
Priority Inheritance Protocol Proved Correct

Xingyuan Zhang, Christian Urban and Chunhan Wu

December 21, 2012

Abstract
In real-time systems with threads, resource locking and priority scheduling, one faces the problem of
Priority Inversion. This problem can make the behaviour of threads unpredictable and the resulting bugs
can be hard to find. The Priority Inheritance Protocol is one solution implemented in many systems for
solving this problem, but the correctness of this solution has never been formally verified in a theorem
prover. As already pointed out in the literature, the original informal investigation of the Property
Inheritance Protocol presents a correctness “proof” for an incorrect algorithm. In this paper we fix the
problem of this proof by making all notions precise and implementing a variant of a solution proposed
earlier. We also generalise the proof to the practically relevant case where critical sections can overlap.
Our formalisation in Isabelle/HOL not just uncovers facts not mentioned in the literature, but also
shows how to efficiently implement this protocol. Earlier correct implementations were criticised as
too inefficient. Our formalisation is based on Paulson’s inductive approach to verifying protocols; our
implementation builds on top of the small PINTOS operating system.

1 Introduction
Many real-time systems need to support threads involving priorities and locking of resources.
Locking of resources ensures mutual exclusion when accessing shared data or devices that
cannot be preempted. Priorities allow scheduling of threads that need to finish their work
within deadlines. Unfortunately, both features can interact in subtle ways leading to a prob-
lem, called Priority Inversion. Suppose three threads having priorities H(igh), M (edium)
and L(ow). We would expect that the thread H blocks any other thread with lower priority
and the thread itself cannot be blocked indefinitely by threads with lower priority. Alas, in a
naive implementation of resource locking and priorities this property can be violated. For this
let L be in the possession of a lock for a resource that H also needs. H must therefore wait
for L to exit the critical section and release this lock. The problem is that L might in turn be
blocked by any thread with priority M , and so H sits there potentially waiting indefinitely.
Since H is blocked by threads with lower priorities, the problem is called Priority Inversion.
It was first described in [5] in the context of the Mesa programming language designed for
concurrent programming.

If the problem of Priority Inversion is ignored, real-time systems can become unpre-
dictable and resulting bugs can be hard to diagnose. The classic example where this happened

?This is a revised and expanded version of [16].

1

is the software that controlled the Mars Pathfinder mission in 1997 [9]. Once the spacecraft
landed, the software shut down at irregular intervals leading to loss of project time as normal
operation of the craft could only resume the next day (the mission and data already collected
were fortunately not lost, because of a clever system design). The reason for the shutdowns
was that the scheduling software fell victim to Priority Inversion: a low priority thread locking
a resource prevented a high priority thread from running in time, leading to a system reset.
Once the problem was found, it was rectified by enabling the Priority Inheritance Protocol
(PIP) [11]1 in the scheduling software.

The idea behind PIP is to let the thread L temporarily inherit the high priority from H
untilL leaves the critical section unlocking the resource. This solves the problem ofH having
to wait indefinitely, because L cannot be blocked by threads having priority M . While a few
other solutions exist for the Priority Inversion problem, PIP is one that is widely deployed
and implemented. This includes VxWorks (a proprietary real-time OS used in the Mars
Pathfinder mission, in Boeing’s 787 Dreamliner, Honda’s ASIMO robot, etc.), but also the
POSIX 1003.1c Standard realised for example in libraries for FreeBSD, Solaris and Linux.

One advantage of PIP is that increasing the priority of a thread can be dynamically cal-
culated by the scheduler. This is in contrast to, for example, Priority Ceiling [11], another
solution to the Priority Inversion problem, which requires static analysis of the program in
order to prevent Priority Inversion. However, there has also been strong criticism against PIP.
For instance, PIP cannot prevent deadlocks when lock dependencies are circular, and also
blocking times can be substantial (more than just the duration of a critical section). Though,
most criticism against PIP centres around unreliable implementations and PIP being too com-
plicated and too inefficient. For example, Yodaiken writes in [15]:

“Priority inheritance is neither efficient nor reliable. Implementations are either
incomplete (and unreliable) or surprisingly complex and intrusive.”

He suggests avoiding PIP altogether by designing the system so that no priority inversion
may happen in the first place. However, such ideal designs may not always be achievable in
practice.

In our opinion, there is clearly a need for investigating correct algorithms for PIP. A few
specifications for PIP exist (in English) and also a few high-level descriptions of implementa-
tions (e.g. in the textbook [12, Section 5.6.5]), but they help little with actual implementations.
That this is a problem in practice is proved by an email by Baker, who wrote on 13 July 2009
on the Linux Kernel mailing list:

“I observed in the kernel code (to my disgust), the Linux PIP implementation is
a nightmare: extremely heavy weight, involving maintenance of a full wait-for
graph, and requiring updates for a range of events, including priority changes
and interruptions of wait operations.”

The criticism by Yodaiken, Baker and others suggests another look at PIP from a more ab-
stract level (but still concrete enough to inform an implementation), and makes PIP a good
candidate for a formal verification. An additional reason is that the original presentation of
PIP [11], despite being informally “proved” correct, is actually flawed.

