Still improving CpsG.thy
authorzhangx
Sun, 17 Jan 2016 22:18:35 +0800
changeset 79 8067efcb43da
parent 78 df0334468335
child 80 17305a85493d
Still improving CpsG.thy
CpsG.thy~
--- a/CpsG.thy~	Sat Jan 16 11:02:17 2016 +0800
+++ b/CpsG.thy~	Sun Jan 17 22:18:35 2016 +0800
@@ -15,21 +15,11 @@
   from fnt and seq show "finite (f ` B)" by auto
 qed
 
-(* I am going to use this file as a start point to retrofiting 
-   PIPBasics.thy, which is originally called CpsG.ghy *)
 
 locale valid_trace = 
   fixes s
   assumes vt : "vt s"
 
-lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
-  by  (unfold s_waiting_def cs_waiting_def wq_def, auto)
-
-lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
-  by (unfold s_holding_def wq_def cs_holding_def, simp)
-
-thm s_waiting_def cs_waiting_def wq_def
-
 locale valid_trace_e = valid_trace +
   fixes e
   assumes vt_e: "vt (e#s)"
@@ -40,6 +30,118 @@
 
 end
 
+locale valid_trace_create = valid_trace_e + 
+  fixes th prio
+  assumes is_create: "e = Create th prio"
+
+locale valid_trace_exit = valid_trace_e + 
+  fixes th
+  assumes is_exit: "e = Exit th"
+
+locale valid_trace_p = valid_trace_e + 
+  fixes th cs
+  assumes is_p: "e = P th cs"
+
+locale valid_trace_v = valid_trace_e + 
+  fixes th cs
+  assumes is_v: "e = V th cs"
+begin
+  definition "rest = tl (wq s cs)"
+  definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
+end
+
+locale valid_trace_v_n = valid_trace_v +
+  assumes rest_nnl: "rest \<noteq> []"
+
+locale valid_trace_v_e = valid_trace_v +
+  assumes rest_nil: "rest = []"
+
+locale valid_trace_set= valid_trace_e + 
+  fixes th prio
+  assumes is_set: "e = Set th prio"
+
+context valid_trace
+begin
+
+lemma ind [consumes 0, case_names Nil Cons, induct type]:
+  assumes "PP []"
+     and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
+                   PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
+     shows "PP s"
+proof(induct rule:vt.induct[OF vt, case_names Init Step])
+  case Init
+  from assms(1) show ?case .
+next
+  case (Step s e)
+  show ?case
+  proof(rule assms(2))
+    show "valid_trace_e s e" using Step by (unfold_locales, auto)
+  next
+    show "PP s" using Step by simp
+  next
+    show "PIP s e" using Step by simp
+  qed
+qed
+
+lemma  vt_moment: "\<And> t. vt (moment t s)"
+proof(induct rule:ind)
+  case Nil
+  thus ?case by (simp add:vt_nil)
+next
+  case (Cons s e t)
+  show ?case
+  proof(cases "t \<ge> length (e#s)")
+    case True
+    from True have "moment t (e#s) = e#s" by simp
+    thus ?thesis using Cons
+      by (simp add:valid_trace_def valid_trace_e_def, auto)
+  next
+    case False
+    from Cons have "vt (moment t s)" by simp
+    moreover have "moment t (e#s) = moment t s"
+    proof -
+      from False have "t \<le> length s" by simp
+      from moment_app [OF this, of "[e]"] 
+      show ?thesis by simp
+    qed
+    ultimately show ?thesis by simp
+  qed
+qed
+
+lemma finite_threads:
+  shows "finite (threads s)"
+using vt by (induct) (auto elim: step.cases)
+
+end
+
+lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
+unfolding cp_def wq_def
+apply(induct s rule: schs.induct)
+apply(simp add: Let_def cpreced_initial)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
+
+lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
+  by (unfold s_RAG_def, auto)
+
+locale valid_moment = valid_trace + 
+  fixes i :: nat
+
+sublocale valid_moment < vat_moment: valid_trace "(moment i s)"
+  by (unfold_locales, insert vt_moment, auto)
+
+lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
+  by  (unfold s_waiting_def cs_waiting_def wq_def, auto)
+
+lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
+  by (unfold s_holding_def wq_def cs_holding_def, simp)
+
 lemma runing_ready: 
   shows "runing s \<subseteq> readys s"
   unfolding runing_def readys_def
@@ -64,6 +166,199 @@
 context valid_trace
 begin
 
+lemma runing_wqE:
+  assumes "th \<in> runing s"
+  and "th \<in> set (wq s cs)"
+  obtains rest where "wq s cs = th#rest"
+proof -
+  from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
+    by (meson list.set_cases)
+  have "th' = th"
+  proof(rule ccontr)
+    assume "th' \<noteq> th"
+    hence "th \<noteq> hd (wq s cs)" using eq_wq by auto 
+    with assms(2)
+    have "waiting s th cs" 
+      by (unfold s_waiting_def, fold wq_def, auto)
+    with assms show False 
+      by (unfold runing_def readys_def, auto)
+  qed
+  with eq_wq that show ?thesis by metis
+qed
+
+end
+
+context valid_trace_create
+begin
+
+lemma wq_neq_simp [simp]:
+  shows "wq (e#s) cs' = wq s cs'"
+    using assms unfolding is_create wq_def
+  by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+  assumes "distinct (wq s cs')"
+  shows "distinct (wq (e#s) cs')"
+  using assms by simp
+end
+
+context valid_trace_exit
+begin
+
+lemma wq_neq_simp [simp]:
+  shows "wq (e#s) cs' = wq s cs'"
+    using assms unfolding is_exit wq_def
+  by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+  assumes "distinct (wq s cs')"
+  shows "distinct (wq (e#s) cs')"
+  using assms by simp
+end
+
+context valid_trace_p
+begin
+
+lemma wq_neq_simp [simp]:
+  assumes "cs' \<noteq> cs"
+  shows "wq (e#s) cs' = wq s cs'"
+    using assms unfolding is_p wq_def
+  by (auto simp:Let_def)
+
+lemma runing_th_s:
+  shows "th \<in> runing s"
+proof -
+  from pip_e[unfolded is_p]
+  show ?thesis by (cases, simp)
+qed
+
+lemma th_not_waiting: 
+  "\<not> waiting s th c"
+proof -
+  have "th \<in> readys s"
+    using runing_ready runing_th_s by blast 
+  thus ?thesis
+    by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th: 
+  assumes "waiting s t c"
+  shows "t \<noteq> th"
+  using assms using th_not_waiting by blast 
+
+lemma th_not_in_wq: 
+  shows "th \<notin> set (wq s cs)"
+proof
+  assume otherwise: "th \<in> set (wq s cs)"
+  from runing_wqE[OF runing_th_s this]
+  obtain rest where eq_wq: "wq s cs = th#rest" by blast
+  with otherwise
+  have "holding s th cs"
+    by (unfold s_holding_def, fold wq_def, simp)
+  hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
+    by (unfold s_RAG_def, fold holding_eq, auto)
+  from pip_e[unfolded is_p]
+  show False
+  proof(cases)
+    case (thread_P)
+    with cs_th_RAG show ?thesis by auto
+  qed
+qed
+
+lemma wq_es_cs: 
+  "wq (e#s) cs =  wq s cs @ [th]"
+  by (unfold is_p wq_def, auto simp:Let_def)
+
+lemma wq_distinct_kept:
+  assumes "distinct (wq s cs')"
+  shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+  case True
+  show ?thesis using True assms th_not_in_wq
+    by (unfold True wq_es_cs, auto)
+qed (insert assms, simp)
+
+end
+
+context valid_trace_v
+begin
+
+lemma wq_neq_simp [simp]:
+  assumes "cs' \<noteq> cs"
+  shows "wq (e#s) cs' = wq s cs'"
+    using assms unfolding is_v wq_def
+  by (auto simp:Let_def)
+
+lemma runing_th_s:
+  shows "th \<in> runing s"
+proof -
+  from pip_e[unfolded is_v]
+  show ?thesis by (cases, simp)
+qed
+
+lemma th_not_waiting: 
+  "\<not> waiting s th c"
+proof -
+  have "th \<in> readys s"
+    using runing_ready runing_th_s by blast 
+  thus ?thesis
+    by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th: 
+  assumes "waiting s t c"
+  shows "t \<noteq> th"
+  using assms using th_not_waiting by blast 
+
+lemma wq_s_cs:
+  "wq s cs = th#rest"
+proof -
+  from pip_e[unfolded is_v]
+  show ?thesis
+  proof(cases)
+    case (thread_V)
+    from this(2) show ?thesis
+      by (unfold rest_def s_holding_def, fold wq_def,
+                 metis empty_iff list.collapse list.set(1))
+  qed
+qed
+
+lemma wq_es_cs:
+  "wq (e#s) cs = wq'"
+ using wq_s_cs[unfolded wq_def]
+ by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp) 
+
+lemma wq_distinct_kept:
+  assumes "distinct (wq s cs')"
+  shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+  case True
+  show ?thesis
+  proof(unfold True wq_es_cs wq'_def, rule someI2)
+    show "distinct rest \<and> set rest = set rest"
+        using assms[unfolded True wq_s_cs] by auto
+  qed simp
+qed (insert assms, simp)
+
+end
+
+context valid_trace_set
+begin
+
+lemma wq_neq_simp [simp]:
+  shows "wq (e#s) cs' = wq s cs'"
+    using assms unfolding is_set wq_def
+  by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+  assumes "distinct (wq s cs')"
+  shows "distinct (wq (e#s) cs')"
+  using assms by simp
+end
+
+context valid_trace
+begin
+
 lemma actor_inv: 
   assumes "PIP s e"
   and "\<not> isCreate e"
@@ -71,7 +366,6 @@
   using assms
   by (induct, auto)
 
-
 lemma isP_E:
   assumes "isP e"
   obtains cs where "e = P (actor e) cs"
@@ -82,90 +376,35 @@
   obtains cs where "e = V (actor e) cs"
   using assms by (cases e, auto) 
 
-
-lemma ind [consumes 0, case_names Nil Cons, induct type]:
-  assumes "PP []"
-     and "(\<And>s e. valid_trace s \<Longrightarrow> valid_trace (e#s) \<Longrightarrow>
-                   PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
-     shows "PP s"
-proof(rule vt.induct[OF vt])
-  from assms(1) show "PP []" .
-next
-  fix s e
-  assume h: "vt s" "PP s" "PIP s e"
-  show "PP (e # s)"
-  proof(cases rule:assms(2))
-    from h(1) show v1: "valid_trace s" by (unfold_locales, simp)
-  next
-    from h(1,3) have "vt (e#s)" by auto
-    thus "valid_trace (e # s)" by (unfold_locales, simp)
-  qed (insert h, auto)
-qed
-
 lemma wq_distinct: "distinct (wq s cs)"
 proof(induct rule:ind)
   case (Cons s e)
-  from Cons(4,3)
+  interpret vt_e: valid_trace_e s e using Cons by simp
   show ?case 
-  proof(induct)
-    case (thread_P th s cs1)
-    show ?case 
-    proof(cases "cs = cs1")
-      case True
-      thus ?thesis (is "distinct ?L")
-      proof - 
-        have "?L = wq_fun (schs s) cs1 @ [th]" using True
-          by (simp add:wq_def wf_def Let_def split:list.splits)
-        moreover have "distinct ..."
-        proof -
-          have "th \<notin> set (wq_fun (schs s) cs1)"
-          proof
-            assume otherwise: "th \<in> set (wq_fun (schs s) cs1)"
-            from runing_head[OF thread_P(1) this]
-            have "th = hd (wq_fun (schs s) cs1)" .
-            hence "(Cs cs1, Th th) \<in> (RAG s)" using otherwise
-              by (simp add:s_RAG_def s_holding_def wq_def cs_holding_def)
-            with thread_P(2) show False by auto
-          qed
-          moreover have "distinct (wq_fun (schs s) cs1)"
-              using True thread_P wq_def by auto 
-          ultimately show ?thesis by auto
-        qed
-        ultimately show ?thesis by simp
-      qed
-    next
-      case False
-      with thread_P(3)
-      show ?thesis
-        by (auto simp:wq_def wf_def Let_def split:list.splits)
-    qed
+  proof(cases e)
+    case (Create th prio)
+    interpret vt_create: valid_trace_create s e th prio 
+      using Create by (unfold_locales, simp)
+    show ?thesis using Cons by (simp add: vt_create.wq_distinct_kept) 
+  next
+    case (Exit th)
+    interpret vt_exit: valid_trace_exit s e th  
+        using Exit by (unfold_locales, simp)
+    show ?thesis using Cons by (simp add: vt_exit.wq_distinct_kept) 
   next
-    case (thread_V th s cs1)
-    thus ?case
-    proof(cases "cs = cs1")
-      case True
-      show ?thesis (is "distinct ?L")
-      proof(cases "(wq s cs)")
-        case Nil
-        thus ?thesis
-          by (auto simp:wq_def wf_def Let_def split:list.splits)
-      next
-        case (Cons w_hd w_tl)
-        moreover have "distinct (SOME q. distinct q \<and> set q = set w_tl)"
-        proof(rule someI2)
-          from thread_V(3)[unfolded Cons]
-          show  "distinct w_tl \<and> set w_tl = set w_tl" by auto
-        qed auto
-        ultimately show ?thesis
-          by (auto simp:wq_def wf_def Let_def True split:list.splits)
-      qed 
-    next
-      case False
-      with thread_V(3)
-      show ?thesis
-        by (auto simp:wq_def wf_def Let_def split:list.splits)
-    qed
-  qed (insert Cons, auto simp: wq_def Let_def split:list.splits)
+    case (P th cs)
+    interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
+    show ?thesis using Cons by (simp add: vt_p.wq_distinct_kept) 
+  next
+    case (V th cs)
+    interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
+    show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept) 
+  next
+    case (Set th prio)
+    interpret vt_set: valid_trace_set s e th prio
+        using Set by (unfold_locales, simp)
+    show ?thesis using Cons by (simp add: vt_set.wq_distinct_kept) 
+  qed
 qed (unfold wq_def Let_def, simp)
 
 end
@@ -248,41 +487,6 @@
 
 context valid_trace
 begin
-lemma  vt_moment: "\<And> t. vt (moment t s)"
-proof(induct rule:ind)
-  case Nil
-  thus ?case by (simp add:vt_nil)
-next
-  case (Cons s e t)
-  show ?case
-  proof(cases "t \<ge> length (e#s)")
-    case True
-    from True have "moment t (e#s) = e#s" by simp
-    thus ?thesis using Cons
-      by (simp add:valid_trace_def)
-  next
-    case False
-    from Cons have "vt (moment t s)" by simp
-    moreover have "moment t (e#s) = moment t s"
-    proof -
-      from False have "t \<le> length s" by simp
-      from moment_app [OF this, of "[e]"] 
-      show ?thesis by simp
-    qed
-    ultimately show ?thesis by simp
-  qed
-qed
-end
-
-
-locale valid_moment = valid_trace + 
-  fixes i :: nat
-
-sublocale valid_moment < vat_moment: valid_trace "(moment i s)"
-  by (unfold_locales, insert vt_moment, auto)
-
-context valid_trace
-begin
 
 
 text {* (* ddd *)
@@ -489,7 +693,6 @@
   shows "th1 = th2"
  by (insert assms, unfold s_holding_def, auto)
 
-
 lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
   apply (induct s, auto)
   by (case_tac a, auto split:if_splits)
@@ -522,98 +725,6 @@
   thus ?thesis by auto
 qed
 
-(* An aux lemma used later *) 
-lemma unique_minus:
-  assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
-  and xy: "(x, y) \<in> r"
-  and xz: "(x, z) \<in> r^+"
-  and neq: "y \<noteq> z"
-  shows "(y, z) \<in> r^+"
-proof -
- from xz and neq show ?thesis
- proof(induct)
-   case (base ya)
-   have "(x, ya) \<in> r" by fact
-   from unique [OF xy this] have "y = ya" .
-   with base show ?case by auto
- next
-   case (step ya z)
-   show ?case
-   proof(cases "y = ya")
-     case True
-     from step True show ?thesis by simp
-   next
-     case False
-     from step False
-     show ?thesis by auto
-   qed
- qed
-qed
-
-lemma unique_base:
-  assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
-  and xy: "(x, y) \<in> r"
-  and xz: "(x, z) \<in> r^+"
-  and neq_yz: "y \<noteq> z"
-  shows "(y, z) \<in> r^+"
-proof -
-  from xz neq_yz show ?thesis
-  proof(induct)
-    case (base ya)
-    from xy unique base show ?case by auto
-  next
-    case (step ya z)
-    show ?case
-    proof(cases "y = ya")
-      case True
-      from True step show ?thesis by auto
-    next
-      case False
-      from False step 
-      have "(y, ya) \<in> r\<^sup>+" by auto
-      with step show ?thesis by auto
-    qed
-  qed
-qed
-
-lemma unique_chain:
-  assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
-  and xy: "(x, y) \<in> r^+"
-  and xz: "(x, z) \<in> r^+"
-  and neq_yz: "y \<noteq> z"
-  shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+"
-proof -
-  from xy xz neq_yz show ?thesis
-  proof(induct)
-    case (base y)
-    have h1: "(x, y) \<in> r" and h2: "(x, z) \<in> r\<^sup>+" and h3: "y \<noteq> z" using base by auto
-    from unique_base [OF _ h1 h2 h3] and unique show ?case by auto
-  next
-    case (step y za)
-    show ?case
-    proof(cases "y = z")
-      case True
-      from True step show ?thesis by auto
-    next
-      case False
-      from False step have "(y, z) \<in> r\<^sup>+ \<or> (z, y) \<in> r\<^sup>+" by auto
-      thus ?thesis
-      proof
-        assume "(z, y) \<in> r\<^sup>+"
-        with step have "(z, za) \<in> r\<^sup>+" by auto
-        thus ?thesis by auto
-      next
-        assume h: "(y, z) \<in> r\<^sup>+"
-        from step have yza: "(y, za) \<in> r" by simp
-        from step have "za \<noteq> z" by simp
-        from unique_minus [OF _ yza h this] and unique
-        have "(za, z) \<in> r\<^sup>+" by auto
-        thus ?thesis by auto
-      qed
-    qed
-  qed
-qed
-
 text {*
   The following three lemmas show that @{text "RAG"} does not change
   by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
@@ -632,291 +743,13 @@
 apply (unfold s_RAG_def s_waiting_def wq_def)
 by (simp add:Let_def)
 
