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Introduction
Rate-monotonic scheduling (RMS) theory

has emerged in the context  of task scheduling,
where a finite number of periodic  tasks share a
Single  processor. RMS theory provides rules
for analyzing whether or not a given set of tasks
tan be scheduled according to their timing
characteristics. lt is natura1 to realize that a situ-
ation in which multiple hardware modules
(boards)  share a backplane bus is logically
quite similar to a Situation in which multiple
tasks run on a Single processor. Requests from
both entities, tasks and modules,  must be
scheduled in Order  for them to obtain access to
the resource they are competing for: a back-
plane bus or a processor, respectively.

Thus, the general results of RMS, derived for
multitasking on a uniprocessor,  are equally ap-
plicable to backplane bus Systems - provided
appropriate Substitutions of terms are made.
This Paper discusses the principles of rate-
monotonic  scheduling for multiple tasks
executing on a Single processor, assuming that
the results tan be mapped onto backplane bus
Systems. In the presentation, emphasis is
placed  on basic concepts, and the assumption
is that the reader has had no previous expo-
sure to RMS.

Basic terms
In multiprocessor  Systems where multiple

processors  share a Single  backplane, the bus
protocol must allow selection  of a unique bus
owner for each  bus transaction (bus cyc/e).
There are many ways to give access to a bus in
a consistent manner.  The simplest, most com-
mon technique is to apply the first-come, first-
served rule, granting a bus access to the pro-
cessor module that requested it first. In cases
when multiple requests occur at the same time
(practically, within the same clock  cycle), and
their Order cannot  be distinguished, an addi-
tional policy  must be applied to select a module
to become  a bus owner for the next bus trans-
action.  This policy  may imply random  choice,
selection  based on physical proximity, or the
use of priorities. In the latter case, that module
is selected that has the highest priority level  as-
signed to it.

However, once a module Starts using a bus,
it must finish its transaction. This approach  has
a clear disadvantage: Requests that come  later
but whose handling is more urgent must wait
until after completion of the first request. Even if
a module performing highly important activities
is suddenly requesting bus access, it cannot be

granted Permission to use a bus (that is, its re-
quest cannot  be scheduled) until the current
transaction (bus use) has completed. This
Problem  is especially serious in case of ap-
plications with a bounded response  time,
known as real-time  systems.

Scheduling tasks or scheduling bus access
in real-time Systems is substantially different
from traditional forms of scheduling. lt is re-
quired that more urgent tasks be given priority
in execution  Overall othertasks that are eligible
to run, not only when there is a need to select
the next task to run when the tasks requested
bus access at the same time, but also when
one of the tasks is running and a new request is
made by a task of higher  priority. In contrast  to
the Standard meaning of priority  (that is, the
level of importante  assigned to an iteml), the
term priorityas used here means the level  of ur-
gency assigned to a task. The Situation in
which an urgent task removes the currently
running taskfrom the resource is known aspre-
emption.

Understanding preemption is quite crucial to
understanding how one tan shorten  the time a
System  tan react to external events. A System
that requires a task to complete  its execution
before the next task tan be scheduled to run
tan be much  slower in responding than a sys-
tem that allows a currently running task to be
preempted, yielding the processor to a more-
urgent task that requested access before the
former  task’s completion. This Situation deter-
mines the basic  property of real-time Systems
- responsiveness- which is how fast, after the
occurrence of a given event, the System tan be
expected to Start handling that event.

In general, the responsiveness of a System
tan be defined as the property  that is charac-
terized by the worst-case time that elapses
from the occurrence of a particular  event to the
Start of its processing. This propetty defines
how fast a System  responds  to events - that is,
how fast it tan perceive them -and is one com-
ponent of a system’s Overall reaction  time.

In addition to responsiveness, timeliness -
or how fast (that is, how timely) the events al-
ready perceived tan be processed - is impor-
tant. Timeliness is the property that is charac-
terized by the worst-case time that is needed
for processing of a perceived event.

Several questions must be answered re-
garding  preemption via priorities to increase
responsiveness. For example, if the highest-
priority module tan be granted bus access at
any time-even being able to preempt the mod-
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Figure 1: Illustration of an insufficient
number of priority levels.

ule currently using a bus before its transaction
has completed - there is an immediate ques-
tion about  fairness and starvation: How tan we
guarantee, if at all, that the lowest-priority
modules  will ever get bus access? Regarding
timeliness, another question arises: If there are
many simultaneous activities, how tan we
guarantee that all of them are completed on
time? If not all tan finish in a timely manner,
which ones tan and which ones cannot? In oth-
er words, there is a clear  need to have a meth-
od of quantitative analysis of each  module’s
(task’s) behavior in terms of using the resource
for which it is competing.

High High (1) 2 10

Lowl Low (0) 6 20

Low2 Low (0) 3 6

Table 1: Illustration of insufficient priority
levels.

In summary, for a given set of tasks to be run
on a Single processor (or equivalently, for hard-
ware modules  competing for a backplane bus),
it is necessary to ask two questions: Can the
tasks run in a way that guarantees timely ac-
cess to the resource for all of them? Can the
tasks meet their execution deadlines? Stoyen-
ko2 gave the first formulation of a Problem  that
corresponds to these two questions in terms of
schedulability which is the property  of a set of
tasks that ensures that the tasks all meet their
deadlines. In the language of processor mod-
ules sharing a backplane bus, a set of bus re-
quests made by these modules  is schecfulable
if the requests are granted bus access and tan
complete  bus transactions  on time. (The defini-
tion of “on time” is predefined for each  module.)

When Tasks High and Lowl arrive (that is,
Start their execution)  slightly before Task Low2
(see time instant 0 in Figure 1), they must re-
sume in this Order,  and there is no way, under
current  priority assignments, that Task Low2
tan meet its deadline (marked at time instant 6,
which is 6 units after this task’s arrival), be-
Cause it cannot preempt a task of higher or the
same priority. This is because  Tasks High and
Lowl consume 2 + 6 = 8 time units, which is
greater than Task Low2’s deadline, which is 6.

