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ABSTRACT

BJÖRN B. BRANDENBURG: Scheduling and Locking in Multiprocessor Real-Time Operating
Systems

(Under the direction of James H. Anderson)

With the widespread adoption of multicore architectures, multiprocessors are now a standard

deployment platform for (soft) real-time applications. This dissertation addresses two questions

fundamental to the design of multicore-ready real-time operating systems: (1) Which scheduling

policies offer the greatest flexibility in satisfying temporal constraints; and (2) which locking

algorithms should be used to avoid unpredictable delays?

With regard to Question 1, LITMUSRT, a real-time extension of the Linux kernel, is presented

and its design is discussed in detail. Notably, LITMUSRT implements link-based scheduling, a

novel approach to controlling blocking due to non-preemptive sections. Each implemented scheduler

(22 configurations in total) is evaluated under consideration of overheads on a 24-core Intel Xeon

platform. The experiments show that partitioned earliest-deadline first (EDF) scheduling is generally

preferable in a hard real-time setting, whereas global and clustered EDF scheduling are effective in a

soft real-time setting.

With regard to Question 2, real-time locking protocols are required to ensure that the maximum

delay due to priority inversion can be bounded a priori. Several spinlock- and semaphore-based

multiprocessor real-time locking protocols for mutual exclusion (mutex), reader-writer (RW) exclu-

sion, and k-exclusion are proposed and analyzed. A new category of RW locks suited to worst-case

analysis, termed phase-fair locks, is proposed and three efficient phase-fair spinlock implementations

are provided (one with few atomic operations, one with low space requirements, and one with

constant RMR complexity).

Maximum priority-inversion blocking is proposed as a natural complexity measure for semaphore

protocols. It is shown that there are two classes of schedulability analysis, namely suspension-

oblivious and suspension-aware analysis, that yield two different lower bounds on blocking. Five

iii



asymptotically optimal locking protocols are designed and analyzed: a family of mutex, RW, and

k-exclusion protocols for global, partitioned, and clustered scheduling that are asymptotically

optimal in the suspension-oblivious case, and a mutex protocol for partitioned scheduling that is

asymptotically optimal in the suspension-aware case. A LITMUSRT-based empirical evaluation is

presented that shows these protocols to be practical.
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CHAPTER 1

INTRODUCTION

With the recent advent of multicore chips, multiprocessors are now commonly encountered in

servers, personal computers, and embedded systems (Sodan et al., 2010). As a result, real-time

applications—that is, applications that must satisfy temporal constraints in order to be deemed

correct—are increasingly being deployed on multiprocessors (Baker, 2010). One reason for the

proliferation of multicore platforms in real-time systems is that such platforms have come to constitute

a significant share of the cost-efficient components-of-the-shelf (COTS) market (Child, 2010).

Another important factor is their considerable processing capacity, which makes them an attractive

choice for hosting compute-intensive tasks such as high-definition video stream processing, object

recognition and tracking, and computer vision applications in general.

For example, Villalpando et al. (2010) evaluated Tilera’s 64-core TILE64 processor (Bell

et al., 2008) for use in the real-time hazard detection and avoidance system of the Altair Lunar

Lander (NASA, 2008). They found “that for [computer vision and image analysis] the TILE64

architecture provides excellent performance,” and further recommended the platform for other on-

board tasks, including spacecraft and instrument control (Villalpando et al., 2010). Notably, a

radiation-hardened 49-core version of the TILE64 processor, named Maestro, has been developed

with the explicit purpose of enabling space-born, embedded multicore real-time systems (Malone,

2009; Crago, 2009).

Many real-time applications can be decomposed into a collection of recurrent tasks. The goal of

this dissertation is to determine how such tasks should be supported at the operating-system level. In

particular, the research presented herein is focused on two questions fundamental to the design of

multiprocessor real-time operating systems (RTOSs):

Q1 Which scheduling policies offer the greatest flexibility in satisfying temporal constraints?



Q2 Which synchronization techniques should be used to enable tasks to access shared resources

(such as message buffers and I/O devices) without incurring unpredictable delays?

To motivate our research, we begin by illustrating the need for predictable and efficient multicore

RTOSs with two examples.

1.1 The Cost of Over-Provisioning

Temporal constraints naturally arise whenever computers interact with the “real world.” In particular,

this is the case when computers control or observe physical processes, or when human users perceive

a device’s reaction as slow or delayed. Real-time constraints are commonly classified as either hard

or soft, with the interpretation that hard real-time (HRT) constraints must always be met, whereas

violations are tolerable to a limited extent in the soft real-time (SRT) case.

An example of the former is the electronic stability control (or program, ESP) deployed in

modern cars (Liebemann et al., 2004). The purpose of ESP is to prevent roll-over accidents by

correcting driver errors such as exaggerated steering during panic reactions. This is achieved by

applying corrective forces to individual wheels when a dangerous level of lateral acceleration is

detected (Liebemann et al., 2004). HRT constraints are fundamental to ESP because a delay in the

sensing of the current acceleration or enactment of appropriate corrections can have catastrophic

consequences. Anti-lock brakes and traction control are subject to similar constraints.

In contrast, an unresponsive graphical user interface (GUI) usually does not have catastrophic

consequences, but results in unsatisfied customers nonetheless. A recent consumer review of HP’s

TouchSmart interface criticized that “the [TouchSmart interface] is simply too sluggish for everyday

use” (Stern, 2010). Barnes & Noble’s Nook e-book reader was disparaged similarly (Topolsky, 2010).

The underlying failure in both cases is that the user interface did not respond in time—while not

safety-critical, noticeable graphics or audio glitches can spell financial disaster for manufacturers

of consumer electronics. Similar arguments apply to popular multimedia features such as video

playback and interactive games.

To impose minimum levels of predictability in safety-critical applications, governments have

instituted certification authorities such as the U.S. Federal Aviation Authority (FAA) and the National

Highway Traffic Safety Administration (NHTSA). A key requirement is isolation—the failure of one
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subsystem should not affect the correct operation of other components. The easiest and historically

most-commonly used way to ensure isolation is to employ a dedicated processor for each functionality.

However, this approach has led to an increasingly unmanageable proliferation of such systems, to

the effect that some modern cars contain in excess of one hundred processors (Hergenhan and

Heiser, 2008). Unsurprisingly, there are strong market forces and design imperatives that require

engineers to curb this spread of embedded processors: not only does the overall system complexity

(and thus cost) grow with each added component, but every embedded system requires wiring and

cooling, adds weight, requires space, drains power, and must be purchased, transported, stored, tested,

documented, serviced, eventually replaced, and finally recycled. Thus, instead of embedding one

hundred networked, slow uniprocessors throughout a car, it would be desirable to use only ten (or

fewer) shared, but ten-times as powerful, multicore processors that are highly utilized.

Over-provisioning GUIs and other soft real-time applications with faster-than-necessary proces-

sors is similarly costly, and especially so in the highly competitive mobile sector (e.g., smart phones

and tablets), which is subject to stringent energy, cooling, and cost constraints. There are thus strong

incentives to “do more with less”: an increasing number of real-time tasks need to share limited

physical resources on multiprocessors without compromising predictability or efficiency.

1.2 The Divergence of Theory and Practice

A solid RTOS foundation is thus required to fully exploit the promise of multicore technology for

real-time applications. Unfortunately, the existing foundation appears increasingly insufficient, as

most RTOSs in common use today still rely on approaches rooted in decades-old uniprocessor design

concepts.1 Motivated by these developments, research on multiprocessor real-time systems has

surged in recent years and many algorithmic advances have been made. Unfortunately, these results

have found only little adoption in practice.

We briefly digress to introduce needed background before discussing the current state of affairs.

1.2.1 Background

Each of the concepts mentioned in the remainder of this chapter is discussed in detail in Chapter 2.

1See Section 2.5 for a discussion of relevant RTOSs.
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One particularly well-studied abstraction of recurrent real-time activity is the sporadic task

model. When such a task is triggered by an (external) event such as an interrupt, it releases a

sequential job to process the triggering event. Each job has a deadline by which it should complete.

In this section, we restrict our discussion to implicit deadlines, where a job’s deadline also marks the

earliest-possible release time of the next job (of the same task). A task’s utilization is the fraction of

one processor’s capacity that must be reserved for it. Similarly, the total utilization of a task set is

simply the sum of all utilizations of tasks in the set.

From an RTOS point of view, the sporadic task model is a good compromise between practicality

and expressiveness. It is easy to implement, well-analyzed, and can represent both cyclic tasks such as

ESP and video decoding as well as event-driven tasks such as GUI applications. To avoid confusion,

we use the term “task” to refer to a sporadic task on the model level and let “process” denote the

OS-level concept of a sequential thread of control. A sporadic task is typically implemented as a

process that executes an infinite loop, where each loop iteration corresponds to one job.

Temporal correctness. A task set is schedulable if it can be shown that each task meets its timing

constraints. A procedure that establishes whether a task set is schedulable under a given scheduler

is a schedulability test. In an HRT context, a sporadic task set is schedulable if each job meets its

deadline (Liu and Layland, 1973). In contrast, some deadline misses are tolerable in SRT applications:

a task set is SRT schedulable if tardiness is bounded, i.e., if the magnitude of deadline misses does

not exceed a (reasonably small) constant (Devi, 2006).2 A task set is feasible if there exists some

scheduling policy under which it is schedulable. For a task set to be feasible (either HRT or SRT) on

m processors, its total utilization must not exceed m—unbounded deadline misses cannot be avoided

if processors are overloaded. In the context of our discussion here, a scheduler can be considered

optimal if any task set with total utilization at most m is schedulable (with regard to either HRT or

SRT constraints, respectively; see Section 2.2.3 for a precise definition of scheduler optimality).

Capacity loss. To meet the design goal of maximum flexibility (recall Question Q1), an ideal RTOS

should support any feasible task set. Given the above limit on total utilization (and our focus on

implicit deadlines), this means that any task set with total utilization not exceeding the total processor

capacity m should be schedulable. In practice, it is not possible to allocate all processor capacity to

2Other notions of SRT constraints exist; see Section 2.2.2.
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real-time tasks, i.e., task systems with total utilization less than m may not be schedulable. Such

capacity loss has two primary causes: the choice of scheduling policy and runtime overheads. With

regard to the former, if the RTOS employs a non-optimal scheduling policy, then a feasible task

set may not be schedulable due to algorithmic capacity loss. The latter, overhead-related capacity

loss, is due to processor time that is consumed by hardware inefficiencies (e.g., cache misses) and

system management activities (e.g., computing a scheduling decision). Such runtime overheads are

unavoidable to some degree, but can differ significantly among schedulers and implementations.

Time lost to system overheads must be accounted for when testing whether a task set is schedulable

on a given platform, which reduces the amount of processor capacity effictively available to real-time

tasks.

To minimize overall capacity loss, an RTOS should ideally use a scheduler that is both optimal

and that incurs minimal overheads.

Uniprocessor real-time scheduling. The scheduling of sporadic tasks on uniprocessors is well

understood. The two most-relevant scheduling policies are fixed-priority (FP) and earliest-deadline

first (EDF) scheduling. Under FP scheduling, each task is statically assigned a unique priority prior

to execution. At runtime, competing jobs are then scheduled in order of decreasing task priority. In

contrast, under EDF scheduling, jobs are scheduled in order of increasing deadlines (i.e., in order of

urgency) and no manual priority assignment is required. In a classic result, Liu and Layland (1973)

showed that, for HRT constraints, EDF is optimal, whereas FP is subject to algorithmic capacity

loss (Liu and Layland, 1973). Since a task set that is HRT schedulable also has bounded tardiness,

EDF is optimal in the SRT case as well.

Nonetheless, FP scheduling is much more common in practice. One likely reason is the relative

ease of implementing FP efficiently (using a bitmask where each set bit indicates the presence

of pending jobs at a corresponding priority level). While it is also possible to implement EDF

efficiently (Short, 2010), the required techniques are conceptually more difficult and are not part of OS

developer folklore (in contrast to FP implementation techniques, which are widely known). Buttazzo

(2005) argued that the preference for FP is further reinforced by widespread misconceptions and

myths concerning supposed advantages in practice (such as failure modes under transient overloads),

which he conclusively debunked (Buttazzo, 2005). From a capacity-loss perspective, the pervasive
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Figure 1.1: Illustration of multiprocessor scheduling approaches for four cores that share L2 caches in
pairs of two. Note that L2 cache affinity is not lost when migrations occur under clustered scheduling.
(See Section 2.1.2 for details.)

use of FP as the uniprocessor real-time scheduler of choice is thus not justified. Rather, it could

be considered a historical accident—alas, one that has since been codified in the POSIX real-time

standard (IEEE, 1993, 2003, 2008b), which mandates FP scheduling. (The POSIX standard does not

prohibit additional schedulers, but few RTOSs supplement FP with other real-time schedulers such

as EDF.)

1.2.2 Multiprocessor Real-Time Scheduling

There are two fundamental classes of multiprocessor schedulers: global and partitioned. Under

global scheduling (illustrated in inset (a) of Figure 1.1), all processors serve a single ready queue and

jobs may migrate among processors. In contrast, under partitioned scheduling (illustrated in inset (b)

of Figure 1.1), tasks are statically assigned to processors during an offline phase and each processor

is scheduled individually using a uniprocessor policy such as EDF or FP.

There is a clear analytical answer to Question Q1: some global schedulers are provably superior

to any partitioned approach. This is because partitioned scheduling requires tasks to be statically

assigned to processors such that no processor is overloaded, which is equivalent to solving a bin-

packing problem. As even an optimal packing may leave some bins incompletely filled (i.e., some

processors partially idle), there exist task sets with total utilization at most m+1
2 + ε that cannot be
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partitioned onto m processors (Oh and Baker, 1998; Andersson et al., 2001; Andersson and Jonsson,

2003), where ε is an arbitrary small positive number. In other words, nearly up to half of the available

processor capacity may be lost to the algorithmic limitations of partitioned scheduling.

In contrast, optimal global schedulers exist. For example, consider global EDF (G-EDF), where

the uniprocessor EDF policy is globally applied to a shared ready queue. While it has long been

known that G-EDF can be subject to severe algorithmic capacity loss in an HRT context (Dhall and

Liu, 1978), Devi and Anderson (2005) recently showed that G-EDF does in fact ensure bounded

tardiness for any sporadic task set with utilization at most m, i.e., G-EDF is optimal in an SRT

context (Devi, 2006; Devi and Anderson, 2008).

For HRT constraints, the global algorithm PD2 is optimal (Srinivasan and Anderson, 2006).

PD2 is a proportionate fair (Baruah et al., 1996), or pfair, scheduler, which is a class of schedulers

that ensure that a task’s processor allocation is always proportional to its utilization (within stringent

bounds, see Chapter 2). PD2 derives its properties from dividing jobs into (many) subtasks of fixed

size, each of which is assigned an individual deadline. Subtasks are scheduled on an EDF basis with

additional rules to break deadline ties.3 With an appropriate subtask granularity, PD2 ensures that all

deadlines will be met for any task set with utilization at most m (assuming implicit deadlines).

Therefore, in theory, global scheduling is clearly preferable to partitioned scheduling.

However, in practice, global schedulers are commonly eschewed. Many OS developers consider

global scheduling to be impractical due to the associated runtime overheads and implementation

complexity. For example, PD2’s subtask-based scheduling causes jobs to incur frequent preemptions

and migrations. While the scheduling literature generally considers such costs to be negligible, the

associated loss of cache affinity4 can significantly increase a job’s processor demand in practice by

introducing additional cache misses. Preemptions occur less frequently under G-EDF. However,

processors must still access a shared ready queue, which OS developers traditionally avoid because

frequent accesses to global data structures often entail high lock contention and cache-coherency

overheads. Consequently, virtually all multiprocessor-capable RTOSs employ partitioned scheduling,

where most data structures and scheduling decisions are processor-local and thus cache-friendly.

3The name PD2 is due to its use of two tie-breaking rules and since it supersedes an earlier algorithm named PD by
Baruah et al. (1995). Algorithm PD derives its name from the use of “pseudo-deadlines” (Baruah et al., 1995).

4Cache affinity and the impact of cache misses are reviewed in Section 2.1.2.
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Of course, it would be unrealistic to expect global algorithms to scale to tens or hundreds of

processors. However, this does not imply that the other extreme, partitioned scheduling, is the best

choice. Instead, clustered scheduling (Calandrino et al., 2007; Baker and Baruah, 2007) could be a

practical, better-performing compromise. Illustrated in inset (c) of Figure 1.1, clustered scheduling is

a hybrid of both global and partitioned scheduling that groups processors sharing low-level caches

into disjoint clusters. As under partitioning, tasks are statically assigned to clusters during an offline

phase. Within each cluster, jobs are then scheduled “globally” from a shared per-cluster ready queue.

The intuition behind clustered scheduling is to reconcile the advantages of both partitioned and global

scheduling: the impact of bin-packing issues is reduced as there are fewer and larger bins (compared

to partitioned scheduling), some level of cache affinity is maintained during job migrations, and lock

contention is reduced as queues are shared among fewer processors (compared to global scheduling).

Nonetheless, most multiprocessor-capable RTOSs currently rely on partitioned fixed-priority

(P-FP) scheduling as the primary supported real-time scheduling policy. This choice reflects great

conservatism: even among partitioned schedulers, P-FP is inferior to partitioned earliest-deadline

first (P-EDF) scheduling since EDF is optimal on a uniprocessor and FP is not (Liu and Layland,

1973). Yet P-FP has remained the traditional RTOS scheduler due to its uniprocessor legacy and the

previously mentioned POSIX-compliance reasons.

Compliance with the POSIX real-time standard (IEEE, 1993, 2003, 2008b), however, should

not prevent needed innovation and adaptation. The standard is in fact silent on multiprocessor

issues,5 and understandably so, as multiprocessor real-time systems were still an “academic curiosity”

when it was first ratified. It further does not preclude RTOSs from supporting other, possibly better-

performing scheduling policies in addition to the mandated FP. With the advent of the multicore

age, and given that RTOSs are now being redesigned and restructured to adapt, it is presently an

opportune time to revisit the choice of a “default” RTOS scheduler.

5The preamble to the original POSIX real-time extension makes this explicit: “It is beyond the scope of these interfaces
to support networking or multiprocessor functionality” (IEEE, 1993, p. 2). The original document has since been
superseded by the “real-time and embedded application profiles” (IEEE, 2003), which define use-case-specific subsets
of the (much larger) POSIX “base profile” (IEEE, 2008b). The former does mention multiprocessors, but only in the
context of the absence of memory barriers and spinlocks (IEEE, 2003, p. 49). The latter does not discuss multiprocessor
scheduling, but does mandate FP scheduling with at least 32 distinct priorities for OSs that support scheduling at all (IEEE,
2008b, pp. 501–505).
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1.2.3 Real-Time Locking

Most published schedulability tests make the simplifying assumption that tasks (and hence jobs) are

independent, that is, it is assumed that a job is never delayed by actions of other jobs. In practice,

this assumption does not hold when jobs share resources that are protected by locks. For example, if

a job must transmit a message, but the required network device has already been locked and is in use,

then the job is blocked—it cannot progress until the shared resource becomes available.

Such blocking can endanger temporal correctness because it can give rise to priority inversions,

which, intuitively, occur when a high-priority job is forced to wait for a lower-priority job. Uncon-

trolled priority inversions jeopardize the temporal correctness of real-time tasks because they can

result in unpredictable delays. However, if the maximum delay due to resource sharing is known

a priori, then it can be accounted for when testing whether a given task set is schedulable. An

RTOS must thus incorporate a real-time locking protocol that allows the maximum length of priority

inversion to be analytically bounded. Naturally, it is desirable to employ locking protocols that

minimize the occurrence of priority inversions since frequent or long priority inversions severely

limit an RTOS’s suitability for ensuring stringent real-time constraints. A practical locking protocol

should further be easily and efficiently implementable, just as with schedulers.

Unfortunately, few RTOSs implement any algorithm beyond basic uniprocessor priority inheri-

tance and ceiling protocols, which are insufficient under partitioned scheduling (see Section 2.4.4.2).

In effect, current RTOSs fundamentally fail to provide the means necessary to predictably use

locks on multiprocessors (special cases aside). Given that extensions of uniprocessor protocols that

are (at least theoretically) appropriate for P-FP scheduling have been available for more than 20

years (Rajkumar et al., 1988; Rajkumar, 1990, 1991), this is a dire state of affairs.

Given the relative immaturity of multiprocessor real-time locking research (compared to advances

in real-time scheduling), the lack of proper locking protocol support is hardly surprising. In fact,

prior to the work presented herein, locking optimality questions had received little, if any, attention.

As a result, goals such as “minimizing the occurrence of priority inversion” were only intuitively

understood and lacked analytical precision. Instead, provably optimal multiprocessor locking

protocols that are also simple and efficient to implement are needed.
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1.3 Thesis Statement

To fully exploit the potential of modern multicore platforms, RTOSs will have to advance beyond

the traditional, but increasingly strained uniprocessor approach of FP scheduling with priority

inheritance. With regard to Question Q1, several promising multiprocessor scheduling approaches

exist. With regard to Question Q2, while the multiprocessor locking protocol design space is still

relatively unexplored, and questions of optimality have not received much attention in prior work,

proper locking protocols for P-FP scheduling exist. Yet neither such protocols nor promising

schedulers have been evaluated, much less adopted, in mainstream RTOSs to date.

A primary cause for this growing disconnect is the open question of practicality. Runtime

overheads are typically considered to be negligible in algorithm-centric research, but such overheads

are rarely negligible in practice. In fact, many overhead sources can exhibit counterintuitive trends

that are difficult to anticipate. As a result, there is a strong focus on overhead measurements in the

RTOS community, with a particular focus on interrupt latency, which is a metric that reflects the

RTOS’s responsiveness in enacting scheduling decisions. Unfortunately, this causes a disregard for

algorithmic properties, as latency by itself fails to capture schedulability analysis tradeoffs that arise

when multiple tasks subject to varying timing constraints compete for processor time.

Either extreme—completely disregarding overheads or making them the sole focus—yields only

incomplete and misleading answers. Are algorithmically optimal, high-overhead global schedulers

still superior to non-optimal, low-overhead partitioned schedulers if overheads and algorithmic

properties are both fully accounted for? If not, is clustered scheduling a viable compromise?

Motivated by these considerations, the main thesis supported by this dissertation is the following.

A “multicore-ready” RTOS should employ scheduling and synchronization algorithms
that minimize the loss of processor capacity allocable to real-time tasks. When both
overhead-related and algorithmic capacity loss are considered on a current multicore
platform, (i) partitioned scheduling is preferable to global and clustered approaches
in the HRT case, (ii) P-EDF is superior to P-FP, and (iii) clustered scheduling can
be effective in reducing the impact of bin-packing limitations in the SRT case. Further,
(iv) multiprocessor locking protocols exist that are both efficiently implementable and
asymptotically optimal with regard to the maximum duration of priority inversion.
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1.4 Contributions

In the following, we briefly summarize the contributions presented in the subsequent chapters.

1.4.1 LITMUSRT

Central to our work is the proposition that a meaningful comparison of multiprocessor scheduling

and locking algorithms must be implementation-based. An actual RTOS is thus required. To this

extent, we co-developed the Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

(LITMUSRT).6

As the name implies, LITMUSRT is an extension of Linux (Torvalds, 1997; Torvalds and

contributors, 2010), which is a widely used open-source UNIX-like kernel. Conceptually, LITMUSRT

consists of three parts: (i) it extends Linux’s scheduling infrastructure with an implementation of the

sporadic task model, (ii) it provides a plugin interface that allows the active scheduling policy and

locking protocols to be changed at runtime, and (iii) it provides additional system calls for real-time

tasks.

The Linux scheduling framework is structured as a hierarchy of scheduling classes. Each

scheduling class encapsulates the policy used for a particular process type. For example, regular

user-space processes are scheduled using CFS, a timesharing policy inspired by proportional-share

fair scheduling (Tijdeman, 1980; Stoica et al., 1996). Similarly, scheduling classes for low-priority

background work and high-priority “real-time” processes exist. (In compliance with the POSIX

standard, Linux’s real-time scheduling class uses FP scheduling with support for 100 distinct priority

levels.) Whenever Linux makes a scheduling decision, it polls each scheduling class in the hierarchy

in top-to-bottom order until a pending task is found. LITMUSRT introduces a new scheduling class

at the top of the hierarchy such that non-LITMUSRT tasks are only scheduled when no real-time

workload is present.

In contrast to the regular Linux scheduling classes, the LITMUSRT scheduling class does not

implement any particular policy. Instead, it defers all scheduling decisions to the active real-time

6LITMUSRT is a group effort. However, the author is the principal designer and developer of the core LITMUSRT

distribution and has contributed most of its significant features in the process of preparing this dissertation. Various
extensions of the LITMUSRT core have been developed and described by others (Block, 2008; Calandrino, 2009; Leontyev,
2010; Bastoni, 2011); these are not the subject of this dissertation.
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scheduler plugin. This simplifies experimental scheduler development and maintenance: instead of

interfacing with the full Linux kernel (and its considerable complexities that tend to change from

version to version), LITMUSRT plugins interface only with the LITMUSRT scheduling class via the

plugin interface, which remains (mostly) stable between releases. Notably, LITMUSRT supports

global scheduling policies, which are not well supported by standard Linux.

LITMUSRT further augments the Linux system call interface with additional real-time-specific

system calls. In particular, LITMUSRT adds calls for real-time task and job control (e.g., to configure

task parameters, to wait for the next job release, to obtain the job sequence number, etc.) and for

invoking real-time locking protocols (e.g., to acquire resource handles, to lock resources, etc.).

An early prototype of LITMUSRT existed prior to the commencement of the work described

in this dissertation (Calandrino et al., 2006); however, this early version lacked several critical

features. In particular, it did not allow processes to suspend for any reason (such as loading shared

libraries, acquiring a semaphore, or using any kind of I/O device), to the effect that the system

failed with a “kernel panic” if a real-time task attempted to suspend. Consequently, only artificial,

completely processor-bound workloads could be supported. In the current version of LITMUSRT

(which this dissertation is based on), these limitations have been removed and virtually no code from

the beginnings of LITMUSRT remains. The design and implementation of LITMUSRT is discussed

in detail in Chapter 3.

1.4.2 Comprehensive Overhead Accounting

As argued above, it is critical to account for runtime overheads when establishing whether a task set

is schedulable. This requires procedures for incorporating delays due to overheads into published

schedulability tests that assume ideal, overhead-free execution. In particular, such procedures must

be safe, i.e., they may not underestimate delays due to overheads at runtime.

Such procedures have long been known for uniprocessor systems and are discussed in detail

in (Liu, 2000). Some of these also apply to multiprocessor scheduling and have been used in this

context before (Devi, 2006; Calandrino et al., 2006). However, to the best of our knowledge, there is

no comprehensive summary of multiprocessor overhead accounting techniques available today.

In Chapter 3, we present a complete description of the techniques that we use to account for

multiprocessor scheduling overheads, and how these techniques apply to LITMUSRT in particular.
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We further describe a new preemption-centric approach to account for asynchronous interrupts in

Section 3.4.5. Under preemption-centric interrupt accounting, each task’s execution budget is inflated

by a bound on the worst-case delay due to interrupts.

Overheads affect not only scheduling, but also locking protocols. In Chapter 7, we describe

locking-related overhead sources (such as system calls, suspensions, and context switches) in detail

and derive appropriate accounting methods.

1.4.3 Overhead-Aware Evaluation Methodology

The central contribution with regard to Question Q1 is a methodology for evaluating scheduling

choices under full consideration of overheads on a given platform. Conceptually, this methodology

consists of five steps split across an OS-level phase and a subsequent analytical phase. First, each

scheduling algorithm that is to be evaluated is implemented in LITMUSRT. Next, hundreds of

benchmark task sets are run to exercise each scheduler over the course of several hours. During

these experiments, millions of raw overhead measurements are collected using low-overhead cycle

counters; measuring cache-related overheads is particularly challenging (see Section 4.4). In a post-

processing step, we extract models of worst- and average-case overheads from the collected traces.

Each source of delay (interrupts, scheduling decisions, context switches, etc.) is upper-bounded as a

function of task-set size using piece-wise linear interpolation. This concludes the OS-level phase of

the process.

In the analytical phase, we incorporate the overhead models into existing schedulability tests

for each scheduler. This enables testing whether a given task set is schedulable in the presence of

overheads, thereby rectifying the theoreticians’ assumption that overheads are negligible. Finally, we

apply each overhead-aware schedulability test to millions of randomly generated sporadic task sets,

which is computationally intensive and requires the use of UNC’s research cluster. For each scheduler,

the resulting fraction of schedulable task sets is an empirical performance measure that reflects both

implementation efficiency and algorithmic properties. This allows to answer Question Q1 for a given

platform. A predecessor of this approach was described in (Calandrino et al., 2006). However, our

methodology as described in Section 4.1 has been considerably evolved and refined.

13



Since the methodology sketched so far yields a very large number of graphs (several thousand

in the case study discussed below), we further describe a method for aggregating these individual

graphs into composite graphs that express interesting trends more succinctly (Section 4.1.7).

1.4.4 Case Study: Multiprocessor Real-time Scheduling on 24 Cores

Since schedulers must be compared under consideration of overheads, a proper evaluation is neces-

sarily platform-specific (although it may be possible to extrapolate general trends in some cases).

To demonstrate the applicability of our overhead-aware evaluation methodology, and to support our

claim that both overheads and algorithmic properties significantly affect scheduler performance, we

present a case study that compares 22 scheduler variants (including partitioned, clustered, and global

schedulers) on a large (for today’s standard) Intel x86-64 multicore platform with a total of 24 cores.

Our results, discussed at length in Sections 4.3– 4.5, show that scheduling policy implementations

differ significantly in overheads (up to an order of magnitude in some cases), and that such differences

have a major impact: overheads are decidedly not negligible. At the same time, our results also show

that low runtime overheads do not imply that a particular scheduler is always preferable: increased

overheads are an acceptable price to pay for some, but not all, algorithmic improvements.

Our results further show that there is no single “best” scheduler in practice. Rather, scheduler

performance is highly workload-dependent (task parameters, number of tasks, etc.). In general,

P-EDF is preferable in the HRT case due to its combination of low overheads and uniprocessor

optimality. In particular, P-EDF performs as well or better than P-FP for most tested workloads.

G-EDF and C-EDF perform well for many SRT workloads and outperform partitioned schedulers in

the case of workloads that are difficult to partition (i.e., if there is a large proportion of high-utilization

tasks). P-EDF and C-EDF are thus good candidates for RTOS inclusion.

1.4.5 Spin-Based Locking Protocols

Having developed and demonstrated a methodology for choosing a scheduler, we next consider

lock-based synchronization protocols for multiprocessor systems in Chapters 5–7. As previously

mentioned, research on multiprocessor real-time locking protocols is less mature than scheduling-

oriented research. Our contributions thus not only pertain to the selection of such a protocol, but also

to questions concerning their design and algorithmic properties.
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When a job requires a shared resource that is currently locked by another job, it must wait before

it can proceed in its execution. On a multiprocessor, there are two fundamental ways to implement

waiting. In suspension-based protocols, a waiting job relinquishes its assigned processor until the

resource becomes available, which gives other jobs the chance to execute. In contrast, in spin-based

protocols, a waiting job executes a simple delay loop (i.e., it busy-waits or “spins”) until it gains

access to the desired resource.

While busy-waiting results in a waste of processor cycles when a resource is contended, it has

the advantage that spin-based protocols are easier to analyze than suspension-based protocols and

that they can be efficiently implemented. The contribution of Chapter 5 is the design and analysis of

three spin-based locking protocols, one realizing mutual exclusion (mutex), where at most one job

may hold a resource at any time, and the other two realizing reader-writer exclusion (RW), where

only writers require exclusive access.

Mutex protocol. Our mutex protocol relies on non-preemptive execution (jobs spinning or holding

a resource may not be preempted) and FIFO queue locks (Anderson, 1990; Mellor-Crummey and

Scott, 1991a) to ensure progress. On a platform with m processors, this combination yields an upper

bound of O(m) blocking critical sections, since at most one job per processor can precede a job in

the wait queue. Spin-based mutex protocols using FIFO queue locks have been previously studied in

the context of pfair schedulers (Holman, 2004; Holman and Anderson, 2002a, 2006), P-EDF (Gai

et al., 2003), and G-EDF (Devi et al., 2006). Our contribution is twofold. We present an improved

holistic analysis framework that reduces pessimism in the derivation of bounds on the worst-case

delay by considering all critical sections of a job simultaneously; secondly, we present a mechanism

to enact preemptions “lazily” that limits the negative impact of non-preemptive execution under

event-driven global schedulers such as G-EDF. The latter is required to prevent some jobs from

being repeatedly preempted and thus delayed (see Section 3.3.3 for details). Prior work did not

consider the possibility of such repeated preemptions.

RW protocols. Spin-based RW locks have not been considered in prior work on multiprocessor

real-time systems. In throughput-oriented computing, RW locks are attractive because they increase

average concurrency (compared to mutex locks) if reads occur more frequently than writes. In a

real-time context, RW locks should also aid in lowering the maximum length of priority inversions
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for readers, i.e., the higher degree of concurrency must be reflected in a priori worst-case analysis

and not just in observed average-case delays.

Three types of RW locks with predictable ordering of readers and writers have been studied

in prior (non-real-time) work: writer and reader preference locks (Courtois et al., 1971; Mellor-

Crummey and Scott, 1991b), and task-fair RW locks (Mellor-Crummey and Scott, 1991b). Under

a reader (respectively, writer) preference lock, write (respectively, read) requests are only satisfied

if there are no unsatisfied read (respectively, write) requests. Under a task-fair RW lock, requests

(either read or write) are satisfied strictly in FIFO order.

Unfortunately, neither preference nor task-fair RW locks are well-suited to real-time systems:

preference locks allow starvation, which entails unpredictable and excessive delays, and task-fair RW

locks can cause mutex-like delays when readers and writers issue requests in an interleaved manner,

and thus offer little analytical advantage over regular mutex locks. In Chapter 5, we introduce and

analyze phase-fair RW locks as an alternative, under which reader phases and writer phases alternate

(unless there are only requests of one kind). At the beginning of a reader phase, all incomplete read

requests are satisfied, whereas one write request is satisfied at the beginning of a writer phase. This

results in O(1) acquisition delay for read requests without starving write requests. Additionally, an

analysis of task-fair RW locks is presented as well.

1.4.6 Efficient Phase-Fair Spinlock Implementations

An efficient implementation is essential to making spin-based locking protocols competitive. That is,

a low-overhead implementation is required to compensate for the spin-related waste of processor

cycles. If there would be no efficient implementation of phase-fair locks, then their practical

value would be severely limited. In Section 5.3, we present three phase-fair RW locks that can be

implemented on common multiprocessor instruction set architectures (ISAs) such as Intel’s x86

platform.

The first lock requires 16 bytes per lock and is optimized to require a minimum number of

atomic instructions, which carry a high execution cost on common multiprocessor platforms. The

second lock is more compact and requires only four bytes per lock, which makes it more appropriate

for memory-constrained embedded systems. However, this is achieved at the expense of additional

atomic instructions. The third lock type is designed to minimize the number of remote memory
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references, which corresponds to the number of cache invalidations that are required in a cache-

coherent shared-memory system (caches are reviewed in Section 2.1.2). Since such invalidations can

be a major source of overhead in multiprocessor systems, these locks may be particularly appropriate

for large multicore platforms with complex memory architectures. The performance of each lock in

terms of acquisition and release overhead is compared in Section 7.2.

1.4.7 A Notion of Optimality for Suspension-Based Locking Protocols

This dissertation presents several contributions in the area of suspension-based multiprocessor locking

protocols. Despite the fact that the first such protocol was proposed more than 20 years ago, the

fundamental limits of mutual exclusion in multiprocessor real-time systems have not been explored

in prior work. In Chapter 6, we propose maximum priority-inversion blocking as a natural complexity

measure for real-time locking protocols. For this measure, we prove that there are two common

classes of schedulability analysis that yield two different lower bounds on blocking because they

differ in the analysis of suspensions. In the following discussion, recall that we let m denote the

number of processors, and let n denote the number of tasks; we assume here that n ≥ m.

The first kind, suspension-oblivious schedulability analysis, does not allow for suspension times

to be explicitly accounted for. This lack of expressivity in the task model necessitates such times

to be modeled as computation instead. Consequently, suspension-oblivious analysis over-estimates

the processor demand of resource-sharing tasks and thereby yields pessimistic but sound analysis

results. Since there exist task sets in which a resource is contended by jobs on each processor at

the same time, the maximum duration of priority inversion under any mutual exclusion protocol is

bounded from below in general by Ω(m), which we show in Section 6.1.3. We further show that,

when combined with priority inheritance, neither priority queues nor FIFO queues are sufficient by

themselves to ensure an O(m) upper bound (Section 6.2.5).

In contrast, suspension-aware schedulability analysis considers suspensions explicitly and

thus uses less-pessimistic estimates of processor demand. Perhaps surprisingly, this improvement

in schedulability analysis comes at the cost of an increased lower bound for mutual exclusion

protocols: as we formally show in Section 6.1.4, there exist task sets for which, under suspension-

aware schedulability analysis, priority inversions of length Ω(n) are unavoidable under any mutual

exclusion protocol, where n is the number of tasks. We also show that priority inheritance can cause
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priority inversions of Ω(φ) total duration, where φ can be chosen to be arbitrarily large (Section 6.3.2),

and further demonstrate that prioritizing resource requests by job deadlines or static priorities gives

rise to an Ω(mn) lower bound because priority queues allow starvation (Section 6.3.3). That is,

neither priority inheritance nor priority queues can be used to obtain an optimal protocol.

The difference in lower bounds under suspension-oblivious and suspension-aware analysis arises

because the nature of what constitutes a “priority inversion” is changed by the assumption underlying

suspension-oblivious analysis. Intuitively, the analytical “trick” is to “reuse” some of the pessimism

inherent in treating suspensions as execution time to derive less pessimistic bounds on priority

inversion length. Suspension-oblivious schedulability is relevant because suspension-aware analysis

has not yet been developed for many global and clustered schedulers.

1.4.8 Optimal Suspension-Based Multiprocessor Locking Protocols

The next contribution of this dissertation is the design and analysis of suspension-based real-time

locking protocols, namely the O(m) locking protocol (OMLP) family and the FIFO mutex locking

protocol (FMLP+), which are discussed in detail in Section 6.2 and Section 6.3, respectively.

The OMLP family includes mutex, RW, and k-exclusion7 protocols for global, clustered, and

partitioned job-level fixed-priority schedulers. The defining characteristic of the OMLP family is

that each variant is asymptotically optimal with regard to maximum priority inversion length under

suspension-oblivious schedulability analysis. To the best of our knowledge, these are the first optimal

protocols for suspension-oblivious analysis. Two novel design techniques were developed to achieve

this property: the OMLP mutex protocol for global scheduling is the first protocol to employ a

two-level hybrid queue that incorporates both a priority queue and a bounded-length FIFO queue, and

the OMLP variants for clustered scheduling employ priority donation, which is a new mechanism

that ensures that resource-holding jobs are scheduled even if higher-priority jobs are released.

By design, the OMLP protocols are not suited to suspension-aware analysis. Instead, we present

the FMLP+, a mutex protocol for partitioned scheduling that is asymptotically optimal with regard

to maximum priority inversion length under suspension-aware analysis. The FMLP+ is a close

derivative of the flexible multiprocessor locking protocol (FMLP), an earlier multiprocessor real-time

7A k-exclusion protocol allows up to k concurrent critical sections. Such protocols can be used to arbitrate access to
resources of which there are multiple, identical replicas such as multiple graphics processing units (GPUs).
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locking protocol for global and partitioned scheduling that we developed in joint work with Block

et al. (2007). In Section 6.3.2, we show that the global FMLP, which relies on priority inheritance,

ensures O(n) maximum priority inversion length in certain situations, but that priority inheritance

cannot yield an optimal protocol in general. To the best of our knowledge, the FMLP is the first

suspension-based multiprocessor real-time locking protocol that relies exclusively on FIFO ordering.

FIFO ordering conflicts with the “traditional” uniprocessor protocols, which typically rely on priority

queues in real-time systems. However, as mentioned above in Section 1.4.7, priority queues are

challenging in a multiprocessor context because they allow starvation. The FMLP+ is the first

practical suspension-based multiprocessor locking protocol with an asymptotically optimal bound on

the maximum priority inversion length.

1.4.9 Case Study: The Impact of Overheads on Locking Protocols

Having proposed several spin- and suspension-based multiprocessor real-time locking protocols, the

final contribution of this dissertation is two case studies that apply the proposed overhead-aware

evaluation methodology (Section 1.4.3 above) to compare the proposed locking protocols with each

other and with alternatives from prior work. As a precursor to the actual study, we discuss the

nature of locking-related overheads and how to account for them in overhead-unaware blocking and

schedulability analysis by means of inflating task parameters.

The first of the two studies compares task-fair mutex, task-fair RW, and phase-fair RW spinlocks

under G-EDF, C-EDF, and P-EDF. The main result is that use of RW spinlocks can yield significant

analytical advantages over mutex spinlocks if the write ratio is low, and that phase-fair RW locks

offer advantages over task-fair RW locks if multiple writers access a resource. Further, our results

show that spinlocks affect each of the schedulers similarly, that is, the general recommendations

summarized in Section 1.4.4 remain valid even if tasks are not independent.

The second study compares task-fair mutex spinlocks under G-EDF, C-EDF, and P-EDF

scheduling, the OMLP mutex protocol under G-EDF, C-EDF, and P-EDF scheduling, and the

FMLP+ and two mutex protocols from prior work under P-FP scheduling. The two key results

are that spinlocks outperform all tested semaphore protocols if critical sections are short (in both

the HRT and SRT cases), and that semaphore protocols for suspension-oblivious analysis perform

better than semaphore protocols for suspension-aware analysis in some, but not all, cases. The
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former observation demonstrates that spinlocks are the best choice for locking in well-designed

real-time systems with short critical sections; the latter result substantiates our claim that suspension-

oblivious analysis is a viable approach, but also shows that there is a need to develop improved

suspension-aware schedulability analysis.

Generally speaking, while there are many nuances and individual tradeoffs, the common theme

of these studies is that each highlights the importance of considering both overheads and analytic

properties when selecting a locking algorithm for use in an RTOS.

1.5 Organization

The remainder of this dissertation is organized as follows. We review relevant prior work and the

hardware and algorithmic foundations of our work in Chapter 2. The design and implementation of

our RTOS testbed, LITMUSRT, is documented in Chapter 3, together with a comprehensive discus-

sion of the main runtime overheads that affect real-time tasks and how to account for them. Chapter 4

presents our methodology for incorporating overheads into scheduler comparisons, discusses how

overhead magnitudes can be empirically estimated, and reports on a case study that demonstrates

that our methodology yields insights that are unobtainable via only theoretic or only overhead-based

studies.

Chapters 5–7 present our locking-related contributions. In Chapter 5, we derive and analyze

several spin-based mutex and RW protocols (including task-fair, phase-fair, and reader and writer

preference variants), and present three phase-fair RW locks. Chapter 5 also introduces the analysis

framework that forms the foundation for the analysis of all the locking protocols proposed in

this dissertation. Chapter 6 presents our work on suspension-based locking protocols, including

definitions of suspension-aware and -oblivious analysis, our notion of blocking optimality, the OMLP,

the FMLP+, and the corresponding blocking analysis and proofs of optimality. We compare and

contrast our protocols, under consideration of overheads, with each other and with three previously

proposed protocols in Chapter 7. Finally, Chapter 8 summarizes our results, raises open questions,

and discusses future work.
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CHAPTER 2

BACKGROUND AND PRIOR WORK

This dissertation builds upon a large body of prior work. In this chapter, we briefly review

the required hardware background and discuss relevant real-time scheduling algorithms, locking

protocols, and RTOS implementation techniques that form the foundation of our work.

2.1 Hardware Foundations

We begin with a discussion of relevant hardware fundamentals. Given the breadth of the topic, a

comprehensive review of current processor technology and hardware architecture is beyond the

scope of this dissertation. Instead, we focus on the parts of a computing platform that have the

biggest impact on multiprocessor RTOS design and efficiency, namely multicore processors, caches,

interrupts, and clocks and timers. As a concrete example, we consider the hardware platform that

underlies the case studies presented in Chapters 4 and 7, which is a 24-core Intel Xeon L7455

system (Intel Corporation, 2008b).

2.1.1 Multiprocessors and Multicore Platforms

The term “multiprocessor” encompasses a wide range of system architectures. This dissertation

applies to shared-memory, uniform memory access, identical multiprocessors—that is, systems in

which task migrations are conceptually viable and for which the choice of scheduler is not pre-

determined. In the following, we briefly discuss the meaning and significance of the attributes

“shared-memory,” “uniform memory access,” and “identical.”

A multiprocessor consists of multiple, independently controlled processing units that com-

municate via a processor interconnect (Tanenbaum, 2005). There are two fundamental classes of

multiprocessors that differ in the nature of the interconnect. In a shared-memory multiprocessor,
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Figure 2.1: Illustration of shared- and distributed-memory multiprocessors. In a shared-memory
system, a memory bus enables access to a shared central memory, whereas processors communicate
via a message bus that does not allow remote memory access in a distributed-memory system. This
dissertation pertains to shared-memory multiprocessors.

there is a central memory that is accessible to all processors and processors are connected to each

other and the central memory by means of a shared memory bus. In contrast, in a distributed-memory

system (or multicomputer), there are multiple local memories that are accessible to only a subset of

the processors (historically one). Processors are still connected to each other in a distributed-memory

system, but only via a message bus that does not allow direct access to non-local memory. Figure 2.1

illustrates the difference on a conceptual level. In practice, interconnect implementations are usually

much more refined than a simple “bus” since they are crucial to a multiprocessor’s effective speed

and capacity; Baer (2010) provides a detailed introduction to multiprocessor interconnects and

Bjerregaard and Mahadevan (2006) survey high-performance, on-chip switched networks.

From a scheduling point of view, the main difference between shared- and distributed-memory

architectures is how process migration is implemented, i.e., how a process may commence execution

on one processor and, transparently to the process, continue execution on another processor. When a

process is migrated in a shared-memory system, only its hardware state (such as register contents)

must be transferred since its data (including its OS state) is accessible from all processors. In

contrast, the data of a migrating process must be copied from one local memory to another in a

distributed-memory system. Copying process state is challenging to implement at the OS level and

can create considerable load on the communication bus (see Milojičić et al. (2000) for an overview
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of process migration techniques and challenges). Consequently, frequent process migrations are

impractical in distributed-memory systems, which precludes clustered and global scheduling policies.

Shared-memory systems further differ with regard to memory access times. Ideally, a processor

should be able to access each memory location with the same maximum latency. Such systems

are called uniform memory access (UMA) architectures. However, completely centralized memory

systems can quickly become a bottleneck in practice because only one or few processors can access

the central memory at a time. Hence, the available memory may be split across several modules,

which may result in a non-uniform memory access (NUMA) architecture where some memory

modules are closer to a particular processor than others. To achieve maximum efficiency in NUMA

systems, a task should be scheduled on a processor “close” to its data, which precludes global

scheduling.

This dissertation applies mainly to UMA multiprocessors; the impact of accommodating NUMA

constraints is briefly discussed in Chapter 8.

Processor symmetry. In the scheduling literature, shared-memory multiprocessors are further clas-

sified based on the capabilities of their constituent processors, e.g., see (Brucker, 2007; Funk, 2004).

In identical multiprocessors, there are no differences among processors, that is, a task’s execution

is not affected by the processor’s identity. Identical multiprocessors are also commonly referred

to as symmetric multiprocessors (SMPs). In uniform heterogeneous multiprocessors, processors

differ in speed but have otherwise equal capabilities. In this case, the execution requirement of

tasks assigned to a slower processor is scaled up proportionally to its speed. A widespread example

for uniform heterogeneous multiprocessors is systems that support per-processor frequency scaling

as a power-saving measure. Finally, in unrelated heterogeneous multiprocessors, each processor

may have special capabilities (such as application-specific co-processors) such that execution time

requirements are both processor- and task-specific. The three classes of multiprocessors are illustrated

in Figure 2.2.

We restrict our focus to identical multiprocessors in the main part of this dissertation and briefly

consider how our results apply to the heterogeneous cases in Chapter 8.

Multicore vs. multithreading vs. multiprocessor. As mentioned in the introduction, interest in

multiprocessor real-time scheduling is driven in large part by the widespread emergence of multicore
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Figure 2.2: Illustration of identical, uniform heterogeneous, and unrelated heterogeneous multi-
processors. No differences exist among processors in identical multiprocessors, e.g., here, each
processor has a speed of 2 GHz and a floating point unit (FPU). Processors differ in speed but
not capabilities in uniform heterogeneous multiprocessors, e.g., each processor has a FPU but is
clocked at different speeds. Processors differ in capabilities (and possibly also speed) in unrelated
heterogeneous processors, e.g., only one processor has an FPU whereas the others are targeted at fast
integer arithmetic and slow I/O processing. The focus of this dissertation is identical multiprocessors.

platforms. In a multicore design, multiple (mostly) independent processing cores are manufactured on

a single integrated circuit chip to exploit increases in transistor density (Olukotun et al., 1996; Sodan

et al., 2010). Such systems are sometimes referred to as a multiprocessor on a chip (Tanenbaum,

2005). From a scheduling point of view, “multicore” is thus simply a particular way of implementing

multiprocessors.

Another technique similarly used to exploit improved transistor densities for increased paral-

lelism is hardware multithreading, where some of a core’s functional units (such as the instruction

pipeline) are replicated such that the core appears as multiple “processors” to the operating system.

Multithreading allows multiple task contexts to appear to be scheduled “concurrently,” when in

fact the core alternates rapidly among hardware threads. This can improve overall throughput by

increasing a core’s utilization because a core may quickly switch hardware threads whenever the

currently executing thread stalls (e.g., due to a cache miss—see Section 2.1.2 below). However,

from a real-time perspective, hardware multithreading can be problematic because it can introduce

hard-to-predict execution-time variations (Barre et al., 2008; Jain et al., 2002).

The terms “chip,” “CPU”, “core,” and “processor” are used interchangeably in many documents.

To avoid confusion, we adopt the following nomenclature in this dissertation. A computer contains
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one or more processing chips. Each chip consists of one or more cores that perform the actual

computations. Each core makes one or more hardware threads available to the operating system.

For scheduling purposes, every hardware thread/context that can be independently scheduled by the

operating system is a processor.

Xeon L7455. As mentioned above, our experimental platform is a 24-core 64-bit UMA machine,

which consists of four physical Intel Xeon L7455 chips (Intel Corporation, 2008b). Each chip

contains six cores running at 2.13 GHz. Intel systems support a variety of frequency scaling and

power-saving techniques. Due to our focus on identical multiprocessors, we do not use any of these

techniques and keep each core clocked at full speed at all times. This generation of Intel’s Xeon

family does not support “hyperthreading,” Intel’s implementation of hardware multithreading. Each

chip contains two levels of shared caches, which we discuss next.

2.1.2 Processor Caches

Modern processors employ a hierarchy of fast cache memories that contain recently accessed

instructions and data to alleviate high off-chip memory latencies. Additionally, processors with

memory management units (MMU) also have a translation look-aside buffer (TLB).

A MMU is used to translate virtual memory addresses into physical memory addresses and is

the foundation on which address space separation is implemented in modern OSs. Performing such a

translation is relatively slow. The TLB is used to store previously resolved virtual-to-physical address

mappings, thereby ensuring that the MMU does not have to perform a translation on every memory

reference. There is usually one local TLB per processor.

Caches are typically organized in layers (or levels), where the fastest (and usually smallest)

caches are denoted level-1 (L1) caches, with deeper caches (L2, L3, etc.) being successively larger

and slower. A cache contains either instructions or data, and may contain both if it is unified. In

multiprocessors, shared caches serve multiple processors, in contrast to private caches, which serve

only one. Shared caches have become more prevalent with multicore chips. A typical design is

shown in Figure 2.3, where each processor has a private L1 cache and groups of two processors each

share an L2 cache.
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Figure 2.3: Example two-level cache hierarchy with shared L2 caches.

Caches operate on blocks of consecutive addresses called cache lines with common sizes ranging

from eight to 128 bytes. In direct mapped caches, each cache line may only reside in one specific

location in the cache. In fully associative caches, each cache line may reside at any location in the

cache. In practice, most caches are set associative, wherein each line may reside at a fixed number

of locations. In an x-way associative cache, each cache line may be mapped to x distinct cache

locations.

In a multiprocessor, caches might become inconsistent if one processor updates a memory

location that is currently cached by other processors. We restrict our focus to cache-coherent

multiprocessors. Such processors employ a cache-consistency protocol to transparently evict outdated

cache entries from the caches of other processors. Instead of evicting outdated cache entries, a cache-

consistency protocol could also propagate the new value; however, this technique is not employed

by the platform considered in this dissertation. Hennessy and Patterson (2006) provide a detailed

introduction to cache-consistency protocols, and Baer (2010) discusses common implementation

techniques.

Cache use. The efficacy of a cache hierarchy depends on the memory requirements and access

patterns of the scheduled tasks and the underlying RTOS. Fundamentally, caches work because

programs exhibit temporal and spatial locality—at a given time, a typical program will only access

a small subset of its memory. A classic notion of access locality is the working set of a task. First

proposed by Denning (1968) in the context of virtual memory, he defined the working set as the set

of pages that must be present within a given interval to assure efficient execution, i.e., to avoid page

faults. Agarwal et al. (1989) applied this definition to cache lines. Under their definition, the working

set is the set of cache lines that will be referenced (within the analysis time frame). For long-running
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Figure 2.4: Memory references (cache lines c1, . . . , c5) of three invocations of a task.

processes, the working set usually changes slowly over time when the program executes in a steady

state, and may change abruptly if the program transitions to a different “execution phase.” Working

sets are thus generally studied with respect to some time interval (or instruction sequence).

Recall that processes implement tasks, and that each distinct invocation of a task is modeled

as a job release in the sporadic task model (discussed in detail in Section 2.2 below). Since this

dissertation is concerned with sporadic workloads, we interpret “working set” with respect to a

single job: the set of all cache lines accessed by a job is its working set. This is similar to Thiebaut

and Stone’s notion of cache footprint (Thiebaut and Stone, 1987), which they define as the “active

portion” of a task that is present in a cache. However, strictly speaking, a cache line that is part

of the cache footprint is not necessarily also part of the working set (at a given point in execution).

This is because a cache line that has previously been brought into the cache could potentially not be

accessed again.

Example 2.1. Figure 2.4 depicts the memory references of three invocations (or jobs) of an example

task. The working set and cache footprint at each point in time during the task’s execution is listed in

Table 2.1. The first job sequentially accesses c1, . . . , c5 so that each cache line is accessed only once.

The working set of the job—cache lines that it requires in the future—thus shrinks with each memory

reference. In contrast, its cache footprint—cache lines that have been brought into the cache on the

job’s behalf—increases with each memory reference. Before the first memory reference at time t1,

the working set encompasses all five cache lines, but the job has no cache footprint yet. After the

last memory reference at time t5, the working set is empty (the first invocation is complete), but the

cache footprint is maximal. The first job demonstrates a worst-case scenario from a cache-efficiency

point of view: it has a large cache footprint, but no reuse of cache contents occurs since each cache

line is accessed only once, i.e., the working set and cache footprint are disjoint.
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Job Time Working set (Agarwal et al., 1989) Cache footprint (Thiebaut and Stone, 1987)
t (from time t until next invocation) (prior to memory reference at time t)

1 t1 {c1, c2, c3, c4, c5} ∅
t2 {c2, c3, c4, c5} {c1}
t3 {c3, c4, c5} {c1, c2}
t4 {c4, c5} {c1, c2, c3}
t5 {c5} {c1, c2, c3, c4}

2 t6 {c1, c2} ∅
t7 {c1, c2} {c1}
t8 {c1, c2} {c1, c2}
t9 {c1} {c1, c2}

3 t10 {c3, c4, c5} ∅
t11 {c3, c4, c5} {c3}
t12 {c3, c5} {c3, c4}
t13 {c3} {c3, c4, c5}

Table 2.1: The working set and cache footprint of the task from Figure 2.4. At time t, the working
set is the set of cache lines that will be accessed on or after time t; the cache footprint is the set
of cache lines that have been accessed prior to time t. Both definitions are applied with regard to
individual jobs.

The second invocation illustrates cache-line reuse. Here, the working set includes only two cache

lines (c1 and c2), which are both accessed twice. After each cache line has been accessed once at

time t8, the working set equals the cache footprint, an ideal situation with regard to cache efficiency.

The third invocation is a mixture of the prior two scenarios such that a subset of the cache footprint

is part of the working set. Cache line c3 is reused at time t13 after being brought into the cache at

time t10, but the other two cache lines of the cache footprint at time t13 are not useful. In general,

the cache footprint closely corresponds to the working set (after an initial warm-up phase) if a job

exhibits high spatial locality. ♦

The working set and cache footprint determine the impact of preemptions. The cache footprint

of a job that is preempted is likely to be evicted while it is not scheduled. If its working set at the

time of the preemption closely matched its cache footprint, then it is penalized by additional cache

misses when it resumes execution. That is, immediately after a preemption, a job does not benefit

from its spatial and temporal locality since the cache state was disturbed. In contrast, a job with a

disjoint working set and cache footprint is not impacted by a preemption at all (e.g., the first job
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in Figure 2.4). However, such cases of inherently low cache efficiency are rare in well-engineered

systems.

In the context of this dissertation, the distinction between working set and cache footprint is less

important since we focus on worst-case per-job memory use, and because the time of preemption

is unknown in general. In the worst case, preempting jobs create maximal cache footprints and all

of a preempted job’s working set is evicted. We therefore make the simplifying assumption that

the working set encompasses all cache lines accessed by a job over the course of its execution. A

job’s maximum cache footprint is thus its working set (assuming it fits into the cache by itself). A

characteristic measure of a job’s working set is its size, denoted working set size (WSS).

Cache misses. If a job references a cache line that cannot be found in a level-X cache, then it

suffers a level-X cache miss. There are four primary causes for cache misses. Compulsory misses

are triggered the first time a cache line is referenced, i.e., if the referenced cache line was not yet part

of the cache footprint. Capacity misses result if the WSS of the job exceeds the size of the cache,

that is, if needed cache lines were evicted to make room for other data. Further, in direct mapped

and set associative caches, conflict misses arise if cache lines were evicted to accommodate mapping

constraints of other cache lines. Finally, coherency misses occur when another processor evicted

required cache lines to ensure data consistency.

Ideally, a job should incur few cache misses besides compulsory misses. However, since caches

are finite, this is not always the case. Jobs that incur frequent level-X capacity and conflict misses

even when executing in isolation are said to be thrashing the level-X cache. Cache affinity describes

the effect that a job’s overall miss rate tends to decrease with increasing execution time (unless it is

thrashing)—after an initial burst of compulsory misses, most of the working set has been brought into

the cache and the rate of compulsory misses decreases. A job’s memory references are cache-warm

after cache affinity has been established; conversely, cache-cold references imply a lack of cache

affinity.

In a multiprocessor system, a job that does not thrash by itself may still incur frequent cache

misses due to the activity of jobs on other processors. In particular, a shared cache must exceed the

combined cache footprint of all jobs accessing it, otherwise, frequent capacity and conflict misses

may arise due to cache interference. Cache consistency can also become a major source of overhead
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if processors frequently read and write memory locations that reside in the same cache line. Cache

line bouncing describes the effect when two or more processors repeatedly evict the same cache

line(s) from each other’s caches. Cache line bouncing can also be the result of false sharing, wherein

processors access different, but neighboring memory locations that map to the same cache line.

TLB misses occur either the first time a memory page is accessed (together with a compulsory

cache miss), when the TLB entry was displaced (this corresponds to a capacity miss), or when the

TLB was flushed. TLB flushes are required whenever the address space of a task is modified (e.g.,

when it maps or unmaps physical addresses and memory-mapped devices). The TLB may also be

flushed when the address space is changed on a context switch.

Cache-miss avoidance. Cache misses slow down a task’s execution since the processor stalls while

it must wait for instructions and data to be fetched from main memory. On a modern, fast processor,

servicing a cache miss can take more than 100 processor cycles (Baer, 2010). Avoiding cache

misses as much as possible is thus crucial to achieving high efficiency. In real-time systems, cache

misses should further be avoided since they are difficult to predict. We briefly discuss some relevant

techniques for improving cache hit rates.

In practice, cache interference and cache line bouncing due to false sharing are a significant

concern for OS developers. A common solution to reduce cache line bouncing is to include padding

bytes in data structures such that their size becomes a multiple of the cache line size. False sharing is

impossible for such data structures if they are consistently allocated at cache line boundaries. The

only way to avoid cache line bouncing due to “true sharing,” i.e., due to data structures that are

accessed by multiple processors, is to minimize the frequency of such accesses.

Since the extent of cache interference depends on the set of jobs executing on the processors that

share a cache, cache interference can also be reduced using cache-aware scheduling approaches (Ca-

landrino, 2009; Guan et al., 2009). Such approaches are complimentary to this dissertation, in

the sense that our overhead-aware evaluation methodology (Chapter 4) can be used to compare

scheduling algorithms that aim to reduce cache interference.

As the name implies, compulsory misses are impossible to avoid in general. However, it is

possible to exploit spatial locality to avoid some compulsory misses by predicting future memory

references. Processors that perform cache prefetching monitor the sequence of memory references
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and proactively transfer cache lines that are likely to be accessed in the near future into a cache.

Cache prefetching can be effective from a throughput point of view. However, in real-time systems,

prefetching can be detrimental since it might displace part of a job’s working set with unrelated,

possibly useless data when the prefetching logic mis-predicts future references.

TLB misses can also cause significant slowdowns. To avoid TLB flushes on context switches,

some processors support tagged TLBs, wherein each TLB entry is marked with an address space

number (ASN). ASNs are unique identifiers that correspond to address spaces managed by the OS.

On a context switch, instead of flushing the TLB, the OS only updates a “current ASN” register to a

value corresponding to the scheduled process. TLB entries belonging to the current process can then

be differentiated by the MMU from stale entries based on the differing ASN tag. The benefit of a

tagged TLB is that it reduces the average cost of context switches: if a process resumes execution

shortly after it was preempted, then most of its TLB entries may still be present. However, tagged

TLBs are still subject to capacity limitations, and ASNs must be invalidated when address spaces are

modified (which is equivalent to a process-specific TLB flush). Consequently, tagged TLBs have

only little impact on the worst-case cost of a context switch.

Cache partitioning. Recall that preemptions cause the preempted job to incur additional cache

misses when it resumes execution if the cache footprint of the preempting job caused parts of the

working set of the preempted job to be evicted. It is difficult to predict such cache misses and those

that arise due to cache interference since they depend on the identity of the interfering or preempting

task (of which there can be many), and on the point in time at which the preemption or interference

takes place. In effect, such misses cannot be accurately anticipated by analyzing individual tasks in

isolation. To limit the impact of such cache effects, several hardware- and software-based isolation

techniques have been proposed.

At the hardware level, Kirk (1989) proposed cache partitioning to reserve parts of a cache for

specific processes, thereby limiting cache interference to the non-exclusive parts. As a variant of

full partitioning, some architectures allow cache contents to be locked such that they will not be

evicted. An alternative to caches are scratchpad memories (also called programmable caches), which

function similarly to a cache in that they speed up memory references (Banakar et al., 2002). The

benefit of scratchpads is that their contents are completely software-controlled and thus not subject
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Figure 2.5: Illustration of page coloring. Physical pages are of the same page color if their contents
map to the same physical cache lines. In this example, there are 128 distinct page colors (see
Example 2.2).

to unexpected interference. These hardware-based isolation techniques have been employed in a

number of uniprocessor designs targeted at embedded systems; however, they are typically not

available in current mass-market multicore designs.

Page coloring. Cache partitioning can also be realized at the software level based on page coloring.

The “color” of a memory page describes to which set of cache locations its addresses will be mapped

(assuming that caches are direct mapped or set associative, which they are in practice).

Example 2.2. Suppose a system with 1 GB of memory has a 512 KB direct-mapped L2 cache with

a cache-line size of 64 bytes. This implies there are 512 KB / 64 bytes = 8,192 physical cache lines

in the L2 cache. Assuming a page size of 4 KB, there are 4 KB / 64 bytes = 64 cache lines per page

and a total of 1 GB / 4 KB = 262,144 physical pages. Let p denote a physical page number, and let c

denote a physical cache-line index (both zero-based, i.e., 0 ≤ p ≤ 262,143 and 0 ≤ c ≤ 8,191).

As illustrated in Figure 2.5, in a direct-mapped cache, the contents of the first page (p = 0)

map to the first 64 physical cache lines c ∈ {0, . . . , 63}. Similarly, the contents of the second

page (p = 1) are mapped onto the cache lines c ∈ {64, . . . , 127}. Accesses to data stored in the

first two physical pages can thus not interfere with each other. However, since the cache is much

smaller than the main memory, the direct mapping wraps around after 8,192 / 64 = 128 pages. That

is, the contents of page p = 128 are also mapped to c ∈ {0, . . . , 63}, and thus can conflict with

the contents of page p = 0. In general, the contents of a page p are mapped to the cache lines

c ∈ {(pmod 128) · 64, . . . , (pmod 128) · 64 + 63}. This implies that two pages p1 and p2 conflict

if and only if p1 mod 128 = p2 mod 128. Hence, in this example, there are 128 disjoint sets of

pages—named colors—such that pages within each set conflict with each other, but not with any
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pages from other sets. If the cache in this example were a 2-way set-associative cache (i.e., if each

cache line could be mapped to two distinct locations in the cache), then there would be only 64

distinct colors. ♦

Page coloring can be used to implement cache partitioning by dedicating a page color to each

real-time task, i.e., by letting each real-time task allocate only pages of a reserved, task-specific

color. This can be enforced either statically at the compiler level (Müller, 1995) or dynamically

at the OS level in the virtual memory subsystem (Liedtke et al., 1997). However, either approach

limits the number of real-time tasks that may run concurrently to the number of distinct page colors.

Further, each real-time task uses only a subset of the cache, which can lead to thrashing. This can be

avoided by allocating multiple colors to a cache-intensive task; however, this further constrains the

total number of real-time tasks and may lead to a considerable waste of memory. In a system with

a hierarchy of caches, there is a tradeoff between the number of available colors and the degree of

task isolation. When using L1-based colors, real-time tasks can be isolated at all cache levels,1 but

there are only few colors available due to the typically small size of L1 caches. When using L2- or

L3-based colors, the number of available colors is much larger, but interference is possible at higher

cache levels. Nonetheless, page coloring has the unique advantage that it can provide a high degree

of isolation on commodity hardware.

Xeon L7455. Figure 2.6 depicts the cache hierarchy of one six-core chip of the experimental

platform used in Chapters 4 and 7. Each core has eight-way set associative private L1 data and L1

instruction caches of size 32 KB each. Two cores each share a unified, twelve-way set associative L2

cache of size 3072 KB. Finally, all cores on the chip share a 12288 KB unified L3 cache, which is

also twelve-way set associative. The cache line size is 64 bytes. Cache interference is possible via

the L2 and L3 caches. Jobs with a private address space and a WSS of at most 32 KB are not subject

to cache interference once their working set has been brought into L1 cache.

The system contains four such six-core chips. As configured, the system does not use cache

prefetching. The system also does not contain scratchpad memory or hardware-based cache partition-

ing facilities, and does not support tagged TLBs. On the software level, Linux unfortunately does not

1Strictly speaking, this may not be the case if the L1 cache and lower caches differ in line size.
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Figure 2.6: Illustration of the cache hierarchy of one chip of the experimental platform used in
Chapters 4 and 7. The system contains four chips, for a total of 24 cores.

support strict separation of memory allocations based on page coloring, and such support is also not

available in common Linux compilers.

2.1.3 Interrupts

Interrupts notify processors of asynchronous events and may occur between (almost) any two

instructions. If an interrupt is detected, the processor temporarily pauses the execution of the

currently scheduled task and executes a designated interrupt service routine (ISR) instead. This can

cause the interrupted task to incur undesirable delays that must be accounted for when determining

whether a task is schedulable, as discussed in detail in Chapter 3.

Most interrupts are maskable, i.e., the processor can be instructed by the OS to delay the

invocation of ISRs until interrupts are unmasked again. However, non-maskable interrupts (NMIs),

which can be used for “watch dog” functionality to detect system hangs, cannot be suppressed by the

OS. In multiprocessor systems, some interrupts may further be local to a specific processor, whereas

others may be serviced by multiple or all processors.

Interrupt categories. Interrupts can be broadly categorized into four classes: device interrupts

(DIs), timer interrupts (TIs), cycle-stealing interrupts (CSIs), and inter-processor interrupts (IPIs).

We briefly discuss the purpose of each next.

DIs are triggered by hardware devices when a timely reaction by the OS is required or to avoid

costly “polling” (see below). In real-time systems, DIs may cause jobs to be released, e.g., a sensor
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may trigger a DI to indicate the availability of newly-acquired data, in response to which a job is

released to process said data.

TIs are used by the OS to initiate some action in the future. For example, TIs are used to

support high-resolution delays (“sleeping”) in Linux. In LITMUSRT, they are also used for periodic

job releases and to enforce execution-time budgets. In networking protocols, TIs are commonly

employed to trigger timeouts and packet re-transmissions.

CSIs are an artifact of the way that modern hardware architectures are commonly implemented

and differ from the other categories in that they are neither controlled nor handled by the OS. CSIs

are used to “steal” processing time for use by some component that is—from the point of view

of the OS—hardware, but that is implemented as a combination of hardware and software (so

called “firmware”) and that lacks its own processor. CSIs are intended to be transparent from a

logical correctness point of view, but of course do affect temporal correctness. They are usually

non-maskable and the OS is generally unaware if and when CSIs occur. A well-known example for

the use of CSIs is the system management mode (SMM) in Intel’s x86 architecture (Intel Corporation,

2008a,c): when a system management interrupt (SMI) occurs, the system switches into the SMM

to execute ISRs stored in firmware. For example, on some chip sets the SMM is entered to control

the speed of fans for cooling purposes. CSIs can also occur in architectures in which raw hardware

access is mediated by a hypervisor. For example, this is the case in Sony’s PlayStation 3 (Kurzak

et al., 2008) and Sun’s sun4v architecture (Saulsbury, 2008). In such systems, the hypervisor may

become active at any time to handle interrupts or perform services for devices “invisible” to the OS.

CSIs are especially problematic if the code that is being executed is unknown—for example, a CSI

could flush instruction and data caches and thereby unexpectedly increase task execution costs.

In contrast to DIs, TIs, and CSIs, the final category considered, IPIs, are specific to multiprocessor

systems. IPIs are used to synchronize state changes across processors and are generated by the OS.

For example, the modification of an address space on one processor can require software-initiated

TLB flushes on multiple processors (Intel Corporation, 2008c,d). IPIs are also commonly used to

cause a remote processor to reschedule.

Xeon L7455. Figure 2.7 shows how interrupts are handled in our x86 platform used for the case

studies presented in Chapters 4 and 7. Modern x86 systems use the advanced programmable interrupt
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Figure 2.7: Illustration of the I/O APIC and local APICs in the multiprocessor platform underlying
the case studies discussed in Chapters 4 and 7. Devices are connected to the I/O APIC with physical
interrupt lines. The I/O APIC polls the incoming interrupt lines and dispatches an interrupt to a local
APIC when a signal is detected. The recipient is determined based on the interrupt-line-specific
target LDID and the current priorities in the TPR registers. Local APICs are also used to send IPIs
among processors and to handle per-processor devices (such as the depicted timer and temperature
sensors).

controller (APIC) to manage interrupts (Intel Corporation, 1996, 2008c). The name derives from

the legacy programmable interrupt controller (PIC), which was a single chip that was used in early

x86-based designs. In contrast, the APIC is actually a collection of chips that collaborate to deliver

interrupts.

Devices interface with the I/O APIC that handles interrupt distribution by sending DIs to one

of the cores (more on DI distribution below). Each core has a local APIC that performs the actual

interrupt delivery when it receives a DI from the I/O APIC. Local APICs are also responsible for

sending IPIs to each other, and also directly interface with processor-local interrupt sources (such

as a timer, performance counters, and thermal sensors). Conceptually, the local APICs and the I/O

APIC are connected by a dedicated APIC bus (Intel Corporation, 1996); however, current systems

actually use the main system bus to transport APIC messages. A processor can temporarily disable

the delivery of interrupts with the cli instruction. This does not, however, stop the local APIC from

accepting interrupts, which will be delivered once local interrupts are re-enabled by the OS with the

sti instruction.

There are 15 distinct interrupt priorities. A local APIC accepts only higher-priority interrupts

while an ISR is executing. If a higher-priority interrupt is received while executing an ISR for a

lower-priority interrupt, then the higher-priority interrupt is delivered right away, interrupting the
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lower-priority ISR (unless interrupt delivery has been disabled—see above). The OS must signal the

end of an ISR to the local APIC by writing to a special end-of-interrupt (EOI) register. Each local

APIC has a task priority register (TPR) and will only accept interrupts that exceed the priority of

the value in the TPR. This can be used by the OS to mark the local APIC as ineligible to process

low-priority interrupts.

The I/O APIC polls 24 physical interrupt lines (each of which is connected to one or more

devices) for interrupt signals. For each interrupt line, the OS can configure how a detected interrupt

will be relayed to one or more local APICs. In particular, each interrupt can be sent to either a specific

local APIC (and hence processor) or to a logical destination ID (LDID). Each local APIC belongs to

exactly one LDID and multiple local APICs may share the same LDID; this allows interrupts to be

distributed among several processors on a line-by-line basis. If there are multiple possible recipients

for a logical destination ID, a TPR-aware arbitration protocol is used to dispatch the interrupt to the

lowest-priority recipient processor, i.e., to the processor with the lowest priority value stored in its

TPR register (the OS should avoid priority ties). The I/O APIC also allows each interrupt line to be

individually masked, and to specify the interrupt priority for each line.

Taken together, these options provide the OS with considerable flexibility to determine which

processor(s) will handle interrupts.

2.1.4 Timers and Clocks

Precise time management is essential to the correct functioning of an RTOS. Most computing

platforms therefore include one or several devices that can serve as a timer and/or clock.

A clock is a device that measures the progress of physical time. Physical time is sometimes

referred to as “monotonic time,” as opposed to “wall-clock time,” which is subject to man-made

concepts such as time zones, daylight saving time, and leap seconds. Clocks rarely work in units of

seconds. Instead, they typically count the occurrence of some physical event that occurs regularly

with a known frequency (such as the oscillation of a crystal)—that is, a clock “ticks” at a given

frequency and increments a counter on every “clock tick.” The OS can read the clock to obtain

the number of events (or “ticks”) that have occurred since system startup (or since the last time

the counter overflowed). This allows the OS to determine the length of an activity (such as a task

executing) by taking a timestamp before the activity commences and after it completes.
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A timer is a device that can be programmed to generate an interrupt at a future point in time.

A timer does not necessarily have a notion of current time (i.e., not every timer is also a clock).

Instead, knowledge of the remaining time until the interrupt will be generated is sufficient for correct

operation. Similar to clocks, frequency-driven timers can be implemented by decrementing a counter

every time a physical event occurs until the counter reaches zero, which is when the interrupt fires.

Timers generally operate in one of two modes. One-shot timers generate a single interrupt and then

remain inactive until reprogrammed. In contrast, periodic timers automatically reset and generate

interrupts in a regular fashion until explicitly stopped.

Periodic timers can be, and traditionally have been, used to implement clocks: whenever the

periodic timer interrupt (called the system tick) occurs, the value of a “current time” variable is

incremented. In Linux parlance, this notion of current time is referred to as “jiffies.” A physical clock

device is thus not necessarily required. However, such emulation of a clock comes with a tradeoff in

precision since the time appears to “stand still” between timer interrupts. In general, the precision of

a clock depends on its resolution and accuracy.

The resolution of a clock is the smallest difference that can be observed between consecutive

readings, i.e., the granularity of time measured by the clock. For example, suppose a periodic timer

with a period of one second is used to implement the system clock. The resulting resolution is one

second, i.e., it is impossible to correctly tell apart intervals that differ by less than one second.

The accuracy of a clock determines its error, i.e., how close the reported time is to the actual

physical time. For example, suppose the OS would query the atomic clock of the National Institute

of Standards and Technology (NIST) over the Internet. NIST guarantees the resolution to not exceed

200 picoseconds, i.e., the NIST’s clock will report distinct readings to queries that are separated

by at least 200 picoseconds. However, the accuracy as perceived by the OS would only be in the

range of tenths to hundreds of milliseconds due to unpredictable latencies on the Internet, i.e., by the

time that the OS has obtained a clock reading the result is no longer accurate.2 The accuracy of a

practical clock, i.e., one that does not artificially delay observations until the next “tick,” is limited by

its resolution.

2Multi-round clock synchronization protocols for real-time systems exist that can greatly reduce the impact of uncertain
transmission times (Kopetz and Ochsenreiter, 1987; IEEE, 2008a), but such protocols do not apply here since we are
concerned with a single observation.
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Clock drift describes the effect that a clock’s accuracy may slowly decrease over time. For

example, slight changes in tick frequency may cause a clock to drift. Dealing with clock drift in

practice can be a non-trivial engineering challenge, and especially so for OSs such as Linux that

must work on a wide range of commodity platforms with components and clocks of varying quality

and correctness. However, such techniques are beyond the scope of this dissertation; we make the

simplifying assumption that clock drift is negligible across short time intervals. Platforms for which

this does not hold are of questionable utility in the context of real-time systems.

Resolution and accuracy similarly apply to timers, where the resolution determines the granularity

of points in time that can be programmed, and accuracy is a measure of how closely the interrupt

occurs to the requested point in time.

Another criterion is the overhead involved in reading a clock or programming a timer. For

example, the programmable interval timer (PIT), which has traditionally been used in x86-based

systems, is theoretically capable of operating as a one-shot timer, but is only used as a periodic timer

in practice due to the high cost of re-programming the timer. The underlying reason is that writing to

the PIT’s memory-mapped registers can cause a processor to stall for many cycles while it waits for

the write transaction that was issued to the memory bus to complete. Ideally, each processor should

have low-overhead access to a timer and clock with high resolution and high accuracy.

Xeon L7455. In our experimental platform, each processor has access to three clocks and two timers

(as illustrated in Figure 2.8 and summarized in Table 2.2).

The system has a high-precision event timer (HPET) that is connected to the I/O APIC. The HPET

is both a clock and a timer. It contains a circuit that oscillates with a frequency of approximately

14.3 MHz. On each oscillation, a 64 bit counter, which can be read by the OS, is incremented by one.

The HPET also implements three independent one-shot timers with three comparator registers. The

OS can program a value in each register; an interrupt is generated when the incrementing counter

equals the comparator value. As discussed above, the I/O APIC can be configured to route the

HPET interrupt to a specific set of processors. The frequency of the oscillator limits the HPET to a

resolution of about 69.84 ns. (The HPET standard requires a frequency of at least 10 MHz, which

corresponds to a minimum resolution of 100 ns.) The HPET is an off-chip device, i.e., it is not part
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Figure 2.8: Illustration of the timers and clocks available in the multiprocessor platform underlying
the case studies discussed in Chapters 4 and 7. Each processor has access to three clocks (the HPET,
the ACPI PM timer, and the per-processor TSC) and two timers (the HPET and the per-processor
local APIC timer). The local APIC timer and the TSC are preferable to the other alternatives due to
their superior resolution and low-overhead, on-chip access.

of the processor die. The accuracy of the HPET is hence impacted by the time it takes the I/O APIC

to deliver an interrupt to a local APIC.

Each core’s local APIC also contains a one-shot timer that is driven by the main bus clock signal.

The local APIC timer consists of a counter (initialized by the OS) that decrements by one every 2x

bus clock cycles, where x ∈ {0, . . . , 7}. The OS configures x by means of a clock divider register.

When the counter reaches zero, a local interrupt is generated. Since the local APIC is an on-chip

device that is tightly integrated into the processor core, it incurs only little programming overhead.

In our system, the system bus clock frequency is 266 MHz, which implies a minimum resolution of

about 3.76 ns (for x = 0). It is also a fairly accurate timer since interrupt delivery is local. The local

APIC has no clock functionality.

Besides the HPET, the system has two additional clocks without timer functionality. The

Advanced Configuration and Power Interface (ACPI) standard (Hewlett-Packard et al., 2010) requires

each system to have an ACPI power management timer (PM timer), which—despite its name—is a

clock without timer functionality. Similarly to the HPET, it is an off-chip device and consists of an

oscillator with a fixed frequency and a 32-bit counter that is incremented on every oscillation. The

ACPI PM timer generates an interrupt whenever the counter overflows. The ACPI PM oscillator’s

frequency of about 3.58 MHz implies a minimum resolution of approximately 279.37 ns.
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Device Type Location Frequency (MHz) Resolution (ns)

HPET one-shot timer off chip 14.32 69.84
Local APIC one-shot timer on chip 266.00 3.76

HPET clock off chip 14.32 69.84
ACPI PM timer clock off chip 3.58 279.37
TSC clock on chip 2128.00 0.47

Table 2.2: Summary of the timers and clocks available in the multiprocessor platform underlying
the case studies discussed in Chapters 4 and 7. Linux uses on-chip devices when available.

The highest-resolution clock in the system is the timestamp counter (TSC), which is a per-

processor 64 bit register. The TSC is incremented with each processor cycle, which, at 2128 MHz

(eight times the bus clock), implies a minimum resolution of only about 0.47 ns. Since the TSC is a

register that is part of the processor, TSC accesses incur only negligible overhead. However, the TSC

is subject to some accuracy limitations when conducting micro benchmarks (i.e., when measuring the

execution time of short code segments) since instruction reordering could move the dependency-less

TSC read ahead of other operations. This can be avoided by issuing serializing instructions prior to

the TSC read (Paoloni, 2010). The TSC can also be affected by processor frequency changes and

TSC values may not be comparable across processors (e.g., the processors may have been initialized

at different times).

The available clocks and timers are summarized in Table 2.2. Accesses to on-chip device

registers generally incur lower overheads than accesses to memory-mapped registers of off-chip

devices because off-chip accesses are subject to memory bus arbitration. Similarly, interrupts from

off-chip devices must be dispatched by the I/O APIC, whereas on-chip devices are typically directly

connected to a local APIC.

Linux requires just one clock and one timer to function properly. It selects one device of each

class during bootup and leaves the others unused. On our system, Linux chooses the local APIC

timers and the TSC due to their high resolution and low overheads.

2.2 Real-Time Task Model and Constraints

The defining characteristic of real-time systems is that task execution is subject to temporal constraints.

Additionally, many real-time tasks are recurrent, that is, they do not terminate during normal operation
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of the system. A recurrent task model that allows a priori validation of temporal constraints should

thus be used in the design and implementation of such real-time systems. LITMUSRT is based on

the classic sporadic task model (Mok, 1983), because it is analytically sound, well-studied, and yet

simple and flexible enough to be implemented as an interface in an RTOS.

Under the sporadic task model (Mok, 1983), a real-time workload consists of a set of n sequential

tasks τ = {T1, . . . , Tn}. Each task Ti is repeatedly invoked by asynchronous, external events such

as device interrupts or expiring timers. When Ti is invoked, it releases a job to process the triggering

event. The jth job of task Ti is denoted Ji,j , where j ≥ 1. We omit the job index in cases where

the identity of a job is irrelevant and use Ji to denote an arbitrary job of Ti. In the following, we

provide a precise definition of the sporadic task model because it is used as a foundation for formal

analysis throughout this dissertation. Our notation for sporadic tasks is summarized in Table 2.3 and

illustrated in Figure 2.9.

Tasks. Each task Ti is characterized by three integral3 parameters (ei, pi, di): its per-job maximum

execution requirement ei, where ei > 0; its minimum job inter-arrival separation pi, where pi ≥ ei;

and its relative deadline di, where di ≥ ei. The parameters have the following interpretation (which

is formalized below): Ti releases jobs at least pi time units apart, each job executes for at most

ei time units, and each job should finish no more than di time units after its release. The per-job

execution requirement is naturally machine-specific, that is, ei depends on the computational speed

of the underlying hardware platform. In contrast, pi and di are platform-independent since they

express environmental constraints. For historical reasons, pi is also referred to as a task’s period.

Jobs. A job Ji,j becomes available for execution at its release or arrival time ai,j , where ai,j ≥ 0.

Job releases are rate-limited by the task period such that ai,j+1 ≥ ai,j + pi. Each Ji,j requires at

most ei units of processor time to process the event that caused the task to be invoked, and completes

or finishes thereafter at time fi,j (obviously, fi,j ≥ ai,j). Ji,j is said to be pending from its release

until it completes. Recall that tasks are sequential: if Ji,j+1 is released while Ji,j is still pending

(i.e., if fi,j > ai,j+1), then Ji,j+1 can only be scheduled after Ji,j completes. Ji,j’s response time

ri,j describes how long Ji,j remained pending; formally, ri,j = fi,j − ai,j . Across all jobs, Ti’s

maximum response time ri is defined as ri = maxj{ri,j}. Since tasks release a potentially infinite

3In LITMUSRT, task parameters are expressed in nanoseconds.
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Figure 2.9: Illustration of a constrained-deadline sporadic task. The job Ji,j is preempted twice by
higher-priority jobs (which are not shown in this example). As a result, Ji,j incurs two migrations: it
first migrates from processor 1 to processor 2, and then again back to processor 1. See Table 2.3 for
a summary of our notation.

number of jobs, ri may not be well-defined for all tasks; for example, if the system is overloaded,

ri,j could be monotonically increasing with each Ji,j .

Mok (1983) introduced the sporadic task model as a generalization of the earlier periodic task

model (Liu and Layland, 1973). A periodic task releases jobs regularly on every period multiple, i.e.,

ai,j = ai,1 + (j − 1) · pi for every Ji,j where j > 1 . The sporadic task model encompasses periodic

task behavior, but also allows tasks to experience inter-arrival delays, that is, the interpretation of the

period parameter is relaxed to represent a lower bound on job separation (instead of an exact spacing

between jobs). This allows tasks to become inactive in the absence of triggering events.

Deadlines. The relative deadline parameter di determines the range of acceptable response times. A

job Ji,j should complete by its absolute deadline di,j = ai,j + di, and is tardy if it completes later

(i.e., if fi,j > di,j). A job’s tardiness is the extent of the deadline miss; formally, Ji,j’s tardiness is

given by max(0, fi,j − di,j). A tardy job does not affect the release times of subsequent jobs of the

same task, but may delay their execution since tasks are sequential.

Task systems are categorized by the range of allowed relative deadlines. The most-restrictive

case is implicit deadlines: a set of tasks τ has implicit deadlines if di = pi for each Ti ∈ τ . A more

general case is constrained deadlines, where di ≤ pi for each Ti ∈ τ . Otherwise, if a task set has

neither implicit nor constrained deadlines, then it is said to have arbitrary deadlines. The type of

deadline constraint has a large impact on schedulability analysis (see Section 2.2.3 below). However,
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Notation Interpretation Constraint / Definition

τ A task set. τ = {T1, . . . , Tn}
Ti The ith sporadic task. 1 ≤ i ≤ n
Ji,j The jth job of task Ti. j ≥ 1
Ji An arbitrary job of Ti.

ei Ti’s per-job execution requirement. ei > 0
pi Ti’s period; minimum separation between jobs. pi ≥ ei
di Ti’s relative deadline. di ≥ ei
ui Ti’s utilization. ui = ei/pi
δi Ti’s density. δi = ei/min(di, pi)

ai,j Ji,j’s release time. ai,j ≥ ai,j−1 + pi
di,j Ji,j’s absolute deadline. di,j = ai,j + di
fi,j Ji,j’s completion time. fi,j ≥ ai,j
ri,j Ji,j’s response time. ri,j = fi,j − ai,j
ri Ti’s maximum response time. ri = maxj{ri,j}

Table 2.3: Summary of the sporadic task model’s constraints and our notation.

implicit, constrained, and arbitrary deadlines are largely equivalent from an implementation point of

view. In this dissertation, we assume implicit deadlines unless noted otherwise.

Processor demand. The execution requirement ei limits how much processor time a single job of Ti

will need in the worst case, and the relative deadline di determines how soon it will be needed. When

considering longer intervals during which a task may release multiple jobs, it is useful to normalize a

task’s processor demand with respect to its period and deadline.

Task Ti’s utilization ui = ei
pi

is the fraction of one processor that Ti requires. Ti’s utilization ui

is significant because it corresponds to the maximum rate of execution required for Ti to “keep up”

with incoming events, i.e., Ti may require up to ei time units out of pi time units. If Ti is allocated

less than ui processor capacity over long intervals, then tardiness may grow unboundedly, that is,

jobs of Ti may miss their deadlines by ever increasing amounts due to overload. In the context of fair

scheduling algorithms (see Section 2.3.3.3 below), a task’s utilization is also called its weight.

Constrained-deadline tasks are subject to an additional rate constraint. If di < pi, then a job

Ji,j’s rate of execution has to exceed ui during [ai,j , di,j ] if Ji,j is to meet its deadline. The increased

“urgency” of a constrained-deadline task Ti is reflected by its density δi, which is task Ti’s execution

requirement normalized by its relative deadline. However, if di ≥ pi, then Ti’s rate of execution is
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less constrained by its relative deadline than its period. Therefore, density is formally defined as

δi = ei
min(di,pi)

, which ensures that δi ≥ ui in all cases.

Max, min, sum, and top. The concepts of utilization and density are also commonly applied to

whole task sets. The total utilization of a task set τ is defined as

usum(τ) ,
∑

Ti∈τ
ui.

As a notational convenience, we further let

umax(τ) , max
Ti∈τ
{ui} and umin(τ) , min

Ti∈τ
{ui}

denote the maximum and minimum utilizations of tasks in τ , respectively. Additionally, we define

utop(τ, k) to denote the sum of the min(k, n) largest utilizations of tasks in τ . The maximum and total

utilizations are two special cases of utop(τ, k) where k = 1 and k = n, i.e., utop(τ, 1) = umax(τ)

and utop(τ, n) = usum(τ).

We analogously define δmax(τ), δmin(τ), δsum(τ), and δtop(τ, k) with respect to density, and

emax(τ), emin(τ), esum(τ), and etop(τ, k) with respect to the execution requirement of tasks in τ .

2.2.1 Temporal Correctness

As mentioned previously, the hallmark of a real-time system is that it must satisfy a temporal

specification to be deemed correct. In the sporadic task model, timeliness requirements are expressed

as deadline constraints—each job should complete by its absolute deadline. In this dissertation, we

consider two notions of deadline-based temporal correctness. In a hard real-time (HRT), deadlines

are strict and may not be violated. In contrast, some deadline misses are permissible in a soft real-time

(SRT) system. The word “some” in the preceding sentence allows for considerable leeway, and

SRT correctness has indeed been defined in many ways in prior work. In contrast, the idea of HRT

correctness is less ambiguous and there exists a universally accepted definition (in the context of the

sporadic task model). We consider HRT correctness first.

HRT correctness demands that all jobs complete by their absolute deadlines, which is equivalent

to requiring that each task Ti’s maximum response time be bounded by its relative deadline, i.e.,
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ri ≤ di. A job’s response time necessarily depends on the underlying scheduling algorithm, its

actual processor requirement, and may also depend on the concrete release times and processor use

of higher-priority jobs that prevent it from being scheduled. HRT correctness is thus defined with

respect to a given scheduling algorithm and only for legal invocation sequences, that is, it applies

only if all job releases conform to each task’s pi and ei parameters.

Definition 2.1. A task set τ is HRT schedulable under a scheduling algorithm A if and only if, for

each legal invocation sequence, ri ≤ di for each Ti ∈ τ (when scheduled by A on a given platform).

While it would be convenient to use this definition for all real-time systems, ensuring that

all deadlines will be met can result in inefficient resource use (as will be discussed in subsequent

sections). It is thus desirable to use a weaker definition for systems that can tolerate deadline misses

to “some” extent. In the context of multiprocessor systems, the bounded-tardiness interpretation of

SRT correctness has received considerable recent attention (Srinivasan and Anderson, 2003; Devi

and Anderson, 2005; Devi, 2006; Block, 2008; Calandrino, 2009; Leontyev, 2010). First applied

to multiprocessor real-time systems by Srinivasan and Anderson (2003), the bounded-tardiness

definition allows any job to be tardy provided that the maximum tardiness is bounded by a constant

(with respect to job identity). That is, jobs may miss deadlines, but only by a known extent that does

not increase over time.

Definition 2.2. A task set τ is SRT schedulable under a scheduling algorithm A if and only if there

exists a constant B such that ri ≤ di +B for each Ti ∈ τ for each legal invocation sequence (when

scheduled by A on a given platform).

Note that SRT schedulability generalizes HRT schedulability: if τ is HRT schedulable under

A, then B = 0. For brevity, we use “schedulable” without the ‘HRT” or “SRT” prefix when the

appropriate interpretation of deadlines is clear from context or irrelevant.

We chose the bounded-tardiness interpretation of SRT correctness because it offers a compelling

set of analytical and practical advantages. For one, bounded tardiness is analytically sound and

supported by a well-studied theoretical framework for multiprocessors (Devi, 2006; Leontyev, 2010).

In particular, the offered SRT guarantees are quantifiable a priori (i.e., the tardiness bound B). This

allows tardiness to be anticipated and compensated for during the design phase (e.g., by determining

appropriate buffer sizes or by checking that maximum tardiness falls within acceptable “engineering
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margins”). From a practical point of view, bounded tardiness is convenient as an SRT model because

it only affects the analysis, but not necessarily the implementation. The RTOS system call interface

remains the same as for HRT tasks since no additional parameters are required (in contrast to some

of the approaches discussed below). Further, the same scheduling algorithms that are used to support

HRT workloads can be used to support SRT workloads, that is, no special-purpose SRT schedulers

are required (see Section 2.3 below). This significantly simplifies the engineering aspects involved in

building a multiprocessor RTOS such as LITMUSRT. In essence, the system itself remains unchanged

and only the nature of the guarantees provided by it differs between HRT and SRT analysis.

2.2.2 Alternate Soft Real-Time Definitions

The term “soft real-time” tends to be used as a catch-all label that is applied to any approach that does

not strictly qualify as “hard.” Not surprisingly, the literature pertaining to “soft” real-time systems

in one form or another is extensive. The following discussion is not intended as a comprehensive

review. Rather, the goal is to explain the benefit of the adopted bounded-tardiness definition of SRT

correctness, and to contrast it to the most closely related SRT approaches.

A metric commonly used in practice and systems-oriented work is the deadline miss ratio.

Under this metric, the extent of an individual miss, i.e., a job’s tardiness, is irrelevant. Instead, this

metric simply reflects the number of deadlines missed by a task (or a set of tasks) in relation to the

total number of deadlines (i.e., jobs) during some interval. For example, in experimental work on

supporting SRT workloads in the presence of hardware multithreading, Jain et al. (2002) considered

a deadline miss ratio of up to five percent as acceptable. The foremost advantage of the deadline miss

ratio is that it can be easily measured during experiments and system testing. Further, it provides a

simple-to-interpret indicator of “scheduling quality,” as lower miss ratios are intuitively preferable to

higher miss ratios. A major disadvantage is the lack of an analytic framework for predicting worst-

case deadline miss ratios. As such, the deadline miss ratio metric is ill-suited for a priori analysis

and for providing any kind of predictable worst-case performance guarantees. However, deadline

miss ratios have proven useful as a “sensor” for system performance in feedback-control-based SRT

scheduling approaches (Lu et al., 2000, 2002) and are also suitable for making stochastic guarantees

(see, e.g., (Manolache et al., 2004)).
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Optional jobs. Allowing a non-zero deadline miss ratio implies that it is acceptable for a certain

ratio of jobs to fail to complete on time (or at all). Several formalizations of this notion of “softness”

have been proposed in work on uniprocessor real-time systems. Koren and Shasha (1995) introduced

the skip model as a means to handle overload situations. Under the skip model, each task Ti has an

additional skip parameter si, where si ≥ 2. The skip parameter is the minimum distance between

jobs that fail to finish by their deadline. Any job Ji,j may be skipped altogether or aborted mid-

execution provided that the previous si − 1 jobs completed on time, that is, if Ji,l is the last job of

Ti to have been skipped, then Ji,j may be skipped only if l + si ≤ j. This rule limits the long-term

deadline miss ratio of Ti to 1
si

.

Hamdaoui and Ramanathan (1995) proposed the conceptually similar, but more general (m, k)-

firm model, which requires that in any window of k consecutive jobs (of a task Ti) at least m jobs

meet their deadline. The (m, k)-model is suitable to make a priori guarantees (Goossens, 2008;

Li et al., 2004; Quan and Hu, 2000; Ramanathan, 1999; Hamdaoui and Ramanathan, 1997), albeit

only when using schedulers that were especially designed for the (m, k)-model. In fact, finding the

optimal set of jobs to skip is an NP-hard problem (Quan and Hu, 2000). Intuitively, the (m, k)-firm

model limits a task’s deadline miss ratio to k−m
k in the long term; Calandrino (2009) explores the

exact correspondence in more detail.

Very similar to the (m, k)-firm model is the window-constrained model (West and Poellabauer,

2000; West and Schwan, 1999), which associates two parameters (x, y) with each task, with the

interpretation that at most x jobs out of a window of y jobs may fail to meet their deadline, just

like in the (m, k)-firm model. However, in contrast, windows are non-overlapping in the window-

constrained model, that is, the x-constraint applies to consecutive windows, whereas them-constraint

in the (m, k)-model applies to any window of k consecutive jobs. For example, suppose that

x = m = 9 and x = k = 10 for a task Ti. Then it would be permissible for both Ji,10 and Ji,11 to be

skipped in the window-constrained model (the first window includes Ji,1–Ji,10, the second window

includes Ji,11–Ji,20), but not in the (m, k)-model (since for example the k consecutive jobs Ji,2–Ji,11

include both jobs). In the long run, the window-constrained model results in a worst-case deadline

miss ratio of x−y
x , but it allows deadline misses to “cluster” at window boundaries. Interestingly,

from a complexity point of view, the less-strict nature of the window-constrained model does not

yield a simpler scheduling problem (Mok and Wang, 2001).
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Constraints in the models mentioned so far apply on a per-job basis. In contrast, the imprecise

computation model (Liu et al., 1991; Aydin et al., 2001) splits each job into a mandatory and an

optional part. The mandatory part of each job must complete by its respective deadline, whereas

the optional part may complete later, only partially, or not at all. The underlying idea is that some

applications can degrade gracefully in the face of system overload by skipping parts of a computation

that merely serves to refine an already obtained result (e.g., additional filters in a video encoder). A

scheduler for imprecise tasks will ensure that all mandatory parts complete and then execute as many

optional parts as possible.

The common theme in the above approaches is that they formalize the notion that some jobs, or

parts of each job, are “expendable” in an SRT system. The key benefit of using these models (instead

of just relying on measured deadline miss ratios) is that they enable the system designer to make

performance guarantees—they are analytically sound. However, in the context of this dissertation,

they also share a number of key limitations. First, each mentioned model was only analyzed in the

uniprocessor context. Second, they each require additional parameters (besides the core sporadic task

parameters) to be known at runtime, which complicates the kernel-space/user-space interface and

hence their realization in LITMUSRT. Further, model-specific scheduling approaches are required,

i.e., the models do not apply in a meaningful way to all multiprocessor real-time schedulers. Finally,

and most importantly, it is very difficult to implement job skipping, or even outright job abortion, in

a general way in an RTOS such as LITMUSRT. This is because application-specific “cleanup” code

may be required to ensure that application state remains consistent. Aborting jobs in mid-execution

is particularly tricky in the presence of lock-based resource sharing, which we consider in Chapters 5–

7. In fact, to the best of our knowledge, no real-time locking protocol that supports the forcible

revocation of resources (in an analytically sound way) has been published to date.

Bernat et al. (2001) further generalized the (m, k)-model by adding the ability to affix multiple

window constraints to a single task and by enabling additional types of constraints (such as requiring

that m consecutive jobs do not miss their deadlines). They also allow jobs to complete past their

deadlines (as an alternative to being either skipped or aborted), thereby avoiding the need for “cleanup”

support in the RTOS. This allows them to use a generic, POSIX-compliant fixed-priority scheduler

that is unaware of (m, k)-constraints (see Section 2.3.1.1 below); however, their method for assigning

priorities only applies to periodic (and not sporadic) tasks on a uniprocessor.

49



Job utility. Common to the bounded-tardiness SRT definition and the discussed job-skipping-based

approaches is that they treat all deadline misses alike. That is, neither the identity of the late job

nor the magnitude of its tardiness factor into the undesirability of a deadline miss. In practice,

some applications are more sensitive to tardiness than others, and there may in fact exist a cutoff

point (other than the deadline) at which the computed result becomes useless. To express such

considerations, Jensen et al. (1985) developed a scheduling framework based on time utility functions

that map a job’s response time to a utility value (where 0 implies “useless”). Their model is very

general and can express both HRT and SRT “valuations” in the sense that the result of an HRT job is

useless after its deadline, whereas the result of an SRT job may gradually decline in value after its

deadline. Two example value functions are illustrated in Figure 2.10. In this model, the goal of the

scheduler is to maximize the accrued utility. To this end, the scheduler may choose to delay or even

skip low-remaining-value jobs in overload situations. Additional constraints may be imposed on the

scheduler to guide its decisions. For example, it may be required that each HRT job must yield some

positive utility to ensure that they are never skipped.

While utility accrual scheduling is a very versatile concept, it is not necessarily possible to

predict the resulting deadline miss ratio or maximum tardiness. From a practical standpoint, it further

suffers from the same drawbacks as the previously mentioned job-skipping-based approaches (such

as the need for a special-purpose scheduler and job-skipping support). Although this renders utility

accrual scheduling ill-suited for our purposes, it is nonetheless an intriguing approach. We refer the

interested reader to Ravindran et al. (2005), who survey the major developments in the field of utility

accrual scheduling since Jensen et al.’s original work.

Job servers. A very different notion of SRT constraints has been studied in the context of aperiodic

job scheduling. In contrast to sporadic tasks, aperiodic jobs do not necessarily follow a regular arrival

pattern, but may arrive at any time without a bound on inter-arrival separation. This creates a hazard

for regular sporadic tasks. Aperiodic jobs must thus be isolated such that the temporal correctness

of real-time tasks is not endangered while simultaneously minimizing the response times of the

aperiodic jobs. The classic approach to integrating aperiodic jobs is to use a server-based scheme,

where a sporadic-task-like process acts as a server that processes pending aperiodic jobs whenever

the process is scheduled. Much prior work on uniprocessors has investigated how to provision such
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Figure 2.10: Illustration of HRT and SRT utility functions. In this example, there is no value in
completing a late HRT job, whereas the utility of a late SRT job declines with increasing tardiness.

server tasks to minimize their impact on real-time tasks and to also minimize aperiodic response

times (e.g., see Lehoczky et al., 1987; Strosnider et al., 1995; Spuri and Buttazzo, 1994, 1996;

Oikawa and Rajkumar, 1999; Abeni and Buttazzo, 1998, 2004; Lin and Brandt, 2005) and such

techniques have also been developed for multiprocessors (Srinivasan et al., 2002; Baruah et al., 2002;

Baruah and Lipari, 2004a,b; Pellizzoni and Caccamo, 2008; Brandenburg and Anderson, 2007b).

The temporal guarantees offered by such server schemes are “soft” because aperiodic jobs have

predictable response times as long as the server does not become (severely) backlogged, i.e., if the

server is not constantly overloaded. This interpretation of “soft real-time” is orthogonal to the SRT

definition adopted in this dissertation: bounded tardiness is required for sporadic real-time tasks,

whereas server schemes apply to aperiodic background activity, which is not strictly part of the

real-time workload. Conceptually, both notions of “softness” can be combined in a straightforward
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manner such that the response times of aperiodic jobs increase by the server’s tardiness. One

example of aperiodic job servers that may incur bounded tardiness can be found in (Brandenburg and

Anderson, 2007b).

On a final note, probabilistic task models and guarantees offer yet another, extensively researched

notion of “soft real-time.” Devi (2006) reviews several such approaches and how they relate to the

bounded-tardiness notion of SRT correctness. Probabilistic guarantees are beyond the scope of this

dissertation. However, we note that stochastic reasoning can also be applied to obtain probabilistic

tardiness bounds (Mills and Anderson, 2010, 2011).

To summarize, there is a broad consensus that some deadline misses are tolerable in a “soft”

real-time system, but there is no standard definition of SRT correctness. In the end, the choice of

SRT model is a compromise among the expressiveness of the model, its practicality with regard to

both implementing RTOS support and obtaining needed parameters, and the ability to make strong

analytical guarantees. We chose bounded tardiness as the SRT criterion because it is, in our view, a

particularly attractive compromise among the three concerns: it applies without restrictions to the

sporadic task model and is well-founded in theory, a priori guarantees are an integral part of its

definition, and it is comparatively easy to support from an RTOS point of view. Its greatest limitation

is that the existence of a tardiness bound for a task does not automatically yield a bound on its

deadline miss ratio.

2.2.3 Schedulability Analysis Concepts

In preparation for the review of scheduling policies, we next introduce a few key concepts related to

temporal correctness, namely feasibility, optimality, schedulability tests, sustainability, and a set of

common assumptions.

Recall that a task set is schedulable if its temporal constraints will always be satisfied (either

in an HRT or SRT sense). Feasibility of task sets and optimality of scheduling algorithms are both

defined in terms of schedulability. Intuitively, a task set is feasible if it is not impossible to schedule

it and a scheduler is optimal if it can successfully schedule all feasible task sets. To avoid repetition,

the following definitions should both be interpreted with respect to an implementation on a given

platform.
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Definition 2.3. A task set τ is HRT (respectively, SRT) feasible if and only if there exists a scheduling

algorithm A such that τ is HRT (respectively, SRT) schedulable under A.

Definition 2.4. A scheduling algorithmA is optimal in an HRT (respectively, SRT) sense if and only

if every task set τ that is HRT (respectively, SRT) feasible is HRT (respectively, SRT) schedulable

under A.

Feasibility and optimality are commonly considered with respect to some restricted class of

schedulers or platforms, e.g., “optimal among uniprocessor schedulers” or “feasible on a two-

processor platform.”

A straightforward feasibility test is given by the total utilization. Recall that the utilization ui is

the fraction of a processor that must be allocated to Ti in order to match its average rate of execution

if jobs arrive periodically and execute for ei time units each. This implies that the total utilization

cannot exceed the total number of processors, as otherwise the total processor demand could outstrip

the available supply.

Lemma 2.1. A set of sporadic tasks τ is feasible on m processors only if usum(τ) ≤ m.

In the context of job sets (i.e., non-recurrent tasks), a feasibility condition that implies Lemma 2.1

was proven by Horn (1974). Leung and Merrill (1980) stated usum(τ) ≤ m as a feasibility condition

for periodic task sets. A formal proof of Lemma 2.1 for the case m = 1 was given by Baruah et al.

(1990). This proof can easily be generalized to m > 1 and is omitted here.

The necessary condition imposed by Lemma 2.1 applies equally to HRT and SRT feasibility.

HRT and SRT constraints, however, differ with regard to sufficient conditions. In the HRT case,

Lemma 2.1 can in fact be strengthened to an equivalence, but only for implicit-deadline task sets.

Lemma 2.2. A set of implicit-deadline sporadic tasks τ is HRT feasible on m processors if and only

if usum(τ) ≤ m.

Lemma 2.2 follows from the existence of HRT optimal schedulers under which any implicit-

deadline task set with usum(τ) ≤ m is HRT schedulable (see Sections 2.3.1.2 and 2.3.3.3 below).

Unfortunately, the general case of di 6= pi is much more difficult. In fact, optimal online

scheduling of arbitrary-deadline sporadic task sets is impossible on a multiprocessor (Fisher et al.,

2010). Further, a sufficient utilization-bound-based HRT feasibility test also does not exist, as there
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are task sets with arbitrarily small utilizations that are not HRT feasible. For example, m+ 1 tasks

with parameters ei = ε, di = ε and pi = 1 + ε are clearly infeasible (in the HRT sense) on m

processors, yet have arbitrarily small utilization for ε→ 0.

Using the total density instead of total utilization in Lemma 2.2 also does not yield a necessary

HRT feasibility test, as there exist task sets τ with δsum(τ) > m that are in fact HRT feasible on

m processors. For example, consider m + 1 tasks τ = {T1, . . . , Tm+1} with parameters ei = 1

and pi = m + 1 for each Ti, di = 1 for 1 ≤ i ≤ m, and dm+1 = m + 1. Their total density is

δsum(τ) = m+ 1
m+1 , yet τ is HRT feasible on m processors.

Given our focus on implicit-deadline task systems, Lemma 2.2 is adequate for our purposes. See

(Fisher, 2007; Fisher et al., 2010) for recent in-depth discussions of HRT feasibility of arbitrary-

deadline sporadic task sets (and other, more general task models).

SRT feasibility is much simpler due to the less-strict nature of SRT correctness. In fact,

Lemma 2.1 can be strengthened to an equivalence even for arbitrary-deadline task systems.

Lemma 2.3. A set of sporadic tasks τ is SRT feasible on m processors if and only if usum(τ) ≤ m.

Lemma 2.3 directly follows from the existence of SRT optimal schedulers (Devi and Anderson,

2005; Devi, 2006; Leontyev, 2010) under which any implicit-deadline task set with usum(τ) ≤ m is

SRT schedulable (see Section 2.3.3.1 below).

Schedulability and sustainability. The purpose of a schedulability test for a scheduling algorithm

A is to determine a priori, that is, during the design phase, whether a task set will be schedulable

under A, either in a HRT or SRT sense, when implemented on a given platform. Such a test must

be safe (i.e., it may not wrongly claim task sets schedulable), but it may be pessimistic (i.e., it may

return a negative result for a task set that is in fact schedulable). In the latter case, such a test is also

called a sufficient, but not necessary schedulability test. An exact schedulablity test is both necessary

and sufficient, that is, it never returns a wrong answer. Exact schedulability tests are highly desirable,

but difficult to obtain.

Related to schedulability is the concept of sustainability (Baruah and Burns, 2006; Burns and

Baruah, 2008; Baker and Baruah, 2009b). Intuitively, sustainability requires that a task set that

passed a schedulability test should not suddenly fail, i.e., become unschedulable, when the scheduling

problem becomes “easier.” That is, a scheduling algorithm A is sustainable if a task set τ that was
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deemed schedulable under A remains schedulable even if τ is modified, potentially during runtime,

in any of the following ways:

• a period pi is enlarged;

• an execution requirement ei is reduced; or

• a relative deadline di is increased.

In other words, τ must remain schedulable under A when the utilization or density of any task

is (temporarily) reduced. This is very important in practice because task parameters are typically

determined such that ei is an upper bound, whereas pi and di are lower bounds. From an engineering

point of view, all schedulers used in practical systems should thus be sustainable. The concept of

sustainability can similarly be applied to schedulability tests (Baruah and Burns, 2006; Burns and

Baruah, 2008; Baker and Baruah, 2009b). We make heavy use of sustainability with respect to

changes in the execution requirement ei in Chapters 3, 5, 6, and 7.

The definition of sustainability allows a task set τ that passed a sufficient schedulability test T

to fail T after having been modified in one of the ways listed above (unless T is an exact test). That

is, under a sustainable scheduler, τ must remain schedulable if turned into an “easier” task set τ ′, but

a schedulability test that deemed τ schedulable is not required to identify τ ′ as schedulable, too. A

stricter notion of sustainability is self-sustainability (Baker and Baruah, 2009b). A schedulability test

T is self-sustainable if every task set τ that passed T still passes T after a reduction in density or

utilization of any task in τ . If a schedulability test is not self-sustainable, then a system designer may

be faced with the counterintuitive situation that a once-schedulable system design cannot be shown to

be correct after it was simplified—in other words, a non-self-sustainable schedulability test can cause

a failure in validation, but cannot lead to a runtime failure. While self-sustainable schedulability tests

are desirable, non-self-sustainable tests are less problematic than unsustainable scheduling algorithms

because they do not result in incorrect systems (but they may result in increased pessimism). There

are a number of useful schedulability tests for which it is not known (in the published literature)

whether they are sustainable (see Section 2.3.3.1 below).

Common assumptions. We review a number of relevant scheduling algorithms and associated

schedulability tests in the subsequent sections. Most schedulability analysis results make a number of
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standard simplifying assumptions. To avoid repeating these for each schedulability test, we assume

the following task behavior unless noted otherwise.

1. All tasks are independent: tasks do not share any resources besides the processor(s).

2. Jobs do not self-suspend: pending jobs are always ready to execute when allocated a processor

by the scheduler.

3. Jobs are always preemptive: scheduling decisions can be enacted at any time.

4. The task invocation sequence is legal: all job releases of each Ti are separated by at least pi

time units and no job of Ti requires more than ei time units of processor time to complete.

5. All runtime overheads (such as those caused by job migrations, scheduling decisions, context

switches, etc.) are negligible.

Each of these assumptions is to some degree problematic in practice. In fact, as discussed

in detail in Chapter 1, a driving motivation underlying the research presented herein is to remove

Assumptions 1 and 5 by integrating predictable resource-sharing protocols and by accounting for

runtime overheads prior to schedulability analysis. Nonetheless, we shall first describe the scheduling

algorithms and their schedulability tests assuming idealized task behavior, and describe how to

remove these assumptions in subsequent sections and chapters.

2.3 Real-Time Scheduling

In this section, we discuss scheduling from an algorithmic point of view; implementation issues and

overheads are considered in detail in Chapter 3. The following review is intended both to provide the

needed background for the presentation of our overhead-aware scheduler evaluation methodology

in Chapters 3 and 4, and also to document—in one place—the algorithms that are implemented

in LITMUSRT and their supporting analysis. We therefore focus on examples and the intuition

underlying the discussed algorithms and omit proofs, which can be found in the cited works.

When the number of pending jobs exceeds the number of processors m, a scheduler is required

to assign (at most) m of the pending jobs to processors.4 There are several categories of schedulers.

4See (Fisher, 2007) for a formalization of the concepts of “schedule” and “scheduling algorithm.”
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Static schedulers, also known as table-driven schedulers, enact a task-set-specific allocation policy

that is pre-computed during the design of the system. Such schedulers are easy to implement and

straightforward to validate as only the pre-computed table needs to be checked. This makes static

schedulers an ideal choice for safety-critical systems. However, they are generally too inflexible

for sporadic workloads (with unpredictable inter-arrival delays). In contrast, dynamic schedulers

evaluate scheduling rules to make scheduling decisions online based on the current system state such

as the set of pending jobs and their parameters, that is, they do not rely primarily on pre-computed

information. In this dissertation, we only consider dynamic schedulers.

We further restrict our attention to the class of priority-driven schedulers. Conceptually, a

priority-driven scheduler instantiated for m processors works as follows: each pending job is

assigned a priority, pending jobs are queued in a priority queue ordered by job priority, and the

m pending jobs with the highest priorities (if that many exist) are scheduled. If there are fewer

than m jobs pending, then some of the processors execute (non-real-time) background tasks or idle.

While actual implementations may diverge substantially from this simple description, the conceptual

framework of priority-driven scheduling describes a large class of real-time schedulers. This class

can further be sub-divided according to when scheduling decisions are made and how job priorities

may change over time

Scheduling events. A scheduler is said to reschedule when it alters the current job-to-processor

mapping. A priority-driven scheduler may have to reschedule either when the set of pending jobs

changes, i.e., when a job is released or completes, or when the priority of a job changes. With

regard to the time when such a scheduling event is processed, priority-driven schedulers are either

event-driven or quantum-driven. Event-driven schedulers react to job releases, job completions, and

priority changes without delay and reschedule immediately when required. In contrast, quantum-

driven schedulers only reschedule at times that are multiples of a scheduling quantum Q, that is,

the scheduler is invoked only once every Q time units and scheduling events may be processed

with a delay of up to Q time units. For now, we only consider event-driven schedulers and revisit

quantum-driven scheduling in Section 2.3.3.3 below.

Priorities. A scheduling policy assigns each pending job a priority. We let Y(Ji, t) denote the

priority assigned to Ji at time t. For notational convenience, we require that priorities are unique and
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that there exists a total order such that Y(Jx, t) < Y(Jy, t) if and only if Jx has a higher priority than

Jy at time t. Based on the prioritization function Y, we can differentiate between three fundamental

classes of priority-based schedulers. In a fixed-priority (FP) scheduler, all jobs of a task share a

common, constant priority, i.e., fixed priorities are assigned to tasks and jobs are scheduled according

to their tasks’ priorities. Formally, Y(Ji,x, tx) = Y(Ji,y, ty) for any two jobs Ji,x and Ji,y and any

two times tx ∈ [ai,x, fi,x] and ty ∈ [aa,y, fi,y]. Priority changes are allowed in a job-level fixed-

priority (JLFP) scheduler, but only at job boundaries, i.e., fixed priorities are assigned to jobs and not

tasks. Formally, Y(Ji,x, t1) = Y(Ji,x, t2) for any two times t1, t2 ∈ [ai,x, fi,x]. The class of JLFP

schedulers includes FP schedulers. The final and most general class is job-level dynamic-priority

(JLDP) schedulers. Under a JLDP scheduler, a job’s priority may change at any time.

A fundamental constraint in the scheduling of sporadic tasks is that a job may be assigned to at

most one processor at any time: tasks are sequential. This seemingly benign restriction on parallelism

has the profound impact that multiprocessor real-time scheduling is substantially more difficult than

uniprocessor scheduling (Dhall and Liu, 1978). We review the uniprocessor case next and consider

multiprocessor scheduling in Sections 2.3.2–2.3.4 below.

2.3.1 Uniprocessor Real-Time Scheduling

The seminal work on uniprocessor real-time scheduling is due to Liu and Layland (1973). They

introduced optimal FP and JLFP policies for the scheduling of periodic tasks and developed

corresponding schedulability tests, which Mok (1983) transferred to the sporadic task model.

2.3.1.1 Fixed-Priority Scheduling

In work on FP scheduling, it is common to index tasks in order of decreasing priority, which we

adopt as well. The priority function for FP scheduling can then simply be defined as Y(Ji, t) = i.

The question is then how to order the tasks in a task set. Liu and Layland (1973) introduced the

rate-monotonic (RM) priority assignment. Under RM scheduling, tasks are indexed in order of

increasing period: if pi < pj , then i < j. Any ties in period are broken arbitrarily.

Example 2.3. Figure 2.11 depicts an example RM schedule of the task set presented in Table 2.4. At

time 0, all four tasks release jobs, which are scheduled in order of decreasing task priority. At time 4,

58



ei pi ui

T1 1 4 1
4 = 45

180 = 0.25

T2 1 5 1
5 = 36

180 = 0.20

T3 3 9 1
3 = 60

180 ≈ 0.33

T4 3 18 1
6 = 30

180 ≈ 0.17

usum(τ) 171
180 ≈ 0.95

Table 2.4: Example task set.

J3,1 is preempted by J2,1 and not scheduled again until time 6, when J2,2 completes. J4,1 is not

scheduled until time 7, when all previously released higher-priority jobs have completed. However, it

is immediately preempted again at time 8 when J1,3 is released. T3 exhibits an intra-sporadic arrival

delay of one time unit at time 9, when its second job is not released until time 10, which gives J4,1 a

chance to be scheduled during [9, 10). Note that J4,1 completes exactly on time, that is, f4,1 = d4,1.

♦

In the context of implicit-deadline periodic tasks, Liu and Layland (1973) proved that RM

scheduling is in fact optimal with respect to FP schedulers (i.e., any task set that is schedulable

under some FP scheduler is also schedulable under RM scheduling) and derived the following

schedulability test (which is given here adapted to sporadic tasks).

Theorem 2.1 (Liu and Layland, 1973). On a uniprocessor, a set of n implicit-deadline sporadic

tasks τ = {T1, . . . , Tn} is schedulable under RM scheduling if usum(τ) ≤ n(21/n − 1).

The bound n(21/n − 1) converges to ln 2 ≈ 0.69 for n → ∞. Liu and Layland showed that

this is the highest-achievable utilization bound for RM and hence also FP scheduling—there exist

release

completion

deadline

job scheduled

20151050 time

T1

T2

T3

T4

Figure 2.11: Example schedule of four tasks under uniprocessor FP scheduling with RM priorities.
The parameters of the tasks are given in Table 2.4. This schedule is discussed in Example 2.3.

59



implicit-deadline task sets with total utilization just slightly exceeding the bound that are not HRT

schedulable under any FP scheduler. Given that any implicit-deadline task set with utilization at most

one is feasible on a uniprocessor (Lemma 2.2), this shows that FP scheduling is not HRT optimal

on a uniprocessor. Rather, up to 30 percent of a processor’s capacity may have to remain unused to

ensure HRT schedulability under FP scheduling.

The RM priority assignment is not optimal for non-implicit deadlines. Leung and Whitehead

(1982) showed that the deadline-monotonic DM priority assignment, where i < j if di < dj , is

instead optimal for constrained-deadline task sets. Since pi = di for implicit-deadline tasks, DM

scheduling generalizes RM scheduling. A simple schedulability test for DM scheduling can be

obtained by substituting δsum(τ) for usum(τ) in Theorem 2.1.

However, note that Theorem 2.1 is not an equivalence: there exist higher-utilization task sets

that are in fact schedulable under RM scheduling. For example, two implicit-deadline tasks with

parameters ei = 1 and pi = 2 are schedulable under RM scheduling and have a total utilization

1 > 2(21/2 − 1) ≈ 0.83. Similarly, the task set from Example 2.3 has a total utilization of

usum(τ) = 171
180 ≈ 0.95 (see Table 2.4), which exceeds the bound 4(21/4 − 1) ≈ 0.76, yet appears to

be HRT schedulable in the example schedule shown in Figure 2.11.

An exact schedulability test for constrained-deadline tasks under FP scheduling (i.e., under any

priority assignment) was later developed by Joseph and Pandya (1986). Their approach is to compute

an upper bound Ri on the maximum response time ri for each task explicitly. Given such a bound

for each task Ti, HRT schedulability can be established by checking that ri ≤ Ri ≤ di. The bound

Ri can be found using the following recursion.

Theorem 2.2 (Joseph and Pandya, 1986). Let τ = {T1, . . . , Tn} denote a set of constrained-deadline

sporadic tasks indexed in order of decreasing priority. On a uniprocessor, under FP scheduling, the

response ri of task Ti ∈ τ is bounded by the smallest Ri, where Ri ≥ ei, that satisfies the following

equation:

Ri = ei +

i−1∑

h=1

⌈
Ri
ph

⌉
· eh.

Each Ri can be iteratively computed by using ei as an initial value for Ri and by repeatedly

re-evaluating the right-hand side until it and the left-hand side converge. Convergence is guaranteed

as long as usum(τ) ≤ 1 (Joseph and Pandya, 1986).
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Example 2.4. Consider the task set τ from Example 2.3 with parameters as given in Table 2.4.

Applying Theorem 2.2 to each Ti ∈ τ yields the following response-time bounds.

R1 = e1 = 1

R2 = e2 +

⌈
R2

p1

⌉
· e1 = 1 +

⌈
2

4

⌉
· 1 = 2

R3 = e3 +

⌈
R3

p1

⌉
· e1 +

⌈
R3

p2

⌉
· e2 = 3 +

⌈
7

4

⌉
· 1 +

⌈
7

5

⌉
· 1 = 7

R4 = e4 +

⌈
R4

p1

⌉
· e1 +

⌈
R4

p2

⌉
· e2 +

⌈
R4

p3

⌉
· e3 = 3 +

⌈
18

4

⌉
· 1 +

⌈
18

5

⌉
· 1 +

⌈
18

9

⌉
· 3 = 18

Note that each task’s response-time bound matches the actual response time of its first job in

Figure 2.11. This is because a critical instant, which is a point in time when a newly-released job’s

response time is maximized, occurs when all tasks release a job at the same time (Liu and Layland,

1973). Since Ri ≤ di = pi for each Ti, the task set is indeed HRT schedulable under RM scheduling.

♦

Using Theorem 2.2 in this manner to establish HRT schedulability is called response time

analysis. Baruah and Burns (2006) showed that response time analysis is sustainable and thus well-

suited to determining schedulability in practical systems. Similar tests that also estimate worst-case

response times but may converge more quickly were later developed by Lehoczky et al. (1989) and

Audsley et al. (1991). Joseph and Pandya’s response time bound, as stated in Theorem 2.2, applies to

constrained-deadline sporadic tasks only. A response time test for arbitrary-deadline tasks exists as

well, but requires considering longer intervals since multiple jobs of a task may be pending at the

same time (Lehoczky et al., 1991).

Note that, for a given invocation sequence, the actual maximum response time ri may be well

less than the worst-case response time bound Ri, but the bound Ri is tight in the sense that there exist

legal invocation sequences such that ri = Ri (e.g., as in Figure 2.11). For this reason, the response

time test is an exact HRT schedulability test for constrained-deadline sporadic tasks: if Ri > di for

some Ti, then there exists a legal invocation sequence such that some Ji misses its deadline.

Recall that such deadline misses are allowed in an SRT context provided that tardiness is bounded,

i.e., a task set τ is SRT schedulable if there exists a constantB such thatRi ≤ di+B for each Ti ∈ τ .
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release

completion

deadline

scheduled (unchanged)

20151050 time

T1

T2

T3

T4

scheduled (earlier)

scheduled (later)

Figure 2.12: Example EDF schedule of the task set given in Table 2.4. Grey and black processor
allocations indicate differences from the FP schedule shown in Figure 2.11. A grey allocation
indicates that a job received processor service earlier than in the FP case; a black allocation means
that the job was processed at a later point in time under EDF scheduling. This schedule is discussed
in Example 2.5.

Joseph and Pandya (1986) considered this case as well:5 as long as a finite Ri for task Ti exists,

which it does if usum(τ) ≤ 1 (Joseph and Pandya, 1986), a valid tardiness bound for Ti is given

by Ri − di.6 This implies that FP scheduling is in fact SRT optimal with respect to uniprocessor

schedulers since any task set with utilization exceeding one is infeasible on a uniprocessor.

2.3.1.2 Job-Level Fixed-Priority Scheduling

The most important JLFP real-time scheduler is the earliest-deadline-first (EDF) policy, which

prioritizes each job by its absolute deadline. Absolute deadlines are not necessarily unique since

multiple jobs may have their absolute deadlines at the same point in time. We therefore use the task

index as a consistent deadline tie-break; formally, a job Ji,j’s priority is denoted as Y(Ji,j , t) =

(di,j , i), with the interpretation (di,j , i) < (dx,y, x)⇔ di,j < dx,y ∨ (di,j = dx,y ∧ i < x).

Example 2.5. The example EDF schedule depicted in Figure 2.12 shows the same task set previously

considered in Example 2.3. Most of the scheduling decisions taken by EDF are identical to those

made by FP. However, at time 5, Y(J3,1, 5) = (9, 3) < (10, 2) = Y(J2,2, 5), so that J3,1 and

J2,2’s allocations are switched (compared to the FP schedule shown in Figure 2.11). Notably, J4,1’s

5Joseph and Pandya’s work predates the adoption of bounded tardiness as a notion of SRT correctness (Srinivasan and
Anderson, 2003; Devi and Anderson, 2005). Joseph and Pandya (1986) actually derived a bound on the maximum input
buffer size required to compensate for missed deadlines, which requires bounding maximum tardiness.

6Joseph and Pandya proved the existence of a finite Ri if usum(τ) ≤ 1; however, the formula for Ri given in (Joseph
and Pandya, 1986) is unfortunately not necessarily sufficient for the SRT case. A tardy job may still be pending when
its successor is released, which causes analytical complications similar to allowing arbitrary deadlines; the generalized
approach presented in (Lehoczky et al., 1991) should be used instead.
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response time is much lower under EDF (r4,1 = 12 instead of 18 in the FP case), which requires

J3,2 and J2,4 to be delayed. J2,4 and J1,5 have the same absolute deadline d2,4 = d1,5 = 20, so the

tie in priority at time 16 is broken in favor of J1,5 due to its lower task index. ♦

EDF derives its significance from being optimal on a uniprocessor (Liu, 1969a; Liu and Layland,

1973; Labetoulle, 1974; Dertouzos, 1974), that is, on a uniprocessor, any feasible arbitrary-deadline

task set is HRT schedulable under EDF.7 In the case of implicit-deadline sporadic tasks, this results

in a simple utilization bound.

Theorem 2.3 (Liu, 1969a; Liu and Layland, 1973). On a uniprocessor, a set of implicit-deadline

sporadic tasks is HRT schedulable under EDF if and only if usum(τ) ≤ 1.

Since SRT schedulability generalizes HRT schedulability, EDF is also optimal in the SRT sense.

EDF is optimal in the case of arbitrary deadlines as well; however, testing for HRT schedulability

becomes more involved. A simple, but inexact HRT schedulability condition can be obtained by

substituting total density for the total utilization in Theorem 2.3, which yields the following density

bound.

Theorem 2.4. On a uniprocessor, a set of arbitrary-deadline sporadic tasks is HRT schedulable under

EDF if δsum(τ) ≤ 1.

While simple, this test can be very pessimistic for constrained-deadline task sets. Exact tests

have been developed for this case as well (Baruah et al., 1990; Albers and Slomka, 2005);8 however,

these tests are of pseudo-polynomial time complexity and can thus be very expensive to compute. As

a compromise, inexact polynomial-time tests, which yield (slightly) more pessimistic results at the

benefit of greatly reduced computational effort, have been developed as well (Devi, 2003; Masrur

et al., 2008, 2010). Baruah and Burns (2006) showed that any sufficient schedulability test for the

EDF scheduling of sporadic tasks on a uniprocessor is sustainable.

Summary. On a uniprocessor, any implicit-deadline task set is feasible as long as the processor is

not overutilized. In the HRT case, FP scheduling is subject to capacity loss: up to 30 percent of

processor capacity may have to remain unallocated to ensure HRT constraints. On the positive side,

7In fact, EDF’s optimality extends to arbitrary job sets, i.e., EDF is an optimal uniprocessor scheduler even if job
arrivals are not constrained by the sporadic task model (Jackson, 1954; Horn, 1974).

8Strictly speaking, Baruah et al.’s test requires usum(τ) < 1 and thus is almost exact.
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response-time analysis can identify all schedulable task sets, i.e., it is an exact schedulability test.

In contrast to FP scheduling, the JLFP policy EDF is optimal on a uniprocessor and not subject to

any capacity loss. Neither FP nor EDF scheduling incur capacity loss in the SRT case, that is, both

ensure bounded tardiness for any feasible task set. However, for implicit-deadline task sets, tardiness

is always zero under EDF, but not necessarily so under FP scheduling. From a schedulability

point of view—that is, if the goal is to guarantee schedulability for as many feasible task sets as

possible—there is thus no reason to prefer FP over EDF scheduling. This substantiates the criticism

expressed in Chapter 1.

For similar reasons, we do not consider uniprocessor JLDP scheduling. While such policies

exist, they offer only little (if any) advantages over EDF scheduling and are thus of limited practical

relevance. However, JLDP policies are of great importance in the context of multiprocessor real-time

scheduling, as is discussed in Section 2.3.3.

2.3.2 Partitioned Multiprocessor Real-Time Scheduling

There are two fundamental approaches to applying priority-driven scheduling to a shared-memory

multiprocessor: either all available processors are scheduled using one scheduler (with, conceptually

speaking, a single, shared ready queue), or the set of processors is subdivided into smaller, disjoint

sets of processors that are scheduled independently (by separate priority-driven schedulers, each

with a local ready queue). The former approach is called global scheduling, and the latter approach

is called either clustered or partitioned scheduling, depending on the number of processors per set.

Under partitioned scheduling, there is only one processor in each subdivision (called a partition in

this case), whereas there may be multiple processors per subdivision under clustered scheduling (and

each subdivision is called a cluster). We first consider partitioned scheduling, followed by global

scheduling in Section 2.3.3 below. Finally, clustered scheduling, which can be understood either as a

hybrid or as a generalization of global and partitioned scheduling, is discussed in Section 2.3.4.

Partitioned scheduling, first studied in the context of real-time systems by Dhall and Liu (1978),

is the multiprocessor real-time scheduling approach most commonly used in practice. Its great

appeal stems from the fact that each partition (i.e., each processor) can be scheduled and analyzed

using existing uniprocessor techniques. We consider both FP and EDF partitioned schedulers,
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namely partitioned FP (P-FP) and partitioned EDF (P-EDF).9 However, the reuse of existing

uniprocessor scheduling theory comes at a price. To obtain m simpler uniprocessor problems from

a multiprocessor platform consisting of m processors, the task set must first be partitioned, that is,

each task must be statically assigned to a partition such that no processor is overloaded. Solving this

task assignment problem requires solving a bin-packing-like problem.

Bin-packing. The bin-packing problem is a classic intractable problem that is NP-hard in the strong

sense (Garey and Johnson, 1979). Given a bin capacity V and a set of n items x1, . . . , xn with

corresponding sizes a1, . . . , an, the goal is to assign each item to a bin such that the number of bins

is minimized, but without exceeding the capacity of any bin. The corresponding decision problem is

to determine for a given number B whether there exists a “packing” (i.e., item-to-bin assignment)

such that the items fit into B bins.

In the context of partitioned scheduling, the items are tasks and their respective sizes are given

by their utilizations. Processors correspond to bins and each bin’s effective capacity V is dependent

on the scheduling policy in use and the type of deadline constraint. In the case of implicit deadlines

and EDF, each processor has a capacity of 1.0. Partitioning a task set is equivalent to solving a

bin-packing problem in the sense that an implicit-deadline task set is feasible on m processors under

partitioned scheduling if and only if there exists a “packing” of all tasks into m “bins.” In other

words, the bin-packing decision problem can be reduced to task-set partitioning in polynomial time

(by scaling item sizes and bin sizes), which implies that finding an optimal task assignment in all

cases is intractable (unless P = NP ). Dhall and Liu (1978) formally proved that the task assignment

problem is indeed NP-hard in the strong sense by showing that a solution can be used to solve the

3-partition problem (Garey and Johnson, 1979).

The practical implication is that we can use existing bin-packing heuristics to find valid task

assignments. The literature on bin-packing heuristics is extensive and a comprehensive review is

beyond the scope of this dissertation. Instead, we briefly summarize the heuristics most relevant to

our work and refer the interested reader to (Coffman et al., 1997). In the description of the heuristics

below, let Sj denote the set of items assigned to the jth bin and let Vj denote the remaining capacity

9In principle, it would also be possible to use different scheduling policies on different processors, e.g., some processors
could be scheduled with EDF and some with FP, but this is currently not supported in LITMUSRT (and we are not aware
of any research into such mixed-policy systems). Since our main interest is to compare schedulers under consideration of
overheads, we only consider “pure” P-EDF and P-FP.
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of the jth bin, i.e., Vj = V −∑xi∈Sj
ai. Initially, there is only one (empty) bin, but additional bins

can be added by the heuristic as required. Bins are indexed in the order in which they are created.

