoals can be discharged by the following five lines

apply(finite guess)+
apply(rule TrueI)+
apply(simp add: abs fresh)
apply(fresh guess)+
done

which are typical for many function definitions over lambda-terms.

The notion] about freshness is central to Nominal Isabelle and auto-
matically defined for nominal datatypes and common datatypes, such as
products, lists, natural numbers and so on. A variable being fresh is in most
cases equivalent to the variable not being free.

An important lemma we need to prove about substitution is the substitution
lemma. To establish it, we need two facts about freshness and substitution.
The first states that substitutions can be “forgotten” provided the variable
that is being substituted is not free (i.e. is fresh).

7

lemma forget:
assumes a: ”x] t”
shows ”t[x::=s] = t”

using a
by (nominal induct t avoiding: x s rule: lam.strong induct)

(auto simp add: abs fresh fresh atm)

The second is about conditions when a variable is fresh for a substitution:
more precisely it states that the variable z will be fresh for z] t[y::=s]
provided that z is fresh for s and either z = y or z also fresh for t. This can
be proved as follows:

lemma fresh fact:
fixes z::”name”
assumes a: ”z] s” ”z=y ∨ z] t”
shows ”z] t[y::=s]”

using a
by (nominal induct t avoiding: z y s rule: lam.strong induct)

(auto simp add: abs fresh fresh prod fresh atm)

With these two facts at our disposal, the substitution lemma can then be
easily established.

lemma substitution lemma:
assumes a: ”x 6=y” ”x] u”
shows ”t[x::=s][y::=u] = t[y::=u][x::=s[y::=u]]”

using a
by (nominal induct t avoiding: x y s u rule: lam.strong induct)

(auto simp add: fresh fact forget)

It is a fun exercise to unfold the automation in this proof: one ends up with
a formal proof that looks uncannily like the informal proof in Barendregt
[1981]. If you do not like to do this exercise yourself, have a look in the file
CR.thy.

While the previous three lemmas are quite standard and can be found in
many informal Church-Rosser proofs, we need two more facts about sub-
stitution. First we establish that substitution is equivariant. As we will see
later on, much of the reasoning in Nominal Isabelle depends on this prop-
erty. Equivariance for substitution states that a permutation (a bijective
renaming of variables) applied on the “outside” of a substitution can be
pushed inside to the arguments. Permutations and a permutation applied to
a term are concepts provided by Nominal Isabelle. Applying a permutation
is written infix as • .

8

lemma subst eqvt[eqvt]:
fixes π::”name prm”
shows ”π•(t[x::=s]) = (π•t)[(π•x)::=(π•s)]”

by (nominal induct t avoiding: x s rule: lam.strong induct)
(auto simp add: perm bij fresh atm fresh bij)

Since this property is needed frequently “behind the scenes”, we make Nom-
inal Isabelle aware of it by giving this lemma the attribute [eqvt].

In two of the later lemmas it will also be necessary to rename a variable
being substituted with a fresh variable. This is formalised in the following
lemma:

lemma subst rename:
assumes a: ”y] t”
shows ”t[x::=s] = ([(y,x)]•t)[y::=s]”

using a
by (nominal induct t avoiding: x y s rule: lam.strong induct)

(auto simp add: swap simps fresh atm abs fresh)

where [(y, x)] • t stands for the swapping of y and x in t. A swapping is a
permutation consisting of a single pair of variables. You can think of it as
the simultaneous renaming of y for x and x for y.

Next we need the definition for beta-reduction. It can be defined as induc-
tive predicate using the Isabelle command inductive.

inductive
”Beta” :: ”lam⇒ lam⇒ bool” (” −→β ”)

where
b1[intro]: ”t1 −→β t2 =⇒ App t1 s −→β App t2 s”
| b2[intro]: ”s1 −→β s2 =⇒ App t s1 −→β App t s2”
| b3[intro]: ”t1 −→β t2 =⇒ Lam [x].t1 −→β Lam [x].t2”
| b4[intro]: ”App (Lam [x].t) s −→β t[x::=s]”

We introduce the readable notation −→β for beta-reduction and we
also tag each rule with the attribute [intro] so that the automatic proof-
search tools of Isabelle are aware of these rules. The first three rules in
this definition are the usual concruence rules and the fourth is the beta-
contraction. In Nominal Isabelle it is also possible to define beta-reduction
via the notion of a context with a hole (see the examples in Context.thy
and CK Machine.thy).

The transitive closure of beta-reduction is again an inductive definition.

9

inductive
”Beta star” :: ”lam⇒ lam⇒ bool” (” −→β

∗ ”)
where

bs1[intro]: ”t −→β
∗ t”

| bs2[intro]: ”t −→β s =⇒ t −→β
∗ s”

| bs3[intro]: ”[[t1−→β
∗ t2; t2 −→β

∗ t3]] =⇒ t1 −→β
∗ t3”

There is an equivalent definition for the transitive closure of −→β involving
only two rules, but the version above will turn out to be more convenient in
some of the subsequent proofs.

The point of the Church-Rosser proof is to show that every two −→β
∗-

reductions can be joined. No proof in the literature, however, establish
this property directly for this reduction relation. Instead an auxiliary reduc-
tion relation, written −→1, is introduced for which it is easier to establish
Church-Rosser. It can also be shown that its transitive closure is equivalent
to −→β

∗. The main reasoning given below will, therefore, be over −→1

defined next.

inductive
One :: ”lam⇒ lam⇒ bool” (” −→1 ”)

where
o1[intro]: ”Var x−→1 Var x”
| o2[intro]: ”[[t1−→1t2; s1−→1s2]] =⇒ App t1 s1 −→1 App t2 s2”
| o3[intro]: ”t1−→1t2 =⇒ Lam [x].t1 −→1 Lam [x].t2”
| o4[intro]: ”[[x] (s1,s2); t1−→1t2; s1−→1s2]]

=⇒ App (Lam [x].t1) s1 −→1 t2[x::=s2]”

This definition is similar to what one can find in the literature, except for the
last rule where the freshness condition x] (s1, s2) is included as a premise.
This premise is needed in Nominal Isabelle in order to derive a stronger in-
duction principle for this definition. This stronger induction principle has
the usual variable convention already built in and so will make the rea-
soning about this definition much more convenient. In order to derive the
stronger induction principle, Nominal Isabelle first has know that this def-
inition is equivariant. Since it knows that substitution is equivariant (re-
member the [eqvt] attribute on the corresponding lemma) and also that
freshness is equivariant, equivariance for −→1 can be derived automatically
by stating:

equivariance One

This gives us the property

If t −→1 s then π • t −→1 π • s.

10

named One.eqvt. We need it in one lemma below and as mentioned above
also need it in the next nominal inductive statement:

nominal inductive One
by (simp all add: abs fresh fresh fact)

This statement derives for us the stronger induction principle for −→1. To
do so, it checks that the binder in the rules o3 and o4 are not free in the
conclusions of those rules. This fact is clear for o3 with the conclusion

Lam [x].t1 −→1 Lam [x].t2

but for the conclusion of o4

App (Lam [x].t1) s1 −→1 t2[x::=s2]

it only holds if we have the premise x] (s1, s2).

If we do not do this test, then deriving the stronger induction principle for an
inductive definition can potentially lead to faulty proofs. See the examples
in VC Condition.thy where an inconsistency is derived using the variable
convention. The unfortunate point with needing this additional premise in
rule o4 is that it makes this rule harder to apply; it has no influence on what
reductions can be derived, because we can show that this premise is actually
superfluous:

lemma better o4 intro:1

assumes a: ”t1 −→1 t2” ”s1 −→1 s2”2

shows ”App (Lam [x].t1) s1 −→1 t2[x::=s2]”3

proof -4

obtain y::”name” where fs: ”y] (x,t1,s1,t2,s2)”5

by (rule exists fresh, rule fin supp, blast)6

have ”App (Lam [x].t1) s1 = App (Lam [y].([(y,x)]•t1)) s1” using fs7

by (auto simp add: lam.inject alpha‘ fresh prod fresh atm)8

also have ”. . . −→1 ([(y,x)]•t2)[y::=s2]” using fs a9

by (auto simp add: One.eqvt)10

also have ”. . .= t2[x::=s2]” using fs by (simp add: subst rename[symmetric])11

finally show ”App (Lam [x].t1) s1 −→1 t2[x::=s2]” by simp12

qed13

The proof follows a quite standard pattern: a fresh name y is chosen in
lines 5 and 6. Line 7 alpha-renames the term before the reduction. In line
9 we apply the introduction rule of −→1 for the alpha-renamed term (this
requires the property One.eqvt for the premise t1 −→1 t2). Then we rename
the substitution back to the original term in line 11.

To make progress in our Church-Rosser proof, we need to establish two
properties for the reduction −→1: reflexivity and substitutivity.

11

lemma One refl:
shows ”t −→1 t”

by (nominal induct t rule: lam.strong induct) (auto)

lemma One subst:
assumes a: ”t1 −→1 t2” ”s1 −→1 s2”
shows ”t1[x::=s1] −→1 t2[x::=s2]”

using a
by (nominal induct t1 t2 avoiding: s1 s2 x rule: One.strong induct)

(auto simp add: substitution lemma fresh atm fresh fact)

In the proof of the substitutivity property it is essential to have the stronger
induction principle for −→1 at our disposal, because otherwise there is no
convenient way to move the substitutions under binders.