Yodaiken [15] points to a subtlety that had been overlooked in the informal proof by Sha
et al. They specify in [11] that after the thread (whose priority has been raised) completes its

1Sha et al. call it the Basic Priority Inheritance Protocol [11] and others sometimes also call it Priority Boosting,
Priority Donation or Priority Lending.

2

critical section and releases the lock, it “returns to its original priority level.” This leads them
to believe that an implementation of PIP is “rather straightforward” [11]. Unfortunately,
as Yodaiken points out, this behaviour is too simplistic. Consider the case where the low
priority thread L locks two resources, and two high-priority threads H and H ′ each wait
for one of them. If L releases one resource so that H , say, can proceed, then we still have
Priority Inversion with H ′ (which waits for the other resource). The correct behaviour for
L is to switch to the highest remaining priority of the threads that it blocks. The advantage
of formalising the correctness of a high-level specification of PIP in a theorem prover is that
such issues clearly show up and cannot be overlooked as in informal reasoning (since we
have to analyse all possible behaviours of threads, i.e. traces, that could possibly happen).

Contributions: There have been earlier formal investigations into PIP [2, 4, 14], but they em-
ploy model checking techniques. This paper presents a formalised and mechanically checked
proof for the correctness of PIP. For this we needed to design a new correctness criterion for
PIP. In contrast to model checking, our formalisation provides insight into why PIP is correct
and allows us to prove stronger properties that, as we will show, can help with an efficient im-
plementation of PIP in the educational PINTOS operating system [8]. For example, we found
by “playing” with the formalisation that the choice of the next thread to take over a lock when
a resource is released is irrelevant for PIP being correct—a fact that has not been mentioned
in the literature and not been used in the reference implementation of PIP in PINTOS. This
fact, however, is important for an efficient implementation of PIP, because we can give the
lock to the thread with the highest priority so that it terminates more quickly. We were also
bale to generalise the scheduler of Sha et al [11] to the practically relevant case where critical
sections can overlap.

2 Formal Model of the Priority Inheritance Protocol
The Priority Inheritance Protocol, short PIP, is a scheduling algorithm for a single-processor
system.2 Following good experience in earlier work [13], our model of PIP is based on
Paulson’s inductive approach to protocol verification [7]. In this approach a state of a system
is given by a list of events that happened so far (with new events prepended to the list). Events
of PIP fall into five categories defined as the datatype:

datatype event = Create thread priority
| Exit thread
| Set thread priority reset of the priority for thread
| P thread cs request of resource cs by thread
| V thread cs release of resource cs by thread

whereby threads, priorities and (critical) resources are represented as natural numbers. The
event Set models the situation that a thread obtains a new priority given by the programmer
or user (for example via the nice utility under UNIX). As in Paulson’s work, we need to
define functions that allow us to make some observations about states. One, called threads,
calculates the set of “live” threads that we have seen so far:

2We shall come back later to the case of PIP on multi-processor systems.

3

threads []
def
= ∅

threads (Create th prio::s)
def
= {th} ∪ threads s

threads (Exit th::s)
def
= threads s − {th}

threads (::s)
def
= threads s

In this definition :: stands for list-cons. Another function calculates the priority for a thread
th, which is defined as

priority th []
def
= 0

priority th (Create th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th (Set th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th (::s)
def
= priority th s

In this definition we set 0 as the default priority for threads that have not (yet) been created.
The last function we need calculates the “time”, or index, at which time a process had its
priority last set.

last set th []
def
= 0

last set th (Create th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th (Set th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th (::s)
def
= last set th s

In this definition |s| stands for the length of the list of events s. Again the default value in this
function is 0 for threads that have not been created yet. A precedence of a thread th in a state
s is the pair of natural numbers defined as

prec th s
def
= (priority th s, last set th s)

The point of precedences is to schedule threads not according to priorities (because what
should we do in case two threads have the same priority), but according to precedences.
Precedences allow us to always discriminate between two threads with equal priority by tak-
ing into account the time when the priority was last set. We order precedences so that threads
with the same priority get a higher precedence if their priority has been set earlier, since for
such threads it is more urgent to finish their work. In an implementation this choice would
translate to a quite natural FIFO-scheduling of processes with the same priority.

Next, we introduce the concept of waiting queues. They are lists of threads associated
with every resource. The first thread in this list (i.e. the head, or short hd) is chosen to be
the one that is in possession of the “lock” of the corresponding resource. We model waiting
queues as functions, below abbreviated as wq. They take a resource as argument and return a
list of threads. This allows us to define when a thread holds, respectively waits for, a resource
cs given a waiting queue function wq.

holds wq th cs
def
= th ∈ set (wq cs) ∧ th = hd (wq cs)

waits wq th cs
def
= th ∈ set (wq cs) ∧ th 6= hd (wq cs)

4

In this definition we assume set converts a list into a set. At the beginning, that is in the state
where no thread is created yet, the waiting queue function will be the function that returns
the empty list for every resource.

all unlocked
def
= λ . [] (1)

Using holds and waits, we can introduce Resource Allocation Graphs (RAG), which represent
the dependencies between threads and resources. We represent RAGs as relations using pairs
of the form

(T th, C cs) and (C cs, T th)

where the first stands for a waiting edge and the second for a holding edge (C and T are
constructors of a datatype for vertices). Given a waiting queue function, a RAG is defined as
the union of the sets of waiting and holding edges, namely

RAG wq
def
= {(T th, C cs) | waits wq th cs} ∪ {(C cs, T th) | holds wq th cs}

If there is no cycle, then every RAG can be pictured as a forrest of trees, for example as
follows:

th0 cs1

th1

th2 cs2

cs3

th3

th4 cs4

cs5

th5

th6 cs6

holding
waiting

waiting
holding

holding

waiting

waiting

waiting

holding

holding

holding

Figure 1: An Instance of a Resource Allocation Graph (RAG).

