Nominal/activities/cas09/Lec3.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 30 Mar 2016 17:27:34 +0100
changeset 415 f1be8028a4a9
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
415
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
(***************************************************************** 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
  
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
  Isabelle Tutorial
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
  -----------------
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
  2st June 2009, Beijing 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
*)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
theory Lec3
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
  imports "Main" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
begin
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
definition
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
  lang_seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ; _")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
where 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
  "L1 ; L2 = {s1@s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
fun
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
 lang_pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  "L \<up> 0 = {[]}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
| "L \<up> (Suc i) = L ; (L \<up> i)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
definition
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  lang_star :: "string set \<Rightarrow> string set" ("_\<star>")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
  "L\<star> \<equiv> \<Union>i. (L \<up> i)" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
lemma lang_seq_cases:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
  shows "(s \<in> L1 ; L2) = (\<exists>s1 s2. s = s1@s2 \<and> s1\<in>L1 \<and> s2\<in>L2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
by (simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
lemma lang_seq_union:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
  shows "(L1 \<union> L2);L3 = (L1;L3) \<union> (L2;L3)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
  and   "L1;(L2 \<union> L3) = (L1;L2) \<union> (L1;L3)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
unfolding lang_seq_def by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
lemma lang_seq_empty:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  shows "{[]} ; L = L"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
  and   "L ; {[]} = L"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
unfolding lang_seq_def by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
lemma lang_seq_assoc:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
  shows "(L1 ; L2) ; L3 = L1 ; (L2 ; L3)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
by (simp add: lang_seq_def Collect_def mem_def expand_fun_eq)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
   (metis append_assoc)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
lemma silly:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
  shows "[] \<in> L \<up> 0"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
lemma lang_star_empty:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
  shows "{[]} \<union> (L\<star>) = L\<star>"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
unfolding lang_star_def 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
by (auto intro: silly)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
lemma lang_star_in_empty:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
  shows "[] \<in> L\<star>"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
unfolding lang_star_def 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
by (auto intro: silly)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
lemma lang_seq_subseteq: 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
  shows "L \<subseteq> (L'\<star>) ; L"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
  and   "L \<subseteq> L ; (L'\<star>)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
  have "L = {[]} ; L" using lang_seq_empty by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
  also have "\<dots> \<subseteq> ({[]} ; L) \<union> ((L'\<star>) ; L)" by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
  also have "\<dots> = ({[]} \<union> (L'\<star>)) ; L" by (simp add: lang_seq_union[symmetric])
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  also have "\<dots> = (L'\<star>); L" using lang_star_empty by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
  finally show "L \<subseteq> (L'\<star>); L" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
  show "L \<subseteq> L ; (L'\<star>)" sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
lemma lang_star_subseteq: 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
  shows "L ; (L\<star>) \<subseteq> (L\<star>)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
unfolding lang_star_def lang_seq_def
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
apply(auto)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
apply(rule_tac x="Suc xa" in exI)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
apply(auto simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
(* regular expressions *)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
datatype rexp =
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
  EMPTY
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
| CHAR char
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
| SEQ rexp rexp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
| ALT rexp rexp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
| STAR rexp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
fun
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  L :: "rexp \<Rightarrow> string set"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
  "L(EMPTY) = {[]}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
| "L(CHAR c) = {[c]}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
| "L(SEQ r1 r2) = (L r1) ; (L r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
| "L(ALT r1 r2) = (L r1) \<union> (L r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
| "L(STAR r) = (L r)\<star>"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
definition
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
  Ls :: "rexp set \<Rightarrow> string set"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
  "Ls R = (\<Union>r\<in>R. (L r))"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
lemma 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