We also need later on the following four inversion principles for −→1. We
derive them as elimination rules using obtains.

lemma One Var:
assumes a: ”Var x −→1 t”
obtains ”t = Var x”

using a by (cases rule: One.cases) (simp all)

lemma One Lam:
assumes a: ”Lam [x].t −→1 s” ”x] s”
obtains t‘ where ”s = Lam [x].t‘” ”t −→1 t‘”

using a
by (cases rule: One.strong cases)

(auto simp add: lam.inject abs fresh alpha)

lemma One App:
assumes a: ”App t s −→1 r”
obtains t‘ s‘ where ”r = App t‘ s‘” ”t −→1 t‘” ”s −→1 s‘”
| x p p‘ s‘ where ”r = p‘[x::=s‘]” ”t = Lam [x].p” ”p −→1 p‘”

”s −→1 s‘” ”x] (s,s‘)”
using a by (cases rule: One.cases)

(auto simp add: lam.inject)

lemma One Redex:
assumes a: ”App (Lam [x].t) s −→1 r” ”x] (s,r)”
obtains t‘ s‘ where ”r = App (Lam [x].t‘) s‘” ”t −→1 t‘” ”s −→1 s‘”

| t‘ s‘ where ”r = t‘[x::=s‘]” ”t −→1 t‘” ”s −→1 s‘”
using a
by (cases rule: One.strong cases)

(auto elim!: One Lam simp add: lam.inject abs fresh alpha fresh prod)

The transitive closure of −→1 is defined next.

12

inductive
”One star” :: ”lam⇒ lam⇒ bool” (” −→1

∗ ”)
where

os1[intro]: ”t −→1
∗ t”

| os2[intro]: ”t −→1 s =⇒ t −→1
∗ s”

| os3[intro]: ”[[t1−→1
∗ t2; t2 −→1

∗ t3]] =⇒ t1 −→1
∗ t3”

The beautiful trick in the Church-Rosser proof by Takahashi is to introduce
a third reduction relation for which a triangle property can be easily estab-
lished.

inductive
Dev :: ”lam⇒ lam⇒ bool” (” −→d ”)

where
d1[intro]: ”Var x −→d Var x”
| d2[intro]: ”t −→d s =⇒ Lam [x].t −→d Lam[x].s”
| d3[intro]: ”[[¬(∃ y t‘. t1 = Lam [y].t‘); t1 −→d t2; s1 −→d s2]]

=⇒ App t1 s1 −→d App t2 s2”
| d4[intro]: ”[[x] (s1,s2); t1 −→d t2; s1 −→d s2]]

=⇒ App (Lam [x].t1) s1 −→d t2[x::=s2]”

Note that this reduction relation is defined so that no rule overlaps with an-
other. It will be crucial again to use a stronger induction principle with this
definition, so we have to show equivariance and “nominal inductiveness”.

equivariance Dev

nominal inductive Dev
by (simp all add: abs fresh fresh fact)

Like with −→1 the proof in nominal inductive will only go through if we
have the premise x] (s1, s2) in rule d4. However, it is otherwise unnecessary
and therefore we derive a better introduction rule.

lemma better d4 intro:
assumes a: ”t1 −→d t2” ”s1 −→d s2”
shows ”App (Lam [x].t1) s1 −→d t2[x::=s2]”

proof -
obtain y::”name” where fs: ”y] (x,t1,s1,t2,s2)”
by (rule exists fresh, rule fin supp,blast)

have ”App (Lam [x].t1) s1 = App (Lam [y].([(y,x)]•t1)) s1” using fs
by (auto simp add: lam.inject alpha‘ fresh prod fresh atm)

also have ”. . . −→d ([(y,x)]•t2)[y::=s2]” using fs a
by (auto simp add: Dev.eqvt)

also have ”. . .= t2[x::=s2]” using fs by (simp add: subst rename[symmetric])
finally show ”App (Lam [x].t1) s1 −→d t2[x::=s2]” by simp

qed

13

We will need an inversion principle for the reduction −→d and for this it will
be advantageous to know that freshness is preserved by the −→d reduction.

lemma Dev preserves fresh:
fixes x::”name”
assumes a: ”t−→d s”
shows ”x] t =⇒ x] s”

using a by (induct) (auto simp add: abs fresh fresh fact)

The next lemma characterises the term to which a lambda-abstraction d-
reduces. Since we are going to invert a rule involving a binder, the in-
version only works if the binder is fresh with respect to the judgement to be
inverted. If we do not impose this restriction, we obtain only a much weaker
statement that is inconvenient to use.

To do the inversion, we know in the proof below that x] Lam [x].t holds
(Line 5) and so by the preceding lemma also x] s (Line 6). With these two
fact at our disposal, we can infer the form of the reduct.

lemma Dev Lam:1

assumes a: ”Lam [x].t −→d s”2

shows ”∃ s‘. s = Lam [x].s‘ ∧ t −→d s‘”3

proof -4

from a have ”x] Lam [x].t” by (simp add: abs fresh)5

with a have ”x] s” by (simp add: Dev preserves fresh)6

with a show ”∃ s‘. s = Lam [x].s‘ ∧ t −→d s‘”7

by (cases rule: Dev.strong cases)8

(auto simp add: lam.inject abs fresh alpha)9

qed10

We can now show that for every lambda-term there exists a d-reduct.

lemma Development existence:
shows ”∃ t‘. t −→d t‘”

by (nominal induct t rule: lam.strong induct)
(auto dest!: Dev Lam intro: better d4 intro)

The reason for introducing the reduction −→d is that we can show a “lit-
tle” Church-Rosser lemma, namely that a d-reduction and a 1-reduction can
always be joined.

lemma Triangle:
assumes a: ”t −→d t1” ”t −→1 t2”
shows ”t2 −→1 t1”
using a

14

We prove this lemma by induction on t −→d t1. Any binder that is used in
the proof should be fresh for t2. This requires us to set up the induction as
follows:

proof (nominal induct avoiding: t2 rule: Dev.strong induct)

The only interesting case is d4 where we have to be careful to apply the
One Redex inversion instead of One App. It might be possible to make this
proof completely automatic on the expense of folding these two inversion
principles into one complicated case analysis. However below we are not
doing this and instead analyse the case explicitly:

case (d4 x s1 s2 t1 t1‘ t2)
have fc: ”x] t2” ”x] s1” by fact+
have ”App (Lam [x].t1) s1 −→1 t2” by fact

The fc assumptions are needed in order to invert the assumption about how
App (Lam [x].t1) s1 reduces. The inversion gives us the following two pos-
sibilities: either some term inside the redex reduces, or the redex itself.

then obtain t‘ s‘ where reds:
”(t2 = App (Lam [x].t‘) s‘ ∧ t1 −→1 t‘ ∧ s1 −→1 s‘) ∨
(t2 = t‘[x::=s‘] ∧ t1 −→1 t‘ ∧ s1 −→1 s‘)”

using fc by (auto elim!: One Redex)

Having obtained the terms t‘ and s‘, we can instantiate the two induction
hypotheses in this case.

have ih1: ”t1 −→1 t‘ =⇒ t‘ −→1 t1‘” by fact
have ih2: ”s1 −→1 s‘ =⇒ s‘ −→1 s2” by fact

Now we only have to analyse the two cases and in each of them establish
that t2 reduces to t1‘[x::=s2].

{ assume ”t1 −→1 t‘” ”s1 −→1 s‘”
then have ”App (Lam [x].t‘) s‘ −→1 t1‘[x::=s2]”
using ih1 ih2 by (auto intro: better o4 intro)

}
moreover

{ assume ”t1 −→1 t‘” ”s1 −→1 s‘”
then have ”t‘[x::=s‘] −→1 t1‘[x::=s2]”
using ih1 ih2 by (auto intro: One subst)

}

This allows us to conclude this case.

15

ultimately show ”t2 −→1 t1‘[x::=s2]” using reds by auto
qed (auto elim!: One App One Var One Lam)

The other three cases can be discharged by the automatic proof-search tools.

Using the triangle property and the existence of a development, it is now
straightforward to establish the diamond property for −→1.

lemma Diamond for One:
assumes a: ”t −→1 t1” ”t −→1 t2”
shows ”∃ t3. t2 −→1 t3 ∧ t1 −→1 t3”

using a by (metis Development existence Triangle)

We only need to string together the lemma about the existence of a d-reduct
and then use the triangle lemma to prove that the reductions are joinable.
And from this the following rectangle property can be easily deduced.

lemma Rectangle for One:
assumes a: ”t −→1

∗ t1” ”t −→1 t2”
shows ”∃ t3. t1 −→1 t3 ∧ t2 −→1

∗ t3”
using a Diamond for One by (induct arbitrary: t2) (blast)+

Finally we can show Church-Rosser for −→1
∗.

lemma CR for One star:
assumes a: ”t −→1

∗ t1” ”t −→1
∗ t2”

shows ”∃ t3. t2 −→1
∗ t3 ∧ t1 −→1

∗ t3”
using a Rectangle for One by (induct arbitrary: t2) (blast)+

It remains to show that the reductions −→1
∗ and −→β

∗ are equivalent. This
involves tedious proofs that unfortunately cannot be automated much. First
we show the following three congruence rules for −→β

∗.

lemma Beta Lam cong:
assumes a: ”t1 −→β

∗ t2”
shows ”Lam [x].t1 −→β

∗ Lam [x].t2”
using a by (induct) (blast)+

lemma Beta App cong aux:
assumes a: ”t1 −→β

∗ t2”
shows ”App t1 s−→β

∗ App t2 s”
and ”App s t1 −→β

∗ App s t2”
using a by (induct) (blast)+

lemma Beta App cong:
assumes a: ”t1 −→β

∗ t2” ”s1 −→β
∗ s2”

shows ”App t1 s1 −→β
∗ App t2 s2”

using a by (blast intro: Beta App cong aux)

lemmas Beta congs = Beta Lam cong Beta App cong

16

These congruence rules allow us to show that a single 1-reduction can be
matched by zero or more beta-reductions.

