
Multiprocessors and the Real-Time Specification for Java

A.J. Wellings
Department of Computer Science, University of York, UK

andy@cs.york.ac.uk

Abstract

Currently, the Real-Time Specification for Java (RTSJ) is
silent on multiprocessor issues It attempts not to preclude
multiprocessor implementations but provides no direct sup-
port. This paper discusses the issues that need to be ad-
dressed if the RTSJ is to be better defined for execution on
a multiprocessor system. It proposes new dispatching and
allocation models. Issues of cost enforcement, interrupts
affinity and processor failure are covered.

1. Introduction

Multiprocessor systems are becoming more prevalent. In
particular symmetric multiprocessor (SMP) systems are of-
ten the default platform for large real-time systems rather
than a single processor system. The scheduling of threads1

on these systems can be

1. global – all processors can execute all schedulable ob-
jects

2. fully partitioned – each schedulable object is executed
only by a single processor; the set of schedulable ob-
jects is partitioned between the set of processors

3. mixed – each schedulable object can be executed by a
subset of the processors; hence the schedulable objects
set may be partitioned into groups and each group can
be executed on a subset of the processors.

Furthermore, on some SMPs the number of processors al-
located to an application may vary during the execution of
the program.

Currently, the RTSJ is silent on multiprocessor is-
sues. It attempts not to preclude multiprocessor implemen-
tations but provides no direct support. The java.lang.-
Runtime class allows the number of processors avail-
able to the Java Virtual Machine (JVM) to be determined
by the int availableProcessors() method,

1 From now on, this paper will use the RTSJ term schedulable object to
represent threads, tasks, processes etc.

but does not allow Java threads to be pinned to proces-
sors.

This paper discusses the support that the RTSJ could pro-
vide for SMP systems. The impact of non uniform memory
architectures is left for future work.

2. Motivation

Whilst many applications do not need more control over the
mapping of schedulable objects to processors in an SMP en-
vironment, there are occasions when such control is impor-
tant. They include:

• To allow more flexible approaches to scheduling.
Although the state of the art in schedulability anal-

ysis for multiprocessor systems continues to advance
[1], the current state is such that partitioned systems
offer more guaranteed schedulability than global sys-
tems. Quoting from [2]:

“In favor of global scheduling, it has long been
known from queueing theory that single-queue
(global) FIFO multiprocessor scheduling is superior
to queue-per-processor (partitioned) FIFO schedul-
ing, with respect to average response time.

Apparently in favor of partitioned scheduling, the
application of well-known single processor schedul-
ing algorithms appears superior to the global applica-
tion of those same algorithms for some task sets with
hard-deadlines. For example, it is known that all peri-
odic implicit-deadline task sets with utilization below
m(21/2 − 1) can be scheduled on m processors us-
ing a first-fit-decreasing-utilization (FFDU) partition-
ing algorithm and local rate monotonic scheduling, but
Dhall’s example shows that there are hard-deadline pe-
riodic task sets with total utilization arbitrarily close
to 1.0 that cannot meet all deadlines if scheduled on
m processors using global rate monotonic scheduling.
Dhall’s example also applies to global EDF schedul-
ing, yet FFDU partitioned EDF scheduling is guaran-
teed up to utilization (m + 1)/2.

However, the supposed advantage of parti-
tioned scheduling above disappears if one considers

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.22

255

hybrid global priority schemes. The Dhall exam-
ple can easily be handled by the EDF − US(1/2) or
EDF (kmin) schemes, in which top priority is given to
a few “heavy” tasks, as can any implicit deadline spo-
radic task system with utilization up to (m + 1)/2.
This is exactly the same bound as for FFDU parti-
tioned scheduling!

The experiments we performed on large numbers of
pseudo-randomly generated task sets were intended to
provide some additional evidence on which to base a
choice between these two approaches. From those ex-
periments, statistically, the chance of being able to sat-
isfy all the deadlines of a randomly chosen periodic or
sporadic task set appears to be highest with partitioned
scheduling. In particular, the partitioned EDF schedul-
ing appeared to be the overall best performer in this
statistical sense. At the same time, there are certainly
specific task sets where global scheduling is more ef-
fective.”