-context valid_trace
-begin
-
-lemma finite_threads:
-  shows "finite (threads s)"
-using vt by (induct) (auto elim: step.cases)
-
-lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-unfolding cp_def wq_def
-apply(induct s rule: schs.induct)
-thm cpreced_initial
-apply(simp add: Let_def cpreced_initial)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-done
-
-lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
-  by (unfold s_RAG_def, auto)
-
-lemma wq_threads: 
-  assumes h: "th \<in> set (wq s cs)"
-  shows "th \<in> threads s"
-proof -
- from vt and h show ?thesis
-  proof(induct arbitrary: th cs)
-    case (vt_cons s e)
-    interpret vt_s: valid_trace s
-      using vt_cons(1) by (unfold_locales, auto)
-    assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"
-      and stp: "step s e"
-      and vt: "vt s"
-      and h: "th \<in> set (wq (e # s) cs)"
-    show ?case
-    proof(cases e)
-      case (Create th' prio)
-      with ih h show ?thesis
-        by (auto simp:wq_def Let_def)
-    next
-      case (Exit th')
-      with stp ih h show ?thesis
-        apply (auto simp:wq_def Let_def)
-        apply (ind_cases "step s (Exit th')")
-        apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def
-               s_RAG_def s_holding_def cs_holding_def)
-        done
-    next
-      case (V th' cs')
-      show ?thesis
-      proof(cases "cs' = cs")
-        case False
-        with h
-        show ?thesis
-          apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)
-          by (drule_tac ih, simp)
-      next
-        case True
-        from h
-        show ?thesis
-        proof(unfold V wq_def)
-          assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")
-          show "th \<in> threads (V th' cs' # s)"
-          proof(cases "cs = cs'")
-            case False
-            hence "?l = wq_fun (schs s) cs" by (simp add:Let_def)
-            with th_in have " th \<in> set (wq s cs)" 
-              by (fold wq_def, simp)
-            from ih [OF this] show ?thesis by simp
-          next
-            case True
-            show ?thesis
-            proof(cases "wq_fun (schs s) cs'")
-              case Nil
-              with h V show ?thesis
-                apply (auto simp:wq_def Let_def split:if_splits)
-                by (fold wq_def, drule_tac ih, simp)
-            next
-              case (Cons a rest)
-              assume eq_wq: "wq_fun (schs s) cs' = a # rest"
-              with h V show ?thesis
-                apply (auto simp:Let_def wq_def split:if_splits)
-              proof -
-                assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
-                have "set (SOME q. distinct q \<and> set q = set rest) = set rest" 
-                proof(rule someI2)
-                  from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def]
-                  show "distinct rest \<and> set rest = set rest" by auto
-                next
-                  show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
-                    by auto
-                qed
-                with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto
-                from ih[OF this[folded wq_def]] show "th \<in> threads s" .
-              next
-                assume th_in: "th \<in> set (wq_fun (schs s) cs)"
-                from ih[OF this[folded wq_def]]
-                show "th \<in> threads s" .
-              qed
-            qed
-          qed
-        qed
-      qed
-    next
-      case (P th' cs')
-      from h stp
-      show ?thesis
-        apply (unfold P wq_def)
-        apply (auto simp:Let_def split:if_splits, fold wq_def)
-        apply (auto intro:ih)
-        apply(ind_cases "step s (P th' cs')")
-        by (unfold runing_def readys_def, auto)
-    next
-      case (Set thread prio)
-      with ih h show ?thesis
-        by (auto simp:wq_def Let_def)
-    qed
-  next
-    case vt_nil
-    thus ?case by (auto simp:wq_def)
-  qed
-qed
-
-lemma dm_RAG_threads:
-  assumes in_dom: "(Th th) \<in> Domain (RAG s)"
-  shows "th \<in> threads s"
-proof -
-  from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
-  moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
-  ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
-  hence "th \<in> set (wq s cs)"
-    by (unfold s_RAG_def, auto simp:cs_waiting_def)
-  from wq_threads [OF this] show ?thesis .
-qed
-
-
-lemma cp_le:
-  assumes th_in: "th \<in> threads s"
-  shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"
-proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def)
-  show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}))
-         \<le> Max ((\<lambda>th. preced th s) ` threads s)"
-    (is "Max (?f ` ?A) \<le> Max (?f ` ?B)")
-  proof(rule Max_f_mono)
-    show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" by simp
-  next
-    from finite_threads
-    show "finite (threads s)" .
-  next
-    from th_in
-    show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> threads s"
-      apply (auto simp:Domain_def)
-      apply (rule_tac dm_RAG_threads)
-      apply (unfold trancl_domain [of "RAG s", symmetric])
-      by (unfold cs_RAG_def s_RAG_def, auto simp:Domain_def)
-  qed
-qed
-
-lemma le_cp:
-  shows "preced th s \<le> cp s th"
-proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
-  show "Prc (priority th s) (last_set th s)
-    \<le> Max (insert (Prc (priority th s) (last_set th s))
-            ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))"
-    (is "?l \<le> Max (insert ?l ?A)")
-  proof(cases "?A = {}")
-    case False
-    have "finite ?A" (is "finite (?f ` ?B)")
-    proof -
-      have "finite ?B" 
-      proof-
-        have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}"
-        proof -
-          let ?F = "\<lambda> (x, y). the_th x"
-          have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
-            apply (auto simp:image_def)
-            by (rule_tac x = "(Th x, Th th)" in bexI, auto)
-          moreover have "finite \<dots>"
-          proof -
-            from finite_RAG have "finite (RAG s)" .
-            hence "finite ((RAG (wq s))\<^sup>+)"
-              apply (unfold finite_trancl)
-              by (auto simp: s_RAG_def cs_RAG_def wq_def)
-            thus ?thesis by auto
-          qed
-          ultimately show ?thesis by (auto intro:finite_subset)
-        qed
-        thus ?thesis by (simp add:cs_dependants_def)
-      qed
-      thus ?thesis by simp
-    qed
-    from Max_insert [OF this False, of ?l] show ?thesis by auto
-  next
-    case True
-    thus ?thesis by auto
-  qed
-qed
-
-lemma max_cp_eq: 
-  shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"
-  (is "?l = ?r")
-proof(cases "threads s = {}")
-  case True
-  thus ?thesis by auto
-next
-  case False
-  have "?l \<in> ((cp s) ` threads s)"
-  proof(rule Max_in)
-    from finite_threads
-    show "finite (cp s ` threads s)" by auto
-  next
-    from False show "cp s ` threads s \<noteq> {}" by auto
-  qed
-  then obtain th 
-    where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto
-  have "\<dots> \<le> ?r" by (rule cp_le[OF th_in])
-  moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th")
-  proof -
-    have "?r \<in> (?f ` ?A)"
-    proof(rule Max_in)
-      from finite_threads
-      show " finite ((\<lambda>th. preced th s) ` threads s)" by auto
-    next
-      from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto
-    qed
-    then obtain th' where 
-      th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto
-    from le_cp [of th']  eq_r
-    have "?r \<le> cp s th'" by auto
-    moreover have "\<dots> \<le> cp s th"
-    proof(fold eq_l)
-      show " cp s th' \<le> Max (cp s ` threads s)"
-      proof(rule Max_ge)
-        from th_in' show "cp s th' \<in> cp s ` threads s"
-          by auto
-      next
-        from finite_threads
-        show "finite (cp s ` threads s)" by auto
-      qed
-    qed
-    ultimately show ?thesis by auto
-  qed
-  ultimately show ?thesis using eq_l by auto
-qed
-
-lemma max_cp_eq_the_preced:
-  shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
-  using max_cp_eq using the_preced_def by presburger 
-
-end
-
-lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
-  by (unfold preced_def, simp)
-
-lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
-proof
-  fix th'
-  show "the_preced (V th cs # s) th' = the_preced s th'"
-    by (unfold the_preced_def preced_def, simp)
-qed
-
-locale valid_trace_v = valid_trace_e + 
-  fixes th cs
-  assumes is_v: "e = V th cs"
 
 context valid_trace_v
 begin
 
-definition "rest = tl (wq s cs)"
-
-definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
-
 lemma distinct_rest: "distinct rest"
   by (simp add: distinct_tl rest_def wq_distinct)
 
-lemma runing_th_s:
-  shows "th \<in> runing s"
-proof -
-  from pip_e[unfolded is_v]
-  show ?thesis by (cases, simp)
-qed
-
 lemma holding_cs_eq_th:
   assumes "holding s t cs"
   shows "t = th"
@@ -930,38 +763,6 @@
   qed
 qed
 
-lemma th_not_waiting: 
-  "\<not> waiting s th c"
-proof -
-  have "th \<in> readys s"
-    using runing_ready runing_th_s by blast 
-  thus ?thesis
-    by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th: 
-  assumes "waiting s t c"
-  shows "t \<noteq> th"
-  using assms using th_not_waiting by blast 
-
-lemma wq_s_cs:
-  "wq s cs = th#rest"
-proof -
-  from pip_e[unfolded is_v]
-  show ?thesis
-  proof(cases)
-    case (thread_V)
-    from this(2) show ?thesis
-      by (unfold rest_def s_holding_def, fold wq_def,
-                 metis empty_iff list.collapse list.set(1))
-  qed
-qed
-
-lemma wq_es_cs:
-  "wq (e#s) cs = wq'"
- using wq_s_cs[unfolded wq_def]
- by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp) 
-
 lemma distinct_wq': "distinct wq'"
   by (metis (mono_tags, lifting) distinct_rest  some_eq_ex wq'_def)
   
@@ -1020,10 +821,19 @@
   show ?thesis .
 qed
 
+lemma holding_esI1:
+  assumes "holding s t c"
+  and "t \<noteq> th"
+  shows "holding (e#s) t c"
+proof -
+  have "c \<noteq> cs" using assms using holding_cs_eq_th by blast 
+  from holding_esI2[OF this assms(1)]
+  show ?thesis .
+qed
+
 end
 
-locale valid_trace_v_n = valid_trace_v +
-  assumes rest_nnl: "rest \<noteq> []"
+context valid_trace_v_n
 begin
 
 lemma neq_wq': "wq' \<noteq> []" 
@@ -1148,8 +958,8 @@
 
 end 
 
-locale valid_trace_v_e = valid_trace_v +
-  assumes rest_nil: "rest = []"
+
+context valid_trace_v_e
 begin
 
 lemma nil_wq': "wq' = []" 
@@ -1200,6 +1010,16 @@
   show ?thesis by auto
 qed
 
+lemma waiting_esI2:
+  assumes "waiting s t c"
+  shows "waiting (e#s) t c"
+proof -
+  have "c \<noteq> cs" using assms
+    using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto 
+  from waiting_esI1[OF assms this]
+  show ?thesis .
+qed
+
 lemma waiting_esE:
   assumes "waiting (e#s) t c" 
   obtains "c \<noteq> cs" "waiting s t c"
@@ -1230,7 +1050,7 @@
   from that[OF False this] show ?thesis .
 qed
 
-end (* ccc *)
+end 
 
 lemma rel_eqI:
   assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
@@ -1248,7 +1068,7 @@
 context valid_trace_v
 begin
 
-lemma
+lemma RAG_es:
   "RAG (e # s) =
    RAG s - {(Cs cs, Th th)} -
      {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
@@ -1356,16 +1176,83 @@
     thus ?thesis
     proof(cases rule:in_RAG_E)
       case (waiting th' cs')
-      thus ?thesis
+      from h and this(1,2)
+      have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
+      hence "waiting (e#s) th' cs'" 
+      proof
+        assume "cs' \<noteq> cs"
+        from waiting_esI1[OF waiting(3) this] 
+        show ?thesis .
+      next
+        assume neq_th': "th' \<noteq> h_n.taker"
+        show ?thesis
+        proof(cases "cs' = cs")
+          case False
+          from waiting_esI1[OF waiting(3) this] 
+          show ?thesis .
+        next
+          case True
+          from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
+          show ?thesis .
+        qed
+      qed
+      thus ?thesis using waiting(1,2)
+        by (unfold s_RAG_def, fold waiting_eq, auto)
+    next
+      case (holding th' cs')
+      from h this(1,2)
+      have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+      hence "holding (e#s) th' cs'"
+      proof
+        assume "cs' \<noteq> cs"
+        from holding_esI2[OF this holding(3)] 
+        show ?thesis .
+      next
+        assume "th' \<noteq> th"
+        from holding_esI1[OF holding(3) this]
+        show ?thesis .
+      qed
+      thus ?thesis using holding(1,2)
+        by (unfold s_RAG_def, fold holding_eq, auto)
     qed
    qed
-  qed
+ next
+   case True
+   interpret h_e: valid_trace_v_e s e th cs
+        by (unfold_locales, insert True, simp)
+   from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
+   have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)" 
+      by auto
+   from h_s(1)
+   show ?thesis
+   proof(cases rule:in_RAG_E)
+    case (waiting th' cs')
+    from h_e.waiting_esI2[OF this(3)]
+    show ?thesis using waiting(1,2)
+      by (unfold s_RAG_def, fold waiting_eq, auto)
+   next
+    case (holding th' cs')
+    with h_s(2)
+    have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+    thus ?thesis
+    proof
+      assume neq_cs: "cs' \<noteq> cs"
+      from holding_esI2[OF this holding(3)]
+      show ?thesis using holding(1,2)
+        by (unfold s_RAG_def, fold holding_eq, auto)
+    next
+      assume "th' \<noteq> th"
+      from holding_esI1[OF holding(3) this]
+      show ?thesis using holding(1,2)
+        by (unfold s_RAG_def, fold holding_eq, auto)
+    qed
+   qed
+ qed
 qed
 
 end
 
-
-lemma step_RAG_v: (* ccc *)
+lemma step_RAG_v: 
 assumes vt:
   "vt (V th cs#s)"
 shows "
@@ -1373,1385 +1260,115 @@
   RAG s - {(Cs cs, Th th)} -
   {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
   {(Cs cs, Th th') |th'.  next_th s th cs th'}" (is "?L = ?R")
-proof(rule rel_eqI)
-  fix n1 n2
-  assume "(n1, n2) \<in> ?L"
-  show "(n1, n2) \<in> ?R" sorry
-next
-  fix n1 n2
-  assume "(n1, n2) \<in> ?R"
-  show "(n1, n2) \<in> ?L" sorry
+proof -
+  interpret vt_v: valid_trace_v s "V th cs"
+    using assms step_back_vt by (unfold_locales, auto) 
+  show ?thesis using vt_v.RAG_es .
+qed
+
+lemma (in valid_trace_create)
+  th_not_in_threads: "th \<notin> threads s"
+proof -
+  from pip_e[unfolded is_create]
+  show ?thesis by (cases, simp)
 qed
 
-
+lemma (in valid_trace_create)
+  threads_es [simp]: "threads (e#s) = threads s \<union> {th}"
+  by (unfold is_create, simp)
 
-text {* (* ddd *) 
-  The following @{text "step_RAG_v"} lemma charaterizes how @{text "RAG"} is changed
-  with the happening of @{text "V"}-events:
-*}
-lemma step_RAG_v:
-assumes vt:
-  "vt (V th cs#s)"
-shows "
-  RAG (V th cs # s) =
-  RAG s - {(Cs cs, Th th)} -
-  {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
-  {(Cs cs, Th th') |th'.  next_th s th cs th'}"
-  apply (insert vt, unfold s_RAG_def) 
-  apply (auto split:if_splits list.splits simp:Let_def)
-  apply (auto elim: step_v_waiting_mono step_v_hold_inv
-              step_v_release step_v_wait_inv
-              step_v_get_hold step_v_release_inv)
-  apply (erule_tac step_v_not_wait, auto)
-  done
+lemma (in valid_trace_exit)
+  threads_es [simp]: "threads (e#s) = threads s - {th}"
+  by (unfold is_exit, simp)
 
-text {* 
-  The following @{text "step_RAG_p"} lemma charaterizes how @{text "RAG"} is changed
-  with the happening of @{text "P"}-events:
-*}
-lemma step_RAG_p:
-  "vt (P th cs#s) \<Longrightarrow>
-  RAG (P th cs # s) =  (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
-                                             else RAG s \<union> {(Th th, Cs cs)})"
-  apply(simp only: s_RAG_def wq_def)
-  apply (auto split:list.splits prod.splits simp:Let_def wq_def cs_waiting_def cs_holding_def)
-  apply(case_tac "csa = cs", auto)
-  apply(fold wq_def)
-  apply(drule_tac step_back_step)
-  apply(ind_cases " step s (P (hd (wq s cs)) cs)")
-  apply(simp add:s_RAG_def wq_def cs_holding_def)
-  apply(auto)
-  done
+lemma (in valid_trace_p)
+  threads_es [simp]: "threads (e#s) = threads s"
+  by (unfold is_p, simp)
 
-
-lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
-  by (unfold s_RAG_def, auto)
-
-context valid_trace
-begin
+lemma (in valid_trace_v)
+  threads_es [simp]: "threads (e#s) = threads s"
+  by (unfold is_v, simp)
 