lemma One implies Beta star:
assumes a: ”t −→1 s”
shows ”t −→β

∗ s”
using a by (induct) (auto intro!: Beta congs)

For the other direction we need to show the following congruence lemma
for the reduction −→1

∗.

lemma One congs:
assumes a: ”t1 −→1

∗ t2”
shows ”Lam [x].t1 −→1

∗ Lam [x].t2”
and ”App t1 s −→1

∗ App t2 s”
and ”App s t1 −→1

∗ App s t2”
using a by (induct) (auto intro: One refl)

A consequence is now that a single beta-reduction can be matched by zero
or more 1-reductions.

lemma Beta implies One star:
assumes a: ”t1 −→β t2”
shows ”t1 −→1

∗ t2”
using a by (induct) (auto intro: One refl One congs better o4 intro)

Stringing both directions together gives us the lemma that the reduction
−→1

∗ and −→β
∗ are in fact equal.

lemma Beta star equals One star:
shows ”t1 −→1

∗ t2 = t1 −→β
∗ t2”

proof
assume ”t1 −→1

∗ t2”
then show ”t1 −→β

∗ t2” by (induct) (auto intro: One implies Beta star)
next
assume ”t1 −→β

∗ t2”
then show ”t1 −→1

∗ t2” by (induct) (auto intro: Beta implies One star)
qed

Since we have already established that−→1
∗ is Church-Rosser, the reduction

−→β
∗ must be too.

17

theorem CR for Beta star:
assumes a: ”t −→β

∗ t1” ”t −→β
∗ t2”

shows ”∃ t3. t1 −→β
∗ t3 ∧ t2 −→β

∗ t3”
proof -
from a have ”t−→1

∗ t1” and ”t−→1
∗ t2” by (simp all add: Beta star equals One star)

then have ”∃ t3. t1 −→1
∗ t3 ∧ t2 −→1

∗ t3” by (simp add: CR for One star)
then show ”∃ t3. t1 −→β

∗ t3 ∧ t2 −→β
∗ t3” by (simp add: Beta star equals One star)

qed

This theorem completes the Church-Rosser proof.

18

Chapter 3

Nominal Reasoning
Infrastructure

3.1 Preliminaries

Nominal Isabelle can be included in a theory using the usual Isabelle con-
vention:

theory Foo
imports Nominal
begin
. . . declarations, definitions and proofs . . .
end

The most important constants introduced in Nominal Isabelle are:

X-Symbol ASCII

permutation operation • \< bullet >
freshness] \< sharp >
support supp
abstractions [].

Note that the symbol for freshness is different from Isabelle’s symbol # used
for list-cons.

These constants are all polymorphic and therefore often need explicit type-
annotations to be meaningful (see Appendix A.3). Lack of explicit type-
annotations is usually what causes rules to not being applicable or to other
non-intuitive behaviour. The meaning of these constants is described in
more detail in the remaining sections of this chapter.

19

3.2 Atom Declarations

Before any nominal datatype can be defined, Nominal Isabelle needs to
know which atom types will be used. Atom types stand for different kinds
of (object) variables that might be bound in nominal datatypes.

Atom types can be declared using the command atom decl with the syntax

atom decl type1. . . typen

where type1. . . typen stand for some identifiers. A concrete example is

atom decl var tyvar

which might be used to formalise variables in lambda-terms and type-variables
in simple types. After this declaration one can write

lemma foo:
fixes x::”var”
and T::”tyvar”
. . .

to fix the types for the (Isabelle) variables x and T. Note that the atom
declaration is a “global” declaration, in the sense that it can be issued only
once. Therefore it needs to contain all atom types that are ever going to be
used in a formalisation.

Each atom type contains countable infinitely many elements. They can be
constructed by using the atom-type name as constructor and a natural num-
ber as argument. For example one can show:

lemma concrete atoms:
shows ”var 0 6= var 1”
by simp

However concrete atoms, such as var 0, are only rarely used in Nominal
Isabelle. One example where they are used is to define the sets of “even”
and “odd” atoms in the example file Support.thy.

When the atom declaration is issued, the Nominal Isabelle generates a num-
ber of lemmas that have been specialised according to the given atom types.
One example is the lemma

lemma exists fresh′:
assumes ”finite ((supp x)::var set)”
shows ”∃ a::var. a] x”

. . .

20

which states that for every finitely supported x there exists an atom a of
type var which is fresh for x (support and freshness will be explained in
Section 3.4). If more than one atom type is declared, then the lemma
exists fresh′ will contain such a statement for every atom type. For example,
in case we declare “atom decl var”, then exists fresh′ will be the lemma

finite ((supp x)::var set) =⇒ ∃ a::var. a] x

while in case of “atom decl var tyvar”, exists fresh′ will be the collection of
lemmas

finite ((supp x)::var set) =⇒ ∃ a::var. a] x
finite ((supp x)::tyvar set) =⇒ ∃ a::tyvar. a] x

This kind of specialisation to concrete atom-types is provided automatically
for lemmas that are frequently needed. For less frequently used lemmas only
general versions are provided in the file Nominal.thy. Such general lemmas
need to be specialised manually. For example the lemma

at exists fresh′[OF at var inst]

is equivalent to

finite ((supp x)::var set) =⇒ ∃ a::var. a] x

See also Section 3.6 for more details on the instantiation of generic lemmas.

3.3 Permutations

Permutations are bijective mappings from atoms to atoms. In Nominal Is-
abelle such permutations are represented as lists of atom-pairs. For this the
type-abbreviation

‘x prm

standing for (‘x × ‘x) list has been introduced. The type variable ‘x can be
instantiated with any declared atom type. For example one can write:

lemma another foo:
fixes π1::”var prm”
and π2::”tyvar prm”
. . .

Since permutations are lists, they can be written using the standard notation
for lists in Isabelle/HOL. Three examples permutations are

21

[(a, b)] [(a, a), (b, c)] []

where the first stands for the permutation that swaps the atoms a and b; the
second swaps first b and c, and then a and a; the last stands for the identity
permutation.

Two permutations can be composed by using list-append, written π1 @ π2.
The inverse of a permutation is given by reversing the list. For this the
standard reversal function, written (rev π), of Isabelle is used. Note however
that (rev [(a,b)]) is not [(b,a)], but is equal to [(a,b)]:

lemma swap rev:
fixes a b::”var”
shows ”rev [(a,b)] = [(a,b)]”
by simp

The infix operation • that applies a permutation to an object has the
polymorphic type

‘x prm⇒ ‘a⇒ ‘a.

One can write for example

lemma swap id:
fixes a::”tyvar”
shows ”[(a,a)] • x = x”
. . .

where the permutation [(a, a)] is applied to the object x, or

lemma perm bij:
fixes π::”var prm”
shows ”(rev π) • (π • x) = x”
. . .

where π is applied to x, followed by an application of the inverse of π.

For several standard types, Nominal Isabelle defines automatically permuta-
tion operations. Some examples are:

pairs: π • (x, y) = (π • x, π • y)
sets: π • X = {π • x |x. x ∈ X}
lists: π • [] = []

π • (x # xs) = π • x # π • xs
functions: π • f = (λx. π • f (rev π • x))
natural numbers: π • n = n
booleans: π • b = b

22

Permutation operations on atoms are defined such that

[] • c = c

[(a,b)]#π • c =


b if π • c = a
a if π • c = b
π • c otherwise

where the permutations has the same type as the atom c. In case the per-
mutation is of different type than the atom they are acting on, then the
permutation operation is defined as π • a = a. For example one can show
that

lemma perm ineq:
fixes a::”var”
shows ”∀π::tyvar prm. π • a = a”
by (simp add: calc atm)

where the lemma calc atm contains all lemmas that are needed to analyse a
permutation applied to an atom.

While the representation of permutations as lists is very convenient for com-
posing two permutations and for building the inverse of a permutation, it is
not a unique representation. Nominal Isabelle therefore defines the relation
, that states when two permutations (necessarily having the same type) are
equal, namely:

constdefs
prm eq :: ”‘x prm⇒ ‘x prm⇒ bool” (” , ” [80,80] 80)

”π1 , π2 ≡ ∀ a::‘x. π1•a = π2•a”

The tactic perm simp can be used to analyse many instances1 of permuta-
tion operations applied to an arbitrary object. Its syntax is similar to the
standard simp-tactic. For example one can add lemmas to, or delete from,
the simplifier by issuing

(perm simp add: . . . del: . . .)

Three examples of equations which perm simp solves are:

lemma bar:
fixes a b::”var”
and l::”var list”
and π::”var prm”
shows ”[(a,b)]•a = b” and ”[(a,b)]•[(a,b)]•l = l” and ”π•(rev π)•l = l”
by perm simp+

1Unfortunately it is not known whether a suitable equational theory involving permuta-
tions applied to arbitrary objects is decidable.

23

3.4 Support

The most interesting feature of the nominal work is the notion of support
(see Pitts [2003]). This notion corresponds roughly to the usual notion of
what the set of free variables of an object is, however it is more general
and this generality is crucial in a number of places in Nominal Isabelle. The
definition of support is

constdefs
supp :: ”‘a⇒ (‘x set)”
”supp x ≡ {a . (infinite {b . [(a,b)]•x 6= x})}”

where the right-hand side stands for a set of atoms (in this case of type ‘x).
Note that this definition is different from some other definitions one can find
in the nominal literature.