Moreover, with only two priority levels, it may
be difficult to find a priority assignment that
solves the Problem  of meeting all deadlines un-
der the worst arrival conditions. For instance, if
Task Low2  is assigned the highest priority (lev-
el 1), and Tasks Lowl and High both have low
priority (level 0), then starting Tasks Low2 and
Lowl slightly before Task High effectively pre-
cludes  Task High from meeting its deadline
(simply because  the execution time of Task
Low2 + Task Lowl consumes 3 + 6 = 9 time
units, and Task High cannot execute its 2 units
before its deadline, which is 10 units, expires).

All the properties mentioned above ensure Assigning priority level  1 only to Tasks High
precfictability,  which is the property that is char- and Low2 does solve the Problem,  even if all
acterized by an upper bound on the Overall tasks run periodically, with periods  equal to
reaction  time of each  task in the System  to ex- deadlines. Introducing an additional priority
ternal Stimuli. This upper bound must be known level  tan also help. This explains why assign-
precisely in Order to determine whether or not ing priorities is so impottant in real-time sys-
the task tan meet its deadline. tems.

RMS fundamentals: A matter of
priorities

ls there a Problem  if priorities are not as-
signed at all or if multiple tasks are grouped on
Single  priority levels because  insufficient prior-
ity levels exist? Example 1 addresses this
question.
fxample  7

Consider three tasks and only two priority
levels (one bit), as listed in Table 1. What would
happen if all tasks arrived (that is, requested
execution)  at the same time?

Task Priority Execu- Deadline
tion time
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Knowing that the assignment of priorities to
tasks (and modules)  is crucial to providing bet-
ter schedulability, the immediate next question
is how to assign priorities - that is, on what ba-
sis? In other words, we should know the criteri-
on of priority assignment. Lehoczky and Sha3
gave an analysis of assigning priorities if insuf-
ficient priority levels exist. The technique they
proposed is called a constant-ratio  priority
grid;  it will not be described here.

If the number of priority levels is sufficient,  a
natura1  and straightforward way to assign prio-
rities is to do so based on task importante. Ex-
ample 2 gives an idea of why priorities based
on task importante  may not work.

Example 2

For the set of tasks in Table 2, which arrive
approximately at the same time and run just
once, ifTask  1 comesfirst, it executesforafull6
units, effectively preventing (because  of its top
priority) the other two tasks from accessing the
processor.  Thus, with such priority assign-
ments, the other tasks cannot  meet their dead-
lines. However, if we Change  priority assign-
ments, giving the lowest priority to the most im-
portant task, then all tasks meet deadlines
without hurting  the important one.

Priority Execu- Deadline
Task i (impor- tion time C

tance) G
1 High 6 10

2 Medium 2 5

3 Low 2 4

Table  2: /hstration  of priority assignment
based on task importante
(criticality).

Rate-monotonic scheduling theoty offers a
criterion for priority assignment to mutually in-
dependent tasks running periodically. The ba-
sic principle of RMS tan be expressed as fol-
lows:

The shorter the taskS period, the
higher its priority.

Hence Comes  the name rate-monotonic
scheduling for this algorithm, because  it as-
signs priorities to tasks as a monotonicfunction
of their rates  (frequencies).

For a set of modules  accessing a shared
bus, the above principle means that they must
be assigned different priorities, based on their
prospective frequencies of accessing the bus

(making bus requests). This principle, at least
in its current  formulation, does not seem to be
useful in practice for backplane bus Systems
(at least, it is not known if the principle has been
explicitlyapplied ever before). However, it does
have far-reaching implications,  which we see
in subsequent sections.

Module Execu- Perjod Bus uti-
name tion time (milli- lization

(milli- sec- (execu-
sec- onds) tion

onds) timelpe-
riod)

A 5 10 1/2

B 5 20 114

C 10 30 113

Table 3: Example of a poorly designed
sys tem.

A crucial but simple concept that forms the
basis of RMS theory  is that of processorutiliza-
tion (or bus utilization), which is expressed by a
Parameter called the utilization factor.  The uti-
hzation factoris the ratio of the time a resource
(processor  or bus) is used to the Overall time
this resource  is available. lt tan be calculated
individually for each entity competing for a re-
Source  or cumulatively as a sum of all individual
utilizations. However, it should be noted that
the concept of a utilization factor is not univer-
sal, and a System  with avery low utilization fac-
tor may not guarantee schedulability, while
tasks in another System  with a utilization factor
equal to 1 - that is, a System in which the utiliza-
tion achieves 100 percent  - may still be sche-
dulable. More information on this subject  is giv-
en in the section  entitled “Alternative solu-
tions.”

The most visible example of a System  that is
poorly  designed in this respect  is one in which
bus utilization is greater than 1 (see Table 3).
Such a System  reaches  Saturation, and not ev-
ery module tan be granted bus access as re-
quested. So, the bus utilization must be less
than or equal to 1 to guarantee timely access to
the bus for each processor.  This Statement
seems trivial but may be quite important from a
backplane bus designer’s or user’s Point of
view. lt may help to answer  the following ques-
tion: Why, for theoretical bus Speeds  of as high
as tens of megabytes (Mbytes) per second,
tan we achieve only several Mbytes per se-
cond of actual  Speed;  that is, why tan we
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achieve a bus bandwidth utilization factor of
only 0.10 to 0.2.5?

The above-stated requirement- that the uti-
lization factor be less than or equal to 1 - is nec-
essary. But is it also sufficient to ensure sche-
dulability? This issue is discussed in this sec-
tion and in the next section. For priorities based
on task frequencies, a nontrivial sufficient
condition for schedulability by the rate-mono-
tonic scheduling algorithm was introduced in
1973.4

RMS Theorem 1

For a set of N independent periodic tasks,
where Ci and T = 1,2,  . . . . N, are execution time
and period, respectively, and assuming that
task deadline equals task period, the tasks are
schedulable by RMS if the following condition
holds:

>t

c CiRi<N(2”N-l)
,=I

This theorem simply states that if the above
condition is met, then all tasks will complete  on
time (by their deadline, which  is equal to their
period). In terms of N processors  accessing a
shared bus, this means that if their bus request
is periodic and their operations are mutually in-
dependent (that is, they do not communicate),
provided deadline is equal to period, it is suffi-
cient to check that the above inequality holds in
Order to guarantee schedulability using static
priority assignments.

