diff -r 4805c6333fef -r c7ba70dc49bd Precedence_ord.thy~ --- a/Precedence_ord.thy~ Thu Jan 28 14:57:36 2016 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,45 +0,0 @@ -header {* Order on product types *} - -theory Precedence_ord -imports Main -begin - -datatype precedence = Prc nat nat - -instantiation precedence :: order -begin - -definition - precedence_le_def: "x \ y \ (case (x, y) of - (Prc fx sx, Prc fy sy) \ - fx < fy \ (fx \ fy \ sy \ sx))" - -definition - precedence_less_def: "x < y \ (case (x, y) of - (Prc fx sx, Prc fy sy) \ - fx < fy \ (fx \ fy \ sy < sx))" - -instance -proof -qed (auto simp: precedence_le_def precedence_less_def - intro: order_trans split:precedence.splits) -end - -instance precedence :: preorder .. - -instance precedence :: linorder -proof -qed (auto simp: precedence_le_def precedence_less_def - intro: order_trans split:precedence.splits) - -instantiation precedence :: zero -begin - -definition Zero_precedence_def: - "0 = Prc 0 0" - -instance .. - -end - -end