For finitary structures, such as pairs, lists, lambda-terms, etc, the notion
of support coincides with the usual notion of free variables. For example,
assuming that the atom types var and tyvar are declared, then the support
of a var-atom is

lemma supp atm:
fixes a::”var”
shows ”(supp a) = ({a}::var set)”
and ”(supp a) = ({}::tyvar set)”

. . .

Note that the in the first statement the support of “a” is calculated with
respect to the atom type var, while in the second with respect to tyvar.
Because of the typing constraints for the constant supp, it is impossible in
Nominal Isabelle to express in a single set what the support of an object is
with respect to all atom types (the reason is that the set ({a}::var set) ∪
({}::tyvar set) is ill-typed).

For pairs one can easily show that their support is equal to the support of
their components (see Figure 3.1 for the calculation in Isar). The support of
an empty list and list-cons is

supp [] = {}
supp (x # xs) = supp x ∪ supp xs

Natural numbers and booleans have empty support:

supp n = {}
supp b = {}

24

lemma supp prod:11

shows ”supp (x1,x2) = (supp x1) ∪ (supp x2)”12

proof -13

have ”supp (x1,x2) = {a. infinite {b. [(a,b)]•(x1,x2) 6= (x1,x2)}}” by (simp only: supp def)14

also have ”. . . = {a. infinite {b. ([(a,b)]•x1,[(a,b)]•x2) 6= (x1,x2)}}” by simp15

also have ”. . . = {a. infinite {b. [(a,b)]•x1 6= x1 ∨ [(a,b)]•x2 6= x2}}” by simp16

also have ”. . . = {a. infinite ({b. [(a,b)]•x1 6= x1} ∪ {b. [(a,b)]•x2 6= x2})}”17

by (simp only: Collect disj eq)18

also have ”. . . = {a. infinite {b. [(a,b)]•x1 6= x1} ∨ infinite {b. [(a,b)]•x2 6= x2}}” by simp19

also have ”. . . = {a. infinite {b. [(a,b)]•x1 6= x1}} ∪ {a. infinite {b. [(a,b)]•x2 6= x2}}”20

by (simp only: Collect disj eq)21

also have ”. . . = (supp x1) ∪ (supp x2)” by (simp only: supp def)22

finally show ”supp (x1,x2) = (supp x1) ∪ (supp x2)” .23

qed24

Figure 3.1: A proof for calculating the support of a pair: Line 6 uses the
property when a pair is not equal, Line 9 uses the property when a union
of two sets is infinite; Lines 7–8 and 10–11 transform a disjunction inside a
collection into a union of two sets.

The support of an abstraction, a construct that will be described in more
detail in Sec. 3.7, is

supp ([a].x) = supp x - supp a

However this equation has the proviso that x must have finite support. The
support of a finite set, say X, is the union of the support of every element in
X, that is

lemma supp fin set:
assumes ”finite X”
shows ”(supp X) = (

⋃
x∈X. (supp x))”

. . .

More complicated is the situation for infinitary structures, such as infinite
sets and functions. For example it can be easily shown that the set of all
atoms of type var has empty support (the set of all atoms of type var is in
Isabelle represented by UNIV::var set). We first show that swapping two
atoms in this set leaves the set unchanged:

lemma swap UNIV var:
fixes a b::”var”
shows ”[(a,b)]•(UNIV::var set) = UNIV”
by (auto simp add: perm set eq calc atm)

Now it is straightforward to conclude that UNIV::var set has empty support.

25

lemma supp UNIV var:
shows ”supp (UNIV::var set) = ({}::var set)”
by (simp add: supp def swap UNIV var)

However, there are also objects in the HOL-logic that have infinite support.
In the example file Support.thy it is shown that the set of “even”, respectively
“odd”, atoms have infinite support. Pitts [2006] gives an example for a
function that has infinite support (see Example 3.4 in Pitts [2006]).

3.5 Freshness

Derived from the concept of support is the notion of freshness (again for
more background information see Pitts [2003]). Freshness is defined as

constdefs
fresh :: ”‘x⇒ ‘a⇒ bool” (”] ” [80,80] 80)
”a] x ≡ a /∈ supp x”

Recall that there are countable infinitely many elements in an atom type.
Consequently if a given object x has finite support, then there must exist an
atom outside the support of x; that is there must be an atom that is fresh for
x. This fact is proved in the lemma exists fresh′

lemma exists fresh′:
assumes ”finite ((supp x)::var set)”
shows ”∃ c::var. c] x”
. . .

Note that this lemma contains such facts for all declared atom types.

For two atoms of the same type the notion of freshness coincides with in-
equality:

lemma fresh atm:
fixes a b::”var”
shows ”(a] b) = (a 6= b)”
. . .

Unwinding the definition of support for other types gives the following facts:

pairs: a] (x, y) = (a] x ∧ a] y)
sets: a] {}

[[pt TYPE(‘a) TYPE(‘b); at TYPE(‘b)]] =⇒ a] {x} = a] x
lists: a] []

a] (x # xs) = (a] x ∧ a] xs)
natural numbers: a] n
booleans: a] b

26

The crucial property of freshness is that if two atoms are fresh for an object,
then swapping those atoms leaves x unchanged, that is

lemma perm fresh fresh:
fixes a b::”var”
assumes ”a] x” and ”b] x”
shows ”[(a,b)]•x = x”
. . .

In order to keep formulae in goals manageable, one often wants to switch
between a tupled version of freshness and an equivalent un-tupled series
of freshness-conjunctions. For this the built-in simplifier has been set up so
that it can solve automatically goals such as:

lemma fresh tuples:
fixes a::”var”
shows ”a] (t1,t2) =⇒ a] t1 ∧ a] t2”
and ”[[a] t1; a] t2]] =⇒ a] (t1,t2)”
and ”a] (t1,t2) =⇒ a] t2”
and ”a] (t1,t2) =⇒ a] (t2,t1,t1,t2)”
by simp all

Although the reasoning infrastructure in Nominal Isabelle is designed to
minimise the need of generating fresh atoms, sometimes there is no way
around generating one. To facilitate this, the tactic generate fresh has been
introduced. For example a fresh atom with type var is generated by applying
the tactic

apply(generate fresh ”var”)

This tactic will scan for all variables in the current goal and then introduce
a new assumption with an atom being fresh for all the variables for which
the tactic can determine that they have finite support.

3.6 Permutation Types and Finitely Supported Types

The file Nominal.thy is a library containing general facts about support and
freshness. These facts depend on the permutation operation to behave prop-
erly on every type it acts on. In order to make precise what behaving prop-
erly means, the following predicate is defined in Nominal.thy:

pt TYPE(‘a) TYPE(‘x) ≡ ∀ x. [] • x = x
∧ ∀π1 π2 x. (π1 @ π2) • x = π1 • π2 • x
∧ ∀π1 π2 x. π1 , π2 −→ π1 • x = π2 • x

(3.1)

27

This predicate takes two types as arguments (indicated by the keyword
TYPE2): the first type is an arbitrary type over which the permutaion acts
and the second is an atom-type over which permutations are built. These
arguments impose the following type-constraints on the right-hand side: in
the first clause x has type ‘a and the empty list is of type ‘x prm; in the
second and third clause x has type ‘a, and π1 and π2 have type ‘x prm. The
type argement of pt are necessary because HOL does not allow any free
type-variables on the right-hand sides of definitions.

The idea of the predicate pt is that a type ‘a is a permutation type with
respect to the atom-type ‘x provided the identity permutation (empty list)
leaves all elements of ‘x unchanged, that a composition of two permutations
can be “un-composed” and that the application of two equal permutations
has to produce the same result (see Page 23 for the definition of permutation
equality). These three properties are sufficient to infer most facts about
support and freshness.

The predicate pt is used, for example, in the proof of the fact about all
swappings leaving an object unchanged implies that also all permutations
leave this object unchanged.

lemma pt swap eq aux:
fixes y :: ”‘a”
assumes ”pt TYPE(‘a) TYPE(‘x)”
and ”∀ (a::‘x) (b::‘x). [(a,b)]•y = y”
shows ”∀π::‘x prm. π•y = y”
. . .

Nominal.thy proves a number of lemmas which show that pt holds “heredi-
tarily” through the type-structure. For example

lemma
shows pt unit inst: ”pt TYPE(unit) TYPE(‘x)”
and pt bool inst: ”pt TYPE(bool) TYPE(‘x)”
and pt list inst: ”pt TYPE(‘a) TYPE(‘x) =⇒ pt TYPE(‘a list) TYPE(‘x)”
and pt prod inst: ”[[pt TYPE(‘a) TYPE(‘x); pt TYPE(‘b) TYPE(‘x)]]

=⇒ pt TYPE(‘a × ‘b) TYPE(‘x)”
. . .

Such lemmas allow one to lift the above lemma pt swap eq aux to apply to
‘a lists, for example. Resolving pt swap eq aux with pt list inst by writing

pt swap eq aux[OF pt list inst]

gives the lemma

2See Section 2.3.2 in Wenzel [2007] for more deatils about this construction.

28

lemma pt swap eq aux for lists:
fixes y :: ”‘a list”
assumes ”pt TYPE(‘a) TYPE(‘x)”
and ”∀ (a::‘x) (b::‘x). [(a,b)]•y = y”
shows ”∀π::‘x prm. π•y = y”
. . .

where the difference is that y has type ‘a list. Such lifting of lemmas is
automated in Nominal Isabelle employing axiomatic type classes (which are
described in Wenzel [2004]). This mechanism is explained next.