The interpretation of this theorem is that
modules’ requests tan be scheduled by RMS if
their cumulative  utilization factor is less than a
cettain upperbound N(2’lN-l)  which is gener-
ally much  less than full bus Saturation. The val-
ue of N(21’N-1) converges to In 2 M 0.693 as
the number N increases to infinity. Similarly, if
the sum of utilizations is less than a certain up-
per bound, then all individual tasks (the whole
task set) tan be scheduled by RMS with guar-
anteed meeting of all their deadlines (provided
appropriate assumptions are met). Examples 3
and 4 illustrate the meaning of Theorem 1.

Example 3

Table 4 presents a set of six tasks character-
ized by their execution time Ci and their period
T. According to Theorem 1, a cumulative  CPU
utilization factor - the sum of Cie must be
smaller than the upper bound N(2jiN -7) to
guarantee schedulability by RMS. As we see
from the table, the set of the first five tasks (or
less) is schedulable by the RMS algorithm, be-
Cause 0.64 < 0.743. However, the set of all six

tasks may not be schedulable by the RMS al-
gorithm, because  0.74 > 0.735. In fact, a set of
any five tasks from the set of six in Table 4 is
schedulable according to Theorem 1.

Table 4: Characteristics of the six tasks
discussed in Example 3.

Example 4
In Table 5, we have another task set, consist-

ing of eight tasks. The first seven tasks are
schedulable according to Theorem 1; however,
adding  Task 8 Causes  a Problem.  lt is unimpor-
tant to this Observation that the tasks in the
table are not ordered according to their peri-
ods. If we look closer  at the table, we see that
the largest contributions  to the cumulative  CPU
utilization factor (0.250 and 0.125) are from
Tasks 6 and 8, respectively. A designer tan
then check on the possibility of shortening the
execution time of Task 6 or lengthening the pe-
riod of Task 8 to make them fit into the scheme
and thus eliminate the Problem.  For instance,
extending the period of Task 8 to Ts = 100
would be a Solution (because  0.723 < 0.724).

Table 5: Characteristics of the eight tasks
discussed in Example 4.

In the two above examples, it tan be seen
that Theorem 1 does not hold. Exactly what
does this mean? Does it mean that the tasks
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are not schedulable on a processor (or that the
processor modules  are not schedulable to get
access to the bus)? Strictly speaking, Theorem
1 does not define a necessary condition, so if
the inequality from this theorem does not hold,
then we cannot  say whether or not a set of
tasks is schedulable. Some additional criterion
is needed to determine schedulability in such a
case.

Sufficient and necessary condition
for RMS schedulability

What condition is sufficient and necessary
for RMS schedulability? This question has
been answered by a stronger result of the RMS
theory.5  What follows is a sufficient and neces-
sary condition for a set of tasks to be schedul-
able.

RMS Theorem 2

For a set of N independent periodic  tasks,
where Ci and T;, i = 7, 2, . . . . N, are their execu-
tion time and period, respectively, and assum-
ing that task deadline equals task period, the
tasks are schedulable by RMS (that is, they will
always meet their deadline) if and only if the fol-
lowing conditions hold:

v, min ,g,$ [LT, / T,li
where min is calculated

and
o v e r  (kJ)  E 4,

w, = ((kJ),1  5 k 5 i. I = 1, . . . . lT,/T,]]

The notations lexpression]  and [expres-
sion] denote the largest integer smaller than or
equal to expression and the smallest integer
larger than or equal to expression- that is, the
floor and ceiling functions - respectively.

T a s k  Exec Peri- Ratio Uti- Up-
i ution od F Ci/r liza- per-

time tion bound
ci (1u.N)

1 45 135 0.333 0.333 1.000

2 50 150 0.333 0.667 0.828

3 80 360 0.222 0.889 0.779

Table 6: Characteristics of the three tasks
discussed in Example 5.

Example 5

To see how Theorem 2 tan be applied, let us
analyze the schedulability of the tasks pres-
ented in Table 6. Clearly, the three tasks are not

schedulable according to RMS Theorem 1, be-
Cause the cumulative  CPU utilization factor  for
the three tasks is greater than the upper bound
(0.889 > 0.779).

To check the schedulability of the three tasks
from Table 6, we need to use the equation of
Theorem 2 for i = 3 only, because  the first two
tasks are schedulable according to Theorem 1.
Thus, one of the four indices  in this equation is
fixed (i = 3). In the calculation of respective
sums, the other index,j, will vary from 1 through
i = 3. Knowing the values of i and j, we need to
focus  on the two other indices,  kand 1. Index k
must vary from 1 through i = 3, and for each  k,
index Imust vary from 1 through [ TFkl. Thus,
values of all four indices  are given as follows:

i=3
j=l 3
k=l . . 3
/=l . . . [T;fl,l

Hencefotth, the remaining calculations are
simple, though very tedious.

k=l:[T;/&J=[360/135]=2; thus, /= 1, . . . 2
k=2:[Tfl/]=[360/150]=2;  thus, I= 1, .., 2
k=3:  1 T/‘T//]  = 1360/360]  =l ; thus, I = 1.

After some calculations you tan find the fol-
lowing inequalities:

From the above , it Sterns that, for k= 1 and
/ = 2, the condition of Theorem 2 holds. Thus,
the set of three tasks from Table 6 is schedul-
able by the RMS algorithm.

Unfortunately, the condition of Theorem 2 is
hard to read and cumbersome to apply. There-
fore, we now present another interpretation of
Theorem 2 that is easier to understand.5  The
theorem simpiy states that to determine sche-
dulability, it is sufficient and necessary to check
if each  task tan complete  its execution before
its first deadline. Technically, to do this check-
ing, a number of inequalities must be checked
for all possible scheduling Points for each task
involved, where the scheduling Points are all
time instants at which any task period ends.
This checking  must be done for all scheduling
Points that fall into the first period of each task,
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because  it is guaranteed that if a task meets
its first deadline, it will always meet all other
deadlines.