We will design our scheduler so that every thread can be in the possession of several re-
sources, that is it has potentially several incoming holding edges in the RAG, but has at most
one outgoing waiting edge. The reason is that when a thread asks for resource that is locked
already, then the process is stopped and cannot ask for another resource. Clearly, also every
resource can only have at most one outgoing holding edge—indicating that the resource is
locked.

The use of relations for representing RAGs allows us to conveniently define the notion of
the dependants of a thread using the transitive closure operation for relations. This gives

dependants wq th
def
= {th ′ | (T th ′, T th) ∈ (RAG wq)+}

This definition needs to account for all threads that wait for a thread to release a resource.
This means we need to include threads that transitively wait for a resource being released (in

5

the picture above this means the dependants of th0 are th1 and th2, which wait for resource
cs1, but also th3, which cannot make any progress unless th2 makes progress, which in turn
needs to wait for th0 to finish). If there is a circle of dependencies in a RAG, then clearly
we have a deadlock. Therefore when a thread requests a resource, we must ensure that the
resulting RAG is not circular. In practice, the programmer has to ensure this.

Next we introduce the notion of the current precedence of a thread th in a state s. It is
defined as

cprec wq s th
def
= Max ({prec th s} ∪ {prec th ′ s | th ′∈ dependants wq th}) (2)

where the dependants of th are given by the waiting queue function. While the precedence
prec of a thread is determined statically (for example when the thread is created), the point
of the current precedence is to let the scheduler increase this precedence, if needed according
to PIP. Therefore the current precedence of th is given as the maximum of the precedence th
has in state s and all threads that are dependants of th. Since the notion dependants is defined
as the transitive closure of all dependent threads, we deal correctly with the problem in the
informal algorithm by Sha et al. [11] where a priority of a thread is lowered prematurely.

The next function, called schs, defines the behaviour of the scheduler. It will be defined
by recursion on the state (a list of events); this function returns a schedule state, which we
represent as a record consisting of two functions:

(|wq fun, cprec fun|)

The first function is a waiting queue function (that is, it takes a resource cs and returns the
corresponding list of threads that lock, respectively wait for, it); the second is a function that
takes a thread and returns its current precedence (see the definition in (2)). We assume the
usual getter and setter methods for such records.

In the initial state, the scheduler starts with all resources unlocked (the corresponding
function is defined in (1)) and the current precedence of every thread is initialised with (0,

0); that means initial cprec
def
= λ . (0, 0). Therefore we have for the initial shedule state

schs []
def
=

(|wq fun = all unlocked, cprec fun = initial cprec|)

The cases for Create, Exit and Set are also straightforward: we calculate the waiting queue
function of the (previous) state s; this waiting queue function wq is unchanged in the next
schedule state—because none of these events lock or release any resource; for calculating the
next cprec fun, we use wq and cprec. This gives the following three clauses for schs:

schs (Create th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Create th prio::s)|)

schs (Exit th::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Exit th::s)|)

schs (Set th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Set th prio::s)|)

6

More interesting are the cases where a resource, say cs, is locked or released. In these cases
we need to calculate a new waiting queue function. For the event P th cs, we have to update
the function so that the new thread list for cs is the old thread list plus the thread th appended
to the end of that list (remember the head of this list is assigned to be in the possession of this
resource). This gives the clause

schs (P th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = wq(cs := (wq cs @ [th])) in
(|wq fun = new wq, cprec fun = cprec new wq (P th cs::s)|)

The clause for event V th cs is similar, except that we need to update the waiting queue
function so that the thread that possessed the lock is deleted from the corresponding thread
list. For this list transformation, we use the auxiliary function release. A simple version of
release would just delete this thread and return the remaining threads, namely

release []
def
= []

release (::qs)
def
= qs

In practice, however, often the thread with the highest precedence in the list will get the lock
next. We have implemented this choice, but later found out that the choice of which thread is
chosen next is actually irrelevant for the correctness of PIP. Therefore we prove the stronger
result where release is defined as

release []
def
= []

release (::qs)
def
= SOME qs ′. distinct qs ′∧ set qs ′= set qs

where SOME stands for Hilbert’s epsilon and implements an arbitrary choice for the next
waiting list. It just has to be a list of distinctive threads and contain the same elements as qs.
This gives for V the clause:

schs (V th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = release (wq cs) in
(|wq fun = new wq, cprec fun = cprec new wq (V th cs::s)|)

Having the scheduler function schs at our disposal, we can “lift”, or overload, the notions
waits, holds, RAG and cprec to operate on states only.

holds s
def
= holds (wq fun (schs s))

waits s
def
= waits (wq fun (schs s))

RAG s
def
= RAG (wq fun (schs s))

cprec s
def
= cprec fun (schs s)

With these abbreviations in place we can introduce the notion of a thread being ready in a
state (i.e. threads that do not wait for any resource, i.e. the roots of the trees in the RAG, see
Figure 1) and the running thread.