The atom declaration generates for each atom type two axiomatic type-
classes, which state the conditions for permutation types and finitely sup-
ported types. These type-classes are named pt typei and fs typei where typei
ranges over the atom types introduced by atom decl. Nominal Isabelle de-
rives a number of instance proofs so that Isabelle’s type-system can in most
circumstances automatically infer when a type is a permutation type and/or
a finitely supported type. Nominal datatypes are always permutation types
and their elements are always finitely supported, see Chapter 4. Sets and
functions are permutation types, but not finitely supported types (there are
some infinite sets and some functions that do not have finite support).

3.7 Abstractions and Alpha-Equivalence

As we shall see in Chapter 4 nominal datatypes represent alpha-equivalence
classes.

29

Chapter 4

Nominal Datatypes

4.1 Declaration

In contrast to standard datatypes of Isabelle/HOL, nominal datatypes rep-
resent alpha-equivalence classes. They can be declared using the nomi-
nal datatype keyword. Its syntax is similar to the standard datatype decla-
ration, except it allows one to specify where binders occur using � � . For
example alpha-equated lambda-terms can be specified as:

nominal datatype lam =
Var ”var”
| App ”lam” ”lam”
| Lam ”�var�lam”

assuming that var has been declared as an atom type. The constructor Lam
is then treated as a constructor with two arguments: a var and a lam. This
means one can write Lam a t. However, it is often more convenient to intro-
duce special syntax annotations for constructors with binders. One example
of such an annotation is

nominal datatype lam =
Var ”var”
| App ”lam” ”lam”
| Lam ”�var�lam” (”Lam []. ” [100,100] 100)

which allows one to write, instead of Lam a t, the more memorable Lam [a].t
for lambda-abstractions. (Note that λ is already in use by Isabelle and can-
not be used in special syntax.) However this kind of direct syntax anno-
tation does not work in situations when one wants to change the order of
arguments. For example the lambda-calculus with let can be specified as

30

nominal datatype lam =
Var ”var”
| App ”lam” ”lam”
| Lam ”�var�lam” (”Lam []. ” [100,100] 100)
| Let ”�var�lam” ”lam”

To obtain the usual notation for Lets, one can use the following abbreviation:

abbreviation
LetBe :: ”var⇒lam⇒lam⇒lam” (”Let be in ” [100,100,100] 100)

where
”Let x be t1 in t2 ≡ lam.Let x t2 t1”

Nested binders can be specified as shown in the following nominal datatype
where the first argument in ImpR abstracts over a name and a coname.

nominal datatype trm =
Ax ”name” ”coname”
| Cut ”�coname�trm” ”�name�trm”
| ImpR ”�name��coname�trm” ”coname”
| ImpL ”�coname�trm” ”�name�trm” ”name”

Currently the following restrictions are in place for nominal datatypes:

• inside � � only one atom type is allowed

• no type variables (that is ‘a and so on) are allowed in nominal datatype
definitions

• no nested types are allowed; they need to be explicitly defined as mu-
tual recursive datatype, and

• no function types can be used (the reason is that it is generally too
difficult to ensure automatically that functions have finite support).

The first and third restriction seem in practice the most inconvenient ones
and the hope is that they can be lifted in future versions of Nominal Isabelle.
This is desirable, because at the moment type-schemes from Hindley-Milner
typing algorithm, for example, need to be specified as

nominal datatype ty =
TVar ”var”
| Fun ”ty” ”ty” (” → ” [100,100] 100)

nominal datatype tyS =
Ty ”ty”
| All ”�var�tyS” (”∀ []. ” [100,100] 100)

31

instead of abstracting a list or set of names. Also the third restriction is
annoying: while with standard datatypes one can declare

datatype trm =
Var ”var”
| Fun ”trm list”

this is not yet possible with nominal datatypes. Instead, the trm-lists need
to be explicitly unfolded like

nominal datatype trm =
Var ”var”
| Fun ”trm list”
and trm list =
MyNil
| MyCons ”trm” ”trm list”

This is quite awkward and can at the moment only be circumvented in cases
the nominal datatype has no binders. In such cases one can declare the
datatype using the normal datatype-mechanism and manually provide a
permutation operation for this datatype (see Section ?? for further details).

For nominal datatypes a number of lemmas are automatically generated.
The most important are named

nominal-datatype-name.perm

nominal-datatype-name.supp

nominal-datatype-name.fresh

nominal-datatype-name.inject

In case of the lambda-calculus they are defined as follows:

lemma lam.perm:
fixes π::”var prm”
shows ”π • Var x = Var (π • x)”
and ”π • App t1 t2 = App (π • t1) (π • t2)”
and ”π • Lam [x].t = Lam [(π • x)].(π • t)”

lemma lam.supp:
shows ”supp (Var x) = (supp x)”
and ”supp (App t1 t2) = (supp t1) ∪ (supp t2)”
and ”supp (Lam [x].t) = (supp ([x].t))”

32

lemma lam.fresh:
shows ”a] (Var x) = a] x”
and ”a] (App t1 t2) = (a] t1 ∧ a] t2)”
and ”a] (Lam [x].t) = (a] [x].t)”

lemma lam.inject:
shows ”(Var x = Var y) = (x = y)”
and ”(App t1 t2 = App s1 s2) = (t1 = s1 ∧ t2 = s2)”
and ”(Lam [x].t1 = Lam [y].t2) = ([x].t1 = [y].t2)”

While the first three lemmas are added to the simplifier, please note that for
nominal datatypes the lemma nominal-datatype-name.inject is not automat-
ically added to the simplifier (unlike for standard datatypes).

4.2 Strong Structural Inductions

Nominal Isabelle provides for every nominal datatype a “weak” induction
principle, whose name is nominal-datatype-name.induct. In case of the lambda-
calculus it is as follows:∧

x. P (Var x)∧
t1 t2. [[P t1; P t2]] =⇒ P (App t1 t2)∧
x t. P t =⇒ P (Lam [x].t)

P t

(4.1)

This induction principle can be used to show, for example, that swapping the
atom a with itself behaves like an identity on lambda terms, see Figure 4.1
for a detailed Isar-proof of this fact.

This induction principle is “weak”, because one has to prove the lambda-
case for all binders x (note the meta-quantification

∧
x in (4.1)). While

this is no problem in the proof shown in Figure 4.1, in more complicated
circumstances it means that one has to find a suitable renaming to get the
Lam-case through. In order to reduce the amount of effort in such circum-
stances, strong induction principles are automatically generated for nomi-
nal datatypes. In case of the lambda-calculus the strong induction principle

33

lemma swap id:1

fixes a::”var” and t::”lam”2

shows ”[(a,a)] • t = t”3

proof (induct t rule: lam.induct)4

case (Var x)5

show ”[(a,a)] • Var x = Var x” by (simp add: calc atm)6

next7

case (App t1 t2)8

have ih1: ”[(a,a)] • t1 = t1” and ih2: ”[(a,a)] • t2 = t2” by fact+9

then show ”[(a,a)] • App t1 t2 = App t1 t2” by simp10

next11

case (Lam x t)12

have ih: ”[(a,a)] • t = t” by fact13

then show ”[(a,a)] • Lam [x].t = Lam [x].t” by (simp add: calc atm)14

qed15

Figure 4.1: A simple proof illustrating the use of the “weak” induction prin-
ciple lam.induct: the proof shows that swapping an atom a with itself leaves
lambda-terms unchanged.

(called lam.induct) is as follows:

∧
x c. P c (Var x)∧
t1 t2 c. [[

∧
c‘. P c‘ t1;

∧
c‘. P c‘ t2]] =⇒ P c (App t1 t2)∧

x t c. [[x] c;
∧

c‘. P c‘ t]] =⇒ P c (Lam [x].t)

P c t

(4.2)

where c stands for the freshness context of the induction. The precondition
x] c in the third case implies that one has to prove the lambda-case for
only those binders x that are fresh with respect to this context. This usu-
ally makes the binder cases as simple as the informal reasoning where the
variable convention is employed.

Before we give an example, we shall describe how strong structural induc-
tions can be used (the usual method induct does not work with them). To
apply a strong structural induction principle one has to use the method
nominal induct, which applies a strong induction rule and helps with in-
stantiating the freshness context. Its syntax is

(nominal induct x1. . .xn
arbitrary: y1. . .ym
avoiding: z1. . .zk

rule: name-of-the-strong-induction-rule)

34

where arbitrary and avoiding are optional. The meaning of the variables
are:

• the xi stand for the variables over which the induction is done (in
structural inductions this is only a single variable),

• the yj stand for the variables that are generalised in the induction, and

• the zl stand for the variables in the freshness context of the nominal
induction—this context describes what is usually meant be the vari-
able convention.

For example when proving the usual substitution lemma1 in the lambda-
calculus

lemma substitution lemma:
assumes a: ”x 6= y” and b: ”x] L”
shows ”M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]”

the induction proceeds over the structure of M (no generalisation is needed
for the induction to go through). If one follows the proof of this lemma
given in Barendregt [1981], then in the lambda-case it is assumed that the
binder, say z, has to satisfy the following constraints: z 6= x, z 6= y, z] N and
z] L. These assumptions are usually justified by the variable convention. To
formalise Barendregt’s proof, one can set up the induction using:

(nominal induct M avoiding: x y N L rule: lam.induct)

In the lambda-case one can then assume the constraints from the variable
convention. This means we can formalise the proof of the substitution
lemma roughly as follows:

lemma substitution lemma:1

assumes a: ”x 6= y” and b: ”x] L”2

shows ”M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]”3

using a b4

proof (nominal induct M avoiding: x y N L rule: lam.strong induct)5

case (Var z) . . .6

next7

case (App M1 M2) . . .8

next9

case (Lam z M1)10

have vc: ”z] x” ”z] y” ”z] N” ”z] L” by fact11
. . .12

qed13

1The substitution function for the nominal datatype lam will be defined in Section 4.4.