The following rule of thumb tan be given to
simplify the schedulability check by RMS:

Step 1. Apply Theorem 1 and stop if all
individual conditions are met. If not, apply
Theorem 2 for all doubtful cases,  as in the
next Steps (Steps 2a - 2~).
Step 2a. Determine all schedulability Points
by marking on a time axis all successive
periods for all tasks in question, from time 0
up to the end of the first period of the low-
est-frequency task.
Step 2b. For each  time instant marked in
Step 2a - that is, for all schedulability Points
- construct an inequality that has, on its
left-hand side, a sum of all possible execu-
tion times of all tasks that tan be activated
(possibly multiple times) before this sch&
dulability Point and, on its right-hand side,
only the value of time corresponding to this
schedulability Point.
Step 2c. Check if values on the left-hand
sides are smaller than or equal to their cor-

responding right-hand-side values. If at
least one of these inequalities holds, then
the set of tasks is schedulable according to
RMS Theorem 2. If not, then the set of tasks
is not schedulable according to RMS.

Example 6 illustrates  the above rule of
thumb.

Example 6

Let us analyze the set of tasks with the char-
acteristics presented in Table 7.

Table 7: A set of tasks with utilization  equal
to 1.

l Step 1. Applying Step 1, we see that the first
two tasks are schedulable according to



I I I I l l Ill)
0 4 5 8 10 12 15 16 20

Figure 2: Schedulability points for the
three tasks discussed in Example 6.

RMS Theorem 1, but the third task is not.
(Interestingly, the cumulative  utilization fac-
tor is equal to 1. This happens in particular
when tasks’ periods  are harmonically re-
lated.) Therefore, we have to apply Theo-
rem 2. Let us do it with the rest of the rule of
thumb given above.

l Step 2a. Determine all schedulability Points
from time 0 up to 20 (the end of the period of
the lowest-frequency task). The schedul-
ability Points are

forTask  1: 0, 4, 8, 12, 16, 20
for Task 2: 0, 5, 10, 15, 20
for Task 3: 0, 20

On the time axis, these schedulability Points
appear in the Order presented in Figure 2.
l Step 2b. Construct inequalities for all sche-

dulability Points. The inequalities are
Cl + C, + C, 5 Tl
2 Cl + C, + C, 5 Tz
2 C, + 2 C, + C, 5 2 Tl
3 Cl + 2 C, + C, 5 2 T2
3 Cl + 3 C, + C, 5 3 Tl
4 C, + 3 C, + C, 5 3 Tz
4 C, + 4 C, + C, 5 4 TI
5 C, + 4 c, + C, 5 T3

l Step 2c. Substitute actual values for all
variables, to check if at least one of the in-
equalities holds. The substitutions are
shown below.

1+2+7>4
2.1+2+7>5
2.1 +2.2+7>2.4
3.1+2.2+7>2.5
3.1 +3.2+7>3.4
4.1 +3.2+7>3.5
4.1+4.2+7>4.4
5.1 +4.2+7=20

l Conclusion. The set of tasks from Table 7
is schedulable by Theorem 2, because  one
of the inequalities for the third task holds.

In Example 7, the rule of thumb is applied to
the set of tasks described in Table 6 of Exam-
ple 5.

Example 7

Let us analyze the set of tasks with the char-
acteristics presented in Table 6. Are the results
the same as those obtained by direct  applica-
tion of Theorem 2?
0

l

Step 1. Applying Step 1, we see that the
only task in question is again Task 3, so i= 3.
Step 2a. Determine all schedulability Points
from 0 up to 360 (the end of the period of the
lowest-frequency task). The schedulability
Points are

for Task 1: 0, 135, 270
for Task 2: 0, 150, 300
for Task 3: 0, 360

On the time axis, these schedulability Points
appear in the Order presented in Figure
3.

Figure 3: Schedulability Points for the
three tasks discussed in Example 7.

Step 2b. Construct inequalities for all sche-
dulability Points. The inequalities are

C, + C, + Cs 5 Tl
2 C, + C, + C, 2 T2
2.C,+2.Cz+C312.T,
~.CI+~.CZ+C~<~.T~
3. Cl+3.Cz+Cs<3.T3

Step 2c. Substitute actual values for all
variables, to check if at least one of the in-
equalities holds. The Substitutions are
shown below.

45 + 50 + 80 >135
2 ‘45 + 50 + 80 >150
2.45+2.50+80=2.135
3.45+2.50+80>2.150
3 ‘45 + 3 ‘50 + 80 > 360

Conclusion. The set of tasks from Table 6
is schedulable by Theorem 2, because  one
of the inequalities for the third task holds.
The results in Step 2c follow exactly the last
column of fractions of Solution from Exam-
ple 5, which confirms the applicability of the
rule of thumb we used this time. One other
thing worth noting that is quite unusual is
that results of Checks  for longer periods
(360, twice 150) are negative, but a check
for a shorter period (twice 135) is okay.
If one understands how the above proce-

dure works, it is possible to have more fun by
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finding the longest execution time a task tan
have with the task set still being schedulable.
This is considered in Example 8.6

Example 8

In this example, there is a set of five tasks,
only four of which have strictly determined tim-
ing characteristics (see Table 8). One of the
tasks (Task 3) has a fixed period only, while it is
desirable for its execution time to be the long-
est possible. The Problem  is to find this long-
est-possible execution time for Task 3, pro-
vided all five tasks are still schedulable by
RMS.

Task  Exec Peri- Ratio Uti- Up-
i ution od T Cie liza- per-

time tion bound

Table 8: Characteristics of the five tasks
cfiscussed in Example 8.