• To support temporal isolation.

Where an application consists of tasks of mixed
criticality level, some form of protection between the
different levels is required. The strict typing model of
Java provides a strong degree of protection in the spa-
tial domain. The Cost Enforcement Model of the RTSJ
(including processing group parameters) provides a
limited form of temporal protection but at the expense
of flexibility. Furthermore, this can be integrated with
Java isolates. More flexible temporal protection is ob-
tainable by allowing schedulable objects in each criti-
cality level to be executed on partitions of the proces-
sor set.

• To obtain performance benefits.

For example, dedicating one CPU to a particular
schedulable object will ensure maximum execution
speed for that schedulable object. Restricting a schedu-
lable object to run on a single CPU also prevents the
performance cost caused by the cache invalidation that
occurs when a schedulable object ceases to execute on
one CPU and then recommences execution on a differ-
ent CPU [3]. Furthermore, configuring interrupts to be
handled on a subset of the available processors allows
performance-critical schedulable objects to run unhin-
dered.

• To be able to respond to dynamic changes to the pro-
cessor set.

In a parallel computing environment the set of pro-
cessors allocated to an application may vary depend-
ing on the global state of the system. An application
may be able to optimize its algorithms if it is informed
when these changes in the processor set occur.

3. Previous Work

Although multiprocessors are becoming prevalent, there are
no agreed standards on how best to address real-time de-
mands. For example, RTEM operating system does not dy-
namically move threads between CPU. Instead it provides
mechanisms whereby they can be statically allocated at link
time. In contrast, QNX’s Nutrino[4] distinguishes between
“hard thread affinity” and “soft thread affinity”. The former
provides a mechanism whereby the programmer can require
that a thread be constrained to execute only on a set of pro-
cessors (indicated by a bit mask). With the latter, the kernel
tries to dispatch the thread to the same processor on which
it last executed (in order to cut down on preemption costs).
Other operating systems provide slightly different facilities.
For example IBM’s AIX allows a kernel thread to be bound
to a particular processor 2. Further more, the set of proces-
sors (and the amount of memory) allocated to a partition in
AIX can change dynamically.

Currently there is limited use of general multiprocessor
systems in safety critical systems. Traditionally, where mul-
tiprocessors are required they are used in a distributed pro-
cessing mode: with boards or boxes interconnected by com-
munications busses, and bandwidth allocation, and the tim-
ing of message transfers etc carefully managed. This “hard”
partitioning simplifies certification and testing since one ap-
plication cannot affect another except through well-defined
interfaces.

However, there is evidence that future systems will use
SMP. For example, the LynxSecure Separation Kernel has
recently been announced. The following is taken from their
web site3:

• Optimal security and safety – the only operating sys-
tem to support CC EAL-7 and DO-178B level A

• Real time – time-space partitioned real-time operating
system for superior determinism and performance

• Highly scalable – supports Symmetric MultiProcess-
ing (SMP) and 64-bit addressing for high-end scalabil-
ity

This work has been undertaken by Intel and LynuxWorks to
demonstrate the MILS (Multiple Independent Levels of Se-
curity/Safety) architecture4.

In the remainder of this section, we briefly review the
work that has been performed by the POSIX and Linux
communities.

2 see http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/-
com.ibm.aix.basetechref/doc/basetrf1/bindprocessor.htm

3 http://www.lynuxworks.com/rtos/secure-rtos-kernel.php.
4 See http://www.intel.com/technology/itj/2006/v10i3/5-communicat-

ions/6-safety-critical.htm.

256

3.1. POSIX

Although POSIX does not currently provide specific sup-
port for SMP systems, the issue has been raised [5].
POSIX.1 defines the “Scheduling Allocation Domain” as
the set of processors on which an individual thread can be
scheduled at any given time. POSIX states that [6]:

• “For application threads with scheduling allocation do-
mains of size equal to one, the scheduling rules defined
for SCHED FIFO and SCHED RR shall be used.”

