Nominal/activities/tphols09/IDW/ExampleConstruction.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 30 Mar 2016 17:27:34 +0100
changeset 415 f1be8028a4a9
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
415
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
theory IndExamples
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
imports Main
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
begin
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
section {* Transitive Closure *}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
text {*
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
  Introduction rules:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
  @{term "trcl R x x"}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
  @{term "R x y \<Longrightarrow> trcl R y z \<Longrightarrow> trcl R x z"}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
*}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
definition "trcl \<equiv> \<lambda>R x y.
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
  \<forall>P. (\<forall>x. P x x) \<longrightarrow> (\<forall>x y z. R x y \<longrightarrow> P y z \<longrightarrow> P x z) \<longrightarrow> P x y"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
lemma trcl_induct:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
  assumes trcl: "trcl R x y"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
  shows "(\<And>x. P x x) \<Longrightarrow> (\<And>x y z. R x y \<Longrightarrow> P y z \<Longrightarrow> P x z) \<Longrightarrow> P x y"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  apply (atomize (full))
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
  apply (cut_tac trcl)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
  apply (unfold trcl_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
  apply (drule spec [where x=P])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  apply assumption
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
lemma trcl_base: "trcl R x x"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  apply (unfold trcl_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
  apply (rule allI impI)+
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
  apply (drule spec)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
  apply assumption
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
lemma trcl_step: "R x y \<Longrightarrow> trcl R y z \<Longrightarrow> trcl R x z"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
  apply (unfold trcl_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  apply (rule allI impI)+
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
  proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
    case goal1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
    show ?case
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
      apply (rule goal1(4) [rule_format])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
      apply (rule goal1(1))
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
      apply (rule goal1(2) [THEN spec [where x=P], THEN mp, THEN mp,
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
	OF goal1(3-4)])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
      done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
  qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
section {* Even and Odd Numbers, Mutually Inductive *}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
text {*
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
  Introduction rules:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
  @{term "even 0"}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
  @{term "odd m \<Longrightarrow> even (Suc m)"}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  @{term "even m \<Longrightarrow> odd (Suc m)"}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
*}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
definition "even \<equiv> \<lambda>n.
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
  \<forall>P Q. P 0 \<longrightarrow> (\<forall>m. Q m \<longrightarrow> P (Suc m)) \<longrightarrow> (\<forall>m. P m \<longrightarrow> Q (Suc m)) \<longrightarrow> P n"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
definition "odd \<equiv> \<lambda>n.
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
  \<forall>P Q. P 0 \<longrightarrow> (\<forall>m. Q m \<longrightarrow> P (Suc m)) \<longrightarrow> (\<forall>m. P m \<longrightarrow> Q (Suc m)) \<longrightarrow> Q n"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
lemma even_induct:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
  assumes even: "even n"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
  shows "P 0 \<Longrightarrow> (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> P n"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
  apply (atomize (full))
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
  apply (cut_tac even)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
  apply (unfold even_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  apply (drule spec [where x=P])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
  apply (drule spec [where x=Q])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  apply assumption
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
lemma odd_induct:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
  assumes odd: "odd n"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
  shows "P 0 \<Longrightarrow> (\<And>m. Q m \<Longrightarrow> P (Suc m)) \<Longrightarrow> (\<And>m. P m \<Longrightarrow> Q (Suc m)) \<Longrightarrow> Q n"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
  apply (atomize (full))
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
  apply (cut_tac odd)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
  apply (unfold odd_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
  apply (drule spec [where x=P])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
  apply (drule spec [where x=Q])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
  apply assumption
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
lemma even0: "even 0"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
  apply (unfold even_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  apply (rule allI impI)+
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
  apply assumption
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
lemma evenS: "odd m \<Longrightarrow> even (Suc m)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
  apply (unfold odd_def even_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
  apply (rule allI impI)+
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
  proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
    case goal1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
    show ?case
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
      apply (rule goal1(3) [rule_format])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
      apply (rule goal1(1) [THEN spec [where x=P], THEN spec [where x=Q],
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
	THEN mp, THEN mp, THEN mp, OF goal1(2-4)])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
      done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
  qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
lemma oddS: "even m \<Longrightarrow> odd (Suc m)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
  apply (unfold odd_def even_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
  apply (rule allI impI)+
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
  proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
    case goal1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
    show ?case
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
      apply (rule goal1(4) [rule_format])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
      apply (rule goal1(1) [THEN spec [where x=P], THEN spec [where x=Q],
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
	THEN mp, THEN mp, THEN mp, OF goal1(2-4)])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
      done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
  qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
section {* Accessible Part *}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
text {*
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
  Introduction rules:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
  @{term "(\<And>y. R y x \<Longrightarrow> accpart R y) \<Longrightarrow> accpart R x"}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
*}
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
definition "accpart \<equiv> \<lambda>R x. \<forall>P. (\<forall>x. (\<forall>y. R y x \<longrightarrow> P y) \<longrightarrow> P x) \<longrightarrow> P x"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
lemma accpart_induct:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
  assumes acc: "accpart R x"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
  shows "(\<And>x. (\<And>y. R y x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P x"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
  apply (atomize (full))
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
  apply (cut_tac acc)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
  apply (unfold accpart_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
  apply (drule spec [where x=P])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
  apply assumption
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
lemma accpartI: "(\<And>y. R y x \<Longrightarrow> accpart R y) \<Longrightarrow> accpart R x"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
  apply (unfold accpart_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
  apply (rule allI impI)+
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
  proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
    case goal1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
    note goal1' = this
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
    show ?case
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
      apply (rule goal1'(2) [rule_format])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
      proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
        case goal1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
        show ?case
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
	  apply (rule goal1'(1) [OF goal1, THEN spec [where x=P],
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
            THEN mp, OF goal1'(2)])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
	  done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
      qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
    qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
end