Step 1. Obviously, using inequalities from
Theorem 1 does not give us the longest-
possible time, because  Theorem 1 speci-
fies only the sufficient condition. Using
Theorem 2, we have to apply the rule of
thumb, if we want to make the whole cal-
culation simpler; this is shown below.
Step 2a. Because all schedulability Points
are multiples of the period of Task 1, from 0
up to 1,500, we have 30 such Points to con-
sider.
Step 2b. Construct inequalities for all sche-
dulability Points. We have to construct 30
inequalities, one for each schedulability
Point.  To save space,  only a few of the in-
equalities are given here, in a general form.

C, + C, + C, + C4 + C, 2 Tl (1)
2.C, + C, + C, + C, + C, 2 2.T, (2)

. . .
29.C, + 6.Cz + 2.C3 + 2.C4 + C&29.T, (29)
30.C1 i- 6.C2 + 2.C3 + 2.C, + C&30.T, (30)
Step 2c. By substituting values for all vari-
ables, we get a set of inequalities, from
which we find the largest-possible value of
x still meeting the condition of Theorem 2.
The Substitutions are shown below.

6+36+x+100+120>50 (1)

7.6+2.36+~+100+120(7.50 (7)

20~6+4.36+x+100+120~20~50 (20)

30.6 + 6.36 + 2.x + 2.100  + 1202 30.50 (30)

Solving the above list of equations, from the
seventh downward, we obtain

x+334=350 (7)
.
x+484=1000 (20)
. . .
2.x+ 716 = 1500 (30)

and we find the largest x = 516.

The technique used above is an example of
applying the notion of breakdown utilization,
which is the processor  utilization at the Point  at
which there is no additional processing capac-
ity (that is, at the Point at which there exists no
Single  task whose execution time tan be in-
creased without making the whole task set un-
schedulable). More information on the use of
breakdown utilization to evaluate various
scheduling policies is given in a Paper by
Kateher,  Arakawa, and Strosnider.7

Context switching and task
dispatching

In calculations so far, it has been assumed
that the Change  of tasks on the processor  hap-
pens instantaneously; that is, it has been as-
sumed that context switching takes no time.
Every practitioner knows that this assumption
is unrealistic,  Esch task switches context at
least twice, assuming there are no preemp-
tions. However, the duration  of both context
switching operations - save context and re-
store context - actually tan be included in the
task execution time. Assuming, for simplicity,
that both context  switching times are the Same,
and equal to C,, we tan add them to each
task’s execution time to have the extended
execution time

c; = c, t 2 X c,

Then, Theorems 1 and 2 tan be reformu-
lated for C; rather C; than being the execution
time.
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Example 9 number of lower-priority tasks, as follows:

An interesting example was published by
Borger,  Klein, and Veltre8  for the set of tasks
presented in Table 9. This example Shows  the
determination of the maximum context switch-
ing time C, such that the tasks are still schedul-
able. A C program  to do the computations, us-
ing a technique quite similar to that used in Ex-
ample 8, is presented in the Appendix.

C;’ + (N - i) x D,, ,

where C’; = C;+D, and Dt, is the dispatcher’s
blocking time, where Db 5 De. In general, Db
tan be smaller than De  if the low-priority task is
activated at the same time as is the high-prior-
ity task.8

An example of a schedulability test for the
set of tasks in Table 9, including both dispatch-
ing effects  (that is, those resulting in times De
and Db), is given in a repot-t  by Borger,  Klein,
and Veltre8  (for De = Db = 0.2 milliseconds
[ms]). A complementary view on including ker-
nel overheads in the scheduling analysis,
based on experimental findings, is presented in
a Paper  by Burns, Wellings, and Hutcheon.g

Task synchronization

Table 9: Characteristics of the six tasks
discussed in Example 9.

A slightly different Situation occurs if we want
to include task dispatching time in the analysis.
Normally, the task dispatcher runs at a priority
higher  than that of any other user task, so that
its execution time should be incorporated into a
task’s execution time. However, when the dis-
patther dispatches a low-priority task, higher-
priority user tasks also suffer,  because they
tan be blocked temporarily because of the dis-
patthing Operation. Such blocking is effectively
caused  by a lower-priority task serviced  by the
dispatcher. Thus, blocking that results from dis-
patthing  lower-priority tasks must also be con-
sidered for higher-priority tasks. This is in addi-
tion to the increase of their execution time that
results  from their own dispatching. The in-
crease in execution time of a user task that re-
sults from running the dispatcher is easy to ac-
count for, because - similar to the context
switching time - it tan be included in a task’s
execution time, as follows:

C; + D, ,

In addition to a negligible context switching
time, another assumption in Theorems 1 and 2
that is rather impractical is that of task indepen-
dence. In reality, the very essence  of task exis-
tence  is its interaction  with other tasks, either
via simple synchronization or via some way of
communication (normally, message passing  or
shared memory). However, this interaction
leads to a phenomenon known as priorityinver-
sion. Priority inversion occurs when a low-
priority task prevents a higher-priority task
from running, because the higher-priority task
is blocked on a resource  being used by the
low-priority task.

Example 10

Consider three tasks -Task High, Task Me-
dium, and Task Low - where the task names
correspond to their priorities and Tasks High
and Low need to use a common resource  in an
exclusive and nonpreemptive way. Assume,
for example, that Task Low tan run first be-
Cause both other tasks are currently in a wait
state (see time instant 0 in Figure 4).

High

where De is the dispatcher execution time.
To account for a blocking time resulting from

dispatching lower-priority tasks, one has to
consider the worst case: when all tasks are ac-
tivated at the same time. Because lower-prior-
ity tasks block all higher-priority tasks as a re-
sult of dispatching, the execution time of each
task must be increased by a term consisting of

I I I I 1 I I 1 1 1 I )
Med

I VHA  I m l I I I )
0 1 2 3 4 5 6 7 8 9 Low

Figure 4: Illustration of priority inversion.



If Task Low Starts using a resource (starting
at time 1 and marked by slashes in Figure 4), it
enters a critical section of code and normally
uses some synchronization  mechanism to pre-
vent other tasks from executing the same Code.
(A critical section is a code Segment that re-
quires exclusive execution  by one task at a
time until that section’s completion.) If Task
High wants to use the same resource a while
later  (starting at time 2 and marked by dots),
Task Low cannot be preempted, because the
resource is protected while Task Low executes.
So, Task Low continues executing and Task
High waits. This is called direct blocking.