• “For application threads with scheduling allocation
domains of size greater than one, the rules defined
for SCHED FIFO, SCHED RR, and SCHED SPO-
RADIC shall be used in an implementation-defined
manner.”

• “The choice of scheduling allocation domain size and
the level of application control over scheduling allo-
cation domains is implementation-defined. Conform-
ing implementations may change the size of schedul-
ing allocation domains and the binding of threads to
scheduling allocation domains at any time.”

With this approach, it is only possible to write strictly
conforming applications with real-time scheduling require-
ments for single-processor systems. If an SMP platform is
used, there is no portable way to specify a partitioning be-
tween threads and processors.

Additional APIs have been proposed but currently these
have not been standardized. The approach has been to set
the initial allocation domain of a thread as part of its thread-
creation attributes. The proposal is only in draft and so no
decision has been taken on whether to support dynamically
changing the allocation domain[5].

3.2. Linux

Since Kernel version 2.5.8, Linux has provided support for
SMP systems [3] via the notion of CPU affinity. Each pro-
cess in the system can have its CPU affinity set according to
a CPU affinity mask. A process’s CPU affinity mask deter-
mines the set of CPUs on which it is eligible to run.

#include <sched.h>

int sched_setaffinity(pid_t pid,
unsigned int cpusetsize, cpu_set_t *mask);

int sched_getaffinity(pid_t pid,
unsigned int cpusetsize, cpu_set_t *mask);

void CPU_CLR(int cpu, cpu_set_t *set);

int CPU_ISSET(int cpu, cpu_set_t *set);

void CPU_SET(int cpu, cpu_set_t *set);

void CPU_ZERO(cpu_set_t *set);

A CPU affinity mask is represented by the cpu set t
structure, a “CPU set”, pointed to by the mask. Four macros
are provided to manipulate CPU sets. CPU ZERO clears a
set. CPU SET and CPU CLR respectively add and remove a
given CPU from a set. CPU ISSET tests to see if a CPU is
part of the set. The first available CPU on the system corre-
sponds to a cpu value of 0, the next CPU corresponds to
a cpu value of 1, and so on. A constant CPU SETSIZE
(1024) specifies a value one greater than the maximum
CPU number that can be stored in a CPU set.
sched setaffinity sets the CPU affinity mask of

the process whose ID is pid to the value specified by mask.
If the process specified by pid is not currently running

on one of the CPUs specified in mask, then that process is
migrated to one of the CPUs specified in mask.
sched getaffinity allows the current mask to be

obtained.
An error is returned if the affinity bitmask mask con-

tains no processors that are physically on the system, or
cpusetsize is smaller than the size of the affinity mask
used by the kernel.

The affinity mask is actually a per-thread attribute that
can be adjusted independently for each of the threads in a
thread group.

Linux also allows certain interrupts to be targeted to spe-
cific processors (or groups of processors). This is known as
SMP IRQ affinity. SMP IRQ affinity is controlled by ma-
nipulating files in the /proc/irq/ directory.

4. The Proposed Model

In order to make the RTSJ fully defined for SMP multipro-
cessor systems, the following issues need to be addressed.

1. The dispatching model – the current specification has
a conceptual model which assumes a single run queue
per priority level.

2. The allocation model – the current specification pro-
vides no mechanisms to support processor affinity,

3. The cost enforcement model – the current specifica-
tion does not consider the fact that processing groups
can contain scheduling objects which might be simul-
taneously executing,

4. The affinity of interrupts (happenings) – the current
specification provides no mechanism to tie interrupts
(happenings) and their handlers to particular proces-
sors, and

5. The failure model – the current specification makes no
statements about partial failures of the underlying plat-
form.

This section considers each of the above issues in turn.
An appendix gives the proposed API.

