
Comments by Reviewer #1
• 1.) I don’t see the point of working with a more general library of possibly

infinite graphs when it is clear that no (necessarily finite) evolution of the
state could ever generate an infinite graph.
It seemed the most convenient approach for us and we added the following
comment on page 8 about justifying our choice. There was already a
comment about having finiteness as a property, rather than a built-in
assumption.

It seems for our purposes the most convenient representation
of graphs are binary relations given by sets of pairs. The pairs
stand for the edges in graphs. This relation-based represen-
tation has the advantage that the notions waiting and holding
are already defined in terms of relations amongst threads and
resources. Also, we can easily re-use the standard notions of
transitive closure operations _∗ and _+, as well as relation
composition for our graphs.

• 2.) Later, the release function is defined using Hilbert choice (Isabelle/HOL’s
SOME function) as a method for emulating non-determinism. This is hor-
rid. The highest level generation of traces handles non-determinism beau-
tifully; using choice at a lower level lets you keep things functional, but
hides the fact that you want to model non-determinism at the lower level
as well. I agree that the final theorem does imply that the way in which
the new waiting list is chosen is irrelevant, but this implication is only
apparent through a close reading of that definition. Better I think to lift
the non-determinism and make it more apparent at the top level.

We generally agree with the reviewer about the use of SOME, but
in this instance we cannot see a way to make this nondetermin-
ism explicit without complicating the toplevel rules about PIP
on page 12. By using SOME, we can leave implicit the order of
the waiting queue returned by release (which corresponds to the
original system call from Sha et al). If we represent the non-
determinism explicitly, we would need to add another argument
to V specifying which thread is the next one that obtains the
lock and add another premise to the PIP rule for ensuring that
this thread is member of the waiting queue.

• 3.) In §4, there is an assumption made about the number of threads
allowed to be created. Given the form of theorem 2, this seems to me to be
unnecessary. It’s certainly extremely weird and ugly because it says that
there are at most BC many thread creation events in all possible future
traces (of which there are of course infinitely many). …

1

We think this mis-reads our theorem: Although the constrains
we put on thread creation prohibit the creation of higher priority
threads, the creation of lower priority threads may still consume
CPU time and prevent th from accomplishing its task. That is
the purpose we put in the BC constraint to limit the overall
number of thread creations. We slightly augmented the sentence
on page 15 by:

Otherwise our PIP scheduler could be “swamped” with
Create-requests of lower priority threads.

• Why are variables corresponding to resources given the name cs? This is
confusing. rsc or r would be better.

cs stands for “critical section”, which is the original name used
by Sha et al to represent “critical resources”.

• All other comments of the reviewer have been implemented.

Comments by Reviewer #2
• Well-founded comment: We updated the paragraph where acyclic and

well-founded are used for the first time.

Note that forests can have trees with infinite depth and con-
taining nodes with infinitely many children. A finite forest is a
forest whose underlying relation is well-founded and every node
has finitely many children (is only finitely branching).
We also added a footnote that we are using the standard defi-
nition of well-foundedness from Isabelle.

• Comment about graph-library: This point was also raised by Reviewer #1
and we gave a better justification on page 8 (see answer to first point of
Reviewer #1).

• 20.) In the case of ”Set th prio:”, it is not declared what the cprec (e::s)
th should be (presumably it is something like Max((prio,|s|),prec th s)
or possibly just prec th (e::s) given the assumptions on Set events listed
before).

We note the concern of the reviewer about the effect of the Set-
operation on the cprec value of a thread. According to equation
(6) on page 11, the cprec of a thread is determined by the prece-
dence values in its subtree, while the Set operation only changes
the precedence of the ‘Set’ thread. If the reviewer thinks we
should add this explanation again, then we are happy to do so.

2

Comments by Reviewer #3
• The verification is at the model level, instead of code level:...