However, Task Medium may want to run
without using the resource (see time 3). Be-
cause Task Medium’s priority is higher  than
that of Task Low, it certainly preempts Task Low
and runs, thus causing Task High to wait for an
extended interval of time (through times 4 and
5), even though Task Medium’s priority is lower
than that of Task High. This kind of blocking is
called push-through blocking. After Task Me-
dium has completed, Task Low resumes at
time 5. Task High tan execute only after Task
Low has finished using the resource (at time 6).
Theoretically, especially if there are more tasks
of Task Medium’s priority (between Task High’s
and Task Low’s), this Situation may last indefi-
nitely, thus blocking Task High for an unpredict-
able amount of time.

The Solution in the example just given is to
boost the priority of Task Low, so that it tempo-
rarily becomes  high, at the time Task Low is us-
ing the resource and Task High requests ac-
cess  to the same resource. Then, no other
task, except one of a higher  priority than that of
Task High, tan preempt Task Low, and Task
Low tan safely run until completion of using the
resource. Such a boost is called priority inheri-
tance.  However, this Solution is not completely
satisfactory, because deadlocks and multiple
blocking may still occur. These are illustrated in
Examples 11 and 12.
Example 11

In this example, assume there are two re-
sources used by two tasks, Task High and Task
Low, where task names correspond to their
priorities.

If Task Low is accessing Resource  1 (statt-
ing at time 1 and marked by slashes in Figure 5)
and Task High preempts it (at time 2), Task
High may want to access Resource  2 (marked
by backslashes) and then, before releasing
Resource  2, to perform  a nested access to Re-

Source  1 (at time 3). Because Resource  1 is
locked  by Task Low, Task Low cannot be pre-
empted and Task High cannot continue by us-
ing Resource  1 until Task Low finishes its own
use of this resource. However, if Task Low,
while still using Resource  1, makes a call to Re-
Source  2 (at time 4), which  is currently locked
by Task High, a classical deadlock occurs.

This kind of Situation (that is, mutually
nested calls  to resources) is easy to avoid, and
every practitioner would say that this is a de-
sign error. However, a second  Problem  - multi-
ple blocking - still may occur.

Example 12

Consider adding  a second  resource to be
shared by the three tasks in Example 10, Tasks
High, Medium, and Low. Assume that Task
High needs to sequentially access Resources
1 and 2. If Task Low Starts  first and is accessing
Resource  1 (starting from time 1 and marked
by slashes in Figure 6), it tan be preempted by
Task Medium (at time 2), even though priority
inheritance is used, because Task Low’s prior-
ity is not boosted until Task High tries to get ac-
cess to Resource  1. Thus, Task Medium Starts
running and accesses Resource  2 (marked by
backslashes in the figure). Before it has com-
pleted, Task High gets activated (at time 3) and
finds out that it tan access neither resource (at
time 4), because both resources are locked  by
two lower-priority tasks. This results in Task
High being blocked  for the duration  of two re-
Source  accesses. Task High tan continue only
when the tasks that locked  these resources
complete  (at times 5 and 6).

In the worst case, if a task shares M re-
sources  with lower-priority tasks, it tan be
blocked  like this M times. An algorithm that
solves such Problems  is called the priority ceil-
ing protocol. Its basic  idea is that a task tan
preempt another task that is currently acces-
sing a resource and tan access another re-
Source  only if the priority at which  this new ac-

Figure 5: Illustration of a deadlock.
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W, =  ((k,l)~l 5 k  5 i.1 =  l,..., jT,/T,j}

Figure 6: Illustration of multiple blocking.

cess  will be made is higher  than the highest of
the priorities to be inherited by the preempted
task. If semaphores are used to control access
to a resource, each Semaphore is assigned a
priority (ceiling)  equal to the highest priority of
all the tasks that may access this Semaphore.

Rajkumarl  o gave examples illustrating
avoidance of deadlock and of multiple block-
ing, for the priority ceiling protocol. A similar
protocol, called the Stack resource policy was
discussed in a Paper  by Baker.” lt is left to the
reader to apply the priority ceiling protocol to
Examples 11 and 12, above.

lt must be remembered that, in general,
priority inversion cannot  be eliminated, al-
though it tan be controlled  by minimizing the
duration  of blocking due to priority inversion.
Various kinds of blocking tan be taken care of
and included in conditions from Theorems 1
and 2,12 as discussed below.

ßMS Theorem 1A

For a set of N independent periodic  tasks,
where Ci, T;, and Bi, i= 1,2, . . . . N, areexecution
time, period, and worst-case blocking time, re-
spectively, and assuming that task deadline
equals task period, the tasks are schedulable
by RMS if the following condition
holds:

A weaker sufficient  condition  tan be derived
from the above set of inequalities. Its advan-
tage is that it contains only one inequality rather
than N inequalities.

RMS Theorem 2A

For a set of N independent periodic  tasks,
where Ci, T;, and Bi, i= 1,2, . . . . N, are execution
time, period, and worst-case blocking time, re-
spectively, and assuming that task deadline
equals task period, the tasks are schedulable

hold:

Note that this is only a sufficient  condition,
because  values of Bi represent worst-case
blockings.  In practice, some of these inequali-
ties may not be met and the set of tasks tan be
still schedulable, because  actual  blocking
times are shorter.  The rule of thumb given in the
section  entitled “Sufficient and necessary
condition  for RMS schedulability” tan be ap-
plied by incorporating Bi into it.

Nonperiodic events
In practical applications, it is very unlikely

that all tasks are periodically activated or that
all modules  request bus access periodically.
Therefore, it is necessary, for any scheduling
theory of practical importante, to consider non-
periodic  events and their arrivals. However, a
significant difficulty in analysis  is caused  by the
fact  that for most of the nonperiodic events,
their rate is unbounded; that is, they may occur
in bursts. Therefore, it is necessary to make
certain simplifying assumptions about  task ar-
rivals, if they are nonperiodic.