7

ready s
def
= {th ∈ threads s | ∀ cs. ¬ waits s th cs}

running s
def
= {th ∈ ready s | cprec s th = Max (cprec s ‘ ready s)}

In the second definition ‘ stands for the image of a set under a function. Note that
in the initial state, that is where the list of events is empty, the set threads is empty and
therefore there is neither a thread ready nor running. If there is one or more threads ready,
then there can only be one thread running, namely the one whose current precedence is equal
to the maximum of all ready threads. We use sets to capture both possibilities. We can now
also conveniently define the set of resources that are locked by a thread in a given state and
also when a thread is detached in a state (meaning the thread neither holds nor waits for a
resource):

resources s th
def
= {cs | holds s th cs}

detached s th
def
= (@ cs. holds s th cs) ∧ (@ cs. waits s th cs)

Finally we can define what a valid state is in our model of PIP. For example we cannot
expect to be able to exit a thread, if it was not created yet. These validity constraints on states
are characterised by the inductive predicate step and valid state. We first give five inference
rules for step relating a state and an event that can happen next.

th /∈ threads s
step s (Create th prio)

th ∈ running s resources s th = ∅
step s (Exit th)

The first rule states that a thread can only be created, if it is not alive yet. Similarly, the
second rule states that a thread can only be terminated if it was running and does not lock
any resources anymore (this simplifies slightly our model; in practice we would expect the
operating system releases all locks held by a thread that is about to exit). The event Set can
happen if the corresponding thread is running.

th ∈ running s
step s (Set th prio)

If a thread wants to lock a resource, then the thread needs to be running and also we have to
make sure that the resource lock does not lead to a cycle in the RAG. In practice, ensuring
the latter is the responsibility of the programmer. In our formal model we brush aside these
problematic cases in order to be able to make some meaningful statements about PIP.3

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

Similarly, if a thread wants to release a lock on a resource, then it must be running and in the
possession of that lock. This is formally given by the last inference rule of step.

th ∈ running s holds s th cs
step s (V th cs)

3This situation is similar to the infamous occurs check in Prolog: In order to say anything meaningful about
unification, one needs to perform an occurs check. But in practice the occurs check is omitted and the responsibility
for avoiding problems rests with the programmer.

8

Note, however, that apart from the circularity condition, we do not make any assumption on
how different resources can locked and released relative to each other. In our model it is
possible that critical sections overlap. This is in contrast to Sha et al [11] who require that
critical sections are properly nested.

A valid state of PIP can then be conveniently be defined as follows:

valid state []

valid state s step s e
valid state (e::s)

This completes our formal model of PIP. In the next section we present properties that show
our model of PIP is correct.

3 The Correctness Proof
Sha et al. state their first correctness criterion for PIP in terms of the number of low-priority
threads [11, Theorem 3]: if there are n low-priority threads, then a blocked job with high
priority can only be blocked a maximum of n times. Their second correctness criterion is
given in terms of the number of critical resources [11, Theorem 6]: if there are m critical
resources, then a blocked job with high priority can only be blocked a maximum of m times.
Both results on their own, strictly speaking, do not prevent indefinite, or unbounded, Priority
Inversion, because if a low-priority thread does not give up its critical resource (the one
the high-priority thread is waiting for), then the high-priority thread can never run. The
argument of Sha et al. is that if threads release locked resources in a finite amount of time,
then indefinite Priority Inversion cannot occur—the high-priority thread is guaranteed to run
eventually. The assumption is that programmers must ensure that threads are programmed
in this way. However, even taking this assumption into account, the correctness properties
of Sha et al. are not true for their version of PIP—despite being “proved”. As Yodaiken
[15] pointed out: If a low-priority thread possesses locks to two resources for which two
high-priority threads are waiting for, then lowering the priority prematurely after giving up
only one lock, can cause indefinite Priority Inversion for one of the high-priority threads,
invalidating their two bounds.

Even when fixed, their proof idea does not seem to go through for us, because of the way
we have set up our formal model of PIP. One reason is that we allow critical sections, which
start with a P-event and finish with a corresponding V-event, to arbitrarily overlap (something
Sha et al. explicitly exclude). Therefore we have designed a different correctness criterion for
PIP. The idea behind our criterion is as follows: for all states s, we know the corresponding
thread th with the highest precedence; we show that in every future state (denoted by s ′ @
s) in which th is still alive, either th is running or it is blocked by a thread that was alive in
the state s and was waiting for or in the possession of a lock in s. Since in s, as in every
state, the set of alive threads is finite, th can only be blocked a finite number of times. This is
independent of how many threads of lower priority are created in s ′. We will actually prove
a stronger statement where we also provide the current precedence of the blocking thread.
However, this correctness criterion hinges upon a number of assumptions about the states s
and s ′@ s, the thread th and the events happening in s ′. We list them next:

Assumptions on the states s and s ′ @ s: We need to require that s and s ′ @ s
are valid states:

9

valid state s, valid state (s ′@ s)

Assumptions on the thread th: The thread th must be alive in s and has the
highest precedence of all alive threads in s. Furthermore the priority of th is prio
(we need this in the next assumptions).

th ∈ threads s
prec th s = Max (cprec s ‘ threads s)
prec th s = (prio,)

Assumptions on the events in s ′: We want to prove that th cannot be blocked
indefinitely. Of course this can happen if threads with higher priority than th are
continuously created in s ′. Therefore we have to assume that events in s ′ can
only create (respectively set) threads with equal or lower priority than prio of th.
We also need to assume that the priority of th does not get reset and also that th
does not get “exited” in s ′. This can be ensured by assuming the following three
implications.