  shows "Ls {} = {}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
unfolding Ls_def by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
lemma Ls_union:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
  "Ls (R1 \<union> R2) = (Ls R1) \<union> (Ls R2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
unfolding Ls_def by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
function
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
  dagger :: "rexp \<Rightarrow> char \<Rightarrow> rexp set" ("_ \<dagger> _")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
  r1: "(EMPTY) \<dagger> c = {}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
| r2: "(CHAR c') \<dagger> c = (if c = c' then {EMPTY} else {})"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
| r3: "(ALT r1 r2) \<dagger> c = r1 \<dagger> c \<union> r2 \<dagger> c"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
| r4: "(SEQ EMPTY r2) \<dagger> c = r2 \<dagger> c" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
| r5: "(SEQ (CHAR c') r2) \<dagger> c = (if c= c' then {r2} else {})"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
| r6: "(SEQ (SEQ r11 r12) r2) \<dagger> c = (SEQ r11 (SEQ r12 r2)) \<dagger> c" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
| r7: "(SEQ (ALT r11 r12) r2) \<dagger> c = (SEQ r11 r2) \<dagger> c \<union> (SEQ r12 r2) \<dagger> c" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
| r8: "(SEQ (STAR r1) r2) \<dagger> c = 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
          r2 \<dagger> c \<union> {SEQ (SEQ r' (STAR r1)) r2 | r'. r' \<in> r1 \<dagger> c}" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
| r9: "(STAR r) \<dagger> c = {SEQ r' (STAR r) | r'. r' \<in> r \<dagger> c}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
by (pat_completeness) (auto)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
termination
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
  dagger sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
definition
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
  OR :: "bool set \<Rightarrow> bool"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
  "OR S \<equiv> (\<exists>b\<in>S. b)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
function
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
  matcher :: "rexp \<Rightarrow> string \<Rightarrow> bool" ("_ ! _")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
where
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
  s01: "EMPTY ! s = (s =[])"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
| s02: "CHAR c ! s = (s = [c])" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
| s03: "ALT r1 r2 ! s = (r1 ! s \<or> r2 ! s)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
| s04: "STAR r ! [] = True"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
| s05: "STAR r ! c#s = (False \<or> OR {SEQ (r') (STAR r)!s | r'. r' \<in> r \<dagger> c})"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
| s06: "SEQ r1 r2 ! [] = (r1 ! [] \<and> r2 ! [])"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
| s07: "SEQ EMPTY r2 ! (c#s) = (r2 ! c#s)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
| s08: "SEQ (CHAR c') r2 ! (c#s) = (if c'=c then r2 ! s else False)" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
| s09: "SEQ (SEQ r11 r12) r2 ! (c#s) = (SEQ r11 (SEQ r12 r2) ! c#s)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
| s10: "SEQ (ALT r11 r12) r2 ! (c#s) = ((SEQ r11 r2) ! (c#s) \<or> (SEQ r12 r2) ! (c#s))"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
| s11: "SEQ (STAR r1) r2 ! (c#s) = 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
         (r2 ! (c#s) \<or> OR {SEQ r' (SEQ (STAR r1) r2) ! s | r'. r' \<in> r1 \<dagger> c})"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
by (pat_completeness) (auto)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
termination 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
  matcher sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
lemma "(CHAR a) ! [a]" by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   160
lemma "\<not>(CHAR a) ! [a,a]" by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
lemma "(STAR (CHAR a)) ! []" by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
lemma "(STAR (CHAR a)) ! [a,a]" by (auto simp add: OR_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
lemma "(SEQ (CHAR a) (SEQ (STAR (CHAR b)) (CHAR c))) ! [a,b,b,b,c]" 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
  by (auto simp add: OR_def) 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
lemma holes:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
  assumes a: "Ls (r \<dagger> c) = {s. c#s \<in> L r}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
  shows "Ls (r \<dagger> c) ; L (STAR r) = {s''. c#s'' \<in> L (STAR r)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
proof -
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
  have "Ls (r \<dagger> c) ; L (STAR r) = {s. c#s \<in> L r} ; L (STAR r)" by (simp add: a)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
  also have "\<dots> = {s'. c#s' \<in> (L r ; L (STAR r))}" sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
  also have "\<dots> =  {s''. c#s'' \<in> L (STAR r)}" sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
  finally show "Ls (r \<dagger> c) ; L (STAR r) = {s''. c#s'' \<in> L (STAR r)}" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   175
    
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
lemma eq: 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
  shows "Ls (STAR r) \<dagger> c = (Ls (r \<dagger> c) ; L (STAR r))"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
proof
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
  show "Ls STAR r \<dagger> c \<subseteq> Ls r \<dagger> c ; L (STAR r)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
    by (auto simp add: lang_star_def lang_seq_def Ls_def) (blast)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
  show "Ls r \<dagger> c ; L (STAR r) \<subseteq> Ls STAR r \<dagger> c"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
    apply(auto simp add: lang_star_def lang_seq_def Ls_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
    apply(rule_tac x="SEQ xa (STAR r)" in exI)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
    apply(simp add: lang_star_def lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
    apply(blast)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
    done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   189
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
(* correctness of the matcher *)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