-text {*
-  The following lemma shows that @{text "RAG"} is acyclic.
-  The overall structure is by induction on the formation of @{text "vt s"}
-  and then case analysis on event @{text "e"}, where the non-trivial cases 
-  for those for @{text "V"} and @{text "P"} events.
-*}
-lemma acyclic_RAG:
-  shows "acyclic (RAG s)"
-using vt
-proof(induct)
-  case (vt_cons s e)
-  interpret vt_s: valid_trace s using vt_cons(1)
-    by (unfold_locales, simp)
-  assume ih: "acyclic (RAG s)"
-    and stp: "step s e"
-    and vt: "vt s"
-  show ?case
-  proof(cases e)
-    case (Create th prio)
-    with ih
-    show ?thesis by (simp add:RAG_create_unchanged)
-  next
-    case (Exit th)
-    with ih show ?thesis by (simp add:RAG_exit_unchanged)
-  next
-    case (V th cs)
-    from V vt stp have vtt: "vt (V th cs#s)" by auto
-    from step_RAG_v [OF this]
-    have eq_de: 
-      "RAG (e # s) = 
-      RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
-      {(Cs cs, Th th') |th'. next_th s th cs th'}"
-      (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)
-    from ih have ac: "acyclic (?A - ?B - ?C)" by (auto elim:acyclic_subset)
-    from step_back_step [OF vtt]
-    have "step s (V th cs)" .
-    thus ?thesis
-    proof(cases)
-      assume "holding s th cs"
-      hence th_in: "th \<in> set (wq s cs)" and
-        eq_hd: "th = hd (wq s cs)" unfolding s_holding_def wq_def by auto
-      then obtain rest where
-        eq_wq: "wq s cs = th#rest"
-        by (cases "wq s cs", auto)
-      show ?thesis
-      proof(cases "rest = []")
-        case False
-        let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
-        from eq_wq False have eq_D: "?D = {(Cs cs, Th ?th')}"
-          by (unfold next_th_def, auto)
-        let ?E = "(?A - ?B - ?C)"
-        have "(Th ?th', Cs cs) \<notin> ?E\<^sup>*"
-        proof
-          assume "(Th ?th', Cs cs) \<in> ?E\<^sup>*"
-          hence " (Th ?th', Cs cs) \<in> ?E\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
-          from tranclD [OF this]
-          obtain x where th'_e: "(Th ?th', x) \<in> ?E" by blast
-          hence th_d: "(Th ?th', x) \<in> ?A" by simp
-          from RAG_target_th [OF this]
-          obtain cs' where eq_x: "x = Cs cs'" by auto
-          with th_d have "(Th ?th', Cs cs') \<in> ?A" by simp
-          hence wt_th': "waiting s ?th' cs'"
-            unfolding s_RAG_def s_waiting_def cs_waiting_def wq_def by simp
-          hence "cs' = cs"
-          proof(rule vt_s.waiting_unique)
-            from eq_wq vt_s.wq_distinct[of cs]
-            show "waiting s ?th' cs" 
-              apply (unfold s_waiting_def wq_def, auto)
-            proof -
-              assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-                and eq_wq: "wq_fun (schs s) cs = th # rest"
-              have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-              proof(rule someI2)
-                from vt_s.wq_distinct[of cs] and eq_wq
-                show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto
-              next
-                fix x assume "distinct x \<and> set x = set rest"
-                with False show "x \<noteq> []" by auto
-              qed
-              hence "hd (SOME q. distinct q \<and> set q = set rest) \<in> 
-                set (SOME q. distinct q \<and> set q = set rest)" by auto
-              moreover have "\<dots> = set rest" 
-              proof(rule someI2)
-                from vt_s.wq_distinct[of cs] and eq_wq
-                show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto
-              next
-                show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-              qed
-              moreover note hd_in
-              ultimately show "hd (SOME q. distinct q \<and> set q = set rest) = th" by auto
-            next
-              assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-                and eq_wq: "wq s cs = hd (SOME q. distinct q \<and> set q = set rest) # rest"
-              have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-              proof(rule someI2)
-                from vt_s.wq_distinct[of cs] and eq_wq
-                show "distinct rest \<and> set rest = set rest" by auto
-              next
-                fix x assume "distinct x \<and> set x = set rest"
-                with False show "x \<noteq> []" by auto
-              qed
-              hence "hd (SOME q. distinct q \<and> set q = set rest) \<in> 
-                set (SOME q. distinct q \<and> set q = set rest)" by auto
-              moreover have "\<dots> = set rest" 
-              proof(rule someI2)
-                from vt_s.wq_distinct[of cs] and eq_wq
-                show "distinct rest \<and> set rest = set rest" by auto
-              next
-                show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-              qed
-              moreover note hd_in
-              ultimately show False by auto
-            qed
-          qed
-          with th'_e eq_x have "(Th ?th', Cs cs) \<in> ?E" by simp
-          with False
-          show "False" by (auto simp: next_th_def eq_wq)
-        qed
-        with acyclic_insert[symmetric] and ac
-          and eq_de eq_D show ?thesis by auto
-      next
-        case True
-        with eq_wq
-        have eq_D: "?D = {}"
-          by (unfold next_th_def, auto)
-        with eq_de ac
-        show ?thesis by auto
-      qed 
-    qed
-  next
-    case (P th cs)
-    from P vt stp have vtt: "vt (P th cs#s)" by auto
-    from step_RAG_p [OF this] P
-    have "RAG (e # s) = 
-      (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else 
-      RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R")
-      by simp
-    moreover have "acyclic ?R"
-    proof(cases "wq s cs = []")
-      case True
-      hence eq_r: "?R =  RAG s \<union> {(Cs cs, Th th)}" by simp
-      have "(Th th, Cs cs) \<notin> (RAG s)\<^sup>*"
-      proof
-        assume "(Th th, Cs cs) \<in> (RAG s)\<^sup>*"
-        hence "(Th th, Cs cs) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
-        from tranclD2 [OF this]
-        obtain x where "(x, Cs cs) \<in> RAG s" by auto
-        with True show False by (auto simp:s_RAG_def cs_waiting_def)
-      qed
-      with acyclic_insert ih eq_r show ?thesis by auto
-    next
-      case False
-      hence eq_r: "?R =  RAG s \<union> {(Th th, Cs cs)}" by simp
-      have "(Cs cs, Th th) \<notin> (RAG s)\<^sup>*"
-      proof
-        assume "(Cs cs, Th th) \<in> (RAG s)\<^sup>*"
-        hence "(Cs cs, Th th) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
-        moreover from step_back_step [OF vtt] have "step s (P th cs)" .
-        ultimately show False
-        proof -
-          show " \<lbrakk>(Cs cs, Th th) \<in> (RAG s)\<^sup>+; step s (P th cs)\<rbrakk> \<Longrightarrow> False"
-            by (ind_cases "step s (P th cs)", simp)
-        qed
-      qed
-      with acyclic_insert ih eq_r show ?thesis by auto
-      qed
-      ultimately show ?thesis by simp
-    next
-      case (Set thread prio)
-      with ih
-      thm RAG_set_unchanged
-      show ?thesis by (simp add:RAG_set_unchanged)
-    qed
-  next
-    case vt_nil
-    show "acyclic (RAG ([]::state))"
-      by (auto simp: s_RAG_def cs_waiting_def 
-        cs_holding_def wq_def acyclic_def)
+lemma (in valid_trace_v)
+  th_not_in_rest[simp]: "th \<notin> set rest"
+proof
+  assume otherwise: "th \<in> set rest"
+  have "distinct (wq s cs)" by (simp add: wq_distinct)
+  from this[unfolded wq_s_cs] and otherwise
+  show False by auto
+qed
+
+lemma (in valid_trace_v)
+  set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}"
+proof(unfold wq_es_cs wq'_def, rule someI2)
+  show "distinct rest \<and> set rest = set rest"
+    by (simp add: distinct_rest)
+next
+  fix x
+  assume "distinct x \<and> set x = set rest"
+  thus "set x = set (wq s cs) - {th}" 
+      by (unfold wq_s_cs, simp)
 qed
 
-
-lemma finite_RAG:
-  shows "finite (RAG s)"
+lemma (in valid_trace_exit)
+  th_not_in_wq: "th \<notin> set (wq s cs)"
 proof -
-  from vt show ?thesis
-  proof(induct)
-    case (vt_cons s e)
-    interpret vt_s: valid_trace s using vt_cons(1)
-      by (unfold_locales, simp)
-    assume ih: "finite (RAG s)"
-      and stp: "step s e"
-      and vt: "vt s"
-    show ?case
-    proof(cases e)
-      case (Create th prio)
-      with ih
-      show ?thesis by (simp add:RAG_create_unchanged)
-    next
-      case (Exit th)
-      with ih show ?thesis by (simp add:RAG_exit_unchanged)
-    next
-      case (V th cs)
-      from V vt stp have vtt: "vt (V th cs#s)" by auto
-      from step_RAG_v [OF this]
-      have eq_de: "RAG (e # s) = 
-                   RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
-                      {(Cs cs, Th th') |th'. next_th s th cs th'}
-"
-        (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)
-      moreover from ih have ac: "finite (?A - ?B - ?C)" by simp
-      moreover have "finite ?D"
-      proof -
-        have "?D = {} \<or> (\<exists> a. ?D = {a})" 
-          by (unfold next_th_def, auto)
-        thus ?thesis
-        proof
-          assume h: "?D = {}"
-          show ?thesis by (unfold h, simp)
-        next
-          assume "\<exists> a. ?D = {a}"
-          thus ?thesis
-            by (metis finite.simps)
-        qed
-      qed
-      ultimately show ?thesis by simp
-    next
-      case (P th cs)
-      from P vt stp have vtt: "vt (P th cs#s)" by auto
-      from step_RAG_p [OF this] P
-      have "RAG (e # s) = 
-              (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else 
-                                    RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R")
-        by simp
-      moreover have "finite ?R"
-      proof(cases "wq s cs = []")
-        case True
-        hence eq_r: "?R =  RAG s \<union> {(Cs cs, Th th)}" by simp
-        with True and ih show ?thesis by auto
-      next
-        case False
-        hence "?R = RAG s \<union> {(Th th, Cs cs)}" by simp
-        with False and ih show ?thesis by auto
-      qed
-      ultimately show ?thesis by auto
-    next
-      case (Set thread prio)
-      with ih
-      show ?thesis by (simp add:RAG_set_unchanged)
-    qed
-  next
-    case vt_nil
-    show "finite (RAG ([]::state))"
-      by (auto simp: s_RAG_def cs_waiting_def 
-                   cs_holding_def wq_def acyclic_def)
-  qed
-qed
-
-text {* Several useful lemmas *}
-
-lemma wf_dep_converse: 
-  shows "wf ((RAG s)^-1)"
-proof(rule finite_acyclic_wf_converse)
-  from finite_RAG 
-  show "finite (RAG s)" .
-next
-  from acyclic_RAG
-  show "acyclic (RAG s)" .
+  from pip_e[unfolded is_exit]
+  show ?thesis
+  by (cases, unfold holdents_def s_holding_def, fold wq_def, 
+             auto elim!:runing_wqE)
 qed
 
-end
-
-lemma hd_np_in: "x \<in> set l \<Longrightarrow> hd l \<in> set l"
-  by (induct l, auto)
-
-lemma th_chasing: "(Th th, Cs cs) \<in> RAG (s::state) \<Longrightarrow> \<exists> th'. (Cs cs, Th th') \<in> RAG s"
-  by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
-
-context valid_trace
-begin
-
-lemma wq_threads: 
-  assumes h: "th \<in> set (wq s cs)"
+lemma (in valid_trace) wq_threads: 
+  assumes "th \<in> set (wq s cs)"
   shows "th \<in> threads s"
-proof -
- from vt and h show ?thesis
-  proof(induct arbitrary: th cs)
-    case (vt_cons s e)
-    interpret vt_s: valid_trace s
-      using vt_cons(1) by (unfold_locales, auto)
-    assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"
-      and stp: "step s e"
-      and vt: "vt s"
-      and h: "th \<in> set (wq (e # s) cs)"
-    show ?case
-    proof(cases e)
-      case (Create th' prio)
-      with ih h show ?thesis
+  using assms
+proof(induct rule:ind)
+  case (Nil)
+  thus ?case by (auto simp:wq_def)
+next
+  case (Cons s e)
+  interpret vt_e: valid_trace_e s e using Cons by simp
+  show ?case
+  proof(cases e)
+    case (Create th' prio')
+    interpret vt: valid_trace_create s e th' prio'
+      using Create by (unfold_locales, simp)
+    show ?thesis
+      using Cons.hyps(2) Cons.prems by auto
+  next
+    case (Exit th')
+    interpret vt: valid_trace_exit s e th'
+      using Exit by (unfold_locales, simp)
+    show ?thesis
+      using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto 
+  next
+    case (P th' cs')
+    interpret vt: valid_trace_p s e th' cs'
+      using P by (unfold_locales, simp)
+    show ?thesis
+      using Cons.hyps(2) Cons.prems readys_threads 
+        runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv 
+        by fastforce 
+  next
+    case (V th' cs')
+    interpret vt: valid_trace_v s e th' cs'
+      using V by (unfold_locales, simp)
+    show ?thesis using Cons
+      using vt.is_v vt.threads_es vt_e.wq_in_inv by blast
+  next
+    case (Set th' prio)
+    interpret vt: valid_trace_set s e th' prio
+      using Set by (unfold_locales, simp)
+    show ?thesis using Cons.hyps(2) Cons.prems vt.is_set 
         by (auto simp:wq_def Let_def)
-    next
-      case (Exit th')
-      with stp ih h show ?thesis
-        apply (auto simp:wq_def Let_def)
-        apply (ind_cases "step s (Exit th')")
-        apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def
-               s_RAG_def s_holding_def cs_holding_def)
-        done
-    next
-      case (V th' cs')
-      show ?thesis
-      proof(cases "cs' = cs")
-        case False
-        with h
-        show ?thesis
-          apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)
-          by (drule_tac ih, simp)
-      next
-        case True
-        from h
-        show ?thesis
-        proof(unfold V wq_def)
-          assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")
-          show "th \<in> threads (V th' cs' # s)"
-          proof(cases "cs = cs'")
-            case False
-            hence "?l = wq_fun (schs s) cs" by (simp add:Let_def)
-            with th_in have " th \<in> set (wq s cs)" 
-              by (fold wq_def, simp)
-            from ih [OF this] show ?thesis by simp
-          next
-            case True
-            show ?thesis
-            proof(cases "wq_fun (schs s) cs'")
-              case Nil
-              with h V show ?thesis
-                apply (auto simp:wq_def Let_def split:if_splits)
-                by (fold wq_def, drule_tac ih, simp)
-            next
-              case (Cons a rest)
-              assume eq_wq: "wq_fun (schs s) cs' = a # rest"
-              with h V show ?thesis
-                apply (auto simp:Let_def wq_def split:if_splits)
-              proof -
-                assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
-                have "set (SOME q. distinct q \<and> set q = set rest) = set rest" 
-                proof(rule someI2)
-                  from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def]
-                  show "distinct rest \<and> set rest = set rest" by auto
-                next
-                  show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
-                    by auto
-                qed
-                with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto
-                from ih[OF this[folded wq_def]] show "th \<in> threads s" .
-              next
-                assume th_in: "th \<in> set (wq_fun (schs s) cs)"
-                from ih[OF this[folded wq_def]]
-                show "th \<in> threads s" .
-              qed
-            qed
-          qed
-        qed
-      qed
-    next
-      case (P th' cs')
-      from h stp
-      show ?thesis
-        apply (unfold P wq_def)
-        apply (auto simp:Let_def split:if_splits, fold wq_def)
-        apply (auto intro:ih)
-        apply(ind_cases "step s (P th' cs')")
-        by (unfold runing_def readys_def, auto)
-    next
-      case (Set thread prio)
-      with ih h show ?thesis
-        by (auto simp:wq_def Let_def)
-    qed
-  next
-    case vt_nil
-    thus ?case by (auto simp:wq_def)
   qed
-qed
-
-lemma range_in: "\<lbrakk>(Th th) \<in> Range (RAG (s::state))\<rbrakk> \<Longrightarrow> th \<in> threads s"
-  apply(unfold s_RAG_def cs_waiting_def cs_holding_def)
-  by (auto intro:wq_threads)
-
-lemma readys_v_eq:
-  assumes neq_th: "th \<noteq> thread"
-  and eq_wq: "wq s cs = thread#rest"
-  and not_in: "th \<notin>  set rest"
-  shows "(th \<in> readys (V thread cs#s)) = (th \<in> readys s)"
-proof -
-  from assms show ?thesis
-    apply (auto simp:readys_def)
-    apply(simp add:s_waiting_def[folded wq_def])
-    apply (erule_tac x = csa in allE)
-    apply (simp add:s_waiting_def wq_def Let_def split:if_splits)
-    apply (case_tac "csa = cs", simp)
-    apply (erule_tac x = cs in allE)
-    apply(auto simp add: s_waiting_def[folded wq_def] Let_def split: list.splits)
-    apply(auto simp add: wq_def)
-    apply (auto simp:s_waiting_def wq_def Let_def split:list.splits)
-    proof -
-       assume th_nin: "th \<notin> set rest"
-        and th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
-        and eq_wq: "wq_fun (schs s) cs = thread # rest"
-      have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-      proof(rule someI2)
-        from wq_distinct[of cs, unfolded wq_def] and eq_wq[unfolded wq_def]
-        show "distinct rest \<and> set rest = set rest" by auto
-      next
-        show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-      qed
-      with th_nin th_in show False by auto
-    qed
-qed
-
-text {* \noindent
-  The following lemmas shows that: starting from any node in @{text "RAG"}, 
-  by chasing out-going edges, it is always possible to reach a node representing a ready
-  thread. In this lemma, it is the @{text "th'"}.
-*}
-
-lemma chain_building:
-  shows "node \<in> Domain (RAG s) \<longrightarrow> (\<exists> th'. th' \<in> readys s \<and> (node, Th th') \<in> (RAG s)^+)"
-proof -
-  from wf_dep_converse
-  have h: "wf ((RAG s)\<inverse>)" .
-  show ?thesis
-  proof(induct rule:wf_induct [OF h])
-    fix x
-    assume ih [rule_format]: 
-      "\<forall>y. (y, x) \<in> (RAG s)\<inverse> \<longrightarrow> 
-           y \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (y, Th th') \<in> (RAG s)\<^sup>+)"
-    show "x \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+)"
-    proof
-      assume x_d: "x \<in> Domain (RAG s)"
-      show "\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+"
-      proof(cases x)
-        case (Th th)
-        from x_d Th obtain cs where x_in: "(Th th, Cs cs) \<in> RAG s" by (auto simp:s_RAG_def)
-        with Th have x_in_r: "(Cs cs, x) \<in> (RAG s)^-1" by simp
-        from th_chasing [OF x_in] obtain th' where "(Cs cs, Th th') \<in> RAG s" by blast
-        hence "Cs cs \<in> Domain (RAG s)" by auto
-        from ih [OF x_in_r this] obtain th'
-          where th'_ready: " th' \<in> readys s" and cs_in: "(Cs cs, Th th') \<in> (RAG s)\<^sup>+" by auto
-        have "(x, Th th') \<in> (RAG s)\<^sup>+" using Th x_in cs_in by auto
-        with th'_ready show ?thesis by auto
-      next
-        case (Cs cs)
-        from x_d Cs obtain th' where th'_d: "(Th th', x) \<in> (RAG s)^-1" by (auto simp:s_RAG_def)
-        show ?thesis
-        proof(cases "th' \<in> readys s")
-          case True
-          from True and th'_d show ?thesis by auto
-        next
-          case False
-          from th'_d and range_in  have "th' \<in> threads s" by auto
-          with False have "Th th' \<in> Domain (RAG s)" 
-            by (auto simp:readys_def wq_def s_waiting_def s_RAG_def cs_waiting_def Domain_def)
-          from ih [OF th'_d this]
-          obtain th'' where 
-            th''_r: "th'' \<in> readys s" and 
-            th''_in: "(Th th', Th th'') \<in> (RAG s)\<^sup>+" by auto
-          from th'_d and th''_in 
-          have "(x, Th th'') \<in> (RAG s)\<^sup>+" by auto
-          with th''_r show ?thesis by auto
-        qed
-      qed
-    qed
-  qed
-qed
-
-text {* \noindent
-  The following is just an instance of @{text "chain_building"}.
-*}
-lemma th_chain_to_ready:
-  assumes th_in: "th \<in> threads s"
-  shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
-proof(cases "th \<in> readys s")
-  case True
-  thus ?thesis by auto
-next
-  case False
-  from False and th_in have "Th th \<in> Domain (RAG s)" 
-    by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
-  from chain_building [rule_format, OF this]
-  show ?thesis by auto
-qed
-
-end
-
-
-
-lemma holding_unique: "\<lbrakk>holding (s::state) th1 cs; holding s th2 cs\<rbrakk> \<Longrightarrow> th1 = th2"
-  by (unfold s_holding_def cs_holding_def, auto)
-
-context valid_trace
-begin
-
-lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
-  apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
-  by(auto elim:waiting_unique holding_unique)
-
-end
-
-
-lemma trancl_split: "(a, b) \<in> r^+ \<Longrightarrow> \<exists> c. (a, c) \<in> r"
-by (induct rule:trancl_induct, auto)
+qed 
 