It is generally more difficult to pack large items (in relation to the bin size V ) as smaller items

are more likely to fit into the remaining capacity of partially used bins. Therefore, it is beneficial to

pack items in order of decreasing size, which is easy to accommodate during off-line partitioning.

We hence assume that the items have been sorted such that a1 ≥ a2 ≥ . . . ≥ an prior to applying

one of the following placement heuristics.

First-fit decreasing. To place an item xi, the first-fit heuristic considers each bin in index order and

places xi in the first bin where it fits. That is, item xi is added to Sj if Vj ≥ ai and Vl < ai for each

l ∈ {1, . . . , j − 1}. If no such j exists, then xi is placed in a new empty bin that is appended to the

packing. Asymptotically, i.e., for a large number of bins, the first-fit decreasing heuristic requires at

most 11
9 ≈ 1.22 times the number of bins used by an optimal solution (Johnson, 1973, 1974). For a

small number of bins (less than 4), first-fit decreasing requires no more than 1.5 times the number of

bins used by an optimal solution (Simchi-Levi, 1994).

Best-fit decreasing. In contrast to the first-fit heuristic, the best-fit heuristic considers all bins and

selects the bin that will have minimal remaining capacity after placing item xi. Let L = {l | Vl ≥ ai}

denote the set of bins that have sufficient remaining capacity. Item xi is added to Sj , where j ∈ L,

such that Vj ≤ Vl for each l ∈ L (prior to placing xi, with ties broken arbitrarily). If no such j

exists, then xi is placed in a new empty bin. The best-fit heuristic is known to compare well to other

online bin-packing heuristics (Kenyon, 1996), usually deviating only little from an optimal solution

(with regard to the number of required bins). As it is the case with the first-fit heuristic, the best-fit

heuristic requires (asymptotically) at most 11
9 ≈ 1.22 times the number of bins used by an optimal

solution (Johnson, 1973, 1974), and yields results within a factor of 1.5 of the optimal solution for

small numbers of bins (Simchi-Levi, 1994).

Worst-fit decreasing. As the name implies, the worst-fit heuristic is the inverse of the best-fit

heuristic, that is, item xi is placed to maximize the remaining capacity of the bin in which it is placed.

Define L as above. Item xi is placed in the jth bin, where j ∈ L, such that Vj ≥ Vl for each l ∈ L.

Again, xi is placed by itself into a newly-added bin if no such j exists. The worst-case performance

of the worst-fit decreasing heuristic is somewhat worse than that of either the first-fit or best-fit
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Assigned bin using
Item size first-fit best-fit worst-fit

0.0 < ai ≤ 0.1 bin 1 bin 2 bin 3
0.1 < ai ≤ 0.3 bin 1 bin 1 bin 3
0.3 < ai ≤ 0.5 bin 3 bin 3 bin 3
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Figure 2.13: Illustration of the first-fit, best-fit, and worst-fit bin-packing heuristics.

decreasing heuristics: asymptotically, the worst-fit decreasing heuristic uses at most 5
4 = 1.25 times

the number of bins used by an optimal solution (Johnson, 1973, 1974).

Example 2.6. Figure 2.13 shows three bins with remaining capacity V1 = 0.3, V2 = 0.1, and

V3 = 0.5, respectively. The bin in which the next item xi will be placed depends on both its size ai

and the choice of bin-packing heuristic, as indicated by the table in Figure 2.13. Suppose ai = 0.1.

Then the first-fit heuristic would assign xi to S1, the best-fit heuristic would assign xi to S2, and the

worst-fit heuristic would choose S3. For larger items, there are fewer candidate bins; for ai > 0.3,

any (reasonable) heuristic must assign the item to the third bin. ♦

Assigning tasks. The above “textbook” heuristics attempt to minimize the number of bins by

assigning items to partially used bins whenever possible and only allocating a new bin when

absolutely required. This is a slight mismatch to the problem of partitioning a task set onto a given

multiprocessor platform, where the number of processors m is fixed. That is, it is not immediately

possible to just add another processor, nor is it of great benefit to leave present processors completely

unallocated to real-time tasks.10 We therefore interpret these heuristics as follows: there are initially

m empty bins, and any attempt to allocate additional bins indicates that the heuristic failed to partition

the task set. This has little impact on the first-fit and best-fit heuristics, which attempt to fully allocate

processors before assigning tasks to idle processors, but causes the worst-fit heuristic to spread out

the total utilization more-or-less evenly among all processors.

Spreading out the load among all processors is preferable for several reasons. First, there is

little benefit to leaving available processors unused. Second, from an engineering point of view,

it makes each processor more resilient to transient overloads. And third, some remaining “idle”

capacity is required on each processor to compensate for the inflation of task utilizations caused

10Depending on the energy model, this may not be the case in the context of energy-aware systems.
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by overhead accounting (see Chapter 3). For these reasons, we use the worst-fit heuristic to assign

tasks to processors. While it may appear counterintuitive to use a heuristic with a worse worst-case

performance than either first-fit or best-fit, the worst-fit heuristic works well in practice and has

been used successfully by us in (Brandenburg et al., 2008; Bastoni et al., 2010b, 2011). This

choice is further supported by experiments carried out by López et al. (2004a), who considered

partitioning heuristics for P-FP scheduling where the Liu and Layland (1973) RM bound is used to

check schedulability on each processor. They observed that there is no significant difference among

placement heuristics when tasks are placed in order of decreasing utilization (as we do). They also

formally showed that all “reasonable” placement heuristics yield the same utilization bound (for the

described setup) when tasks are placed in order of decreasing utilization (López et al., 2004a).

Limitations. While finding optimal task assignments is intractable in the general case, the above bin-

backing heuristics typically find near-optimal solutions. That is, for task sets that can be partitioned

onto m processors at all, it is usually possible to find a valid task assignment, and particularly for task

sets that do not fully utilize a platform (i.e., if there is ample spare capacity). Unfortunately, there exist

task sets with total utilization much less than m that cannot be partitioned onto m processors, even

using an optimal assignment algorithm, i.e., one that minimizes the number of required processors.

For example, consider the implicit-deadline task set τABJ = {T1, . . . , Tm+1} due to Andersson

et al. (2001), where, for each Ti ∈ τABJ , pi = 2 and ei = 1 + ε for some positive ε. The total

utilization of τABJ is usum(τABJ ) =
∑m+1

i=1
1+ε

2 = (m+ 1) · 1+ε
2 . By design, no two tasks of τABJ

can be assigned to the same processor because their combined utilization would exceed the capacity

of a single processor, i.e., 2 · 1+ε
2 = 1 + ε > 1 for ε > 0. Therefore, τABJ requires at least m+ 1

processors and is thus not feasible on m processors under partitioned scheduling. However, for

ε→ 0, τABJ ’s total utilization approaches m+1
2 . Recall from Section 2.2.3 that implicit-deadline task

sets are feasible on m processors if their total utilization does not exceed m. The existence of task

sets with utilization (m+1)
2 · (1 + ε) that are infeasible under partitioning shows that, asymptotically,

i.e., for large m, partitioned scheduling can cause up to nearly 50 percent capacity loss, no matter

which scheduling policy is employed on each processor and which partitioning heuristic is being

used.
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However, this is merely an upper bound, i.e., it leaves open the question whether all implicit-

deadline task sets with total utilization at most m+1
2 are necessarily schedulable under partitioning.

In the case of P-EDF, the optimality of EDF on a uniprocessor implies that any implicit-deadline

task set that can be partitioned onto m processors is also HRT schedulable. López et al. (2004b)

showed that the desired utilization bound can in fact be realized with any of the bin-packing heuristics

discussed in this section (among other heuristics).

Theorem 2.5 (López et al., 2004b). An implicit-deadline task set τ is HRT schedulable under

P-EDF scheduling on m processors if usum(τ) ≤ m+1
2 when using either the first-fit, best-fit, or

worst-fit decreasing heuristic.

In fact, López et al. proved a more-general result, but the special case stated in Theorem 2.5

is sufficient for our purposes. Note that even the use of an optimal bin-packing algorithm could

not yield a higher utilization bound due to the existence of hard-to-pack task sets such as τABJ

above (López et al., 2004b). In this sense, the stated utilization bound is the best possible. However,

it is merely a sufficient, but not an exact, schedulability test. It is thus generally preferable to test

whether a given task set is schedulable (either HRT or SRT) by simply partitioning the task set (if

possible) and by applying an exact test to each partition. This approach also works in the case of

non-implicit deadlines.

Since EDF is optimal on a uniprocessor and FP scheduling is not, one might reasonably expect

a significantly worse utilization bound under P-FP scheduling. Surprisingly, this is not the case. Oh

and Baker (1998) were the first to consider a utilization bound for P-FP scheduling. They showed

that no priority assignment can ensure a utilization bound higher than (m + 1) ·
(

1 + 2
1

m+1

)−1
,

which converges to m+1
2 for large m. Asymptotically, the upper bound on a utilization bound under

P-FP scheduling matches the general upper bound on any partitioned scheduler and is not worse

than the bound for P-EDF. For example, for m = 24, the P-FP bound corresponds to ≈ 0.516m,

whereas the P-EDF bound yields m+1
2 ≈ 0.521m, a minuscule difference. Oh and Baker (1998)

further showed that any implicit-deadline task set τ is HRT schedulable under P-FP scheduling

when used with the RM priority assignment if usum(τ) ≤ (
√

2− 1) ·m ≈ 0.414m, hence leaving a

utilization difference of 0.086m compared to the theoretical upper limit. This gap was later closed

by Andersson and Jonsson (2003), who proved the following result.
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Theorem 2.6 (Andersson and Jonsson, 2003). An implicit-deadline task set τ is HRT schedulable

under P-FP scheduling if usum(τ) ≤ m
2 .

A particular, specific-purpose task assignment algorithm must be used to realize the stated

bound (Andersson and Jonsson, 2003). However, as it is the case with P-EDF, it is more practical to

just partition a given task set (if possible) and apply response-time analysis to each partition due to

the inexact nature of Theorem 2.6. The key observation here is that P-EDF and P-FP scheduling

have a utilization bound of approximately m
2 for large m. It is therefore not readily apparent which is

preferable from a capacity-loss point of view. We explore this question in the case study presented in

Chapter 4.

2.3.3 Global Multiprocessor Real-Time Scheduling

Under priority-driven global scheduling, the m highest-priority pending jobs are scheduled at any

time (if that many exist). Preemptions thus only affect the lowest-priority scheduled job, that is,

when a new job Ji is released at time t, it preempts the mth highest-priority scheduled job Jm

if Y(Ji, t) < Y(Jm, t). The appeal of global scheduling is that it can overcome the algorithmic

capacity loss inherent in partitioned scheduling. Conceptually, all processors service a single, shared

ready queue under global priority-driven scheduling (though an actual implementation may use

more advanced data structures with some processor-local state). This eliminates the need to solve

a task assignment problem, which is the source of capacity loss under partitioned scheduling. As

a result, there exist optimal global schedulers for implicit-deadline tasks, with regard to both SRT

and HRT constraints. Unfortunately, no optimal schedulers exist in the case of constrained- and

arbitrary-deadline tasks (Fisher et al., 2010). In this section, we review two global priority-driven

schedulers in detail, namely global EDF (G-EDF) and the proportionate fair algorithm PD2. Both

are optimal for implicit-deadline tasks: G-EDF only with regard to SRT constraints, and PD2

also with regard to HRT constraints. Furthermore, we briefly discuss global fixed-priority (G-FP)

scheduling, which is neither SRT nor HRT optimal.

Global scheduling of real-time tasks was first considered by Dhall and Liu in the context of the

periodic task model and HRT constraints (Liu, 1969b; Dhall and Liu, 1978). Notably, they showed

that neither RM nor EDF retains its respective optimality property when the number of processors
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m exceeds one (discussed below). Specifically, they demonstrated that there exist task sets of total

utilization approaching one that are unschedulable under either approach (Dhall and Liu, 1978). In

other words, in an HRT context, both G-FP with the RM priority assignment and G-EDF can be

subject to algorithmic capacity loss approaching m− 1—there is no guarantee that these schedulers

can derive any analytical benefit from multiple processors at all. Given these early negative results

(and the lack of widespread availability of shared-memory multiprocessor platforms), interest in the

global scheduling was quite limited in the first two decades of research into real-time systems (Davis

and Burns, 2011b). However, this has changed in recent years.

Renewed interest in the algorithmic properties of global scheduling was sparked by Baruah

et al. (1996), who designed and analyzed the first optimal (with regard to periodic tasks and implicit

deadlines) multiprocessor scheduler that is implementable, i.e., that does not rely on fractional or

infinitesimal processor allocations. With the widespread emergence of shared-memory and shared-

cache multicore platforms in this decade, global real-time scheduling gained practical relevance as

well. For the sake of consistency, we review global scheduling policies relevant to our work in order

of fixed to dynamic priorities, even though this order does not reflect the historic development.

2.3.3.1 Global Fixed-Priority Scheduling

Recall that FP scheduling policies only differ in the way that priorities are assigned. As mentioned

above, Dhall and Liu (1978) demonstrated that the RM policy is not an optimal priority assignment

for G-FP scheduling. To show this so-called Dhall effect, they constructed the following task set.

Given m processors, consider a set of n > m implicit-deadline tasks τ = {T1, . . . , Tm+1}, where

ei = 2 · ε and pi = 1 for 1 ≤ i ≤ m, and em+1 = 1 and pm+1 = 1 + ε. Under an RM priority

assignment, τ is not HRT schedulable even though usum(τ) → 1 as ε → 0. An illustration of the

Dhall effect for m = 2 and n = 3 is depicted in Figure 2.14. As J3 has the latest deadline in this

example, it would miss its deadline under G-EDF scheduling as well, which demonstrates that

the Dhall effect limits both global RM and G-EDF scheduling. Note, however, that τ would be

schedulable if the priorities of T1 and T3 were switched, that is, the Dhall effect applies specifically

to global RM scheduling and not G-FP scheduling in general.

Devi (2006) further showed that the RM priority assignment does not necessarily ensure bounded

tardiness under G-FP scheduling. She constructed a three-task implicit-deadline example for m = 2,
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Figure 2.14: Illustration of the Dhall effect for m = 2. J3,1 misses its deadline at time d3,1 = 1 + ε
because it is not scheduled until time 2ε, which leaves only 1 − ε time units until its deadline to
complete e3 = 1 time units of work.

where e1 = e2 = 2, p1 = p2 = 3, and e3 = 4 and p3 = 6 (Devi, 2006). A resulting schedule

with unbounded tardiness is illustrated in Figure 2.15. Since jobs of T3 are repeatedly preempted

when jobs of T1 and T2 arrive simultaneously, the response time of successive jobs of T3 grows

unboundedly. Again, note that giving T3 higher priority would alleviate the problem. Devi’s example

highlights that tasks are vulnerable to starvation under G-FP scheduling and that priorities must be

carefully chosen. This is in contrast to the uniprocessor case, where any priority assignment results

in bounded tardiness as long as the processor is not overutilized (Joseph and Pandya, 1986).

In fact, there exist task sets that are unschedulable under any priority assignment. Recall

Andersson et al.’s task set τABJ consisting of m + 1 implicit-deadline tasks with parameters

ei = 1 + ε and pi = 2, which is the pathological example that was used to show that there exist

“unpartitionable” task sets (see page 68). On m processors, τABJ is not schedulable under any FP

scheduler: irrespective of the priority assignment, if all m+ 1 tasks release a job at time t = 0, then

Jm+1,1 (the job of the lowest-priority task) will not be scheduled until time 1 + ε, at which point

there is insufficient time left to complete its 1 + ε units of work by time 2. Further, if all tasks release

jobs periodically, Tm+1 will have unbounded tardiness since it will receive only 1− ε time units of

processor service every 2 time units, which fails to match its utilization. This shows that no global

FP scheduler can possess a utilization bound exceeding m+1
2 , just as is the case with partitioned

scheduling.

No provably optimal priority assignment or exact feasibility test is known for the G-FP schedul-

ing of sporadic tasks (Davis and Burns, 2011b). For a given priority assignment, an upper bound

on response times can be derived using multiprocessor response-time tests (see (Davis and Burns,

2011a,b) for a recent survey). A schedulable priority assignment may be found with O(n2) response-
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Figure 2.15: Devi’s example of unbounded tardiness under G-FP scheduling with RM priori-
ties (Devi, 2006). There are three tasks with parameters e1 = e2 = 2, p1 = p2 = 3, and e3 = 4 and
p3 = 6. If all tasks release jobs periodically starting at time 0, all jobs of T3 miss their deadlines
and exhibit unbounded tardiness. This is because u3 = 2

3 , but T3 receives only an allocation of 1
3 on

average.

time test invocations11 by assigning priorities in order from lowest to highest (Davis and Burns,

2011a). However, this approach can fail to find a schedulable priority assignment even if one exists

since all known global response time bounds are pessimistic in the general case (worst-case response

times may be overestimated). In the HRT case, priority assignment rules that yield higher utilization

bounds than one (as RM does) have also been devised (e.g., see Andersson, 2008). In the SRT case,

besides Devi’s original observation, G-FP scheduling has not received much attention. In principle,

multiprocessor response time analysis for arbitrary-deadline tasks could be used to derive tardiness

bounds, but to the best of our knowledge, this has not been studied in detail to date.

We do not consider G-FP scheduling in the remainder of this dissertation. As we shall demon-

strate in Chapter 4, global scheduling is most compelling in the context of SRT constraints. In an

SRT context, there appears to be little reason to favor G-FP over G-EDF, as G-FP does not ensure

bounded tardiness in all cases (Devi, 2006), but G-EDF does (Devi and Anderson, 2005; Devi, 2006).

We therefore focus on G-EDF instead, which we describe next.

2.3.3.2 Global Job-Level Fixed-Priority Scheduling

Other than in the uniprocessor case, global JLFP scheduling is not “better” at satisfying HRT

constraints than global FP scheduling when confronted with “difficult” task sets. As mentioned

above (page 71), the Dhall effect (Dhall and Liu, 1978) applies equally to both G-FP scheduling with

RM priorities and G-EDF. Even a global JLFP scheduler that is optimal with respect to this class of

11Not all response-time tests are compatible with this approach; see (Davis and Burns, 2011a) for details.
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Task ei pi ui

T1 3 10 3
10 = 819

2730 = 0.30

T2 2 7 2
7 = 780

2730 ≈ 0.29

T3 1 5 1
5 = 546

2730 = 0.20

T4 3 9 1
3 = 910

2730 ≈ 0.33

T5 5 13 5
13 = 1050

2730 ≈ 0.38

usum(τ) 4105
2730 ≈ 1.50

umax(τ) 1050
2730 ≈ 0.38

Table 2.5: Example task set.

schedulers would fail to schedule Andersson et al.’s pathological example task set τABJ consisting

of m+ 1 implicit-deadline tasks with parameters ei = 1 + ε and pi = 2 (Andersson et al., 2001): as

before, if all tasks release jobs at time 0, then the lowest-priority job would not start execution until

time 1, at which point a deadline miss is unavoidable, assuming that job executes for a full 1 + ε

time units. Therefore, the utilization bound of any global JLFP scheduler is bounded by m+1
2 in the

HRT case, which is no better than the worst-case utilization bounds of either partitioned or G-FP

scheduling. However, this bound applies to partitioned and G-FP scheduling even in the SRT case,

whereas there exists a family of global JLFP schedulers that are SRT optimal (Leontyev, 2010), that

is, on m processors, they ensure bounded tardiness for any sporadic task set τ with usum(τ) ≤ m.

Similar to G-FP scheduling, neither an optimal global JLFP scheduler12 nor an exact HRT

feasiblity test for global JLFP scheduling is currently known. As EDF is in the uniprocessor case,

G-EDF is the best-studied global JLFP scheduler, and it is also the one that we focus on in this

dissertation. An example G-EDF schedule of the task set given in Table 2.5 is shown in Figure 2.16.

We will use this task set as an example to demonstrate G-EDF schedulability analysis in the following

discussion. We begin with HRT analysis.

Density test. Since G-EDF is subject to the Dhall effect, reasonable G-EDF schedulability tests

must necessarily be based on task-set-specific parameters besides total utilization to identify task sets

that are HRT schedulable. Key to the Dhall effect is the presence of high-utilization tasks (Phillips

et al., 1997, 2002). If the maximum utilization umax(τ) is significantly less than one, then a higher

utilization bound exists. The first to derive such a schedulability test were Goossens et al. (2003),

12That is, optimal with respect to its class.
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Figure 2.16: Example G-EDF schedule of the task set listed in Table 2.5. Two migrations occur in
this example. J1,1 is preempted at time 2 on processor 1 by J2,1 and is scheduled again at time 3
on processor 2, after the higher-priority J4,1 completed. The reverse occurs later in the schedule:
at time 12 on processor 2, J4,2 is preempted due to the release of J2,2 and continues to execute
after migrating to processor 1 at time 13. Note that J4,2 and J1,2 have the same absolute deadline
d4,2 = d1,2 = 20, but that J4,2 was preempted instead of J1,2 because deadline ties are broken in
favor of lower-indexed tasks.

who showed that a set of implicit-deadline periodic tasks τ is HRT schedulability under G-EDF if

usum(τ) ≤ m−(m−1) ·umax(τ). Bertogna et al. (2005) and Baker and Baruah (2007) subsequently

showed that this bound also applies to arbitrary-deadline sporadic task sets if density is substituted

for utilization. The resulting schedulability criterion is now commonly referred to as the density test.

Theorem 2.7 (Goossens et al., 2003; Bertogna et al., 2005; Baker and Baruah, 2007). An arbitrary-

deadline sporadic task set τ is HRT schedulable under G-EDF on m processors if

δsum(τ) ≤ m− (m− 1) · δmax(τ).

Example 2.7. The total utilization (and hence density) of the implicit-deadline task set given in

Table 2.5 is usum(τ) = 4105
2730 ≈ 1.5. The maximum utilization is umax(τ) = 1050

2730 . On a two-

processor platform (m = 2), the density test yields the inequality

4105

2730
≤ 2− (2− 1) · 1050

2730
=

5460

2730
− 1050

2730
=

4410

2730
≈ 1.62,

which is true. The example task set is thus HRT schedulable under G-EDF on two processors. ♦

Baker’s test. Shortly thereafter, Baker (2003) developed a novel proof strategy that has since enabled

several key results, including the G-EDF HRT schedulability tests discussed in the remainder of
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this section. From a high-level point of view, Baker’s problem window approach (illustrated in

Figure 2.17) consists of the following four steps. Let Jk,x denote the first job to miss a deadline.

1. Identify a problem window immediately prior to Jk,x’s deadline miss. For example, a straight-

forward choice of problem window is the interval [ak,x, dk,x).

2. Analyze the problem window to derive a necessary condition for a deadline miss to occur.

For example, Jk,x will only miss its deadline if all m processors execute higher-priority jobs

for more than dk − ek time units during [ak,x, dk,x) (otherwise, Jk,x would finish in time).

In other words, more than m · (dk − ek) time units of higher-priority work were carried out

during the problem window prior to Jk,x’s deadline miss.

3. Bound the maximum amount of higher-priority work processed during the problem window.

There are two principle sources of higher-priority work: higher-priority jobs that are released

during the problem window, and carry-in jobs that were already pending at the beginning of

the problem window. Bounding the work due to jobs released during the problem window is

relatively straightforward because sporadic tasks are rate-limited. Bounding carry-in work is

possible since, by assumption, Jk,x is the first job to miss its deadline; however, bounds on

carry-in work are more difficult to obtain.

4. Relate both bounds to the necessary condition for a deadline miss from Step 2 to obtain a

necessary “unschedulability test.” Then invert the necessary “unschedulability test” to obtain a

sufficient (but not necessary) HRT schedulability test.

Baker’s technique has been hailed as a “seminal result” (Davis and Burns, 2011b) that has since

served as the basis for several published schedulability results—see Davis and Burns and Bertogna

and Baruah’s recent surveys for a comprehensive overview (Davis and Burns, 2011b; Bertogna and

Baruah, 2011). Besides the overall proof strategy, Baker’s key insight was to extend the problem

window to a point in time earlier than ak,x. The benefit is that a longer interval results in reduced

overestimation of higher-priority work, i.e., in reduced pessimism. In the case of constrained and

arbitrary deadlines, Baker’s test can identify schedulable task sets that are missed by the density test.

However, the converse is also true, i.e., the tests are incomparable (Bertogna et al., 2005). In the case
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Figure 2.17: Illustration of Baker’s problem window analysis (Baker, 2003) for m = 3 processors.
In order for Jk,x to miss its deadline at time dk,x, all m processors must be busy executing higher-
priority jobs for more than (dk−ek) time units during the problem window. Interfering higher-priority
jobs were either carried into or released during the problem window. There may exist up to n carry-in
jobs.

of implicit deadlines, Baker’s test is equivalent to the density test (Bertogna and Baruah, 2011). For

this reason, Baker’s actual schedulability test is not relevant to our main study (see Chapter 4).

Multiprocessor response-time analysis. Bertogna, Cirinei, and Lipari adopted Baker’s approach

and developed a series of subsequently less pessimsitic schedulability tests for constrained-deadline

sporadic tasks (Bertogna et al., 2005, 2009; Bertogna and Cirinei, 2007). We discuss Bertogna and

Cirinei’s multiprocessor response-time analysis (Bertogna and Cirinei, 2007) since it dominates

the other two tests (Bertogna and Baruah, 2011). Like uniprocessor response-time analysis (see

Section 2.3.1.1 above), Bertogna and Cirinei’s test is an iterative process that is repeated until

response-time bounds converge. In the uniprocessor case, the response-time bound of one task does

not depend on the response-time bounds of other tasks (recall Example 2.4). That is, the individual

response-time bounds are computed on a task-by-task basis and not reconsidered when the response

times of other tasks become available. In the multiprocessor case, an outer loop is added that uses

updated response-time bounds of all tasks to obtain better estimates in subsequent iterations of the

outer loop. This is illustrated in Listing 2.1, where Lines 3–7 constitute the outer loop and Lines 5–6

the inner loop. In Listing 2.1 and the following discussion, let R(l)
i denote the response-time bound

for Ti determined during the lth iteration of the outer loop, and let s(l)
i , max(0, di −R(l)

i ) denote a

lower bound on Ti’s slack based on its lth response-time estimate. Initially, assume R(0)
i = di, which

implies s(0)
i = 0.
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1 compute−response−times(τ , m):
2 set l← 0
3 do
4 set l← l + 1
5 foreach Tk ∈ τ :
6 set R(l)

k using Theorem 2.8 using s(l−1)
i for each Ti

7 while ∃ Ti ∈ τ such that s(l−1)
i < s

(l)
i

8 foreach Ti ∈ τ :
9 set Ri ← R

(l)
i

Listing 2.1: Multiprocessor response-time analysis pseudo-code.

Let Tk denote the task for which the maximum response time is being bounded (Line 6 in

Listing 2.1). As before, let Jk,x denote the first job to miss a deadline. Bertogna and Cirinei

analyzed the problem window [ak,x, dk,x) prior to Jk,x’s deadline miss. Two bounds on delay due

to higher-priority jobs of each task Ti (where i 6= k) are crucial to their analysis. The first bound is

concerned with how much processor time jobs of Ti can consume in the worst case during L time

units (assuming a legal invocation sequence), which they called Ti’s workload Wi(L). A second

notion of delay is the interference by jobs of Ti while Jk,x is pending, which is denoted as Ii (where

Ti 6= Tk). Workload and interference differ in that interference only reflects the jobs of Ti that have

a higher priority than Jk,x, whereas the workload includes all of Ti’s jobs in the analyzed interval.

Both interference and workload yield upper bounds on the delay due to Ti experienced by Jk,x; to

reduce pessimism, the minimum of the two is used in the computation of the response-time bound.

Bertogna and Cirinei (2007) showed that a valid bound on Ti’s workload Wi(L) is given by

Wi(L) =

⌈
L+ di − ei − s(l−1)

i

pi

⌉
· ei + min(ei, L+ di − ei − s(l−1)

i )

during the lth iteration of the outer loop. Note that Wi(L) is independent of Tk and thus reflects

neither Jk,x’s priority nor the scheduling algorithm in use. In contrast, the interference Ii reflects

both. Bertogna and Cirinei showed that, under G-EDF, an upper bound on Ti’s interference13 is

given by

Ii =

⌊
dk
pi

⌋
· ei + min(ei, dk mod (pi − s(l−1)

i )).

13This definition of Ii diverges slightly from the one given in (Bertogna and Cirinei, 2007). We use the simpler (and
more recent) definition from (Bertogna and Baruah, 2011).

78



Based on the workload and interference bounds, Bertogna and Cirinei derived the following response-

time bound.

Theorem 2.8 (Bertogna and Cirinei, 2007). Let τ denote a set of constrained-deadline sporadic

tasks scheduled by G-EDF on m processors. Assuming no job misses its deadline, the maximum

response time of task Tk ∈ τ is bounded by the smallest R(l)
k that satisfies

R
(l)
k = ek +

 1

m

Ti 6=Tk∑

Ti∈τ
min

(
Wi(R

(l)
k ), Ii, R

(l)
k − ek + 1

)
 ,

where R(l)
k is determined using a fixed-point iteration with the starting assumption R(l)

k = ek.

If the fixed-point iteration fails to converge for some Tk, i.e., if R(l)
k exceeds dk, then set

R
(l)
k = dk + 1. Due to the use of the outer loop, a non-converging response-time bound does not

necessarily cause the task set to be claimed unschedulable. During subsequent iterations of the

outer loop, improved slack estimates may be available for other tasks, which may then allow a

response-time bound for Tk to be determined. Theorem 2.8, when used as illustrated in Listing 2.1,

yields a safe upper bound on each task’s maximum response time if the task set is HRT schedulable,

i.e., if Ri ≤ di for each Ti in Line 9 of Listing 2.1. The response-time bounds determined by

Theorem 2.8 are not necessarily valid if jobs can be tardy (or if tasks have arbitrary deadlines);

extended versions of multiprocessor response-time analysis should be used in this case (Leontyev

and Anderson, 2008; Liu and Anderson, 2011).

In many cases, multiprocessor response-time analysis is less pessimistic than either the density

test or Baker’s test (Bertogna and Baruah, 2011). However, strictly speaking, multiprocessor response-

time analysis is incomparable with both tests, that is, there exist task sets that are wrongly deemed

unschedulable by Bertogna and Cirinei’s analysis, but that pass the density test or Baker’s test.

Example 2.8. Consider the task set from Example 2.7 as given in Table 2.5. During the first iteration

of the outer loop (l = 1), applying Theorem 2.8 to each Tk ∈ {T1, . . . , T5} requires 16 fixed-point

iterations and yields the following response-time bounds: R(1)
1 = 10,R(1)

2 = 8,R(1)
3 = 6,R(1)

4 = 10,

and R(14)
5 = 10, which implies that s(1)

k = 0 for each Tk. Since none of the computed response-time

bounds improved over the initial assumption of R0
k = dk, the outer loop terminates after the first
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iteration. Since the resulting Rk = R
(1)
k exceeds dk for each task except T1, the task set is wrongly

claimed unschedulable. ♦

Baruah’s test. The underlying reason for this pessimistic result is that Bertogna and Cirinei’s

response-time analysis overestimates the amount of carry-in work contributed by each task (recall

that carry-in work is the time needed to service higher-priority jobs that were released prior to the

beginning of the problem window). In fact, in Theorem 2.8, each task is considered to contribute

carry-in work. Baruah (2007) showed that if the problem window is chosen carefully, then at most

m− 1 tasks contribute carry-in demand. He proposed a schedulability test (based on Baker’s proof

technique) for constrained-deadline task sets that exploits this observation. Since his schedulability

test also yields good results for implicit-deadline task sets, we briefly review it next.

Let Jk,x denote the first job to miss its deadline at time dk,x. A major source of uncertainty is

that every task may have a job pending at time ak,x, i.e., every task may contribute carry-in demand.

Baruah extended the problem window by considering the last point in time prior to ak,x at which at

least one processor was idle or executing a job with lower priority (i.e., a later deadline) than Jk,x (or

time zero if no such point in time exists prior to ak,x). Let t0 denote this point in time, and let Ak

denote the length of the interval [t0, ak,x), i.e., ak,x = t0 +Ak. This is illustrated in Figure 2.18.

The carefully chosen nature of t0 allows two observations. First, at most m− 1 higher-priority

jobs are pending at time t0, and, second, all processors are busy executing higher-priority jobs during

[t0, rk,x). Further, for Jk,x to miss its deadline, processors must be executing higher-priority jobs for

more than (dk − ek) ·m time units during [ak,x, dk,x), and thus for more than (Ak + dk − ek) ·m

time units during [t0, dk,x). This observation corresponds to Step 2 of Baker’s proof strategy.

The next step is to bound the amount of higher-priority work carried out during [t0, dk,x). As

before, let Ii denote the interference due to Ti prior to Jk,x’s deadline miss. The upper bound on this

interference depends on whether Ti has a carry-in job. Let I ′i denote a bound on interference due to

Ti if Ti does not have a carry-in job, and let I ′′i denote a bound on interference due to Ti if it does

carry in work into the analysis interval. Baruah derived the following bounds:

I ′i =





min(W ′i , L) if i 6= k

min(W ′i − ek, Ak) if i = k

I ′′i =





min(W ′′i , L) if i 6= k

min(W ′′i − ek, Ak) if i = k
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Figure 2.18: Illustration of Baruah’s extended problem window (Baruah, 2007) form = 3 processors.
Baruah extended the problem window by Ak time units to the first point in time t0 at which at least
one processor is idle or processing a job of lower priority, where t0 ≤ ak,x. In order for Jk,x to miss
its deadline at time dk,x, all m processors must be busy executing higher-priority jobs for more than
(Ak + dk − ek) time units during the problem window. Due to the choice of t0, there exist at most
m− 1 carry-in jobs at time t0.

where

L = Ak + dk − (ek − 1),

W ′i = max

(
0,

(⌊
Ak + dk − di

pi

⌋
+ 1

)
· ei
)
, and

W ′′i =

⌊
Ak + dk

pi

⌋
· ei + min(ei, (Ak + dk) mod pi).

Unfortunately, the identity of the tasks that do have carry-in jobs is unknown in the general case,

but due to the definition of t0 there are at most m − 1 such tasks. Let CB denote a bound on the

maximum amount of work that could have been carried in such that

∑

Ti∈τ
Ii ≤ CB +

∑

Ti∈τ
I ′i. (2.1)

Let Idiff
i , I ′′i − I ′i denote the difference between the two interference bounds for each task Ti. A

safe upper bound CB is then given by the sum of the m− 1 largest values of Idiff
i .

Recall that a necessary condition for Jk,x to miss a deadline is that the total interference
∑

Ti∈τ Ii

exceeds (Ak+dk−ek)·m during [t0, dk,x). By inverting this necessary condition (Baker’s Step 4) and

by substituting the total interference using Equation (2.1), Baruah obtained the following sufficient

HRT schedulability test.
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Theorem 2.9 (Baruah, 2007). A constrained-deadline task set τ is HRT schedulable under G-EDF

on m processors if for all Tk ∈ τ and Ak ≥ 0

CB +
∑

Ti∈τ
I ′i ≤ (Ak + dk − ek) ·m.

To obtain a finite testing set of Ak values, Baruah (2007) further showed that it is sufficient to

test only values of Ak that satisfy

Ak ≤
etop(τ,m− 1)− dk · (m− usum(τ)) +

∑
Ti∈τ (pi − di) · ui +m · ek

m− usum(τ)
. (2.2)

An additional important reduction in the (average) computation cost of the test is due to his observa-

tion that it is sufficient to test only values for Ak that correspond to the points in time at which the

value of W ′i changes for some Ti; formally, it is sufficient to test only those values of Ak that satisfy

Ak = di − dk + j · pi

for some Ti ∈ τ and some j ∈ {0, 1, 2, . . .}. Nonetheless, Baruah’s test is of pseudo-polynomial

time complexity, as the bound on the maximum Ak given in Equation (2.2) grows exponentially

as the idle capacity, m− usum(τ), approaches zero. In practice, if there is only little idle capacity,

the resulting runtime can become prohibitively large for task sets with several hundred tasks. In

the case of the task set from Example 2.7, in total 39 values of Ak must be tested (across all tasks)

before the task is correctly claimed to be schedulable on m = 2 processors. In general, Baruah’s

test is incomparable to both the density test and multiprocessor response-time analysis (Bertogna

and Baruah, 2011). Notably, Theorem 2.9 is the only G-EDF schedulability test that generalizes

Baruah et al.’s almost-exact uniprocessor EDF schedulability test (Baruah et al., 1990) in the case of

m = 1 (Baruah, 2007).

Sustainability. Our work presented in Chapters 3, 5, 6, and 7 requires sustainability with regard to

the execution-cost parameter. Baker and Baruah (2009b) studied G-EDF sustainability and found

that the G-EDF algorithm is sustainable with respect to execution costs and periods. With respect

to G-EDF schedulability tests, the density test is obviously self-sustainable: a decrease in density
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or utilization cannot cause a task set to fail the density test if it previously satisfied the bound. To

the best of our knowledge, it has not been studied whether Bertogna and Cirinei’s multiprocessor

response-time analysis and Baruah’s test are self-sustainable (Baker and Baruah, 2009b). As G-EDF

is itself sustainable with respect to execution costs, this is of no concern to our experiments.

This concludes our review of the tests that we use to check HRT schedulability under G-EDF in

this dissertation: the density test, Bertogna and Cirinei’ multiprocessor response-time analysis, and

Baruah’s test. We note that several other HRT schedulability tests for G-EDF have been proposed

in recent years. Besides earlier tests that are dominated by the aforementioned tests (Bertogna

et al., 2005, 2009; Baker, 2003), there exist several tests that only offer advantages in the case of

non-implicit deadlines. A number of these are based on the concept of maximum load, which is

another characterization of a task set’s processor demand (in addition to utilization and density).

Maximum load is a more-accurate notion of processor demand for constrained-deadline task sets;

however, it reduces to total utilization in the case of implicit-deadline task sets. In fact, the least-

pessimistic load-based test (Baker and Baruah, 2009a) reduces to the density test for implicit deadline

task sets (Bertogna and Baruah, 2011). Load-based tests are thus of limited relevance to the work

presented herein. In other recent work, Baruah et al. (2010) proposed another pseudo-polynomial

HRT schedulability test for G-EDF, which is on average much more computationally expensive than

Baruah’s test (Baruah, 2007) described above. The primary benefit of the new test is that it yields a

provably good resource augmentation bound.14 However, in a recent empirical comparison (Bertogna

and Baruah, 2011), most task sets claimed schedulable by the test presented in (Baruah et al., 2010)

were also claimed schedulable by one or more of the three tests that we employ. We thus do not use

the (Baruah et al., 2010) test because our experimental setup (see Chapter 4) does not depend on a

test’s provable resource augmentation bound (and is not hindered by a lack thereof).

For a comprehensive overview of the state-of-the-art in schedulability tests for G-EDF, we refer

the interested reader to (Davis and Burns, 2011b; Bertogna and Baruah, 2011; Baruah et al., 2010).

Bounded tardiness. G-EDF was the first JLFP scheduler for which it was shown that any sporadic

task set with total utilization at most m has bounded tardiness on m processors (Devi and Anderson,

2005, 2008; Devi, 2006). Since then, this property has been shown to hold for a large class of

14A resource augmentation quantifies the pessimism of an algorithm or schedulability test—see (Davis and Burns,
2011b) for an introduction and survey.
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schedulers, namely window-constrained schedulers (Leontyev and Anderson, 2010; Leontyev, 2010),

under which each job is prioritized by a point in time that may vary at runtime but must remain

within a constant-sized interval anchored at the job’s release time (this includes JLDP schedulers).

G-EDF is a prominent JLFP member of this class.

Showing that a scheduler ensures bounded tardiness differs from deriving an HRT schedulability

condition for constrained-deadline tasks because tasks can potentially carry in multiple jobs worth of

higher-priority work into an analysis interval. In other words, tardiness can have a cascading effect

when tardy higher-priority jobs induce tardiness in later-arriving lower-priority jobs. Under G-EDF,

higher-priority jobs may belong to any task; the tardiness bound of any one task thus depends on the

tardiness bound of all other tasks.

Devi and Anderson (2005) solved this cyclic dependency using a novel proof strategy that relates

G-EDF to a fluid processor-sharing (PS) schedule. In a fluid schedule, a processor can be allocated

to more than one task at a time such that each task receives a fractional capacity from one or more

processors. Such a schedule is clearly impossible on actual hardware, but it is interesting to consider

because it trivially yields an HRT optimal multiprocessor scheduler for implicit-deadline task sets.

In a PS schedule, this is achieved by allocating each pending job Ji exactly ui processor capacity

(at each point in time), which implies that each job completes after at most eiui = pi = di time units.

Tasks with di ≥ pi thus have zero tardiness in a PS schedule; jobs of constrained-deadline tasks

are at most pi − di time units tardy. If it is possible to bound the extent to which a given algorithm

deviates from a PS schedule, then it is thus also possible to bound maximum tardiness. This “extent

of deviation” is called lag and denotes how much a task’s cumulative processor allocation (up to a

given time) diverges from the allocation that it would have received in an ideal PS schedule.

Definition 2.5. Let A denote a scheduling algorithm. With respect to a fixed legal invocation

sequence of a sporadic task set τ , we denote the total processor time allocated to jobs of a task Ti ∈ τ

during the interval [0, t) in the A-schedule for τ as service(Ti, t,A).

Definition 2.6. With respect to a fixed legal invocation sequence of a sporadic task set τ , the lag of

task Ti ∈ τ under a scheduling algorithm A at time t is given by

lag(Ti, t,A) , service(Ti, t,PS)− service(Ti, t,A).
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Since implicit-deadline tasks are never tardy in a PS schedule, a job that is tardy under G-EDF

must necessarily have positive lag at the time of its deadline miss. Devi and Anderson (2005) used

this fact to bound the maximum tardiness under G-EDF by bounding maximum lag. Specifically,

their proof strategy consists of the following three steps. Let Jk,x denote a job that misses its deadline

at time dk,x.

1. Assuming that Jk,x is the first job to exceed the tardiness bound B given in Theorem 2.10

below, they compute an upper bound UB on the total lag of all tasks at time dk,x.

2. Next, they compute a lower bound LB on the total lag that is necessary for Jk,x to exceed the

stated tardiness bound.

3. Finally, they showed that UB < LB , thereby contradicting the assumption that the tardiness

bound B was exceeded by Jk,x.

Using this approach, Devi and Anderson showed that a task’s maximum tardiness under G-EDF is

limited by the following bound.

Theorem 2.10 (Devi and Anderson, 2005, 2008; Devi, 2006). Let τ denote an implicit-deadline

sporadic task set scheduled under G-EDF on m processors. If usum(τ) ≤ m, then the maximum

tardiness of each Ti ∈ τ is bounded by ei +B, where

B =
etop(τ, dusum(τ)e − 1)− emin(τ)

m− utop(τ, dusum(τ)e − 2)
.

Using the same proof strategy, Leontyev and Anderson first showed that a similar bound exists

for global FIFO scheduling (where each job is prioritized by its release time) and then generalized the

result to the class of all global window-constraint schedulers (Leontyev and Anderson, 2007, 2010;

Leontyev, 2010), which includes both G-EDF and global FIFO scheduling. In recent work, Erickson

et al. presented a polynomial-time iterative method to compute finer-grained, per-task bounds Bi to

replace the coarser-grained bound B above (Erickson et al., 2010a), and derived a tardiness bound

for arbitrary-deadline task sets (Erickson et al., 2010b). G-EDF is thus SRT optimal: any sporadic

task set that does not over-utilize the system has bounded tardiness under G-EDF.

85



Task ei pi ui

T1 6 10 3
5 = 108

180 = 0.60

T2 2 9 2
9 = 40

180 ≈ 0.22

T3 1 5 1
5 = 36

180 = 0.20

T4 3 9 1
3 = 60

180 ≈ 0.33

T5 7 12 7
12 = 105

180 ≈ 0.58

usum(τ) 349
180 ≈ 1.93

Table 2.6: Example task set with two high-utilization tasks (T1, T5).

Summary. We consider G-EDF as the representative JLFP scheduler in this dissertation because it

(i) uses a simple, easy-to-implement priority rule, (ii) is well-supported by existing HRT schedulabil-

ity analysis, and (iii) is SRT optimal, as discussed above. Note that (iii) does not imply that G-EDF

ensures minimal tardiness. In fact, for implicit-deadline sporadic task sets, minimal achievable

tardiness is zero since there exist global JLDP schedulers that are HRT optimal,15 which we discuss

next.

2.3.3.3 Global Job-Level Dynamic-Priority Scheduling

To motivate why dynamic job priorities are required for HRT optimality, consider a modified version

of the task set from Example 2.7 where the utilizations of T1 and T5 have been increased (and the

utilization of T2 has been decreased to compensate). The resulting task set is listed in Table 2.6.

A possible G-EDF schedule of the task set is shown in Figure 2.19. Here, each task releases jobs

in a pattern so that all tasks have a job deadline at time 12 (T3 releases two jobs). As a result, the

order of the pending jobs (except for J3,1) is determined by the tie-breaking rule.16 Consequently,

the job of the lowest-indexed task T5 is only scheduled when there are fewer than m = 2 jobs of

higher-indexed tasks pending. Since this is only the case before time 2 and after time 8, J5,1 has only

six time units before its deadline at time d5,1 = 12 to complete e5 = 7 time units worth of work.

A deadline miss results; the task set is thus not HRT schedulable under G-EDF. The root cause

for this failure is that G-EDF’s priority rule only reflects urgency and not parallelism, or rather the

15Very recent work indicates that G-EDF does not ensure minimal tardiness even within the class of JLFP sched-
ulers (Erickson and Anderson, 2011).

16We note that the deadline miss seen in the figure does not depend on the choice of tie-breaking rule. A similar example
can be constructed for any tie-breaking rule. For example, J5,1’s release time could be moved to time 1.
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Figure 2.19: Example G-EDF schedule of the task set listed in Table 2.6. If jobs are released as
shown, J5,1 misses its deadline at time d5,1 = 12 because an excessive amount of its execution
requirement has been deferred in favor of higher-priority jobs.

lack thereof due to the sporadic task model’s sequentiality constraint. This is evident in the interval

[9, 12) in Figure 2.19, during which processor 2 is idle. Used together, both processors could have

completed six time units of work, but since J5,1 can only execute on one processor at a time, it could

only use half of the processing capacity available during this interval. If the scheduler had delayed

J4,1’s first allocation by only one time unit (i.e., if J4,1’s first allocation would have been scheduled

during [6, 7) instead of during [5, 6)), then all jobs would have met their deadlines. This, however,

would have required dynamically lowering J4,1’s priority. The key to designing an HRT optimal

multiprocessor scheduler is thus to be cognizant of each job’s sequentiality constraint (in addition to

its deadline).

Quantum-based schedulers. Before discussing an optimal JLDP scheduler, a brief digression

concerning the scheduling model is required. So far, we have only discussed event-driven scheduling,

where a scheduler reacts to scheduling events (such as job releases and completions) instantaneously

(in the absence of overheads). As previously remarked on page 57, an alternate approach is quantum-

driven scheduling, where the scheduler is only invoked at integer multiples of a scheduling quantum

Q. The time between integer multiples of Q is called a slot or quantum; the points in time separating

quanta are called quantum boundaries. For example, if Q = 10, then rescheduling would only take

place at times 0,10,20,30,. . . and the first slot corresponds to the interval [0, 10).

A benefit of quantum-driven scheduling is that it is somewhat easier to implement since the

scheduler is only invoked at fixed, pre-determined points in time (i.e., each quantum boundary).

Further, in the context of JLDP schedulers, quantum-driven scheduling offers the advantage of
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Figure 2.20: Illustration of a delayed preemption and an only partially used quantum under quantum-
driven scheduling for Q = 2. The scheduler is only invoked at quantum boundaries, which occur at
integer multiples of two. When J1,1 is released at time 1, it should preempt the lower-priority job
J3,1 on processor 2. However, the scheduler is not invoked until time 2; J1,1 suffers an additional
delay as a consequence. When J2,1 completes at time 5, processor 1 is idled until time 6 when
the scheduler is finally invoked to reschedule; as result, the quantum [4, 6) is only partially used
on processor 1 despite the fact that pending jobs exist at the time. In theory, such effects become
negligible as Q→ 0.

clearly defined points at which priority changes are relevant as any changes in job priority are only

enacted at quantum boundaries; it is thus sufficient if a job’s priority is well-defined only at these

points. A negative side effect of quantum-based scheduling is that individual quanta may only be

partially used (i.e., if a job completes early) and that newly-released jobs may not be scheduled until

up to Q time units after their release, even if they have one of the m highest priorities at the time of

their release. Both effects are illustrated in Figure 2.20. Nonetheless, at least in theory, capacity lost

to such delays can be considered negligible since the quantum size Q can be chosen to be sufficiently

small to avoid any negative effects. In practice, the minimum viable quantum size is constrained by

the resolution of hardware timers and efficiency considerations; this is discussed in Chapter 3. When

dealing with a quantum-based scheduler (and, in particular, in the remainder of this section), we

require that all task parameters are integer multiples of the scheduling quantum, i.e., for each ei, pi,

and di, there exist e′i, p
′
i, d
′
i ∈ N such that ei = e′iQ, pi = p′iQ, and di = d′iQ. Since each ei, pi, and

di are integer as well (see Section 2.2), this assumption is trivially satisfied for a sufficiently small Q.

For simplicity, we assume Q = 1 in the following discussion (e.g., ei denotes the number of quanta

require by jobs of Ti).

Pfairness. Based on the quantum-based scheduling model, Baruah et al. (1996) proposed propor-

tionate fair (or pfair) scheduling and designed the first (non-fluid) global multiprocessor real-time
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scheduler, named PF, that is HRT optimal for implicit-deadline periodic tasks. Pfair scheduling

was later extended to more general task models, including a generalization of the sporadic task

model (Srinivasan and Anderson, 2002, 2006). In the following, we review pfair scheduling as it

applies to sporadic tasks; see (Srinivasan, 2003; Holman, 2004; Devi, 2006) for an in-depth treatment

of the subject.

An implicit-deadline task Ti does not place any constraints on job execution besides that a job

Ji must sequentially receive up to ei quanta of processor time within a scheduling window of length

pi. Specifically, it does not constrain when the processor time may be allocated, e.g., a job Ji may

be scheduled for ei consecutive time units immediately after its release or just before its deadline.

Baruah et al. (1996) showed that HRT optimality can in fact be achieved by imposing additional

constraints on the allocation of a job’s processor service. Recall from Definition 2.6 that a task’s lag

describes the extent to which its processor allocation up to a point in time t deviates from a fluid

PS schedule (in which each pending job Ji is allocated exactly ui processor capacity at any point in

time). Baruah et al. introduced the following constraint on job execution.

Definition 2.7. Let τ denote a feasible implicit-deadline task set. A scheduling algorithm A is pfair

if and only if for all tasks Ti ∈ τ and times t

−1 < lag(Ti,A, t) < 1. (2.3)

In other words, in a pfair schedule, a task’s cumulative allocation deviates by strictly less than one

quantum from a fluid PS schedule at any point in time. For implicit-deadline tasks, this immediately

implies HRT correctness, as can be seen with a simple argument. Suppose a job Ji,j is the first

to miss its deadline (at time di,j) under a pfair scheduler A. In a quantum-based scheduler, this

implies that Ji,j has received at most ei − 1 quanta during [ai,j , di,j). Because the implicit deadline

implies that Ji,j−1 (if j > 1) must have completed by ai,j if Ji,j is the first job to miss a deadline,

it follows that both PS and A must have scheduled Ti for equal amounts of time prior to ai,j ,

i.e., service(Ti, ai,j ,A) = service(Ti, ai,j ,PS). In a fluid PS schedule, Ji,j would have received
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(di,j − ai,j) · ui = pi · ui = ei time units of processor time during [ai,j , di,j). This implies that

lag(Ti, di,j ,A) = service(Ti, di,j ,PS)− service(Ti, di,j ,A)

≥ (service(Ti, ai,j ,PS) + ei)− (service(Ti, ai,j ,A) + ei − 1)

= service(Ti, ai,j ,PS)− service(Ti, ai,j ,A) + 1

= 1,

which contradicts Equation (2.3). Any pfair scheduler is thus HRT optimal with respect to implicit

deadlines.

Under a quantum-based scheduler, a job Ji can be thought of as consisting of (up to) ei quantum-

sized allocations. Anderson and Srinivasan termed these allocations subtasks (Anderson and Srini-

vasan, 2004). We denote the kth subtask of a job Ji,j as Ji,j,k. In addition to implying HRT

correctness, the pfair constraint also imposes an interval for each subtask Ji,j,k, called its pfair

window, during which Ji,j,k must be scheduled. The start and end of a subtask’s pfair window is

given by its pseudo-release time ri,j,k and pseudo-deadline di,j,k, respectively. These times are

defined as

ri,j,k = ai,j +

⌊
k − 1

ui

⌋
and di,j,k = ai,j +

⌈
k

ui

⌉
.

In other words, Ji,j must have received at least k time units of processor time by di,j,k, but not earlier

than ri,j,k + 1. This constraint is implied by Equation (2.3): suppose Ji,j has received only k − 1

quanta of processor service by di,j,k under a pfair scheduler A. In a fluid PS schedule, Ji,j would

have received exactly (di,j,k − ai,j) · ui =
⌈
k
ui

⌉
· ui ≥ k time units by then, which implies that

lag(Ti, di,j,k,A) ≥ 1 at time di,j,k. An analogous argument yields the definition of ri,j,k.

Example 2.9. Table 2.7 lists the (relative) pseudo-release times and pseudo-deadlines of the high-

utilization task set given in Table 2.6 (as well as two values, the “successor bit” and “group deadline,”

which are discussed below); the parameters are also illustrated in Figure 2.21. For example, consider

the pfair windows of subtasks of J5,1 in comparison to the G-EDF schedule depicted in Figure 2.19.

Under a pfair scheduler, J5,1,3 must be scheduled some time during [3, 6), whereas J5,1 received its

third quantum of processor service only during [8, 9) in Figure 2.19. Under a pfair scheduler, the
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Task util. subtask pseudo-release pseudo-deadline successor bit group deadline
Ti ui k ri,j,k − ai,j di,j,k − ai,j bbit(Ji,j,k) gdl(Ji,j,k)− ai,j
T1

3
5 1 0 2 1 3

2 1 4 1 5
3 3 5 0 5
4 5 7 1 8
5 6 9 1 10
6 8 10 0 10

T2
2
9 1 0 5 1 0

2 4 9 0 0

T3
1
5 1 0 5 0 0

T4
1
3 1 0 3 0 0

2 3 6 0 0
3 6 9 0 0

T5
7
12 1 0 2 1 3

2 1 4 1 5
3 3 6 1 8
4 5 7 1 8
5 6 9 1 10
6 8 11 1 12
7 10 12 0 12

Table 2.7: Subtask parameters of the task set given in Table 2.6. Note that pseudo-release, pseudo-
deadline, and group deadline times are given relative to the job’s release time ai,j . See Figure 2.21
for a visual representation of these parameters.

earlier pseudo-deadlines would have ensured that J5,1’s execution is not deferred until it is “too late.”

♦

Algorithm PD2. To this point, we have discussed only the desirable properties of pfair schedules;

however, we have not specified how to obtain such a schedule. While it is relatively straightforward

to compute a pfair schedule offline, it is a considerable challenge to design a succinct set of rules to

order pending (i.e., pseudo-released) subtasks at runtime such that a pfair schedule results. While

tempting, simply scheduling all subtasks by pseudo-deadline does in fact not yield an HRT optimal

scheduler, though it does ensure bounded tardiness (Srinivasan and Anderson, 2003, 2005). This is

because pseudo-deadlines still do not adequately encode the “sequentiality” of a task; they merely

reflect its weight (i.e., high-utilization tasks have short pfair windows). Baruah et al. designed two

pfair algorithms, the original proportionate-fair algorithm PF (Baruah et al., 1996) and the later PD

algorithm based on pseudo-deadlines (Baruah et al., 1995). PD used a relatively complex priority
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(d) J4,1’s subtask parameters for a4,1 = 0.
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J5,1,4

J5,1,5
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(e) J5,1’s subtask parameters for a5,1 = 0.

pfair window non-zero successor bit
(overlapping windows)

group deadline
(if past window)

Figure 2.21: Illustration of the subtasks of the first job of each task assuming it is released at
time 0. The corresponding task parameters are listed in Table 2.6; the subtask parameters are listed
in Table 2.7.

rule and distinguishes between a total of seven subtask classes (such as “urgent,” “heavy,” “light,”

etc.). Srinivasan and Anderson later found a much simpler variant called PD2 that only requires two

pseudo-deadline tie-breaking rules (Srinivasan and Anderson, 2002, 2006; Anderson and Srinivasan,

2004). Of the three pfair algorithms, PD2 is the most efficient since it requires the fewest number of

tie-breaking rules, both of which can be evaluated in constant time (or easily pre-computed). We

therefore only consider PD2 in this dissertation.

As its predecessor, PD2 schedules pending subtasks in order of non-increasing pseudo-deadlines.

However, the key to its optimality is how it chooses among subtasks with equal pseudo-deadlines.

Intuitively, PD2 follows a simple rule: choose subtasks such that future scheduling decisions are the

least constrained possible. For example, consider the subtasks of J1,1, assuming J1,1 is released at

time a1,1 = 0 as shown in Figure 2.22. Further, suppose J1,1,1 is not scheduling during [0, 1), but
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subtask scheduled

pfair window

effective window if 
predecessor executes 
in last slot

1050 time

J1,1,1

J1,1,2

J1,1,3

J1,1,4

J1,1,5

J1,1,6

successor's pfair
window unaffected

successor's pfair
window shortened

Figure 2.22: Illustration of constrained pfair windows. This figure shows the pfair windows of
J1,1’s subtasks assuming that a1,1 = 0 (as in Figure 2.21). If J1,1,1 and J1,1,6 are scheduled in their
latest-possible slot, then the effective scheduling window of their respective successor subtasks,
J1,1,2 and J1,1,6, are additionally constrained by the sequentiality requirement of the sporadic task
model. In contrast, J1,1,3’s pfair window does not overlap with the pfair window of its successor, so
it can be scheduled in its latest-possible slot without impeding J1,1,4. Overlapping pfair windows are
indicated by the successor bit in Figure 2.21.

only during the later slot [1, 2). Due to the sequentiality of sporadic tasks, this constrains J1,1,2 to a

reduced effective window of [2, 4) instead of its regular pfair window of [1, 4). Similarly, if J1,1,5 is

scheduled only during [8, 9), the latest-possible legal allocation time, then J1,1,6 must be scheduled

during [9, 10). In contrast, J1,1,3 can be safely delayed until its last slot without affecting the pfair

window of its successor subtask. These examples show the impact of overlapping pfair windows:

delaying one of the earlier subtasks of a task with overlapping pfair windows can have a cascading

effect that forces later allocations. PD2 avoids this by favoring subtasks that have a pfair window

that overlaps with their successor’s pfair window. Formally, a subtask’s successor bit, also referred

to as the boundary bit by Devi (2006), is defined as

bbit(Ji,j,k) ,

⌈
k

ui

⌉
−
⌊
k

ui

⌋
.

The successor bit of a subtask Ji,j,k is one if Ji,j,k’s pfair window overlaps with the pfair window of

Ji,j,k+1 (if k < ei), and zero otherwise. Under PD2, if two subtasks have equal pseudo-deadlines but

differ in their successor bits, then PD2 assigns a higher priority to the one with a non-zero successor
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predecessor executes 
in last slot

1050 time

J5,1,3

J5,1,4
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cascade: pfair windows of 
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Figure 2.23: Illustration of multiple constrained pfair windows. This figure shows the pfair windows
of the subtasks J5,1,3, J5,1,4, and J5,1,5 assuming that a5,1 = 0 (as in Figure 2.21). If J5,1,3 is
scheduled in the latest-possible slot, then the effective scheduling window of both its immediate
successor J5,1,4 and the later successor J5,1,5 are constrained. In other words, delaying J5,1,3 until
the latest-possible slot triggers a cascade of additional constraints that extends until time 8, which is
J5,1,5’s group deadline.

bit. (If both subtasks have a zero successor bit, then the tie in pseudo-deadlines can be broken

arbitrarily.)

This leaves the case of choosing among two (or more) subtasks with equal pseudo-deadlines

and non-zero successor bits. Here, PD2 again follows the intuition to constrain future allocations as

little as possible. While all subtasks with a non-zero successor bit constrain their successor subtasks

when delayed to their last legal slot, they differ with regard to the “length” of the resulting cascade.

For example, consider the example shown in Figure 2.23. If J5,1,3 from Figure 2.21 is scheduled

in its latest legal slot [5, 6), then this forces J5,1,4 to be scheduling during [6, 7), which in turns

reduces the length J5,1,5’s effective scheduling window. In other words, if J5,1,3 is delayed until the

latest-possible moment, then two subsequent subtasks have implicitly been constrained as well. In

contrast, the pfair windows of J1,1,1 and J1,1,2 overlap, but J1,1,3 retains some flexibility even if J1,1,1

is not scheduled until [1, 2). PD2 breaks ties in favor of subtasks that would cause a “long cascade”

when postponed. As it turns out, long cascades are only possible for tasks that have overlapping pfair

windows of length two or three, which is only the case for tasks with ui > 1
2 . The notion of “cascade
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length” is formalized by the group deadline of a subtask, which is defined as

gdl(Ji,j,k) , ai,j +








⌈
k

ui

⌉
− k

1− ui




if 1 > ui >
1
2 ,

0 if ui ≤ 1
2 .

(2.4)

PD2 breaks ties in favor of subtasks with later group deadlines (i.e., longer cascades). Note that

Equation (2.4) is not defined for the case ui = 1. This is because tasks with a weight of one

require a dedicated processor and hence are effectively not part of the scheduling problem, that is, a

task with ui = 1 can be allocated a processor exclusively without loss of optimality. We refer the

interested reader to Srinivasan (2003) and Devi (2006) for an in-depth discussion and derivation of

Equation (2.4).

Early-releasing. Under the pfair constraint (Equation (2.3)), subtasks have a pseudo-release time

ai,j,k prior to which they cannot be scheduled (by a pfair scheduler). However, in an actual RTOS,

subtasks are merely an accounting abstraction that is used to determine the current priority of a

job (which itself is typically an abstraction backed by a process). Enforcing pseudo-relase times,

while certainly possible, creates additional overheads because “waiting” subtasks would have to be

merged into the ready queue when they become eligible to be scheduled. Further, if the system is

(temporarily) lightly loaded, enforcement of pseudo-release times can result in non-work-conserving

schedules, that is, processors may be idled even though there exist processes that could be dispatched.

Luckily, Anderson and Srinivasan showed that PD2 remains HRT optimal for implicit-deadline

sporadic tasks even if pseudo-release times are not enforced (Anderson and Srinivasan, 2000, 2004).

The resulting pfair variant is called early-release pfair, or ERfair in short. With early-releasing, a

subtask is eligible to be scheduled as soon as its predecessor subtask (if any) has been completed, but

the definitions of pseudo-deadline, successor bit, and group deadline remain unchanged. The pfair

constraint is relaxed to allow arbitrary negative lag (negative lag implies that a task is ahead of its

“fair” allocation); formally, ERfairness requires of a scheduling algorithmA only that, for all tasks Ti
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and times t,

lag(Ti, t,A) < 1. (2.5)

In practical terms, early-releasing is desirable because it turns PD2 into a work-conserving scheduler.

Since we are not aware of any reason to favor a non-work-conserving scheduler in an actual RTOS,

we only consider PD2 with early-releasing in the remainder of this dissertation.

PD2 priority. With PD2’s work-conserving behavior restored, it fits within the framework of

priority-driven scheduling. Based on PD2’s two tie-breaking rules, we can define a prioritization

function for PD2 as follows. Let Ji,j denote a job pending at time t, and let Ji,j,k denote Ji,j’s

pending subtask at time t, i.e., Ji,j has been scheduled for k − 1 quanta prior to time t. Under PD2,

Ji,j’s priority is given by a four-element tuple

Y(Ji,j , t) = (di,j,k, bbit(Ji,j,k), gdl(Ji,j,k), i) ,

with the interpretation that Y(Ji,j , t) < Y(Jx,y, t) if and only if

(di,j,k < dx,y,z) {earlier pseudo-deadline}

∨ (di,j,k = dx,y,z {tie-break 1}

∧ bbit(Ji,j,k) > bbit(Jx,y,z))

∨ (di,j,k = dx,y,z ∧ bbit(Ji,j,k) = bbit(Jx,y,z) = 1 {tie-break 2}

∧ gdl(Ji,j,k) > gdl(Jx,y,z))

∨ (di,j,k = dx,y,z ∧ bbit(Ji,j,k) = bbit(Jx,y,z) = 1 {tie-break 3}

∧ gdl(Ji,j,k) = gdl(Jx,y,z) ∧ i < x)

∨ (di,j,k = dx,y,z ∧ bbit(Ji,j,k) = bbit(Jx,y,z) = 0 {tie-break 4}

∧ i < x),

where Jx,y,z denotes Jx,y’s pending subtask at time t. The first two tie-breaks are essential to PD2’s

correctness; any remaining priority ties may be broken “arbitrarily” from a correctness point of view.
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Here, the third and fourth tie-break ensure that any remaining ties are consistently broken in favor of

lower-indexed tasks.

Example 2.10. Figure 2.24 depicts a PD2 schedule of the task set given in Table 2.6. The pfair

window and group deadline for each subtask are shown in Figure 2.24 above each job; all relevant

subtask parameters for each task can be found in Table 2.7 and Figure 2.21. Recall from Figure 2.19

that J5,1 misses its deadline when scheduled under G-EDF. Under PD2, this is avoided because the

subtasks of J5,1,1 have a comparatively high priority since T5’s high utilization results in short pfair

windows.

At time 0, J5,1 is released. The first two subtasks of J5,1 are scheduled automatically since there

is no contention. However, J5,1 remains scheduled even at time 2 when J1,1 and J3,1 are released.

This is because J5,1,3 (the currently pending subtask of J5,1) has an earlier pseudo-deadline at time 6,

whereas J3,1’s only subtask is not due until time d3,1 = d3,1,1 = 7. In contrast, under G-EDF in

Figure 2.19, J3,1 preempts J5,1 on arrival.

At time 3, J4,1 and J2,1 are released. J4,1,1 has an earlier pseudo-deadline (at time 6) than J5,1,4

(at time 7); J5,1 is thus preempted by J4,1. J1,1 remains scheduled because its current subtask, J1,1,2,

has an equally early pseudo-deadline at time 6.

At time 4, the tie-breaking rules take effect for the first time in this example. This is because

there are three subtasks (J1,1,3, J3,1,1, and J5,1,4) with equal pseudo-deadline at time 7. Of these three

subtasks, only J5,1,4 has a non-zero successor bit; it thus has the highest priority and is scheduled.

Since bbit(J1,1,3) = bbit(J3,1,1) = 0, the tie is resolved according to tie-break 4, which favors the

lower-indexed task’s subtask, which is J1,1,3 in this case.

At time 5, no tie-breaks are required as there are two subtasks that have earlier pseudo-deadlines

than the rest of the pending subtasks; J2,1,1 and J3,1,1 are thus scheduled. However, a tie-break is

again required at time 6 as J1,1,4, J4,1,2, and J5,1,5 each have a pseudo-deadline at time 9. Of these,

only J1,1,4 and J5,1,5 have a non-zero successor bit, so J4,1,2 is deferred. In contrast, J5,1 is the

lowest-priority pending job at time 6 in the corresponding G-EDF schedule (Figure 2.19).

All later pseudo-deadline ties in Figure 2.24 are resolved in favor of lower-indexed tasks. Under

PD2, all jobs meet their deadlines. In fact, when comparing Figure 2.24 to Figure 2.19, one can

observe that the schedule length (i.e., the time until all jobs have completed) is shorter by two time
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Figure 2.24: Example PD2 schedule of the task set listed in Table 2.6 for m = 2 and Q = 1.
The digit inside each processor allocation indicates the subtask number k. The corresponding pfair
window and group deadline (if applicable) are shown above each job and are similarly marked.
Overlapping subtask windows imply a non-zero successor bit. The subtask parameters are listed in
Table 2.7 and shown in Figure 2.21. T3 has two subtasks with k = 1 because it releases two jobs at
times 2 and 5 in the depicted scenario. Note that J1,1,3, J1,1,4, and J1,1,6 and also J5,1,3, J5,1,4, and
J5,1,6 are scheduled in a slot before their pfair window due to early-releasing.
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units under PD2 than under G-EDF. This is a witness to PD2’s ability to maximize parallelism,

which is key to its ability to correctly schedule any feasible implicit-deadline task set. ♦

We summarize PD2’s HRT optimality with the following theorem.

Theorem 2.11 (Srinivasan and Anderson, 2002, 2006; Anderson and Srinivasan, 2000, 2004). An

implicit-deadline sporadic task set τ is HRT schedulable under PD2 with early-releasing on m

processors if and only if usum(τ) ≤ m.

Unfortunately, it is not obvious whether PD2’s theoretical prowess translates into meaningful

real-world performance. As mentioned above, there are physical limits to the minimum achievable

quantum sizeQ. Further, jobs tend to be preempted and migrated frequently under PD2. For example,

in Figure 2.24, both J2,1 and J4,1 are preempted after each subtask, and both jobs migrate once. This

creates additional overheads that must be accounted for. An implementation-based study of PD2’s

ability to ensure HRT correctness is thus required. We report on such a study in Chapter 4.

2.3.4 Clustered Multiprocessor Real-Time Scheduling

Under clustered priority-driven scheduling (Calandrino et al., 2007; Baker and Baruah, 2007), the

m processors are split into
⌈
m
c

⌉
disjoint sets (or clusters) of c processors each. For notational

convenience, we assume that m is an integer multiple of c unless noted otherwise, i.e., there are

exactly m
c clusters of size c. As under partitioning, tasks are statically assigned to clusters during

an offline partitioning phase. At runtime, an instance of a priority-driven scheduling algorithm is

instantiated for each cluster. As a result, jobs do not migrate across cluster boundaries. However,

since each cluster may contain multiple processors, jobs are scheduled “globally” within each cluster;

consequently, a job may migrate among its constituent processors.

Clustered scheduling is a generalization of both global and partitioned scheduling: if c =

1, then clustered scheduling yields pure partitioned scheduling, and if c = m, then clustered

scheduling is equivalent to global scheduling. From a historical perspective, however, clustered

scheduling was introduced as a hybrid approach to combine the advantages of partitioned and global

scheduling (Calandrino et al., 2007). Specifically, the appeal of clustered scheduling is that it is

believed to have lower implementation overheads than global scheduling and that it yields a simpler

bin-packing instance than partitioned scheduling. The reason for the former is that clusters are
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typically defined to align with the underlying hardware topology such that all processors in a cluster

share a common cache, which may help to lessen migration overheads. With regard to the latter,

the task assignment problem is much simpler under clustered scheduling (unless c = 1) because

there are fewer and larger bins of size c while the size of each item, ui, remains unchanged (or

mostly so, when considering overheads). In other words, in relation to the bins in which they must be

placed, the items are smaller under clustered scheduling; this makes it more likely that a bin-packing

heuristic will find a (near-)optimal solution. As in the case of partitioned scheduling, we use the

worst-fit-decreasing heuristic to distribute tasks more-or-less evenly among all clusters.

We consider two clustered schedulers in this dissertation: clustered EDF , denoted C-EDF, and

clustered PD2 , which we denote as C-PD2. While it is conceivably possible to “mix and match”

cluster sizes and schedulers (e.g., a 24-core system could be split into a 12-core PD2 cluster and a

two six-core G-EDF clusters), this is currently not supported by LITMUSRT; we restrict our focus

to homogeneous clusters with respect to both cluster size and scheduling policy.

No clustering-specific schedulability tests are required. As is the case with partitioned scheduling,

we simply partition a task set and apply one or more appropriate (global) schedulability test(s) to

each cluster. The task set is deemed schedulable (either HRT or SRT) if each cluster passes (one of)

the applied test(s). In fact, since typically c > 1, issues related to parallelism must be handled within

each cluster. Therefore, clustered scheduling is essentially “global scheduling with an additional task

assignment phase,” both from an implementation and from a schedulability-analysis point of view.

However, we note that global and clustered scheduling differ greatly when it comes to supporting

certain types of locking protocols (which are discussed in the next section). This difference is

explored in detail in Chapter 6.

Section summary. This concludes our review of real-time scheduling policies. To summarize, no

partitioned scheduler or global JLFP scheduler can be optimal in the HRT sense, but HRT optimal

global JLDP schedulers exist. From a theoretical point of view, there is thus little reason not to use

global scheduling in general, and PD2 in particular. However, concerns of higher overheads call the

practicality of global scheduling into question. As a compromise, clustered scheduling applies global

scheduling to clusters of processors. In this dissertation, we consider two schedulers of each category:

two partitioned schedulers, P-FP and P-EDF, two global schedulers, G-EDF and PD2, and their
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clustered counterparts, C-EDF and C-PD2. In Chapter 3, we discuss how to account for runtime

overheads under each of these schedulers and provide a description of how they were implemented

in LITMUSRT. We report on a study in which we compared them empirically under consideration of

real, measured overheads in Chapter 4.

2.4 Real-Time Locking Protocols

Most published schedulability analysis, and each of the major schedulability tests reviewed in the

preceding section, assume that all tasks are independent. That is, jobs are assumed to share no

resources besides processors. Task independence implies that the m highest-priority pending jobs are

always ready to be scheduled, i.e., a job progresses towards its completion whenever it is assigned

a processor by the scheduler. However, in most real systems, there are shared resources that are

used by multiple tasks. For example, tasks may have to share limited physical I/O facilities or might

share program state such as queues, buffers, and other data structures. Even if all tasks are indeed

independent at the application level, there is typically a considerable amount of shared state in an

RTOS kernel, including memory maps, device state, task information, and ready queues. Concurrent

access to such shared resources must be synchronized, lest inconsistencies or conflicts arise. This

is commonly achieved with locks.17 As a result, tasks are no longer independent: if a job requires

a shared resource that is already in use, then it must wait for the resource to become available and

cannot progress towards completion, even if it is among the m highest-priority pending jobs.

There are two principal mechanisms to realize waiting on a multiprocessor: a job can either

busy-wait (or spin) in a tight loop, thereby wasting processor time, or it can relinquish its processor

and suspend. Locks of the former type are called spinlocks; the latter kind of locks are called

semaphores. In theory, semaphores are always preferable because spinning jobs waste processor

cycles. In practice, spinlocks benefit from low overheads (compared to the cost of suspending and

resuming jobs), so that spinning can in fact be preferable if all critical sections are short. We explore

this tradeoff in detail in Chapter 7. On a uniprocessor, suspending is the only option because a

17An alternative to locking is the use of specialized non-blocking algorithms (e.g., see Anderson and Holman, 2000).
However, compared to lock-based synchronization, which allows in-place updates, non-blocking approaches usually
require additional memory, incur significant copying or retry overheads, and can only be used for synchronizing shared
data structures, but not devices. With regard to synchronization, the focus of this dissertation is locking.
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Figure 2.25: Example of an “unbounded” priority inversion. Three tasks are scheduled under FP
scheduling. Two of the tasks (T1, T3) share one resource that is protected by a semaphore. The job
J1,1 is suspended during [4, 17) because it tried to acquire the lock when it was already being held
by J3,1. The release of J2,1 at time 5 transitively delays J1,1 for e2 = 11 time units. J1,1 suffers a
priority inversion during this time since it is the highest-priority pending job but not scheduled. As a
result, J1,1 misses its deadline at time 15.

spinning job prevents other jobs from executing on its processor. No matter whether waiting is

implemented by means of spinning or suspending, it increases the response time of both the waiting

and, indirectly, other jobs. In a real-time system, these additional delays must be controlled and

accounted for.

Example 2.11. Figure 2.25 depicts a classic uniprocessor example that illustrates the dangers of

uncontrolled locking. There are three tasks scheduled under FP, two of which (T1 and T3) share a

non-processor resource that is protected by a semaphore. At time 0, J3,1 is released first and locks

the semaphore protecting the shared resource at time 2. It begins to execute its critical section, but is

preempted at time 3 when the higher-priority job J1,1 is released. At time 4, J1,1 attempts to lock

the shared resource, too. However, since it is unavailable (i.e., already locked), J1,1 must suspend

and J3,1 continues to execute its critical section instead. Then an inopportune preemption occurs:

J2,1 is released at time 5 and, since Y(J2,1, 5) < Y(J3,1, 5), preempts the resource-holding job J3,1.

Consequently, J3,1 cannot finish its critical section until J2,1 completes. As a result, J2,1 transitively

delays the highest-priority job J1,1 for the entirety of J2,1’s execution, so that J1,1 misses its deadline

at time 15. This is a priority inversion: while J1,1 is suspended, a lower-priority job is scheduled

instead of the highest-priority pending job (formalized below). Since e2 could be arbitrarily large

(assuming an appropriately scaled p2), J1,1 is said to be at risk of an unbounded priority inversion.

♦

When using locks, priority inversions are unavoidable to some extent since shared (non-processor)

resources are non-preemptable. That is, a lock once granted cannot be forcefully revoked from
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a lower-priority job mid-critical-section because this might leave the resource in an inconsistent

state. Priority inversions are a major concern because they create delays that are not anticipated

by schedulability analysis that assumes independent tasks. To enable the predictable use of locks

(and thus shared resources) in a real-time system, two issues need to be resolved: (i) the employed

schedulability test must take priority inversions into account, and (ii) the maximum duration of

priority inversion must be bounded.

The purpose of a real-time locking protocol is to ensure that (ii) is indeed the case at runtime, and

that a suitable bound can be derived a priori. This encompasses two requirements. First, a real-time

locking protocol must order conflicting requests so that no job incurs an excessive number of priority

inversions. Second, it must enforce that resource-holding jobs quickly complete their critical sections

when they delay higher-priority jobs, so that each occurrence of priority inversion is of bounded

length.

In Chapters 5 and 6, we design and analyze several new multiprocessor locking protocols, and in

Chapter 7, we present an implementation-based evaluation of several locking protocols. To establish

the required foundation, we review relevant prior uni- and multiprocessor locking protocols in the

remainder of this section, after first formalizing our model of resource sharing and defining priority

inversion.

2.4.1 Resource Model

In this dissertation, we consider three types of shared resources that differ with respect to their sharing

constraint. Mutual exclusion of accesses is required for serially reusable resources, which may be

used by at most one job at any time. Reader-writer exclusion (Courtois et al., 1971) is sufficient if a

resources’s state can be observed without affecting it: only writes (i.e., state changes) are exclusive

and multiple reads may be satisfied simultaneously. Resources of which there are k identical replicas

are subject to a k-exclusion constraint: each replica is only serially reusable and thus requires mutual

exclusion, but up to k requests may be satisfied at the same time by delegating them to different

replicas.

Mutex constraints are most common in practice. However, the need for RW synchronization

arises naturally in many situations, too. Two common examples are few-producers/many-consumers

relationships (e.g., obtaining and distributing sensor data) and rarely changing shared state (e.g.,
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Notation Interpretation Constraint / Definition

`q A shared resource. 1 ≤ q ≤ nr
Ri,q,v The vth resource request by any Ji for resource `q. v ≥ 1
Li,q,v The request length ofRi,q,v. Li,q,v ≤ Li,q
Ni,q Maximum number of requests for `q issued by any Ji.
Li,q Maximum length of any request for `q issued by any Ji. Ni,q = 0⇒ Li,q = 0

NR
i,q Maximum number of read requests for `q issued by any Ji.

LRi,q Maximum length of any read request for `q issued by any Ji. NR
i,q = 0⇒ LRi,q = 0

NW
i,q Maximum number of write requests for `q issued by any Ji.

LWi,q Maximum length of any read write for `q issued by any Ji. NW
i,q = 0⇒ LWi,q = 0

kq Number of replicas of `q. kq ≥ 1

bi Maximum duration of priority inversion incurred by any Ji. see Section 2.4.2
si Maximum duration of spinning incurred by any Ji. see Section 2.4.4.1

Table 2.8: Summary of notation related to resource sharing.

configuration information). Of the three constraints, we expect k-exclusion constraints to be the least

common. However, k-exclusion is required whenever there are multiple identical co-processors. For

example, a system might contain multiple graphics processing units (GPUs) or digital signal proces-

sors (DSPs). Theoretically, one could further consider replicated resources with RW constraints, but

we are not aware of any practical applications where such constraints arise and do not consider this

combination of constraints.

Notation. We formalize resource sharing among sporadic tasks as follows (and as summarized in

Table 2.8). Besides the m processors, the system contains nr shared resources `1, . . . , `nr . When a

job Ji requires a resource `q, where q ∈ {1, . . . , nr}, it issues a request for `q. We letRi,q,v denote

the vth resource request by task Ti for resource `q, where v ≥ 1. In other words,Ri,q,v corresponds

to the vth time that any Ji requires `q since Ti was launched. In the case of RW constraints, we

analogously letRR
i,q,v andRW

i,q,v denote the vth read and write request for `q, respectively.

A request Ri,q,v is satisfied as soon as Ji holds `q, and completes when Ji releases `q. The

request length is the time that Ji must execute before it releases `q; we let Li,q,v denote the request

length ofRi,q,v. If a requestRi,q,v cannot be satisfied immediately, then Ji incurs acquisition delay

and cannot proceed with its computation while it waits forRi,q,v to be satisfied. Jobs wait by either

spinning or by suspending, depending on the type of lock that protects `q. The request span ofRi,q,v
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Figure 2.26: Illustration of the phases of a request. A job must wait by either spinning or suspending
while it incurs acquisition delay.

starts when Ri,q,v is issued and lasts until it completes, i.e., it includes the request length and any

acquisition delay. The different phases of a resource request are illustrated in Figure 2.26.

Requests may be issued at any time during a job’s execution, and no particular order of requests

is assumed. In particular, we do not assume a minimum separation between consecutive requests.

We let Ni,q denote the maximum number of times that any Ji requests `q, and let Li,q denote the

maximum length of such a request, where Li,q = 0 if Ni,q = 0. When discussing RW resources, we

let NR
i,q and NW

i,q denote the number of read and write requests, respectively, with the interpretation

that NR
i,q +NW

i,q = Ni,q. We let LRi,q and LWi,q denote bounds on the maximum read and write request

length (analogously to Li,q). In the context of shared resources with k-exclusion constraints, we let

kq denote the number of replicas of resource `q.

While executing a request, Ji is said to be in a critical section. We assume that Ji must be

scheduled on a processor while using a resource, that is, Ji’s request only progresses towards

completion when Ji is allocated a processor. This is required for shared data objects, but may be

pessimistic for some I/O devices. The latter can be accounted for at the expense of more-verbose

notation. We assume that each task’s execution requirement ei already accounts for critical sections

of Ti (but not for cycles lost to spinning, if any).

If job Ji issues a request Ri,q,w after a previous request Ri,q,v has been satisfied but before

Ri,q,v is complete, thenRi,q,w is an inner request that is nested within the outer request Ri,q,v. An

outermost request is not nested within any other requests. Unless noted otherwise, we assume that

resource requests are not nested within each other, i.e., jobs request at most one resource at any time.

Resource nesting is considered in the context of uniprocessor locking protocols in Section 2.4.3

below and briefly in Chapter 5. When discussing nested requests, we assume that the request length
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Figure 2.27: Job state transition diagram.

of outer requests includes the request length of inner requests. We further require that tasks do not

hold resources across job boundaries.

Job states. To accommodate the locking protocols discussed below, we extend our task model as

illustrated in Figure 2.27. A pending job can be in one of the following states: a ready job is available

for execution, whereas a suspended job cannot be scheduled. A job resumes when its state changes

from suspended to ready. A scheduled job is further either preemptable or non-preemptable, and

cannot be descheduled while it is non-preemptable. In other words, a job that enters a non-preemptive

section cannot be preempted or migrated by the scheduler until it exits its critical section. We assume

that pending jobs are ready unless suspended by a locking protocol. A ready job may be suspended

regardless of whether it is scheduled; however, jobs may not suspend while being non-preemptable.

Effective priority. A second extension concerns the prioritization function Y(Ji, t). As the example

shown in Figure 2.25 illustrates, the “regular” priority of a low-priority job may be insufficient to

guarantee progress when it blocks a higher-priority job. To avoid such situations, a locking protocol

may have to temporarily raise the priority of a resource-holding job. To reflect this, we call Y(Ji, t)

the base priority assigned by the scheduling policy, and let y(Ji, t) denote the effective priority of Ji,

which is determined by the locking protocol based on the resource usage of Ji at time t. We assume

that the two priorities match, i.e., y(Ji, t) = Y(Ji, t), if Ji is not using any shared resource at time t.

A priority-driven scheduler instantiated for m processors will schedule the m ready jobs with the

highest effective priorities at any time, subject to non-preemptivity constraints of earlier-scheduled

jobs. In contrast to base priorities, effective priorities are not necessarily unique; any ties are resolved

such that the number of preemptions is minimized; that is, if y(Ji, t) = y(Jx, t), then Ji and Jx

cannot preempt each other.
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Partitions and clusters. When bounding locking-related delays under partitioned or clustered

scheduling, it is often required to consider the subset of jobs assigned to a particular processor or

cluster. We adopt the following notation. Under partitioned scheduling, we let τk denote the set

of tasks assigned to processor k, and let Pi denote the partition to which task Ti is assigned, i.e.,

∀ 1 ≤ k ≤ m : τk ⊆ τ and Ti ∈ τPi . Under clustered scheduling, we analogously let τk denote the

set of jobs assigned to the kth cluster and let Pi denote the cluster to which Ti is assigned. A task Tl

is local to task Ti if Pl = Pi, and remote otherwise.

2.4.2 Priority Inversion Blocking

Intuitively, a priority inversion occurs whenever a job that should be scheduled (according to its base

priority) is not scheduled, i.e., either when a lower-priority job is scheduled instead or when the

processor is idle. Such inversions are problematic because schedulability analysis that requires task

independence (implicitly) assumes that a job always progresses towards completion whenever it has

the highest priority. When priorities are inverted, this is no longer the case. As a result, the response

time of a job Ji that suffers a priority inversion can exceed the worst-case response-time bound

assuming independence (e.g., this happens to J1,1 in Figure 2.25). Formally, a priority inversion

exists on a uniprocessor at time t if the following criteria are met.

Definition 2.8. Let Jt denote the job scheduled at time t (unless the processor is idle). On a

uniprocessor, a job Ji incurs a priority inversion at time t if Ji is pending but not scheduled at time t,

and either the processor is idle or Y(Ji, t) < Y(Jt, t).

Under partitioned scheduling, Definition 2.8 applies on a per-processor basis; priority inversions

under global and clustered scheduling are discussed in Chapter 6. Note that the definition does not

require Ji to be ready; Ji must merely be pending and may be suspended. At the same time, a

suspended job Ji does not necessarily incur a priority inversion: as long as another job with higher

priority is scheduled, there is no priority inversion. This occurs when Ji’s suspension happens to

overlap with an interval where Ji would not have been scheduled anyway due to the processor

demand from higher-priority jobs.

This subtle observation has a significant impact on real-time systems: from a real-time correctness

point of view, the length of the actual acquisition delay is irrelevant. Instead, only the cumulative
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length of priority inversion—the increase of a job’s response time—is relevant for schedulability

analysis. The purpose of a real-time locking protocol is thus to minimize the maximum priority

inversion, and not to minimize the maximum acquisition delay. This matches the intuition that

high-priority jobs should be granted access to contended resources sooner than lower-priority jobs.

In the real-time literature, acquisition delay that coincides with a priority inversion is traditionally

called “blocking,” whereas acquisition delay that does not coincide with a priority inversion lacks an

established name (since it is irrelevant for analysis purposes). We avoid the term “blocking” in this

dissertation because it is overloaded. In a real-time context, many other sources of schedulability-

relevant delays are also commonly labeled “blocking,” even if they do not coincide with a priority

inversion. For example, release jitter and deferred execution18 are causes of “blocking” without

priority inversion (Liu, 2000). In the (non-real-time) synchronization literature, “blocking” is a

synonym for acquisition delay. To further confuse matters, in an OS context, “blocking” is often used

as a synonym for “suspending,” which is not the same as the intended interpretation: in suspension-

based protocols, the length of a suspension corresponds to the acquisition delay, but not necessarily

to the length of priority inversion. Indeed, “blocking” on a lock is not even required to incur a priority

inversion: in each of the locking protocols reviewed below, a job can incur a priority inversion even

if it does not request any resources itself. “Blocking” in the real-time sense is thus only tangentially

related to “blocking” in either the OS or synchronization sense: each kind of “blocking” can occur

independently of the other two.

In this dissertation, we consider the definition specific to real-time resource sharing, which we

denote as priority inversion blocking (pi-blocking) to avoid ambiguity. To reiterate, pi-blocking

occurs whenever a job Ji’s completion is delayed and this delay cannot be attributed to higher-priority

demand—that is, if and only if Ji suffers a priority inversion. We let bi denote a bound on the total

pi-blocking incurred by any Ji. We say that a task Ti is at risk of unbounded priority inversion if no

finite bound bi exists or if the bound bi includes one or more execution requirement parameters ek. A

locking protocol ensures bounded priority inversions if each bound bi can be expressed in terms of a

finite number of Lk,q parameters. To establish that a task set is schedulable, all priority inversions

must be bounded and each bi must be accounted for in the schedulability test. With these definitions

18A job Ji defers a part of its execution when Ji is not yet complete but not available for scheduling (e.g., when waiting
for I/O operations to complete).
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in place, we are now ready to briefly review the prior locking protocols most relevant to our work.

We begin with uniprocessor locking protocols.

2.4.3 Uniprocessor Real-Time Locking Protocols

In contrast to the multiprocessor case reviewed below (Section 2.4.4), uniprocessor locking is well-

studied and understood. In particular, protocols that support nested resource requests exist and

have been adopted in several commercial RTOSs and, to some degree, even in the POSIX standard.

Additionally, both FP response time analysis (Theorem 2.2) and the EDF density test (Theorem 2.4)

have been extended to account for priority inversions. In the presence of bounded pi-blocking, HRT

schedulability can be established with the following two theorems.

Theorem 2.12 (Audsley et al., 1993). Let τ = {T1, . . . , Tn} denote a set of constrained-deadline

sporadic tasks indexed in order of decreasing priority. On a uniprocessor, under FP scheduling, the

response time ri of task Ti ∈ τ is bounded by the smallest Ri that satisfies the following equation:

Ri = ei + bi +

i−1∑

h=1

⌈
Ri
ph

⌉
· eh.

Theorem 2.13 (Baker, 1990, 1991). An arbitrary-deadline sporadic task set τ = {T1, . . . , Tn} is

HRT schedulable under EDF on a uniprocessor if, for each Ti ∈ τ ,

bi
min(di, pi)

+
∑

Tk∈τ
δk ≤ 1.

Both HRT schedulability tests are sustainable with respect to execution requirements and

periods (Baruah and Burns, 2006; Burns and Baruah, 2008).

In the discussion of the following four locking protocols, we first assume FP scheduling and

that all resources are subject to mutex constraints, which is the model most commonly assumed in

prior work. EDF scheduling and RW and k-exclusion constraints are considered thereafter.

Non-preemptive sections. The example shown in Figure 2.25 illustrates that ill-timed preemptions

of resource-holding jobs can cause unbounded priority inversions. The simplest approach to avoiding

unbounded priority inversions is to disallow preemptions during critical sections completely. That is,

when a job Ji’s request for a resource `q is satisfied, Ji becomes non-preemptable until the end of its
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Figure 2.28: NCP schedule of the scenario shown in Figure 2.25. Since J3,1 is non-preemptable
at time 5, J1,1 is not transitively delayed by J2,1. J1,1 suffers pi-blocking during [3, 6); J2,1 suffers
pi-blocking during [5, 6). Maximum pi-blocking is limited to b1 = 4, b2 = 4, and b3 = 0.

critical section. This prevents later-arriving, higher-priority jobs from preempting a resource-holding

job, thereby ensuring that each request will be completed as soon as possible (once it has been

satisfied). We refer to this locking protocol as the non-preemptive critical section protocol (NCP).

Example 2.12. An example schedule is shown in Figure 2.28, which depicts the same jobs that were

shown in Figure 2.25. Since J3,1 executes its critical section non-preemptively during [2, 6), it is

not preempted when J1,1 and J2,1 arrive at times 3 and 5, respectively. As a result, J2,1 does not

transitively delay J1,1. J1,1 still suffers pi-blocking during [3, 6), but in contrast to Figure 2.25, it

is limited to the length of J3,1’s critical section. Note that there are no suspensions and no failed

lock attempts (i.e., unsatisfied requests)—under the NCP, once a job starts executing, all its resource

requests are satisfied immediately (assuming resource-holding jobs do not suspend for locking-

unrelated reasons). ♦

In general, the NCP ensures that any job incurs pi-blocking at most once, and only immediately

when it is released. Further, the NCP limits the maximum duration of priority inversion to the length

of one outermost request of any lower-priority job. Thus, under FP scheduling, a bound on the

maximum duration of priority inversion incurred by any Ji is given by bi = max{Lk,q | k > i ∧ 1 ≤

q ≤ nr}. The NCP is in widespread use in practice, and particularly so in deeply embedded systems

that execute all tasks in kernel mode, because non-preemptivity can be very efficiently realized by

disabling interrupt delivery, which can be achieved with a single instruction on many platforms

(recall Section 2.1.3).

The biggest disadvantage of the NCP is that jobs that do not access any shared resources may

still suffer a priority inversion on release, i.e., each bi reflects the resource usage of other tasks and

not Ti. This is illustrated in Figure 2.29. In the example, task T1 does not access the shared resource

110



20151050 time

T1

T2

T3

job release

job completion

job deadline

job scheduled

critical section

locked

unlocked

Figure 2.29: NCP schedule that demonstrates that the highest-priority task is subject to pi-blocking
even if it is independent. T2 and T3 share one resource `q, but N1,1 = 0. The first job of T1, released
at time 1, is “lucky” and can preempt J3,1. However, the second job J1,2 is released while J3,1

executes a long critical section. As a result, J1,2 is not scheduled until after its deadline.

(i.e., N1,1 = 0), but tasks T2 and T3 do. Further, T1 has a very tight deadline. Because J3,1 executes

its request non-preemptively, J1,2 cannot preempt J3,1 and consequently misses its deadline. This

shows that it can be problematic if locking protocols penalize independent tasks.

Priority inheritance. Sha et al. (1990) designed an elegant mechanism that avoids delaying higher-

priority jobs if they do not request resources. Their priority inheritance protocol (PIP) only intervenes

when preempting a lower-priority job would delay a higher-priority job (Sha et al., 1990; Rajkumar,

1991). Priority inheritance prevents such preemptions by raising the effective priority of resource-

holding jobs to that of the highest-priority waiting job. Let W (Ji, t) denote the set of jobs that are

waiting for Ji at time t, i.e., that have issued a request for a resource that is currently being held by

Ji. Under the PIP, Ji’s effective priority is defined as

y(Ji, t) , min
(
{Y(Ji, t)}

⋃
{y(Jk, t) | Jk ∈W (Ji, t)}

)
.

Note that priority inheritance is transitive since y(Ji, t) is defined in terms of each y(Jk, t). That

is, if Jk is waiting for a resource that a job Jj holds, and Jj is waiting for a resource that Ji holds,

then y(Ji, t) ≤ y(Jj , t) ≤ y(Jk, t) ≤ Y(Jk, t). This yields a powerful progress property: whenever

a waiting job Jk suffers a priority inversion (i.e., if Jk has the highest base priority), then the job at

the end of the “wait-for” dependency chain is guaranteed to be scheduled. This limits the duration

of each priority inversion to the length of one outermost critical section. Further, since jobs are

preemptable at all times, the highest-priority job is only delayed if it issues requests itself. If there are
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Figure 2.30: PIP schedule of the scenario that results in a deadline miss under the NCP (Figure 2.29).
Under the PIP, jobs are always preemptable. Hence, J1,2 can preempt J3,1 in the middle of a critical
section and thus completes on time. Note that J2,1 does not incur pi-blocking immediately upon
release (since J3,1 is preemptable), but is nonetheless delayed when it requires the resource still held
by J3,1.

multiple jobs waiting for a resource, then their requests are satisfied in order of decreasing effective

priority.

Example 2.13. Figure 2.30 shows the example scenario from Figure 2.29 scheduled using the PIP

instead of the NCP. Here, J1,2, can preempt J3,1 during its critical section and thus meet its deadline.

A second example shown in Figure 2.31 further demonstrates that the PIP is effective at preventing

unbounded priority inversions. Unlike the case in Figure 2.25, J2,1 cannot preempt J3,1 at time 5

because W (J3,1, 5) = {J1,1}, and thus y(J3,1, 5) = min{3, 1} = 1 < y(J2,1, 5). ♦

In contrast to the NCP, a job may incur a priority inversion each time that it requests a resource

(that is has not previously acquired). Further, jobs that do not request any shared resources may still

be subject to priority inversion if they are not the highest-priority job. For example, if a low-priority

job J3 holds a resource that a high-priority job J1 requires, then a middle-priority job J2 will not be

scheduled while J3 inherits J1’s priority—both J1 and J2 are subject to priority inversion while J3

completes its critical section. In Figure 2.31, this happens during the interval [5, 7).

The PIP yields the following bound on the maximum cumulative priority inversion duration

results (assuming FP scheduling). Let Ai denote the set of resources that are shared by both tasks of

equal-or-higher and lower priority than Ti, i.e.,

Ai , {`q | ∃h, l s.t. 1 ≤ h ≤ i ∧ i < l ≤ n ∧Nh,q > 1 ∧Nl,q > 1}. (2.6)

In the worst case, each resource in Ai is held by a lower-priority job when Ji commences execution

and requested by a higher-priority job (or Ji itself) while Ji is pending; the maximum duration of
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Figure 2.31: PIP schedule of the scenario shown in Figure 2.25. Since J3,1 inherits J1,1’s priority
during [4, 7), J1,1 is not transitively delayed by J2,1. J1,1 incurs pi-blocking during [4, 7). Since J3,1

has a lower base priority than J2,1, J2,1 suffers a priority inversion during [5, 7).

priority inversion is thus bi =
∑

`q∈Ai
max{Ll,q | l > i}. The bound stated here has been somewhat

simplified; see (Sha et al., 1990) for a bound that is less pessimistic if |Ai| > (n− i). However, even

then it shows that tasks can have a greater risk of priority inversion under the PIP than under the

NCP. Nonetheless, the PIP is mandated by the POSIX real-time standard and thus widely used in

practice.

Another limitation of the PIP is that it is susceptible to deadlock, i.e., to jobs waiting indefinitely

for each other to release a resource. Deadlock is only an issue when requests may be nested, that is,

when jobs may acquire more than one resource at a time.

Example 2.14. A typical deadlock scenario involving two resources `2 and `3 is shown in Figure 2.32.

Job J3,1 acquires `3 at time 1 and is then preempted by the simultaneous arrivals of J2,1 and J1,1.

J1,1 requires neither `2 nor `3 and completes without incurring any pi-blocking. J2,1, however, first

locks `2 and then requests `3, which is still being held by J3,1. Consequently, J2,1 suspends and J3,1

continues to execute its critical section until it, too, requests `2. J3,1 and J2,1 are now deadlocked.

♦

Priority ceiling. Sha et al. (1990) solved both the deadlock problem and the potential for excessive

pi-blocking under the PIP with the priority-ceiling protocol (PCP) (Sha et al., 1990; Rajkumar,

1991). The intuition underlying the PCP is to delay potentially problematic resource requests until

deadlock is impossible. Whether a given request is “potentially problematic” is determined based on

the priorities of the tasks sharing a resource according to the following three definitions.

The priority ceiling of a resource `q, denoted Π(`q), is the base priority of the highest-base-

priority task that accesses `q; formally, Π(`q) , min{i | Ni,q > 0} under FP scheduling. Based on
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Figure 2.32: Example schedule of three tasks showing that jobs can deadlock under the PIP.
There are three resources `1, `2, `3. The numbers within each critical section and next to failed lock
attempts indicate the index of the requested resource. J3,1 and J2,1 issue nested requests for `2 and
`3, respectively. Deadlock results since neither job can release the resource it holds without first
acquiring the other.

the priority ceiling, the system ceiling at time t, denoted Π̂(t), is the highest priority ceiling of any

resource in use at time t, or n+ 1 if no resource is in use; i.e.,

Π̂(t) , min
(
{n+ 1}

⋃
{Π(`q) | `q is in use at time t}

)
.

Finally, let L(t) denote the job that raised Π̂(t) to its current value. In other words, if Π̂(t) < n+ 1,

then L(t) holds a resource `q at time t such that Π(`q) = Π̂(t).

Based on the two ceilings, the PCP extends the PIP by enforcing an additional constraint

prior to satisfying requests: a request Ri,q,v issued by job Ji is only satisfied at time t if either

(i) Y(Ji, t) > Π̂(t) or (ii) L(t) = Ji. Condition (i) implies that deadlock is impossible because it

prevents a later-arriving, higher-priority job Ji from acquiring any resources while a lower-priority

job holds at least one resource that Ji might request. As a necessary precondition for Ji to deadlock,

there must exist a resource `q, where Ni,q > 1, that is already being held by a lower-priority job

when Ji locks a second resource `x at time t. (In Figure 2.32, this is the case for J2,1 at time t = 6

with q = 3 and x = 2.) Since Ni,q > 1, it follows that Π(`q) ≤ i and thus Π̂(t) ≤ i, which implies

that condition (i) is false at time t. Therefore, Ji cannot acquire any resources until all resources

that it might request have become available, which precludes deadlock. Condition (ii) is required to

prevent jobs from deadlocking with themselves when they issue nested requests. As under the PIP,

conflicting requests are satisfied in order of decreasing effective priority, and jobs inherit the priority

of blocked higher-priority jobs.
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Figure 2.33: PCP schedule of the scenario that results in deadlock under the PIP (Figure 2.32). The
step function above the schedule shows the corresponding system ceiling Π̂(t) as a function of time.
Deadlock is avoided because J2,1’s request for `2 at time 6 remains unsatisfied until time 10, when
the system ceiling is momentarily lowered to n + 1 = 4. Since J2,1 immediately acquires `2, the
system ceiling is instantaneously restored to `2’s priority ceiling Π(`2) = 2.

Example 2.15. Figure 2.33 demonstrates how condition (i) prevents deadlock. As in Figure 2.32,

J3,1 and J2,1 acquire both `2 and `3 in a nested fashion. However, under the PCP, J2,1 is prevented

from acquiring `2 at time 6 because J3,1 raised the system ceiling to `3’s priority ceiling Π(`3) =

min{3, 2} = 2 at time 1. J2,1’s request thus fulfills neither condition (i) nor (ii) until time 10,

when the system ceiling is (briefly) lowered to n + 1 = 4 when J2,1 releases `3. J3,1’s request

for `2 at time 7 is satisfied immediately even though J3,1’s effective priority does not exceed the

system ceiling because it is the last job to have raised the system ceiling, i.e., J3,1’s request satisfies

condition (ii) but not condition (i). Note that J1,1’s request for `1 at time 3 is not delayed by the PCP

since y(J1,1, 3) = 1 < Π̂(3) = 2. ♦

In general, the PCP avoids deadlock and limits the maximum duration of priority inversion to

one (outermost) critical section of any lower-priority job. Define Ai as for the PIP in Equation (2.6).

Assuming FP scheduling, the maximum (cumulative) duration of priority inversion experienced

by any Ji under the PCP is limited to bi = max{Ll,q | `q ∈ Ai ∧ l > i}. Note that, like the NCP

and unlike the PIP, the pi-blocking bound is an O(1) term, i.e., it does not depend on the number

of tasks n or the number of shared resources s. Further, unlike the NCP, the highest-priority job

is not subject to priority inversion if it does not access any shared resources. The PCP is thus an

asymptotically optimal uniprocessor real-time locking protocol.
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Release blocking. Baker (1990, 1991) proposed a second priority-ceiling-based protocol, namely

the stack resource policy (SRP). The bound on maximum pi-blocking under the SRP is identical

to the bound ensured by the PCP, but the time at which the priority inversion (if any) is incurred

differs. Recall that the PCP works by delaying “potentially problematic requests.” The key insight

underlying the SRP is that the resource-sharing problem can be considerably simplified by delaying

the time of “problematic preemptions” instead. We shall use a similar approach in Chapter 6.

Under the PCP, a job may execute immediately after its release, but may become blocked once

it issues a resource request. In contrast, under the SRP, a job suffers a priority inversion either

immediately upon release or not at all. Define each resource ceiling Π(`q) and the system ceiling

Π̂(t) as before in the definition of the PCP. The SRP consists of a single scheduling rule: a newly-

released job Ji,j is not eligible to execute until time t, where t ≥ ai,j , such that Y(Ji,j , t) < Π̂(t). In

other words, each job is initially suspended and only resumed once its priority exceeds the system

ceiling. Note that the SRP does not require priority inheritance. When Ji later issues a request

during its execution, the SRP scheduling rule implies that Ji’s request will be satisfied immediately:

all resources that Ji might request are available after its initial wait. This implies that deadlock is

impossible.

Example 2.16. An example SRP schedule is shown in Figure 2.34. As before in Figures 2.32

and 2.33, J2,1 is released at time 2. However, under the SRP, it may not commence execution until

time 9 because Π̂(t) ≤ 2 for each t ∈ [1, 9). As under the PCP, the highest-priority job J1,1 is not

affected by the resource-sharing of lower-priority jobs. ♦

Locking under EDF. We have assumed FP scheduling in the discussion so far. However, with only

small changes, the NCP, PIP, and SRP, and PCP can be applied to EDF as well. A key property of

EDF is that lower-priority jobs released prior to job Ji’s arrival stem from tasks with strictly longer

relative deadlines.

Lemma 2.4. Under EDF (either uniprocessor, global, clustered, or partitioned), if a lower-priority

job Jl,k arrived prior to Ji,j , i.e., if al,k < ai,j and Y(Ji,j , t) < Y(Jl,k, t), then di < dl.

Proof. This follows from the definition of EDF priorities:

Y(Ji,j , t) < Y(Jl,k, t)

116



20151050 time

1
2
3
4

�̂(t)

T1

T2

T3 3

1

2 3

2 3 2

job release

job completion

job deadline

job scheduled lock attempt

critical section

job suspended

locked

unlocked

Figure 2.34: SRP schedule of the scenario that results in deadlock under the PIP (Figure 2.32).
Similarly to the PCP (Figure 2.33), the SRP avoids deadlock by means of the system ceiling. J2,1

is suspended immediately upon release because its priority does not exceed the system ceiling. At
time 9, when J3,1 releases `3, the priority ceiling is lowered to four and J2,1 becomes eligible to
execute.

{ definition of EDF base priorities }

⇔ di,j < dl,k ∨ (di,j = dl,k ∧ i < l)

{ definition of absolute deadline }

⇔ ai,j + di < al,k + dl ∨ (ai,j + di = al,k + dl ∧ i < l)

{ since ai,j > al,k }

⇒ di < dl ∨ (di < dl ∧ i < l)

⇔ di < dl.

Since this relies only on the definition of the EDF prioritization function, the lemma applies equally

to EDF, P-EDF, C-EDF, and G-EDF.

Common to the NCP, PIP, PCP, and SRP is that only earlier-arrived, lower-priority jobs can

cause Ji to incur a priority inversion (since lower-priority jobs cannot issue outermost requests while

Ji is pending). This, together with Lemma 2.4, implies that only critical sections of tasks with strictly

larger relative deadlines pi-block Ji under EDF. In contrast, under FP, only critical sections of

larger-indexed tasks pi-block Ji. Therefore, the bound on pi-blocking for each of the protocols must

be adjusted to correctly reflect to which tasks lower-priority jobs belong.

In the case of the NCP, the protocol itself remains unchanged and the bound is stated in terms

of relative deadlines. Under EDF, the NCP ensures a maximum duration of priority inversion of

bi = max{Lk,q | dk > di ∧ 1 ≤ q ≤ nr} for any Ji.
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In the case of the PIP, PCP, and SRP, the definition of Ai must be adjusted to reflect relative

deadlines instead of task indices. Under EDF, the set of resources that could be accessed by both

higher- and lower-priority jobs is defined as Ai , {`q | ∃h, l s.t. dh ≤ di ∧ di < dl ∧ Nh,q >

1 ∧Nl,q > 1}. Maximum pi-blocking is then given by bi =
∑

`q∈Ai
max{Ll,q | dl > di} under the

PIP.

For the PCP and SRP to work correctly, the definition of priority ceiling must be changed to

reflect relative deadlines as well. Since ties in absolute deadlines are broken in favor of lower-indexed

tasks, the priority ceiling of a resource `q is defined as Π(`q) , min{(di, i) | Ni,q > 0}, with the

interpretation that (di, i) < (dx, x) ⇔ di < dx ∨ (di = dx ∧ i < x). Condition (i) of the PCP

request rule and the SRP scheduling rule must be changed accordingly to compare the relative

deadline of each Ti with the system ceiling. With these changes in place, the maximum duration of

priority inversion under either the SRP or the PCP is given by bi = max{Ll,q | `q ∈ Ai ∧ dl > di}.

Locking can thus be optimally controlled under both EDF and FP scheduling to cause O(1)

per-job priority inversions. That there are only small differences in the above definitions highlights

that EDF and FP do not differ much when it comes to real-time locking. In fact, when assigning

fixed priorities according to the optimal DM policy, the definitions for FP and EDF scheduling are

almost equivalent since i < j ⇔ di ≤ dj .

RW and k-exclusion locks. We have reviewed the PCP and SRP as they apply to mutex constraints.

However, in a generalized form, both protocols support multi-unit resources as well (Baker, 1990,

1991; Rajkumar, 1991). A multi-unit resource is a shared resource of which there are x (integral) units

in total and each job may request multiple instances for use. Concurrent requests may be satisfied

simultaneously as long as the total number of the requested units does not exceed the number of

units x. While somewhat rare in practice—their primary use case is stack space management (Baker,

1990, 1991)—multi-unit resources are a versatile abstraction that generalizes both mutex (x = 1)

and k-exclusion constraints (where x = k and each job requests only one unit at a time). Further,

multi-unit resources can be used to emulate RW semantics by setting x = n and letting writers

request all n units at once, but readers only single units at a time. The fundamental operation of the

SRP and PCP, as well as their properties, remain unchanged in the presence of multi-unit resources;

we refer the interested reader to (Baker, 1991; Rajkumar, 1991).
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To summarize, shared resources with mutex, RW, and k-exclusion constraints and nested requests

are well supported in uniprocessor real-time systems. Optimal protocols exist (SRP and PCP)

that limit maximum pi-blocking to the length of one (outermost) request while ensuring deadlock-

freedom, and there are schedulability tests that correctly account for priority inversions under both

EDF and FP scheduling. In essence, predictable locking is a solved problem on uniprocessors.

2.4.4 Multiprocessor Real-Time Locking Protocols

A multiprocessor real-time locking protocol is required when a shared resource may be requested

concurrently by jobs on multiple processors. Shared resources can be classified as either global

or local resources. Under partitioning, a resource is local if it is shared only among jobs residing

on the same processor, and global otherwise. Local resources can be optimally managed using

the uniprocessor PCP or SRP in each partition; multiprocessor locking protocols are thus only

needed for global resources. Under global scheduling, all shared resources are necessarily global

since it is not known in advance on which processors jobs will execute. Under clustered scheduling,

resources could be considered local if they are only accessed by jobs assigned to the same cluster. If

c > 1, then such “local” resources are still global with respect to their cluster, i.e., local resources

do not necessarily reduce to a simpler uniprocessor problem under clustered scheduling. However,

intra-cluster resource sharing is equivalent to resource sharing under global scheduling and thus does

not warrant individual attention. We therefore assume in the following that each resource `q is a

global resource—shared across clusters or partitions—and that local resources (if there are any) have

been dealt with separately.

Compared to the state-of-the-art in uniprocessor locking protocols, the sharing of global resources

is much less understood. In fact, prior to our work, RW and k-exclusion protocols for multiprocessor

real-time systems had not been studied (in the published literature). Further, suspension-based mutex

protocols had only been developed and analyzed in the context of partitioned scheduling, but not

for global scheduling, and locking protocols for clustered scheduling had not been considered at all.

In Chapters 5 and 6, we study real-time locking protocols for the sharing of global resources with

mutex, RW, and k-exclusion constraints under global, clustered, and partitioned scheduling.

We require that requests for global resources are not nested. That is, jobs are not allowed to

request additional resources while holding a global resource and are further barred from requesting
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global resources while holding a local resource. Global resource requests can thus not lead to

deadlock. This limitation is common to all multiprocessor locking protocols proposed to date. In

Chapter 5, we discuss a simple “workaround” applicable to any protocol that allows nested requests

by reducing nesting to coarse-grained “group locking.” To the best of our knowledge, predictable,

deadlock-free support for nested requests (without resorting to coarse-grained coalescing of resources

into groups) is an open problem.

Prior work on the sharing of global resources has focused on supporting mutex constraints. Most

relevant to our work are three suspension-based mutex protocols for partitioned scheduling, and two

spin-based mutex protocols (one for partitioned scheduling and one for global scheduling). We begin

by reviewing spin-based protocols because they are easier to analyze.

2.4.4.1 Spinlock Protocols

In a spin-based protocol, a job Ji that incurs acquisition delay busy-waits by executing a delay loop

until its request is satisfied. Since Ji remains scheduled while spinning, it does not incur pi-blocking

at the time. Nonetheless, the spinning delays both Ji and also lower-priority jobs since it increases

Ji’s execution requirement; and must thus be accounted for. To avoid ambiguity, we refer to the

delay that Ji incurs due to its own busy-waiting as spin blocking (s-blocking). We let si denote an

upper bound on the maximum cumulative duration of s-blocking incurred by any Ji. In other words,

Ji incurs acquisition delay—and thus spins—for at most si time units.

If jobs spin non-preemptively (which they do in all of the considered spin-based protocols), then

a spinning job may cause other, newly-released, higher-priority jobs to incur a priority inversion

(this is similar to pi-blocking in the NCP). The bound si does not account for such delays that

affect other jobs. For example, if a higher-priority job J1 cannot preempt J2 because it is spinning

non-preemptively, then J1 incurs pi-blocking (but not s-blocking), which is accounted for by b1,

whereas J2 incurs s-blocking (but not pi-blocking), which is accounted for by s2. This is illustrated

in Figure 2.35.

Since busy-waiting consumes processor cycles, the execution requirement must be adjusted

to reflect the increased processor demand. We denote Ti’s effective execution requirement as

e′i = ei + si. When applying any schedulability test in the presence of spinlocks, the effective

execution requirement e′i must be substituted for ei when determining ui, δi, etc. For example, the
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Figure 2.35: Illustration of the difference between pi-blocking and s-blocking. The example shows
three tasks under P-FP scheduling on m = 2 processors. The tasks τ1 = {T1, T2} are assigned
to processor 1; task T3 is assigned to processor 2. J2,1 spins non-preemptively while it waits for
J3,1 to release the shared resource. J2,1 does not incur pi-blocking while it waits because it is
scheduled; nonetheless, its response time increases because it is wasting processor cycles. J1,1 incurs
pi-blocking upon release until time 7, when J2,2 becomes preemptable again.

uniprocessor response time bound (Theorem 2.12) is applied as follows:

Ri = e′i + bi +

i−1∑

h=1

⌈
Ri
ph

⌉
· e′k. (2.7)

Since this is a straightforward substitution, we omit restating all relevant schedulability tests and

henceforth assume that e′i is used instead of ei.

Non-preemptive spinlocks. Gai et al. (2003) proposed the multiprocessor SRP (MSRP), an

extension of Baker’s SRP for partitioned scheduling (either P-EDF or P-FP). Somewhat confusingly,

the name MSRP derives from the fact that the SRP is used on each processor to arbitrate access to

local resources; the SRP does not apply to global resources. Priority ceilings are in fact irrelevant for

global resources in the MSRP. Instead, the MSRP uses FIFO spinlocks to protect global resources.

In a FIFO spinlock, waiting jobs form a spin queue, and jobs (atomically) append themselves to the

end of the spin queue when an acquisition attempt fails.19 Under the MSRP, to request a global

resource `q, a job Ji becomes non-preemptable and then enqueues itself onto the FIFO spin queue.

Once Ji has become the head of the queue, it holds `q and executes its critical section (and remains

non-preemptable). Ji re-enables preemptions when it releases `q.

Example 2.17. An example MSRP schedule is shown in Figure 2.36. In the depicted scenario, J3,1

acquires `1 at time 1 on processor 1. This causes J4,1 to spin non-preemptively on processor 2 during

19See (Anderson et al., 2003) for a survey of spinlock implementation techniques.
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Figure 2.36: Example MSRP schedule. There are four tasks T1, . . . , T4 assigned to m = 2
processors sharing two resources `1, `2 under P-FP scheduling. The two resulting partitions are
indicated as τ1 and τ2. The digit within each critical section indicates which resource was requested.

[2, 5), which in turn causes J2,1 to incur pi-blocking during [3, 6). Similarly, J1,1 incurs pi-blocking

during [2, 5) on processor 1 because J3,1 is executing its critical section and thus is non-preemptable.

J3,1 and J2,1 acquire `2 later during their execution, but their requests happen to not overlap, and

thus neither job incurs s-blocking in this particular case.20 ♦

Because jobs spin and execute requests non-preemptively, there can be at most m concurrent

requests for global resources. Together with the FIFO ordering, this implies that at most (m−1) jobs

precede Ji in the spin queue for `q. This greatly simplifies bounding maximum s-blocking. Recall

that τk denotes the set of tasks assigned to processor k, and that Pi denotes the processor to which Ti

is assigned. A single request to resources `q causes Ji then to spin for at most

spin(Ti, `q) =

m∑

k=1
k 6=Pi

max{Lj,q | Tj ∈ τk}. (2.8)

In other words, only the longest request issued by any job on each remote processor must be

considered when bounding Ji’s maximum spin blocking due to a single request. Based on this per-

request bound, Gai et al. (2003) derived the following bound on the maximum s-blocking incurred

by any Ji under the MSRP:

si =

nr∑

q=1

Ni,q · spin(Ti, `q).

20These requests are included to expose certain protocol properties in the later Examples 2.18, 2.19, and 2.20.
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We derive a similar but more accurate bound for FIFO spinlocks that is less pessimistic if Ni,q > 1

in Chapter 5.

As mentioned above, a second concern is a priority inversion that might be caused by a non-

preemptively spinning job at the time of Ji’s release. This is similar to a priority inversion caused

by the NCP or the SRP’s scheduling rule. In fact, since both the priority inversion due to the SRP

(local resource sharing) and the priority inversion due to spinning (global resource sharing) have

to occur at the time of Ji’s release, any single Ji cannot incur both types of pi-blocking. Let bSRP
i

denote the maximum pi-blocking due to local resource requests, and let bNP
i denote the maximum

pi-blocking due to global resource requests. Then each Ji incurs at most bi = max(bNP
i , bSRP

i )

pi-blocking. The local pi-blocking bSRP
i can be determined by uniprocessor analysis (since local

and global resources cannot be nested). Under P-FP scheduling, the maximum duration of priority

inversion due to a lower-priority job accessing a global resource is bounded by

bNP
i = max{spin(Tk, lq) + Lk,q | Tk ∈ τPi ∧Nk,q > 0 ∧ k > i}.

As in the uniprocessor case, “k > i” should be substituted with “dk > di” under P-EDF scheduling.

With both bi and si bounded, schedulability under the MSRP can be established by applying either

Theorem 2.12 or Theorem 2.13 under consideration of effective execution requirements to each

processor.

Devi et al. (2006) analyzed global resource sharing with non-preemptive FIFO spinlocks under

G-EDF. Their protocol works essentially the same as discussed above in the description of the

MSRP: jobs first become non-preemptable, then enqueue themselves in a FIFO spin queue and

busy-wait until their request is satisfied, and finally become preemptable again when they release

the source. Since jobs are not bound to processors, the maximum duration of spinning cannot be

bounded on a per-processor basis as in Equation (2.8) above. However, the non-preemptive spinning

still limits the maximum number of concurrent requests to m, and thus to (m− 1) preceding jobs.

Devi et al. (2006) derived the following simple bound:

spin(Ti, `q) = (m− 1) · max
1≤k≤n
k 6=i

{Lk,q}. (2.9)
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We derive a less-pessimistic bound that takes the identity of blocking jobs and the frequency at which

they issue requests into account in Chapter 5.

A key contribution of Devi et al.’s work was to show that G-EDF ensures bounded tardiness

even in the presence of non-preemptive sections (Devi et al., 2006; Devi, 2006; Devi and Anderson,

2008). However, their analysis assumes that each job suffers a priority inversion at most once, and

only at the time of its release, as it is the case on a uniprocessor (and thus also under partitioning).

As we show in Chapter 3, a straightforward, “eager” implementation of non-preemptive sections in

a global scheduler does not ensure that this is indeed the case. Instead, a “linking mechanism” is

required to enact preemptions “lazily”; our solution is detailed in Section 3.3.3.

This concludes our review of spin-based locking protocols under event-driven schedulers. In

Chapter 5, we generalize the use of non-preemptive FIFO spinlocks to RW constraints and to clustered

JLFP scheduling, and derive a flexible blocking analysis framework that takes both response-time

bounds and task periods into account to derive less-pessimistic bounds on s-blocking.

The protocols discussed so far do not apply to PD2. Locking in pfair-scheduled systems is

more challenging than under JLFP scheduling since jobs are preempted more frequently. Holman

and Anderson studied this problem in detail and proposed several spin-based and suspension-based

locking protocols for PD2 (Holman, 2004; Holman and Anderson, 2006). However, in our overhead-

aware evaluation of schedulers presented in Chapter 4, we found PD2 to not perform well on our

test platform even if tasks are independent. We therefore focus on locking under event-driven JLFP

schedulers in this dissertation and review suspension-based protocols for such schedulers next.

2.4.4.2 Semaphore Protocols

Rajkumar et al. proposed the first real-time locking protocols for multiprocessors (Rajkumar et al.,

1988; Rajkumar, 1990, 1991). They proposed two extensions of the PCP for distributed- and shared-

memory multiprocessors under P-FP scheduling, namely the distributed PCP (Rajkumar et al.,

1988; Rajkumar, 1991) and the multiprocessor PCP (Rajkumar, 1990, 1991), which are denoted as

DPCP and MPCP, respecitvely.21 Even though we investigate only shared-memory multiprocessors

21Originally, the DPCP was referred to as the “multiprocessor PCP” in (Rajkumar et al., 1988) and the MPCP was
called the “shared memory synchronization protocol” in (Rajkumar, 1990). Later, the names DPCP and MPCP as they are
used today were introduced in (Rajkumar, 1991). Unfortunately, this renaming has caused some confusion; for example,
Liu (2000) describes the DPCP but refers to the described protocol as the “MPCP.”
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Figure 2.37: Example schedule of three tasks on two processors under P-FP scheduling. Despite
using the PIP, J3,1 suffers a priority inversion during [2, 14), which includes the entirety of J1,1’s
execution. Consequently, J1,1 misses its deadline at time 16. This shows that priority inheritance
is ineffective at preventing unbounded priority inversions when applied across partition (or cluster)
boundaries.

in this thesis, we include the DPCP because it is also applicable to shared-memory systems, and

because neither design is obviously “better” than the other, i.e., it is not clear which yields lower

blocking for a given task set. Similarly to the MSRP, the names are slightly confusing since the

PCP rules are not applied across partition boundaries. Indeed, one of the primary features of the

PCP—deadlock avoidance—is irrelevant for global resources because nesting is disallowed. Further,

priority inheritance, which is a key part of the PCP, is (by itself) insufficient to ensure the progress

of resource-holding jobs since it is ineffective across partition (or cluster) boundaries.

The limits of priority inheritance. Priority inheritance is ineffective under partitioned scheduling

in the sense that priority inversions are not necessarily bounded under it. Figure 2.37 depicts a

schedule that may arise if the PIP is applied across partitions. J3 misses its deadline because

it is delayed for virtually the entire duration of J1’s execution despite priority inheritance since

y(J1, 2) = Y(J1, 2) = 1 < y(J2, 2) = min{2, 3} = 2. Note that J3 is subject to a priority inversion

throughout the entire interval since it is pending but its assigned processor is idle. The underlying

problem is that priority comparisons across cluster boundaries are essentially meaningless—even

though J3’s priority is numerically lower than J1’s priority, J3 is still the highest-priority job on its

assigned processor and should thus be scheduled. This example shows that a priority inversion can

be effectively unbounded even if priorities are inherited, i.e., its length cannot be bounded solely in

terms of request lengths.

Instead, both multiprocessor PCP variants use a technique that we call priority boosting to

expedite the completion of requests for global resources (once granted). Under priority boosting, the
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priority of a resource-holding job is unconditionally raised above that of other, non-resource-holding

jobs, i.e., above the range of “normal” priorities. This ensures that a resource-holding job cannot be

preempted by a newly-released job (which cannot hold a resource yet) and thus prevents unbounded

priority inversion. In this regard, priority boosting is similar to non-preemptive execution. However,

unlike non-preemptive execution, priority-boosted jobs may be preempted by other priority-boosted

jobs.

Besides the use of priority boosting, the MPCP and DPCP also share the same queuing

discipline. If multiple jobs request the same resource at the same time, the requests are satisfied in

order of decreasing base priority (i.e., increasing task index). The major difference between the two

protocols is where requests are executed. We first review the earlier-proposed DPCP.

Remote resources. The DPCP was first described by Rajkumar et al. (1988) and later discussed in

greater detail by Rajkumar (1991). Due to its intended use in distributed-memory multiprocessors,

the DPCP assumes that each resource is (physically) accessible only from a specific processor. We

let Qq denote the processor that resource `q is accessible from. In a shared-memory system, Qq can

be determined arbitrarily, but Qq must be fixed prior to analysis. For example, in Chapter 7, we use

the assignment rule Qq , (qmodm) + 1.

The DPCP implements the remote procedure call (RPC) model; that is, jobs do not access

resources directly, but instead delegate their requests to local agents. A local agent Axi is located

on processor x and carries out requests for resources local to processor x on behalf of Ti. When

a job Ji requires a resource `q and `q is located on processor x (i.e., Qq = x), then it submits a

request to its local agent Axi . The local agent becomes active when it receives the request. RPCs are

synchronous under the DPCP: after issuing a requestRi,q,v to its local agent Axi , Ji suspends until it

is resumed again whenRi,q,v has been completed by Axi . Recall that execution of requests for global

resources are priority boosted. Since jobs do not execute requests themselves, their effective priority

is left unchanged when they request global resources. Instead, the base priority of a local agent Axi is

defined as Y(Axi , t) = i−n, where the term “−n” ensures that the lowest-priority agent has a higher

priority than the highest-priority “regular” job.22 On each processor x, the agents (if any) access the

resources that are accessible from processor x as local resources according to the rules of the PCP

22The description of the DPCP in (Rajkumar et al., 1988; Rajkumar, 1991) allows priorities to be assigned in any way
that satisfies certain properties. We follow the simpler description given in (Liu, 2000).
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(where the priority ceiling of global resources is defined with respect to agent priorities). If multiple

jobs request the same resource at the same time, then the PCP ensures that requests are serviced in

order of the issuing jobs’ base priorities since they are reflected in the agents’ base priorities. On

its assigned processor Pi, Ji may serve as its own agent (in which case Ji’s effective priority is set

accordingly).

Example 2.18. Figure 2.38 shows resource sharing under the DPCP for the scenario previously

discussed in Example 2.17. In this example, there are two global resources that reside on processor 1.

Thus, four agents A1
1, . . . , A

1
4 are also assigned to processor 1 in order to act on behalf of T1, . . . , T4.

(T1 and T3 could act as their own agents in a real implementation; we show their agents here for

clarity.) Agent A1
3 is invoked at time 1 when J3,1 requests `1. Shortly thereafter, A1

4 becomes active

at time 2 when J4,1 requests `1. However, since A1
3 is executing at the time, A1

4 has insufficient

priority to be scheduled. Similarly, A1
2 becomes active at time 4. Since A1

2 has higher priority than

A1
3, it can attempt to lock `1. This, however, fails since A1

3 still holds `1 at the time. When A1
3

releases `1, A1
2 gains access next because it is the highest-priority active agent on processor 1. Note

that, even though the highest-priority job J1,1 is released at time 2, it is not scheduled until time 7

because agents have an effective priority that exceeds the base priority of J1,1. A1
2 becomes active

again at time 9 since J2,1 requests `2. However, A1
1 is accessing `1 at the time and has a priority that

exceeds A1
2’s priority. Therefore, A1

2 is not scheduled until time 10. J1,1 is also resumed at time 10,

but not scheduled until time 11 since A1
2 is now executing the request J2,1. In total, J1,1 suffers

priority inversions for a total of six time units during [2, 7) and [10, 11) before it completes. ♦

Besides priority inversions due to the sharing of local resources, there are three sources of

pi-blocking under the DPCP. (Since neither jobs nor agents spin, there is no s-blocking.)

1. Every time a job Ji requests a resource `q, the corresponding local agent may be delayed for

the duration of one critical section because an agent of some lower-priority job raised the

priority ceiling on Qq. For example, in Figure 2.38, this happens to J2,1 at time 4. In total, Ji

may thus be pi-blocked by
∑

qNi,q requests of lower-base-priority tasks.

2. Every time some Axi is active on behalf of Ji, it may be preempted or delayed by agents of

higher-priority tasks (on every remote processor), which in turn causes Ji to be delayed. For
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Figure 2.38: Example DPCP schedule for the same scenario as shown in Figure 2.36. There
are four tasks T1, . . . , T4 assigned to m = 2 processors sharing two resources `1, `2 under P-FP
scheduling. Both resources are local to processor 1; there are thus four agents, A1

1, . . . , A
4
1, assigned

to processor 1. An agent is “released” when it receives an RPC request from a client job. The
schedule is discussed in Example 2.18.

example, in Figure 2.38, A1
2 is not scheduled at time 9 because the higher-priority A1,1 is

active, which lengthens the priority inversion experienced by J2,1.

3. All agents on Ti’s processor (i.e., each Axk for which x = Pi) that act on behalf of tasks other

than Ti potentially delay the execution of Ji. This happens repeatedly to both J1,1 and J3,1 in

Figure 2.38. For example, J3,1 is pi-blocked during [6, 7) since A1
4 is active on behalf of J4,1.

Deriving an analytical expression that bounds all three sources of delay is somewhat tedious and

omitted here in the interest of brevity; the interested reader is referred to (Rajkumar et al., 1988;

Rajkumar, 1991; Liu, 2000) instead. From the discussed example, however, it is intuitively apparent

that each resulting bi is typically much larger than in the case of uniprocessor protocols. A potential

benefit of the DPCP is that requests that are executed on remote processors (i.e., not on Pi) do not

contribute to ei.

Direct access. The MPCP is a later version of the DPCP for shared-memory multiprocessors (Raj-

kumar, 1990, 1991). It assumes that each shared resource can be accessed from any processor, which

removes the need for RPCs and local agents. Instead, jobs execute their requests themselves on their

assigned processors and are priority-boosted while doing so. Specifically, a job Ji’s priority while
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Figure 2.39: Example MPCP schedule for the same scenario as shown in both Figure 2.36 and
Figure 2.38. The schedule is discussed in Example 2.19.

holding a resource `q is boosted to the highest priority of any remote task that shares `q (again offset

by “−n” as a boosting mechanism). Formally, Ji’s effective priority at time t is given by

y(Ji, t) =





min{k | Tk ∈ τ ∧ Pk 6= Pi ∧Nk,q > 1} − n if Ji holds `q at time t,

Y(Ji, t) = i otherwise.
(2.10)

Should there be a tie in effective priority (because the “highest remote priority” is not necessarily

unique), then the earlier-boosted job has precedence to avoid unnecessary preemptions. If there

are multiple concurrent unsatisfied requests for a resource `q, then jobs gain access to `q in order

of decreasing base priority. Note that the MPCP does not use priority inheritance (for global

resources); priority boosting is sufficient to guarantee rapid completion of critical sections that delay

higher-priority jobs.

Example 2.19. An example MPCP schedule is shown in Figure 2.39. The depicted scenario is the

same as previously discussed in both Example 2.17 and Example 2.18. Local agents are no longer

required since jobs access global resources directly. J4,1 suspends at time 2 since J3,1 already holds

`1. Similarly, J2,1 suspends at time 4 until it holds `1 one time unit later. Meanwhile, on processor 1,

J1,1 is scheduled at time 5 after J2,1 returns to its base priority and also requests `1 at time 6. Since

resource requests are satisfied in priority order, J1,1’s request has precedence over J4,1’s request,

which was issued much earlier at time 2. Thus, J4,1 must wait until time 8 to access `1. Note that

J4,1 preempts J2,1 when it resumes at time 8 since it is holding a global resource. ♦
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Similar to the DPCP, there are multiple sources of pi-blocking due to global resource sharing

that must be accounted for.

1. Each time that Ji requests some resource `q, `q may already be held by a lower-priority job.

This can occur at most
∑

qNi,q times. In Figure 2.39, this happens to J2,1 at time 4 when J3,1

is still holding `1.

2. While Ji waits to acquire `q, the resource may be requested by higher-priority jobs. This may

happen repeatedly since the MPCP uses a priority queue to order waiting jobs. For example,

in Figure 2.39, J4,1 is delayed by a later request of J1,1 at time 6.

3. While Ji waits on processor Pi for some other job Jx to release `q on processor Px, where

Px 6= Pi, Jx may be preempted by other jobs on Px with higher effective priority. Such

preemptions will transitively delay Ji. (This does not happen in Figure 2.39.)

4. Prior to Ji’s release and each time Ji suspends waiting for a global resource, lower-priority jobs

on Pi may execute and request global resources. This may cause them to subsequently become

priority-boosted while Ji is scheduled with its effective priority equal to its base priority. In

total, this may happen up to
∑

qNi,q + 1 times with each local lower-priority task. The “+1”

term is due to the fact that lower-priority jobs may issue requests before Ji is released. For

example, in Figure 2.39, J2,1 is pi-blocked during [8, 9) because J4,1 is priority-boosted due

to a request that J4,1 issued before J2,1 was released.

Unsurprisingly, accounting accurately for each of the four listed factors is a (tedious) challenge. The

MPCP was first proposed by Rajkumar (1990, 1991). In recent work, Lakshmanan et al. (2009)

presented much improved analysis, which we use in Chapter 7, and an MPCP-aware partitioning

heuristic. We omit restating Lakshmanan et al.’s MPCP-aware response time analysis for the sake of

brevity and refer the interested reader to (Lakshmanan et al., 2009).