257

4.1. The Dispatching Model

The RTSJ dispatching model specifies its dispatching rules
for the default priority scheduler. Here, the rules are mod-
ified to address multiprocessor concerns and generalised
away from priority to execution eligibility 5.

1. A schedulable object can become a running schedula-
ble object only if it is ready and the execution resources
required by that schedulable object are available. An
example of a possible implementation-defined execu-
tion resource is a page of physical memory, which
needs to be loaded with a particular page of virtual
memory before a schedulable object can continue exe-
cution.

2. Processors are allocated to schedulable objects based
on each schedulable object’s active priority.

3. Schedulable object dispatching is the process by which
one ready schedulable object is selected for execution
on a processor. This selection is done at certain points
during the execution of a schedulable object called
schedulable object dispatching points. A schedulable
object reaches a schedulable object dispatching point
whenever it becomes blocked, when it terminates, or
when a higher priority schedulable object becomes
ready.

4. The schedulable object dispatching policy is specified
in terms of ready queues and schedulable object states.
The ready queues are purely conceptual; there is no re-
quirement that such lists physically exist in an imple-
mentation.

5. A ready queue is an ordered list of ready schedula-
ble objects. The first position in a queue is called the
head of the queue, and the last position is called the
tail of the queue. A schedulable object is ready if it
is in a ready queue, or if it is running. Each proces-
sor has one ready queue for each priority value. At any
instant, each ready queue of a processor contains ex-
actly the set of schedulable objects of that priority that
are ready for execution on that processor, but are not
running on any processor; that is, those schedulable
objects that are ready, are not running on any proces-
sor, and can be executed using that processor and other
available resources. A schedulable object can be on the
ready queues of more than one processor.

6. Each processor also has one running schedulable ob-
ject, which is the schedulable object currently being
executed by that processor. Whenever a schedulable
object running on a processor reaches a schedulable

5 This model is based this on the dispatching model defined for Ada
2005, which does address some aspects of multiprocessor execution.

object dispatching point it goes back to one or more
ready queues; a schedulable object (possibly the same
schedulable object) is then selected to run on that pro-
cessor. The schedulable object selected is the one at
the head of the highest priority nonempty ready queue;
this schedulable object is then removed from all ready
queues to which it belongs.

7. While a schedulable object is running, it is not on any
ready queue. Any time the schedulable object that is
running on a processor is added to a ready queue, a new
running schedulable object is selected for that proces-
sor.

In a multiprocessor system, a schedulable object can be on
the ready queues of more than one processor. At the ex-
treme, if several processors share the same set of ready
schedulable objects, the contents of their ready queues is
identical, and so they can be viewed as sharing one ready
queue, and can be implemented that way. Thus, the dis-
patching model covers multiprocessors where dispatching
is implemented using a single ready queue, as well as those
with separate dispatching domains.

4.2. The Allocation Model

In the general case, the following assumptions are made
about the possible support provided by the underlying plat-
form (operating system and hardware).

1. An application program may be allocated (by the op-
erating system) the full set of the processors in the sys-
tem or only a subset of them. An initial allocation is
performed at the start of program execution time.

2. The operating system may only support global
scheduling of threads or it may allow threads to be
constrained to one or more processors in the set allo-
cated to the program.

3. The operating systems may dynamically change the al-
location of processors allocated to a program during
the program’s execution. If it does this, it is done in a
safe manner.

4. Mechanisms may be provided by the operating system
to inform the application (if the operating system sup-
ports thread to processor allocation) or they may not
(if it only supports global scheduling).

The requirement is for a minimum interface that allows the
pinning of a schedulable object to one or more processors.
The challenge is to define the API so that it allows a range of
operating system facilities to be supported. The minimum
functionality is for the operating system to allow the real-
time JVM to determine how many processors are available
for the execution of the Java application.