lemma dagger_holes:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
  "Ls (r \<dagger> c) = {s. c#s \<in> L r}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   193
proof (induct rule: dagger.induct)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   194
  case (1 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
  show "Ls (EMPTY \<dagger> c) = {s. c#s \<in> L EMPTY}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   196
    by (simp add: Ls_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   197
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   198
  case (2 c' c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   199
  show "Ls (CHAR c') \<dagger> c = {s. c#s \<in> L (CHAR c')}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   200
  proof (cases "c=c'")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   201
    assume "c=c'"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
    then show "Ls (CHAR c') \<dagger> c = {s. c#s \<in> L (CHAR c')}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   203
      by (simp add: Ls_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   204
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
    assume "c\<noteq>c'"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   206
    then show "Ls (CHAR c') \<dagger> c = {s. c#s \<in> L (CHAR c')}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   207
      by (simp add: Ls_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
  qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
  case (3 r1 r2 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
  have ih1: "Ls r1 \<dagger> c = {s. c#s \<in> L r1}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
  have ih2: "Ls r2 \<dagger> c = {s. c#s \<in> L r2}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
  show "Ls (ALT r1 r2) \<dagger> c = {s. c#s \<in> L (ALT r1 r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
    by (auto simp add: Ls_union ih1 ih2)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
  case (4 r2 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
  have ih: "Ls r2 \<dagger> c = {s. c#s \<in> L r2}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
  show "Ls (SEQ EMPTY r2) \<dagger> c = {s. c#s \<in> L (SEQ EMPTY r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
    by (simp add: ih lang_seq_empty)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
  case (5 c' r2 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
  show "Ls (SEQ (CHAR c') r2) \<dagger> c = {s. c#s \<in> L (SEQ (CHAR c') r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
  proof (cases "c=c'")
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
    assume "c=c'"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
    then show "Ls (SEQ (CHAR c') r2) \<dagger> c = {s. c#s \<in> L (SEQ (CHAR c') r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
      by (simp add: Ls_def lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   227
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
    assume "c\<noteq>c'"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
    then show "Ls (SEQ (CHAR c') r2) \<dagger> c = {s. c#s \<in> L (SEQ (CHAR c') r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
      by (simp add: Ls_def lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
  qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
  case (6 r11 r12 r2 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
  have ih: "Ls (SEQ r11 (SEQ r12 r2)) \<dagger> c = {s. c#s \<in> L (SEQ r11 (SEQ r12 r2))}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  show "Ls (SEQ (SEQ r11 r12) r2) \<dagger> c = {s. c # s \<in> L (SEQ (SEQ r11 r12) r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   236
    by (simp add: ih lang_seq_assoc)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   238
  case (7 r11 r12 r2 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
  have ih1: "Ls (SEQ r11 r2) \<dagger> c = {s. c#s \<in> L (SEQ r11 r2)}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
  have ih2: "Ls (SEQ r12 r2) \<dagger> c = {s. c#s \<in> L (SEQ r12 r2)}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
  show "Ls (SEQ (ALT r11 r12) r2) \<dagger> c = {s. c#s \<in> L (SEQ (ALT r11 r12) r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
    by (auto simp add: Ls_union ih1 ih2 lang_seq_union)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
  case (8 r1 r2 c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
  have ih1: "Ls r2 \<dagger> c = {s. c#s \<in> L r2}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   246
  have ih2: "Ls r1 \<dagger> c = {s. c#s \<in> L r1}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
  show "Ls (SEQ (STAR r1) r2) \<dagger> c = {s. c#s \<in> L (SEQ (STAR r1) r2)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
    sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   250
  case (9 r c)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   251
  have ih: "Ls r \<dagger> c = {s. c#s \<in> L r}" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
  show "Ls (STAR r) \<dagger> c = {s. c#s \<in> L (STAR r)}"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
    by (simp only: eq holes[OF ih] del: r9)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   254
qed
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
(* correctness of the matcher *)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
lemma macher_holes:
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   258
  shows "r ! s \<Longrightarrow> s \<in> L r"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   259
  and   "\<not> r ! s \<Longrightarrow> s \<notin> L r"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   260
proof (induct rule: matcher.induct)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   261
  case (1 s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   262
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   263
    have "EMPTY ! s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   264
    then show "s \<in> L EMPTY" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   265
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   266
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   267
    have "\<not> EMPTY ! s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   268
    then show "s \<notin> L EMPTY" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   269
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   270
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   271
  case (2 c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   272
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   273