The principal distinction that must be made
is that between fully nonperiodic tasks, with no
bounds on arrival times, and sporadic tasks,
which  have bounds on interarrivals (maximum
arrivalrate).  A sporadic  taskcan be defined as
a task whose subsequent arrivals (requests for
execution)  are separated by a certain minimum
time.

In Order to handle sporadic  tasks, because
they have guaranteed Separation time, the ba-
sic idea is to create  a special  periodic  task that
would take care  of them. Thus, by treating spo-
radic  tasks as if they were periodic,  we put spo-
radic tasks into the framework of rate-mono-
tonic scheduling for periodic  tasks.

The simplest technique for treating sporadic
tasks this way is presented first. In this tech-
nique, a polling server uses the spare proces-
sor utilization (remaining from use by all truly
periodic  tasks) to handle sporadic requests.
The polling server algorithm is as follows:
l Step 0. The server is given the highest

priority by making its period the shortest



there is any spare capacity remaining ac-
cording  to Theorems 1 or 2.
Step 1. At the beginning of its period, a
polling server Checks  if any sporadic re-
quests are pending.
Step 2. If there are no unserviced requests
at the moment, the server suspends until
the beginning of the next period.
Step 3. If there are unserviced requests, the
server handles them until all its time (called
its computation budget) is used.
Step 3a. If all requests are serviced within
the available computation budget, the setv-
er suspends until the Start of the next peri-
od.
Step 3b. If the entire computation budget is
used and there are still some unserviced
requests (nonperiodic tasks pending), the
server quits until the starl of the next period,
when it regains the whole computation bud-
get for a new period. Regaining a computa-
tion budget is called replenishment.

One disadvantage of a polling server is that
even if no event has arrived during  a period,
there is an overhead of checking  whether there
are sporadic tasks to be serviced. A more seri-
ous disadvantage is that if a Service request oc-
curs right after the polling is done for a current
period, then the request must wait until the stat-t
of the next period, even if some of the computa-
tion budget still remains unused. This means
that treating urgent requests may not be pos-
sible. The Solution to this Problem is to keep the
unused computation budget throughout the
entire period and allow all requests occurring
through this period to be handled as they ar-
rive, as long as some computation budgetstill
remains. This is the technique used by a def-
erredserver.  As in the polling servertechnique,
the replenishment of the computation budget
for the deferred server occurs at the Start of
each period.

Step 2c. Decreases the current  computa-
tion budget by the amount used and incre-
ments its computation budget at the replen-
ishment Point  by the same amount.

The sporadic server tan better  accommo-
date sporadic requests, because  it is theoreti-
cally equivalent to a regular periodic  task with a
Phase  shift.13

Alternative solutions

The Problem  with a deferred server is that it
does notfit well into one of the theory’s funda-
mental assumptions: that a task that is eligible
for execution must run. The deferred server
may not want to run, if it waits for the next non-
periodic  task to arrive. This may hurt lower-
priority tasks, in the sense that some of them
miss their deadlines.

Rate-monotonic scheduling theory is a spe-
cial  case of deadline-monotonic scheduling
theory in which deadlines tan be shorter than
periods. (For deadlines longer than periods,  no
successful theory exists at the moment.) For
the Situation in which priorities are based on
deadlines in such a way that tasks with the
shortest deadline get the highest priority
(deadline-monotonic  scheduhng),  a suff icient
and necessary condition  was proved.14 (This
should not be confused with the earliest-dead-
line-first scheduling policy, which  is a dynamic
algorithm requiring dynamic  priority changes,
with their readjustment at the Start  of each  peri-
od. This policy  is not discussed here.) If we
drop the fundamental assumption of RMS and
allow deadlines to be smaller than periods,
very interesting results tan be obtained. These
results are discussed briefly below.

Another technique for handling sporadic In deadline-monotonic scheduling, the fun-
events, which  does not have the disadvan- damental notion is task response  he,  which is
tages of the polling server and the deferred equal to the worst-case running time of a task
server, is the sporadic server algorithm. The and includes the whole time from task activa-
sporadic server task is given the highest prior- tion to task completion. As a matterof principle,
ity and a computation budgetsuch that meeting the execution of tasks at lower priority levels

the conditions of RMS Theorems 1 and 2 is still
possible. However, in contrast  to the other two
techniques, the replenishment of a computa-
tion budget for the sporadic server is not re-
stricted to the stat-t of a next period. The spo-
radic  server makes replenishments when actu-
al requests are serviced and replenishes only
the amount of time used.

The detailed sporadic server algorithm is as
follows:

Step 1. If a sporadic request arrives and the
server cannot  handle it, because  it is al-
ready busy or has no computation budget
left, the request is queued for the future.
Step 2. If a sporadic request arrives and the
server tan handle it, it does the following:
Step 2a. Executes until Service completion
or computation budget exhaustion.
Step 2b. Determines the next replenish-
ment Point to occurone period afterthe stat-t
of current  Service.
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tan Start only if all executions at higher  priority
levels have been completed.

To determine schedulability, a simple equa-
tion per task nee& to be
solved’ 5,16:

where ß; is the response  time of Task iand H
is a set of tasks of priorities higher than the
priority of Task i. Because the response  time ßi
appears on both sides of this equation, the
equation tan be solved iteratively using the fol-
lowing equation for ßi at Point n, which is de-
penden t  on its value at Point
n-l :

R:’ = C, + 1 IR:‘-‘IT,] X C,
/EH

The initial estimate, ßq, tan be Chosen  as
the cumulative  execution time of all tasks of
priorities higher  than the priority of Task i. The
iterations stop if ß? = W-‘i or if ß”i > D;, where
0, is the deadline for Task i. lt should be noted
that, in general, the equation for ßi may have
more than one solution. Also, it is possible to in-
clude  a blocking  component f3i in this equation,
in a manner  similar to that used in RMS Theo-
rem 2A.

Example 13

To illustrate the use of both of the above
equations, let us apply them to the Problem
from Example 5. The relevant data are re-
peated in Table 10, with added values for dead-
line (equal to period) and calculated response
time.