 context valid_trace
 begin
 
-lemma dchain_unique:
-  assumes th1_d: "(n, Th th1) \<in> (RAG s)^+"
-  and th1_r: "th1 \<in> readys s"
-  and th2_d: "(n, Th th2) \<in> (RAG s)^+"
-  and th2_r: "th2 \<in> readys s"
-  shows "th1 = th2"
-proof -
-  { assume neq: "th1 \<noteq> th2"
-    hence "Th th1 \<noteq> Th th2" by simp
-    from unique_chain [OF _ th1_d th2_d this] and unique_RAG 
-    have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+ \<or> (Th th2, Th th1) \<in> (RAG s)\<^sup>+" by auto
-    hence "False"
-    proof
-      assume "(Th th1, Th th2) \<in> (RAG s)\<^sup>+"
-      from trancl_split [OF this]
-      obtain n where dd: "(Th th1, n) \<in> RAG s" by auto
-      then obtain cs where eq_n: "n = Cs cs"
-        by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
-      from dd eq_n have "th1 \<notin> readys s"
-        by (auto simp:readys_def s_RAG_def wq_def s_waiting_def cs_waiting_def)
-      with th1_r show ?thesis by auto
-    next
-      assume "(Th th2, Th th1) \<in> (RAG s)\<^sup>+"
-      from trancl_split [OF this]
-      obtain n where dd: "(Th th2, n) \<in> RAG s" by auto
-      then obtain cs where eq_n: "n = Cs cs"
-        by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
-      from dd eq_n have "th2 \<notin> readys s"
-        by (auto simp:readys_def wq_def s_RAG_def s_waiting_def cs_waiting_def)
-      with th2_r show ?thesis by auto
-    qed
-  } thus ?thesis by auto
-qed
-
-end
-             
-
-lemma step_holdents_p_add:
-  assumes vt: "vt (P th cs#s)"
-  and "wq s cs = []"
-  shows "holdents (P th cs#s) th = holdents s th \<union> {cs}"
-proof -
-  from assms show ?thesis
-  unfolding  holdents_test step_RAG_p[OF vt] by (auto)
-qed
-
-lemma step_holdents_p_eq:
-  assumes vt: "vt (P th cs#s)"
-  and "wq s cs \<noteq> []"
-  shows "holdents (P th cs#s) th = holdents s th"
-proof -
-  from assms show ?thesis
-  unfolding  holdents_test step_RAG_p[OF vt] by auto
-qed
-
-
-lemma (in valid_trace) finite_holding :
-  shows "finite (holdents s th)"
-proof -
-  let ?F = "\<lambda> (x, y). the_cs x"
-  from finite_RAG 
-  have "finite (RAG s)" .
-  hence "finite (?F `(RAG s))" by simp
-  moreover have "{cs . (Cs cs, Th th) \<in> RAG s} \<subseteq> \<dots>" 
-  proof -
-    { have h: "\<And> a A f. a \<in> A \<Longrightarrow> f a \<in> f ` A" by auto
-      fix x assume "(Cs x, Th th) \<in> RAG s"
-      hence "?F (Cs x, Th th) \<in> ?F `(RAG s)" by (rule h)
-      moreover have "?F (Cs x, Th th) = x" by simp
-      ultimately have "x \<in> (\<lambda>(x, y). the_cs x) ` RAG s" by simp 
-    } thus ?thesis by auto
-  qed
-  ultimately show ?thesis by (unfold holdents_test, auto intro:finite_subset)
-qed
-
-lemma cntCS_v_dec: 
-  assumes vtv: "vt (V thread cs#s)"
-  shows "(cntCS (V thread cs#s) thread + 1) = cntCS s thread"
-proof -
-  from vtv interpret vt_s: valid_trace s
-    by (cases, unfold_locales, simp)
-  from vtv interpret vt_v: valid_trace "V thread cs#s"
-     by (unfold_locales, simp)
-  from step_back_step[OF vtv]
-  have cs_in: "cs \<in> holdents s thread" 
-    apply (cases, unfold holdents_test s_RAG_def, simp)
-    by (unfold cs_holding_def s_holding_def wq_def, auto)
-  moreover have cs_not_in: 
-    "(holdents (V thread cs#s) thread) = holdents s thread - {cs}"
-    apply (insert vt_s.wq_distinct[of cs])
-    apply (unfold holdents_test, unfold step_RAG_v[OF vtv],
-            auto simp:next_th_def)
-  proof -
-    fix rest
-    assume dst: "distinct (rest::thread list)"
-      and ne: "rest \<noteq> []"
-    and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-    moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-    qed
-    ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> 
-                     set (SOME q. distinct q \<and> set q = set rest)" by simp
-    moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      fix x assume " distinct x \<and> set x = set rest" with ne
-      show "x \<noteq> []" by auto
-    qed
-    ultimately 
-    show "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s"
-      by auto
-  next
-    fix rest
-    assume dst: "distinct (rest::thread list)"
-      and ne: "rest \<noteq> []"
-    and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-    moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-    qed
-    ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> 
-                     set (SOME q. distinct q \<and> set q = set rest)" by simp
-    moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      fix x assume " distinct x \<and> set x = set rest" with ne
-      show "x \<noteq> []" by auto
-    qed
-    ultimately show "False" by auto 
-  qed
-  ultimately 
-  have "holdents s thread = insert cs (holdents (V thread cs#s) thread)"
-    by auto
-  moreover have "card \<dots> = 
-                    Suc (card ((holdents (V thread cs#s) thread) - {cs}))"
-  proof(rule card_insert)
-    from vt_v.finite_holding
-    show " finite (holdents (V thread cs # s) thread)" .
-  qed
-  moreover from cs_not_in 
-  have "cs \<notin> (holdents (V thread cs#s) thread)" by auto
-  ultimately show ?thesis by (simp add:cntCS_def)
-qed 
-
-lemma count_rec1 [simp]: 
-  assumes "Q e"
-  shows "count Q (e#es) = Suc (count Q es)"
-  using assms
-  by (unfold count_def, auto)
-
-lemma count_rec2 [simp]: 
-  assumes "\<not>Q e"
-  shows "count Q (e#es) = (count Q es)"
-  using assms
-  by (unfold count_def, auto)
-
-lemma count_rec3 [simp]: 
-  shows "count Q [] =  0"
-  by (unfold count_def, auto)
-
-lemma cntP_diff_inv:
-  assumes "cntP (e#s) th \<noteq> cntP s th"
-  shows "isP e \<and> actor e = th"
-proof(cases e)
-  case (P th' pty)
-  show ?thesis
-  by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)", 
-        insert assms P, auto simp:cntP_def)
-qed (insert assms, auto simp:cntP_def)
-  
-lemma cntV_diff_inv:
-  assumes "cntV (e#s) th \<noteq> cntV s th"
-  shows "isV e \<and> actor e = th"
-proof(cases e)
-  case (V th' pty)
-  show ?thesis
-  by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)", 
-        insert assms V, auto simp:cntV_def)
-qed (insert assms, auto simp:cntV_def)
-
-context valid_trace
-begin
-
-text {* (* ddd *) \noindent
-  The relationship between @{text "cntP"}, @{text "cntV"} and @{text "cntCS"} 
-  of one particular thread. 
-*} 
-
-lemma cnp_cnv_cncs:
-  shows "cntP s th = cntV s th + (if (th \<in> readys s \<or> th \<notin> threads s) 
-                                       then cntCS s th else cntCS s th + 1)"
-proof -
-  from vt show ?thesis
-  proof(induct arbitrary:th)
-    case (vt_cons s e)
-    interpret vt_s: valid_trace s using vt_cons(1) by (unfold_locales, simp)
-    assume vt: "vt s"
-    and ih: "\<And>th. cntP s th  = cntV s th +
-               (if (th \<in> readys s \<or> th \<notin> threads s) then cntCS s th else cntCS s th + 1)"
-    and stp: "step s e"
-    from stp show ?case
-    proof(cases)
-      case (thread_create thread prio)
-      assume eq_e: "e = Create thread prio"
-        and not_in: "thread \<notin> threads s"
-      show ?thesis
-      proof -
-        { fix cs 
-          assume "thread \<in> set (wq s cs)"
-          from vt_s.wq_threads [OF this] have "thread \<in> threads s" .
-          with not_in have "False" by simp
-        } with eq_e have eq_readys: "readys (e#s) = readys s \<union> {thread}"
-          by (auto simp:readys_def threads.simps s_waiting_def 
-            wq_def cs_waiting_def Let_def)
-        from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
-        from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
-        have eq_cncs: "cntCS (e#s) th = cntCS s th"
-          unfolding cntCS_def holdents_test
-          by (simp add:RAG_create_unchanged eq_e)
-        { assume "th \<noteq> thread"
-          with eq_readys eq_e
-          have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = 
-                      (th \<in> readys (s) \<or> th \<notin> threads (s))" 
-            by (simp add:threads.simps)
-          with eq_cnp eq_cnv eq_cncs ih not_in
-          have ?thesis by simp
-        } moreover {
-          assume eq_th: "th = thread"
-          with not_in ih have " cntP s th  = cntV s th + cntCS s th" by simp
-          moreover from eq_th and eq_readys have "th \<in> readys (e#s)" by simp
-          moreover note eq_cnp eq_cnv eq_cncs
-          ultimately have ?thesis by auto
-        } ultimately show ?thesis by blast
-      qed
-    next
-      case (thread_exit thread)
-      assume eq_e: "e = Exit thread" 
-      and is_runing: "thread \<in> runing s"
-      and no_hold: "holdents s thread = {}"
-      from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
-      from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
-      have eq_cncs: "cntCS (e#s) th = cntCS s th"
-        unfolding cntCS_def holdents_test
-        by (simp add:RAG_exit_unchanged eq_e)
-      { assume "th \<noteq> thread"
-        with eq_e
-        have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = 
-          (th \<in> readys (s) \<or> th \<notin> threads (s))" 
-          apply (simp add:threads.simps readys_def)
-          apply (subst s_waiting_def)
-          apply (simp add:Let_def)
-          apply (subst s_waiting_def, simp)
-          done
-        with eq_cnp eq_cnv eq_cncs ih
-        have ?thesis by simp
-      } moreover {
-        assume eq_th: "th = thread"
-        with ih is_runing have " cntP s th = cntV s th + cntCS s th" 
-          by (simp add:runing_def)
-        moreover from eq_th eq_e have "th \<notin> threads (e#s)"
-          by simp
-        moreover note eq_cnp eq_cnv eq_cncs
-        ultimately have ?thesis by auto
-      } ultimately show ?thesis by blast
-    next
-      case (thread_P thread cs)
-      assume eq_e: "e = P thread cs"
-        and is_runing: "thread \<in> runing s"
-        and no_dep: "(Cs cs, Th thread) \<notin> (RAG s)\<^sup>+"
-      from thread_P vt stp ih  have vtp: "vt (P thread cs#s)" by auto
-      then interpret vt_p: valid_trace "(P thread cs#s)"
-        by (unfold_locales, simp)
-      show ?thesis 
-      proof -
-        { have hh: "\<And> A B C. (B = C) \<Longrightarrow> (A \<and> B) = (A \<and> C)" by blast
-          assume neq_th: "th \<noteq> thread"
-          with eq_e
-          have eq_readys: "(th \<in> readys (e#s)) = (th \<in> readys (s))"
-            apply (simp add:readys_def s_waiting_def wq_def Let_def)
-            apply (rule_tac hh)
-             apply (intro iffI allI, clarify)
-            apply (erule_tac x = csa in allE, auto)
-            apply (subgoal_tac "wq_fun (schs s) cs \<noteq> []", auto)
-            apply (erule_tac x = cs in allE, auto)
-            by (case_tac "(wq_fun (schs s) cs)", auto)
-          moreover from neq_th eq_e have "cntCS (e # s) th = cntCS s th"
-            apply (simp add:cntCS_def holdents_test)
-            by (unfold  step_RAG_p [OF vtp], auto)
-          moreover from eq_e neq_th have "cntP (e # s) th = cntP s th"
-            by (simp add:cntP_def count_def)
-          moreover from eq_e neq_th have "cntV (e#s) th = cntV s th"
-            by (simp add:cntV_def count_def)
-          moreover from eq_e neq_th have "threads (e#s) = threads s" by simp
-          moreover note ih [of th] 
-          ultimately have ?thesis by simp
-        } moreover {
-          assume eq_th: "th = thread"
-          have ?thesis
-          proof -
-            from eq_e eq_th have eq_cnp: "cntP (e # s) th  = 1 + (cntP s th)" 
-              by (simp add:cntP_def count_def)
-            from eq_e eq_th have eq_cnv: "cntV (e#s) th = cntV s th"
-              by (simp add:cntV_def count_def)
-            show ?thesis
-            proof (cases "wq s cs = []")
-              case True
-              with is_runing
-              have "th \<in> readys (e#s)"
-                apply (unfold eq_e wq_def, unfold readys_def s_RAG_def)
-                apply (simp add: wq_def[symmetric] runing_def eq_th s_waiting_def)
-                by (auto simp:readys_def wq_def Let_def s_waiting_def wq_def)
-              moreover have "cntCS (e # s) th = 1 + cntCS s th"
-              proof -
-                have "card {csa. csa = cs \<or> (Cs csa, Th thread) \<in> RAG s} =
-                  Suc (card {cs. (Cs cs, Th thread) \<in> RAG s})" (is "card ?L = Suc (card ?R)")
-                proof -
-                  have "?L = insert cs ?R" by auto
-                  moreover have "card \<dots> = Suc (card (?R - {cs}))" 
-                  proof(rule card_insert)
-                    from vt_s.finite_holding [of thread]
-                    show " finite {cs. (Cs cs, Th thread) \<in> RAG s}"
-                      by (unfold holdents_test, simp)
-                  qed
-                  moreover have "?R - {cs} = ?R"
-                  proof -
-                    have "cs \<notin> ?R"
-                    proof
-                      assume "cs \<in> {cs. (Cs cs, Th thread) \<in> RAG s}"
-                      with no_dep show False by auto
-                    qed
-                    thus ?thesis by auto
-                  qed
-                  ultimately show ?thesis by auto
-                qed
-                thus ?thesis
-                  apply (unfold eq_e eq_th cntCS_def)
-                  apply (simp add: holdents_test)
-                  by (unfold step_RAG_p [OF vtp], auto simp:True)
-              qed
-              moreover from is_runing have "th \<in> readys s"
-                by (simp add:runing_def eq_th)
-              moreover note eq_cnp eq_cnv ih [of th]
-              ultimately show ?thesis by auto
-            next
-              case False
-              have eq_wq: "wq (e#s) cs = wq s cs @ [th]"
-                    by (unfold eq_th eq_e wq_def, auto simp:Let_def)
-              have "th \<notin> readys (e#s)"
-              proof
-                assume "th \<in> readys (e#s)"
-                hence "\<forall>cs. \<not> waiting (e # s) th cs" by (simp add:readys_def)
-                from this[rule_format, of cs] have " \<not> waiting (e # s) th cs" .
-                hence "th \<in> set (wq (e#s) cs) \<Longrightarrow> th = hd (wq (e#s) cs)" 
-                  by (simp add:s_waiting_def wq_def)
-                moreover from eq_wq have "th \<in> set (wq (e#s) cs)" by auto
-                ultimately have "th = hd (wq (e#s) cs)" by blast
-                with eq_wq have "th = hd (wq s cs @ [th])" by simp
-                hence "th = hd (wq s cs)" using False by auto
-                with False eq_wq vt_p.wq_distinct [of cs]
-                show False by (fold eq_e, auto)
-              qed
-              moreover from is_runing have "th \<in> threads (e#s)" 
-                by (unfold eq_e, auto simp:runing_def readys_def eq_th)
-              moreover have "cntCS (e # s) th = cntCS s th"
-                apply (unfold cntCS_def holdents_test eq_e step_RAG_p[OF vtp])
-                by (auto simp:False)
-              moreover note eq_cnp eq_cnv ih[of th]
-              moreover from is_runing have "th \<in> readys s"
-                by (simp add:runing_def eq_th)
-              ultimately show ?thesis by auto
-            qed
-          qed
-        } ultimately show ?thesis by blast
-      qed
-    next
-      case (thread_V thread cs)
-      from assms vt stp ih thread_V have vtv: "vt (V thread cs # s)" by auto
-      then interpret vt_v: valid_trace "(V thread cs # s)" by (unfold_locales, simp)
-      assume eq_e: "e = V thread cs"
-        and is_runing: "thread \<in> runing s"
-        and hold: "holding s thread cs"
-      from hold obtain rest 
-        where eq_wq: "wq s cs = thread # rest"
-        by (case_tac "wq s cs", auto simp: wq_def s_holding_def)
-      have eq_threads: "threads (e#s) = threads s" by (simp add: eq_e)
-      have eq_set: "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-      proof(rule someI2)
-        from vt_v.wq_distinct[of cs] and eq_wq
-        show "distinct rest \<and> set rest = set rest"
-          by (metis distinct.simps(2) vt_s.wq_distinct)
-      next
-        show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
-          by auto
-      qed
-      show ?thesis
-      proof -
-        { assume eq_th: "th = thread"
-          from eq_th have eq_cnp: "cntP (e # s) th = cntP s th"
-            by (unfold eq_e, simp add:cntP_def count_def)
-          moreover from eq_th have eq_cnv: "cntV (e#s) th = 1 + cntV s th"
-            by (unfold eq_e, simp add:cntV_def count_def)
-          moreover from cntCS_v_dec [OF vtv] 
-          have "cntCS (e # s) thread + 1 = cntCS s thread"
-            by (simp add:eq_e)
-          moreover from is_runing have rd_before: "thread \<in> readys s"
-            by (unfold runing_def, simp)
-          moreover have "thread \<in> readys (e # s)"
-          proof -
-            from is_runing
-            have "thread \<in> threads (e#s)" 
-              by (unfold eq_e, auto simp:runing_def readys_def)
-            moreover have "\<forall> cs1. \<not> waiting (e#s) thread cs1"
-            proof
-              fix cs1
-              { assume eq_cs: "cs1 = cs" 