    have "CHAR c ! s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   274
    then show "s \<in> L (CHAR c)" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   275
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   276
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   277
    have "\<not> CHAR c ! s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   278
    then show "s \<notin> L (CHAR c)" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   279
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   280
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   281
  case (3 r1 r2 s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   282
  have ih1: "r1 ! s \<Longrightarrow> s \<in> L r1" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   283
  have ih2: "\<not> r1 ! s \<Longrightarrow> s \<notin> L r1" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   284
  have ih3: "r2 ! s \<Longrightarrow> s \<in> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
  have ih4: "\<not> r2 ! s \<Longrightarrow> s \<notin> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
    have "ALT r1 r2 ! s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   288
    then show "s \<in> L (ALT r1 r2)" by (auto simp add: ih1 ih3)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   289
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
    have "\<not> ALT r1 r2 ! s" by fact 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   292
    then show "s \<notin> L (ALT r1 r2)" by (simp add: ih2 ih4)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   293
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   294
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   295
  case (4 r)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   296
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   297
    have "STAR r ! []" by fact 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   298
    then show "[] \<in> L (STAR r)" by (simp add: lang_star_in_empty)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   299
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   300
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   301
    have "\<not> STAR r ! []" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   302
    then show "[] \<notin> L (STAR r)" by (simp)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   303
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   304
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   305
  case (5 r c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   306
  have ih1: "\<And>rx. SEQ rx (STAR r) ! s \<Longrightarrow> s \<in> L (SEQ rx (STAR r))" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   307
  have ih2: "\<And>rx. \<not>SEQ rx (STAR r) ! s \<Longrightarrow> s \<notin> L (SEQ rx (STAR r))" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   308
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   309
    have as: "STAR r ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   310
    then have "\<exists>r' \<in> r \<dagger> c. SEQ r' (STAR r) ! s" by (auto simp add: OR_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   311
    then obtain r' where imp1: "r' \<in> r \<dagger> c" and imp2: "SEQ r' (STAR r) ! s" by blast
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   312
    from imp2 have "s \<in> L (SEQ r' (STAR r))" using ih1 by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   313
    then have "s \<in> L r' ; L (STAR r)" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   314
    then have "c#s \<in> {[c]} ; (L r' ; L (STAR r))" by (simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   315
    also have "\<dots> \<subseteq> L r ; L (STAR r)" using imp1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   316
      apply(auto simp add: lang_seq_def) sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
    also have "\<dots> \<subseteq> L (STAR r)" by (simp add: lang_star_subseteq)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
    finally show "c#s \<in> L (STAR r)" by simp
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
    have as: "\<not> STAR r ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
    then have "\<forall>r'\<in> r \<dagger> c. \<not> (SEQ r' (STAR r) ! s)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
      by (auto simp add: OR_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
    then have "\<forall>r'\<in> r \<dagger> c. s \<notin> L (SEQ r' (STAR r))" using ih2 by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   325
    then obtain r' where "r'\<in> r \<dagger> c \<Longrightarrow> s \<notin> L (SEQ r' (STAR r))" by auto
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   326
   
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
    show "c#s \<notin> L (STAR r)" sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   328
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   329
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   330
  case (6 r1 r2)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   331
  have ih1: "r1 ! [] \<Longrightarrow> [] \<in> L r1" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   332
  have ih2: "\<not> r1 ! [] \<Longrightarrow> [] \<notin> L r1" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
  have ih3: "r2 ! [] \<Longrightarrow> [] \<in> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
  have ih4: "\<not> r2 ! [] \<Longrightarrow> [] \<notin> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   335
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   336
    have as: "SEQ r1 r2 ! []" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
    then have "r1 ! [] \<and> r2 ! []" by (simp)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   338
    then show "[] \<in> L (SEQ r1 r2)" using ih1 ih3 by (simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   341
    have "\<not> SEQ r1 r2 ! []" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
    then have "(\<not> r1 ! []) \<or> (\<not> r2 ! [])" by (simp)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
    then show "[] \<notin> L (SEQ r1 r2)" using ih2 ih4 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
      by (auto simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
  case (7 r2 c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
  have ih1: "r2 ! c#s \<Longrightarrow> c#s \<in> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
  have ih2: "\<not> r2 ! c#s \<Longrightarrow> c#s \<notin> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   351
    have "SEQ EMPTY r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   352
    then show "c#s \<in> L (SEQ EMPTY r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   353