258

The number of processors that the real-time JVM is
aware of is represented by a BitSet that is returned by
the static method availableProcessors() in the
RealtimeSystems class. For example, in a 64 pro-
cessor system, the real-time JVM may be aware of all 64
or only a subset of those. This is the length of the bit-
set. Of these processors, the real-time JVM will know
which processors have been allocated to it (either logi-
cal processors or physical processors depending on the op-
erating system). Each of the available processors is set to
one in the bit set. Hence, the cardinality of the bit set rep-
resents the number of processors that the real-time JVM
thinks are currently available to it.

The proposed API allows for systems that support the
dynamic addition and removal of processors from the set
allocated to the JVM. If an operating system does not sup-
port this facility then the set will not dynamically change.
An operating system is also allowed to maintain a set of
logical processors allocated to the JVM and to transpar-
ently change its logical to physical mapping. Again, from
the JVM perspective the set has not changed. However, it
should be noted that this may have an impact on the appli-
cation if a) it is handling interrupts directly on the proces-
sor or b) if the change undermines any feasibility analysis
assumptions. For many RTSJ applications this may not be a
problem. In all of the above circumstances the static method
affinityChangeNotificationSupported() de-
fined in the RealtimeSystems class returns false.

If the operating system does support dynamic changes
to the processor set, the assumption is that it will in-
form the real-time JVM of the changes (e.g. via a signal).
The JVM will pass this information to the applica-
tion via the firing of the appropriate asynchronous event
(ProcessorRemoved or ProcessorAdded) declared
in the RealtimeSystems class. In this circumstances
affinityChangeNotificationSupported() de-
fined in the RealtimeSystems class returns true. An ap-
plication can specify an asynchronous event handler to
run in response to the firing of the above events. The as-
sumption is that the application will maintain its own list
of which schedulable objects are mapped to which proces-
sors (logical or physical). It will then undertake whatever
reconfiguration it deems appropriate.

The default affinity can be set at run-time and is sched-
uler dependent, and must be documented. The affinity of a
specific schedulable object can be set.

4.3. The cost enforcement model

The RTSJ manages the CPU time allocated to a schedu-
lable object via two optional complementary mechanisms.
The first is via the cost parameter component of the
ReleaseParameter class. If supported, this requires a

schedulable object to consume no more than this value for
each of its releases. In an SMP systems (assuming the pro-
cessors execute at approximately the same speed), this ap-
proach easily scales from the single processor model.

The second, more problematic, mechanism is that pro-
vided by ProcessingGroupParameters, which al-
lows a group of schedulable objects to be allocated a uti-
lization. Whilst conceptually, this could be applied to mul-
tiple threads from the same group executing in parallel with
global scheduling, it is not clear that the general model
should be applied to a partitioned system. Indeed, the imple-
mentation challenge of detecting budget overrun may make
the whole approach untenable. Instead, it is necessary to
place a constraint that all schedulable objects allocated to
a processing group must be allocated to the same proces-
sor.

The alternative is to provide a mechanism to set the affin-
ity of a processing group. At each period, the processor
would be allocated to the group and maintained on that
group for the duration of the release. This would override
any individual schedulable object’s affinity.

A third alternative is to extend Processing-
GroupParameters so that they contain a CPU budget
per processor. A schedulable object can only be allo-
cated a processing group if its affinity set intercepts with
the ProcessingGroupParameters affinity set.

4.4. The affinity of interrupts(happenings)

Many multiprocessor systems allow interrupts to be tar-
geted at particular processors. For example, the ARM
Corex A9-MPCore supports the Arm Generic Inter-
rupt Controller6. This allows a target list of CPUs to be
specified for each hardware interrupt. Software gener-
ated interrupts can also be sent to the list or set up to be
delivered to all but the requesting CPU or only the request-
ing CPU.

The current RTSJ specification provides no mechanism
that would allow the programmer to tie interrupts and their
handlers to particular processors. Asynchronous event han-
dlers are the main RTSJ mechanism for handling interrupts.
These should be viewed as third-level interrupt handlers.
The first-level interrupt handlers are the code that the plat-
form executes in response to the hardware interrupt (or sig-
nal). First level interrupts are assumed to be executed at
an execution eligibility (priority) dictated by the underly-
ing platform. The second-level interrupt handler is the code
that the JVM implements as a result of being notified by
the first-level interrupt handler that the interrupt is targeted
at the RTSJ application. Its job is to find the asynchronous

6 See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.-
ddi0375a/Cegbfjhf.html

259

event and then release the associated handlers (third-level
interrupt handler).