35

where Line 11 contains the freshness assumptions about the binder z. With
those assumptions the proof of the substitution lemma is quite simple and
does not need any renaming of binders—just like the proof of Barendregt.

4.3 Equivariance Lemmas

An important concept in the nominal logic work is equivariance [Pitts, 2003].
In Nominal Isabelle, definition of functions and inductive definition (de-
scribed in the next sections) rely on this concept. Therefore a special at-
tribute, called [eqvt], has been introduced for indicating when a lemma
establishes the equivariance of a function or a relation. A function f is equiv-
ariant provided

π•(f x1. . .xn) = f (π•x1). . .(π•xn)

holds where the xi stand for all the arguments of f. A relation R is equivari-
ant provided

if R x1. . .xn then also R (π•x1). . .(π•xn)

holds. Again the xi stand for all the arguments of R. In order to make such
lemmas known to the system, they can be tagged with the attribute [eqvt].
Two examples are

lemma substitution is equivariant[eqvt]:
fixes π::”var prm”
shows ”π•(t1[x::=t2]) = (π•t1)[(π•x)::=(π•t2)]”
. . .

lemma equality over lam is equivariant[eqvt]:
fixes π::”var prm”
and s t::”lam”
assumes ”s = t”
shows ”(π•s) = (π•t)”
. . .

When the [eqvt]-attribute is attached to a lemma, the system checks that
certain conditions are satisfied. In case of functions, where the equivariance
lemma must be of the form lhs = rhs, the conditions state that the left-
hand side must be of the form π • expr and the right-hand side must be
equal to expr except that every free variable, say x, in it is replaced by
π •x (see lemma substitution is equivariant above). In case of relations the
conclusion must be equal to the premise, except again that the permutation
π acts on every free variable in the conclusion. When the conditions are not
met then the following error message is displayed at the end of the proof:

36

*** Error in attribute "Nominal.eqvt":
*** "offending lemma" does not comply with the

form of an equivariance lemma ...

A number of lemmas that are generated by Nominal Isabelle get automat-
ically tagged with the [eqvt]-attribute. Some of them are listed in Ap-
pendix B.1. Also all constructors of a nominal datatype have equivariance
lemmas. For example for lambda-terms we have:

lemma lam.perm[eqvt]:
fixes π::”var prm”
shows ”π • Var x = Var (π • x)”
and ”π • App t1 t2 = App (π • t1) (π • t2)”
and ”π • Lam [x].t = Lam [(π • x)].(π • t)”

The equivariance lemmas are collected under the theorem called eqvts.
Therefore one can use them in proofs using the standard proving tools. For
example

• (simp add: eqvts)

• (rule eqvts)

The crucial point of equivariance is that an equivariant function (similar
relations) have empty support. This fact will play a crucial role in the next
section.

4.4 Function Definitions

To be done.

nominal primrec
subst :: ”lam⇒var⇒lam⇒lam” (” [::=]” [100,100,100] 100)

where
”(Var x)[y::=t‘] = (if x=y then t‘ else (Var x))”
| ”(App t1 t2)[y::=t‘] = App (t1[y::=t‘]) (t2[y::=t‘])”
| ”x] (y,t‘) =⇒ (Lam [x].t)[y::=t‘] = Lam [x].(t[y::=t‘])”
apply(finite guess)+
apply(rule TrueI)+
apply(simp add: abs fresh)
apply(fresh guess)+
done

37

4.5 Inductive Definitions and Strong Rule Induction
Principles

Inductive definition can be declared in Isabelle using the inductive mecha-
nism. If such a definition contains nominal datatypes, then one often needs
a stronger induction principle that has the variable convention built in.
The strengthening can be achieved using the command nominal inductive.
While the strengthening is completely automatic in case of structural induc-
tions (see Sec. 4.2), there is in some work needed from the user in case of
strong inductions for inductive definitions. This is because the strengthening
relies on three facts

• the inductive definition has to be equivariant and

• every rule of an inductive definition has to be formulated so that no
variable standing for a binder occurs in the support of this rule, and

• if there are more than one binder in a rule, then these binders also
need to be distinct.

While the first property can often be automatically derived using the com-
mand equivariance, the latter two require some proof obligations to be
discharged.

As an example consider the inductive definition for the typing relation in the
simply-typed lambda-calculus. The nominal datatypes for terms and types
are defined as:

nominal datatype lam =
Var ”var”
| App ”lam” ”lam”
| Lam ”�var�lam” (”Lam []. ” [100,100] 100)

nominal datatype ty =
TVar ”string”
| TArr ”ty” ”ty” (” → ” [100,100] 100)

Typing contexts will be represented as lists of (var,ty)-pairs. We need to
ensure that a var in a context has only one associated type. This can be
achieved with a validity predicate defined inductively as:

inductive
valid :: ”(var×ty) list⇒ bool”

where
[intro]: ”valid []”
| [intro]: ”[[valid Γ; x] Γ]]=⇒ valid ((x,T)#Γ)”

38

The typing judgement can then be defined by the rules:

inductive
typing :: ”(var×ty) list⇒lam⇒ty⇒bool” (” ` : ” [60,60,60] 60)

where
ty var[intro]: ”[[valid Γ; (x,T) ∈ set Γ]] =⇒ Γ ` (Var x) : T”
| ty app[intro]: ”[[Γ ` t1 : T1→T2; Γ ` t2 : T1]] =⇒ Γ ` App t1 t2 : T2”
| ty lam[intro]: ”[[x] Γ; (x,T1)#Γ ` t : T2]] =⇒ Γ ` Lam [x].t : T1→T2”

With this inductive definition comes automatically an induction principle,
called typing.induct. However, as said before, this induction principle is
too weak for establishing any non-trivial fact about typing. In order to
strengthen it, we need to make sure that the typing relation is equivariant,
that means the property

Γ ` t : T =⇒ π • Γ ` π • t : π • T

holds. For this, we have to make sure that every side-condition in the defi-
nition of typing is equivariant. That means, for example, for the rule ty var
that valid, pairing, ∈, set and Var must be equivariant. Nominal Isabelle
knows that the latter four are equivariant, but not that the user-defined
predicate valid is. Therefore attempting to prove equivariance of typing
using the command equivariance will fail: the statement

equivariance typing

results in the error message

*** Could not prove equivariance for introduction rule
*** [[valid Γ; (x, T) ∈ set Γ]] =⇒ Γ ` Var x : T

...

where the second line indicates the rule, which causes equivariance to fail
(in this case ty var). To solve the problem equivariance of valid needs to be
proved first. This can done by stating

equivariance valid

This succeeds because [],], # and pairing, which are used in the definition
of valid, are all equivariant. Having equivariance of valid at the disposal,
the statement

equivariance typing

39

succeeds.

Now we can strengthen the induction principle for the typing relation using
nominal inductive. Issuing

nominal inductive typing

will open a proof requiring to show the following three goals:

[[x] Γ; (x, T1) # Γ ` t : T2]] =⇒ x] Γ
[[x] Γ; (x, T1) # Γ ` t : T2]] =⇒ x] Lam [x].t
[[x] Γ; (x, T1) # Γ ` t : T2]] =⇒ x] T1→T2

These goals correspond to the rule ty lam of the typing-relation (the only
rule where a binder occurs). They ensure that the binder x does not appear
freely in the conclusion of ty lam, i.e. Γ ` Lam [x].t : T1→T2 . The first one
is implied by the side-condition x] Γ in ty lam; the second holds because x
is bound in Lam [x].t; the last one holds since vars cannot appear in types.
However we need a little side-lemma which establishes this last fact:

lemma fresh ty:
fixes x::”var”
and T::”ty”
shows ”x] T”

by (nominal induct T rule: ty.strong induct)
(simp all add: fresh string)

Armed with this side-lemma, we can complete the proof opened by nomi-
nal inductive as follows:

nominal inductive typing
by (simp all add: fresh ty abs fresh)

This results in the following strong induction principle, called typing.strong induct,
being proved:

Γ ` t : T
[[valid Γ; (x, T) ∈ set Γ]] =⇒ P c Γ (Var x) T
[[Γ ` t1 : T1→T2;

∧
c‘. P c‘ Γ t1 (T1→T2); Γ ` t2 : T1;

∧
c‘. P c‘ Γ t2 T1]] =⇒ P c Γ (App t1 t2) T2

[[x] c; x] Γ; (x,T1)#Γ ` t : T2;
∧

c‘. P c‘ ((x,T1)#Γ) t T2]] =⇒ P c Γ (Lam [x].t) (T1→T2)

P c Γ t T

We will show next that this stronger version of the induction principle is
quite useful for formalising proofs that use the variable convention. Like in
the case of the strong structural induction principles for nominal datatypes,

40

we can instantiate the freshness context c of the induction so that the binder
x in the lambda-case is fresh with respect to this context. Consider Figure 4.2
where the weakening lemma is proved. In the lambda-case of this proof the
fact that the binder x is fresh for the typing-context Γ2 is needed—otherwise
we would have to do explicit renamings as the rule ty lam requires that
x] Γ2 and we also cannot establish that valid ((x, T1) # Γ2) holds. However
we can establish these facts by stating in nominal induct that Γ2 should be
avoided.