If Create th ′ prio ′∈ set s ′ then prio ′≤ prio
If Set th ′ prio ′∈ set s ′ then th ′ 6= th and prio ′≤ prio
If Exit th ′∈ set s ′ then th ′ 6= th

The locale mechanism of Isabelle helps us to manage conveniently such assumptions [3].
Under these assumptions we shall prove the following correctness property:

Theorem 1 Given the assumptions about states s and s ′@ s, the thread th and the events in
s ′, if th ′ ∈ running (s ′@ s) and th ′ 6= th then th ′ ∈ threads s, ¬ detached s th ′ and cprec (s ′

@ s) th ′= prec th s.

This theorem ensures that the thread th, which has the highest precedence in the state s, can
only be blocked in the state s ′ @ s by a thread th ′ that already existed in s and requested or
had a lock on at least one resource—that means the thread was not detached in s. As we shall
see shortly, that means there are only finitely many threads that can block th in this way and
then they need to run with the same current precedence as th.

Like in the argument by Sha et al. our finite bound does not guarantee absence of indefinite
Priority Inversion. For this we further have to assume that every thread gives up its resources
after a finite amount of time. We found that this assumption is awkward to formalise in our
model. Therefore we leave it out and let the programmer assume the responsibility to program
threads in such a benign manner (in addition to causing no circularity in the RAG). In this
detail, we do not make any progress in comparison with the work by Sha et al. However, we
are able to combine their two separate bounds into a single theorem improving their bound.

In what follows we will describe properties of PIP that allow us to prove Theorem 1 and,
when instructive, briefly describe our argument. It is relatively easy to see that

running s ⊆ ready s ⊆ threads s
If valid state s then finite (threads s).

The second property is by induction of valid state. The next three properties are

10

If valid state s and waits s th cs1 and waits s th cs2 then cs1 = cs2.
If holds s th1 cs and holds s th2 cs then th1 = th2.
If valid state s and th1 ∈ running s and th2 ∈ running s then th1 = th2.

The first property states that every waiting thread can only wait for a single resource (because
it gets suspended after requesting that resource); the second that every resource can only be
held by a single thread; the third property establishes that in every given valid state, there is
at most one running thread. We can also show the following properties about the RAG in s.

If valid state s then:
acyclic (RAG s), finite (RAG s) and wf ((RAG s)−1),
if T th ∈ Domain (RAG s) then th ∈ threads s and
if T th ∈ Range (RAG s) then th ∈ threads s.

The acyclicity property follows from how we restricted the events in step; similarly the finite-
ness and well-foundedness property. The last two properties establish that every thread in a
RAG (either holding or waiting for a resource) is a live thread.

The key lemma in our proof of Theorem 1 is as follows:

Lemma 2 Given the assumptions about states s and s ′ @ s, the thread th and the events in
s ′, if th ′∈ threads (s ′@ s), th ′ 6= th and detached (s ′@ s) th ′

then th ′ /∈ running (s ′@ s).

The point of this lemma is that a thread different from th (which has the highest precedence
in s) and not holding any resource, cannot be running in the state s ′@ s.

Proof Since thread th ′ does not hold any resource, no thread can depend on it. Therefore
its current precedence cprec (s ′@ s) th ′ equals its own precedence prec th ′ (s ′@ s). Since th
has the highest precedence in the state (s ′@ s) and precedences are distinct among threads,
we have prec th ′ (s ′@ s) < prec th (s ′@ s). From this we have cprec (s ′@ s) th ′< prec th
(s ′@ s). Since prec th (s ′@ s) is already the highest cprec (s ′@ s) th can not be higher than
this and can not be lower either (by definition of cprec). Consequently, we have prec th (s ′@
s) = cprec (s ′@ s) th. Finally we have cprec (s ′@ s) th ′< cprec (s ′@ s) th. By defintion of
running, th ′ can not be running in state s ′@ s, as we had to show.

Since th ′ is not able to run in state s ′@ s, it is not able to issue a P or V event. Therefore if
s ′@ s is extended one step further, th ′ still cannot hold any resource. The situation will not
change in further extensions as long as th holds the highest precedence.

From this lemma we can deduce Theorem 1: that th can only be blocked by a thread th ′

that held some resource in state s (that is not detached). And furthermore that the current
precedence of th ′ in state (s ′@ s) must be equal to the precedence of th in s. We show this
theorem by induction on s ′using Lemma 2. This theorem gives a stricter bound on the threads
that can block th than the one obtained by Sha et al. [11]: only threads that were alive in state
s and moreover held a resource. This means our bound is in terms of both—alive threads in
state s and number of critical resources. Finally, the theorem establishes that the blocking
threads have the current precedence raised to the precedence of th.

