diff -r b620a2a0806a -r b4bcd1edbb6d Correctness.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Correctness.thy Wed Jan 06 16:34:26 2016 +0000 @@ -0,0 +1,922 @@ +theory Correctness +imports PIPBasics Implementation +begin + +text {* + The following two auxiliary lemmas are used to reason about @{term Max}. +*} +lemma image_Max_eqI: + assumes "finite B" + and "b \ B" + and "\ x \ B. f x \ f b" + shows "Max (f ` B) = f b" + using assms + using Max_eqI by blast + +lemma image_Max_subset: + assumes "finite A" + and "B \ A" + and "a \ B" + and "Max (f ` A) = f a" + shows "Max (f ` B) = f a" +proof(rule image_Max_eqI) + show "finite B" + using assms(1) assms(2) finite_subset by auto +next + show "a \ B" using assms by simp +next + show "\x\B. f x \ f a" + by (metis Max_ge assms(1) assms(2) assms(4) + finite_imageI image_eqI subsetCE) +qed + +text {* + The following locale @{text "highest_gen"} sets the basic context for our + investigation: supposing thread @{text th} holds the highest @{term cp}-value + in state @{text s}, which means the task for @{text th} is the + most urgent. We want to show that + @{text th} is treated correctly by PIP, which means + @{text th} will not be blocked unreasonably by other less urgent + threads. +*} +locale highest_gen = + fixes s th prio tm + assumes vt_s: "vt s" + and threads_s: "th \ threads s" + and highest: "preced th s = Max ((cp s)`threads s)" + -- {* The internal structure of @{term th}'s precedence is exposed:*} + and preced_th: "preced th s = Prc prio tm" + +-- {* @{term s} is a valid trace, so it will inherit all results derived for + a valid trace: *} +sublocale highest_gen < vat_s: valid_trace "s" + by (unfold_locales, insert vt_s, simp) + +context highest_gen +begin + +text {* + @{term tm} is the time when the precedence of @{term th} is set, so + @{term tm} must be a valid moment index into @{term s}. +*} +lemma lt_tm: "tm < length s" + by (insert preced_tm_lt[OF threads_s preced_th], simp) + +text {* + Since @{term th} holds the highest precedence and @{text "cp"} + is the highest precedence of all threads in the sub-tree of + @{text "th"} and @{text th} is among these threads, + its @{term cp} must equal to its precedence: +*} +lemma eq_cp_s_th: "cp s th = preced th s" (is "?L = ?R") +proof - + have "?L \ ?R" + by (unfold highest, rule Max_ge, + auto simp:threads_s finite_threads) + moreover have "?R \ ?L" + by (unfold vat_s.cp_rec, rule Max_ge, + auto simp:the_preced_def vat_s.fsbttRAGs.finite_children) + ultimately show ?thesis by auto +qed + +(* ccc *) +lemma highest_cp_preced: "cp s th = Max ((\ th'. preced th' s) ` threads s)" + by (fold max_cp_eq, unfold eq_cp_s_th, insert highest, simp) + +lemma highest_preced_thread: "preced th s = Max ((\ th'. preced th' s) ` threads s)" + by (fold eq_cp_s_th, unfold highest_cp_preced, simp) + +lemma highest': "cp s th = Max (cp s ` threads s)" +proof - + from highest_cp_preced max_cp_eq[symmetric] + show ?thesis by simp +qed + +end + +locale extend_highest_gen = highest_gen + + fixes t + assumes vt_t: "vt (t@s)" + and create_low: "Create th' prio' \ set t \ prio' \ prio" + and set_diff_low: "Set th' prio' \ set t \ th' \ th \ prio' \ prio" + and exit_diff: "Exit th' \ set t \ th' \ th" + +sublocale extend_highest_gen < vat_t: valid_trace "t@s" + by (unfold_locales, insert vt_t, simp) + +lemma step_back_vt_app: + assumes vt_ts: "vt (t@s)" + shows "vt s" +proof - + from vt_ts show ?thesis + proof(induct t) + case Nil + from Nil show ?case by auto + next + case (Cons e t) + assume ih: " vt (t @ s) \ vt s" + and vt_et: "vt ((e # t) @ s)" + show ?case + proof(rule ih) + show "vt (t @ s)" + proof(rule step_back_vt) + from vt_et show "vt (e # t @ s)" by simp + qed + qed + qed +qed + + +locale red_extend_highest_gen = extend_highest_gen + + fixes i::nat + +sublocale red_extend_highest_gen < red_moment: extend_highest_gen "s" "th" "prio" "tm" "(moment i t)" + apply (insert extend_highest_gen_axioms, subst (asm) (1) moment_restm_s [of i t, symmetric]) + apply (unfold extend_highest_gen_def extend_highest_gen_axioms_def, clarsimp) + by (unfold highest_gen_def, auto dest:step_back_vt_app) + + +context extend_highest_gen +begin + + lemma ind [consumes 0, case_names Nil Cons, induct type]: + assumes + h0: "R []" + and h2: "\ e t. \vt (t@s); step (t@s) e; + extend_highest_gen s th prio tm t; + extend_highest_gen s th prio tm (e#t); R t\ \ R (e#t)" + shows "R t" +proof - + from vt_t extend_highest_gen_axioms show ?thesis + proof(induct t) + from h0 show "R []" . + next + case (Cons e t') + assume ih: "\vt (t' @ s); extend_highest_gen s th prio tm t'\ \ R t'" + and vt_e: "vt ((e # t') @ s)" + and et: "extend_highest_gen s th prio tm (e # t')" + from vt_e and step_back_step have stp: "step (t'@s) e" by auto + from vt_e and step_back_vt have vt_ts: "vt (t'@s)" by auto + show ?case + proof(rule h2 [OF vt_ts stp _ _ _ ]) + show "R t'" + proof(rule ih) + from et show ext': "extend_highest_gen s th prio tm t'" + by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt) + next + from vt_ts show "vt (t' @ s)" . + qed + next + from et show "extend_highest_gen s th prio tm (e # t')" . + next + from et show ext': "extend_highest_gen s th prio tm t'" + by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt) + qed + qed +qed + + +lemma th_kept: "th \ threads (t @ s) \ + preced th (t@s) = preced th s" (is "?Q t") +proof - + show ?thesis + proof(induct rule:ind) + case Nil + from threads_s + show ?case + by auto + next + case (Cons e t) + interpret h_e: extend_highest_gen _ _ _ _ "(e # t)" using Cons by auto + interpret h_t: extend_highest_gen _ _ _ _ t using Cons by auto + show ?case + proof(cases e) + case (Create thread prio) + show ?thesis + proof - + from Cons and Create have "step (t@s) (Create thread prio)" by auto + hence "th \ thread" + proof(cases) + case thread_create + with Cons show ?thesis by auto + qed + hence "preced th ((e # t) @ s) = preced th (t @ s)" + by (unfold Create, auto simp:preced_def) + moreover note Cons + ultimately show ?thesis + by (auto simp:Create) + qed + next + case (Exit thread) + from h_e.exit_diff and Exit + have neq_th: "thread \ th" by auto + with Cons + show ?thesis + by (unfold Exit, auto simp:preced_def) + next + case (P thread cs) + with Cons + show ?thesis + by (auto simp:P preced_def) + next + case (V thread cs) + with Cons + show ?thesis + by (auto simp:V preced_def) + next + case (Set thread prio') + show ?thesis + proof - + from h_e.set_diff_low and Set + have "th \ thread" by auto + hence "preced th ((e # t) @ s) = preced th (t @ s)" + by (unfold Set, auto simp:preced_def) + moreover note Cons + ultimately show ?thesis + by (auto simp:Set) + qed + qed + qed +qed + +text {* + According to @{thm th_kept}, thread @{text "th"} has its living status + and precedence kept along the way of @{text "t"}. The following lemma + shows that this preserved precedence of @{text "th"} remains as the highest + along the way of @{text "t"}. + + The proof goes by induction over @{text "t"} using the specialized + induction rule @{thm ind}, followed by case analysis