-                have "\<not> waiting (e # s) thread cs1"
-                proof -
-                  from eq_wq
-                  have "thread \<notin> set (wq (e#s) cs1)"
-                    apply(unfold eq_e wq_def eq_cs s_holding_def)
-                    apply (auto simp:Let_def)
-                  proof -
-                    assume "thread \<in> set (SOME q. distinct q \<and> set q = set rest)"
-                    with eq_set have "thread \<in> set rest" by simp
-                    with vt_v.wq_distinct[of cs]
-                    and eq_wq show False
-                        by (metis distinct.simps(2) vt_s.wq_distinct)
-                  qed
-                  thus ?thesis by (simp add:wq_def s_waiting_def)
-                qed
-              } moreover {
-                assume neq_cs: "cs1 \<noteq> cs"
-                  have "\<not> waiting (e # s) thread cs1" 
-                  proof -
-                    from wq_v_neq [OF neq_cs[symmetric]]
-                    have "wq (V thread cs # s) cs1 = wq s cs1" .
-                    moreover have "\<not> waiting s thread cs1" 
-                    proof -
-                      from runing_ready and is_runing
-                      have "thread \<in> readys s" by auto
-                      thus ?thesis by (simp add:readys_def)
-                    qed
-                    ultimately show ?thesis 
-                      by (auto simp:wq_def s_waiting_def eq_e)
-                  qed
-              } ultimately show "\<not> waiting (e # s) thread cs1" by blast
-            qed
-            ultimately show ?thesis by (simp add:readys_def)
-          qed
-          moreover note eq_th ih
-          ultimately have ?thesis by auto
-        } moreover {
-          assume neq_th: "th \<noteq> thread"
-          from neq_th eq_e have eq_cnp: "cntP (e # s) th = cntP s th" 
-            by (simp add:cntP_def count_def)
-          from neq_th eq_e have eq_cnv: "cntV (e # s) th = cntV s th" 
-            by (simp add:cntV_def count_def)
-          have ?thesis
-          proof(cases "th \<in> set rest")
-            case False
-            have "(th \<in> readys (e # s)) = (th \<in> readys s)"
-              apply (insert step_back_vt[OF vtv])
-              by (simp add: False eq_e eq_wq neq_th vt_s.readys_v_eq)
-            moreover have "cntCS (e#s) th = cntCS s th"
-              apply (insert neq_th, unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto)
-              proof -
-                have "{csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} =
-                      {cs. (Cs cs, Th th) \<in> RAG s}"
-                proof -
-                  from False eq_wq
-                  have " next_th s thread cs th \<Longrightarrow> (Cs cs, Th th) \<in> RAG s"
-                    apply (unfold next_th_def, auto)
-                  proof -
-                    assume ne: "rest \<noteq> []"
-                      and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-                      and eq_wq: "wq s cs = thread # rest"
-                    from eq_set ni have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> 
-                                  set (SOME q. distinct q \<and> set q = set rest)
-                                  " by simp
-                    moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-                    proof(rule someI2)
-                      from vt_s.wq_distinct[ of cs] and eq_wq
-                      show "distinct rest \<and> set rest = set rest" by auto
-                    next
-                      fix x assume "distinct x \<and> set x = set rest"
-                      with ne show "x \<noteq> []" by auto
-                    qed
-                    ultimately show 
-                      "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s"
-                      by auto
-                  qed    
-                  thus ?thesis by auto
-                qed
-                thus "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} =
-                             card {cs. (Cs cs, Th th) \<in> RAG s}" by simp 
-              qed
-            moreover note ih eq_cnp eq_cnv eq_threads
-            ultimately show ?thesis by auto
-          next
-            case True
-            assume th_in: "th \<in> set rest"
-            show ?thesis
-            proof(cases "next_th s thread cs th")
-              case False
-              with eq_wq and th_in have 
-                neq_hd: "th \<noteq> hd (SOME q. distinct q \<and> set q = set rest)" (is "th \<noteq> hd ?rest")
-                by (auto simp:next_th_def)
-              have "(th \<in> readys (e # s)) = (th \<in> readys s)"
-              proof -
-                from eq_wq and th_in
-                have "\<not> th \<in> readys s"
-                  apply (auto simp:readys_def s_waiting_def)
-                  apply (rule_tac x = cs in exI, auto)
-                  by (insert vt_s.wq_distinct[of cs], auto simp add: wq_def)
-                moreover 
-                from eq_wq and th_in and neq_hd
-                have "\<not> (th \<in> readys (e # s))"
-                  apply (auto simp:readys_def s_waiting_def eq_e wq_def Let_def split:list.splits)
-                  by (rule_tac x = cs in exI, auto simp:eq_set)
-                ultimately show ?thesis by auto
-              qed
-              moreover have "cntCS (e#s) th = cntCS s th" 
-              proof -
-                from eq_wq and  th_in and neq_hd
-                have "(holdents (e # s) th) = (holdents s th)"
-                  apply (unfold eq_e step_RAG_v[OF vtv], 
-                         auto simp:next_th_def eq_set s_RAG_def holdents_test wq_def
-                                   Let_def cs_holding_def)
-                  by (insert vt_s.wq_distinct[of cs], auto simp:wq_def)
-                thus ?thesis by (simp add:cntCS_def)
-              qed
-              moreover note ih eq_cnp eq_cnv eq_threads
-              ultimately show ?thesis by auto
-            next
-              case True
-              let ?rest = " (SOME q. distinct q \<and> set q = set rest)"
-              let ?t = "hd ?rest"
-              from True eq_wq th_in neq_th
-              have "th \<in> readys (e # s)"
-                apply (auto simp:eq_e readys_def s_waiting_def wq_def
-                        Let_def next_th_def)
-              proof -
-                assume eq_wq: "wq_fun (schs s) cs = thread # rest"
-                  and t_in: "?t \<in> set rest"
-                show "?t \<in> threads s"
-                proof(rule vt_s.wq_threads)
-                  from eq_wq and t_in
-                  show "?t \<in> set (wq s cs)" by (auto simp:wq_def)
-                qed
-              next
-                fix csa
-                assume eq_wq: "wq_fun (schs s) cs = thread # rest"
-                  and t_in: "?t \<in> set rest"
-                  and neq_cs: "csa \<noteq> cs"
-                  and t_in': "?t \<in>  set (wq_fun (schs s) csa)"
-                show "?t = hd (wq_fun (schs s) csa)"
-                proof -
-                  { assume neq_hd': "?t \<noteq> hd (wq_fun (schs s) csa)"
-                    from vt_s.wq_distinct[of cs] and 
-                    eq_wq[folded wq_def] and t_in eq_wq
-                    have "?t \<noteq> thread" by auto
-                    with eq_wq and t_in
-                    have w1: "waiting s ?t cs"
-                      by (auto simp:s_waiting_def wq_def)
-                    from t_in' neq_hd'
-                    have w2: "waiting s ?t csa"
-                      by (auto simp:s_waiting_def wq_def)
-                    from vt_s.waiting_unique[OF w1 w2]
-                    and neq_cs have "False" by auto
-                  } thus ?thesis by auto
-                qed
-              qed
-              moreover have "cntP s th = cntV s th + cntCS s th + 1"
-              proof -
-                have "th \<notin> readys s" 
-                proof -
-                  from True eq_wq neq_th th_in
-                  show ?thesis
-                    apply (unfold readys_def s_waiting_def, auto)
-                    by (rule_tac x = cs in exI, auto simp add: wq_def)
-                qed
-                moreover have "th \<in> threads s"
-                proof -
-                  from th_in eq_wq
-                  have "th \<in> set (wq s cs)" by simp
-                  from vt_s.wq_threads [OF this] 
-                  show ?thesis .
-                qed
-                ultimately show ?thesis using ih by auto
-              qed
-              moreover from True neq_th have "cntCS (e # s) th = 1 + cntCS s th"
-                apply (unfold cntCS_def holdents_test eq_e step_RAG_v[OF vtv], auto)
-              proof -
-                show "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs} =
-                               Suc (card {cs. (Cs cs, Th th) \<in> RAG s})"
-                  (is "card ?A = Suc (card ?B)")
-                proof -
-                  have "?A = insert cs ?B" by auto
-                  hence "card ?A = card (insert cs ?B)" by simp
-                  also have "\<dots> = Suc (card ?B)"
-                  proof(rule card_insert_disjoint)
-                    have "?B \<subseteq> ((\<lambda> (x, y). the_cs x) ` RAG s)" 
-                      apply (auto simp:image_def)
-                      by (rule_tac x = "(Cs x, Th th)" in bexI, auto)
-                    with vt_s.finite_RAG
-                    show "finite {cs. (Cs cs, Th th) \<in> RAG s}" by (auto intro:finite_subset)
-                  next
-                    show "cs \<notin> {cs. (Cs cs, Th th) \<in> RAG s}"
-                    proof
-                      assume "cs \<in> {cs. (Cs cs, Th th) \<in> RAG s}"
-                      hence "(Cs cs, Th th) \<in> RAG s" by simp
-                      with True neq_th eq_wq show False
-                        by (auto simp:next_th_def s_RAG_def cs_holding_def)
-                    qed
-                  qed
-                  finally show ?thesis .
-                qed
-              qed
-              moreover note eq_cnp eq_cnv
-              ultimately show ?thesis by simp
-            qed
-          qed
-        } ultimately show ?thesis by blast
-      qed
-    next
-      case (thread_set thread prio)
-      assume eq_e: "e = Set thread prio"
-        and is_runing: "thread \<in> runing s"
-      show ?thesis
-      proof -
-        from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
-        from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
-        have eq_cncs: "cntCS (e#s) th = cntCS s th"
-          unfolding cntCS_def holdents_test
-          by (simp add:RAG_set_unchanged eq_e)
-        from eq_e have eq_readys: "readys (e#s) = readys s" 
-          by (simp add:readys_def cs_waiting_def s_waiting_def wq_def,
-                  auto simp:Let_def)
-        { assume "th \<noteq> thread"
-          with eq_readys eq_e
-          have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = 
-                      (th \<in> readys (s) \<or> th \<notin> threads (s))" 
-            by (simp add:threads.simps)
-          with eq_cnp eq_cnv eq_cncs ih is_runing
-          have ?thesis by simp
-        } moreover {
-          assume eq_th: "th = thread"
-          with is_runing ih have " cntP s th  = cntV s th + cntCS s th" 
-            by (unfold runing_def, auto)
-          moreover from eq_th and eq_readys is_runing have "th \<in> readys (e#s)"
-            by (simp add:runing_def)
-          moreover note eq_cnp eq_cnv eq_cncs
-          ultimately have ?thesis by auto
-        } ultimately show ?thesis by blast
-      qed   
-    qed
-  next
-    case vt_nil
-    show ?case 
-      by (unfold cntP_def cntV_def cntCS_def, 
-        auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def)
-  qed
-qed
-
-lemma not_thread_cncs:
-  assumes not_in: "th \<notin> threads s" 
-  shows "cntCS s th = 0"
-proof -
-  from vt not_in show ?thesis
-  proof(induct arbitrary:th)
-    case (vt_cons s e th)
-    interpret vt_s: valid_trace s using vt_cons(1)
-       by (unfold_locales, simp)
-    assume vt: "vt s"
-      and ih: "\<And>th. th \<notin> threads s \<Longrightarrow> cntCS s th = 0"
-      and stp: "step s e"
-      and not_in: "th \<notin> threads (e # s)"
-    from stp show ?case
-    proof(cases)
-      case (thread_create thread prio)
-      assume eq_e: "e = Create thread prio"
-        and not_in': "thread \<notin> threads s"
-      have "cntCS (e # s) th = cntCS s th"
-        apply (unfold eq_e cntCS_def holdents_test)
-        by (simp add:RAG_create_unchanged)
-      moreover have "th \<notin> threads s" 
-      proof -
-        from not_in eq_e show ?thesis by simp
-      qed
-      moreover note ih ultimately show ?thesis by auto
-    next
-      case (thread_exit thread)
-      assume eq_e: "e = Exit thread"
-      and nh: "holdents s thread = {}"
-      have eq_cns: "cntCS (e # s) th = cntCS s th"
-        apply (unfold eq_e cntCS_def holdents_test)
-        by (simp add:RAG_exit_unchanged)
-      show ?thesis
-      proof(cases "th = thread")
-        case True
-        have "cntCS s th = 0" by (unfold cntCS_def, auto simp:nh True)
-        with eq_cns show ?thesis by simp
-      next
-        case False
-        with not_in and eq_e
-        have "th \<notin> threads s" by simp
-        from ih[OF this] and eq_cns show ?thesis by simp
-      qed
-    next
-      case (thread_P thread cs)
-      assume eq_e: "e = P thread cs"
-      and is_runing: "thread \<in> runing s"
-      from assms thread_P ih vt stp thread_P have vtp: "vt (P thread cs#s)" by auto
-      have neq_th: "th \<noteq> thread" 
-      proof -
-        from not_in eq_e have "th \<notin> threads s" by simp
-        moreover from is_runing have "thread \<in> threads s"
-          by (simp add:runing_def readys_def)
-        ultimately show ?thesis by auto
-      qed
-      hence "cntCS (e # s) th  = cntCS s th "
-        apply (unfold cntCS_def holdents_test eq_e)
-        by (unfold step_RAG_p[OF vtp], auto)
-      moreover have "cntCS s th = 0"
-      proof(rule ih)
-        from not_in eq_e show "th \<notin> threads s" by simp
-      qed
-      ultimately show ?thesis by simp
-    next
-      case (thread_V thread cs)
-      assume eq_e: "e = V thread cs"
-        and is_runing: "thread \<in> runing s"
-        and hold: "holding s thread cs"
-      have neq_th: "th \<noteq> thread" 
-      proof -
-        from not_in eq_e have "th \<notin> threads s" by simp
-        moreover from is_runing have "thread \<in> threads s"
-          by (simp add:runing_def readys_def)
-        ultimately show ?thesis by auto
-      qed
-      from assms thread_V vt stp ih 
-      have vtv: "vt (V thread cs#s)" by auto
-      then interpret vt_v: valid_trace "(V thread cs#s)"
-        by (unfold_locales, simp)
-      from hold obtain rest 
-        where eq_wq: "wq s cs = thread # rest"
-        by (case_tac "wq s cs", auto simp: wq_def s_holding_def)
-      from not_in eq_e eq_wq
-      have "\<not> next_th s thread cs th"
-        apply (auto simp:next_th_def)
-      proof -
-        assume ne: "rest \<noteq> []"
-          and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> threads s" (is "?t \<notin> threads s")
-        have "?t \<in> set rest"
-        proof(rule someI2)
-          from vt_v.wq_distinct[of cs] and eq_wq
-          show "distinct rest \<and> set rest = set rest"
-            by (metis distinct.simps(2) vt_s.wq_distinct) 
-        next
-          fix x assume "distinct x \<and> set x = set rest" with ne
-          show "hd x \<in> set rest" by (cases x, auto)
-        qed
-        with eq_wq have "?t \<in> set (wq s cs)" by simp
-        from vt_s.wq_threads[OF this] and ni
-        show False
-          using `hd (SOME q. distinct q \<and> set q = set rest) \<in> set (wq s cs)` 
-            ni vt_s.wq_threads by blast 
-      qed
-      moreover note neq_th eq_wq
-      ultimately have "cntCS (e # s) th  = cntCS s th"
-        by (unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto)
-      moreover have "cntCS s th = 0"
-      proof(rule ih)
-        from not_in eq_e show "th \<notin> threads s" by simp
-      qed
-      ultimately show ?thesis by simp
-    next
-      case (thread_set thread prio)
-      print_facts
-      assume eq_e: "e = Set thread prio"
-        and is_runing: "thread \<in> runing s"
-      from not_in and eq_e have "th \<notin> threads s" by auto
-      from ih [OF this] and eq_e
-      show ?thesis 
-        apply (unfold eq_e cntCS_def holdents_test)
-        by (simp add:RAG_set_unchanged)
-    qed
-    next
-      case vt_nil
-      show ?case
-      by (unfold cntCS_def, 
-        auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def)
-  qed
-qed
-
-end
-
-
-context valid_trace
-begin
-
-lemma dm_RAG_threads:
+lemma  dm_RAG_threads:
   assumes in_dom: "(Th th) \<in> Domain (RAG s)"
   shows "th \<in> threads s"
 proof -
@@ -2763,360 +1380,7 @@
   from wq_threads [OF this] show ?thesis .
 qed
 