Deferred execution. Both the MPCP and the DPCP, as well as any other suspension-based multi-

processor locking protocol, are subject to an additional scheduling penalty. Perhaps counterintuitively,

there is a fundamental difference between suspensions due to remote jobs, which are also called

self-suspensions, and suspensions due to local jobs. When jobs self-suspend while waiting for a

remotely held resource or when waiting for an agent’s reply, jobs defer part of their execution to

130



a later point in time. Deferred execution has a major impact on schedulability analysis because it

allows jobs to carry additional work into the analysis window (Rajkumar et al., 1988; Audsley et al.,

1993; Strosnider et al., 1995). Therefore, a suspension-aware schedulability test must be used to

account for additional delays created by remote blocking. In the case of FP scheduling, Audsley

et al. (1993) developed response-time analysis that accounts for release jitter, which is equivalent to a

self-suspension immediately after a job’s release. Their analysis was adapted by Ming (1994) to allow

for self-suspensions during a job’s execution. In the context of suspension-based multiprocessor

locking protocols, Audsley et al. and Ming’s work yields the following response-time bound, which

was used in (Lakshmanan et al., 2009).

Theorem 2.14 (Audsley et al., 1993; Ming, 1994). Let bri denote the maximum duration Ji that

is suspended waiting for remote jobs to release some resource, and let bli denote a bound on the

maximum duration of priority inversion due to local jobs. An upper bound on the maximum response

time ri under FP scheduling (on each processor) is given by the smallest Ri that satisfies:

Ri = ei + bli + bri +
n∑

k=i+1

⌈
Ri + brk
pk

⌉
· ek.

Under P-FP, Theorem 2.14 should be applied on a per-processor basis, i.e., Ri only depends on

Tk for which Pk = Pi. Note that if bri = 0 for each Ti, then Theorem 2.14 reduces to Theorem 2.12,

which applies to suspension-based uniprocessor locking protocols. Why are suspensions due to

local jobs less troublesome than self-suspensions? Unfortunately, a detailed explanation (or proof) is

beyond the scope of this dissertation. However, as an intuitive explanation, consider a job Ji,j that

arrives at time ai,j and that finishes at time fi,j . If Ji,j blocks only on local jobs, then the processor

is never idle during [ai,j , fi,j)—Ji,j’s execution window corresponds to a so-called “busy-interval.”

However, if Ji,j blocks on remote jobs, i.e., if Ji,j self-suspends, then idle time may exist during

[ai,j , fi,j). This idle time complicates schedulability analysis considerably. A detailed explanation of

the effects of self-suspensions can be found in (Audsley et al., 1993; Strosnider et al., 1995; Liu,

2000).

One of the main contributions of this dissertation is an investigation of “pi-blocking optimality.”

As it turns out, how self-suspensions are accounted for has a significant impact on pi-blocking. We

revisit the topic of suspension-aware schedulability tests in Chapter 6.
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Figure 2.40: Example MPCP-VS schedule for the same scenario as shown in Figure 2.39. “Virtual
spinning” occurs on processor 2: J2,1 executes during [3, 4) while J4,1 waits, but when J2,1 requires
`1, it may not issue its request until J3,1 releases `1 at time 6.

Virtual spinning. Besides deriving better blocking analysis for the original MPCP, Lakshmanan

et al. (2009) also proposed a new variant of the MPCP based on a request rule that they termed

“virtual spinning.” Under “virtual spinning,” jobs do not in fact spin while waiting for a global

resource to become available. Instead, they suspend just as under the original MPCP and other local

(lower-priority) jobs may be scheduled. However, no other local jobs may issue global requests

until the suspended job has ceased to spin “virtually.” We refer to this MPCP variant as MPCP-VS

and reserve the word “spinning” to denote busy-waiting that does not involve a context switch or

suspension.

Example 2.20. Figure 2.40 shows how the MPCP-VS rule changes the MPCP schedule from

Figure 2.39. Since the jobs on processor 1 do not incur acquisition delay, they are not affected by

the MPCP-VS rule. On processor 2, J4,1 must wait at time 2 when it requests `1. It suspends,

which gives J2,1 a chance to execute when it is released at time 3. If J4,1 were actually spinning

non-preemptively, then J2,1 would not have been scheduled until time 6 (e.g., this is the case in the

MSRP schedule shown in Figure 2.36). However, J2,1 may not issue requests. When it requires `1

at time 4, it is forced to suspend without issuing a request because J4,1’s request is not complete yet.

J2,1’s request is issued belatedly at time 6 when T4,1 releases `1. ♦

The MPCP-VS rule has an impact on the analytical blocking bounds derived in (Lakshmanan

et al., 2009), but from an inspection of the bounds it is not obvious whether the MPCP-VS is more or

less pessimistic than the MPCP. We consider both variants in our locking protocol comparison study

presented in Chapter 7. Interestingly, the MPCP-VS analysis presented by Lakshmanan et al. (2009)
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is not subject to scheduling penalties due to deferred execution because it accounts for suspensions as

if suspended task were spinning. We refer to this approach as “suspension-oblivious” schedulability

analysis (see Chapter 6). The MPCP-VS could also be implemented with actual spinning; however,

a priority-ordered spinlock would be required to do so, which takes away some of the simplicity that

makes (FIFO) spinlocks appealing in the first place.

Local resources. As noted in the discussion of the MSRP, DPCP, and MPCP, local resources can

be handled with a uniprocessor locking protocol under partitioned scheduling. In this dissertation,

we are only concerned with global resources because uniprocessor real-time locking is essentially a

solved problem, and because virtually any multiprocessor real-time locking protocol for partitioned

scheduling can be integrated with either the PCP or SRP (since nesting of local and global resources

is disallowed).

Nonetheless, there is one interaction between suspension-based multiprocessor locking protocols

and the PCP that should be pointed out. On a uniprocessor, the PCP and SRP both ensure that

any job is blocked at most once by lower-priority jobs. When jobs may defer execution, i.e., if they

self-suspend while waiting for any kind of external event (such as a remote job releasing a resource

or an I/O device returning data), then this is no longer the case. Lower-priority jobs may acquire

local resources during those times, which may cause the priority ceiling to be raised. Thus, each time

that a job resumes after a self-suspension, it may incur an additional priority inversion.

For example, under the DPCP and the MPCP, Ji may suffer a priority inversion due to local

resources up to 1 +
∑

qNi,q times.23 The MPCP-VS prohibits only global resource requests while a

job is self-suspended;24 consequently, each Ji may suffer up to 1+
∑

qNi,q priority inversions due to

the PCP as well. In contrast, the MSRP is not affected by this since jobs do not self-suspend while

waiting for global resources. The sharing of global resources thus makes local resource sharing more

pessimistic if jobs suspend while waiting. As all resources are presumed global in the remainder of

this dissertation, this is of little concern to our experiments.

23This is in addition to
∑

q Ni,q + 1 priority inversions due to requests for global resources by each lower-priority task.
24Specifically, the definition of “virtual spinning” states: “[. . . ] other tasks are allowed to execute unless they try to

access global critical sections.” (Lakshmanan et al., 2009, p. 474).
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2.4.5 Further Results in Real-Time Locking

Besides the closely related locking protocols discussed in detail in the preceding sections, several

other real-time locking protocols have been proposed in prior work.

Uniprocessors. In early work on real-time locking protocols for uniprocessors, Chen and Lin

extended the PCP to multi-unit resources (Chen and Lin, 1990b) and to EDF scheduling (Chen and

Lin, 1990a). Jeffay (1992) proposed an alternative to the SRP for EDF-scheduled systems.

Lamastra et al. (2001) proposed a bandwidth inheritance protocol for uniprocessors that applies

the concept of priority inheritance to open real-time systems, where tasks may join and leave task sets

at runtime, and are expected to (occasionally) overrun their processor allocations. The bandwidth

inheritance protocol proposed by Lamastra et al. (2001) ensures that a high-priority job is not

transitively pi-blocked when a lower-priority, resource-holding job exhausts its processor budget.

In work on the uniprocessor SRP, Baruah (2006) derived an algorithm to find an optimal resource

replication strategy to meet a given upper bound on pi-blocking. Fisher et al. (2007a) applied the

SRP to open real-time systems and derived schedulability tests suitable for online admission control

They further derived bounds on the maximum resource-holding times under both FP scheduling

(Bertogna et al., 2007) and EDF scheduling (Fisher et al., 2007b).

Multiprocessors. In early work on multiprocessors, Chen and Tripathi (1994) considered PCP-

based locking protocols for P-EDF scheduling. In later work, López et al. (2004b) presented a

partitioning heuristic that transforms global resources into local resources, thereby avoiding remote

pi-blocking completely (albeit at the expense of creating a much more difficult partitioning problem),

and derived corresponding worst-case utilization bounds under P-EDF scheduling.

In work on preemptable busy-waiting, Takada and Sakamura studied preemptive spinlocks

(Takada and Sakamura, 1994) and spinlocks with “helping,” where blocked jobs complete the

requests of preempted resource-holding jobs (Takada and Sakamura, 1997). In the same context,

Wang et al. (1996) proposed spinlocks with priority inheritance. Anderson et al. (1998) proposed a

much simpler preemptive spinlock with optional helping for quantum-driven schedulers.

In work on pfair-scheduled multiprocessors, Holman and Anderson proposed protocols based

on blocking zones, where an ill-timed request is automatically delayed until the next quantum,
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request skipping, where requests can be preempted and restored, and request rollback, where requests

can be aborted and retried (Holman, 2004; Holman and Anderson, 2006). They further studied

suspension-based locking protocols under PD2 and showed how to account for acquisition delays

under pfair schedulability analysis. We do not consider PD2 in our evaluation of locking protocols in

Chapter 7 since we found PD2 to not perform well on our test platform even if tasks are independent,

as discussed in detail in Chapter 4.

In very recent work, Easwaran and Andersson (2009) studied locking protocols for G-FP

scheduling and presented the suspension-based parallel priority-ceiling protocol and an analysis of

the PIP under G-FP scheduling. Andersson and Easwaran (2010) also designed a multiprocessor

locking protocol for which they derived a resource augmentation factor. Macariu and Cretu (2011)

proposed an extension of the PIP under G-FP scheduling that limits the extent of pi-blocking due to

the execution of resource-holding lower-priority jobs with raised effective priorities. Finally, Faggioli

et al. (2010) presented a scheduler-agnostic, spin-based locking protocol that applies Lamastra et al.’s

notion of bandwidth inheritance to multiprocessors.

This concludes our review of the algorithmic foundations of real-time scheduling and locking, on

both uniprocessor and multiprocessor systems. Next, we summarize some needed RTOS background

before we discuss our implementation of the reviewed schedulers and locking protocols in LITMUSRT

in Chapter 3.

2.5 Real-Time Operating Systems

Unlike the desktop OS market, the RTOS market is split among many major and minor vendors.

As a result, scores of RTOSs have been developed and are in use today. For example, Wikipedia’s

(incomplete) list of RTOSs contains more than one hundred products and projects (Wikipedia,

2011). One reason for this wealth of choices is that the label “RTOS” is liberally applied to many

rather minimal OSs intended for use in embedded systems. The small feature set required of such

specific-use “micro controller runtime environments” makes it viable for a skilled developer to

design and implement an “RTOS” from the ground up with reasonable effort. In fact, an industry

survey conducted in 2005 found that 17 percent of the polled companies develop an RTOS internally

rather than (or in addition to) licensing an established RTOS (Turley, 2005). This contributes to
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the proliferation of “embedded RTOSs” with near-identical features and design. However, the vast

majority of RTOSs of this type do not support multiprocessors and are thus of little relevance to

this dissertation. Nonetheless, even when only considering established “major” RTOSs that support

shared-memory multiprocessors, a large number of competing RTOSs with many similarities remain.

In the following, we provide an overview of current multiprocessor-capable RTOSs to provide

a context for our work on LITMUSRT. Given the scope of the RTOS market, we group similar

RTOSs into categories and discuss one representative example from each relevant category. Since

each RTOS vendor strives to differentiate its products from the offerings of its competitors, any

categorization is necessarily going to gloss over (minor) differences in feature set, implementation

details, and customer focus. Further, many RTOSs are quite versatile and fit into more than one

category, depending on the employed configuration. Nonetheless, we believe that the following

discussion provides a reasonably complete overview of the current RTOS landscape. An alternate

taxonomy, together with a survey of RTOSs for uniprocessors and distributed-memory multiprocessor

real-time systems can be found in (Stankovic and Rajkumar, 2004).

From a high-level view, current RTOSs can be distinguished either as having been purpose-built

specifically for use in real-time systems, or as being based on a GPOS that has been retrofitted for

real-time use. The majority of commercial offerings fall into the former category, which we review

in Section 2.5.1 below. “Real-Time Linux,” of which there are many variants, is the most prominent

example of the latter category and is considered thereafter in Section 2.5.2. Next, we briefly digress

to define two important RTOS-related concepts prior to the actual RTOS survey.

Interrupt latency. A metric that is commonly used when discussing and comparing RTOSs is

interrupt latency, sometimes also called scheduling latency. Informally speaking, interrupt latency

describes how quickly the RTOS reacts to interrupts. Suppose an event that triggers the release of a

job of the highest-priority task occurs at time te, but the corresponding job is not scheduled until time

ts, where ts ≥ te. The difference ts − te is called interrupt latency. If a kernel disables interrupt

delivery or suppresses calls to the scheduler for extended times, then it risks high interrupt latency.

In practice, “real-time” is sometimes equated with low interrupt latency, i.e., an OS’s ability to

transfer control to real-time tasks as quickly as possible. In this interpretation, “real-time” is reduced

to a suitably low bound on worst-case latency, which is a regrettable over-simplification. Obviously,
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latency crucially impacts the kind of guarantees that can be made, but even a system with negligible

observed latency is not truly a real-time system if it is constructed from algorithms that do not lend

themselves to schedulability analysis; such a system is merely fast.

So what is interrupt latency, and how should it be accounted for? Interrupt latency prevents

a job that should be scheduled from being scheduled—a priority inversion. From a schedulability

analysis point of view, interrupt latency is thus simply a cause of pi-blocking. When determining the

worst-case response time of a task, interrupt latency during [te, ts) is equivalent to the job having

self-suspended during that time. Special accounting techniques are thus not required to incorporate

interrupt latency into schedulability analysis. In Section 3.4.2, we discuss how to account for “release

overhead,” which includes interrupt latency.

POSIX compliance. In practice, the label “real-time POSIX compliant” is sometimes used as a

synonym for “UNIX-like real-time kernel.” However, actual compliance to the POSIX real-time

standard is much more differentiated. The POSIX standard for “real-time and embedded application

support” (IEEE, 2003) defines four system profiles that target different use cases:

1. the Minimal Realtime System Profile, denoted PSE51;

2. the Realtime Controller System Profile, denoted PSE52;

3. the Dedicated Realtime System Profile, denoted PSE53; and

4. the Multi-Purpose Realtime System Profile, denoted PSE54.

Each profile includes the functionality of lower-indexed profiles.

Profile PSE54 essentially matches the notion “fully UNIX-compatible real-time system.” In

contrast, profiles PSE51 and PSE52 do not even require multiprocessing: the whole system may

be executed in a single address space. These profiles, however, do include multithreading and FP

scheduling. They further do not require a real file system, networking, or virtual memory. From

a high-level view, the main difference between profiles PSE51 and PSE52 is that profile PSE52

requires more advanced I/O interfaces and a simple file system.

Profile PSE53 matches the feature set of a “UNIX-like OS” much more closely. It requires full

multiprocessing with dynamic process creation, FP scheduling, synchronization, and IPC support,

a hierarchical file system, networking support, and virtual memory. The main difference between
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PSE53 and PSE54 is that PSE54 includes multiuser support (i.e., access rights, etc.), whereas PSE53

assumes execution in an embedded systems environment without multiple user identities.

In the following, we follow common practice and denote an RTOS as “POSIX compliant” to

indicate that it is (mostly) compatible with profile PSE53 or better.

2.5.1 Purpose-Built Real-Time Operating Systems

The systems discussed in this section represent the “classic” definition of an RTOS: conceived,

architected, and implemented specifically for hosting real-time workloads, with GPOS concerns such

as throughput or developer comfort being secondary goals (at best). Their uncompromising design

makes them typically the best fit for environments with stringent real-time constraints (i.e., very short

periods and relative deadlines), and most well-established, proprietary RTOS kernels fall within this

category. A characteristic trait of purpose-built RTOSs is low interrupt latency.

The RTOSs in this category can be further classified into four categories based on their main

intended use case. The first category targets deeply embedded applications where resources are at a

premium and mostly-static, single-purpose workloads are prevalent. A typical example for such a

use case is an engine control unit (ECU) regulating a car engine’s fuel injection, or the baseband chip

in a smart phone implementing access to a wireless network. RTOS kernels in this category are also

sometimes called “executives” due to their small size.

The second category of RTOSs targets applications where UNIX-like OS abstractions and

multitasking are required (or desired for developer productivity), and the system design can afford

the additional resources required to support them (e.g., extra memory and faster processors). This

category spans a wide range of embedded and non-embedded use cases such as factory automatization,

consumer electronics, and telecommunication infrastructure. At the lower end (in terms of resource

usage), many RTOSs can be configured into a “slimmed-down” version that is suitable for use in

deeply embedded systems, i.e., there is no clear cutoff point between the first two categories.

The third category targets safety-critical applications subject to mandatory certification require-

ments. In the industry literature, RTOSs in this category are also called separation kernels. From

an OS-design point of view, RTOSs in the latter category can also be understood as hypervisors

that isolate client RTOSs. Separation kernels are commonly used in avionics applications, where
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government-mandated standards such as the DO-178B standard for avionics impose strict isolation

of safety-critical subsystems from faults in non- or less-safety-critical subsystems.

Finally, academic RTOS projects that are primarily developed to explore new algorithmic

concepts or to pioneer novel implementation techniques constitute a fourth, cross-cutting category.

2.5.1.1 Category I: Deeply-Embedded Real-Time Operating Systems

The primary concern in deeply embedded RTOSs, which are in some cases deployed in billions of

devices, is to minimize resource usage, and in particular their memory footprint. Consequently, such

RTOSs offer only a minimum of abstractions. Support for processes and address-space separation

(i.e., MMU support) are commonly absent (or deactivated), so that all tasks and the RTOS kernel

itself run in a single address space with unrestricted access to all devices (i.e., in kernel mode).

The lack of access mediation avoids overheads and thus lowers resource requirements, but prevents

effective fault containment. This category corresponds in spirit to the POSIX profiles PSE51 and

PSE52.

Not all RTOSs in this category support scheduling, but those that do typically support multi-

threading, FP scheduling, and mutex semaphores with optional priority inheritance (i.e., the PIP

discussed in Section 2.4.3). Further, since tasks execute in kernel mode, supporting the NCP is

trivially possible by disabling interrupts. Multiprocessor support is rare in this category, but does

exist, although often only in the form of message passing. That is, each processor is managed inde-

pendently as a uniprocessor and communicates only by exchanging messages with remote processors.

Scheduling is inherently partitioned in this design, and direct access to global resource is often not

supported.

Proprietary RTOSs for deeply embedded systems with advertised multiprocessor support include

Quadros Systems’ RTXC/mp (message passing only), Express Logic’s ThreadX (FP scheduling

with only 32 distinct priorities), Mentor Graphics’ Nucleus RTOS (advertised as requiring as little

as 13 KB of memory, and only 50 KB when multiprocessor support is included), and ENEA’s

OSE (message passing only). Besides these proprietary, closed-source systems, there are also open-

source RTOSs in this category: the TOPPERS consortium provides several multiprocessor-capable

reference implementations of the ITRON standard (Monden, 1987; Takada and Sakamura, 1991,
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1995), which is in widespread use among Asian car and consumer electronics manufacturers, and the

OAR corporation distributes its RTEMS system under a liberal open-source license.

RTEMS. We consider RTEMS, the Real-Time Executive for Multiprocessor Systems, as the repre-

sentative RTOS of this category.25 We chose RTEMS because it is one of the oldest RTOSs to support

multiprocessors that is still in use (RTEMS has been in development and use since 1988) and since it

is particularly attractive for academic research due to its open-source nature. The RTEMS version

discussed in the following is release 4.10, which is the latest stable release at the time of writing.

Notably, RTEMS supports over 15 processor architectures, among them Intel’s x86 architecture and

several radiation-hardened processor designs.

RTEMS does not support MMUs; instead, the “kernel” and the user applications, which are

just procedures that are executed in separate threads, are compiled into one binary image. In a

multiprocessor environment, such an image is required for each processor. This implies that the

assignment of tasks occurs already at design time or, at the latest, at compile time. Task migrations

are not supported by the OS. However, task migrations could be emulated by the user by compiling a

task’s code into the images for multiple processors and then simultaneously “terminating” the task

on one processor and starting it on another. However, since RTEMS does not inherently support task

migrations, these are technically two (or more) tasks to the OS and the transfer of runtime state from

one processor to another must be programmed manually by the developer. Global scheduling is not

feasible in such an environment.

Uniprocessor support. All OS resources are statically allocated. This requires the number of tasks

and locks to be statically defined at compile time. RTEMS supports P-FP scheduling with 256

distinct priorities and has explicit runtime support for scheduling (e.g., tasks can declare a period and

detect deadline misses), but currently does not support EDF. For local resources, RTEMS supports

two queuing policies (jobs may wait in FIFO or in priority order) and two priority management

policies: the well-known PIP and a second protocol that the RTEMS documentation calls the

“priority ceiling protocol,” which, however, is not the PCP as defined in Section 2.4.3. Rather, under

RTEM’s priority ceiling protocol, a job’s priority is elevated to the priority ceiling immediately

25Curiously, the acronym “RTEMS” stood first for “Real-Time Executive for Missile Systems” and then “Real-Time
Executive for Military Systems” in prior versions.
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when it acquires the resource instead of relying on priority inheritance as in the PCP. This protocol,

sometimes also referred to as the “basic ceiling protocol,” is in fact equivalent to the SRP. By raising

the job’s priority to the priority ceiling, it is ensured that newly-released jobs of equal or lower

priority are not scheduled until the resource is released. This has exactly the same effect as raising

the system ceiling and considering a newly-released job to be ineligible to execute until its priority

exceeds the system ceiling—the SRP’s schedulability rule. RTEMS thus supports the SRP, even

though not under that name. However, the priority ceiling for each lock must be configured manually,

which allows for human error.

RTEMS includes compatibility layers for both the ITRON (Monden, 1987; Takada and Sakamura,

1991, 1995) and POSIX (IEEE, 1993, 2003, 2008b) interface definitions. While not fully compliant,

RTEMS closely resembles the POSIX profile PSE51.

Multiprocessor support. As mentioned above, each processor requires an individual binary RTEMS

image (e.g., the unique processor index is hard-coded in the image). Further, at runtime, each

processor maintains only its own local state. In contrast, in a single-image multiprocessor OS such

as UNIX, Linux, or Windows, all processors are initialized from a single binary image, processor

indices are assigned dynamically, and all processors share the (mostly) global runtime state. RTEMS

thus resembles more a distributed system than a traditional shared-memory OS, which enables it

to support both distributed- and shared-memory platforms. Processors communicate with each

other by exchanging message packets as over a network link. This packet-based communication is

medium-agnostic (e.g., it could be implemented over an actual message bus or via shared memory)

and must in fact be provided by the application developer—RTEMS itself does not include drivers to

interface with processor interconnects.

RTEMS allows semaphores (and other OS objects) to be marked as being a global object. The

identifiers of global objects are broadcasted to all processors so that remote tasks can issue requests.

Due to the distributed nature of RTEMS, requests for remote resources follow the RPC model: a

request packet is sent to the processor to which the resource is local and the requesting job suspends.

On each processor, there is one local agent, called the multiprocessing server, that handles requests

from all remote tasks. This local agent executes at the highest priority (i.e., at priority zero). When

a processor receives a packet, the local agent is resumed by the (developer-provided) processor-
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interconnect driver and acquires the local semaphore on behalf of the remote task (subject to either

the PIP or the SRP, depending on the configuration of the semaphore). Once it has locked the

semaphore, the local agent sends a reply packet to the remote task and suspends again to wait for the

next request. Superficially, this protocol resembles the DPCP, but it does in fact deviate in significant

ways.

• The critical section itself is not executed by the local agent, which merely carries out lock and

unlock requests.

• There is only one local agent and the priority of the currently requesting remote task is not

reflected by the local agent’s priority.

• If there are multiple requests arriving at the same processor, then there is no guarantee in which

order they will be processed. This cannot be “fixed” by the developer-provided processor-

interconnect driver since the lock-request packet does not relay the priority of the requesting

task (the DPCP assumes priority order).

• The remote task is not priority boosted while it executes its critical section, nor is it subject to

priority inheritance, nor is the (implicit) system ceiling modified.

The DPCP analysis does thus not apply and unbounded priority inversion is in fact possible due to

the lack of priority boosting (recall Figure 2.37).

Since RTEMS effectively supports the SRP, and because tasks execute in kernel mode and thus

can disable interrupts, the MSRP can be implemented in a straightforward way by the application

developer. A close approximation of the DPCP could similarly be implemented on top of the

provided primitives. However, neither protocol is part of the standard RTEMS distribution. In fact,

to the best of our knowledge, neither the MPCP nor the DPCP (as defined and analyzed in the

real-time literature) are supported by any of the RTOSs in this category.

2.5.1.2 Category II: UNIX-like Real-Time Operating Systems

The next category includes RTOSs that resemble a full-featured UNIX-like GPOS; i.e., these RTOSs

match the expectations of the POSIX profiles PSE53 and PSE54. Like a GPOS, RTOSs in this

category support many higher-level features such as processes and threads, dynamic process creation,
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files and hierarchical file systems, interprocess communication (IPC), networking with a full TCP/IP

protocol stack, etc., and virtually all RTOSs in this category implement large parts of the POSIX API

(possibly in addition to other interfaces), or at least offer comparable services. Multiprocessor-capable

RTOSs in this category typically fully function as a single-image OS and provide transparent task

migrations and inter-processor communication via global state in shared memory (instead of packet-

based communication links). Prominent examples include WindRiver’s VxWorks, LynuxWorks’

LynxOS, and Research in Motion’s QNX Neutrino system. Due to their flexibility, these RTOSs are

used in virtually every role that is not severely resource-constraint (Category I above) or that imposes

particular certification requirements (Category III below).

QNX Neutrino. We briefly discuss QNX Neutrino as a representative example, as it has offered

full multiprocessor support since 1997 and was one of the first RTOSs in this category to do so.

QNX Neutrino is a microkernel-based RTOS that requires an MMU to function properly. Real-time

tasks execute in user mode (and not kernel mode) and address space separation is fully enforced by

the kernel. By default, tasks do not share any memory; containment of faults due to out-of-bounds

memory accesses is thus ensured.

Uniprocessor support. As a POSIX-compliant OS, QNX Neutrino supports FP scheduling with

256 distinct priorities. If priorities are not unique, tasks of the same priority are queued either in

FIFO order (SCHED FIFO in POSIX parlance) or alternate in a round-robin fashion based on a

configurable time slice parameter (SCHED RR). As a third option, QNX Neutrino also supports

SCHED SPORADIC, a scheduling variant defined in the POSIX standard (IEEE, 2008b) that is

intended to enforce the sporadic task model. However, Stanovich et al. (2010) recently pointed

out some defects in SCHED SPORADIC as defined by POSIX that can result in tasks exceeding

the utilization of a corresponding sporadic task (as defined in Section 2.2). EDF scheduling is not

supported by QNX Neutrino, and there is no explicit support for making a job’s deadline known to

the kernel.

QNX Neutrino supports a number of task synchronization abstractions (e.g., pipes, signals,

mailboxes) including mutex semaphores with two choices for priority management that are mandated

by the POSIX standard. The default choice is the PIP. The second option, called PRIO PROTECT

by the POSIX standard, has exactly the same semantics as the “priority ceiling protocol” in RTEMS:
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priority of a process is elevated to the ceiling priority when it acquires a semaphore, and restored

when the mutex semaphore is unlocked. POSIX-compliant RTOSs such as QNX Neutrino thus

support the PIP and the SRP. As it is the case with RTEMS, appropriate priority ceilings must be

determined and configured manually by the programmer.

Multiprocessor support. The POSIX standard itself is silent on multiprocessor scheduling issues.

In particular, it mandates the availability of FP scheduling in the form of SCHED FIFO, but does

not specify whether this should be implemented in a partitioned or global (or clustered) fashion on a

multiprocessor. That is, to be POSIX-compliant, it is sufficient for an RTOS to offer either G-FP or

P-FP scheduling. The pragmatic approach taken by QNX Neutrino (and many other RTOSs) has

been to adopt processor affinity masks. A task’s processor affinity mask is an unsigned word W

consisting of m bits that indicates on which processor the task may execute. Specifically, a task may

execute on processor x, where x ∈ {1, . . . ,m}, if and only if the (x− 1)-th least-significant bit in

W is set. For example, a task with affinity mask W = 2 = 21 may only execute on processor x = 2,

whereas a task with affinity mask W = 5 = 22 + 20 may execute on processors x = 3 and x = 1.

FP scheduling with processor affinity masks works as follows. When a real-time process

becomes runnable (i.e., ready to execute), all processors on which it may execute (according to

its affinity mask) are checked sequentially. If there is a processor x that is idle, then the process

resumes execution immediately on processor x. Otherwise, if there exists a processor x on which a

lower-priority process is scheduled, then the lower-priority process is preempted. If there are multiple

processors to choose from, then the one with the lowest priority is preempted. Finally, if there are no

lower-priority processes to preempt, then the newly-runnable process is enqueued in the ready queue

until one of the processors becomes available. Note that processes will migrate as needed.

Processor affinity masks can be used to implement clustered scheduling, and hence also global

and partitioned scheduling. Let Ci denote the cluster of processors that a task Ti is assigned to, where

Ci ⊆ {1, . . . ,m}. Ti can be confined to its assigned cluster by assigning it the processor affinity

mask Wi =
∑

x∈Ci
2x−1. Depending on the configuration, QNX Neutrino (and the other RTOSs in

this category) can thus support both G-FP and P-FP scheduling.

However, while default processor affinity masks allow a task to be scheduled on all m processors,

the accompanying documentation emphasizes the benefits of restricting tasks to individual processors
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in the interest of increased cache affinity and ease of development. Specifically, the documentation

for QNX Neutrino advises that “[partitioned scheduling] eliminates the cache thrashing that can

reduce performance [under global scheduling]” (QNX Software Systems, 2011).

No specific multiprocessor locking protocols are supported in QNX Neutrino besides the PIP

and PRIO PROTECT. The PIP is effective under global scheduling (i.e., if no processor affinity

mask is constrained) and Easwaran and Andersson (2009) recently presented matching analysis of the

PIP under G-FP scheduling. However, as demonstrated in Figure 2.37, the PIP is insufficient across

partitions (i.e., if there exist processes with disjoint processor affinity masks that share resources).

Could the PRIO PROTECT policy be used instead under partitioning? Since the priority ceiling

of PRIO PROTECT locks is configured manually, it could in fact be “tweaked” to implement

priority boosting as required by the MPCP. This approach almost allows an implementation of the

MPCP. Recall from Equation (2.10) on page 129 that, under the MPCP, the effective priority of

a resource-holding job depends on the highest priority of any remote task sharing the resource. In

contrast, for an appropriately chosen priority ceiling, the PRIO PROTECT policy can be used to

priority-boost resource-holding processes to an effective priority that corresponds to the highest

priority of any task sharing the resource (which could be a local task). The published analysis of

the MPCP thus does not directly apply to the PRIO PROTECT policy, though it could likely be

adjusted to take this difference into account. However, we are not aware of any such analysis in

the published literature. Since the semantics of the PRIO PROTECT policy are mandated by the

POSIX standard, the other RTOSs in this category are similarly affected by this discrepancy.

None of these RTOSs implements the DPCP, though an implementation could be emulated

in user space using POSIX message queues, local mutex semaphores, and appropriately chosen

priorities and affinity masks, albeit at the expense of numerous system calls per lock request.

2.5.1.3 Category III: Separation Kernels

The third category of RTOSs are small, low-complexity kernels intended to host applications with

stringent safety or security requirements. Such separation kernels are designed to isolate several

software components at runtime in a certifiably safe and secure way. In particular, it must be ensured

that a temporal or local fault in one component (e.g., an infinite loop, out-of-bounds array access,

exhaustion of assigned resources) does not affect the operation of other correct components. This
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requirement is referred to as logical and temporal isolation in the real-time community, and as space

and time partitioning in the RTOS industry.

Since certification efforts benefit from low complexity, separation kernels are typically simpler

subsets of Category II kernels with similar but restricted capabilities. Depending on the nature of the

“components,” a separation kernel is simply either a regular kernel with strict budget enforcement

(if components are regular processes) or a hypervisor (if components are virtualized OSs). In

practice, most separation kernels support both processes and virtualization, so that this distinction is

mainly a question of primary focus. An example of the former kind (regular kernel) is Green Hill’s

INTEGRITY kernel, which, according to marketing materials (Green Hills Software, 2011), is used in

the Airbus A380, Boeing 777, and Boeing 787 aircraft (among many others); an example of the later

type (hypervisor) is SYSGO’s PikeOS, which is used in Airbus A350 and A400M airplanes (SYSGO

AG, 2011). Similarly certified variants of LynxOS, VxWorks, and QNX Neutrino exist as well. Since

this dissertation does not consider certification standards per se, we do not review this category of

RTOSs in detail.

2.5.1.4 Category IV: Research Kernels

Academic research has resulted in many RTOSs that have been used to investigate, and at times

pioneer, many of the use cases and types of RTOSs mentioned in Categories I–III. However, until

very recently, most academic RTOSs focused on uniprocessors and distributed systems. One of the

earliest research kernels to support multiprocessor systems, and arguably one of the most influential

academic RTOSs, was the Spring operating system (Stankovic and Ramamritham, 1991). Besides its

contributions with regard to kernel design for predictability and end-to-end guarantees in distributed

real-time systems, the Spring kernel introduced dedicated interrupt handling, which we use and

evaluate in Chapters 3 and 4. Under dedicated interrupt handling, one of the available processors

is reserved as the systems processor; the remaining processors are called application processors.

Real-time tasks are only scheduled on application processors, that is, the computing capacity of the

systems processor is essentially lost to real-time tasks. The systems processor is solely responsible

for system management tasks including interrupt handling (besides processor-local devices such as

timers), all I/O operations, processing job releases, and (most) scheduling decisions. This approach,

also called interrupt shielding, prevents real-time tasks from being disturbed by interrupts and
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other system management overheads, and thus makes their execution more predictable. In contrast,

if real-time tasks execute on processors where interrupts may occur, then the delays due to ISR

execution must be accounted for similarly to priority inversions, which can result in severe pessimism

(see Section 3.4.4). This results in a tradeoff: is it better to reserve a systems processor and lose 1
m of

the system capacity, or is it preferable to use all m processors for real-time tasks at the expense of

increased analysis pessimism? We explore this choice in detail in Chapter 4.

Besides the Spring system, another early multiprocessor-capable kernel used for both research

and to support avionics applications is the Hawk kernel from Sandia National Laboratories (Holmes

et al., 1987). The Hawk kernel implements a UNIX-like interface and was primarily intended for

“hard-real-time for missions of short duration” (Holmes and Harris, 1989). It was built specifically for

a now-obsolete embedded multiprocessor and appears to not have been used in (published) research

after 1990.

In more recent work, another approach to interrupt handling is implemented in the TU Dresden’s

Fiasco microkernel (Härtig et al., 1998; Härtig and Roitzsch, 2006), which is a member of L4

family of the microkernels (Liedtke, 1995) that is designed to support real-time workloads. While

originally targeted at uniprocessor systems, recent Fiasco versions support partitioned multiprocessor

scheduling using either P-FP or waited-fair-queuing scheduling (Demers et al., 1989) on each

processor. Due to its design as a pure microkernel, interrupts are not processed in kernel space

(besides the minimal required management). Instead, interrupts are converted to regular IPC messages

that are sent to processes that implement the driver functionality for the device that triggered the

interrupt. By assigning these drivers a lower priority than real-time tasks, this allows interrupt

processing to be safely deferred. In the context of monolithic kernels, this technique is also known as

split interrupt handling, where the management carried out by the kernel’s ISR is called the top half,

and the deferred part is called the bottom half.

In a pure microkernel-based OS (Liedtke, 1995), tasks do not synchronize by means of globally

shared semaphores, but rather invoke RPC services offered by server processes that encapsulate

shared state. Locking-related pi-blocking is thus not an issue; however, priority inversions can still

arise while a high-priority job waits for a server response while the server processes earlier-issued

requests of lower-priority tasks, or when the server process exhausts its processor allocation (i.e., its

current time slice) before finishing the request. Such priority inversions can be bounded using time
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slice donation, which is an inheritance protocol that allows servers to execute using the budget of the

waiting high-priority task (Steinberg et al., 2005, 2010).

Due to their minimalistic nature, microkernels are more appropriate for building predictable real-

time systems than monolithic kernels, where it can be difficult to identify all potentially troublesome

parts. In particular, since virtually all OS services are encapsulated in schedulable server processes,

they can be assigned priorities such that they do not interfere with real-time tasks. Härtig et al.

(1998) describe such a system design in detail. In more recent work, Ruocco (2008) provides a

comprehensive overview of L4 microkernels and how they can be used as a foundation for real-time

systems.

2.5.2 Real-Time Extensions of General-Purpose Operating Systems

In the 1970s and 1980s, there was a clear distinction between real-time and general-purpose com-

puting: an OS was either a GPOS, with no expectations of real-time performance, or an OS was an

RTOS, with only a small, specific-purpose feature set. This distinction started to blur in the early

1990s as some GPOSs were augmented with real-time features. For example, the RT-Mach kernel

was derived from the Mach GPOS kernel by adding a real-time thread interface, real-time scheduling

policies, and real-time locking protocols (Tokuda et al., 1990). RT-Mach was at the forefront of a

trend that is still strong today: instead of building an RTOS from the ground up, it is now common to

use an existing full-featured GPOS as a base that is then “retrofitted” to acquire desired real-time

features (e.g., a real-time scheduler, temporal isolation, or lowered interrupt latency).

This approach is desirable for two main reasons. First, it greatly reduces development costs

since basic OS functionality such as device drivers, process abstractions, or memory management

do not have to be reimplemented. This is a particularly compelling reason in an academic context,

where it allows researchers to focus on actual research questions rather than expending much effort

on mundane details. The second major reason is that real-time extensions of well-known GPOSs

are more convenient for application developers. Instead of having to deal with “esoteric” RTOS

interfaces, application developers can leverage their existing knowledge of the familiar GPOS APIs,

which increases developer productivity, improves code quality, and reduces development times.

When using a popular GPOS, development may further benefit from a vibrant market for third-party

libraries and tools, which are less established for RTOSs. In short, building an RTOS on top of an
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existing GPOS such as Linux or Windows reduces costs significantly, for both the developers and

users of the RTOS.

The biggest disadvantage of using a GPOS for real-time computing is that some fundamental

design choices made in the interest of throughput can be detrimental in a real-time context, and it

may be impossible to fix all of those decisions (short of reimplementing the whole OS). The design

and implementation of real-time extensions of GPOSs thus frequently consist of compromises, which

can limit the application domains in which they are a viable choice. For example, a large, monolithic,

informally specified kernel such as Linux is likely never going to be amenable to formal verification

and certification, and thus is not a suitable base for an RTOS targeted at truly safety-critical real-time

applications. Similarly, there are limits to the minimal resource requirements of a full-featured GPOS

kernel; some deeply embedded applications may thus always require specialized designs.

Nonetheless, from an economic point of view, RTOSs derived from well-known GPOSs are a

compelling choice whenever the provided (real-time) capabilities are “good enough”; that is, when

the tradeoffs inherent in such a design can be accommodated.

Real-time Linux. Given the rapid spread of Linux over the course of the last two decades and its

open-source nature, it is hardly surprising that Linux is frequently chosen as the base GPOS (and

may indeed be the most common choice). In fact, a casual web search reveals dozens of “real-time

Linux” variants of both a commercial and academic nature.

Real-time Linux variants can generally be categorized into two groups, as illustrated in Fig-

ure 2.41. In a native design, the Linux kernel is the only kernel present and responsible for meeting

real-time requirements, and real-time tasks are regular Linux processes. In contrast, in a para-

virtualized design, a specialized (hard) real-time-capable microkernel (or hypervisor) is inserted

between Linux and the actual hardware. Such implementations follow a classical microkernel design

in which Linux takes over the role of an OS server and is scheduled as a background, non-real-time

thread by the microkernel. Real-time tasks are specialized threads (i.e., not Linux processes) that are

directly dispatched by the microkernel.

LITMUSRT is a native design. We first review para-virtualized real-time Linux variants, and

discuss prior and contemporary native real-time Linux variants in Section 2.5.2.2 below. Having

established the necessary context, we then discuss LITMUSRT in detail in Chapter 3.
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Figure 2.41: In a native real-time Linux design, real-time tasks are implemented as Linux processes.
In a true para-virtualized real-time Linux design, real-time tasks are implemented as processes
running on top of the purpose-built real-time microkernel and isolated from Linux. Some para-
virtualized real-time Linux variants such as RTLinux (Barabanov, 1997; Yodaiken and Barabanov,
1997) execute the Linux kernel, the microkernel, and real-time threads in a single address space.

2.5.2.1 Para-Virtualized Real-Time Linux

Due to Linux’s beginnings as a traditional monolithic kernel, all stable (i.e., non-development) ver-

sions of Linux prior to Linux 2.6 executed every system call and interrupt as one long non-preemptive

section. Requiring all kernel code paths to be non-preemptive greatly simplifies synchronization

requirements on a uniprocessor. However, in the context of real-time systems, it leads to excessively

long non-preemptive sections: when a high-priority real-time job is released (i.e., an interrupt is

triggered), the corresponding real-time process should be scheduled without delay, which may not be

possible if the kernel executes non-preemptively on behalf of a lower-priority task. Consequently,

a non-preemptive kernel (with long code paths) may cause real-time tasks to incur unacceptable

pi-blocking in the worst case. Early real-time Linux variants, and in particular those focused on

HRT applications, thus chose to work around the Linux kernel and its inherent limitations using

para-virtualization, where Linux is executed as a background task of a real-time kernel or hypervisor.

As result, the Linux kernel is not in full control of the hardware, does not disable interrupts, and thus

can be preempted at any time.
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There are two key advantages to such a dual kernel design. First, low interrupt latencies can be

guaranteed to real-time tasks regardless of any deficiencies in the Linux kernel, some of which may

be unknown. Second, only relatively small changes to the Linux kernel are required, which means

that integrating improvements made in newer Linux versions is relatively easy. A good example

of a dual kernel design is the L4Linux system (Hohmuth, 1996; Härtig et al., 1998; Lackorzynski,

2004), in which Linux is para-virtualized on top of TU Dresden’s Fiasco: initially released in 1996

for Linux 1.3.94 (Hohmuth, 1996), L4Linux is still reliably tracking the latest Linux kernel versions

in 2011 (Lackorzynski, 2011).

A disadvantage of para-virtualized real-time Linux variants is that real-time tasks execute directly

on top of the microkernel and cannot make use of Linux services (such as device drivers, POSIX IPC,

synchronization primitives, filesystems, etc.). This limitation is fundamental since para-virtualization

does not improve Linux’s real-time capabilities; rather, it enables real-time tasks to safely co-exist

with the Linux kernel. One common way to enable communication between real-time threads and

Linux processes in such systems is the use of non-blocking queues and buffers (Anderson and

Ramamurthy, 1996; Anderson et al., 1995, 1997; Holman and Anderson, 2002b); for example, this is

done in RTLinux (Barabanov, 1997; Yodaiken and Barabanov, 1997). Compared to ordinary Linux-

based development, para-virtualized designs pose a greater engineering challenge (for application

developers) due to the unusual and more complex system architecture and the restricted runtime

environment for real-time tasks.

There are two main classes of para-virtualized real-time Linux variants. L4Linux is an example

of a “proper” para-virtualized system where both Linux and real-time tasks are executed in private

address spaces and thus isolated from each other. Several commercial RTOSs now offer Linux

(para-)virtualization support as well, among them Green River’s INTEGRITY, Sysgo’s PikeOS, and

LynuxWorks’ LynxOS. In contrast, real-time tasks execute in kernel mode in RTLinux and are thus

not isolated from the Linux kernel. From a software engineering point of view, proper isolation is

preferable; however, it creates some additional overheads and is more challenging to implement

efficiently. Besides RTLinux, two other well-known real-time Linux variants based on the dual

kernel approach that omit isolation are the Real-Time Application Interface (RTAI) developed at the

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano (Cloutier et al., 2000), which targets
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industrial applications, and the Xenomai project, which targets similar use cases but also focuses on

providing RTOS compatibility layers (so-called skins) to support legacy applications (Gerum, 2008).

Para-virtualization fundamentally takes the existing Linux kernel as a given; it is focused on

engineering a solution that circumvents Linux’s deficiencies rather than solving them. With regard to

real-time scheduling and locking, real-time tasks are limited to the services offered by the underlying

purpose-built microkernel or hypervisor (i.e., mostly FP scheduling with PIP support, as discussed

in the previous section). Para-virtualized Linux versions have therefore little in common with

LITMUSRT.

2.5.2.2 Native Real-Time Linux

In a native real-time Linux design, the Linux kernel is the only kernel present and in full control of

the hardware platform. Instead of working around Linux’s limitations as in a para-virtualized design,

a native real-time Linux variant must directly modify the kernel to enhance its real-time capabilities.

While para-virtualization may be the only feasible (Linux-based) design for applications with very

stringent timing constraints (e.g., engine control software), a native design is generally preferable for

the vast majority of applications if timing constraints can be met, i.e., if Linux’s limitations such as

high interrupt latencies can be addressed.

Given the limitations of early versions of Linux, the first native designs had to introduce

substantial infrastructure changes. In contrast, modern Linux (i.e., Linux versions 2.6+) is much

better suited for use in real-time systems, so that current native designs mostly focus on scheduling

and locking algorithmic changes. In the following, we review the major academic native real-time

Linux variants in (roughly) chronological order. These can be classified into two groups: those

initially developed in the late 1990s and early 2000s (i.e., before Linux 2.6), and those introduced in

recent years.

Embedded HRT systems. Srinivasan et al. (1998) introduced Kansas University Real-Time Linux

(KURT Linux), which pioneered many of the real-time infrastructure changes now found in standard

Linux. In particular, it introduced high-resolution (software) timers based on hardware timers

operating in one-shot mode (the so-called “UTIME” patch), a design that was later generalized and

reimplemented in a POSIX-compliant way and merged into standard Linux under the name hrtimers
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(Gleixner and Niehaus, 2006). Additionally, KURT Linux also added a number of scheduling features

aimed at HRT systems such as table-driven static scheduling, the ability to upload static schedules

into the kernel at runtime, and “focused mode,” where the kernel would schedule only real-time

processes (and no background processes). KURT Linux’s high-resolution timers and scheduling

support were used to conduct networking simulations requiring microsecond accuracy (House and

Niehaus, 2000). The last public release of KURT Linux occurred in 2002 in the form of a patch

against 2.4.18, which has since been removed from the web.

Linux started being used in robotics applications in the mid to late 1990s. An early real-time

Linux version targeted at this domain is Advanced Real-Time Linux (ART Linux), which added the

PIP and a system call interface in support of periodic tasks (Ishiwata and Matsui, 1998). ART Linux

was developed by Japan’s National Institute of Advanced Industrial Science and Technology (AIST)

and used in the Open Humanoid Robotics Platform (Kanehiro et al., 2004) and, among others, in the

humanoid robot HRP-4C (Kaneko et al., 2009). ART Linux is only sparsely documented and not

much publicized (e.g., it does not appear to have a current project homepage), and consequently has

seen little use elsewhere.

Another early real-time Linux is Real-Time and Embedded Linux (RED Linux), which initially

was also known as Real-Time Enhanced (RTE) Linux (Wang and Lin, 1998). RED Linux was

developed at the University of California, Irvine to provide a flexible base for the study of uniprocessor

real-time scheduling within a real OS (Wang and Lin, 1998, 1999). (LITMUSRT serves the same

purpose in a multiprocessor context.) With regard to infrastructure changes, RED Linux incorporated

Kansas University’s UTIME patch and further changed the kernel to reduce the length of non-

preemptive sections by adding preemption points. That is, the kernel still executes system calls

and ISRs non-preemptively most of the time in RED Linux, but checks more frequently whether a

preemption is required. RED Linux also introduced significant algorithmic changes. In particular, it

added a flexible hierarchical scheduling framework, which included support for EDF and several

notions of fair scheduling (Wang et al., 2002; Lin and Wang, 2003). It is not clear whether the code

for RED Linux was made publicly available; it appears that the RED Linux project is now dormant

and not (anymore) available online.
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Resource kernels. When extending a UNIX-like OS, the question arises of how to map sporadic

tasks, which are analysis-time entities, to processes, which are runtime entities. In a “classic” RTOS

such as QNX Neutrino or even standard Linux, the kernel (and thus the scheduler) is unaware of

the task parameters that were used during analysis to establish schedulability of the system. As a

result, such a kernel cannot reliably detect when processes deviate from the assumed behavior. This

is undesirable from a reliability point of view, and in particular in open systems (i.e., if tasks are

added and removed at runtime). The RT-Mach project incorporated the idea of resource reservations

(Mercer and Rajkumar, 1995), which was later developed into the resource kernel design (Rajkumar

et al., 1998; Oikawa and Rajkumar, 1999; Rajkumar et al., 2001). The resource kernel approach was

implemented by Oikawa and Rajkumar (1998) in Linux under the name Linux/RK.

In a resource kernel, the sporadic task model is interpreted at runtime as an execution time budget

that is replenished periodically or sporadically. That is, sporadic “tasks” are instantiated by the

kernel as an accounting abstraction, and each “job” is a time slice with a deadline. By performing an

admission test (i.e., schedulability test) before granting a reservation, the kernel can ensure at runtime

that resources do not become overcommitted. Once a reservation has been granted, a process is

attached to it. Instead of scheduling processes directly, the scheduler in a resource kernel first selects

a pending “job” (i.e., a budget that has not yet been exhausted) to “execute” and then dispatches the

attached process.

Resource reservations have a number of advantages. Since a process is only scheduled when

its reservation has remaining budget, it cannot consume more resources than assumed during

schedulability analysis. This provides temporal isolation among processes, which makes the system

amenable to a priori analysis. Further, development is simplified because misbehaving processes (i.e.,

those that routinely overrun their budget) are straightforward to identify. Another advantage of the

resource reservation model is that it can be easily extended to support group scheduling (by attaching

more than one process to a processor reservation) and hierarchical scheduling (by having multiple

layers of reservations). The idea of resource reservations can further be applied to non-compute

resources such as disk and network bandwidth or memory to isolate tasks from interference via those

resources as well.

Resource reservations as described so far are called hard reservations in Linux/RK because

processes are not eligible to execute after exhausting their current budget. Additionally, Linux/RK
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supports two relaxed reservation types: processes with firm reservations may be scheduled even if

they have currently no budget, but only if the processor would idle otherwise, whereas processes with

soft reservations are scheduled on a round-robin basis after exhausting their budget. The resource

reservation model is a natural way to realize the sporadic task model in a UNIX-like OS, and we

follow this approach in the implementation of LITMUSRT as well.

Besides adding resource reservations to Linux’s FP scheduler, Linux/RK also added high-

resolution timers and shortened the duration of non-preemptive sections in the Linux kernel. The last

public release of Linux/RK with support for processor, disk, and network reservations occurred in

2002 on the Linux/RK project homepage in form of a patch against Linux 2.4.18 (CMU Real-Time

and Multimedia Systems Lab, 2006). Although a limited “alpha version” based on Linux 2.6.18

with support for processor reservations (but not disk or network reservations) appeared in early

2007 (Lakshmanan, 2007), Linux/RK does not appear to be actively maintained any longer.

QoS scheduling. Two somewhat different native real-time Linux versions are QLinux (Sundaram

et al., 2000) and Linux-SRT (Childs and Ingram, 2001). Instead of targeting HRT workloads common

in embedded systems, they were aimed at supporting “soft” workloads with quality-of-service (QoS)

requirements. Like Linux/RK, both variants were based on resource reservations at their core.

QLinux emphasizes resource reservations for network and disk bandwidth (in addition to processor

time) and implements the start-time fair queuing policy (Goyal et al., 1996). Linux-SRT supports

several types of processor time and disk bandwidth reservations with semantics similar to Linux/RK’s

hard, firm, and soft reservations. Notably, Linux-SRT provides an additional system call to let servers

such as X11 (Linux’s graphical user interface) explicitly “bill” clients for resources used on their

behalf.

Modern Linux. Common to all of the so-far mentioned native real-time Linux variants is that

they are no longer actively maintained,26 and that they do not explicitly consider multiprocessor

issues (besides the multiprocessor support offered by the underlying Linux version). The latter

is understandable because multiprocessor platforms for real-time and embedded systems were a

rare occurrence at the time. One reason that has likely contributed to the cessation of project

26With the possible exception of ART Linux. Given the unavailability of (English) documentation, recent publications,
or an up-to-date project homepage, we were unable to determine its current status.
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maintenance is that Linux 2.6 gained several improvements (over the course of several versions)

that greatly improved its viability as an RTOS, namely high-resolution timers, priority inheritance,

mostly preemptable kernel execution, much-shortened non-preemptive sections, and an improved

lower-overhead FP scheduler. Since these improvements have become available in standard Linux,

the need for alternate infrastructure-modifying patches has been lessened. In fact, mainline Linux is

now (virtually) POSIX-compliant and supports FP scheduling (SCHED FIFO and SCHED RR)

with 100 distinct priorities, processor affinity masks, and the PIP. While not directly supported in

the kernel, the PRIO PROTECT policy is available as a user-space implementation in the pthreads

library. The SRP is thus available, albeit at the cost of two additional system calls per resource

request to raise and lower task priorities.

However, while the Linux kernel and its associated runtime libraries are now compliant with

the real-time POSIX specification (similar to a purpose-built Category II kernel), the Linux kernel

itself still contains non-preemptive code paths that are long (in the context of real-time systems) and

architectural design choices that were made with throughput in mind. For example, interrupts are, by

default, not serviced using split interrupt handling; rather, ISRs are typically executed immediately

when an interrupt is raised and are not subject to scheduling. Executing ISRs right away benefits

network and disk bandwidth, but can also delay real-time tasks. Thus, while API-compatible, current

mainline Linux is (understandably) not yet comparable to purpose-built RTOSs such as VxWorks or

QNX in terms of predictability and interrupt latency.

PREEMPT RT patch. Moving Linux further in the direction of being a true RTOS is the goal of the

PREEMPT RT patch,27 which is the only “semi-official” real-time Linux variant being maintained

by several core Linux kernel developers (Molnar, 2004; McKenney, 2005; Gleixner, 2006; Zijlstra,

2008). The PREEMPT RT patch changes the core Linux infrastructure significantly. To reduce

the length of non-preemptive sections, it converts most spinlocks in the kernel to semaphores, and

further enables the PIP by default for all semaphores in the kernel (in standard Linux, the PIP is not

necessarily active, which can result in priority inversion). Another major change introduced by the

PREEMPT RT patch is to force split interrupt handling for all ISRs (except timers). However, in

contrast to a microkernel such as Fiasco, ISR bottom halves are still executed in kernel mode without

27The name derives from an option in the configuration of the build system of the Linux kernel.
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any isolation (and the ISR top halves are not necessarily as minimal as in Fiasco). Given that error

rates in device drivers are notoriously high (Chou et al., 2001), this lack of fault containment poses a

considerable reliability hazard.

The PREEMPT RT patch, originally proposed by Molnar (2004), has been continuously main-

tained since 2004 and is still under active development, with the latest released version applying to

Linux 2.6.33 at the time of writing. Besides serving as a staging ground for real-time features that are

(intended to be) incorporated into mainline Linux at a later point, it is also widely used in practice.

For example, both Novell and Red Hat corporations have developed commercial Linux distributions

that incorporate the PREEMPT RT patch.

The PREEMPT RT patch does not add new scheduling algorithms or locking protocols; rather,

its main appeal is a considerable reduction in interrupt latency (Arthur et al., 2007). However,

strictly speaking, even with the PREEMPT RT patch, Linux is not a “true” RTOS, and will for the

foreseeable future contain a number of compromises between throughput and predictability concerns.

Nonetheless, despite these compromises, or maybe in part even because of them, Linux today is

“good enough” for many (soft) real-time applications. As noted by Paul McKenney in (Harris, 2005),

I believe that Linux is ready to handle applications requiring sub-millisecond process-
scheduling and interrupt latencies with 99.99+ percent probabilities of success. No, that
does not cover every imaginable real-time application, but it does cover a very large
and important subset.

Many practitioners, it appears, are in agreement, given that industry surveys indicate a steadily

growing Linux market share in the embedded sector (Linux Devices, 2007).

Recent developments. One area beyond the scope of the PREEMPT RT project are (experimental)

scheduling algorithm improvements such as resource reservations like those offered in Linux/RK,

QLinux, or Linux-SRT. Around the time that the LITMUSRT effort was started in 2006, two other

Linux-based real-time projects were initiated, namely the Adaptive Quality of Service Architecture

(AQuoSA) developed at the Scuola Superiore Sant’Anna (Palopoli et al., 2009) and Redline Linux

developed at the University of Massachusetts Amherst (Yang et al., 2008). Both are native real-time

Linux variants that are focused mainly on “soft” workloads, albeit in very different ways.

The Redline Linux project’s main goal is to ensure a highly responsive graphical user interface

even in situations where the system is exposed to severe, potentially malicious overload (such as
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“fork bombs,” where the number of processes increases exponentially until memory is exhausted).

To achieve this, Redline Linux features a modified variant of Linux’s now-standard completely fair

scheduler (CFS),28 a timesharing policy inspired by proportional-share fair scheduling (Tijdeman,

1980; Stoica et al., 1996). However, CFS is not well suited for providing a priori guarantees, i.e.,

actual scheduling is not predictable. Redline Linux thus has little in common with LITMUSRT. The

Redline Linux patch has not been updated since Linux version 2.6.22.5, which was released in 2007.

In contrast, AQuoSA is under active development (Cucinotta, 2011). Similar to Linux/RK,

QLinux, and Linux-SRT, AQuoSA’s chief research goal is to provide soft QoS guarantees to time-

sensitive applications (e.g., such as video conferencing) based on reservations. In addition, AQuoSA

incorporates adaptive scheduling techniques to adjust reservation parameters dynamically (Cucinotta

et al., 2004). AQuoSA further implements a bandwidth inheritance protocol, which applies the idea

of priority inheritance to reservation-based scheduling (Lamastra et al., 2001). While AQuoSA was a

uniprocessor effort during the first couple of years of the project, it recently gained multiprocessor

support (Checconi et al., 2009).

The uniprocessor reservation scheduler in AQuoSA is based on EDF. In later work, Faggioli

et al. (2009a,b) developed SCHED DEADLINE, a standalone, multiprocessor-capable EDF im-

plementation with the stated purpose of inclusion in mainline Linux, which is a major engineering

undertaking. (In contrast, LITMUSRT is not designed to be merged into Linux.) Together, with

Linux’s affinity mask support, this patch adds G-EDF, C-EDF, and P-EDF to Linux and thus would

be a significant extension of Linux’s algorithmic real-time capabilities. While key kernel developers

have voiced their support (Corbet, 2010), the SCHED DEADLINE patch has not been accepted into

mainline Linux to date. From a predictability point of view, there are some concerns with Linux’s

implementation of affinity masks in the context of global and clustered scheduling; these also affect

SCHED DEADLINE and are discussed in more detail in Section 3.2.4.

Finally, in very recent work, Kato et al. (2010) presented the Advanced Interactive Real-Time

Scheduler (AIRS) for Linux. AIRS is based on SCHED DEADLINE but adds a semi-partitioned

EDF variant called EDF-WM. In a semi-partitioned algorithm (Anderson et al., 2005), most tasks

are statically assigned to a processor (as under partitioning) and only a few tasks migrate (as under

28 In contrast to most other published proportional-share fair schedulers, upper and lower bounds on lag under CFS are
unknown; the name “completely fair” is thus not necessarily descriptive of its properties.
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global scheduling). Like AQuoSA, QLinux, Linux-SRT, and Linux/RK, AIRS is based on resource

reservations and aims to enable high QoS levels for “soft” interactive workloads such as video

playback on desktop systems (Kato et al., 2010). Besides processor scheduling, recent versions

of AIRS also support memory reservations (Kato et al., 2011). On a related note, Bastoni (2011)

recently presented an implementation and evaluation of EDF-WM and several other semi-partitioned

schedulers in LITMUSRT (Bastoni et al., 2011; Bastoni, 2011).

Summary. This concludes our review of prior work and illustrates why we developed LITMUSRT.

Global JLFP or JLDP schedulers such as G-EDF or PD2 are not supported by any of the discussed

RTOSs and Linux variants (with the exception of SCHED DEADLINE, which has only recently

become available). Further, global scheduling is only supported by means of affinity masks (if at all),

which are ill-suited to implementing policies with frequent migrations such as PD2 (as discussed in

Section 3.3.4). None of the major RTOSs implement multiprocessor locking protocols for partitioned

scheduling for which pi-blocking analysis has been derived (in the published literature). Additionally,

in 2006, when the development of LITMUSRT commenced, most prior academic real-time Linux

extensions were no longer being maintained. To study multiprocessor scheduling and locking in a

real OS, development of a new, extensible testbed was thus required.

In the next chapter, we discuss our native real-time Linux extension LITMUSRT, how it im-

plements the sporadic task model and schedulers described in this chapter, and how to incorporate

runtime overheads that arise in LITMUSRT into the idealized sporadic task model and associated

schedulability analysis.
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CHAPTER 3

THEORY, PRACTICE, AND OVERHEADS∗

In this chapter, we present our work aimed at reconciling practice and theory in multiprocessor

real-time systems. In Section 3.1, we revisit the assumptions underlying the real-time theory reviewed

in Chapter 2, discuss why some of them are problematic in practice, and argue in favor of a realistic

compromise between pure analysis and practical limitations. In Section 3.2, we review the Linux

foundation underlying LITMUSRT. Thereafter, in Section 3.3, we present LITMUSRT, which was

designed to closely correspond to the sporadic task model, and discuss solutions to implementation

problems that we faced when building LITMUSRT. In Sections 3.4 and 3.5 we detail how to account

for runtime overheads during schedulability analysis and finally present overhead-aware versions of

the schedulability tests reviewed in Chapter 2.

3.1 A Practical Interpretation of the Sporadic Task Model

The sporadic task model is a highly idealized view of a real-time system. When implemented in a

real OS on commodity hardware, several practicality issues must be addressed. We briefly discuss a

number of issues that we faced in the LITMUSRT project, and the solutions that we adopted.

∗ Contents of this chapter previously appeared in preliminary form in the following papers:
Block, A., Leontyev, H., Brandenburg, B., and Anderson, J. (2007). A flexible real-time locking protocol for multiprocessors.
In Proceedings of the 13th IEEE Conference on Embedded and Real-Time Computing Systems and Applications, pages
47–57;
Brandenburg, B., Block, A., Calandrino, J., Devi, U., Leontyev, H., and Anderson, J. (2007). LITMUSRT: A status report.
In Proceedings of the 9th Real-Time Linux Workshop, pages 107–123;
Brandenburg, B. and Anderson, J. (2008b). An implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP real-time
synchronization protocols in LITMUSRT. In Proceedings of the 14th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 185–194;
Brandenburg, B. and Anderson, J. (2009a). On the implementation of global real-time schedulers. In Proceedings of the
30th IEEE Real-Time Systems Symposium, pages 214–224; and
Brandenburg, B., Leontyev, H., and Anderson, J. (2011). An overview of interrupt accounting techniques for multiprocessor
real-time systems. Journal of Systems Architecture: Embedded Software Design, 57(6):638–654.



Process vs. task. There are a number of ways in which the sporadic task model can be implemented

in a process-based OS.1 One approach (that we did not adopt) is to implement all real-time tasks

inside a single process that provides a special runtime environment. The OS kernel is then not

concerned with scheduling and locking issues since sporadic tasks are not OS entities. This has

the advantage that no kernel modifications are required. However, this approach has the limitations

that there is no address space separation between tasks, and that tasks must be trusted not to call

library routines and system calls that interfere with the runtime environment (such as the exit system

call). Such a user-mode runtime environment is thus most appropriate for systems that implement

safe languages. For example, real-time Java and some ADA runtime environments follow this

approach; Burns and Wellings (2009) provide a comprehensive introduction to this approach of

real-time programming. Since tasks are generated by a runtime-environment-aware compiler in these

languages, it can be ensured that each task is fully cooperative.

If tasks are to be implemented in an unchecked language such as C, then a pure user-mode

approach is problematic for reliability reasons. Further, in the context of our research goal—to assess

the viability of multiprocessor real-time schedulers on real hardware—a user mode implementation

has the disadvantage that it is not directly in control of the hardware, which may make it difficult

to correctly attribute all observed delays. We therefore chose to follow the resource reservation

model in LITMUSRT in which each task is implemented by a separate process (LITMUSRT also

supports real-time threads, i.e., address space separation is not mandatory). In this interpretation

of the sporadic task model, the task parameters become a contract between the kernel and each

application: once a reservation is granted (i.e., when a task Ti is admitted by the kernel), it is the

kernel’s responsibility to ensure that each job Ji will be allowed to execute for up to ei time units

prior to its deadline (in the case of HRT reservations) or by its guaranteed tardiness bound (in the

case of SRT reservations).

Measurement vs. analysis. When using resource reservations, tasks cannot use the processor

for more time units than allowed by their reservation and are thus isolated from each other. An

application’s temporal correctness then hinges on whether each of its jobs stays within the allocated

1Confusingly, processes are commonly called tasks in the context of Linux. We reserve “task” to denote sporadic tasks
as defined by the sporadic task model, and refer to the OS abstraction as process.
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budget. Determining a safe upper bound on a task’s worst-case execution time (WCET) is thus

essential to building a correct real-time system.

Ideally, the execution requirement parameter ei should be determined analytically for each task.

In theory, this can be achieved by applying control- and data-flow analysis to the task itself and all

invoked kernel services and by building a model of the processor’s execution pipeline, all possible

cache states (for each cache level, and for both instruction and data caches, and the TLB), the memory

system itself, and bus interference—for all possible inputs and schedules. Alas, given the complexity

of modern commodity architectures, this is an extraordinarily challenging problem in practice.

While WCET analysis for uniprocessors has progressed significantly in recent years (there are

now commercial WCET analysis tools available for certain embedded processors2), the state-of-

the-art in WCET analysis has not yet advanced to the point that current multicore processors and

complex architectures such as Intel’s x86 architecture are analytically tractable (Wilhelm et al., 2008).

This is particularly true for assessing the impact of preemptions, since predicting cache contents

and hit rates is notoriously difficult. Even though there has been some initial success in bounding

cache-related preemption delays caused by simple, idealized data (Ramaprasad and Mueller, 2010)

and instruction caches (Staschulat and Ernst, 2007), analytically determining preemption costs,

even on uniprocessors with essentially private caches, is still generally considered to be an open

problem (Wilhelm et al., 2008).

On multicore platforms with a complex hierarchy of shared caches, there is currently no choice

but to resort to empirical approximation—execution time requirements must be measured during

development. This has wide-ranging implications. When using a measurement-based approach,

worst-case execution costs cannot be determined with certainty, since any amount of finite testing may

not reveal the true worst case. Thus, even when a task set is deemed schedulable based on empirically

estimated parameters, it may in fact not always be correct—if the worst case was underestimated, a

job might miss its deadline when its reservation is exhausted.

If schedulability cannot be asserted with certainty, then one may ask: why analyze at all? Why

not simply observe the system for some time (say, one hour), and deem it “correct” if no failure is

2One example is AbsInt’s aiT tool suite (AbsInt Angewandte Informatik GmbH, 2011).
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observed? Regrettably, this “let’s see if it works” approach to correctness is certainly not unheard of

in practice. We argue, however, that analysis is beneficial even if some parameters are estimated.

Suppose a system is subject to HRT constraints. When the system is only observed for one

hour, then one can only assert that “no failure was observed during the first hour of operation.”

However, in general, this does not preclude a deadline miss at a later time even if later execution

times are less than observed during the first hour. In contrast, when conducting proper schedulability

analysis based on estimated execution costs, then a much stronger guarantee results: “no deadline

will ever be missed as long as the execution requirement of each task does not exceed the observed

maximum.” The latter is a strong, if conditional, guarantee, whereas the former is merely a more or

less confidence-inspiring observation. We argue that a conditional guarantee is better than none at all.

In fact, there is no unconditional HRT correctness in the real world, since schedulability analysis

(implicitly) assumes the absence of complete hardware failure. As Paul McKenney humorously

observed “if you show me a hard real-time system, I will show you the hammer that will cause it to

miss its deadlines” (McKenney, 2007). We therefore believe that conducting schedulability analysis

based on carefully estimated parameters has merit—and is useful in practice—as long as assumed

maxima are determined such that they are unlikely to be exceeded. As it is well-established practice

in other engineering disciplines, safety margins can be integrated into estimates to provide a buffer

against unlikely events.

Further, in the case of SRT constraints, it may be difficult to detect slowly increasing, unbounded

tardiness if the test interval is short (in relation to the tardiness growth rate). Analytical derivation of

a tardiness bound based on estimated parameters is thus useful even in the SRT case.

Extent of measurement. One desirable but currently infeasible extreme is pure analysis (and no

measurement), whereas the other common but undesirable extreme is mere observation (and no

analysis). When conducting experiments, which tradeoff between measurement and analysis should

be chosen? For example, is it sufficient to measure only the execution times of jobs and assume that

such measurements reflect kernel overheads, or should kernel overheads be measured individually

and accounted for analytically?

The fundamental purpose of an RTOS is to provide temporal guarantees. These guarantees

should be as strong as possible. In the context of analytically sound real-time systems, this means that
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measurements are a stopgap measure only that is to be avoided when possible. We therefore propose

the principle of least measurement: everything that can be analytically derived with reasonable effort

should not be measured.

To illustrate the principle of least measurement, consider measuring the aggregate impact of

overheads on a job. If there is simply a single “system overhead” measurement, then different kernel

overheads are averaged and their individual worst-case impacts are masked. That is, besides likely not

observing the true worst-case for each source of overhead, such coarse-grained sampling additionally

risks underestimating the combined effect of overheads since the maximum for each overhead source

is likely not observed simultaneously. For example, suppose a context switch requires 2µs on average,

but the measured maximum delay is 15µs. Further, suppose a scheduling decision requires 10µs

on average, but the measured maximum scheduling cost is 50µs. If these two sources of overhead

are sampled as one entity, then there is good chance that the observed joint maximum of the two is

much less than 65µs, the sum of the two individual maxima. Instead, each source of kernel overhead

should be accounted for analytically (as we do in Sections 3.4 and 3.5) and measured individually

(until WCET analysis becomes available).

As WCET analysis improves, the need for measurement-based estimation will subside. Ideally,

in the (distant) future, it would be desirable for RTOSs to be distributed with built-in WCET analysis

support that determines upper bounds on kernel overheads for a given kernel configuration, just like

Linux’s build system today contains built-in support for static source code analysis that automatically

detects certain classes of logical program errors. This is not yet feasible, but given recent advances

in bounding migration delays (Hardy and Puaut, 2009) and analyzing interference due to shared

caches (Chandra et al., 2005; Yan and Zhang, 2008; Lv et al., 2010), we expect practical multicore

WCET analysis (for simple architectures) to be developed eventually.

In the meantime, the principle of least measurement implies two RTOS design guidelines.

First, kernel functionality should be structured and instrumented such that delays due to individual

code paths (e.g., making a scheduling decision or a context switch) can be attributed correctly and

measured individually rather than treated as aggregate “kernel overhead.” Second, the kernel should

only use algorithms and data structures that are amenable to WCET analysis in principle, even if

not (yet) on current hardware platforms. That is, the kernel should not make use of randomized

or probabilistic data structures, or algorithms that rely on amortized runtime analysis. Not every
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application will require full WCET analysis in practice, but an RTOS should be built in way that it

can be analyzed when required.

Large, monolithic GPOS kernels such as Linux may never be amenable to WCET analysis, and,

as a research project, LITMUSRT will not be deployed in safety-critical environments. Nonetheless,

we believe that forward-looking real-time research should be rooted in a conceptually sound basis.

We therefore adopt the principle of least measurement in the design of LITMUSRT and as the guiding

rule for our overhead-aware evaluation methodology presented in Chapter 4.

Non-conforming tasks. Another question that an implementation of the sporadic task model must

address is how to deal with non-conforming tasks. Besides overrunning their budget, jobs of tasks that

violate their parameters can be released too early (i.e., less than pi time units apart) or self-suspend

when not expected to do so. For example, a job release may be triggered prematurely by an interrupt

due to a faulty sensor, or may suspend briefly due to a page fault. Regarding the latter, while the

virtual memory of real-time tasks should be locked into physical memory, the POSIX semantics

require pages to be locked into memory only after they have been accessed once. This requires

developers to program real-time tasks to pre-fault all required pages; accidental omission is thus

possible. Similarly, resolution of symbols in dynamic libraries can cause brief suspensions in Linux.

Strictly speaking, temporal correctness cannot be guaranteed in such cases since the assumptions

underlying the schedulability analysis are not met. When interpreting the sporadic task model as

a contract, the RTOS is then under no obligation to support tasks that exhibit such behavior. For

example, the initial prototype of LITMUSRT simply did not implement suspension support for

real-time tasks, to the effect that a suspending real-time task would cause a kernel panic. This, clearly,

is less than ideal behavior during the development phase, and of questionable utility when deployed.

Instead, the RTOS should revert to best-effort behavior in such cases. That is, while temporal

correctness cannot be guaranteed any longer in such cases, small infractions likely have only

little impact and should not crash the RTOS. Similarly, tasks should not be expected to pass valid

parameters to the kernel, nor should they be trusted to execute system calls in the right order (or

at all, or only once). While this may seem obvious to OS developers and researchers, it is worth

pointing out since not all academic real-time GPOS extensions always live up to this standard.
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Non-atomicity of scheduling events. Since the sporadic task model and associated schedulability

analysis assumes overhead-free execution, scheduling algorithms are commonly described from the

point of view of an “outside observer” that knows the exact state of all processors and assuming

sequential, atomic scheduling events. For example, if two jobs are released at the same time, then it

is assumed that the scheduler considers both simultaneously when making preemption decisions.

On a multiprocessor, actual scheduling is much more difficult because scheduling events can

occur in parallel on different processors (e.g., two jobs may be released at the same time, but by

interrupts handled by two different processors) and because scheduling events take time. Further, a

processor servicing an interrupt cannot directly initiate a context switch on a remote processor; it can

only send an IPI to notify the remote processor that a preemption is required.

Preemption decisions in a global scheduler are particularly challenging. In an ideal, overhead-

free model, there exists exactly one scheduled job on each processor (unless a processor is idle).

In practice, the notion of when a job is “scheduled” is not clear-cut because processes can be in

transition states such as “still scheduled but currently suspending” or “selected by the scheduler, but

not yet dispatched and awaiting a context switch.” For example, suppose that a job Ji is one of the m

highest-priority jobs when released, but a higher-priority job Jk arrives before the context switch to

Ji’s implementing process is complete. Now further suppose that a third job Jl with priority less

than Jk’s but higher than Ji’s arrives concurrently on another processor. Which job is “scheduled?”

Is a preemption required? Should an IPI be sent?

This non-atomicity of scheduling events complicates scheduling decisions considerably because

it allows for concurrent scheduling decisions that must take possibly inconsistent system states into

account. In the worst case, a scheduling race could result in a priority inversion if a high-priority

job is “overlooked.” In our experience, relying on the OS’s notion of whether a particular process is

scheduled (i.e., is its stack in use?) for assigning jobs to processors is both difficult and error-prone

due to unanticipated corner cases and race conditions. This is especially true when jobs (accidentally)

self-suspend for short durations (due to blocking on semaphores or page faults, library loading, etc.).

Instead, in LITMUSRT, we split job scheduling, which is at the level of the sporadic task model and

is only concerned with assigning abstract jobs to abstract processors, from process scheduling, which

is concerned with address spaces, stacks, register sets, and other hardware peculiarities.
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This simplifies the real-time scheduling logic since any processor’s job assignment can be

updated on any processor by any event handler (in contrast to performing context switches, which can

only be done in one specific code path on the target processor). Process scheduling is then reduced

to tracking which process should be executing based on the current job-to-processor mapping; any

delay in tracking can be accounted for as part of overhead analysis.

In fact, a majority of the time spent developing LITMUSRT has been devoted to concurrency

issues that arise under global scheduling. These issues and our solutions are discussed in detail in

Section 3.3 below. Next, we summarize the Linux foundations that underly LITMUSRT. Interestingly,

Linux’s implementation of global and clustered FP scheduling is also affected by the non-atomicity

of scheduling decisions.

3.2 The Linux Scheduling Framework

As a whole, the Linux scheduler is a subsystem of considerable complexity. In Linux 2.6.36, the

processor scheduling code spans over ten files approaching 19,000 lines of code and comments in

total. Bovet and Cesati (2005) provide a thorough description of process management and scheduling

in Linux; a more recent treatment including a discussion of CFS is given by Maurer (2008). Relevant

to our work are how the scheduler is invoked, how it is structured into “scheduling classes,” how

concurrent state updates are synchronized, and how the FP policy and support for processor affinity

masks are implemented in Linux.

3.2.1 Invocation of the Scheduler

The Linux scheduler can be invoked in two ways. A process invokes the scheduler directly with a call

to the schedule() procedure when it suspends (e.g., after invoking the read() system call to perform

blocking I/O). From the point of view of the calling process, the call to schedule() returns when the

process is resumed.

The scheduler is invoked indirectly when the preemption of the currently scheduled process is

required. This is achieved by setting the rescheduling flag in the process control block (PCB) of the
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currently scheduled process, which is called struct task struct in Linux.3 Prior to returning from an

ISR, an exception handler (such as a page fault), or from a system call, the kernel checks to see if the

rescheduling flag of the process currently scheduled on the local processor is set, and invokes the

scheduler if required.

For example, if an ISR causes a higher-priority process to resume, then the scheduler is not

invoked right away. Instead, the ISR sets the rescheduling flag of the currently scheduled process,

which causes the required preemption to be enacted at the end of the ISR. This has two advantages:

first, the involuntary preemption code path is simplified since it is always invoked from the same

context (i.e., at the end of an ISR, exception handler, or system call), and second, rescheduling can

be requested even while holding kernel locks that must be released prior to calling the scheduler.

Associated with each process is a preempt count. A process is considered to be non-preemptable

whenever it has a positive preempt count. The preempt count can only be positive while a process

executes in kernel mode; in standard Linux, user space cannot request a process to be non-preemptable.

If the rescheduling flag is set while a process has a positive preempt count, then the scheduler is not

invoked until the preempt count drops to zero. This allows an ISR that is handled while a process

executes non-preemptively in kernel mode to request rescheduling without interfering with the

non-preemptive section. While this allows interrupts to be handled immediately when they are raised,

the worst-case scheduling latency is not necessarily improved by this approach since a required

preemption may still be delayed.

3.2.2 Hierarchical Scheduling Classes and Per-Processor Runqueues

The Linux scheduler is structured along two dimensions. From a scheduling policy point of view,

the Linux scheduler is organized as a hierarchy of scheduling classes, where processes of lower-

priority scheduling classes are only considered if higher-priority scheduling classes are idle. From

an implementation point of view, the Linux scheduler is fundamentally organized in a partitioned,

per-processor fashion to ensure (mostly) cache-local operation. Associated with each processor is

a runqueue that contains the state of each scheduling class pertaining to that processor (such as a

processor-local ready queue, the current time, and scheduling statistics).

3To be precise, the rescheduling flag is called TIF NEED RESCHED and located in the struct task info structure,
which is conceptually part of the PCB but allocated separately.
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Policies. Each process belongs to exactly one scheduling class at any given time, but may change its

scheduling class at runtime by means of the sched setscheduler() system call. In order of decreasing

priority, the three main scheduling classes are the FP real-time scheduler (SCHED FIFO and

SCHED RR), the general-purpose scheduler CFS (denoted SCHED OTHER in POSIX parlance),

and the idle class used for background work. Each scheduling class implements an interface

consisting of 22 methods.4 Whenever the Linux scheduler is invoked, it traverses the scheduling

class hierarchy in order from the real-time class to the idle class by invoking the pick next task()

method of each class. When a scheduling class returns a non-null PCB, the traversal is aborted and

the corresponding process is scheduled. This ensures that real-time processes always take precedence

over non-real-time processes.

Locking. Each runqueue is protected by a spinlock. A runqueue’s spinlock must be acquired before

its state may be modified (e.g., before processes may be enqueued or dequeued). Perhaps surprisingly,

there are no per-process locks in Linux to synchronize accesses to PCBs. Instead, runqueue locks are

used to serialize process state updates. To this end, each process is assigned to exactly one runqueue

at all times, and a processor must first acquire the lock of the assigned runqueue before it may access

a PCB. While ready, a process naturally belongs to the runqueue of the processor to which it is

currently assigned; when a process suspends, it remains under management of the processor where it

was last scheduled until it is resumed (when it may be assigned to the runqueue of another processor

as a means of load-balancing).

Due to the processor-local nature of runqueues, a processor must acquire two (or more) locks

whenever a consistent modification of the scheduling state of multiple processors is required. For

example, this arises whenever a process is migrated: it must be atomically dequeued from the ready

queue of the source processor and enqueued in the ready queue of the target processor. Unless

coordinated carefully, such “double locking” could quickly result in deadlock. Therefore, Linux

requires that runqueue locks are always acquired in order of increasing memory addresses; that is,

once a processor holds the lock of a runqueue at address A1, it may only attempt to lock a runqueue

at address A2 if A1 < A2. This imposes a total order on runqueue lock requests; deadlock is hence

4In an object-oriented language such as C++ or Java, an interface is a set of named virtual methods that a conforming
class must implement. In the C language, an interface is implemented as a record of function pointers. Following
established object-oriented terminology, we refer to these function pointers as methods as well.
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impossible. Consequently, a processor that needs to acquire a second, lower-address runqueue lock

must first release the lock that it already holds and then (re-)acquire both locks. As a result, the state

of either runqueue may change in between lock acquisitions. Considerable complexity in the Linux

scheduler is devoted to detecting and reacting to such concurrent state changes.

Linux further supports hierarchical scheduling of process groups in both the CFS and FP

scheduling classes by means of the cgroups mechanism. Hierarchical scheduling is beyond the scope

of this dissertation and not further considered.

3.2.3 The Timesharing Scheduling Class

The POSIX standard does not specify how non-real-time timesharing should be implemented, which

is reflected by the fact that the timesharing policy is simply called SCHED OTHER. In Linux, CFS

is the default scheduling class used for virtually all non-real-time tasks.

The two primary goals of CFS are to maximize throughput and to minimize lag as defined by

proportional-share fair scheduling (Tijdeman, 1980; Stoica et al., 1996). To reduce cache-related

overheads, which impede throughput, CFS operates on a partitioned, per-processor basis. That is,

when selecting the next process to run, CFS only considers processes assigned to the local runqueue.

Additionally, there is a load-balancing heuristic that migrates processes to spread out runnable

processes among all processors, as permitted by the processor affinity mask of each process. The

load-balancing heuristic is triggered periodically and also when processors would otherwise become

idle. Notably, the load-balancing heuristic considers the cache topology on multicore chips and

prefers processors that are “close” to a task’s previous processor, i.e., the load balancer preferentially

migrates processes among processors that share a cache.

On each processor, ready processes that are not scheduled are stored in a red-black tree. The

red-black tree is keyed by a quantity that (roughly) corresponds to the negated lag of a process at the

time of insertion. At any time, the left-most element in the tree is considered to be the highest-priority

queued process. By default, a scheduled process may run uninterruptedly for about 5 · (1 + logm)

milliseconds, and no less than 2 · (1 + logm) milliseconds,5 after which its lag is recomputed and

its position in the red-black tree updated (recall that m denotes the number of processors). If the

5 There does not appear to be an analytic justification for these values; rather, they are assumed to yield an acceptable
compromise between lag and throughput for many workloads in practice.
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lag update causes the currently scheduled process to no longer be the left-most element in the tree,

then the process is preempted. However, the precise time between lag updates is subject to many

additional rules and configurable settings, and difficult to predict with certainty.

Since load-balancing occurs only infrequently (compared to the number scheduler invocations

in total), CFS is essentially a partitioned scheduler with a corresponding high cache affinity for

both processes and the CFS implementation itself, which is essential to enabling high throughput.

A major weakness of CFS is that it is not formally (or even informally) specified (aside from its

implementation in the Linux kernel) and heavily reliant on heuristics. Worse, these heuristics are

subject to frequent “tweaking” and may change from kernel release to kernel release. As a result,

CFS is ill-suited to formal analysis and does not lend itself to providing a priori guarantees. It

therefore is of little relevance to analytically sound, predictable real-time systems.

3.2.4 The Real-Time Scheduling Class

Linux’s scheduling class for real-time tasks implements FP scheduling with 100 distinct priorities.

Both the SCHED FIFO and SCHED RR polices mandated by the POSIX standard are mapped

to this scheduling class. Since Linux supports processor affinity masks, this scheduling class can

be configured to realize either P-FP or G-FP scheduling (or hybrids thereof). To begin, we restrict

our focus to the simpler P-FP case, where each real-time process has a processor affinity mask that

allows only one processor and no migrations are required.

Ready queue. Each runqueue contains a ready queue for the FP scheduling class that consists of

an array of 100 linked lists used to queue ready processes at each priority level. Additionally, each

runqueue contains a bitfield containing one bit per priority level to indicate non-empty lists. This

allows a ready process of the highest priority to be found quickly in two simple steps: first, the

bitfield is scanned for the first non-zero bit, which most architectures support with special-purpose

instructions; second, the head of the linked list corresponding to the index of the first non-zero bit is

dequeued. If this causes the list to become empty, the corresponding bit is reset.

In the Linux documentation and literature, this implementation is commonly called the “O(1)

scheduler” since the number of instructions required to dispatch a process is independent of the

number of ready processes. That is, since there are only 100 distinct priorities, a non-empty queue
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is found after at most 100 comparisons (assuming a lack of hardware-based bit searching), even

if there are thousands of processes pending. Strictly speaking, however, this is not a constant-

time algorithm: in the worst case, the number of required instructions is linear in the number of

distinct priorities—which happens to be constant in Linux. In other words, claiming that Linux’s FP

scheduler has O(1) runtime complexity is analogous to stating that a fixed-size array can be sorted

in constant time: true in the narrow special case, but misleading in general. For example, Linux’s

approach of using a simple, sequentially scanned bitfield would not scale to supporting 216 distinct

priorities, as offered by some proprietary RTOSs. Nonetheless, with only 100 distinct priorities and

hardware-supported bit search, the first set bit can be found with only four instructions on a 32-bit

platform and two instructions on a 64-bit platform (in addition to conditional jumps). In practice,

Linux’s FP scheduling class thus quickly identifies and dispatches the highest-priority ready process

with little overhead.

When a process resumes, it is enqueued at the end of the linked list corresponding to its current

priority. This ensures that processes of equal priority are scheduled in FIFO order on each processor.

Processes of type SCHED FIFO are allowed to run for as long as required until they suspend,

whereas processes of type SCHED RR are preempted and moved to the end of the linked list after

exhausting a time slice of 100 ms (and thus forced to alternate in a round-robin fashion if there are

multiple processes of the same priority). As long as process priorities are unique, SCHED FIFO

and SCHED RR are equivalent to each other and amenable to standard response time analysis

(Section 2.3.1.1). However, by default Linux executes processes without temporal isolation (i.e., a

high-priority process that overruns its budget can delay lower-priority processes for arbitrarily long

times). Recent versions of Linux have gained support for “real-time throttling,” which provides a

limited means of temporal isolation.

On-demand migrations. In the case of processes that may be scheduled on multiple processors (as

is the case under G-FP scheduling), the FP scheduling class must consider multiple processors in its

scheduling decisions. That is, it must ensure that a process is scheduled as soon as at least one of the

processors permitted by its affinity mask is not executing a higher-priority process. This may require

a process to be migrated “on demand,” that is, as part of a scheduling decision.
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1 pull−process−to(RQ i):
2 foreach x ∈ {1, . . . ,m} \ {i} such that RQx is not empty:
3 lock RQx // while holding lock for RQ i

5 let PC r ← the highest-priority ready process queued in RQx

6 that includes processor i in its affinity mask (if any)
7 let PC l ← the highest-priority ready process queued in RQ i (if any)

9 if (PC r exists
10 and (PC l does not exist
11 or PC r’s priority exceeds PC l’s priority)):
12 migrate PC r from RQx to RQ i

14 unlock RQx

Listing 3.1: Linux’s target-initiated pull operation.

In contrast to the CFS scheduling class, the FP scheduling class thus does not have a separate

load-balancing heuristic. Instead, processes are migrated as needed prior to and after each scheduling

decision. A process migration always involves a target and a source processor, either of which may

initiate a migration: either a source processor pushes waiting processes to other processors, or a

target processor pulls processes from processors backlogged with higher-priority processes. These

operations are expressed as simplified pseudo-code in Listings 3.1 and 3.2. In the pseudo-code

and the following discussion, we let RQ i denote the runqueue of processor i and let PC r denote a

process.

The pull operation is carried out by the FP scheduling class prior to selecting the next process to

schedule whenever it is about to schedule a process of lower priority than previously scheduled (e.g.,

when the previous job of a higher-priority task is completed). A migration is required at this point if

there exists a process PC r that satisfies four conditions:

1. PC r is currently not scheduled;

2. PC r is currently assigned to a remote processor’s runqueue;

3. the pulling processor is included in PC r’s processor affinity mask; and

4. PC r’s priority exceeds that of any local process.
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1 push−process−from(PC l, RQ i):
2 let attempt ← 1
3 let success ← ⊥
4 while attempt ≤ 3 and ¬success: // retry loop
5 set attempt← attempt+ 1
6 foreach x ∈ {1, . . . ,m} \ {i} such that x is included in PC l’s affinity mask:
7 // check if PC l is eligible to be scheduled on processor x
8 let PC r ← process currently scheduled on processor x
9 if (PC r does not exist or PC l’s priority exceeds PC r’s priority):

10 // attempt migration to potential target runqueue
11 lock RQx // while holding lock for RQ i

12 if attempt did not race with concurrent state change:
13 migrate PC l from RQ i to RQx

14 set success← >
15 unlock RQx

16 break // abort foreach loop after locking one remote runqueue

Listing 3.2: Linux’s source-initiated push operation.

Linux’s pull operation (Listing 3.1) thus sequentially checks every remote processor that has more

than one real-time process assigned to it (line 2 in Listing 3.1) to see if there exists a queued (but

not scheduled) process that is eligible to be migrated. That is, if the highest-priority queued process

satisfies each of the four listed conditions, then it is migrated to the pulling processor (lines 5–12).

The push operation is carried out after a process has been selected to be scheduled, and also

when a process is resumed. It checks to see if any of the locally queued, ready processes (i.e., those

not selected to be scheduled) could be scheduled immediately on a remote processor. That is, a

process PC l must be pushed to a target processor x if it satisfies the following four conditions:

1. PC l is currently not scheduled;

2. PC l is currently not assigned to RQx;

3. processor x is included in PC l’s processor affinity mask; and

4. PC l’s priority exceeds that of any process currently assigned to RQx .

To reduce overhead, Linux attempts to push each process only once each time that it is preempted or

resumed; if the push attempt fails because no processor is currently available, then the process will

not be considered again until it has been scheduled or migrated. To check whether a local process

PC l should be migrated, Linux’s push operation (Listing 3.2) checks each processor permitted by
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PC l’s processor affinity mask (line 6 in Listing 3.2) to see if condition 4 is satisfied (lines 7–9). If it

identifies a processor that appears to be a valid migration target (line 9), it locks the corresponding

runqueue (line 11), attempts to carry out the migration (lines 12–14), and then terminates the

candidate search (lines 15–16). Due to the non-atomicity of scheduling decisions, a push attempt may

also fail if it races with a concurrent scheduling event on the target processor (lines 11–15). Linux

will try to push the task up to three times before giving up (lines 2–5). After three failed attempts to

find a suitable target processor, Linux abandons the process and relies on remote processors to pull it

at a later time.

Processes with processor affinity masks that allow scheduling on only a single processor are

exempt from pushing and pulling and are thus skipped by the migration code. Linux’s push operation

also considers a platform’s cache topology; such details are omitted in Listing 3.2 for the sake of

clarity.

Limitations. The primary advantage of Linux’s partitioned runqueue architecture is low average-

case overheads: in most cases, processors can make local scheduling decisions without the need

for global coordination. However, this inherently partitioned design greatly complicates support

for (occasional) pushing and pulling due to the need to (re-)acquire multiple runqueue locks for

each migration (e.g., in line 3 in Listing 3.1 and line 11 in Listing 3.2), with the resulting chance

of concurrent state changes. Worse, since the current scheduling state is split across multiple data

structures, it is not possible for processors to obtain a consistent snapshot of the current process-to-

processor mapping (without locking all runqueues simultaneously, which would defeat the purpose

of having per-processor locks). As a result, there is a chance that processors may either trigger

superfluous migrations or may fail to trigger required migrations. We briefly demonstrate each case

with an example.

Both pull and push operations may trigger superfluous migrations; here, we consider the pulling

of lower-priority processes. In theory—if scheduling decisions are atomic—at most one process

needs to be pulled since only it will be scheduled. Other processes may remain where they are since

it is irrelevant where a process is queued while it is not scheduled. However, as implemented in

Linux, a pull operation may cause up to m− 1 migrations to occur if processes are encountered in

order of increasing priority.
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Figure 3.1: Example of unneeded migrations caused by Linux’s pull operation. When process
PC 1 suspends, process PC 5 must be pulled from runqueue RQ4 to runqueue RQ1 so that it can
be dispatched next. However, since Linux’s pull operation examines remote runqueues in order of
increasing indices, two unneeded migrations are triggered as well.

Example 3.1. An example scenario that triggers such unneeded migrations is illustrated in Figure 3.1.

There arem = 4 processors and eight processes PC 1–PC 8 with corresponding unique priorities 1–8.

There are two processes assigned to each processor, such that processes PC 1–PC 4 are scheduled and

processes PC 5–PC 8 are queued and waiting, as indicated in Figure 3.1. Now suppose that process

PC 1 on processor 1 suspends (i.e., its current job completed). At this point, the next-highest-priority

process to be scheduled is process PC 5, which is currently assigned to processor 4. However, since

Linux’s pull operation checks processors in order of increasing index, it migrates process PC 7 from

processor 2 and process PC 6 from processor 3 to processor 1 prior to discovering process PC 5 on

processor 4. Depending on when the processes PC 2–PC 4 suspend, the just-migrated processes

PC 6 and PC 7 may eventually have to be returned to where they came from. ♦

This shows that processes may be subject to unneeded migrations. In general, it is impossible to

anticipate under global scheduling on which processor the next-highest-priority process is queued.

An example similar to Example 3.1 can thus be constructed for any processor traversal order. The

risk of unneeded migrations is fundamental to a one-pass pull operation and stems from the lack of

global knowledge, i.e., the pulling processor does not know which processes are ready on remote

processors. Some unneeded migrations could possibly be avoided by a two-pass pull operation that
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first checks each processor and then selects the highest-priority encountered process for migration;

however, such an approach would still suffer from the lack of a consistent snapshot.

Besides causing unneeded migrations, both push and pull operations may miss required migra-

tions if the scheduling state of remote processors changes concurrently. We consider push migrations

as an example. To push a local process to a remote runqueue, the scheduler must identify a processor

that currently executes a process of lower priority or that is idle (lines 6–9 in Listing 3.2). Since

it is not possible to obtain a consistent snapshot (without locking all runqueues), the set of ready

processes assigned to each processor may change repeatedly while the pushing processor attempts to

identify the “best” migration target.

After the migration target has been selected, the pushing processor must lock the runqueue

of the target processor (line 11 in Listing 3.2). Again, there is a possibility of a concurrent state

change: the identity of the highest-priority scheduled process may change between the time when the

migration target has been selected (line 6) and the time when the pushing processor has acquired the

target’s runqueue lock (line 11). This is especially problematic if a higher-priority process resumes

during this race window—the prior selection of the migration target has then been invalidated and

the attempt to push the process has failed (line 12).

As discussed above, the push operation has a retry loop that re-attempts pushing the process up

to three times to cope with failed push attempts due to concurrent updates (lines 2–5).6 Alas, after a

push operating has failed three times due to races with concurrent scheduling events, the pushing

processor gives up. This can lead to a needed migration being missed.

Example 3.2. Such a scenario is illustrated in Figure 3.2. Initially, only process PC 5 is ready on

processor 1. Suppose process PC 4 resumes on processor 1 (i.e., it was previously scheduled on

processor 1 and is then resumed by an ISR that is also executed on processor 1). This causes PC 5 to

be preempted and it must thus be pushed to one of the idle processors.

As shown in Figure 3.2(a), processor 2 is picked as the migration target for the first attempt.

However, a concurrent scheduling event occurs and process PC 2 is resumed on processor 2 before

the migration is enacted. As a result, processor 2 is no longer a valid migration target; therefore the

first attempt fails. Processor 1 then retries finding a valid migration target, as shown in Figure 3.2(b).

6The retry limit of three is hard-coded in Linux’s find lock lowest rq() function.
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Figure 3.2: Example of a required migration missed by Linux’s push operation. As PC 5 is
preempted by PC 4, it should be pushed to another processor. The four insets depict four states
encountered during the search for a migration target: (a) RQ2 is identified as a suitable target; (b)
PC 2 is resumed, RQ2 becomes unsuitable, and RQ3 is identified as a suitable target; (c) PC 3

is resumed, RQ3 becomes unsuitable, and RQ4 is identified as a suitable target; and (d) PC 1 is
resumed, RQ4 becomes unsuitable, and the push operation fails without enacting a migration.
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Processor 3 is picked as the migration target for the second attempt. However, in the scenario

depicted in Figure 3.2(c), the migration attempt races with the process PC 3 as it resumes. As a

result, the second migration attempt fails as well.

Finally, suppose that processor 4 is picked as the migration target for the third and final attempt.

Again, a higher-priority process is resumed after processor 4 was observed as idle and before the

migration could be enacted, i.e., before the runqueue RQ4 was locked by processor 1. The last

attempt thus failed, too, and processor 1 gives up trying to push the process since the operation has

reached the retry limit. As a result of the failure to push, process PC 5 remains queued on processor 1

and must wait even though there exists an idle processor. ♦

In practice, push failures are likely rare and quickly corrected because other processors will

likely initiate pull operations with a compensating effect. Nonetheless, this example results in a non-

work-conserving schedule and thus breaks a fundamental assumption of all published schedulability

analysis for G-FP scheduling. This example can further be trivially modified to yield an unbounded

priority inversion instead of non-work-conserving behavior by adding a lower-priority process PC 6

to processor 5: while PC 6 executes, processor 5 will not invoke the scheduler and thus not pull

the higher-priority PC 5 (the presence of PC 6 would not affect the failed migration attempts and

scheduling decisions of processors 2–4).

As the two preceding examples demonstrate, Linux’s push- and pull-based implementation of

global (or clustered) scheduling is vulnerable to “migration glitches.” As a result, a process may

be needlessly pushed and pulled before it is scheduled, and may suffer additional delays due to

non-work-conserving phases or additional priority inversions, which are likely brief but nevertheless

incorrect. A comment in Linux’s source code (Torvalds and contributors, 2010) notes that unnecessary

migrations are a “low-probability event”; we agree that it indeed has likely no noticeable impact on

average-case overheads and latencies (for most workloads). Similarly, another comment notes that

failure to push a task is acceptable since “the other [processors] will pull from [the local processor]

when they are ready.” Again, this is likely true on average, but it is not clear from Linux’s source

code itself or from the accompanying comments that the retry limit of three iterations is sufficient in

all cases (Example 3.2 suggests it is not; we are not aware of a proof to the contrary).
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Taken together, the possibility of such “migration glitches” greatly complicates any analytical

worst-case charatcterization of Linux’s current migration logic.7 In fact, to the best of our knowledge,

no such analysis has been published, and it is far from obvious how it could be derived. As an aside,

we note that the SCHED DEADLINE project adopted Linux’s push- and pull-based approach to

enacting migrations, including the fixed retry limit. Their implementation of G-EDF and C-EDF is

thus similarly vulnerable to the “migration glitches” illustrated in this section.

As discussed in the next section, in the implementation of LITMUSRT we avoided distributing

scheduler state across processors in global schedulers in favor of globally shared state with coarse-

grained locking. While coarse-grained locking is certainly less desirable from a throughput point of

view, it has the benefit of being relatively straightforward to analyze, which is crucial to our work.

3.3 The Design and Implementation of LITMUSRT

LITMUSRT is a native real-time Linux version that is focused on extending the stock Linux kernel

with multiprocessor real-time scheduling policies and locking protocols. The first prototype of

LITMUSRT was developed by Calandrino et al. (2006) based on Linux 2.6.9, but not publicly

released. The first public version of LITMUSRT, named LITMUSRT 2007.1 and released in May

2007,8 was based on Linux 2.6.20 and described in detail in (Brandenburg et al., 2007). Since May

2007, there have been eight releases of LITMUSRT spanning 16 kernel versions. The version of

LITMUSRT discussed in this dissertation is based on LITMUSRT 2011.1, which in turn is based

on Linux 2.6.36. Aside from the project’s purpose, the current version of LITMUSRT has little in

common with the first prototype (Calandrino et al., 2006) and virtually none of the initial prototype’s

source code has been retained in the current codebase.

Linux 2.6 was chosen as the base for LITMUSRT due to its open-source nature, and due to its

excellent multiprocessor and hardware support. This made it possible to focus on the desired algorith-

mic changes instead of having to develop custom drivers or multiprocessor support. Indeed, Linux’s

support for a wide range of processor architectures has made it possible to develop and maintain

7Given the rapid pace of development in Linux’s kernel, these issues will likely be addressed eventually. However, they
persist in the latest stable kernel version at the time of writing (Linux 2.6.39).

8The version numbering convention is year-of-release.per-year-sequence-number. For example, version 2007.2 was
the second release of LITMUSRT in 2007 and version 2008.1 was the first release in 2008.
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LITMUSRT versions with support for Intel x86, Sun SPARC, and ARM-based multiprocessors. The

current version of LITMUSRT supports Intel’s 32-bit and 64-bit x86 architectures, as well as the

ARMv6 architecture (support for Sun’s SPARC architecture was retired in late 2010).

Design goals. LITMUSRT does not aim for POSIX-compliance, and also is not intended to replace

Linux’s standard scheduler. Rather, LITMUSRT’s implementation primarily extends Linux by adding

new functionality while trying to minimize the changes required to the existing Linux code. This

was done for two reasons, one pragmatic and one conceptual. The pragmatic reason is that the

more invasive a patch is, the harder maintenance becomes in the face of a rapidly evolving base

Linux. For a small project team, it is thus imperative to reduce the amount of “surface friction” when

maintaining external patches. The second, more fundamental reason is that POSIX and Linux are

constrained by backwards compatibility—in our work, we are not interested in legacy support, but

rather seek to investigate multiprocessor real-time systems assuming a “clean slate.” That is, we use

Linux as a convenient base for our research, but do not explicitly target Linux improvements per se.

The focus of LITMUSRT is algorithmic changes; it does not improve the Linux kernel’s real-time

capabilities in terms of interrupt latencies and does not force split interrupt handling. LITMUSRT

is thus complimentary in goals to the PREEMPT RT patch, which targets these areas but does not

change or augment the implemented scheduling algorithms (see page 156). However, this also implies

that LITMUSRT is not applicable to workloads with very short relative deadlines, like mainline

Linux itself. While not ideal, we consider this to be an acceptable tradeoff given our research goals.

LITMUSRT was not based on the PREEMPT RT patch because the PREEMPT RT patch was

less stable in 2006 than it is today (and particularly so on multiprocessors) and, at least until

recently, was itself subject to a high rate of change. In the future, it would be beneficial to rebase

LITMUSRT on top of the PREEMPT RT patch to incorporate its infrastructure improvements and

latency reductions. From a conceptual point of view, both real-time patches could easily be merged

since they address orthogonal concerns; however, from a practical point of view, it does pose a

considerable engineering challenge due to conflicting changes and slight differences in assumptions

(e.g., LITMUSRT would require some changes to properly accommodate split interrupt handling).

In the following, we first provide a high-level overview of the design and architecture of

LITMUSRT and then discuss some of the encountered challenges and proposed solutions in detail.
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As in any non-trivial OS project, many implementation-level, software engineering, and tool-related

challenges and limitations had to be resolved during the development of LITMUSRT. Many of

these were due to concurrency issues inherent in parallel and interrupt-driven programming, the

considerable complexity of the Linux kernel, and the resulting increased incidence of programming

errors. However, such details are of only limited interest from an academic point of view; the truly

interested reader is referred to the LITMUSRT project homepage and the project’s public source code

repository.9 Instead, the following discussion focuses on design choices and algorithmic solutions of

a more fundamental nature that are applicable beyond a Linux setting. We first provide a high-level

overview of the components that comprise LITMUSRT.

3.3.1 The Architecture of LITMUSRT

LITMUSRT consists of four main parts: the core infrastructure, a number of scheduler plugins, the

user-space interface, and the user-space library and tools. Their respective purpose and dependencies

are illustrated in Figure 3.3.

3.3.1.1 The LITMUSRT Core Infrastructure

The two primary purposes of the LITMUSRT core infrastructure are (i) to provide policy-agnostic

“glue code” needed to integrate with the Linux kernel, and (ii) to provide a foundation of reusable

components (such as a ready queue implementation) and shared functionality (such as task parameter

validation and debugging infrastructure) that simplify the development of scheduler plugins.

Regarding (i), the core infrastructure contains the LITMUSRT scheduling class, thereby hooking

into the Linux scheduling framework. The LITMUSRT scheduling class is added to the Linux

scheduling hierarchy as the highest-priority (i.e., first-checked) scheduling class, which allows

LITMUSRT to override Linux’s normal scheduling decisions. Besides adding a custom scheduling

class, LITMUSRT also extends the PCB to hold LITMUSRT-specific state and hooks into a few

process management functions such as the implementation of the fork() and exit() system calls to

initialize and cleanup said state.

9See http://www.cs.unc.edu/˜anderson/litmus-rt.
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Figure 3.3: Diagram of the structure of LITMUSRT, which is comprised of four main components.

Since LITMUSRT is designed to be non-invasive, Linux’s standard scheduling classes are

not modified. Only processes admitted to the LITMUSRT scheduling class are considered real-

time processes in LITMUSRT; “real-time” processes of type SCHED FIFO or SCHED RR are

considered to be background, best-effort processes. This has the pragmatic benefit that the system

behaves like a normal Linux system in the absence of real-time processes, which greatly simplifies

system administration and the preparation and evaluation of experiments.

The LITMUSRT scheduling class itself does not implement any particular policy. Rather, it

is a (mostly) thin wrapper that delegates all scheduling decisions to the currently active scheduler

plugin (discussed below). This layer of indirection between scheduler plugins and Linux’s scheduling

hierarchy is required for two reasons. First, Linux does not support adding, removing, or switching

scheduling classes at runtime (in contrast, scheduler plugins can be switched at runtime). Second,

global and clustered scheduler plugins require specific, particularly tricky migration support that is
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factored out into a common “migration path” in the LITMUSRT scheduling class (see Section 3.3.4

below). As an additional benefit, this indirection allows scheduler plugins to be programmed assum-

ing a simple, real-time-specific interface that changes only rarely. In contrast, Linux’s scheduling

class interface is more complex and changes frequently between versions.

The LITMUSRT scheduling class does not implement Linux’s full scheduling class interface, but

only the features required for identical multiprocessors. In particular, LITMUSRT currently does not

support processor frequency scaling and other power-savings measures, and also does not support

“hot-plugging,” i.e., the addition or removal of processors at runtime. Additionally, LITMUSRT

ignores processor affinity masks—whether scheduling occurs in a global, clustered, or partitioned

fashion is determined by the currently active plugin and not by processes.

We note that early versions of LITMUSRT that were based on Linux 2.6.20 (i.e., before the

introduction of the scheduling class hierarchy in Linux 2.6.23) used a very different approach to

integrate with Linux. Since Linux 2.6.20 did not provide an easy method for adding additional

scheduling policies, LITMUSRT instead dynamically changed the priority of SCHED FIFO pro-

cesses. That is, LITMUSRT’s core infrastructure enacted a plugin’s scheduling decisions by assigning

the selected processes the highest SCHED FIFO priority, and by assigning a lower priority to all

other processes. As a result, Linux would then dispatch the SCHED FIFO processes selected by the

currently active LITMUSRT plugin. This approach required each LITMUSRT process to be queued in

the SCHED FIFO ready queue on the processor on which it was selected for execution by the plugin,

which (slightly) increased migration overhead due to the need to dequeue and enqueue a process prior

to dispatching it. In contrast, since LITMUSRT 2008.1, the core infrastructure implements a proper

scheduling class and LITMUSRT processes are no longer queued in Linux’s ready queues. Instead,

LITMUSRT processes are merely assigned (but not stored within) Linux runqueues as required by

Linux for the purpose of serializing PCB state changes (recall Section 3.2.1). Each scheduler plugin

allocates and manages ready queues individually as appropriate for the implemented policy.

With regard to purpose (ii) mentioned at the beginning of this section, the LITMUSRT core

infrastructure provides some frequently needed abstractions and utility code. Most of this func-

tionality is Linux-related minutiae; two of the more interesting parts are discussed below, namely

the “migration path” (Section 3.3.4) and an abstraction termed “real-time domains,” which provide

reusable ready and release queues (Section 3.3.5).
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3.3.1.2 Scheduler Plugins

To facilitate scheduler development, LITMUSRT provides a plugin interface that allows new schedul-

ing policies to be implemented without being exposed to the “full” Linux kernel. Originally, the

scheduler plugin interface was intended to simplify scheduler development so that researchers that are

not Linux experts could implement scheduling policies inside a real OS kernel. However, experience

over the last five years has shown that novice developers still struggle with the complexities of

programming in a kernel even after much of Linux’s complexity has been hidden—realistically, a

certain degree of “kernel hacking” aptitude is required to work with LITMUSRT.

However, we have found the plugin interface to be beneficial for other reasons. For one, it

provides (in our opinion) a conceptually cleaner interface than Linux’s scheduling class interface,

which reduces the mental burden during development. Second, LITMUSRT’s plugin interface has

remained relatively stable over the years so that the maintenance burden associated with adding

scheduling plugins has been reduced (compared to tracking changes in Linux in each plugin). Third,

the plugin interface makes it possible to switch the active scheduling policy at runtime. We briefly

elaborate on the benefits and limitations of the last point.

Active plugin. The active plugin is the scheduler plugin that is invoked by the LITMUSRT schedul-

ing class whenever a scheduling decision has to be made. By default (i.e., after the system is booted),

the active plugin is the “Linux plugin,” which is merely a placeholder that does not allow any process

to become a real-time process. The scheduling policy can later be switched at runtime by activating

another of the included scheduler plugins.

There are several possible interpretations of what it means to “switch the scheduler at runtime.”

From a scheduling-theoretic point of view, it could be possible to switch the scheduling policy during

the execution of a task set. This would require intricate schedulability analysis to show that the abrupt

change in scheduling rules does not invalidate timing guarantees of pending jobs. To the best of our

knowledge, such analysis has not been carried out for multiprocessor real-time schedulers, though a

somewhat related topic, mode change protocols,10 has received some attention lately; e.g., see (Nelis

et al., 2009) for one recent example.

10A mode change protocol is required when a system may transition between operating modes with different task
parameters (e.g., a fault-tolerant system could have a “normal mode” and an “emergency mode” with reduced functionality).
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Since there is no backing theory, LITMUSRT does not allow switching the active plugin while

there are real-time processes present. Instead, the active plugin may be changed only before a task

set is configured, or after it has been terminated. Early versions of LITMUSRT were even more

restrictive and required selecting the active scheduler plugin at boot time. The ability to switch

plugins at runtime has proved critical for our experiments: it reduces the need for manual intervention

and thus saves time, which allows for larger, more extensive experiments.

The scheduler plugins in LITMUSRT should not be confused with Linux’s loadable kernel

modules (LKMs), which, for example, are used to realize loadable device drivers in Linux. LKMs

can be inserted into the kernel at runtime (like dynamically loaded libraries). In contrast, LITMUSRT

currently requires all scheduler plugins to be statically linked into the kernel. To support scheduler

plugins to be loaded as LKMs, three features are required: (i) each scheduler plugin must be self-

contained, (ii) scheduler plugins must be dynamically registered (i.e., there is no hardcoded list of

all plugins), and (iii) the LITMUSRT core infrastructure must implement proper reference counting

to prevent a scheduler plugin to be unloaded while it is in use. The current version of LITMUSRT

satisfies requirements (i) and (ii), but does not (yet) implement the required reference counting. This

could be added with reasonable effort, but we have not found a pressing need for LKM support to

date. One reason to support LKMs could be to enable the loading and unloading of a plugin during

development and testing. However, the Linux kernel typically does not recover from faults in the

scheduler, so frequent reboots (of virtual machines) are typical for scheduler development.

Plugin interface. The LITMUSRT plugin interface consists of 13 methods that can be grouped into

roughly four groups based on functionality (summarized in Table 3.1). We provide a brief overview

to illustrate which events must be handled by each plugin, i.e., how and when a scheduler plugin is

invoked.

There are two main scheduling methods used to defer scheduling decisions to the active scheduler

plugin that allow both event-driven and quantum-driven scheduling to be implemented.

• The method schedule() is called whenever a process must be selected for execution. The

main scheduling logic of event-driven policies such as G-EDF is usually implemented in this

method. In quantum-driven plugins, schedule() merely enacts the scheduling decision that was

computed at the last quantum boundary.
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Method Purpose Optional

schedule() Select next process to be scheduled. no
tick() Called at quantum boundary to trigger scheduler. yes
finish switch() Bookkeeping after context switch. yes

release at() Prepare future timed job release. yes
task block() Remove process from ready queue. no
task wake up() Add process to ready queue. no
complete job() Prepare next periodic job release. no

admit task() Check if process is correctly configured. yes
task new() Allocate and initialize per-process scheduler state. yes
task exit() Free per-process scheduler state. yes

activate plugin() Allocate and initialize plugin state. yes
deactivate plugin() Free plugin state. yes

allocate lock() Allocate real-time semaphore for process. yes

Table 3.1: List of methods in the LITMUSRT plugin interface and their intended purpose. A method
that is optional is not required to be implemented by every plugin. Default implementations are
substituted for omitted methods as placeholders.

• The method tick() is called at each quantum boundary. While mostly unused in event-driven

policies, it is the central scheduling method in quantum-driven plugins such as PD2. If a

preemption is required, then tick() can cause schedule() to be called at the end of the timer ISR

by setting the rescheduling-flag of the currently scheduled process (see Section 3.2.1).

The schedule() method of the scheduler plugin interface should not be confused with Linux’s main

scheduler function of the same name. The plugin method’s name is only valid as a member of a

scheduler plugin instance; there is thus no name clash at the C language level. Further, there is a

third method related to scheduling that is not used by all plugins.

• After a context switch has occurred, the plugin is notified by means of a call to its finish switch()

method. This is mainly used to record which process is currently scheduled; only global and

clustered scheduler plugins handle this event (see Section 3.3.4 below).

The following four methods relate to the job lifecycle and job state changes. Jobs are an

accounting abstraction in LITMUSRT. The purpose of these methods is to track whether the backing

process is eligible to execute, i.e., whether it should be considered when schedule() selects a process

for execution. This is typically achieved by maintaining a ready queue of all eligible processes; these

methods thus add and remove processes from the ready queue as needed.
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• The method release at() is called to notify the scheduler plugin at which time the next job

release is going to occur. The method is not called for periodic job releases (each plugin should

handle those automatically); rather, it is only required when a process requires a timed job

release in the future. This is typically the case for the first job of a task.

• A process that suspends is reported with task block(). There are no process scheduling decisions

to be made at this point; the method mainly exists to allow the scheduler plugin to perform any

cleanup that may be required (such as removing the suspended process from a ready queue).

• When a process resumes, it is reported to the active scheduler plugin by a call to task wake up().

The plugin must add the process to a ready queue, otherwise the scheduler “loses track” of the

process.

• Finally, when a real-time process has finished executing the current job prior to exhausting its

budget, the scheduler plugin’s complete job() method is called.

In our experience, handling suspending and resuming processes is a common source of errors. A

process may suspend and be resumed again almost immediately thereafter before a context switch can

occur (e.g., this is the case for many page faults, and especially those due to copy-on-write semantics).

In the past, novice developers have commonly disregarded the possibility of such “quickly resuming”

processes, which may result in ready processes failing to be enqueued in a ready queue (in which

case they are never scheduled again and become “stuck”) or in being wrongly enqueued twice (which

crashes the kernel eventually). Besides migration support (see Section 3.3.4 below), races related to

short suspensions have in our experience been the most common cause of crashes in LITMUSRT.

Besides the methods corresponding to scheduling events discussed so far, there are further a

number of resource management methods. In particular, there are three methods related to real-time

process admittance, initialization, and cleanup (admit task(), task new(), and task exits()) and two

methods related to plugin initialization and cleanup when switching plugins (activate plugin() and

deactivate plugin()). LITMUSRT does not currently implement any schedulability tests within the

kernel; admit task() typically does little more than checking that a process’s parameters are correct

(i.e., enforcing that 0 < ei ≤ pi). The “Linux” placeholder plugin active by default after the

188



system started rejects all processes and thus prevents real-time processes from being created until a

scheduling policy has been selected.

Finally, there is a method named allocate lock() that is invoked when processes attempt to

allocate a semaphore, which allows each plugin to provide one or more locking protocols appropriate

for the implemented scheduling policy. In the terminology of object-oriented design, the method

allocate lock() realizes what is called a factory method.11

Locking. In standard Linux, scheduling decisions on each processor are synchronized by the

processor’s runqueue lock. As discussed in Section 3.2.4, this may give rise to “migration glitches”

and thus is problematic for global and clustered scheduling policies. In LITMUSRT, we thus use one

or more additional locks in each scheduler plugin and do not rely on the runqueue locks to protect

state specific to LITMUSRT.

Notably, the plugin interface does not make any assumptions about how the active plugin

implements locking. That is, how synchronization is achieved is considered to be an internal plugin

implementation detail that is not exposed; each plugin implementor may thus flexibly choose a

different approach to locking that suits the implemented policy best. However, since the active

plugin is invoked from the LITMUSRT scheduling class, which in turn is automatically protected by

Linux’s runqueue locks, the processor holds a runqueue lock when the schedule(), tick(), task block(),

task wake up(), or task new() method are being invoked. This must be taken into account in the

implementation of any of these methods if another, second runqueue lock must be acquired (recall

that runqueue locks must be acquired in order of lock address to avoid deadlock).

The scheduler plugins underlying the experiments presented in Chapter 4 are discussed in

Section 3.3.6 below.

3.3.1.3 User-Space Interface

LITMUSRT exposes a number of additional system calls and adds several virtual character devices

(discussed below). The added system calls can be categorized according to their functionality as

follows:

11A factory method allows objects to be instantiated without specifying their class. The method allocate lock()
allocates and initializes abstract semaphore objects with plugin-specific locking protocol implementations; the caller does
not have to be aware which specific implementation is required.
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1. getting and setting sporadic task parameters and processor assignments (i.e., ei, pi, and Pi);

2. job control for real-time processes (e.g., inquiring the current job sequence number, waiting

for job releases, and signaling job completions);

3. measuring of system call overhead;

4. creating, locking, and unlocking of real-time semaphores; and

5. support for synchronous task set releases.

Categories 1–3 are straightforward in their implementation and purpose; we briefly discuss the latter

two categories.

Real-time semaphores. Blocking-by-suspending requires kernel support, as does maintaining and

enforcing priority ceilings and enacting priority inheritance. Thus, each shared resource is modeled

as an object in kernel space, which contains state information such as the associated priority ceiling,

unsatisfied requests, etc. The exception is spin-based waiting, which is unknown to the kernel,

since it is realized almost entirely in user space (with the exception of non-preemptive sections, see

Section 3.3.2 below).

All tasks that share a given resource must obtain a reference to the same in-kernel object. Since

LITMUSRT is committed to not unnecessarily restricting the application design space, references

must be (transparently) obtainable across process boundaries (i.e., address space separation should

not preclude resource sharing). For performance reasons, resource references must be resolved by

the kernel with as little overhead as possible. Further, in a multiuser OS such as Linux, security

concerns such as visibility of resources and access control must also be addressed—the resource

namespace must be managed by the kernel.

Prior to LITMUSRT 2007.3, the kernel simply allocated a pre-defined number of resources

statically and let real-time programs refer to objects by their offset. While this interim method had

low overheads, it was also completely insecure and brittle. Further, the lack of flexibility inherent

in static allocation also quickly proved to be troublesome. In (Brandenburg and Anderson, 2008b),

we introduced a new solution to manage resources in a secure, reliable, and efficient matter. Instead

of introducing a new namespace (which would require appropriate access policies and semantics

to be defined), we opted to reuse the filesystem to provide access control by attaching LITMUSRT

190



resources at run-time to inodes (an inode is the in-kernel representation of a file). When a task

attempts to obtain a reference to a resource, it specifies a file descriptor to be used as the naming

context. By specifying the same file, synchronization across process boundaries is possible (but

only if allowed by the file’s permissions). If permitted, the kernel locates the requested resource and

stores its address in a lookup table in the PCB. Similar to the concept of the file descriptor table, the

resource lookup table enables fast reference-to-address translation in the performance critical path

of synchronization-related system calls. With the new method, LITMUSRT resources are created

dynamically on demand.

The applications in our experiments share memory across process boundaries via a shared,

memory-mapped file (using the mmap() system call) and synchronize by allocating real-time

semaphores in the context of the shared file’s inode. That is, from the point of view of the programmer,

the real-time semaphores are attached to file descriptors. In the LITMUSRT source code and docu-

mentation, real-time semaphores allocated in this manner are hence called file-descriptor-attached

shared objects (FDSOs).

Another benefit of the FDSO approach is that priority ceilings do not have to be determined

offline and specified manually at runtime. Instead, ceilings can be computed automatically when

tasks obtain references to resources. When a real-time semaphore is first allocated, its associated

priority ceiling is initialized to the lowest-possible priority (or largest-possible relative deadline

under EDF-based schedulers). When a real-time process opens an FDSO handle to the real-time

semaphore, the priority ceiling is raised if the priority of the process exceeds the current priority

ceiling (or when the deadline of its reservation is shorter than the current priority ceiling under

EDF-based scheduling). In our experience, automatic determination of priority ceilings facilitates

task system setup greatly and eliminates the possibility for human error.

Synchronous releases. A task set is said to have been synchronously released if the first job of each

task is released at exactly the same time (which is, by definition, time 0). A synchronous release

could be approximated using standard Linux system calls using either a pthreads barrier or the

nanosleep() system call, but it is difficult to achieve high precision with this approach—job release

times could be slightly shifted.
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A second problem during task set setup is that no job should be released until all processes

have finished their initialization phase. This requires reliably detecting that each process is ready for

real-time execution to commence.

LITMUSRT solves both problems with the addition of a synchronous release API. To participate

in a synchronous release, each process invokes a system call named wait for ts release() once it has

finished its initialization phase and transitioned into real-time mode. This system call causes it to

suspend until the synchronous release occurs. Crucially, the kernel exports the number of waiting

real-time processes by means of a virtual file in the proc file system. Another, non-real-time process

monitors the number of waiting processes, and, once all real-time processes have “checked in,” it

invokes a system call to cause a synchronous task set release. By using the real-time plugin’s method

release at(), it is ensured that the release time of each job is exactly the same.

Virtual devices. Besides exporting simple status information (e.g., number of real-time tasks,

number of tasks ready for synchronous release) with virtual files in Linux’s standard proc file system,

LITMUSRT also adds four types of special-purpose virtual character devices. Of these, three are

virtual trace devices: one for debug data, called the TRACE() device; one for overhead samples,

called the Feather-Trace device; and one for scheduling events, called the sched trace() device. The

fourth device implements the “control page” that is discussed in detail in Section 3.3.2 below.

The TRACE() macro, which is part of the LITMUSRT core infrastructure, is equivalent to the

printk() function in purpose, namely to aid kernel development by exporting debugging information.

Unfortunately, it is not possible to call printk() while holding a runqueue lock because it might attempt

to call into the scheduling code and acquire a runqueue lock, which could result in recursive deadlock;

technical details can be found in (Brandenburg et al., 2007). Given that large parts of LITMUSRT

execute while the processor holds a runqueue lock, this effectively “blinds” LITMUSRT. Therefore,

we implemented the TRACE() macro to log debug messages during development. The TRACE()

device simply exports the stream of concatenated messages logged with the TRACE() macro. The

fundamental difference that makes TRACE() runqueue-lock-agnostic is that the TRACE() device is

polled, whereas printk() may attempt to resume a consumer waiting for messages. The TRACE()

macro produces unstructured data intended for human consumption. It also creates high overheads
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since it induces copious amounts of string formatting into every scheduling decision and must thus

be disabled for all performance-relevant experiments.

Feather-Trace is a low-overhead tracing toolkit that is based on static instrumentation of the

kernel (Brandenburg and Anderson, 2007a). Feather-Trace provides two components: static triggers,

which can be used to embed custom probes, and a wait-free multi-writer, single-reader FIFO buffer,

which can be used for low-overhead data collection. The key features that make it attractive for use in

LITMUSRT are that it is very simple (i.e., it is easy to embed) and efficient. Feather-Trace works by

directly rewriting the kernel’s code; the cost of an inactive trigger is merely an unconditional jump.

When a trigger is activated, then the jump is rewritten to call a user-provided function instead. The

FIFO buffer is very efficient because it is lock-free, retry-loop-free, and, for writers, also copy-free.

That is, a writer (i.e., the instrumented code) proceeds without ever having to wait, and without

having to perform expensive copy operations. Implementation specifics are not relevant to this

dissertation; the interested reader is referred to (Brandenburg and Anderson, 2007a).

In LITMUSRT, Feather-Trace is used to record timestamps at various points during the execution

of the scheduler. For example, there is a trigger just before a context switch, and one just after

it. When enabled, these triggers call a simple function that records the current time (based on the

TSC; recall the overview of clocks on page 40), the processor on which it executes, whether the

currently scheduled process is a real-time process, and a unique number identifying the probe. These

timestamps are exported to user space by means of the Feather-Trace device. Based on the recorded

pairs of timestamps before and after an event, it is later possible to reconstruct how long each event

took. Based on these overhead samples, it is then possible to compute overhead statistics such as

average and maximum observed overheads (see Chapter 4). It is important that a low-overhead tracing

toolkit such as Feather-Trace is used for this since otherwise the recorded scheduling overheads

would be disturbed by the tracing overheads.

The purpose of the sched trace() infrastructure is to record all scheduling events (e.g., job

releases, preemptions, job completions, etc.). In contrast to the TRACE() macro, the data exported

by the sched trace() device is structured and not human-readable. Instead, this data can be plotted

to obtain a visual depiction of the recorded schedule, and is also used for the automated finding of

scheduling errors (Mollison et al., 2009). The sched trace() infrastructure is implemented using

Feather-Trace primitives; nevertheless, it should not be confused with the Feather-Trace device.
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When development of LITMUSRT started, Linux did not offer any of the tracing functionality

that we required. Since then, Linux has gained the debugfs file system and ftrace tracing infrastructure,

which serve similar purposes. It future versions of LITMUSRT, it may be desirable to re-implement

LITMUSRT’s tracing facilities on top of Linux’s now-standard tracing and debugging frameworks.

3.3.1.4 User-Space Library and Tools

Real-time tasks are regular Linux processes in LITMUSRT. A user-space library, named liblitmus,

contains the required system call stubs and several “convenience” functions and macros that make

programming real-time tasks easier. Additionally, there are a number of test and helper utilities

based on liblitmus for interacting with the LITMUSRT kernel; one commonly used example is the

release ts tool that is used to trigger synchronous releases. Furthermore, the LITMUSRT distribution

includes several tools that interact with the trace devices and post-process the collected data. While

crucial to our experiments, most of this infrastructure is rather simple in nature.

Two parts worth pointing out are a unit-testing-like framework to test LITMUSRT system calls

that is aware of the differences between global, clustered, and partitioned plugins, and the tool

rt launch, which allows arbitrary executables to be launched as LITMUSRT real-time tasks. Together

with budget enforcement, the latter allows periodic execution to be forced on any Linux process.

One use for this feature is debugging: by executing filesystem-bound applications such as find as

real-time processes, it is often possible to quickly trigger race conditions in the task wake up() and

task block() scheduler plugin methods.

This concludes our high-level overview of LITMUSRT. In the remainder of this section, we

examine specific challenges and the solutions that were adopted in detail. We begin with how

non-preemptive sections are implemented in LITMUSRT.

3.3.2 Low-Overhead Non-Preemptive Sections

In a multiprocessor OS such as LITMUSRT, the main use of non-preemptive sections is to support

spin-based locking protocols such as the MSRP. When using spin-based locking protocols, critical

sections are typically short; entry and exit overheads can thus easily comprise a majority of the

request length. The primary requirement for non-preemptive sections is thus low overheads.
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In an RTOS without address space separation (or while executing a system call in the kernel), a

scheduled process can become non-preemptable simply by disabling interrupt delivery, which will

prevent the scheduler from being invoked (unless called directly by the scheduled process). For

example, this approach is used in the Linux kernel itself. Other RTOSs that allow real-time tasks

to disable interrupt delivery are VxWorks and RTEMS, which allow (in the case of VxWorks) or

even force (in the case of RTEMS) real-time tasks to execute in kernel mode. Since interrupt delivery

can be disabled with a single instruction in most processor architectures, this approach satisfies the

low-overhead requirement well.

However, in a UNIX-like OS such as Linux where real-time tasks are implemented as processes,

simply disabling interrupts is neither possible in all cases nor advisable.12 When interrupts are

disabled, the kernel cannot recover control from a mis-behaving process. For example, an accidental

infinite loop could render the processor, and potentially the whole system, unresponsive. In deployed

embedded systems, such a lack of robustness may be acceptable since real-time tasks are trusted

to be correct and an accidental infinite loop in a user-space program likely causes system failure

anyway. However, system lock-ups are a nuisance during application development and a reason for

great concern in open (soft) real-time systems, where the code of the real-time tasks is neither known

in advance nor trusted to be correct.

Under FP scheduling, non-preemptive sections can be emulated by reserving the highest-possible

priority to cause effectively non-preemptable execution: to enter a non-preemptive section, a process

simply raises its priority to the highest priority. This is virtually identical to priority boosting as it

causes the process to not be preempted by later-resuming, higher-base-priority processes. In the case

of JLFP scheduling, non-preemptive sections can similarly be indicated either by raising a job’s

priority temporarily to the highest-possible job priority (e.g., time 0 under EDF), or by setting a flag in

the PCB that prevents the scheduler from being invoked. Combined with budget enforcement, either

method ensures that unresponsive, non-preemptable real-time tasks can be policed by the kernel.

For example, the Linux console driver contains functionality that allows a developer to terminate all

SCHED FIFO and SCHED RR processes, thereby enabling the system to be recovered if rendered

otherwise unresponsive by runaway processes.

12The right to disable interrupts can be granted on a process-by-process basis in Intel’s x86 architecture. This, however,
is a non-portable peculiarity that is not available on other architectures (such as ARMv6).
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However, a major disadvantage of this approach is that each process must execute two system

calls for every request: one to become non-preemptable, and one to re-enable preemptions. Worse,

these system calls are required unconditionally, i.e., even if the resource in question is not contended.

Since system calls are typically much slower than regular procedure calls, this approach to imple-

menting non-preemptive sections can easily dominate request lengths and thus renders spin-based

locking protocols considerably less attractive. In LITMUSRT, we solved this problem by moving the

flag indicating that a process is non-preemptive from kernel space to the process address space

Control page. This was accomplished by means of the control page device, which is a virtual

character device with a custom driver. The only system call that the control page device supports is

mmap(), i.e., mapping the “device memory” into the address space of a process. When a process

maps the device, the driver allocates a page of kernel memory—the control page—and maps it into

the address space of the process. The control page enables the kernel and each real-time process to

share flags and information without requiring system calls. Since this memory can be modified by

(potentially malicious) processes, kernel developers must take great care to interpret the contents

of the control page as untrusted hints. Since the control page of each process is allocated in kernel

space, it is never paged out (i.e., page faults are impossible) and can be accessed by every processor,

and even when a process is not currently scheduled (i.e., when its address space is not in use).

The control page in LITMUSRT is inspired by Mac OS X’s commpage facility, which is used

to map multiple pages of trusted code and data into each process under Mac OS X. In contrast

to LITMUSRT’s control page, the Mac OS X’s commpage is write-protected, shared among all

processes, and directly inserted at a known, fixed address by the virtual memory management

subsystem (i.e., it is not a virtual device that is mmap()’ed). Linux similarly uses shared, write-

protected pages to speed-up frequently called system calls such as gettimeofday(). Using a virtual

device is easier to maintain but cannot guarantee a fixed location. Mac OS X’s commpage is directly

accessed from assembly code via hardcoded addresses and must thus reside at a fixed location.

LITMUSRT has no such requirements; we therefore chose the virtual device approach.

Non-preemptive section protocol. As part of its initialization, a real-time process maps the control

page into its address space. There are two flags allocated for the purpose of supporting non-preemptive

sections. The first flag, simply called the np flag , is an integer variable that is initially zero and
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1 variables: // allocated in per-process control page
2 integer np flag initially 0
3 boolean delayed preemption initially ⊥

5 enter np section():
6 set np flag ← np flag + 1

8 exit np section():
9 set np flag ← np flag − 1

10 if np flag = 0 and delayed preemption:
11 sched yield()
12 // kernel resets delayed preemption

Listing 3.3: Non-preemptive section entry and exit procedure.

incremented whenever the process enters a non-preemptive section and decremented again at the end

of the non-preemptive section. The scheduler checks this flag when making scheduling decisions and

does not preempt the currently scheduled process while the np flag is positive. If a preemption is

required, the scheduler instead sets a second boolean flag named delayed preemption flag to true.

At the end of a non-preemptive section, the process checks this flags and executes the sched yield()

system call (if np flag = 0) to notify the scheduler that is now safe to preempt the process. Since

np flag is a counter, it is possible to nest non-preemptive sections. This straightforward protocol,

summarized in Listing 3.3, is akin to how non-preemptable execution is implemented inside the

Linux kernel. Its biggest advantage is that it avoids all system calls in the common case when no

preemption is required, and requires only one system call if a preemption is required—a fifty percent

reduction of overhead in the worst case, and virtually no overhead in the average case.