of each possible + operations of PIP. All cases follow the same pattern rendered by the + generalized introduction rule @{thm "image_Max_eqI"}. + + The very essence is to show that precedences, no matter whether they are newly introduced + or modified, are always lower than the one held by @{term "th"}, + which by @{thm th_kept} is preserved along the way. +*} +lemma max_kept: "Max (the_preced (t @ s) ` (threads (t@s))) = preced th s" +proof(induct rule:ind) + case Nil + from highest_preced_thread + show ?case + by (unfold the_preced_def, simp) +next + case (Cons e t) + interpret h_e: extend_highest_gen _ _ _ _ "(e # t)" using Cons by auto + interpret h_t: extend_highest_gen _ _ _ _ t using Cons by auto + show ?case + proof(cases e) + case (Create thread prio') + show ?thesis (is "Max (?f ` ?A) = ?t") + proof - + -- {* The following is the common pattern of each branch of the case analysis. *} + -- {* The major part is to show that @{text "th"} holds the highest precedence: *} + have "Max (?f ` ?A) = ?f th" + proof(rule image_Max_eqI) + show "finite ?A" using h_e.finite_threads by auto + next + show "th \ ?A" using h_e.th_kept by auto + next + show "\x\?A. ?f x \ ?f th" + proof + fix x + assume "x \ ?A" + hence "x = thread \ x \ threads (t@s)" by (auto simp:Create) + thus "?f x \ ?f th" + proof + assume "x = thread" + thus ?thesis + apply (simp add:Create the_preced_def preced_def, fold preced_def) + using Create h_e.create_low h_t.th_kept lt_tm preced_leI2 preced_th by force + next + assume h: "x \ threads (t @ s)" + from Cons(2)[unfolded Create] + have "x \ thread" using h by (cases, auto) + hence "?f x = the_preced (t@s) x" + by (simp add:Create the_preced_def preced_def) + hence "?f x \ Max (the_preced (t@s) ` threads (t@s))" + by (simp add: h_t.finite_threads h) + also have "... = ?f th" + by (metis Cons.hyps(5) h_e.th_kept the_preced_def) + finally show ?thesis . + qed + qed + qed + -- {* The minor part is to show that the precedence of @{text "th"} + equals to preserved one, given by the foregoing lemma @{thm th_kept} *} + also have "... = ?t" using h_e.th_kept the_preced_def by auto + -- {* Then it follows trivially that the precedence preserved + for @{term "th"} remains the maximum of all living threads along the way. *} + finally show ?thesis . + qed + next + case (Exit thread) + show ?thesis (is "Max (?f ` ?A) = ?t") + proof - + have "Max (?f ` ?A) = ?f th" + proof(rule image_Max_eqI) + show "finite ?A" using h_e.finite_threads by auto + next + show "th \ ?A" using h_e.th_kept by auto + next + show "\x\?A. ?f x \ ?f th" + proof + fix x + assume "x \ ?A" + hence "x \ threads (t@s)" by (simp add: Exit) + hence "?f x \ Max (?f ` threads (t@s))" + by (simp add: h_t.finite_threads) + also have "... \ ?f th" + apply (simp add:Exit the_preced_def preced_def, fold preced_def) + using Cons.hyps(5) h_t.th_kept the_preced_def by auto + finally show "?f x \ ?f th" . + qed + qed + also have "... = ?t" using h_e.th_kept the_preced_def by auto + finally show ?thesis . + qed + next + case (P thread cs) + with Cons + show ?thesis by (auto simp:preced_def the_preced_def) + next + case (V thread cs) + with Cons + show ?thesis by (auto simp:preced_def the_preced_def) + next + case (Set thread prio') + show ?thesis (is "Max (?f ` ?A) = ?t") + proof - + have "Max (?f ` ?A) = ?f th" + proof(rule image_Max_eqI) + show "finite ?A" using h_e.finite_threads by auto + next + show "th \ ?A" using h_e.th_kept by auto + next + show "\x\?A. ?f x \ ?f th" + proof + fix x + assume h: "x \ ?A" + show "?f x \ ?f th" + proof(cases "x = thread") + case True + moreover have "the_preced (Set thread prio' # t @ s) thread \ the_preced (t @ s) th" + proof - + have "the_preced (t @ s) th = Prc prio tm" + using h_t.th_kept preced_th by (simp add:the_preced_def) + moreover have "prio' \ prio" using Set h_e.set_diff_low by auto + ultimately show ?thesis by (insert lt_tm, auto simp:the_preced_def preced_def) + qed + ultimately show ?thesis + by (unfold Set, simp add:the_preced_def preced_def) + next + case False + then have "?f x = the_preced (t@s) x" + by (simp add:the_preced_def preced_def Set) + also have "... \ Max (the_preced (t@s) ` threads (t@s))" + using Set h h_t.finite_threads by auto + also have "... = ?f th" by (metis Cons.hyps(5) h_e.th_kept the_preced_def) + finally show ?thesis . + qed + qed + qed + also have "... = ?t" using h_e.th_kept the_preced_def by auto + finally show ?thesis . + qed + qed +qed + +lemma max_preced: "preced th (t@s) = Max (the_preced (t@s) ` (threads (t@s)))" + by (insert th_kept max_kept, auto) + +text {* + The reason behind the following lemma is that: + Since @{term "cp"} is defined as the maximum precedence + of those threads contained in the sub-tree of node @{term "Th th"} + in @{term "RAG (t@s)"}, and all these threads are living threads, and + @{term "th"} is also among them, the maximum precedence of + them all must be the one for @{text "th"}. +*} +lemma th_cp_max_preced: + "cp (t@s) th = Max (the_preced (t@s) ` (threads (t@s)))" (is "?L = ?R") +proof - + let ?f = "the_preced (t@s)" + have "?L = ?f th" + proof(unfold cp_alt_def, rule image_Max_eqI) + show "finite {th'. Th th' \ subtree (RAG (t @ s)) (Th th)}" + proof - + have "{th'. Th th' \ subtree (RAG (t @ s)) (Th th)} = + the_thread ` {n . n \ subtree (RAG (t @ s)) (Th th) \ + (\ th'. n = Th th')}" + by (smt Collect_cong Setcompr_eq_image mem_Collect_eq the_thread.simps) + moreover have "finite ..." by (simp add: vat_t.fsbtRAGs.finite_subtree) + ultimately show ?thesis by simp + qed + next + show "th \ {th'. Th th' \ subtree (RAG (t @ s)) (Th th)}" + by (auto simp:subtree_def) + next + show "\x\{th'. Th th' \ subtree (RAG (t @ s)) (Th th)}. + the_preced (t @ s) x \ the_preced (t @ s) th" + proof + fix th' + assume "th' \ {th'. Th th' \ subtree (RAG (t @ s)) (Th th)}" + hence "Th th' \ subtree (RAG (t @ s)) (Th th)" by auto + moreover have "... \ Field (RAG (t @ s)) \ {Th th}" + by (meson subtree_Field) + ultimately have "Th th' \ ..." by auto + hence "th' \ threads (t@s)" + proof + assume "Th th' \ {Th th}" + thus ?thesis using th_kept by auto + next + assume "Th th' \ Field (RAG (t @ s))" + thus ?thesis using vat_t.not_in_thread_isolated by blast + qed + thus "the_preced (t @ s) th' \ the_preced (t @ s) th" + by (metis Max_ge finite_imageI finite_threads image_eqI + max_kept th_kept the_preced_def) + qed + qed + also have "... = ?R" by (simp add: max_preced the_preced_def) + finally show ?thesis . +qed + +lemma th_cp_max: "cp (t@s) th = Max (cp (t@s) ` threads (t@s))" + using max_cp_eq th_cp_max_preced the_preced_def vt_t by presburger + +lemma th_cp_preced: "cp (t@s) th = preced th s" + by (fold max_kept, unfold th_cp_max_preced, simp) + +lemma preced_less: + assumes th'_in: "th' \ threads s" + and neq_th': "th' \ th" + shows "preced th' s < preced th s" + using assms +by (metis Max.coboundedI finite_imageI highest not_le order.trans + preced_linorder rev_image_eqI threads_s vat_s.finite_threads + vat_s.le_cp) + +text {* + Counting of the number of @{term "P"} and @{term "V"} operations + is the