author | Christian Urban <christian.urban@kcl.ac.uk> |
Tue, 07 Jan 2025 12:42:42 +0000 | |
changeset 653 | 2807ec31d144 |
parent 415 | f1be8028a4a9 |
permissions | -rw-r--r-- |
415
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
1 |
theory IndExamples |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
2 |
imports Main |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
3 |
begin |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
4 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
5 |
section {* Transitive Closure *} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
6 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
7 |
text {* |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
8 |
Introduction rules: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
9 |
@{term "trcl R x x"} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
10 |
@{term "R x y \<Longrightarrow> trcl R y z \<Longrightarrow> trcl R x z"} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
11 |
*} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
12 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
13 |
definition "trcl \<equiv> \<lambda>R x y. |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
14 |
\<forall>P. (\<forall>x. P x x) \<longrightarrow> (\<forall>x y z. R x y \<longrightarrow> P y z \<longrightarrow> P x z) \<longrightarrow> P x y" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
15 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
16 |
lemma trcl_induct: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
17 |
assumes trcl: "trcl R x y" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
18 |
shows "(\<And>x. P x x) \<Longrightarrow> (\<And>x y z. R x y \<Longrightarrow> P y z \<Longrightarrow> P x z) \<Longrightarrow> P x y" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
19 |
apply (atomize (full)) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
20 |
apply (cut_tac trcl) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
21 |
apply (unfold trcl_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
22 |
apply (drule spec [where x=P]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
23 |
apply assumption |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
24 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
25 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
26 |
lemma trcl_base: "trcl R x x" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
27 |
apply (unfold trcl_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
28 |
apply (rule allI impI)+ |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
29 |
apply (drule spec) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
30 |
apply assumption |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
31 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
32 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
33 |
lemma trcl_step: "R x y \<Longrightarrow> trcl R y z \<Longrightarrow> trcl R x z" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
34 |
apply (unfold trcl_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
35 |
apply (rule allI impI)+ |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
36 |
proof - |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
37 |
case goal1 |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
38 |
show ?case |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
39 |
apply (rule goal1(4) [rule_format]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
40 |
apply (rule goal1(1)) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
41 |
apply (rule goal1(2) [THEN spec [where x=P], THEN mp, THEN mp, |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
42 |
OF goal1(3-4)]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
43 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
44 |
qed |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
45 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
46 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
47 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
48 |
section {* Even and Odd Numbers, Mutually Inductive *} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
49 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
50 |
text {* |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
51 |
Introduction rules: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
52 |
@{term "even 0"} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
53 |
@{term "odd m \<Longrightarrow> even (Suc m)"} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
54 |
@{term "even m \<Longrightarrow> odd (Suc m)"} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
55 |
*} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
56 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
57 |
definition "even \<equiv> \<lambda>n. |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
58 |
\<forall>P Q. P 0 \<longrightarrow> (\<forall>m. Q m \<longrightarrow> P (Suc m)) \<longrightarrow> (\<forall>m. P m \<longrightarrow> Q (Suc m)) \<longrightarrow> P n" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
59 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
60 |
definition "odd \<equiv> \<lambda>n. |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
61 |
\<forall>P Q. P 0 \<longrightarrow> (\<forall>m. Q m \<longrightarrow> P (Suc m)) \<longrightarrow> (\<forall>m. P m \<longrightarrow> Q (Suc m)) \<longrightarrow> Q n" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
62 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
63 |
lemma even_induct: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
64 |
assumes even: "even n" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
65 |
shows "P 0 \<Longrightarrow> (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
66 |
apply (atomize (full)) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
67 |
apply (cut_tac even) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
68 |
apply (unfold even_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
69 |
apply (drule spec [where x=P]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
70 |
apply (drule spec [where x=Q]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
71 |
apply assumption |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
72 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
73 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
74 |
lemma odd_induct: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
75 |
assumes odd: "odd n" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
76 |
shows "P 0 \<Longrightarrow> (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> Q n" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
77 |
apply (atomize (full)) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
78 |
apply (cut_tac odd) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
79 |
apply (unfold odd_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
80 |
apply (drule spec [where x=P]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
81 |
apply (drule spec [where x=Q]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
82 |
apply assumption |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
83 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
84 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
85 |
lemma even0: "even 0" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
86 |
apply (unfold even_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
87 |
apply (rule allI impI)+ |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
88 |
apply assumption |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
89 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
90 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
91 |
lemma evenS: "odd m \<Longrightarrow> even (Suc m)" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
92 |
apply (unfold odd_def even_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
93 |
apply (rule allI impI)+ |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
94 |
proof - |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
95 |
case goal1 |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
96 |
show ?case |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
97 |
apply (rule goal1(3) [rule_format]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
98 |
apply (rule goal1(1) [THEN spec [where x=P], THEN spec [where x=Q], |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
99 |
THEN mp, THEN mp, THEN mp, OF goal1(2-4)]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
100 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
101 |
qed |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
102 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
103 |
lemma oddS: "even m \<Longrightarrow> odd (Suc m)" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
104 |
apply (unfold odd_def even_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
105 |
apply (rule allI impI)+ |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
106 |
proof - |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
107 |
case goal1 |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
108 |
show ?case |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
109 |
apply (rule goal1(4) [rule_format]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
110 |
apply (rule goal1(1) [THEN spec [where x=P], THEN spec [where x=Q], |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
111 |
THEN mp, THEN mp, THEN mp, OF goal1(2-4)]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
112 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
113 |
qed |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
114 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
115 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
116 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
117 |
section {* Accessible Part *} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
118 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
119 |
text {* |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
120 |
Introduction rules: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
121 |
@{term "(\<And>y. R y x \<Longrightarrow> accpart R y) \<Longrightarrow> accpart R x"} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
122 |
*} |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
123 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
124 |
definition "accpart \<equiv> \<lambda>R x. \<forall>P. (\<forall>x. (\<forall>y. R y x \<longrightarrow> P y) \<longrightarrow> P x) \<longrightarrow> P x" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
125 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
126 |
lemma accpart_induct: |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
127 |
assumes acc: "accpart R x" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
128 |
shows "(\<And>x. (\<And>y. R y x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P x" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
129 |
apply (atomize (full)) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
130 |
apply (cut_tac acc) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
131 |
apply (unfold accpart_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
132 |
apply (drule spec [where x=P]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
133 |
apply assumption |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
134 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
135 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
136 |
lemma accpartI: "(\<And>y. R y x \<Longrightarrow> accpart R y) \<Longrightarrow> accpart R x" |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
137 |
apply (unfold accpart_def) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
138 |
apply (rule allI impI)+ |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
139 |
proof - |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
140 |
case goal1 |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
141 |
note goal1' = this |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
142 |
show ?case |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
143 |
apply (rule goal1'(2) [rule_format]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
144 |
proof - |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
145 |
case goal1 |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
146 |
show ?case |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
147 |
apply (rule goal1'(1) [OF goal1, THEN spec [where x=P], |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
148 |
THEN mp, OF goal1'(2)]) |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
149 |
done |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
150 |
qed |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
151 |
qed |
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
152 |
|
f1be8028a4a9
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff
changeset
|
153 |
end |