Robustness. A disadvantage of the protocol as described so far is that it does not solve the robustness

problem if the scheduler relies on the process to clear its np flag and to call sched yield() when

requested to do so. This can be easily addressed by enforcing a maximum non-preemptive section

length. When the scheduler first observes the np flag flag being non-zero, it records the current time

in the corresponding process’ PCB (which is not accessible to the process). At subsequent quantum

boundaries (or by means of a one-shot timer), the kernel checks how much time has passed since the

process was first observed as being non-preemptive. When the maximum non-preemptive section

length has been exceeded, the process is either marked as defective and ineligible for non-preemptable

execution, or forcefully terminated (a “temporal fault” analogous to a segmentation fault). In the
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expected case, the timeout will not be triggered; the enforcement of maximum non-preemptive

section lengths is thus virtually overhead-free.

In a well-designed system, non-preemptive sections are short and should not exceed tens of

microseconds; a timeout of one second thus seems reasonable to detect misbehaving non-preemptable

processes. In the context of timesharing without temporal guarantees (e.g., under CFS), a shorter

timeout of, say, two milliseconds would cause non-preemptive section overruns to be (virtually)

unnoticeable to users while still allowing for reasonable critical section lengths. We therefore believe

the control-page approach to also be applicable in multiuser, throughput-oriented environments with

untrusted processes and intend to investigate this in future work. Due to its nature as a research tool,

the current LITMUSRT implementation does not police non-preemptive section lengths.

Next, we discuss how non-preemptive sections can be supported in a predictable manner under

global and clustered scheduling.

3.3.3 Non-Preemptive Sections with Predictable Pi-Blocking

As discussed in Section 2.4.3, non-preemptive sections can cause pi-blocking if a newly-released

job cannot be scheduled because a lower-priority job is non-preemptive. Under uniprocessor JLFP

scheduling, and hence also under partitioned JLFP scheduling, the maximum duration of pi-blocking

is easy to bound: since (local) lower-priority jobs are not scheduled while a higher-priority job is

ready, pi-blocking is only incurred at the time of release and is limited to the duration of one critical

section (recall the analysis of the NCP on page 110). If jobs self-suspend due to accessing I/O

devices or when participating in a suspension-based global locking protocol such as the MPCP, a

job may also incur pi-blocking every time it resumes (as discussed on page 133). The key property

that enables accurate analysis is that the blocked job controls the maximum number of times that it

incurs pi-blocking. That is, a job Ji that suspends x times incurs pi-blocking at most (x+ 1) times,

no matter how often lower-priority jobs execute non-preemptably.

Unfortunately, analysis of non-preemptive sections is not as straightforward under global schedul-

ing (and hence also under clustered scheduling if c > 1; we focus on global scheduling in the

following discussion). Bounding pi-blocking requires a careful analysis of when a job may be

preempted, which is an interesting question if some but not all scheduled jobs are non-preemptable.

Such a situation arises in the G-EDF schedule shown in Figure 3.4(a) at time 2 when J1 is released.

198



release completion

deadline

job scheduled non-preemptive section preemptions disabled

preemptions enabledon processor

1 2

50 time

T1

T2

T3

(a) Eager preemption.
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Figure 3.4: Illustration of eager and lazy preemptions. In this example, three jobs are scheduled
on two processors under G-EDF. At time 2, J1 should preempt J3 but cannot since J3 is non-
preemptable during [1, 4). (a) With eager preemptions, a preemption is enacted as soon as some
lower-priority job is preemptable (J2 in this case). (b) With lazy preemptions, a preemption is only
enacted when the lowest-priority scheduled job (at the time of J1’s release) becomes preemptable.

Normally, J1 would preempt J3 and J2 would continue to execute. However, J3 is executing non-

preemptably at time 2 and J1’s priority exceeds J2’s priority—should J1 preempt J2? The answer

depends on whether preemptions are enacted “eagerly” or “lazily.”

Eager preemptions. Consider the following naı̈ve interpretation of event-driven global scheduling

that allows jobs to have non-preemptable sections: at time t, if there are x non-preemptable ready

jobs, then these jobs are scheduled at t. If there are further k additional preemptable jobs at t, then

the min(k,m − x) highest-priority preemptable jobs are also scheduled at t. For example, this

scheduling rule results if non-preemptive sections are emulated by temporarily raising a job’s priority

to the highest-possible priority. We refer to this preemption model as being eager because it enacts

preemptions as soon as some lower-priority job is preemptable.

Example 3.3. The eager preemption rule is illustrated in Figure 3.4(a), where m = 2. J1 is

scheduled immediately upon its release because it preempts J2, despite the fact that J3 has a lower

priority than J2. J2 is preempted because only the min(k,m− x) highest-priority preemptable jobs

are scheduled at any time. At time 3, k = 2 and x = 1; therefore exactly one preemptable process is

scheduled, and J2’s priority is only the second highest. ♦
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Figure 3.5: Illustration of repeated, eagerly enacted preemptions. Five jobs are scheduled under
G-EDF on m = 2 processors. Job J3 is preempted repeatedly even though it is among the two
highest-priority ready jobs. This example demonstrates that jobs may be preempted repeatedly if
preemptions are enacted eagerly.

Intuitively, it may seem appropriate to preempt J2 immediately to allow the highest-priority job

to commence execution without further delay. However, in the worst case, a newly-released job

incurs pi-blocking anyway since all scheduled jobs may be non-preemptable; the analytical benefit

of eagerly preempting J2 is thus small. Worse, with eager preemptions, it is possible for a job Ji to

incur pi-blocking whenever other jobs are released or resumed.

Example 3.4. Consider the G-EDF schedule of five jobs onm = 2 processors depicted in Figure 3.5.

Even though J3 is always among the two highest-priority runnable jobs (while it is pending) and

should thus be scheduled, it is preempted whenever a higher-priority job arrives, because the lowest-

priority scheduled jobs, J4 and J5, are non-preemptable. As a result, J3 incurs pi-blocking twice

even though it does not suspend. Further, J3 incurs pi-blocking not immediately after its release (or

when it resumes), but at arbitrary times during its execution. ♦

This example shows that, if preemptions are enacted eagerly under global (or clustered) schedul-

ing, then the number of times that a job incurs pi-blocking cannot be bounded in terms of the number

of times that it suspends. Rather, it could potentially incur pi-blocking every time that a higher-priority

job is released. This greatly complicates deriving a bound on pi-blocking, and the resulting bound is

more pessimistic by at least a factor of (n−m) compared to the bound trivially achievable under
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partitioned scheduling.13 In other words, non-preemptive execution causes O(1) pi-blocking under

partitioned JLFP scheduling, but may cause Ω(n−m) pi-blocking for some tasks under eager global

JLFP scheduling. This is clearly undesirable, and, as previously mentioned in Section 2.4.4.1, also

does not satisfy the assumptions underlying Devi et al.’s analysis of non-preemptive spinlocks under

G-EDF (Devi et al., 2006).

Lazy preemptions. Such undesirable preemptions can be avoided by enacting preemptions lazily

instead. That is, preemptions should be selectively delayed until the lowest-priority scheduled job

becomes preemptable instead of preempting the first available lower-priority job. This can be realized

by separating idealized job scheduling (where all jobs are preemptive) from actual process scheduling

(where non-preemptivity is required) by means of link-based scheduling.

Link-based event-driven scheduling works as follows.

• A ready job is either linked to a processor or unlinked, independently of whether it is scheduled

or not. Linking is a bijective mapping, i.e., a job is linked to at most one processor and at most

one job is linked to a processor at any time.

• At any time t, the m highest-priority ready jobs are linked to a processor.

• A processor schedules the job that is linked to it whenever possible, i.e., unless the currently

scheduled job is non-preemptable.

• If a job becomes unlinked while it is non-preemptable, then it is preempted as soon as it exits

its non-preemptive section.

Intuitively, a link records where a job should be scheduled, i.e., where it would have been

scheduled if all jobs were preemptable at all times. Because the link is just an abstraction that can be

established immediately (as opposed to an actual context switch), it is not hindered by non-preemptive

sections. Further, an established link prevents a higher-priority job from being scheduled on another

processor, and thus protects other lower-priority jobs from being preempted.

Example 3.5. The effect of link-based scheduling is illustrated in Figure 3.4(b). Here, the preemption

necessitated by J1’s release is enacted lazily. Initially, J3 and J2 are linked to processors 1 and 2,

13 Assuming n > m, under G-FP scheduling, a job of Tn−(m−1) could be preempted and incur pi-blocking whenever
a job of T1, . . . , Tn−m is released while jobs of Tn−(m−2), . . . , Tn are simultaneously non-preemptable. This is similarly
possible under G-EDF if Tn−(m−1) has one of the m longest relative deadlines.
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respectively. When J1 is released, it is linked to processor 1 and J3 becomes unlinked (but remains

scheduled). Since J2 remains linked to processor 2, it is not preempted. J3 is preempted and J1 is

scheduled when J3 leaves its non-preemptive section at time 4. ♦

A generic link-based scheduler. A detailed pseudo-code specification of link-based scheduling is

given in Listing 3.4. In addition to non-preemptive sections, the specification also takes suspending

jobs and changes in effective priority into account.14 There are three internal operations (lines 1–30)

and four event handlers that are called on job state changes (lines 32–52). The event handlers are

implemented in terms of the internal operations, which we discuss first.

The first internal operation is try to schedule() defined in lines 1–10. It simply enacts required

preemptions as determined by the current linking. When invoked for a given processor, it checks

whether the linked job Jl and the scheduled job Js differ (lines 2–5). If a preemption is required

and the scheduled job is preemptable (or if the processor was idle), then the linked job is scheduled

(lines 4–9). Otherwise, there is either no need to preempt (if Jl = Js) or the preemption must be

deferred until Js becomes preemptable.

The second internal operation is try to link() defined in lines 12–25. It links a given ready job Ji

to a processor if possible. If there exists a processor that currently no job is linked to, then Ji can

simply be linked to that processor (lines 13–16). Otherwise, the lowest-priority job that is currently

linked, denoted Jl, may have to be displaced. If Ji’s current priority exceeds that of Jl, then Ji is

linked to Jl’s processor and Jl becomes unlinked (lines 20–23). This corresponds to a preemption

if all jobs were always preemptable. If Jl was indeed preemptable, then the preemption is enacted

immediately (line 24).

The third internal operation, link next(), defined in lines 27–30, selects the highest-priority

currently unlinked job (if any) and links it to a processor (if possible). If all jobs are always

preemptable, then this operation corresponds to a processor picking the next job off the ready queue

and scheduling it.

The external interface of the link-based scheduler is comprised of four event handlers. These

event handlers correspond to various changes in job states. From the point of view of enacting

14Link-based scheduling was first described in (Block et al., 2007) in the context of G-EDF, where it was referred
to as GSN-EDF (“G-EDF with support for suspensions and non-preemptive sections”). While the description given
here closely matches the implementation of GSN-EDF in LITMUSRT, it is general in nature and can be applied to any
priority-driven scheduling policy. The original specification of GSN-EDF did not take changes in priority into account.
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1 try to schedule(prock):
2 let Js ← job scheduled on prock or ⊥ if prock is idle
3 let Jl ← job linked to prock or ⊥ if none is linked
4 let can schedule ← Js = ⊥ or Js is preemptable
5 if Jl 6= Js and can schedule:
6 if Js 6= ⊥:
7 preempt Js
8 if Jl 6= ⊥:
9 schedule Jl on prock

10 else: // preempt lazily: nothing to do now

12 try to link(Ji):
13 let allocated ← number of linked jobs
14 if allocated < m:
15 let procf ← any unlinked processor
16 link Ji to procf

17 else:
18 let t← current time
19 let Jk ← lowest-priority linked job at time t
20 if y(Ji, t) < y(Jk, t):
21 let prock ← processor that Jk is linked to
22 unlink Jk
23 link Ji to prock

24 try to schedule(prock)
25 else: // nothing to do

27 link next():
28 let Jh ← highest-priority currently unlinked, ready job or ⊥ if none exists
29 if Jh 6= ⊥:
30 try to link(Jh)

32 // Called when a job is released or resumed.
33 on job arrival(Ji):
34 try to link(Ji)

36 // Called when a job exits its non-preemptive section.
37 on job becomes preemptable(Ji):
38 let proci ← processor that Ji is scheduled on
39 try to schedule(proci)

41 // Called when a job is completed or suspended.
42 on job departure(Ji):
43 deschedule Ji
44 if Ji is linked:
45 unlink Ji
46 link next() // Ji is not ready and will not be linked again.

48 // Support for priority inheritance, priority boosting, and JLDP scheduling.
49 on effective priority change(Ji):
50 if Ji is linked:
51 unlink Ji
52 link next() // Ji may be linked again.

Listing 3.4: Pseudo-code definition of link-based global event-driven scheduling.
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required preemptions, a job being resumed or suspended is equivalent to a job being released or

completed—it either becomes available for scheduling, or ceases to be available. Therefore these

operations are combined as on job arrival() and on job departure(), respectively (lines 33–34 and

37–40 in Listing 3.4, respectively).

The simplest event handler is on job arrival(). When a job becomes available for scheduling, it

must be checked whether it can be linked to a processor, which may cause a preemption to take place.

This check is encapsulated in the try to link() operation.

The event handler on job departure() is called when a previously scheduled job became unavail-

able for scheduling. If the departing job was previously linked, then this provides a chance for a

lower-priority job to become linked (lines 44–46). The required linking update (if any) is handled by

the link next() operation.

The defining element of the algorithm, namely lazy preemptions, are triggered by the event

handler on job becomes preemptable(), which is defined in line 37–39. At this point, no link updates

are required. Rather, it may be required to enact prior link changes if a necessary preemption was

deferred. This case is detected and handled by the try to schedule() operation.

Finally, there is an event handler for the case that the effective priority of a job changed (lines

49–52). This is required to support priority inheritance, priority boosting, and JLDP scheduling.

When the priority of a job is raised, it may become eligible to be linked. If the priority of a job is

lowered, then it may have to be unlinked in favor of another job that now has a higher priority. For

the sake of simplicity, both cases are reduced to an unlink-then-relink sequence (lines 50–52). In

the case that the job was linked and may remain linked, it will be briefly unlinked and immediately

linked again. Assuming that this operation is carried out atomically, i.e., while holding the ready

queue lock (see Section 3.3.5 below), this is not reflected in the actual schedule.

The key property of the algorithm given in Listing 3.4 is that try to link() is called on every job

state change, which ensures that the m highest-priority ready jobs are linked at any time.

Example 3.6. As an example, consider the two-processor system in Figure 3.6, which depicts the

same system as in Figure 3.5 assuming link-based G-EDF scheduling. When job J1 is released

at time 2, it is linked to processor 2 since the previously linked job, J4, had the lowest priority of

any linked job (line 19 in Listing 3.4). However, since J4 is non-preemptable at time 2 (line 4), J1
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Figure 3.6: Example schedule demonstrating the benefit of link-based scheduling. The linking is
illustrated as a narrow rectangle above each job. The scenario is the same as the one depicted in
Figure 3.5. Under link-based scheduling, J1 is linked to processor 2 when it is released at time 2.
It therefore does not preempt J3. Instead, J4 is preempted when it becomes preemptable at time 5
since it became unlinked during its non-preemptive section.

is not scheduled until J4 becomes preemptable (lines 37–39 and 1–10), at time 5. Notice that, in

Figure 3.6, J1 is delayed by non-preemptive execution immediately when it is released, and that the

delay duration is upper-bounded by the maximum non-preemptive section length. ♦

Although it is not depicted in Figure 3.6, a job may be similarly delayed when it is resumed

or when its effective priority is raised, i.e., every time it may become eligible for execution due

to a change to its state. Notably, in the absence of suspensions and priority changes, each job is

pi-blocked due to a non-preemptive section at most once, which matches Devi et al.’s analysis of

non-preemptive spinlocks under G-EDF scheduling (Devi et al., 2006). That is, when preemptions

are enacted lazily by means of link-based scheduling, non-preemptive sections cause at most O(1)

pi-blocking under global scheduling, just like under partitioned scheduling.

3.3.4 Safe Process Migrations

Link-based scheduling as just described is defined in terms of jobs, which are assumed to migrate

if they become linked to a processor where they were not previously scheduled. However, in

LITMUSRT, process migrations are required, which poses considerable challenges since (i) a process
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is always assigned to some runqueue in Linux to serialize accesses to its PCB, and (ii) processes

cannot be migrated instantly. We elaborate on each problem and describe our solution to it next.

Runqueue invariant. With regard to (i), recall that Linux uses runqueue locks to protect PCBs

against concurrent updates: before a processor may change the state of a process, it must first acquire

the lock of the runqueue that the process is currently assigned to. Linux further makes the assumption

that a process that is currently executing on a processor is assigned to its runqueue. It is crucial that

this invariant is maintained, because otherwise the process’ PCB state might become corrupt.

However, in LITMUSRT, global plugins do not keep processes in per-processor runqueues;

rather, a job may become linked to any processor, which results in the underlying process being

selected for execution by the plugin’s schedule() method. In other words, a global or clustered plugin

may violate the invariant that a process executing on processor x is assigned to runqueue RQx.

The LITMUSRT scheduling class contains a common code path that allows global (and clustered)

plugins to be ignorant of Linux’s invariant. After the active scheduler plugin has selected a process

to be scheduled next, i.e., after the schedule() method has returned, the LITMUSRT scheduling class’

pick next task() implementation checks whether the selected process is currently assigned to another,

remote runqueue. If so, then a process migration is required: the selected process must be transferred

from the remote runqueue to the local runqueue. This is similar in concept to Linux’s pull operation.

Transferring the process, however, is unfortunately not straightforward. Recall that runqueue

locks must be acquired in order of increasing lock addresses. It is possible for a process to be migrated

from a higher-address runqueue to a lower-address runqueue. Linux’s locking rule requires the local

runqueue’s lock to be dropped first before both locks can be acquired in the correct order. This

creates great complications—when the current runqueue lock is dropped, the state of all processes

may change. As a result, after the lock has been reacquired, no assumptions can be made about the

current state of the to-be-migrated process. The LITMUSRT scheduling class therefore contains code

of considerable conceptual complexity to re-validate assumptions about this process.

The advantage of including this code in the joint LITMUSRT scheduling class is that the

implementation of global plugins is greatly simplified: from a plugin developer’s point of view, any

process can be assigned to any processor at any time.
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Stack-safe migrations. With regard to (ii) above, consider that the Linux kernel requires a stack to

execute on, i.e., the processor’s stack pointer register must contain a valid address while executing

in kernel mode. Further, the stack contents are part of a process’ processor state, i.e., if a process

is migrated from processor 1 to processor 2 while executing a system call inside the kernel, then

processor 2 must continue using the same stack that processor 1 used prior to the migration since it

contains the procedure arguments and return addresses that define the control flow of the process.

For these reasons, each process has a private kernel stack in Linux that the kernel uses while

the process is scheduled. A context switch occurs when Linux changes kernel stacks—a process’

kernel stack is the context that is being switched. Obviously, a kernel stack can only be in use on at

most one processor at any time; otherwise, the sequential process would be executed on multiple

processors at the same time, with unpredictable consequences.

Under global link-based scheduling, this represents a complication that the scheduler must be

aware of. When a job becomes unlinked because it is going to be preempted by a higher-priority job,

it is immediately available for linking to other processors. For example, suppose a job is unlinked

due to line 22 in Listing 3.4. Then it could be immediately thereafter become relinked to another

processor due to link next(), i.e., it could be selected by line 28 of Listing 3.4. On the level of jobs,

this is essential to the correctness of link-based scheduling: once a ready job is no longer linked, it

must be available for scheduling elsewhere, lest it be “overlooked” and incur a priority inversion.

However, on the level of processes, the re-linking can race with the upcoming context switch.

Example 3.7. This is illustrated in Figure 3.7. Here, job J3 is going to be preempted due to the

release of J1 at time 5. However, processor 1 incurs extreme overhead (indicated by the horizontal

bars) between the time that it unlinked J3 and the time that it could switch away from the kernel stack

of the process implementing J3. Concurrently, J2 completes execution on processor 2. Processor 2

thus executes on job departure(), which in turn calls link next()—which selects J3 and links it to

processor 2. At this point, processor 2 executes a context switch and starts using the kernel stack

of the process implementing J3 before processor 1 switched away from it. The result is a certain

system crash. While the overhead in this example has been exaggerated for illustration purposes,

such races do happen in practice (e.g., process 1 might be servicing a long-running ISR). ♦
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Figure 3.7: Example schedule demonstrating stack corruption. The figure depicts two views of the
same schedule: the lower half shows a task-oriented view of the schedule, whereas the upper half
shows a processor-oriented view of the schedule. As before, the linking is illustrated as a narrow
rectangle above each job in the task-oriented view. Job J3 is unlinked from processor 1 at time 5
and soon thereafter linked again to processor 2 at time 6. However, processor 1 does not finish the
context switch from J3 to J1 until time 8. This results in job J3’s stack being used by two processors.

We briefly digress to note that diagnosing such stack corruption poses an interesting challenge.

Once two processors execute on the same stack, it is virtually guaranteed that all debug diagnostics

will be corrupt and misleading. In our experience, there are two common outcomes: either a

processor triggers a page fault or illegal instruction exception on a return instruction (because the

other processor concurrently overwrote the return address on the stack), or the system hangs due to

a deadlock or locking invariant violation (since pointers to locks on the stack were corrupted). A

reliable indicator can be found in the processor registers (which can be obtained from the virtual

machine monitor when using a virtualized test environment such as Linux’s KVM). If the stack

register of two processors contains addresses less than one page apart, then the stack has been

corrupted.

In LITMUSRT, we solved the kernel stack problem by adding an additional field to the PCB,

named stack in use, that records on which processor a kernel stack is currently in use. The common

migration path in the LITMUSRT scheduling class busy-waits until the variable indicates that the

stack is no longer in use. This realizes a kind of “migration barrier” that ensures that the context
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switch on the target processor occurs only after the source processor has carried out its context switch,

thereby releasing the process stack. Stack corruption is hence avoided.

3.3.5 Ready Queue and Release Queue

No matter the implemented scheduling policy, each scheduler plugin requires a mechanism to order

ready jobs—a ready queue. Further, plugins require a mechanism to queue jobs for future time-based

releases—a release queue. When a job is released, it must be transferred from the release queue to

the corresponding ready queue, and the scheduler needs to be invoked if a preemption (or linking)

is required. In LITMUSRT, to reduce code duplication, these three concerns are abstracted by a

reusable component called a real-time domain (rt-domain).

There are many ways that these queues could be implemented. A ready queue could be imple-

mented as a linked list, some kind of heap, a tree (as in Linux’s CFS implementation), or any other

realization of the priority queue abstract data type (such as Linux’s bitfield-based ready queue for FP

scheduling). In a quantum-driven implementation, the release queue can be implemented as a priority

queue or timer wheel (Varghese and Lauck, 1987) that is polled by the scheduler tick() method

to transfer all jobs with release times in the preceding quantum to the ready queue. Alternatively,

hardware timers can be programmed to trigger future job releases with interrupts if sufficiently

high-resolution hardware timers are available. In event-driven plugins, using timers is preferable

because it avoids increasing scheduling latency by up to a quantum (page 87). Since all platforms

that LITMUSRT has been used on support high-resolution timers, the release queue implementation

that is part of the rt-domain abstraction uses Linux’s hrtimers subsystem.

The implementation in LITMUSRT is guided by the goal to reduce worst-case overhead when

multiple job releases occur at the same time. Thus, instead of programming a timer for every job,

our release queue implementation uses a timer per release time to avoid unnecessary overhead, i.e.,

if multiple job releases coincide (e.g., on a hyperperiod boundary), then only one timer interrupt is

required. Efficient timer sharing is accomplished by looking up future release times in a hash table.

Additionally, timer sharing enables the use of mergeable queues. A mergeable queue supports

adding multiple elements efficiently, i.e., it is possible to insert k elements into the queue without

invoking the insert operation k times. For example, if the ready queue were implemented as a simple

binary heap, then releasing k jobs would take O(k log n) time (recall that n denotes the number of

209



tasks). In contrast, if the ready queue is implemented as a binomial heap (Vuillemin, 1978), which it

is in LITMUSRT, then k jobs can be merged into the ready queue in O(log n) time—a potentially

large reduction in overheads if many jobs are released at the same time. This, however, requires the

k jobs to be organized in a binomial heap of size k prior to the release. As there is only one timer

for each release time (in each rt-domain), this is achieved by simply associating a binomial heap

with each timer, which is called the release heap for the timer’s expiration time. When a job Ji is

to be released at time t, the rt-domain implementation checks to see if a release heap already exists

for time t. If there exists a release heap for time t, then Ji is simply enqueued; otherwise, a new

release heap for time t is initialized and Ji becomes the initial element. The use of binomial heaps

to efficiently merge multiple jobs into ready queues was proposed by Baruah et al. (1995) in the

design of the PD scheduling algorithm. Besides LITMUSRT, we are not aware of other OSs that

have adopted their approach.

Each rt-domain is protected against concurrent updates by two spinlocks, one for the ready

queue and one for the release queue. Most scheduler plugins use the ready queue lock to serialize

all scheduling decisions (see below). Internally, a third spinlock is used to serialize changes to the

release queue with the timer ISR, but this is an implementation detail that is not exposed to the

scheduler plugins. The rt-domain abstraction implements four main operations:

• add release(), which adds a job to a release heap;

• add ready(), which adds a job to the ready queue;

• take ready(), which removes the highest-priority job from the ready queue (the priority com-

parison function is configurable); and

• peek ready(), which returns the highest-priority job in the ready queue without removing it.

The semantics of the take ready() operation implies that currently scheduled jobs are not enqueued

in the ready queue. The peek ready() operation is required to check whether a preemption is

required—the highest-priority queued job must be compared to the lowest-priority scheduled job. If

a preemption is required, then the peek ready() operation is followed by a take ready() operation; if

no preemption is required at the time, then the peek ready() operation will be called again. Finding

the minimum element in a binomial heap requires O(log n) time. To avoid additional overhead,
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each rt-domain caches the current minimum element, so that subsequent calls to peek ready() and

take ready() require only O(1) time after the first call to peek ready() (until the ready queue is

modified).

In a scheduler plugin implementing a global policy, only one shared rt-domain is required. In a

partitioned (or clustered) scheduler plugin, each processor (or cluster) has a private rt-domain. This

separation is required so that jobs are merged into the appropriate processor-local (or cluster-local)

ready queue. That is, rt-domains cannot be shared among multiple instantiations of priority-driven

scheduling; rather, clusters are defined by the shared rt-domain—hence the name “domain.”

3.3.6 Scheduler Plugin Implementation

The rt-domain abstraction incorporates the core operation of priority-driven scheduling. Most real-

time plugins are thus structured around one or several rt-domain instances and, from a high-level

view, operate very similarly. We briefly sketch the operation of a “generic” plugin next and then

discuss details of the actual plugins thereafter.

Generic plugin. Since each scheduling event (job release, job completion, job resumes, job suspends,

beginning of a quantum) requires some job to be either added to or removed from the ready queue,

or at least “peeking” at the ready queue, the ready queue lock is typically reused to serialize all

scheduling decisions. Ready jobs not currently scheduled are stored in the ready queue. The currently

scheduled (or linked) jobs are not queued. Jobs (i.e., the PCBs of the implementing real-time

processes) are added to the ready queue in one of three ways:

1. by the rt-domain when released by a timer ISR;

2. by the task wake up() plugin method when released by a device ISR or when resuming after a

suspension; and

3. by the schedule() plugin method when preempted, or, under link-based global scheduling, by

the try to link() operation when unlinked.

A job is dequeued from the ready queue once it is the highest-priority waiting job either by the

schedule() plugin method or, under link-based scheduling, by the link next() operation.
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Each of the following plugins also supports dedicated interrupt handling. Recall from Sec-

tion 2.5.1.4 that under dedicated interrupt handling one of the processors is a dedicated systems

processor, which does not schedule real-time jobs and is used to handle all interrupts instead. Under

partitioned scheduling, this is simple to realize (do not assign any tasks to the systems processors),

whereas the systems processor must be explicitly marked as such under clustered and global schedul-

ing. In LITMUSRT, this is accomplished by discarding the systems processor from the processor

mapping, which ensures that no job will be linked to it.

3.3.6.1 The P-FP Plugin

The P-FP plugin is the exception to the generic implementation: it does not use the rt-domain’s

binomial heap as a ready queue. Instead, it follows Linux’s bitfield-based approach to enable fast

lookup of ready processes. Unlike Linux, LITMUSRT supports 512 distinct priorities since we

consider task sets consisting of several hundred tasks in Chapter 4. There is a tradeoff in the choice

of ready queue. While using a bitfield to quickly identify the highest-priority ready job speeds up

the task ready() and peek ready() operations considerably, it has the downside that jobs cannot be

merged into the ready queue. Instead, each job must be added individually, which can result in higher

overheads if many jobs are released at the same time. The P-FP plugin still uses a rt-domain instance

on each processor for time-based releases, and uses each rt-domain’s ready queue lock to serialize

scheduling decisions (i.e., similarly to how Linux uses runqueue locks).

Perhaps surprisingly, the LITMUSRT P-FP plugin is somewhat simpler than Linux’s FP imple-

mentation. As mentioned previously in Section 3.3.1.1, LITMUSRT does not use processor affinity

masks. Therefore, the P-FP plugin does not require the pull- and push operations that are invoked by

Linux’s FP implementation on every scheduling decision. Instead, a real-time process, once admitted,

is not allowed to migrate to another partition. This restriction greatly simplifies the implementation

of LITMUSRT’s P-FP plugin.

The P-FP plugin does not use link-based scheduling. Rather, it only keeps track of the currently

scheduled process and does not have a separate linking step. This is sufficient since non-preemptable

jobs executing on remote processors do not affect local scheduling decisions under partitioning;

repeated preemptions are thus not possible.
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3.3.6.2 The P-EDF Plugin

The P-EDF is the simplest plugin in LITMUSRT and functions essentially like the “generic” plugin

described above. There is one rt-domain instance for each processor, and the ready queue lock

is used to serialize all scheduling decisions. Unlike the P-FP plugin, the P-EDF plugin uses the

default binomial heap for its ready queue. Since the P-EDF plugin implements strictly partitioned

scheduling, a process may not migrate among partitions after it has been admitted and link-based

scheduling is not required.

Due to its simplicity, the P-EDF plugin has in the past served as the first test case when rebasing

or porting LITMUSRT: when the P-EDF plugin crashes, the core infrastructure’s Linux integration

code and the LITMUSRT scheduling class are likely incorrect.

3.3.6.3 The G-EDF Plugin

The G-EDF plugin implements link-based scheduling because LITMUSRT supports non-preemptive

spinlocks, and thus predictable non-preemptive sections must be supported.

Job scheduling. At the heart of our implementation of link-based scheduling is a data structure

that we call the processor mapping. The processor mapping stores for each processor which job is

currently linked to it, and which process is in fact scheduled. That is, the processor mapping realizes

the separation of job scheduling from process scheduling. The difference is that job scheduling—

updating links—can be carried out on any processor for any processor. In contrast, process scheduling

can only be enacted locally: for example, if a timer ISR that is executed on processor 1 triggers

the release of a job Ji, and if Ji is linked to processor 2, then processor 1 cannot enact a context

switch on processor 2. Instead, processor 1 must send an IPI to processor 2, which then can detect

the change in the linked job and initiate a context switch to the process that realizes Ji (i.e., to the

process that is attached to the reservation).

The separation of job scheduling from process scheduling makes link-based scheduling possible

and greatly simplifies the implementation of global schedulers—since link changes can be enacted

immediately, the current job-to-processor mapping is never in an inconsistent state (if link changes

are serialized by means of a lock). This means that the scheduling logic matches the conceptual
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notion of global, priority-driven scheduling much more closely as it does not have to take hybrid

states into account (in contrast to Linux’s push- and pull-based scheduling logic).

Since the most common operation involving the processor mapping is to check whether a pre-

emption is required, which requires identifying the lowest-priority linked job (line 19 in Listing 3.4),

the processor mapping is realized as a min-heap with processors ordered by the priority of their

assigned jobs (if any—idle processors have the lowest priority).

Locking. A key question in the design of any global scheduler is how locking is realized. An

important goal is to avoid lock contention as much as possible. Per-processor locks as used by

Linux are preferable from this point of view. However, as demonstrated in Section 3.2.4, the lack

of a consistent snapshot of the current scheduling state—the current job-to-processor mapping

and the contents of the ready queue—can lead to “migration glitches” and greatly complicates the

implementation of the scheduler. Further, link-based scheduling as described in Section 3.3.3 above

requires atomicity of link updates, otherwise repeated preemptions cannot be ruled out. It is not

obvious at all how link-based scheduling could be implemented with per-processor locks. Therefore,

from a correctness point of view, the processor mapping must be protected by a global spinlock that

serializes all changes, thus effectively serializing the execution of the link-based scheduler.

Global locking, of course, comes at the expense of increased contention. To the best of our

knowledge, no other approach has been proposed to date that provably ensures the predictability of

migrations and preemptions, i.e., that is guaranteed to be “glitch free.” It is an interesting opportunity

for future work to reconcile the two conflicting needs at the heart of global scheduling—how can

processors compute globally correct, atomic scheduling decisions based on mostly local or possibly

inconsistent state?

A separate, but closely related question is how the ready queue should be implemented. In

particular, is it acceptable to use a single, shared rt-domain (i.e., a binomial heap with a coarse-

grained lock), or would it be preferable to use some other queue implementation that allows some

degree of parallelism? In the process of developing LITMUSRT, we investigated this question

carefully (Brandenburg and Anderson, 2009a). In particular, we compared using a binomial heap

with coarse-grained locking with two alternate ready queue implementations, one using a parallel

heap based on fine-grained locking, and the other using a simple hierarchical queue-of-queues design,
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where each processor has a local queue that it uses to enqueue jobs. We carefully evaluated versions

of the G-EDF plugin based on each ready queue and found (to our surprise) that neither alternative

resulted in a significant improvement over using a binomial heap. While allowing a higher degree of

parallelism, the benefit of (partially) parallel ready queue updates is dwarfed by the contention for

the processor mapping lock. This is because each access to the ready queue is typically accompanied

by a scheduling decision. Parallelizing the ready queue does not help with the (so far unavoidable)

sequential nature of link-based scheduling. Further, both fine-grained locking and the hierarchical

queue introduced additional overheads due to an increased number of lock acquisitions. We refer the

interested reader to (Brandenburg and Anderson, 2009a) for a detailed discussion of these results.

For these reasons, the G-EDF plugin underlying this dissertation uses a coarse-grained, global

lock to protect the processor mapping and the ready queue and to serialize all scheduling decisions.

3.3.6.4 The C-EDF Plugin

The C-EDF plugin is a straightforward hybrid of the P-EDF and G-EDF plugins. As such, it

implements link-based scheduling (for the case of c > 1) on a per-cluster basis. The processors

in each cluster share an rt-domain instance and a processor mapping, but typically do not access

the state of other clusters. This reduces contention of the ready queue lock considerably. Based on

how clusters are configured, C-EDF further reduces overheads due to frequent migrations of cache

lines that contain parts of the ready queue and processor mapping between processors that do not

share a cache, i.e., clusters that match the underlying processor topology reduce the intensity of

cache-consistency traffic caused by each scheduler invocation.

The cluster size c is determined when the plugin is activated based on which level of cache

sharing is desired. The user writes the desired cache level (e.g., L1, L2, L3, etc.) to a virtual file in the

proc file system. When the C-EDF’s activate plugin() method is called, it dynamically determines

which processors form a cluster based on the processor topology, which the Linux kernel discovers

during system startup.

One may wonder: if LITMUSRT has a C-EDF scheduler plugin, why does it also contain

dedicated P-EDF and G-EDF plugins? There are three reasons for this. Historically, the P-EDF

and G-EDF plugins came first. Second, the P-EDF plugin is much simpler than the C-EDF plugin

since it does not have to deal with the case of c > 1, which potentially results in lower overheads.
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In particular, the P-EDF plugin neither requires nor uses link-based scheduling. And finally, as we

discuss in Chapter 6, global and clustered scheduling (if c < m) differ in how locking protocols may

be designed.

3.3.6.5 The PD2 Plugin

Superficially, the PD2 plugin resembles the C-EDF plugin. It supports configurable clustered

scheduling based on the system’s underlying cache topology and, in each cluster, it uses a shared

rt-domain to implement the ready and release queues, uses a processor mapping to keep track of

linked jobs, and serializes all scheduling decisions with the global ready queue lock. However, many

differences become apparent when considering implementation details. For one, tasks carry extra

state under PD2. When a process is admitted, the PD2 pre-computes all subtask parameters (i.e.,

subtask deadline, successor bit, and group deadline) and checks that task parameters are a multiple

of the quantum size. A bigger difference is how the scheduler is invoked.

Quantum update. PD2 is an inherently quantum-driven scheduling policy, which implies that jobs

are only linked and unlinked from within the scheduler tick() method, i.e., other scheduling events

such as the arrival of jobs do not cause re-linking to occur. However, before consistent linking

decisions can be made at the beginning of a new quantum, all jobs that were linked in the preceding

quantum must advance to their next subtask, i.e., their priority must be updated. This means that

a processor cannot just update its locally linked job when it enters the scheduler tick() method;

rather, the first processor to execute the scheduler tick() method for a given quantum updates the

priority of all currently linked jobs, and then proceeds to check all currently existing links. While

the first processor computes the job assignments for the next quantum, the other processors await

their assignment. That is, the scheduler tick() realizes a synchronization barrier that processors can

only cross once the schedule for the next quantum has been computed. While this approach may

seem overly serialized, such centralized scheduling is in fact preferable because it avoids cache-

line bouncing and inconsistent scheduling decisions: if processors were to schedule before all job

priorities have been updated, then inconsistent decisions could be made; if processors were to just

locally schedule after all priorities have been updated, then the cache-lines holding the processor
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mapping and ready queue would have to “visit” each processor at each quantum boundary. It is thus

more efficient to just compute the schedule for the next quantum on one processor.

Quantum size. Recall from the review of pfair scheduling (Section 2.3.3.3) that it is only optimal

(for implicit-deadline tasks) if the quantum size can be made sufficiently small. This, of course, is

not possible in practice, where each quantum boundary creates overhead due to the need to service a

timer interrupt, reschedule, and perform context switches.

Linux has a periodic scheduler tick that traditionally was used for timekeeping and scheduling

purposes, and, prior to the introduction of hrtimers, also to process expired software timers. In

modern Linux, with the introduction of accurate one-shot timers, the reliance on the scheduler tick

has decreased considerably (in fact, Linux can now be configured to disable the scheduler tick

while a processor is idle). Nonetheless, it still exists and LITMUSRT plugins can use it to realize

quantum-based scheduling by means of the accordingly named scheduler tick() method.

Linux’s scheduler tick occurs with a frequency that is configured at compile time. The highest

supported frequency is 1000 Hz, which is equivalent to a quantum size of 1 ms . While lower

frequencies are possible (e.g., 100 Hz, 250 Hz), the resulting quantum sizes (e.g., 10 ms , 4 ms)

are too large for most real-time purposes. It would be possible to program a custom periodic timer

with a very short period (say, 100 µs); however, the effective quantum size, i.e., the time actually

available for useful computation in each quantum would be unusably small in this case. Therefore,

the quantum size under PD2 is one millisecond in LITMUSRT. We discuss how to account for the

resulting capacity loss in Section 3.5 below.

Quantum alignment. The analysis of PD2 as discussed in Section 2.3.3.3 assumes that quanta are

aligned, i.e., that all processors cross a quantum boundary at the same time (with regard to physical

time). From a hardware efficiency point of view, this is undesirable, since then all processors are

going to execute a context switch and incur compulsory cache misses at roughly the same time, which

creates peak memory bus contention. Similarly, lock contention is increased when all processors

execute the scheduler tick() method in parallel.

To overcome this contention, Holman and Anderson (2005) introduced quantum staggering,

which is illustrated in Figure 3.8. Under staggered quantum-based scheduling, logical time is

offset from processor to processor such that quantum boundary crossings are spaced out throughout
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Figure 3.8: Illustration of aligned and staggered quanta. The grey vertical lines indicate quantum
boundaries. The fifth quantum is shown on each processor. (a) With aligned quanta, each processor
crosses a quantum boundary at the same physical time. (b) With staggered quanta, quantum
boundaries are shifted by 1

m time units from processor to processor.

one quantum. In other words, the beginning and end of each quantum on processor x, where

x ∈ {1, . . . ,m}, is shifted by x−1
m · Q time units, where Q is the quantum size. For example,

assuming m = 24 and Q = 1000µs, then a processor crosses a quantum boundary approximately

every 41.67µs. This helps to reduce contention since processors are unlikely to access scheduler state

at the same time if quanta are staggered. In LITMUSRT in particular, staggering masks the implicit

barrier since the first processor to reach a quantum boundary (i.e., processor x = 1, which is not

shifted) has likely finished computing the schedule for the next quantum before the other processors

reach their shifted quantum boundaries. However, staggering may also delay a job’s completion by

up to m−1
m ·Q time units (if the job’s last subtask is assigned to the most-shifted processor), which

must be accounted for during schedulability analysis (see Section 3.5 below).

LITMUSRT supports both aligned and staggered quanta as a boot-time option. The processor-

local timer generating the scheduler tick on each processor is programmed during system startup. By

default, Linux staggers quanta throughout half of a quantum. LITMUSRT changes the calculation of

the offset to realize aligned or staggered quanta, as specified by a command line option that is passed

to the kernel by the boot loader.

This concludes our overview of the design and implementation of LITMUSRT. Next, we

discuss how to account for runtime overheads as they arise in LITMUSRT. Exactly which overheads

occur depends on whether the system uses partitioned scheduling and on whether the scheduler is

event- or quantum-driven. We first consider event-driven scheduling in Section 3.4, and discuss

quantum-driven schedulers thereafter in Section 3.5.
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3.4 Overhead Accounting under Event-Driven Schedulers

In any real system, job execution is slowed down by various overheads and latencies. Frequently, such

overheads are considered to be negligible in academic research. However, as we show in Chapter 4,

overheads can actually have a significant impact on algorithm performance. This is especially true in

the case of multiprocessors, where overheads tend to be higher than on uniprocessors, which is in

large part due to increased synchronization requirements and cache affinity issues. It is therefore

important to consider overheads both when comparing scheduling and locking choices for RTOS

implementations and when establishing the temporal correctness of actual systems. To this end,

overheads and latencies must be bounded and accounted for during schedulability analysis.

In the remainder of this chapter, we provide a comprehensive overview of the techniques that we

apply to account for overheads in Chapter 4. The need to integrate overheads into schedulability tests

is not new and a number of standard “textbook techniques” have long been known and used in the

analysis of event-driven uniprocessor systems (Liu, 2000; Devi, 2003). Many of these accounting

methods can also be applied to multiprocessor systems. However, we are not aware of prior efforts to

document how these methods can be applied to event-driven multiprocessor real-time scheduling,

which is not quite as straightforward as it may seem. In particular, some delays that arise under

global scheduling and their interaction with pi-blocking analysis may not be obvious on first sight.

Jobs that do not self-suspend incur delays when they are released, when they are preempted,

and when they are interrupted. We begin by discussing the fundamental safety property underlying

overhead accounting (Section 3.4.1) and then discuss how job releases are delayed and how the

resulting “jitter” must be accounted for (Section 3.4.2). Thereafter, we illustrate how standard

techniques (Liu, 2000) can be used to account for preemption and migration overheads (Section 3.4.3),

and then discuss how to account for interrupts (Section 3.4.4). Interrupts are especially difficult to

account for under EDF-based schedulers. We first review task-centric interrupt accounting, which

we previously introduced in (Brandenburg et al., 2009, 2011). Task-centric interrupt accounting

is safe and relatively straightforward, but can be severely pessimistic in some cases, i.e., it can

lead to significant algorithmic capacity loss. In Section 3.4.5, we introduce preemption-centric

interrupt accounting, which is a novel interrupt accounting technique designed to overcome some
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of the pessimism inherent in task-centric interrupt accounting. Finally, we summarize the overhead

accounting techniques applicable to each scheduler in Section 3.4.6.

3.4.1 Approach

From a high-level perspective, there are two ways that overhead accounting can be integrated

into schedulability analysis. The first method is to design a new schedulability test from first

principles that recognizes overheads as first-class entities that are an integral part of the system model.

However, such a model is much more complex and risks resulting in tedious, uninspiring analysis.

Unsurprisingly, first-class analysis of overheads is rarely pursued.

The second method reuses the existing large body of schedulability results that are not cog-

nizant of overheads. Given an overhead-affected implementation of a task set τ , applying such a

schedulability test to τ does not guarantee temporal correctness due to the risk of unanticipated

overhead-related delays. The key idea is to derive an equivalent but overhead-free task set τ ′ that

is substituted for τ during schedulability analysis. That is, the idea is to construct an idealized task

set that is amenable to existing analysis. For this approach to be safe, τ ′ must be a “lower bound”

on schedulability in the sense that τ ′ without overheads is “at least as hard to schedule” as τ with

overheads. This notion can be formalized as follows.

Definition 3.1. A task set τ ′ is a safe HRT approximation of τ (with respect to a given platform and

implementation) if and only if the following assertion holds: if there exists a legal arrival sequence

such that some task in τ misses a deadline in the presence of overheads, then there exists a legal

arrival sequence such that a task in τ ′ misses a deadline in the absence of overheads.

The notion of a safe SRT approximation can be defined likewise with regard to exceeding a

given tardiness bound B. All approximations used in this dissertation are safe for both HRT and SRT

analysis; we therefore omit “HRT” and “SRT” in the following discussion of safe approximations.

Intuitively, Definition 3.1 requires that if τ can fail, then τ ′ can fail as well. This allows τ ′ to be

substituted for τ in schedulability tests that assume overheads to be negligible: if τ ′ passes such a

schedulability test, then the absence of temporal failures has been proven. This in turn implies that τ

must be correct as well. The challenge of accounting for overheads during schedulability analysis

can thus be reduced to the much simpler task of finding a suitable safe approximation τ ′.
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Obviously, the construction of τ ′ should introduce as little additional pessimism as possible:

ideally, τ ′ should not fail the schedulability test if τ is in fact correct. For example, any infeasible task

set is a safe approximation of any other task set, but such a pessimistic approximation is obviously

devoid of practical value. Instead, to obtain a useful approximation, each task Ti ∈ τ is transformed

into a corresponding task T ′i ∈ τ ′ such that the worst-case delays experienced by any Ji are reflected

in the parameters of T ′i . Depending on the expressivity of the task model assumed by the underlying

overhead-unaware schedulability test, overheads can be modeled in some or all of the following

ways:

1. by inflating the execution requirement ei,

2. by decreasing the period pi,

3. by decreasing the relative deadline di,

4. by increasing the maximum time of self-suspension,

5. by increasing the bound on pi-blocking bi, and

6. by adding tasks to represent overhead sources.

For conciseness, we let suspi denote the maximum time of self-suspension of any Ji in the following

discussion. (However, few schedulability tests besides response-time analysis for FP scheduling

support this parameter.) Note that these (offline) parameter changes are opposite to the online

parameter changes that a sustainable scheduling algorithm must be resilient to (recall Section 2.2.3).

To account for overheads, parameters must be overestimated; the use of sustainable schedulers and

analysis ensures that this does not result in scheduling anomalies.

In the remainder of this section, we discuss how the scheduling overheads that arise under

event-driven schedulers in LITMUSRT can be accounted for with approximations that are safe for

both HRT and SRT schedulability analysis.

3.4.2 Release Delay

We begin with release delay, which is the interval from the point in time that the event that triggered

the release of a job Ji occurred (denoted t0) until the first instruction of Ji is executed by a processor.
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This corresponds to the metric commonly used to evaluate RTOS performance in industry, namely

interrupt (or scheduling) latency. In the idealized sporadic task model, t0 is Ji’s release time and, if

Ji has sufficient priority, also the time that Ji commences execution. In practice, the occurrence of

the triggering event must first be relayed to the system (by means of an interrupt) and translated into

a job release, which then triggers several implementation-related overheads.

To simplify the following discussion, we assume in this section that jobs are not preempted and

not interfered with by ISR execution once scheduled. Delays due to preemptions are considered

in Section 3.4.3; the impact of interrupts is discussed in Section 3.4.4. We further assume that the

released job Ji has sufficient priority to be scheduled immediately—otherwise, Ji is not affected by

release delay since it is not scheduled anyway.

Global scheduling. The release delay under global event-driven scheduling consists of up to six

contributing factors. These are illustrated in Figure 3.9(a), which depicts a timeline of a job’s release

assuming that its releasing interrupt is handled on processor 1 and that it should be scheduled on

processor 2. We discuss each of the six sources of overhead in detail.

• At time t0, the triggering event occurs. This is detected by some hardware device (e.g., a

photo sensor detects a change in luminosity, a hardware timer’s counter matches a comparator

register, etc.). The hardware device raises an interrupt line to communicate to the systems

interrupt management hardware (e.g., the IO-APIC in x86-based systems) that an interrupt

should be generated. The interrupt hardware translates the physical interrupt signal to a packet

describing the interrupt, determines which processor is responsible for handling this type of

interrupt, and then routes the interrupt packet to a processor, which happens to be processor 1

in this case. If the bus is multiplexed among multiple uses, the delivery of the interrupt packet

may be delayed. For example, there is no dedicated APIC bus in modern x86 systems; instead,

the main memory bus, or front side bus, also carries APIC packets.

The raising and propagation of the interrupt signal induces a delay that we refer to as hardware

latency. The extent of hardware latency is generally not under control of the RTOS.

• At time t1, the interrupt signal has reached processor 1 (e.g., the local APIC in x86-based

systems). However, the interrupt may not be processed immediately if processor 1 has currently

disabled interrupt delivery (or has not yet acknowledged a previous, higher-priority interrupt).
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Figure 3.9: Timeline illustrating release delay under global and clustered event-driven scheduling.
(a) In a real system, a newly-released job is delayed by several sources of latencies and overhead
before it commences execution. (b) The latencies and overhead can be equivalently modeled as an
initial self-suspension followed by additional execution. (c) Under EDF-based schedulers, time t2 is
recorded as the release time and self-suspensions are analyzed as execution time instead.
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As a result, interrupt latency accrues while the interrupt is pending. RTOS designers strive to

minimize times during which interrupt delivery is disabled to reduce interrupt latency.

• At time t2, processor 1 accepts the interrupt and transfers control to the appropriate ISR. The

ISR determines that Ji has been released and updates the PCB of the process implementing

Ti to reflect the parameters of the newly-released job. If the process was suspended, it is now

resumed and enqueued in the ready queue. If Ji was instead released by a software timer, then

the release heap corresponding to time t0 is merged into the ready queue. The on job arrival()

event handler in Listing 3.4 is executed, which links Ji to processor 2.

• At time t3, processor 1 has finished the link-based job scheduling and sends an IPI to proces-

sor 2 to cause it to reschedule (if the process scheduled on processor 2 is currently preemptable;

the case of a non-preemptable process is discussed below). The length of the interval [t2, t3) is

mainly determined by two factors: the efficiency of the ready queue implementation and the

level of contention for the ready queue lock.

IPIs are not delivered instantly. An IPI is typically relayed by means of the shared memory bus

or an on-chip point-to-point network and may be delayed by the presence of memory transfers

and other inter-processor messages. As is the case with regular interrupts, the IPI may not

be processed immediately once it has reached processor 2 if interrupt delivery is currently

disabled. Consequently, IPI latency accrues while the IPI is “in flight.”

If by chance Ji had been linked to processor 1 instead, then of course no IPI latency would

have been incurred. In general, however, it is not possible to predict on which processor a job

will be linked; therefore, IPI latency is part of the worst-case scenario.

• At time t4, the IPI is received by processor 2. The IPI-handling code does little more than

setting the rescheduling flag of the currently scheduled process to invoke the scheduler (recall

Section 3.2.1). The Linux process scheduler invokes the pick next task() method of the

LITMUSRT scheduling class, which in turn calls the schedule() method of the active plugin.

In a link-based scheduler, the schedule() method observes that Ji has been linked and selects

the process implementing Ti to be scheduled next. The execution time of the process scheduler
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is mainly determined by the level of lock contention for the ready queue lock, which is used to

serialize scheduling decisions.

• After the next process to schedule has been selected, Linux enters the context switch code path

at time t5. Prior to the actual context switch, some statistics and maintenance code executes.

Directly after the actual context switch, additional resource management tasks are carried out

that could not be done while holding a runqueue lock. Finally, the kernel transfers control to

the process and Ji commences to execute at time t6.

Finally, if Ji is not preempted and not disturbed by interrupts, it will complete at most ei time

units after time t6 at time t7.

Safe approximation. An overhead-unaware schedulability test assumes that Ji is scheduled imme-

diately at time t0 on processor 2 when in fact processor 2 is unaware of Ji’s arrival until time t4.

Further, Ji is not actually scheduled until time t6 (in the sense of executing instructions accounted for

by ei). In an overhead-free environment, these delays can be modeled as illustrated in Figure 3.9(b).

• We refer to the delay during [t0, t2) collectively as event latency, denoted as ∆ev , to the

delay during [t2, t3) as release overhead, denoted as ∆rel , and to the delay during [t3, t4)

as IPI latency, which we denote as ∆ipi . While processor 2 is unaware of the release of a

new job during [t0, t4), Ji is effectively ineligible for scheduling. In an overhead-free model,

this is equivalent to Ji having self-suspended immediately upon its release at time t0 for

(∆ev + ∆rel + ∆ipi ) time units.

• The time lost to process management tasks during [t4, t6) is comprised of scheduling overhead

during [t4, t5), denoted as ∆sch , and context-switch overhead during [t5, t6), denoted as ∆cxs .

Since processor 2 is effectively executing code on behalf of Ji, this time can be added to

Ji’s execution requirement, i.e., in an overhead-free model, Ji simply carried out additional

computations for (∆sch + ∆cxs) time units prior to executing for ei time units.
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Consequently, a transformed task T ′i is a safe approximation of Ti with regard to maximum release

delay if

susp′i ≥ suspi + (∆ev + ∆rel + ∆ipi), and (3.1)

e′i ≥ ei + (∆sch + ∆cxs). (3.2)

The period and relative deadline of Ti are not affected by this transformation, i.e., p′i = pi and d′i = di

(pi-blocking is discussed below). Interrupt delivery is disabled during most of the interval [t4, t6);

nonetheless, the execution is not modeled as a non-preemptive section of Ji because we assume that

any delays due to non-preemptable execution of the kernel are included in the interrupt latency and

hence bounded by ∆ev . Unfortunately, most G-EDF schedulability tests are not capable of analyzing

self-suspensions, i.e., the assumed task model requires susp′i = 0. A different approximation is thus

required for G-EDF.

Uncertain release times. There is in fact another discrepancy between model and reality that must

be considered if a job’s release time affects its priority. The question is: what is the release time of Ji

that is used for prioritization purposes? In an overhead-free model, Ji is clearly released at time t0.

However, in a real system, if Ji was released by a device interrupt, then time t0 is actually unknown

to the kernel, as is time t1 since hardware and interrupt latencies are not reported to the processor (at

least in commodity hardware). Therefore, the kernel records time t2 as the release time of Ji and

defines its absolute deadline as t2 + di. This creates a discrepancy between the analyzed and the

actual schedule since the absolute deadline would have been t0 + di in the absence of overheads.

To compensate for this mismatch, the relative deadline and period have to be decreased by

the maximum possible length of the interval [t0, t2). The resulting approximation is illustrated in

Figure 3.9(c). In this alternate idealized model, the job J ′i is not actually released until time t2,

which is equivalent to T ′i exhibiting increased inter-arrival delay. Further, to work around the lack

of analysis for self-suspensions, the delay due to job scheduling and IPI latency are modeled as
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Figure 3.10: Timeline illustrating release delay under partitioned event-driven scheduling without
dedicated interrupt handling. The points in time t0, . . . , t7 match those in Figure 3.9. Under
partitioned scheduling, interrupts can be routed such that jobs are released on the processor to which
their corresponding task has been assigned. Therefore, jobs do not incur IPI latency, which is reflected
by the absence of time t3, i.e., time t4 follows time t2 since scheduling occurs locally. If dedicated
interrupt handling is used, then jobs can be delayed by IPI latency and Figure 3.10 applies instead.

additional execution time. This results in the following: task T ′i is a safe approximation of Ti if

p′i ≤ pi −∆ev , (3.3)

d′i ≤ di −∆ev , and (3.4)

e′i ≥ ei + (∆sch + ∆cxs + ∆rel + ∆ipi). (3.5)

It is not sufficient to only decrease the relative deadline and leave p′i unchanged. Since ∆ev is an

upper bound on the maximum event latency, it is theoretically possible for two job releases to be

separated by only (pi −∆ev ) time units (if the next job incurs zero event latency). This effect is

commonly referred to as release jitter in the scheduling literature. In the case of FP scheduling,

release jitter is equivalent to a self-suspension, which is expressed by Equation (3.1).

Note that uncertain release times affect EDF-based schedulers at runtime. The kernel thus needs

to compute a job’s absolute deadline based on d′i and not based on di, i.e., the parameters of T ′i

should be used both during schedulability analysis and as the reservation parameters of Ti’s process.

Partitioned scheduling. Releases are delayed largely in the same way under partitioned scheduling

as in the global case. However, there is one notable difference, which is illustrated in Figure 3.10. If

the system does not use dedicated interrupt handling, then interrupts can be routed such that each

processor handles only local job releases. Consequently, Ji does not incur IPI latency (∆ipi = 0).

This renders Equation (3.1) and Equation (3.5) slightly less pessimistic.
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Figure 3.11: Timeline illustrating release delay under event-driven scheduling in the presence of
non-preemptive sections. The depicted timeline corresponds to Figure 3.9(a), with the difference that
the job on processor 2 is assumed to be non-preemptable. (a) No IPI latency is incurred; instead,
processor 1 sets the delayed preemption flag to notify the non-preemptable job on processor 2 that it
should invoke the scheduler (recall Section 3.3.2). (b) As in Figure 3.9(a), the remaining latencies
and overhead can be modeled as an initial self-suspension followed by additional execution. However,
as it is in the actual case, the newly-released job incurs pi-blocking.

Non-preemptivity. In the scenario shown in Figure 3.9, we have assumed that the process scheduled

on processor 2 is preemptable at time t3. Figure 3.11 depicts a timeline where this is not the case. The

event latency ∆ev and release overhead ∆rel during [t0, t3) are not affected by the non-preemptive

section. However, at time t3, processor 1 does not send an IPI since processor 2 cannot preempt the

current process anyway. Instead, processor 1 sets the delayed preemption flag in the control page of

the scheduled process to indicate that it should invoke the scheduler as soon as possible, as described

in Section 3.3.2. This is possible since each control page is part of the kernel address space and

thus accessible from all processors at all times. At the end of its non-preemptive section at time

t4, the scheduled process invokes the scheduler by means of the sched yield() system call, which

triggers scheduling and context-switch overhead before Ji commences execution. (Processor 1 must

check the np flag and set the delayed preemption flag atomically; otherwise, it could race with the

exit np section() protocol.)
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This requires only a small change to the equivalent overhead-free model, which is shown in

Figure 3.11(b). As previously in Figure 3.9(b), the event latency and release overhead can be modeled

as a self-suspension. When Ji resumes in the overhead-free model at time t3, it incurs pi-blocking,

just as it does in the actual system. The scheduling and context-switch overhead that arise after the

non-preemptive section can again be modeled as additional execution of Ji, as in Figure 3.11(b).

This yields the following safe approximation for this scenario: T ′i is a safe approximation of Ti if

e′i ≥ ei + (∆sch + ∆cxs) and susp′i ≥ suspi + (∆ev + ∆rel ). Note that susp′i does not reflect for

∆ipi in this case, i.e., accounting for pi-blocking “absorbs” some of the worst-case release delay.

This can be used to reduce pessimism in the construction of T ′i .

A given job may incur either IPI latency or pi-blocking due to a non-preemptive section upon

release—but not both. Therefore, only the maximum of the two must be considered during schedu-

lability analysis. This implies that (very) short non-preemptive sections are “free” in the sense

that they do not add additional pessimism to the schedulability analysis required for global and

clustered scheduling (and partitioned scheduling with dedicated interrupt handling). Alternatively,

if the maximum non-preemptive section length exceeds ∆ipi , then IPI latency becomes irrelevant

and does not have to be accounted for. This argument applies equally when modeling IPI latency as

increased execution requirement.

Formally, let bnpi denote the maximum pi-blocking incurred by any Ji upon release due to

non-preemptable execution, and let botheri denote the maximum pi-blocking due to other causes

(such that bi = botheri + bnpi ). If IPI latency is modeled as a self-suspension using Equation (3.1)

under P-FP scheduling, or if IPI latency is modeled as execution time using Equation (3.5) under

EDF-based schedulers, then T ′i remains a safe approximation of Ti as long as

b′i ≥ botheri + max(0, bnpi −∆ipi). (3.6)

So far, we have assumed that jobs incur release delay but are not preempted or disturbed by

interrupts once scheduled. Next, we consider delays that arise due to preemptions and migrations.

For the sake of clarity, we first consider preemption and migrations in isolation, too, and thereafter

integrate release delay, preemption and migration delays, and interrupt delays in Section 3.4.4.
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3.4.3 Preemption and Migration Delays

From the point of view of overhead accounting, preemptions and migrations are equivalent. In either

case, a ready job is preempted in favor of a higher-priority job and continues execution at a later time.

Whether a job continues execution on the same or on a different processor impacts the magnitude

of overheads, but it does not change the kind of overheads that are incurred. We therefore focus on

preemptions first in the following discussion and note that it applies equally to migrations.

Conveniently, the standard techniques used to account for preemptions under JLFP schedulers

on uniprocessors (Liu, 2000) also apply to both global and partitioned JLFP schedulers. To illustrate

the additional overhead caused by a preemption, we first consider a schedule without preemptions

as a baseline scenario. Figure 3.12(a) shows a uniprocessor EDF schedule of two jobs that execute

in sequence. When J2 is released at time 5, it has a later deadline than the already scheduled J1,

which is hence not preempted. When J1 completes after six time units of execution at time 6,

the scheduler is invoked to select the next process. The process implementing J2 is chosen and

commences execution after the context switch completes at time 8. There are two important things

to note. First, J1 is not affected by J2’s execution. Even though scheduling and context-switch

overhead arise before J2 is scheduled, these delays occur only after J1’s completion and thus do not

affect its temporal correctness. Second, J2 is delayed by these overheads. However, the resulting

delay of (∆sch + ∆cxs) time units is eclipsed by the worst-case release delay, which J2 did not

actually incur since it was not the highest-priority job at the time of release. No additional overhead

accounting is thus required in this scenario.

In Figure 3.12(b), J2’s release occurs already at time 3, which results in J2 having a higher

priority than J1. A preemption is thus required, which causes additional direct and indirect overheads.

The direct overhead is due to the invocation of the scheduler, which is invoked twice. Before J2

commences execution at time 5, the scheduler must identify J2’s implementing process and a context

switch must be performed. Similarly, after J2 completes at time 9, the scheduler must be invoked

again to identify J1 as the next-highest-priority job that should continue to execute, and another

context switch is required.

The indirect overhead is due to a loss of cache affinity experienced by the preempted job J1.

Recall from Section 2.1.2 that a process develops cache affinity when most of its working set has
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Figure 3.12: Uniprocessor EDF schedules illustrating overheads caused by preemptions. For
the sake of clarity, overhead due to release delay and interrupts is considered negligible, whereas
scheduling and context-switch overheads are exaggerated. (a) If jobs execute sequentially, then only
one scheduler invocation and context switch are required to select the next job. J1 executes for six
time units before completing. (b) In the case of a preemption, additional direct and indirect overheads
are caused. J1’s execution requirement increased to seven time units due to the intermittent loss
of cache affinity. (c) Both direct and indirect overheads can be modeled by inflating the execution
requirement of the preempting job.
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been loaded into cache(s). When a job commences execution, it must be necessarily expected to be

cache-cold, so it is reasonable to assume that the initial burst of compulsory misses on release is

accounted for by the execution requirement ei. However, when a job is preempted, it loses cache

affinity as the state of the cache(s) is perturbed by the preempting job. Consequently, it suffers a

renewed burst of compulsory cache misses when it reestablishes cache affinity. This has the effect of

increasing its execution requirement. For example, in Figure 3.12(b), J1’s execution requirement

increased from six to seven time units due to the additional cache misses.

From the point of view of J2, this scenario is an example of release delay and all overheads

are adequately accounted for by the analysis of release delay presented in the preceding section. In

particular, J2 is not delayed by the additional scheduling and context-switch overheads that follow

its completion.

However, J1 experiences significant delays that are unrelated to J1’s release delay, and that

must be accounted for separately. Because both scheduler invocations occur before J1 completes,

it is delayed both times, and its completion is further delayed by the loss of cache affinity. On first

sight, it may seem intuitive to account for these overheads by increasing e′1 to reflect the additional

scheduling and cache-related overheads. However, to construct a safe approximation of T1 based

on this approach, an upper bound on the number of preemptions must be derived. In the general

case, this is both difficult and very pessimistic. For example, it is easy to find task sets where a job is

preempted more than n times, i.e., jobs can incur Ω(n) preemptions in general.

Luckily, indirect accounting can be used to obtain a safe O(1) approximation under JLFP

schedulers: instead of charging the costs of a preemption to the preempted, lower-priority job, they

are charged to the preempting, higher-priority job (Liu, 2000). This is illustrated in Figure 3.12(c).

Here, J ′2’s execution requirement has been inflated by the cost of both scheduler invocations and

context switches, and also by an amount of time that matches the cache-related execution time

increase of J1. As shown in Figure 3.12(c), this results in a safe approximation since overhead-

unaware schedulability analysis will consider T ′2’s execution requirement when bounding T ′1’s

response time, which then implicitly accounts for the preemption-related overheads. Since each job

is released only once and thus causes at most one preemption in a JLFP scheduler, it is sufficient to

charge each task for the cost of one preemption with this “accounting trick.”
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Recall that ∆sch denotes scheduling overhead and that ∆cxs denotes context-switch overhead.

We further let ∆cpd denote cache-related preemption and migration delay (CPMD), i.e., the maximum

cost of re-establishing cache affinity after a preemption and migration. This results in the following

transformation: the overhead-free model τ ′ is a safe approximation of τ with regard to preemptions

and migrations if

e′i ≥ ei + 2 · (∆sch + ∆cxs) + ∆cpd (3.7)

for all Ti ∈ τ and each corresponding T ′i ∈ τ ′. Note that while release delay is accounted for

on a task-by-task basis, this transformation is only correct if it is applied to all tasks in the task

set.15 Further note that the term ∆cpd is not a bound on the maximum CPMD incurred by any job

of Ti—rather, it is the maximum CPMD incurred by any other job, i.e., any potential preemption

“victim.” In this dissertation, we make the simplifying assumption that ∆cpd denotes the maximum

CPMD incurred by any job of any task.

Migrations. Equation (3.7) is also sufficient under global and clustered JLFP scheduling. This

is demonstrated in Figure 3.13, which shows two schedules that illustrate that migrations can be

accounted for similarly to preemptions.

Example 3.8. Inset (a) shows a G-EDF schedule of six jobs on three processors. Two of the jobs,

J5 and J6, migrate in the depicted schedule. Interrupts and latencies are assumed negligible for

the sake of clarity. At time 0, jobs J3, J4, and J6 are released and commence execution at time 2

after preempting the background or idle processes on each of the three processors. At time 3, J5

is released and linked to processor 2, which causes the lowest-priority job J6 to be preempted. J5

incurs release delay until the context switch is complete at time 5. At time 7, J5 is in turn preempted

by the higher-priority J2, which commences execution at time 9. In the mean time, J3 and J4

complete at time 8. Since J5 and J6 are unlinked at the time, they become linked to processors 1

and 3, and corresponding migrations are initiated. When J5 and J6 continue to execute at time 10,

they both incur CPMD, which delays their completion by one time unit. J6 is preempted a second

time at time 12 when J1 arrives, which results in J6 migrating to processor 1 when J5 completes.

15In general, any sporadic job release could potentially cause a preemption to occur under JLFP scheduling. As an
exception, jobs of the lowest-priority task under FP scheduling never preempt other real-time jobs.
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Figure 3.13: G-EDF schedules illustrating overheads caused by preemptions and migrations.
For the sake of clarity, overhead due to interrupts and latencies is considered negligible, whereas
scheduling and context-switch overheads are exaggerated. (a) Newly released jobs must first preempt
a previously scheduled job (at times 3, 7, and 12) or a background process (at time 0). A job that
continues execution is similarly delayed by a scheduler invocation, a context switch, and CPMD.
Note that J6 is linked to processor 1 at time 13 when J5 completes, but that it is not scheduled
until time 15. Concurrently, J2 completes on processor 2 at time 14. In theory, processor 2 is idle
thereafter; in practice, processor 2 executes a context switch to a background process (not shown).
(b) An equivalent overhead-free schedule can be constructed since each job’s execution requirement
is inflated to account for a scheduler invocation and context switch before it commences execution,
and additionally for a scheduler invocation, context switch, and CPMD after it finishes execution.
Note that J6 does not incur any priority inversion during [14, 16) because the post-job inflation of
both J5 and J2 account for its delay.
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Technically, a priority inversion arises during [14, 15): after J2 completes at time 14, processor 2 is

idle from a real-time scheduling point of view, but J6 is effectively not scheduled until time 15, when

the context switch from J5 to J6 is complete. This is unavoidable in practice because processor 1 has

already selected J6 at time 14, and because processor 2 still needs to switch away from J2.

Figure 3.13(b) shows an equivalent, overhead-free schedule where the execution requirements

have been inflated according to Equation (3.7). The increase in a job Ji’s execution requirement

can be split into two components: the pre-job charge is ∆sch + ∆cxs , wheres the post-job charge is

∆sch + ∆cxs + ∆cpd . The pre-job charge accounts for the overhead that arises when Ji commences

execution; the post-job charge accounts for the delay that a preempted job incurs when it continues

execution after Ji completed. Both charges are shown in Figure 3.13(b). Note that each preemption

causes a preempted job to be delayed by 2 · (∆sch + ∆cxs) + ∆cpd time units, i.e., one pre-job and

one post-job charge, but that the accounting for one job’s delay is effectively split across up to two

higher-priority jobs. For example, consider J5, which is preempted by J2 at time 7. In Figure 3.13(a),

J5 is delayed by overheads during [7, 11). In the overhead-free schedule depicted in Figure 3.13(b),

this delay can be equivalently attributed to J2’s pre-job charge during [7, 9) and to J4’s post-job

charge during [9, 11). Similarly, J6’s delay during [14, 16) can be attributed to the post-job charges

of both J5 and J2 without introducing any priority inversion (the post-job charge attributed to J2

rules out any priority inversion). This highlights that it is key that Equation (3.7) is applied to all

tasks. Response times in inset (b) exceed the actual response times in inset (a), which illustrates that

the jobs in inset (b) are a safe approximation of those in inset (a). ♦

To summarize, Equation (3.7) provides an efficient way to safely account for preemption and

migration costs under clustered event-driven JLFP schedulers. Next, we discuss how to bound

interference from interrupts, which is the most pessimistic part of overhead accounting.

3.4.4 Interrupt Delays

ISRs execute with a statically higher priority than any real-time task in the system and cannot be

scheduled. That is, while interrupts can be temporarily masked by the OS, they cannot be selectively

delayed in favor of a higher-priority job. We say that a scheduled job is stopped when a processor

transfers control to an ISR and the scheduled job’s completion is delayed. In contrast to a regular
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preemption, a stopped job cannot migrate to another processor while the interfering ISR executes

since the ISR uses the kernel stack of the interrupted process.

Delays due to ISRs are fundamentally different from preemption overheads and release delay.

Both preemption and release delay occur synchronously in the sense that they arise at a known point

in time in relation to the job that is charged for them, namely prior to and after the job’s execution.

In contrast, delays due to ISRs arise asynchronously in the sense that ISRs may be triggered at any

point during a job’s execution.

Bounding ISR activations can be challenging in practice. The number of distinct interrupts is

often limited (to reduce hardware costs), and hence interrupts may be shared among multiple devices.

Further, devices and interrupts are commonly multiplexed among many logical tasks. For example, in

Linux (and hence LITMUSRT as well), a single HW timer is shared among multiple real-time tasks

and potentially even best-effort tasks. As a result, it is difficult to characterize a system’s worst-case

interrupt behavior by modeling the individual (hardware) interrupts. Instead, it is more illuminating

to consider logical interrupt sources that cause one or more ISRs to be invoked in some pattern, but

do not necessarily correspond to any particular device.

In this dissertation, we consider two specific interrupt sources directly related to scheduling:

sporadic release interrupts, which trigger job releases, and periodic timer ticks, which signal the

beginning of a new quantum. The presented analysis techniques, however, can easily be transferred

to integrate other sporadic and periodic interrupt sources. A more general interrupt model that allows

for arbitrary interrupt sources (including “bursty” interrupt patterns) can be found in (Brandenburg

et al., 2011).

Under dedicated interrupt handling, release interrupts are exclusively handled on the systems

processors and thus never stop jobs, which are only scheduled on application processors. In contrast,

timer ticks occur on all processors, even under dedicated interrupt handling. Under global scheduling

without a dedicated systems processor, it can in general not be predicted on which processors a job

may execute. Therefore, jobs may be delayed by all interrupt sources in this case. Under clustered

scheduling, this applies similarly on a per-cluster basis.

Integrating sporadic and periodic interrupt sources is straightforward under FP and P-FP

scheduling since ISRs can be modeled as jobs (Liu, 2000). Interrupt accounting is more difficult

under EDF-based schedulers and global scheduling in general (where ISRs and jobs differ since ISRs
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stop the currently scheduled job instead of preempting it). In this section, we discuss previously-

published interrupt accounting techniques for FP and EDF-based scheduling. In the case of FP

scheduling, we use the approach described by Liu (2000), and in the case of EDF-based scheduling,

we first discuss an approach called “task-centric” interrupt accounting (Brandenburg et al., 2011),

which we subsequently extend in Section 3.4.5.

3.4.4.1 Release Interrupts

Recall the timeline depicted in Figure 3.11(a), which depicts the events that precede the release

of a job Ji. After incurring hardware and interrupt latency, the ISR that releases Ji executes on

processor 1 during [t2, t3). Release delay already accounts for the delay that Ji experiences due to

the execution of its own release interrupt, but it does not reflect delays due to the release of other

jobs. The job that is scheduled on processor 1 at time t2 (if any) is delayed while it is stopped during

[t2, t3). This must be accounted for separately.

Each task Ti represents an interrupt source that causes a release interrupt at most once every

pi time units (subject to a worst-case jitter of ∆ev time units). Further, recall that a release ISR

executes for at most ∆rel time units. There is thus a strong resemblance between release interrupts

and sporadic tasks. However, a sporadic interrupt source is not the same as a sporadic task because

interrupts are not subject to scheduling.

Example 3.9. The lack of control of the scheduler is illustrated in Figure 3.14, which shows the

same uniprocessor EDF schedule of the two jobs from Figure 3.12(a), but this time subject to

non-negligible delays due to release interrupts. At time 0, J1 is released and delayed by its own

release interrupt. This is accounted for by J1’s release delay and does not qualify as asynchronous

interrupt delay. However, J1 is delayed by another release interrupt at time 5 when J2 is released.

Since J2 has a later deadline than J1, J2 does not affect J1 in theory. In practice, the interrupt

management hardware is unaware of J2’s deadline and the ISR executes immediately, which delays

the higher-priority job in two ways: first, J1 is stopped during [5, 6), and second, parts of J1’s

working set are evicted from cache(s) by the footprint of the ISR. Neither delay can be charged to J2

because J2’s execution requirement does not impact J1’s response time under overhead-free analysis
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Figure 3.14: Uniprocessor schedules illustrating interrupt delay accounting techniques. Scheduling
and context-switch overheads have been omitted for clarity; the impact of release interrupts has been
exaggerated. The schedule depicts the same scenario as shown in Figure 3.12(a). (a) In theory, J1

should not be delayed by J2. In practice, J1 is stopped while the ISR that releases J2 executes, and
must reload parts of its working set when it continues execution. (b) Under FP and P-FP scheduling,
J2’s release interrupt can be modeled as an additional higher-priority task T irq

2 with the same period
as T2. J1’s own release interrupt is already included when accounting for worst-case release delay.
(c) Under EDF-based schedulers, J2’s release interrupt is accounted for by inflating J1’s execution
requirement.
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of EDF. This is also the case if the system were scheduled using FP instead since J1 has a higher

priority than J2. ♦

The way interrupts are accounted for differs depending on the scheduling policy.

P-FP scheduling. In the case of FP and P-FP scheduling, each source of sporadic interrupts can be

modeled as an additional higher-priority task. This is illustrated in Figure 3.14(b). The lower-priority

task T2 represents an interrupt source that can delay jobs of T1. This source of delay is accounted

for by adding an imaginary interrupt task T irq
2 with the same period as T2. During response-time

analysis, imaginary interrupt tasks are considered to have a higher priority than T1 such that T1’s

response-time bound depends on the execution carried out by all ISRs. The execution requirement

of each interrupt task consists of two parts, namely the execution of the ISR itself and the delay

caused by a partial loss of cache affinity of the scheduled job. Since ISRs typically have small cache

footprints, a job loses cache affinity to a much lesser degree when interrupted by a release interrupt

than when preempted by another job.

Let ∆cid denote an upper bound on the cache-related interrupt delay, i.e., the delay incurred

by any job of any task when restoring cache affinity after being stopped by a release interrupt, and

recall that ∆rel denotes an upper bound on the execution requirement of a release ISR. A task set τ ′

is a safe approximation of a task set τ with regard to release interrupts if it includes an additional

interrupt task T irq
i for each Ti ∈ τ with the following parameters.

eirqi = ∆rel + ∆cid pirqi = pi suspirq
i = ∆ev (3.8)

Setting suspirq
i = ∆ev accounts for the jitter in ISR invocation caused by hardware and interrupt

latencies. The relative deadline and pi-blocking parameters are irrelevant for interrupt tasks.

When applying response-time analysis, each interrupt task is considered to have higher priority

than any real task. As an exception, T1’s own interrupt does not have to be accounted for in this way

since it is already accounted for by the self-suspension used to model release delay (see Section 3.4.2).

EDF-based scheduling. Accounting for interrupts is much more challenging under EDF-based

schedulers since (global) EDF schedulability tests do not account for tasks that are always of

higher priority, regardless of their release times. Liu and Layland (1973) discussed mixed EDF/FP
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scheduling on a uniprocessor. Based on Liu and Layland’s mixed EDF/FP analysis, Jeffay and

Stone (1993) presented schedulability analysis for uniprocessor EDF in the presence of interrupts.

However, their analysis assumes strictly periodic (and not sporadic) execution of both interrupts and

tasks and assumes quantum-driven scheduling and thus does not apply to our implementation of

P-EDF. Additionally, neither Liu and Layland’s nor Jeffay and Stone’s approach takes the effect

of jitter into account, which we require for our purposes. To the best of our knowledge, interrupt

accounting techniques for global event-driven scheduling had not been considered prior to our work

presented in (Brandenburg et al., 2009, 2011).

In this dissertation, we discuss two interrupt accounting techniques for EDF-based schedulers

in detail. We begin by summarizing task-centric interrupt accounting, which was first presented in

(Brandenburg et al., 2009, 2011), and then introduce preemption-centric interrupt accounting, which

is a refinement of the task-centric method.

Interrupt sources are not modeled as additional tasks under task-centric accounting. Instead,

each task’s execution requirement is inflated to directly account for the worst-case interrupt-related

delay that a job may incur. This approach is illustrated in Figure 3.14(c). Release interrupts are

charged for by inflating J1’s execution requirement to account both for its own release (as part of

accounting for release delay) and for the release of J2.

In general, to correctly inflate the execution requirement of a task Ti requires bounding the

number of interrupts that can possibly stop any of its jobs. This in turn depends on its maximum

response time—the longer a job Ji is pending, the more interrupts may occur during its execution.

That is, even though a job can only be stopped by interrupts while it is scheduled, its exposure to

interrupts increases when it is preempted. Since release interrupts are sporadic (and not periodic),

interrupt sources could potentially experience inter-sporadic arrival delays to fire at exactly the time

when Ji continues execution after a preemption. For example, suppose that Ji is preempted at time

ta and scheduled again at time tb. In the worst case, no interrupt source fires during [ta, tb), but each

interrupt source fires at time tb.

Task-centric interrupt accounting is based on the following coarse-grained upper bound on the

number of times that a release occurs while a job Ji is pending, which is denoted as nirq(Ti) and
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defined as

nirq(Ti) ,
∑

1≤j≤n

⌈
Ri + ∆ev

pj

⌉
. (3.9)

Recall that Ri denotes a bound on the maximum response time of any Ji. Akin to response-time

analysis for FP scheduling, this formula computes how many consecutive jobs of each Tj can overlap

with an interval of length Ri + ∆ev , and hence bounds the maximum number release interrupts due

to each Tj . The term “+∆ev” is required to account for any jitter experienced by jobs of Tj (Audsley

et al., 1993).

Note that Equation (3.9) also counts release interrupts due to Ti itself, which is required if

Ri + ∆ev > pi, i.e., if jobs may be tardy or if di > pi. However, this overcharges by one release

interrupt since Ji is not yet pending prior to the ISR that triggers its release. This means that the

charge of ∆rel in Equation (3.5) can be omitted when using task-centric interrupt accounting since it

is implicitly counted by Equation (3.9).

A practical issue in the computation of Equation (3.9) is that Ri is likely unknown prior to

accounting for interrupts (since interrupts affect the response time). As in the case of FP response-

time analysis, this can be resolved using an iterative approach; in the case of HRT constraints, it is

also possible to substitute di for Ri (Brandenburg et al., 2009, 2011).

Assuming an upper bound on Equation (3.9) is known, a task set τ ′ is a safe approximation of τ

with regard to asynchronous release interrupts if the execution requirement of each T ′i ∈ τ ′ satisfies:

e′i ≥ ei + nirq(Ti) · (∆rel + ∆cid ). (3.10)

Note that this transformation must be applied to each task in τ ; it is not sufficient to only inflate

the execution requirement of a subset of the tasks. This is because interrupts prior to Ji’s release

can push back higher-priority demand and thus indirectly delay Ji. If each job is inflated for the

interrupts that occur while it is executing, then the pushed-back higher-priority demand is implicitly

accounted for by regular EDF schedulability analysis.

Task-centric interrupt accounting can be very pessimistic. In fact, it can be shown that task-

centric interrupt accounting is subject to Ω(n2) algorithmic capacity loss (Brandenburg et al., 2009,
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2011), which renders it inappropriate for large n. Intuitively, this quadratic capacity loss results since

each of the n tasks’ execution requirement is inflated to account for nirq(Ti) ≥ n− 1 releases.

An alternate accounting technique called processor-centric interrupt accounting was also intro-

duced in (Brandenburg et al., 2011). Under processor-centric accounting, the execution requirement

of jobs is not inflated to account for ISR execution. Intuitively speaking, ISRs are instead considered

to “slow down” the effective rate of execution of scheduled jobs. More accurately, processor-centric

accounting is based on special restricted-supply schedulability analysis, where processors are as-

sumed to only be partially available to a task set (e.g., this is the case under hierarchical scheduling).

ISR execution can be modeled as a supply restriction under such analysis.

Processor-centric accounting is sometimes less pessimistic than task-centric accounting, but

suffers from two limitations: first, processor-centric accounting is very pessimistic in the presence

of high-utilization tasks, and second, it is not compatible with ordinary schedulability analysis. For

these reasons, we do not use processor-centric interrupt accounting in this dissertation. The interested

reader is referred to (Brandenburg et al., 2011) for an empirical comparison of processor-centric

and task-centric interrupt accounting, and to (Leontyev, 2010) for an in-depth discussion of the

underlying restricted-supply schedulability analysis.

3.4.4.2 Timer Ticks

Timer ticks mark the beginning of a new quantum. They are implemented as periodic per-processor

timers with a period of Q time units. In recent versions of Linux, this timer is implemented as a

software high-resolution timer (i.e., by means of the hrtimers subsystem) that is typically backed by

the local APIC timer on x86 platforms. This implies that the timer tick is a processor-local interrupt

source that occurs on each processor. While not strictly required for event-driven schedulers, the

version of Linux underlying LITMUSRT does not support deactivating the periodic tick while a

process is scheduled. It thus creates overhead that must be accounted for.

Example 3.10. Figure 3.15(a) shows a schedule of two jobs in the presence of timer ticks that occur

every Q = 5 time units. All other sources of overheads have been omitted for clarity. At time 4,

job J2 is released and commences execution. It is stopped during [5, 6) when the tick ISR executes

and incurs cache-related interrupt delay thereafter while it re-establishes cache affinity. It is then
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Figure 3.15: Uniprocessor schedules illustrating timer tick delay accounting techniques. All other
overheads are omitted for clarity; the impact of tick interrupts has been exaggerated. Timer ticks occur
every Q = 5 time units. J2 would require the processor for e2 = 6 time units were it not delayed by
timer ticks. (a) J2 is delayed by a timer tick three times during its execution. While the tick ISR
executes, J2 is stopped. Afterwards, J2 needs to reestablish cache affinity. By chance, J1 is not
affected by timer ticks due to its “lucky” release time. (b) Under FP and P-FP scheduling, the timer
tick can be modeled as a higher-priority periodic task T tck

0 with a period of Q time units. (c) Under
EDF-based schedulers, J2 is inflated to account for two timer ticks that it incurs unconditionally, i.e.,
even when executing in isolation, and also two additional timer ticks for the preemption due to J1,
which safely, but pessimistically, overestimates the additional delay due to the preemption.
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preempted by J1 at time 8. J1 happens to be “lucky” in that it executes in between two quantum

boundaries and thus is not delayed by a timer tick. However, the preemption causes J2 to incur two

more timer ticks at times 10 and 15.

Had J2 not been preempted, it would have completed before time 15 and thus would have been

spared a third delay. This is shown in Figure 3.16(a), which depicts J2 assuming that it executes

in isolation, i.e., without being preempted. This example shows that higher-priority jobs can cause

lower-priority jobs to incur additional timer ticks. ♦

P-FP scheduling. The recurring timer tick interrupt can be trivially modeled as the highest-priority

task under FP and P-FP scheduling (Liu, 2000), which is illustrated in Figure 3.15(b). The possibility

that a preemption can “push” a lower-priority job into additional timer ticks is implicitly accounted

for when conducting response-time analysis.

We let T tck
0 denote the task that models the periodic timer tick. Its execution requirement

accounts for both the actual timer tick ISR overhead, which is denoted as ∆tck , and the maximum

cache-related interrupt delay (∆cid ). In practice, it may be possible to derive values of ∆cid specific

to each interrupt source since ISRs likely differ in cache footprint. For the sake of simplicity, however,

we do not differentiate between the loss of cache affinity due to a release interrupt and that due to a

timer tick. This yields the following parameters for T tck
0 .

etck0 = ∆tck + ∆cid ptck0 = Q susptck
0 = ∆ev (3.11)

As before in the case of release interrupts, a maximum self-suspension duration of ∆ev is used to

account for jitter.

EDF-based scheduling. The task-centric approach used to analyze release interrupts could be

applied to timer ticks as well. The resulting bound, however, would be overly pessimistic since Q is

typically much shorter than task periods. In (Brandenburg et al., 2011), we presented task-centric

analysis specific to timer ticks, which we summarize in detail since we use the same proof strategy in

the derivation of preemption-centric accounting in Section 3.4.5 below.

The analysis consists of two steps. In the first step, it is assumed that the job under analysis

executes in isolation, i.e., without preemptions, which yields the number of timer ticks that are
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(c) Equivalent overhead-free EDF schedule.

Figure 3.16: Illustration of timer tick overhead if J2 is not preempted. The depicted scenario
corresponds to Figure 3.15 assuming that T1 is inactive. (a) When scheduled in isolation (i.e., not
preempted), J2 is delayed by the effects of timer ticks twice. (b) If J2 is not preempted, then the
schedule is equivalent to a two-task FP schedule amenable to response-time analysis. (c) Since J2 is
preempted twice in the equivalent FP schedule, it is charged the cost of two timer tick interrupts.
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unavoidable given its execution requirement. In the second step, the number of additional timer ticks

that a job may incur per preemption is integrated into the bound derived in the first step.

In the absence of preemptions, the scheduling policy is irrelevant and the schedule can be

converted to an equivalent FP schedule of two tasks T ′2 and T tck
0 , as illustrated in Figure 3.16(b).

Note that J ′2 executes for exactly e2 time units since the cache-related interrupt delay has been

modeled as execution time of the timer tick ISR. Based on this equivalent overhead-free model, J2’s

response-time increase due to timer ticks can be determined by applying regular FP response-time

analysis to T ′2.

Recall that Ri denotes an upper bound on the worst-case response time. If a job Ji is not

preempted by other jobs, i.e., while pending, Ji is either executing or stopped by a timer tick, as

illustrated in Figure 3.16(b), then Ri is given by the smallest value that satisfies

Ri = ei +

⌈
Ri + ∆ev

Q

⌉
· (∆tck + ∆cid ). (3.12)

Equation (3.12) follows directly from Audsley et al.’s jitter-aware response-time bound for FP

scheduling (Audsley et al., 1993) since ptck0 = Q and etck0 = ∆tck + ∆cid .

For the special case of jobs that are not preempted, the response-time bound Ri can be used as a

safe approximation of Ti by setting e′i = Ri.

Example 3.11. In Figure 3.16(b) where ∆ev = 0, J2’s execution requirement of e2 = 6 is inflated

by the cost of two timer ticks since

R2 = e2 +

⌈
R2 + ∆ev

Q

⌉
· (∆tck + ∆cid )

= 6 +

⌈
10 + 0

5

⌉
· (1 + 1) = 6 + 2 · 2 = 10.

The resulting overhead-free task T ′2 is illustrated in Figure 3.16(c). ♦

Next, we consider the impact of preemptions. As Figure 3.15(a) demonstrates, Equation (3.12)

is no longer a safe approximation if jobs may be preempted. However, the number of additional

timer ticks is bounded by the number of preemptions, as we illustrate in the following proof for the

special case of a single preemption.
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If a job Ji is preempted by other jobs once, then it can be thought of being comprised of two

subjobs that execute without being preempted. For example, in Figure 3.15(a), J2 consists of two

subjobs that are scheduled during [4, 8) and [10, 18), respectively (recall that a job is stopped and not

preempted when interrupted by a timer tick, and thus considered to be scheduled).

Let ei,1 and ei,2, where ei = ei,1 + ei,2, denote the execution times of the two subjobs in the

equivalent FP schedule where all cache-related interrupt delay has been modeled as the execution of

T tck
0 . For example, in Figure 3.15(b), e2,1 = 2 and e2,2 = 4.

Since each subjob is not preempted, we can apply Equation (3.12) to determine its response-time

increase due to timer ticks. LetRi,1 andRi,2 denote the response times of the subjobs. In the scenario

shown in Figure 3.15(b), R2,1 = 4 and R2,2 = 8.

LetEi denote the total time that Ji is scheduled (either executing or stopped), which is equivalent

to the sum of the response times of the two subjobs in the equivalent two-task FP schedule.

Ei = Ri,1 +Ri,2 (3.13)

This yields the following recurrence.

Ei = Ri,1 +Ri,2

{ expanding Equation (3.12) }

= ei,1 +

⌈
Ri,1 + ∆ev

Q

⌉
· (∆tck + ∆cid ) + ei,2 +

⌈
Ri,2 + ∆ev

Q

⌉
· (∆tck + ∆cid )

{ since ei = ei,1 + ei,2 }

= ei +

(⌈
Ri,1 + ∆ev

Q

⌉
+

⌈
Ri,2 + ∆ev

Q

⌉)
· (∆tck + ∆cid )

{ since dae+ dbe ≤ da+ be+ 1 for any a, b }

≤ ei +

(⌈
Ri,1 +Ri,2 + ∆ev

Q
+

∆ev

Q

⌉
+ 1

)
· (∆tck + ∆cid )

{ by Equation (3.13) }

= ei +

(⌈
Ei + ∆ev

Q
+

∆ev

Q

⌉
+ 1

)
· (∆tck + ∆cid )
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The smallest Ei satisfying the above recurrence is hence a safe upper bound on the total time that

Ji was scheduled or stopped by an interrupt. With this definition, it is possible to compute Ei

directly without knowing at which point Ji was preempted during its execution. Note that the above

recurrence is essentially Equation (3.12) with one additional timer tick and ∆ev

Q additional latency

accounted for.

The derivation of Ei can be generalized to an arbitrary number of subjobs, which results in the

cost of one additional timer tick and ∆ev

Q latency being charged for each preemption. Let ηi denote

the maximum number of times that any Ji is preempted. A safe approximation with regard to timer

ticks is then given by the smallest e′i that satisfies

e′i = ei +

(⌈
e′i
Q

+ (ηi + 1) · ∆ev

Q

⌉
+ ηi

)
· (∆tck + ∆cid ). (3.14)

Under EDF-based schedulers, Ji is only preempted by another job Jh if Jh arrived later than Ji and

has a shorter deadline, which implies that dh < di. If dh is not an integer multiple of di, then at most
⌊
di
dh

⌋
jobs of Th with earlier absolute deadlines are released while Ji is pending (Liu and Layland,

1973). This also holds if Ji is tardy since newly-released jobs cannot preempt a tardy job (since a

tardy job’s absolute deadline is in the past). Otherwise, if dh is an integer multiple of di, then only
⌊
di
dh

⌋
− 1 jobs of Th can preempt Jh. The two cases can be equivalently expressed as

⌈
di
dh

⌉
− 1,

which yields the following bound on ηi:

ηi ≤
i 6=h∑

Th∈τ

(⌈
di
dh

⌉
− 1

)
. (3.15)

Note that if ∆ev = 0 and ∆cid = 0, then Equation (3.14) reduces to e′i = ei+
(⌈

e′i
Q

⌉
+ ηi

)
·∆tck ,

which corresponds to the bound stated in (Brandenburg et al., 2011).

Example 3.12. Figure 3.15(c) illustrates the equivalent, overhead-free T ′2 based on Equation (3.14).

In the depicted scenario, e2 = 6, d2 = 17, and d1 = 12. J2 is thus preempted at most η2 =
⌈

17
12

⌉
− 1 = 1 times, which is indeed the case in Figure 3.15. This yields the following safe
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approximation:

e′2 = 14 = ei +

(⌈
e′i
Q

+ (ηi + 1) · ∆ev

Q

⌉
+ ηi

)
· (∆tck + ∆cid )

= 6 +

(⌈
14

5
+ 2 · 0

5

⌉
+ 1

)
· (1 + 1)

= 6 + 4 · 2

That is, e2 is inflated to account for up to four timer ticks. Note that J ′2 is actually scheduled for only

12 time units in Figure 3.15(a) since J2 is only delayed by three timer ticks. This illustrates that the

approximation is safe but not exact. ♦

A disadvantage of Equation (3.14) is that it requires knowledge of the maximum number of

preemptions that any job of a task can incur. Since ηi is part of the recurrence, it is not immediately

possible to charge it to the preempting task as is the case with the scheduling- and cache-related

costs inherent in a preemption. Therefore, Equation (3.15) is used to bound the maximum number of

preemptions per job. Unfortunately, a tighter bound than Equation (3.15) is not possible in general as

one can construct schedules where it is accurate for some Ti.

However, charging every task for all job releases of shorter-deadline tasks is severely pessimistic.

To illustrate this, suppose that tasks are indexed in order of increasing relative deadlines. Then

each Ti is inflated to account for Ω(i) preemptions (unless some relative deadlines are equal). This

effectively assumes that each lower-priority job is preempted every time that a higher-priority job is

released. Since a higher-priority job causes at most one job to be preempted upon release, this is

overly pessimistic.

In fact, charging each Ti for the effect of Ω(i) preemptions implies that Ω(n) tasks are charged

for Ω(n) preemptions. Across all tasks, this in turn results in an Ω(n2) increase in task set utilization.

To summarize, the task-centric analysis of timer ticks is less pessimistic than the task-centric analysis

of release interrupts because Ji is charged only for timer ticks that occur while it is executing, and

not for all interrupts that occur while it is pending. That is, Equation (3.14) is based on ei, whereas

Equation (3.9) is based on Ri (and Ri ≥ ei). However, the improved analysis specific to timer ticks

is asymptotically just as wasteful as the general task-centric method since the number of preemptions
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ηi must be bounded explicitly, which gives rise to pessimism. As we show next, this limitation can

be overcome by using a more coarse-grained response-time approximation.

3.4.5 Preemption-Centric Interrupt Accounting

In this section, we introduce preemption-centric interrupt accounting, a novel interrupt accounting

method that modifies the above-described task-centric approach to be less pessimistic with regard to

the number of preemptions. In particular, the key property of the preemption-centric approach is that

preemption-related interrupt delays are accounted similar to CPMD, that is, the preempting job is

charged for additional delays and not the preempted job.

Preemption-centric interrupt accounting is structurally very similar to the task-centric timer tick

analysis. It uses the same approach, namely, to analyze the response time of subjobs that execute

preemption-free in an equivalent FP schedule. There are only two significant differences: first, we

apply the subjob analysis to both release interrupts and timer ticks at the same time (to avoid having

to inflate twice), and second, we use a simple, less-accurate upper bound on response time, which

simplifies the algebraic manipulation of subjob response times.

The proof is analogous to the argument underlying the preceding analysis of timer ticks. In the

first step, we consider a job Ji that is not preempted and bound its response time. In the second

step, we assume that Ji is preempted η times and bound the total time that it is executing or stopped

by combining the response times of its η + 1 subjobs. Finally, we charge the costs of additional

interrupts to the preempting task, which results in an O(1) charge per interrupt source (instead of the

Ω(n) inherent in task-centric accounting).

Step 1. As before, let Ji denote a job that is not preempted by other jobs. While Ji is pending, it is

thus either executing or stopped due to an interrupt. In total, there are n+ 1 interrupt sources that

can delay Ji: n release interrupt sources (one for each task) and one timer tick. While there may

be additional timer tick sources on other processors, Ji does not migrate since Ji is not preempted.

Only the processor-local timer tick is thus relevant.

Consider an equivalent overhead-free FP schedule of Ti and n + 1 ISR tasks in which all

cache-related interrupt delays are modeled as execution times of ISRs. Let T tck
0 denote the task

corresponding to the timer tick, and let T irq
j , where 1 ≤ j ≤ n, denote the task modeling the interrupt
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source that releases jobs of Tj . In other words, consider the task set τFP = {T tck
0 , T irq

1 , . . . , T irq
n , Ti},

where Ti is the lowest-priority task and the relevant parameters of ISR tasks are as follows.

etck0 = ∆tck + ∆cid ptck0 = Q utck0 =
∆tck + ∆cid

Q

eirqj = ∆rel + ∆cid pirqj = pj uirqj =
∆tck + ∆cid

pj

Applying Audsley et al.’s jitter-aware response-time bound for FP scheduling (Audsley et al., 1993)

to τFP yields the following response-time bound for Ji since Ti is the lowest-priority task.

Ri = ei +

⌈
Ri + ∆ev

Q

⌉
· etck0 +

∑

1≤j≤n

⌈
Ri + ∆ev

pj

⌉
· eirqj (3.16)

Next, we bound Ri with a non-recurrent approximation by substituting each ceiling with an upper

bound, which is a well-known method (Sjödin and Hansson, 1998) but included here for the sake of

completeness.

Consider the rate at which Ji accumulates processor service. While Ji is scheduled and executing,

it receives service at a rate of 1. However, while Ji is stopped, it does not receive any service, i.e., the

rate of service accumulation is 0. When the total amount of service accumulated by Ji reaches ei, then

Ji completes (at the latest). Upper-bounding the response time of Ji requires thus lower-bounding

the amount of service that Ji receives over time.

This can be accomplished with a linear lower bound on the amount of processor service received

by Ji that is offset by some constant cpre from the origin, as illustrated in Figure 3.17. A linear

function (the dashed curve in Figure 3.17) bounds the curve representing actually received service

from below. Let s denote the slope of the linear lower bound on service, i.e., on average, Ji receives

at least s time units worth of service during each time unit. Then Ji completes after at most eis time

units after cpre . For example, Figure 3.17, the offset is 4, ei = 8, and s = 2
3 . Ji thus completes after

at most 4 + 8·3
2 = 4 + 12 = 16 time units. Bounding Ri thus consists of determining s and cpre .

In the following, we first formally define ei
s and cpre and then show why they arise in the

following derivation.
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Figure 3.17: Illustration of response-time bound for preemption-centric interrupt accounting. The
graph illustrates the amount of processor service received by a job Ji that is not preempted but
stopped by interrupts. The solid curve depicts the cumulative processor service actually received by
Ji. It has a slope of 1 when Ji is executing, and a slope of 0 while Ji is stopped. The dashed curve
depicts the lower bound on processor service used for preemption-centric interrupt accounting. The
lower bound has a slope of 1− utck0 −

∑
1≤j≤n u

irq
j . The actual response time and the response-time

bound are determined by the intersection of the service curves and the execution requirement ei = 8.
The additional charge cpre corresponds to the offset of the lower bound curve and is required to
account for the possibility that Ji is stopped immediately.

Definition 3.2. Let einfi denote Ti’s inflated execution requirement, defined as

einfi ,
ei

1− utck0 −∑1≤j≤n u
irq
j

, (3.17)

and let cpre denote the cost of one preemption (with regard to interrupts), defined as

cpre ,
etck0 + ∆ev · utck0 +

∑
1≤j≤n

(
∆ev · uirqj + eirqj

)

1− utck0 −∑1≤j≤n u
irq
j

. (3.18)

Note that cpre is independent of Ti, i.e., it is a task-set-specific constant but not task-specific.

This will allow us to charge preempting jobs for the additional interrupts incurred by the preempted
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job, as will become apparent in Step 2 of the proof below. The definitions of einfi and cpre are chosen

such that Lemma 3.1 below holds.

Definition 3.3. Let Ei denote the total amount of time that Ji is either executing or stopped.

Lemma 3.1. If Ji is not preempted, then Ei ≤ einfi + cpre .

Proof. Since Ji is not preempted, Ei corresponds to Ji’s response time, i.e., Ei = Ri. The stated

bound can be derived in a straightforward manner starting with Equation (3.16).

Ri = ei +

⌈
Ri + ∆ev

Q

⌉
· etck0 +

∑

1≤j≤n

⌈
Ri + ∆ev

pj

⌉
· eirqj

{ converting ceiling to upper bound }

⇒ Ri ≤ ei +

(
Ri + ∆ev

Q
+ 1

)
· etck0 +

∑

1≤j≤n

(
Ri + ∆ev

pj
+ 1

)
· eirqj

{ multiplying out and converting to utilization }

⇔ Ri ≤ ei +Ri · utck0 + ∆ev · utck0 + etck0 +
∑

1≤j≤n

(
Ri · uirqj + ∆ev · uirqj + eirqj

)

{ factoring out Ri }

⇔ Ri ·


1− utck0 −

∑

1≤j≤n
uirqj


 ≤ ei + ∆ev · utck0 + etck0 +

∑

1≤j≤n

(
∆ev · uirqj + eirqj

)

{ rearranging }

⇔ Ri ≤
ei + etck0 + ∆ev · utck0 +

∑
1≤j≤n

(
∆ev · uirqj + eirqj

)

1− utck0 −∑1≤j≤n u
irq
j

{ separating costs }

⇔ Ri ≤
ei

1− utck0 −∑1≤j≤n u
irq
j

+
etck0 + ∆ev · utck0 +

∑
1≤j≤n

(
∆ev · uirqj + eirqj

)

1− utck0 −∑1≤j≤n u
irq
j

{ applying Equation (3.17) and Equation (3.18) }

⇔ Ri ≤ einfi + cpre

And thus also Ei ≤ einfi + cpre .
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Step 2. When Ji is preempted, it may incur additional interrupts. As we show next, the additional

delay is limited to cpre per preemption. The argument is analogous to the task-centric analysis of

timer ticks in that each subjob is analyzed individually as a job that is not preempted.

Let ηi denote the number of times that Ji is preempted. Ji’s execution is then comprised of

(ηi + 1) subjobs. Let ei,x denote the amount of execution carried out by the xth subjob in the

overhead-free equivalent FP schedule, where 1 ≤ x ≤ ηi + 1 and

ei =
∑

x

ei,x, (3.19)

and let Ei,x denote the total duration that the xth subjob is scheduled, i.e., either executing or stopped.

Lemma 3.2. If Ji is preempted at most ηi times, then Ei ≤ einfi + (ηi + 1) · cpre .

Proof. The total duration that Ji is either scheduled or stopped is comprised of the sum of the

response time of each subjob, i.e., Ei =
∑ηi+1

x=1 Ei,x. This yields the following inequality.

Ei =

ηi+1∑

x=1

Ei,x

{ by Lemma 3.1 with respect to each Ei,x since subjobs are not preempted }

≤
ηi+1∑

x=1

(einfi,x + cpre)

{ by Equation (3.17) and pulling out cpre , which is independent of x }

=

ηi+1∑

x=1

(
ei,x

1− utck0 −∑1≤j≤n u
irq
j

)
+ (ηi + 1) · cpre

{ pulling out divisor }

=

∑ηi+1
x=1 ei,x

1− utck0 −∑1≤j≤n u
irq
j

+ (ηi + 1) · cpre

{ by Equation (3.19) }

=
ei

1− utck0 −∑1≤j≤n u
irq
j

+ (ηi + 1) · cpre

{ by Equation (3.17) }

= einfi + (ηi + 1) · cpre
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In other words, each time that Ji is preempted, its effective execution requirement increases by

at most a constant amount cpre . It is important to realize that cpre is not task-specific, i.e., it does

not depend on the identity of Ji. This allows the increase in execution time to be attributed to the

preempting job, analogously to how scheduling and context-switch overheads are charged to the

preempting job. That is, the preempting job is charged cpre time units to account for additional delays

incurred by the preempted job. If jobs migrate, then cpre functions similar to the post-job charge

in Figure 3.13. We first consider the uniprocessor case; an example with migrations is presented

thereafter.

Example 3.13. Consider the uniprocessor example of timer tick overhead shown in Figure 3.18,

where n = 2, e1 = 2, e2 = 3, ∆tck = 1, ∆cid = 1, and Q = 5 (and all other overheads are omitted

for clarity). This implies utick0 = 2
5 = 0.4. Using preemption-centric accounting, the delay due to

timer ticks is bounded as follows. By Equations (3.17) and (3.18), we have

einf1 =
2

1− 2
5

=
10

3
, einf2 =

3

1− 2
5

= 5, and cpre =
2

1− 2
5

=
10

3
≥ 2.

In the schedule shown in Figure 3.18(a), J2 is delayed by two timer ticks. Note that einf2 is inflated

by einf2 − e2 = 2 time units, which is sufficient to account for one timer tick. This inflation is labeled

in Figure 3.18(b) as “inf.” The second timer tick delay, however, is charged to J1 since it preempted

J2. An additional charge of cpre is sufficient to model J2’s additional delay of two time units. In

Figure 3.18(b), the latter preemption-related charge is labeled “pre.” ♦

In general, suppose a job Ji preempts a lower-priority job Jl at the time of Ji’s release. Ji

requires a budget of einfi + cpre time units for its own execution (Lemma 3.1), plus an additional cpre

time units to compensate for the delay induced in Jl by Ji’s release. At the time of its release, Ji is

charged cpre to account for the additional delay that is incurred by Jl, just like Ji is also charged for

additional scheduling and context-switch overheads. This leaves a budget of einfi + cpre time units

for Ji to finish. By Lemma 3.1, Ji executes for at most einfi + cpre time units if it is not preempted;

the budget is thus sufficient in this case. If Ji is preempted ηi > 0 times, then there exist ηi jobs that
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(b) Equivalent overhead-free EDF schedule under preemption-centric accounting.

Figure 3.18: Uniprocessor schedules illustrating preemption-centric interrupt accounting. The
impact of tick interrupts has been exaggerated; all other overheads have been omitted for clarity.
Timer ticks occur every Q = 5 time units. J2 would require the processor for e2 = 3 time units were
it not delayed by timer ticks. (a) J2 is delayed by a timer tick two times during its execution because
it is preempted by J1. (b) Under preemption-centric accounting, J2’s inflated execution cost einf2

accounts for the first timer tick delay. The second timer tick delay is charged to J1’s execution time,
which has been inflated by cpre time units to account for this possibility.

are each charged cpre time units to Ji’s budget each time that Ji is preempted. The total budget for

Ji is thus einfi + cpre + ηi · cpre , which by Lemma 3.2 is sufficient for Ji to complete.

Lemma 3.3. A task set τ ′ is a safe approximation of a task set τ with regard to release interrupts

and timer ticks if e′i ≥ einfi + 2 · cpre (and p′i ≤ pi and d′i ≤ di) for each T ′i ∈ τ ′

Proof. Follows from the preceding discussion.

Compared to task-centric interrupt accounting, preemption-centric accounting has two major

advantages. First, the required inflation is straightforward to compute, i.e., there is no fix-point

iteration required. Second, ignoring the effect of latency, i.e., assumnig ∆ev = 0, cpre amounts to

charging one additional ISR execution for each interrupt source (the sum of which is then scaled).
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It is trivial to construct schedules where a job Ji is indeed delayed by an additional ISR from each

interrupt source each time that it is preempted. The derived bound is thus fairly tight.

Some pessimism, however, arises due to the inaccuracy of the upper bound on subjob response

times introduced by Lemma 3.1. That is, the scaling of the additional ISR charges overestimates the

maximum delay. This could be reduced by re-deriving Ei using a tighter response-time bound for

each Ri. For example, Bini and Baruah (2007) recently presented an improved response-time bound

that is compatible with preemption-centric interrupt accounting. Unfortunately, Bini and Baruah’s

response-time bound does not take jitter into account and is thus not suitable for our overhead-aware

approach (though it would likely be possible to extend their result to take latencies into account).

Migrations. While we have only discussed preemptions so far, the derived bound does not depend

on whether Ji continues execution on the same processor. Since each subjob is analyzed individually

and since subjobs never migrate, Lemma 3.2 applies also to global schedulers (and also to staggered

quanta, i.e., timer ticks do not have to occur synchronously on all processors). This is illustrated in

Figure 3.19, which shows schedules of three jobs on two processors under G-EDF.

Example 3.14. In Figure 3.19(a), job J3 is delayed by timer ticks twice. It is first delayed at time 5

when the timer tick fires on processor 1. Note that J1 is stopped even though processor 2 is idle at

the time. This illustrates that interrupts cannot simply be modeled as tasks under global scheduling

(including G-FP). At time 8, J3 is preempted by J1; at time 12, J3 migrates to processor 2 when J2

completes. As a result, J3 incurs additional timer tick delay during [13, 15) when the timer tick fires

on processor 2.

An equivalent overhead-free G-EDF schedule is depicted in Figure 3.19(b). Each of the three

jobs incurs at least one timer interrupt over the course of its execution, regardless of preemptions.

This is adequately accounted for by each einfi . The delayed completion of J3 due to the second timer

tick can be equivalently attributed to the additional charge of cpre time units that is added to each job.

(In fact, cpre exceeds the two time units shown in Figure 3.19(b) since preemption-centric interrupt

accounting is somewhat pessimistic.) This example illustrates that interrupt costs can be charged

similarly to CPMD as a post-job charge (recall Figure 3.13), even if jobs migrate, provided that all

tasks are charged cpre time units to account for interrupt-related preemption costs. ♦
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(b) Equivalent overhead-free EDF schedule under preemption-centric accounting.

Figure 3.19: G-EDF schedules of three jobs on two processors illustrating preemption-centric
interrupt accounting in the presence of migrations. The impact of tick interrupts has been exaggerated;
all other overheads have been omitted for clarity. Timer ticks occur every Q = 5 time units and
are not aligned. (a) J3 is twice delayed by a timer tick; once on the processor on which it started
execution, and once after migrating to processor 2. (b) J3’s inflated execution cost accounts for the
first timer tick delay. The second timer tick delay can be attributed to the additional charges of cpre

time units to both J1 and J2’s execution requirements.
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Dedicated interrupt handling. As discussed in Section 2.5.1.4, delays due to ISR execution can

be avoided by employing a systems processor for dedicated interrupt handling (Stankovic and

Ramamritham, 1991). This has the benefit that release interrupts manifest only as release delay,

but not as asynchronous interrupts since executing jobs are never stopped by them (recall that

jobs are only scheduled on application processors and not the systems processor). Consequently,

preemption-centric interrupt accounting is only required for timer ticks under dedicated interrupt

handling, which greatly reduces the pessimism inherent in interrupt accounting (since timer ticks are

typically much shorter ISRs than release interrupts), albeit at the cost of making the capacity of the

systems processor unavailable to real-time tasks and, in the case of partitioned schedulers, also at the

cost of introducing IPI latency. We explore this tradeoff in our case study in Chapter 4.

Another issue that is possibly exacerbated by dedicated interrupt handling is that if the systems

processor is handling many interrupt sources, then the execution of one ISR can delay the handling of

a release interrupt of a high-priority job. We assume that such delays are reflected in the worst-case

event latency; a detailed discussion in the context of arbitrary interrupt sources can be found in

(Brandenburg et al., 2011).

This concludes our discussion of overhead accounting techniques for event-driven scheduling.

We summarize the presented safe approximations next.

3.4.6 Schedulability Analysis

Prior to testing whether a task set τ is schedulable on a given platform, it is transformed into a safe

approximation τ ′ based on the overhead accounting techniques discussed in the preceding sections.

If τ ′ passes an overhead-unaware schedulability test, then τ is schedulable in the presence of the

modeled overheads. Table 3.2 summarizes the major sources of scheduling overhead.

Four combinations of event-driven scheduling are considered in this dissertation: P-FP schedul-

ing with and without dedicated interrupt handling, and C-EDF scheduling with and without dedicated

interrupt handling, which subsumes the special cases of P-EDF and C-EDF. For each of these com-

binations, we next summarize how to derive the safe approximation τ ′ prior to applying one of the

overhead-unaware schedulability tests reviewed in Section 2.3. In the case of partitioned and clustered

scheduling, overhead-accounting is applied after the task assignment phase on a cluster-by-cluster
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Notation Overhead Accounts for

∆ev event latency delay until ISR starts execution
∆ipi IPI latency delay until IPI is received

∆rel release overhead execution of a release ISR
∆tck timer tick overhead execution of a timer tick ISR

∆sch scheduling overhead process selection
∆cxs context-switch overhead process switching

∆cpd cache-related preemption and migration delay loss of cache affinity due to job
∆cid cache-related interrupt delay loss of cache affinity due to ISR

Table 3.2: Summary of the overheads that arise in event-driven schedulers and our notation.

basis. To avoid notational clutter, we assume in the following that τ = {T1, . . . , Tn} represents one

of the clusters.

A possible effect of inflating for overheads is that tasks become ill-defined. For example,

if e′i > p′i for some T ′i or if usum(τ ′) ≥ m, then τ ′ is clearly not feasible. As a result, τ is

claimed unschedulable. Another issue arises with preemption-centric interrupt accounting, which by

Equation (3.17) scales execution costs by the factor
(

1− utck0 −∑1≤j≤n u
irq
j

)−1
. In the unlikely

case that
(
utck0 −∑1≤j≤n u

irq
j

)
≥ 1, a processor could be continuously servicing ISRs. In this case,

it cannot be ruled out that jobs starve due to interrupt overload and the scaled execution time einfi

becomes nonsensical or undefined, which causes τ to be claimed unschedulable.

Recall that non-preemptive sections can mask the effect of IPI latency (page 229). To account for

this beneficial effect, we let bnpi denote maximum pi-blocking incurred by any Ji upon release due to

non-preemptive sections, and let botheri denote maximum pi-blocking due to other causes (such that

bi = botheri + bnpi ).

P-FP. Each task Ti ∈ τ is transformed to account for release delay and preemption costs. Since

interrupts are modeled as additional tasks, Ti is not directly changed to account for them. This yields

the following parameters for task T ′i ∈ τ ′.

e′i = ei + 2 · (∆sch + ∆cxs) + ∆cpd { Inequality (3.7) }

p′i = pi

d′i = di
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susp′i = suspi + (∆ev + ∆rel + ∆ipi) { Inequality (3.1) }

b′i = botheri + max(0, bnpi −∆ipi) { Inequality (3.6) }

If dedicated interrupt handling is used, then ∆ipi > 0. Otherwise, if each processor is involved in

interrupt handling, then IPI latency is irrelevant and the T ′i ’s parameters are determined assuming

∆ipi = 0.

To account for ISR execution, tasks T tck
0 and T irq

1 , . . . , T irq
n are added to τ ′ to model the

execution of timer tick and release ISRs. These ISR tasks have the following parameters.

etck0 = ∆tck + ∆cid ptck0 = Q susptck
0 = ∆ev { Equations (3.8) }

eirqi = ∆rel + ∆cid pirqi = pi suspirq
i = ∆ev { Equations (3.11) }

Pi-blocking and deadlines are irrelevant for ISR tasks. When using dedicated interrupt handling, the

resulting safe approximation is given by

τ ′ = {T tck
0 , T ′1, . . . , T

′
n}.

Otherwise, if each processor handles release interrupts of the tasks assigned to it, then

τ ′ = {T tck
0 , T irq

1 , . . . , T irq
n , T ′1, . . . , T

′
n}.

In both cases, ISR tasks are presumed to have higher priority than regular tasks.

C-EDF. Under EDF-based schedulers, no tasks are added and each Ti’s parameters are transformed

to account for release delay, preemption delays, and interrupts. We employ preemption-centric

interrupt accounting. We first consider the case that each processor handles release interrupts, i.e.,

C-EDF without dedicated interrupt handling.

Preemption-centric interrupt accounting works by scaling each ei to account for the slow-down

due to interrupts. When integrating preemption-centric interrupt accounting with the accounting for

CPMD, the scaling of ei is performed after accounting for CPMD. This is required to reflect that

CPMD increases the time that a job executes, and thus increases the exposure to interrupts. The
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scaling for interrupt costs is compatible with charging the preempting job instead of the preempted job

since the scaling factor
(

1− utck0 −∑1≤j≤n u
irq
j

)
does not depend on the identity of the executing

task. Therefore, the cost of a preemption, namely scheduling overhead, context-switch overhead, and

CPMD, can still be charged to the preempting job under preemption-centric interrupt accounting. IPI

latency that is part of the release delay is not affected by this since it does not correspond to actual

execution.

Formally, let utck0 = ∆tck+∆cid

Q and uirqj = ∆tck+∆cid

pj
, and define cpre as specified in Defini-

tion 3.2 on page 251. In the first step, ei is inflated to account for preemption-related non-interrupt

overheads, i.e., to satisfy Inequality (3.7), let

e
[1]
i , ei + 2 · (∆sch + ∆cxs) + ∆cpd .

In the second step e[1]
i is then scaled to account for interrupts, i.e., by Lemma 3.3 (page 256), let

e
[2]
i ,

e
[1]
i

1− utck0 −∑1≤j≤n u
irq
j

+ 2 · cpre .

Finally, e[2]
i is inflated to account for release delay according to Inequality (3.5), i.e., e′i = e

[2]
i + ∆ipi .

Note that ∆rel is not explicitly added as in Inequality (3.5) since it is already implicitly included

in e[1]
i : the preemption-centric approach considers all release interrupts that occur while a job Ji is

pending, including the one that released Ji.

These considerations lead to the following definition of τ ′ = {T ′i | Ti ∈ τ}, where each T ′i is

defined by the following parameters.

e′i =
ei + 2 · (∆sch + ∆cxs) + ∆cpd

1− utck0 −∑1≤j≤n u
irq
j

+ 2 · cpre + ∆ipi
{ Inequalities (3.7) and (3.5)

and Lemma 3.3 }

p′i = pi −∆ev { Inequality (3.3) }

d′i = di −∆ev { Inequality (3.4) }

b′i = botheri + max(0, bnpi −∆ipi) { Inequality (3.6) }
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Since the underlying overhead-unaware EDF schedulability tests do not support analysis of self-

suspensions, the parameter suspi is irrelevant. As a special case, P-EDF is not affected by IPI

latency if each task’s release interrupts are serviced by the processor to which it has been assigned; it

is therefore safe to assume ∆ipi = 0 in this case.

Under C-EDF with dedicated interrupt handling, release interrupts no longer contribute to

(asynchronous) interrupt delay, but are still reflected by (synchronous) release delay and by timer

ticks. Consequently, the execution times are inflated for preemptions as before (i.e., e[1]
i remains

unchanged) and preemption-centric interrupt accounting is still applied, but release interrupts are

not accounted for (since they do not occur on application processors). This changes the inflated

execution cost and the interrupt-related cost of a preemption as follows.

cpre =
etck0 + ∆ev · utck0

1− utck0

e′i =
ei + 2 · (∆sch + ∆cxs) + ∆cpd

1− utck0

+ 2 · cpre + ∆ipi + ∆rel

The other parameters of each T ′i remain unchanged. Note that ∆rel is charged once to account for

release delay, as required by Inequality (3.5), since it is no longer implicitly reflected by preemption-

centric interrupt accounting (since only timer ticks are considered). When using dedicated interrupt

handling, IPI latency must be accounted for under P-EDF, too.

This concludes our discussion of overhead accounting techniques for event-driven scheduling.

Next, we summarize how to integrate overheads under quantum-driven scheduling.

3.5 Overhead Accounting under Quantum-Driven Schedulers

Holman (2004) and Devi (2006) studied how to account for overheads under quantum-driven

schedulers in great detail. We provide a summary here for the sake of completeness and relate their

techniques to how scheduling events occur in LITMUSRT.

Incorporating scheduling overheads into schedulability analysis is much simpler under quantum-

driven scheduling than under event-driven scheduling. The main reason for this difference is the

regular structure of a quantum-based schedule: since preemptions are only allowed at well-defined
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times, it is easier to account for them. Further, the quantum size Q is typically much shorter than the

shortest deadline, which greatly simplifies accounting for interrupts.

A quantum-driven scheduler requires that each task parameter is a multiple of the quantum

size Q. In theory, the quantum size is chosen such that it divides the parameters of every task in a

given task set. In practice, however, the quantum size Q is fixed and the task parameters must be

quantized by rounding ei up and pi down to the nearest quantum multiple. Quantization is a source

of capacity loss, but not strictly an overhead. Parameters should be quantized after accounting for

actual overheads since overhead accounting requires non-quantum-sized adjustments.

There are fundamentally two sources of delay in a quantum-based scheduler. Initially, a newly-

released job is not eligible to be scheduled since preemptions are only enacted at quantum boundaries,

which adds to its release delay. Once a job is scheduled, it should receive Q time units worth of

service from the processor until the next quantum boundary in theory, so that a job Ji requires at

most
⌈
ei
Q

⌉
quanta of service. In practice, however, the effective quantum length Q′ is less than Q

since some processor cycles are lost to overheads and timer inaccuracy during each quantum. The

central element of overhead accounting under quantum-driven scheduling is to determine a lower

bound on Q′, which implies an upper bound on Ji’s actual processor demand of
⌈
ei
Q′

⌉
. If quantum

boundaries are staggered across processors, then jobs can be additionally delayed by the staggering

offset. We account for staggering as part of the release delay.

In the following discussion, we focus on PD2 since it is the sole quantum-driven scheduler consid-

ered in this dissertation. We previously evaluated quantum-driven and event-driven implementations

of G-EDF, and found event-driven G-EDF implementations to be generally preferable (Brandenburg

and Anderson, 2009a). In contrast, any implementation of PD2 is necessarily quantum-driven since

PD2 is defined in terms of discrete subtasks.

3.5.1 Release Delay

Accounting for release delays under quantum-driven scheduling differs in two important ways from

the event-driven case. First, quantum-driven scheduling creates additional sources of latency since

scheduling events are not processed immediately by the scheduler. Second, scheduling and context-

switch related overheads are accounted for differently under quantum-based scheduling (since they

occur at every quantum boundary) and are hence not considered to be part of the release delay.
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Figure 3.20: Timeline illustrating release delay under quantum-driven scheduling. In addition to
hardware latency and interrupt latency, a job is also subject to quantum latency while it waits for the
scheduler to react to its arrival. From the point of view of the scheduler, the job is not released until
time t4. This additional delay can be modeled by shortening the period of each task.

Figure 3.20 illustrates sources of release delay under quantum-based scheduling.

• The events during [t0, t3) are the same as in the case of event-driven scheduling shown in

Figure 3.9(a). This is the case because differences in the invocation of the scheduler do

not affect the functioning of the hardware and interrupt delivery. Schedulability analysis of

quantum-driven scheduling must thus take both ∆ev and ∆rel into account. With respect to

Figure 3.20, these two delays are given by ∆ev = t2 − t0 and ∆rel = t3 − t2.

• At time t3, the newly-released Ji is added to the ready queue. No scheduling (neither process

nor job scheduling) takes place at this point—under quantum-based scheduling, Ji will not be

considered for scheduling until the next quantum boundary. Consequently, quantum-based

schedulers typically do not use IPIs to initiate rescheduling.

• At time t4, the next quantum begins and job scheduling (or subtask scheduling, in the case

of PD2) takes place and Ji is assigned to a processor. We refer to the delay during [t3, t4)

as quantum latency. Recall that Q denotes the quantum size, which is one millisecond in

LITMUSRT. In the worst case, t3 occurs just after a new quantum started, so that t4 − t3 ≈ Q,

i.e., Ji may be delayed up to a whole quantum before it is considered by the scheduler.

• Finally, if the system is configured to use staggered quanta, then Ji may additionally be delayed

by stagger latency while it waits for its assigned processor to reach the next quantum. In the

worst case, Ji has been assigned to the processor with the maximum offset, in which case
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t5 − t4 = (m − 1) · Qm . If the system is configured to use aligned quanta, then t4 = t5, i.e.,

there is no additional delay.

After time t5, Ji is still further delayed by the unavoidable process scheduling and context-switch

overheads; however, these decrease the effective quantum size under quantum-driven scheduling

and thus are not considered to part of the release delay. A notable difference from event-driven

scheduling is that there is no ambiguity with regard to Ji’s release time: from the point of view of

the scheduler, Ji is not released until time t4, when it first becomes eligible for scheduling.

Safe approximation. Since Ji is effectively not released until time t4, its relative deadline must be

shortened to compensate for the shifted release time. Additionally, Ji is effectively self-suspended

during [t0, t4) for the purpose of computing the minimum separation of job releases.

The task model underlying the analysis of PD2 does not consider self-suspensions, but requires

that all deadlines are implicit. Therefore, the period is shortened instead, which accounts for both

Ji’s release delay and the potentially reduced minimum job separation. Additionally, T ′i ’s period

must be quantized by rounding down the shortened period to the nearest integer multiple of Q.

p′i = Q ·
⌊
pi −∆ev −∆rel −Q

Q

⌋
. (3.20)

In the case of staggered quanta and HRT constraints, pi must further take the maximum stagger

latency of (m− 1) · Qm time units into account; formally,

p′i = Q ·
⌊
pi −∆ev −∆rel −Q(1 + m−1

m )

Q

⌋
. (3.21)

In the case of SRT constraints, the delay due to staggered quanta is simply a bounded source of

tardiness and can thus be ignored.

3.5.2 Effective Quantum Size

Once a job Ji has been assigned a processor for a slot, it will execute until at least the start of

the next quantum. Under schedulers that do not reschedule at every quantum boundary (such as

a quantum-based G-EDF implementation), it is preferable to consider intervals longer than one

quantum to avoid pessimism associated with narrow analysis intervals. Under PD2, however, a
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Figure 3.21: Schedule illustrating effective quantum length for Q = 20. Job J1 should be
scheduled at time 0, but the effective quantum length is reduced due to event latency during [0, 1),
subtask scheduling overhead during [1, 2), process scheduling overhead during [2, 3), context-switch
overhead during [3, 4), and cache-cold execution during [4, 7). Finally, it is stopped by a release
interrupt during [10, 11), after which it incurs additional cache-related interrupt delay. In total, J1

effectively receives only Q′ = 11 of its nominally Q = 20 time units of allocated processor time.

job is typically preempted after each quantum (unless a task has a high utilization). It is therefore

necessary to bound the minimum amount of useful execution carried out on behalf of Ji during a

given quantum, assuming that Ji was not scheduled in the previous quantum.

There are four categories of overheads that cause Ji to receive less than Q time units of processor

service during a given quantum. Each of the following sources of overhead are illustrated in

Figure 3.21, which depicts events during a single quantum assuming Q = 20.

1. The timer tick that signals the beginning of Ji’s quantum may be delayed due to hardware and

interrupt latency. Let tq = 0 denote the start time of Ji’s assigned quantum, and let tq+1 = 20

denote the start time of the next quantum. In the worst case, the timer tick signaling the start

of Ji’s quantum is not serviced until tq + ∆ev , and the timer tick signaling the beginning of

the next quantum is serviced latency-free, i.e., occurs exactly at time tq+1. This effectively

reduces the quantum length available to Ji by up to ∆ev time units.16

2. The timer tick ISR carries out subtask scheduling (which is included in ∆tck ) and triggers

process scheduling, which is followed by a context switch to Ji’s implementing process. This

requires up to (∆tck + ∆sch + ∆cxs) time units before Ji commences execution.

3. Once scheduled, Ji must reestablish cache affinity since it was not scheduled in the preceding

quantum, which increases Ji’s execution requirement by up to ∆cpd time units. This increase

16Holman (2004) also considers the possibility that timers may fire earlier than requested. In Linux, this does not happen
unless the underlying hardware is faulty.
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in execution requirement can be understood as decreasing the amount of processor service

available to Ji during the quantum, as illustrated in Figure 3.21.

4. And finally, release ISRs may stop Ji at any time during the quantum (unless dedicated interrupt

handling is employed). In the case of PD2, 2Q ≤ pi for any Ti (otherwise Equation (3.20)

results in p′i ≤ 0, which renders τ unschedulable). Each release interrupt source thus fires

at most once during each quantum. This limits the total delay due to release ISRs to n ·

(∆rel + ∆cid ) per quantum. In the case of HRT constraints, Ji is no longer pending when

the release interrupt for its successor job occurs, which reduces the maximum delay slightly

to (n− 1) · (∆rel + ∆cid ). This approach is called quantum-centric interrupt accounting in

(Brandenburg et al., 2009, 2011).

Charging for n or (n− 1) release interrupts in each quantum is very pessimistic. Clearly, not every

quantum will be shortened by that amount. However, it is difficult to avoid this pessimism in general

since it is unknown which quanta a job will receive, and since release interrupts can occur during any

quantum due to their sporadic nature. This emphasizes the pessimism inherent in analyzing multiple

intervals of short duration. In the case of sporadic tasks, interrupt-related pessimism can be avoided

by employing dedicated interrupt handling; in the case of periodic tasks, no release interrupts are

required (see Section 3.5.3 below).

Taken together, if every processor potentially services release interrupts, the four overhead

categories reduce the useful processor service time available to Ji during a quantum to

Q′ = Q−∆ev −∆tck −∆sch −∆cxs −∆cpd − n · (∆rel + ∆cid ) (3.22)

time units in the worst case. Under dedicated interrupt handling, release interrupts never delay

subtasks and the effective quantum length is hence reduced to

Q′ = Q−∆ev −∆tck −∆sch −∆cxs −∆cpd (3.23)

time units in the worst case. If this results in Q′ ≤ 0, then τ is claimed not schedulable. Additionally,

Ji’s inflated execution requirement must be quantized by rounding it up to the nearest integer multiple
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of Q; formally,

e′i = Q ·
⌈
ei
Q′

⌉
. (3.24)

The task set τ is claimed schedulable under PD2 if usum(τ ′) ≤ m and p′i ≥ e′i for each T ′i ∈ τ ′.

The latter constraint implies a maximum feasible per-task utilization for any task Ti ∈ τ . That is,

since Equation (3.24) effectively scales ei, it limits the maximum utilization that can be supported by

the implementation.

p′i ≥ e′i
⇒ pi ≥ e′i { since Equation (3.20) implies pi ≥ p′i }

⇔ pi ≥ Q ·
⌈
ei
Q′

⌉
{ by Equation (3.24) }

⇒ pi ≥ Q ·
ei
Q′

{ dropping the ceiling }

⇔ ui ≤
Q′

Q
{ rearranging }

The ratio Q′

Q reflects the efficiency of the implementation; if it is low, then any task set that contains

at least one high-utilization task is rendered unschedulable.

3.5.3 Periodic Task Sets

As noted above, charging for every release interrupt during each quantum is grossly pessimistic. This

is particularly the case if all tasks are periodic (and not sporadic), as such tasks do not have to be

released with asynchronous interrupts. Instead, the scheduler can automatically merge newly-released

jobs into the ready queue at every quantum boundary—that is, job releases can be synchronously

polled if tasks execute strictly periodically. Since the timer tick is required anyway, this causes

virtually no additional overhead. The primary advantage of polled releases is that it avoids all delays

due to release interrupts and may thus dramatically increase the effective quantum size, thereby

improving the efficiency ratio Q′

Q .

From the point of view of accounting for overheads, polled releases are virtually identical to

dedicated interrupt handling. The only difference is that all m processors are available for job

scheduling if releases are polled, whereas only m − 1 processors service jobs under dedicated

interrupt handling. That is, if job releases are polled by the scheduler, then the effective quantum size
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is given by Equation (3.23) and not Equation (3.22). Additionally, event latency and release overhead

do not affect release delay if job releases are polled; it is hence safe to assume ∆ev = 0 and ∆rel = 0

when evaluating Equation (3.20) or Equation (3.21). Event latency can still reduce the effective

quantum size and hence should not be assumed to be negligible when evaluating Equation (3.23).

This is because event latency still affects the accuracy of timer ticks and hence can cause a quantum

boundary to be signaled up to ∆ev time units late (e.g., this happens during [0, 1) in Figure 3.21).

When implementing a periodic workload, it is beneficial to choose a quantum size Q and to

align timer ticks with the system’s start of real-time operation such that job releases always occur

exactly on quantum boundaries (this implies that each pi is an integer multiple of Q). In this case,

no job incurs quantum latency since it is immediately considered for scheduling upon release, i.e.,

t3 = t4 in Figure 3.20. As a result, periods do not have to be shortened by Q time units: in the case

of aligned quanta, Equation (3.20) is hence reduced to p′i = Q ·
⌊
pi
Q

⌋
= pi, and Equation (3.21) is

reduced to p′i = Q ·
⌊
pi−Q·(m−1)/m

Q

⌋
= pi −Q in the case of staggered quanta.

Release polling could similarly be implemented in event-driven schedulers. Analogously to the

quantum-driven case, release polling in event-driven plugins resembles dedicated interrupt handling

from an analysis point of view. Additionally, if job releases are not aligned with quantum boundaries,

then quantum latency of up to Q time units must be considered when accounting for release delay,

just as under quantum-driven schedulers.

