About to change the proof of waiting_unique_pre and waiting_unqie.
--- a/PIPBasics.thy Fri Feb 05 20:11:12 2016 +0800
+++ b/PIPBasics.thy Sat Feb 06 08:35:45 2016 +0800
@@ -1185,18 +1185,31 @@
section {* The change of @{term RAG} *}
text {*
+ The whole of PIP resides on the understanding of the formation
+ of @{term RAG}. In this section, we are going to investigate how
+ @{term RAG} is changed with the execution of every event (or operation).
+ The effect of every event on @{text RAG} is derived in its respective
+ locale named @{text "RAG_es"} with all lemmas before auxiliary.
+
+ The derivation of these @{text "RAG_es"}s forms the very basis
+ to show the well-formedness of @{term RAG},
+ for example, @{term RAG} is finite, acyclic, and single-valued, etc.
+
+*}
+
+text {*
The following three lemmas show that @{text "RAG"} does not change
by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
events, respectively.
*}
-lemma (in valid_trace_set) RAG_unchanged [simp]: "(RAG (e # s)) = RAG s"
+lemma (in valid_trace_set) RAG_es [simp]: "(RAG (e # s)) = RAG s"
by (unfold is_set s_RAG_def s_waiting_def wq_def, simp add:Let_def)
-lemma (in valid_trace_create) RAG_unchanged [simp]: "(RAG (e # s)) = RAG s"
+lemma (in valid_trace_create) RAG_es [simp]: "(RAG (e # s)) = RAG s"
by (unfold is_create s_RAG_def s_waiting_def wq_def, simp add:Let_def)
-lemma (in valid_trace_exit) RAG_unchanged[simp]: "(RAG (e # s)) = RAG s"
+lemma (in valid_trace_exit) RAG_es[simp]: "(RAG (e # s)) = RAG s"
by (unfold is_exit s_RAG_def s_waiting_def wq_def, simp add:Let_def)
context valid_trace_v
@@ -1701,24 +1714,6 @@
qed
qed
-lemma
- finite_RAG_kept:
- assumes "finite (RAG s)"
- shows "finite (RAG (e#s))"
-proof(cases "rest = []")
- case True
- interpret vt: valid_trace_v_e using True
- by (unfold_locales, simp)
- show ?thesis using assms
- by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
-next
- case False
- interpret vt: valid_trace_v_n using False
- by (unfold_locales, simp)
- show ?thesis using assms
- by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
-qed
-
end
context valid_trace_p
@@ -1981,6 +1976,29 @@
section {* RAG is finite *}
+context valid_trace_v
+begin
+
+lemma
+ finite_RAG_kept:
+ assumes "finite (RAG s)"
+ shows "finite (RAG (e#s))"
+proof(cases "rest = []")
+ case True
+ interpret vt: valid_trace_v_e using True
+ by (unfold_locales, simp)
+ show ?thesis using assms
+ by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
+next
+ case False
+ interpret vt: valid_trace_v_n using False
+ by (unfold_locales, simp)
+ show ?thesis using assms
+ by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
+qed
+
+end
+
context valid_trace
begin