Currently there is a proposal within JSR 282 to allow
priorities (or more generally, exceution eligibilities) to be
given to second-level interrupt handlers. The main points
are as follows:

1. Each asynchrnonous event that has been associated
with an external event (called a “happening” in the
RTSJ) is given a execution eligibility. By default this
is the highest in the system. To allow the programmer
to set the execution eligibility the following method is
added to the asynchronous event class:

public SchedulingParameters bindTo(String happening,
Eligibility : SchedulingParameters);

The method returns the current execution eligibility
associated with the asynchronous event. If the asyn-
chronous event is associated with more than one hap-
pening, the execution eligibility is the highest value.
This is reflected in the returned SchedulingParameters
object.

2. When an event is fired (by software), the firing code
occurs at an eligibility of the firing schedulable object.

3. When an interrupt occurs, the second level interrupt
handler (once it has identified the associated asyn-
chronous event) executes at the defined execution el-
igibility for that event.

It would be trivial to modify the above method to al-
low the second-level interrupt handling code to be given an
affinity.

4.5. Failure Model

The RTSJ has no explicitly-defined failure model. In a mul-
tiprocessor environment, if a processor fails and the plat-
form cannot transparently recover, the real-time JVM ends
abnormally (with assumed fail-stop semantics). Any recov-
ery must be performed outside of the JVM. This is because
a processor failure can leave the application and JVM in an
inconsistent state (e.g. with a corrupt heap) from which it is
unlikely to be able to recover.

5. Conclusions

As the complexity of real-time and embedded systems con-
tinues to grow, there is little doubt that they will in future
rely on multiprocessor/multicore platforms. As with all re-
sources, it is necessary to allow the real-time programmer
to have the ultimate control over their use. Hence, facilities
must be made available at the operating system level and
then via language-level APIs. Whilst, the RTSJ tries not to
stand in the way of multiprocessor implementations it does

not facilitate control over the resources in a portable way.
This paper has considered how to address these concerns in
future versions of the specification.

Acknowledgements

The author gratefully acknowledges the discussions that
he has had with the members of JSR 282, the members of
JSR 302, Alan Burns, Ted Baker and Sanjoy Barauh.

APPENDIX – APIs

In this appendix example APIs are given that address the
issues raised in this paper.

The following methods are added to the
RealtimeSystems class.

package javax.realtime;
public class RealtimeSystems {

/**
* @return - True is the system supports affinity

*/
public static boolean setAffinitySupported();

/**
* @return - True is the system supports notification

* following a change of the processor set allocated

* to the program.

*/
public static boolean affinityChangeNotification();

/**
* The async events that are fired as a result of the

* processor set changes

*/
public static AsyncEvent ProcessorRemoved,

ProcessorAdded;

/**
* @return A Bitset object describing the processors

* available to the real-time JVM. The length of the bitset

* is the number of processors on the system.

* Of these processors, the JVM will know which

* processors have been allocated to it (either

* logical processors or physical processors

* depending on the operating system).

* Each of the available processors is set to one in

* the bit set. Hence, the cardinality of the bit set

* represents the number of processors

* that the JVM thinks are currently available to it.

* The returned object is a new object that is

* allocated in the current memory area.

*/
public static java.util.Bitset availableProcessors();

/**
* Sets the default affinity for heap using

* schedulable object.

* @param Processors - A bit set giving the

* default affinity

* @return The old default affinity

* @thows ProcessorAffinityException if one or

260

* more of the indicated processors has not been

* allocated to the real-time JVM

* @throws UnsupportOperationException if not
supported

* There is no association maintained between the

* parameter passed and the default. i.e. copy

* semantics - changes the parameter object at a later

* stage will NOT result in a change of the default.