Given that the main appeal of PD2 is that it is HRT optimal for implicit deadline tasks, and that

HRT applications are more likely to be of a periodic nature than SRT applications, implementing sup-

port for polled releases is likely more useful under PD2 than under event-driven plugins. Nonetheless,

it is worth noting that release interrupts can be eliminated entirely if all tasks are periodic.

3.6 Summary

We have discussed the design and implementation of LITMUSRT, which extends the Linux kernel’s

scheduling class hierarchy with a flexible scheduler plugin framework. A key difference between

stock Linux and LITMUSRT is that LITMUSRT contains explicit support for global scheduling and

safe process migrations (Section 3.3.4), whereas Linux’s implementation of global scheduling is not

correct in all cases (Section 3.2). Another important distinction is that LITMUSRT’s G-EDF and
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C-EDF plugins implement link-based scheduling (Section 3.3.3), which ensures that non-preemptive

sections cause only O(1) pi-blocking.

We have further discussed the various overheads that affect the execution of real-time tasks in

LITMUSRT under event- and quantum-driven schedulers, and have provided corresponding overhead

accounting methods. Based on the notion of safe approximations, task parameters are adjusted

to reflect the worst-case delay that any job may incur due to kernel- and cache-related overheads

(Sections 3.4 and 3.5). Next, we demonstrate how these overhead accounting techniques can be used

to compare real-time schedulers under consideration of overheads as they arise in LITMUSRT.
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CHAPTER 4

OVERHEAD-AWARE EVALUATION
OF REAL-TIME SCHEDULERS∗

In the preceding two chapters, we have explored the challenges involved in ensuring HRT and

SRT constraints for sporadic workloads on multiprocessors. In Chapter 2, we focused on algorithmic

questions and surveyed several partitioned, global, and clustered scheduling algorithms that apply to

the sporadic task model and reviewed their corresponding schedulability analysis. In Chapter 3, we

examined the practical challenges involved in supporting the sporadic task model at the RTOS level

and described how LITMUSRT implements the sporadic task model and the considered scheduling

algorithms, and explained which sources of overheads sporadic tasks are exposed to and how they

can be accounted for during schedulability analysis.

The provided overview makes it clear that scheduling approaches differ radically in terms of

capability, analysis, and implementation. Given this wide range of options, it is not obvious which

scheduler is the best choice for ensuring HRT or SRT constraints in practice. Which scheduler(s)

should the next generation of multiprocessor RTOSs implement? Does there exist a scheduler that

always “performs best,” or should future RTOSs be designed to support multiple schedulers? Should

RTOSs have separate SRT and HRT schedulers, or can one algorithm handle both kinds of workloads?

Are some algorithms indeed impractical? These are challenging questions to answer, but they are of

great importance to the design and implementation of future RTOSs.

In this chapter, we first present our overhead-aware methodology for investigating such questions

and explain how it differs from prior approaches. Thereafter, we present a large-scale case study

of LITMUSRT on a 24-core Intel Xeon system. This study demonstrates that interesting, non-

∗ Contents of this chapter previously appeared in preliminary form in the following paper:
Bastoni, A., Brandenburg, B., and Anderson, J. (2010a). Cache-related preemption and migration delays: Empirical
approximation and impact on schedulability. In Proceedings of the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, pages 33–44.



obvious, and sometimes counterintuitive conclusions can be derived using the proposed approach.

Throughout this chapter, we assume that tasks are independent. Locking-related issues are the subject

of Chapter 7.

4.1 Methodology

There are many ways that real-time performance could be assessed. From the point of view of a

real-time application developer, the “performance” of a real-time scheduler is defined by whether a

specific application’s temporal constraints can be supported. That is, in the case of HRT constraints,

the scheduler performs well if the application is schedulable; in the case of SRT constraints, the

scheduler performs well if tardiness is bounded and the bound is suitably small. This perspective,

however, does not lend itself as a quantifiable performance metric.

While tardiness bounds allow for some degree of quantification, small differences in tardiness

are likely irrelevant in an SRT setting. Further, in the context of a specific application, there is

little benefit to having a “better” scheduler if a “good enough” scheduler is available (where “better”

and “good enough” are interpreted from an analytical viewpoint). For example, if a task set is

schedulable under FP scheduling, there is little benefit to be gained from employing EDF instead.

As a secondary concern, schedulers may differ with regard to the throughput obtained by a system’s

best-effort background workload (if any). That is, among two schedulers that both ensure temporal

correctness of a given real-time workload, it may be preferable to choose the one that leaves more

processor time to best-effort processes. However, throughput considerations do not impact a system’s

“real-time performance”: if the application’s temporal constraints are satisfied, the system’s “real-time

performance” is good enough.

In contrast, from the point of view of an RTOS developer, the “performance” of the implemented

scheduler is not tied to a specific application. Rather, an RTOS vendor aims to license its product to

customers in as many markets and application domains as possible (an open-source RTOS similarly

gains utility when it appeals to a larger user base). Driven by such economic considerations, a

primary RTOS design goal is to be as versatile as possible. The criterion for choosing an RTOS

scheduler is hence to maximize the set of schedulable task sets, i.e., to preclude as few applications

as possible.
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In the latter interpretation, the real-time performance of a scheduler can be quantified as the

fraction of task sets that are schedulable (either HRT or SRT) under it. In the real-time literature,

this metric, the fraction of schedulable task sets, is also called a scheduler’s schedulability and

empirical comparisons based on it are called schedulability experiments.1 Schedulability experiments

are a pervasive method of evaluation in the real-time community and we adopt it as the primary

performance evaluation methodology in this dissertation as well.

In short, a scheduler A1 is superior to another scheduler A2 if more task sets can be claimed

schedulable under A1 than under A2. Equivalently, the objective is to minimize capacity loss.

4.1.1 Sources of Capacity Loss

Capacity loss, which we formalize in Section 4.1.5 below, measures to which degree a scheduler’s

performance diverges from that of an optimal, overhead-free scheduler. Intuitively, a scheduler

exhibits capacity loss when a feasible task set cannot be shown to be schedulable under it. Capacity

is being “lost” in this case since the failure to schedule a feasible task set implies inefficient use of

the available resources (since, by definition, it is possible to schedule a feasible task set).

To motivate our methodology, we begin by discussing why capacity loss arises in practice.

Suppose the temporal constraints of a feasible task set τ can be validated on a given platform under

scheduling algorithm A1 (i.e., τ can be shown to be schedulable), but not under another scheduling

algorithm A2. There are four major causes of validation failure.

1. Fundamental algorithmic differences. If algorithm A2 has inherent limitations that prevent τ

from being schedulable, then it is irrelevant how efficiently A2 is implemented. For example, if

τ cannot be partitioned onto m processors, then a partitioned scheduler’s low implementation

overheads are immaterial.

2. Pessimistic analysis. It may be the case that τ is in fact schedulable under A2, but that it is

not possible to verify this with existing schedulability tests. For example, none of the G-EDF

schedulability tests published to date is exact.

3. Differences in overhead. If jobs incur higher scheduling overhead under A2 than under A1,

then this may render τ unschedulable under A2. For example, lock contention is higher in

1Schedulability experiments should not be confused with schedulability tests.
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global schedulers than in partitioned schedulers. Large differences also exist between event-

driven and quantum-driven scheduling. Differences in preemption and migration overhead

under partitioned and global scheduling fall within this category as well.

4. Overhead accounting differences. Even when scheduling overheads have similar magnitudes

under A1 and A2, it may be impossible to validate τ ’s timing correctness under A2 due to

differences in how overheads are accounted for. For example, timer tick ISRs execute virtually

identical code under P-FP and P-EDF scheduling, but delays due to ISRs are very differently

accounted for under each scheduler. Similarly, under PD2 scheduling, release interrupts are

considered to decrease the effective length of every quantum, which is likely more pessimistic

than the preemption-centric interrupt accounting employed under G-EDF.

Causes 1 and 2 comprise algorithmic capacity loss, while Causes 3 and 4 together yield overhead-

related capacity loss. Unfortunately, the relative impact of algorithmic and overhead-related capacity

loss is very difficult to anticipate. In particular, it is virtually impossible to foresee how algorithmic

properties and implementation choices interact.

For example, since EDF is optimal on a uniprocessor, whereas FP is subject to algorithmic

capacity loss, P-EDF can sustain a higher utilization on each processor than P-FP. However, one

might reasonably suspect P-FP to have much lower overheads since it is built around an efficient,

bitfield-based ready queue. Does this make P-FP the better scheduler in practice? This depends on

many factors, including whether ready queue operations actually constitute a significant part of the

overall scheduling overhead and the maximum number of queued tasks.

Similarly, P-EDF is impacted by bin-packing limitations more than C-EDF if c > 1. Thus,

algorithmic capacity loss should be less under C-EDF, but locking overheads are likely higher under

C-EDF. Does the simplification of the bin-packing problem justify the increase in locking overhead?

This, again, depends on the actual magnitude of overheads and whether the to-be-scheduled task set

is actually hard to partition (i.e., whether it contains many high-utilization tasks).

We maintain that the magnitude of each overhead is impossible to anticipate in the absence of an

actual, working implementation. To yield results that are meaningful in practice, a proper evaluation

of real-time schedulers must be based on a real, in-kernel implementation of each evaluated algorithm.
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It is further crucial to employ an evaluation methodology that is capable of reflecting each of the four

causes of capacity loss. We present our approach next.

4.1.2 Evaluation Approach

The method of evaluation underlying this dissertation has been developed and refined over the course

of several published studies (Brandenburg et al., 2008; Brandenburg and Anderson, 2009a; Bastoni

et al., 2010a,b, 2011), which in turn were inspired by the original LITMUSRT study (Calandrino

et al., 2006). However, the methodology described herein differs in some details from each of these

studies since its current version incorporates a number of improvements and refinements based on

lessons learned in the preparation of the just-cited studies.

Our evaluation methodology consists of eight steps that can be categorized into an OS phase

and an analytical phase. The flowchart shown in Figure 4.1 depicts each of the steps and phases. In

this section, we provide a high-level overview of the individual steps, what they entail, and why they

are necessary. In the following sections, we define the employed metrics (schedulability, weighted

schedulability score, and relative tardiness) and explain how to interpret the resulting graphs. Finally,

the case study in the latter part of this chapter provides concrete examples for each step.

OS phase. In the first step, each of the schedulers that are to be evaluated is implemented in the

kernel. The RTOS underlying our work is LITMUSRT, as discussed in the preceding chapter.

Obviously, there is little benefit to evaluating incorrect implementations, so great care should be

taken in testing and debugging the implemented schedulers. Unsurprisingly, this step is very time

consuming; the process of implementing new schedulers in LITMUSRT typically takes several weeks

from the first design until the plugin is stable, i.e., until it passes all stress tests and produces valid

schedules. LITMUSRT’s TRACE() and sched trace() tracing infrastructure are crucial during this

step to observing and debugging how scheduling decisions are computed.

In the second step, the kernel is instrumented to record the duration of each scheduling decision,

context switch, timer tick, etc. In LITMUSRT, the Feather-Trace infrastructure is used for this

purpose. A large number of benchmark task sets of different composition (i.e., with varying numbers

of tasks and task parameters) are executed under each of the schedulers and the overhead samples are

recorded. In a separate set of experiments, similar overhead data is collected to assess cache-related
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Figure 4.1: Flowchart illustrating the employed overhead-aware evaluation method.

delays after preemptions and migrations. In a moderately-sized study, Step 2 typically requires 20–60

hours of execution and produces tens to hundreds of gigabytes of overhead samples. We discuss this

step in more detail in the context of the case study in Sections 4.3 and 4.4 below.

In the final step of the OS phase, the raw collected overheads are processed to estimate relevant

statistics. In particular, the maximum and average values for each overhead and each benchmark task

set are determined, as are histograms of the observed overhead magnitude. If the measurements were

disturbed by noise sources such as interrupts, then some filtering of outliers may be required, which

is discussed in Section 4.3 in more detail. Step 3 serves a dual purpose. For one, the determined

statistics are needed to incorporate overheads in the analytical model. However, a close examination

of overhead trends commonly reveals issues in the underlying implementation such as avoidable

inefficiencies or inexplicable inconsistencies. In such cases, additional debugging and improvement

of the implementation are required.
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Analytical phase. Once the recorded overheads are consistent and reasonable, the analytical phase

commences. The analytical phase is not tied to LITMUSRT, i.e., the steps are the same and the tools

and techniques could be reused in the context of other RTOSs.

In Step 4, the large data set of recorded overheads for specific values of n is compressed into a

much smaller model that also yields interpolated values for arbitrary values of n. Additionally, the

model also masks any unwanted non-monotonicity in the recorded overhead trends; this is explained

in detail in Section 4.1.3 below. Once the overhead model has been derived it is integrated into the

existing schedulability analysis in Step 5, which we discuss shortly.

Steps 6 and 7 comprise what are commonly called schedulability experiments. As noted above,

schedulability experiments are an established way to quantify scheduler performance that is frequently

found in the real-time literature. Schedulability tests for each evaluated scheduling algorithm are

applied to a large body of task sets. By counting the task sets that are schedulable (either HRT or

SRT), the fraction of task sets that is schedulable under each algorithm is empirically estimated.

Additionally, we also record tardiness bounds in the case of SRT constraints. We explain how task

sets are generated in Section 4.1.4 and discuss schedulability experiments in detail in Section 4.1.5.

Step 7 can be very time-consuming, depending on the number of generated task sets. We typically

run schedulability experiments on UNC’s research cluster Topsail over night (due to the large number

of task sets, it is trivial to parallelize schedulability experiments).2

Step 5 is the defining step of our methodology that connects theory and practice: in contrast to

prior work, we account for overheads in our schedulability experiments. In Step 5, starting from

the standard, overhead-unaware schedulability experiment setup (Section 4.1.5), we integrate the

overhead model based on real, measured overheads (Section 4.1.3) using the overhead accounting

techniques discussed in Chapter 3. The resulting overhead-aware schedulability experiment setup,

used in Step 6, is discussed in Section 4.1.6 below.

Finally, in Step 8, the resulting schedulability data is aggregated and visualized. We employ

three metrics: schedulability (the fraction of schedulable task sets), a weighted schedulability score

(to aggregate results), and relative tardiness (a normalized variant of tardiness). We define each

metric and explain how to interpret each plot in Sections 4.1.5, 4.1.7, and 4.1.8, respectively.

2Topsail is a distributed-memory cluster consisting of 512 compute nodes. Each node consists of eight 2.3 GHz
processors with 12 GB of memory. Our schedulability experiments ran on up to 64 nodes, depending on availability.
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Figure 4.2: Illustration of an overhead model. Worst-case and average-case overheads are modeled
as a piece-wise linear function of the task set size n. The reference points are the observed maximum
and mean overheads for the tested task set sizes, which are typically a multiple of m (in this example,
m = 10). An exception is n = 1 since at least one task is required to collect overhead samples.

In addition to this overview, the individual steps are described in more detail in other sections.

The implementation issues arising in Steps 1 and 2 are discussed at length in Chapter 3, as are the

overhead accounting techniques employed in Step 5. Real data for Steps 2 and 3 is presented in our

case study in the latter part of this chapter, as are the results from Step 8.

In the following, we describe the employed overhead model, review how regular, overhead-

unaware schedulability experiments are performed, and then explain how we integrated the former

with the latter. Finally, we introduce a weighted schedulability score to combine large schedulability

data sets into aggregate results to expose certain trends more clearly.

4.1.3 Overhead Model

Instead of using the recorded overheads directly (of which there are several gigabytes), the recorded

maximum and average overhead values are distilled into a model of worst-case and average-case

overheads where each overhead is represented by a piece-wise linear function. Overheads must be

represented as a function since many overheads are not scalar, but rather depend on the task set

size n, as illustrated in Figure 4.2. For example, scheduling decisions and job releases are typically
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affected by the length of the ready queue. Therefore, it is necessary to measure maximum and

average overheads for different task set sizes.

A piece-wise model is required because it is not feasible to measure each possible value of n

due to the effort and resources involved in such experiments; rather, overheads are recorded for

n = km, where k ∈ {1, 2, 3, . . .}, up to some reasonable upper bound (e.g., k = 20). In other words,

overheads are recorded only at reference points of k tasks per processor. For task set sizes that fall

between reference points, maximum and average overheads are interpolated linearly. For example,

Figure 4.2 depicts the interpolated assumed worst-case overhead for n = 25.

Monotonicity. A perhaps counterintuitive, but nonetheless frequently occurring effect is that ob-

served overheads may decrease with increasing task set size. For example, if the scheduler is invoked

more frequently due to a larger number of tasks, then kernel data structures are more likely to remain

cached between invocations. This can reduce observed overheads significantly. However, it makes

little sense to reflect non-monotonic trends in the overhead model because not all sporadic tasks may

have a job pending at the same time. That is, some tasks may exhibit inter-sporadic arrival delays, in

which case pending jobs incur overheads as if they were part of a smaller task set.

If such phases of inactivity may cause an increase in overheads, then it should be reflected by

the model. Therefore, we model overheads as monotonically increasing functions, i.e., the overhead

model discards decreasing trends. This is illustrated in Figure 4.3, where the circular points indicate

observed overheads and the piece-wise linear curve indicates the corresponding overhead model.

Starting at n = 70, the observed overhead values exhibit a decreasing trend. In the corresponding

piece-wise linear model, this trend is discarded and monotonicity of the overhead model is enforced.

Formally, let On denote the observed overhead magnitude for n tasks. When interpolating

the overhead for n = 85, instead of interpolating between O80 and O90, which would yield a

decreasing trend, the overhead model interpolates between max{O1, O10, O20, . . . , O70, O80} and

max{O1, O10, O20, . . . , O70, O80, O90}, which forces the desired monotonicity. In the extreme, if

O1 is larger than any observation for larger n, this reduces the overhead to a constant function. In the

case that the sequence of observations On is itself monotonically increasing, this method reduces to

normal piece-wise linear interpolation. We require each modeled overhead to be monotonic.
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Figure 4.3: Illustration of forced monotonicity in the overhead model. While the observed overhead
(either maximum or average values) exhibits a decreasing trend for n ≥ 70, the overhead model uses
piece-wise linear non-decreasing interpolation such that the resulting overhead model is monotonic.

An alternative to our approach is to extrapolate based on the last positive slope. That is, instead

of forcing monotonicity with a slope of zero when the observed samples decrease (as shown in

Figure 4.3), one could enforce strict monotonicity by linearly extrapolating the last segment with an

increasing slope. However, this would create increasing trends (and induce additional pessimism for

large n) in the overhead model that are not consistent with the observed data.

Most overheads can be expressed as a function of n (or are constant). However, an exception to

the rule are cache-related overheads that jobs incur due to the (partial) loss of cache affinity caused

by preemptions, migrations, and interrupts. For these overheads, the number of tasks in the system is

irrelevant. Instead, their magnitude increases with larger working sets, i.e., the more cache lines a

job uses, the more compulsory cache misses are caused by a loss of cache affinity. Cache-related

overheads are therefore modeled as a function of WSS, and not as a function of n. As in the case of

overheads dependent on n, we use linear interpolation for WSSs that fall between reference points.

Note that we use observed maximum values to estimate worst-case overheads since WCET

analysis tools are currently not available for our platforms (recall Section 3.1). In the future, it

may become possible to derive true worst-case overhead bounds analytically if practical WCET

analysis tools become available. However, even then Steps 3 and 4 would still be required to compute
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average-case overheads (which we use for SRT analysis—see below). When estimating worst-case

overheads based on measured data, it is important to use consistent sample sizes to avoid introducing

a bias (see Section 4.3.1 below).

We note that measured maxima and interpolation do not necessarily bound the true worst

case. As such, this methodology is not applicable to the certification of safety-critical applications.

However, in the context of our work—when comparing schedulers under consideration of realistic

overheads—the derived overhead models offer much greater accuracy than “guesstimating” overheads

without data (or, worse, not considering overheads at all). See Section 3.1 for a discussion of formal

guarantees in the context of inexact overhead estimates.

4.1.4 Task Set Generation

The schedulability metric, i.e., the fraction of schedulable task sets, is necessarily defined with respect

to a given testing set of task sets that serve as the benchmark. This poses the problem of obtaining

a suitable testing set. In particular, testing sets should contain hundreds or thousands of task sets

to avoid under-sampling (e.g., just testing two cherry-picked task sets does not yield representative

results). Unfortunately, sufficiently large data sets of representative tasks are currently not available

(at least publicly, as companies commonly consider application details to be trade secrets). Instead,

testing sets are typically created by randomly choosing task parameters until a desired utilization cap

is reached. With this approach, a large number of task sets can be generated quickly, which enables

large-scale experiments covering wide ranges of possible task parameters.

Listing 4.1 provides the task set generation procedure as pseudo-code. Given two random

distributions from which to draw task utilizations and periods, udist and pdist , implicit-deadline

tasks are generated until a specified cap on total utilization, denoted ucap, is reached. Each task’s

execution budget ei is computed based on the generated utilization and period. Generally speaking,

this allows testing sets to be generated with any parameter distributions provided that ui ∈ [0, 1] and

pi > 0 for each Ti. The choice of parameter distributions is of course crucial to the significance of

the experiments; we consider this topic in Section 4.2 below.

When the utilization cap is reached, the last-generated task is not included in the generated task

set to ensure that ucap is not exceeded (lines 4–7 in Listing 4.1). The generated task set τ hence likely

does not match ucap exactly, i.e., the task set generation procedure leaves some slack on average.

282



1 generate taskset(udist , pdist , ucap):
2 set τ ← ∅
3 for i← 1, 2, 3, . . .
4 allocate Ti
5 set ui ← prng draw next(udist)
6 if usum(τ) + ui > ucap:
7 break
8 else:
9 set pi ← prng draw next(pdist)

10 set ei ← pi · ui
11 set τ ← τ ∪ {Ti}
12 return τ

Listing 4.1: Task set generation pseudo-code.

Alternatively, the utilization of the last-generated task could be reduced such that ucap = usum(τ).

However, this could result in a task being generated with a utilization that is not in accordance with

udist . For example, when generating “heavy” tasks with utilizations in the range [0.5, 1), scaling the

utilization of the last-generated task could introduce an unexpected “light” task with much lower

utilization. We therefore discard the last-generated task to avoid biasing the specified parameter

distributions.

4.1.5 Schedulability Experiments

A schedulability experiment estimates the ratio of schedulable tasks for given task parameter distribu-

tions by repeatedly generating and testing task sets. A typical example setup is given in Listing 4.2.

For a given ucap and parameter distributions, the procedure generates a fixed number of task sets

(a common choice is samples = 100) and tests each generated task set to determine whether it

is schedulable under the specified algorithm Ax, where schedulable means either HRT or SRT

schedulable depending on the context. In the case of clustered or partitioned scheduling, the invoked

schedulability test procedure also attempts to assign tasks to clusters, and fails if no valid assignment

can be found. Finally, the schedulability experiment returns the ratio, which ranges from 0 to 1,

of the generated task sets that were claimed schedulable. Naturally, the accuracy of the estimate

improves with increasing sample size.

Alternatively, a schedulability experiment can be equivalently understood as a stochastic experi-

ment. As an analogy, the tested scheduler Ax can be considered to be a coin, with generating and
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1 sample schedulability(Ax, udist , pdist , ucap):
2 set count ← 0

4 for j ← 1, 2, 3, . . . , samples
5 set τj ← generate taskset(udist , pdist , ucap)
6 if τj is schedulable under Ax on m processors:
7 set count ← count + 1

9 return
(

count

samples

)

Listing 4.2: Overhead-unaware schedulability experiment.

testing a task set corresponding to a coin flip, and sample schedulability() giving an estimate of the

coin’s bias. A scheduling algorithm performs well if it is heavily biased towards success.

More accurately, let Xj denote a binary random variable such that Xj = 1 if τj is schedulable,

and Xj = 0 otherwise. Determining the value of each Xj is a Bernoulli trial. Since each trial is

independent, the procedure given in Listing 4.2 implements a Bernoulli process. The sampled ratio

of schedulable task sets thus estimates the probability that a randomly chosen task set, with respect

to the specified parameter distributions, is schedulable under Ax. That is, sample schedulability()

approximates P (Xj = 1). This matches the intuitive notion of schedulability: the higher an

algorithm’s schedulability, the more likely it is to correctly schedule a given task set.

Visualizing capacity loss. For fixed parameter distributions udist and pdist , an algorithm’s schedu-

lability can be pictured as a function of ucap. In the following, we let S(Ax, ucap) denote the

schedulability of Ax for a given ucap, where S(Ax, ucap) ∈ [0, 1] and ucap ≤ m.

The capacity loss of a potentially non-optimal algorithm Ax in the presence of overheads

describes how much Ax’s performance diverges from that of an optimal, overhead-free algorithm

Aopt . Formally, we define capacity loss as S(Aopt , ucap) − S(Ax, ucap), with respect to given

parameter distributions.

Since we assume implicit deadlines, all generated task sets are feasible if ucap ≤ m. There-

fore, the schedulability of an optimal, overhead-free algorithm is by definition always 1, i.e.,

S(Aopt , ucap) = 1 for any ucap ≤ m. The capacity loss of Ax is hence given by

S(Aopt , ucap)− S(Ax, ucap) = 1− S(Ax, ucap).
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Figure 4.4: Illustration of a standard schedulability plot assuming m = 10. Each curve depicts the
ratio of schedulable task sets as a function of task set utilization, i.e., S(A, ucap) and S(B, ucap).
In the absence of overheads, an optimal scheduler guarantees a schedulability of 1 until the total
utilization exceeds m. Algorithmic and overhead-related capacity loss cause schedulability to
gradually decrease in practice.

Schedulability and capacity loss can be easily visualized as illustrated Figure 4.4, which depicts

schedulability curves for two schedulers, labeled Algorithm A and Algorithm B, respectively. Since

any task set τ with usum(τ) > m is necessarily infeasible, the x-axis is limited to 1 ≤ ucap ≤ m.

The y-axis ranges from 0 to 1 and gives schedulability (and hence, implicitly, an estimate of

P (Xj = 1)) for each tested algorithm. As ucap increases, the number of tasks increases and the

amount of available slack decreases, which makes the scheduling problem more difficult. Conse-

quently, the schedulability of each (potentially non-optimal) algorithm decreases, i.e., it becomes

less likely that a generated task set is schedulable. The widening gap between each curve and the

line y = 1 reflects capacity loss. This allows for a quick assessment of algorithm performance: the

higher a curve, the better the corresponding algorithm’s performance.

In Figure 4.4, Algorithm A is clearly preferable to Algorithm B since Algorithm B never exceeds

Algorithm A’s schedulability at any point. For instance, consider the points where each scheduler

crosses the line y = 0.5 (marked by dashed lines), i.e., the utilization caps at which fewer than 50%

of the generated task sets can be claimed schedulable under each algorithm. Algorithm A crosses
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y = 0.5 at ucap = 7, whereas Algorithm B has 0.5 capacity loss already at ucap = 5. This indicates

that Algorithm A can sustain a higher processor utilization before its performance deteriorates; it is

hence superior to Algorithm B because it uses the available processing capacity more efficiently.

It is worth pointing out that each schedulability plot shows scheduler performance for fixed

udist and pdist distributions. That is, each schedulability plot of this kind corresponds to a specific

task set composition. To draw valid conclusions, many different parameter distributions should be

considered. The search for the “best” scheduler can thus be rephrased as follows: we seek to identify

the scheduler that exhibits the least capacity loss (i.e., that has a schedulability curve closest to y = 1)

for most parameter distributions.

4.1.6 Integrating Overhead Accounting

The standard schedulability experiment setup discussed so far can be used to study algorithmic

capacity loss. For example, setups similar to the above description have been used to quantify im-

provements in schedulability tests (Bertogna and Baruah, 2011) and to compare priority assignment

algorithms for G-FP scheduling (Davis and Burns, 2011a), among many other examples. However,

standard schedulability experiments cannot reveal implementation-related capacity loss since over-

heads are not considered. To overcome this limitation, we extend the basic schedulability experiment

setup from Listing 4.2 to integrate overhead analysis using the safe-approximation approach detailed

in Chapter 3.

Recall from Section 4.1.3 that most overheads depend on the number of tasks n, but that cache-

related overheads depend on the maximum WSS of any task. The number of tasks n is implicitly

determined by the task set generator and thus is readily available to compute appropriate bounds

on scheduling overheads. However, the maximum WSS is independent of the utilization cap and

thus unknown. Even though large WSSs likely correspond to large execution times in practice, from

the point of view of implementing a schedulability experiment, the maximum WSS is an arbitrary

parameter that must be provided. Overhead accounting thus introduces a second variable wss besides

ucap that must be either chosen arbitrarily or varied across some range.

Earlier LITMUSRT-based studies did indeed simply pre-determine one or a few fixed WSSs

such as 64KB (Calandrino et al., 2006; Brandenburg et al., 2008; Brandenburg and Anderson, 2009a).

However, this is somewhat unsatisfactory since there certainly exist workloads with larger WSSs,
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1 sample schedulability(Ax, udist , pdist , ucap, wss):
2 set count ← 0
3 set (∆cpd ,∆cid)← estimate cache-related overheads for working set of size wss under Ax

5 for j ← 1, 2, 3, . . . , samples
6 set τj ← generate taskset(udist , pdist , ucap)
7 set (∆rel ,∆sch ,∆tck ,∆cxs ,∆ev ,∆ipi)← overheads for |τj | tasks
8 set τ ′j ← derive safe approximation of τj (see Chapter 3)
9 if τ ′j is schedulable under Ax on m processors:

10 set count ← count + 1

12 return
(

count

samples

)

Listing 4.3: Overhead-aware schedulability experiment for global schedulers.

just as there exist workloads with smaller WSSs. Results derived with a fixed WSS hence beg

the inevitable question: if the WSS were just slightly higher or lower, would the results change

significantly? We therefore consider the WSS to be a variable similar to ucap that is varied across its

domain from 0 KB (i.e., no significant WSS) to some platform-determined maximum value (in our

case study, the L2 cache size provides a natural upper limit—see Section 4.4). The schedulability of

an algorithm Ax with respect to given parameter distributions is hence a function of two variables:

S(Ax, ucap,wss). As a result, an algorithm’s schedulability must be explored along two axes, which

greatly magnifies the required effort but yields more illuminating results. We successfully applied

this approach in recent LITMUSRT-based studies (Bastoni et al., 2010a,b, 2011).

Since overhead accounting is carried out after assigning tasks to clusters or partitions (otherwise

the overhead in each cluster is overestimated),3 overhead accounting is slightly simpler under global

scheduling than under clustered scheduling. The overhead-aware schedulability procedure for global

schedulers is illustrated in Listing 4.3.

Based on the overhead model, appropriate bounds on cache-related preemption and migration

overhead (∆cpd ) and cache-related interrupt overhead (∆cid ) are determined for the specified wss

(line 3). The remaining scheduler overheads are determined specifically for each task set based on the

number of generated tasks |τj | (line 7). Once all overhead bounds are known, a safe approximation

of the generated task set is derived as discussed in Chapter 3 (and as appropriate for Ax). Finally, the

3The employed bin-packing heuristics likely assign different numbers of tasks to each cluster. Accounting for overheads
after the task assignment phase ensures that the correct number of tasks to account for is known in each cluster. For
example, this is crucial when bounding the delay due to release interrupts.
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1 sample schedulability(Ax, udist , pdist , ucap, wss):
2 set count ← 0
3 set (∆cpd ,∆cid)← estimate cache-related overheads for working set of size wss under Ax

5 for j ← 1, 2, 3, . . . , samples
6 set τj ← generate taskset(udist , pdist , ucap)
7 set (τj,1, . . . , τj,mc )← partition(τj)
8 if τj could be partitioned:
9 set schedulable ← >

10 foreach k ∈ {1, . . . , mc }:
11 set (∆rel ,∆sch ,∆tck ,∆cxs ,∆ev ,∆ipi)← overheads for |τj,k| tasks
12 set τ ′j,k ← derive safe approximation of τj,k (see Chapter 3)
13 if τ ′j,k is not schedulable under Ax on c processors:
14 set schedulable ← ⊥
15 if schedulable:
16 set count ← count + 1

18 return
(

count

samples

)

Listing 4.4: Overhead-aware schedulability experiment for partitioned and clustered schedulers.

overhead-unaware schedulability test(s) for Ax is applied to the safe approximation τ ′j to determine

whether τ can be claimed schedulable in the presence of overheads. As a result, the estimated

schedulability value reflects all four possible sources of capacity loss and not just algorithmic

capacity loss, as is the case with Listing 4.2.

The overhead-aware schedulability setup for clustered and partitioned schedulers is given in

Listing 4.4. It is conceptually similar and only differs in the way that overheads are accounted for

after partitioning the generated task set τj . Recall that c denotes the cluster size. After the tasks have

been assigned to m
c clusters (line 7), each cluster is checked individually (line 10). The scheduling

overheads are determined based on the number of tasks assigned to the cluster (line 11). Only if the

safe approximation of the tasks assigned to each cluster is deemed schedulable is the task set as a

whole considered schedulable (lines 9 and 13–16). As in Listing 4.3, the estimated schedulability

reflects both overhead-related and algorithmic capacity loss, including failure to partition (line 8).

The setup for schedulability experiments shown in Listings 4.2, 4.3, and 4.4 generates task sets

“on the fly.” In our implementation, this is not actually the case. Instead, we generate all task sets

ahead of time (i.e., Step 6 in Figure 4.1), which ensures that all tested algorithms are tested against

identical task sets (and not just identical parameter distributions).
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Average vs. worst-case overheads. When conducting overhead-unaware schedulability experi-

ments, there is no difference between SRT and HRT schedulability (aside the use of different

schedulability tests). However, when accounting for overheads, the question arises which overheads

to use in each case. In the HRT case, it clearly makes sense to assume worst-case overheads. However,

assuming maximum overhead is likely excessively pessimistic in the context of SRT systems. We

therefore use average-case overheads when conducting SRT schedulability experiments. This is

acceptable because even if a job incurs above-average overheads, it only incurs a constant amount of

additional tardiness, and likely a very small amount at that (if any). Assuming average-case tardiness

thus does not violate the SRT schedulability criterion. Further, since tardiness bounds are typically on

the order of tens of milliseconds, whereas scheduling overheads are in the range of (at the very most)

a few hundred microseconds, any additional tardiness due to above-average scheduling overheads is

(at least) an order of magnitude smaller than algorithmic sources of tardiness. Depending on a task’s

WSS, cache-related overheads can reach several milliseconds in the worst case and may thus have a

somewhat larger impact on overhead-related tardiness.

The chance of additional tardiness could further be reduced by choosing any approximation

between the observed average and the observed maximum (e.g., the 75th or 90th percentile), which

could be appropriate for “firm” real-time systems that do not quite require the rigor of HRT analysis

but should also have close to zero tardiness. However, assuming less than average-case overheads

is not safe since then the additional tardiness due to under-estimated overheads could build up

slowly and theoretically grow without bound. In practice, however, overheads are unlikely to

cause unbounded tardiness because any accumulated tardiness is compensated for when the system

experiences phases of idleness. That is, underestimated overheads may result in tardiness being

accrued while the system is continuously servicing real-time jobs, whereas slack in the schedule

counteracts a build-up of tardiness.

4.1.7 Weighted Schedulability Score

Defining schedulability as a function of two variables, as required when accounting for WSS-

dependent overheads, introduces a practical problem. While it is possible to sample each algorithm’s

schedulability for each combination of ucap and wss over their respective domains (for some finite

step size), visualizing the resulting trends becomes difficult. Plotting a function of two variables
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requires a 3D projection, and such projections are hard to interpret. Given that schedulability plots

commonly include four or more curves (e.g., see Section 4.5 below), the resulting graphs are virtually

unintelligible due to the resulting visual clutter and occlusion.

Partial results. A straightforward way to visualize S(Ax, ucap,wss) is to simply fix one of the two

parameters while varying the other over its domain, in which case the resulting 2D plots look like a

regular schedulability plot such as the one shown in Figure 4.4. Unfortunately, this approach has

three problems that make it undesirable.

The first issue is a question of scale. Generating a schedulability plot for each tested value

of wss (and each combination of udist and pdist , which are also fixed) quickly results in a very

large number of graphs. For example, in the case study presented in the latter part of this chapter,

this approach results in several thousand schedulability plots. With such an “unwieldy” data set,

understanding and communicating results becomes difficult.

The second issue is related to observing WSS-dependent trends. For example, if Algorithm B

is more resilient to WSS increases than Algorithm A (for example, this could be the case because

migrations occur less frequently under Algorithm B than under Algorithm A), then Algorithm B

could become preferable for large WSSs even if Algorithm A is preferable for small WSSs. When

looking at thousands of schedulability plots, each for a fixed wss value, it becomes difficult to notice

such trends simply due to the sheer number of graphs that have to be considered in unison.

The third issue is that fixing ucap can introduce an unintentional bias. That is, simply plotting

schedulability as a function of wss for a fixed ucap is not a good solution to study WSS-dependent

trends. To illustrate this risk, consider the schedulability graph of Algorithms A and B shown in

Figure 4.4, and suppose that it depicts only algorithmic capacity loss (i.e., that overheads have

not been considered). In this example, Algorithm B performs acceptably only if ucap ≤ 5. Now

suppose overheads are accounted for and schedulability is visualized as a function of wss , and the

utilization cap is fixed at ucap = 6. This would give Algorithm A an unfair advantage, since it

already achieves much higher schedulability than Algorithm B for ucap = 6 in the absence of

overheads. The resulting graph would thus not be representative of Algorithm B’s performance

with regard to increasing WSSs. In other words, fixing ucap thus could easily lead to incorrect

conclusions since then any individual graph does not reflect all utilization caps.
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Result aggregation. For these reasons, we devised a simple aggregate metric—the weighted schedu-

lability score—that lends itself to visualizing WSS-dependent trends in a small number of 2D graphs.

The underlying idea is to collapse each “standard” schedulability curve for a fixed wss value into a

scalar—the score—such that all considered ucap values are reflected in the aggregate score, which

avoids introducing a ucap bias. We first formally define the weighted schedulability score and then

explain its benefits and how to interpret the resulting graphs.

Definition 4.1. Let ustep denote the discrete step size used to vary ucap across [1,m], and let

Q = {1, 1 + ustep, 1 + 2 ·ustep, . . . ,m} denote the set of all sampled values of ucap. The weighted

schedulability score W (wss) for a given WSS is defined as

W (Ax,wss) =

∑

ucap∈Q
S(Ax, ucap,wss) · ucap

∑

ucap∈Q
ucap

. (4.1)

For a given wss , an algorithm’s schedulability S(Ax, ucap,wss) is summed across all tested

ucap values, where each schedulability result is weighted by the corresponding utilization cap. The

resulting score is normalized to the range [0, 1] by dividing it by the sum of all tested ucap values.

Weighting individual schedulability results by ucap reflects the intuition that high-utilization task

sets have higher “value” since they are more difficult to schedule.

The weighted schedulability score has several advantages that make it suitable for visualizing

WSS-dependent trends without introducing a ucap bias.

1. Since it has only one parameter (for given task parameter distributions), it can be easily

visualized as a function of wss in a 2D plot. Figure 4.5 illustrates how weighted schedulability

scores can be visualized.

2. The resulting plot is influenced by each combination of wss and ucap, i.e., each graph

represents all of the generated data for a particular task parameter distribution.

3. Since many schedulability graphs are aggregated into fewer graphs, larger studies become

manageable. For example, in our case study, 59,940 individual schedulability graphs were

reduced to 1,620 weighted schedulability graphs
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Figure 4.5: Illustration of a weighted schedulability score plot. The two curves show W (A,wss)
and W (B,wss). Each numeric value does not directly correspond to a number of scheduled task
sets. However, the score is normalized such that an optimal algorithm scores 1 in the absence of
overheads. The higher an algorithm scores, the closer it comes to scheduling all task sets. Each point
in this plot corresponds to a graph of the type shown in Figure 4.4. This example illustrates that an
algorithm that is not preferable for small WSS may in fact become preferable for larger WSSs if it
is more resilient to WSS increases. The weighted schedulability score is designed to expose such
trends without introducing a ucap-dependent bias.

4. WSS-dependent trends are readily apparent. For example, in Figure 4.5, Algorithm A scores

higher if wss < 64, but Algorithm B is more resilient to cache-related overheads and thus is

preferable for larger WSSs.

5. Due to the normalization, the weighted schedulability score of an optimal, overhead-free

algorithm is 1, just as in the case of regular schedulability. An algorithm that fails to schedule

any task sets has a weighted schedulability score of 0.

6. Consequently, increasing capacity loss corresponds to decreasing the weighted schedulability

score. Figure 4.5 illustrates the “gap” between Algorithm B and an optimal, overhead-free

scheduler that is caused by capacity loss.
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The weighted schedulability score is a synthetic construct in the sense that it does not correspond

to any “real” quantity.4 One could easily devise alternate ways to aggregate large schedulability data

sets. Nonetheless, we have found weighted schedulability scores to be very useful in understanding

WSS-dependent trends and employ it in our case study.

It should be noted, however, that since the weighted schedulability score aggregates data, it loses

some detail and is not a substitute for regular schedulability graphs. Instead, it is intended to augment

schedulability graphs that show schedulability for a fixed WSS with an indication of how different

algorithms are affected by changes in cache-related overheads.

4.1.8 Tardiness

Besides the metrics schedulability and weighted schedulability score, schedulers can also be com-

pared on the basis of the magnitude of tardiness bounds. Naturally, a lower tardiness bound is

preferable to a larger one. However, absolute tardiness bounds cannot be easily compared across

different task sets and task parameter distributions. For example, a maximum tardiness of 10ms

likely has a different qualitative impact on a task with a relative deadline of 5ms than on a task with a

relative deadline of 200ms . Instead, tardiness bounds should be considered in relation to the urgency

of each task. We therefore report the following normalized measure of tardiness.

Definition 4.2. Let Bi denote the maximum tardiness that any job of an implicit-deadline task Ti

may incur. The maximum relative tardiness of Ti is given by Bi
pi

.

Relative tardiness has practical significance. Suppose that each job processes one work item

such as a video frame, sensor reading, etc. Then a buffer of
⌈
Bi
pi

⌉
work items is sufficient to mask

the effects of tardiness. That is, task Ti lags at most
⌈
Bi
pi

⌉
jobs behind, and this value corresponds to

the maximum number of unprocessed work items that must be stored to mask the effects of tardiness

(additional storage may be required to account for differences in the rate of execution of producers

and consumers; such buffering is unrelated to tardiness concerns). We consider this task-specific

characterization of deadline misses to be a more useful measure than absolute tardiness values.

Another tardiness-related issue arises when reporting average and maximum tardiness bounds

(either relative or absolute) for multiple task sets. If the tardiness of at least one task set cannot

4In (Bastoni et al., 2010a,b, 2011), we referred to the weighted schedulability score simply as “weighted schedulability.”
We added the “score” moniker in this dissertation to emphasize its synthetic nature and to avoid ambiguities.
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be bounded, i.e., if there is potentially no finite bound on maximum tardiness, then average and

maximum tardiness are ill-defined. We hence excluded task sets with unbounded tardiness when

reporting average and maximum relative tardiness bounds.

It is important to note that our methodology is based on analytical tardiness bounds and not

on observed tardiness. This is consistent with the use of schedulability tests in the HRT case.

While maximum tardiness as observed during simulations is likely lower than analytical bounds, no

guarantees can be derived from finite simulations. The use of analytical bounds is thus preferable

from a predictability point of view.

Summary. Our overhead-aware evaluation methodology consists of an OS phase and an analytical

phase. Schedulers are compared based on three metrics: schedulability, which reflects sensitivity to

utilization increases, weighted schedulability score, which reflects sensitivity to WSS increases, and

relative tardiness, which reflects buffer requirements. In the remainder of this chapter, we report on a

case study that demonstrates how the proposed methodology was used to compare the schedulers

implemented in LITMUSRT.

4.2 Case Study

We conducted a case study to answer Question Q1 from Chapter 1 for our test platform, namely

to identify the LITMUSRT plugins and configurations that are best suited to satisfying HRT and

SRT constraints on a 24-core Intel Xeon platform. In the remainder of the chapter, we first discuss

the general setup of the case study and then report in Sections 4.3 and 4.4 on the scheduling and

cache-related overheads that we measured during the OS phase. Besides discussing the most relevant

trends in the overhead data, we also discuss the process of how they were measured to augment the

high-level discussion from the preceding section. Finally, in Section 4.5, we discuss the schedulability

study that we conducted and highlight key results that answer Question Q1 for our platform.

4.2.1 Platform

The hardware platform underlying our case study, a 24-core Intel Xeon L7455 system, was already

presented in detail in Section 2.1. To summarize, the L7455 is a 24-core 64-bit uniform memory

access (UMA) machine with four physical sockets. Each socket contains a chip with six cores
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running at 2.13 GHz. All cores in a socket share a unified 12-way set associative 12 MB L3 cache,

while groups of two cores each share a unified 12-way set associative 3 MB L2 cache. Every core

also includes an 8-way set associative 32 KB L1 data cache and an identical L1 instruction cache.

All caches have a line size of 64 bytes (i.e., 8 words). The system is equipped with a 64 GB main

memory; the memory bus operates at an effective speed of 1066 MHz.

4.2.2 Tested Schedulers

In total, we evaluated 22 configurations of LITMUSRT scheduler plugins in our case study. We

define each of these configurations next and introduce a naming convention to uniquely identify each

in the subsequent discussion.

There are four cluster sizes that align well with the topology of our test platform: partitioned

scheduling (c = 1) to ensure L1 cache affinity, clustered scheduling based on L2 cache affinity

(c = 2), clustered scheduling based on L3 cache affinity (c = 6), and global scheduling (c = 24).

Recall from Section 3.3.6 that we implemented two plugins that support clustered scheduling with

arbitrary cluster sizes (C-EDF and PD2), and three global or partitioned plugins (P-EDF, P-FP,

and G-EDF). We instantiated C-EDF with cluster sizes c = 2 and c = 6, and PD2 with cluster

sizes c = 2, c = 6, and c = 24. This yields a total of five event-driven plugin configurations (P-FP,

P-EDF, G-EDF, and two C-EDF variants) and three quantum-driven plugin configurations (three

PD2 configurations). When referring to plugin configurations, we prefix the plugin name with C2-

and C6- when referring to clustered scheduling with c = 2 and c = 6, respectively, and let P- and G-

indicate partitioned and global scheduling, respectively.

Each of the plugins supports both dedicated interrupt handling (one processor is reserved for

interrupt handling and m− 1 processors service jobs) and global interrupt handling (all m processors

service both interrupts and jobs). In the case of partitioned scheduling, dedicated interrupt handling

simply reduces the number of partitions by one. In the case of global scheduling, dedicated interrupt

handling reduces the system to a (m− 1)-processor platform. In the case of clustered scheduling

with 1 < c < m, however, dedicated interrupt handling could be either implemented on a per-cluster

basis (thereby losing capacity in each cluster) or by reserving only a single processor from one of

the clusters. The latter has the disadvantage that clusters are no longer of uniform size; however,

the former causes unacceptable capacity loss (i.e., if c = 2, then half of the available processors
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clusters processors servicing cache
Scheduler Plugin count × c release interrupts jobs quanta affinity

P-FP-Rm P-FP 24 × 1 24 24 — L1
P-FP-R1 P-FP 23 × 1 1 23 — L1

P-EDF-Rm P-EDF 24 × 1 24 24 — L1
P-EDF-R1 P-EDF 23 × 1 1 23 — L1

C2-EDF-Rm C-EDF 12 × 2 24 24 — L2
C2-EDF-R1 C-EDF 11 × 2 & 1 × 1 1 23 — L2

C6-EDF-Rm C-EDF 4 × 6 24 24 — L3
C6-EDF-R1 C-EDF 3 × 6 & 1 × 5 1 23 — L3

G-EDF-Rm G-EDF 1 × 24 24 24 — none
G-EDF-R1 G-EDF 1 × 23 1 23 — none

C2-aPD2-Rm PD2 12 × 2 24 24 aligned L2
C2-sPD2-Rm PD2 12 × 2 24 24 staggered L2
C2-aPD2-R1 PD2 11 × 2 & 1 × 1 1 23 aligned L2
C2-sPD2-R1 PD2 11 × 2 & 1 × 1 1 23 staggered L2

C6-aPD2-Rm PD2 4 × 6 24 24 aligned L3
C6-sPD2-Rm PD2 4 × 6 24 24 staggered L3
C6-aPD2-R1 PD2 3 × 6 & 1 × 5 1 23 aligned L3
C6-sPD2-R1 PD2 3 × 6 & 1 × 5 1 23 staggered L3

G-aPD2-Rm PD2 1 × 24 24 24 aligned none
G-sPD2-Rm PD2 1 × 24 24 24 staggered none
G-aPD2-R1 PD2 1 × 23 1 23 aligned none
G-sPD2-R1 PD2 1 × 23 1 23 staggered none

Table 4.1: List of evaluated schedulers (m = 24).

would be reserved for interrupt handling). We therefore accept non-uniform cluster sizes in clustered

schedulers when applying dedicated interrupt handling. This, of course, must be considered during

the task assignment phase. When referring to plugin configurations with global interrupt handling,

we use the suffix -Rm to indicate that release interrupts are handled by all processors; when referring

to plugin configurations that use dedicated interrupt handling, we similarly use the suffix -R1.

Finally, when using quantum-driven plugins, LITMUSRT can be configured to use either aligned

or staggered quanta. Either choice can be combined with both dedicated and global interrupt handling,

which results in four configurations for each of the three considered PD2 cluster sizes. When referring

to PD2 with aligned quanta, we denote the scheduler as aPD2; analogously, when referring to PD2

with staggered quanta, we denote the scheduler as sPD2.

As listed in Table 4.1, these options yield ten event-driven and twelve quantum-driven schedulers.
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4.2.3 Parameter Distributions

After deriving overhead models (see Section 4.1.3) for each of the 22 evaluated schedulers, we

conducted a large-scale schedulability study to assess each scheduler’s suitability to ensuring HRT

and SRT constraints on the test platform. Recall that a task set generation procedure is the core of a

schedulability experiment (Section 4.1.5), and that task sets are generated by randomly choosing each

utilization ui and each period pi from two distributions udist and pdist (Section 4.1.4). The results

of the schedulability experiment thus fundamentally depend on the employed parameter distributions,

which should include a wide range of possible parameter choices. If the system under evaluation

is intended for specific use cases, then it makes sense to choose distributions to resemble known

real-world applications (e.g., plant controllers for HRT constraints, video games for SRT constraints,

etc.). Alternatively, task sets can be generated using synthetic distributions that are known to stress

specific sources of algorithmic and overhead-related capacity loss (e.g., by generating task sets that

are difficult to partition). Since we are interested in covering a large parameter space with our case

study, we chose the latter approach.

In our case study, we combined three period and nine utilization distributions for a total of

27 tested scenarios similar to those used by Calandrino et al. (2006), which in turn were chosen

based on parameter distributions proposed by Baker (2005). We generated implicit-deadline periodic

tasks by first generating task utilizations using three uniform, three bimodal, and three exponential

distributions. The ranges for the uniform distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium),

and [0.5, 0.9] (heavy). For the bimodal distributions, utilizations uniformly ranged over [0.001, 0.5)

or [0.5, 0.9] with respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and

5/9 (heavy). For the exponential distributions, utilizations were generated with a mean of 0.10 (light),

0.25 (medium), and 0.50 (heavy). With exponential distributions, we discarded any points that fell

outside the allowed range of [0, 1]. Integral task periods were then generated using three uniform

distributions with ranges [3ms , 33ms] (short), [10ms , 100ms] (moderate), and [50ms , 250ms]

(long). Besides the case study reported herein, we have also employed these parameter distributions in

several published studies (Brandenburg et al., 2008; Brandenburg and Anderson, 2009a; Brandenburg

et al., 2009, 2011; Bastoni et al., 2010b, 2011). As mentioned in Section 4.1.6, we pre-generated

all task sets to ensure that each scheduler is tested with the same task sets. Task parameters were

297



generated with the Mersenne Twister pseudo-random number generator (Matsumoto and Nishimura,

1998) as implemented in the Python 2.6 standard library (van Rossum and contributors, 2010).

The rationale for the choice of these distributions is the following. When using light utilization

distributions, many tasks “fit” into the given utilization cap. The resulting large number of tasks in

each task set exposes overhead-related capacity loss (e.g., there are a large number of interrupt sources,

ready queues are long, etc.). When using heavy utilization distributions, only few, high-utilization

tasks are being generated, which results in task sets that are difficult to partition but relatively

overhead insensitive. Medium utilization distributions represent a compromise that contains elements

of both challenges.

The three uniform utilization distributions further emphasize these properties since they disallow

the generation of non-light or non-heavy tasks. The bimodal utilization distributions are employed

because they generate task sets that contain both low-utilization and high-utilization tasks. Such task

sets are challenging to schedule and thus expose algorithmic capacity loss (especially under G-EDF).

Finally, the exponential distributions are included because they also generate difficult to schedule

task sets (similar to the bimodal distributions), and because they create the most “realistic” utilization

distributions (i.e., many low-utilization tasks, a few high-utilization tasks).

The choice of period distribution affects the outcome in two ways. First, period distributions

with a large ratio of longest-possible period to shortest-possible period stress interrupt accounting

since jobs of long-period tasks may incur a large number of release interrupts. Second, the period

length influences the impact of overheads: the shorter the period, the larger the relative magnitude

of overheads. The short period distribution is thus taxing for high-overhead plugins, whereas the

long period distribution deemphasizes implementation efficiency. The moderate period distribution

contains the timing constraints of most multimedia applications, as determined by human sensory

capabilities.

Taken together, the 27 tested distribution scenarios cover a wide range of task set compositions.

It should be noted, however, that since these parameter distributions are synthetic, they do not

correspond to actual applications. This schedulability study thus does not directly predict performance

of the evaluated schedulers for any particular application. Rather, the performance evaluation is

indirect: a scheduler that performs well in each of the tested scenarios likely also performs well for

real-world applications (implemented on our hardware platform), and, conversely, a scheduler that
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performs badly in all or most cases is also likely not a good choice for most use cases (again, on our

hardware platform). Nonetheless, in future work, it would beneficial to augment our results with

realistic parameter distributions obtained from representative multiprocessor real-time applications.

4.3 Scheduling Overheads

To construct the overhead model required for overhead-aware schedulability experiments, a large

number of overhead samples must be collected to determine statistically valid average-case and

worst-case estimates of overheads discussed in Chapter 3.

There are three groups of overheads. Direct kernel overheads arise when the kernel is executing

and the scheduled job is not (e.g., when a release interrupt is serviced). Cache-related overheads

manifest indirectly as a slowdown of the executing job. Finally, latencies are intervals during which a

job is delayed that do not correspond to execution times (of either the kernel or jobs). Of these, direct

overheads and latencies are easy to measure since they have a well-defined start and end time. That

is, direct overheads and latencies can be sampled simply by recording when intervals of overhead

begin and end. In contrast, cache-related overheads are of a diffuse nature and cannot be directly

measured since there is no clear end time, i.e., the restoration of cache affinity is interwoven with

normal execution. In this section, we discuss how direct overhead and latencies are measured in

LITMUSRT and discuss notable overhead trends from our case study. Cache-related overheads and

trends are discussed thereafter in Section 4.4.

4.3.1 Tracing, Post-Processing, and Statistics

In LITMUSRT, overhead samples are collected using the Feather-Trace framework (Brandenburg

and Anderson, 2007a). Recall from Section 3.3 that the Feather-Trace framework provides event

triggers and a wait-free, multi-writer, single-reader buffer implementation. Direct overheads are

measured by placing event triggers at the beginning and end of overhead-causing code segments.

For example, there is an event trigger at the beginning of Linux’s schedule() function. Similarly,

there is an event trigger at the beginning of the timer tick ISR, and another event trigger after the last

statement of the timer tick ISR. When activated, each trigger invokes a simple function that places an
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event record into a shared wait-free buffer instance. Each event record consists of 15 bytes that store

the following information:

• the current time (in cycles, as measured by the TSC),

• a unique event ID that describes the code path (e.g., “schedule() entered”),

• the processor ID,

• whether the currently-scheduled job is a real-time task, and

• a unique 32-bit sequence number (subject to overflow).

The wait-free trace buffer is periodically flushed to disk by a non-real-time background process.

Latencies are recorded similarly. To record IPI latency, the sending processor stores an event

record when the IPI is generated, and the receiving processor records when the IPI is processed by

the kernel. Note that this requires time stamps from different processors to be comparable, which

is not necessarily the case in modern multiprocessors. In our test platform, however, time stamps

are comparable because all TSCs are driven by the same clock signal, and because processors are

prohibited from entering sleep states during the experiments.

Recall from Section 3.4.2 that a job release is delayed by both hardware and interrupt latency,

which together comprise event latency (∆ev ). It is not possible to directly measure this latency from

within the system itself since the physical time at which the release interrupt was raised is unknown

to the kernel (i.e., time t0 in Figure 3.9). However, when jobs are released by programmable timers,

then event latency can be computed since the time when the ISR should have occurred is known. In

LITMUSRT, event latency is recorded in the release timer ISR by storing two event records: one

for the occurrence of the physical event that is backdated to the programmed release time, and one

corresponding to the beginning of the ISR execution, which stores the actual current time.

As a special case, scheduling overhead is measured in two parts in LITMUSRT. This is because

the Linux scheduler executes some deferred resource management code after a context switch has

occurred (this is due to locking concerns). The corresponding Feather-Trace events are denoted

SCHED and SCHED2 in the source code; the sum of both overhead sources yields ∆sch .
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Overhead tracing. Broadly speaking, an overhead experiment is carried out as follows. First, m

background processes are launched that create memory bus and cache contention by repeatedly

accessing large arrays. This is required so that the recorded overheads correspond to a system under

heavy load (otherwise, worst-case overheads would be considerably underestimated). Thereafter, all

overhead-related Feather-Trace triggers are activated and the background process responsible for

flushing the trace buffer to disk is launched. Finally, an experimental task set τ is launched. After

all tasks have finished their initialization phase, the task set is synchronously released, after which

tasks execute periodically. Job releases are triggered by timer interrupts. After a pre-determined time

(60 seconds in our case study), all tasks in τ terminate, the event record buffer is emptied, and all

background processes are terminated.

Post-processing. This results in a large binary log of event records. In a post-processing step, the

binary log is sorted according to sequence number (due to the wait-free nature of the buffer, events

can be recorded out of order). The sorted event log is then split into overhead samples by finding

“matching” overhead start and end event records. Let Ex and Ey denote two event records with

sequence numbers x and y, respectively, where x < y. Ex and Ey are considered to be matching if

and only if

1. Ex and Ey occurred on the same processor or are IPI latency event records (which are

necessarily recorded on two separate processors),

2. Ex is a start event record of type X (e.g., scheduler invocation),

3. Ey is an end event record of type X ,

4. no other event records of type X exist in between Ex and Ey (with respect to the recording

processor), and

5. all sequence numbers between x and y are present in the log.

Condition 5 is required to detect overflows of the trace buffer (if any), which could result in incorrect

measurements if there is a “hole” in the log between Ex and Ey. The trace buffer can overflow

because the system generates event records at a very high rate for large task counts, which is

problematic if the buffer-flushing background process is starved by real-time processes.
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Let tx and ty denote the times at which Ex and Ey were recorded (according to the log). If all

five conditions are met, then Ex and Ey match and represent a recorded overhead sample of type X

and length ty − tx. The difference ty − tx includes some overhead due to Feather-Trace; however

this additional cost is small in comparison to the measured intervals and hence not compensated for.

Event records for which no matching event record can be found are discarded.

Not all recorded overhead samples are necessarily relevant. There are two groups of overheads:

(i) those that are only relevant if a scheduled real-time job is directly affected by them, and (ii) those

that affect real-time jobs even if the currently scheduled process is a background process. An example

of the former is the cost of a scheduling decision that does not involve real-time tasks (e.g., if an idle

processor schedules a background process); an example of the latter is a release interrupt that stops

a background process since the to-be-released job experiences a delay regardless of the identity of

the stopped process. An overhead sample belonging to group (i) is considered valid only if either

Ex or Ey recorded that a real-time task was involved (i.e., scheduled at the time of the event, or

immediately thereafter). Overhead samples belonging to group (ii)—which includes IPI latency,

event latency, and release interrupt overhead samples—are always considered valid. All invalid

overhead samples are discarded to avoid influencing overhead experiments with data stemming from

background activity unrelated to real-time tasks.

The process described so far yields overhead samples for a single task set τ . However, the

magnitude of some overhead sources such as scheduling overhead indirectly depend on the number of

tasks in τ . Therefore, many overhead traces covering a wide range of n should be collected for several

task set compositions (and under each tested scheduler). This allows worst-case and average-case

overheads under each tested scheduler to be estimated as a function of n when constructing the

overhead model (as discussed in Section 4.1.3).

Unbiased estimators. Tracing task sets of different sizes and with different task parameters almost

certainly results in traces with a variable number of valid samples. From a statistics point of view,

comparing observed maxima from populations of different sizes is problematic. To obtain an unbiased

estimator for the worst-case overhead, the same number of samples should be used in the analysis of

each trace. One method to achieve this is to simply discard extraneous samples prior to analysis.
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However, truncating all traces to the length of the shortest trace is not desirable since this

would bias the results to reflect only jobs that executed early during the trace interval. We therefore

randomly shuffle each trace before truncation. This ensures that each job is reflected with equal

probability, regardless of whether it was released toward the beginning or end of the experiment. As

a result, we obtain statistically unbiased estimators of worst-case and average-case overheads.

Outlier filtering. In repeated measurements of some overhead, a small number of samples may be

“outliers,” i.e., some samples appear to not match the overall trend. While outliers typically do not

significantly affect average-case estimates (due the large number of correct samples), large outliers

can dramatically alter the estimated maximum.

An example of this effect is shown in Figure 4.6, which depicts the distribution of scheduling

overhead samples measured under P-EDF-Rm when scheduling one task on each processor (i.e.,

n = 24). The main body of overhead samples is in the range from 1µs to 27µs. However, a single

outlier increases the observed maximum to more than 129µs. This sample likely does not reflect true

scheduling overhead. Rather, the measurement was almost certainly disturbed by an inopportune

interrupt since interrupt delivery is disabled in the scheduler only after the initial timestamp is

recorded. Since interrupts are accounted for separately, outliers caused by interrupts should not be

included in the estimate of ∆sch and must thus be filtered.

Statistical outliers are either caused by measurement error (such as the just-discussed interference

from interrupts), or by the actual occurrence of rare, high-overhead events. Ideally, it would be

desirable to only remove outliers of the first kind without affecting outliers of the second kind.

Unfortunately, this is not practical.

For one, statistical methods such as interquartile range (IQR) outlier filters5 or percentile-

based cutoffs cannot discern between the two kinds. Detecting measurement error after the fact is

fundamentally a subjective effort, which can be challenging even for humans. For example, in the

case of long-tail distributions, any notion of a “correct” cutoff between the tail of true measurements

and interrupt-related outliers is ambiguous at best.

A second reason is related to the use of Linux and x86 hardware as the test platform, neither

of which was designed with real-time systems in mind. This is reflected by inopportune, long-

5The US National Institute of Standards and Technology (NIST) suggests IQR as a standard technique to remove
outliers (NIST/SEMATECH, 2010). We apply IQR filters to traces affected by interrupt interference; see Section 4.3.2.
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Figure 4.6: Example of an outlier in overhead measurements. The histogram shows the distribution
of scheduling overhead samples under P-EDF-Rm when scheduling one task per processor. A single
sample, out of more than half a million valid samples, raises the measured maximum from 27µs to
129µs. The outlier was likely disturbed by an interrupt and does not reflect true scheduling overhead.
(Note the logarithmic scale.)

running interrupt handlers (such as network-related packet processing or cycle-stealing SMIs—recall

Section 2.1.3), which can cause “true outliers,” i.e., such samples reflect infrequent events that are not

caused by measurement error. In actual, production-quality real-time systems, such events are cause

for significant concern and should not be ignored. In the context of our research goal, however, we

deem it acceptable to implicitly filter such rare events when discarding outliers due to measurement

error because they are entirely unrelated to scheduler implementation concerns and tradeoffs.

In essence, our measurements confirm that Linux and the underlying x86 hardware are not

truly HRT-capable, which is hardly surprising. As discussed in Chapter 3, the choice of stock

Linux as the starting point of LITMUSRT, and the use of x86 hardware, represent a compromise

between availability and real-time capability. In some cases, this compromise necessitates the use

of statistical outlier filters to remove both measurement errors and statistically infrequent events.

In future work, we plan to rebase LITMUSRT on top of the Linux PREEMPT RT patch to benefit

from its reduced latencies, and to focus our effort on embedded multicore platforms more suited to
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real-time computing (once such platforms become widely available). Additionally, it would also be

interesting to replicate our experiments in other, non-Linux-based RTOSs.

4.3.2 Experiments

We applied the above-described experimental setup to collect overhead samples under each of the 22

evaluated schedulers listed in Table 4.1. We traced task sets ranging in size from one to 20 tasks per

processor, i.e., task set sizes ranged from n = 24 to n = 480 in steps of m = 24.

Each task set of size n = k ·m, where 1 ≤ k ≤ 20, was generated by creating m partitions of k

tasks each. Assembling tasks sets from individual partitions ensures that the experimental process is

independent of bin-packing considerations and that there is an equal number of tasks assigned to

each processor. Partitions were simply merged as required under clustered and global schedulers.

When generating a partition τi of k tasks, we used moderate periods and randomly chose one

of the following utilization distributions: light uniform, light bimodal, light exponential, medium

uniform, and medium bimodal. Based on the selected task parameter distributions, k tasks τi =

{T1, . . . , Tk} were generated. If this resulted in usum(τi) > 1, then τi was discarded and regenerated

to ensure that generated task sets do not over-utilize the system. Heavier utilization distributions were

not considered because they are not suited to generating feasible partitions for large k. Additionally,

the period distribution was constrained to ensure that the least-common multiple of all generated

periods, i.e., the hyperperiod, did not exceed 60 seconds.

For each task set size n = k ·m, we generated ten task sets. Each of the resulting 200 task

sets was executed and traced for 60 seconds under each of the 22 tested schedulers as described

above, which corresponds to 73 hours of continuous execution. (The actual experiments were more

time consuming since each task set requires a set-up and tear-down phase.) In total, the overhead

experiments resulted in 510 GB of event records, which contained more than 11 billion valid overhead

samples after event record matching. For each task set size, scheduler, and type of overhead, we

merged the samples from each of the ten task sets. The resulting overhead data sets were shuffled,

truncated to a common length, and filtered for outliers before computing the observed average- and

worst-case overheads.

305



Interrupts and outliers. Besides release interrupts and timer ticks, our system was also frequently

servicing long-running ISRs related to disk and network I/O during overhead tracing. It would be

desirable to avoid such I/O during the experiments, but unfortunately it was unavoidable since trace

data had to be written to disk. Network connectivity was required to administer the experiments (our

Xeon L7455 system is a “headless” system, i.e., it does not have its own display or keyboard).

In our case study, we observed outliers only in data sets from overhead sources that can be

disturbed by interrupts. In fact, outliers occurred comparatively frequently in measurements of

event latency, IPI latency, and context-switch overhead, which are all strongly affected by interrupt

delivery. In contrast, outliers occurred rarely in the measurements of scheduling overhead since

interrupt delivery is disabled throughout most parts of the measured scheduling code path. Further,

all measurements of release interrupt overhead and timer tick overhead were completely outlier-free

since interrupt delivery is disabled entirely while these ISRs execute. Overall, our data indicates that

long-running ISRs are the primary (or even sole) cause of outliers on our platform. This highlights

the need for split interrupt handling in future versions of LITMUSRT.

We addressed outliers in our case study as follows. Data sets without apparent outliers, namely,

timer tick overhead, release interrupt overhead, and parts of the scheduling overhead (i.e., SCHED2),

were not filtered. In data sets with few outliers (such as the first part of scheduling overhead, i.e.,

SCHED), we identified outliers using histograms plotted on a logarithmic scale as shown in Figure 4.6

and removed them manually. Finally, data sets affected by more frequent outliers were filtered using

an IQR filter with extent 12.6 As a special case, measurements of IPI latency under dedicated

interrupt handling were disturbed by ISRs to such an extent that IPI latency measurements from

global interrupt handling were used in all cases. The reason for this is that the processor dedicated to

interrupt handling was frequently servicing long-running I/O-related ISRs.

4.3.3 Results

After obtaining and processing average-case and worst-case overheads for each of the 22 schedulers,

we plotted the resulting trends as function of task set size n and derived corresponding non-decreasing,

piece-wise linear overhead models (Section 4.1.3). In the following, we discuss select trends that

6An IQR filter with extent 12 considers a sample xi to be an outlier if xi > q50 +12 · (q75 − q25), where q25, q50, and
q75 denote the 25th, 50th, and 75th percentile, respectively. NIST/SEMATECH (2010) provides a succinct tutorial.

306



highlight implementation tradeoffs of particular relevance to our case study. The entire data set of

recorded average-case and worst-case overheads, graphs visualizing all overhead distributions, and

graphs visualizing overhead trends as functions of task count can be downloaded from the companion

web site to this dissertation (Brandenburg, 2011).

P-FP vs. P-EDF. One reason for the popularity of FP and P-FP scheduling is that it can be

efficiently implemented using bitfield-based ready queues (recall Section 3.3.6.1). As a result, the

runtime complexity of finding the next highest-priority ready job does not depend on the number of

ready tasks. In contrast, the P-EDF plugin uses a binomial heap to implement each per-processor

ready queue. One might hence expect scheduling overhead to be higher under P-EDF than under

P-FP (under either dedicated or global interrupt handling).

As can be seen in Figure 4.7, this is indeed the case, but the difference in overhead is rather small.

Inset (a) shows worst-case scheduling overhead under P-EDF-Rm and P-FP-Rm as a function of n.

Two trends are apparent. First, worst-case scheduling overhead is slightly higher under P-EDF-Rm

than under P-FP, with the exception of n = 72 and n = 240, which we suspect is due to variance

inherent in empirical measurements. Second, worst-case scheduling overhead under either scheduler

does not appear to be strongly correlated to the task set size.

Both trends manifest more clearly in the average case, which is shown in Figure 4.7(b). Under

P-EDF-Rm, average-case scheduling overhead is consistently higher than under P-FP-Rm, although

only by a fraction of a microsecond. This illustrates that the bitfield-based ready queue used in the

P-FP plugin is indeed more efficient than the binomial heap used in the P-EDF plugin; however, this

also illustrates that ready queue manipulation comprises only a small faction of the total overhead.

Surprisingly, average-case scheduling overhead decreases under both schedulers with increasing

task count. At least in the case of P-EDF-Rm, this is very counterintuitive since dequeuing the

highest-priority job from the ready queue requires O(log n) time in a binomial heap. However, the

more-frequent invocation of the scheduler likely results in an increased cache hit rate, which lowers

the cost of a scheduler invocation on average. Another contributing factor is that task sets with

high task counts also have a high utilization, which means that the background processes that create

memory contention execute less frequently. The lowered scheduling overhead is clearly apparent in

Figure 4.8, which shows the distribution of scheduling overhead samples for n = 24 and n = 480.
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Figure 4.7: Scheduling overhead under P-FP-Rm and P-EDF-Rm.

In inset (a), the distribution of recorded samples is centered around the median of approximately

8.5µs. In comparison, the whole distribution is skewed to lower overheads in the case of n = 480,

which is shown in inset (b). In fact, the median overhead is almost halved to approximately 4.3µs

despite the twenty-fold increase in tasks. This suggests that, in the case of partitioned scheduling, the

runtime complexity of the implemented priority queue algorithm may be less relevant than its cache

footprint.

Overall, our overhead data shows that the P-FP plugin is not at a significant advantage to the

P-EDF plugin from an overhead point of view.
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(b) Distribution of scheduling overhead samples for n = 480 (20 tasks per processor).

Figure 4.8: Distribution of recorded scheduling overhead samples under P-EDF-Rm for (a) one
task per processor and (b) 20 tasks per processor. Average and median observed scheduling overhead
is lower in inset (b) despite a twenty-fold increase in task count. Inset (a) depicts the same data
previously shown in Figure 4.6 with the single outlier removed. No outliers were filtered from the
data depicted in inset (b).
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Staggered vs. aligned quanta. Another interesting trend concerns quantum staggering. Recall that

quantum staggering under PD2 is a tradeoff between the theoretic optimality of PD2, which requires

aligned quanta, and the presumed lower overhead of staggered quanta, which require periods to be

shortened in the HRT case. Our data for clusters of size 6 and 24 shows that staggered quanta, in

fact, do not reduce worst-case overhead at quantum boundaries. This can be seen in Figure 4.9(a),

which shows worst-case observed timer tick overhead under G-aPD2-Rm and G-sPD2-Rm. As

is evident in the depicted graph, the worst-case overhead is not worse when quanta are aligned. To

our surprise, we did observe somewhat lower maximum overheads under C2-sPD2-Rm than under

C2-aPD2-Rm, though it is not entirely clear whether this is caused only by staggering. In future

work, it would be interesting to re-investigate the benefit of quantum staggering on a platform with

more predictable interrupt delivery and memory bus arbitration.

In contrast, staggered quanta are clearly very effective at lowering average-case overheads, which

can be seen in Figure 4.9(b). The average-case tick overhead under G-sPD2-Rm barely increases

across the tested range of task set sizes and stays below 10µs, whereas the average-case tick overhead

under G-aPD2-Rm exhibits a rapidly increasing trend and exceeds 70µs for large task sets, which is

more than seven times the average-case overhead under G-sPD2-Rm.

These overhead trends suggest that, on the platform underlying the case study, staggered quanta

may not be worthwhile in the HRT case, but could be beneficial in the SRT case. The schedulability

experiments presented in Section 4.5 confirm this to be indeed the case.

Cluster size. Note that the worst-case timer tick overhead in Figure 4.9(a) exceeds 200µs for large

task sets, and 100µs even for task sets of moderate size. Given that LITMUSRT uses a quantum size

of 1000µs, this shows that up to 20% of a quantum may be lost to subtask scheduling at quantum

boundaries. Of course, such overheads are unlikely to yield high schedulability due to the implied

overhead-related capacity loss.

Clustered scheduling has been proposed to overcome exactly this kind of limitation. By in-

troducing modest algorithmic capacity loss in the form of bin-packing constraints, the goal is to

alleviate most of the overhead-related capacity loss. However, just as with quantum staggering, it is

not obvious that clustered scheduling necessarily results in significant improvements.
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Figure 4.9: Timer tick overhead under G-aPD2-Rm and G-sPD2-Rm. Quantum staggering is
effective and lowering average-case overheads, but does not lower worst-case overheads.
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Our overhead data shows that clustered scheduling with smaller clusters is in fact very effective

in lowering both worst-case and average-case overheads on our platform. Figure 4.10 shows this for

the case of PD2-based schedulers. Inset (a) shows worst-case tick overhead for C2-aPD2-Rm, C6-

aPD2-Rm, and G-aPD2-Rm. Both variants with smaller cluster sizes incur much lower overhead

than the global configuration of the PD2 plugin. Whereas worst-case timer tick overhead exceeds

200µs in the global case, worst-case timer tick overhead under C6-aPD2-Rm stays below 50µs.

Further, worst-case overhead under C2-aPD2-Rm is even less, but the difference between c = 2 and

c = 6 is much less pronounced than the difference between c = 6 and c = 24. This reflects a large

increase in cost if scheduler state is shared across sockets. Figure 4.10(b), which depicts average-case

timer tick overhead for the same schedulers, shows that the relative trends occur similarly in the

average case. Trends based on aligned and staggered quanta shown in Figure 4.9 arise in smaller

clusters just as they do under global scheduling, albeit at smaller magnitudes.

The benefit of smaller clusters in terms of reduced overhead also extends to EDF-based sched-

ulers. This is apparent in Figure 4.11, which shows worst-case and average-case scheduling overhead

under P-EDF-Rm, C2-EDF-Rm, C6-EDF-Rm, and G-EDF-Rm. As in the case of PD2-based

clusters, overheads are significantly lessened when using smaller cluster sizes. Notably, the two

C-EDF variants C2-EDF-Rm and C6-EDF-Rm exhibit overheads that are much closer to partitioned

scheduling than to global scheduling. This is both the case with worst-case overheads, which are

depicted in inset (a) of Figure 4.11, and with average-case overheads, which are depicted in inset (b)

of the same figure.

The significantly higher overhead under G-EDF-Rm can be explained by the increased cost

of off-chip shared state and by increased lock contention—in the worst case, a processor locking a

ready queue must wait more than four times longer under G-EDF-Rm (up to m− 1 = 23 preceding

critical sections) than under C6-EDF-Rm (up to c− 1 = 5 preceding critical sections).

The negative effects of high lock contention is not limited to scheduling overhead, but also

affects release interrupt overhead since the ready queue lock must be acquired to process a job release.

Release interrupt overhead under each of the EDF-based schedulers (with global interrupt handling)

is shown in Figure 4.12. As can be seen in inset (a), worst-case release interrupt overhead is similarly

afflicted by severe lock contention, with worst-case overheads exceeding half a millisecond for large
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Figure 4.10: Timer tick overhead under C2-aPD2-Rm, C6-aPD2-Rm, and G-aPD2-Rm. Smaller
cluster sizes result in lower maximum and average-case overheads.

313



 0

 100

 200

 300

 400

 500

 0  24  48  72  96  120  144  168  192  216  240  264  288  312  336  360  384  408  432  456  480

o
v
e
rh

e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks

maximum measured scheduling overhead

P-EDF-Rm

C2-EDF-Rm

C6-EDF-Rm

G-EDF-Rm

(a) Maximum observed scheduling overhead.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  24  48  72  96  120  144  168  192  216  240  264  288  312  336  360  384  408  432  456  480

o
v
e

rh
e
a
d
 i
n
 m

ic
ro

s
e
c
o
n
d
s

number of tasks

average measured scheduling overhead

P-EDF-Rm

C2-EDF-Rm

C6-EDF-Rm

G-EDF-Rm

(b) Average observed scheduling overhead.

Figure 4.11: Scheduling overhead under P-EDF-Rm, C2-EDF-Rm, C6-EDF-Rm, and G-EDF-Rm.
Smaller cluster sizes result in lower maximum and average-case scheduling overhead.
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n under G-EDF-Rm. Note that the other plugins with cluster sizes c < m are ordered roughly

proportional to cluster size, and that they do not exhibit noticeably increasing trends.

Figure 4.12(b) illustrates that the curves showing average-case release interrupt overheads

compare similarly. Notably, the C6-EDF-Rm does exhibit an increasing trend in the average case.

Overall, our overhead data shows that clustered scheduling is highly effective at lowering

overheads on our platform (compared to global scheduling). Further, the overheads in the case of

c = 2 and c = 6 are much closer to the overheads exhibited by partitioned scheduling than those

exhibited by global scheduling. This shows that link-based scheduling, which is implemented in

C-EDF and currently requires coarse-grained locking to be implemented, is viable at these cluster

sizes from an overhead point of view.

Event-driven vs. quantum-driven. Figure 4.13 illustrates how differences in implementation lead

to significantly different overhead trends under event-driven and quantum-driven schedulers. Inset (a)

of Figure 4.13 depicts average-case timer tick overhead under the event-driven scheduler C6-EDF-

Rm and under the quantum-driven scheduler C6-aPD2-Rm; inset (b) shows average-case release

interrupt overhead under the same schedulers. Interestingly, the two graphs show reverse trends.

Timer ticks cause very little overhead in event-driven schedulers since no job scheduling takes place

at quantum boundaries (the ready queue lock is thus not acquired by the timer tick ISR). In contrast,

timer ticks are a main source of overhead under PD2-based schedulers since subtask scheduling is

carried out in the timer tick ISR. The converse is the case with release interrupt overhead. Under

event-driven schedulers, job scheduling takes place in reaction to a job release, which requires the

release ISR to acquire the appropriate ready queue lock. In contrast, under PD2, a newly-released

job is simply queued for consideration at the next quantum boundary, which avoids lock contention.

This example highlights that overheads collected under one particular scheduler (and one

particular platform) cannot be “reused” for the evaluation of other schedulers, which may require a

different implementation approach. Counterintuitive trends such as overheads that decrease with an

increasing number of tasks further call attention to the importance of measuring overheads as they

occur in real systems, as opposed to extrapolating or estimating “reasonable” overheads.

This concludes our discussion of direct overheads. In this section, we did not exhibit graphs

depicting overheads under schedulers that employ dedicated interrupt handling. The reason for this is
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Figure 4.12: Release interrupt overhead under P-EDF-Rm, C2-EDF-Rm, C6-EDF-Rm, and
G-EDF-Rm. Global scheduling is affected by lock contention and cache line bouncing.
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Figure 4.13: Average observed (a) timer tick and (b) release interrupt overhead under C6-aPD2-
Rm and C6-EDF-Rm. As no job scheduling is required, timer ticks create only little overhead in
event-driven schedulers and release ISRs cause only little overhead in quantum-driven schedulers.
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that dedicated interrupt handling by itself does not change the observed overhead trends significantly

in most cases (with the exception of global schedulers, where contention is somewhat reduced).

We refer the interested reader to the full data set with all graphs, which can be obtained online

(Brandenburg, 2011).

4.4 Cache-Related Overheads

Accurately assessing cache-related delays is a classical component of WCET analysis (Wilhelm

et al., 2008). However, as discussed in Section 3.1, current WCET analysis techniques have not yet

matured to the point that current multicore platforms with shared caches can be effectively analyzed.

Hence, we rely on empirical measurements to estimate cache-related overheads instead.

The magnitude of cache-related delays caused by preemptions and migrations (and interrupts) is

primarily determined by two factors:

1. The number of cache lines that must be reloaded. This is determined by the preempted job’s

WSS, the preempting job’s cache footprint, and the length of preemption (the sooner a job

continues execution, the higher the likelihood that parts of its working set are still present in

some cache). However, in the worst case, the duration of preemption is sufficiently long and

the cache footprint of the preempting job is large enough to evict the complete working set of

the preempted job. Hence, the number of cache lines to be reloaded is mainly dependent on

the preempted job’s WSS.

2. The cost of reloading an individual cache line. This depends on where the evicted cache

contents are loaded from (i.e., if they can be retrieved from a lower-level cache, or if they

have to be refetched from memory), and on the level of contention for memory bandwidth. In

a shared-memory system, the central memory bus is a key bottleneck. If contention for the

main memory bus is high, then reloading a cache line from main memory can incur significant

delays while the processor is waiting to access the bus. Similarly, if cache lines are loaded

from a lower-level shared cache (e.g., if L2 cache contents are reloaded from the L3 cache),

contention for cache access can cause the processor to stall. Therefore, the cost of a preemption

is determined by the workload on all processors, not just the processor(s) involved in a job’s

preemption or migration.
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Figure 4.14: Illustration of CPMD measurement. The job Ji measures the time taken for a complete,
cache-warm access to its entire working set during [t1, t2). During [t2, t3), Ji maintains cache affinity
while it waits to be preempted. After the preemption (or migration), Ji times how long it takes to
re-access its entire working set. The difference (t5 − t4)− (t2 − t1) yields the delay incurred due to
reloading cache contents.

In a real system, the actual magnitude of cache-related delays caused by preemptions and interrupts is

further influenced by a particular application’s working set and memory reference pattern. However,

in a schedulability study, no specific application is assumed. Our primary intent is hence to determine

realistic ranges of CPMD to assume in schedulability studies (and not to measure CPMD in actual

applications). In particular, we are interested in simple, yet effective, methods for measuring CPMD

that can be realistically performed as part of scheduling research and by practitioners during early

design phases (i.e., when selecting platforms and algorithms).

In this section, we first summarize two methods for measuring cache-related overheads and then

report CPMD as determined on the platform underlying this case study. The techniques and data

reported in this section are the result of joint work with Bastoni et al. (2010a).

4.4.1 Measurement Approach

Recall that a job is delayed after a preemption or a migration due to a (partial) loss of cache affinity.

To measure such delays, we consider jobs that access their working set as illustrated in Figure 4.14:

a job Ji starts executing cache-cold at time t0 and experiences compulsory misses until time t1, by

which time its working set is completely loaded into the cache. After t1, each subsequent memory

reference by Ji is cache-warm. At time t2, the job has successfully referenced its entire working set

in a cache-warm context. From t2 onward, the job repeatedly accesses single words of its working set

(to maintain cache affinity) and checks after each access if a preemption or migration has occurred.

Suppose that the job is preempted at time t3 and not scheduled until time t4. When Ji continues

execution, it detects the preemption (or migration) and re-accesses its complete working set, which it
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finishes at time t5. As Ji lost cache affinity during the interval [t3, t4], the length of the interval [t4, t5]

(i.e., the time needed to reference again its entire working set) includes the time lost to additional

cache misses.

Let D denote the cache-related delay suffered by Ji. After the working set has been fully

accessed for the third time (at time t5), D is given by the difference D = (t5 − t4)− (t2 − t1). The

interval [t2, t3] is not reflected in D since jobs are simply waiting to be preempted while maintaining

cache affinity during this interval. After collecting a trace D1, . . . , Dk from a sufficiently large

number of jobs k, maxl{Dl} can be used to approximate ∆cpd (recall that ∆cpd is a bound on the

maximum CPMD incurred by any job). Similarly, average delay and standard deviation can be

readily computed during off-line analysis.

On multiprocessors with a hierarchy of shared caches, migrations are categorized according to

the level of cache affinity that is preserved (e.g., a job migration between two processors sharing an

L2 cache is an L2-migration). A memory migration does not preserve any level of cache affinity. The

type of migration can be identified by recording at time t3 the processor on which Ji was executing

and at time t4 the processor on which Ji resumes execution.

Each sample Dl can be obtained either directly or indirectly. A low-overhead clock can be used

to directly measure the working set access times [t1, t2] and [t4, t5], which immediately yield D.

Alternatively, some platforms include hardware performance counters that can be used to indirectly

measure D by recording the number of cache misses. The number of cache misses experienced in

each interval is then multiplied by the time needed to service a single cache miss. In the reported

case study, we measured D directly using the TSC since it can be accessed from user space without

incurring large overhead (recall that the TSC is a cycle counter available in every modern x86

processor; see Section 2.1.4).

Both direct and indirect measurements can be perturbed by ISR execution. These disturbances

can be avoided by disabling interrupts while measuring working set access times. Although this does

not prevent NMIs from being serviced, NMIs are infrequent events that likely only have a minor

impact on CPMD approximations. We note, however, that our methodology currently cannot detect

interference from NMIs. Any outliers due to NMIs could be removed using IQR filters as described

in Section 4.3.1. On our test platform, NMIs did not appear to pose a problem (i.e., no outliers were

apparent) and hence no outlier filtering was performed on the CPMD data used in this dissertation.
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Cache-related delays clearly depend on the WSS of a job, and possibly also on the scheduler and

on the task set size n. Hence, to detect such dependencies (if any), each trace D1, . . . , Dk should

ideally be collected as part of a task set that is executing under the scheduler that is being evaluated

without altering the implemented policy. We next describe a method that realizes this idea.

4.4.1.1 Schedule-Sensitive Method

Under the schedule-sensitive method, CPMD samples are recorded on-line while scheduling a task

set under the algorithm of interest. Performing these measurements without changing the regular

scheduling of a task set poses the question of how to efficiently distinguish between a cold, warm,

and post-preemption (or migration)— denoted post-pm—working set access. In particular, detecting

the first post-pm memory access (i.e., time t4 in Figure 4.14) is tricky, as jobs running under OSs

with address space separation such as Linux are generally not aware of being preempted or migrated.

Solving this issue requires a low-overhead mechanism that allows the kernel to inform a job of

every preemption and migration. As part of our case study, we modified LITMUSRT to export all

relevant data to real-time tasks by means of the control page (Section 3.3.2). A job can infer whether

it has been preempted or migrated as follows: when it is selected for execution, the kernel updates

the task’s control page by increasing a preemption counter and the job sequence number, storing the

preemption length, and recording on which core the task will start its execution. This allows the job

to record all pertinent information without invoking system calls.

Delays should be recorded by executing many task sets with a wide range of sizes and working

sets. Since samples are collected from a valid schedule, the advantage of this method is that it

can identify dependencies (if any) of CPMD on scheduling decisions and on the number of tasks.

However, this implies that it is not possible to control when a preemption or a migration will

happen, since these decisions depend exclusively on the scheduling algorithm (which is not altered).

Therefore, the vast majority of the collected samples are likely invalid, e.g., a job may not be

preempted at all or may be preempted prematurely, and only samples from jobs that execute exactly

as shown in Figure 4.14 can be used in the analysis. Thus, large traces are required to obtain few valid

samples. Worse, for a given scheduling algorithm, not all combinations of WSS and task set sizes

may be able to produce the execution pattern needed in the analysis (e.g., some arrival sequences

may simply fail to trigger preemptions under event-driven schedulers such as G-EDF). We therefore
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developed a second method that achieves finer control over the measurement process by artificially

triggering preemptions and migrations of a single task.

4.4.1.2 Synthetic Method

Under the synthetic method, CPMD measurements are collected by a single instrumented process

that repeatedly accesses working sets of different sizes. No LITMUSRT-specific real-time features

are required. Instead, the measurement process is scheduled using Linux’s SCHED FIFO policy

and assigned the highest priority. It therefore cannot be preempted by other processes.

In contrast to the schedule-sensitive method, preemptions and migrations are explicitly triggered

in the synthetic method. In particular, the destination core and the preemption length are chosen

randomly (a preemption arises if the same core is chosen twice in a row). In order to trigger

preemptions, L2-migrations, L3-migrations, etc. with the same frequency (and thus to obtain an

equal number of samples; recall Section 4.3.1), proper probabilities must be assigned to each core.

A preemption of a given length is enacted by invoking Linux’s nanosleep() system call, which

gives background tasks a chance to execute, i.e., to “preempt” the measurement process. Migrations

are enacted by changing the processor affinity mask prior to carrying out the post-pm working set

access. As the task execution is tightly controlled, post-pm working set accesses do not need to be

detected, and no kernel interaction or modification is required.

The synthetic method avoids the main limitation of the schedule-sensitive approach as it generates

only valid CPMD samples. This allows a statistically meaningful number of samples to be rapidly

obtained. However, as preemption and migration scheduling decisions are externally imposed, this

methodology cannot identify correlations between CPMD and the scheduling policy or task set size.

A limitation shared by both the schedule-sensitive and synthetic methods is that they only reveal

CPMD related to the TLB and unified and data caches, but not instruction caches, as only a small

measurement loop is executed. Measuring CPMD caused by instruction cache misses requires

instrumenting an actual application. However, given that dedicated instruction caches are typically

much smaller than data caches, the additional CPMD is likely small and thus not particularly relevant

to our goal (which is to determine realistic ranges of CPMD to assume in schedulability experiments

and not to determine exact upper bounds for a specific application). In future work, it would be

322



interesting to employ performance counters to study the impact of real-time scheduling policies on

instruction cache misses in real applications.

4.4.2 Experiments

We measured CPMD as it arises on our 24-core test platform with three levels of shared caches

using both the schedule-sensitive and the synthetic method (Bastoni et al., 2010a). The main result

from applying the schedule-sensitive method is that CPMD does not depend on the number of

tasks n. Since the schedule-sensitive method is much more time consuming than the synthetic

method (applying the schedule-sensitive method to a single scheduler required more than 24 hours of

tracing to collect a sufficient number of valid samples; we consider 22 schedulers in this case study),

we rely exclusively on data collected with the synthetic method in this dissertation. The interested

reader is referred to (Bastoni et al., 2010a) for a detailed discussion of experiments conducted using

the schedule-sensitive method.

Setup. We applied the synthetic method to our test platform as follows. A measurement process

was scheduled with SCHED FIFO as described above. To collect a sample, the process sequentially

accessed7 its working set (a large array) three times in a cache-hot context, and then simulated a

preemption or migration, after which it recorded the length of the post-pm working set access. The

WSS was chosen from {22, 23, 24, . . . , 213 = 8192} KB. We further tested WSSs of 3 MB and

12 MB, as they correspond to the sizes of L2 and L3 caches, respectively. In these experiments,

several per-WSS write ratios were used. In particular, we considered write ratios ranging over

{0, 2−7, 2−6, 2−4, 2−2, 2−1, 1}. All write ratios are given with respect to individual words (and

not cache lines). For each WSS we ran the test program until 5,000 CPMD measurements were

collected (for each preemption/migration category). Preemption lengths were uniformly distributed

in [0 ms, 50 ms].

The experiments were repeated using two configurations. In the first configuration, we measured

CPMD as it arises in an otherwise idle system, i.e., the measurement process is the only active

user process (aside from mostly idle system daemons). In the second configuration, we added

a background process to each processor that continuously accesses a large array (≈ 38 MB) in

7Cache-line pre-fetching was disabled on the test platform, so the access pattern is irrelevant to these experiments.
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a sequential manner to thrash all caches. The cache-polluting background load has the effect of

simulating heavy cache and memory bus contention as it might arise in a heavily loaded system.

In particular, a cache-polluting background process will be scheduled whenever the measurement

process invokes the nanosleep() system call to simulate a preemption and thus likely evict its working

set from the cache. We refer to measurements obtained from the first configuration as idle CPMD,

and to measurements observed in the presence of cache-polluting background tasks as load CPMD.

In total, more than 3.5 million valid samples were obtained under both configurations during more

than 50 hours of tracing. As noted above, interrupts were disabled during measurements and no

outliers were removed from the collected data.

In principle, both the synthetic and the schedule-sensitive method could be adapted to estimate

cache-related interrupt delays (∆cid ). However, given the relatively large caches in our platform,

it is unlikely that briefly executing ISRs displaces large parts of a stopped job’s working set. The

resulting delays are hence likely minuscule compared to CPMD and it is not clear whether they

could be discerned from other slowdowns such as cache interference and bus contention. As major

changes to both LITMUSRT and the instrumented tasks would be required to detect release interrupts

and timer ticks, we did not measure cache-related interrupt delays and assumed ∆cid = 0 in the

schedulability experiments.

CPMD results. Write ratios of 1/2 and 1/4 showed the highest worst-case overheads, with 1/4

performing slightly worse. There are eight words in each cache line, thus each task updated every

cache line in its working set multiple times. Tests with write ratios lower than 1/8, under which

some cache lines are only read, exhibited reduced overheads. Since we are interested in estimating

worst-case delays, we focus on a write ratio of 1/4 in the following. The complete set of graphs can

be found online (Brandenburg, 2011).

Figure 4.15 shows maximum and average idle CPMD caused by preemptions and each kind of

migration (L2, L3, memory) as a function of WSS. Maximum and average load CPMD is shown in

Figure 4.17. In the manner discussed earlier, these graphs display the difference between a post-pm

and a cache-warm working set access. Declining trends with increasing WSSs thus indicate that the

cache-warm working set access cost is increasing more rapidly than the post-pm working set access

cost.
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(a) Maximum idle CPMD.
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Figure 4.15: Graphs showing (a) maximum observed CPMD and (b) average observed CPMD as
determined by the synthetic method in an otherwise idle system.
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Figure 4.16: Maximum observed CPMD as determined by the synthetic method in an otherwise idle
system. This graph shows a subset of the data depicted in Figure 4.15(a) at a higher resolution.

We consider idle CPMD first. Both worst-case and average-case idle CPMD exhibit a decreasing

trend for WSSs exceeding 3 MB, which corresponds to the size of the L2 cache. In other words, jobs

with WSSs that lead to L2 thrashing make only inefficient use of the memory hierarchy. The cost of

losing cache affinity is reduced in this case because the benefit of using the cache was low to begin

with, i.e., a trashing job develops only little affinity.

Another major trend is that L2-migrations and preemptions incur virtually identical CPMD,

whereas L3- and memory migrations incur much higher costs. This can be seen in both inset (a) and

inset (b) of Figure 4.15, where the curves for L2-migrations and preemptions overlap in large parts.

The lack of a major difference between L2-migrations and preemptions is due to the small size of the

L1 cache (32 KB), which implies that most of the tested WSSs thrash the L1 cache anyway and thus

derive little benefit from L1 affinity.

As an exception, if the working set is very small (wss ≤ 128 KB), then preemptions are

negligible (around 1µs), whereas L2 migrations incur somewhat higher CPMD (around 15µs). This

can be seen in Figure 4.16, which shows a subset of the data depicted in Figure 4.15(a) at a smaller

scale. While one might expect preemptions to become as expensive as L2-migrations when the

WSS exceeds the L1 cache size (32 KB), the cost of preemptions remains virtually negligible until

wss = 128 KB. The reason for this is that CPMD for such small WSSs is dominated by cache

coherency overhead (and not the cost of reloading cache contents). If a job resumes quickly after
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being migrated, parts of its working set are still present in the previously-used L1 cache and thus

need to be evicted prior to being updated. In the case of preemptions, cache line evictions are not

required. Similarly, if tasks never write to their working set (i.e., if cache lines are not exclusive to

any processor), then L2-migrations are indeed similar to preemptions and the effect disappears.

Surprisingly, jobs incur higher CPMD after L3-migrations than after memory migrations. This

shows that cache affinity is not always beneficial, as the large L3 caches are not significantly faster

than reloading data from main memory (in an idle system). We suspect that the counterintuitive

trend of increased costs in the case of L3-migrations is also related to the cache-coherency protocol.

Indeed, in the case of a write ratio of 0 (i.e., only reads), L3-migrations become significantly cheaper

than memory migrations. However, it is not clear why cache line evictions would be more expensive

after an L3-migration than after a memory migration.8 This illustrates the difficulty in correctly

anticipating realistic overheads, hints at the challenges involved in bounding WCETs on a multicore

platform, and also highlights the need to use fully transparent hardware platforms for safety-critical

applications. (Intel does not publicize all details of the implemented cache coherency protocol.)

Remarkably, the observed worst-case and average-case idle CPMD have comparable magnitudes

(insets (a) and (b) of Figure 4.15 use the same y-axis scale). This is not the case with load CPMD,

which is depicted in Figure 4.17. In the presence of cache polluters, the observed worst-case load

CPMD is an order of magnitude larger than in the average case, and also an order of magnitude larger

than idle CPMD. Further, there are no substantial differences between preemption and migration

costs, both in the worst and average case. When a job is preempted or migrated in the presence of

heavy background activity, its cache lines are likely evicted quickly from all caches and thus virtually

every post-pm access reflects the high overhead of refetching the entire working set from memory.

This is evident in Figure 4.17(b) since all curves are very close together (in fact, within one standard

deviation).

Another counterintuitive trend is that average-case load CPMD, shown in Figure 4.17(b), is

generally lower than average-case idle CPMD, shown in Figure 4.15(b). This again implies reduced

8We repeated the experiments several times to rule out measurement error; the counterintuitive difference persisted.
One possibly cause is a difference in memory bandwidth. Each of the test platform’s four chips is connected to the main
memory by an independent bus (Intel Corporation, 2007). Compared to an L3-migration, a memory migration thus involves
twice the memory bandwidth (cores on the same chip share an L3 cache). Memory bandwidth could be a limiting factor if
post-migration cache line evictions require a significant number of dirty cache lines to be written back to memory.
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Figure 4.17: Graphs showing (a) maximum observed CPMD and (b) average observed CPMD as
determined by the synthetic method in the presence of m cache-polluting background tasks. Note
that inset (a) is plotted using a different y-axis scale due to the magnitude of the measured CPMD.
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cache efficiency. In the presence of heavy cache contention, the measurement process experienced

cache interference through the shared L2 and L3 cache, which reduces the degree of cache affinity

that it can develop. Further, due to the thrashing cache-polluter tasks, bus access times are highly

unpredictable and L3 cache interference is very pronounced. In fact, our traces show that jobs

frequently incur “negative CPMD” for WSSs exceeding 2–3 MB because the “cache-warm” access

itself is strongly interfered with. This implies that, from the point of view of schedulability analysis,

CPMD is not well-defined for such WSSs, since a true WCET must account for worst-case cache

interference and thus is already more pessimistic than CPMD, i.e., actual CPMD effects are likely

negligible compared to the required bounds on worst-case interference.

Interpretation. The setup used in the experiments depicted in Figure 4.17 simulate worst-case

scenarios in which a job is preempted by a higher-priority job with a large WSS that (almost)

completely evicts the preempted job’s working set while activity on other processors generates

significant memory bus contention. In contrast, the graphs shown in Figure 4.15 correspond to

situations in which the preempting job does not cause many evictions (which is the case if it has a

virtually empty working set or its working set is already cached) and the rest of the system is idle,

i.e., Figure 4.15 depicts best-case scenarios. Hence, Figure 4.17(a) shows the observed worst-case

CPMD in a worst-case situation, whereas Figure 4.15(a) shows the observed worst-case CPMD in a

best-case situation. Similarly, Figure 4.17(b) shows the observed average-case CPMD in a worst-case

situation and Figure 4.15(b) shows the observed average-case CPMD in a best-case situation.

Further note that, even though the synthetic method relies on a background workload to generate

memory bus contention, the data shown in Figure 4.17 also applies to scenarios in which the

background workload is absent if the real-time workload itself generates significant memory bus

contention. This has profound implications for empirical comparisons of schedulers. If it is possible

that a job’s working set is completely evicted by a preempting job, then this (possibly unlikely) event

must be reflected in the employed schedulability tests. Thus, unless it can be shown (or assumed)

that all tasks have only small WSSs and there is no background workload (including background OS

activity), then bounds on CPMD should be estimated based on the high-contention scenario depicted

in Figure 4.17.
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Based on our CPMD data, it is not warranted to consider migrations to be more costly than

preemptions when making worst-case assumptions (e.g., when applying hard real-time schedulability

tests). This implies that, in the worst case, there is only little benefit to maintaining cache affinity,

which calls into question one of the claimed advantages of partitioned scheduling. However, does

this render clustered or global scheduling preferable to partitioned scheduling? We next discuss

results from our overhead-aware schedulability study, which answer this and other questions.

4.5 Schedulability Experiments

After distilling the model of scheduling and cache-related overheads as they occur on our test platform

under each of the scheduler plugins and configurations, we carried out large-scale schedulability ex-

periments. For each of the 27 combinations of utilization and period distributions (see Section 4.2.3),

we generated task sets by varying ucap from 1 to m = 24 in steps of 0.25, and by varying wss from

0 KB to 3072 KB (i.e., the size of each L2 cache). Regarding the latter, we used a step size of 16 KB

in the range from 0 KB to 256 KB, a step size of 64 KB in the range from 256 KB to 1,024 KB, and

a step size of 256 KB in the range from 1024 KB to 3072 KB. This allows for a greater resolution in

the range of small WSSs where most relevant trends occur. For each combination of ucap and wss ,

we generated 100 task sets. This resulted in distinct 3,441 combinations of ucap and wss for each of

the 27 task parameter distributions. In total, we generated and tested 92,907,000 task sets.

Schedulability analysis. We evaluated each of these task sets under ten event-driven scheduler

variants (P-FP and four EDF-based schedulers with either global or dedicated interrupt handling)

and twelve quantum-driven scheduling approaches (three PD2-based schedulers with either global or

dedicated interrupt handling, and either aligned or staggered quanta, as listed in Table 4.1). For each

of the 22 scheduler configurations and each tested task set τ , we determined whether τ is schedulable

under four sets of analysis assumptions:

1. Requiring HRT correctness while accounting for worst-case overheads and worst-case load

CPMD as shown in Figure 4.17(a).

2. Requiring HRT correctness while accounting for worst-case overheads and worst-case idle

CPMD as shown in Figure 4.15(a).
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3. Requiring SRT correctness while accounting for average-case overheads and average-case load

CPMD as shown in Figure 4.17(b).

4. Requiring SRT correctness while accounting for average-case overheads and average-case idle

CPMD as shown in Figure 4.15(b)

The benefit of considering both idle and load CPMD under both HRT and SRT analysis is that it

provides a range of results in which real applications likely fall. That is, real applications will incur

no less CPMD than idle CPMD, whereas load CPMD approximates worst-case cache contention.

Prior to accounting for preemption-related overheads, each task’s execution cost was increased by

one CPMD charge to reflect the cost of the initial cache-cold working set access at the beginning of

each job’s execution.

We tested schedulability after partitioning (if required) and accounting for overheads under each

of the four analysis assumptions as follows. If the worst-fit decreasing heuristic failed to partition the

task set (if required) or if inflating for overheads caused any task to become infeasible (i.e., ei > pi),

then the task set was claimed unschedulable. Otherwise, we applied appropriate HRT and SRT

schedulability tests. In the case of P-EDF, P-FP, and PD2, the same test was applied to establish

both HRT and SRT schedulability. HRT and SRT schedulability under these schedulers hence differs

only in the use of worst-case or average-case overheads.

• Under P-FP-Rm and P-EDF-Rm, tasks were assigned priorities according to the RM policy

and claimed schedulable if each partition passed the response-time test (Theorem 2.2).

• Under P-EDF-Rm and P-EDF-R1, a task set was claimed schedulable if none of the partitions

exceeded a total utilization of 1 since EDF is optimal on a uniprocessor (Theorem 2.3).

• Under PD2-based schedulers, a task set was claimed schedulable if none of the clusters was

over-utilized since PD2 is optimal on a multiprocessor for implicit-deadline tasks (Theo-

rem 2.11). (Quantum staggering is accounted for when considering overheads).

In the case of EDF-based schedulers with c > 1, different HRT and SRT schedulability tests must be

applied.
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• Under EDF-based schedulers with c > 1, a task set was claimed HRT schedulable if each

cluster passed either the density test (Theorem 2.7), Bertogna and Cirinei’s multiprocessor

response-time test (Theorem 2.8), or Baruah’s test (Theorem 2.9).

• Under EDF-based schedulers with c > 1, a task set was claimed SRT schedulable if none of

the clusters was over-utilized since G-EDF is SRT optimal on a multiprocessor (Theorem 2.10).

The tardiness bound for each task was determined on a cluster-by-cluster basis. If the tasks

assigned to the jth cluster τj passed one of the three employed G-EDF HRT schedulability

tests (Theorems 2.7–2.9), then the maximum tardiness of each task in τj is zero. Otherwise,

maximum tardiness was bounded using Devi and Anderson’s analysis (Theorem 2.10).

We note that Theorem 2.10 is no longer the most-accurate tardiness bound for G-EDF. Erickson et al.

(2010a) recently proposed an improved, iterative method for computing less-pessimistic tardiness

bounds under G-EDF. However, while Devi and Anderson’s tardiness bound (Theorem 2.10) can

be computed in a straightforward manner, Erickson et al.’s iterative method is of (at least) pseudo-

polynomial time complexity.9 Erickson et al. further reported that improvements are greatest for small

processor counts (or smaller cluster sizes), and that runtimes grow super-linearly with increasing

values of m. In empirical experiments, they found an average reduction in tardiness bounds of 4% or

less for m = 16 at the cost of 1,000–10,000 iterations in their algorithm per task set (no results for

larger processor counts were reported). In the case of m = 4, which yielded the largest reductions,

the relative improvement only rarely exceeded 15%. Given that our platform consists of m = 24

processors, that reductions in tardiness bounds would likely be small using Erickson et al.’s method,

and that more than 90 million task sets had to be tested twice, we chose to use Devi and Anderson’s

faster bound instead of Erickson et al.’s more-accurate bound.

Results. Since there are 22 tested scheduler configurations and four sets of analysis assumptions,

our experiments generated 88 sets of schedulability data (in addition to tardiness bounds under SRT

analysis). When visualized as regular schedulability plots (i.e., schedulability as a function of ucap

for a fixed wss for each scenario), this data corresponds to 999 schedulability plots and 999 relative

tardiness plots, each showing 88 curves. When aggregated using the weighted schedulability score,

9Erickson et al. (2010a) presented two variants of their iterative method: one with pseudo-polynomial complexity, and
one slightly less pessimistic with unknown runtime complexity.
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27 graphs (each still showing 88 curves) result, one for each parameter distribution. However, it

is not helpful to include all 88 curves in a single graph since relevant trends would be obscured by

clutter. Consequently, we grouped curves by analysis type (HRT or SRT constraints, CPMD in a

loaded or idle system) and generated more than 60,000 graphs showing subsets of the curves to

enable individual comparisons (e.g., to compare SRT schedulability under all EDF-based schedulers,

to compare HRT schedulability under both P-FP variants, etc.).

Clearly, it is infeasible to include all graphs in this dissertation. Instead, we describe the major

trends that our experiments revealed and illustrate each point with select graphs showing only curves

relevant to the discussed trend. We further only show HRT schedulability results corresponding to

Analysis Assumption 1, and SRT schedulability results (and relative tardiness results) corresponding

to Analysis Assumption 4. Additionally, in graphs showing weighted schedulability score, we restrict

our attention to wss ≤ 1024 KB because all major trends manifest in this range. We refer the

interested reader to the companion website to this dissertation (Brandenburg, 2011), which makes all

graphs, all task sets, the entire schedulability data set, and the underlying LITMUSRT version and

tools available for download.

To make the case study’s results more accessible, the remainder of the discussion is structured

as follows. First, we discuss for each scheduler plugin and cluster size whether dedicated or global

interrupt handling is preferable, and, in the case of PD2-based schedulers, whether to use aligned or

staggered quanta (Section 4.5.1). Second, we consider which cluster size works best for EDF-based

schedulers and PD2-based schedulers on our test platform (Section 4.5.2). Finally, we compare

the remaining schedulers to identify which scheduler is best suited to statisfying HRT and SRT

constraints, and yielding low tardiness, on our platform (Section 4.5.3).

4.5.1 Interrupt Handling and Quantum Alignment

In LITMUSRT, event-driven plugins can be configured to use either dedicated interrupt handling

or global interrupt handling. Quantum-driven schedulers may further use staggered or aligned

quanta (with either interrupt handling option). In this section, we determine for each implemented

event-driven scheduler and, in the case of C-EDF and C-PD2, for each cluster size, the configuration

that is preferable from a schedulability point of view. We consider interrupt handling in event-driven

schedulers first.
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Dedicated interrupt handling is a tradeoff. On the one hand, jobs are not disturbed by release

interrupts; on the other hand, the system is essentially reduced to m− 1 processors. Further, under

partitioned schedulers, it increases worst-case release delay since an IPI is added to the critical

path from release interrupt to context switch. Intuitively, dedicated interrupt handling is worthwhile

to implement if the overhead-related capacity loss due to release interrupts under global interrupt

handling exceeds the loss of one processor, which may be the case if interrupt accounting is severely

pessimistic, if release ISRs cause high overhead (i.e., if ∆rel is large), or if there are many tasks.

P-FP variants. This is not the case with the P-FP plugin, under which we found global interrupt

handling (i.e., P-FP-Rm) to be uniformly preferable in all tested scenarios. There are three con-

tributing factors. First, release interrupts are relatively short under the P-FP plugin since locks are

only rarely contended. Second, interrupts are modeled as tasks under P-FP scheduling, which is the

least pessimistic method of accounting for interrupts. Third, P-FP scheduling is already affected by

bin-packing limitations, which are exacerbated if a processor is reserved for interrupts.

An example schedulability graph illustrating this observation is shown in Figure 4.18(a), which

depicts HRT schedulability under P-FP-R1 and P-FP-Rm for the medium exponential utilization

distribution, moderate periods, and a fixed WSS of 64 KB. The curves of P-FP-R1 and P-FP-Rm

overlap in most parts and only diverge in the range 16 ≤ ucap ≤ 20. Recall from Section 4.1.5

that schedulability is the ratio of schedulable task sets, and that an optimal, overhead-free scheduler

achieves a schedulability of 1. The graph shows that both configurations suffer some capacity loss

already for utilization caps as low as 4, but that more than 80% of all generated tasks can be scheduled

under either configuration if ucap ≤ 16. For higher utilization caps, global interrupt handling yields

higher schedulability, until none of the task sets are schedulable under either configuration. However,

the difference is rather small.

Figure 4.18(b) shows the weighted HRT schedulability score for the same task parameter

distributions. The curves shown in Figure 4.18(a) correspond to the points at wss = 64 KB in

Figure 4.18(b). The small difference in Figure 4.18(a) is reflected by the fact that both curves are

close to each other in Figure 4.18(b) for wss = 64 KB. The weighted schedulability score reveals

that the difference between P-FP-Rm and P-FP-R1 decreases continuously as the WSS increases.

However, even for wss = 0 KB, the difference remains small.
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Figure 4.18: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score for
exponential medium utilizations and moderate periods.
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In summary, P-FP-Rm is always preferable to P-FP-R1, if only slightly so. The difference

diminishes as cache-related overheads dominate the difference in interrupt handling. These trends

are apparent in all tested scenarios.

EDF-based schedulers. Under G-EDF, the exact opposite is the case since G-EDF suffers from

high release overhead (due to lock contention). Interrupt accounting also has a greater impact than

under partitioned scheduling since each job may be delayed by all other tasks (instead of only tasks

local to its partition). Therefore, G-EDF-R1 is preferable to G-EDF-Rm in all but three of the tested

scenarios, and usually by a large margin. The few exceptions in which G-EDF-Rm is preferable

involve scenarios with only few, high-utilization tasks where interrupt handling is not the deciding

factor (e.g., SRT schedulability for uniform heavy utilizations and long periods).

A typical example with a large gap in performance can be seen in Figure 4.19(a), which shows

SRT schedulability under G-EDF-Rm and G-EDF-R1 for uniform light utilizations, moderate

periods, and a WSS of 256 KB. Under the light uniform utilization distribution, a large number

of tasks is generated (in excess of 400 tasks per task set for large utilization caps), which causes

major overhead-related capacity loss. This is evidenced by the performance of G-EDF-Rm, which

deteriorates quickly at ucap ≈ 4, where there are about 80 tasks in each task set. In contrast,

G-EDF-R1 ensures bounded tardiness to all generated task sets until ucap ≈ 17.5. Figure 4.19(b),

which depicts the weighted SRT schedulability score of G-EDF-R1 and G-EDF-Rm for the same

task parameter distributions, shows that the gap in performance increases with decreasing WSSs, but

remains relative large even for a WSS of 1 MB.

G-EDF-R1 also achieves higher schedulability than G-EDF-Rm in the case of HRT constraints.

Similar trends are also apparent to a large extent when comparing C6-EDF-Rm to C6-EDF-R1.

As an exception, if there are few, heavy tasks and long periods, then C6-EDF-Rm is preferable

to C6-EDF-R1 since overhead due to release interrupts is much lower. Graphs supporting these

conclusions can be found online (Brandenburg, 2011).

The choice between dedicated and global interrupt handling is less clear in the cases of P-

EDF and C-EDF with clusters defined by shared L2 caches. In both cases, bin-packing issues are

magnified by the loss of one processor. The release overhead is also lower than under G-EDF-Rm

and C6-EDF-Rm since there are fewer tasks per cluster and locks are less frequently contended
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Figure 4.19: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score for
light uniform utilizations and moderate periods.
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(and by fewer processors). Nonetheless, release overhead causes significant capacity loss when there

are many tasks. Therefore, dedicated interrupt handling is preferable in some scenarios with light

utilizations and moderate or short periods, whereas global interrupt handling is preferable in the

other cases where there are fewer tasks or if tasks have long periods, which reduces the impact of

overheads.

An example of the latter case is shown in Figure 4.20, which shows SRT schedulability and

weighted SRT schedulability of P-EDF-R1 and P-EDF-Rm for uniform light utilizations, short

periods, and a WSS of 128 KB. Of all considered task parameter distributions, this scenario creates

the most tasks with the most-stringent time constraints. Consequently, it is most susceptible to

overhead-related capacity loss. Not surprisingly, dedicated interrupt handling is preferable in this

case: P-EDF-R1 can support task sets with total utilization up to 16, whereas P-EDF-Rm’s

schedulability decreases sharply around ucap = 12. Figure 4.20(b) shows that P-EDF-R1 is

generally preferable for all WSSs, though differences become negligible for larger WSSs.

In contrast, Figure 4.21 depicts a case where P-EDF-Rm is preferable to P-EDF-R1. Fig-

ure 4.21(a) shows HRT schedulability for medium bimodal utilizations, long periods, and a WSS of

512 KB. Long periods imply that release interrupts cause only little capacity loss since the magnitude

of ∆rel is small in comparison to most periods. Further, bimodal task sets are more difficult to

partition due to the likely presence of high-utilization tasks. Therefore, dedicating a processor

to interrupt handling actually results in lower schedulability than under global interrupt handling.

Figure 4.21(b) shows that this is the case for all considered WSSs.

To summarize, under P-EDF, dedicated interrupt handling is preferable only if there are many

light tasks with short or moderate periods that cause high overheads (and that are easy to partition),

and global interrupt handling is preferable otherwise. In the SRT case, global interrupt handling is

preferable in the majority of the tested scenarios since average release overheads are much lower

than worst-case release overheads. These observations also apply to C2-EDF-Rm and C2-EDF-R1,

which exhibit trends similar to P-EDF-Rm and P-EDF-R1.

Note that this characterization is hardware-specific: on faster processors, release overhead could

be lower and P-EDF-Rm and C2-EDF-Rm could be preferable in all cases. This is a good example

of a tradeoff between algorithmic and overhead-related capacity loss that can only be revealed by an

overhead-aware evaluation methodology. Without considering real, measured overheads based on
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Figure 4.20: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score of
P-EDF-Rm and P-EDF-R1 for uniform light utilizations and short periods.
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Figure 4.21: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score of
P-EDF-R1 and P-EDF-Rm for medium bimodal utilizations and long periods.
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an actual implementation, it would not be possible to anticipate for which distributions dedicated

interrupt handling is preferable (if any).

PD2-based schedulers. In the case of the PD2 plugin, we considered three cluster sizes in our study

(c = 2, c = 6, and c = 24). Each of these cluster sizes can be configured to use either dedicated

or global interrupt handling, and either staggered or aligned quanta, for a total of four variants per

cluster size. On our platform, the two larger cluster sizes c = 6 and c = 24 revealed similar trends in

the HRT case, whereas small clusters based on L2-sharing (c = 2) exhibited different trends. We

discuss the two larger cluster sizes first.

Figure 4.22 depicts HRT schedulability under each of the four global PD2 variants (c = 24) for

uniform light utilizations, long periods, and assuming a negligible WSS. Two groups of curves are

apparent. The two variants using global interrupt handling, G-sPD2-Rm and G-aPD2-Rm, achieve

very low schedulability due to the pessimistic accounting for release interrupts under quantum-driven

scheduling (recall that the effective quantum length is shortened to account for every interrupt

source). Due to the impact of release interrupts, hardly any difference between staggered and aligned

quanta is apparent in this case (the two curves mostly overlap). In contrast, schedulability under

dedicated interrupt handling is much higher, and there is a noticeable difference between staggered

(G-sPD2-R1) and aligned (G-aPD2-R1) quanta. As is apparent in Figure 4.22(a), staggered quanta

yield somewhat lower schedulability. This is because the added stagger latency forces periods to

be shortened (under HRT analysis), which causes some capacity loss. While one might intuitively

assume lower overheads under staggered quanta might compensate for the shortened periods, the

observed worst-case overheads are actually not lower under staggered quanta than under aligned

quanta (in the case of c = 6 and c = 24). Figure 4.22(b) shows that G-aPD2-R1 is preferable

for larger WSSs, too, until about wss = 128 KB, at which point all variants fail to schedule even

low-utilization task sets due to high cache-related overhead.

In contrast, in the case of small, L2-based clusters (c = 2), we found staggered quanta to be

effective at lowering maximum overheads and thus at improving HRT schedulability. This is apparent

in Figure 4.23(a), which depicts HRT schedulability under each of the four clustered PD2 variants

with c = 2 for exponential light utilizations, long periods, and a negligible WSS. Again, two groups

of curves are apparent. As is the case with large clusters, dedicated interrupt handling is preferable to
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Figure 4.22: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score of
G-aPD2-R1, G-aPD2-Rm, G-sPD2-Rm and G-sPD2-R1 for uniform light utilizations and long
periods.
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Figure 4.23: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score of
C2-aPD2-R1, C2-aPD2-Rm, C2-sPD2-Rm and C2-sPD2-R1 for exponential light utilizations
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global interrupt handling due to pessimistic release interrupt accounting. However, in contrast to

the cases of c = 6 and c = 24 discussed above, we did observe lower maximum overheads when

using staggered quanta if c = 2. Consequently, C2-sPD2-R1 achieves higher schedulability than

the other three variants in this scenario. Figure 4.23(b) shows that C2-sPD2-R1 is also preferable

for non-negligible WSSs until wss = 128 KB (where, again, all of the variants suffer from high

cache-related overhead).

To summarize, in the HRT case, dedicated interrupt handling is generally preferable to global

interrupt handling for all three cluster sizes, and aligned quanta are preferable for large clusters

(c = 6 and c = 24), whereas staggered quanta are preferable for small clusters (c = 2).

In the SRT case, staggered quanta are in fact preferable to aligned quanta for all tested cluster

sizes. One reason is that staggered quanta do not require a shortening of periods to ensure bounded

tardiness since stagger latency is simply a source of constant tardiness. Further, average-case

overheads are much lower when quanta are staggered than when they are aligned since the likelihood

of contention is much reduced. Figure 4.24 shows an example of the resulting increased SRT

schedulability for uniform light utilizations and long periods. Inset (a) depicts SRT schedulability

for a WSS of 64 KB under each of the four clustered PD2 variants with clusters of size c = 6. As

previously seen in the HRT case, the curves of the two variants using global interrupt handling,

C6-aPD2-Rm and C6-sPD2-Rm, overlap and are indistinguishable. In contrast to the HRT case,

however, staggered quanta yield a (small) advantage over aligned quanta, as evidenced by the curve

of C6-sPD2-R1, which extends slightly further to the right than that of C6-aPD2-R1 before all task

sets become unschedulable. Inset (b) shows that a small difference persists until the WSS exceeds

about 768 KB.

Overall, in the SRT case, C6-sPD2-R1 and G-sPD2-R1 are preferable to using global interrupt

handling and aligned quanta whenever there are noticeable differences in achieved schedulability. In

the case of c = 2, bin-packing issues have a bigger impact, such that C2-sPD2-Rm achieves slightly

higher SRT schedulability than C2-sPD2-R1 if periods are moderate or long.

This concludes our comparison of plugin variants. In the case of P-FP and each of the three

PD2 cluster sizes, one variant was generally preferable in all of the tested scenarios. In the case

of EDF-based schedulers, there exist scenarios under which either global or dedicated interrupt

handling is preferable. In particular, dedicated interrupt handling is preferable if the numbers of tasks
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Figure 4.24: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score of
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per cluster is large, which results from using large clusters and light utilization distributions, and

global interrupt handling is preferable if the number of tasks per cluster is small or bin-packing is

difficult, which is typically the case when using small clusters and heavy utilization distributions.

In the majority of the tested scenarios, G-EDF-R1 and C6-EDF-R1 are therefore preferable to

G-EDF-Rm and C6-EDF-Rm, respectively, whereas C2-EDF-Rm and P-EDF-Rm are typically

preferable to C2-EDF-R1 and P-EDF-R1, respectively.

4.5.2 Cluster Size

In this section, we discuss which cluster size is most appropriate for satisfying HRT and SRT

constraints on our platform when using either G-EDF or PD2 within each cluster. For each considered

cluster size, we use the plugin configuration that we identified as the best-performing variant as the

basis for comparison. We first compare the P-EDF plugin, the C-EDF plugin with c = 2 and c = 6,

and the G-EDF plugin in terms of HRT and SRT schedulability.

EDF-based schedulers. With regard to HRT schedulability, there is a very clear trend: clusters

of size c = 1 always yield the highest HRT schedulability, i.e., we found either P-EDF-Rm or

P-EDF-R1 to be the best-performing EDF variant in all tested scenarios. A typical example is shown

in Figure 4.25. Inset (a) depicts HRT schedulability for medium exponential utilizations, moderate

periods, and a WSS of 64 KB under P-EDF-Rm, C2-EDF-Rm, C6-EDF-R1, and G-EDF-R1.

The curves of C6-EDF-R1 and G-EDF-R1 quickly start to decrease even for low utilization caps,

whereas P-EDF-Rm successfully schedules most task sets with ucap ≤ 18.

Interestingly, C2-EDF-Rm fails to schedule most task sets starting at ucap ≈ 12 even though

its overheads are not much higher than those of P-EDF-Rm. This reveals algorithmic capacity loss:

while the schedulability test applied to each partition under P-EDF-Rm is exact (in the absence of

overheads), the G-EDF schedulability tests applied to each partition under C2-EDF-Rm are subject

to significant pessimism. Further, EDF is optimal on a uniprocessor (i.e., within each partition), but

G-EDF is not optimal on a multiprocessor (i.e., within each cluster).

Figure 4.25(b) shows that P-EDF-Rm achieves a higher weighted schedulability score for all

tested WSSs, though the margin decreases as cache-related overheads become predominant. Overall,
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Figure 4.25: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score
of four EDF-based schedulers with different cluster sizes for medium exponential utilizations and
moderate periods.
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our results show that the algorithmic-capacity loss due to bin-packing in P-EDF is less limiting than

the overhead-related and algorithmic capacity loss incurred by G-EDF and either C-EDF variant.

In contrast, in the SRT case, no single cluster size is always preferable. One example illustrating

this is shown in Figure 4.26, which depicts SRT schedulability for uniform heavy utilizations and

short periods. In the case of wss = 128 KB shown in Figure 4.26(a), the order from Figure 4.25 is

reversed: G-EDF-R1 guarantees bounded tardiness to the most task sets, followed by the next-largest

cluster size C6-EDF-R1, and then followed by C2-EDF-R1 and finally P-EDF-Rm. There are two

main contributing factors to this reversal. First, the scenario depicted in Figure 4.26 with uniform

heavy utilizations generates task sets that are difficult to partition, which affects smaller cluster sizes

negatively. Second, the generated task sets are not very sensitive to overheads since each task set

contains only few tasks. Therefore, global scheduling without a separate task assignment phase

performs best, despite higher average-case overheads.

However, this is not the case for all WSSs, as is evident in Figure 4.26(b). For small WSSs, G-

EDF-R1 is clearly preferable to P-EDF-Rm, C2-EDF-R1, and C6-EDF-R1. However, there exists

a cross-over point at wss = 448 KB after which P-EDF-Rm is preferable to the other choices. This

is an effect of cache affinity: since jobs do not migrate under P-EDF-Rm, cache-related overheads

are much lower under it than under cluster sizes that do not maintain L1 cache affinity. Further, note

that C2-EDF-R1 exhibits a trend that is similar to that of P-EDF-Rm, but very different from that

of G-EDF-R1 and C6-EDF-R1. This highlights the advantage of maintaining L2 cache affinity

(C2-EDF-R1) when assuming idle CPMD.

Additional trends are apparent in graphs that are available online (Brandenburg, 2011):

• When assuming load CPMD instead of idle CPMD, then there is little benefit to maintaining

cache affinity (recall Section 4.4.2). As a result, no cross-over point exists in the case of

uniform heavy utilizations, and G-EDF-R1 is preferable for all WSSs when assuming load

CPMD (in the SRT case).

• In scenarios that generate task sets that are less difficult to partition and that are sensitive to

scheduling overheads (i.e., medium or light utilization distributions with moderate or short

periods), smaller cluster sizes (P-EDF-Rm or C2-EDF-R1) are often preferable to larger

cluster sizes (G-EDF-R1 or C6-EDF-R1).
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Figure 4.26: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score
of four EDF-based schedulers with different cluster sizes for uniform heavy utilizations and short
periods.
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Overall, in the SRT case, there is no single best cluster size; rather, the best cluster size to use depends

on the task parameter distributions, the WSS, and whether load or idle CPMD is assumed. For

example, in the case of uniform heavy utilizations, the choice of scheduler is application-dependent:

in systems with significant cache and memory bus contention (i.e., in the case of load CPMD), G-

EDF-R1 is preferable for all WSSs (supporting graph available online), whereas if jobs can maintain

some degree of cache affinity while preempted (i.e., in the case of idle CPMD), then P-EDF-Rm is

preferable for large WSSs, as can be seen in Figure 4.26(b). This suggests that cluster sizes should

be configurable in RTOSs (as they indeed are when using processor affinity masks).

Another consideration in the SRT case is tardiness. In the case of P-EDF, when a task set is

SRT schedulable, it has zero tardiness since EDF is HRT optimal on a uniprocessor (aside possible

minor tardiness due to the use of average-case overheads). In the case of c > 1, however, jobs may

incur non-negligible tardiness since G-EDF is not HRT optimal on a multiprocessor.

Two example graphs depicting relative tardiness are shown in Figure 4.27. Recall from Sec-

tion 4.1.8 that relative tardiness is a normalized notion of tardiness that expresses by how many jobs

a task may lag behind in the worst case, and that the reported relative tardiness is based on Devi

and Anderson’s analytical tardiness bound (Theorem 2.10 on page 85) and not based on simulations.

That is, Figure 4.27 shows guaranteed upper bounds on maximum relative tardiness which are likely

pessimistic in many cases.

Inset (a) shows maximum relative tardiness under C2-EDF-R1, C6-EDF-R1, and G-EDF-

R1 for uniform heavy utilizations and short periods, which are the task parameter distributions

that resulted in the highest tardiness bounds in our experiments. As can be seen in inset (a),

maximum relative tardiness bounds are much larger under global scheduling than when using smaller

cluster sizes. Under C2-EDF-R1, the maximum relative tardiness bound is slightly above 5, which

implies that buffering data corresponding to six jobs is sufficient to mask worst-case tardiness. In

contrast, tasks may lag by up to 30 jobs under G-EDF-R1, and by up to 17 jobs under C6-EDF-R1.

Interestingly, the maximum relative tardiness under G-EDF-R1 and C6-EDF-R1 is similar until

ucap ≈ 17. The curves exhibit decreasing trends for large utilization caps and do not fully extend to

ucap = 24 since only few of the high-utilization task sets are schedulable. (Recall from Section 4.1.8

that task sets with unbounded tardiness are excluded prior to computing maximum and average

relative tardiness bounds.)
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Figure 4.27: Graphs showing (a) maximum relative tardiness and (b) relative average tardiness of
EDF-based schedulers for uniform heavy utilizations and short periods. The reported maximum and
average relative tardiness is based on analytical bounds (and not on observed tardiness).
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On average, however, relative tardiness bounds are much smaller. This is apparent in Fig-

ure 4.27(b). The order of the curves remains the same, with tasks incurring the highest relative

tardiness bounds under G-EDF-R1, but the magnitude of the curves is reduced greatly. Under

G-EDF-R1, tasks are on average guaranteed to lag at most six jobs behind, at most four jobs under

C6-EDF-R1, and only at most one job under C2-EDF-R1. In contrast to inset (a), the curves of

G-EDF-R1 and C6-EDF-R1 are clearly distinct.

To summarize, in the HRT case, we found a cluster size of c = 1 to be best when using EDF-

based scheduling in our system. In the SRT case, a choice of c = 1 also works well in many scenarios,

unless the generated task sets are difficult to partition, in which case C6-EDF-R1 and G-EDF-R1

result in higher schedulability unless working sets are large. It should be noted, however, that jobs

may incur significant tardiness under G-EDF-R1 and C6-EDF-R1, whereas jobs are (mostly) not

affected by tardiness under P-EDF.

PD2-based schedulers. In the case of PD2, we considered three cluster sizes in our case study:

global PD2 (c = 24) and two smaller cluster sizes, one based on shared L2 caches (c = 2) and one

based on shared L3 caches (c = 6). We did not consider partitioned PD2 as it offers no advantages

over P-EDF since EDF is HRT optimal on a uniprocessor. A major difference to EDF-based

schedulers is that PD2 is also HRT optimal on a multiprocessor (with regard to implicit deadlines).

Therefore, the choice of cluster size is mainly a tradeoff between overheads, which are lower in

smaller clusters due to reduced contention and increased cache affinity, and bin-packing issues, which

mostly affect small clusters (i.e., c = 2).

As discussed above in Section 4.5.1, in the HRT case, dedicated interrupt handling is generally

preferable for each of the three cluster sizes, and staggered quanta are preferable for c = 2, whereas

aligned quanta are preferable for c = 6 and c = 24. We therefore consider only C2-sPD2-R1, C6-

aPD2-R1, and G-aPD2-R1 in the comparison of HRT schedulability under PD2-based schedulers.

A clear trend is apparent in our data: in virtually all tested scenarios, C2-sPD2-R1 yielded (slightly)

better schedulability than either of the other two variants. The larger cluster sizes, C6-aPD2-R1

and G-aPD2-R1, yield lower HRT schedulability even though they are less affected by bin-packing-

related algorithmic capacity loss. This shows that PD2 is very sensitive to overheads, which are lowest
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in the case of c = 2. Again, this tradeoff could not have been identified without an overhead-aware

evaluation methodology since it depends on the magnitude of overheads.

An example graph exhibiting this trend is presented in Figure 4.28(a), which shows HRT

schedulability for uniform light utilizations and long periods, and assumes a negligible WSS. While

the difference to C6-aPD2-R1 is not large, it is apparent that C2-sPD2-R1 can sustain somewhat

higher utilizations before task sets become unschedulable. The weighted HRT schedulability score

of the three cluster sizes depicted in inset (b) of the same figure shows that performance deteriorates

under each variant rapidly as the WSS increases. C2-sPD2-R1 remains slightly preferable until

wss = 192 KB. For larger WSSs, none of the generated task sets could be claimed schedulable under

any of the PD2 variants since the effective quantum size is eclipsed by the high CPMD (recall that

the depicted HRT graphs assume worst-case CPMD in a system under heavy load).

Recall from Section 4.5.1 that staggered quanta are preferable for all cluster sizes in the SRT

case. Dedicated interrupt handling, however, is only preferable for c = 6 and c = 24. In the case of

c = 2, global interrupt handling is preferable since the loss of a processor amplifies the bin-packing

issues inherent in small cluster sizes. Therefore, we compare C2-sPD2-Rm, C6-sPD2-R1, and

G-sPD2-R1 in terms of SRT schedulability. While the schedulability condition for PD2 is the same

under either HRT or SRT scheduling, we assume average-case overheads when testing whether a task

set is SRT schedulable. Since average-case overheads are much lower than worst-case overheads,

PD2-based schedulers exhibit much improved schedulability in the SRT case.