A disadvantage of nominal inductive is that the automatic proof often re-
quires that one states the rules for the inductively defined predicate slightly
different than one is used to from “pencil-and-paper” reasoning. Recall that
one requirement for the automatic strengthening is that no binder should
not be in the upport of the conclusion of a rule. Now consider the following
definition of beta-reduction:

inductive
beta :: ”lam⇒lam⇒bool” (” −→β ” [80,80] 80)

where
AppL: ”s1 −→β s2 =⇒ App s1 t −→β App s2 t”
| AppR: ”s1 −→β s2 =⇒ App t s1 −→β App t s2”
| Lam: ”s1 −→β s2 =⇒ Lam [x].s1 −→β Lam [x].s2”
| Beta: ”App (Lam [x].s1) s2 −→β s1[x::=s2]”

The rules lam and beta contain the binder x and in order to strengthen
the induction principle in both cases the x needs to be fresh for the rules’
conclusion. When stating

nominal inductive beta

we are required to discharge the following four proof-obligations

s1 −→β s2 =⇒ x] Lam [x].s2

s1 −→β s2 =⇒ x] Lam [x].s2

x] App (Lam [x].s1) s2

x] s1[x::=s2]

where we can easily discharge the first two (so rule lam is ok), but the last
two are unprovable: x is fresh for Lam [x].s1, but it may occur in s2. As for
the term s1[x::=s2], we know that any occurrences of x in s1 will be masked
by the substitution, but x may again be free in s2. To obtain automatically a
strong induction principle for beta-reduction, it must be defined as:

inductive
beta :: ”lam⇒lam⇒bool” (” −→β ” [80,80] 80)

where

41

abbreviation1

sub ctxt :: ”(var×ty) list⇒(var×ty) list⇒bool” (” ⊆ ” [60,60] 60)2

where3

”Γ1 ⊆ Γ2 ≡ ∀ x T. (x,T) ∈ set Γ1 −→ (x,T) ∈ set Γ2”4

5

lemma weakening:6

fixes Γ1::”(var×ty) list”7

and t ::”lam”8

and T ::”ty”9

assumes asms: ”Γ1 ` t : T” ”valid Γ2” ”Γ1 ⊆ Γ2”10

shows ”Γ2 ` t : T”11

using asms12

proof (nominal induct avoiding: Γ2 rule: typing.strong induct)13

case (ty var Γ1 x T) (variable case)14

have ”Γ1 ⊆ Γ2” by fact15

moreover16

have ”valid Γ2” by fact17

moreover18

have ”(x,T) ∈ set Γ1” by fact19

ultimately show ”Γ2 ` Var x : T” by auto20

next21

case (ty lam x Γ1 T1 t T2) (lambda case)22

have vc: ”x] Γ2” by fact23

have ih: ”
∧

Γ3. [[valid Γ3; (x,T1)#Γ1 ⊆ Γ3]] =⇒ Γ3 ` t : T2” by fact24

have ”Γ1 ⊆ Γ2” by fact25

then have ”(x,T1)#Γ1 ⊆ (x,T1)#Γ2” by simp26

moreover27

have ”valid Γ2” by fact28

then have ”valid ((x,T1)#Γ2)” using vc by auto29

ultimately have ”(x,T1)#Γ2 ` t : T2” using ih by simp30

with vc show ”Γ2 ` Lam [x].t : T1→T2” by auto31

qed (auto) (application case is automatic)32

Figure 4.2: The Isar-proof for the weakening lemma. In Lines 1-4 the notion
of a sub-context is defined for lists. The interesting case in the weakening
lemma (Lines 22-31) crucially depends on the assumption that x]Γ2 holds
(Line 23). This fact is used in Lines 29 and 31. It is obtained by using the
strong induction principle for the typing relation and setting up the induc-
tion so that it avoids Γ2 (Line 13).

42

AppL: ”s1 −→β s2 =⇒ App s1 t −→β App s2 t”
| AppR: ”s1 −→β s2 =⇒ App t s1 −→β App t s2”
| Lam: ”s1 −→β s2 =⇒ Lam [x].s1 −→β Lam [x].s2”
| Beta: ”x] s2 =⇒ App (Lam [x].s1) s2 −→β s1[x::=s2]”

where in the last clause the freshness constraint x] s2 is added. With this
additional constraint, we are able to use nominal inductive to generate the
strong induction principle beta.strong induct.

nominal inductive beta
by (simp all add: abs fresh fresh subst)

Adding the constraint, however, is annoying because both versions of beta
can be shown to define the same reduction relation. While it is prossible
to use the simpler version of beta and then derive manually a strong in-
duction principle, the possibility of having the strong induction principle
automatically derived by nominal inductive often outweighs the benefits
of being word-for-word faithful to the “pencil-and-paper” definitions. If one
really prefers the simpler version for the beta-rule, then one can prove the
following lemma which alpha-converts the terms before applying the more
restricted version of the beta-rule:

lemma better beta intro:
shows ”App (Lam [x].s1) s2 −→β s1[x::=s2]”

proof -
obtain x‘::”var” where fs: ”x‘] (x,s1,s2)” by (rule exists fresh, rule fin supp, blast)
have ”App (Lam [x].s1) s2 = App (Lam [x‘].([(x‘,x)]•s1)) s2” using fs
by (rule tac sym, perm simp add: lam.inject alpha fresh atm fresh prod)

also have ”. . . −→β ([(x‘,x)]•s1)[x‘::=s2]” using fs by (simp add: beta.Beta)
also have ”. . . = s1[x::=s2]” using fs by (simp add: subst rename)
finally show ”App (Lam [x].s1) s2 −→β s1[x::=s2]” by simp

qed

where we need the side-lemma

lemma subst rename:
assumes a: ”x‘] s1”
shows ”([(x‘,x)]•s1)[x‘::=s2] = s1[x::=s2]”

using a
by (nominal induct s1 avoiding: x x‘ s2 rule: lam.strong induct)

(auto simp add: calc atm fresh atm abs fresh)

Nominal inductive has one advanced feature that has not yet shown up in
the given examples: in some cases one wants to strengthen over a variable
which is not a binder. For example Crary [2005] defines the following types
for lambda-terms:

43

nominal datatype ty =
TBase
| TUnit
| Arrow ”ty” ”ty” (” → ” [100,100] 100)

and then defines the following two mutually recursive relations

inductive
alg equiv:: ”(var×ty) list⇒lam⇒lam⇒ty⇒bool” (” ` ⇔ : ”)

and
alg path equiv:: ”(var×ty) list⇒lam⇒lam⇒ty⇒bool” (” ` ↔ : ”)

where
QAT Base: ”[[s ⇓ p; t ⇓ q; Γ ` p↔ q : TBase]] =⇒ Γ ` s⇔ t : TBase”
| QAT Arrow: ”[[x] (Γ,s,t); (x,T1)#Γ ` App s (Var x)⇔ App t (Var x) : T2]]

=⇒ Γ ` s⇔ t : T1 → T2”
| QAT One: ”valid Γ =⇒ Γ ` s⇔ t : TUnit”
| QAP Var: ”[[valid Γ; (x,T) ∈ set Γ]] =⇒ Γ ` Var x↔ Var x : T”
| QAP App: ”[[Γ ` p↔ q : T1 → T2; Γ ` s⇔ t : T1]] =⇒ Γ ` App p s↔ App q t : T2”

The interesting rule is QAT Arrow. Although no binder occurs in the defini-
tion at all, one wants in proofs by induction over this definition to be able
to assume that the variable x is sufficiently fresh (not just fresh for Γ, s and
t). Although not obvious, this is permitted because the x does not appear
in the conclusion of that rule. The strengthening of the induction principle
over this variable can be achieved by giving to nominal inductive the in-
formation that the strengthening should happen over x. For this one uses
avoids. For example strengthening the induction principle for the relations
above can be achieved by

equivariance alg equiv

nominal inductive alg equiv
avoids QAT Arrow: x
by (simp all add: fresh ty fresh prod)

Note that in mutual inductive definitions only one of the predicates needs to
be mentioned in equivariance and nominal inductive. The strong induc-
tion principle called

alg equiv alg path equiv.strong inducts

(note the “s” at the end used in mutually inductive definitions) can now be
used to do inductions over both relations.

Three technical points concerning nominal inductive should be noted: the
strengthening only works with inductive definition that have been declared

44

using inductive (does not work); in case the strengthening does not require
any subgoals to be discharged (this happens in the cases where the inductive
definition does not contain any binders), then the opened proof needs to be
closed by a dot, for example:

nominal inductive foo .

The general syntax for nominal inductive is

nominal inductive name-of-inductive-relation
avoids rule-name1: x1 x2 . . .
and rule-name2: y1 y2 . . .
. . .

At the moment there is also one limitation placed upon nominal inductive:
so far it cannot deal correctly with any logical connective in rules.