We can furthermore prove that under our assumptions no deadlock exists in the state s ′@
s by showing that running (s ′@ s) is not empty.

Lemma 3 Given the assumptions about states s and s ′ @ s, the thread th and the events in
s ′, running (s ′@ s) 6= ∅.

11

Proof If th is blocked, then by following its dependants graph, we can always reach a ready
thread th ′, and that thread must have inherited the precedence of th.

4 Properties for an Implementation
While our formalised proof gives us confidence about the correctness of our model of PIP,
we found that the formalisation can even help us with efficiently implementing it.

For example Baker complained that calculating the current precedence in PIP is quite
“heavy weight” in Linux (see the Introduction). In our model of PIP the current precedence
of a thread in a state s depends on all its dependants—a “global” transitive notion, which is
indeed heavy weight (see Def. shown in (2)). We can however improve upon this. For this let
us define the notion of children of a thread th in a state s as

children s th
def
= {th ′ | ∃ cs. (T th ′, C cs) ∈ RAG s ∧ (C cs, T th) ∈ RAG s}

where a child is a thread that is only one “hop” away from the thread th in the RAG (and
waiting for th to release a resource). We can prove the following lemma.

Lemma 4 If valid state s then

cprec s th = Max ({prec th s} ∪ cprec s ‘ children s th).

That means the current precedence of a thread th can be computed locally by considering
only the children of th. In effect, it only needs to be recomputed for th when one of its
children changes its current precedence. Once the current precedence is computed in this
more efficient manner, the selection of the thread with highest precedence from a set of ready
threads is a standard scheduling operation implemented in most operating systems.

Of course the main work for implementing PIP involves the scheduler and coding how it
should react to events. Below we outline how our formalisation guides this implementation
for each kind of events.

Create th prio: We assume that the current state s ′ and the next state s
def
= Create th prio::s ′

are both valid (meaning the event is allowed to occur). In this situation we can show that

RAG s = RAG s ′,
cprec s th = prec th s, and
If th ′ 6= th then cprec s th ′= cprec s ′ th ′.

This means in an implementation we do not have recalculate the RAG and also none of the
current precedences of the other threads. The current precedence of the created thread th is
just its precedence, namely the pair (prio, |s|).

Exit th: We again assume that the current state s ′ and the next state s
def
= Exit th::s ′ are both

valid. We can show that

RAG s = RAG s ′, and
If th ′ 6= th then cprec s th ′= cprec s ′ th ′.

12

This means again we do not have to recalculate the RAG and also not the current precedences
for the other threads. Since th is not alive anymore in state s, there is no need to calculate its
current precedence.

Set th prio: We assume that s ′ and s
def
= Set th prio::s ′ are both valid. We can show that

RAG s = RAG s ′, and
If th ′ 6= th and th /∈ dependants s th ′ then cprec s th ′= cprec s ′ th ′.

The first property is again telling us we do not need to change the RAG. The second shows that
the cprec-values of all threads other than th are unchanged. The reason is that th is running;
therefore it is not in the dependants relation of any other thread. This in turn means that the
change of its priority cannot affect other threads.

V th cs: We assume that s ′ and s
def
= V th cs::s ′ are both valid. We have to consider two

subcases: one where there is a thread to “take over” the released resource cs, and one where
there is not. Let us consider them in turn. Suppose in state s, the thread th ′ takes over resource
cs from thread th. We can prove

RAG s = RAG s ′− {(C cs, T th), (T th ′, C cs)} ∪ {(C cs, T th ′)}

which shows how the RAG needs to be changed. The next lemma suggests how the current
precedences need to be recalculated. For threads that are not th and th ′ nothing needs to be
changed, since we can show

If th ′′ 6= th and th ′′ 6= th ′ then cprec s th ′′= cprec s ′ th ′′.

For th and th ′ we need to use Lemma 4 to recalculate their current precedence since their
children have changed.

In the other case where there is no thread that takes over cs, we can show how to recalculate
the RAG and also show that no current precedence needs to be recalculated.

RAG s = RAG s ′− {(C cs, T th)}
cprec s th ′= cprec s ′ th ′

P th cs: We assume that s ′ and s
def
= P th cs::s ′ are both valid. We again have to analyse two

subcases, namely the one where cs is not locked, and one where it is. We treat the former
case first by showing that

RAG s = RAG s ′∪ {(C cs, T th)}
cprec s th ′= cprec s ′ th ′

This means we need to add a holding edge to the RAG and no current precedence needs to be
recalculated.

In the second case we know that resource cs is locked. We can show that

RAG s = RAG s ′∪ {(T th, C cs)}
If th /∈ dependants s th ′ then cprec s th ′= cprec s ′ th ′.

13

That means we have to add a waiting edge to the RAG. Furthermore the current precedence
for all threads that are not dependants of th are unchanged. For the others we need to follow
the edges in the RAG and recompute the cprec. To do this we can start from th and follow the
RAG-edges to recompute using Lemma 4 the cprec of every thread encountered on the way.
Since the RAG is loop free, this procedure will always stop. The following lemma shows,
however, that this procedure can actually stop often earlier without having to consider all
dependants.