An example graph is shown in Figure 4.29(a), which depicts SRT schedulability assuming

uniform heavy utilizations, long periods, and a WSS of 80 KB. Notably, the curves of C6-sPD2-R1

and G-sPD2-R1 look markedly different from that of C2-sPD2-Rm. Both C6-sPD2-R1 and

G-sPD2-R1 exhibit some capacity loss and declining trends even for low utilization caps, whereas

C2-sPD2-Rm achieves a schedulability of 1.0 until ucap ≈ 17, after which schedulability rapidly

drops to 0.0. This difference in trend arises because task sets are claimed unschedulable for different

reasons under each scheduler: under C2-sPD2-Rm, task sets fail to be scheduled when they cannot

be partitioned, which is mainly a question of the number of heavy tasks (on average, a utilization

cap of 17 generates 24 tasks under this utilization distribution). In contrast, under C6-sPD2-R1 and

G-sPD2-R1, partitioning is not a primary concern and task sets fail to be schedulable when e′i > p′i

for some Ti due to an insufficiently small effective quantum size Q′.
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Figure 4.28: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score of
PD2-based schedulers for light uniform utilizations and long periods.
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Figure 4.29: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score of
PD2-based schedulers for uniform heavy utilizations and long periods.
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Since the effective quantum size is WSS-dependent, one might expect these trends to be different

for smaller WSSs. Figure 4.29(b) illustrates that this is indeed the case. Assuming average-case idle

CPMD as in Figure 4.29(b), there exists a cross-over point after which C2-sPD2-Rm achieves a

higher weighted SRT schedulability score than either C6-sPD2-R1 or G-sPD2-R1, which corre-

sponds to a larger number of task sets being SRT schedulable under C2-sPD2-Rm than under the

other cluster sizes. In the case of smaller WSSs, larger cluster sizes are preferable since bin-packing

issues are dominant. This highlights the increasing benefit of maintaining cache affinity as WSSs

grow larger. In contrast, different trends are apparent in graphs that are available online (Brandenburg,

2011): when assuming load CPMD instead of idle CPMD, cache affinity issues cease to play a major

role and bin-packing issues dominate. As a result, larger clusters become preferable to C2-sPD2-Rm

when assuming load CPMD.

Overall, we found that differences among cluster sizes are typically small in the HRT case, but

that if noticeable differences exist, then C2-sPD2-R1 achieves somewhat higher schedulability.

In the SRT case, when assuming CPMD as measured in a system without background load, large

cluster sizes are only preferable for small WSSs due to the increased lock contention and the reduced

cache affinity inherent in larger cluster sizes. In summary, on our platform, we found C2-sPD2-R1

to be the best-performing PD2-based scheduler in most of the tested scenarios. With regard to

tardiness, there are no differences among PD2-based schedulers since the maximum tardiness of SRT

schedulable task sets is determined by quantum staggering (aside rare tardiness due to above-average

overheads; see Section 4.1.3), which is the same for all cluster sizes.

4.5.3 Scheduler Selection

Having identified the preferable cluster sizes for EDF-based and PD2-based schedulers, we next

compare PD2-based scheduling, EDF-based scheduling, and P-FP in terms of HRT and SRT

schedulability to identify the “best” HRT and SRT schedulers (among those examined) for our

platform. We begin with the HRT case.

HRT comparison. In the preceding sections, we identified P-FP-Rm, P-EDF (either P-EDF-Rm

or P-EDF-R1, depending on task count), and C2-sPD2-R1 as the preferable HRT schedulers from
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each category. We therefore limit our attention to these schedulers in this section; HRT schedulability

data and graphs for all 22 evaluated scheduler variants can be found online (Brandenburg, 2011).

In the HRT case, there is again a very clear trend: in all test scenarios, one of the two P-EDF

variants perfoms better than the other choices, or is at least no worse than other well-performing

schedulers. A typical example graph is shown in Figure 4.30(a), which depicts HRT schedulability

for bimodal light utilizations, moderate periods, and a WSS of 80 KB. Due to high overheads and

the large number of preemptions and migrations inherent in PD2-based scheduling, C2-sPD2-R1

suffers from high capacity loss even for low-utilization task sets. In contrast, P-EDF-Rm maintains

near-optimal schedulability until the total utilization of generated task sets exceeds 18. P-FP-Rm

achieves similarly high schedulability until ucap = 16. This shows that neither (slightly) lower

scheduling overhead nor the less-pessimistic interrupt accounting techniques applicable to P-FP

outweigh the optimality of EDF on a uniprocessor in this scenario.

Figure 4.30(b) illustrates that C2-sPD2-R1 does not become significantly more competitive

even for negligible WSSs (though a small improvement in weighted HRT schedulability score is

apparent). It further reveals that the gap between P-FP-Rm and P-EDF-Rm narrows as WSSs

become larger and finally disappears for wss > 576 KB; the largest difference between the two

arises when WSSs are negligibly small. This is because the algorithmic differences between the

two schedulers have only a small impact when overheads are dominated by preemption costs (large

CPMD and high utilizations frequently result in ei > pi for some Ti with a short period, which

renders the task set infeasible and thus unschedulable under either scheduler).

Overall, one or both of the P-EDF variants perform as well or better than P-FP-Rm in a large

majority of the examined scenarios. P-FP-Rm is most competitive in the case of short periods,

where it can sustain increases in WSSs somewhat better than P-EDF-Rm, but any difference in

schedulability between the best-performing P-EDF variant and the best-performing P-FP variant

remain small. In the case of uniform heavy utilizations with short periods, P-FP-Rm does achieve a

higher weighted HRT schedulability score if wss ≤ 128 KB, but the difference in performance is

minuscule (less than 0.02). Generally speaking, P-EDF is clearly the scheduler that is suited best to

satisfying HRT constraints on our platform (with respect to the 22 evaluated scheduler variants and

the tested parameter distributions).
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Figure 4.30: Graphs showing (a) HRT schedulability and (b) weighted HRT schedulability score of
P-FP-Rm, P-EDF-Rm, and C6-aPD2-R1 for bimodal light utilizations and moderate periods.
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SRT constraints. Recall that, in the SRT case, none of the EDF-based schedulers was preferable in

all of the tested scenarios. Therefore, we consider P-EDF-Rm, C2-EDF-R1, and G-EDF-R1 in the

following SRT schedulability comparison (C6-EDF-R1 performs similarly to G-EDF-R1). Among

the PD2-based schedulers, C2-sPD2-Rm performs best (unless WSSs are very small). We further

omit P-FP-Rm since it did not perform better than P-EDF-Rm in the HRT case. SRT schedulability

results for all 22 scheduler variants, including P-FP-Rm, can be found online (Brandenburg, 2011).

Given the strong performance of both P-EDF variants in the HRT case, it is not surprising that

they perform well in many scenarios in the SRT case as well. Most of the distributions generate task

sets that, on average, can be partitioned with relative ease using the worst-fit decreasing heuristic.

Therefore, bin-packing limitations are typically not the deciding factor. The P-EDF variants thus

compare favorably in many cases due to L1 cache affinity and lower scheduling overhead.

An example graph depicting SRT schedulability under each of the considered scheduler variants

is shown in Figure 4.31(a). The depicted scenario—exponential heavy utilizations, moderate periods,

and a large WSSs of 1024 KB—results in task sets that can be fairly difficult to partition since, on

average, each task requires half a processor. Nonetheless, P-EDF-Rm achieves high schedulability.

Due to the large WSSs, each scheduler exhibits capacity loss even for low-utilization task sets.

However, there is consistently less capacity loss under P-EDF-Rm than under G-EDF-R1 and C2-

sPD2-R1. G-EDF-R1 is subject to larger CPMD than P-EDF-Rm since jobs do not benefit from

cache affinity under G-EDF-R1, and C2-sPD2-R1 is subject to larger overhead-related capacity loss

than the other schedulers since it preempts jobs much more frequently. The curve of C2-EDF-R1

coincides in large parts with P-EDF-Rm since C2-EDF-R1 is very similar to P-EDF-Rm in that it

incurs only little lock contention and ensures L2 cache affinity. In contrast to the HRT case (e.g.,

Figure 4.25), C2-EDF-R1 does not suffer capacity loss due to pessimistic schedulability analysis

since G-EDF is SRT optimal on multiprocessors.

The weighted SRT schedulability score graph in Figure 4.31(b) shows that these trends also occur

for smaller WSSs. Notably, the performance gap between G-EDF-R1 and P-EDF-Rm narrows for

small WSSs due to the reduced benefit of cache affinity. The weighted SRT schedulability score of

C2-sPD2-R1, however, does not improve significantly even for very small WSSs.

A notable exception to the discussed trends arises in distributions that predominantly generate

high-utilization tasks such as the uniform heavy and the bimodal heavy distributions. The resulting
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Figure 4.31: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score
of Comparison of P-EDF-Rm, C2-EDF-R1, G-EDF-R1, and C2-sPD2-Rm in terms of SRT
schedulability for exponential heavy utilizations and moderate periods.
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task sets are very difficult to partition, which causes P-EDF-Rm to incur significant algorithmic

capacity loss. Such a scenario is depicted in Figure 4.32(a), which shows SRT schedulability graphs

assuming bimodal heavy utilizations, short periods, and a negligible WSS. Bin-packing is the major

cause of capacity loss in this scenario and cache affinity is irrelevant since wss = 0 KB. Consequently,

the best-performing algorithm is G-EDF-R1, which ensures bounded tardiness to all generated task

sets until ucap ≈ 23. In contrast, P-EDF-R1 exhibits capacity loss starting at ucap ≈ 19. As

expected, C2-EDF-R1 is less affected by bin-packing constraints than P-EDF-R1, but still suffers

greater capacity loss than G-EDF-R1.

Figure 4.32(b) reveals that the performance of G-EDF-R1 is closely related to the assumed

WSS. The weighted SRT schedulability score of G-EDF-R1 decreases more rapidly than that of the

other schedulers with increasing WSS. At wss ≈ 192, the curves of G-EDF-R1 and C2-EDF-R1

cross, which indicates that, on our platform and assuming idle CPMD, C2-EDF-R1 is subject to less

capacity loss than G-EDF-R1 for WSSs exceeding 192 KB. In contrast, other trends are apparent in

graphs that are available online (Brandenburg, 2011): when assuming load CPMD instead of idle

CPMD, the benefit of increased cache affinity under C2-EDF-R1 is small and G-EDF-R1 remains

preferable for large WSSs, too.

The example shown in Figure 4.32 illustrates that, in contrast to the HRT case, G-EDF and

C-EDF variants can be effective at overcoming bin-packing limitations in the SRT case. There are

two reasons for this: first, since average-case overheads are assumed, global and clustered schedulers

are less penalized for lock contention than in the HRT case; and second, since G-EDF is SRT optimal

on a multiprocessor, no algorithmic capacity loss arises within each cluster.

Depending on the application, a potential disadvantage of G-EDF-R1 and C2-EDF-R1 is

increased tardiness. Under P-EDF, if a task set is SRT schedulable, then its tardiness is zero (aside

rare tardiness due to above-average overheads). In contrast, tasks can be subject to significant

tardiness under G-EDF. This is apparent in Figure 4.33, which shows maximum and average relative

tardiness bounds in the scenario depicted in Figure 4.32. As can be seen in inset (a), the maximum

relative tardiness bound exceeds 20 for high utilizations, i.e., in some cases, it cannot be ruled out

that tasks may fall behind in their execution by up to 21 jobs. On average, as shown in inset (b),

tasks are guaranteed a relative tardiness bound in the range [2, 5] if ucap ≥ 18, i.e., in the range

of high total utilization where G-EDF-R1 achieves higher SRT schedulability than P-EDF-Rm in
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Figure 4.32: Graphs showing (a) SRT schedulability and (b) weighted SRT schedulability score of
P-EDF-Rm, C2-EDF-R1, G-EDF-R1, and C2-sPD2-Rm for bimodal heavy utilizations and short
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Figure 4.32(a). Whether G-EDF-R1 is in fact preferable to P-EDF-Rm for high-utilization task sets

thus depends on the degree to which a deployed application is sensitive to tardiness (or whether there

is sufficient memory available to mask tardiness with input and output buffers).

It is worth reiterating that the reported relative tardiness is based on analytical bounds on worst-

case tardiness, and not on observed tardiness. Actual relative tardiness is likely much lower in real

systems. In our experience, tasks almost never experience tardiness when provisioned according

to their worst-case execution requirements as there is typically some slack in the schedule that

counteracts any build-up of tardiness (since it is unlikely, though not impossible, that all jobs exhibit

worst-case behavior at the same time).

Summary. This concludes the discussion of our case study. We have demonstrated how to apply the

proposed overhead-aware evaluation methodology and reported overheads for 22 scheduler plugin

configurations as observed in LITMUSRT on a real 24-core Intel Xeon system. Based on large-scale

schedulability experiments involving 27 different task parameter distributions, we identified P-EDF

as the best-performing HRT scheduler on our platform. In the SRT case, P-EDF performs well,

too, unless task sets are difficult to partition, in which case G-EDF or one of the C-EDF variants

is effective at overcoming bin-packing limitations. Due to comparatively large overhead-related

capacity loss, PD2-based schedulers were only viable in few of the considered scenarios, and only

for small WSSs.

4.5.4 Prior Studies in Context

Our overhead-aware methodology and the case study reported herein are the result of many iterative

refinements that were accumulated during several years of LITMUSRT-based research. Several

prior studies were conducted and published, and our work presented in this dissertation greatly

benefited from “lessons learned” in those prior studies. Most influential were four LITMUSRT-based

schedulability studies (Calandrino et al., 2006; Brandenburg et al., 2008; Brandenburg and Anderson,

2009a; Bastoni et al., 2010b). In the following, we relate our current methodology and the trends

reported in the previous sections to these earlier studies.

Calandrino et al. (2006). Not surprisingly, our methodology and results deviate the most from the

initial LITMUSRT study carried out by Calandrino et al. (2006), which predates our work. Calandrino
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et al. (2006) evaluated G-EDF, P-EDF, and PD2 with both aligned and staggered quanta. Major

differences arise since Calandrino et al. used a pre-multicore multiprocessor platform consisting of

only four processors (each clocked at 2.7 GHz) with private L2 caches (512 KB). Due to the much

smaller number of processors, issues of memory and lock contention were likely less severe in their

system. There were also major differences in the implementation of LITMUSRT. The early prototype

used by Calandrino et al. (2006) used quantum-based scheduling for all plugins and implemented

only minimal scheduling functionality (e.g., real-time jobs could not suspend, lest the kernel panic).

Such differences in plugin implementation make direct “apples-to-apples” comparisons of observed

overheads and obtained schedulability results difficult (if not impossible).

In addition to platform disparities, there are also significant variations in the underlying evaluation

methodology. In particular, Calandrino et al. (2006) did not employ background workloads to create

memory contention (i.e., their setup corresponds to our idle CPMD configuration) and used a much

smaller number of overhead samples to derive overheads.10 Further, their overhead model did not

account for release interrupts at all, which we have found to be a significant source of delays and

pessimism, and hence to have a major influence on scheduler performance. When partitioning task

sets, Calandrino et al. (2006) used the first-fit decreasing heuristic, whereas we employ the worst-fit

decreasing heuristic. Since the first-fit decreasing heuristic does not spread out load evenly, it is more

likely to over-utilize a processor after tasks have been inflated to account for overheads.

Given the number of major differences in both approach and underlying platform, it is not

surprising that Calandrino et al.’s results differ from ours.

With regard to overheads, Calandrino et al. (2006) measured CPMD for WSSs in the range from

4 KB to 256 KB using a write ratio of 1 and observed maximum delays that roughly correspond to

average-case load CPMD measured on our platform as shown in Figure 4.17(b). This difference

can likely be attributed to the absence of cache-polluting background processes and to the fact that

memory bus contention is much less severe if only four processors compete for memory bandwidth.

Another dissimilarity is the way that CPMD was recorded. Calandrino et al. (2006) recorded CPMD

in kernel threads within kernel space under each of the evaluated plugins at the beginning of a

quantum, which is similar to the schedule-sensitive method. In contrast, we used CPMD data

10The exact number of samples was not reported by Calandrino et al., but it has been confirmed in private communication
that at most few hundred samples were collected. In contrast, we recorded billions of valid samples in our study.
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obtained with the synthetic method in this dissertation, which cannot reflect differences among

schedulers. Calandrino et al. found migration costs under PD2 and G-EDF to be slightly higher than

preemption costs under P-EDF, and also found migration costs to be lower under staggered quanta

than under aligned quanta (likely due to a reduction in bus contention). In our study, differences in

bus contention are reflected by the use of both load and idle CPMD (since high-contention scenarios

are also possible when using staggered quanta; they are just less likely to occur).

A striking difference is apparent in the magnitudes of reported scheduling overheads. For P-EDF,

Calandrino et al. (2006) reported maximum scheduling overhead that is comparable in magnitude to

average-case scheduling overhead measured on our implementation. This can likely be attributed

to (i) the absence of a background workload in Calandrino et al.’s experimental setup, (ii) to the

benefits of relatively large, private L2 caches and a higher processor frequency, and (iii) to the much

smaller sample size underlying Calandrino et al.’s scheduling overhead estimates.

For G-EDF and PD2, Calandrino et al. reported maximum scheduling overhead that is one to two

orders of magnitudes lower than average-case scheduling overhead on our platform. Reasons (i)–(iii)

above likely also explain some of the difference under these plugins. In addition, the number of

processors is much larger on our platform, and worst-case lock contention is hence much higher.

This is supported by our data that shows that scheduling overheads are much lower in configurations

with smaller cluster sizes.

In schedulability experiments assuming fixed WSSs of 4 KB and 128 KB, Calandrino et al.

found P-EDF to be preferable to G-EDF in the HRT case, which matches our results. However,

when testing heavy utilization distributions, Calandrino et al. found PD2 to outperform P-EDF by a

large margin, contrary to our results. We believe this discrepancy can be explained by the surprisingly

low scheduling overhead on Calandrino et al.’s platform, by the use of first-fit decreasing as the

partitioning heuristic under P-EDF, and by the fact that release interrupts were not accounted for

in Calandrino et al.’s study. In the SRT case, Calandrino et al. found G-EDF to outperform both

P-EDF and PD2 (with either aligned or staggered quanta) in terms of schedulability in all tested

scenarios. This partially matches our results. They further found PD2 to outperform P-EDF in

the presence of high-utilization tasks, again contrary to our results. We attribute this discrepancy

with respect to our results to the differences in the underlying platform, overhead accounting, and

overhead magnitudes. In addition, the PD2 plugin implemented in current versions of LITMUSRT is
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much more robust (and likely incurs higher locking overheads because of it) than the version that

was implemented in the first LITMUSRT prototype used in Calandrino et al.’s study.

Brandenburg et al. (2008). The study reported in Brandenburg et al. (2008) is based on LITMUSRT

2008.1; the evaluated plugins thus correspond much more closely to the current LITMUSRT im-

plementation. The primary research objective was to investigate the scalability of P-EDF, C-EDF,

G-EDF, and PD2 in terms of HRT and SRT schedulability on a “large” multicore platform, which is

similar to setup of the study presented herein. However, a radically different hardware platform was

used for the study in (Brandenburg et al., 2008).

Given that commercially-available x86 systems (or embedded platforms) did not feature more

than 2–4 cores at the time, a since-discontinued 32-processor Sun UltraSPARC T1 (“Niagara”) was

chosen as the underlying hardware platform. The Niagara is an 8-core, single-chip multiprocessor

with four hardware threads per core (for a total of 32 virtual processors that must be scheduled by

the RTOS). In contrast to Intel’s x86 architecture, the Niagara implements a RISC-like instruction

set. Each core is furthermore very simple in structure and does not implement branch prediction or

speculative out-of-order execution. Each core is clocked at 1.2 GHz, which yields an effective speed

of 300 MHz for each hardware thread (cycles are distributed among hardware threads in a round

robin fashion). In comparison to modern x86 chips, the sequential execution speed of a Niagara

core is hence very slow. Additionally, the memory hierarchy is impoverished in comparison to our

x86-based platform: on the Niagara, all 32 hardware threads share a single 3 MB L2 cache; each core

contains (i.e., four hardware threads share) a 16 KB L1 instruction cache and an 8 KB L1 data cache.

Due to the large gap in hardware capability between the Niagara and the hardware platform

used in this dissertation, there is little value in direct overhead comparisons. Further, a simpler,

less-accurate outlier removal technique was used in (Brandenburg et al., 2008), where simply the top

1% of the recorded samples was discarded. Nonetheless, it is interesting to note that average-case

and worst-case CPMD values, which were determined using a precursor of the scheduler-sensitive

method for a fixed WSS of 64 KB and a write ratio of 25%, are roughly comparable in magnitude to

idle and load CPMD on our platform. As previously reported by Calandrino et al. (2006), observed

average-case and worst-case CPMD under staggered quanta were lower than under aligned quanta

on the Niagara as well (Brandenburg et al., 2008).
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The schedulability experiments were similar to those discussed in this dissertation. HRT and

SRT schedulability under each of the schedulers were determined after inflating for worst-case and

average-case overheads (respectively). As in this dissertation, task sets were partitioned using the

worst-fit decreasing heuristic.11 Six of 27 parameter distributions considered in this dissertation

were used in (Brandenburg et al., 2008), namely the light, medium, and heavy uniform and bimodal

utilization distributions with moderate periods. As noted above, a single, fixed WSS of 64 KB was

assumed, and only global interrupt handling (and not dedicated interrupt handling) was implemented

in the underlying LITMUSRT version.

The observed trends are in large parts consistent with our study, despite the differences in

platform. In the HRT case, P-EDF was the best-performing scheduler in all scenarios except for the

case of uniform heavy utilizations (discussed below), G-EDF and PD2 with aligned quanta were

never competitive in the HRT case, and C-EDF (with a cluster size of c = 4 based on shared L1

caches) performed better than G-EDF, but not as well as P-EDF. In the SRT case, either C-EDF or

P-EDF were the best-performing schedulers for five of the six tested parameter distributions. As

an exception, two G-EDF variants (preemptive and non-preemptive) were the best-performing SRT

schedulers in the case of uniform heavy utilizations (due to bin-packing issues, just as in our case

study—see Figure 4.26).

A notable difference between the schedulability results reported in (Brandenburg et al., 2008)

and those reported in this dissertation is that PD2 with staggered quanta was found to be competitive

with event-driven plugins both in the HRT and in the SRT cases in (Brandenburg et al., 2008). In

the HRT case, PD2 with staggered quanta was even found to be preferable to P-EDF in the case of

uniform heavy utilizations. In contrast, in the study presented herein, the performance gap between

PD2-variants and event-driven schedulers is significantly larger for most considered WSSs. There

are several reasons for this. First, the PD2 implementation used in (Brandenburg et al., 2008) only

supported periodic tasks and not sporadic tasks, and hence was not affected by release interrupts

(recall Section 3.5.3). Second, discarding the top 1% of the recorded samples may have caused

worst-case scheduling and tick overheads under staggered quanta to be underestimated. Recall

that we found worst-case tick overheads not to be improved by quantum staggering, in contrast

11Due to an editing mistake, the employed bin-packing heuristic is erroneously identified as the “first-fit decreasing”
heuristic in (Brandenburg et al., 2008). In fact, the worst-fit decreasing heuristic was used instead.
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to average-case overheads—see Figure 4.9. Since the distribution of overhead samples is skewed

under staggered quanta, unconditionally removing the top 1% of samples may have significantly

affected the assumed maximum. In the study presented in this dissertation, we did not remove

any outliers from timer tick overhead data sets, and removed any outliers in scheduling overhead

data sets manually to avoid truncating long-tail distributions. Third, CPMD was recorded without

cache-polluting background processes; as a result the experimental setup used in (Brandenburg et al.,

2008) effectively employed idle CPMD for staggered quanta and load CPMD for aligned quanta.

Fourth, due to an unfortunate scripting error, some task sets were erroneously claimed schedulable

under PD2 even if overhead accounting caused some task(s) to become infeasible, i.e., if e′i > p′i for

some Ti. Fifth, the fixed WSS of 64 KB assumed in (Brandenburg et al., 2008) is small compared to

the range of WSSs assumed in this dissertation. For example, in Figure 4.29, G-sPD2-R1 performs

well for wss = 64 KB. That is, similarly to the trends reported in (Brandenburg et al., 2008),

there exist scenarios in our case study in which PD2 is competitive with (but not preferable to) the

best-performing event-driven plugin for small WSSs.

Brandenburg and Anderson (2009a). In a follow-up study carried out on the same Niagara ma-

chine and using the same evaluation methodology, nine different implementations of G-EDF were

evaluated in terms of HRT and SRT schedulability to study implementation tradeoffs in global JLFP

schedulers. The schedulability experiments used the same utilization distributions (light, medium,

and heavy uniform and bimodal utilizations with moderate periods).

There is little overlap between the study presented in (Brandenburg and Anderson, 2009a) and

the one presented in this chapter, as we used the results from (Brandenburg and Anderson, 2009a) to

guide the choice of G-EDF and C-EDF implementation considered herein. Based on LITMUSRT

2008.3, which was the first version of LITMUSRT to support dedicated interrupt handling, the study

presented in (Brandenburg and Anderson, 2009a) contrasted dedicated and global interrupt handling,

event-driven and quantum-driven JLFP scheduling, and three appraoches to implementing shared

priority queues. The plugin configuration denoted G-EDF-R1 in this dissertation was consistently

among the two best-performing tested configurations in (Brandenburg and Anderson, 2009a), where

it is denoted CE1. Consistently with the earlier study, we found dedicated interrupt handling to be

preferable to global interrupt handling under G-EDF on our platform.
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Bastoni et al. (2010b). The latest, most-closely related schedulability study was presented in (Bas-

toni et al., 2010b). It is based on the same 24-core Xeon system underlying the case study presented

in this chapter, and used a very similar evaluation methodology to contrast four EDF-based sched-

ulers (G-EDF-Rm, C6-EDF-Rm, C2-EDF-Rm, and P-EDF-Rm) in terms of HRT and SRT

schedulability, and in terms of HRT and SRT weighted schedulability.

The overheads used in (Bastoni et al., 2010b) differ slightly from those used in this dissertation

because the implementation of LITMUSRT was improved in the mean time and because outlier

filtering was applied to a lesser extent in the later case study presented herein. Additionally, the

version of LITMUSRT used in (Bastoni et al., 2010b) did not support clusters of non-uniform size,

which precluded dedicated interrupt handling from being evaluated.

The most significant difference between the study presented in (Bastoni et al., 2010b) and the

one presented herein is that (Bastoni et al., 2010b) is based on a slightly different definition of

weighted schedulability score. Whereas the weighted schedulability score is defined as a function of

wss in this dissertation, it was defined as a function of ∆cpd in (Bastoni et al., 2010b). This makes

the resulting graphs in (Bastoni et al., 2010b) somewhat more expressive, but less straightforward to

interpret. We therefore chose to use the wss-based definition in this dissertation, and plan to continue

using the simpler-to-interpret definition in future work.

Given that the results reported in (Bastoni et al., 2010b) are based on the same hardware platform,

a recent version of LITMUSRT, and a near-identical evaluation methodology, it is hardly surprising

that the results reported in (Bastoni et al., 2010b) match the results discussed in the preceding

sections (with regard to the evaluated EDF-based schedulers). In particular, P-EDF was found to

be the best-performing HRT scheduler in both studies. Similarly, clustered scheduling was found

to be effective in the SRT case, and particularly so in scenarios in which P-EDF suffers from

bin-packing limitations. Since the study presented in (Bastoni et al., 2010b) considered neither

non-EDF schedulers nor dedicated interrupt handling, the case study presented in this dissertation

supersedes the earlier conference version.
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4.6 Summary

We have proposed an overhead-aware evaluation methodology for the comparison of real-time

schedulers. The approach, which we explain in detail in Section 4.1, consists of two phases. In the

OS phase, millions of overhead samples are collected during the execution of synthetic benchmark

tasks, which are then distilled into models of average- and worst-case overheads. Thereafter, in

the analytical phase, these overhead models are integrated with the overhead accounting methods

introduced in the previous chapter to reflect all overhead sources during schedulability analysis.

Finally, millions of task sets are randomly generated according to various parameter distributions.

The resulting fraction of HRT or SRT schedulable task sets, termed schedulability, is an empirical

performance measure that reflects both algorithmic and overhead-related capacity loss.

To demonstrate the effectiveness of the proposed methodology, we conducted a large-scale case

study that examined a total of 22 scheduler configuration in LITMUSRT on a 24-core Intel Xeon

platform. On our platform, we found that P-EDF performs best in the HRT case, whereas C-EDF

and G-EDF are effective at overcoming bin-packing limitations in the SRT case. These general

trends match in large parts those observed in earlier studies.
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CHAPTER 5

REAL-TIME SPINLOCK PROTOCOLS∗

A limitation of the case study presented in the previous chapter is that all tasks were assumed

to be independent, that is, locking concerns were not considered. In a real system, some or all

tasks likely share some state and devices (if not explicitly at the application level, then at least at

the RTOS level). As discussed in Chapter 2, a common method for the sharing of resources at the

application or kernel level is to employ a locking protocol. In a real-time system, the employed

locking protocol must enable maximum delays that a job may incur while waiting for resources to be

bounded. In this and the following chapter, we propose and analyze several multiprocessor locking

protocols that satisfy this requirement. Thereafter, in Chapter 7, we report on a second case study that

investigates the impact of locking protocols on schedulability under event-driven scheduling. Since

PD2-based schedulers did not exhibit favorable schedulability even in the absence of synchronization

requirements, we focus on JLFP schedulers in the remainder of this dissertation.

Recall from Section 2.4.4 that there are two fundamental mechanisms to implement waiting

in a multiprocessor: spinning and suspending. In principle, suspension-based locking protocols

are preferable because waiting jobs waste processor cycles under spin-based locking protocols. In

practice, spin-based protocols benefit from low overheads (compared to the cost of suspending

and resuming tasks), so that spinning is in fact preferable if all critical sections are short (i.e., if

tasks use resources for at most a few microseconds—see Chapter 7). In this chapter, we consider

non-preemptive mutex and RW spinlocks in detail; in Chapter 6, we investigate semaphore-based

mutex, RW, and k-exclusion protocols.

∗ Contents of this chapter previously appeared in preliminary form in the following papers:
Block, A., Leontyev, H., Brandenburg, B., and Anderson, J. (2007). A flexible real-time locking protocol for multiprocessors.
In Proceedings of the 13th IEEE Conference on Embedded and Real-Time Computing Systems and Applications, pages
47–57; and
Brandenburg, B. and Anderson, J. (2010b). Spin-based reader-writer synchronization for multiprocessor real-time systems.
Real-Time Systems, 46(1):25–87.



Most relevant to our work is prior analysis of non-preemptive FIFO spinlocks under P-EDF and

G-EDF scheduling (Gai et al., 2003; Devi et al., 2006), which is summarized in Section 2.4.4.1. In

joint work with Block et al. (2007), we developed the flexible multiprocessor locking protocol (FMLP)

for P-EDF and G-EDF scheduling, which derives its name from the fact that it can be used under

either partitioned or global scheduling, and it is agnostic regarding whether waiting is implemented via

spinning or suspending. To achieve the latter, the FMLP simply integrates non-preemptive spinlocks

to support so-called short resources, and incorporates suspension-based protocols to support long

resources. The terms “short” and “long” arise because (intuitively) spinning is appropriate for short

critical sections, whereas long critical sections call for suspension-based protocols. Since the FMLP

incorporates non-preemptive spinlocks, it generalizes both Gai et al.’s MSRP for P-EDF and Devi

et al.’s protocol for G-EDF. In subsequent work (Brandenburg and Anderson, 2008b), we extended

the FMLP to support P-FP scheduling and developed an improved “holistic blocking analysis” that

yields less-pessimistic bounds if jobs request resources more than once (see Section 5.4).

The design and analysis of non-preemptive spinlocks is in large parts scheduler-agnostic (at least

with respect to JLFP schedulers). In particular, the way that spinlocks are used in the FMLP is not

protocol specific. To avoid confusion, we therefore use the name “FMLP” in the remainder of this

dissertation to refer to Block et al.’s suspension-based protocols for long resources (discussed in

Chapter 6), and consider non-preemptive spinlocks individually in this chapter.

Besides supporting short and long resources, the FMLP was also the first protocol to explicitly

support nested accesses to global resources by means of “group locking,” which we discuss next

in Section 5.1. Thereafter, in Section 5.2, we present the first analysis of RW locks in the context

of multiprocessor real-time systems. In particular, we discuss why prior RW locks are ill-suited

to worst-case blocking analysis, and present a new type of RW lock based on “phase-fairness,”

which is a novel progress guarantee designed to overcome the shortcomings of prior RW locks.

Generally speaking, spinlocks are quite sensitive to overheads since the associated critical sections

are typically short and frequently executed. In Section 5.3, to demonstrate that phase-fairness is

practical, we present three “efficient” implementations of phase-fair RW locks, for three notions of

“efficiency.” Finally, in Section 5.4, we derive detailed bounds on maximum s- and pi-blocking under

non-preemptive mutex and RW spinlocks.
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5.1 Group Locking

Lock-based synchronization can be either fine-grained or coarse-grained. Under fine-grained locking,

each resource is protected by an individual, resource-specific lock. When a job requires more than

one resource at a time, it issues nested resource requests and acquires locks as needed. In contrast,

under coarse-grained locking, several resources are protected by the same lock and nested requests

are entirely or, at least, mostly avoided. For example, prior to version 2.4, Linux famously used the

“big kernel lock,” commonly referred to as the BKL, to serialize all kernel activity.

Fine-grained locking is clearly preferable from a parallelism, and hence throughput, perspective:

jobs only lock the resources that they actually access and other resources may be used concurrently.

However, nested lock acquisitions cause two major problems with regard to temporal correctness:

possible deadlock and transitive delays. On a uniprocessor, both can be optimally controlled with

existing protocols: under the PCP, SRP, and NCP, deadlock is impossible and maximum pi-

blocking is limited to the length of one outermost critical section, as discussed in Section 2.4.3.

On multiprocessors, however, it is much more complicated to prevent deadlock (without intro-

ducing crippling pessimism) because resources may be requested and used in parallel. Further, even

if deadlock can be ruled out because all nesting is well-ordered (e.g., by requiring that resources are

only nested in order from lower to higher indexed-resources), it is very difficult to bound transitive

delays that arise when resource-holding jobs wait to acquire additional resources. In fact, to the

best of our knowledge, no pi-blocking analysis of fine-grained locking on multiprocessors has been

published to date. As noted in Section 2.4, all prior multiprocessor locking protocols, including the

MPCP, DPCP, MSRP, and Devi et al.’s protocol, simply disallow the nesting of global resources.

Group locking is a simple approach that avoids deadlock and transitive blocking while still

allowing applications to issue nested resource requests. It works by automatically coalescing fine-

grained resource requests into coarse-grained lock acquisitions. Under group locking, the set of

all resources is partitioned into disjoint subsets called resource groups. Two resources belong to

the same resource group if and only if there exists a task that (potentially) requires both resources

simultaneously. Resources that are only accessed individually, i.e., that are not involved in nesting,

each form their own singleton resource group. Determining appropriate resource groups is equivalent
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to identifying connected components in a graph where each vertex is a resource and two vertices are

connected by an edge if the corresponding resources are potentially used together.

As implied by its name, resource groups form the fundamental unit of synchronization. Each

resource group is protected by a corresponding group lock. Prior to accessing any of the resources

assigned to a group G, a job Ji must first acquire G’s group lock. While Ji holds G’s group lock, it

may access any of the resources in G, which allows programmers to write applications that contain

aribtrarily nested resource requests. By the definition of resource groups, a job holds at most one

group lock at any time. Deadlock is thus impossible.

While group locking was originally proposed as part of the FMLP (Block et al., 2007), it is not

tied to any particular locking protocol. Each group lock can be seen as a virtual resource that is

never nested (with accordingly aggregated parameters Ni,q and Li,q—see Section 2.4). It is therefore

possible to use group locking with any spin- or suspension-based locking protocol, thereby adding

some degree of nesting suport to protocols that assume non-nested resource requests.

Group locking could be implemented semi-transparently to programmers in a library or as

part of a real-time middleware framework. However, to be effective, resource groups must be

determined before tasks (that share resources) commence execution. It is therefore necessary for all

possible resource nesting to be declared a priori. While this may appear as a limitation on first sight,

knowledge of all possible resource nesting is in fact necessary for any non-trivial blocking analysis.

Group locking is admittedly a very simple deadlock avoidance mechanism that can be detrimental

to throughput. Nonetheless, it is the first, and so far only, approach to multiprocessor real-time

locking that allows nesting of global resources at all. Obtaining a provably better concurrency control

method (in terms of worst-case blocking of outermost requests) remains an interesting open question.

In protocols that differentiate between several types of requests, it may further be necessary to

impose additional nesting requirements. For example, in the case of resources protected by RW locks,

which we discuss next, read requests may be nested within write requests (since a write requires

exclusive access anyway), but write requests may not be nested within read requests (since this would

require a “privilege upgrade” that is difficult to support).

To avoid notational complexity, we assume in the remainder of this chapter and Chapter 6 that all

nesting has been dealt with by defining appropriate resource groups. That is, the presented blocking

analysis should be applied to group locks if nesting is allowed, and not to individual resources.
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5.2 Reader-Writer Spinlocks

The need for RW exclusion arises naturally in many situations where information is more frequently

used than created or updated. For example, consider a robot such as TU Berlin’s autonomous

helicopter Marvin (Musial et al., 2006): its GPS receiver updates the current position estimate 20

times per second, and the latest position estimate is read at various rates by a flight controller and by

image acquisition, camera targeting, and communication modules. While consumers of data must

be protected against concurrent state updates, requiring mutual exclusion of consumers would be

unnecessarily restrictive.

Another common use case of RW locks is rarely-changing, frequently-used shared data such

as a system’s current configuration. A typical example was reported by Gore et al. (2004), who

employed RW locks to reduce latency in a real-time notification service. In their system, every

incoming message must be matched against a shared subscription lookup table to determine the set

of subscribing clients. Since events occur very frequently and changes to the table occur only very

rarely, the use of a regular mutex lock “can unnecessarily reduce [concurrency] in the critical path of

event propagation” (Gore et al., 2004). In practice, RW locks are in widespread use since they are

supported by all POSIX-compliant RTOSs (IEEE, 2008b).

In throughput-oriented computing, RW locks are attractive because they increase average con-

currency (compared to mutex locks) if read requests are more frequent than write requests. In a

real-time context, RW locks should also lower blocking (either s-blocking or pi-blocking, depending

on the protocol type) for readers, that is, the higher degree of concurrency must be reflected in a

priori worst-case analysis and not just in observed average-case delays.1 Unfortunately, many RW

lock types commonly in use in throughput-oriented systems provide only little analytical benefits

because they either allow starvation or needlessly serialize readers.

5.2.1 Request Order

Besides RW locks without strong progress guarantees (such as those implemented in the Linux

kernel), work on RW locking has produced four types of RW locks. Courtois et al. (1971) were

1This requirement applies equally to suspension-based and spin-based locking protocols; the discussion in this chapter
focuses on spin-based RW locking protocols, but it also applies to suspension-based RW locking protocols such as the one
presented in the next chapter (Section 6.2.3).
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the first to investigate RW synchronization and proposed two semaphore-based RW locks: a writer

preference lock, wherein writers have higher priority than readers, and a reader preference lock,

wherein readers have higher priority than writers. In later work on scalable synchronization on

shared-memory multiprocessors, Mellor-Crummey and Scott (1991b) presented efficient spin-based

implementations of reader preference, writer preference, and task-fair RW locks, in which readers

and writers gain access in strict FIFO order. In recent work, we proposed phase-fair RW locks as an

alternative that is better suited to worst-case analysis (Brandenburg and Anderson, 2009b, 2010b).

Phase-fairness is also based on FIFO ordering, but under it the FIFO constraint is relaxed to apply to

groups of jobs (instead of individual jobs) to increase reader parallelism. To highlight the difference

between strict FIFO locks and phase-fair RW locks, we use “task-fair” as a synonym for “strict

FIFO.”

In the following, we illustrate the advantages and disadvantages of each type of lock in the

context of multiprocessor real-time systems, assuming that requests are executed non-preemptively.

Formal bounds on worst-case blocking are derived subsequently in Section 5.4. We begin with

regular (i.e., non-RW) spinlocks as a baseline.

5.2.1.1 Task-Fair Mutex Locks

Recall from Section 2.4.4.1 that in task-fair (or FIFO) mutex locks, competing jobs are served strictly

in the order that they issue requests, and that a resource is never held by more than one job at a

time. Even though they are intuitively undesirable for RW synchronization, task-fair mutex locks

are considered here because they are the only spinlocks for which bounds on worst-case s-blocking

were derived prior to our work (Brandenburg and Anderson, 2009b, 2010b). Further, mutex locks

may in fact be preferable to RW locks if writes are frequent because mutex spinlocks are simpler

in structure and thus incur lower overheads than RW locks (with progress guarantees). That is, if

write requests are more frequent than read requests, then lower acquisition costs under mutex locks

may outweigh the benefits of potential reader parallelism under RW locks. Hence, we use task-fair

mutex locks as a performance baseline in our experiments (see Chapter 7). A major disadvantage of

task-fair mutex locks is that strict mutual exclusion among readers is unnecessarily restrictive and

can cause deadline misses.
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Figure 5.1: Example schedules of two writers (J1, J2) and three readers (J3, J4, J5) sharing a
resource `1 that is protected by a task-fair mutex lock. Jobs J4 and J5 miss their respective deadlines
at times 23 and 24 due to the unnecessary sequencing of readers.

Example 5.1. An example is shown in Figure 5.1, which depicts jobs of five tasks (two writers,

three readers) competing for a resource `1. As `1 is protected by a task-fair mutex lock, all requests

are satisfied sequentially in the order that they are issued. This unnecessarily delays both J4 and J5

and causes them to miss their respective deadlines at times 23 and 24. ♦

5.2.1.2 Task-Fair RW Locks

With task-fair RW locks, conflicting requests are still satisfied in strict FIFO order, but the mutual

exclusion requirement is relaxed such that resources can be held concurrently by consecutive readers

(since readers do not conflict with each other). This can reduce delays significantly if read requests

are not separated by interspersed write requests.

Example 5.2. The benefit of allowing reader parallelism is apparent in Figure 5.2(a), which depicts

the same arrival sequence as Figure 5.1. Note that the read requests of J3, J4, and J5 are satisfied

simultaneously at time 14, which in turn allows J4 and J5 to meet their deadlines.

Unfortunately, task-fair RW locks may degrade to mutex-like performance when faced with a

pathological request sequence, as is shown in Figure 5.2(b). The only difference in the scenarios

shown in insets (a) and (b) is that the arrival times of J1 and J4 have been switched. This causes `1 to
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(b) Sequential reads.

Figure 5.2: Example of reader parallelism (and lack thereof) under task-fair RW locks. (a) Given
the arrival sequence depicted in Figure 5.1, all readers gain access in parallel and hence meet their
respective deadlines. (b) If the arrival times of J1 and J4 in inset (a) are switched, then all readers
are serialized and a deadline is missed. This demonstrates that task-fair RW locks are subject to
mutex-like worst-case performance in the presence of multiple writers.
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be requested first by a reader (J4 at time 2), then by a writer (J2 at time 3), then by a reader again (J3

at time 4), then by another writer (J1 at time 5), and finally by the last reader (J5 at time 6). Reader

parallelism is eliminated in this scenario and J5 misses its deadline at time 24 as a result. ♦

5.2.1.3 Preference RW Locks

In a reader preference lock, readers are statically prioritized over writers, that is, writers are starved as

long as there are unsatisfied read requests (Courtois et al., 1971; Mellor-Crummey and Scott, 1991b).

The lack of strong progress guarantees for writers makes reader preference locks a problematic

choice for real-time systems because deadlines can be missed due to the resulting starvation.

The POSIX standard (IEEE, 2008b) requires writer preference locks with respect to their assigned

priorities (i.e., writers always have preference over readers of equal or lower priority) in RTOSs

that support the “Thread Execution Scheduling” option, due to the possibility of writer starvation.2

Since read requests are presumably more frequent than write requests when RW locks are employed,

reader starvation under writer preference locks is intuitively less likely to occur than writer starvation

under reader preference locks. However, in the worst case, writer preference locks are still subject to

starvation and thus an ill choice for predictable real-time systems that require a priori analysis.

Example 5.3. This is illustrated in Figure 5.3, which depicts the same arrival sequence as Fig-

ure 5.2(b) but assumes that `1 is protected by a writer preference lock. Again, `1 is first acquired

by a reader (J4 at time 2) as there are initially no competing write requests. However, all reads are

blocked as soon as writers are present (starting at time 3). Hence, J3 and J5’s read requests remain

unsatisfied until both J1 and J2’s write requests have completed at time 18, which causes each reader

to miss its respective deadline. ♦

5.2.1.4 Phase-Fair RW Locks

All previously-proposed RW spinlocks fall within one of the categories discussed so far—task-fair,

reader preference, and writer preference locks—or offer no progress guarantees at all. Thus, the

discussed examples above demonstrate that no such lock reliably reduces worst-case blocking (unless

2In the POSIX standard, there are two levels of compliance with regard to suspension-based RW locks. In the base
profile, the ordering of conflicting RW lock requests is left unspecified and thus implementation-defined (IEEE, 2008b).
Writer preference locks are mandated for RTOSs that support priority-based process scheduling (i.e., SCHED RR and
SCHED FIFO). For example, QNX implements writer preference locks for this reason (QNX Software Systems, 2011).
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Figure 5.3: Example of reader delay under writer preference locks. Given the arrival sequence
from Figure 5.2(b), two readers miss their respective deadlines (instead of only one as in inset (b)
of Figure 5.2) because all read requests remain unsatisfied while writers are present, which can
significantly delay readers.

writers execute only infrequently, which is a problematic assumption to make in the context of

worst-case analysis).

The previous examples reveal two root problems of existing RW locks: first, preference locks

cause extended blocking due to intervals in which only requests of one kind are satisfied; and second,

task-fair RW locks cause extended blocking due to a lack of parallelism when readers are interleaved

with writers. A RW lock better suited for use in predictable real-time systems should avoid these two

pitfalls. This discussion motivates the concept of phase-fairness.

Definition 5.1. With respect to a shared resource `q, a reader phase consists of one or more readers

(and no writers) acquiring `q (possibly in parallel). A writer phase consists of exactly one writer

acquiring `q exclusively. A RW lock is phase-fair if and only if it has the following properties:

PF1 reader phases and writer phases alternate;

PF2 writers are subject to FIFO ordering, but only with regard to other writers;

PF3 at the start of each reader phase, all currently-unsatisfied read requests are satisfied (exactly

one write request is satisfied at the start of a writer phase); and
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Figure 5.4: Example of reduced blocking under phase-fair locks. All readers meet their respective
deadlines because they are not blocked by more than one write request (due to Property PF1). Note
how the contending readers (J3, J4) yield to a writer (J2) at time 4, which is followed in turn by
a writer (J1) yielding to the aforementioned readers: this exemplifies the “after-you politeness”
implicitly required by the definition of phase-fairness.

PF4 during a reader phase, newly-issued read requests are satisfied only if there are no unsatisfied

write requests pending.

Properties PF1 and PF3 ensure that a read request is never blocked by more than one writer phase

and one reader phase irrespective of the number of processors and the length of the write request

queue. Property PF4 ensures that reader phases end. In a non-preemptive phase-fair RW spinlock,

Properties PF1 and PF2 ensure that a write request is never blocked by more than m− 1 reader and

writer phases each (see Section 5.2.2 below). In some sense, phase-fair locks can be understood as

being a reader preference lock when held by a writer, and being a writer preference lock when held

by readers, that is, readers and writers are “polite” and yield to each other.

Example 5.4. Figure 5.4 depicts a schedule for the pathological arrival sequence from Figures 5.2(b)

and 5.3 assuming a phase-fair RW lock. J4 issues the first read request and thus starts a new reader

phase at time 2. J2 issues a write request that cannot be satisfied immediately at time 3. However,

J2’s unsatisfied request prevents the next read request (issued by J3 at time 4) from being satisfied

due to Property PF4. At time 5, T1 issues a second write request, and at time 6, J5 issues a final
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read request. At the same time, J4’s request completes and the first reader phase ends. The first

writer phase lasts from time 6 until time 12 when J2’s write request completes. Due to Property PF1,

this starts the next reader phase, and due to Property PF3, all unsatisfied read requests are satisfied.

Note that, when J5’s read request was issued, two write requests were unsatisfied. However, due

to the phase-fair bound on read-request acquisition delay, it was only blocked by one writer phase

regardless of the arrival pattern. This allows all jobs to meet their deadlines in this example, and, in

fact, for any arrival pattern of the jobs depicted in Figures 5.1–5.4. ♦

5.2.2 Blocking Overview

The preceding examples suggest that phase-fair locks may be a desirable choice for real-time RW

synchronization. However, in order to employ RW spinlocks in real-time systems (and to properly

compare locking choices), formal bounds on worst-case s-blocking are required. The derivation of

reasonably-tight bounds that are sufficiently flexible to allow the analysis of non-trivial task systems

incurs some inherent complexity. In Section 5.4, we present such analysis in full technical detail. For

the casual reader, we next provide a high-level overview of the blocking properties of the discussed

RW locking choices that is sufficient to convey the “big picture.” Note, however, that the following

overview is not a substitute for the complete analysis presented in Section 5.4 and should not be used

for schedulability analysis—it merely highlights simplified instantiations of the derived bounds for

particular scenarios to convey an intuitive understanding.

Recall from Section 2.4 that there are two kinds of blocking that must be considered: s-blocking,

which a job Ji incurs while it spins non-preemptively, and pi-blocking, which Ji may incur if it is

released with a sufficient priority to be scheduled immediately, but cannot be scheduled because

another job is executing non-preemptively on Ji’s assigned processor. Since jobs are only non-

preemptable while spinning or executing a request, a bound on per-request s-blocking implicitly

bounds maximum pi-blocking.

Table 5.1 depicts bounds on worst-case blocking under three scenarios, expressed in terms of the

number of blocking phases. Let Ji denote the job under consideration.

The Single Write scenario assumes that Ji issues exactly one write and no read requests. Since

writers require exclusive access, the task-fair mutex, task-fair RW, and writer preference RW bounds

reflect the fact that a conflicting write request may be executed on every other processor. Under
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Request order Exclusion Single write Single read Repeated reads

task-fair mutex m− 1 m− 1 W +R
task-fair RW m− 1 m− 1 2W
writer preference RW m− 1 ∞ W +R
reader preference RW ∞ 1 W
phase-fair RW 2 · (m− 1) 2 2W

Table 5.1: A comparison of the bounds on worst-case s-blocking in three different scenarios under
each of the considered spinlock types. The third column (Single Write) lists the maximum number
of phases (either read or write) that block a job if it issues exactly one write and no read requests.
The fourth column (Single Read) lists the maximum number of phases (either read or write) that
block a job if it issues exactly one read and no write requests. The fifth column (Repeated Reads)
lists the maximum number of phases that block a job that repeatedly issues a read requests during
some interval [t0, t1), where W denotes the number of conflicting write requests and R denotes the
number of conflicting read requests issued during [t0, t1) (assuming that 2W < R).

reader preference locks, write requests are subject to starvation and it is thus not possible to bound

the number of blocking phases based purely on Ji’s requests—Ji will be blocked as long as other

jobs keep issuing read requests. Finally, the phase-fair bound reveals a disadvantage of enforcing

alternating reader and writer phases: while Ji is blocked by at most m− 1 writer phases, it can also

be transitively blocked by m− 1 interspersed reader phases.

The Single Read scenario assumes the complimentary situation, that is, Ji issues one read and

no write request. This highlights the main limitation of task-fair locks—under both task-fair mutex

and RW locks, read requests may be delayed significantly while progressing through the FIFO

queue. Starvation is again an issue under preference locks. However, the situation is reversed: writer

preference locks allow reads to be delayed indefinitely, whereas reader preference locks offer the

lowest bound of all locks for reader blocking—at most one writer phase can block Ji if said writer

phase was active when Ji issued its read request. Phase-fair RW locks offer a close approximation of

reader preference locks under this scenario, since satisfying all blocked read requests at the beginning

of each reader phase (Property PF3) ensures that at most two phases block a read request. This shows

that forcing phases to alternate (Property PF1) benefits readers at the expense of writers. Since reads

are expected to occur (much) more frequently than writes when using RW locks in the first place,

this is presumably a beneficial tradeoff. We explore this issue in our experiments in Chapter 7.
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The third scenario, Repeated Reads, looks at cumulative blocking across multiple read requests

over some interval [t0, t1) in which Ji issues many read requests in quick succession.3 With regard to

this interval, W denotes the total number of potentially-blocking write requests (i.e. requests issued

by jobs other than Ji) and R denotes the total number of potentially-blocking read requests. Further,

it is assumed that 2W < R, that is, that reads are “much more frequent” than writes. This scenario

emphasizes why mutex locks are an undesirable choice for RW synchronization: in the worst case,

Ji is delayed by every other request. In contrast, under task-fair RW locks, Ji is only blocked by

at most twice the number of potentially-blocking write requests. Intuitively, this is because one

of Ji’s read requests is only blocked by a reader phase if they are “separated” by a writer phase.

Writer preference locks suffer from the same shortcoming as mutex locks—in the worst case, Ji is

blocked by all other requests. Under reader preference locks, read requests are never blocked by

reader phases—thus, at most W requests can block Ji in this case. Finally, phase-fair RW locks

maintain the desirable bound of task-fair RW locks, since, under phase-fairness, reader phases only

block read requests if a writer phase is blocking, too.

These comparisons substantiate the observations of Section 5.2.1. To summarize,

• task-fair mutex and task-fair RW locks have similar worst-case blocking behavior for individual

requests;

• preference locks offer appealing worst-case behavior only for the prioritized request type and

give rise to starvation; and

• phase-fair RW locks strike a compromise between the desirable properties of reader preference

and task-fair RW locks: reads are only blocked by a constant number of phases and writes are

not starved, albeit at the cost of a factor of two in each bound (compared to the best bound in

each scenario).

Mellor-Crummey and Scott presented several efficient implementations of reader preference, writer

preference, and task-fair RW and mutex locks for shared-memory multiprocessors (Mellor-Crummey

and Scott, 1991a,b). We next show that phase-fair RW locks can be implemented efficiently as well.

3Ji is assumed to issue sufficiently many read requests to be blocked by all requests of other tasks that can block Ji,
that is, per-request bounds are assumed to not affect the outcome.
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5.3 Efficient Phase-Fair Reader-Writer Spinlocks

To be a viable choice, phase-fair RW locks must be efficiently implementable on common hardware

platforms. In practice, however, appropriate definitions of “efficient” may vary widely between

applications. One commonly-used complexity metric for locking algorithms is to count remote

memory references (RMR) (Anderson et al., 2003). In a distributed-memory system, remote memory

references occur when a processor accesses a non-local memory. On a cache-coherent shared-memory

multiprocessor, a remote memory reference is equivalent to a forced cache invalidation. That is,

when using RMR complexity as a measure of implementation efficiency, locks are classified by how

many cache invalidations occur per request under maximum contention. The assumption underlying

RMR complexity is that cache-local operations are (uniformly) cheap and that therefore the number

of (uniformly) expensive cache invalidations dominate lock acquisition costs.

Cache consistency traffic can certainly severely limit performance, but, in practice, lock efficiency

also strongly depends on the number and cost of the required atomic operations. For example, on a

given hypothetical platform, a lock implementation that requires multiple “light-weight” atomic-add

instructions may outperform alternate implementations that rely on fewer “heavy-weight” compare-

and-swap instructions. Such tradeoffs are strongly hardware dependent and can only be resolved by

benchmarking actual lock performance on the platform(s) of interest; we explore this issue in further

detail in Chapter 7.

A third efficiency criterion arises in the design of memory-constrained embedded systems,

wherein lock size concerns may outrank the desire for low acquisition overheads. In systems with

many shared data objects, lock size can especially become a concern when locks are used to protect

individual data objects (as opposed to locking code paths), which is often desirable if high throughput

is required since it can yield increased parallelism.

In this section, we present three phase-fair RW lock implementations, each addressing one of the

aforementioned efficiency requirements:
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• a simple-to-implement ticket-based phase-fair RW lock, denoted PF-T, that only depends on

hardware support for atomic-add, fetch-and-add, and atomic stores, and that requires only two

atomic operations4 each on the reader and writer path;

• a compact version of the first algorithm for memory-constrained systems, denoted PF-C, that

requires only four instead of 16 bytes per lock, but at the price of requiring additional atomic

operations; and

• a queue-based implementation, denoted PF-Q, that requires only a constant number of remote

memory references.

These algorithms heavily reuse the classic ticket (Lamport, 1974) and list-based queue lock tech-

niques (Mellor-Crummey and Scott, 1991a,b). We assume familiarity with spinlock algorithms on

behalf of the reader—see Anderson et al.’s survey for an introduction (Anderson et al., 2003).

5.3.1 A Simple Phase-Fair Reader-Writer Spinlock

The PF-T algorithm, as given in its entirety in Listing 5.1, assumes a 32-bit little-endian architecture.

However, it can be easily adapted to other native word sizes and big-endian architectures. We next

discuss its structure and the entry and exit procedures, which are both illustrated in Figure 5.5.

Structure. A PF-T lock consists of four counters that keep track of the number of issued (rin , win)

and completed (rout , wout) read and write requests (lines 1–3 of Listing 5.1). Variable rin serves

multiple purposes: bits 8–31 are used for counting issued read requests, while bit 1 (PRES ) is used

to signal the presence of unsatisfied write requests and bit 0 (PHID) is used to tell consecutive writer

phases apart. For efficiency reasons (explained below), bits 2–7 remain unused, as do bits 0–7 of

rout for reasons of symmetry. The allocation of bits in rin and rout is illustrated in Figure 5.6.

Readers. The reader entry procedure (lines 10–12, illustrated in Figure 5.5) works as follows. First,

a reader atomically increments rin and observes PRES and PHID (line 11). Observing PRES is

required to detect the presence of a writer; observing PHID is required to avoid a potential race

with multiple writers (discussed below). If no writer is present (w = 0), then the reader is admitted

immediately (line 12). Otherwise, the reader spins until either of the two writer bits in rin changes:

4Not counting atomic loads and stores, which are atomic by default on many current platforms (e.g., Intel x86).
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1 struct pft lock :
2 unsigned integer rin, rout initially 0
3 unsigned integer win, wout initially 0

5 let RINC = 0x100 // reader increment
6 let WBITS = 0x3 // writer bits in rin
7 let PRES = 0x2 // writer present bit
8 let PHID = 0x1 // phase id bit

10 read lock(struct pft lock* lock ):
11 let w ← fetch and add(lock .rin, RINC ) & WBITS
12 await (w = 0) or (w 6= lock .rin & WBITS )

14 read unlock(struct pft lock* lock ):
15 atomic add(lock .rout , RINC )

17 write lock (struct pft lock* lock ):
18 let ticket ← fetch and add(lock .win, 1)
19 await ticket = lock .wout
20 let w ← PRES + (ticket & PHID)
21 set ticket ← fetch and add(lock .rin, w )
22 await ticket = lock .rout

24 write unlock(struct pft lock* lock ):
25 let lsb ← pointer to least-significant byte of lock .rin
26 set *lsb ← 0
27 set lock .wout ← lock .wout + 1

Listing 5.1: The ticket-based PF-T algorithm. This implementation assumes little-endian 32-bit
words. A PF-T lock requires 16 bytes.
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Figure 5.5: An illustration of the reader and writer control flow in the PF-T algorithm. Directed edges
indicate control flow; bold arrows indicate communication, where solid arrows indicate information
flow from writers to readers and dashed arrows indicate information flow from readers to writers.
The linearization point for concurrent reader and writer arrivals is the update of rin—if the reader
increments rin before the writer sets PRES, then the reader enters first, otherwise, if the writer first
sets PRES before rin is incremented, then the writer precedes the reader. (Recall from Figure 5.6 that
the PRES bit is part of the rin word.) Deadlock between a slow reader and a quickly-arriving writer
is avoided by toggling PHID when setting PRES.
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Figure 5.6: The allocation of bits in the reader entry counter and the reader exit counter of the PF-T
algorithm (corresponding to line 2 of Listing 5.1).

if both bits are cleared, then no writer is present any longer. Otherwise—if only PHID toggles but

PRES remains unchanged—the beginning of a reader phase has been signaled. The reader exit

procedure (lines 14–15) only consists of atomically incrementing rout , which allows a blocked writer

to detect when the lock ceases to be held by readers (as discussed below, line 22).

Writers. Similarly to Mellor-Crummey and Scott’s simple task-fair RW lock (Mellor-Crummey

and Scott, 1991b), FIFO ordering of writers is realized with a ticket abstraction (Lamport, 1974;

Mellor-Crummey and Scott, 1991a). The writer entry procedure (lines 17–22) starts by incrementing

win in line 18 and waiting for all prior writers to release the lock (line 19). Once a writer is the

head of the writer queue (ticket = wout), it atomically sets PRES to one, sets PHID to equal the

least-significant bit of its ticket, and observes the number of issued read requests (lines 20–21). Note

that the least-significant byte of rin equals zero when observed in line 21 since no other writer can

be present. Finally, the writer spins until all readers have released the lock before entering its critical

section in line 22.

The writer exit procedure consists of two steps. First, the beginning of a reader phase is signaled

by clearing bits 0–7 of rin by atomically writing zero to its least-significant byte (lines 25–26).

Clearing the complete least-significant byte instead of just bits 0 and 1 is a performance optimization

since writing a byte is usually much faster than atomic read-modify-write instructions on modern

hardware architectures. Finally, the writer queue is updated by incrementing wout in line 27.

Phase id bit. The purpose of PHID is to avoid a potential race between a slow reader (Jr) and

two writers (Jv, Jw). Assume that Jv holds the lock and that Jr and Jw are blocked. When Jv
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releases the lock, PRES is cleared (line 26) and wout is incremented (line 27). Subsequently, Jw

re-sets PRES (line 21) and waits for Jr to release the lock. In the absence of PHID , Jr could fail to

observe the short window during which PRES is cleared and continue to spin in line 12, waiting for

the next writer phase to end. This deadlock between Jr and Jw is avoided by checking PHID : if Jr

misses the window between writers, it can still reliably detect the beginning of a reader phase when

PHID is toggled.

Correctness. If there are at most 232 − 1 concurrent writers and at most 224 − 1 concurrent readers,

then the PF-T lock ensures exclusion of readers and writers and mutual exclusion among writers.5

Overflowing rin, win, rout, and wout is harmless because the counters are only tested for equality:

in order for two writers to enter their critical sections concurrently, they must obtain the same ticket

value. This is only possible if win wrapped around, that is, if more than 232 − 1 writers draw a ticket

in between times that wout is incremented. Similarly, a writer can only enter its critical section

during a reader phase if there are at least 224 reads in progress at the time that the writer sets PRES .

In order for a reader to enter during a writer phase, either PHID would have to toggle or PRES

would have to clear, which is only possible if a writer becomes head of the writer queue while another

writer is still executing its critical section—which, as argued above, is impossible.

Liveness is guaranteed because all readers will eventually observe that the PHID bit was toggled,

and because a blocked writer will eventually observe that rout increased. PF-T locks are phase-fair

because readers cannot enter while a writer is spinning (as PRES is set in this case), and because

writers unblock all waiting readers as part of both the writer exit procedure (by clearing PRES ) and

the writer entry procedure (by toggling PHID).

5.3.2 A Compact Phase-Fair Reader-Writer Spinlock

In Listing 5.1, rin,win, rout , and wout are each defined as four-byte integers. However, requiring 16

bytes per lock may be excessive in the context of memory-constrained applications (e.g., embedded

systems). To accomodate such constraints, we next introduce the PF-C algorithm, which only

requires 4 bytes and supports up to 127 concurrent readers and writers. The PF-C algorithm, which

is given in its entirety in Listing 5.2, closely resembles the PF-T lock given in Listing 5.1; we focus

5Note that there can be at most m concurrent readers and writers if requests are executed non-preemptively.
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Figure 5.7: The allocation of bits in a PF-C lock (corresponding to lines 1–2 of Listing 5.2). The
four ticket counters rin , rout , win , and wout consist of only seven bits each and are separated by
overflow guards, i.e., bits that are otherwise unused and only employed to detect when each counter
wraps. Due to the limited size of the ticket counters, at most 127 readers and 127 writers may issue
requests concurrently. Note that PHID overlaps with the least-significant bit of wout . (PRES does
not overlap with any counter.)

on the notable differences in the following discussion. Except for minor details, the illustration of the

PF-T algorithm’s control flow (Figure 5.5) applies to the PF-C algorithm as well.

Structure. The lock itself consists of only one 32-bit word (line 1). The four ticket counters rin ,

rout , win , and wout are collapsed into four 7-bit-wide bit fields, as shown in Figure 5.7. The four

counters are separated by one bit each that serves as an overflow guard. Initialized to zero, an

overflow guard prevents an overflow in one counter from corrupting the adjacent counter—of course,

this requires the overflow guard to be reset before a second overflow can occur (as discussed below).

The ticket counters are incremented with fetch-and-add, atomic-add, and atomic-sub6 operations

in which the second argument, i.e., the value to be added/subtracted, has been shifted by the offset of

the to-be-updated ticket counter. The respective offsets are given in lines 4-7 of Listing 5.2.

Similarly, the ticket counters are observed by reading the lock word and then shifting and

masking the observed value. The bit mask MASK (line 8 in Listing 5.2) corresponds to the width of

one counter (seven bits).

Compared to the PF-T bit allocation, the positions of the phase id bit, PHID , and the writer

present bit, PRES , are reversed in order to overlay PHID with the least-significant bit of wout .

Since wout is only incremented at the end of each writer phase, the toggling of the least-significant

bit of wout implies the beginning of the next reader phase (if any readers are present). Thus, it is

unnecessary to allocate a bit exclusively for PHID .

6An atomic-sub instruction can be trivially emulated with an atomic-add instruction; the PF-C algorithm thus does not
require additional hardware support (compared to the requirements of the PF-T algorithm).
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1 struct pfc lock :
2 unsigned integer word initially 0

4 let WOUT SHIFT = 1 // least-significant bit of wout
5 let WIN SHIFT = 9 // least-significant bit of win
6 let RIN SHIFT = 17 // least-significant bit of rin
7 let ROUT SHIFT = 25 // least-significant bit of rout
8 let MASK = 0x7f // mask for rin/win/rout/wout
9 let GUARD = 0x80 // mask for the overflow guard bit

10 let PRES = 0x1 // mask for PRES
11 let WBITS = 0x3 // mask for PRES and PHID

13 read lock(struct pfc lock* lock ):
14 let ticket ← fetch and add(lock .word , 1� RIN SHIFT )
15 if ((ticket � RIN SHIFT ) & MASK ) = MASK :
16 atomic sub(lock .word , GUARD � RIN SHIFT )
17 let w ← ticket & WBITS
18 await ((w & PRES ) = 0) or (w 6= (lock .word & WBITS ))

20 read unlock(struct pfc lock* lock ):
21 atomic add(lock .word , 1� ROUT SHIFT )

23 write lock (struct pfc lock* lock ):
24 let snapshot ← fetch and add(lock .word , 1�WIN SHIFT )
25 let ticket ← (snapshot �WIN SHIFT ) & MASK
26 if ticket = MASK :
27 atomic sub(lock .word , GUARD �WIN SHIFT )
28 await ticket = (lock .word �WOUT SHIFT ) & MASK

30 set snapshot ← fetch and add(lock .word , 1)
31 set ticket ← (snapshot � RIN SHIFT ) & MASK
32 await ticket = (lock .word � ROUT SHIFT ) & MASK

34 write unlock(struct lock* lock ):
35 if ((lock .word �WOUT SHIFT ) & MASK ) = MASK :
36 atomic sub(lock .word , (GUARD �WOUT SHIFT ) − 1)
37 else:
38 atomic add(lock .word , 1)

Listing 5.2: The ticket-based PF-C algorithm. This implementation assumes little-endian 32-bit
words. A PF-C lock requires only 4 bytes.
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Readers. The PF-C reader entry procedure (lines 13–18) implements the same steps as the PF-T

reader entry procedure: a reader Ji first atomically increments rin by one (subject to shifting, line

14) and observes both writer bits (line 17), and then—if a writer is present—spins until a writer bit

toggles (line 18).

However, an additional step is required to avoid corrupting rout when rin overflows. If all bits

of rin were set before it was incremented, i.e., if all rin bits are set in Ji’s ticket (line 15), then Ji

caused rin to overflow. Thus, rin’s overflow guard bit is set and must be reset before rin overflows

again. Clearing the overflow bit is accomplished by atomically subtracting GUARD (after shifting it

to rin’s position) from the lock word (line 16). As long as there are at most 127 concurrent readers,

rin cannot overflow a second time before Ji has cleared the overflow guard, thus this mechanism

ensures that rin never corrupts rout .

The reader exit procedure is trivial: rout is simply incremented (lines 20–21). Since rout

is the left-most field, it can safely overflow without corrupting any other field. This allocation

is intentional—it enables a branch-free and short (and thus fast) reader exit path, which is likely

executed more frequently than the writer exit path.

Writers. In the first part of the writer entry procedure, a newly-arriving writer increments win

(subject to shifting, line 24), extracts its ticket from the observed lock value (by shifting and masking,

line 25), checks for and corrects the overflow (if it occurred, lines 26–27), and then spins until all

previous writes have completed (line 28).

Once a writer has become the head of the writer queue, it blocks newly arriving readers from

entering their critical sections by setting PRES . Since PRES is the first bit in the lock word, this is

simply done by atomically adding one to the lock value (line 30). The writer then waits for all readers

to exit by waiting for rout to equal rin’s observed value at the time of setting PRES (lines 31-32).

Conceptually, the writer exit procedure (lines 34–38) has to accomplish three goals: PRES must

be cleared, wout must be incremented, and overflowing wout must be avoided (or corrected). Since

wout is allocated directly after PRES , it is possible to combine all three into one atomic update.

Note that wout is never updated concurrently,7 hence a possible overflow can be detected before

it is updated (line 35). First consider the case that wout does not overflow (i.e., the else-branch in

7However, other bitfields in the lock word may still be updated concurrently due to reader and writer arrivals, thus—in
contrast to the PF-T algorithm—all updates must be atomic.
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lines 37–38). In this case, it is sufficient to clear PRES and increment wout . Since PRES , which is

the least-significant bit of the lock word, is known to be set, both can be accomplished by adding one

to the lock word—the addition will carry into wout and PRES will be cleared.

Otherwise, if incrementing wout does cause an overflow, then wout’s overflow guard must

be cleared by subtracting GUARD (shifted to wout’s position) after updating PRES and wout .

Since 1−GUARD = −(GUARD − 1), both updates can be combined into one atomic subtraction

(line 36). The overflow guard between win and wout is thus unused, but cannot be allocated to either

win or wout since they must be of equal size.

Correctness. Similar to PF-T locks, since all counters are seven bits wide (and possible overflow is

handled in both reader and writer paths), PF-C locks are correct if there are at most 28−1 concurrent

readers and writers each.8 PF-C locks implement the same control flow as PF-T locks and hence are

also phase-fair.

5.3.3 A Phase-Fair Reader-Writer Spinlock with Constant RMR Complexity

Mellor-Crummey and Scott showed in their seminal work on efficient spin-based synchronization

that it is possible to implement both task-fair mutex and RW locks as list-based queue locks such that

spinning causes only a constant number of cache invalidations—that is, withO(1) RMR complexity—

irrespective of the number of processors (Mellor-Crummey and Scott, 1991a,b). In a list-based queue

lock, a blocking job enqueues a queue node in a linked list prior to spinning on a flag in the queue

node. Thus, since each spinning job spins on a private location, it will only incur a cache invalidation

when it is unblocked.

In contrast, under the PF-T algorithm, a spinning reader may incur up to m cache invalidations

since subsequently arriving readers atomically update rin , which causes the cache line holding rin

to be evicted from the caches of all spinning readers. Similarly, a writer may incur up to m cache

invalidations once while spinning on wout , and again while spinning on rout . Further, under the

PF-C algorithm, all readers and writers modify the same word, hence a spinning job incurs a cache

8Bits could be re-allocated from win and wout to rin and rout to enable higher reader counters, albeit at the expense
of reduced writer counts.
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invalidation whenever a reader or writer arrives or exits.9 Thus, both PF-T and PF-C locks have

Ω(m) RMR complexity.

We next show how spin queues can be applied to reduce RMR complexity under phase-fair locks.

The resulting PF-Q algorithm is given in Listings 5.3 and 5.4.

Structure. At a high level, the PF-Q algorithm resembles the PF-T algorithm: readers are tracked

by the rin and rout counters (line 15 in Listing 5.3), and are blocked from entering their critical

sections by setting the PRES bit in rin (line 3). The key difference is that instead of spinning on the

lock state itself, blocked jobs enqueue themselves into reader and writer queues.

There are three such queues: a writer queue and two reader queues. The pointer wtail (line 17)

holds the address of the last writer’s queue node, or has the value NIL (line 7) if no writer is present.

The pointer whead (line 18) holds the address of the head of the writer queue’s node if said writer is

blocked by a reader phase. There are two reader queues, pointed to by rtail[0] and rtail[1] (line 19),

corresponding to the two possible values of the phase id bit in rin (line 2). Each rtail pointer

can assume two special values: NIL, which signals that arriving readers may proceed, and WAIT

(line 8), which signals that arriving readers should spin.

A notable difference to PF-T locks is that the PRES bit is set by writers in both rin and rout ,

with differing semantics. If PRES is set in rin , then readers are not allowed to enter their critical

sections and must spin. If PRES is set in rout , then a writer is awaiting the end of a reader phase

and the last exiting reader must unblock the spinning writer. Since readers may leave their critical

sections in an order different from the arrival sequence, the last reader can only be identified when it

updates rout . For this purpose, the variable last (line 16) holds the value that rout will assume once

the reader phase has ended (as discussed below).

Readers. Arriving readers start by making their presence known and observe PRES by incrementing

rin (line 22). If PRES is set, then the reader must block (line 23). To do so, it determines the current

phase id (either zero or one, line 24), initializes its queue node (line 25), and appends its queue node

onto the end of the reader queue corresponding to the current phase by atomically exchanging the

tail pointer (line 26). The queue update yields prev , which is either the address of the predecessor’s

9As modern architectures with cache line sizes of less than 16 bytes are rare, a spinning job likely incurs cache
invalidations each time a reader or writer arrives or exits under PF-T locks in practice, too (unless each counter is padded
with otherwise unused bytes to matche the cache line size).
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1 let RINC = 0x100 // reader increment
2 let PHID = 0x1 // phase id bit
3 let PRES = 0x2 // writer present bit
4 let WMSK = 0x3 // writer bits in rin/rout
5 let TMSK = ∼WMSK // reader ticket bits in rin/rout

7 let NIL = . . . // NIL and WAIT are two address-like values
8 let WAIT = . . . // that are distinct from any legal address

10 struct pfq node:
11 boolean blocked initially ⊥
12 struct pfq node* next initially NIL

14 struct pfq lock :
15 unsigned integer rin, rout initially 0
16 unsigned integer last initially 0
17 struct pfq node* wtail initially NIL
18 struct pfq node* whead initially NIL
19 struct pfq node* rtail [2] initially NIL

21 start read (struct pfq lock* lock , struct pfq node* self ):
22 let ticket ← fetch and add(lock .rin, RINC )
23 if (ticket & PRES ) = PRES :
24 let phase ← ticket & PHID
25 set self .blocked ← >
26 let prev ← fetch and store(lock .rtail [phase], self )
27 if prev 6= NIL:
28 await not self .blocked
29 if prev 6= WAIT :
30 set prev .blocked ← ⊥
31 else: // already unlocked
32 set prev ← fetch and store(lock .rtail [phase], NIL)
33 set prev .blocked ← ⊥
34 await not self .blocked
35 else: // no writer present

37 end read(struct pfq lock* lock ):
38 let ticket ← fetch and add(lock .rout , RINC )
39 if (ticket & PRES ) = PRES and (ticket & TMSK ) = lock .last − 1:
40 set lock .whead .blocked ← ⊥

Listing 5.3: The queue-based PF-Q algorithm: type declarations and reader entry and exit procedures.
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41 start write (struct pfq lock* lock , struct pfq node* self ):
42 let prev ← fetch and store(lock .wtail , self )
43 if prev 6= NIL:
44 set self .blocked← >
45 set prev .next ← self
46 await not self .blocked

48 set self .blocked← >
49 set lock .whead ← self
50 let phase ← lock .rin & PHID
51 set lock .rtail [phase]←WAIT
52 let ticket ← fetch and add(lock .rin, PRES ) & TMSK
53 set lock .last ← ticket
54 let exit ← fetch and add(lock .rout , PRES ) & TMSK
55 if exit 6= ticket :
56 await not self .blocked

58 end write(struct pfq lock* lock , struct pfq node* self ):
59 set lock .rout ← lock .rout & TMSK
60 let phase ← lock .rin & PHID
61 let lsb ← pointer to least-significant byte of lock .rin
62 set *lsb ← (phase + 1) & PHID
63 let prev ← fetch and store(lock .rtail [phase], NIL)
64 if prev 6= WAIT :
65 set prev .blocked ← ⊥

67 if self .next 6= NIL or
68 not compare and swap(lock .wtail , self , NIL):
69 await self .next 6= NIL
70 if self .next 6= NIL:
71 set self .next .blocked ← ⊥

Listing 5.4: The queue-based PF-Q algorithm: writer entry and exit procedures.
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queue node, WAIT if the queue was empty, or NIL if the blocking writer phase ended in the mean

time, i.e., after PRES was observed.

In the non-NIL case (lines 27–30), the reader spins on its private blocked flag (line 28)—the

reader has made its presence known, and thus can simply wait until it is notified of the end of

the blocking writer phase. Once unblocked, it checks whether it is the head of the reader queue

(line 29)—if not, it notifies its predecessor by clearing the corresponding blocked flag before entering

its critical section. Note that, in contrast to Mellor-Crummey and Scott’s task-fair RW queue

lock (Mellor-Crummey and Scott, 1991b), readers are unblocked from tail to head.

If prev equals NIL (lines 31–34), then the arriving reader raced with an exiting writer and

observed rin before PRES was cleared. In this case, the reader must proceed to enter its critical

section since the writer has already exited. However, additional readers may have observed PRES ,

enqueued themselves onto the reader queue, and entered the non-NIL case—and thus may be waiting

to be unblocked (line 28). To avoid deadlock in this case, the reader that observed (and replaced) NIL

must restore rtail[phase] (line 32) and unblock the job at the tail of the reader queue (line 33). Note

that the waiting readers propagate the update to the head of the queue. Note also that the head of the

queue is the job that observed NIL, thus it is already aware of the end of the blocking writer phase.

However, the head must still wait for its blocked flag to be toggled before entering its critical section

(line 34) because otherwise its successor, if sufficiently delayed, could access self .blocked after it

has been deallocated.10 If there are no successors, then prev = self , and thus self .blocked = ⊥ due

to the update in line 33.

As in the previous two phase-fair locks, exiting readers increment the rout counter (line 38). In

the PF-T and PF-C locks, the writer spins by comparing wout with its snapshot of rin—this, of

course, can cause repeated cache invalidations. Thus, a different approach for detecting the end of a

reader phase is required: if the PRES bit is set in rout (line 39), then the head of the writer queue

is waiting to be unblocked by the last exiting reader (and the whead pointer is valid). To reliably

identify the last reader, the writer records its snapshot of rin in last . Thus, each exiting reader can

test whether it is the last reader (line 39),11 and if so, unblock the waiting writer (line 40).

10Queue nodes are commonly allocated on the stack, hence delayed writes must be avoided.
11Since ticket holds the value of rout before it was incremented, it is compared against last − 1.
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Writers. Lines 42–46 of the writer entry procedure and lines 67–71 of the writer exit procedure

incorporate Mellor-Crummey and Scott’s mutex queue lock (Mellor-Crummey and Scott, 1991a)

to ensure FIFO queueing of writers: an arriving writer appends its queue node to the writer queue

(line 42), updates its predecessor’s next pointer (if any, lines 43–45), and then spins until unblocked

(line 46). Symmetrically, an exiting writer removes itself from the writer queue (lines 67–69) and

unblocks its successor (line 70–71).

Once a writer is at the head of the writer queue (line 48), it stores the address of its queue

node in whead (line 49), determines the phase id (line 50), and initializes the corresponding reader

queue (line 51). Then it stops newly-arriving readers from entering their critical sections by setting

PRES in rin (line 52). The observed value of rin is stored in last to make it available to readers (as

discussed above, line 53). Then it sets PRES in rout to make the presence of a blocked writer known

to exiting readers (line 54). While setting PRES , the writer also observes rout—blocking is only

necessary if rout is not equal to the previously-observed value of rin , otherwise all earlier-arrived

readers have already finished their respective critical sections (lines 55–56).

An exiting writer first clears the PRES bit in rout (line 59), which can be done non-atomically

since no concurrent reader exists. Next, it initiates the next reader phase. First, it enables newly-

arriving readers to enter their critical sections by clearing the PRES bit in rin (lines 60–62). This is

accomplished by writing the next phase id to the least-significant byte of rin to avoid the use of an

atomic fetch-and-modify instruction (i.e., PHID is toggled, line 62). Finally, any spinning readers

are unblocked by storing NIL in the rtail poiner corresponding to the ending writer phase (line 63)

and clearing the blocked flag of the tail node (if any, lines 64–65).

Correctness. Mutual exclusion of writers results from the use of Mellor-Crummey and Scott’s

task-fair mutex queue lock. Readers cannot enter during a writer phase since PRES is not cleared

until the writer exits. Liveness for writers is ensured because they atomically check rout and make

their presence known to readers. Liveness for readers is ensured because the use of two special

values (NIL and WAIT ) allows races between exiting writers and entering readers to be detected

and corrected. Readers that are still in the process of propagating the start of a new reader phase

through the reader queue do not interfere with the next head of the writer queue because the value of
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PHID alternates between writers. PF-Q locks have O(1) RMR complexity because neither readers

nor writers spin on shared lock state.

In this section, we have shown that phase-fair locks can be implemented efficiently on common

hardware platforms. We report on the results of an implementation-based performance study of the

considered RW lock choices in Chapter 7.

5.4 Detailed Blocking Analysis

In this section, we first introduce a generic framework for expressing bounds on both pi-blocking and

s-blocking, and then apply it to bound both kinds of blocking under three types of non-preemptive

spinlocks, namely task-fair mutex, task-fair RW, and phase-fair RW spinlocks. We do not consider

preference locks (either reader or writer preference locks) in detail because their analysis is severely

pessimistic due to the starvation issues discussed in Section 5.2.2. We refer the interested reader to

our previously-published analysis of preference RW locks (Brandenburg and Anderson, 2010b).

The blocking analysis presented in the remainder of this chapter is essential for deriving safe

blocking bounds suitable for schedulability analysis. However, such bounds tend to be somewhat

technical in nature; the casual reader may safely skip this section and consult the overview presented

in Section 5.2.2 instead.

The framework presented in the following is generic in the sense that it is not tied to any particular

locking protocol. It serves two purposes. For one, it avoids redundancy in the subsequent analysis of

the locking protocol presented in Chapter 6, which has structurally similar blocking terms. Second,

the presented analysis takes a holistic analysis approach to reduce the pessimism of prior analysis.

That is, it is intended to be applied to each job as a whole and bounds blocking across all requests

that a job issues, instead of bounding delays on a request-by-request basis.

The benefit of a holistic approach is best illustrated with a concrete example. In the following,

we assume non-preemptive task-fair spinlocks as used by the MSRP and by Devi et al. (2006) to

highlight the ideas underlying the generic bound. However, to reiterate, the analysis is not tied to

non-preemptive task-fair spinlocks. Since the analysis can be applied to bound either s-blocking or

pi-blocking, we use “blocking” as generic term for either delay in this section. We initially assume
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mutex constraints in this section and show how to apply the framework to RW locks in Sections 5.4.5

and 5.4.6 below.

The presented holistic analysis approach was first used to analyze the FMLP under P-FP

scheduling (Brandenburg and Anderson, 2008b), and subsequently further developed to analyze

RW spinlocks (Brandenburg and Anderson, 2010b) and a suspension-based protocol discussed in

Chapter 6 (Brandenburg and Anderson, 2010a). The version presented herein has been somewhat

simplified compared to the previous variants. We next explain the intuition underlying the approach,

which we then formalize in Section 5.4.2 below.

5.4.1 Holistic Blocking Analysis

In the following, let Ji denote an arbitrary job of the task Ti for which a bound on maximum blocking

is being derived. The main idea of the holistic approach is to avoid accounting for any individual

possibly-blocking request more than once, and to avoid accounting for requests that cannot possibly

interfere with Ji’s requests.

Recall from Section 2.4 that the analysis of the MSRP and Devi et al.’s analysis of non-

preemptive FIFO spinlocks analyzes each request individually—see Equations (2.8) and (2.9). A

bound on the maximum s-blocking is then obtained by summing the bounds for all requests issued by

Ji. If each job issues at most one request for each resource (i.e., if Ni,q ≤ 1 for all Ti and `q), then

the subsequent analysis is equivalent to the simpler bounds derived by Gai et al. (2003) and Devi

et al. (2006). However, if jobs potentially request the same resource more than once, then the holistic

approach can avoid substantial pessimism, in particular if the maximum critical section length of

other jobs is non-uniform (i.e., if there are large differences among the tasks’ Li,q parameters).

While this prior analysis simplifies the expression of the blocking bound, it does introduce

considerable pessimism when jobs make repeated requests to the same resource. This analysis can

be pessimistic because it may account more than once for a request that interferes only once.

Example 5.5. To illustrate possible pessimism when analyzing requests individually, consider the

following scenario. Suppose a task Ti shares a resource `q with another task Tx under the MSRP.

Further, suppose Ji requests `q up to Ni,q = 20 times and that jobs of Tx hold `q for at most

Lx,q = 10 time units. Finally, suppose jobs of Tx require `q at most once while any Ji is pending.
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When analyzing each of Ji’s many requests individually, Tx’s sole interfering request is ef-

fectively considered to block each of Ji’s requests, which is clearly impossible. Consequently,

according to Equation (2.8), Ji’s overall bound on s-blocking due to requests for `q will be

spin(Ti, `q) = Ni,q ·Lx,q = 200 time units, whereas the actual maximum possible delay is Lx,q = 10

time units—Jx delays Ji with at most only one blocking request for `q, and not with up to 20 as

predicted by Equation (2.8). ♦

This example demonstrates that maximum contention should be analyzed as a whole across

all of Ji’s requests for a particular resource. (Since we assume that requests for resources are not

nested, blocking bounds for individual resources are independent from each other and can be derived

individually.) The extent to which Ji is blocked due to requests for a resource `q in the worst case is

limited by the following constraints:

1. Maximum number of requests issued by other jobs. As discussed above in Example 5.5, if jobs

of Tx issue at most k requests while any Ji is pending, then Ji will be blocked by at most k

requests of jobs of Tx, regardless of the number of requests issued by Ji.

2. Maximum number of interfering requests per request issued by Ji. Suppose Ji requests `q

only once, that m = 4, and that `q is requested by other jobs up to k = 100 times while Ji

is pending. Under non-preemptive task-fair spinlocks, Ji is delayed by at most m − 1 = 3

competing requests, irrespective of the total number of requests k for `q since the maximum

queue length is limited to m non-preemptively executing jobs.

3. Maximum number of interfering requests per task. For example, suppose `q is shared among

three tasks Ti, Tx, and Ty. Under non-preemptive task-fair spinlocks, if Ji issues only one

request, then it is blocked by at most one request from Tx and one request from Ty, irrespective

of the total number of requests issued by these tasks, and irrespective of the number of

processors. Due to the FIFO ordering in the spin queue of a task-fair spinlock, each task can

precede Ji at most once per request.

4. Task locality. For example, suppose Ti shares a resource with tasks Tx and Ty under the

MSRP, and that Ti and Tx are assigned to processor 1, whereas Ty is assigned to processor 2.

Jobs of Ty can cause Ji to incur s-blocking because they can issue conflicting requests while
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Ji is scheduled. In contrast, jobs of Tx cannot cause Ji to incur s-blocking because jobs of Tx

are not scheduled while Ji is executing; however, a job Jx can cause Ji to incur pi-blocking

if Jx executes non-preemptively when Ji is released. A job Jy cannot directly delay Ji’s

release since it executes on a different processor, but Jy could transitively delay Ji if Ji incurs

pi-blocking due to Jx, and Jx incurs s-blocking due to Jy.

We formalize these four constraints next.

5.4.2 Interference Sets

We begin with Constraint 1 by bounding the maximum resource requirements of competing tasks.

In the task model assumed in this dissertation, a task Ti’s resource requirements are characterized

by the parameters Ni,q and Li,q. The main advantages of this model are that it is general enough

to reflect many possible job behaviors (e.g., no particular request order or minimum separation of

requests is assumed) and that the required information can be obtained as part of WCET analysis (or

realistically measured if WCET analysis is not available). However, it is possible that more detailed

knowledge is available for specific applications.

For example, it could be the case that jobs of a task Ti access a resource `q twice, and that the

second access is always much shorter than the first access. In this case, using single upper bound

Li,q for both requests is needlessly pessimistic. A similar concern arises with resources that are

not accessed by every job of Ti. For, example to reduce overheads, an application Ta could be

programmed to record status information in a shared log `l only once every five jobs. Assuming that

each Ja requests access to `l would needlessly overestimate contention for `l. However, explicitly

incorporating all such considerations yields a task model that is overly complicated for our purposes

(which is to study the underlying algorithmic properties of the protocols).

In this dissertation, we use an abstraction called task interference bound to achieve a separation

of concerns between the modeling of resource requirements and the actual analysis of locking

protocols, which is structurally independent from model considerations. A task’s interference bound

(for non-processor resources) is similar to a demand bound function (for processor time) in that it

“upper bounds” a task’s worst-case resource requirement during some interval. The actual blocking

analysis is expressed in terms of task interference, which can be defined to take advantage of detailed
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application-specific resource usage information. The primary benefit of this approach is that derived

blocking terms can be reused to derive less pessimistic bounds when additional information in form

of a more-detailed task model is available.

In the following, to achieve the desired separation of concerns, we formalize a task’s “interference

bound” as a set of requests that safely approximates a task’s “actual contention” for a resource. Recall

from Section 2.4.1 thatRi,q,v denotes the vth request for resource `q issued by any Ji, and that Li,q,v
denotes the request length ofRi,q,v. This allows us to formalize the concept of a task’s “contention

for a resource.”

Definition 5.2. Suppose jobs of a task Ti execute k resource requests for a resource `q during an

interval [t0, t1). In a concrete, fixed schedule, the contention due to Ti during [t0, t1) is the set of

requests

Ci,q(t0, t1) ,
{
Ri,q,v,Ri,q,(v+1), . . . ,Ri,q,(v+k−1)

}

such thatRi,q,v is the first request andRi,q,(v+k−1) is last request issued by any Ji during [t0, t1).

In general, v and k are unknown prior to the execution of Ti, as is the length of each request in

Ci,q(t0, t1). To enable a priori analysis, a generic notion of worst-case contention is required. The

purpose of Ti’s request interference bound, given next, is to define a set of generic requests (i.e.,

virtual requests defined for analysis purposes) that upper-bound the worst-case contention during any

interval of length t1 − t0. That is, the interference bound for an interval of length t1 − t0 contains at

least as many requests as Ti issues in any interval of length t1 − t0 in any actual schedule, and each

generic request is at least as long as a corresponding actual one. This can be formalized as follows.

Definition 5.3. The task interference bound for an interval of length t, denoted tif (Ti, `q, t), is a set

of generic requests that satisfies the following two properties.

1. For any Ci,q(t0, t1) with regard to some actual schedule, one can choose a set of corresponding

generic requests C ′i,q ⊆ tif (Ti, `q, t1 − t0) that satisfies

∣∣C ′i,q
∣∣ = |Ci,q(t0, t1)| and

∑

Ri,q,v∈Ci,q(t0,t1)

Li,q,v ≤
∑

Ri,q,w∈C′i,q

Li,q,w.
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2. Interference bounds are inclusive:

t ≤ t′ ⇒ tif (Ti, `q, t) ⊆ tif (Ti, `q, t
′).

Property 1 ensures that the task interference bound does not underestimate the number and length

of requests in any actual execution of Ti, and Property 2 ensures that a derived bound remains valid

when analyzing a larger-than-necessary interval (i.e., when over-estimating a job’s response time).

In the case of RW constraints, we analogously define task Ti’s read interference bound, denoted

as rif (Ti, `q, t), with respect to read requests for `q, and Ti’s write interference bound, denoted as

wif (Ti, `q, t) with respect to write requests for `q. We further assume in this case that Ti’s regular

task interference tif (Ti, `q, t) applies to requests of either kind. That is, with respect to any interval

of length t, rif (Ti, `q, t) bounds the worst-case frequency and length of read requests, wif (Ti, `q, t)

bounds the worst-case frequency and length of write requests, and tif (Ti, `q, t) bounds the worst-case

frequency and length of requests of either kind.

These definitions serve as an interface that allows the analysis of specific lock types presented

in the following sections to be seamlessly integrated with more-refined task and resource models.

Next, we provide suitable definitions of tif (Ti, `q, t), rif (Ti, `q, t), and wif (Ti, `q, t), for the model

assumed in this dissertation. To this end, we establish the following bound on the maximum number

of jobs that can execute requests in a given interval. Recall from Section 2.2 that pi denotes Ti’s

period and ri denotes Ti’s maximum response time (and thus reflects possible tardiness, if any).

Lemma 5.1. At most
⌈
t+ ri
pi

⌉
distinct jobs of a task Ti can execute in any interval of length t.

Proof. By contradiction (see Figure 5.8 for an illustration). Suppose that there exists an interval

[t0, t0 + t) of length t ≥ 0 in which k ∈ N jobs of Ti execute such that

k ≥
⌈
t+ ri
pi

⌉
+ 1. (5.1)

Let Ji,x denote the first and Ji,z the last job of Ti to execute in [t0, t0 + t), where z = x + k − 1

(note that Ji,x 6= Ji,z since ri ≥ ei > 0 and hence k ≥ 2). In order for a job to execute in [t0, t0 + t),
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pi = 2

ri = 6.6 t = 7.25

carry-in jobs jobs in [t0, t1) last job partially in [t0, t1)

Ji,1 Ji,2 Ji,3 Ji,4 Ji,5 Ji,6 Ji,7Ji,0

t0 t1tb

Ji,8

ri = 6.6

Figure 5.8: An illustration of Lemma 5.1. At most seven jobs of Ti with pi = 2 and ri = 6.6
can be pending in any interval [t0, t1) of length t1 − t0 = t = 7.25 (illustration drawn to scale).
Only jobs released at or after tb = t0 − ri and before t1 can be pending in [t0, t1). In the worst
case (i.e., with periodic arrivals and jobs completing as late as possible), jobs Ji,1, Ji,2, and Ji,3
carry execution into [t0, t1). Jobs Ji,4, Ji,5, and Ji,6 are released and complete in [t0, t1), and Ji,7
is released before t1. Note that moving the start of the interval t0 to an earlier point such that
ai,0 ≥ tb causes the last counted job Ji,7 to no longer be pending within [t0, t1), i.e., t1 < ai,7.
Hence, maxjobs(Ti, 7.25) =

⌈
13.85
2.0

⌉
= 7.

it must be pending some time in [t0, t0 + t), that is,

t0 − ri ≤ ai,x and (5.2)

ai,z < t0 + t. (5.3)

Further, since job releases are separated by at least one period, it follows that

ai,x + (k − 1) · pi ≤ ai,z. (5.4)

By substituting Inequalities (5.2) and (5.3) into Inequality (5.4), we obtain

t0 − ri + (k − 1) · pi ≤ t0 + t,

which, by re-arranging, yields

k <
t+ ri
pi

+ 1 ≤
⌈
t+ ri
pi

⌉
+ 1.

This contradicts Inequality (5.1) above.
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It follows from Lemma 5.1 and the definition of Ni,k that jobs of Ti issue at most d(t+ ri)/pie ·

Ni,k requests for `q over any interval of length t. In the worst case, each request for `q is of length

Li,q. This yields the following interference bound for the task model assumed herein.

Definition 5.4. The request interference bound for task Ti with respect to resource `q over any

interval of length t is the set of requests

tif (Ti, `q, t) ,

{
Ri,q,v | 1 ≤ v ≤ Ni,q ·

⌈
t+ ri
pi

⌉}
,

where Li,q,v = Li,q for eachRi,q,v. If Ti does not access a given resource `q, then tif (Ti, `q, t) = ∅

for all t. Task Ti’s read and write interference bounds, respectively, are analogously defined as

rif (Ti, `q, t) ,

{
RR
i,q,v | 1 ≤ v ≤ NR

i,q ·
⌈
t+ ri
pi

⌉}
and

wif (Ti, `q, t) ,

{
RW
i,q,v | 1 ≤ v ≤ NW

i,q ·
⌈
t+ ri
pi

⌉}
,

where LRi,q,v = LRi,q for eachRR
i,q,v and LWi,q,v = LWi,q for eachRW

i,q,v.

Based on per-task interference bounds, we next introduce a generic, parametrized “aggregate

interference bound” for use in the subsequent analysis of specific locking protocols. We first define

three convenience functions over sets of requests, which serve to simplify the expression of “aggregate

interference” and protocol-specific bounds on blocking.

Definition 5.5. Given a set of requests S, we let Sk denote the kth longest request in S, where

1 ≤ k ≤ |S| (with ties broken arbitrarily but consistently). Formally, if 1 ≤ k ≤ l ≤ |S| and

Sk = Ra,b,c and Sl = Rx,y,z , then La,b,c ≥ Lx,y,z .

Definition 5.6. Given a set of requests S, we denote the set of the l longest requests in S as

top(l, S) , {Sk | 1 ≤ k ≤ min(l, |S|)}

and their total duration as

total(l, S) ,
∑

Ri,q,v∈ top(l,S)

Li,q,v.

If l = 0 or S = ∅, then total(l, S) = 0.
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A task interference bound limits the maximum contention from jobs of a single task. Using the

above definitions, we can formalize the notion of contention from a set of tasks. Recall Constraint 3

from Section 5.4.1 above, namely that the number of requests per task that can possibly cause Ji to

incur acquisition delay is limited if jobs wait in FIFO order. If a task Tx can delay Ji with at most l

requests, then it is sufficient to consider only the l longest requests in Tx’s interference bound. We

therefore define the aggregate interference bound with a per-task “interference limit” parameter.

Definition 5.7. The aggregate interference bound of a set of tasks τ with respect to a resource `q

over any interval of length t and subject to an interference limit l is given by

tifs(τ, `q, t, l) ,
⋃

Tx∈τ
top (l, tif (Tx, `q, t)) .

That is, given an interference limit l, tifs(τ, `q, t, l) contains the l longest requests in each task’s

interference bound for `q and t.12 Aggregate read interference and aggregate write interference are

defined analogously as

rifs(τ, `q, t, l) ,
⋃

Tx∈τ
top (l, rif (Tx, `q, t)) and

wifs(τ, `q, t, l) ,
⋃

Tx∈τ
top (l, wif (Tx, `q, t)) .

We have incorporated Constraints 1 and 3 from Section 5.4.1 in a generic fashion. The remaining

Constraints 2 and 4 are easier to incorporate on a protocol-by-protocol basis. We next demonstrate

how to apply holisitic blocking analysis to a concrete locking protocol.

5.4.3 Task-Fair Mutex Spinlocks

In the following, we derive bounds on maximum s-blocking and pi-blocking under non-preemptive

task-fair mutex spinlocks under clustered event-driven scheduling with 1 ≤ c ≤ m. We make no

further assumptions about the specific scheduling policy in use; the following analysis therefore

applies equally to P-FP, EDF, C-EDF, and G-EDF scheduling.

12 In the task model assumed in this dissertation, each request in tif (Tx, `q, t) is in fact of the same lengthLx,q,v = Lx,q

(see Definition 5.4). We define tifs(τ, `q, t, l) with additional generality to accomodate more-expressive task models for
which tif (Tx, `q, t) may contain non-uniform request lengths.
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Since task locality can be exploited to limit pessimism, we apply Definition 5.7 on a per-cluster

basis. Recall that we let τj denote the set of tasks assigned to the jth cluster, and that Pi denotes the

cluster to which task Ti has been assigned. In total, there are m
c of c processors each.13

We first establish a bound on maximum s-blocking due to requests for resource `q.

Lemma 5.2. Under non-preemptive task-fair mutex locks, a job Ji incurs at most

spin(Ti, j, `q) =





total(Ni,q · c, tifs(τj , `q, ri, Ni,q)) if j 6= Pi

total(Ni,q · (c− 1), tifs(τj \ {Ti}, `q, ri, Ni,q)) if j = Pi

s-blocking due to requests for resource `q issued by jobs of tasks assigned to the jth cluster.

Proof. First consider the case of j 6= Pi. Since requests are satisfied in FIFO order, a job of each task

in τj can precede Ji at most once each time that Ji issues a request. As Ji issues at mostNi,q requests

for `q, each remote task is subject to an interference limit of Ni,q. Further, at most c jobs of tasks in

the jth cluster execute requests or busy-wait at any time since requests are executed non-preemptively.

Hence Ji is preceded by at most Ni,q · c requests issued by jobs of tasks in τj in total. In the case of

j = Pi, one of the c processors is taken up by Ji itself. Hence, at most Ni,q · (c− 1) request block Ji

in total. Since jobs and tasks are sequential, Ji is not delayed by requests of (other) jobs of Ti.

Lemma 5.2 highlights the holistic nature of the analysis: instead of bounding the busy-waiting

of each request issued by Ji individually, Definition 5.7 yields a single approximation of worst-case

contention across all Ni,q requests issued by Ji. By aggregating across all clusters and all resources,

this yields the following bound on maximum s-blocking.

Theorem 5.1. Under non-preemptive task-fair mutex locks, a job Ji incurs at most

si =

nr∑

q=1

m/c∑

j=1

spin(Ti, j, `q)

s-blocking due to requests for shared resources.

13Non-uniform cluster sizes (e.g., due to dedicated interrupt handling) can be trivially integrated. We assume uniform
clusters sizes in the following for the sake of simplified notation.
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Proof. Since resource requests are not nested, and since tasks do not migrate across clusters bound-

aries, the sum of the per-cluster, per-resource bounds (Lemma 5.2) bounds the total delay.

In addition to s-blocking, jobs may also incur pi-blocking upon release if a lower-priority job is

non-preemptively accessing a shared resource. The maximum duration of pi-blocking is limited to

one request span (i.e., one request including non-preemptable busy-waiting).14

Since pi-blocking is only caused by lower-priority jobs that are non-preemptable at the time of

Ji’s release, we only need to consider the set of tasks that could have released a lower-priority job

prior to Ji’s arrival. This set of tasks necessarily depends on the specific scheduling policy.

Definition 5.8. We let lower(Ti) denote the set of local tasks that could potentially cause Ji to incur

pi-blocking upon release.

lower(Ti) ,





{Tx | Tx ∈ τPi ∧ x > i} under FP-based schedulers

{Tx | Tx ∈ τPi ∧ dx > di } under EDF-based schedulers (Lemma 2.4)

The maximum duration of pi-blocking incurred by any Ji is bounded by the maximum request

span of any job of tasks in lower(Ti). We next bound the maximum acquisition delay incurred by

any lower-priority job.

Lemma 5.3. Let Jx denote a lower-priority job that causes Ji to incur pi-blocking upon release by

non-preemptively executing a request for resource `q. Jx’s request is delayed for at most

spin ′i(Tx, j, `q) =





total(c, tifs(τj , `q, rx, 1)) if j 6= Pi

total(c− 1, tifs(τj \ {Ti, Tx}, `q, rx, 1)) if j = Pi

time units due to requests for `q issued by jobs of tasks assigned to the jth cluster.

Proof. Analogous to Lemma 5.2. Since we consider only a single request, the per-task interference

limit is one (due to the FIFO ordering of requests), and, if j 6= Pi, at most c earlier-issued requests

cause Jx to incur acquisition delay. In the case of j = Pi, one processor is taken up by Jx itself.

14 Assuming link-based scheduling is employed if c > 1 (see Section 3.3.3).
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Further, since Ji has just been released and not yet scheduled, Jx is not delayed by requests of jobs

of Ti while it causes Ji to incur pi-blocking.

Lemma 5.3 allows us to express the bound on maximum pi-blocking.

Theorem 5.2. Under non-preemptive task-fair mutex locks, a job Ji incurs at most

bi = max
1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0


Lx,q +

m/c∑

j=1

spin ′i(Tx, j, `q)




pi-blocking upon release due to the non-preemptive execution of resource requests.

Proof. Follows from Definition 5.8, Lemma 5.3, and the fact that Ji incurs pi-blocking at most once

upon release in the absence of self-suspensions.

In this dissertation, we assume that jobs do not suspend unless suspended by a semaphore-based

locking protocol (Chapter 6). If Ji self-suspends for any reason when non-preemptive spinlocks are

employed, then it may incur additional pi-blocking due to lower-priority, non-preemptive jobs each

time that it resumes. Such pi-blocking can be bounded analogously to Theorem 5.2.

It should be noted that, in the case of EDF-based schedulers, Definition 5.8 is not sufficient in

characterizing pi-blocking after a self-suspension since tasks with shorter relative deadlines may

release lower-priority jobs while Ji is pending. That is, in the general case lower(Ti) = τPi \ {Ti}

when bounding maximum pi-blocking after a self-suspension under EDF-based schedulers. The

definition of lower(Ti) under FP-based schedulers remains unchanged since a job’s priority is

unaffected by its release time under FP scheduling.

This concludes our analysis of non-preemptive task-fair mutex locks. In the following, we

apply our holistic analysis approach to task-fair and phase-fair spinlocks. We start by bounding the

maximum number of blocking reader phases.

5.4.4 Minimum Reader Parallelism

The defining property of an RW lock is that readers do not directly block other readers. That is, in the

absence of any writers, a reader is not delayed under task-fair or phase-fair RW locks regardless of

the number of concurrent read requests. Similarly, a writer that is not delayed by other writers incurs
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Figure 5.9: Illustration of Lemma 5.4 for the case NW
i,q = 1 wherein a job Ji issues only one write

requestRW
i,q,v. (a) Base case w = 0: at most one reader phase can blockRW

i,q,v. (b) Induction step:
allowing one additional write request RW

x,q,b can cause an additional reader phase to block Ji and
hence increases the maximum number of blocking phases of either kind by at most two.

acquisition delay for the duration of at most one read request regardless of the number of blocking

readers. For example, if m− 1 readers hold a resource `q when Ji issues a write request for `q, then

all m− 1 readers proceed in parallel and Ji incurs s-blocking only for the duration of the longest

earlier-issued read request.

Intuitively, a reader phase can only transitively block a read request if said phase is “assisted” by

an also-blocking, interspersed writer phase. In this section, we formalize this intuition by establishing

two lemmas that characterize reader parallelism under fair RW locks (both task-fair and phase-fair).

Lemma 5.4. Let Ji denote a job that issues at most NW
i,q write requests for a resource `q, and let

• w denote the number of writer phases that directly delay Ji’s write requests for `q,

• r denote the number of reader phases that directly delay Ji’s write requests for `q,

• bw denote the total number of phases (either read or write) that directly delay Ji’s write

requests for `q.

If `q is protected by a task-fair or phase-fair RW lock, then bw ≤ 2w +NW
i,q and r ≤ w +NW

i,q .

Proof. By induction over w. Note that bw = w + r.

Base case: w = 0. If there are no blocking writer phases, then Ji’s write requests (if any)

can only be blocked by one reader phase each. In task-fair locks, this is due to FIFO ordering; in
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phase-fair locks this follows from Properties PF1 and PF4. Hence, r ≤ NW
i,q , and thus r = r + w =

bw ≤ 2w +NW
i,q . This is illustrated in inset (a) of Figure 5.9.

Induction step w → w + 1: Adding one blocking write request RW
x,q,b (i.e., one writer phase)

increases the number of phases blocking Ji by at most two: first, RW
x,q,b directly blocks Ji once,

and, second,RW
x,q,b can itself be blocked by an additional read requestRR

x,q,b (and thus one reader

phase), which then transitively also blocks Ji. Thus, bw+1 ≤ bw + 2. This is illustrated in inset (b)

of Figure 5.9. By the induction hypothesis, bw ≤ 2w +NW
i,q , thus

bw+1 ≤ bw + 2 ≤ (2w +NW
i,q ) + 2 = 2(w + 1) +NW

i,q .

Hence, bw ≤ 2w +NW
i,q for all w ∈ N. Since bw = w + r, this implies r ≤ w +NW

i,q .

Lemma 5.4 bounds bw for a known w. Next, we derive a bound on r given a bound on bw.

Lemma 5.5. Let Ji denote a job that issues at most NW
i,q write requests for a resource `q, and define

w, r, and bw as in Lemma 5.4 above. If there exists a bound a ∈ N such that bw ≤ a, then

r ≤
⌊
a+NW

i,q

2

⌋
.

Proof. We first show r ≤ a+NW
i,q

2 by contradiction. Suppose

a+NW
i,q

2
< r.

Since bw = w + r and thus r ≤ a− w, the stated inequality implies

a+NW
i,q

2
< a− w

and thus

w < a−
a+NW

i,q

2
=
a−NW

i,q

2
.
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By solving for a we obtain

a > 2w +NW
i,q ≥ bw,

where the last inequality follows from Lemma 5.4. This contradicts the assumption bw ≤ a, and thus,

r ≤ a+NW
i,q

2 holds. Since r ∈ N, the stated inequality follows.

As we show next, Lemma 5.5 allows us to bound s-blocking under phase-fair and task-fair RW

locks more accurately if the number of writers is low.

5.4.5 Task-Fair RW Spinlocks

Recall that under task-fair RW locks, writers gain exclusive access to resource groups, whereas

consecutive readers may access resource groups concurrently. Consequently, a writer that is directly

blocked by a reader phase may cause the reader phase to transitively block later-arriving readers.

Since task-fair RW locks degrade to mutex-like serialization in the worst case, the bounds for

task-fair mutex locks derived in Section 5.4.3 also apply to task-fair RW locks. However, if writes

are infrequent, then Lemma 5.5 can be used to derive much less pessimistic bounds. To this end, we

first determine the set of write requests that delay a job Ji in the worst case.

Lemma 5.6. Under non-preemptive task-fair RW locks, a job Ji is directly blocked by no more than

|W (Ti, j, `q)| write requests for resource `q issued by jobs of tasks assigned to the jth cluster, where

W (Ti, j, `q) =





top((NW
i,q +NR

i,q) · c, wifs(τj , `q, ri, (N
W
i,q +NR

i,q))) if j 6= Pi

top((NW
i,q +NR

i,q) · (c− 1), wifs(τj \ {Ti}, `q, ri, (NW
i,q +NR

i,q))) if j = Pi.

Proof. Analogously to Lemma 5.2. Due to the FIFO ordering of requests, each task can precede

Ji at most once with a write request each time that Ji issues a read or write request, which Ji does

at most NW
i,q + NR

i,q times. Since requests are executed non-preemptively, Ji is preceded by at

most (NW
i,q + NR

i,q) · c other jobs in `q’s spin queue across all requests if j 6= Pi, and by at most

(NW
i,q +NR

i,q) · (c− 1) otherwise since Ji occupies one of the processors if Pi = j.
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Together with Lemma 5.4, Lemma 5.6 implies a bound on the maximum number of blocking

reader phases. In the next step, we determine the set of longest read requests issued by jobs in each

cluster that must be considered when bounding maximum s-blocking.

Definition 5.9. In Lemma 5.7 and Theorem 5.3 below, define Wq, wq, and rq as follows.

Wq =

m/c⋃

j=1

W (Ti, j, `q) wq = |Wq| rq = wq +NW
i,q

Lemma 5.7. Under non-preemptive task-fair RW locks, a job Ji incurs s-blocking due to reader

phases while waiting to acquire resource `q for at most total(rq, Rq) time units, where

Rq =

m/c⋃

j=1

R(Ti, j, `q)

R(Ti, j, `q) =





top((NW
i,q +NR

i,q) · c, rifs(τj , `q, ri, l)) if j 6= Pi

top((NW
i,q +NR

i,q) · (c− 1), rifs(τj \ {Ti}, `q, ri, l)) if j = Pi

and l = min(rq, N
W
i,q +NR

i,q).

Proof. R(Ti, j, `q) is derived analogously to Lemma 5.2. The set of all read requests Rq (regardless

of cluster) is the union of all per-cluster interference sets since tasks do not migrate across cluster

boundaries. By Lemma 5.4, at most rq reader phases block Ji since it is blocked by at most wq writer

phases across all clusters (Lemma 5.6). The per-task interference limit l = min(rq, N
W
i,q + NR

i,q)

is due to the fact that each task can precede Ji with a read request at most once per request, but no

more than rq times (the maximum number of reader phases). Ji’s total delay due to reader phases is

bounded by the duration of the rq longest read requests, which are upper-bounded in duration by the

rq longest requests in Rq.

Theorem 5.3. Under non-preemptive task-fair RW locks, a job Ji incurs at most

si =

nr∑

q=1

min



m/c∑

j=1

spin(Ti, j, `q), total(wq, Wq) + total(rq, Rq)




s-blocking due to requests for shared resources, where spin(Ti, j, `q) is defined as in Lemma 5.2.

416



Proof. Since task-fair RW locks cause no more blocking than task-fair mutex locks, the bound for

task-fair mutex locks from Lemma 5.2 also bounds maximum blocking under task-fair RW locks

(with regard to each resource and each cluster). It follows from Lemma 5.6, Lemma 5.7, and from

the fact that tasks do not migrate across clusters boundaries that total(wq, Wq) + total(rq, Rq) also

bounds maximum s-blocking with regard to each resource `q. As resource requests are not nested,

the sum of the less-pessimistic per-resource bounds total s-blocking.

As with s-blocking, the bound on maximum pi-blocking under non-preemptive task-fair mutex

spinlocks given in Theorem 5.2 also applies to non-preemptive task-fair RW spinlocks. Further,

Lemma 5.4 could be applied as above to yield a second, possibly lower bound on maximum pi-

blocking. The required derivation is omitted since it is nearly identical to Lemmas 5.6 and 5.7

assuming a per-task interference limit of one (similar to Lemma 5.3).

5.4.6 Phase-Fair RW Spinlocks

In the following, we derive bounds on maximum s-blocking and maximum pi-blocking under phase-

fair RW spinlocks based on the defining properties of phase-fairness. Worst-case s-blocking under

phase-fair RW spinlocks is not equivalent to task-fair mutex lock. The analysis in Section 5.4.3 hence

does not apply to phase-fair RW spinlocks.

Since write requests are satisfied in FIFO order with respect to other write requests (Rule PF2),

maximum s-blocking incurred by writers due to earlier-issued write requests is the same under

task-fair and phase-fair RW locks. However, since reader and writer phases alternate (Rule PF1),

maximum s-blocking incurred by readers due to earlier-issued write requests is limited to one phase.

That is, whereas up to (NW
i,q +NR

i,q) · c write requests issued by jobs of a remote cluster may block a

job Ji under non-preemptive task-fair RW spinlocks, only NW
i,q · c+NR

i,q such requests can block Ji

under phase-fair RW spinlocks (since each of the NR
i,q read requests is blocked by at most one writer

phase). In the case of Ji’s local cluster, if c > 1, then the same reasoning applies and no more than

NW
i,q · (c− 1) +NR

i,q write requests block Ji. As a special case, if c = 1, local jobs cannot directly

block Ji. This yields the following bound.

Lemma 5.8. Under non-preemptive phase-fair RW locks, a job Ji is directly blocked by no more

than |W (Ti, j, `q)| write requests for resource `q issued by jobs of tasks assigned to the jth cluster,

417



where

W (Ti, j, `q) =





top(xrem , wifs(τj , `q, ri, (N
W
i,q +NR

i,q))) if j 6= Pi

top(xloc , wifs(τj \ {Ti}, `q, ri, (NW
i,q +NR

i,q))) if j = Pi and c > 1

∅ if j = Pi and c = 1

and xrem = NW
i,q · c+NR

i,q and xloc = NW
i,q · (c− 1) +NR

i,q.

Proof. Follows from the preceding discussion analogously to Lemma 5.6.

As in the case of task-fair RW locks, Lemma 5.8 and Lemma 5.4 together imply an upper bound

on the maximum number of blocking reader phases.

Definition 5.10. In Lemma 5.9 and Theorem 5.4 below, define W (Ti, j, `q) as in Lemma 5.8 above

and let wq = |Wq|, where

Wq =

m/c⋃

j=1

W (Ti, j, `q).

Lemma 5.9. Under non-preemptive phase-fair RW locks, a job Ji is blocked by at most

rq = min(wq +NW
i,q , N

R
i,q + (m− 1) ·NW

i,q )

reader phases.

Proof. Lemma 5.8 implies that Ji is blocked by at most wq writer phases with respect to `q and all

tasks (in all clusters). By Lemma 5.4, Ji is hence blocked by at most wq +NW
i,q reader phases (with

respect to `q and all tasks). This yields the first bound.

The second bound follows from the maximum queue length. Each of Ji’s read requests is

preceded by at most one writer phase. Since writer and reader phases alternate (Rule PF1), Ji’s (up

to) NR
i,q read requests are transitively delayed by at most NR

i,q earlier reader phases. Further, also due

to Rule PF1, any two writer phases are separated by at most one reader phase. Since Ji’s (up to) NW
i,q

write requests are delayed by at most NW
i,q (m − 1) write requests (c − 1 per request in Ji’s local
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cluster, c in each remote cluster), Ji’s write request are transitively delayed by at most NW
i,q (m− 1)

reader phases, for a total of at most NR
i,q + (m− 1) ·NW

i,q blocking reader phases.

This yields the following bound on maximum delay due to blocking reader phases.

Lemma 5.10. Under non-preemptive phase-fair RW locks, a job Ji incurs s-blocking due to reader

phases while waiting to acquire resource `q for at most total(rq, Rq) time units, where

Rq =

m/c⋃

j=1

R(Ti, j, `q)

R(Ti, j, `q) =





top(rq, rifs(τj , `q, ri, rq)) if j 6= Pi

top(rq, rifs(τj \ {Ti}, `q, ri, rq)) if j = Pi and c > 1

∅ if j = Pi and c = 1

and rq is defined as in Lemma 5.9.

Proof. By Lemma 5.9, at most rq reader phases block Ji during requests for `q. It is thus sufficient

to consider the rq longest read requests from each task and each cluster to determine the maximum

cumulative duration of rq reader phases. (Unless c = 1, in which case local tasks cannot block Ji.)

Further, each task can block Ji with at most individual rq read requests (i.e., the task interference

limit is rq) since the fact that Ji is waiting implies that read requests are satisfied only once per

reader phase, namely at the beginning of each reader phase (Rules PF3 and PF4). Based on these

considerations, the stated bound follows analogously to Lemma 5.7.

Finally, overall s-blocking under non-preemptive phase-fair RW spinlocks is bounded as follows.

Theorem 5.4. Under non-preemptive phase-fair RW locks, a job Ji incurs at most

si =

nr∑

q=1

total(wq, Wq) + total(rq, Rq)

s-blocking due to requests for shared resources.

Proof. Follows from Lemma 5.8 and Lemma 5.10.
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A bound on maximum pi-blocking under non-preemptive phase-fair RW locks can be easily

derived analogously to Theorem 5.2 by assuming an interference limit of one for writers.

This concludes our analysis of spin-based locking protocols. In Chapter 7, we present an empiri-

cal comparison of non-preemptive task-fair mutex, task-fair RW, and phase-fair RW spinlocks.

5.5 Summary

We have proposed and analyzed several non-preemptive spinlock protocols. The holistic analysis

approach employed in Section 5.4 improves upon prior analysis of non-preemptive task-fair mutex

spinlocks if jobs request resources repeatedly. If a significant fraction of requests for a resource only

observe state without changing it, then s-blocking can be further reduced by employing RW locks

instead of mutex locks. We have discussed the advantages and disadvantages of several types of RW

locks with regard to worst-case analysis. In particular, we have proposed phase-fairness, a progress

guarantee that is well-suited to worst-case analysis, and presented three efficient implementations of

phase-fair spinlocks. Additionally, we have discussed how resource nesting can be accommodated to

some degree by means of group locking. Group locking can be combined with virtually any locking

protocol and thus also applies to semaphore-based synchronization, which we consider next.
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CHAPTER 6

REAL-TIME SEMAPHORE PROTOCOLS∗

In the preceding chapter, we have considered spin-based protocols, which, as we later show in

Chapter 7, are efficient in practice if critical sections are short and contention is low. Nonetheless,

suspension-based protocols are still needed to support shared resources that inherently cause critical

sections to be long (e.g., accesses to stable storage), as spinning would result in substantial wastage in

such cases. Additionally, suspension-based protocols may be the only option in OSs that do not allow

non-preemptable execution or that do not implement link-based scheduling (e.g., Linux supports

neither), which are both necessary preconditions for the analysis presented in Chapter 5 (link-based

scheduling is only required if c > 1).

When suspension-based locking protocols are used in real-time systems, bounds on pi-blocking

are required during schedulability analysis. While pi-blocking is well-understood in the context

of uniprocessor real-time systems, the same is not true in the multiprocessor case. Because the

definition of pi-blocking is rooted in the notion of a “priority inversion,” a formal definition of

the former requires a formal definition of the latter. While the notion of a priority inversion is

straightforward to define in the uniprocessor case (see Definition 2.8), we argue in Section 6.1.1

that an appropriate definition in the multiprocessor case hinges on whether schedulability analysis is

suspension-oblivious (s-oblivious) or suspension-aware (s-aware).

The former type, s-oblivious schedulability analysis, does not allow for self-suspension times to

be explicitly accounted for. This lack of expressivity in the task model necessitates such times to be

∗ Contents of this chapter previously appeared in preliminary form in the following papers:
Block, A., Leontyev, H., Brandenburg, B., and Anderson, J. (2007). A flexible real-time locking protocol for multiprocessors.
In Proceedings of the 13th IEEE Conference on Embedded and Real-Time Computing Systems and Applications, pages
47–57;
Brandenburg, B. and Anderson, J. (2010a). Optimality results for multiprocessor real-time locking. In Proceedings of the
31st Real-Time Systems Symposium, pages 49–60; and
Brandenburg, B. and Anderson, J. (2011). Real-time resource-sharing under clustered scheduling: Mutex, reader-writer,
and k-exclusion locks. In Proceedings of the International Conference on Embedded Software.



modeled as computation instead. Consequently, s-oblivious analysis over-estimates the processor

demand of resource-sharing tasks and thereby yields pessimistic but sound results. In contrast, s-

aware schedulability analysis considers suspensions explicitly and thus uses less-pessimistic estimates

of processor demand.

To classify locking protocols, we introduce maximum pi-blocking as a blocking complexity

measure (Section 6.1.2). Our complexity bounds apply to a system of n abitrary-deadline sporadic

tasks scheduled by a clustered JLFP scheduler onm processors, where the number of critical sections

per job and the length of each critical section are taken to be constant, and resource requests are not

nested (or, equivalently, resource nesting is dealt with by group locking—recall Section 5.1).

For s-oblivious analysis, we establish a lower bound of Ω(m) on maximum pi-blocking (per

resource request) for any m-processor locking protocol (under any JLFP scheduler). We further

introduce a family of locking protocols for clustered JLFP scheduling that ensures O(m) maximum

s-oblivious pi-blocking and is thus asymptotically optimal (Section 6.2).

Perhaps surprisingly, the improvement in analysis accuracy in s-aware analysis comes at the cost

of an increased lower bound for mutex protocols: we establish a lower bound of Ω(n) on maximum

pi-blocking (assuming n ≥ m), and present a variant of the FMLP that achieves O(n) maximum

s-aware pi-blocking under partitioned JLFP scheduling (Section 6.3). In the case of c > 1, no

protocol with provably O(n) maximum s-aware pi-blocking under arbitrary JLFP schedulers is

currently known, however, the global FMLP is shown to ensure O(n) s-aware pi-blocking in the case

of G-EDF with constrained deadlines and no tardiness (Section 6.3.2).

The difference in lower bounds under s-aware and s-oblivious schedulability analysis arises

because the nature of what constitutes a “priority inversion” is changed by the assumption underlying

s-oblivious analysis. Intuitively, the analytical trick is to “reuse” some of the pessimism inherent in

treating suspensions as execution time to derive less pessimistic bounds on priority inversion length.

This idea is formalized in the next section.
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6.1 Blocking Optimality

The main goal in the design of suspension-based real-time locking protocols is to minimize the

worst-case duration of priority inversions, which (intuitively) occur when a high-priority job must

wait for a lower-priority one.

In the uniprocessor case, locking protocols that ensure a provably optimal upper bound on

pi-blocking have long been known. Indeed, under the NCP, PCP (Sha et al., 1990; Rajkumar, 1991),

and SRP (Baker, 1991), jobs block for the duration of at most one (outermost) critical section, which

is obviously asymptotically optimal.

In the multiprocessor case, however, the situation is much more murky, despite the considerable

body of prior work on multiprocessor real-time locking protocols (reviewed in Section 2.4.4). In fact,

to the best of our knowledge, general, precise definitions of what actually constitutes “blocking” in

this case had not been formalized prior to our work. Rather, existing protocols have been analyzed

using informally defined notions of blocking; to the effect that different locking protocols were

analyzed using different assumptions.1 Without a precise definition of blocking, we clearly have no

understanding of what constitutes optimal pi-blocking on multiprocessors.

Motivated by these considerations, we next formalize two notions of pi-blocking and establish

lower bounds on maximum pi-blocking under each definition to provide a clear foundation for the

study of suspension-based locking protocols.

6.1.1 Priority Inversions in Multiprocessor Systems

We need to clarify the concept of a “priority inversion on a multiprocessor,” which is complicated by

the fact that multiprocessor schedulability analysis has not yet matured to the point that suspensions

can be analyzed under all schedulers. In particular, none of the major G-EDF schedulability

tests reviewed in Chapter 2 inherently accounts for self-suspensions. Such analysis is suspension-

oblivious (s-oblivious): jobs may suspend, but each ei must be inflated by bi prior to applying the

test to account for all additional delays. This approach is safe—converting execution time to idle

time does not increase response times—but pessimistic, as even suspended jobs are (implicitly)

1Easwaran and Andersson (2009) provide a definition of “job blocking” that conceptually resembles our notion of
s-aware pi-blocking (Definition 6.2). However, their definition specifically applies to G-FP scheduling and does not
encompass all of the effects that we consider to be “blocking” (e.g., such as priority boosting).
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considered to prevent lower-priority jobs from being scheduled. In contrast, suspension-aware

(s-aware) schedulability analysis that explicitly accounts for bi is available for FP, P-FP, and, to

some extent, for G-FP scheduling (Rajkumar, 1991; Audsley et al., 1993; Easwaran and Andersson,

2009; Lakshmanan et al., 2009). Notably, suspended jobs are not considered to occupy a processor

under s-aware analysis.

Consequently, priority inversion is defined differently under s-aware and s-oblivious analysis:

since suspended jobs are counted as demand under s-oblivious analysis—the maximum suspension

time of each such job is included in its execution requirement ei—the mere existence of m pending

higher-priority jobs rules out a priority inversion. In contrast, under s-aware schedulability analysis

only ready higher-priority jobs can nullify a priority inversion (since suspension times are not

included in ei).

The difference in what constitutes a priority inversion leads to two notions of pi-blocking. Since

schedulability tests are applied on a cluster-by-cluster basis, pi-blocking is defined in both cases with

respect to the tasks in each cluster. Recall from Section 2.4.1 that Pi denotes the cluster that Ti has

been assigned to, and that τPi denotes the set of tasks assigned to cluster Pi.

Definition 6.1. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-blocking

at time t if Ji is pending but not scheduled and fewer than c higher-priority jobs of tasks in τPi are

pending.

Definition 6.2. Under s-aware schedulability analysis, a job Ji incurs s-aware pi-blocking at time

t if Ji is pending but not scheduled and fewer than c higher-priority ready jobs of tasks in τPi are

scheduled.

In both cases, “higher-priority” is interpreted with respect to base priorities. In the case of

c = 1, Definition 6.2 reduces to the uniprocessor definition of pi-blocking (recall Definition 2.8

from Section 2.4.2). Notice that Definition 6.1 is weaker than Definition 6.2. Thus, lower bounds

on s-oblivious pi-blocking apply to s-aware pi-blocking as well, and the converse is true for upper

bounds.

Example 6.1. The difference between s-oblivious and s-aware pi-blocking is illustrated in Figure 6.1,

which shows a G-EDF schedule of three jobs sharing one resource. Job J1 suffers acquisition delay

during [1, 3), and since no higher-priority jobs exist it is pi-blocked under either definition. Job J3 is

424



1 2
scheduled

critical section

Processor job release

job completion

deadline

job suspended

0 5

T1

T2

T3
only s-aware
pi-blocking

both s-oblivious and
s-aware pi-blocking

Figure 6.1: Example of s-oblivious and s-aware pi-blocking in a G-EDF schedule of three jobs
sharing one resource on m = c = 2 processors.

suspended during [2, 4). It suffers pi-blocking under either definition during [3, 4) since it is among

the c = m = 2 highest-priority pending jobs. However, J3 suffers only s-aware pi-blocking during

[2, 3) since J1 is pending but not ready then. ♦

6.1.2 A Blocking Complexity Measure

As mentioned above, the principal goal in designing a real-time locking protocol is to minimize

pi-blocking. Some degree of pi-blocking is inherently unavoidable if (some) resource accesses

require mutual exclusion. A locking protocol, however, must strike a balance between favoring

resource requests of some jobs over those of others. For example, in the extreme, a protocol could

guarantee a task to never incur pi-blocking if resources are never granted to other tasks. Clearly, such

a protocol is not useful, but it highlights that just considering the pi-blocking bound of high-priority

(or privileged) tasks is not representative of a locking protocol’s blocking behavior.

To compare locking protocols, we thus consider maximum pi-blocking, formally max1≤i≤n{bi},

to characterize a protocol’s overall blocking behavior. Maximum pi-blocking reflects the per-task

bound required for schedulability analysis of the task that incurs the most pi-blocking. It is worth

emphasizing that it does not necessarily reflect the maximum acquisition delay, which is irrelevant

from a schedulability analysis point of view (recall Section 2.4.2).

Concrete bounds on pi-blocking must necessarily depend on each Li,k—long requests will cause

long priority inversions under any protocol. Similarly, bounds for any reasonable protocol grow

linearly with the total number of requests per job. Thus, when deriving asymptotic bounds, we

consider, for each Ti,
∑

1≤q≤nr
Ni,q and each Li,q to be constants and assume n ≥ m. All other

parameters are considered variable (or dependent on m and n). In particular, we do not impose
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constraints on the ratio max{pi}/min{pi}, the number of resources nr, or the number of tasks

sharing each `q.

To simplify our notation, we use the following shorthand when deriving asymptotic bounds.

Definition 6.3. The maximum critical section length is denoted as Lmax , where

Lmax , max
1≤i≤n

max
1≤q≤nr

{Li,q}.

To reiterate, we assume Lmax = O(1).

In accordance with the goal of minimal pi-blocking, we seek to design protocols under which

the amount of time lost to pi-blocking (by any task set) is bounded within a constant factor of the

loss shown to be unavoidable in the worst case (for some task sets). To this end, we next establish

lower bounds on maximum pi-blocking under s-oblivious and s-aware schedulability analysis.

6.1.3 Lower Bound on Maximum S-Oblivious Pi-Blocking

In the case of s-oblivious schedulability analysis, Ω(m) maximum pi-blocking is unavoidable in

some cases. Consider the following pathological high-contention task set.

Definition 6.4. Let τ seq(n) denote a task set of n identical tasks that share one resource `1 such that

ei = 1, pi = 2n, Ni,1 = 1, and Li,1 = 1 for each Ti, where n ≥ m ≥ 2.

Lemma 6.1. There exists an arrival sequence for τ seq(n) such that, under s-oblivious analysis,

max1≤i≤n{bi} = Ω(m) under any locking protocol and JLFP scheduler.

Proof. Without loss of generality, assume that n is an integer multiple of m. Consider the schedule

resulting from the following periodic arrival sequence: each Ji,j is released at time ai,j = (di/me −

1) ·m + (j − 1) · pi, and issues one request Ri,1,j , where Li,1,j = 1.2 That is, releases occur in

groups of m jobs and each job requires `1 for its entire computation. The resulting G-EDF schedule

is illustrated in Figure 6.2.

There are n/m groups of m tasks each that release jobs simultaneously. Each group of jobs

of Tg·m+1, . . . , Tg·m+m, where g ∈ {0, . . . , n/m− 1}, issues m concurrent requests for `1. Since

2Recall from Section 5.4.2 thatRi,q,v denotes the vth request of Ti for resource `q , and that Li,q,v denotes the request
length ofRi,q,v .
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Figure 6.2: Illustration of Lemma 6.1. The depicted example shows a G-EDF schedule of τ seq(n)
for n = 6 and m = 3, and thus g ∈ {0, 1}. The first group of jobs (J1,1, J2,1, J3,1) is released at time
0; the second group (J4,1, J5,1, J6,1) is released at time 3. Each group incurs 0 + 1 + 2 =

∑m−1
i=0 i

total s-oblivious pi-blocking.

`1 cannot be shared, any locking protocol must impart some order, and thus there exists a job in

each group that incurs d time units of pi-blocking for each d ∈ {0, . . . ,m− 1}. Hence, for each g,
∑g·m+m

i=g·m+1 bi ≥
∑m−1

i=0 i = Ω(m2), and thus, across all groups,

n∑

i=1

bi =

(n/m−1)∑

g=0

g·m+m∑

i=g·m+1

bi

= n/m · Ω(m2)

= Ω(nm),

which implies max1≤i≤n{bi} = Ω(m).

By construction, the schedule does not depend on G-EDF scheduling since no more than m jobs

are pending at any time, and thus applies to other global JLFP schedulers as well. The lower bound

applies equally to clustered JLFP schedulers with c < m since τ seq(n) can be trivially partitioned

such that each processor serves at least bn/cc and no more than dn/ce tasks.

This bound is known to be tight for spin-based protocols: as discussed in Chapter 5, if jobs

busy-wait non-preemptively in FIFO order, then they must wait for at most m− 1 earlier requests.

However, prior work has not yielded an O(m) suspension-based protocol. We present two protocols

that are asymptotically optimal under s-oblivious analysis in Sections 6.2.2 and 6.2.5.
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Figure 6.3: Illustration of Lemma 6.2 for n = 4 and m = 2 under P-EDF. Note that bi ≥ rseqi −r
par
i .

For example, J4 incurs pi-blocking during [0, 2) in Sseq ; consequently b4 ≥ rseq4 − rpar4 = 4−2 = 2.
Similarly, b3 ≥ rseq3 − rpar3 = 3− 1 = 2.

6.1.4 Lower Bound on Maximum S-Aware Pi-Blocking

Under s-aware schedulability analysis,O(m) maximum pi-blocking is impossible. That is, asymptoti-

cally speaking, suspension-based locking protocols are at a disadvantage under s-aware schedulability

analysis compared to non-preemptive FIFO spinlocks, which ensure O(m) s-blocking and hence

also O(m) pi-blocking. To show this, we next establish that maximum s-aware pi-blocking of Ω(n)

is fundamental under s-aware schedulability analysis.

Lemma 6.2. There exists an arrival sequence for τ seq(n) (see Definition 6.4 ) such that, under

s-aware analysis, max1≤i≤n{bi} = Ω(n) under any locking protocol and JLFP scheduler.