* The returned object is a new object that is

* allocated in the current memory area.

*/
public final static java.util.BitSet

setDefaultAffinity(java.util.BitSet Processors)
throws ProcessorAffinityException;

/**
* Sets the default affinity for no heap schedulable

* objects.

* @param Processors - A bit set giving the default

* affinity

* @return The old default affinity

* @throws IllegalArgumentException if size of the

* given given bitset does not match the current size

* of the bitset returned from availableProcessors

* or if the given bitset is null.

* @throws ProcessorAffinityException if one or

* more of the indicated processors has not been

* allocated to the real-time JVM

* @throws UnsupportOperationException if not supported

* There is no association maintained between the

* parameter passed and the default. i.e. copy

* semantics - changes the parameter object at a later

* stage will NOT result in a change of the default.

* The returned object is a new object that is

* allocated in the current memory area.

*/
public final static java.util.BitSet

setDefaultNoHeapAffinity(
java.util.BitSet Processors)
throws ProcessorAffinityException;

}

The following methods are added to the Realtime-
Thread class.

package javax.realtime;
public class RealtimeThread implements Schedulable {
...

/**
* Sets the affinity of the real-time thread

* @param Processors - A bit set giving the new affinity

* @return The old affinity

* @throws IllegalArgumentException if size of the

* given given bitset does not match the current

* size of the bitset returned from

* availableProcessors or if the given bitset is null.

* @throws ProcessorAffinityException if one or more

* of the indicated processors has not been allocated

* to the real-time JVM

* @throws UnsupportOperationException if not

* supported

* There is no association maintained between the

* parameter passed and the default. i.e. copy

* semantics - changes the parameter object at a later

* stage will NOT result in a change of the default.

* The returned object is a new object that is

* allocated in the current memory area.

* Changes only occur when the setAffinity method

* is called. The actual affinity will be changed

* between the time the thread finishes its current

* release and the time it starts it next release.

* It must be complete by the time the next release

* starts.

*
*/

public java.util.Bitset setAffinity(
java.util.BitSet Processors)

throws ProcessorAffinityException;

/**
* @return The last bitset that was set by a call

* to setAffinity (or the default if there was no call).

* The returned object is a new object that is

* allocated in the current memory area.

* @throws UnsupportOperationException if not supported

*/
public java.util.BitSet getAffinity();

In AsyncEvent class, the following method is added:
package javax.realtime;
public class AsyncEvent {

public SchedulingParameters bindTo(String happening,
Eligibility : SchedulingParameters,
java.util.BitSet Processors);

}

In BoundAsyncEventHandler class, the following
additions:
package javax.realtime;
public class BoundAsyncEventHandler

implements Schedulable {
...

/**
* Sets the affinity of the bound event handler.

* Same functionality as the real-time thread version

*
*/
public java.util.Bitset setAffinity(

java.util.BitSet Processors)
throws ProcessorAffinityException;

/**
* Gets the affinity.

* Same functionality as the real-time thread version

*/
public java.util.BitSet getAffinity();

References

[1] T.P. Baker. An analysis of fixed-priority schedulability on a
multiprocessor. Real-Time Systems, 32(1-2):41–71, 2006.

[2] T.P. Baker. Global versus partitioned scheduling in multipro-
cessor systems, private communication, 2006.

[3] Linux Manual Page. sched setaffinity(), 2006.
[4] QNX Neutrino RTOS 6.3.2., www.qnx.com/download/down-

load/16841/multicore user guide.pdf, 2007.
[5] M. Gonzalez Harbour. Supporting SMPs in POSIX, private

communication, 2006.
[6] Open Group/IEEE. The open group base specifications issue

6, ieee std 1003.1, 2004 edition. IEEE/1003.1 2004 Edition,
The Open Group, 2004.

[7] R. Rajkumar. Synchronization in Real-Time Systems: A Pri-
ority Inheritance Approach, Kluwer Academic Press, 1991.

261