If th ∈ dependants s th ′, th ′∈ dependants s th ′′ and cprec s th ′= cprec s ′ th ′

then cprec s th ′′= cprec s ′ th ′′.

This lemma states that if an intermediate cprec-value does not change, then the procedure can
also stop, because none of its dependent threads will have their current precedence changed.

As can be seen, a pleasing byproduct of our formalisation is that the properties in this section
closely inform an implementation of PIP, namely whether the RAG needs to be reconfigured
or current precedences need to be recalculated for an event. This information is provided
by the lemmas we proved. We confirmed that our observations translate into practice by
implementing our version of PIP on top of PINTOS, a small operating system written in C
and used for teaching at Stanford University [8]. To implement PIP, we only need to modify
the kernel functions corresponding to the events in our formal model. The events translate to
the following function interface in PINTOS:

Event PINTOS function
Create thread_create
Exit thread_exit
Set thread_set_priority
P lock_acquire
V lock_release

Our implicit assumption that every event is an atomic operation is ensured by the architecture
of PINTOS (which allows to disable interrupts when some operations are performed). The
case where an unlocked resource is given next to the waiting thread with the highest prece-
dence is realised in our implementation by priority queues. We implemented them as Braun
trees [6], which provide efficient O(log n)-operations for accessing and updating. Apart from
having to implement relatively complex datastructures in C using pointers, our experience
with the implementation has been very positive: our specification and formalisation of PIP
translates smoothly to an efficent implementation in PINTOS. Let us illustrate this with the
C-code of the function lock aquire, shown in Figure 2. This function implements the
operation that the currently running thread asks for the lock of a resource. In C such a lock is
represented as a pointer to the structure lock (Line 1).

Lines 2 to 4 of lock aquire contain diagnostic code: first, we check that the lock is
a “valid” lock by testing it is not NULL; second, we check that the code is not called as part
of an interrupt—aquiring a lock should only be initiated by a request from a (user) thread,
not an interrupt; third, we make sure the current thread does not ask twice for a lock. These
assertions are supposed to be satisfied because of the assumptions in PINTOS about how this
code is called. If not, then the assertions indicate a bug in PINTOS.

Line 6 and 7 of lock aquiremake the operation of aquiring a lock atomic by disabling
all interrupts, but saving them for resumption at the end of the function (Line 31). In Line

14

1 void lock_acquire (struct lock *lock)
2 { ASSERT (lock != NULL);
3 ASSERT (!intr_context());
4 ASSERT (!lock_held_by_current_thread (lock));
5
6 enum intr_level old_level;
7 old_level = intr_disable();
8 if (lock->value == 0) {
9 heap_insert(thread_cprec, &lock->wq, &thread_current()->helem);

10 thread_current()->waiting = lock;
11 struct thread *pt;
12 pt = lock->holder;
13 while (pt) {
14 heap_update(lock_cprec, &pt->held, &lock->helem);
15 if (!(update_cprec(pt)))
16 break;
17 lock = pt->waiting;
18 if (!lock) {
19 heap_update(higher_cprec, &ready_heap, &pt->helem);
20 break;
21 };
22 heap_update(thread_cprec, &lock->wq, &pt->helem);
23 pt = lock->holder;
24 };
25 thread_block();
26 } else {
27 lock->value--;
28 lock->holder = thread_current();
29 heap_insert(lock_prec, &thread_current()->held, &lock->helem);
30 };
31 intr_set_level(old_level);
32 }

Figure 2: Our version of the lock release function in PINTOS. It implements the opera-
tion corresponding to a P-event.

15

8, the interesting code starts: we test whether the lock is already taken (its value is then 0
indicating “already taken”, or 1 for being “free”). In case the lock is taken, we enter the
if-branch by first inserting the current thread into the waiting queue of this lock (Line 9, the
waiting queue is referenced as &lock-wq). Next we record that the current thread is waiting
for the lock (Line 10). According to our specification, we need to next “chase” the dependants
in the RAG (Resource Allocation Graph), but we can stop whenever there is no change in the
cprec. Befre we start the loop, we assign in Lines 11 and 12 assign the variable pt to the
owner of the lock, and enter the while-loop in Lines 13 to 24. . . .

5 Conclusion
The Priority Inheritance Protocol (PIP) is a classic textbook algorithm used in many real-
time operating systems in order to avoid the problem of Priority Inversion. Although classic
and widely used, PIP does have its faults: for example it does not prevent deadlocks in cases
where threads have circular lock dependencies.

We had two goals in mind with our formalisation of PIP: One is to make the notions in
the correctness proof by Sha et al. [11] precise so that they can be processed by a theorem
prover. The reason is that a mechanically checked proof avoids the flaws that crept into their
informal reasoning. We achieved this goal: The correctness of PIP now only hinges on the
assumptions behind our formal model. The reasoning, which is sometimes quite intricate and
tedious, has been checked by Isabelle/HOL. We can also confirm that Paulson’s inductive
method for protocol verification [7] is quite suitable for our formal model and proof. The
traditional application area of this method is security protocols.