Proof. Without loss of generality, assume that n is an integer multiple of m. We first consider the

partitioned case (c = 1) and assume that Pi = di/me, i.e., n/m tasks are assigned to each processor.

Consider the schedule Sseq resulting from a synchronous, periodic arrival sequence: each Ji,j

is released at ai,j = (j − 1) · pi, and issues one requestRi,1,j , where Li,1,j = 1. Sseq is illustrated

in Figure 6.3(a) assuming P-EDF scheduling. Note that linear suspension times are immediately

apparent. However, to bound bi under any JLFP scheduler, we need to take into account the times in

which a suspended job is not pi-blocked because a higher-priority job executes.

To this end, consider the schedule Spar resulting from the same arrival sequence if jobs are

independent, i.e., each Ji executes for ei without requesting `1. Spar is illustrated in Figure 6.3(b).
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Under Sseq , as jobs are serialized by `1, only one job completes every time unit until no jobs are

pending; thus,
∑n

i=1 r
seq
i =

∑n
i=1 i irrespective of how requests are ordered or jobs prioritized.

Under Spar , as jobs are independent and the scheduler is, by assumption, work-conserving, m

jobs complete concurrently every time unit until no jobs are pending; thus, under any job prioritization,
∑n

i=1 r
par
i =

∑n
i=1di/me.

By construction, no job is pi-blocked in Spar . In contrast, jobs incur pi-blocking in Sseq under

the same JLFP scheduler, i.e., jobs are prioritized consistently in Spar and Sseq . Thus, the observed

response time increase of every job reflects the amount of pi-blocking incurred in Sseq . Therefore,

for each Ti, bi ≥ rseqi,1 − r
par
i,1 , and thus

n∑

i=1

bi ≥
n∑

i=1

rseqi,1 −
n∑

i=1

rpari,1

=
n∑

i=1

i−
n∑

i=1

⌈
i

m

⌉

≥
n∑

i=1

i− 1

m

n∑

i=1

i−
n∑

i=1

1

=

(
1− 1

m

)
(n+ 1)

n

2
− n

= Ω(n2).

This implies max1≤i≤n{bi} = Ω(n). Since at most one job is scheduled in Sseq at any time,

pi-blocking does not decrease under global or clustered scheduling with c > 1.

In Section 6.3, we discuss a variant of the FMLP in the context of s-aware schedulability analysis

and show it to be asymptotically optimal.

6.2 Locking under S-Oblivious Schedulability Analysis

In this section, we present four locking protocols designed specifically for s-oblivious analysis that

are collectively called the family of O(m) locking protocols (the OMLP family). It includes a mutex

protocol, an RW protocol, and a k-exclusion protocol for clustered scheduling with arbitrary cluster
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sizes (1 ≤ c ≤ m), and a mutex protocol for the special case of global scheduling (Brandenburg and

Anderson, 2010a, 2011).3 The OMLP family’s main features are the following.

• Both mutex protocols ensure maximum pi-blocking that is optimal within a factor that ap-

proaches two under s-oblivious analysis. All previously proposed suspension-based locking

protocols are suboptimal with respect to maximum pi-blocking under s-oblivious analysis.

• The OMLP’s RW and k-exclusion variants are the first suspension-based multiprocessor lock-

ing protocols of their kind (prior work on suspension-based multiprocessor locking protocols

was focused on mutex constraints).

• The RW protocols ensure maximum pi-blocking for writers that is optimal within a factor

that approaches four for large m under s-oblivious analysis (the lower bounds on maximum

pi-blocking do not apply to readers since they assume mutual exclusion—see Section 6.2.6

below).

• The k-exclusion protocol ensures O( m
min{kq}) maximum pi-blocking. In the worst case of

min{kq} = 1, the ensured bound on maximum pi-blocking is optimal within a factor that

approaches two for large m under s-oblivious analysis.

• The OMLP is the first published suspension-based locking protocol that has been designed

and analyzed for the case of 1 < c < m (prior work addressed only global or partitioned

scheduling).

The last point, support for truly clustered scheduling, poses significant challenges from a locking

perspective because clusters with 1 < c < m exhibit aspects of both partitioned and global scheduling,

which seem to necessitate fundamentally different means for bounding priority inversions. We begin

by describing a novel method for controlling priority inversions that is key to the OMLP’s optimality.

6.2.1 Resource-Holder Progress

To prevent maximum pi-blocking from becoming unbounded or unsuitably large (i.e., bounds should

not include job execution costs in addition to request lengths), a locking protocol must ensure

3In the initial description of the OMLP (Brandenburg and Anderson, 2010a), we also proposed a variant of the OMLP
for partitioned scheduling (c = 1). This special case is not considered herein because it has since been superseded by the
OMLP mutex protocol for clustered scheduling (Brandenburg and Anderson, 2011).
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Figure 6.4: Example schedule of seven tasks sharing two resources (`1, `2) across two two-processor
clusters under C-EDF scheduling. The digit within each critical section indicates which resource was
requested. The example shows that priority boosting may cause jobs to incur pi-blocking repeatedly
if c > 1. If c = 1, then lower-priority jobs cannot issue requests while higher-priority jobs execute
and repeated pi-blocking due to priority boosting is not an issue.

that resource-holding jobs progress in their execution when high-priority jobs are waiting. That is,

low-priority jobs must be scheduled in spite of their low base priority when they cause other higher-

priority jobs to incur pi-blocking. A real-time locking protocol thus requires a mechanism to raise

the effective priority of resource holders, either on demand (when a waiting job incurs pi-blocking)

or unconditionally. As discussed in Section 2.4.4, all prior protocols employ priority inheritance and

priority boosting to this end—unfortunately, neither generalizes to clustered scheduling.

Since priority inheritance is ineffective with regard to bounding priority inversion length when

applied across partition or cluster boundaries (recall Figure 2.37 on page 125), all prior protocols

for partitioned scheduling instead rely on priority boosting to ensure resource-holder progress.

Priority boosting prevents preempted jobs from transitively delaying waiting higher-priority jobs by

unconditionally raising the effective priority of resource-holding jobs above that of non-resource-

holding jobs. While conceptually simple, the unconditional nature of priority boosting may itself

cause pi-blocking. Under partitioning (c = 1), this effect can be controlled such that jobs incur at

most O(m) s-oblivious pi-blocking (Brandenburg and Anderson, 2010a), but this approach does not

extend to c > 1. This is best illustrated with an example.

Example 6.2. For the sake of simplicity, suppose that requests are satisfied in FIFO order, and that a

resource holder’s priority is boosted. A possible result is shown in Figure 6.4: jobs of tasks in τ2
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repeatedly request `1 and `2 in a pattern that causes low-priority jobs of tasks T2, . . . , T5 in τ1 to be

priority-boosted simultaneously. Whenever there are c = 2 jobs priority-boosted at the same time, J1

is necessarily preempted, which causes it to be pi-blocked repeatedly. In general, as c jobs must be

priority-boosted to force a preemption, priority boosting may cause Ω(nc ) pi-blocking, which makes

it unsuitable for constructing a protocol with O(m) maximum pi-blocking. ♦

Priority donation. To overcome this limitation, we devised a novel mechanism for ensuring

resource-holder progress named priority donation that ensures the following two properties.

P1 A resource-holding job is always scheduled.

P2 The duration of s-oblivious pi-blocking caused by the progress mechanism (i.e., the rules that

maintain P1) is bounded by the maximum request span (with regard to any job).

Priority boosting unconditionally forces resource holders to be scheduled (Property P1), but

it does not specify which job will be preempted as a result. As Figure 6.4 shows, if c > 1, this

is problematic since an “unlucky” job (like J1) can repeatedly be a preemption “victim,” thereby

invalidating P2. Priority donation is a form of priority boosting in which the “victim” is predetermined

such that each job is preempted at most once. This is achieved by establishing a donor relationship

when a potentially harmful job release occurs (i.e., one that could invalidate P1). In contrast to

priority boosting, priority donation only takes effect when needed.

Request rule. In the following, let Ji denote a job that requires a resource `q at time t1, as illustrated

in Figure 6.5. In the examples and the discussion below, we assume mutex locks for the sake of

simplicity; however, the proposed protocol applies equally to RW and k-exclusion locks. Priority

donation achieves P1 and P2 for 1 ≤ c ≤ m in two steps: it first requires that Ji has a high base

priority, and then ensures that Ji’s effective priority remains high until Ji releases `q.

D1 Ji may issue a request only if it is among the c highest-priority pending jobs in its cluster (with

regard to base priorities). If necessary, Ji suspends until it may issue a request.

Rule D1 ensures that a job has sufficient priority to be scheduled without delay at the time of

request. That is, Property P1 holds at time t2 in Figure 6.5. However, some—but not all—later job

releases during [t2, t4] could preempt Ji.
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Figure 6.5: Illustration of the request phases under priority donation. A job Ji requires a resource `q
at time t1. Ji suspends until time t2, when it becomes one of the c highest-priority pending jobs in
its assigned cluster (Rule D1). Ji remains suspended while it suffers acquisition delay from t2 until
its request is satisfied at t3. Priority donation ensures that Ji is continuously scheduled in [t3, t4).

Consider a list of all pending jobs in Ji’s cluster sorted by decreasing base priority, and let x

denote Ji’s position in this list at time t2. In other words, Ji is the xth highest-priority pending

job at time t2. By Rule D1, x ≤ c. If there are at most c − x higher-priority jobs released during

[t2, t4], then Ji remains among the c highest-priority pending jobs and no protocol intervention is

required. However, when Ji is the cth highest-priority pending job in its cluster, a higher-priority job

release may cause Ji to be preempted or to have insufficient priority to be scheduled when it resumes,

thereby violating P1. Priority donation intercepts such releases.

Donor rules. A priority donor is a job that suspends to allow a lower-priority job to complete its

request. Each job has at most one priority donor at any time. We define how jobs become donors

and when they suspend next and illustrate the rules with an example thereafter. Let Jd denote Ji’s

priority donor (if any), and let ta denote Jd’s release time.

D2 Jd becomes Ji’s priority donor at time ta if (a) Ji was the cth highest-priority pending job

prior to Jd’s release (with regard to its cluster), (b) Jd has one of the c highest base priorities,

and (c) Ji has issued a request that is incomplete at time ta (that is, ta ∈ [t2, t4] with regard to

Ji’s request).

D3 Ji inherits the priority of Jd (if any) during [t2, t4).

The purpose of Rule D3 is to ensure that Ji will be scheduled if ready. However, Jd’s relative priority

could decline due to subsequent releases. In this case, the donor role is passed on.

D4 If Jd is displaced from the set of the c highest-priority jobs by the release of Jh, then Jh

becomes Ji’s priority donor and Jd ceases to be a priority donor. (By Rule D3, Ji thus inherits

Jh’s priority.)
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Rule D4 ensures that Ji remains among the c highest-priority pending jobs (with regard to its cluster).

The following two rules ensure that Ji and Jd are never ready at the same time, thereby freeing a

processor for Ji to be scheduled on.

D5 If Ji is ready when Jd becomes Ji’s priority donor (by either Rule D2 or D4), then Jd suspends

immediately.

D6 If Jd is Ji’s priority donor when Ji resumes at time t3, then Jd suspends (if ready).

Further, a priority donor may not execute a request itself and may not prematurely exit.

D7 A priority donor may not issue requests. Jd suspends if it requires a resource while being a

priority donor.

D8 If Jd finishes execution while being a priority donor, then its completion is postponed, i.e., Jd

suspends and remains pending until it is no longer a priority donor.

Jd may continue once its donation is no longer required, or when a higher-priority job takes over.

D9 Jd ceases to be a priority donor as soon as either (a) Ji completes its request (i.e., at time t4),

(b) Ji’s base priority becomes one of the c highest (with regard to pending jobs in Ji’s cluster),

or (c) Jd is relieved by Rule D4. If Jd suspended due to Rules D5–D7, then it resumes.

Under a JLFP scheduler, Rule D9b can only be triggered when higher-priority jobs complete.

Example 6.3. Figure 6.6 shows a resulting schedule assuming jobs wait in FIFO order. Priority

donation occurs first at time 3, when the release of J1 displaces J3 from the set of the c = 2 highest-

priority pending jobs of tasks in τ1. Since J3 holds `1, J1 becomes J3’s priority donor (Rule D2)

and suspends immediately since J3 is ready (Rule D5). J1 resumes when its duties cease at time 6

(Rule 9a). If J1 would not have donated its priority to J3, then it would have preempted J3, thereby

violating P1.

At time 3, J6 also requests `1 and suspends as `1 is unavailable. It becomes a priority recipient

when J4 is released at time 4 (Rule D2). Since J6 is already suspended, Rule D5 does not apply and

J4 remains ready. However, at time 5, J4 requires `2, but since it is still a priority donor, it may not

issue a request and must suspend instead (Rule D7). J4 may resume and issue its request at time 7

since J5 finishes, which causes J6 to become one of the two highest-priority pending jobs of tasks in
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Figure 6.6: Schedule of six tasks sharing two serially-reusable resources across two two-processor
clusters under C-EDF scheduling. The digit within each critical section indicates which resource
was requested. Under the OMLP for clustered scheduling, progress is ensured with priority donation
(Section 6.2.1) and jobs wait in FIFO order (Section 6.2.2).

τ2 (Rule 9b). If priority donors were allowed to issue requests, then J4 would have been suspended

while holding `2 when J6 resumed at time 6, thereby violating P1. ♦

Taken together, Rules D1–D9 ensure resource-holder progress under clustered scheduling with

arbitrary cluster sizes (1 ≤ c ≤ m).

Lemma 6.3. Priority donation ensures Property P1.

Proof. Rule D7 prevents Rules D5 and D6 from suspending a resource-holding job. Rule D1

establishes Property P1 at time t2. If Ji’s base priority becomes insufficient to guarantee P1, its

effective priority is raised by Rules D2 and D3. Rules D4 and D8 ensure that the donated priority

is always among the c highest (with regard to pending jobs in Ji’s cluster), which, together with

Rules D5 and D6, effectively reserves a processor for Ji to run on when ready.

By establishing the donor relationship at release time, priority donation ensures that a job is a

“preemption victim” at most once, even if c > 1.

Lemma 6.4. Priority donation ensures Property P2.
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Proof. A job incurs s-oblivious pi-blocking if it is among the c highest-priority pending jobs in its

cluster and either (i) suspended or (ii) ready and not scheduled (i.e., preempted). We show that (i) is

bounded and that (ii) is impossible.

Case (i). Only Rules D1 and D5–D8 cause a job to suspend. Rule D1 does not cause s-oblivious

pi-blocking: the interval [t1, t2) ends as soon as Ji becomes one of the c highest-priority pending

jobs. Rules D5–D8 apply to priority donors. Jd becomes a priority donor only immediately upon

release or not at all (Rules D2 and D4), i.e., each Jd donates its priority to some Ji only once. By

Rule D2, the donor relationship starts no earlier than t2, and, by Rule D9, ends at the latest at time t4.

By Rules D8 and D9, Jd either resumes or completes when it ceases to be a priority donor. Jd

suspends thus for the duration of at most one entire request span.

Case (ii). Let Jx denote a job that is ready and among the c highest-priority pending jobs (with

regard to base priorities) of tasks in cluster τj , but not scheduled. Let A denote the set of ready jobs

of tasks in τj with higher base priorities than Jx, and let B denote the set of ready jobs of tasks of τj

with higher effective priorities than Jx that are not in A. Only jobs in A and B can preempt Jx. Let

D denote the set of priority donors of jobs in B.

By Rule D3, every job in B has a priority donor that is, by construction, unique: |B| = |D|.

By assumption, |A| + |B| ≥ c (otherwise Jx would be scheduled), and thus also |A| + |D| ≥ c.

By the definition of B, every job in D has a base priority that exceeds Jx’s base priority. Rules D5

and D6 imply that no job in D is ready (since every job in B is ready): A ∩D = ∅. Every job in D

is pending (Rule D8), and every job in A is ready and hence also pending. Thus, there exist at least c

pending jobs of tasks in τj with higher base priority than Jx. Contradiction.

Priority donation further limits maximum concurrency, which is key to the analysis of the

protocols presented next in Sections 6.2.2–6.2.4.

Lemma 6.5. Let Rj(t) denote the number of requests issued by jobs of tasks in cluster τj that are

incomplete at time t. Under priority donation, Rj(t) ≤ c at all times.

Proof. Similar to Case (ii) above. Suppose Rj(t) > c at time t. Let H denote the set of the c

highest-priority pending jobs of tasks in τj (at time t with regard to base priorities), and let I denote

the set of jobs of tasks in τj that have issued a request that is incomplete at time t.
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Let A denote the set of high-priority jobs with incomplete requests, i.e., A = H ∩ I , and let B

denote the set of low-priority jobs with incomplete requests, i.e., B = I \A.

Let D denote the set of priority donors of jobs in B. Together, Rules D2, D4, D8, and D9 ensure

that every job in B has a unique priority donor. Therefore |B| = |D|.

By definition, |A|+ |B| = |I| = Rj(t). By our initial assumption, this implies |A|+ |B| > c

and thus |A| + |D| > c. By Rules D2 and D4, D ⊆ H (only high-priority jobs are donors). By

Rule D7, A ∩D = ∅ (donors may not issue requests). Since, by definition, A ⊆ H , this implies

|H| ≥ |A|+ |D| > c. Contradiction.

In the following, we show that Lemmas 6.3–6.5 provide a strong foundation that enables the

design of simple, yet asymptotically optimal, locking protocols.

6.2.2 Mutual Exclusion under Clustered Scheduling

We begin with ensuring mutex constraints, which is the most straightforward case. An asymptotically

optimal mutex protocol can be layered on top of priority donation by using simple FIFO queues just

as they are used in non-preemptive spinlocks. The following protocol’s simplicity demonstrates that

priority donation is a powerful aid for worst-case analysis.

Structure. For each serially-reusable resource `q, there is a FIFO queue FQq that is used to serialize

conflicting accesses. The job at the head of FQq holds `q.

Rules. Access to each resource is granted according to the following rules. Let Ji denote a job that

issues a requestRi,q,v for `q.

X1 Ji is enqueued in FQq when it issues Ri,q,v. If FQq was non-empty, then Ji suspends until

Ri,q,v is satisfied.

X2 Ri,q,v is satisfied when Ji becomes the head of FQq.

X3 Ji is dequeued from FQq whenRi,q,v is complete. The new head of FQq (if any) is resumed.

Rules X1–X3 correspond to times t2–t4 in Figure 6.5.

Example 6.4. Figure 6.6 depicts an example of the clustered OMLP for serially-reusable resources.

(Figure 6.6 was previously discussed in the context of priority donation.) At time 2, J3 requests
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`1 and is enqueued in FQ1 (Rule X1). Since FQ1 was empty, J3’s request is satisfied immediately

(Rule X2). When J6 requests the same resource at time 3, it is appended to FQ1 and suspends. When

J3 releases `1 at time 6, J6 becomes the new head of FQ1 and resumes (Rule X3).

At time 7, J4 acquires `2 and enqueues in FQ2, which causes J2 and J1 to suspend when they,

too, request `2 at times 8 and 9. Importantly, priorities are ignored in each FQq: when J4 releases `2

at time 10, J2 becomes the resource holder and is resumed, even though J1 has a higher base priority.

While using FIFO queues instead of priority queues in real-time systems may seem counterintuitive,

priority queues are in fact problematic in a multiprocessor context since they allow starvation,

which renders them unsuitable for constructing protocols with O(m) maximum pi-blocking (see

Section 6.3.3). ♦

Priority donation is crucial in two ways: requests complete without delay and maximum con-

tention is limited.

Lemma 6.6. At most m jobs are enqueued in any FQq.

Proof. By Lemma 6.5, at most c requests are incomplete at any point in time in each cluster. Since

there are m
c clusters, no more than m

c · c = m jobs are enqueued in some FQq.

Lemma 6.7. A job Ji that requests a resource `q incurs acquisition delay for the duration of at most

m− 1 requests.

Proof. By Lemma 6.6, at most m− 1 other jobs precede Ji in FQq. By Lemma 6.3, the job at the

head of FQq is always scheduled. Therefore, Ji becomes the head of FQq after the combined length

of m− 1 requests.

This property suffices to prove asymptotic optimality.

Theorem 6.1. The clustered OMLP for serially-reusable resources causes a job Ji to incur at most

bi = m · Lmax +
∑nr

q=1Ni,q · (m− 1) · Lmax = O(m) s-oblivious pi-blocking.

Proof. By Lemma 6.4, the duration of s-oblivious pi-blocking caused by priority donation is bounded

by the maximum request span. By Lemma 6.7, maximum acquisition delay per request is bounded by

(m− 1) ·Lmax . The maximum request span is thus bounded by m ·Lmax . Recall from Section 6.1.2

that
∑nr

q=1Ni,q and Lmax are presumed constant. The bound follows.
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The protocol for serially-reusable resources is thus asymptotically optimal with regard to maxi-

mum s-oblivious pi-blocking. A practical, non-asymptotic bound on maximum pi-blocking that takes

individual request lengths and frequencies into account is presented in Section 6.4.

6.2.3 Reader-Writer Exclusion under Clustered Scheduling

Priority donation also lends itself to constructing simple RW locks. In this section, we transfer

the concept phase-fair RW locks to suspension-based locks. Other RW request orders such as

task-fairness or preference locks could similarly be implemented.

Recall from Section 5.2.1 the following key properties of phase-fairness.

• Reader phases and writer phases alternate (unless there are only requests of one kind).

• At the beginning of a reader phase, all incomplete read requests are satisfied.

• One write request is satisfied at the beginning of a writer phase.

• Read requests are allowed to join a reader phase that is already in progress only if there are no

incomplete write requests.

This results in O(1) acquisition delay for read requests without starving write requests. Note that

this does not contradict the lower bound on s-oblivious pi-blocking (Lemma 6.1) because the bound

depends on mutual exclusion. It thus only applies to write requests (which must be exclusive), but

not to read requests (which may be satisfied concurrently with other read requests).

The following rules define a suspension-based phase-fair RW lock. Due to the explicit use of

queues, it is structurally similar to the PF-Q lock presented in Section 5.3.3.

Structure. For each RW resource `q, there are three queues: a FIFO queue for writers, denoted

WQq, and two reader queues RQ1
q and RQ2

q . Initially, RQ1
q is the collecting and RQ2

q is the draining

reader queue. The roles, denoted as CQq and DQq, switch as reader and writer phases alternate; that

is, the designations “collecting” and “draining” are not static.

Reader rules. Let Ji denote a job that issues a read requestRR
i,q,v for `q. The distinction between

CQq and DQq serves to separate reader phases. Readers always enqueue in the (at the time of request)

collecting queue. If queue roles change, then a writer phase starts when the last reader releases `q.
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R1 Ji is enqueued in CQq when it issuesRR
i,q,v. If WQq is non-empty, then Ji suspends.

R2 RR
i,q,v is satisfied either immediately if WQq is empty when RR

i,q,v is issued, or when Ji is

subsequently resumed.

R3 Let RQy
q denote the reader queue in which Ji was enqueued due to Rule R1. Ji is dequeued

from RQy
q whenRR

i,q,v is complete. If RQy
q is DQq and Ji is the last job to be dequeued from

RQy
q , then the current reader phase ends and the head of WQq is resumed (WQq is non-empty).

Writer rules. Let Jw denote a job that issues a write requestRW
i,q,v for `q. Conflicting writers wait

in FIFO order. The writer at the head of WQq is further responsible for starting and ending reader

phases by switching the reader queues.

W1 Jw is enqueued in WQq when it issues RW
i,q,v. Jw suspends until RW

i,q,v is satisfied, unless

RW
i,q,v is satisfied immediately. If WQq is empty and CQq is not, then the roles of CQq and

DQq are switched.

W2 RW
i,q,v is satisfied either immediately if WQq and CQq are both empty whenRW

i,q,v is issued,4

or when Jw is subsequently resumed.

W3 Jw is dequeued from WQq when RW
i,q,v is complete. If CQq is empty, then the new head

of WQq (if any) is resumed. Otherwise, each job in CQq is resumed and, if WQq remains

non-empty, the roles of CQq and DQq are switched.

Rules R1–R3 and W1–W3 correspond to times t2–t4 in Figure 6.5 (respectively), and are illustrated

in Figure 6.7.

Example 6.5. Figure 6.7 depicts six tasks in two clusters sharing one resource. The resource `1 is

first read by J5, which is enqueued in RQ1
q , the initial collecting queue, at time 1 (Rule R1). When J2

issues a read request at time 1, it is also enqueued and its request is satisfied immediately since WQ1

is still empty (Rule R2). J1 issues a write request at time 4. Since CQ1 is non-empty, the roles of CQ1

and DQ1 are switched, i.e., RQ1
q becomes the draining reader queue, and J1 suspends (Rule W1).

4If WQq and CQq are both empty, then DQq is necessarily empty, too, as any readers in the draining queue would have
had to enqueue when it was still the collecting queue (Rule R1) and the roles of CQq and DQq are only switched when a
writer is waiting (Rules W1 and W3).
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Figure 6.7: Schedule of six tasks sharing one RW resource across two two-processor clusters under
C-EDF scheduling. (Priority donation does not occur in this example schedule.)

J4 issues a read request soon thereafter and is enqueued in RQ2
q (Rule R1), which is the collecting

queue after the role switch. J4 suspends since WQ1 is not empty (Rule R2), even though J2 is still

executing a read request. This is required to ensure that write requests are not starved. The reader

phase ends when J2 releases `1 at time 6, and the next writer, J1, is resumed (Rules R3 and W2).

J1 releases `1 and resumes all readers that have accumulated in RQ2
q (J3 and J4). Since WQ1 is

non-empty (J6 was enqueued at time 6), RQ2
q becomes the draining reader queue (Rule W3). Under

task-fair RW locks, J3 would have remained suspended since it requested `1 after J6. In contrast, J6

must wait until the next writer phase at time 13 and all waiting readers are resumed at the beginning

of the next reader phase at time 10 (Rule W3). ♦

Together with priority donation, the reader and writer rules above realize a phase-fair RW lock.

Due to the intertwined nature of reader and writer phases, we first consider the head of WQq (a writer

phase), then CQq (a reader phase), and finally the rest of WQq.

Lemma 6.8. Let Jw denote the head of WQq. Jw incurs acquisition delay for the duration of at most

one read request length before its request is satisfied.

Proof. Jw became head of WQq in one of two ways: by Rule W1 (if WQq was empty prior to Jw’s

request) or by Rule W3 (if Jw had a predecessor in WQq). In either case, there was a reader queue

role switch when Jw became head of WQq (unless there were no unsatisfied read requests, in which
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case the claim is trivially true). By Rule R3, if a reader phase delayed Jw, then Jw is resumed as

soon as the last reader in DQq releases `q. By Rule R1, no new readers enter DQq. Due to priority

donation, there are at most m− 1 jobs in DQq (Lemma 6.5), and each job holding `q is scheduled

(Lemma 6.3). The claim follows.

Lemma 6.9. Let Ji denote a job that issues a read request for `q. Ji incurs acquisition delay for the

combined duration of at most one read and one write request.

Proof. If WQq is empty, then Ji’s request is satisfied immediately (Rule R2). Otherwise, it suspends

and is enqueued in CQq (Rule R1). This prevents consecutive write phases (Rule W3). Ji’s request

is thus satisfied as soon as the current head of WQq releases `q (Rule W3). By Lemma 6.8, the head

of WQq incurs acquisition delay for no more than the length of one read request (which transitively

impacts Ji). Due to priority donation, the head of WQq is scheduled when its request is satisfied

(Lemma 6.3). Therefore, Ji waits for the duration of at most one read and one write request.

Lemma 6.9 shows that readers incur O(1) acquisition delay. Next, we show that writers incur

O(m) acquisition delay.

Lemma 6.10. Let Jw denote a job that issues a write request for `q. Jw incurs acquisition delay for

the duration of at most m− 1 write and m read requests before its request is satisfied.

Proof. It follows from Lemma 6.5 that at most m− 1 other jobs precede Jw in WQq (analogously to

Lemma 6.6). By Lemma 6.3, Jw’s predecessors together hold `q for the duration of at most m− 1

write requests. By Lemma 6.8, each predecessor incurs acquisition delay for the duration of at most

one read request once it has become the head of WQq. Thus, Jw incurs transitive acquisition delay

for the duration of at most m− 1 read requests before it becomes head of WQq, for a total of at most

m− 1 + 1 = m read requests.

These properties suffice to prove asymptotic optimality with regard to maximum s-oblivious

pi-blocking.

Theorem 6.2. The clustered OMLP for RW resources causes a job Ji to incur at most

bi = 2 ·m · Lmax +

nr∑

q=1

Ni,q · (2 ·m− 1) · Lmax = O(m)
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s-oblivious pi-blocking.

Proof. By Lemma 6.4, the duration of s-oblivious pi-blocking caused by priority donation is bounded

by the maximum request span. By Lemma 6.10, maximum acquisition delay per write request is

bounded by (2m−1) ·Lmax ; by Lemma 6.9, maximum acquisition delay per read request is bounded

by 2 · Lmax . The maximum request span is thus bounded by 2 ·m · Lmax . Recall from Section 6.1.2

that
∑nr

q=1Ni,q and Lmax are constant. The bound follows.

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths

and frequencies into account is given in Section 6.4.

6.2.4 k-Exclusion under Clustered Scheduling

For some resource types, one option to reduce contention is to replicate them. For example, if

potential overload of a DSP co-processor is found to pose a risk in the design phase, the system

designer could introduce additional instances to improve response times.

As with multiprocessors, there are two fundamental ways to allocate replicated resources: either

each task may only request a specific replica, or every task may request any replica. The former

approach, which corresponds to partitioned scheduling, has the advantage that a mutex protocol

suffices, but it also implies that some resource replicas may idle while jobs wait to acquire their

designated replica. The latter approach, equivalent to global scheduling, avoids such bottlenecks,

but needs a k-exclusion protocol to do so. Priority donation yields such a protocol for clustered

scheduling.

Recall that kq is the number of replicas of resource `q. In the following, we assume 1 ≤ kq ≤ m.

The case of kq > m is discussed in Section 6.2.6 below.

Structure. Jobs waiting for a replicated resource `q are kept in a FIFO queue denoted as KQq. The

replica set RSq contains all idle instances of `q. If RSq 6= ∅, then KQq is empty.

Rules. Let Ji denote a job that issues a requestRi,q,v for `q.

K1 If RSq 6= ∅, then Ji acquires an idle replica from RSq. Otherwise, Ji is enqueued in KQq and

suspends.
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Figure 6.8: Six tasks sharing two instances of one resource across two two-processor clusters under
C-EDF scheduling. (Priority donation does not occur in this particular example.)

K2 Ri,q,v is satisfied either immediately (if RSq 6= ∅ at the time of request) or when Ji is removed

from KQq.

K3 If KQq is non-empty when Ri,q,v completes, the head of KQq is dequeued, resumed, and

acquires Ji’s replica. Otherwise, Ji’s replica is released into RSq.

As it was the case with the definition of the previous protocols, Rules K1–K3 correspond to times

t2–t4 in Figure 6.5.

Example 6.6. Figure 6.8 depicts an example schedule for one resource (`1) with k1 = 2. J5 obtains

a replica from RS1 at time 2 (Rule K1). The second replica of `1 is acquired by J2 at time 4. As

RS1 is now empty, J1 is enqueued in KQ1 and suspends when it requests `1 at time 5. However, it

is soon resumed when J5 releases its replica at time 6 (Rule K3). This illustrates one advantage of

using k-exclusion locks: if instead one replica would have been statically assigned to each cluster

(which reduces the resource-sharing problem to a mutex constraint), then J1 would have continued

to wait while τ2’s replica would have idled. This happens again at time 12: since no job of tasks in τ1

requires `1 at the time, both instances are used by jobs of tasks in τ2. ♦

As with the previous protocols, priority donation is essential to ensure progress and to limit

contention.
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Lemma 6.11. At most m− kq jobs are enqueued in KQq.

Proof. Lemma 6.5 implies that there are at most m incomplete requests. Since only jobs waiting for

`q are enqueued in KQq, at most m− kq jobs are enqueued in KQq.

Lemma 6.12. Let Ji denote a job that issues a requestRi,q,v for `q. Ji incurs acquisition delay for

the duration of at most d(m− kq)/kq)e maximum request lengths.

Proof. By Lemma 6.11, at most m − kq requests must complete before Ji’s request is satisfied

(m − kq − 1 for Ji to become the head of KQq, and one more for Ji to be dequeued). Rules K1

and K3 ensure that all replicas are in use whenever jobs wait in KQq. Since resource holders are

always scheduled due to priority donation (Lemma 6.3), requests are satisfied at a rate of at least kq

requests per maximum request length untilRi,q,v is satisfied. The stated bound follows.

Lemma 6.12 shows that Ji incurs at most O(mkq ) pi-blocking per request (and none if kq = m),

which implies asymptotic optimality with regard to maximum s-oblivious pi-blocking.

Definition 6.5. Let kmin , min1≤q≤r{kq} denote the minimum degree of replication.

Theorem 6.3. The clustered OMLP for replicated resources causes a job Ji to incur at most

bi =

(
1 +

⌈
m− kmin

kmin

⌉)
· Lmax +

nr∑

q=1

(
Ni,q ·

⌈
m− kq
kq

⌉)
· Lmax

≤
(

1 +

⌈
m− kmin

kmin

⌉)
· Lmax +

nr∑

q=1

(
Ni,q ·

⌈
m− kmin

kmin

⌉)
· Lmax

= O(m/kmin)

s-oblivious pi-blocking.

Proof. By Lemma 6.12, maximum acquisition delay per request for `q is bounded by d(m−kq)/kq)e·

Lmax . The maximum request span is thus bounded by (d(m−kmin)/kmin)e+1) ·Lmax . Lemma 6.4

limits the duration of s-oblivious pi-blocking due to priority donation to the maximum request span.

The bound follows since
∑nr

q=1Ni,q and Lmax are constant (Section 6.1.2).

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths

and frequencies into account is provided in Section 6.4.
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Theorem 6.3 implies asymptotic optimality for any kmin ≤ m. While Lemma 6.1 applies only

to mutual exclusion (i.e., kmin = 1), it is trivial to extend the argument to 1 ≤ kmin ≤ m.

Lemma 6.13. There exists an arrival sequence for τ seq(n) such that, under s-oblivious analysis,

max1≤i≤n{bi} = Ω(m/kmin) under any k-exclusion locking protocol and JLFP scheduler, where

1 ≤ kmin < m.

Proof. Analogously to Lemma 6.1. Recall from Definition 6.4 that τ seq(n) consists of n tasks,

and that each job of each task requires a shared resource `1 for the entirety of its computation (i.e.,

ei = Li,1 = Lmax = 1). If there are k1 = kmin replicas of `1, then at most kmin jobs are scheduled

at any time. As in the proof of Lemma 6.1, consider the arrival sequence shown in Figure 6.2:

if m jobs request `1 simultaneously, then any k-exclusion protocol must impart an order among

the requests such that only kmin requests are satisfied concurrently. To complete each of the m

concurrent requests, the kmin replicas must be used for m · Lmax time units in total. This implies

that the last request to be satisfied completes no earlier than m · Lmax/kmin time units after it was

issued. Therefore, it incurred at least

m · Lmax

kmin
− Lmax =

( m

kmin
− 1
)
· Lmax

acquisition delay. Further, as each request is sequential and since all requests are of uniform length

Lmax = 1, requests are only satisfied at times that are integer multiples of Lmax (i.e., requests are

satisfied only x · Lmax time units after they are issued, where 0 ≤ x ≤ dm/kmine − 1). Therefore,

the last of the m concurrent requests to complete was not satisfied until

⌈ m

kmin
− 1
⌉
· Lmax = Ω

( m

kmin

)

time units after the requests were issued. Since at most m jobs are pending at any time in the

periodic arrival sequence shown in Figure 6.2, this implies that Ω(m/kmin) s-oblivious pi-blocking

is unavoidable in the general case.

The clustered OMLP for replicated resources is hence asymptotically optimal with regard to

maximum s-oblivious pi-blocking.
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Figure 6.9: Example showing the OMLP family’s mutex protocol for clustered scheduling under P-EDF on
m = 2 processors. Even though job J1 is independent, it incurs pi-blocking when it serves as J2’s priority
donor during [3, 4). This example demonstrates that it is in general unavoidable for independent jobs to be
subject to pi-blocking: if J1 were allowed to preempt J2 (to avoid being pi-blocked), then J3 would incur
pi-blocking for the entire duration of J1’s execution (i.e., J3 would incur an “unbounded” priority inversion,
just as in Figure 2.37 on page 125).

6.2.5 Mutual Exclusion under Global Scheduling

As demonstrated in the preceding sections, the primary advantage of priority donation is that it

enables simple, asymptotically optimal locking protocols. An undesirable property of priority

donation is that every task is subject to potential pi-blocking—even those that are independent—

because any job may be required to serve as a priority donor upon release. While undesirable, this is

fundamental to lock-based real-time synchronization if c < m, that is, if priority inversions must be

bounded, there is more than one cluster, and tasks may not migrate across cluster boundaries. This is

illustrated in Figure 6.9. However, under global scheduling (i.e., if c = m), it is possible to design

locking protocols based on priority inheritance under which independent jobs never incur s-oblivious

pi-blocking. In this section, we present such a protocol, namely the global OMLP (which realizes

mutex constraints).

The OMLP variant for clustered scheduling relies on simple FIFO queues to serialize conflicting

resource requests. Unfortunately, when FIFO queues are combined with priority inheritance (which,

unlike priority donation, does not limit the maximum number of incomplete requests), jobs can incur

Ω(n) s-oblivious pi-blocking, as demonstrated in Figure 6.10(a).

As priority inheritance is used together with priority queues in the uniprocessor case, (e.g., in the

PIP and PCP—see Section 2.4.3), it is perhaps not surprising that FIFO ordering by itself is ill-suited

to ensuring O(m) maximum pi-blocking. However, ordering requests by job priority, as for instance

done in (Easwaran and Andersson, 2009), does not improve the bound: since a low-priority job can

be starved by later-issued higher-priority requests, it is easy to construct an arrival sequence in which
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Figure 6.10: G-EDF schedules of n = 4 tasks sharing one resource `1 on m = 2 processors. Each
job requires `1 for the entirety of its computation. (a) If conflicting requests are satisfied in FIFO
order, then the job with the earliest deadline (J1) may incur Ω(n) pi-blocking if its request is issued
just after all other requests. (b) If conflicting requests are satisfied in order of job priority, then a
job’s request may be deferred repeatedly even though it is among the m highest-priority jobs.

a job incurs Ω(n) s-oblivious pi-blocking, as seen in Figure 6.10 (b). Thus, ordering all requests by

job priority is, at least asymptotically speaking, not preferable to the simpler FIFO queuing.

Fortunately, it is possible to use priority inheritance to realize O(m) maximum s-oblivious pi-

blocking by combining FIFO and priority ordering. In the global OMLP, each resource is protected

by two locks: a priority-based m-exclusion lock that limits access to a regular FIFO mutex lock,

which in turn serializes access to the resource. This idea is formalized by the following rules.

Structure. For each resource `q, there are two job queues: FQq, a FIFO queue of length at most

m, and PQq, a priority queue (ordered by job priority) that is only used if more than m jobs are

contending for `q. The job at the head of FQq (if any) holds `q.

Rules. Let queuedq(t) denote the number of jobs queued in both FQq and PQq at time t. Requests

are ordered according to the following rules.

G1 A job Ji that issues a request Ri,q,v for `q at time t is appended to FQq if queuedq(t) < m;

otherwise, if queuedq(t) ≥ m, it is added to PQq. Ri,q,v is satisfied when Ji becomes the

head of FQq.
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G2 All queued jobs are suspended, with the exception of the job at the head of FQq, which is ready

and inherits the priority of the highest-priority job in FQq and PQq.

G3 When Ji releases `q, it is dequeued from FQq and the new head of FQq (if any) is resumed.

Also, if PQq is non-empty, then the highest-priority job in PQq is moved to FQq.

The key insight is the use of an m-exclusion lock to safely defer requests of lower-priority jobs

without allowing a pi-blocked job to starve. This can be observed in the example shown in Figure 6.11.

Example 6.7. Figure 6.11 depicts a G-EDF schedule of six jobs sharing one resource `1 on m = 2

processors under the global OMLP mutex protocol. At time 1, J6 requests `1 and enters FQ1

immediately (Rule G1). At time 2, `1 is requested by J5, which is also enqueued in FQ1 and

suspended since it was non-empty.

At time 4, m = 2 jobs hold the m-exclusion lock (i.e., have entered FQ1) and thus J4 must enter

PQ1 instead (Rule G1). Hence it is safely deferred when `1 is later requested by higher-priority jobs

(J3, J2, J1). At the same time, J5, which incurs pi-blocking until J3’s arrival at time 5, precedes the

later-issued requests since it already held the m-exclusion lock—this avoids starvation in scenarios

such as the one depicted in Figure 6.10 (b). Note that J5 incurs pi-blocking until time 5 (and not only

until time 4) because the release of J4 at time 4 does not displace J5 from the set of the c = m = 2

highest-priority pending jobs (J6 is also pending at time 4, but has a later deadline than J5). ♦

Next, we bound maximum s-oblivious pi-blocking under the global OMLP mutex protcol. In the

following analysis, let t0 denote the time at which Ji issues Ri,q,v, t1 denote the time at which Ji

enters FQq, and t2 denote the time at whichRi,q,v is satisfied (this is illustrated in Figure 6.11 for J4)

Further, let entered(t), t0 ≤ t < t1, denote the number of jobs that have been moved from PQq

to FQq during [t0, t] due to Rule G3. That is, entered(t) counts the jobs that preceded Ji in entering

FQq. For example, for J4 in Figure 6.11, entered(5) = 0, entered(10) = 1, and entered(11) = 2.

Lemma 6.14. For each point in time t ∈ [t0, t1), if Ji incurs s-oblivious pi-blocking at time t, then

entered(t) < m.

Proof. By Rule G3, because Ji has not yet entered FQq at time t, there must be m pending jobs

queued in FQq. Due to FIFO ordering, if entered(t) ≥ m, then each job queued in FQq at time t

must have been enqueued in FQq during [t0, t]. By Rule G3, this implies that each job in FQq must
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Figure 6.11: Example showing the OMLP mutex protocol for global scheduling under G-EDF for six tasks
sharing one resource on m = 2 processors. J4 issues a request at t0 = 4, enters FQ1 at t1 = 11, and holds `1
at t2 = 14. Note that J6 and J5 enter FQ1 immediately for lack of contention, and thus J5’s request precedes
J1’s request in spite of J1 having an earlier deadline. In contrast, J1 and J2 arrive and enqueue after J4, but
enter FQ1 before J4 due to their earlier deadlines and Rule G3. Similarly, J3 acquires `1 before J4, despite
J4’s earlier request.

have a priority that exceeds Ji’s priority. By the definition of s-oblivious pi-blocking (Definition 6.1),

the presence of m higher-priority pending jobs implies that Ji is not pi-blocked.

Lemma 6.15. During [t0, t2), Ji incurs s-oblivious pi-blocking for the combined duration of at most

2 ·m− 1 requests.

Proof. Due to the bounded length of FQq, at most m− 1 requests complete in [t1, t2) before a given

request is satisfied. By Lemma 6.14 and Rule G3, at most m requests complete before J1 is no longer

pi-blocked in [t0, t1).

Combining Lemma 6.15 with the maximum request length for each `q yields the following

bound.

Lemma 6.16. Ji is pi-blocked for at most

bi ,
nr∑

k=1

Ni,q · (2 ·m− 1) · Lmax = O(m).
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Scheduling Constraint Progress Mechanism Bound Analysis

global mutex priority inheritance Ni · (2m− 1) Section 6.2.5
clustered mutex priority donation m+Ni · (m− 1) Section 6.2.2

clustered k-exclusion priority donation m+Ni ·
⌈
m−min{kq}

min{kq}

⌉
Section 6.2.4

clustered RW—writers priority donation 2m+Ni · (2m− 1) Section 6.2.3
clustered RW—readers priority donation 2m+Ni · 2 Section 6.2.3

Table 6.1: Summary of the OMLP per-job s-oblivious pi-blocking bounds, given in terms of the
maximum number of blocking requests, where m denotes the number of processors and Ni =∑

qNi,q denotes the maximum number of requests issued by the job.

Proof. By Lemma 6.15, Ji is pi-blocked for the duration of at most 2 · (m− 1) requests each time it

requests a resource `q. Due to priority inheritance, the resource-holding job has an effective priority

among the m highest priorities whenever Ji is pi-blocked; requests are thus guaranteed to progress

towards completion when Ji is pi-blocked. As Ji requests `q at mostNi,q times, it suffices to consider

the longest request Ni,k · (2 · m − 1) times. The sum of the per-resource bounds yields bi. By

assumption (Section 6.1.2), Lmax = O(1) and
∑

qNi,1 = O(1), and hence bi = O(m).

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths

and frequencies into account is presented in Section 6.4.

6.2.6 Optimality, Combinations, and Limitations

In this section, we conclude our discussion of the OMLP family by examining various optimality

properties and limitations in more detail and discuss how each of the protocol variants can be

integrated with each other and OMLP-unrelated self-suspensions (such as suspensions due to I/O

with dedicated devices).

Besides being asymptotically optimal, the four protocols of the OMLP family also have constant

factors, summarized in Table 6.1, that are small enough for the protocols to be practical. Let

Ni =
∑

qNi,q denote the maximum number of requests issued by any Ji. In the following, we

assume Ni > 0, that is, the following discussion does not apply to independent tasks. From the

example shown in Figure 6.2, it is apparent that a lower bound per request is m−1 blocking requests.

Therefore, a lower bound on the maximum number of blocking requests (under s-oblivious analysis)

is Ni · (m − 1). This allows to characterize how far the OMLP’s bounds are from being optimal.
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Since Lmax is presumed constant, we focus on the number of blocking requests in the following

discussion.

We begin with the global OMLP (for mutex constraints), which ensures that a job is pi-blocked

by at most Ni · (2m−1) requests (see Table 6.1). As discussed in the preceding section, the principal

advantage of the global OMLP over the clustered OMLP is that independent jobs do not incur

pi-blocking (i.e., if Ni = 0, then bi = 0). The guaranteed upper bound is optimal within at most5 a

factor of

Ni · (2m− 1)

Ni · (m− 1)
=
Ni · (2(m− 1) + 1)

Ni · (m− 1)
= 2 +

1

m− 1
.

That is, for large m, the global OMLP ensures bounds on maximum pi-blocking that is (almost)

within a factor of two of the lower bound.

As summarized in Table 6.1, the clustered OMLP for mutex constraints ensures that a job Ji is

pi-blocked by at most m+Ni · (m− 1) conflicting requests. The mutex protocol is hence optimal

within at most a factor of

m+Ni · (m− 1)

Ni · (m− 1)
= 1 +

m

Ni · (m− 1)
≤ 1 +

m

(m− 1)
= 2 +

1

m− 1
.

The ratio is maximized for Ni = 1, in which case it approaches two for large m, just as the global

OMLP. If Ni > 1, then the clustered OMLP ensures a smaller bound than the global OMLP, albeit

at the cost of potentially delaying otherwise independent jobs.

In the case of the OMLP’s k-exclusion protocol, if kmin < m, then Theorem 6.3 and Lemma 6.13

imply that the upper bound on s-oblivious pi-blocking is within at most a factor of

(
1 +

⌈
m−kmin

kmin

⌉)
+
(
Ni ·

⌈
m−kmin

kmin

⌉)

Ni ·
⌈

m
kmin − 1

⌉ =

(
1 +

⌈
m
kmin − 1

⌉)
+
(
Ni ·

⌈
m
kmin − 1

⌉)

Ni ·
⌈

m
kmin − 1

⌉

=
1

Ni ·
⌈

m
kmin − 1

⌉ +
1

Ni
+ 1

≤ 2 +
1⌈

m
kmin − 1

⌉

5It is unknown whether Ni · (m− 1) is a tight lower bound in absolute terms (i.e., non-asymptotically).
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of the lower bound that is unavoidable in the general case (for tasks that share resources). In the

worst case, kmin = 1, the ratio reduces to 2 + 1
m−1 . The k-exclusion protocol is thus no worse (in

terms of the maximum number of blocking requests) than the clustered OMLP’s mutex protocol.

In the degenerate case of kmin = m, maximum blocking under the clustered OMLP reduces

to 1 (akin to a non-preemptive section), but the above ratio is undefined since the lower bound

reduces to 0 in this case. This is because Lemma 6.13 does not take preemptions from higher-priority,

later-arriving jobs into account. However, it is trivial to construct an example in which m lower-

priority jobs request all kmin replicas such that a later-arriving, higher-priority job incurs s-oblivious

pi-blocking for the duration of one critical section.

In the case of the OMLP’s phase-fair RW lock, writers are delayed by additional requests because

a reader phase may separate any two writer phases. This has the effect of virtually doubling the

factor. That is, if job Ji issues Ni write requests (and no read requests), then the ensured bound is

within at most

2m+Ni · (2m− 1)

Ni · (m− 1)
=

2m+Ni · (2(m− 1) + 1)

Ni · (m− 1)

= 2 ·
(

1 +
m

Ni · (m− 1)

)
+

1

m− 1

≤ 2 ·
(

2 +
1

(m− 1)

)
+

1

m− 1

= 4 +
3

m− 1

of the optimal bound for mutex constraints. That is, for large m, the bound on maximum pi-blocking

for (pure) writers approaches four and is hence approximately twice as large as the bounds of the

mutex protocols. This suggests that RW locks should only be employed if the write ratio is small.

Optimality of relaxed-exclusion protocols. Under phase-fair RW locks, read requests incur at

most O(1) acquisition delay. Similarly, requests for `q incur only O(mkq ) acquisition delay under the

k-exclusion protocol. Yet, we only prove O(m) and O(m/kmin) maximum s-oblivious pi-blocking

bounds, respectively—since both relaxed-exclusion constraints generalize mutual exclusion, this is

unavoidable in the general case (i.e., some jobs may incur Ω(m) pi-blocking if kmin = 1 or if some

resource is shared among m writers).
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However, as discussed in Section 6.2.5, any job may become a priority donor and thus suspend

(at most once) for the duration of the maximum request span. This seems undesirable for tasks that

do not partake in mutual exclusion. For example, why should “pure readers” (i.e., tasks that never

issue write requests) not have an O(1) bound on pi-blocking? It is currently unknown if this is even

possible in general, as lower bounds for specific task types (e.g., “pure readers,” “DSP tasks”) are an

to-date unexplored topic that warrants further attention.

Since priority inheritance is sufficient for the global OMLP mutex protocol, one might wonder

if it is possible to apply the same design using priority inheritance instead of priority donation to

obtain an RW protocol under global scheduling with O(m) maximum pi-blocking for writers and

O(1) maximum pi-blocking for readers. Unfortunately, this is not the case. The reason is that the

analytical benefits of priority inheritance under s-oblivious analysis do not extend to RW exclusion.

When using priority inheritance with mutual exclusion, there is always a one-to-one relationship: a

priority is inherited by at most one ready job at any time. In contrast, a single high-priority writer

may have to “push” multiple low-priority readers. In this case, the high priority is “duplicated” and

used by multiple jobs on different processors at the same time. This significantly complicates the

analysis. In fact, simply instantiating Rules R1–R3 and W1–W3 from Section 6.2.3 with priority

inheritance may cause Ω(nc ) s-oblivious pi-blocking since it is possible to construct schedules that

are conceptually similar to the one shown in Figure 6.4. A naive application of priority inheritance

to the k-exclusion problem would lead to the same result. This demonstrates the power of priority

donation, and also highlights the value of the clustered OMLP even for the special cases c = m and

c = 1: the clustered OMLP RW and k-exclusion protocols are the first multiprocessor real-time

locking protocols of their kind for the special cases of global and partitioned scheduling as well.

In very recent work, Elliott and Anderson (2011) presented a k-exclusion protocol for global

JLFP schedulers that guarantees asymptotically optimal maximum s-oblivious pi-blocking while

ensuring that independent jobs do not incur pi-blocking. Similar to the global OMLP, Elliott and

Anderson’s protocol uses priority inheritance in combination with a hybrid FIFO/priority queue. Due

to the challenges of k-exclusion, their hybrid queue is of a more complicated structure than the one

used in the global OMLP. Interestingly, Elliott and Anderson’s protocol uses a technique akin to

priority donation to ensure progress within each hybrid queue.
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To the best of our knowledge, no suspension-based RW protocol withO(1) maximum pi-blocking

for pure readers has been proposed to date.

Highly replicated resources. Our k-exclusion protocol assumes 1 ≤ kq ≤ m since additional

replicas would remain unused as priority donation allows at most m incomplete requests. (The same

assumption is made in Elliott and Anderson’s k-exclusion protocol for global scheduling.) This has

little impact on resources that require jobs to be scheduled (e.g., shared data structures), but it may

be a severe limitation for resources that do not require a processor (e.g., there could be more than m

DSP co-processors).

However, would a priority donation replacement that allows more than c jobs in a cluster to hold

a replica be a solution? Surprisingly, the answer is no. This is because s-oblivious schedulability

analysis (implicitly) assumes the number of processors as the maximum degree of parallelism (since

all pending jobs cause processor demand under s-oblivious analysis). In other words, s-aware

schedulability analysis is required to derive analytical benefits from highly replicated resources.

However, as we discuss in Section 6.3.4, s-aware schedulability analysis poses additional challenges

and no k-exclusion protocol for s-aware analysis, optimal or otherwise, has been proposed to date.

Unrelated self-suspensions. An issue that arises in practice with real-time locking protocols is how

blocking bounds are affected by suspensions that are unrelated to resource sharing. For example, a

job may self-suspend when it performs I/O using a private device (i.e., one that is not under control of

a locking protocol). In uniprocessor locking protocols such as the SRP or the PCP, a job resuming

from a self-suspension may incur additional pi-blocking just as if it were newly released. That is, a

job Ji that self-suspends ηi times can incur pi-blocking for the duration of up to 1 + ηi outermost

critical sections under SRP and PCP.

This effect also applies to multiprocessor real-time locking protocols. In the case of non-

preemptive spinlocks, a job may similarly be subject to additional pi-blocking when it resumes from

a self-suspension if it cannot be scheduled immediately due to a non-preemptable lower-priority job.

Under the MPCP and DPCP, a self-suspending job allows lower-priority jobs to issue requests for

global resources and thus may also incur additional pi-blocking after it resumes when lower-priority

jobs are subsequently priority boosted.
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Remarkably, the OMLP’s blocking bounds are not affected by self-suspensions. In the case of

the global OMLP, a job incurs pi-blocking only when it issues a request itself, which is not affected

by self-suspensions. Further, while it may appear on first sight that priority donation is affected by

self-suspensions, this is not the case: a resuming job is never required to serve as a priority donor.

This is because priority donation is defined in terms of pending jobs, and not in terms of ready jobs.

A job that self-suspends or resumes does not alter the set of pending jobs. Further, any job serving

as a priority donor upon release may self-suspend (since a priority donor’s purpose is to suspend

anyway). A priority donor that resumes from a self-suspension while the priority recipient executes

is effectively not resumed until its donor services are no longer required.

The OMLP is hence not affected by self-suspensions and the presented analysis can be used in

environments where jobs self-suspend. However, if jobs may self-suspend while holding a resource,

then the maximum self-suspension time must be reflected in each Li,q.

Protocol combinations. The clustered mutex protocol (Section 6.2.2) generalizes the partitioned

OMLP proposed in (Brandenburg and Anderson, 2010a) in terms of blocking behavior; there is thus

little reason to use both in the same system or to prefer the partitioned OMLP over the more general

clustered OMLP.

The global OMLP cannot be used with any of the clustered OMLP variants since priority

inheritance is incompatible with priority donation (from an analytical point of view). As discussed

above, both the clustered and global mutex protocols have an O(m) s-oblivious pi-blocking bound,

but differ in constant factors and with regard to which jobs incur pi-blocking. Specifically, only jobs

that request resources risk s-oblivious pi-blocking under the global OMLP, while even otherwise

independent jobs may incur s-oblivious pi-blocking if they serve as a priority donor. The global

OMLP may hence be preferable for c = m if only few tasks share resources.

The clustered protocol variants can be freely combined since they all rely on priority donation

and because their protocol rules do not conflict. However, care must be taken to correctly identify

the maximum request span, which determines the maximum pi-blocking caused by priority donation.

This concludes our discussion of locking protocols for s-oblivious schedulability analysis. Next,

we consider the case of s-aware schedulability analysis.
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6.3 Locking under S-Aware Schedulability Analysis

Avoiding extended pi-blocking is much more difficult under s-aware analysis than under s-oblivious

analysis. In the s-oblivious case, only jobs among the c highest-priority pending jobs (with respect

to a cluster) can incur pi-blocking; lower-priority jobs are automatically exempt from pi-blocking

since any delays are already accounted for by the execution time inflation of higher-priority jobs. In

contrast, under s-aware schedulability analysis, all jobs that are not scheduled may be pi-blocked

simultaneously since acquisition delay is not modeled as execution time. As we show in Section 6.3.2,

this poses significant challenges since it allows long-running jobs of “intermediate priority” to be

pi-blocked repeatedly.

Recall from Section 6.1.4 that Ω(n) maximum s-aware pi-blocking is unavoidable in the general

case. We previously considered locking protocols for s-aware schedulability analysis for global and

partitioned scheduling (Brandenburg and Anderson, 2010a). In the case of partitioned scheduling,

we showed that the Ω(n) bound is asymptotically tight by devising a simple, but impractical locking

protocol based on a single, global FIFO queue. We improve upon this simple protocol in Section 6.3.1

by adjusting the priority boosting rules of the FMLP for partitioned scheduling (Block et al., 2007;

Brandenburg and Anderson, 2008b), which is also based on FIFO queues, such that it ensures O(n)

maximum s-aware pi-blocking in the case of c = 1.

In the case of global scheduling, we previously argued, but did not formally prove, that Block

et al.’s FMLP for global scheduling (Block et al., 2007) ensures O(n) s-aware pi-blocking under

global JLFP scheduling. In the specific example discussed in (Brandenburg and Anderson, 2010a),

namely G-EDF with implicit deadlines and HRT constraints, maximum s-aware pi-blocking is indeed

bounded as claimed (Section 6.3.2). Unfortunately, in the general case of global JLFP scheduling,

and also in the case of tasks with arbitrary deadlines under G-EDF, this is not necessarily the case.

In Section 6.3.2, we demonstrate that there exist corner cases in which priority inheritance does not

ensure O(n) maximum s-aware pi-blocking under G-EDF scheduling (no matter which queue order

is assumed), and hence also not under JLFP scheduling in general.

We conclude this chapter with a discussion of open questions and challenges regarding locking

protocols for s-aware analysis in Section 6.3.4. In particular, we show that priority queues give rise to
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non-optimal maximum s-aware pi-blocking, and further discuss the challenges involved in supporting

RW and k-exclusion constraints under s-aware analysis.

6.3.1 Mutual Exclusion under Partitioned Scheduling

The partitioned FMLP was first designed for P-EDF (Block et al., 2007) and later adapted to P-FP

scheduling (Brandenburg and Anderson, 2008b). Its main feature is simplicity: conflicting resource

accesses are serialized using per-resource FIFO queues, and resource-holder progress is ensured

using straightforward priority boosting. However, both prior versions of the partitioned FMLP

use a sub-optimal rule for ordering priority-boosted jobs: if two or more jobs are priority-boosted

simultaneously on the same processor, then the partitioned FMLP requires them to be scheduled

in FIFO order with respect to the time that their priority was raised (i.e., the times at which their

resource requests were satisfied). This choice of tie-breaking rule greatly complicates the analysis of

the FMLP and yields only an O(min(n, nr) · n) bound on maximum s-aware pi-blocking (recall that

nr denotes the number of shared resources—see Section 2.4.1).

In this section, we provide an updated definition of the partitioned FMLP that ensures O(n)

maximum s-aware pi-blocking under JLFP scheduling (i.e., it subsumes both earlier versions for

P-EDF and P-FP). To avoid ambiguities, we refer to the following protocol as the FIFO mutex

locking protocol, denoted as FMLP+.

Structure. For each serially-reusable resource `q, there is a FIFO queue FQq that is used to serialize

conflicting accesses. The job at the head of FQq holds `q.

Rules. Let Ji denote a job that issues a requestRi,q,v for `q. Resource access is granted according

to the following rules.

F1 When Ji issuesRi,q,v, it is appended to FQq. If FQq was non-empty, then Ji suspends until

Ri,q,v is satisfied.

F2 Ri,q,v is satisfied when Ji becomes the head of FQq.

F3 Ji is dequeued from FQq whenRi,q,v is complete. The new head of FQq (if any) is resumed.

Priority boosting. The FMLP+ uses priority boosting to ensure resource-holder progress. Jobs that

hold resources have higher priority than those that do not, and resource-holding jobs are ordered by
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Figure 6.12: P-FP example schedule for m = 2 illustrating the FMLP+ with preemptable critical
sections. In this example, J3 is preempted in the middle of its critical section by J1 at time 8 when
J1’s earlier-issued request is satisfied.

the time that they requested their respective resource. Formally, let Ji denote a job that is pending at

time t. If Ji issued a requestRi,q,v that is incomplete at time t, then let ti,q,v denote the time at which

Ji issuedRi,q,v, where ti,q,v ≤ t. The effective priority of a job Ji at time t is defined as follows:

y(Ji, t) ,





(0, ti,q,v) ifRi,q,v exists and is incomplete at time t,

(1, Y(Ji, t)) otherwise,
(6.1)

with the interpretation that (ax, bx) < (ay, by) if and only if ax < ay ∨ (ax = ay ∧ bx < by). Since

at most one job is scheduled at any time in each partition, the time at which a job requested a resource

is necessarily unique (with respect to one partition).

Preemptive critical sections. The tie-breaking rule used by the prior variants of the partitioned

FMLP essentially resulted in the non-preemptive execution of critical sections. Under the FMLP+,

critical sections can be executed either preemptively or non-preemptively. Allowing jobs to be

preempted during a critical section lowers bounds on maximum pi-blocking (although only by a

constant factor), but risks higher overheads, as discussed in Chapter 7. We consider the case of

preemptive critical sections first.

Example 6.8. An example of the FMLP+ under P-FP scheduling form = 2 is shown in Figure 6.12,

which depicts a schedule of four tasks sharing two resources. The defining property of the FMLP+,

namely FIFO ordering, is apparent at time 5: since J4 requests `1 already at time 2 and prior to

J2 (which requests `1 at time 4), J4’s request is satisfied when J3 releases the resources despite J2

having a higher priority.
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When J1 suspends at time 6 because `1 is unavailable, the local lower-priority job J3 is given

a chance to execute. As a result, J3 requests and acquires `2 at time 7. While holding `2, J3

is priority-boosted. However, when J1’s earlier request is satisfied at time 8, its priority is also

boosted. Consequently, J1 preempts J3 since J1’s effective priority—the time at which it requested

`1 (time 6)—is higher than J3’s effective priority (time 8). In contrast, under the prior versions of the

partitioned FMLP, J3 would have had higher priority because it was priority-boosted at an earlier

point in time, which would have caused J1 to incur additional pi-blocking. ♦

We next bound maximum s-aware pi-blocking under the FMLP+ with preemptive critical

sections. There are three principle sources of s-aware pi-blocking under the FMLP+: (i) a job Ji

is directly delayed by a remote job Jx if Jx holds a resource requested by J1; (ii) Ji is transitively

delayed by a remote job Jy if Jy has a higher priority than Jx while Jx directly delays Ji; and

(iii) Ji incurs pi-blocking whenever a local priority-boosted job with lower base priority executes a

request. Causes (i) and (ii) occur only while Ji incurs acquisition delay (i.e., they require Ji to issue

a request); cause (iii) occurs after local lower-priority jobs were scheduled and issued requests for

global resources (this source of pi-blocking also affects independent jobs).

We first bound causes (i) and (ii) by bounding acquisition delay due to remote jobs as a whole.

Lemma 6.17. If critical sections are executed preemptively, then each remote task delays a request

of Ji for a resource `q with at most one critical section (either directly or indirectly, but not both).

Proof. LetRi,q,v denote Ji’s request, and let ti,q,v denote the time at which Ji issuedRi,q,v. Consider

a remote job Jx that executes a requestRx,y,z and thereby causes Ji to incur acquisition delay.

If Jx delays Ji directly (i.e., ifRx,y,z precedesRi,q,v in FQq), then Jx necessarily issuedRx,y,z
no later than ti,q,v (since FQq is a FIFO queue).

If Jx delays Ji indirectly, then it prevents a remote job Jk holding `q from being scheduled, and

Jk’s requestRk,q,w precedesRi,q,v in FQq. By the definition of priority boosting under the FMLP+,

resource-holding jobs are only preempted by jobs that execute earlier-issued requests. Therefore, Jx

necessarily issuedRx,y,z prior to ti,q,v.

Consequently, Ji incurs acquisition delay, either directly or indirectly, only due to earlier-issued

requests. Clearly, Ji is not blocked by requests that were already complete prior to ti,q,v. Therefore,
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Ji incurs acquisition delay only due to requests that were incomplete at time ti,q,v. Since tasks and

jobs are sequential, at most one request per task is incomplete at time ti,q,v.

When a local lower-priority job Jl executes a request, then Ji incurs s-aware pi-blocking. In

particular, it is irrelevant which resource Jl accesses. That is, Ji incurs pi-blocking regardless of

whether Ji requires the resource that Jl holds. Therefore, pi-blocking due to local tasks depends only

on the number of times that Ji suspends, and not on the identity of the resources that it requests.

Lemma 6.18. If Ji suspends ηi times, then lower-priority jobs of each local task pi-block Ji for the

duration of at most ηi + 1 critical sections.

Proof. In order to pi-block Ji, a lower-priority job Jl must hold a resource. To subsequently hold a

resource, Jl must issue a request first. To issue a request, Jl must be scheduled (while not holding a

resource, i.e., without being priority-boosted). Since Jl is local to Ji, Jl is only scheduled when Ji is

not ready (i.e., prior to Ji’s release and while Ji is suspended). Due to the sequentiality of tasks and

jobs, there is at most one incomplete request for each local lower-priority job Jl each time that Ji

becomes ready (i.e., when Ji is released and each time that it resumes).

This leads to the following bound on maximum pi-blocking.

Theorem 6.4. Let nc = |τPi | denote the number of tasks assigned to Ji’s partition. If critical

sections are executed preemptively, then the FMLP+ causes a job Ji to incur at most

bi = (nc − 1) ·


1 +

nr∑

q=1

Ni,q


 · Lmax +




nr∑

q=1

Ni,q · (n− nc)


 · Lmax

= (nc − 1) · Lmax +

nr∑

q=1

Ni,q · (n− 1) · Lmax

= O(n)

s-aware pi-blocking.

Proof. Ji may suspend each time that it issues a request. Therefore, by Lemma 6.18, each of the

nc − 1 local tasks (other than Ti) pi-blocks Ji for the duration of at most 1 +
∑nr

q=1Ni,q requests

(once due to a request issued prior to Ji’s release, and once each time Ji suspends). By Lemma 6.17,
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each of the n− nc remote tasks pi-block Ji with at most one request each time Ji issues a request,

which Ji does at most
∑nr

q=1Ni,q times. The stated bound follows.

A detailed, non-asymptotic bound on maximum pi-blocking that takes individual request lengths

and frequencies into account is derived in Section 6.4.

Non-preemptive critical sections. In the case that critical sections are executed non-preemptively,

additional pi-blocking due to remote tasks is possible if a lower-priority (with regard to effective

priority), non-preemptable job prevents a higher-priority job from being scheduled that holds a

resource that Ji is waiting for. Pi-blocking due to local tasks, however, is unaffected by whether

local jobs are preemptable—a local higher-priority job never causes Ji to incur pi-blocking while it

executes, and a local lower-priority job Jl only preempts Ji if Jl is priority-boosted, which always

delays Ji eventually. That is, with regard to local jobs, there is no benefit in critical sections being

preemptive and Lemma 6.18 thus also applies to the case of non-preemptive critical sections. We

next bound the additional delay due to remote tasks that is not reflected by Lemma 6.17.

Lemma 6.19. Let xj denote the number of times that Ji is directly delayed by a job of a task in τj ,

where Ti /∈ τj . If critical sections are executed non-preemptively, then Ji is indirectly delayed by a

non-preemptive job of a task in τj for the total duration of at most xj critical sections.

Proof. A remote non-preemptive job Jl that prevents a higher-priority job Jh from being scheduled

delays Ji only if Jh holds a resource that Ji requested. Since Jh has a higher-priority, Jl must

be executing a request that it issued later than Jh. Jh will be scheduled as soon as Jl becomes

preemptable again, and Jl becomes preemptable as soon as its critical section ends. Therefore, Jl

delays Ji indirectly for the duration of at most one critical section. Since Ji is directly delayed by

jobs of tasks in τj at most xj times in total, the non-preemptive execution of jobs of tasks in τj delays

Ji for the combined duration of at most xj critical sections.

Since Lemma 6.17 bounds the number of times that Ji is directly blocked (at most once per

remote task), Lemma 6.19 yields the following bound.
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Theorem 6.5. Let nc = |τPi | denote the number of tasks assigned to Ji’s partition. If critical

sections are executed non-preemptively, then the FMLP+ causes a job Ji to incur at most

bi = (nc − 1) ·


1 +

nr∑

q=1

Ni,q


 · Lmax + 2 ·




nr∑

q=1

Ni,q · (n− nc)


 · Lmax

= O(n)

s-aware pi-blocking.

Proof. Analogously to Theorem 6.4, Lemma 6.18 implies that Ji is pi-blocked by local lower-

priority critical sections at most (nc − 1) ·
(

1 +
∑nr

q=1Ni,q

)
times, and Lemma 6.17 implies that

Ji is pi-blocked, either directly or indirectly, due to earlier-issued requests of remote tasks at most
∑nr

q=1Ni,q · (n− nc) times. The latter also implies an upper bound on the number of times that Ji is

blocked by a remote job. By Lemma 6.19, Ji incurs at most Lmax additional indirect delay each time

that it is directly blocked by a remote job. The stated bound follows.

A detailed, non-asymptotic bound on maximum pi-blocking based on interference sets is given

in Section 6.4. Having designed and analyzed a simple protocol with O(n) maximum s-aware

pi-blocking for partitioned scheduling, we next consider the case of global scheduling. Surprisingly,

bounding maximum s-aware pi-blocking is much more complicated if c > 1 because lower-priority

jobs can issue requests while the job under analysis Ji is scheduled.

6.3.2 Priority Inheritance and Boosting under Global Scheduling

Under the global FMLP (Block et al., 2007), each resource is protected by a FIFO queue and the job

at the head of the FIFO queue holds the resource. Progress is ensured by letting the job holding a

resource `q inherit the priority of any job waiting for `q.

Consequently, each time that a job Ji requests a resource `q, it is delayed by at most n − 1

prior requests for `q. In total, a job Ji is pi-blocked while incurring acquisition delay for at most

Lmax · (n− 1) ·∑qNi,q = O(n) time units. However, since priority inheritance may cause lower-

priority resource holders to preempt Ji, it is possible for Ji to incur s-aware pi-blocking even while
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Task ei pi di Ni,1 Li,1

T1 3 5 5 0 0
T2 2 5 5 1 1
T3 1.5 + 2 · (φ− 1) 1 + 5 · φ 1 + 5 · φ 0 0
T4 1.5 5 5 + 5 · φ 1 1.5

Table 6.2: Parameters of the task set τφ, where φ ∈ N.

not incurring acquisition delay. That is, under s-aware analysis, even independent jobs may incur

pi-blocking due to priority inheritance (in contrast to the s-oblivious case discussed in Section 6.2.5).

In the case of G-EDF with arbitrary deadlines, or in the general case of arbitrary JLFP policies,

this side effect of priority inheritance can give rise to what appears to be non-optimal maximum

s-oblivious pi-blocking. To demonstrate this, we construct a task set τφ for which there exists an

arrival sequence such that an independent job incurs φ time units of s-aware pi-blocking under G-

EDF scheduling on m = 2 processors, where φ can be chosen to be arbitrarily large (i.e., maximum

s-aware pi-blocking cannot be bounded in terms of m or n).

Definition 6.6. In the following, consider the set of tasks τφ = {T1, . . . , T4} that share nr = 1

resource. Tasks T1, . . . , T4 are defined by the parameters listed in Table 6.2.

Note that τφ is designed such that max{pi}
min{pi} ≈ φ (for large φ). This allows us to construct an

arrival sequence such that a job of T3 incurs s-aware pi-blocking each time that T1, T2, and T4 release

jobs in a certain pattern, which, by design, can occur up to φ times while a job of T3 is pending.

Lemma 6.20. There exists an invocation sequence of the tasks in τφ such that a job incurs φ time

units s-aware pi-blocking if scheduled by G-EDF with the global FMLP on m = 2 processors.

Proof. In the following, let 1 ≤ j ≤ φ. Suppose jobs of T4 require `1 for the entirety of their

execution, and that jobs of T2 require `1 for the latter half of their execution. Consider the schedule

that arises when J3,1 and the first φ jobs of T1, T2, and T4 arrive at the following times.

a1,j = 1 + (j − 1) · p1 a2,j = 1 + (j − 1) · p2

a3,1 = 0 a4,j = 0.5 + (j − 1) · p4

The resulting schedule for φ = 5 is shown in Figure 6.13.
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Figure 6.13: G-EDF example schedule for m = 2 illustrating τφ for φ = 5. The absolute deadlines
for jobs of T4 are indicated as being in the future since d4 = 5 + 5 · φ. Because lower-priority jobs
of T4 repeatedly inherit the priority of higher-priority jobs of T2, job J3 incurs s-aware pi-blocking
for φ time units. Note that it is irrelevant in this example whether jobs wait in FIFO or priority order
since the resource that causes priority inheritance to take effect is shared by only two tasks.

By construction, all J4,j have lower priority than J3,1, and all J1,j and J2,j have higher priority

than J3,1. (The absolute deadlines of jobs J1,φ and J2,φ are tied with J3,1’s absolute deadline at

time 1+5·φ; J3,1 has a lower priority because we break deadline ties in favor of lower-indexed tasks.)

Therefore, when J1,1 and J2,1 are released at time 1, they preempt J3,1 and J4,1. The preempted jobs

do not incur s-aware pi-blocking because m = c = 2 higher-priority jobs are scheduled.

At time 2, J2,1 requests `1. Since the resource is currently unavailable, the resource-holder J4,1

inherits J2,1’s priority and is scheduled immediately. At this point, J3,1 incurs s-aware pi-blocking

because a lower-priority job (with respect to base priorities) is scheduled while J3,1 is not. J3,1

ceases to be pi-blocked when J4,1 completes its critical section at time 3.

At time 4, J3,1 is scheduled again when J1,1 and J2,1 complete. At time 5.5, the sequence of

events starts over for j = 2 when J4,2 is released. As is apparent in Figure 6.13, the pattern repeats φ

times while J3,1 is pending. Job J3,1 hence incurs φ time units of s-aware pi-blocking in total.

There are several important things to note. First, since φ can be chosen arbitrarily, this example

demonstrates that the suspension-based global FMLP does not ensure O(n) maximum s-aware

pi-blocking in all cases. Second, since each resource is only shared between two tasks, the order

in which resource requests are satisfied is irrelevant (i.e., the schedule shown Figure 6.13 does not

depend on FIFO ordering of requests). Therefore, this example demonstrates that priority inheritance
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is not suited to designing locking protocols that ensure O(n) maximum s-aware pi-blocking under

all global JLFP schedulers. Third, the task set τφ can be trivially generalized to arbitrary n and m by

adding independent tasks with appropriately chosen periods and relative deadlines. And, finally, since

the relative priorities of the jobs in this example match their respective task’s indices, Figure 6.13

demonstrates that the global FMLP does not ensure O(n) maximum s-aware pi-blocking for G-FP

scheduling for arbitrary priority assignments.

Nonetheless, there exist JLFP schedulers and types of task sets for which priority inheritance

does yield an O(n) protocol. In particular, this is the case for the G-EDF scheduling of implicit-

deadline task sets when deadline tardiness is not allowed (and only if jobs are not scheduled prior to

their respective release times, i.e., in the absence of early releasing), which is the specific example

in which the global FMLP was previously considered under s-aware analysis (Brandenburg and

Anderson, 2010a). That is, if all tasks meet implicit (or, in fact, constrained) deadlines, then repeated

pi-blocking such as in Figure 6.13 is impossible, which we show next. Recall from Section 2.2 that

ai,j denotes job Ji,j’s release time and that fi,j denotes Ji,j’s completion time.

Lemma 6.21. Let τ denote a set of n constrained-deadline tasks, and let Ji,j denote an arbitrary job

of a task in τ . If τ is HRT schedulable under G-EDF, then at most n− 1 jobs of lower priority than

Ji,j are scheduled during [ai,j , fi,j), that is, while Ji,j is pending.

Proof. Let Jl,k denote a lower-priority job of an arbitrary task Tl ∈ τ (and i 6= l) that is scheduled

during [ai,j , fi,j). Jl,k having a lower priority than Ji,j implies dl,k ≥ di,j . Further, al,k < fi,j since

Jl,k is scheduled during [ai,j , fi,j). Since dk ≤ pk, Jl,k+1’s earliest-possible release time is dl,k, and

hence di,j ≤ dl,k ≤ al,k+1; since τ is HRT schedulable, we have fi,j ≤ di,j ≤ al,k+1. Jl,k+1 is thus

not scheduled during [ai,j , fi,j), no matter its priority. Similarly, due to Tl’s constrained deadline,

the latest-possible absolute deadline of Jl,k−1 (if k > 1) is al,k. Because al,k < fi,j (Jl,k executed

during [ai,j , fi,j)) and fi,j ≤ di,j (τ is HRT schedulable), it follows that dl,k−1 < di,j . That is, Jl,k−1

necessarily has an earlier deadline than Ji,j . Therefore, at most one lower-priority job of Tl executes

during [ai,j , fi,j), and thus at most n− 1 in total.

This allows us to bound maximum s-aware pi-blocking as follows.
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Theorem 6.6. Let τ denote a set of n constrained-deadline tasks. If τ is HRT schedulable under

G-EDF and the global FMLP on m processors, then jobs incur at most O(n) maximum s-aware

pi-blocking.

Proof. Under the global FMLP, a job Ji incurs pi-blocking only if a lower-priority, resource-holding

job Jl inherits the priority of a job Jh with a priority higher than that of Ji. For this to occur, Jl

must execute while Ji is pending. By Lemma 6.21, at most O(n) such jobs execute while Ji is

pending. Each lower-priority job issues at most
∑nr

q=1Nl,q = O(1) requests, each of which requires

at most Lmax = O(1) time units to complete (recall Section 6.1.2). Therefore, lower-priority jobs

inherit higher priorities for at most O(n) time units while Ji is pending, which bounds the maximum

duration of s-aware pi-blocking.

An argument analogous to Lemma 6.21 can be used to show that at most 2 ·(n−1) lower-priority

jobs overlap with any Ji under G-FP scheduling with RM priorities, constrained deadlines, and

HRT correctness, which also yields O(n) maximum s-aware pi-blocking under the global FMLP

in this case. Further, in recent work, Leontyev et al. (2009) and Erickson and Anderson (2011)

studied a class of G-EDF-like schedulers that prioritize each job by a fixed point in time after its

release. Theorem 6.6 can be transferred to such schedulers if each task’s relative priority point does

not exceed its period (analogously to constrained deadlines under G-EDF). Notably, this class of

“constrained, fixed priority-point schedulers” includes global FIFO scheduling.

With regard to τφ and the example shown in Figure 6.13, Theorem 6.6 shows that it is funda-

mental that T4 has an arbitrary deadline with di > pi. This shows that s-aware pi-blocking is in large

parts determined by the frequent arrival of both lower- and higher-priority jobs of tasks with short

periods that, together, cause a long-running job to repeatedly incur pi-blocking. Priority inheritance

does not adequately deal with such repeated arrivals. However, this problem is not isolated to priority

inheritance.

Priority boosting. Other options besides priority inheritance for ensuring resource-holder progress

are priority boosting and priority donation. Of these, priority donation is unsuitable since Rule D1

(page 432) is incompatible with s-aware schedulability analysis (a job may incur s-aware pi-blocking

while waiting to become one of the c highest-priority pending jobs). However, priority boosting is

not suitable for designing O(n) protocols either. This is illustrated in Figure 6.14, which shows a
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Figure 6.14: G-EDF example schedule of the task set τφ as given in Table 6.2 for m = 2 and
φ = 5 assuming unrestricted priority boosting instead of priority inheritance. J3,1 still incurs Ω(φ)
time units of s-aware pi-blocking. Unrestricted priority boosting is thus unsuitable for constructing
locking protocols with O(n) maximum s-aware pi-blocking.

schedule of τφ assuming priority boosting instead of priority inheritance. The depicted schedule

demonstrates that Ω(φ) s-aware pi-blocking is possible if resource-holder progress is enforced with

unrestricted priority boosting.

The fundamental problem with the arrival sequence shown in Figures 6.13 and 6.14 is that J4,j

must be scheduled to release the shared resource to avoid blocking J2,j . (If progress of J4,j is not

enforced, then one can construct task sets that give rise to unbounded priority inversions.) Regardless

of whether this is achieved with priority inheritance or priority boosting, if J4,j is scheduled and

J3,1 is not, then J3,1 necessarily incurs a priority inversion. Therefore, there are only two options to

avoid Ω(φ) s-aware pi-blocking in this scenario: either the resource request of each J4,j must not be

satisfied immediately (despite being uncontested), or some job other than J3,1 must be selected to

incur s-aware pi-blocking instead of J3,1. The former is difficult to formalize for sporadic tasks since

future releases are unknown;6 the latter seems more promising. In particular, in this specific example,

each J1,j could serve as a priority donor for each J4,j , thereby preventing J3,1 from incurring any

s-aware pi-blocking. However, in the general case, this approach fails if there are more than m− 1

jobs like J3,1 that must be protected from repeated preemptions (i.e., if there are more than m− 1

jobs at risk of Ω(φ) s-aware pi-blocking that must be scheduled).

6Note that this is different from the PCP’s system ceiling rule: under the PCP, some resource is being held if the
system ceiling prevents a request for an available resource from being satisfied immediately (see Section 2.4.3), whereas
the request of each J4,j would have to be delayed while no job holds any resources.

468



To summarize, straightforward priority inheritance or priority boosting as the sole progress

mechanism does not yield locking protocols with O(n) maximum s-aware pi-blocking for all

JLFP policies. Nonetheless, the global FMLP does ensure O(n) maximum s-aware pi-blocking

for constrained-deadline task sets that are HRT schedulable under G-EDF scheduling or G-FP

scheduling with RM priorities. This raises a number of questions, which we discuss in Section 6.3.4

after first establishing in the next section that locking protocols based on priority queues (instead of

FIFO queues) are similarly vulnerable to repeated higher-priority job arrivals.

6.3.3 Maximum Pi-Blocking in Priority Queues

Intuitively, one might reasonably expect queuing disciplines that order lock requests on an FP or

EDF basis to cause no more blocking than simple FIFO queuing. However, asymptotically speaking,

this is not the case. Consider the following implicit-deadline task set.

Definition 6.7. Let τprio(n), where n ≥ 2m, denote a set of n tasks sharing one resource `1 such

that, for each Ti, ei = 1, Ni,1 = 1, Li,1 = 1, and pi = m if i < m, pi = mn/2 if m ≤ i ≤ 2m− 2,

and pi = mn otherwise.

Lemma 6.22. There exists an arrival sequence for τprio(n) such that max1≤i≤n{bi} = Ω(mn)

under s-aware analysis when ordering requests by either non-decreasing job deadline or fixed priority

under any JLFP scheduler.

Proof. Without loss of generality, assume that n is an integer multiple of 2m. We first consider

partitioned scheduling (c = 1) and assume that τprio(n) is partitioned such that Pi = i if i < m and

Pi = m otherwise.

Consider the synchronous, periodic arrival sequence, that is, each Ji,j is released at ai,j =

(j − 1) · pi, and issues one requestRi,q,v, where Li,q,v = 1. The resulting schedule for m = 3 and

n = 6 is illustrated in Figure 6.15.

Since the task set is serialized by `1, the order of job completions is fully determined by

the queuing discipline under any work-conserving scheduler. Recall from Chapter 2 that tasks

are indexed in order of decreasing priority, and that deadline ties are broken in favor of jobs of

higher-indexed tasks. Thus, if requests are either EDF- or FP-ordered, then, by construction, Jn,1’s

request is the last one to be satisfied at time n ·m− 1. By Definition 6.2, Jn,1 incurs pi-blocking
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Figure 6.15: Illustration of τprio(n) for n = 6 and m = 3. The depicted schedule arises under any
partitioned JLFP scheduler if requests are ordered either by deadline or by fixed priority (with task
indexed in order of decreasing priority). An equivalent schedule arises under global scheduling since
only one job is scheduled at any time. J6 incurs pi-blocking for (m− 1) · n = 12 time units under
partitioning and for mn− 1 = 17 time units under global scheduling (throughout [0, 17) only one
job is scheduled).

whenever no higher-priority job is scheduled on Pn during [0, n · m − 1). By construction, Pn

is used for only n − 1 time units during [0, n · m − 1). Thus, Jn,1 is pi-blocked for at least

bn ≥ n ·m− 1− (n− 1) = (m− 1) · n = Ω(mn) time units. Since at most one job is scheduled at

any time, s-aware pi-blocking does not decrease if c > 1.

Note that example shown in Figure 6.15 does not depend on resource-holder progress being

enforced. This shows that priority queuing gives rise to non-optimal maximum s-aware pi-blocking

regardless of whether priority boosting, priority inheritance, or some other, yet to be developed

progress mechanism is employed, and even if implicit deadlines are assumed.

6.3.4 Open Questions

In the case of s-aware schedulability analysis, we have established an Ω(n) lower bound on maximum

pi-blocking under any clustered JLFP scheduler (Section 6.1.4). In the case of c = 1, the existence

of the FMLP+ shows this bound to be asymptotically tight. However, in the case of c > 1, to the

best of our knowledge, no locking protocol is known to ensure O(n) maximum s-aware pi-blocking

under any JLFP scheduler.

The global FMLP does achieve O(n) maximum pi-blocking in special cases in which there are

only O(n) concurrent, lower-priority jobs, but in the general case it is subject to Ω(φ) maximum
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pi-blocking, where φ corresponds to the ratio of the maximum and minimum period lengths and

hence is not bounded by m or n (recall Section 6.1.2). This lower bound, however, is not dependent

on the FMLP’s use of FIFO queues; instead, it arises for any queue choice when resource-holder

progress is ensured by means of priority inheritance or priority boosting (Section 6.3.2).

Conversely, the use of priority queues gives rise to Ω(mn) maximum s-aware pi-blocking, re-

gardless of the choice of progress mechanism. This seems to imply that—from a purely asymptotical

point of view—priority queues are ill-suited to multiprocessor real-time locking since they are prone

to starvation if high-priority tasks with short periods issue many requests.

These observations highlight a number of open questions, which we hope to investigate in greater

detail in future work.

• Is Ω(n) maximum s-aware pi-blocking an asymptotically tight lower bound for c > 1? Since

no locking protocol for the case of c > 1, or even the (presumably simpler) case of c = m,

with O(n) maximum s-aware pi-blocking is currently known (with respect to arbitrary JLFP

scheduling policies or arbitrary deadlines), it cannot be ruled out that a larger lower bound

exists. Given that such protocols exist for partitioned scheduling (c = 1), it would be surprising

to find such a fundamental difference between partitioned and global scheduling. However,

it is entirely possible that the case of c = 1, which lacks intra-cluster concurrency, poses

an asymptotically simpler synchronization problem. One reason this might indeed be the

case is that the main source of analytical complications in case of c > 1 is resource requests

by concurrently-scheduled, lower-priority jobs that subsequently require intervention by the

progress mechanism.

• Are there other progress mechanisms suitable for s-aware analysis besides priority inheritance

and priority boosting? Assuming that Ω(n) is indeed an asymptotically tight lower bound

for c > 1 as well, task sets such as τφ highlight that a new progress mechanism will be

required to guarantee O(n) maximum s-aware pi-blocking. In particular, new ways of dealing

with frequently-arriving lower-priority jobs will have to be developed. This is much more

difficult than in the s-oblivious case since scheduled lower-priority jobs that issue potentially

problematic requests cannot be delayed without incurring s-aware pi-blocking themselves (i.e.,

priority donation Rule D1 does not transfer to s-aware analysis).
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• Can hybrid queues be applied to limit s-aware pi-blocking? With respect to the previous

question, it is worth considering whether a combination of FIFO and priority queues can be

applied to the s-aware case. However, since jobs are typically suspended while enqueued, the

queue structure seems to have little impact on s-aware pi-blocking (if starvation is avoided).

Given that fundamental questions concerning mutex constraints are still open, it is hardly

surprising that RW exclusion and k-exclusion are even less understood. In fact, to the best of our

knowledge, the OMLP variants for both relaxed-exclusion constraints are the first of their kind

with regard to suspension-based multiprocessor locking protocols. Since the OMLP is targeted at

s-oblivious analysis, the RW exclusion and k-exclusion problems remain unsolved in the case of

s-aware schedulability analysis (aside from simply using a mutex protocol such as the FMLP+).

It would certainly be possible to extend the FMLP+ by mimicking the OMLP’s rules for RW

and k-exclusion. However, the resulting protocols, while amenable to worst-case analysis, would

still cause a suspending job to be subject to Ω(n) s-aware pi-blocking after it resumes due to the use

of priority boosting in the FMLP+ (i.e., it is possible to construct schedules in which Lemma 6.18

is tight, even in the case of relaxed-exclusion constraints). Similarly, it is not clear that worst-case

acquisition delay could be improved beyond O(n) maximum s-aware pi-blocking since resource-

holding jobs could be preceded by Ω(n) priority-boosted jobs executing earlier-issued requests. In

other words, priority boosting causes such significant delays that the benefit of RW or k-exclusion

protocols may be marginal. At the very least, a novel approach to priority boosting will be required

to harness the potential for increased parallelism under relaxed-exclusion constraints.

In light of this chapter’s focus on blocking optimality, it is important to note that asymptotic

optimality as a function of m or n does not imply that a locking protocol is the best to use in all

circumstances. Obviously, asymptotic claims ignore constant factors. Additionally, a non-optimal

algorithm could yield lower pi-blocking delays for some task systems. Empirical evaluations, ideally

under consideration of overheads, are required to investigate such considerations.

6.4 Detailed Blocking Analysis

In this section, we apply the holistic blocking analysis framework from Section 5.4 to derive fine-

grained (i.e., non-asymptotic) bounds on maximum s-oblivious and s-aware pi-blocking for the five
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locking protocols presented in this chapter, namely the four protocols in the OMLP family and the

partitioned FMLP+. We do not consider the global FMLP under G-EDF in detail because no s-aware

HRT schedulability analysis for G-EDF has been published to date. As is the case with Section 5.4,

the following analysis is quite technical in nature and may be safely skipped by the casual reader.

Recall that we use a per-task interference bound to characterize its maximum resource require-

ments (with regard to the frequency and duration of resource requests) during some interval. A

key feature of this abstraction is its independence from analysis assumptions and how waiting is

implemented—that is, whether or not a job requires a given resource does not depend on whether it

will spin or suspend while waiting, and also not on whether suspensions are accounted for explicitly

or modeled as execution time. As a result, the following bounds on maximum pi-blocking structurally

resemble those given in Sections 5.4.3 and 5.4.6.

6.4.1 Global OMLP

We begin with the global OMLP for mutex constraints under s-oblivious schedulability analysis.

Since the global OMLP uses a hybrid queue that consists of a FIFO queue FQq (which holds at

most m waiting jobs) and of a priority queue PQq (which is only used if at least m jobs are waiting),

maximum s-oblivious pi-blocking under the global OMLP depends on how many tasks share a given

resource.

Definition 6.8. In the following, let Aq , |{Ti | Ti ∈ τ ∧Ni,q > 0}| denote the number of tasks

that access resource `q.

If Aq ≤ m+ 1, then at most m jobs are waiting to acquire `q at any time, which implies that at

most one job is queued in PQq. In this case, the global OMLP reduces to a simple FIFO protocol.

Lemma 6.23. Under the global OMLP, if Aq ≤ m+ 1, then a job Ji incurs at most

bi,q = total((Aq − 1) ·Ni,q, tifs(τ \ {Ti}, ri, Ni,q))

s-oblivious pi-blocking due to requests for resource `q.

Proof. Ji’s response time ri upper-bounds the duration of the interval during which other jobs can

issue conflicting requests; that is, the aggregate task interference bound tifs(τ \ {Ti}, ri, Ni,q) for
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any interval of length ri is a sufficient approximation of the resource demands of competing tasks. If

Ji is never enqueued in PQq, then the lemma follows trivially.

Otherwise, if Ji is enqueued in PQq, then m jobs are already enqueued in FQq at the time of Ji’s

request. Since Aq ≤ m+ 1, this implies that no other job is enqueued in PQq. As soon as the head

of FQq releases `q, Ji is moved to FQq. Hence there is at most one job in PQq at any time, and the

ordering of PQq is irrelevant.

The FIFO ordering of FQa implies that each of Ji’s requests is preceded by at most one request

from each other task that accesses `q. The per-task interference limit is hence Ni,q. Since `q is shared

among only Aq ≤ m+ 1 tasks, one of which is Ti, no more than (Aq − 1) ·Ni,q requests pi-block

Ji in total. Priority inheritance ensures that the resource-holding job is scheduled whenever Ji incurs

s-oblivious pi-blocking; the cumulative duration of the (Aq − 1) · Ni,q longest requests for `q by

tasks other than Ji thus bounds maximum s-oblivious pi-blocking.

In the case of Aq > m+ 1, higher-priority jobs of some other task Tx may “skip ahead” of Ji

repeatedly while Ji waits in PQq. However, the per-task interference limit is still limited to 2 ·Ni,q,

that is, the per-task interference limit is only doubled even if jobs of Tx “skip ahead” an arbitrary

number of times.

Lemma 6.24. Let Tx denote some task other than Ti that accesses `q (i.e., Ti 6= Tx and Nx,q > 1).

Under the global OMLP, jobs of Tx cause Ji to incur s-oblivious pi-blocking for at most the duration

of two requests each time that Ji requests `q.

Proof. In order to pi-block Ji, a request issued by some Jx must precede Ji’s request in FQq (i.e., Jx

enters FQq before Ji does). If Aq ≤ m, the bound follows immediately since FQq is FIFO-ordered.

Hence assume Aq > m. In this case, jobs of Tx may enter FQq repeatedly while Ji waits in PQq.

Let ta denote the first time that a job of Tx, denoted Jx,a, enters FQq, and let tb denote the second

time that a job of Tx, denoted Jx,b, enters FQq while Ji is continuously waiting in PQq. Further, let

t1 denote the time that Ji enters FQq (as indicated in Figure 6.11). If t1 does not exist (i.e., if Ji

never enters FQq), then either FQq is continuously populated with higher-priority jobs and Ji does

not incur s-oblivious pi-blocking, or some requests fails to complete (which is not possible since

each Li,q is presumed finite). Therefore assume t1 exists.
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Since tasks are sequential, Jx,b necessarily issued its request after Ji issued its request (this is

not necessarily the case with Jx,a).

Ji does not incur s-oblivious pi-blocking during [tb, t1). Since Ji is waiting in PQq at time ta,

Jx,a is necessarily preceded bym−1 other jobs in FQq, which must complete before Jx,a’s request is

satisfied. Since tasks are sequential, Jx,a has completed its request before Jx,b enters FQq at time tb.

Therefore, at least m higher-priority jobs must have entered FQq during [ta, tb); otherwise, Ji would

no longer be waiting in PQq at time tb. The presence of m higher-priority pending jobs rules out

s-oblivious pi-blocking after tb (until Ji enters FQq at time t1).

Therefore, at most one of the requests issued by jobs of Tx after Ji issued its request pi-blocks

Ji. Since sporadic tasks are sequential, at most one request of Tx that was issued prior to Ji’s

request is incomplete when Ji issues its request. Hence, at most two requests of Tx cause Ji to incur

pi-blocking.

As a result, the per-task interference limit in the case of Aq > m is 2 · Ni,q. This yields the

following bound.

Lemma 6.25. Under the global OMLP, if Aq > m, then a job Ji incurs at most

bi,q = total((2 ·m− 1) ·Ni,q, tifs(τ \ {Ti}, ri, 2 ·Ni,q))

s-oblivious pi-blocking due to requests for resource `q.

Proof. By Lemma 6.15, Ji incurs s-oblivious pi-blocking for the combined duration of at most

2 · m − 1 requests each time that it requests `q, which implies that Ji is delayed by at most

(2 ·m − 1) · Ni,q requests in total. Lemma 6.24 implies an interference limit of 2 · Ni,q. Priority

inheritance ensures that the resource-holding job is scheduled whenever Ji incurs pi-blocking. The

bound follows.

This yields the following overall bound on maximum s-oblivious pi-blocking.

Theorem 6.7. Under the global OMLP, a job Ji incurs s-oblivious pi-blocking for at most

bi =

nr∑

q=1

total((xq − 1) ·Ni,q, tifs(τ \ {Ti}, ri, lq ·Ni,q))
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time units, where xq = Aq and lq = 1 if Aq ≤ m, and xq = 2 ·m and lq = 2 if Aq > m.

Proof. Follows from Lemmas 6.23 and 6.25, since resource requests are not nested, and since Ji

does not incur s-oblivious pi-blocking under the global OMLP while not requesting resources.

This concludes the analysis of the global OMLP. Next, we consider the clustered OMLP from

Sections 6.2.2–6.2.4, which uses priority donation instead of priority inheritance.

6.4.2 Clustered OMLP

A job Ji is subject to two sources of s-oblivious pi-blocking under the clustered OMLP. Ji can be

delayed each time it issues requests for shared resources, and additionally once upon release if it

serves as a priority donor. These two sources of delays are analogous to s-blocking and pi-blocking,

respectively, in non-preemptive spinlock protocols. In fact, the bounds for the clustered OMLP’s

mutex and phase-fair RW protocols are structurally identical to the bounds for non-preemptive

task-fair mutex and phase-fair RW spinlock protocols.

6.4.2.1 Mutual Exclusion

We begin with the mutex variant of the clustered OMLP, which is the simplest of the three protocols

based on priority donation. Recall from Section 6.2.2 that each resource `q is protected by a simple

FIFO queue FQq.

Lemma 6.26. Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi,q,j =





total(Ni,q · c, tifs(τj , `q, ri, Ni,q)) if j 6= Pi

total(Ni,q · (c− 1), tifs(τj \ {Ti}, `q, ri, Ni,q)) if j = Pi

pi-blocking due to requests for resource `q issued by jobs of tasks assigned to the jth cluster.

Proof. Analogously to Lemma 5.2. By Lemma 6.5, priority donation ensures that at most c requests

are incomplete at any time in each cluster; therefore, at most c requests precede Ji in FQq each time

that it issues a request. The strict FIFO ordering in FQq ensures a per-task interference limit of Ni,q.

Due to priority donation, resource-holding jobs are always scheduled (Lemma 6.3). In the case of
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Ji’s local cluster, only c− 1 requests can interfere since Ji’s own request counts towards the limit of

c concurrent requests imposed by priority donation.

Pi-blocking that Ji incurs while serving as a priority donor is similar to pi-blocking that a job

may incur due to non-preemptive request execution under non-preemptive spinlock protocols. Recall

from Definition 5.8 that we let lower(Ti) denote the set of tasks local to Ti that could potentially

cause Ji to incur pi-blocking upon release.

Lemma 6.27. Under the clustered OMLP’s mutex protocol, a job Ji incurs at most bDi s-oblivious

pi-blocking upon release while serving as a priority donor, where

bDi = max
1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0


Lx,q +

m/c∑

j=1

b′x,q,j


 , and

b′x,q,j =





total(c, tifs(τj , `q, rx, 1)) if j 6= Px,

total(c− 1, tifs(τj \ {Ti, Tx}, `q, rx, 1)) if j = Px.

Proof. By Lemma 6.4, maximum s-oblivious pi-blocking due to priority donation is limited to one

request span. Analogously to Lemma 5.3 and Theorem 5.2, bDi bounds the maximum request span

of any local, potentially lower-priority job Jx by considering the c longest requests in each remote

cluster that could cause Jx to incur acquisition delay, and the c − 1 longest requests in Jx’s local

cluster.

Theorem 6.8. Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi = bDi +

nr∑

q=1

m/c∑

j=1

bi,q,j

s-oblivious pi-blocking due to requests for shared resources, where bi,q,j and bDi are defined as in

Lemmas 6.26 and 6.27, respectively.

Proof. Follows from Lemmas 6.26 and 6.27, and the assumptions that resource requests are not

nested and that tasks do not migrate across cluster boundaries.
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6.4.2.2 Reader-Writer Exclusion

The bounds on maximum pi-blocking under the OMLP’s RW protocol are structurally equivalent to

the bounds on maximum s-blocking and pi-blocking under non-preemptive phase-fair RW spinlocks

presented in Section 5.4.6. This is because the OMLP implements phase-fairness, and because

priority donation allows at most c concurrent requests in each cluster, which has an effect that is

equivalent to non-preemptive execution. For the sake of convenience, the bound is restated here in

terms of s-oblivious pi-blocking for the clustered OMLP’s RW protocol.

Definition 6.9. In the following, let xrem = NW
i,q ·c+NR

i,q and xloc = NW
i,q ·(c−1)+NR

i,q, and define

the sets of possibly-interfering write requests from jobs in the jth cluster, denoted as W (Ti, j, `q), as

follows.

W (Ti, j, `q) =





top(xrem , wifs(τj , `q, ri, (N
W
i,q +NR

i,q))) if j 6= Pi

top(xloc , wifs(τj \ {Ti}, `q, ri, (NW
i,q +NR

i,q))) if j = Pi and c > 1

∅ if j = Pi and c = 1

Further, let Wi,q denote the union of all possibly-interfering write requests across all clusters, and let

wi,q denote the maximum number of blocking write requests.

Wi,q =

m/c⋃

j=1

W (Ti, j, `q) wi,q = |Wi,q|

Definition 6.10. Let ri,q = min(wi,q +NW
i,q , N

R
i,q + (m− 1) ·NW

i,q ), and define the sets of possibly-

interfering read requests from jobs in the jth cluster, denoted as R(Ti, j, `q), as follows.

R(Ti, j, `q) =





top(ri,q, rifs(τj , `q, ri, ri,q)) if j 6= Pi

top(ri,q, rifs(τj \ {Ti}, `q, ri, ri,q)) if j = Pi and c > 1

∅ if j = Pi and c = 1
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Analogously to Wi,q, let Ri,q denote the set of all possibly interfering read requests across all clusters.

Ri,q =

m/c⋃

j=1

R(Ti, j, `q)

This yields the following bound on maximum delay due to requests for a given resource.

Lemma 6.28. Under the clustered OMLP’s RW protocol, a job Ji incurs pi-blocking due its read

and write requests for resource `q for at most bi,q = total(wi,q, Wi,q) + total(ri,q, Ri,q) time units.

Proof. Analogously to the discussion in Section 5.4.6. Each time that Ji issues a write request, it

can be preceded by up to c other write requests in each cluster since the writer queue WQq is FIFO

ordered, and because priority donation allows at most c concurrent requests per cluster. Also due

to the FIFO order, each other task can block each of Ji’s write requests with at most one request.

Each time that Ji issues a read request, it is blocked by at most one write request since the OMLP

implements phase-fairness. Therefore, the per-task interference with regard to write requests is

NW
i,q + NR

i,q, and in total Ji’s NR
i,q read requests and NW

i,q write requests are blocked by at most

NR
i,q + NW

i,q · c write requests in the case of a remote cluster, and by at most NR
i,q + NW

i,q · (c − 1)

requests in the case of Ji’s local cluster. The definitions of W (Ti, j, `i,q) and Wi,q follow.

By Lemma 5.4, the upper bound on the total number of blocking writes wi,q implies an upper

bound of wi,q +NW
i,q on the number of blocking reader phases. The total number of blocking reader

phases is also limited to NR
i,q + (m − 1) · NW

i,q : due to priority donation and because reader and

writer phases alternate in a phase-fair RW lock, each of Ji’s read requests is transitively blocked by

at most one reader phase, and each of Ji’s write requests is blocked by at most m− 1 interspersed

reader phases (since at most m− 1 write requests block each of Ji’s write requests). The lesser of

the two bounds limits the total number of blocking reader phases ri,q. The definitions of R(Ti, j, `q)

and Ri,q follow.

Since Ji is blocked by at most wi,q writer phases and ri,q reader phases, total s-oblivious

pi-blocking is bounded by the wi,q longest requests in Wi,q and the ri,q longest request in Ri,q.

Since the clustered OMLP uses priority donation, a job may also incur s-oblivious pi-blocking

when serving as a priority donor. The duration of priority donation depends on the request span of the

priority recipient’s request, which may be either a write or a read. The maximum acquisition delay of
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a single write request for resource `q issued by job Ji can be bounded by instantiating Definitions 6.9

and 6.10 assuming NR
i,q = 0 and NW

i,q = 1. Similarly, the maximum acquisition delay of a read

request for `q can be bounded by instantiating said definitions assuming NR
i,q = 1 and NW

i,q = 0. To

avoid needless repetition, we use the following definitions to denote these two special cases.

Definition 6.11. Let W ′i,q and w′i,q denote the values of Wi,q and wi,q, respectively, that result when

assuming NR
i,q = 0 and NW

i,q = 1 in Definition 6.9 above. Similarly, let W ′′i,q and w′′i,q denote

the values of Wi,q and wi,q, respectively, that result when assuming NR
i,q = 1 and NW

i,q = 0 in

Definition 6.9 above.

Definition 6.12. Let R′i,q and r′i,q denote the values of Ri,q and ri,q, respectively, that result when

assuming NR
i,q = 0 and NW

i,q = 1 in Definition 6.10 above. Similarly, let R′′i,q and R′′i,q denote

the values of Ri,q and Ri,q, respectively, that result when assuming NR
i,q = 1 and NW

i,q = 0 in

Definition 6.10 above.

With these definitions in place, we can express the maximum duration that Ji may have to serve

as a priority donor. Recall from Definition 5.8 that we let lower(Ti) denote the set of tasks local to

Ti that could potentially cause Ji to incur pi-blocking upon release.

Lemma 6.29. Under the clustered OMLP’s RW protocol, a job Ji incurs at most bDi = max(b′i, b
′′
i )

s-oblivious pi-blocking upon release while serving as a priority donor, where

b′i = max
1≤q≤nr

max
Tx∈lower(Ti)

NW
x,q>0

{
LWx,q + b′x,q

}
, and

b′x,q = total(w′x,q, W
′
x,q) + total(r′x,q, R

′
x,q),

bounds the case of a writing priority recipient, and where

b′′i = max
1≤q≤nr

max
Tx∈lower(Ti)

NR
x,q>0

{
LRx,q + b′′x,q

}
, and

b′′x,q = total(w′′x,q, W
′′
x,q) + total(r′′x,q, R

′′
x,q).

bounds the case of a reading priority recipient.
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Proof. Follows analogously to Lemma 6.27 since Ji serves as a priority donor at most once and

at most for the duration of one request span. The maximum request span of a lower-priority write

request is bounded by b′i; the maximum request span of a lower-priority read reqeust is bounded

by b′′i . The maximum of either scenario bounds maximum s-oblivious pi-blocking due to priority

donation under the clustered OMLP for RW exclusion.

This yields the following bound on s-oblivious pi-blocking.

Theorem 6.9. Under the clustered OMLP’s mutex protocol, a job Ji incurs at most

bi = bDi +

nr∑

q=1

bi,q

s-oblivious pi-blocking due to read and write requests for shared resources, where bi,q and bDi are

defined as in Lemmas 6.28 and 6.29, respectively.

Proof. Follows from Lemmas 6.28 and 6.29, and the assumptions that resource requests are not

nested and that tasks do not migrate across cluster boundaries.

6.4.2.3 k-Exclusion

In this section, we establish a bound on s-oblivious pi-blocking under the clustered OMLP for

k-exclusion, which is presented in Section 6.2.4. As we did not consider spin-based k-exclusion

protocols (since we are not aware of any real-world applications that make use of k-exclusion

spinlocks), there is no equivalent to the following analysis in Chapter 5. Nonetheless, a non-

preemptive k-exclusion spinlock could be analyzed analogously to the following discussion.

The presented analysis is reasonably tight if blocking requests are relatively uniform in duration.

However, if request lengths are heavily skewed (i.e., if there are some infrequent, long-running

requests, but most requests are short), then a more accurate bound could likely be obtained by

applying multiprocessor response-time analysis for non-preemptive global FIFO scheduling to each

resource. In the following simpler analysis, which suffices for our purposes, some pessimism arises

because Lemma 6.12, which implicitly lower-bounds the request completion rate, does not take

non-uniform request lengths into account.
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Lemma 6.30. Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most bi,q s-

oblivious pi-blocking due to requests for resource `q, where

bi,q = total


Ni,q ·

⌈
m− kq
kq

⌉
,

m/c⋃

j=1

bi,q,j


 , and

bi,q,j =





top(Ni,q · c, tifs(τj , `q, ri, Ni,q)) if j 6= Pi

top(Ni,q · (c− 1), tifs(τj \ {Ti}, `q, ri, Ni,q)) if j = Pi.

Proof. By Lemma 6.5, priority donation ensures that at most c requests are incomplete at any time

in each cluster; therefore, at most c requests in each cluster precede Ji in KQq or hold a replica

of `q at the time that Ji issues a request. The FIFO ordering of jobs in KQq ensures a per-task

interference limit of Ni,q. Therefore, the set of the Ni,q · c longest requests issued by jobs in the jth

cluster, denoted bi,q,j , bounds the worst-case interference from jobs in that cluster. In the case of Ji’s

local cluster, only c− 1 requests can interfere since Ji’s own request counts towards the limit of c

concurrent requests imposed by priority donation.

Lemma 6.12 implies that Ji holds a replica of `q after at most d(m− kq)/kqe prior requests for

`q complete. Therefore, across all Ni,q requests, Ji is pi-blocked at most for the cumulative duration

of the Ni,q · d(m− kq)/kqe longest requests issued by jobs in any cluster.

To bound maximum s-oblivious pi-blocking due to priority donation, we again require a bound

for a single request. Such a bound can be obtained by applying Lemma 6.30 above to a single request.

Definition 6.13. Let b′i,q denote the value of bi,q computed assuming Ni,q = 1 in Lemma 6.30 above.

Recall from Definition 5.8 that we let lower(Ti) denote the set of tasks local to Ti that could

potentially cause Ji to incur pi-blocking upon release.

Lemma 6.31. Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most

bDi = max
1≤q≤nr

max
Tx∈lower(Ti)

Nx,q>0

{Lx,q + b′x,q}

s-oblivious pi-blocking upon release while serving as a priority donor.

Proof. Follows analogously to Lemma 6.27 and Lemma 6.29.
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Theorem 6.10. Under the clustered OMLP’s k-exclusion protocol, a job Ji incurs at most

bi = bDi +

nr∑

q=1

bi,q

s-oblivious pi-blocking due to requests for shared resources, where bi,q and bDi are defined as in

Lemmas 6.30 and 6.31, respectively.

Proof. Follows from Lemmas 6.30 and 6.31, and since resource requests are not nested.

This completes our analysis of s-oblivious pi-blocking under clustered JLFP scheduling with

arbitrary cluster sizes. Next, we consider s-aware pi-blocking under the FMLP+ in the case of

partitioned JLFP scheduling.

6.4.3 Partitioned FMLP+

While s-aware analysis differs substantially from s-oblivious analysis, the structure of the underlying

holistic analysis remains largely unchanged since each task’s request interference bound is not

affected by the way that suspension times are accounted for. In particular, since the partitioned

FMLP+ uses FIFO queues (like the clustered OMLP does), the per-task interference limit remains

unchanged (at most one directly blocking request per request). What changes, however, is the upper

bound on the number of requests that cause pi-blocking, which is n−1 per request under the FMLP+.

Since s-aware schedulability analysis for P-FP scheduling requires separate bounds on local

and remote pi-blocking (recall Theorem 2.14), we derive two corresponding bounds for the FMLP+.

The bound on s-aware pi-blocking due to remote tasks depends on whether requests are executed

preemptively or non-preemptively. We begin with the preemptive case, under which there are fewer

sources of pi-blocking.

6.4.3.1 Preemptive Request Execution

Recall from Section 6.3 that resource-holding jobs are priority-boosted under the FMLP+, and that

multiple resource-holding jobs are scheduled in order of the time at which they issued their respective

requests. This tie-breaking rule, together with the preemptive execution of requests, ensures that a
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request of Ji is only blocked by remote requests that were issued prior to its request. Therefore, each

remote task can block Ji at most once per request, that is, the per-task interference limit is one.

Additionally, in order for a task Tx on a remote processor Px (the processor to which Tx has

been assigned) to block Ji (either directly or indirectly), Ji must be directly blocked by some job

on processor Px. That is, if the set of resources requested by Ji is disjoint from the set of resources

accessed by tasks on processor Px, then Ji is independent from those tasks. In general, if Ji accesses

resources shared with tasks on processor Px at most y times, than each task in τPx can directly

or indirectly block Ji at most y times. To express this constraint, we require the following two

definitions.

Definition 6.14. Let dbj denote the maximum number of times that Ji is directly blocked by tasks

in τj (i.e., that a job of a task in τj precedes Ji in some queue FQq); formally

dbj ,

∣∣∣∣∣∣

nr⋃

q=1

tifs (τj , `q, ri, Ni,q))

∣∣∣∣∣∣
.

Definition 6.15. Let Dj denote the maximum number of times that Ji requests resources that are

also accessed by tasks in τj ; formally,

Dj ,
∑

`q∈A(j)

Ni,q,

where A(j) = {`q | ∃Tx ∈ τj : Nx,q > 0} denotes the set of resources accessed by tasks in τj .

With the above definitions in place, we can state the following bound.

Lemma 6.32. Under the FMLP with preemptive request execution, a job Ji incurs at most

bri =

m/c∑

j=1

j 6=Pi

∑

Tx∈τj

total


min(dbj , Dj),

nr⋃

q=1

tif (Tx, `q, ri)




s-aware pi-blocking due to requests for any resource issued by remote jobs.

Proof. By Lemma 6.17, each remote task Tx blocks Ji with at most one request, either directly or

indirectly, each time that Ji requests a resource that is also accessed by tasks in τj . Ji issues such
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requests at most Dj times. Further, each remote task Tx can indirectly block Ji only if Ji is directly

blocked, which happens at most dbj times. Therefore, the maximum s-aware pi-blocking incurred by

Ji due to requests of Tx is bounded by the duration of the min(dbj , Dj) longest requests issued by

jobs of Tx for any resource. Summing across all remote processors and all tasks on those processors

yields the aggregate bound on s-aware pi-blocking due to remote tasks.

A similar argumen yields a bound on maximum s-aware pi-blocking due to local lower-priority

tasks. Since the FMLP+ is tied to partitioned scheduling, local higher-priority tasks never cause Ji

to incur pi-blocking.

Definition 6.16. We let lower ′(Ti) denote the set of tasks local to Ti that may release lower-priority

jobs that execute while Ji is pending. Under P-FP scheduling, lower ′(Ti) = {Tl | Tl ∈ τPi ∧ l > i}

since we assume that tasks are indexed in order of decreasing priority. Under P-EDF scheduling,

lower ′(Ti) = {Tl | Tl ∈ τPi \ {Ti} ∧ dl ≥ di − ri } since such a task Tl may release a job with an

absolute deadline that is no earlier than Ji’s absolute deadline while Ji is still pending.

Under partitioned scheduling, lower-priority jobs can only issue requests for global resources

when Ji suspends due to being blocked by a remote task (or if Ji self-suspends for locking-unrelated

reasons). A straightforward bound on the number of locking-related suspensions is given by
∑nr

q=1Ni,q (i.e., in the worst case, Ji is blocked on each request). However, in corner cases where the

resources requested by Ji are only infrequently contested,
∑nr

q=1Ni,q may overestimate the number

of times that Ji will suspend (due to being directly blocked). In such cases, it is worthwhile to

consider a second bound that considers the number of times that Ji is directly blocked.

Definition 6.17. Let zi,q denote the maximum number of times that Ji suspends because one of its

requests for resource `q is directly blocked; formally

zi,q = min(Ni,q, |tifs (τ \ τPi , `q, ri, Ni,q)|) .

Lemma 6.33. Under the FMLP, a job Ji incurs at most

bli =
∑

Tx∈lower ′(Ti)

total


1 +

nr∑

q=1

zi,q,

nr⋃

q=1

tif (Tx, `q, ri)



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s-aware pi-blocking due to requests for any resource issued by local lower-priority jobs.

Proof. By Lemma 6.18, each local task Tl blocks Ji with at most one request (for any resource)

after Ji is released and each time that Ji resumes from a self-suspension (i.e., from being directly

blocked by a remote task). By assumption Ji does not self-suspend for locking-unrelated reasons; Ji

therefore resumes at most
∑nr

q=1 zi,q times in total. Therefore, the maximum s-aware pi-blocking

incurred by Ji due to requests of each Tl is bounded by the duration of the 1 +
∑nr

q=1 zi,q longest

requests issued by jobs of each Tl for any resource.

6.4.3.2 Non-Preemptive Request Execution

If requests are executed non-preemptively, then Ji is subject to additional s-aware pi-blocking from

remote tasks (pi-blocking due to local tasks remains unchanged, as previously discussed on page 462).

By Lemma 6.19, Ji can be delayed by the duration of one additional request each time that Ji is

directly delayed by a remote job. That is, if Ji is directly blocked dbj times by tasks on the jth

processor, then Ji can incur additional transitive pi-blocking for the cumulative duration of at most

dbj non-preemptive requests.

Lemma 6.34. Under the FMLP with non-preemptive request execution, a job Ji incurs at most

bri = bprei + bnpi s-aware pi-blocking due to requests for any resource issued by remote jobs, where

bprei =

m/c∑

j=1

j 6=Pi

∑

Tx∈τj

total


min(dbj , Dj),

nr⋃

q=1

tif (Tx, `q, ri)


 ,

bnpi =

m/c∑

j=1

j 6=Pi

total


dbj ,

nr⋃

q=1

tifs(τj , `q, ri, dbj)


 , and

where dbj and Dj are defined as in Definition 6.14 and Definition 6.15, respectively.

Proof. The first term, bprei , is equal to bri in Lemma 6.32 and follows analogously. The second term,

bnpi , bounds additional delays due to non-preemptive request execution: each time that Ji is directly

blocked by a remote jobs of tasks in τj , which occurs at most dbj times, Ji could be delayed for

the duration of one critical section. The sum of the duration of the dbj’s longest requests (for any

resource) by tasks in τj thus upper-bounds the additional delay due to non-preemptive execution.
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In summary, Lemmas 6.32, 6.33, and 6.34 yield the following bound on s-aware pi-blocking

under the FMLP+.

Theorem 6.11. Under the FMLP, a job Ji incurs at most bi = bli + bri s-aware pi-blocking, where bli

is defined as in Lemma 6.33, and bri is defined as in Lemma 6.32 if requests are executed preemptively

or as in Lemma 6.34 if requests are executed non-preemptively.

This concludes our analysis of the suspension-based locking protocols proposed in this disserta-

tion. An empirical evaluation is presented in Chapter 7.

6.5 Summary

We have discussed pi-blocking in suspension-based locking protocols and proposed maximum pi-

blocking as a natural measure of a locking protocol’s blocking behavior. We identified two classes of

commonly-used schedulability analysis, namely s-oblivious and s-aware analysis, and showed lower

bounds on maximum pi-blocking of Ω(m) and Ω(n), respectively. The OMLP family of protocols

for mutual, RW, and k-exclusion is asymptotically optimal under s-oblivious analysis under any

JLFP scheduler with arbitrary cluster sizes. In the special case of mutex constraints under global

scheduling, this can be achieved with priority inheritance. To achieve optimality in the other cases

(i.e., RW and k-exclusion, or if 1 < c < m), a new form of restricted priority boosting, named

priority donation, is required. In the case of s-aware analysis, the FMLP+, which is based on priority

boosting, is asymptotically optimal under any partitioned JLFP scheduler. In the case of c > 1, no

protocol is currently known to be asymptotically optimal for arbitrary JLFP schedulers. In particular,

priority inheritance and priority boosting may cause Ω(φ) s-aware pi-blocking if c > 1, where φ can

be chosen to be arbitrarily large. Nonetheless, the global FMLP ensures O(n) s-aware pi-blocking in

the case of zero tardiness and G-EDF scheduling with constrained deadlines, G-EDF-like scheduling

with constrained, fixed relative priority points, and G-FP scheduling with RM priorities. In addition

to asymptotic bounds, we have also presented detailed blocking analysis of each of the protocols in

the OMLP family and the partitioned FMLP+.
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CHAPTER 7

OVERHEAD-AWARE EVALUATION
OF REAL-TIME LOCKING PROTOCOLS∗

In the preceding two chapters, we have introduced several real-time locking protocols for

spin-based and semaphore-based synchronization. For the OMLP family of protocols and for the

partitioned FMLP+, we have established asymptotic optimality with regard to s-oblivious and s-

aware maximum pi-blocking, respectively. However, as noted in Section 6.3.4, claims of optimality

do not necessarily translate to meaningful real-world performance since they do not reflect constant

factors and differences in implementation overhead. For example, we discussed a similar case in

Chapter 4: even though pfair scheduling is optimal (with respect to implicit-deadline tasks) on a

multiprocessor, in practice, we found the non-optimal P-EDF to be preferable in terms of achieved

schedulability due to P-EDF’s lower implementation overheads. An overhead-aware evaluation

of the proposed locking protocols is thus required to assess their practicality. In this chapter, we

present such an evaluation (in terms of schedulability) of the proposed locking protocols on the

same experimental platform previously described in Section 2.1 and Chapter 4. To reiterate, the

experiments discussed in this chapter were carried out on a 24-core, UMA Intel Xeon L7455 system

with three levels of shared caches (with a cache-line size of 64 bytes) and 64 GB of main memory.

In this chapter, we first explain how we accounted for locking overheads during schedulability

analysis. Thereafter, in Section 7.2, we report on micro-benchmarks that we carried out to determine

whether ticket-based or queue-based spinlocks are more efficient on our hardware platform. Finally,

we compare and contrast mutex and RW spinlocks, semaphore protocols for s-oblivious analysis, and

semaphore protocols for s-aware analysis in terms of HRT and SRT schedulability in Sections 7.3–7.6.

∗ Contents of this chapter previously appeared in preliminary form in the following paper:
Brandenburg, B. and Anderson, J. (2010b). Spin-based reader-writer synchronization for multiprocessor real-time systems.
Real-Time Systems, 46(1):25–87.



Event-driven scheduling is assumed throughout this chapter since we do not consider locking under

PD2, as discussed in Chapter 5.

7.1 Accounting for Locking Overheads

Locking protocols cause jobs to incur additional overheads. Conceptually, these overheads can

be accounted for similarly to scheduling overheads, that is, by inflating task and resource sharing

parameters to obtain a safe approximation of a task set prior to applying overhead-unaware blocking

analysis. However, while the approach is the same, deriving safe approximations of locking-related

overheads is in fact much more complicated than is the case when taking just scheduling overheads

into account. For one, locking protocols expose jobs to several additional overhead sources besides

regular scheduling overheads. These include direct overheads (such as system calls) and indirect

overheads that arise when resource-holding jobs are delayed. Additional complexity arises because

lock requests on one processor may race with unlock operations on another processor, which allows

for corner cases that are difficult to analyze. Similar races are possible with other asynchronous

events such as job releases. Generally speaking, the concurrency inherent in multiprocessor locking

protocols makes identifying the scenarios that expose jobs to worst-case overheads a significant

challenge.

To the best of our knowledge, safe approximations of locking-related overheads have not been

studied in detail in prior work. In this section, we present an initial analysis of overheads as they

arise in spinlock and semaphore protocols. However, due to the inherent complexity and the number

of considered locking protocols, our analysis remains non-exhaustive. That is, although we derive

safe approximations that consider all major overheads in the common case, it is not clear that the

considered scenarios necessarily represent worst-case scenarios (see Section 7.1.6). The presented

analysis should thus be understood as an initial step towards complete locking overhead accounting

that will have to be augmented in future work (as discussed in further detail in Chapter 8). We begin

with a discussion of interrupts, which greatly complicate locking overhead accounting.
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Figure 7.1: Schedule illustrating locking-related transitive interrupt delays. When a resource-holding
job is stopped by an interrupt service routine (ISR), any jobs waiting for the resource to be released
are transitively delayed as well. In the depicted example, job J1 on processor 1 is stopped by an ISR
during [2–4]. This increases J1’s effective request length, which causes job J2 on processor 2 to
incur additional s-blocking.

7.1.1 Transitive Interrupt Delays

An ill-timed interrupt can stop a resource-holding job if interrupt delivery is not disabled entirely

while jobs access shared resources. This extends the duration during which the resource is unavailable,

thereby transitively extending the acquisition delay (and hence pi-blocking or s-blocking) of any job

waiting for the resource to be released.

Example 7.1. An example of this effect is shown in Figure 7.1, which depicts an MSRP schedule of

two jobs sharing one resource under P-EDF. Scheduling and locking overheads have been omitted

for the sake of clarity. Job J1 acquires the shared resource `1 first at time 1. Shortly thereafter, job

J2 also requests `1 and busy-waits. At time 2, J1 is stopped due to an interrupt, which transitively

delays J2. After the ISR completes at time 4, J1 is further delayed by a partial cache affinity loss due

to the execution of the ISR,1 which also transitively affects J2. As a result, J2 incurs s-blocking for

more than five time units even though J1’s request is only three time units long. ♦

In a process-based system such as LITMUSRT where non-preemptive sections are not imple-

mented by disabling interrupts, all interrupt sources can cause transitive delays in the presence of

locks. However, even in embedded RTOSs that allow jobs to disable interrupts, transitive interrupt

1Realistically, the impact of cache-affinity loss inside a critical section should be small since critical sections are
typically short in well-designed systems, which implies a small working set. Nonetheless, such delays will have to be
taken into account when developing WCET analysis techniques (which is not within the scope of this dissertation). If the
effect is known, then it can be accounted for as part of the costs of interrupts as discussed in Section 3.4.4.
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Figure 7.2: P-EDF schedule illustrating pi-blocking due to remote ISR execution.

delays may arise in the case of semaphore protocols, where jobs are typically preemptable (priority

boosting has no effect on ISRs, which are not subject to scheduling).

Accounting for transitive delays due to remote interrupts that stopped a resource-holding job

is challenging due to the indirect nature of the delay, and because interrupt accounting is already

pessimistic even when jobs do not acquire locks. To illustrate the possibly long dependency chain,

consider the example shown in Figure 7.2: a job Jh incurs pi-blocking upon release due to a non-

preemptably spinning local job Js, which in turn is delayed by a remote interrupt that stopped the

resource-holding job Jr. There are two approaches that could be followed to resolve this situation.

One possible method is to inflate the maximum critical section length to account for each ISR

that could stop the resource-holding job. Since request lengths are typically much shorter than task

periods and the quantum size, this effectively amounts to inflating each request length Li,q by Ω(n)

ISRs, which results in tremendous pessimism. For example, a typical critical section length is 10µs;

a typical release interrupt under P-EDF or P-FP is not much shorter. Inflating such a critical section

to account for each possible release interrupt increases its length by several orders of magnitude.

The second approach exploits the fact that ISRs execute with statically higher priority and thus

are always considered to delay real-time jobs. For example, suppose Jh, Js, and Jr are scheduled

under G-EDF. Then the release interrupt that stopped Jr might just as well have stopped Js, or Jh

had it been scheduled on another processor. That is, under G-EDF, each job already accounts for all

possible interrupt sources anyway (with the exception of timer ticks, see below), such that it does not

matter whether the delay was incurred directly or indirectly.

491



Under partitioned and clustered scheduling, however, the parameters are not inflated to account

for interrupts in other clusters or partitions. If locking protocols are used, then this separation

unfortunately has to be removed to account for transitive delays. That is, when creating ISR tasks

under FP scheduling or when applying preemption-centric interrupt accounting under EDF-based

schedulers, all interrupt sources must be modeled: each release interrupt source, regardless whether

the corresponding task has been assigned to a remote cluster, and each timer tick on every processor

(since a job may incur transitive delays from multiple timer ticks). This effectively models interrupts

as executing on all processors at the same time. While this is also pessimistic, it is likely less so than

inflating each critical section by several orders of magnitudes.

Unfortunately, no less-pessimistic accounting approach has been proposed in the published

literature to date.2 In some sense, delays due to remote interrupts are the price that is paid for

introducing cross-processor (or cross-cluster) dependencies. The risk of such delays also suggests

that it may be preferable to allow jobs to turn off interrupts completely if temporal constraints are

stringent to avoid remote interrupt delays, which is somewhat counterintuitive. Such considerations

and tradeoffs, however, remain the subject of future work at this point. In the following, we avoid

the complex interaction between locking and interrupt handling altogether by assuming dedicated

interrupt handling.

7.1.2 Spinlock Protocols

In the absence of interrupts, non-preemptive spinlock protocols are the easiest to analyze, due to

two reasons. First, waiting jobs do not yield their assigned processors and hence do not lose cache

affinity, and, second, they do not require system calls for the lock and unlock procedures (assuming

non-preemptive sections are implemented as described in Section 3.3.2).

Example 7.2. Figure 7.3 depicts an example MSRP schedule showing two jobs on two processors

sharing a resource. The choice of locking protocol, however, is irrelevant as the depicted overheads

arise under any locking protocol. Locking-related overheads have been exaggerated for illustration

purposes; other scheduling overheads have been omitted for clarity.

2To the best of our knowledge, prior work has not considered locking-induced transitive interrupt delays at all.

492



⌧2

⌧1

1050

T1

T2

e x
release

completion

job scheduled

lock attempt

critical section

busy-waiting

locked

unlocked

on processor
1 2

e

x

entry section

exit section

cache-line migration

e x

Figure 7.3: Schedule illustrating locking overheads in non-preemptive spinlock protocols. The
effective maximum request length L′i,q depends on the length of the protocol entry section (during
which the lock is acquired), the protocol exit section (during which the lock is released), and the cost
of migrating the shared resource’s cache lines (if any). Since cache-line migrations are generally
unavoidable for shared data structures, we assume in this dissertation that the cost of cache-line
migrations is already included in each maximum request length Li,q.

Job J1 requests the shared resource at time 1 on processor 1 and starts to execute the entry

section of the protocol, which includes executing LITMUSRT’s non-preemptive section protocol

(as described in Section 3.3.2). J1 does not actually start to use the resource until time 2 when it

has completed the entry section. Meanwhile job J2 is busy-waiting on processor 2 and transitively

delayed by J1’s entry section overhead.

At time 6, J1 has completed its critical section. However, it must first execute the exit section to

pass ownership of the lock to J2, and to check whether a delayed preemption is required as part of

LITMUSRT’s non-preemptive section protocol. J2 holds the lock at time 7, but must finish executing

the entry section before it starts executing its request. While busy-waiting is implemented as part of

the entry section, we do not consider it part of the entry section overhead since it is due to resource

unavailability, and not due to implementation overheads. The entry section overhead encompasses

all costs associated with acquiring a lock that are not related to busy-waiting (such as initializing

data structures, becoming non-preemptable, and enqueueing in wait queues).

A special case of cache-related delay is incurred by J2 during [8, 9), namely cache-line migra-

tions. Since J1 just finished using the shared resource on processor 1, the memory-resident shared

state is virtually guaranteed to still reside in (at least) the lower-level caches of processor 1. When

J2 updates these cache lines, they must be invalidated on processor 1 and loaded into the cache of

processor 2. This illustrates that if a global resource is contested, then critical sections typically

execute in a cache-cold manner. ♦
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Notation Overhead

∆in protocol entry section overhead
∆out protocol exit section overhead

∆sci system call entry path overhead
∆sco system call return path overhead

Table 7.1: Summary of the overheads that arise in locking protocols and our notation. See Table 3.2
for a summary of scheduling-related overheads.

Entry and exit section. Accounting for the time spent executing entry and exit sections is straight-

forward. A job Ji acquires a resource at some point in time during the execution of the entry section,

and the resource becomes available again to other jobs at some point during the execution of the exit

section. This means that execution of the entry and exit section comprise part of Ji’s critical section

and can thus be accounted for by inflating the maximum request length.

Let ∆in denote the maximum duration of the locking protocol’s entry section (not counting any

acquisition delay), and let ∆out denote the maximum duration of the locking protocol’s exit section.

A summary of our locking-related notation is given in Table 7.1. A safe approximation with regard

to entry and exit section overhead can be obtained by inflating each Li,q by ∆in + ∆out time units.

The processor time spent entering and exiting critical sections must also be reflected in Ti’s

inflated execution time requirement. Recall that Ni,q denotes the maximum number of times that any

Ji accesses `q. The amount of time spent entering and exiting critical sections is thus bounded by

(∆in + ∆out) ·∑1≤q≤nr
Ni,q.

Delayed preemption. While not shown in Figure 7.3, a job may have to invoke a system call,

namely sched yield(), as part of the non-preemptive section protocol when a delayed preemption

is required. Invoking a system call requires a transition to and from kernel mode, which causes the

preempted job to incur additional overheads. Notably, this cost is incurred after the lock has been

released and hence does not affect the effective maximum request length. Nonetheless, the additional

system call does potentially increase the worst-case execution requirement of the job and hence must

be reflected by an increase in the inflated execution time requirement e′i.

Let ∆sci (“system call in”) denote the maximum cost of entering the kernel as part of a system

call, and let ∆sco (“system call out”) denote the maximum cost of the system call return path. The
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amount of time spent entering and exiting the kernel due to delayed preemptions is then bounded by

(∆sci + ∆sco) ·∑1≤q≤nr
Ni,q.

Taken together, entry and exit sections and delayed preemptions require the following increases

in each task’s maximum request lengths and execution requirement to account for spinlock overheads.

L′i,q ≥ Li,q + ∆in + ∆out if Ni,q > 0 (7.1)

e′i ≥ ei + (∆in + ∆out + ∆sci + ∆sco) ·
∑

1≤q≤nr

Ni,q (7.2)

This transformation allows direct spinlock-related overheads—in the absence of interrupts—to be

accounted for when applying the overhead-unaware blocking analysis presented in Chapter 5 (and

when applying overhead-unaware schedulability tests). In the case of RW spinlocks, overheads can

be accounted for using the same approach, although read and write requests typically have different

entry and exit section costs.