      using ih1 by (simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
    have "\<not> SEQ EMPTY r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
    then show "c#s \<notin> L (SEQ EMPTY r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
      using ih2 by (simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
  case (8 c' r2 c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
  have ih1: "\<lbrakk>c' = c; r2 ! s\<rbrakk> \<Longrightarrow> s \<in> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
  have ih2: "\<lbrakk>c' = c; \<not>r2 ! s\<rbrakk> \<Longrightarrow> s \<notin> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   365
    have "SEQ (CHAR c') r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
    then show "c#s \<in> L (SEQ (CHAR c') r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
      using ih1 by (auto simp add: lang_seq_def split: if_splits)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
    have "\<not> SEQ (CHAR c') r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
    then show "c#s \<notin> L (SEQ (CHAR c') r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
      using ih2 by (auto simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   373
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   374
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   375
  case (9 r11 r12 r2 c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   376
  have ih1: "SEQ r11 (SEQ r12 r2) ! c#s \<Longrightarrow> c#s \<in> L (SEQ r11 (SEQ r12 r2))" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   377
  have ih2: "\<not> SEQ r11 (SEQ r12 r2) ! c#s \<Longrightarrow> c#s \<notin> L (SEQ r11 (SEQ r12 r2))" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   378
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   379
    have "SEQ (SEQ r11 r12) r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   380
    then show "c#s \<in> L (SEQ (SEQ r11 r12) r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   381
      using ih1 
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   382
      apply(auto simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   383
      apply(rule_tac x="s1@s1a" in exI)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   384
      apply(rule_tac x="s2a" in exI)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   385
      apply(simp)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   386
      apply(blast)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   387
      done
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   388
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   389
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   390
    have "\<not> SEQ (SEQ r11 r12) r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   391
    then show "c#s \<notin> L (SEQ (SEQ r11 r12) r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   392
      using ih2 by (auto simp add: lang_seq_def)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   393
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   394
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   395
  case (10 r11 r12 r2 c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   396
  have ih1: "SEQ r11 r2 ! c#s \<Longrightarrow> c#s \<in> L (SEQ r11 r2)" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   397
  have ih2: "\<not> SEQ r11 r2 ! c#s \<Longrightarrow> c#s \<notin> L (SEQ r11 r2)" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   398
  have ih3: "SEQ r12 r2 ! c#s \<Longrightarrow> c#s \<in> L (SEQ r12 r2)" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   399
  have ih4: "\<not> SEQ r12 r2 ! c#s \<Longrightarrow> c#s \<notin> L (SEQ r12 r2)" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   400
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   401
    have "SEQ (ALT r11 r12) r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   402
    then show "c#s \<in> L (SEQ (ALT r11 r12) r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   403
      using ih1 ih3 by (auto simp add: lang_seq_union)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   404
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   405
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   406
    have "\<not> SEQ (ALT r11 r12) r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   407
    then show " c#s \<notin> L (SEQ (ALT r11 r12) r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   408
      using ih2 ih4 by (simp add: lang_seq_union)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   409
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   410
next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   411
  case (11 r1 r2 c s)
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   412
  have ih1: "r2 ! c#s \<Longrightarrow> c#s \<in> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   413
  have ih2: "\<not>r2 ! c#s \<Longrightarrow> c#s \<notin> L r2" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   414
  { case 1
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   415
    have "SEQ (STAR r1) r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   416
    then show "c#s \<in> L (SEQ (STAR r1) r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   417
      using ih1 sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   418
  next
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   419
    case 2
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   420
    have "\<not> SEQ (STAR r1) r2 ! c#s" by fact
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   421
    then show "c#s \<notin> L (SEQ (STAR r1) r2)"
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   422
      using ih2 sorry
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   423
  }
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   424
qed      
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   425
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   426
   
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   427
end    
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   428
   
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   429
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   430
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   431
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   432
  
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   433
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   434
  
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   435
  
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   436
f1be8028a4a9 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   437