-end
-
-lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-unfolding cp_def wq_def
-apply(induct s rule: schs.induct)
-thm cpreced_initial
-apply(simp add: Let_def cpreced_initial)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-done
-
-context valid_trace
-begin
-
-lemma runing_unique:
-  assumes runing_1: "th1 \<in> runing s"
-  and runing_2: "th2 \<in> runing s"
-  shows "th1 = th2"
-proof -
-  from runing_1 and runing_2 have "cp s th1 = cp s th2"
-    unfolding runing_def
-    apply(simp)
-    done
-  hence eq_max: "Max ((\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1)) =
-                 Max ((\<lambda>th. preced th s) ` ({th2} \<union> dependants (wq s) th2))"
-    (is "Max (?f ` ?A) = Max (?f ` ?B)")
-    unfolding cp_eq_cpreced 
-    unfolding cpreced_def .
-  obtain th1' where th1_in: "th1' \<in> ?A" and eq_f_th1: "?f th1' = Max (?f ` ?A)"
-  proof -
-    have h1: "finite (?f ` ?A)"
-    proof -
-      have "finite ?A" 
-      proof -
-        have "finite (dependants (wq s) th1)"
-        proof-
-          have "finite {th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+}"
-          proof -
-            let ?F = "\<lambda> (x, y). the_th x"
-            have "{th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
-              apply (auto simp:image_def)
-              by (rule_tac x = "(Th x, Th th1)" in bexI, auto)
-            moreover have "finite \<dots>"
-            proof -
-              from finite_RAG have "finite (RAG s)" .
-              hence "finite ((RAG (wq s))\<^sup>+)"
-                apply (unfold finite_trancl)
-                by (auto simp: s_RAG_def cs_RAG_def wq_def)
-              thus ?thesis by auto
-            qed
-            ultimately show ?thesis by (auto intro:finite_subset)
-          qed
-          thus ?thesis by (simp add:cs_dependants_def)
-        qed
-        thus ?thesis by simp
-      qed
-      thus ?thesis by auto
-    qed
-    moreover have h2: "(?f ` ?A) \<noteq> {}"
-    proof -
-      have "?A \<noteq> {}" by simp
-      thus ?thesis by simp
-    qed
-    from Max_in [OF h1 h2]
-    have "Max (?f ` ?A) \<in> (?f ` ?A)" .
-    thus ?thesis 
-      thm cpreced_def
-      unfolding cpreced_def[symmetric] 
-      unfolding cp_eq_cpreced[symmetric] 
-      unfolding cpreced_def 
-      using that[intro] by (auto)
-  qed
-  obtain th2' where th2_in: "th2' \<in> ?B" and eq_f_th2: "?f th2' = Max (?f ` ?B)"
-  proof -
-    have h1: "finite (?f ` ?B)"
-    proof -
-      have "finite ?B" 
-      proof -
-        have "finite (dependants (wq s) th2)"
-        proof-
-          have "finite {th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+}"
-          proof -
-            let ?F = "\<lambda> (x, y). the_th x"
-            have "{th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
-              apply (auto simp:image_def)
-              by (rule_tac x = "(Th x, Th th2)" in bexI, auto)
-            moreover have "finite \<dots>"
-            proof -
-              from finite_RAG have "finite (RAG s)" .
-              hence "finite ((RAG (wq s))\<^sup>+)"
-                apply (unfold finite_trancl)
-                by (auto simp: s_RAG_def cs_RAG_def wq_def)
-              thus ?thesis by auto
-            qed
-            ultimately show ?thesis by (auto intro:finite_subset)
-          qed
-          thus ?thesis by (simp add:cs_dependants_def)
-        qed
-        thus ?thesis by simp
-      qed
-      thus ?thesis by auto
-    qed
-    moreover have h2: "(?f ` ?B) \<noteq> {}"
-    proof -
-      have "?B \<noteq> {}" by simp
-      thus ?thesis by simp
-    qed
-    from Max_in [OF h1 h2]
-    have "Max (?f ` ?B) \<in> (?f ` ?B)" .
-    thus ?thesis by (auto intro:that)
-  qed
-  from eq_f_th1 eq_f_th2 eq_max 
-  have eq_preced: "preced th1' s = preced th2' s" by auto
-  hence eq_th12: "th1' = th2'"
-  proof (rule preced_unique)
-    from th1_in have "th1' = th1 \<or> (th1' \<in> dependants (wq s) th1)" by simp
-    thus "th1' \<in> threads s"
-    proof
-      assume "th1' \<in> dependants (wq s) th1"
-      hence "(Th th1') \<in> Domain ((RAG s)^+)"
-        apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
-        by (auto simp:Domain_def)
-      hence "(Th th1') \<in> Domain (RAG s)" by (simp add:trancl_domain)
-      from dm_RAG_threads[OF this] show ?thesis .
-    next
-      assume "th1' = th1"
-      with runing_1 show ?thesis
-        by (unfold runing_def readys_def, auto)
-    qed
-  next
-    from th2_in have "th2' = th2 \<or> (th2' \<in> dependants (wq s) th2)" by simp
-    thus "th2' \<in> threads s"
-    proof
-      assume "th2' \<in> dependants (wq s) th2"
-      hence "(Th th2') \<in> Domain ((RAG s)^+)"
-        apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
-        by (auto simp:Domain_def)
-      hence "(Th th2') \<in> Domain (RAG s)" by (simp add:trancl_domain)
-      from dm_RAG_threads[OF this] show ?thesis .
-    next
-      assume "th2' = th2"
-      with runing_2 show ?thesis
-        by (unfold runing_def readys_def, auto)
-    qed
-  qed
-  from th1_in have "th1' = th1 \<or> th1' \<in> dependants (wq s) th1" by simp
-  thus ?thesis
-  proof
-    assume eq_th': "th1' = th1"
-    from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp
-    thus ?thesis
-    proof
-      assume "th2' = th2" thus ?thesis using eq_th' eq_th12 by simp
-    next
-      assume "th2' \<in> dependants (wq s) th2"
-      with eq_th12 eq_th' have "th1 \<in> dependants (wq s) th2" by simp
-      hence "(Th th1, Th th2) \<in> (RAG s)^+"
-        by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
-      hence "Th th1 \<in> Domain ((RAG s)^+)" 
-        apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
-        by (auto simp:Domain_def)
-      hence "Th th1 \<in> Domain (RAG s)" by (simp add:trancl_domain)
-      then obtain n where d: "(Th th1, n) \<in> RAG s" by (auto simp:Domain_def)
-      from RAG_target_th [OF this]
-      obtain cs' where "n = Cs cs'" by auto
-      with d have "(Th th1, Cs cs') \<in> RAG s" by simp
-      with runing_1 have "False"
-        apply (unfold runing_def readys_def s_RAG_def)
-        by (auto simp:waiting_eq)
-      thus ?thesis by simp
-    qed
-  next
-    assume th1'_in: "th1' \<in> dependants (wq s) th1"
-    from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp
-    thus ?thesis 
-    proof
-      assume "th2' = th2"
-      with th1'_in eq_th12 have "th2 \<in> dependants (wq s) th1" by simp
-      hence "(Th th2, Th th1) \<in> (RAG s)^+"
-        by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
-      hence "Th th2 \<in> Domain ((RAG s)^+)" 
-        apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
-        by (auto simp:Domain_def)
-      hence "Th th2 \<in> Domain (RAG s)" by (simp add:trancl_domain)
-      then obtain n where d: "(Th th2, n) \<in> RAG s" by (auto simp:Domain_def)
-      from RAG_target_th [OF this]
-      obtain cs' where "n = Cs cs'" by auto
-      with d have "(Th th2, Cs cs') \<in> RAG s" by simp
-      with runing_2 have "False"
-        apply (unfold runing_def readys_def s_RAG_def)
-        by (auto simp:waiting_eq)
-      thus ?thesis by simp
-    next
-      assume "th2' \<in> dependants (wq s) th2"
-      with eq_th12 have "th1' \<in> dependants (wq s) th2" by simp
-      hence h1: "(Th th1', Th th2) \<in> (RAG s)^+"
-        by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
-      from th1'_in have h2: "(Th th1', Th th1) \<in> (RAG s)^+"
-        by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
-      show ?thesis
-      proof(rule dchain_unique[OF h1 _ h2, symmetric])
-        from runing_1 show "th1 \<in> readys s" by (simp add:runing_def)
-        from runing_2 show "th2 \<in> readys s" by (simp add:runing_def) 
-      qed
-    qed
-  qed
-qed
-
-
-lemma "card (runing s) \<le> 1"
-apply(subgoal_tac "finite (runing s)")
-prefer 2
-apply (metis finite_nat_set_iff_bounded lessI runing_unique)
-apply(rule ccontr)
-apply(simp)
-apply(case_tac "Suc (Suc 0) \<le> card (runing s)")
-apply(subst (asm) card_le_Suc_iff)
-apply(simp)
-apply(auto)[1]
-apply (metis insertCI runing_unique)
-apply(auto) 
-done
-
-end
-
-
-lemma create_pre:
-  assumes stp: "step s e"
-  and not_in: "th \<notin> threads s"
-  and is_in: "th \<in> threads (e#s)"
-  obtains prio where "e = Create th prio"
-proof -
-  from assms  
-  show ?thesis
-  proof(cases)
-    case (thread_create thread prio)
-    with is_in not_in have "e = Create th prio" by simp
-    from that[OF this] show ?thesis .
-  next
-    case (thread_exit thread)
-    with assms show ?thesis by (auto intro!:that)
-  next
-    case (thread_P thread)
-    with assms show ?thesis by (auto intro!:that)
-  next
-    case (thread_V thread)
-    with assms show ?thesis by (auto intro!:that)
-  next 
-    case (thread_set thread)
-    with assms show ?thesis by (auto intro!:that)
-  qed
-qed
-
-context valid_trace
-begin
-
-lemma cnp_cnv_eq:
-  assumes "th \<notin> threads s"
-  shows "cntP s th = cntV s th"
-  using assms
-  using cnp_cnv_cncs not_thread_cncs by auto
-
-end
-
-
-lemma eq_RAG: 
-  "RAG (wq s) = RAG s"
-by (unfold cs_RAG_def s_RAG_def, auto)
-
-context valid_trace
-begin
-
-lemma count_eq_dependants:
-  assumes eq_pv: "cntP s th = cntV s th"
-  shows "dependants (wq s) th = {}"
-proof -
-  from cnp_cnv_cncs and eq_pv
-  have "cntCS s th = 0" 
-    by (auto split:if_splits)
-  moreover have "finite {cs. (Cs cs, Th th) \<in> RAG s}"
-  proof -
-    from finite_holding[of th] show ?thesis
-      by (simp add:holdents_test)
-  qed
-  ultimately have h: "{cs. (Cs cs, Th th) \<in> RAG s} = {}"
-    by (unfold cntCS_def holdents_test cs_dependants_def, auto)
-  show ?thesis
-  proof(unfold cs_dependants_def)
-    { assume "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}"
-      then obtain th' where "(Th th', Th th) \<in> (RAG (wq s))\<^sup>+" by auto
-      hence "False"
-      proof(cases)
-        assume "(Th th', Th th) \<in> RAG (wq s)"
-        thus "False" by (auto simp:cs_RAG_def)
-      next
-        fix c
-        assume "(c, Th th) \<in> RAG (wq s)"
-        with h and eq_RAG show "False"
-          by (cases c, auto simp:cs_RAG_def)
-      qed
-    } thus "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} = {}" by auto
-  qed
-qed
-
-lemma dependants_threads:
-  shows "dependants (wq s) th \<subseteq> threads s"
-proof
-  { fix th th'
-    assume h: "th \<in> {th'a. (Th th'a, Th th') \<in> (RAG (wq s))\<^sup>+}"
-    have "Th th \<in> Domain (RAG s)"
-    proof -
-      from h obtain th' where "(Th th, Th th') \<in> (RAG (wq s))\<^sup>+" by auto
-      hence "(Th th) \<in> Domain ( (RAG (wq s))\<^sup>+)" by (auto simp:Domain_def)
-      with trancl_domain have "(Th th) \<in> Domain (RAG (wq s))" by simp
-      thus ?thesis using eq_RAG by simp
-    qed
-    from dm_RAG_threads[OF this]
-    have "th \<in> threads s" .
-  } note hh = this
-  fix th1 
-  assume "th1 \<in> dependants (wq s) th"
-  hence "th1 \<in> {th'a. (Th th'a, Th th) \<in> (RAG (wq s))\<^sup>+}"
-    by (unfold cs_dependants_def, simp)
-  from hh [OF this] show "th1 \<in> threads s" .
-qed
-
-lemma finite_threads:
-  shows "finite (threads s)"
-using vt by (induct) (auto elim: step.cases)
-
-end
-
-lemma Max_f_mono:
-  assumes seq: "A \<subseteq> B"
-  and np: "A \<noteq> {}"
-  and fnt: "finite B"
-  shows "Max (f ` A) \<le> Max (f ` B)"
-proof(rule Max_mono)
-  from seq show "f ` A \<subseteq> f ` B" by auto
-next
-  from np show "f ` A \<noteq> {}" by auto
-next
-  from fnt and seq show "finite (f ` B)" by auto
-qed
-
-context valid_trace
-begin
-
-lemma cp_le:
+lemma  cp_le:
   assumes th_in: "th \<in> threads s"
   shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"
 proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def)
@@ -3138,46 +1402,6 @@
   qed
 qed
 
-lemma le_cp:
-  shows "preced th s \<le> cp s th"
-proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
-  show "Prc (priority th s) (last_set th s)
-    \<le> Max (insert (Prc (priority th s) (last_set th s))
-            ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))"
-    (is "?l \<le> Max (insert ?l ?A)")
-  proof(cases "?A = {}")
-    case False
-    have "finite ?A" (is "finite (?f ` ?B)")
-    proof -
-      have "finite ?B" 
-      proof-
-        have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}"
-        proof -
-          let ?F = "\<lambda> (x, y). the_th x"
-          have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
-            apply (auto simp:image_def)
-            by (rule_tac x = "(Th x, Th th)" in bexI, auto)
-          moreover have "finite \<dots>"
-          proof -
-            from finite_RAG have "finite (RAG s)" .
-            hence "finite ((RAG (wq s))\<^sup>+)"
-              apply (unfold finite_trancl)
-              by (auto simp: s_RAG_def cs_RAG_def wq_def)
-            thus ?thesis by auto
-          qed
-          ultimately show ?thesis by (auto intro:finite_subset)
-        qed
-        thus ?thesis by (simp add:cs_dependants_def)
-      qed
-      thus ?thesis by simp
-    qed
-    from Max_insert [OF this False, of ?l] show ?thesis by auto
-  next
-    case True
-    thus ?thesis by auto
-  qed
-qed
-
 lemma max_cp_eq: 
   shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"
   (is "?l = ?r")
@@ -3225,998 +1449,198 @@
   ultimately show ?thesis using eq_l by auto
 qed
 