(Equivariance for different atom-types)

45

Chapter 5

Advanced Topics

5.1 Functions That Need to Generate Fresh Names

Sometimes functions explicitly depend on choosing fresh names. To ab-
stract away from any particular choice of such names, Pitts introduced the
function fresh fun (he called this function just fresh). This function takes
as argument a function that is of type atom to ‘a. The main property of
fresh fun is

if a] (h, ha) then fresh fun h = h a

where the function h needs to be finitely supported. With this, one can
effectively control when the choice of a fresh name is made in a proof. An
example where fresh fun needs to be used is the CPS-translation of Plotkin:

nominal primrec
CPS :: ”lam⇒ lam”

where
”CPS (Var x) = fresh fun (λk. Lam [k].(App (Var k) (Var x)))”
| ”CPS (Lam [x].M) =

fresh fun (λk. Lam [k].(App (Var k) (Lam [x].(CPS M))))”
| ”CPS (App M N) = fresh fun (λk. Lam [k].(App (CPS M)

(fresh fun (λm. Lam [m].(App (CPS N)
(fresh fun (λn. App (App (Var m) (Var n)) (Var k))))))))”

However, it is often a bit awkward to reason about fresh fun because one
can only replace fresh fun h with a freshly chosen name, say a, if one can
determine that a is fresh for the function h and the application h a (see
above).

To simplify the reasoning involving fresh fun, the tactic fresh fun simp has
been introduced. To use it, one has to first generate a fresh name using the

46

generate fresh tactic and then can apply this tactic. It uses the generated
fresh name to instantiate one instance of the fresh fun-term. In doing so, it
attempts to solve all conditions required by the main property of fresh fun.
If there are unsolved goals, then they are returned to the user. Using the
option (no asm) one can direct the tactic to only search for instances of
fresh fun in the conclusion of the current goal. Possible uses are:

• fresh fun simp

• fresh fun simp (no asm)

47

Chapter 6

Examples

Some examples are included in:

[ISABELLE HOME]/src/HOL/Nominal/Examples:

Weakening.thy a proof for weakening in the simply-typed lambda-calculus
Fsub.thy System F with subtyping (Part 1A of the PoplMmark Chal-

lenge [Aydemir et al., 2005, PoplMark Challenge])
Lam Funs.thy contains the definitions of important functions in the

lambda-calculus
CR.thy Church-Rosser proof from Barendregt’s lambda-calculus

book [1981]
CR Takahashi.thy a much simpler proof for the Church-Rosser property taken

from the work of Takahashi [1995] and Pollack [1995]
CK Machine.thy formalisation of soundness and completeness for a CBV CK-

machine; also type-preservation and progress are shown
SN.thy strong normalisation from the Proofs and Types book by Gi-

rard et al. [1989]
Height.thy a simple example suggested by D. Wang about the height of

lambda-terms
Lambda mu.thy datatype declaration for the lambda-mu calculus
Class.thy a verification of the main result from Urban [2000] about

cut-elimination in classical logic
SOS.thy some typical SOS-proofs about the simply-typed lambda-

calculus
Crary.thy a formalisation of the chapter on logical relations by Crary

[2005]
VC Compatible.thy gives two examples of faulty lemmas derived with the help

of the variable convention about binders
Support.thy includes some calculations of the support in non-trivial in-

stances

48

Contexts.thy shows the equivalence of beta-reduction defined in the
Plotkin-style and Felleisen-Hieb-style

Type Preservation.thy a type preservation proof for beta-reduction in the simply-
typed lambda-calculus

Standardization.thy a standardization proof by Matthes formalised by Berghofer

49

Appendix A

Frequently Asked Questions

A.1 The atom decl command does not work.

If you get the error message:

*** Outer syntax error: end of input expected,
*** but identifier "atom_decl" was found

while stepping through a theory-file, then the most likely problem is that
the key-word file for Nominal Isabelle has not been loaded. Make sure you
start Isabelle with the “-L HOL-Nominal” option.

isabelle emacs -L HOL-Nominal file.thy &

A.2 Can one avoid typing \<guillemotleft>?

If your X-Symbols are correctly installed and enabled in the menu “Proof-
General → Options”, then you can just type “<<” (that is two consecutive
less-thans). X-Symbols will automatically expand this to \<guillemotleft>.
Similarly with \<guillemotright>.

A.3 I want to prove something about support or fresh-
ness, but theorems which should be trivial can-
not be proved.

Attempting to prove the following lemma

50

lemma support trivial fails:
shows ”supp (App t1 t2) = (supp t1) ∪ (supp t2)”

will fail. The problem is that supp is a polymorphic constant and this equa-
tion is only provable with respect to a concrete atom type. The solution is
to give explicit type-annotations, for example

lemma support trivial fails:
shows ”supp (App t1 t2) = (supp t1) ∪ ((supp t2)::var set)”
by (simp add: lam.supp)

Similar type-annotations are necessary in lemmas involving freshness.

51

Appendix B

Infrastructure

B.1 Equivariance Lemmas

By tagging theorems with the [eqvt]-attribute they are included in the col-
lection of theorems named eqvts. The following general theorems have been
tagged by default:

• numbers 0, 1, 2. . . of types int and nat are equivariant

π • number of n = number of n
π • 0 = 0
π • 1 = 1

• logical connectives are equivariant

π • (A ∧ B) = (π • A ∧ π • B)
π • (A ∨ B) = (π • A ∨ π • B)
π • (A −→ B) = (π • A −→ π • B)
π • (¬ A) = (¬ π • A)

§ π • (x = y) = (π • x = π • y)
π • (if b then e1 else e2) = (if π • b then π • e1 else π • e2)

§ π • a] x = π • a] π • x
π • True = True
π • False = False

• units, products, lists and options are equivariant

52

π • () = ()
π • (x, y) = (π • x, π • y)
π • fst x = fst (π • x)
π • snd x = snd (π • x)
π • [] = []
π • (x # l) = π • x # π • l
π • (l1 @ l2) = π • l1 @ π • l2
π • Some x = Some (π • x)
π • None = None

• the following operators on sets are equivariant

π • {} = {}
π • (X ∪ Y) = π • X ∪ π • Y

§ π • insert x X = insert (π • x) (π • X)
§ π • (X - Y) = π • X - π • Y
§ π • (x ∈ X) = (π • x ∈ π • X)
π • set l = set (π • l)

• the following operators on ints and nats are equivariant

π • Suc x = Suc (π • x)
π • min x y = min (π • x) (π • y)
π • max x y = max (π • x) (π • y)
π • (x + y) = π • x + π • y
π • (x - y) = π • x - π • y
π • (x * y) = π • x * π • y
π • (x div y) = π • x div π • y

53

Bibliography

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C.,
Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., and Zdancewic, S.
[2005]. Mechanized Metatheory for the Masses: The PoplMark Challenge.
In Proc. of the 18th International Conference on Theorem Proving in Higher-
Order Logics (TPHOLs), volume 3603 of LNCS, pages 50–65.

Barendregt, H. [1981]. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland.

Crary, K. [2005]. Logical Relations and a Case Study in Equivalence Check-
ing. In Pierce, B. C., editor, Advanced Topics in Types and Programming
Languages, pages 139–160. MIT Press.

Girard, J.-Y., Lafont, Y., and Taylor, P. [1989]. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press.

Nipkow, T., Paulson, L. C., and Wenzel, M. [2002]. Isabelle HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag.

Pitts, A. M. [2003]. Nominal Logic, A First Order Theory of Names and
Binding. Information and Computation, 186:165–193.

Pitts, A. M. [2006]. Alpha-Structural Recursion and Induction. Journal of
the ACM, 53:459–506.

Pollack, R. [1995]. Polishing Up the Tait–Martin-Löf Proof of the Church-
Rosser Theorem. In Proc. of De Wintermöte ’95. Department of Computing
Science, Chalmers Univ. of Technology, Göteborg, Sweden.

PoplMark Challenge. http://www.cis.upenn.edu/group/proj/plclub/mmm/.

Takahashi, M. [1995]. Parallel Reductions in Lambda-Calculus. Information
and Computation, 118(1):120–127.

Urban, C. [2000]. Classical Logic and Computation. PhD thesis, Cambridge
University.

54

Wenzel, M. [2004]. Using Axiomatic Type Classes in Isabelle. Manual in the
Isabelle distribution.

Wenzel, M. [2007]. The Isabelle/Isar Implementation.

55

Index

\< bullet >, 19
\< sharp >, 19
generate fresh, 27
eqvt attribute, 36
fresh fun, 46
nominal datatype, 30
nominal primrec, 37
Aydemir et al. [2005], 48
Barendregt [1981], 8, 35, 48
Crary [2005], 43, 48
Girard et al. [1989], 48
Nipkow et al. [2002], 3
Pitts [2003], 24, 26, 36
Pitts [2006], 26
Pollack [1995], 6, 48
Takahashi [1995], 6, 48
Urban [2000], 48
Wenzel [2004], 29
Wenzel [2007], 28
PoplMark Challenge [], 48

abstraction, 19
atom decl, 20
atoms, 20

equivariance lemmas, 36

freshness, 19, 26
functions, 37

induction, 33

perm simp, 23
permutations, 21

support, 19, 24

type-classes, 27

56

	Introduction
	Installation

	A Quick Example
	Nominal Reasoning Infrastructure
	Preliminaries
	Atom Declarations
	Permutations
	Support
	Freshness
	Permutation Types and Finitely Supported Types
	Abstractions and Alpha-Equivalence

	Nominal Datatypes
	Declaration
	Strong Structural Inductions
	Equivariance Lemmas
	Function Definitions
	Inductive Definitions and Strong Rule Induction Principles

	Advanced Topics
	Functions That Need to Generate Fresh Names

	Examples
	Frequently Asked Questions
	The atom_decl command does not work.
	Can one avoid typing \<guillemotleft>?
	I want to prove something about support or freshness, but theorems which should be trivial cannot be proved.

	Infrastructure
	Equivariance Lemmas