cornerstone of a large number of the following proofs. + The reason is that this counting is quite easy to calculate and + convenient to use in the reasoning. + + The following lemma shows that the counting controls whether + a thread is running or not. +*} + +lemma pv_blocked_pre: + assumes th'_in: "th' \ threads (t@s)" + and neq_th': "th' \ th" + and eq_pv: "cntP (t@s) th' = cntV (t@s) th'" + shows "th' \ runing (t@s)" +proof + assume otherwise: "th' \ runing (t@s)" + show False + proof - + have "th' = th" + proof(rule preced_unique) + show "preced th' (t @ s) = preced th (t @ s)" (is "?L = ?R") + proof - + have "?L = cp (t@s) th'" + by (unfold cp_eq_cpreced cpreced_def count_eq_dependants[OF eq_pv], simp) + also have "... = cp (t @ s) th" using otherwise + by (metis (mono_tags, lifting) mem_Collect_eq + runing_def th_cp_max vat_t.max_cp_readys_threads) + also have "... = ?R" by (metis th_cp_preced th_kept) + finally show ?thesis . + qed + qed (auto simp: th'_in th_kept) + moreover have "th' \ th" using neq_th' . + ultimately show ?thesis by simp + qed +qed + +lemmas pv_blocked = pv_blocked_pre[folded detached_eq] + +lemma runing_precond_pre: + fixes th' + assumes th'_in: "th' \ threads s" + and eq_pv: "cntP s th' = cntV s th'" + and neq_th': "th' \ th" + shows "th' \ threads (t@s) \ + cntP (t@s) th' = cntV (t@s) th'" +proof(induct rule:ind) + case (Cons e t) + interpret vat_t: extend_highest_gen s th prio tm t using Cons by simp + interpret vat_e: extend_highest_gen s th prio tm "(e # t)" using Cons by simp + show ?case + proof(cases e) + case (P thread cs) + show ?thesis + proof - + have "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'" + proof - + have "thread \ th'" + proof - + have "step (t@s) (P thread cs)" using Cons P by auto + thus ?thesis + proof(cases) + assume "thread \ runing (t@s)" + moreover have "th' \ runing (t@s)" using Cons(5) + by (metis neq_th' vat_t.pv_blocked_pre) + ultimately show ?thesis by auto + qed + qed with Cons show ?thesis + by (unfold P, simp add:cntP_def cntV_def count_def) + qed + moreover have "th' \ threads ((e # t) @ s)" using Cons by (unfold P, simp) + ultimately show ?thesis by auto + qed + next + case (V thread cs) + show ?thesis + proof - + have "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'" + proof - + have "thread \ th'" + proof - + have "step (t@s) (V thread cs)" using Cons V by auto + thus ?thesis + proof(cases) + assume "thread \ runing (t@s)" + moreover have "th' \ runing (t@s)" using Cons(5) + by (metis neq_th' vat_t.pv_blocked_pre) + ultimately show ?thesis by auto + qed + qed with Cons show ?thesis + by (unfold V, simp add:cntP_def cntV_def count_def) + qed + moreover have "th' \ threads ((e # t) @ s)" using Cons by (unfold V, simp) + ultimately show ?thesis by auto + qed + next + case (Create thread prio') + show ?thesis + proof - + have "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'" + proof - + have "thread \ th'" + proof - + have "step (t@s) (Create thread prio')" using Cons Create by auto + thus ?thesis using Cons(5) by (cases, auto) + qed with Cons show ?thesis + by (unfold Create, simp add:cntP_def cntV_def count_def) + qed + moreover have "th' \ threads ((e # t) @ s)" using Cons by (unfold Create, simp) + ultimately show ?thesis by auto + qed + next + case (Exit thread) + show ?thesis + proof - + have neq_thread: "thread \ th'" + proof - + have "step (t@s) (Exit thread)" using Cons Exit by auto + thus ?thesis apply (cases) using Cons(5) + by (metis neq_th' vat_t.pv_blocked_pre) + qed + hence "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'" using Cons + by (unfold Exit, simp add:cntP_def cntV_def count_def) + moreover have "th' \ threads ((e # t) @ s)" using Cons neq_thread + by (unfold Exit, simp) + ultimately show ?thesis by auto + qed + next + case (Set thread prio') + with Cons + show ?thesis + by (auto simp:cntP_def cntV_def count_def) + qed +next + case Nil + with assms + show ?case by auto +qed + +text {* Changing counting balance to detachedness *} +lemmas runing_precond_pre_dtc = runing_precond_pre + [folded vat_t.detached_eq vat_s.detached_eq] + +lemma runing_precond: + fixes th' + assumes th'_in: "th' \ threads s" + and neq_th': "th' \ th" + and is_runing: "th' \ runing (t@s)" + shows "cntP s th' > cntV s th'" + using assms +proof - + have "cntP s th' \ cntV s th'" + by (metis is_runing neq_th' pv_blocked_pre runing_precond_pre th'_in) + moreover have "cntV s th' \ cntP s th'" using vat_s.cnp_cnv_cncs by auto + ultimately show ?thesis by auto +qed + +lemma moment_blocked_pre: + assumes neq_th': "th' \ th" + and th'_in: "th' \ threads ((moment i t)@s)" + and eq_pv: "cntP ((moment i t)@s) th' = cntV ((moment i t)@s) th'" + shows "cntP ((moment (i+j) t)@s) th' = cntV ((moment (i+j) t)@s) th' \ + th' \ threads ((moment (i+j) t)@s)" +proof - + interpret h_i: red_extend_highest_gen _ _ _ _ _ i + by (unfold_locales) + interpret h_j: red_extend_highest_gen _ _ _ _ _ "i+j" + by (unfold_locales) + interpret h: extend_highest_gen "((moment i t)@s)" th prio tm "moment j (restm i t)" + proof(unfold_locales) + show "vt (moment i t @ s)" by (metis h_i.vt_t) + next + show "th \ threads (moment i t @ s)" by (metis h_i.th_kept) + next + show "preced th (moment i t @ s) = + Max (cp (moment i t @ s) ` threads (moment i t @ s))" + by (metis h_i.th_cp_max h_i.th_cp_preced h_i.th_kept) + next + show "preced th (moment i t @ s) = Prc prio tm" by (metis h_i.th_kept preced_th) + next + show "vt (moment j (restm i t) @ moment i t @ s)" + using moment_plus_split by (metis add.commute append_assoc h_j.vt_t) + next + fix th' prio' + assume "Create th' prio' \ set (moment j (restm i t))" + thus "prio' \ prio" using assms + by (metis Un_iff add.commute h_j.create_low moment_plus_split set_append) + next + fix th' prio' + assume "Set th' prio' \ set (moment j (restm i t))" + thus "th' \ th \ prio' \ prio" + by (metis Un_iff add.commute h_j.set_diff_low moment_plus_split set_append) + next + fix th' + assume "Exit th' \ set (moment j (restm i t))" + thus "th' \ th" + by (metis Un_iff add.commute h_j.exit_diff moment_plus_split set_append) + qed + show ?thesis + by (metis add.commute append_assoc eq_pv h.runing_precond_pre + moment_plus_split neq_th' th'_in) +qed + +lemma moment_blocked_eqpv: + assumes neq_th': "th' \ th" + and th'_in: "th' \ threads ((moment i t)@s)" + and eq_pv: "cntP ((moment i t)@s) th' = cntV ((moment i t)@s) th'" + and le_ij: "i \ j" + shows "cntP ((moment j t)@s) th' = cntV ((moment j t)@s) th' \ + th' \ threads ((moment j t)@s) \ + th' \ runing ((moment j t)@s)" +proof - + from moment_blocked_pre [OF neq_th' th'_in eq_pv, of "j-i"] and le_ij + have h1: "cntP ((moment j t)@s) th' = cntV ((moment j t)@s) th'" + and h2: "th' \ threads ((moment j t)@s)" by auto + moreover have "th' \ runing ((moment j t)@s)" + proof - + interpret h: red_extend_highest_gen _ _ _ _ _ j by (unfold_locales) + show ?thesis + using h.pv_blocked_pre h1 h2 neq_th' by auto + qed + ultimately show ?thesis by auto +qed + +(* The foregoing two lemmas are preparation for this one, but + in long run can