-lemma max_cp_readys_threads_pre:
-  assumes np: "threads s \<noteq> {}"
-  shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
-proof(unfold max_cp_eq)
-  show "Max (cp s ` readys s) = Max ((\<lambda>th. preced th s) ` threads s)"
-  proof -
-    let ?p = "Max ((\<lambda>th. preced th s) ` threads s)" 
-    let ?f = "(\<lambda>th. preced th s)"
-    have "?p \<in> ((\<lambda>th. preced th s) ` threads s)"
-    proof(rule Max_in)
-      from finite_threads show "finite (?f ` threads s)" by simp
-    next
-      from np show "?f ` threads s \<noteq> {}" by simp
-    qed
-    then obtain tm where tm_max: "?f tm = ?p" and tm_in: "tm \<in> threads s"
-      by (auto simp:Image_def)
-    from th_chain_to_ready [OF tm_in]
-    have "tm \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+)" .
-    thus ?thesis
-    proof
-      assume "\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+ "
-      then obtain th' where th'_in: "th' \<in> readys s" 
-        and tm_chain:"(Th tm, Th th') \<in> (RAG s)\<^sup>+" by auto
-      have "cp s th' = ?f tm"
-      proof(subst cp_eq_cpreced, subst cpreced_def, rule Max_eqI)
-        from dependants_threads finite_threads
-        show "finite ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th'))" 
-          by (auto intro:finite_subset)
-      next
-        fix p assume p_in: "p \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
-        from tm_max have " preced tm s = Max ((\<lambda>th. preced th s) ` threads s)" .
-        moreover have "p \<le> \<dots>"
-        proof(rule Max_ge)
-          from finite_threads
-          show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
-        next
-          from p_in and th'_in and dependants_threads[of th']
-          show "p \<in> (\<lambda>th. preced th s) ` threads s"
-            by (auto simp:readys_def)
-        qed
-        ultimately show "p \<le> preced tm s" by auto
-      next
-        show "preced tm s \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
-        proof -
-          from tm_chain
-          have "tm \<in> dependants (wq s) th'"
-            by (unfold cs_dependants_def s_RAG_def cs_RAG_def, auto)
-          thus ?thesis by auto
-        qed
-      qed
-      with tm_max
-      have h: "cp s th' = Max ((\<lambda>th. preced th s) ` threads s)" by simp
-      show ?thesis
-      proof (fold h, rule Max_eqI)
-        fix q 
-        assume "q \<in> cp s ` readys s"
-        then obtain th1 where th1_in: "th1 \<in> readys s"
-          and eq_q: "q = cp s th1" by auto
-        show "q \<le> cp s th'"
-          apply (unfold h eq_q)
-          apply (unfold cp_eq_cpreced cpreced_def)
-          apply (rule Max_mono)
-        proof -
-          from dependants_threads [of th1] th1_in
-          show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<subseteq> 
-                 (\<lambda>th. preced th s) ` threads s"
-            by (auto simp:readys_def)
-        next
-          show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}" by simp
-        next
-          from finite_threads 
-          show " finite ((\<lambda>th. preced th s) ` threads s)" by simp
-        qed
-      next
-        from finite_threads
-        show "finite (cp s ` readys s)" by (auto simp:readys_def)
-      next
-        from th'_in
-        show "cp s th' \<in> cp s ` readys s" by simp
-      qed
-    next
-      assume tm_ready: "tm \<in> readys s"
-      show ?thesis
-      proof(fold tm_max)
-        have cp_eq_p: "cp s tm = preced tm s"
-        proof(unfold cp_eq_cpreced cpreced_def, rule Max_eqI)
-          fix y 
-          assume hy: "y \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
-          show "y \<le> preced tm s"
-          proof -
-            { fix y'
-              assume hy' : "y' \<in> ((\<lambda>th. preced th s) ` dependants (wq s) tm)"
-              have "y' \<le> preced tm s"
-              proof(unfold tm_max, rule Max_ge)
-                from hy' dependants_threads[of tm]
-                show "y' \<in> (\<lambda>th. preced th s) ` threads s" by auto
-              next
-                from finite_threads
-                show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
-              qed
-            } with hy show ?thesis by auto
-          qed
-        next
-          from dependants_threads[of tm] finite_threads
-          show "finite ((\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm))"
-            by (auto intro:finite_subset)
-        next
-          show "preced tm s \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
-            by simp
-        qed 
-        moreover have "Max (cp s ` readys s) = cp s tm"
-        proof(rule Max_eqI)
-          from tm_ready show "cp s tm \<in> cp s ` readys s" by simp
-        next
-          from finite_threads
-          show "finite (cp s ` readys s)" by (auto simp:readys_def)
-        next
-          fix y assume "y \<in> cp s ` readys s"
-          then obtain th1 where th1_readys: "th1 \<in> readys s"
-            and h: "y = cp s th1" by auto
-          show "y \<le> cp s tm"
-            apply(unfold cp_eq_p h)
-            apply(unfold cp_eq_cpreced cpreced_def tm_max, rule Max_mono)
-          proof -
-            from finite_threads
-            show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
-          next
-            show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}"
-              by simp
-          next
-            from dependants_threads[of th1] th1_readys
-            show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) 
-                    \<subseteq> (\<lambda>th. preced th s) ` threads s"
-              by (auto simp:readys_def)
-          qed
-        qed
-        ultimately show " Max (cp s ` readys s) = preced tm s" by simp
-      qed 
-    qed
-  qed
-qed
-
-text {* (* ccc *) \noindent
-  Since the current precedence of the threads in ready queue will always be boosted,
-  there must be one inside it has the maximum precedence of the whole system. 
-*}
-lemma max_cp_readys_threads:
-  shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
-proof(cases "threads s = {}")
-  case True
-  thus ?thesis 
-    by (auto simp:readys_def)
-next
-  case False
-  show ?thesis by (rule max_cp_readys_threads_pre[OF False])
-qed
-
-end
-
-lemma eq_holding: "holding (wq s) th cs = holding s th cs"
-  apply (unfold s_holding_def cs_holding_def wq_def, simp)
-  done
-
-lemma f_image_eq:
-  assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"
-  shows "f ` A = g ` A"
-proof
-  show "f ` A \<subseteq> g ` A"
-    by(rule image_subsetI, auto intro:h)
-next
-  show "g ` A \<subseteq> f ` A"
-   by (rule image_subsetI, auto intro:h[symmetric])
-qed
-
-
-definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool"
-  where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))"
-
-lemma detached_test:
-  shows "detached s th = (Th th \<notin> Field (RAG s))"
-apply(simp add: detached_def Field_def)
-apply(simp add: s_RAG_def)
-apply(simp add: s_holding_abv s_waiting_abv)
-apply(simp add: Domain_iff Range_iff)
-apply(simp add: wq_def)
-apply(auto)
-done
-
-context valid_trace
-begin
-
-lemma detached_intro:
-  assumes eq_pv: "cntP s th = cntV s th"
-  shows "detached s th"
-proof -
- from cnp_cnv_cncs
-  have eq_cnt: "cntP s th =
-    cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" .
-  hence cncs_zero: "cntCS s th = 0"
-    by (auto simp:eq_pv split:if_splits)
-  with eq_cnt
-  have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:eq_pv)
-  thus ?thesis
-  proof
-    assume "th \<notin> threads s"
-    with range_in dm_RAG_threads
-    show ?thesis
-      by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def Domain_iff Range_iff)
-  next
-    assume "th \<in> readys s"
-    moreover have "Th th \<notin> Range (RAG s)"
-    proof -
-      from card_0_eq [OF finite_holding] and cncs_zero
-      have "holdents s th = {}"
-        by (simp add:cntCS_def)
-      thus ?thesis
-        apply(auto simp:holdents_test)
-        apply(case_tac a)
-        apply(auto simp:holdents_test s_RAG_def)
-        done
-    qed
-    ultimately show ?thesis
-      by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def readys_def)
-  qed
-qed
-
-lemma detached_elim:
-  assumes dtc: "detached s th"
-  shows "cntP s th = cntV s th"
-proof -
-  from cnp_cnv_cncs
-  have eq_pv: " cntP s th =
-    cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" .
-  have cncs_z: "cntCS s th = 0"
-  proof -
-    from dtc have "holdents s th = {}"
-      unfolding detached_def holdents_test s_RAG_def
-      by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff)
-    thus ?thesis by (auto simp:cntCS_def)
-  qed
-  show ?thesis
-  proof(cases "th \<in> threads s")
-    case True
-    with dtc 
-    have "th \<in> readys s"
-      by (unfold readys_def detached_def Field_def Domain_def Range_def, 
-           auto simp:waiting_eq s_RAG_def)
-    with cncs_z and eq_pv show ?thesis by simp
-  next
-    case False
-    with cncs_z and eq_pv show ?thesis by simp
-  qed
-qed
-
-lemma detached_eq:
-  shows "(detached s th) = (cntP s th = cntV s th)"
-  by (insert vt, auto intro:detached_intro detached_elim)
-
-end
-
-text {* 
-  The lemmas in this .thy file are all obvious lemmas, however, they still needs to be derived
-  from the concise and miniature model of PIP given in PrioGDef.thy.
-*}
-
-lemma eq_dependants: "dependants (wq s) = dependants s"
-  by (simp add: s_dependants_abv wq_def)
-
-lemma next_th_unique: 
-  assumes nt1: "next_th s th cs th1"
-  and nt2: "next_th s th cs th2"
-  shows "th1 = th2"
-using assms by (unfold next_th_def, auto)
-
-lemma birth_time_lt:  "s \<noteq> [] \<Longrightarrow> last_set th s < length s"
-  apply (induct s, simp)
-proof -
-  fix a s
-  assume ih: "s \<noteq> [] \<Longrightarrow> last_set th s < length s"
-    and eq_as: "a # s \<noteq> []"
-  show "last_set th (a # s) < length (a # s)"
-  proof(cases "s \<noteq> []")
-    case False
-    from False show ?thesis
-      by (cases a, auto simp:last_set.simps)
-  next
-    case True
-    from ih [OF True] show ?thesis
-      by (cases a, auto simp:last_set.simps)
-  qed
-qed
-
-lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []"
-  by (induct s, auto simp:threads.simps)
-
-lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s"
-  apply (drule_tac th_in_ne)
-  by (unfold preced_def, auto intro: birth_time_lt)
-
-lemma inj_the_preced: 
-  "inj_on (the_preced s) (threads s)"
-  by (metis inj_onI preced_unique the_preced_def)
-
-lemma tRAG_alt_def: 
-  "tRAG s = {(Th th1, Th th2) | th1 th2. 
-                  \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}"
- by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def)
-
-lemma tRAG_Field:
-  "Field (tRAG s) \<subseteq> Field (RAG s)"
-  by (unfold tRAG_alt_def Field_def, auto)
-
-lemma tRAG_ancestorsE:
-  assumes "x \<in> ancestors (tRAG s) u"
-  obtains th where "x = Th th"
-proof -
-  from assms have "(u, x) \<in> (tRAG s)^+" 
-      by (unfold ancestors_def, auto)
-  from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
-  then obtain th where "x = Th th"
-    by (unfold tRAG_alt_def, auto)
-  from that[OF this] show ?thesis .
-qed
-
-lemma tRAG_mono:
-  assumes "RAG s' \<subseteq> RAG s"
-  shows "tRAG s' \<subseteq> tRAG s"
-  using assms 
-  by (unfold tRAG_alt_def, auto)
-
-lemma holding_next_thI:
-  assumes "holding s th cs"
-  and "length (wq s cs) > 1"
-  obtains th' where "next_th s th cs th'"
-proof -
-  from assms(1)[folded eq_holding, unfolded cs_holding_def]
-  have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" .
-  then obtain rest where h1: "wq s cs = th#rest" 
-    by (cases "wq s cs", auto)
-  with assms(2) have h2: "rest \<noteq> []" by auto
-  let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
-  have "next_th s th cs ?th'" using  h1(1) h2 
-    by (unfold next_th_def, auto)
-  from that[OF this] show ?thesis .
-qed
-
-lemma RAG_tRAG_transfer:
-  assumes "vt s'"
-  assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
-  and "(Cs cs, Th th'') \<in> RAG s'"
-  shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
-proof -
-  interpret vt_s': valid_trace "s'" using assms(1)
-    by (unfold_locales, simp)
-  interpret rtree: rtree "RAG s'"
-  proof
-  show "single_valued (RAG s')"
-  apply (intro_locales)
-    by (unfold single_valued_def, 
-        auto intro:vt_s'.unique_RAG)
-
-  show "acyclic (RAG s')"
-     by (rule vt_s'.acyclic_RAG)
-  qed
-  { fix n1 n2
-    assume "(n1, n2) \<in> ?L"
-    from this[unfolded tRAG_alt_def]
-    obtain th1 th2 cs' where 
-      h: "n1 = Th th1" "n2 = Th th2" 
-         "(Th th1, Cs cs') \<in> RAG s"
-         "(Cs cs', Th th2) \<in> RAG s" by auto
-    from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto
-    from h(3) and assms(2) 
-    have "(Th th1, Cs cs') = (Th th, Cs cs) \<or> 
-          (Th th1, Cs cs') \<in> RAG s'" by auto
-    hence "(n1, n2) \<in> ?R"
-    proof
-      assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
-      hence eq_th1: "th1 = th" by simp
-      moreover have "th2 = th''"
-      proof -
-        from h1 have "cs' = cs" by simp
-        from assms(3) cs_in[unfolded this] rtree.sgv
-        show ?thesis
-          by (unfold single_valued_def, auto)
-      qed
-      ultimately show ?thesis using h(1,2) by auto
-    next
-      assume "(Th th1, Cs cs') \<in> RAG s'"
-      with cs_in have "(Th th1, Th th2) \<in> tRAG s'"
-        by (unfold tRAG_alt_def, auto)
-      from this[folded h(1, 2)] show ?thesis by auto
-    qed
-  } moreover {
-    fix n1 n2
-    assume "(n1, n2) \<in> ?R"
-    hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto
-    hence "(n1, n2) \<in> ?L" 
-    proof
-      assume "(n1, n2) \<in> tRAG s'"
-      moreover have "... \<subseteq> ?L"
-      proof(rule tRAG_mono)
-        show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto)
-      qed
-      ultimately show ?thesis by auto
-    next
-      assume eq_n: "(n1, n2) = (Th th, Th th'')"
-      from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto
-      moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto
-      ultimately show ?thesis 
-        by (unfold eq_n tRAG_alt_def, auto)
-    qed
-  } ultimately show ?thesis by auto
-qed
-
-context valid_trace
-begin
-
-lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
+lemma max_cp_eq_the_preced:
+  shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
+  using max_cp_eq using the_preced_def by presburger 
 
 end
 
-lemma cp_alt_def:
-  "cp s th =  
-           Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
-proof -
-  have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
-        Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})" 
-          (is "Max (_ ` ?L) = Max (_ ` ?R)")
-  proof -
-    have "?L = ?R" 
-    by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
-    thus ?thesis by simp
-  qed
-  thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
-qed
-
-lemma cp_gen_alt_def:
-  "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))"
-    by (auto simp:cp_gen_def)
-
-lemma tRAG_nodeE:
-  assumes "(n1, n2) \<in> tRAG s"
-  obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
-  using assms
-  by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def)
+lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
+  by (unfold preced_def, simp)
 
-lemma subtree_nodeE:
-  assumes "n \<in> subtree (tRAG s) (Th th)"
-  obtains th1 where "n = Th th1"
-proof -
-  show ?thesis
-  proof(rule subtreeE[OF assms])
-    assume "n = Th th"
-    from that[OF this] show ?thesis .
-  next
-    assume "Th th \<in> ancestors (tRAG s) n"
-    hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
-    hence "\<exists> th1. n = Th th1"
-    proof(induct)
-      case (base y)
-      from tRAG_nodeE[OF this] show ?case by metis
-    next
-      case (step y z)
-      thus ?case by auto
-    qed
-    with that show ?thesis by auto
-  qed
-qed
+lemma (in valid_trace_v)
+  preced_es: "preced th (e#s) = preced th s"
+  by (unfold is_v preced_def, simp)
 
-lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
-proof -
-  have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*" 
-    by (rule rtrancl_mono, auto simp:RAG_split)
-  also have "... \<subseteq> ((RAG s)^*)^*"
-    by (rule rtrancl_mono, auto)
-  also have "... = (RAG s)^*" by simp
-  finally show ?thesis by (unfold tRAG_def, simp)
-qed
-
-lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
-proof -
-  { fix a
-    assume "a \<in> subtree (tRAG s) x"
-    hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
-    with tRAG_star_RAG[of s]
-    have "(a, x) \<in> (RAG s)^*" by auto
-    hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
-  } thus ?thesis by auto
+lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
+proof
+  fix th'
+  show "the_preced (V th cs # s) th' = the_preced s th'"
+    by (unfold the_preced_def preced_def, simp)
 qed
 
-lemma tRAG_trancl_eq:
-   "{th'. (Th th', Th th)  \<in> (tRAG s)^+} = 
-    {th'. (Th th', Th th)  \<in> (RAG s)^+}"
-   (is "?L = ?R")
-proof -
-  { fix th'
-    assume "th' \<in> ?L"
-    hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
-    from tranclD[OF this]
-    obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
-    from tRAG_subtree_RAG[of s] and this(2)
-    have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG) 
-    moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto 
-    ultimately have "th' \<in> ?R"  by auto 
-  } moreover 
-  { fix th'
-    assume "th' \<in> ?R"
-    hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
-    from plus_rpath[OF this]
-    obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
-    hence "(Th th', Th th) \<in> (tRAG s)^+"
-    proof(induct xs arbitrary:th' th rule:length_induct)
-      case (1 xs th' th)
-      then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
-      show ?case
-      proof(cases "xs1")
-        case Nil
-        from 1(2)[unfolded Cons1 Nil]
-        have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
-        hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
-        then obtain cs where "x1 = Cs cs" 
-              by (unfold s_RAG_def, auto)
-        from rpath_nnl_lastE[OF rp[unfolded this]]
-        show ?thesis by auto
-      next
-        case (Cons x2 xs2)
-        from 1(2)[unfolded Cons1[unfolded this]]
-        have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
-        from rpath_edges_on[OF this]
-        have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
-        have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
-            by (simp add: edges_on_unfold)
-        with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
-        then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
-        have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
-            by (simp add: edges_on_unfold)
-        from this eds
-        have rg2: "(x1, x2) \<in> RAG s" by auto
-        from this[unfolded eq_x1] 
-        obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
-        from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
-        have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
-        from rp have "rpath (RAG s) x2 xs2 (Th th)"
-           by  (elim rpath_ConsE, simp)
-        from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
-        show ?thesis
-        proof(cases "xs2 = []")
-          case True
-          from rpath_nilE[OF rp'[unfolded this]]
-          have "th1 = th" by auto
-          from rt1[unfolded this] show ?thesis by auto
-        next
-          case False
-          from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
-          have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
-          with rt1 show ?thesis by auto
-        qed
-      qed
-    qed
-    hence "th' \<in> ?L" by auto
-  } ultimately show ?thesis by blast
-qed
-
-lemma tRAG_trancl_eq_Th:
-   "{Th th' | th'. (Th th', Th th)  \<in> (tRAG s)^+} = 
-    {Th th' | th'. (Th th', Th th)  \<in> (RAG s)^+}"
-    using tRAG_trancl_eq by auto
+lemma (in valid_trace_v)
+  the_preced_es: "the_preced (e#s) = the_preced s"
+  by (unfold is_v preced_def, simp)
 