The second goal of our formalisation is to provide a specification for actually imple-
menting PIP. Textbooks, for example [12, Section 5.6.5], explain how to use various imple-
mentations of PIP and abstractly discuss their properties, but surprisingly lack most details
important for a programmer who wants to implement PIP (similarly Sha et al. [11]). That this
is an issue in practice is illustrated by the email from Baker we cited in the Introduction. We
achieved also this goal: The formalisation allowed us to efficently implement our version of
PIP on top of PINTOS [8], a simple instructional operating system for the x86 architecture.
It also gives the first author enough data to enable his undergraduate students to implement
PIP (as part of their OS course). A byproduct of our formalisation effort is that nearly all
design choices for the implementation of PIP scheduler are backed up with a proved lemma.
We were also able to establish the property that the choice of the next thread which takes over
a lock is irrelevant for the correctness of PIP. Moreover, we eliminated a crucial restriction
present in the proof of Sha et al.: they require that critical sections nest properly, whereas our
scheduler allows critical sections to overlap. This is the default in implementations of PIP.

PIP is a scheduling algorithm for single-processor systems. We are now living in a multi-
processor world. Priority Inversion certainly occurs also there. However, there is very little
“foundational” work about PIP-algorithms on multi-processor systems. We are not aware
of any correctness proofs, not even informal ones. There is an implementation of a PIP-
algorithm for multi-processors as part of the “real-time” effort in Linux, including an informal
description of the implemented scheduling algorithm given in [10]. We estimate that the for-
mal verification of this algorithm, involving more fine-grained events, is a magnitude harder
than the one we presented here, but still within reach of current theorem proving technology.
We leave this for future work.

16

The most closely related work to ours is the formal verification in PVS of the Priority
Ceiling Protocol done by Dutertre [1]—another solution to the Priority Inversion problem,
which however needs static analysis of programs in order to avoid it. There have been earlier
formal investigations into PIP [2, 4, 14], but they employ model checking techniques. The
results obtained by them apply, however, only to systems with a fixed size, such as a fixed
number of events and threads. In contrast, our result applies to systems of arbitrary size.
Moreover, our result is a good witness for one of the major reasons to be interested in machine
checked reasoning: gaining deeper understanding of the subject matter.

Our formalisation consists of around 210 lemmas and overall 6950 lines of readable Is-
abelle/Isar code with a few apply-scripts interspersed. The formal model of PIP is 385 lines
long; the formal correctness proof 3800 lines. Some auxiliary definitions and proofs span
over 770 lines of code. The properties relevant for an implementation require 2000 lines.

Acknowledgements: We are grateful for the comments we received from anonymous refer-
ees.

References
[1] B. Dutertre. The Priority Ceiling Protocol: Formalization and Analysis Using PVS.

In Proc. of the 21st IEEE Conference on Real-Time Systems Symposium (RTSS), pages
151–160. IEEE Computer Society, 2000.

[2] J. M. S. Faria. Formal Development of Solutions for Real-Time Operating Systems with
TLA+/TLC. PhD thesis, University of Porto, 2008.

[3] F. Haftmann and M. Wenzel. Local Theory Specifications in Isabelle/Isar. In Proc. of
the International Conference on Types, Proofs and Programs (TYPES), volume 5497 of
LNCS, pages 153–168, 2008.

[4] E. Jahier, B. Halbwachs, and P. Raymond. Synchronous Modeling and Validation of
Priority Inheritance Schedulers. In Proc. of the 12th International Conference on Fun-
damental Approaches to Software Engineering (FASE), volume 5503 of LNCS, pages
140–154, 2009.

[5] B. W. Lampson and D. D. Redell. Experiences with Processes and Monitors in Mesa.
Communications of the ACM, 23(2):105–117, 1980.

[6] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1996.

[7] L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Journal
of Computer Security, 6(1–2):85–128, 1998.

[8] B. Pfaff. PINTOS. http://www.stanford.edu/class/cs140/projects/.

[9] G. E. Reeves. Re: What Really Happened on Mars? Risks Forum, 19(54), 1998.

[10] S. Rostedt. RT-Mutex Implementation Design. Linux Kernel Distribution at,
www.kernel.org/doc/Documentation/rt-mutex-design.txt.

[11] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175–1185,
1990.

17

http://www.stanford.edu/class/cs140/projects/

[12] U. Vahalia. UNIX Internals: The New Frontiers. Prentice-Hall, 1996.

[13] J. Wang, H. Yang, and X. Zhang. Liveness Reasoning with Isabelle/HOL. In Proc. of the
22nd International Conference on Theorem Proving in Higher Order Logics (TPHOLs),
volume 5674 of LNCS, pages 485–499, 2009.

[14] A. Wellings, A. Burns, O. M. Santos, and B. M. Brosgol. Integrating Priority Inheri-
tance Algorithms in the Real-Time Specification for Java. In Proc. of the 10th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 115–123. IEEE Computer Society, 2007.

[15] V. Yodaiken. Against Priority Inheritance. Technical report, Finite State Machine Labs
(FSMLabs), 2004.

[16] X. Zhang, C. Urban, and C. Wu. Priority Inheritance Protocol Proved Correct. In
Proc. of the 3rd Conference on Interactive Theorem Proving, volume 7406 of LNCS,
pages 217–232, 2012.

18

	Introduction
	Formal Model of the Priority Inheritance Protocol
	The Correctness Proof
	Properties for an Implementation
	Conclusion