Execu- Peri- Dead- Re-
Task tion od line sponse

i time T oi time
G Ri

1 45 135 135 145

2 50 150 150 -95

3 80 360 360 270

l

Table 10: Characteristics of the three tasks
discussed in Examples 5 and 13.

Task 1. Because Task 1 has the highest
priority, it Starts first, and its response  time is
equal to the execution time, as follows:

ß, = c, = 45.

l Task 2. If we put the numerical  values
straight into the main equation, we obtain,
for Task 2.

Rz = C2 + [R,/T,l x C ,

which is easy to solve, using a trial-and-er-
ror method, as Rp= 95.

l Task 3. For Task 3, we need to use the
iterative equation, as follows:

R: = C, + [R;/T2] x C ,  +  [R:/T,l  = 185

R; = C; + [R;/T,] x C, + rR;/T,j = 270

R; =  C? + [R;/T21 x C, + [R;/T,l = 270

Figure 7 illustrates the Solution for Example
13. Task 1, represented by an empty box,
executes first (from time 0 to time 45). Then,
Task 2, represented by a box with dots, runs for
50 time units (from time 45 to time 95). Task 3,
represented by a box with slashes, is allowed
to run until preempted by Task 1’s second cycle
(at time 135). Then, Tasks 1 and 2 both com-
plete their second  cycle and allow Task 3 to re-
sume its first cycle (from time 230 to time 270).
The Solution means that deadlines for all tasks
tan be set much  shor-ter and the set of tasks
would still be schedulable (see Table 10). As
one tan see from the computations in this ex-
ample, using deadline-monotonic analysis
turns out to be much  easier than applying
Theorem 2 of rate-monotonic scheduling
theory.

LIcwzA IECECFCCW
0 45 95 135180 230 270

m

I

Figure 7: Illustration of a solution in Ex-
ample 13.

The lessons learned from using deadline-
monotonic  scheduling are very important, so a
brief discussion of them is appropriate here.

First of all, the notion of processor(resource)
utilization happens to be much  less significant
in deadline-monotonic scheduling than has
been claimed in rate-monotonic analysis. For
example, if we choose  deadlines smaller than
periods  but make them equal to the respective
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tasks’ execution time, then tasks are never
schedulable, no matter how low the processor
utilization is. This means that we cannot base
our judgment of task schedulability on how low
the processor utilization is.

Second,  if deadline-monotonic analysis is
applied, sporadic  servers are not needed, be-
Cause any combination of periodic  and sporad-
ic tasks tan be checked  for schedulability using
only the deadline-monotonic analysis test,
without referring at all to rate-monotonic analy-
sis.

Third, in deadline-monotonic scheduling,
schedulability does not necessarily depend on
how priorities are assigned, because  the sche-
dulability test is not related specifically to priori-
ties. Thus, deadline-monotonic scheduling al-
lows criticality or the importante  of tasks to be
considered in the assignment of priorities, with-
out inadvertent effects on schedulability. This is
in contrast to rate-monotonic scheduling,
which requires priorities to be assigned strictly
according to task periods.

Finally, for both theories, the assumption
that all tasks statt at the same time is too pessi-
mistic. In practice, tasks are very often depen-
dent on each  other in such way that some of
them must wait until data have been delivered
by the others and cannot statt execution before
that time. This relationship among tasks is
called precedence relations. One Solution  to
this Problem  is to stretch  deadlines by the time
of execution of the task (or tasks) on which the
current  task is waiting. This Solution  facilitates
task scheduling. The reader is referred to two
Papers,  by Audsley, Burns, and Wellings15  and
by Burns,17  for further details.

In conclusion, deadline-monotonicschedul-
ing is easier and faster than rate-monotonic
analysis. However, exact comparison of the
two would require writing another Paper be-
sides this one. Fora more comprehensive view
of what a System  designer tan do using dead-
line-monotonic analysis, the reader is referred
to the Paper  by Audsley, Burns, and Wellings15
mentioned above and to a Paper  by Audsley et
al.l*

Summary
Basic theorems  of rate-monotonic schedul-

ing have been presented and illustrated with
several examples. Also, extensions - including
context switching, task dispatching, and task
synchronization - have been illustrated with
examples, and handling nonperiodic events
has been discussed. A critique of the basic as-

sumptions of rate-monotonic scheduling has
been presented. Finally, alternative solutions
using deadline-monotonic scheduling have
been discussed brief1y.B
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#include  <stdio.h>
main0
I

1nt 1, al, a2, a3, a4, a5;
douhle x, CS, trnp, max_cb = O.O. max_x = O.O. r-;
al = 0;
a2 = a3 = a4 = a5 = 1;
for ix = 2.56; x <= 1280.0; x = x L 2.561 { il compate at every schedulabilicy Pt (/

prinrfI"When x = %g: \n*, x);
d++;
lf (((al % 16) == 11 sr& (al !: 11) /i 16 = 40.96 / 2.56 (1

a2++;
it ((ial % 24) == 1) && (al != 1)) ,'i 24 = 61.44 ; 2.56 (/

a3++;
if ((cal % 384) == 1) Sr& (al != 1)) /( 384 = 953.04 / 2.56 (/

a4t+;
lf (((dl % 400) =- IJ && (dl != 1)) i( 400 = 1024.0 / 7.56 (1

a5++;
pr~ntf("%d[.5+2cs)+%d(5+2cs)+%d(l5+2cs)+%d(30+2cs~+%d(50+2cs)+l+2Cs~~  %y\n",

il _ 2 (J p’,;12+r ;23 ‘+ aa43r +“‘; xi ;4 + a5 + 1);
tmp 0.5(al + 5.0(62 + li.O(a3 + 30.0(a4 + 50.01~15 + 1.0;
cs = (x - tmp) / n;
prictf("cs <= %f\n?n", Cs);
1f (CS > max_cs) ( /( record the laryest Cs and the time poirt (1

max_cs = Cs;
max_x = x;

1
1 ,‘( end of for (/
pr1ncf("max_cs %f where x = %y\n\n", max_cs, max_x);

1

Appendix: This C program does the computations for Example 9.
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