-lemma dependants_alt_def:
-  "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
-  by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
-  
-context valid_trace
-begin
-
-lemma count_eq_tRAG_plus:
-  assumes "cntP s th = cntV s th"
-  shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
-  using assms count_eq_dependants dependants_alt_def eq_dependants by auto 
-
-lemma count_eq_RAG_plus:
-  assumes "cntP s th = cntV s th"
-  shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
-  using assms count_eq_dependants cs_dependants_def eq_RAG by auto
-
-lemma count_eq_RAG_plus_Th:
-  assumes "cntP s th = cntV s th"
-  shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
-  using count_eq_RAG_plus[OF assms] by auto
-
-lemma count_eq_tRAG_plus_Th:
-  assumes "cntP s th = cntV s th"
-  shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
-   using count_eq_tRAG_plus[OF assms] by auto
-
-end
-
-lemma tRAG_subtree_eq: 
-   "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th'  \<in> (subtree (RAG s) (Th th))}"
-   (is "?L = ?R")
-proof -
-  { fix n 
-    assume h: "n \<in> ?L"
-    hence "n \<in> ?R"
-    by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG) 
-  } moreover {
-    fix n
-    assume "n \<in> ?R"
-    then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
-      by (auto simp:subtree_def)
-    from rtranclD[OF this(2)]
-    have "n \<in> ?L"
-    proof
-      assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
-      with h have "n \<in> {Th th' | th'. (Th th', Th th)  \<in> (RAG s)^+}" by auto
-      thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
-    qed (insert h, auto simp:subtree_def)
-  } ultimately show ?thesis by auto
-qed
-
-lemma threads_set_eq: 
-   "the_thread ` (subtree (tRAG s) (Th th)) = 
-                  {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
-   by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
-
-lemma cp_alt_def1: 
-  "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
-proof -
-  have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
-       ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
-       by auto
-  thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
-qed
-
-lemma cp_gen_def_cond: 
-  assumes "x = Th th"
-  shows "cp s th = cp_gen s (Th th)"
-by (unfold cp_alt_def1 cp_gen_def, simp)
-
-lemma cp_gen_over_set:
-  assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
-  shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
-proof(rule f_image_eq)
-  fix a
-  assume "a \<in> A"
-  from assms[rule_format, OF this]
-  obtain th where eq_a: "a = Th th" by auto
-  show "cp_gen s a = (cp s \<circ> the_thread) a"
-    by  (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
-qed
-
-
-context valid_trace
+context valid_trace_p
 begin
 
-lemma RAG_threads:
-  assumes "(Th th) \<in> Field (RAG s)"
-  shows "th \<in> threads s"
-  using assms
-  by (metis Field_def UnE dm_RAG_threads range_in vt)
-
-lemma subtree_tRAG_thread:
-  assumes "th \<in> threads s"
-  shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
-proof -
-  have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
-    by (unfold tRAG_subtree_eq, simp)
-  also have "... \<subseteq> ?R"
-  proof
-    fix x
-    assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
-    then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
-    from this(2)
-    show "x \<in> ?R"
-    proof(cases rule:subtreeE)
-      case 1
-      thus ?thesis by (simp add: assms h(1)) 
-    next
-      case 2
-      thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI) 
-    qed
-  qed
-  finally show ?thesis .
-qed
-
-lemma readys_root:
-  assumes "th \<in> readys s"
-  shows "root (RAG s) (Th th)"
-proof -
-  { fix x
-    assume "x \<in> ancestors (RAG s) (Th th)"
-    hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
-    from tranclD[OF this]
-    obtain z where "(Th th, z) \<in> RAG s" by auto
-    with assms(1) have False
-         apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
-         by (fold wq_def, blast)
-  } thus ?thesis by (unfold root_def, auto)
-qed
-
-lemma readys_in_no_subtree:
-  assumes "th \<in> readys s"
-  and "th' \<noteq> th"
-  shows "Th th \<notin> subtree (RAG s) (Th th')" 
-proof
-   assume "Th th \<in> subtree (RAG s) (Th th')"
-   thus False
-   proof(cases rule:subtreeE)
-      case 1
-      with assms show ?thesis by auto
-   next
-      case 2
-      with readys_root[OF assms(1)]
-      show ?thesis by (auto simp:root_def)
-   qed
-qed
-
-lemma not_in_thread_isolated:
-  assumes "th \<notin> threads s"
-  shows "(Th th) \<notin> Field (RAG s)"
-proof
-  assume "(Th th) \<in> Field (RAG s)"
-  with dm_RAG_threads and range_in assms
-  show False by (unfold Field_def, blast)
-qed
-
-lemma wf_RAG: "wf (RAG s)"
-proof(rule finite_acyclic_wf)
-  from finite_RAG show "finite (RAG s)" .
-next
-  from acyclic_RAG show "acyclic (RAG s)" .
-qed
-
-lemma sgv_wRAG: "single_valued (wRAG s)"
-  using waiting_unique
-  by (unfold single_valued_def wRAG_def, auto)
-
-lemma sgv_hRAG: "single_valued (hRAG s)"
-  using holding_unique 
-  by (unfold single_valued_def hRAG_def, auto)
-
-lemma sgv_tRAG: "single_valued (tRAG s)"
-  by (unfold tRAG_def, rule single_valued_relcomp, 
-              insert sgv_wRAG sgv_hRAG, auto)
-
-lemma acyclic_tRAG: "acyclic (tRAG s)"
-proof(unfold tRAG_def, rule acyclic_compose)
-  show "acyclic (RAG s)" using acyclic_RAG .
-next
-  show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-next
-  show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-qed
-
-lemma sgv_RAG: "single_valued (RAG s)"
-  using unique_RAG by (auto simp:single_valued_def)
-
-lemma rtree_RAG: "rtree (RAG s)"
-  using sgv_RAG acyclic_RAG
-  by (unfold rtree_def rtree_axioms_def sgv_def, auto)
-
-end
-
-sublocale valid_trace < rtree_RAG: rtree "RAG s"
+lemma not_holding_es_th_cs: "\<not> holding s th cs"
 proof
-  show "single_valued (RAG s)"
-  apply (intro_locales)
-    by (unfold single_valued_def, 
-        auto intro:unique_RAG)
-
-  show "acyclic (RAG s)"
-     by (rule acyclic_RAG)
-qed
-
-sublocale valid_trace < rtree_s: rtree "tRAG s"
-proof(unfold_locales)
-  from sgv_tRAG show "single_valued (tRAG s)" .
-next
-  from acyclic_tRAG show "acyclic (tRAG s)" .
-qed
-
-sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
-proof -
-  show "fsubtree (RAG s)"
-  proof(intro_locales)
-    show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
-  next
-    show "fsubtree_axioms (RAG s)"
-    proof(unfold fsubtree_axioms_def)
-      from wf_RAG show "wf (RAG s)" .
-    qed
-  qed
-qed
-
-sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
-proof -
-  have "fsubtree (tRAG s)"
-  proof -
-    have "fbranch (tRAG s)"
-    proof(unfold tRAG_def, rule fbranch_compose)
-        show "fbranch (wRAG s)"
-        proof(rule finite_fbranchI)
-           from finite_RAG show "finite (wRAG s)"
-           by (unfold RAG_split, auto)
-        qed
-    next
-        show "fbranch (hRAG s)"
-        proof(rule finite_fbranchI)
-           from finite_RAG 
-           show "finite (hRAG s)" by (unfold RAG_split, auto)
-        qed
-    qed
-    moreover have "wf (tRAG s)"
-    proof(rule wf_subset)
-      show "wf (RAG s O RAG s)" using wf_RAG
-        by (fold wf_comp_self, simp)
-    next
-      show "tRAG s \<subseteq> (RAG s O RAG s)"
-        by (unfold tRAG_alt_def, auto)
-    qed
-    ultimately show ?thesis
-      by (unfold fsubtree_def fsubtree_axioms_def,auto)
-  qed
-  from this[folded tRAG_def] show "fsubtree (tRAG s)" .
-qed
-
-lemma Max_UNION: 
-  assumes "finite A"
-  and "A \<noteq> {}"
-  and "\<forall> M \<in> f ` A. finite M"
-  and "\<forall> M \<in> f ` A. M \<noteq> {}"
-  shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
-  using assms[simp]
-proof -
-  have "?L = Max (\<Union>(f ` A))"
-    by (fold Union_image_eq, simp)
-  also have "... = ?R"
-    by (subst Max_Union, simp+)
-  finally show ?thesis .
-qed
-
-lemma max_Max_eq:
-  assumes "finite A"
-    and "A \<noteq> {}"
-    and "x = y"
-  shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
-proof -
-  have "?R = Max (insert y A)" by simp
-  also from assms have "... = ?L"
-      by (subst Max.insert, simp+)
-  finally show ?thesis by simp
-qed
-
-context valid_trace
-begin
-
-(* ddd *)
-lemma cp_gen_rec:
-  assumes "x = Th th"
-  shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
-proof(cases "children (tRAG s) x = {}")
-  case True
-  show ?thesis
-    by (unfold True cp_gen_def subtree_children, simp add:assms)
-next
-  case False
-  hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
-  note fsbttRAGs.finite_subtree[simp]
-  have [simp]: "finite (children (tRAG s) x)"
-     by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree], 
-            rule children_subtree)
-  { fix r x
-    have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
-  } note this[simp]
-  have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
-  proof -
-    from False obtain q where "q \<in> children (tRAG s) x" by blast
-    moreover have "subtree (tRAG s) q \<noteq> {}" by simp
-    ultimately show ?thesis by blast
-  qed
-  have h: "Max ((the_preced s \<circ> the_thread) `
-                ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
-        Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
-                     (is "?L = ?R")
-  proof -
-    let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
-    let "Max (_ \<union> (?h ` ?B))" = ?R
-    let ?L1 = "?f ` \<Union>(?g ` ?B)"
-    have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
-    proof -
-      have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
-      also have "... =  (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
-      finally have "Max ?L1 = Max ..." by simp
-      also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
-        by (subst Max_UNION, simp+)
-      also have "... = Max (cp_gen s ` children (tRAG s) x)"
-          by (unfold image_comp cp_gen_alt_def, simp)
-      finally show ?thesis .
-    qed
-    show ?thesis
-    proof -
-      have "?L = Max (?f ` ?A \<union> ?L1)" by simp
-      also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
-            by (subst Max_Un, simp+)
-      also have "... = max (?f x) (Max (?h ` ?B))"
-        by (unfold eq_Max_L1, simp)
-      also have "... =?R"
-        by (rule max_Max_eq, (simp)+, unfold assms, simp)
-      finally show ?thesis .
-    qed
-  qed  thus ?thesis 
-          by (fold h subtree_children, unfold cp_gen_def, simp) 
-qed
-
-lemma cp_rec:
-  "cp s th = Max ({the_preced s th} \<union> 
-                     (cp s o the_thread) ` children (tRAG s) (Th th))"
-proof -
-  have "Th th = Th th" by simp
-  note h =  cp_gen_def_cond[OF this] cp_gen_rec[OF this]
-  show ?thesis 
-  proof -
-    have "cp_gen s ` children (tRAG s) (Th th) = 
-                (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
-    proof(rule cp_gen_over_set)
-      show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
-        by (unfold tRAG_alt_def, auto simp:children_def)
-    qed
-    thus ?thesis by (subst (1) h(1), unfold h(2), simp)
+  assume otherwise: "holding s th cs"
+  from pip_e[unfolded is_p]
+  show False
+  proof(cases)
+    case (thread_P)
+    moreover have "(Cs cs, Th th) \<in> RAG s"
+      using otherwise cs_holding_def 
+            holding_eq th_not_in_wq by auto
+    ultimately show ?thesis by auto
   qed
 qed
 
 end
 
-(* keep *)
-lemma next_th_holding:
-  assumes vt: "vt s"
-  and nxt: "next_th s th cs th'"
-  shows "holding (wq s) th cs"
-proof -
-  from nxt[unfolded next_th_def]
-  obtain rest where h: "wq s cs = th # rest"
-                       "rest \<noteq> []" 
-                       "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
-  thus ?thesis
-    by (unfold cs_holding_def, auto)
-qed
+locale valid_trace_p_h = valid_trace_p +
+  assumes we: "wq s cs = []"
 
-context valid_trace
+locale valid_trace_p_w = valid_trace_p +
+  assumes we: "wq s cs \<noteq> []"
 begin
 
-lemma next_th_waiting:
-  assumes nxt: "next_th s th cs th'"
-  shows "waiting (wq s) th' cs"
-proof -
-  from nxt[unfolded next_th_def]
-  obtain rest where h: "wq s cs = th # rest"
-                       "rest \<noteq> []" 
-                       "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
-  from wq_distinct[of cs, unfolded h]
-  have dst: "distinct (th # rest)" .
-  have in_rest: "th' \<in> set rest"
-  proof(unfold h, rule someI2)
-    show "distinct rest \<and> set rest = set rest" using dst by auto
-  next
-    fix x assume "distinct x \<and> set x = set rest"
-    with h(2)
-    show "hd x \<in> set (rest)" by (cases x, auto)
-  qed
-  hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
-  moreover have "th' \<noteq> hd (wq s cs)"
-    by (unfold h(1), insert in_rest dst, auto)
-  ultimately show ?thesis by (auto simp:cs_waiting_def)
-qed
+definition "holder = hd (wq s cs)"
+definition "waiters = tl (wq s cs)"
+definition "waiters' = waiters @ [th]"
 
-lemma next_th_RAG:
-  assumes nxt: "next_th (s::event list) th cs th'"
-  shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
-  using vt assms next_th_holding next_th_waiting
-  by (unfold s_RAG_def, simp)
+lemma wq_s_cs: "wq s cs = holder#waiters"
+    by (simp add: holder_def waiters_def we)
+    
+lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]"
+  by (simp add: wq_es_cs wq_s_cs)
+
+lemma waiting_es_th_cs: "waiting (e#s) th cs"
+  using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto
+
+lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)"
+   by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto)
 
 end
 
--- {* A useless definition *}
-definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
-where "cps s = {(th, cp s th) | th . th \<in> threads s}"
+context valid_trace_p_h
+begin
+
+lemma wq_es_cs': "wq (e#s) cs = [th]"
+  using wq_es_cs[unfolded we] by simp
+
+lemma holding_es_th_cs: 
+  shows "holding (e#s) th cs"
+proof -
+  from wq_es_cs'
+  have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto
+  thus ?thesis using cs_holding_def holding_eq by blast 
+qed
+
+lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)"
+  by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto)
+
+lemma waiting_esE:
+  assumes "waiting (e#s) th' cs'"
+  obtains "waiting s th' cs'"
+  using assms
+  by (metis cs_waiting_def event.distinct(15) is_p list.sel(1) 
+        set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv)
+  
+lemma holding_esE:
+  assumes "holding (e#s) th' cs'"
+  obtains "cs' \<noteq> cs" "holding s th' cs'"
+    | "cs' = cs" "th' = th"
+proof(cases "cs' = cs")
+  case True
+  from held_unique[OF holding_es_th_cs assms[unfolded True]]
+  have "th' = th" by simp
+  from that(2)[OF True this] show ?thesis .
+next
+  case False
+  have "holding s th' cs'" using assms
+    using False cs_holding_def holding_eq by auto
+  from that(1)[OF False this] show ?thesis .
+qed
 
-find_theorems release
+lemma waiting_kept:
+  assumes "waiting s th' cs'"
+  shows "waiting (e#s) th' cs'"
+  using assms
+  by (metis cs_waiting_def list.sel(1) list.set_intros(2) 
+        th_not_in_wq waiting_eq we wq_es_cs' wq_neq_simp)
+    
 
-lemma "wq (V th cs # s) cs1 = ttt"
-  apply (unfold wq_def, auto simp:Let_def)
+lemma RAG_es: "RAG (e # s) =  RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R")
+proof(rule rel_eqI)
+  fix n1 n2
+  assume "(n1, n2) \<in> ?L"
+  thus "(n1, n2) \<in> ?R" 
+  proof(cases rule:in_RAG_E)
+    case (waiting th' cs')
+    from this(3)
+    show ?thesis
+    proof(cases rule:waiting_esE)
+      case 1
+      thus ?thesis using waiting(1,2)
+        by (unfold s_RAG_def, fold waiting_eq, auto)
+    qed
+  next
+    case (holding th' cs')
+    from this(3)
+    show ?thesis
+    proof(cases rule:holding_esE)
+      case 1
+      with holding(1,2)
+      show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
+    next
+      case 2
+      with holding(1,2) show ?thesis by auto
+    qed
+  qed
+next
+  fix n1 n2
+  assume "(n1, n2) \<in> ?R"
+  hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto
+  thus "(n1, n2) \<in> ?L"
+  proof
+    assume "(n1, n2) \<in> RAG s"
+    thus ?thesis
+    proof(cases rule:in_RAG_E)
+      case (waiting th' cs')
+      find_theorems waiting e s
+    qed
+  qed
+qed
 
 end
 
+
+
+lemma "RAG (e # s) =  (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
+                                         else RAG s \<union> {(Th th, Cs cs)})"
+  proof(cases "wq s cs = []")
+    case True
+    from wq_es_cs[unfolded this]
+    have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto
+    hence "holding (e#s) th cs"
+      using cs_holding_def holding_eq by blast 
+    thus 
+  qed
+end
+
+text {* 
+  The following @{text "step_RAG_p"} lemma charaterizes how @{text "RAG"} is changed
+  with the happening of @{text "P"}-events:
+*}
+lemma step_RAG_p:
+  "vt (P th cs#s) \<Longrightarrow>
+  RAG (P th cs # s) =  (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
+                                             else RAG s \<union> {(Th th, Cs cs)})"
+  apply(simp only: s_RAG_def wq_def)
+  apply (auto split:list.splits prod.splits simp:Let_def wq_def cs_waiting_def cs_holding_def)
+  apply(case_tac "csa = cs", auto)
+  apply(fold wq_def)
+  apply(drule_tac step_back_step)
+  apply(ind_cases " step s (P (hd (wq s cs)) cs)")
+  apply(simp add:s_RAG_def wq_def cs_holding_def)
+  apply(auto)
+  done
+
+
+
+end
\ No newline at end of file