The verification is indeed on the level of the algorithm. A veri-
fication of the C-code is *well* beyond the scope of the paper.
For example, it would require a formalised semantics for C (as
for example given in the seL4-project). This and interfacing
with it would be a tremendous amount of work and we are not
sure whether their results would actually sufficient for the code
we wrote.
In light of this, we have made it clearer in the abstract and
in a footnote on the first page that our C-code is unverified.
Additionally we added the following sentence in Section 5 before
we describe the C-code:

While there is no formal connection between our for-
malisation and the C-code shown below, the results of
the formalisation clearly shine through in the design of
the code.

• The model cannot express the execution of instructions. As a result, it
is difficult to express the case that the critical region does infinite loops
without generating events for system calls.

Yes, we discuss this limitation in the first paragraph of section
4 and already wrote that in this aspect we do not improve the
limitations of the original paper by Sha et al.

• The authors should have provided URL of their mechanized proofs for the
review process.

As is custom, we have given a link to the sources. It is mentioned
in the last sentence of the conclusion.
The code of our formalisation can be downloaded from the Mer-
curial repository at http://talisker.inf.kcl.ac.uk/cgi-bin/
repos.cgi/pip.

• It is more like engineering work. It’s unclear what general principles or
theories are proposed.

The general point we are making is that a ‘proof-by-hand’ is
generally worthless in this area for ensuring the correctness of
an algorithm. We underline this point by listing the references
[13, 14, 15, 20, 24, 25], which all repeat the error from the
original paper.
More specifically we extend the claims of Sha at al and give
a machine-checked formalisation of our claims (the first such
formalisation for PIP). We also wrote about our experiences:

3

http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/pip
http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/pip

Following good experience in earlier work [27], our model
of PIP is based on Paulson’s inductive approach for pro-
tocol verification [18].

• 1) There are some places that the authors follow the Isabelle syntax, which
require more explanation. For instance, in the definitions of ”threads” and
”priority” in page 5, I had trouble understanding the underscore until I
realized that the 4 cases are pattern matching and they have orders.

We have added the sentence after the definition of threads:
We use _ to match any pattern, like in functional pro-
gramming.

• 2) The last assumption on page 13: the assumption seems very strong.
If you prove Theorem 1 inductively on all s (which means you have to
consider s of length 1), then following the assumption you essentially
require that the highest priority task is the first task created.

We feel like this mis-reads what we are proving and how we
organised the statements. The thread th is the thread with the
highest priority in the state s. It can be in s at any ‘place’—
it does not need to be the first one. What we prove is what
happens to th in the state s′@s which happens after s. We only
require that threads created after s need to have a lower priority.

• 3) 2nd line of the proofs of Lemma 1: th should be th’ ?

Yes, we corrected this error.

• 4) Is your state (event traces) finite or infinite?

Yes, they are always finite, but can be arbitrary long.

• 5) Assumption at the bottom of page 15: I don’t understand why this
assumption is necessary. First, is es a finite or infinite trace? If es
is finite, of course there’s limited number of Create-requests. Even if it
can be infinite, I don’t see how the PIP scheduler could be ”swamped”
with create requests. You already assumed that there are no threads of
precedence higher than th created in es. If all the newly created threads
have lower precedence, they have no chance to run anyway (because of the
low precedence). Then why should we care?

Yes, es and es@s are finite traces (finite list of events), but they
can be arbitrarily long.
This means that knowing that es is finite, does *not* bound the
number of create events.

4

We also understand that newly created threads have no chance
to run (because of the lower priority), but the process of creating
any processes consumes according to our model some time and
therefore needs to be bounded. A Create event is not assumed
to be ‘instantaneously’.

• 6) The next assumption in page 16 does not look right to me either. What
if there are no actions of th’ in es at all, which may be caused by infinite
loop inside the critical region of th’ (but the loop does not generate any
events)? In this case, the assumption is still satisfied because the length is
0, which is less than BND(th’).

We made this point clearer (it was also requested by another
reviewer). We discuss this limitation in more depth in the first
paragraph of section 4 and already wrote that in this aspect we
do not improve the limitations of the original paper by Sha et
al.

• All other comments have been implemented.

5