Cache effects. An additional cache-related delay that is not reflected in Equations (7.1) and (7.2)

occurs during [8, 9) when J2’s critical section causes cache-lines to be migrated from processor 1 to

processor 2. In general, this is unavoidable since a shared resource is very likely cached in remote

processors whenever it is contended. Therefore, we assume that each bound Li,q already accounts

for this. If such a bound is determined using WCET analysis, a cold cache must be assumed at the

beginning of the critical section; if critical section lengths are approximated empirically, then the

cache should be flushed prior to measurements (or, better yet, measured immediately after migrating

the benchmark task).

Next, we discuss overheads as they arise in semaphore-based locking protocols.

7.1.3 Non-Preemptive Semaphore Protocols

Overheads are generally much higher under semaphore protocols than under spinlock protocols

as kernel support is required to enact priority boosting, priority inheritance, or priority donation.

Therefore, system call overhead is incurred each time that a job executes an entry or exit section.

Further, a requesting job suspends if a resource is unavailable, which causes it to lose cache affinity,

and to incur CPMD when it resumes, just as if it were preempted.
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Figure 7.4: Schedule illustrating locking overheads in non-preemptive semaphore protocols. Since
suspending requires kernel support, the entry and exit sections of semaphore protocols are imple-
mented as system calls. Jobs issuing resource requests thus incur the cost of entering and exiting
the kernel (denoted in the figure as “sci” and “sco”, respectively). Additional overheads arise due to
the invocation of the scheduler, required context switches, and the loss of cache affinity. Finally, as
remote scheduler invocations require IPIs to be sent, jobs are also delayed by IPI latency.

The semaphore protocols considered in this dissertation can be organized into two groups: those

that allow critical sections to be preempted (such as the MPCP, the DPCP, the global OMLP, and

the preemptive variant of the FMLP+), and those that do not (such as the clustered OMLP based on

priority donation and the non-preemptive variant of the FMLP+). We first consider the latter kind.

Example 7.3. Figure 7.4 depicts a non-preemptive FMLP+ schedule depicting four tasks sharing

one resource `1 on three processors (under P-FP scheduling). Only locking-related overheads are

shown, all other overheads have been omitted to avoid clutter.

The execution of job J4 on processor 3 demonstrates the overheads involved in an uncontested

semaphore acquisition. J4 requires `1 at time 1. To issue a request, it invokes a system call and hence

incurs system call entry overhead during [1, 2). In kernel mode, it executes the entry section of the

FMLP+ during [2, 3), during which it acquires `1 and becomes priority-boosted. However, before

being able to execute its request, J4 must first execute the system call return path. After finishing its

request at time 8, J4 unlocks the resource by issuing a second system call to execute the exit section,
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which causes the next waiting job to be resumed and to restore J4’s base priority. Processor 2 is

notified of the need to schedule the next resource holder, job J3, by means of an IPI.

J3 on processor 2 demonstrates the overheads involved in a contested lock acquisition that is

aided by priority boosting. J3 requires `1 at time 2. It invokes a system call to lock the resource, but

since it is already being held by J4, J3 suspends instead. When a job suspends, the scheduler (called

at time 4) is required to select another process to execute (possibly the idle process) and a context

switch must be carried out (at time 5). This highlights another cost of suspension-based locking

protocols: jobs that must wait indirectly trigger the acquisition of scheduler locks. In global and

clustered schedulers with heavy lock contention, this can result in high lock acquisition costs.

While J3 is suspended, the higher-priority job J2 is released on processor 2. It first commences

execution normally, but at time 10 resource `1 becomes available, which is the resource that J3 has

been waiting for. J3 hence benefits from priority boosting and preempts J2 when the scheduler is

triggered by the reception of an IPI at time 11. After the context switch at time 12, J3 resumes,

leaves kernel mode, and then executes its short critical section. As part of unlocking `1, J3 loses the

benefit of priority boosting, which lowers its effective priority below that of J2. Consequently, the

scheduler is invoked at time 17 and a context switch to J2 is carried out at time 18. This allows J2 to

finish its normal execution, however, due to the preemption by J3, it has (partially) lost cache affinity.

Therefore, it is slowed down (to some extent) by CPMD during [19,20).

Finally, job J1 (which requested `1 shortly after J3 at time 4) is resumed at time 18. As is the

case with J3 during [10, 11), J1 is not immediately resumed when it becomes the resource holder.

Rather, its processor must first be notified with an IPI to trigger the scheduler. Therefore, J1 is

delayed by IPI latency during [17, 18). After resuming, J1 executes its request similarly to J3.

However, since there is no higher-priority job pending on processor 1, J1 continues execution at

time 28 after unlocking `1. Since J1 was suspended during [7, 17), it has likely lost cache affinity (for

example, non-real-time background jobs may have polluted the cache in the meantime). Therefore, it

suffers CPMD when it resumes execution, just as if it had been preempted. CPMD does not increase

the duration of the request itself since we assume that each maximum request length Li,q already

incorporates all cache effects. ♦
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Using the safe approximation approach, the overheads that arise in this scenario can be integrated

into overhead-unaware blocking and schedulability analysis by inflating each e′i and L′i,q. However,

special attention must be paid to the location of blocked jobs.

Local vs. remote request length. The preceding example illustrates that the effective length of J3’s

critical section differs depending on the point of view of local and remote jobs. From the point of

view of the remote job J1, J3’s request lasts from time 10, when J4 releases `1, until time 17, when

J1 becomes the resource holder. The delays that affect J1 include the IPI latency that affects when a

previously-waiting resource holder is resumed (in Figure 7.4 at time 10), a scheduling decision, a

context switch, a system call, and the cost of executing the locking protocol’s exit section.

A local job is further affected by all local scheduler invocations, including those triggered when

priority boosting (or priority donation) ceases. In the depicted example, the local job J2 is delayed

by the scheduler invocation after J3’s request is complete (in Figure 7.4 at time 17).

Due to this difference in delay, we differentiate in the following between the local maximum

effective request length, denoted as L
′loc
i,q , and the remote maximum effective request length, denoted

as L
′rem
i,q . Before bounding both effective request lengths, we must take into account the effect of

priority boosting on cache affinity.

Critical sections and CPMD. In semaphore-based locking protocols, a job executing a request can

cause other jobs to incur additional CPMD. One case in which this happens is when a job with higher

base priority is preempted by a resource-holding job with higher effective priority (either due to

priority boosting or due to priority inheritance). For example, in Figure 7.4, J3 is priority-boosted

and preempts J2 at time 13. Consequently, when J2 continues to execute at time 19, it has partially

lost cache affinity and incurs CPMD. However, since the cache footprint of a critical section is likely

small (compared to job’s entire WSS), the extent of CPMD is likely much smaller than that after

a “regular” preemption by a job with higher base priority (and a large cache footprint). It would

thus be unfairly pessimistic to inflate each critical section to account for “full” CPMD (as measured

after a complete loss of cache affinity); instead, the cache footprint of each critical section should be

considered when bounding cache-related delays.

Conceptually, CPMD due to priority-boosted request execution could be determined using the

methodology that we used for regular CPMD (see Section 4.4). However, the effect of reasonably-
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Figure 7.5: P-FP schedule illustrating that a lower-priority job can incur additional CPMD due to
the self-suspension of a higher-priority job. In the example, J1 preempts J2 once when J1 is released
and once when J1 resumes from waiting. Consequently, J2 incurs CPMD twice—once at time 4, and
again at time 9. Of these, only the CPMD at time 9 is accounted for by non-locking-related CPMD
accounting as described in Section 3.4.3.

sized critical sections is likely so small as to be indistinguishable from noise. We therefore make the

simplifying assumption that preemptions caused by priority-boosted request execution do not cause

CPMD. This matches our earlier assumption that ISR execution does not cause CPMD, either. Note,

however, that this may potentially introduce a slight bias in favor of semaphore protocols and against

spinlock protocols (which do not cause any additional CPMD).

Another case in which resource sharing causes additional CPMD is when a lower-priority job

suffers additional preemptions. This is illustrated in Figure 7.5.

Example 7.4. The P-FP schedule depicted in Figure 7.5 shows three jobs on two processors sharing

one resource under the MPCP. Overheads other than CPMD have been omitted.

Job J3 on processor 2 acquires resource `1 first. On processor 1, the lower-priority job J2 is

scheduled first and develops cache affinity. At time 2, it is preempted by the higher-priority job J1,

which proceeds to request `1. Since J3 is already holding `1 at the time, J1 suspends. This allows

J2 to continue execution; however, it has lost cache affinity due to J1’s execution and hence suffers

CPMD during [3,4).

When J1 resumes at time 6, it again preempts J2. Since J1 has a higher base priority than J2, J1

remains scheduled after releasing `1 at time 7. After J1 completes at time 9, J2 is scheduled again

and suffers CPMD a second time during [9,10). Without J1’s self-suspension, J2 would have only

been preempted by J1’s arrival, and hence incurred CPMD only once. ♦
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The example demonstrates that a job that resumes can affect lower-priority jobs as if it were

released again. Similar to how “regular” CPMD is charged to the preempting higher-priority job

(recall Section 3.4.3), this additional delay must be reflected in the parameters of tasks that suspend.

Safe approximation. To account for the overheads depicted in Figures 7.4 and 7.5, a task’s effective

execution requirement, each effective maximum request length, and its maximum self-suspension

time must be inflated. We consider the execution requirement first.

For each request issued by a job Ji, the effective execution requirement e′i must reflect the

following sources of overhead.

• Two system calls: one to lock and one to unlock the requested resource.

• The entry and exit sections to acquire and release the lock (executed in kernel mode).

• Three scheduler invocations and context switches: one to suspend while waiting, one to resume,

and one when priority boosting or priority donation ceases. For example, in Figure 7.4, J3 is

delayed by these costs at times 4, 11, and 17, respectively.

• Two instances of CPMD: one due to the loss of cache affinity while waiting to acquire the lock,

and one to account for the loss of cache affinity of a preempted lower-priority job (if any). For

example, in Figure 7.5, J1 incurs the former kind of CPMD at time 7, and causes the latter

kind of CPMD at time 3.

Formally, e′i is inflated as follows.

e′i ≥ ei +


 ∑

1≤q≤nr

Ni,q


 · (2∆sci + 2∆sco + ∆in + ∆out + 3∆sch + 3∆cxs + 2∆cpd ) (7.3)

Note that if real-time tasks are not shielded from interrupts, then the inflation of the execution

requirement is required prior to interrupt accounting since locking overheads increase Ji’s exposure

to interrupts. Further, recall from Section 3.4.5 that preemption-centric interrupt accounting is based

on the assumption that each “subjob” executes consecutively (between preemptions). If jobs suspend,

then this is no longer the case. Therefore, when using preemption-centric accounting, each possible

suspension requires an additional inflation of e′i by cpre time units after all other overheads have been

accounted for to reflect the potential creation of an additional “subjob.” However, since we assume
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in this chapter that real-time tasks are shielded from interrupts, this concern is not relevant to our

experiments.

Next, we bound the effective maximum request length. We first consider the remote case L
′rem
i,q .

From the point of view of a waiting remote job (such as J1 in Figure 7.4), the remote effective request

length must reflect the following overhead sources.

• IPI latency, which transitively delays waiting jobs while the resource holder is not yet scheduled.

In Figure 7.4, this delay affects J1 during [10,11) while processor 2 awaits the incoming IPI.

• One scheduler invocation and a context switch, which occur when the priority-boosted job

resumes. For example, in Figure 7.4, J3 delays J1 with these overheads during [11,13).

• The system call return path, which is executed before the resuming job can execute its request.

For example, J3 leaves the kernel at time 13 in Figure 7.4.

• The system call entry path, with is executed prior to unlocking the resource. In Figure 7.4, J3

invokes the unlock system call at time 15.

• The cost of executing the exit section, which prolongs the duration during which Ji is priority

boosted (e.g., J3 remains priority-boosted until time 17).

Formally, L
′rem
i,q is inflated as follows (if Ni,q > 0).

L
′rem
i,q ≥ Li,q + ∆sch + ∆cxs + ∆sci + ∆sco + ∆out + ∆ipi (7.4)

As discussed above, from the point of view of a local higher-priority job that is preempted

(such as J2 in Figure 7.4), the effective maximum request length must also take the effect of the

final scheduler invocation and context switch into account. Formally, L
′loc
i,q is inflated as follows (if

Ni,q > 0).

L
′loc
i,q ≥ Li,q + 2∆sch + 2∆cxs + ∆sci + ∆sco + ∆out + ∆ipi (7.5)

Note that, under the clustered OMLP, there is at most one local blocking request since a job serves

as priority donor at most once.
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Finally, the effect of IPI latency on the maximum duration of self-suspension must be considered.

Since a job is not immediately resumed when it becomes the resource holder, any IPI latency increases

the duration of self-suspension. Therefore, the total maximum duration of self-suspension (after

blocking terms have been determined) must be increased as follows.

susp′i ≥ suspi +


 ∑

1≤q≤nr

Ni,q


 ·∆ipi (7.6)

This is in addition to the increase in effective remote request length reflected by Equations (7.4)

and (7.5) because they account only for IPI latency while other jobs hold `q, whereas Equation (7.6)

accounts for IPI latency while Ji holds `q. Under s-oblivious analysis, susp′i is added to the execution

cost (i.e., susp′i is part of e′i).

7.1.4 Preemptive Semaphore Protocols

The preceding analysis is appropriate of the non-preemptive variant of the FMLP+ and the clustered

OMLP based on priority donation (since priority donation prevents that resource-holding jobs are

preempted). When resource-holding jobs can be preempted by other resource-holding jobs, as is the

case under the preemptive FMLP+, under the MPCP, and under the global OMLP, then remote jobs

may transitively incur additional scheduling costs. This is illustrated in Figure 7.6.

Example 7.5. The depicted schedule shows four jobs on three processors sharing two resources `1

and `2. Jobs J1 and J2 both request resource `1; jobs J3 and J4 request resource `2. P-FP scheduling

with the MPCP is assumed in this example. Recall that under the MPCP jobs are priority-boosted to

the highest remote priority, as specified in Equation (2.10) on page 129. Consequently, when both J2

and J3 are priority boosted, J2 has a higher effective priority since it shares a resource with J1 on

processor 1.

Consider the events on processor 2. Both J2 and J3 are released at time 0. Since J2 has higher

priority than J3, J2 is scheduled first. It requests `1 at time 2, which, however, has already been

locked by J1 at time 1 on processor 1. The resulting suspension of J2 gives J3 a chance to execute

and to request and acquire `2. While J3 is still executing its request, J1 releases `1 and J2 resumes
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Figure 7.6: Schedule illustrating additional preemption overheads in preemptive semaphore protocols.
System call, entry section, and exit section overheads have been omitted to avoid clutter. In the
depicted MPCP example, job J2 preempts the resource-holding job J3 at time 8 since J2 has a higher
priority than J2 and both jobs are priority-boosted at the time. This increases J3’s effective request
length by the cost of two scheduler invocations and cache affinity loss. Because J1 is waiting for J3

to release `2, J2’s preemption of J3 transitively increases the duration of pi-blocking incurred by J1.

as a result. As both J2 and J3 hold resources at the time, J2 preempts J3 according to the MPCP’s

priority boosting rule. This preemption creates two additional delays.

First, when J3 continues executing its critical section at time 13, it has potentially lost some

cache affinity (however small it may be inside a critical section). Since we have currently no way of

measuring such small disturbances, we consider this delay to be negligible for a lack of alternatives.

Second, the additional scheduler invocations and context switches transitively delay J4, which

is waiting on processor 3 for J3 to release `2. In particular, note that J4’s additional delay includes

both the scheduler invocation and context switch that occur when J2 preempts J3 as well as those

that occur when J3 resumes execution. ♦

Generally speaking, this example shows that, if resource requests are executed preemptively,

then remote jobs can be transitively delayed by the scheduling and context switch cost that arise after

a resource has been released. The effective maximum request length—from the point of view of

remote jobs—must hence be inflated to account for two scheduling decisions, and not just one as in
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Equation (7.4), if requests are executed preemptively. This leads to the following inflation.

L′i,q ≥ Li,q + 2∆sch + 2∆cxs + ∆sci + ∆sco + ∆out + ∆ipi (7.7)

Equation (7.7) charges the scheduling and context-switch costs to the preempting critical section,

analogous to how regular preemptions are charged. This works because the pi-blocking bounds of

jobs waiting for the lower-priority critical section to end include the request length of any preempting

requests. Note that Equation (7.7) is identical to Equation (7.5), that is, when requests are executed

preemptively, the effective critical section length is the same for both local and remote jobs.

Besides the MPCP and the preemptive FMLP+, this analysis also applies to the global OMLP,

which is based on priority inheritance. Like preemptive priority boosting, priority inheritance

allows jobs that execute a critical section to be preempted by other resource-holding jobs. Further,

priority inheritance also allows resource-holding jobs to be preempted by non-resource-holding

jobs. However, this only occurs if the resource-holding job is not incurring s-oblivious pi-blocking

(otherwise it would not be preempted). Therefore, the scheduling costs associated with such

preemptions are not actually locking-related and have already been considered by regular release and

preemption delay accounting (see Section 3.4.3), and hence do not have to be considered here.

7.1.5 Remote Procedure Calls

Recall from Section 2.4.4.2 that the DPCP is based on the RPC model: resources are assigned to

processors, and jobs activate remote agents to access non-local resources. In a distributed memory

system, agents are necessarily implemented as separate processes that await incoming requests.

However, in a shared-memory system (such as LITMUSRT), remote requests can be realized by

migrating the requesting job to the target processor, and back to the job’s assigned processor when it

has completed its request. In this model, agents are merely a modeling abstraction that simplifies

reasoning about the protocol. The version of LITMUSRT underlying this dissertation follows the

latter approach since it avoids the need for additional processes, and because it lets the DPCP

conform to LITMUSRT’s standard locking API (i.e., if jobs are migrated directly, no DPCP-specific

system calls are required to implement the DPCP scheduling rules). Regardless of how remote

504



⌧2

⌧1

20 25151050

T1

T2

A2
1 e x

sci sco

sco

s

sci s

IPI latency

s s

IPI latency

release

completionjob scheduled

lock attempt

critical section

locked

unlocked

on processor
1 2

e

x

entry section

exit section

sci

sco

s scheduling overhead

context switch

system call in

system call out

deadline

cache affinity loss

Figure 7.7: Schedule illustrating locking-relate overheads that arise under the DPCP. As the DPCP
is based on the RPC model, the requesting job must first issue a request to its remote agent, which
requires kernel support and hence incurs system call overhead. The remote processor is notified of
the pending request with an IPI. Since IPIs are not delivered instantaneously, the requesting job is
further twice delayed by IPI latency (once due to the request, and once due to the response).

agents are implemented, additional overheads arise due to the latencies inherent in cross-processor

communication or job migrations.

Example 7.6. Figure 7.7 depicts a simple example DPCP schedule of two jobs (and one agent)

sharing one resource on two processors. The single resource, `1, is assigned to processor 2.

Job J1 on processor 1 requires `1 at time 2. As the DPCP requires kernel support, J1 invokes a

system call to request `1. The kernel then temporarily assigns J1 to processor 2’s ready queue and

initiates J1’s migration by switching away from its stack, which requires invoking the scheduler to

select another process to execute.

At time 5, it is safe for J1 to migrate to processor 2 since its stack is no longer in use. Therefore,

processor 2 is notified with an IPI to preempt the currently scheduled job J2. Since the agent A2
1

(implemented by J1’s process in LITMUSRT) is priority boosted, it is scheduled immediately and

executes the entry section at time 8 to acquire `1 (recall that the DPCP uses the PCP locally). The

agent then leaves the kernel, executes the request, and finally releases `1 with another system call. In

LITMUSRT, sending a “response” involves re-assigning J1 to its original processor and initiating a

context switch to enable J1 to be migrated. This allows J2 to continue its execution at time 15. Since

J2 was preempted during [8,15), it is further (slightly) slowed down by CPMD during [15,16)—as
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Figure 7.8: DPCP schedule demonstrating that a remote agent executing the PCP causes three
additional scheduler invocations if the requested resource is currently unavailable. For the sake of
clarity, overheads are shown only on processor 2 and have been omitted on processors 1 and 3.

discussed in Section 7.1.3 above, we consider CPMD caused by the small cache footprint of critical

sections to be negligible.

When processor 1 receives the IPI notifying it of the need to reschedule, it selects J1 to be

scheduled. J1 then leaves kernel mode and continues execution. However, since J1 was suspended

during [6,16), it likely lost cache affinity (e.g., due to the execution of background processes) and

incurs CPMD during [19,20) as it refetches its working set into processor 1’s cache(s). ♦

In Figure 7.7, the remote resource requested by J1 is not contested, and in fact does not depict a

worst-case scenario. Higher overheads are possible if the resource is not available. A scenario that

causes higher overheads is illustrated in Figure 7.8.

Example 7.7. The depicted DPCP schedule shows three jobs on three processors sharing one

resource `1, which is local to processor 2. Job J2 on processor 2 is delayed by requests issued by the

remote jobs J1 (on processor 1) and J3 (on processor 3). Overheads on processors 1 and 3 are not

shown since they are irrelevant to this example.
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At time 3, J3 is the first to activate its agent on processor 2. Since agents are priority boosted, A2
3

preempts J2, which causes a scheduler invocation and context switch during [3,5). A2
3 then proceeds

to lock `1 according to the rules of the PCP and begins to execute the request at time 7.

At time 8, agent A2
1 is activated by a request from J1 and preempts A2

3. The resource-holding

agent is preempted since requests are executed preemptively under the PCP (and hence the DPCP),

and because A2
1 acts on behalf of a job with base priority Y(J1, t) = 1, whereas A2

3 acts on behalf of

a job with base priority Y(J3, t) = 3. The preemption requires a scheduler invocation and context

switch during [8,10).

Once scheduled, A2
1 immediately attempts to lock `1. As `1 is unavailable, A2

1 must suspend,

thereby triggering another scheduler invocation and context switch at time 11.

At time 16, A2
1 is resumed when A2

3 releases `1, and can finally be scheduled to execute J1’s

request during [19,20). At time 22, A2
1 releases `1 and completes, which allows J2 to continue its

execution.

In total, J2 is delayed by five scheduler invocations and context switches at times 3, 8, 11, 16,

and 22. Of these, the initial invocation at time 3 and the invocation at time 16 can be attributed to

J3’s request (i.e., they would have occurred even if J1 would not have issued a request). This leaves

three scheduler invocations and context switches that are due to J1’s request. ♦

As with the semaphore-based protocols for shared-memory systems, the DPCP requires an

inflation of each task’s execution requirement, maximum self-suspension time, and each maximum

request length to account for the overheads exhibited in Figures 7.7 and 7.8.

Execution requirement. Since the execution of agents is accounted for separately in the blocking

analysis of the DPCP, only the overheads arising on a job’s assigned processor must be reflected in

its execution requirement. As can be seen in Figure 7.7, a job requesting a remote resource causes

one additional system call, two scheduler invocations and context switches, and incurs CPMD on

its assigned processor. Further, any additional CPMD that preempted lower-priority jobs incur due

to suspensions (as illustrated in Figure 7.5) must be considered as well. This leads to the following
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inflation of the effective execution requirement.

e′i ≥ ei +


 ∑

1≤q≤nr

Ni,q


 · (∆sci + ∆sco + 2∆sch + 2∆cxs + 2∆cpd ) (7.8)

Request length. The effective maximum request length must reflect all of an agent’s execution time

since normal response-time analysis does not take priority-boosted agents into account (i.e., all delays

due to agents must be reflected by the DPCP’s blocking terms). In the scenario shown in Figure 7.7,

the agent’s activation results in two scheduler invocations and context switches, one system call, and

the execution of the PCP’s entry and exit section. If the requested resource is unavailable at the time

of the request, an agent can cause up to three scheduler invocation and context switches, as shown in

Figure 7.8. The following inflation results.

L′i,q ≥ Li,q + 3∆sch + 3∆cxs + ∆sci + ∆sco + ∆in + ∆out (7.9)

Suspension time. Overheads already reflected by L′i,q do not have to be charged explicitly to each

task’s maximum suspension time susp′i since the regular DPCP blocking analysis (based on each

L′i,q) implicitly accounts for the increase in self-suspension time. However, L′i,q does not account for

IPI latency related to agent activation.

Figure 7.7 shows two instances of IPI latency affecting J1’s response time. The first instance

of IPI latency arises when the process implementing J1 migrates to processor 2 to take on the role

of A2
1: the preemption of J2 is delayed by IPI latency. Similarly, when the process implementing

J1 migrates back to processor 1 after relinquishing `1, IPI latency delays the resumption of J1 on

processor 1. This shows that each resource request is affected by IPI latency twice, which requires

the following inflation of the maximum self-suspension time.

susp′i ≥ suspi +


 ∑

1≤q≤nr

Ni,q


 · 2∆ipi (7.10)

The scenario depicted in Figure 7.7 shows a remote resource request. It is further possible for

jobs to access local resources. For example, J2 could also request `1. In this case, the access and the

incurred overheads are similar, but no IPI latency is incurred.
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7.1.6 Limitations

As mentioned in the beginning of Section 7.1, the presented analysis of locking-related overheads

is not comprehensive. It is non-exhaustive in the sense that it accounts for all major overheads in

common scenarios, but that the analyzed scenarios do not provably correspond to the worst case.

There are two reasons for this.

First, the presented analysis assumes that interrupts are not an issue due to dedicated interrupt

handling. This, however, is not entirely correct because there exists a slight chance of inadvertent IPIs

delaying critical sections. To illustrate this problem, consider a protocol using priority boosting such

as the MPCP or the FMLP+. Under dedicated interrupt handling, IPIs are used to notify processors

of required preemptions. While a job Ji is executing a request, it should normally not be preempted

by non-resource-holding jobs. Consequently, the processor on which Ji is scheduled should not

receive rescheduling IPIs. Unfortunately, because IPIs are not delivered instantaneously, a race

condition exists: if a higher-priority job is released just before Ji enters its critical section, it could

be the case that the processor dedicated to servicing ISRs observes Ji’s base priority before Ji’s

effective priority is boosted. As a result, the dedicated processor will send an IPI to Ji’s processor.

If the IPI is sufficiently delayed, it could arrive (and be serviced) while Ji is already executing its

critical section, thereby increasing the effective request length despite priority boosting.

In fact, the problem of a racing IPI affects all protocols equally, including spinlocks if non-

preemptable sections are implemented by means of the control page mechanism (Section 3.3.2).

The locking overhead analysis presented in this section does not reflect this (very unlikely) case.

For our purpose, this is an acceptable limitation—all evaluated locking protocols are subject to the

possibility of IPI races, and hence no bias in favor of any particular protocol is introduced. However,

in a truly safe approximation, such race conditions will have to be considered. Alternatively, they

would have to be avoided entirely. For example, if non-preemptive spinlocks are implemented by

disabling interrupt delivery, then IPI races do not affect effective critical section lengths.

The second reason for why the presented analysis must be considered non-exhaustive is the

difficulty of identifying worst-case scenarios. For example, suppose the presented analysis is

extended to take IPI races into account. Even then it would not be clear if it addressed all possible

interactions among processors. For example, if a job becomes the resource holder just after it began
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to suspend, it must first finish suspending before it can be resumed (i.e., job states cannot be changed

instantaneously since state transitions take time), which could potentially cause an additional increase

in effective critical section length. For this to be an actual problem, scheduling decisions and context

switches would have to exceed maximum suspension times, which is unlikely. Nonetheless, the

fundamental problem remains that locking protocols give rise to such a large number of potential

executions that the manual identification and inspection of the worst case becomes a daunting task.

We believe that the use of modeling and automated analysis tools will be essential for a future

comprehensive analysis of locking protocol overheads.

This concludes our discussion of locking overheads. Major differences exist between spin-

based and suspension-based locking protocols. In addition to typically having higher acquisition

costs (due to the need to invoke system calls), suspension-based protocols also cause additional

scheduler invocations, context switches, and cache affinity loss. We revisit these issues shortly in our

comparison of locking protocols in Section 7.6. Next, we begin our overhead-aware evaluation of

locking protocols with a comparison of spinlock choices.

7.2 Spinlock Implementation Efficiency

In Section 5.3, we introduced three implementations of phase-fair spinlocks: a simple ticket lock,

denoted PF-T, a compact lock, denoted PF-C, and a list-based queue lock, denoted PF-Q. Since

our experimental platform is not memory-constrained, there is little reason to prefer the PF-C lock

over the PF-T lock as the PF-C lock requires more atomic instructions than the PF-T lock. It is not

obvious, however, whether the PF-T or the PF-Q lock is preferable on our hardware platform.

Recall that the primary advantage of the PF-Q algorithm is that is has constant RMR complexity,

that is, PF-Q locks implement local spinning to avoid repeated cache invalidations. In contrast,

in a PF-T lock, each spinning processor suffers a cache invalidation each time the lock’s state is

updated (a PF-T lock fits into one cache line on our platform). Given that cache-coherency traffic

can be a major source of overhead in shared-memory systems, low RMR complexity is certainly

desirable. However, the PF-T entry and exit procedures contain fewer atomic instructions than the

PF-Q entry and exit procedures. Since atomic instructions (such as fetch-and-add) are slower than

regular, non-atomic instructions (such as regular add), either lock could be preferable in practice.
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In a prior study on a single-chip, 8-core, 32-processor UltraSPARC T1 “Niagara” platform

(Brandenburg and Anderson, 2010b), we found PF-T locks to be preferable to PF-Q locks since

the high cost of atomic compare-and-exchange instructions on that platform outweighed the RMR

complexity advantage of PF-Q locks. These prior results notwithstanding, an evaluation of the

implementation efficiency of spinlock implementations is in order since the hardware platform used

for the experiments in this dissertation is very different from the Niagara (in particular, our Xeon

platform consists of multiple chips, which can be expected to increase the costs of cache coherency).

The preceding discussion applies equally to Mellor-Crummey and Scott’s ticket-based and

queue-based task-fair mutex and RW spinlocks (Mellor-Crummey and Scott, 1991a,b), after which

our PF-T and PF-Q algorithms are modeled. In general, the choice of whether to use ticket or queue

locks is a tradeoff between the cost of uncontested lock acquisition and the cost of spinning. Ticket

locks are simpler, and hence faster if contention is low; queue locks have constant RMR complexity

and thus reduce the cost of spinning. In this section, we present results from micro-benchmarks

designed to measure each lock type’s efficiency under a wide range of contention and write ratios.

Interestingly, and in contrast to our earlier study on the Niagara platform, the observed results show

queue locks to be preferable on our Xeon platform if locks are contended.

Setup. We implemented an experiment in which a configurable number of processors access a few

shared variables—protected by one lock—repeatedly in a tight loop. The loop was configured via two

parameters: wratio, which determined the fraction of updates, and delay , which determined the time

between consecutive requests of one processor such that each processor spent approximately 1
1+delay

of the total execution time in critical sections. We varied the number of processors from 2, . . . , 24

for each combination of wratio ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.35, 0.5, 1} and delay ∈ {1, . . . , 7, 10}

and recorded the time required for each processor to (concurrently) execute 200,000 loop iterations

(after an initial warm-up phase) for each of the locks listed in Table 7.2.

Results. Figures 7.9 and 7.10 show the measured results for wratio = 0.1 and delay = 3.0, that is,

each processor spent about 25% of its execution time trying to access shared variables.

Figure 7.9 shows comparisons of a ticket-based to a queue-based implementation of task-fair

mutex, task-fair RW, and phase-fair RW group locks respectively. Figure 7.10 shows the same data,

however the curves are grouped differently to allow a comparison of all considered queue locks in
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(a) Task-fair mutex spinlocks.
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(b) Task-fair RW spinlocks.
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(c) Phase-fair RW spinlocks.

Figure 7.9: Average critical section length as a function of the number of contending processors,
grouped by lock type with Linux as a baseline. See Table 7.2 for a list of the considered lock types.
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(a) Queue locks.
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(b) Ticket locks.

Figure 7.10: Average critical section length as a function of the number of contending processors,
grouped by implementation technique with Linux as a baseline. See Table 7.2 for a list of the
considered lock types.
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Algorithm Definition Name Complexity

Task-Fair Mutex Ticket Lock (Mellor-Crummey and Scott, 1991a) MX-T O(m)
Task-Fair Mutex Queue Lock (Mellor-Crummey and Scott, 1991a) MX-Q O(1)
Task-Fair RW Ticket Lock (Mellor-Crummey and Scott, 1991b) TF-T O(m)
Task-Fair RW Queue Lock (Mellor-Crummey and Scott, 1991b) TF-Q O(1)
Phase-Fair RW Ticket Lock Listing 5.1 PF-T O(m)
Phase-Fair RW Queue Lock Listings 5.3 and 5.4 PF-Q O(1)
Linux RW Lock Linux 2.6.24 LX-RW —

Table 7.2: Implemented and evaluated spinlock algorithms. The complexity metric is remote memory
references on m cache-coherent processors. Linux’s RW lock implementation resembles a writer
preference lock but does not offer strong progress guarantees; it serves only as a baseline for
implementation performance.

inset (a), and all considered ticket locks in inset (b). Further, each inset also shows Linux’s RW

lock implementation as a baseline. Each graph shows the average critical section length (including

synchronization overhead) normalized by the average critical section length if no locks are acquired

(e.g., a value of 1.5 means that locking overheads increased the critical section length by 50%).

The major trend apparent in our results is that, on our Xeon L7455 platform, task-fair RW queue

locks are preferable to task-fair RW ticket locks if more than 10 processors access a lock. In the case

of phase-fair RW locks, the queue-based implementation is virtually always preferable, and with

task-fair mutex locks, the break-even point is around 5 processors, as can be seen in Figure 7.9(a).

This is in contrast to our prior study on a Niagara, in which we found ticket locks to be preferable

even under unrealistically high levels of contention. A likely explanation for this difference is that our

Xeon platform consists of four chips, which implies that a large amount of off-chip cache coherence

protocol traffic is generated when processors (of different chips) spin on the same memory location.

Interestingly, among the ticket and queue locks, the phase-fair RW lock implementations are the

most efficient algorithm (with respect to each category) and closest to the performance to Linux’s

native RW lock. (Linux’s RW lock itself is not an option since it does not offer strong progress

guarantees.) In fact, the phase-fair RW queue lock is almost as efficient as Linux’s native RW lock if

at most 20 processors are contending for the lock, and even slightly more efficient otherwise.

While these are micro-benchmarks of limited scope, they do show that phase-fair RW spinlocks

can be implemented efficiently. Further, these experiments show queue locks to be more efficient
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72 generate resource model(Ti, nr, pacc, wratio, csdist):
73 for q ← 1, 2, 3, . . . , nr
74 if prng draw next( [0, 1] ) ≤ pacc:
75 if prng draw next( [0, 1] ) ≤ wratio:
76 // Ti is a writer with respect to `q
77 set NR

i,q ← 0

78 set LRi,q ← 0

79 set NW
i,q ← prng draw next( {1, 2, 3, 4, 5} )

80 set LWi,q ← prng draw next( csdist )
81 else:
82 // Ti is a reader with respect to `q
83 set NR

i,q ← prng draw next( {1, 2, 3, 4, 5} )
84 set LRi,q ← prng draw next( csdist )
85 set NW

i,q ← 0

86 set LWi,q ← 0

87 else:
88 // Ti does not access `q
89 set NR

i,q ← 0

90 set LRi,q ← 0

91 set NW
i,q ← 0

92 set LWi,q ← 0

Listing 7.1: Resource model generation.

than ticket locks on our hardware platform. Therefore, we only consider queue locks in the remainder

of this chapter. Next, we compare each spinlock type in terms of HRT and SRT schedulability.

7.3 Mutex and Reader-Writer Spinlocks

In the first of two schedulability studies, we compared mutex, task-fair, and phase-fair RW spinlocks

in terms of schedulability. The experimental setup is in large parts the same as the one described in

detail in Section 4.1. Task sets were generated as before using the nine utilization and three period

distributions discussed in Section 4.2.3. Additionally, resource requirements were generated using

the procedure documented in Listing 7.1.

Each task’s parameters LRi,q, L
W
i,q, N

R
i,q, and NW

i,q were randomly chosen based on the following

parameters: the number of resources, denoted nr, the access probability, denoted pacc, the write

ratio, denoted wratio, and the critical section length distribution, denoted csdist . A given task Ti

accessed resource `q with probability pacc. If Ti accessed `q, then it was determined to be a writer
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with probability wratio, and a reader otherwise. The number of accesses Ni,q was uniformly chosen

from {1, 2, 3, 4, 5}. The maximum request length Li,q was randomly chosen from csdist .

In our schedulability experiments comparing spinlocks, we considered

• pacc ∈ {0.1, 0.25, 0.4},

• nr ∈ {6, 12, 24}, and

• wratio ∈ {0.1, 0.2, 0.3, 0.5, 0.75},

and considered three uniform critical section length distributions. When using short critical sections,

each Li,q was chosen randomly from [1µs, 15µs]; with intermediate critical sections, each Li,q was

randomly chosen from [1µs, 100µs]; and finally, when assuming long critical sections, each critical

section length was randomly chosen from [5µs, 1280µs].

It is a widely acknowledged design principle that critical sections should be short: from a

throughput point of view, long critical sections impede scalability, and from a real-time point of view,

long critical sections result in pessimistic upper bounds on blocking and thus limit schedulability.

We therefore believe most critical sections to be short in practice (in well-designed systems). In fact,

in a case study that examined critical section lengths in the Linux kernel (hosted on a four-processor

2.7 GHz Pentium 4 system), we found more than 90% of all spinlock-protected critical sections to be

shorter than 5µs, and more than 90% of all semaphore-protected critical sections to be shorter than

13µs (Brandenburg and Anderson, 2007a). Similarly, when measuring critical section lengths in

multimedia SRT applications on the same platform, we found 99% of all critical sections to be shorter

than 10µs (Brandenburg and Anderson, 2007a). Nonetheless, in the schedulability study reported

on in this chapter, we also included intermediate critical section lengths to allow for pessimism

when determining Li,q parameters in practice, and further considered long critical sections following

Lakshmanan et al., who assumed the stated distribution of critical section lengths in their evaluation

of the MPCP and the MPCP-VS (Lakshmanan et al., 2009).

For each combination of pacc, nr, wratio, and csdist , we evaluated HRT and SRT schedu-

lability as a function of ucap as discussed in Section 4.1.5 using a step size of 0.5 (i.e., ucap ∈

{1, 1.5, 2, . . . , 23.5, 24}). We conducted the experiments twice, once assuming a WSS of 4 KB, and

once assuming a WSS of 128 KB. We did not consider further WSSs (and did not compute weighted
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schedulability scores) because spinlock overheads are not sensitive to WSS, and because the addi-

tional locking-related parameters caused the parameter space to become too large to be exhaustively

sampled (i.e., the runtime requirements of the schedulability experiments became infeasible). When

assessing HRT schedulability, we assumed worst-case overheads and load CPMD; in the SRT case,

we assumed average-case overheads and idle CPMD. Locking overheads were accounted for as

discussed in Section 7.1. As discussed in Section 7.1, we focus on dedicated interrupt handling

in this chapter since interrupts cause transitive delays when they stop a job while it is executing a

critical section.

HRT and SRT schedulability of each generated task set was determined under P-EDF-R1,

C2-EDF-R1, C6-EDF-R1, and G-EDF-R1 scheduling assuming task-fair mutex, task-fair RW, and

phase-fair RW spinlocks. Maximum s-blocking and pi-blocking incurred by each task were bounded

using holistic blocking analysis as described in Section 5.4. Additionally, each task set was tested for

HRT and SRT schedulability under each of the four schedulers assuming that tasks incur no blocking

at all (however, scheduling overheads were fully accounted for). While the latter configuration does

not correspond to a safe system, it does provide a baseline of each plugin’s performance in the

absence of locking-related delays, and was thus included for comparison purposes.

In total, we considered 7,290 parameter combinations and generated and tested 34,263,000 task

sets. Each generated task set was tested for both HRT and SRT schedulability under 16 spinlock and

scheduler combinations, as listed in Table 7.3.

In the remainder of this section, we discuss the major trends apparent in our results and show

supporting HRT and SRT schedulability graphs. The full set of schedulability results, including all

116,640 schedulability graphs, is available online (Brandenburg, 2011). We begin by contrasting

task-fair mutex, task-fair RW, and phase-fair RW locks under P-EDF scheduling and HRT constraints

(Section 7.3.1), and then compare the three lock choices under G-EDF scheduling and SRT con-

straints (Section 7.3.2). Finally, in Section 7.3.3, we reconsider the choice of scheduler (Question Q1

from Chapters 1 and 4) if locking is realized with spinlocks.

7.3.1 Hard Real-Time Spinlock Comparison

Our main result is that there is indeed a major analytical benefit to using RW locks (instead of mutex

locks) if the write ratio is low. That is, in real-time systems, RW locks offer not just average-case
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Scheduler/Locks Spinlock Type Algorithm Blocking Analysis

P-EDF-R1/MX-Q task-fair mutex (Mellor-Crummey and Scott, 1991a) Section 5.4.3
P-EDF-R1/TF-Q task-fair RW (Mellor-Crummey and Scott, 1991b) Section 5.4.5
P-EDF-R1/PF-Q phase-fair RW Section 5.3.3 Section 5.4.6
P-EDF-R1/None — — baseline w/o blocking

C2-EDF-R1/MX-Q task-fair mutex (Mellor-Crummey and Scott, 1991a) Section 5.4.3
C2-EDF-R1/TF-Q task-fair RW (Mellor-Crummey and Scott, 1991b) Section 5.4.5
C2-EDF-R1/PF-Q phase-fair RW Section 5.3.3 Section 5.4.6
C2-EDF-R1/None — — baseline w/o blocking

C6-EDF-R1/MX-Q task-fair mutex (Mellor-Crummey and Scott, 1991a) Section 5.4.3
C6-EDF-R1/TF-Q task-fair RW (Mellor-Crummey and Scott, 1991b) Section 5.4.5
C6-EDF-R1/PF-Q phase-fair RW Section 5.3.3 Section 5.4.6
C6-EDF-R1/None — — baseline w/o blocking

G-EDF-R1/MX-Q task-fair mutex (Mellor-Crummey and Scott, 1991a) Section 5.4.3
G-EDF-R1/TF-Q task-fair RW (Mellor-Crummey and Scott, 1991b) Section 5.4.5
G-EDF-R1/PF-Q phase-fair RW Section 5.3.3 Section 5.4.6
G-EDF-R1/None — — baseline w/o blocking

Table 7.3: List of evaluated spinlock and scheduler combinations.

improvements, but allow for substantially less-pessimistic worst-case analysis. Further, phase-fair

RW locks offer an advantage over task-fair RW locks in many cases where there are some, but not

“too many” writers (see below). However, while task-fair RW locks simply degrade to mutex-like

performance, writers under phase-fair RW locks are subject to increased blocking if there are both

many readers and writers because consecutive writer phases can be separated by a reader phase. In

summary, the use of phase-fair RW locks is advisable when there are few writers (i.e., in the primary

use case for RW locks), whereas the task-fair mutex or RW locks result in higher schedulability if

there are many writers. We illustrate these findings with representative examples in the following.

The effectiveness of RW locks is apparent in Figure 7.11, which shows HRT schedulability under

each of the lock choices (and the baseline assuming no blocking) for light exponential utilizations

and long periods under P-EDF-R1 scheduling. In the depicted scenarios, writes are infrequent

(wratio = 0.1) and tasks require each of the nr = 24 resources with probability pacc = 0.25.

Inset (a) shows HRT schedulability assuming short critical sections, inset (b) depicts the same

scenario assuming intermediate critical sections, and inset (c) likewise depicts performance for long

critical sections. In each case, phase-fair RW locks are preferable from a schedulability perspective,

although long critical sections result in poor performance under any of the lock choices.
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(a) HRT schedulability for short critical sections.
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(b) HRT schedulability for intermediate critical sections.
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(c) HRT schedulability for long critical sections.

Figure 7.11: Graphs showing HRT schedulability under P-EDF-R1 scheduling with nr = 24,
pacc = 0.25, and wratio = 0.1 assuming light exponential utilizations and long periods, and
(a) short, (b) intermediate, and (c) long critical sections.
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Figure 7.12: HRT schedulability under P-EDF-R1 scheduling with nr = 24, pacc = 0.1, and
wratio = 0.5 assuming medium uniform utilizations, long periods, and short critical sections. The
curves corresponding to MX-Q, TF-Q, and PF-Q locks overlap.

Since reads are much more frequent than writes, performance under task-fair mutex locks is

negatively affected by the needless serialization of (otherwise) concurrent reads, and the achieved

schedulability decreases starting at ucap ≈ 4 in Figure 7.11(a). In contrast, task-fair RW and

phase-fair RW locks achieve high schedulability until ucap ≈ 8 and ucap ≈ 9, respectively.

Insets (a) and (b) demonstrate that phase-fair RW locks can enable higher schedulability than

task-fair RW locks. This is because phase-fair RW locks offer lower bounds on s-blocking if there are

multiple writers (compared to task-fair RW locks) as readers incur only O(1) s-blocking, regardless

of the number of competing writers. In inset (c), the difference is less pronounced since long critical

sections reduce performance significantly, regardless of the choice of lock.

In general, the use of RW locks results in higher schedulability if there are more readers than

writers. Figure 7.12 shows an example where there is no significant benefit to using RW locks.

Since there are, on average, as many writers as readers (wratio = 0.5), reader parallelism cannot

be analytically guaranteed. In this case, task-fair mutex locks are the better choice because they are

simpler and thus incur somewhat lower overheads.
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7.3.2 Soft Real-Time Spinlock Comparison

In the SRT case, the same trends as in the HRT case manifest. Average-case entry and exit overheads

are almost negligible under each of the spinlocks (on the order of one microsecond or less), and

average-case system call overhead is also in the range of a few microseconds (Brandenburg, 2011).

Hence, jobs incur only little overheads under SRT assumptions when using spinlocks. As a result,

SRT schedulability is uniformly higher than HRT schedulability under each lock type.

Figure 7.13 depicts SRT schedulability under G-EDF-R1 with light exponential utilizations,

short periods, pacc = 0.25, nr = 6, and wratio = 0.1 for short, intermediate, and long request

lengths. From the significantly higher schedulability under task-fair RW and phase-fair RW locks

in the range of approximately 6 ≤ ucap ≤ 17 in Figure 7.13(a), it is apparent that RW locks offer

significant analytical advantages in the SRT case as well. Again, phase-fair RW locks outperform

task-fair RW locks due to the O(1) delay of readers.

However, it should be noted that phase-fair RW locks are not always preferable to task-fair locks

(under either HRT or SRT analysis). One example exhibiting this trend is shown in Figure 7.14,

which depicts SRT schedulability under G-EDF-R1 with light exponential utilizations, moderate

periods, pacc = 0.1, nr = 24, and wratio = 0.75. As tasks are more likely to issue write requests

than to issue read requests in this scenario, there is little advantage to using RW locks. Instead,

task-fair mutex locks are a good choice because they are simpler than RW locks and therefore have

much lower implementation overheads. Since task-fair RW locks reduce to mutex-like behavior

in the worst case they achieve schedulability that is similar to that of task-fair mutex locks (asides

differences in overhead). Phase-fair RW locks, however, can degenerate to worse than mutex-like

performance. While non-preemptive request execution and the strict FIFO ordering of requests

ensure that a writer is delayed by at most m− 1 earlier-issued requests (either reads or writes) under

task-fair locks (either RW or mutex), a writer under phase-fair RW locks may be delayed by m− 1

earlier-issued writer phases, and by an additional m− 1 interspersed reader phases. Therefore, if

there are many other competing writers, s-blocking for writers can be substantially worse under

phase-fair RW locks than under task-fair locks (either RW or mutex). This indicates that phase-fair

RW locks are an appropriate choice only in situations where writes are less frequent than reads. In

other words, phase-fair RW locks favor readers at the expense of writers, which is a worthwhile
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(a) SRT schedulability for short critical sections.
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(b) SRT schedulability for intermediate critical sections.
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(c) SRT schedulability for long critical sections.

Figure 7.13: Graphs showing SRT schedulability under G-EDF-R1 scheduling with nr = 6,
pacc = 0.25, and wratio = 0.1 assuming light exponential utilizations and short periods, and
(a) short, (b) intermediate, and (c) long critical sections.

522



 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20  22  24

s
c
h
e

d
u

la
b
ili

ty
 [
s
o

ft
]

utilization cap (prior to overhead accounting)

util. exponentially in [0, 1] with mean 0.10; period uniformly in [10, 100]
 wss=4KB; nres=24; pacc=0.10; wratio=0.75; short critical sections

G-EDF-R1/MX-Q
G-EDF-R1/TF-Q
G-EDF-R1/PF-Q
G-EDF-R1/None

Figure 7.14: SRT schedulability under G-EDF-R1 scheduling with nr = 24, pacc = 0.1, and
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The curves corresponding to MX-Q and TF-Q locks overlap.

tradeoff only if there are more readers than writers. However, note that it is trivial to mix task-fair

mutex spinlocks and phase-fair RW spinlocks; that is, the choice of spinlock can be made on a

resource-by-resource basis.

7.3.3 Scheduler Comparison

The preceding discussion has focused on comparing spinlock choices under partitioned and global

scheduling. In this section, we consider the possibility that the relative performance of schedulers

changes when locking constraints are introduced. In Chapter 4, we evaluated 22 schedulers in terms

of HRT and SRT schedulability on our experimental platform. It is infeasible to replicate Section 4.5

in its entirety here; rather, we focus on the best-performing plugins (namely P-EDF in the HRT

case and G-EDF and C-EDF variants in the SRT case), and illustrate the major trends with example

graphs. Fortunately, introducing locking constraints does not invalidate our earlier findings: P-EDF

remains the best choice in the HRT case, and larger cluster sizes remain effective at lessening the

impact of bin-packing constraints in the SRT case.

This can be seen in Figure 7.15(a), which depicts HRT schedulability when locking constraints

are realized with task-fair mutex locks under P-EDF-R1, C2-EDF-R1, C6-EDF-R1, and G-EDF-

R1 for medium uniform utilizations, long periods, pacc = 0.25, nr = 12, and wratio = 0.2.
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Figure 7.15(b) depicts the same scenario assuming task-fair RW locks, and Figure 7.15(c) does

likewise assuming phase-fair RW locks. As is readily apparent, HRT schedulability is higher

in smaller clusters, with the highest HRT schedulability being achieved by P-EDF-R1, which

matches the relative performance when all tasks are independent (see Chapter 4). This observation is

representative of our entire study and suggests that non-preemptive spinlocks affect the performance

of each tested event-driven scheduler equally.

This is also true in the SRT case. Example graphs exhibiting this trend are shown in Figure 7.16,

which is organized similarly to Figure 7.15. Each inset depicts SRT schedulability under P-EDF-R1,

C2-EDF-R1, C6-EDF-R1, and G-EDF-R1 for light bimodal utilizations, short periods, pacc = 0.4,

nr = 12, and wratio = 0.1, and assuming resources are protected by task-fair mutex, task-fair

RW, and phase-fair RW spinlocks, respectively. As can be seen in inset (a), the difference between

schedulers is least pronounced when using task-fair mutex spinlocks. When using RW locks, however,

G-EDF-R1 achieves the highest SRT schedulability. Generally speaking, the conclusions from

Chapter 4 with regard to the SRT performance remain valid when jobs synchronize by means of

non-preemptive spinlocks.

It should be noted, however, that no attempt was made to take resource-sharing considerations

into account when partitioning task sets. That is, tasks were assigned using the normal worst-

fit decreasing heuristic as in Chapter 4. Better results could likely be achieved by employing

resource-sharing-aware partitioning heuristics. However, such heuristics are still an area of active

research (Lakshmanan et al., 2009; Nemati et al., 2010; Hsiu et al., 2011) and beyond the scope

of this dissertation. It would be interesting to reevaluate the relative performance of partitioned,

clustered, and global scheduling once it has become clear which partitioning heuristics are best suited

to partitioning task sets with shared resources.

7.4 Semaphore Protocols for S-Oblivious Analysis

In a second schedulability study, we compared semaphore-based mutex protocols with each other

and with task-fair mutex spinlocks. We used a setup similar to the one discussed in the preceding

section, however, we only considered wratio = 1 since all locks that we considered in this study
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(a) HRT schedulability under MX-Q locks.
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(b) HRT schedulability under TF-Q locks.
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(c) HRT schedulability under PF-Q locks

Figure 7.15: Graphs showing HRT schedulability under P-EDF-R1, C2-EDF-R1, C6-EDF-R1,
and G-EDF-R1 scheduling with nr = 12, pacc = 0.25, and wratio = 0.2 assuming medium
uniform utilizations, long periods, and short critical sections.
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(a) SRT schedulability under MX-Q locks.
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(b) SRT schedulability under TF-Q locks.
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(c) SRT schedulability under PF-Q locks

Figure 7.16: Graphs showing SRT schedulability under P-EDF-R1, C2-EDF-R1, C6-EDF-R1,
and G-EDF-R1 scheduling with nr = 12, pacc = 0.4, and wratio = 0.1 assuming light bimodal
utilizations, short periods, and short critical sections.
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are mutex locks. Since this reduced the parameter space considerably, we extended the considered

ranges of the other parameters to nr ∈ {1, 3, 5, 12, 24}, and pacc ∈ {0.1, 0.25, 0.4, 0.55, 0.7, 0.85}.

As in the previous schedulability study, we considered two WSSs, namely 4 KB and 128 KB.

In contrast to spin-based protocols, suspension-based protocols are affected by the assumed WSS

because jobs lose cache affinity when they suspend to wait for a resource. We chose the two evaluated

WSSs for the following reasons. First, a WSS of 4 KB is quite small and thus represents a best-case

scenario for suspension-based protocols. That is, suspension-based protocols are penalized by large

WSSs; therefore, performance as observed with a small WSS is an upper bound on the performance

(in terms of schedulability) of semaphore protocols. Second, we chose a WSS of 128 KB as another,

more realistic WSS to be evaluated.

Since WSS-related overheads affect all suspension-based protocols equally, limiting our study to

two WSSs does not bias it against or for any of the evaluated semaphore protocols. Nonetheless, in

the future, it would be interesting to consider a larger range of WSSs to study the range in which

semaphore-based locking protocols are competitive from a schedulability point of view (i.e., to

evaluate each semaphore-based protocol also in terms of its weighted schedulability score). However,

it should be noted that such an expansion of the parameter space carries a large computational cost.3

In total, we evaluated 22,842,000 task sets corresponding to 4,860 parameter combinations under

each of the 13 protocol and scheduler combinations listed in Table 7.4 in terms of both HRT and

SRT schedulability. Besides semaphore protocols, we also considered task-fair mutex spinlocks as a

baseline. The entire set of schedulability results can be found online (Brandenburg, 2011), including

53,460 graphs visualizing HRT and SRT schedulability under each scheduler and locking protocol.

In this section, we discuss our results pertaining to s-oblivious analysis. Locking protocols

for s-aware analysis are discussed thereafter in Section 7.5. Finally, we compare spin-based and

suspension-based locking protocols in terms of HRT and SRT schedulability in Section 7.6.

We implemented and evaluated four locking protocols for s-oblivious analysis in LITMUSRT:

the global FMLP and the global OMLP were implemented in the G-EDF plugin, the clustered

3Extrapolating from the runtimes of the presented schedulability study for two WSSs, evaluating all WSSs previously
considered in Chapter 4 would require more than 10 days of continuous execution on 64 nodes of UNC’s research cluster
TOPSAIL (unless significant improvements in implementation efficiency of the experimental framework are made).
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Scheduler/Locks Protocol Definition Blocking Analysis Type

P-EDF-R1/OMLP clustered OMLP (Section 6.2.2) Section 6.4.2 s-oblivious

P-FP-R1/MPCP-VS MPCP-VS (Lakshmanan et al., 2009) (Lakshmanan et al., 2009) s-oblivious
P-FP-R1/MPCP MPCP (Rajkumar, 1990) (Lakshmanan et al., 2009) s-aware
P-FP-R1/DPCP DPCP (Rajkumar et al., 1988) (Rajkumar, 1991) s-aware
P-FP-R1/FMLP+ preemptive FMLP+ (Section 6.3) Section 6.4.3 s-aware
P-FP-R1/NP-FMLP+ non-preemptive FMLP+ (Section 6.3) Section 6.4.3 s-aware

C2-EDF-R1/OMLP clustered OMLP (Section 6.2.2) Section 6.4.2 s-oblivious

C6-EDF-R1/OMLP clustered OMLP (Section 6.2.2) Section 6.4.2 s-oblivious

G-EDF-R1/FMLP global FMLP (Block et al., 2007) (Block et al., 2007) s-oblivious
G-EDF-R1/OMLP global OMLP (Section 6.2.2) Section 6.4.1 s-oblivious
C24-EDF-R1/OMLP clustered OMLP (Section 6.2.2) Section 6.4.2 s-oblivious

G-EDF-R1/MX-Q non-preemptive spinlocks Section 5.4.3 —
P-EDF-R1/MX-Q non-preemptive spinlocks Section 5.4.3 —

Table 7.4: List of evaluated lock and scheduler combinations. C24-EDF-R1 denotes the C-EDF
plugin instantiated as a global scheduler (i.e., c = m) with dedicated interrupt handling. That is,
C24-EDF-R1 is effectively an implementation of G-EDF, but the implemented locking protocol is
the clustered OMLP using priority donation (and not the global OMLP using priority inheritance as
implemented in the G-EDF plugin).

OMLP was implemented in the C-EDF plugin (which can also be configured to act as a global

scheduler), and Lakshmanan et al.’s MPCP-VS was implemented in the P-FP plugin.

In the following, we first contrast the three protocol choices for G-EDF (namely the global

FMLP, the global OMLP, and the clustered OMLP in the case of c = m), and then compare the

two s-oblivious suspension-based locking protocols suitable to partitioned scheduling, namely the

clustered OMLP and the MPCP-VS.

7.4.1 The Global FMLP vs. the Global OMLP vs. the Clustered OMLP

In this dissertation, we have discussed the global FMLP mainly in the context of s-aware schedula-

bility analysis (Chapter 6). Nonetheless, the global FMLP was the first suspension-based locking

protocol proposed for G-EDF. Due to the lack of s-aware schedulability analysis for G-EDF at the

time of its publication, the published blocking analysis for the global FMLP assumes s-oblivious

schedulability analysis (Block et al., 2007).

Since the global FMLP uses priority inheritance with simple FIFO queues, jobs are subject

to Ω(n) s-oblivious pi-blocking under it. It is hence not asymptotically optimal under s-oblivious

analysis, in contrast to the global OMLP. Therefore, one might expect the global OMLP to always
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Figure 7.17: SRT schedulability under G-EDF-R1 scheduling with the global FMLP, G-EDF-R1
scheduling with the global OMLP, and C24-EDF-R1 scheduling with the clustered OMLP for heavy
bimodal utilizations, short periods, nr = 1, pacc = 0.1 and intermediate critical section lengths. The
curves corresponding to global OMLP and the global FMLP overlap.

outperform the global FMLP under G-EDF. However, this is in fact not the case. One situation in

which the bounds on blocking under both protocols are identical is when at most m+ 1 tasks share a

given resource since the global OMLP reduces to a simple FIFO protocol that is equivalent to the

global FMLP in this case. This is a common situation in our experimental setup as there are m = 23

processors available to real-time tasks under G-EDF-R1 scheduling on our platform.

One example exhibiting this effect is shown in Figure 7.17, which depicts SRT schedulability

under G-EDF-R1 with heavy bimodal utilizations, short periods, intermediate critical section lengths,

pacc = 0.1, and nr = 1 under the global FMLP, the global OMLP, and the clustered OMLP. Since

each task accesses the single shared resource with low probability, only few tasks share the resource.

Hence, there is no benefit to using the OMLP over the FMLP in this case, which is reflected by

the observed schedulability as the curves for both protocols overlap. The clustered OMLP, which

is based on priority donation, achieves lower schedulability than either of the protocols based on

priority inheritance in this scenario because priority donation causes otherwise independent jobs to

incur pi-blocking. Due to the small access probability pacc, there are many independent tasks in this

particular scenario.

In situations with high contention for resources (i.e., if pacc is large and if there are many

tasks), use of the global OMLP does result in higher schedulability, as expected. One such example
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Figure 7.18: SRT schedulability under G-EDF-R1 scheduling with the global FMLP, G-EDF-R1
scheduling with the global OMLP, and C24-EDF-R1 scheduling with the clustered OMLP for light
exponential utilizations, long periods, nr = 1, pacc = 0.85 and short critical section lengths.

is shown in Figure 7.18, which depicts SRT schedulability for light exponential utilizations, long

periods, pacc = 0.85, nr = 1, and short critical sections. Since a majority of the tasks access the

single resource (in the expected case), maximum queue length is long under the global FMLP. The

global OMLP’s bound of 2m− 1 pi-blocking requests (per issued request) is lower in this case and

thus yields higher schedulability. This illustrates that the global OMLP can be an improvement

over the simpler, asymptotically sub-optimal FMLP. Moreover, since most tasks access the single

shared resource in this scenario, priority donation causes only little additional capacity loss (if any).

Therefore, the clustered OMLP is the best-performing locking protocol in this scenario since the

maximum queue length is limited to m concurrent requests under it.

Perhaps counterintuitively, there also exist scenarios in which the global OMLP as discussed in

Chapter 6 and implemented in LITMUSRT can yield worse schedulability than the global FMLP.

Let Aq denote the number of tasks that access a given resource `q, as in the analysis of the global

OMLP (Definition 6.8). If m + 1 < Aq < 2m− 1, then the bound on the number of pi-blocking

requests under the global OMLP is 2m− 1 (per issued request), which, in this case, is in fact higher

than that under the global FMLP (which is always Aq − 1 due to its reliance on FIFO queues). This

can lead to unfavorable schedulability results under the global OMLP, as is apparent in Figure 7.19,

which shows SRT schedulability under G-EDF-R1 with medium uniform utilizations, long periods,
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Figure 7.19: SRT schedulability under G-EDF-R1 scheduling with the global FMLP, G-EDF-R1
scheduling with the global OMLP, and C24-EDF-R1 scheduling with the clustered OMLP for
medium uniform utilizations, long periods, nr = 3, pacc = 0.55 and short critical section lengths.

pacc = 0.55, nr = 3, and short critical sections. In this example, a moderate number of tasks share

each resource in the expected case since pacc = 0.55, which produces the discussed effect. The

clustered OMLP, however, still outperforms the FMLP by a large margin, showing the advantage of

its O(m) bound on maximum s-oblivious pi-blocking.

When using protocols based on priority inheritance, a hybrid of the global FMLP and the

global OMLP would be preferable: if Aq ≤ 2m, then resource requests are satisfied according

to the FMLP’s rules; otherwise, if Aq > 2m, then the global OMLP’s rules have precedence. In

LITMUSRT, the G-EDF plugin could be trivially modified to implement such a hybrid protocol

since the FDSO layer (see Section 3.3.1.3) is aware of Aq (the number of tasks holding a reference

to a semaphore is known since the semaphore’s kernel memory must be deallocated when the last

reference is dropped).

If contention is high and there are few independent tasks, however, the clustered OMLP achieves

higher HRT and SRT schedulability than either the global FMLP or the global OMLP.
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Figure 7.20: HRT schedulability under P-EDF with the clustered OMLP and under P-FP with
the MPCP-VS for medium exponential utilizations, long periods, nr = 24, pacc = 0.1 and short
critical section lengths.

7.4.2 The Clustered OMLP vs. the MPCP-VS

Recall from Section 2.4.4.2 that the MPCP-VS is a variant of the MPCP in which suspension time is

charged as execution time,4 and concurrent resource requests originating from the same processor are

disallowed. Under the clustered OMLP, priority donation similarly limits the number of concurrent

requests to c per cluster, which under partitioning (c = 1) is equivalent to prohibiting concurrent

requests (in each partition).

A major difference between the protocols exists with regard to queuing: the MPCP-VS uses

priority queues, which, as discussed in Chapter 6, implies that it is asymptotically suboptimal under

either s-aware and s-oblivious analysis, whereas the clustered OMLP uses a simpler FIFO queue,

which ensures O(m) s-oblivious pi-blocking. However, does this difference in asymptotic optimality

affect actual protocol performance (as measured in terms of schedulability)? Our data clearly shows

that it does. One typical example is shown in Figure 7.20, which depicts HRT schedulability under

P-EDF-R1 scheduling with the clustered OMLP and under P-FP-R1 scheduling with the MPCP-

VS for medium exponential utilizations, long periods, pacc = 0.1, nr = 24, and short critical

section lengths. From the depicted graph, it is clearly apparent that the OMLP under P-EDF-R1

4While the MPCP-VS uses s-oblivious schedulability analysis, it should be noted that it was proposed (Lakshmanan
et al., 2009) prior to the introduction of the term “s-oblivious analysis” (Brandenburg and Anderson, 2010a).
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achieves higher HRT schedulability than the MPCP-VS under P-FP-R1 scheduling. This is in

fact representative for all of our schedulability results, where the clustered OMLP outperforms the

MPCP-VS in all scenarios where there are the significant differences among protocols.5 While some

of the observed performance gap is likely due to the locking-unrelated differences between P-EDF

and P-FP, the conclusion remains that, when using s-oblivious analysis, P-FP scheduling with the

MPCP-VS is not preferable to P-EDF scheduling with the clustered OMLP.

While it would be somewhat interesting to perform an “apples-to-apples” comparison of the

MPCP-VS and the clustered OMLP in the future, there currently exists no analysis for the MPCP-VS

under P-EDF scheduling, and the current implementation of LITMUSRT only supports the OMLP

in EDF-based plugins (for mundane reasons; support for the OMLP under P-FP scheduling is

conceptually straightforward, but has simply not yet been implemented and evaluated in LITMUSRT

at this point). A primary feature of P-FP scheduling is that effective s-aware schedulability analysis

is available for FP scheduling, which enables practical s-aware locking protocols, which we discuss

next.

7.5 Semaphore Protocols for S-Aware Analysis

We implemented three suspension-based locking protocols for s-aware schedulability analysis in

LITMUSRT’s P-FP plugin. Besides our partitioned FMLP+, we implemented the two major

suspension-based multiprocessor locking protocols proposed in prior work, namely the DPCP

(Rajkumar et al., 1988; Rajkumar, 1991) and the MPCP (Rajkumar, 1990, 1991).

Each of the three protocols uses priority boosting as the primary mechanism to ensure progress

(locally, the DPCP also uses priority inheritance if agents are ceiling-blocked by the PCP). As was

the case with the OMLP and the MPCP-VS, the main difference between the FMLP+ and the two

PCP variants is the choice of queue. The DPCP and the MPCP rely on priority queues, which gives

rise to non-optimal s-aware pi-blocking (recall Section 6.3.3), whereas the FMLP+ ensures O(n)

s-aware pi-blocking due to its use of FIFO queues (Section 6.3). Recall that the FMLP+ can use

5Some parameter combinations yield uniformly low schedulability under all protocols due to infeasibly high levels of
contention. For example, this is frequently the case if nr = 24 and pacc = 0.85.
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either preemptive or non-preemptive request execution. Before comparing the FMLP+ to the classic

MPCP and DPCP, we first discuss which FMLP+ variant is preferable on our platform.

7.5.1 The FMLP+ with Preemptive and Non-Preemptive Execution

The original partitioned FMLP proposed by Block et al. (2007) used non-preemptive execution of

resource requests to simplify blocking analysis and to reduce overheads. The FMLP+ supports

non-preemptive request execution as well, but is actually simpler to analyze when using preemptive

request execution. The bound on worst-case s-aware pi-blocking (Section 6.4.3) is also lower

when requests are executed preemptively. Therefore, whether to allow resource-holding jobs to be

preempted by other resource-holding (and thus also priority-boosted) jobs is a tradeoff between

pi-blocking bounds (which are lower if requests are executed preemptively) and overhead accounting

(which is less pessimistic if requests are executed non-preemptively). Which variant is preferable

hence depends on the overhead characteristics of the underlying platform.

In LITMUSRT, and on our hardware platform, the observed worst-case and average-case over-

heads do not justify making critical sections non-preemptive: in almost all of the evaluated scenarios

(in which meaningful differences among locking protocols exist), the FMLP+ with preemptive

request execution achieves higher schedulability than the FMLP+ with non-preemptive request

execution. A representative example exhibiting this trend is shown in Figure 7.21, which depicts HRT

schedulability under either variant for bimodal medium utilizations, moderate periods, pacc = 0.25,

nr = 1, and short critical sections.

Largely similar trends can also be observed in the SRT case, which is not depicted here but can

be found online (Brandenburg, 2011). Notably, there exist a few exceptions where the FMLP+ with

non-preemptive request execution achieves slightly higher SRT schedulability than the FMLP+ with

preemptive request execution. However, this occurs only in few cases where there are many tasks

with long periods, many resources, pacc ≤ 0.25, and if critical sections are short. In these scenarios,

overheads are the dominating factor; non-preemptive execution is hence preferable.

To summarize, in the SRT case, we found preemptive execution of requests to be preferable in

a majority of the tested scenarios with short periods, and in all tested scenarios with moderate or

long periods; in the HRT case, we found preemptive execution to be preferable in all tested scenarios
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Figure 7.21: HRT schedulability under P-FP-R1 scheduling with two variants of the FMLP+ for
medium bimodal utilizations, moderate periods, nr = 1, pacc = 0.25, and short critical sections.

regardless of the critical section length. We therefore do not consider the non-preemptive FMLP+ in

the remainder of this chapter.

7.5.2 The FMLP+ vs. the MPCP vs. the DPCP

The FMLP+, the MPCP, and the DPCP are quite different from one another. Of the three, the

FMLP+ is the only protocol to use FIFO queues, and the DPCP is the only protocol to use the

RPC model where each resource is only accessed from a specific processor. These differences have

noticeable impact on observed overheads.

The FMLP+ generally incurs the lowest overheads due to its simple structure. In particular,

the MPCP incurs higher acquisition overheads than the FMLP+ when there are many waiting jobs

because the MPCP requires jobs to wait in priority order, whereas the FMLP+ uses low-overhead

FIFO queues (in Linux, wait queues are implemented as doubly-linked lists, which enables efficient

O(1) enqueueing and dequeuing at either end).

The DPCP causes the highest overheads among all evaluated locking protocols for partitioned

scheduling since a job that issues a resource request (i.e., that locks a semaphore) must activate a

“remote agent,” which is implemented as temporary task migration in the version of LITMUSRT
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underlying this dissertation.6 This effectively doubles the number of scheduler invocations and

context switches that must be carried out, and hence results in significantly higher overheads.

In our experimental study, we found that the FMLP+ outperforms both the MPCP and the

DPCP in terms of HRT schedulability in all of the tested scenarios (aside those where schedulability

is equally low under each of the tested protocols due to excessive contention). A typical example

is shown in Figure 7.22, which depicts HRT schedulability under the FMLP+, the MPCP, and

the DPCP for heavy exponential utilizations, long periods, pacc = 0.1, and nr = 6. In inset (a),

which depicts HRT schedulability under each protocol assuming short critical sections, schedulability

remains higher under the FMLP+ until ucap ≈ 17, whereas the curves corresponding to the DPCP

and the MPCP reach zero already at ucap ≈ 12 and ucap ≈ 16, respectively. Insets (b) and (c) show

that the same general trend manifests for longer critical sections as well. In general, long critical

sections greatly reduce schedulability under any locking protocol. In this particular example, critical

section lengths have only a minor impact due to the low access probability pacc (i.e., there are only

few requests).

The FMLP+ outperforms the MPCP in all tested scenarios in the SRT case as well. The

FMLP+ also outperforms the DPCP in the majority of the tested scenarios (again, aside those

without meaningful differences in schedulability); however, there exist some cases where the DPCP

achieves higher SRT schedulability than the FMLP+. The scenario with the largest performance

gap is exhibited in Figure 7.23, which depicts SRT schedulability under the FMLP+, the MPCP,

and the DPCP for uniform light utilizations, long periods, pacc = 0.1, and nr = 24. The DPCP

benefits from the fact that average-case overheads are much lower than worst-case overheads and

achieves somewhat higher SRT schedulability than the FMLP+ in this scenario with many tasks,

many resources, and little contention. The MPCP is not competitive in this scenario. However, there

exist many scenarios in which the MPCP performs better than the DPCP, and vice versa. The full

set of results can be found online (Brandenburg, 2011).

Overall, our results show the FMLP+ to yield improved schedulability in a large majority of

the evaluated scenarios when compared to the two classic locking protocols for P-FP scheduling.

The FMLP+ benefits to some extent from its simplicity and its hence lower overheads; however,

6An earlier version of LITMUSRT required a separate process to act as a task’s agent (Brandenburg and Anderson,
2008a,b). The current DPCP implementation is simpler to use since it implements LITMUSRT’s regular locking API.
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(a) HRT schedulability for short critical sections.
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(b) HRT schedulability for intermediate critical sections.
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(c) HRT schedulability for long critical sections.

Figure 7.22: Graphs showing HRT schedulability under P-FP-R1 scheduling with the FMLP+, the
MPCP, and the DPCP for heavy exponential utilizations, long periods, nr = 6, pacc = 0.1, and
(a) short, (b) intermediate, and (c) long critical sections.
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Figure 7.23: SRT schedulability under P-FP-R1 scheduling with the preemptive FMLP+, MPCP,
and DPCP for light uniform utilizations, long periods, nr = 24, pacc = 0.10 and intermediate
critical section lengths.

it remains competitive even if all overheads are assumed to be negligible (i.e., set to zero). This

emphasizes that while the FMLP+’s simplicity is certainly beneficial in practice, its optimality with

regard to maximum s-aware pi-blocking is equally important to achieving good performance in a

practical system (in the tested configuration). The DPCP’s performance also improves markedly if

overheads are assumed to be negligible; this suggests that it may be worthwhile to study distributed

locking approaches in systems with low inter-processor communication costs.

7.6 Spinning vs. S-Oblivious Analysis vs. S-Aware Analysis

In the final comparison, we contrast the performance of spin-based and suspension-based multipro-

cessor locking protocols (both s-aware and s-oblivious) in terms of HRT and SRT schedulability to

answer Questions Q1 and Q2 from Chapter 1: which combination of scheduler and locking protocol

is best suited to satisfying HRT and SRT constraints on our platform?

As discussed at length in Chapters 5 and 6, spin-based protocols can result in some processor

capacity being wasted while jobs spin. Intuitively, this suggests that suspension-based locking

protocols should be preferable. However, suspensions cary two penalties: first, jobs potentially lose

cache affinity whenever they issue a resource request since they might suspend, and, second, priority

inheritance or priority boosting is required. The former requires potentially pessimistic overhead
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accounting, and the latter implies that real-time jobs must invoke system calls to notify the scheduler

of priority changes and to enact suspensions. In particular, the lock and unlock system calls for

semaphore protocols must acquire scheduler locks when changing priorities, which can result in

significant delays in global schedulers where lock contention can be high.

As implemented in LITMUSRT, spin-based protocols do not issue any system calls in the

common case (i.e., if no higher-priority job was released during the critical section) due to the use of

the control page to indicate non-preemptivity (see Section 3.3.2). Even in the worst case, that is, when

a delayed preemption is required, only a single system call, sched yield(), is required. In contrast,

jobs issue two system calls for each critical section under suspension-based locking protocols.

For these reasons, suspension-based locking protocols incur generally much higher overheads

than the vastly simpler spin-based locking protocols. Further, in the case of s-aware schedulability

analysis, spinlocks additionally avoid all pessimism related to the analysis of suspensions. Conse-

quently we found spinlocks to be always preferable to semaphores (in terms of schedulability) in the

HRT case, where high worst-case overheads must be considered.

A representative example can be seen in Figure 7.24, which depicts HRT schedulability under

P-EDF-R1 scheduling with the clustered OMLP, under P-FP scheduling with the partitioned

FMLP+, and under P-EDF-R1 scheduling with non-preemptive mutex spinlocks (i.e., under the best-

performing s-oblivious, s-aware, and spin-based protocol, respectively) for light bimodal utilizations,

long periods, pacc = 0.4, nr = 12. Inset (a) exhibits the case of short critical sections, where

spinlocks outperform either semaphore protocol by a large margin. Since the blocking analysis of the

clustered OMLP and non-preemptive task-fair mutex spinlocks is structurally identical, the difference

in achieved HRT schedulability is entirely caused by higher overheads under the suspension-based

OMLP. Note that Figure 7.24 depicts results assuming a small WSS of only 4 KB, that is, it is biased

in favor of suspension-based locking protocols. If larger, more realistic WSSs are assumed, then the

gap between spinlocks and semaphores increases.

Another interesting trend is that the clustered OMLP achieves higher schedulability than the

partitioned FMLP+ in this case. This highlights that protocols that take advantage of s-oblivious

analysis are in fact competitive with (or even superior to) locking protocols for the best currently

available s-aware schedulability analysis, namely response-time analysis for FP scheduling. In other

words, while s-oblivious analysis appears very pessimistic on first sight, it can yield overall higher
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(a) HRT schedulability for short critical sections.
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(b) HRT schedulability for intermediate critical sections.
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(c) HRT schedulability for long critical sections.

Figure 7.24: HRT schedulability under P-EDF-R1 scheduling with non-preemptive task-fair mutex
spinlocks, under P-EDF-R1 scheduling with the clustered OMLP, and under P-FP-R1 scheduling
with the FMLP+ for light bimodal utilizations, long periods, nr = 12, pacc = 0.4.
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schedulability because it allows pessimism related to the analysis of suspensions to be avoided (since

suspensions are effectively analyzed as execution time). Graphs comparing the clustered OMLP to

the DPCP and MPCP are available online (Brandenburg, 2011) and similarly reflect that using the

s-oblivious approach is beneficial for many of the considered parameter combinations.

Insets (b) and (c) of Figure 7.24 show that similar trends manifest for intermediate and even long

critical sections; however, schedulability is typically uniformly low under all locking protocols if

critical sections are long. Notably, suspension-based locking protocols do not outperform spin-based

locking protocols in the HRT case even if critical sections are long.

We found spinlocks to also be preferable in the SRT case in all tested scenarios if critical section

lengths are short, in most of the tested scenarios if critical section lengths are intermediate. While

the difference in average-case overheads of spin-based protocols and suspension-based protocols is

much smaller than the difference in maximum overheads, semaphores are still subject to additional

overheads that do not affect spinlocks (foremost CPMD, additional scheduling decisions, and system

calls). Therefore, from an SRT schedulability point of view, spinlocks are in most cases preferable

(on our platform).

This is apparent in Figure 7.25, which depicts SRT schedulability under G-EDF-R1 scheduling

with the clustered OMLP, under G-EDF-R1 scheduling with non-preemptive task-fair mutex spin-

locks, and under P-FP-R1 scheduling with the partitioned FMLP+ for medium bimodal utilizations,

moderate periods, pacc = 0.25, nr = 24, and a WSS of 128 KB.

Inset (a) shows SRT schedulability in the case of short critical sections. As discussed, spinlocks

achieve much higher schedulability than either suspension-based protocol due to their overhead

advantage. Further, the s-aware FMLP+ outperforms the s-oblivious clustered OMLP; however,

this is due to the higher scheduling overheads under G-EDF-R1 scheduling compared to the more

efficient P-FP plugin. Inset (b) shows SRT schedulablity in the case of intermediate critical section

lengths and exhibits similar, albeit compressed, trends. Inset (c) demonstrates that excessively long

critical sections result in low schedulability regardless of the employed locking protocol.

While we found spinning to always be preferable (in terms of SRT schedulability) if critical

sections are short, we observed somewhat less uniform trends in the SRT case if critical section

lengths are intermediate or long. In fact, there exist parameter choices for which the FMLP+

achieves higher SRT schedulability. The case with the largest gap in SRT schedulability is depdicted
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(a) SRT schedulability for short critical sections.
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(b) SRT schedulability for intermediate critical sections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20  22  24

s
c
h
e
d
u
la

b
ili

ty
 [
s
o
ft
]

utilization cap (prior to overhead accounting)

util. bimodally in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); period uniformly in [10, 100]
 wss=128KB; nres=24; pacc=0.25; long critical sections

G-EDF-R1/MX-Q
G-EDF-R1/OMLP
P-FP-R1/FMLP+

(c) SRT schedulability for long critical sections.

Figure 7.25: SRT schedulability under G-EDF-R1 scheduling with non-preemptive task-fair mutex
spinlocks, under G-EDF-R1 scheduling with the clustered OMLP, and under P-FP-R1 scheduling
with the FMLP+ for medium bimodal utilizations, moderate periods, nr = 24, pacc = 0.25.
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Figure 7.26: SRT schedulability under G-EDF-R1 scheduling with non-preemptive task-fair mutex
spinlocks, under G-EDF-R1 scheduling with the clustered OMLP, and under P-FP-R1 scheduling
with the FMLP+ for uniform light utilizations, long periods, nr = 1, pacc = 0.10.

in Figure 7.26, which shows SRT schedulability under G-EDF-R1 scheduling with the clustered

OMLP, under G-EDF-R1 scheduling with non-preemptive task-fair mutex spinlocks, and under

P-FP-R1 scheduling with the partitioned FMLP+ for uniform light utilizations, long periods,

pacc = 0.10, nr = 1, and a WSS of 4 KB. Due to the light utilization distribution, many tasks that

share a single resource. Under spinlocks and s-oblivious analysis, this results in significant utilization

loss. While the FMLP+ is also affected by large utilization loss, it is less so because suspended tasks

do not contribute to processor demand under s-aware analysis. As a result, SRT schedulability is

higher under P-FP-R1 scheduling with the FMLP+. It should be noted, however, that, in most cases,

SRT schedulability is uniformly low under all tested locking protocols if critical sections are long.

The scenario depicted in Figure 7.26 is an unusual exception since pacc = 0.10 and nr = 1 (i.e.,

there is only one shared resource that is, on average, accessed by only ten percent of the tasks).

7.7 Summary

This concludes our overhead-aware evaluation of the real-time multiprocessor locking protocols

considered in this dissertation. To enable this evaluation, we have discussed methods that allow

locking overheads to be considered during schedulability analysis. Due to the complex interactions

that arise when overheads are non-negligible, the presented overhead accounting methods are non-
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exhaustive. We have further determined using micro-benchmarks that list-based queue locks offer

the best scalability (i.e., lowest overheads under high contention) on our hardware platform.

In the main part of this chapter, we have reported upon two schedulability studies that compared

the locking protocols proposed in this dissertation with each other and with three protocols proposed

in prior work. Generally speaking, we found that RW locks offer significant analytical benefits if

reads are more frequent than writes, and that spinlocks are preferable to suspension-based locking

protocols if critical sections are short (as they can be expected to be in well-designed systems).
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CHAPTER 8

CONCLUSION

The main objectives of the research presented in this dissertation were to determine how sporadic

real-time workloads should be scheduled to efficiently utilize current multiprocessors (Question Q1

in Chapter 1), and which locking primitives should be used to coordinate access to shared resources

without exposing jobs to unpredictable delays (Question Q2). To answer these questions, we have

built LITMUSRT, devised an overhead-aware evaluation methodology, designed several new real-

time locking protocols, and conducted two large case studies on a 24-core Intel Xeon platform. In

the following, we first summarize our results (Section 8.1), then discuss open questions and future

work (Section 8.2), and finally conclude (Section 8.3).

8.1 Summary of Results

Our research makes novel contributions in three areas, namely RTOS design and implementation,

the design and analysis of real-time locking protocols, and the empirical performance evaluation of

real-time systems. In the following, we briefly recapitulate the key points of Chapters 3–7.

8.1.1 Theory, Practice, and Overheads

The design and implementation of LITMUSRT is described in detail in Chapter 3. The purpose of

LITMUSRT is to facilitate the evaluation of real-time scheduling algorithms and locking protocols

on actual hardware platforms, so that realistic overheads can be observed and taken into account.

Towards this, LITMUSRT extends the Linux kernel’s scheduling architecture with a flexible plugin

framework that allows the modular development of new scheduling policies. Notably, it is possible

to switch the active scheduling policy at runtime.



In the design of LITMUSRT, we have chosen to realize the sporadic task model following

the reservation interpretation (see Section 3.1), which allows tasks to be implemented either as

processes (with address space protection) or as threads (without address space protection). An

important difference between Linux’s stock scheduler and LITMUSRT is the way in which global

scheduling is implemented. In particular, the Linux scheduler is not necessarily correct in all cases,

as explained in Section 3.2. LITMUSRT’s link-based implementation of global scheduling in the

G-EDF and C-EDF plugins is, to the best of our knowledge, correct for all job arrival sequences

(see Section 3.3.3) , albeit at the expense of serializing all scheduling decisions and thus increased

overheads. As discussed in Section 8.2.3 below, this is an area for future improvements.

LITMUSRT has been essential to our research in two important ways. First, by implementing

schedulers in a real OS such as Linux, the constraints imposed by the kernel serve as a valuable

“reality check” that may be lacking when using simulators or a “toy OS” instead. Second, without the

flexibility offered by LITMUSRT, the scope of our evaluation would necessarily have been much

more constrained—in our experience, implementing a new scheduler or locking protocol within the

LITMUSRT framework is significantly simpler than directly modifying stock Linux.

Another key feature of LITMUSRT is that most relevant kernel overheads (scheduler invocation,

context switch, release ISR execution, etc.) can be measured individually. In accordance with the

principle of least measurement (Section 3.1), this allows the combined effect of all overhead sources

to be determined analytically. The overhead accounting approach used in this dissertation is based on

the derivation of safe approximations of task sets, as explained in great detail in Sections 3.4 and 3.5.

This approach enables the application of overhead-unaware schedulability tests.

8.1.2 Overhead-Aware Evaluation of Real-Time Schedulers

Chapter 4 consists of two parts. In Section 4.1, a novel methodology for conducting overhead-

aware schedulability experiments is proposed—this is our approach to answering Question Q1 from

Chapter 1. Thereafter, starting in Section 4.2, the applicability of the proposed evaluation method is

demonstrated with a large-scale comparison of 22 scheduler configurations on a 24-core Intel Xeon

platform. This study answers Question Q1 for our particular platform, and also suggests general

trends that would likely arise on other platforms as well.
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The defining characteristic of our evaluation methodology is that it incorporates both runtime

overheads and schedulability tests. In the OS phase of the evaluation, models of average-case and

worst-case overheads under each of the schedulers under evaluation are constructed from large

numbers of overhead samples that are collected during the execution of synthetic benchmark tasks.

The overhead models are then integrated with overhead-unaware schedulability tests from prior

work, as described in Sections 3.4 and 3.5. We used observed maximum overheads when applying

HRT schedulability tests and observed average-case overheads when applying SRT schedulability

tests, which reflects that SRT applications are more tolerant to occasional delays as long as tardiness

remains bounded. Finally, millions of task sets covering a wide range of task parameter choices (i.e.,

execution cost, period, and WSS) are generated and tested for HRT or SRT schedulability under each

of the schedulers under evaluation. The fraction of task sets that are found to be schedulable under

each scheduler is an empirical performance measure that reflects both algorithmic and overhead-

related capacity loss. We applied this methodology to LITMUSRT on our 24-core Intel Xeon test

platform, which is described in detail in Chapter 2. The major observations are as follows.

First, as expected, we observed lower average-case and worst-case kernel overheads under

partitioned scheduling than under global scheduling (see Section 4.3). In the case of clustered

scheduling, overheads increase with increasing cluster sizes. Further, while we found staggered

quanta to reduce average-case overheads by a large amount, staggered quanta did not consistently

reduce worst-case overheads.

Second, in terms of CPMD incurred by a job continuing execution after a preemption or

migration, we found that migrations and preemptions cause similar delays if there is strong cache

contention (which we induced with a cache-thrashing background workload in our experiments).

We also observed that CPMD is markedly lower and that there are benefits to maintaining cache

affinity if there is little contention (i.e., if the system is mostly idle). This shows that migrations are

not necessarily more costly than preemptions when making worst-case assumptions, but that cache

affinity is beneficial in the average case.

Third, P-EDF is generally the best-performing HRT scheduler on our platform, closely followed

by P-FP. Despite the bin-packing limitations of partitioned scheduling, P-EDF consistently outper-

forms both PD2 (which is handicapped by high overheads) and G-EDF (which suffers from both

high overheads and algorithmic limitations). Overheads are markedly lower in smaller clusters, but
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C-EDF is still limited by the non-optimality of EDF-based schedulers on multiprocessors (in the

HRT case).

Fourth, in the SRT case, P-EDF is the best-performing scheduler only in scenarios in which

task sets are easy to partition and overheads have a significant impact (i.e., if there are many

low-utilization tasks). Otherwise, G-EDF and C-EDF variants with large clusters are effective at

overcoming bin-packing limitations and hence outperform P-EDF.

Fifth, interrupt accounting is a significant source of capacity loss. In particular, in the case of

larger clusters and under global scheduling, we found dedicated interrupt handling to be almost

always preferable to global interrupt handling. Global interrupt handling is only preferable under

P-FP (in all tested scenarios) and P-EDF (in about half of the scenarios), where release ISRs are

short and per-processor task counts comparatively low.

Based on these results, our answer to Question Q1 from Chapter 1 is as follows: RTOSs should

implement a configurable C-EDF scheduling framework to enable P-EDF scheduling (c = 1) for

HRT workloads and G-EDF scheduling (c = m) or C-EDF scheduling (1 < c < m) scheduling for

SRT applications.

8.1.3 Real-Time Spinlock Protocols

Our work pertaining to the design and analysis of spinlock protocols for multiprocessor real-time

systems is presented in Chapter 5. To support the nested acquisition of resources, Section 5.1

introduces group locking, which is a simple mechanism to automatically transform nested, fine-

grained resource requests into un-nested, coarse-grained lock acquisitions. Notably, group locking

can be used with both spinlock and semaphore protocols. A limitation of group locking is that

it requires all nesting to be known a priori; however, such knowledge is required anyway for the

derivation of safe upper bounds on worst-case blocking.

The central contribution of Chapter 5 is the introduction of phase-fair reader-writer locks. The

key property of phase-fairness (see Section 5.2) is that read requests incur onlyO(1) acquisition delay

without the risk of writer starvation. For context, the only other type of lock with O(1) acquisition

delay for readers is a reader preference lock, in which the maximum acquisition delay incurred by

writers is potentially unbounded. Besides offering analytical advantages, phase-fair RW locks are
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also highly practical. Three efficient implementations are presented in Section 5.3: one requiring

little memory, one requiring few atomic instructions, and one with constant RMR complexity.

Finally, improved blocking analysis for task-fair mutex, task-fair RW, and phase-fair RW

spinlocks is presented in Section 5.4. In the case of task-fair mutex spinlocks, the presented

bounds improve upon prior work since they are based on holistic blocking analysis (Section 5.4.1),

which takes both the protocol’s constraints and the frequency in which individual tasks issue requests

into account (prior bounds reflected protocol properties, but not task-set-specific limits). In the case

of task-fair and phase-fair RW locks, we have presented the first (published) analysis of RW locks in

multiprocessor real-time systems.

8.1.4 Real-Time Semaphore Protocols

Chapter 6 presents our work concerning suspension-based locking protocols. We have made three

major contributions. First, we have studied the notion of “blocking optimality” and presented the first

definition of a complexity measure for multiprocessor real-time locking protocols, namely maximum

pi-blocking. Importantly, we have found that there are two fundamental classes of schedulability

analysis that yield different lower bounds on maximum pi-blocking. Under s-oblivious analysis,

suspensions cannot be modeled explicitly and suspending jobs are analyzed as if they were executing,

that is, processor demand is generally overestimated. In contrast, s-aware schedulability analysis

considers suspensions explicitly. While s-aware analysis is preferable in principle, most existing

multiprocessor schedulability tests are s-oblivious since the analysis of suspensions is notoriously

difficult. Under s-oblivious analysis, Ω(m) maximum pi-blocking is unavoidable in the general case;

under s-aware analysis, the lower bound on maximum pi-blocking is Ω(n).1

The second major contribution is the design and analysis of the OMLP family of protocols

(see Section 6.2). The global OMLP (for mutex constraints) ensures O(m) maximum s-oblivious

pi-blocking under global JLFP schedulers and is hence asymptotically optimal under s-oblivious

analysis. Similarly, the clustered OMLP for mutex constraints ensures O(m) maximum s-oblivious

pi-blocking for clustered scheduling with 1 ≤ c ≤ m. Further, we also developed two variants of the

clustered OMLP for relaxed-exclusion synchronization: the clustered OMLP for RW constraints

1Recall that m denotes the number of processors and that n denotes the number of real-time tasks.
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implements phase-fairness and thus ensures O(1) maximum s-oblivious pi-blocking per read re-

quest (although readers may still incur O(m) s-oblivious pi-blocking due to priority donation—see

Section 6.2.6); and the clustered OMLP for k-exclusion ensures O(m/k) maximum s-oblivious

pi-blocking per request. The significance of the OMLP family of protocols derives from the fact that

the OMLP’s mutex protocols are the first asymptotically optimal locking protocols for s-oblivious

analysis, the clustered OMLP is the first suspension-based locking protocol for clustered scheduling

with 1 < c < m, and the RW and k-exclusion variants are the first suspension-based locking

protocols of their kind.

The third major contribution is the design and analysis of the FMLP+, which ensures O(n) max-

imum s-aware pi-blocking under partitioned JLFP scheduling, which implies that it is asymptotically

optimal under s-aware analysis. Notably, we proposed the first asymptotically optimal real-time

locking protocol for partitioned scheduling (Brandenburg and Anderson, 2010a), despite the fact that

the first real-time locking protocols for partitioned scheduling were proposed more than 20 years ago.

Furthermore, two impossibility results are presented in Chapter 6: in Section 6.3.3, we show that

it is not possible to design asymptotically optimal locking protocols for s-aware analysis using (only)

priority queues; and in Section 6.3.2, we show that it is impossible to design asymptotically optimal

locking protocols for s-aware analysis under global JLFP scheduling using either priority boosting

or priority inheritance if tasks have arbitrary deadlines or may be tardy.

8.1.5 Overhead-Aware Evaluation of Real-Time Locking Protocols

An empirical evaluation of the locking protocols introduced in Chapters 5 and 6 is presented in

Chapter 7. The performance comparison is based on overhead-aware schedulability experiments that

were conducted using the overhead-aware approach described in Chapter 4.

Since locking protocols expose jobs to additional overheads, corresponding overhead accounting

techniques are required to inflate the effective execution requirements and maximum request lengths.

To the best of our knowledge, our analysis of locking-related overheads presented in Section 7.1,

though still non-exhaustive (see Section 8.2.4 below), is the first systematic discussion of such

overheads in multiprocessor real-time systems.

In Chapter 5, we presented three implementations of phase-fair RW locks that target different

efficiency considerations: compact locks for memory-constrained systems, simple ticket locks with
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few atomic operations, and list-based queue locks with constant RMR complexity. In Section 7.2,

results from simple micro-benchmarks comparing the latter two variants (since our platform has

ample memory, compact locks were not evaluated) are presented. Overall, our data shows that,

among the locks that offer strong progress guarantees, list-based queue locks offer the best scalability

on the tested hardware platform.

The remainder of Chapter 7 reports upon two schedulability studies. In the first study, mutex

and RW spinlock choices are compared assuming a wide range of write ratios; in the second study,

the clustered OMLP, the global OMLP, and the FMLP+ are compared with each other, with the

MPCP-VS, the MPCP, and the DPCP (three semaphore protocols proposed in prior work), and

with task-fair mutex spinlocks. The major observations are as follows.

First, the use of RW spinlocks can yield significant analytical advantages over mutex spinlocks

if the write ratio is low, and phase-fair RW locks offer advantages over task-fair RW locks if multiple

writers access a resource. However, task-fair RW locks have the advantage of degrading to mutex-like

performance in the worst case, whereas phase-fair RW locks sometimes yield lower schedulability

than task-fair mutex locks if there are both many readers and many writers.

Second, in terms of HRT schedulability for the considered range of parameters, the partitioned

FMLP+ performs as well or better than either the MPCP or the DPCP, the two classic multiprocessor

real-time locking protocols. This shows that the proposed FMLP+ is not just of theoretic interest,

but that it is practical as well.

Third, in the case of c = 1, the clustered OMLP for s-oblivious analysis is in many cases

competitive with the partitioned FMLP+ for s-aware analysis. Still, the FMLP+ is the overall

best-performing s-aware suspension-based locking protocol on our platform. This highlights that

the analysis of suspension-based locking protocols is very pessimistic in general. This limitation

manifests either as pessimistic analysis assumptions (in the s-oblivious case) or in large bounds on

maximum pi-blocking (in the s-aware base). In the future, novel s-aware schedulability analysis

should be compared against the simpler s-oblivious approach to quantify any reduction in pessimism.

Fourth, we found spinlocks to be generally preferable to suspension-based locking protocols:

in all evaluated scenarios in which meaningful differences in locking protocol performance exist,

task-fair mutex spinlocks achieved higher HRT schedulability than either the clustered OMLP

or the partitioned FMLP+. This is despite the fact that the clustered OMLP and the partitioned
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FMLP+ are both asymptotically optimal with regard to maximum pi-blocking (under s-oblivious

and s-aware analysis, respectively) and also, in most cases, empirically better performing than

previously-proposed suspension-based locking protocols. Further, on our platform, spinlocks are

preferable even when assuming small WSSs such as 4 KB, and of course remain preferable if larger

WSSs are assumed. In practice, few applications will have a WSS of only 4 KB since most non-trivial

programs consist of more than 4 KB of instructions.

Suspension-based protocols were superior to spin-based protocols only in terms of SRT schedu-

lability, only when assuming average overheads, and only in some scenarios involving predominantly

intermediate or long critical section lengths. To reiterate, we believe that it can reasonably be

expected that most critical sections are short in well-designed systems. A notable exception may be

co-processors such as GPUs that result in inherently long critical sections. For such cases, semaphore

protocols are likely the only acceptable option.

To summarize, while spinlocks do result in a waste of processor cycles when jobs busy-wait,

suspension-based locking protocols result in a waste of processor cycles due to higher overheads.

Further, suspension-based locking protocols give rise to additional pessimism that does not affect

spinlocks. While long critical sections may necessitate the use of semaphores instead of spinlocks

(if only to make processor capacity available to background tasks while real-time tasks wait), such

resource-conserving choices do not result in higher real-time schedulability. In fact, to ensure high

schedulability long critical sections must be avoided, regardless of the choice of locking protocol.

Finally, we found the conclusions regarding the relative performance of event-driven schedulers

in Chapter 4 to remain valid even if tasks are not independent. Generally speaking, on our platform,

the highest HRT schedulability is achieved when using P-EDF with non-preemptive task-fair mutex

or phase-fair RW spinlocks. In the SRT case, clustered scheduling with c > 1 remains effective at

overcoming bin-packing limitations.

Based on these results, our answer to Question Q2 from Chapter 1 is that real-time tasks should

use non-preemptive spinlock protocols to coordinate access to shared resources. This concludes

the summary of the main results of this dissertation. Next, we look at the road ahead and discuss

opportunities for future work.
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8.2 Assumptions, Open Questions, and Future Work

As is the case with any implementation-based empirical work, our results are necessarily contingent

on the underlying hardware platform and on assumptions concerning the evaluation methodology and

tested workloads. In the following, we first discuss how changes in the underlying hardware platform

might affect our results (Section 8.2.1), then revisit several key assumptions of our evaluation

methodology (Section 8.2.2), and finally discuss open questions and opportunities for future work

concerning practical real-time scheduling (Section 8.2.3) and real-time locking (Section 8.2.4).

8.2.1 Hardware Platform

As described in depth in Chapter 2, the hardware platform used in the case studies reported upon

in Chapters 4 and 7 is a UMA architecture consisting of 24 identical and relatively fast Intel Xeon

cores. Strictly speaking, our performance results apply to only this particular platform, although it

is reasonable to assume that many current platforms exhibit similar trends. In fact, as discussed in

Section 4.5.4, we have observed trends closely matching those reported in this dissertation in several

preceding studies on various UMA platforms with identical processors. Going forward, however, it

is likely that platforms with NUMA architectures, heterogeneous processors, or particularly slow

cores will become more common. In the following, we briefly conjecture how our work could apply

to such platforms.

NUMA. Recall from Section 2.1.1 that, in a NUMA architecture, the cost of a memory reference

depends on the distance between the accessing processor to the backing memory. That is, reads and

writes to processor-local memory are typically much faster than those to remote memory. This has

major implications for scheduling: to minimize the time that processors stall on memory references,

a job should always be scheduled “close” to the physical memory that holds its code and data.

This constraint effectively rules out global scheduling: as a job may execute on any processor

under global scheduling, it cannot be guaranteed that it executes closely to its code and data.

Consequently, very pessimistic execution time requirements would have to be assumed, which

renders global scheduling undesirable on NUMA platforms.
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In contrast, under partitioned scheduling, memory locality is trivial to support. After partitioning

a task set, each task’s implementing process is simply allocated from memory local to the processor

to which the task has been assigned. However, unless memory is abundant, it is further necessary to

consider the available local memory during partitioning. That is, the constraint that no processor

may be overloaded must be enforced with regard to both processor and memory utilization. This, of

course, increases the difficulty of finding a valid task assignment (Fisher et al., 2005).

In multicore designs, strict partitioning may not always be required, because each memory

node is likely local to a number of cores (e.g., in Intel’s Nehalem processors, each chip contains

one memory controller and two to six processors). Consequently, we expect clustered scheduling

to be the best choice for multicore NUMA platforms. Assuming clusters are defined to match the

underlying NUMA topology, clustered scheduling satisfies the memory locality constraint while

also simplifying the bin-packing problem. In such a setup, the scheduling issues discussed in this

dissertation are likely to arise in each NUMA node. Therefore, C-EDF scheduling is likely the best

tradeoff in the SRT case, whereas in the HRT case, P-EDF may remain preferable to C-EDF if

processor utilization is a more limiting constraint than memory utilization (since C-EDF is affected

by algorithmic capacity loss if c > 1).

Non-identical processors. As discussed in Section 2.1.1, in a platform comprised of identical pro-

cessors, all processors have the same speed and capabilities. In the case of uniform heterogeneous

processors, all processors have the same capabilities, but differ in execution speed (e.g., this is com-

mon when using frequency scaling on x86 platforms). Finally, in the case of unrelated heterogenous

multiprocessors, individual cores differ in capabilities. We consider the uniform case first.

If processor speeds are static (though not identical), then partitioned scheduling can be used as

with identical multiprocessors. However, when assigning tasks to processors, one must consider each

task’s processor-specific execution requirement, that is, when applying bin-packing heuristics, an

item’s “size” is a function of both the item and the “bin.” Notably, it is not correct to simply linearly

scale the execution requirement of a task by the relative execution speed of a processor. For example,

a job requiring 30 ms on 1 GHz does not necessarily complete in 15 ms on a 2 GHz processor. This

is because a task’s execution requirement is determined not only by the processor speed, but also by

memory access latencies, pipeline stalls, and other factors independent of processor speed.
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If processor speeds are dynamic (i.e., if speeds may change at runtime, for example to lower en-

ergy consumption), then partitioned scheduling is unattractive because it could require re-partitioning

the entire task set when individual processors change their speed. More realistically, tasks likely

would only be assigned once (or when new tasks are admitted), and a processor could only enter a

slower low-energy mode if its local task set remains schedulable. This approach, however, would rule

out optimal energy management: if re-partitioning is not an option, then there exist task assignments

such that it is impossible for any processor to reduce speed without risking deadline misses even

though the task set is feasible on slower processors.

As a result, global scheduling may be attractive on uniform heterogeneous multiprocessors,

and more so than on identical multiprocessors. Global schedulers for uniform heterogeneous

multiprocessors have been examined in detail in prior work by Funk (2004) and could be easily

supported in LITMUSRT by tracking each processor’s current execution speed as part of the processor

mapping (recall Section 3.3.3). On large multiprocessor platforms, clustered scheduling most likely

is the best tradeoff between implementation overhead and energy-saving concerns.

In the case of unrelated heterogeneous multiprocessors, global scheduling is not an option

since jobs that require particular processor capabilities cannot be migrated to processors that lack

those capabilities. In fact, a heterogeneous multiprocessor platform may have different instruction

sets for different processors (e.g., an embedded system might consist of two fast x86 cores and

several slower ARM cores), which makes job migration impossible. However, such platforms are

essentially a collection of several smaller multiprocessors (or even uniprocessors) that are scheduled

individually. Such systems can be managed with clustered scheduling, whereby each “island of

uniformity” is considered to be a cluster. Further, it may also be beneficial to allow different policies

in different clusters (e.g., it might be preferable to use C-EDF for fast x86 cores and P-FP for slower

ARM cores). In general, our results can be applied to unrelated heterogeneous multiprocessors by

considering each kind of processor individually.

Many-core platforms. While the number of cores in the evaluated platform is relatively large

when compared to current embedded systems, it is not difficult to envision a future in which “large”

commodity platforms consist of several hundred processors with limited (or even no) cache coherency.

From an implementation point of view, the partitioned scheduling of 24 cores is no different than
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partitioned scheduling of 256 cores. However, finding optimal task assignments becomes more

difficult as the number of cores grows. In practice, optimal assignments are not necessarily required,

but even finding merely good task assignments for hundreds of cores will still be a significant

challenge when issues such as resource-sharing and blocking are taken into account.

However, partitioning will be required to some extent: obviously, even the best-possible imple-

mentation of global scheduling cannot scale to arbitrary core counts. Therefore, clustered scheduling

will likely increase in relevance if core counts grow drastically. In future work, it would be interesting

to study task assignment heuristics for many-core platforms with variable, non-uniform cluster

sizes. That is, if “most” tasks are easy to partition and only a “small” subset of the tasks makes the

bin-packing instance difficult to solve, it may be beneficial to use partitioned scheduling for most

processors and tasks, and to resort to larger clusters only for the tasks that are difficult to partition.

An interesting side effect of ever-increasing core counts is that cores become “cheap,” that is, it

will be possible to dedicate several cores to interrupt handling and scheduling without significantly

affecting the overall system capacity.

Slow cores. The cores in our x86 platform are relatively fast, which de-emphasizes the impact of

scheduling overheads. In systems with much simpler and slower processors, it may be the case

that HRT and SRT schedulability are significantly more sensitive to overheads. In platforms where

this is the case, it may be beneficial to use schedulers that avoid the need for priority queues with

arbitrary priorities (such as EDF-based schedulers). Instead, if core speeds are very low, then P-FP

scheduling is likely a good option in the HRT case, and global FIFO scheduling—which ensures

bounded tardiness (Leontyev and Anderson, 2007, 2010; Leontyev, 2010)—may be preferable to

G-EDF in the SRT case.

To summarize, as platforms grow in size and become less uniform, we expect clustered schedul-

ing to become increasingly attractive, but simpler partitioned or global schedulers may be preferable

on small platforms with slow processors. This concludes our conjectures concerning future hardware

platforms. Next, we consider opportunities for improvement of our evaluation methodology.
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8.2.2 Evaluation Methodology

The key advantage of schedulability experiments, as opposed to other, more direct metrics such as

measuring the deadline miss ratio, is that schedulability evaluates an algorithm’s ability to provide

guarantees (instead of characterizing average-case behavior). The primary contribution of our

extended evaluation methodology—described in detail in Chapter 4—is that it incorporates realistic

overheads as observed on real hardware, in an actual RTOS. This allows us to evaluate a platform’s

ability to make worst-case guarantees for the assumed workloads in practice. We believe this

integration of engineering concerns to be a significant improvement over prior evaluation approaches.

Nonetheless, our evaluation methodology could be improved in several ways, which we discuss in

the following.

Realistic workloads. A key assumption underlying the experimental setup is the choice of workload

that is being assumed. As discussed in Section 4.2.3, we chose synthetic workloads that stress both

implementation bottlenecks and algorithmic weaknesses of each tested scheduler. In future work,

it would be interesting to augment our approach with a systematic evaluation of actual real-time

applications.2 However, a practical limitation is that it is generally difficult to obtain real-time

workloads for multiprocessors, and particularly workloads with HRT constraints. This is due to

(at least) three reasons: first, HRT applications are typically developed for a specific hardware

platform with specific sensors and actuators, so that it is difficult to faithfully reproduce them in a

lab setting; second, embedded systems software is typically not made public and only infrequently

shared with researchers as most companies consider such software to be a trade secret; and third,

existing workloads often do not yet take full advantage of multiprocessors since the adoption of

multicore systems in the embedded systems industry is still at an early stage. Nonetheless, in future

schedulability studies, it would still be interesting to use parameter distributions that are derived from

actual workloads.

CPMD. As with execution times and periods, several alternatives for obtaining realistic cache-

related overheads should be evaluated in future work. Instead of assuming a range WSSs, it would

be interesting to profile actual real-time applications to determine typical WSSs of HRT and SRT

2For example, we were recently involved in an evaluation of video decoding and playback (Kenna et al., 2011).
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workloads. Further, instead of measuring CPMD for each WSS directly as a difference in execution

times, as described in Section 4.4, it would also be possible to measure CPMD indirectly by observing

cache misses with hardware performance counters, which are available in many modern processors.

It would also be interesting to study CPMD on non-x86 embedded systems platforms with smaller

and slower caches, and on recent x86 platforms with cache prefetching (the latter is only appropriate

for SRT applications). Unfortunately, CPMD experiments are currently very time consuming; better

automation is required to study a wider range of platforms.

Independent execution times. Recall from Section 4.1 that schedulers are compared based on

the fraction of task sets that can be claimed HRT or SRT schedulable under it. To enable a fair

comparison, each scheduler is tested using the same task sets. That is, once a task set has been

generated by choosing a period and utilization for each task, it is tested whether it is schedulable under

each of the evaluated schedulers. Importantly, while different overhead magnitudes (as measured

in LITMUSRT) are used for each scheduler, the task parameters prior to inflation for overheads are

identical under each scheduler.

We adopted this approach to avoid introducing a bias in task parameter selection, and because

prior schedulability studies (Baker, 2005; Calandrino et al., 2006) proceeded similarly. However,

it is not clear that a task’s worst-case and average execution times are actually identical under all

schedulers. In fact, it is rather unlikely. For example, it is conceivable that WCETs are larger

under global scheduling than under partitioned scheduling if migrations cause increased memory

bus contention. It could, however, also be the case that average execution times are shorter under

global scheduling than under partitioned scheduling—if all jobs can be scheduled on any processor,

then jobs are preempted less frequently and for shorter times, which benefits cache affinity. In other

words, it is not obvious how actual execution requirements under different schedulers relate. Similar

concerns affect critical section lengths under various locking protocols (e.g., they could conceivably

be shorter under spinlocks than under semaphores) and quantum staggering (e.g., staggering of

quantum boundaries might increase memory bus contention throughout the quantum). In future

work, it would be worthwhile to investigate if there are meaningful differences in execution time

requirements under different scheduling approaches and locking protocols (aside of the overhead

sources already accounted for), and if so, whether they affect relative scheduler performance.
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Partitioning of malleable tasks. As discussed in Sections 2.3.2 and 2.3.4, clustered scheduling

requires that a given set of tasks is assigned to the available clusters such that (i) no cluster is

overloaded and (ii) each task is assigned to exactly one cluster. As discussed at length in Chapter 4,

this can be a limitation, and particularly so under partitioned scheduling. Of the two constraints,

Constraint (i) is fundamental, but it may be possible to violate Constraint (ii) in the design of certain

embedded systems.

In open real-time systems, that is, when tasks are opaque and become known only at runtime,

sporadic tasks cannot be split across multiple clusters since they are sequential. However, many

embedded systems are closed (or static) in the sense that the workload to be supported is determined

(and analyzed) at design time and then remains unchanged during operation. In closed systems, tasks

may in fact be malleable and, to a certain extent, divisible across multiple processors or clusters. That

is, if an embedded systems engineer is faced with a situation where no valid task assignment can be

found, then the engineer may be able to split out some of the functionality of a difficult-to-assign,

high-utilization task into several lower-utilization tasks for which a valid assignment can be found.

Bin-packing limitations may therefore be less severe in the design of embedded systems with static

workloads than assumed in this dissertation. Note, however, that splitting tasks may increase the total

utilization due to added communication costs and duplicated functionality. In future work, it may be

interesting to study bin-packing heuristics that, if no assignment can be found, support splitting a

task Ti into two tasks Ti,1 and Ti,2, where ui < ui,1 + ui,2.

Avoiding measurements. The principle of least measurement (see Section 3.1) is of great im-

portance to the future development of truly predictable multiprocessor RTOSs, with profound

implications for RTOS design and implementation. Ideally, once timing analysis tools are sufficiently

mature to handle multicore platforms, worst-case kernel overheads (e.g., scheduler invocation, con-

text switch, etc.) should be determined analytically. However, for the foreseeable future, this will

likely not be possible in complex kernels such as Linux. Instead, it would be beneficial to develop (or

extend existing) microkernels of much simpler design with LITMUSRT-like functionality. Still, even

with the complexity of Linux removed, significant changes will be required to the way multiprocessor

schedulers are implemented to make the code compatible with WCET analysis (e.g., loops and

priority queue lengths must have constant bounds).
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Another promising substitution of measurements with analytical bounds that is possible even if

WCET analysis is unavailable concerns lock contention within the kernel. In LITMUSRT, scheduler

lock contention is currently measured indirectly and reveals itself as high worst-case overheads

in global schedulers (and also in clustered schedulers with large clusters). However, in principle,

there is little reason as to why worst-case lock contention should be measured when effective

blocking analysis for spinlocks is available (see Chapter 5). Instead, critical section lengths should

be measured individually and worst-case lock acquisition times should be derived analytically. In

practice, however, measuring each critical section individually would lead to an unmanageably large

number of samples; novel tracing techniques will thus have to be developed and integrated with

LITMUSRT (or other kernels) to facilitate such analysis.

As the preceding discussion shows, there exist numerous ways in which our evaluation methodol-

ogy could be extended to reflect real-world concerns to an even larger degree. In particular, it would

be interesting to refine our evaluation methodology in future work by incorporating more detailed

models of overhead sources and task execution, by studying more realistic workloads, and by further

emphasizing analytical approaches where possible to reduce the dependence on measured overheads.

Next, we discuss scheduling-related issues.

8.2.3 Scheduler Design and Implementation

Our results have shown partitioned scheduling to be the best choice for HRT systems, and global

scheduling and clustered scheduling with c > 1 to be effective at overcoming bin-packing issues in

the SRT case. Our observations further raise questions concerning the practicality of pfair scheduling.

In the following, we highlight several avenues for future work in the area of global and clustered

scheduling and SRT applications, as well as pfair scheduling and periodic HRT applications.

Efficient and correct global scheduling. One benefit of global scheduling not reflected by our

evaluation is that it avoids the need to re-partition task sets when tasks join or leave the workload in

open real-time systems. That is, global scheduling is self-adjusting in the sense that it avoids the need

to perform load balancing, which reduces overheads if workloads change frequently—Block (2008)

discusses this aspect of global scheduling in detail. Global scheduling and clustered scheduling with

large clusters are hence likely to remain relevant, at least for adaptive SRT applications.
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However, our results also show that LITMUSRT’s implementation of global scheduling suffers

from high runtime overheads and lock contention. The key problem with the current implementation

is that all scheduling events are serialized by a single global lock, which is an obvious bottleneck.

This serialization, however, is currently required to ensure that the processor mapping at the heart of

link-based scheduling remains consistent (see Section 3.3.3). In contrast, Linux’s implementation of

global scheduling allows for parallel scheduling decisions and thus incurs lower overheads, but does

so at the expense of correctness (recall Section 3.2). In future work, it would be ideal to develop a

parallel version of link-based scheduling without contention bottlenecks. Crucially, such parallelized

link-based scheduling should match Linux’s low runtime overheads without sacrificing correctness.

Predictable deadline miss ratios. This dissertation assumes the bounded tardiness definition (Devi

and Anderson, 2005; Devi, 2006; Devi and Anderson, 2008) of “soft” temporal correctness. As

elaborated upon in Section 2.2.2, bounded tardiness is a useful property for SRT applications, and

especially for those in which tardiness can be masked using input and output buffering—that is,

assuming the actual tardiness bounds are reasonably small. In future work, it would thus be beneficial

to continue the study of G-EDF and similar schedulers to obtain tighter tardiness bounds.

Going beyond bounded tardiness, however, there are SRT applications that require additional

assurances. For example, when processing latency-sensitive live streams (e.g., in video conferencing

systems or surveillance applications), excessive buffering could introduce unacceptable delays.

Similarly, buffering may not be an option in memory-constrained systems (e.g., large memories

consume significant amounts of energy, and should thus be avoided in battery-powered devices). For

such applications, a bounded deadline miss ratio (with respect to reasonably short reference intervals)

may be more useful than bounded tardiness.

Deadline miss ratios are straightforward to measure, but there currently exists no analysis for

global multiprocessor schedulers that allows bounding worst-case deadline miss ratios a priori.

Indeed, it is trivial to construct G-EDF schedules where all jobs of a task miss their deadline,

that is, the worst-case deadline miss ratio under G-EDF is 1 in the general case. Therefore, there

are two major issues that future algorithmic work on SRT scheduling on multiprocessors should

investigate: first, is it possible to derive non-trivial, per-task deadline miss ratio bounds for G-EDF

(for non-pathological task sets); and second, do there exist JLFP schedulers that provably ensure
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lower deadline miss ratios than G-EDF? An ideal SRT scheduler would ensure both low tardiness

bounds and low deadline miss ratio bounds for arbitrary sporadic workloads without incurring high

overheads. Unfortunately, such an algorithm has yet to be developed.

Practical pfair scheduling. One of the major trends discussed in Chapter 4 is that none of the PD2

variants performed particularly well due to high overheads. Does this imply that there is no practical

application for PD2? This is not necessarily the case. While it is true that PD2 did not perform well

for sporadic, interrupt-driven workloads, PD2 is well-suited to periodic, polling HRT tasks. In fact,

in HRT systems in which all tasks are periodic, PD2 could be implemented more efficiently, and thus

offer much improved HRT schedulability.

A key limitation in LITMUSRT’s implementation of PD2 is the high cost of scheduling at each

quantum boundary, which could be reduced using two techniques. First, as core counts increase, it

may be beneficial to dedicate a core to scheduling, which would eliminate the need to compute the

job assignment for the next quantum on one of the application processors serving real-time tasks.

Second, the dedicated “scheduling processor” could compute each quantum in advance, that

is, during the xth quantum, the scheduling processor could pre-compute the job assignment for the

(x+ 1)th quantum. For sporadic workloads, this would increase the release delay by Q time units

(i.e., by one quantum), but for periodic workloads (where all job releases are pre-determined), such

“negative staggering” of the scheduling processor incurs no penalty. The kernel overhead at each

quantum boundary could thereby be reduced to a single pointer update and context switch; timer

ticks could thus be almost as efficient as timer ticks in event-driven plugins.

Another limitation of PD2 is that it frequently preempts jobs, which makes it vulnerable to high

CPMD costs. As CPMD costs for non-trivial WSSs are indeed relatively high on our platform, the

performance of PD2 is negatively affected. However, in embedded system platforms, caches might be

smaller and slower, to the effect that the worst-case effect of preemptions might have a significantly

lower impact. Further, in true HRT systems, it may be necessary to disable caches altogether to

enabled WCET analysis. In such an environment, PD2 could be much more competitive.

As briefly discussed in Section 2.1.2, a WCET-friendly alternative to using processor caches is

to use scratchpad memories, which can be thought of as OS-controlled caches. PD2 may be ideally

suited to periodic, scratchpad-based HRT workloads: since the schedule can be computed one or
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several quanta in advance, it should be possible to prefetch scratchpad contents needed in subsequent

quanta in advance. For example, the scratchpad memory could be split in half such that one half

is used by the currently scheduled subtask, whereas the other half is used to prefetch the contents

required by the next subtask. At each quantum boundary, the roles of the two scratchpad partitions

would be flipped (which would require MMU support) such that no subtask is ever delayed by the

cost of restoring scratchpad contents. Conceptually, this approach could eliminate CPMD almost

entirely and is thus a promising direction for future work.

Overhead accounting vs. budget enforcement. A cornerstone of predictable real-time system

design is that overheads must be accounted for prior to applying a schedulability test. We have

presented such overhead analysis in Sections 3.4, 3.5, and 7.1. Based on the concept of safe

approximations, overheads are accounted for by inflating the execution costs of tasks to account for

all relevant overheads. The rationale behind safe approximations is that the inflated task set is at least

as difficult to schedule in the absence of overheads as the actual task set in the presence of overheads.

Importantly, each task is inflated both for overhead that it incurs itself (e.g., system calls) and for

overheads that it inflicts upon others (e.g., CPMD).

Budget enforcement is required to guarantee temporal isolation: if a job misbehaves and fails to

complete, budget enforcement ensures that the processor allocation of other jobs is not affected—

budget overruns are prevented altoghether. Unfortunately, inflation-based overhead accounting

conflicts with budget enforcement. For example, consider how CPMD is accounted for under event-

driven scheduling, and let Jh denote a job that preempts a lower-priority job Jl. As described in

Section 3.4.3, Jh’s worst-case execution cost is inflated by the worst-case magnitude of CPMD

to account for the slowdown in Jl’s execution rate. However, if the resulting inflated budgets are

enforced, then Jh would simply underutilize its budget (since it is not actually affected by CPMD

itself), whereas Jl might exceed its budget due to the CPMD—which is reflected in Jh’s budget, and

not Jl’s. In other words, the safe approximation of CPMD is based on an “accounting trick” that is

unknown to the RTOS at runtime. Ultimately, budget enforcement could be triggered by the (small)

budget overruns anticipated and accounted for by overhead analysis even when it is not required,

thereby causing more harm than good.
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There are three ways in which this could be addressed. First, if each task’s budget is inflated

only directly, that is, if each e′i reflects all overheads incurred by Ji, then budget enforcement would

work as expected. However, this would result in much more pessimistic accounting of CPMD and is

thus undesirable. Second, budget enforcement could simply be disabled, which is undesirable from

the points of view of temporal isolation and reliability. Third, the budget enforcement mechanism

could be extended to take overhead accounting into account. That is, the RTOS would have to

track each job’s budget and transfer “execution time credit” from the preempting job’s budget to the

preempted job’s budget. In general, budget transfers would be required whenever a job causes another

to (indirectly) incur overheads. To the best of our knowledge, such a budget transfer mechanism

has not been implemented in any RTOS to date. In future work, it will be necessary to develop

such an overhead-aware budget tracking framework—and supporting analysis—to integrate temporal

isolation with overhead accounting.

In summary, there are multiple avenues for future work in the area of practical multiprocessor

real-time scheduling, including implementation improvements, analysis improvements, and the

design of SRT schedulers that offer additional guarantees beyond bounded tardiness.

8.2.4 Future Directions in Real-Time Locking

Last but not least, our work has exposed a number of fundamental questions concerning blocking

analysis, locking optimality, and overhead accounting that remain open.

Nested critical sections. Foremost, there currently exists no analysis of multiprocessor locking

protocols that allows critical sections to be nested (i.e., jobs already holding a resource may not

request another resource). In particular, none of the protocols proposed to date prevents deadlock

(without resorting to coarse-grained group locking). Further, even if all nesting is assumed to be well-

ordered (which precludes deadlock), complex blocking dependencies arise that cannot be handled

with existing analysis. In contrast, the PCP and SRP (recall Section 2.4.3) prevent deadlock and

ensure provably optimal blocking even if critical sections are nested. Without doubt, fine-grained

locking and nesting of critical sections occurs in real applications; further research is thus required to

enable predictable locking for such applications on multiprocessors as well.
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Nested critical sections also raise interesting questions with regard to locking optimality. It is

easy to construct examples that show that the lower bounds established in Chapter 6 are not tight,

that is, there exist task sets for which maximum pi-blocking worse than O(m) (in the s-oblivious

case) and O(n) (in the s-aware case) seems unavoidable. In future work, it will be interesting to

determine lower bounds on maximum pi-blocking, possibly as a function of the nesting degree.

Distributed real-time locking protocols. To our surprise, in the schedulability study reported upon

in Chapter 7, we found the DPCP to perform much better than the MPCP in some (but not all)

scenarios. This is despite the fact that the DPCP incurs higher overheads due to its reliance on the

RPC model, and despite the fact that the MPCP’s analysis was recently improved (Lakshmanan

et al., 2009). The strong performance of the DPCP warrants a closer inspection of distributed

locking protocols in future work. For one, large many-core platforms are unlikely to provide a

cache-consistent shared memory for all cores, which introduces aspects of distributed systems. But

the success of the DPCP shows that, even in shared-memory systems, it may be worthwhile to adopt

a more distributed protocol structure.

We plan to investigate three issues related to distributed locking protocols in future work. First,

we seek to identify how the FMLP+ can be applied to a distributed environment. The DPCP is not

asymptotically optimal (it implicitly uses priority queues to order requests); it should be possible to

design an asymptotically optimal protocol using FIFO queues instead. Further, as is the case with the

FMLP+ and the MPCP, it may be possible in many cases to achieve better schedulability, too.

Second, the DPCP only applies to P-FP scheduling. In the multicore age, it is likely that

distributed real-time systems consist of multiple separate multiprocessors. For such systems, it may

be beneficial to use clustered scheduling instead (with c > 1 or non-uniform cluster sizes). Therefore,

it would be interesting to see if it is possible to modify the clustered OMLP to obtain a distributed

locking protocol that is asymptotically optimal under s-oblivious schedulability analysis.

Third, it may be beneficial to adopt techniques from locking protocols with distributed lock state

to real-time systems. For example, Hsieh and Weihl (1992) proposed a distributed RW lock in which

there is a processor-local “reader lock” on each processor, and one global “writer lock.” Readers

acquire only their processor-local reader lock, whereas writers are forced to acquire the global

“writer lock” and each “reader lock” on each processor (Hsieh and Weihl, 1992). For workloads in
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which reads are much more frequent than writes, this approach results in low overheads for readers.

However, it is not immediately clear how overly pessimistic worst-case blocking bounds for writers

can be avoided in such a design.

Tool-supported analysis. In this dissertation, we have presented the first systematic analysis of

locking-related overheads (see Section 7.1). However, as previously noted, the presented analysis

is not a truly safe approximation since it does not handle rare corner cases, and even if it did, we

currently have no method for showing that the worst case scenario has indeed been considered. The

former could be addressed with additional analysis, but the latter is a significant roadblock. In a sense,

our overhead analysis is necessarily non-exhaustive because the considerable complexity and timing

uncertainty that overheads introduce into blocking analysis prevents effective manual analysis.

The same problem is also holding back advances in locking protocols that support fine-grained

locking and nesting of critical sections. While it is straightforward to define simple protocols for

nested locking (i.e., the FMLP+ could trivially support well-ordered nesting), it is very difficult to

analyze worst-case blocking under such protocols. Again, the complexity arises because it is difficult

to identify the worst case, and even more challenging to prove that the worst case has indeed been

accounted for. With considerable effort, it would likely be possible to derive coarse bounds; however,

such analysis would likely be pessimistic due to the need to simplify the problem.

The root problem is that overheads and nesting both give rise to non-trivial transitive blocking,

which stresses the limits of manual analysis. Therefore, we believe that future locking protocol

analysis should be based on automated tools to derive less-pessimistic, yet sound upper bounds. In

the case of nesting, one possible approach could be to formulate the derivation of blocking bounds as

an optimization problem: the goal is to maximize a task’s blocking term subject to the constraints

imposed by the protocol (queue ordering, etc.) and the task set (the frequency in which requests are

issued, etc.). This problem structure lends itself to a formulation as an integer linear program (ILP),

for which highly optimized solvers exist. In the case of overhead accounting, it may be possible

to model request execution using timed automata (Alur and Dill, 1994), for which powerful model

checkers exist that could be used to derive bounds on maximum effective critical section lengths.

However, while tool-based approaches seem promising on first sight, there are certainly details and

challenges that must be resolved first.
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Non-blocking synchronization. Non-blocking synchronization primitives such as wait-free concur-

rent queues or the read-copy update (RCU) mechanism (McKenney, 2004), which is used extensively

in the Linux kernel, had to remain beyond the scope of this dissertation due to time and resource

constraints. Nonetheless, there are certainly applications in which the use of non-blocking synchro-

nization can result in improved performance (both in terms of schedulability and throughput).

In future work, our evaluation of locking protocols should therefore be extended to incorporate

RCU and other non-blocking primitives. However, to do so, appropriate analysis will have to be

developed for each candidate algorithm. For example, when using lock-free algorithms (in which

update operations that were interfered with may be retried repeatedly), appropriate retry limits must

be obtained analytically. Similarly, RCU requires shared objects that are no longer being referenced

to be garbage-collected. The garbage collection task must be accounted for during schedulability

analysis, which raises the question of how it should be provisioned. That is, the garbage collector

could execute frequently, thereby reducing the maximum memory requirement at the expense of a

higher processor utilization, or it could execute infrequently to minimize its processor utilization at

the cost of inefficient memory use. We hope to explore this and related questions in future work.

8.3 Closing Remarks

The emergence of multicore platforms holds great promise for embedded real-time systems: in the

future, instead of using hundreds of uniprocessors, it should be possible to use fewer, computationally

powerful, yet energy-efficient multiprocessors to co-host and consolidate a wide range of demanding

HRT and SRT applications. However, given the complexities inherent in parallelism and real-time

computing, multiprocessor real-time systems constructed with ad hoc “build it first, test and debug

later” approaches (which are still common in practice) are bound to be wasteful, unreliable, inflexible,

and expensive. Instead, future software engineering methods should increasingly incorporate a

priori performance modeling, analysis, and optimization—which fundamentally requires predictable

resource allocation and strong isolation, and hence a new kind of multiprocessor RTOS.

In our research, we have closely studied two issues at the very core of such next-generation

RTOSs: scheduling and locking. Most importantly, we have shown that algorithmic limitations and

overhead concerns both strongly affect the ability to make temporal guarantees in practice. Future
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RTOSs should thus be constructed upon analytically-sound algorithmic foundations, and future

algorithmic-oriented research should be informed by real-world engineering concerns. It is our hope

that this dissertation will prove useful in both regards.
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Härtig, H., Baumgartl, R., Borriss, M., Hamann, C., Hohmuth, M., Mehnert, F., Reuther, L.,
Schönberg, S., and Wolter, J. (1998). DROPS: Os support for distributed multimedia applications.
In Proceedings of the 8th ACM SIGOPS European Workshop on Support for Composing
Distributed Applications, pages 203–209.

577

http://www.kernel.org/pub/linux/kernel/people/tglx/preempt-rt/rtlws2006.pdf
http://www.kernel.org/pub/linux/kernel/people/tglx/preempt-rt/rtlws2006.pdf
http://www.ghs.com/AerospaceDefense.html
http://www.ibm.com/developerworks/power/library/pa-nl14-directions.html
http://www.ibm.com/developerworks/power/library/pa-nl14-directions.html
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López, J., Dı́az, J., and Garcı́a, D. (2004b). Utilization bounds for EDF scheduling on real-time
multiprocessor systems. Real-Time Systems, 28(1):39–68.

Lu, C., Stankovic, J., Abdelzaher, T., Tao, G., Son, S., and Marley, M. (2000). Performance
specifications and metrics for adaptive real-time systems. In Proceedings of the 21st IEEE
Real-Time Systems Symposium, pages 13–23.

Lu, C., Stankovic, J., Son, S., and Tao, G. (2002). Feedback control real-time scheduling: Framework,
modeling, and algorithms. Real-Time Systems, 23(1):85–126.

Lv, M., Yi, W., Guan, N., and Yu, G. (2010). Combining abstract interpretation with model checking
for timing analysis of multicore software. In Proceedings of the 31st IEEE Real-Time Systems
Symposium, pages 339–349.

Macariu, G. and Cretu, V. (2011). Limited blocking resource sharing for global multiprocessor
scheduling. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems, pages
262–271.

582

http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/Snapshot-of-the-embedded-Linux-market-April-2007/
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/Snapshot-of-the-embedded-Linux-market-April-2007/


Malone, M. (2009). OPERA RHBD multi-core. In Military/Aerospace Programmable Logic Device
Workshop (MAPLD 2009).

Manolache, S., Eles, P., and Peng, Z. (2004). Optimization of soft real-time systems with deadline
miss ratio constraints. In Proceedings of the 10th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 562–570.

Masrur, A., Chakraborty, S., and Färber, G. (2010). Constant-time admission control for partitioned
EDF. In Proceedings of the 22nd Euromicro Conference on Real-Time Systems, pages 34–43.
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Sjödin, M. and Hansson, H. (1998). Improved response-time analysis calculations. In Proceedings
of the 19th IEEE Real-Time Systems Symposium, pages 399–408.

Sodan, A., Machina, J., Deshmeh, A., Macnaughton, K., and Esbaugh, B. (2010). Parallelism via
multithreaded and multicore CPUs. Computer, 43(3):24–32.

Spuri, M. and Buttazzo, G. (1994). Efficient aperiodic service under earliest deadline scheduling. In
Proceedings of the 15th IEEE Real-Time Systems Symposium, pages 2–11.

Spuri, M. and Buttazzo, G. (1996). Scheduling aperiodic tasks in dynamic priority systems. Real-Time
Systems, 10(2):179–210.

Srinivasan, A. (2003). Efficient and Flexible Fair Scheduling of Real-time Tasks on Multiprocessors.
PhD thesis, University of North Carolina at Chapel Hill.

Srinivasan, A. and Anderson, J. (2002). Optimal rate-based scheduling on multiprocessors. In In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 189–198.

Srinivasan, A. and Anderson, J. (2003). Efficient scheduling of soft real-time applications on
multiprocessors. In Proceedings of the 15th Euromicro Conference on Real-Time Systems, pages
51–59.

Srinivasan, A. and Anderson, J. (2005). Efficient scheduling of soft real-time applications on
multiprocessors. Journal of Embedded Computing, 1(2):285–302.

Srinivasan, A. and Anderson, J. (2006). Optimal rate-based scheduling on multiprocessors. Journal
of Computer and System Sciences, 72(6):1094–1117.

Srinivasan, A., Holman, P., and Anderson, J. (2002). Integrating aperiodic and recurrent tasks on
fair-scheduled multiprocessors. In Proceedings of the 14th Euromicro Conference on Real-Time
Systems, pages 19–28.

Srinivasan, B., Pather, S., Hill, R., Ansari, F., and Niehaus, D. (1998). A firm real-time system
implementation using commercial off-the-shelf hardware and free software. In Proceedings of
the 4th IEEE Real-Time Technology and Applications Symposium, pages 112–119.

Stankovic, J. and Rajkumar, R. (2004). Real-time operating systems. Real-Time Systems, 28(2-
3):237–253.

Stankovic, J. and Ramamritham, K. (1991). The Spring kernel: A new paradigm for real-time
systems. IEEE Software, 8(3):62–72.

586



Stanovich, M., Baker, T., Wang, A., and Harbour, M. (2010). Defects of the POSIX sporadic server
and how to correct them. In Proceedings of the 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 35–45.

Staschulat, J. and Ernst, R. (2007). Scalable precision cache analysis for real-time software. ACM
Transactions on Embedded Computing Systems, 6(4):25:1–25:39.
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