be combined. Maybe I am wrong. +*) +lemma moment_blocked: + assumes neq_th': "th' \ th" + and th'_in: "th' \ threads ((moment i t)@s)" + and dtc: "detached (moment i t @ s) th'" + and le_ij: "i \ j" + shows "detached (moment j t @ s) th' \ + th' \ threads ((moment j t)@s) \ + th' \ runing ((moment j t)@s)" +proof - + interpret h_i: red_extend_highest_gen _ _ _ _ _ i by (unfold_locales) + interpret h_j: red_extend_highest_gen _ _ _ _ _ j by (unfold_locales) + have cnt_i: "cntP (moment i t @ s) th' = cntV (moment i t @ s) th'" + by (metis dtc h_i.detached_elim) + from moment_blocked_eqpv[OF neq_th' th'_in cnt_i le_ij] + show ?thesis by (metis h_j.detached_intro) +qed + +lemma runing_preced_inversion: + assumes runing': "th' \ runing (t@s)" + shows "cp (t@s) th' = preced th s" (is "?L = ?R") +proof - + have "?L = Max (cp (t @ s) ` readys (t @ s))" using assms + by (unfold runing_def, auto) + also have "\ = ?R" + by (metis th_cp_max th_cp_preced vat_t.max_cp_readys_threads) + finally show ?thesis . +qed + +text {* + The situation when @{term "th"} is blocked is analyzed by the following lemmas. +*} + +text {* + The following lemmas shows the running thread @{text "th'"}, if it is different from + @{term th}, must be live at the very beginning. By the term {\em the very beginning}, + we mean the moment where the formal investigation starts, i.e. the moment (or state) + @{term s}. +*} + +lemma runing_inversion_0: + assumes neq_th': "th' \ th" + and runing': "th' \ runing (t@s)" + shows "th' \ threads s" +proof - + -- {* The proof is by contradiction: *} + { assume otherwise: "\ ?thesis" + have "th' \ runing (t @ s)" + proof - + -- {* Since @{term "th'"} is running at time @{term "t@s"}, so it exists that time. *} + have th'_in: "th' \ threads (t@s)" using runing' by (simp add:runing_def readys_def) + -- {* However, @{text "th'"} does not exist at very beginning. *} + have th'_notin: "th' \ threads (moment 0 t @ s)" using otherwise + by (metis append.simps(1) moment_zero) + -- {* Therefore, there must be a moment during @{text "t"}, when + @{text "th'"} came into being. *} + -- {* Let us suppose the moment being @{text "i"}: *} + from p_split_gen[OF th'_in th'_notin] + obtain i where lt_its: "i < length t" + and le_i: "0 \ i" + and pre: " th' \ threads (moment i t @ s)" (is "th' \ threads ?pre") + and post: "(\i'>i. th' \ threads (moment i' t @ s))" by (auto) + interpret h_i: red_extend_highest_gen _ _ _ _ _ i by (unfold_locales) + interpret h_i': red_extend_highest_gen _ _ _ _ _ "(Suc i)" by (unfold_locales) + from lt_its have "Suc i \ length t" by auto + -- {* Let us also suppose the event which makes this change is @{text e}: *} + from moment_head[OF this] obtain e where + eq_me: "moment (Suc i) t = e # moment i t" by blast + hence "vt (e # (moment i t @ s))" by (metis append_Cons h_i'.vt_t) + hence "PIP (moment i t @ s) e" by (cases, simp) + -- {* It can be derived that this event @{text "e"}, which + gives birth to @{term "th'"} must be a @{term "Create"}: *} + from create_pre[OF this, of th'] + obtain prio where eq_e: "e = Create th' prio" + by (metis append_Cons eq_me lessI post pre) + have h1: "th' \ threads (moment (Suc i) t @ s)" using post by auto + have h2: "cntP (moment (Suc i) t @ s) th' = cntV (moment (Suc i) t@ s) th'" + proof - + have "cntP (moment i t@s) th' = cntV (moment i t@s) th'" + by (metis h_i.cnp_cnv_eq pre) + thus ?thesis by (simp add:eq_me eq_e cntP_def cntV_def count_def) + qed + show ?thesis + using moment_blocked_eqpv [OF neq_th' h1 h2, of "length t"] lt_its moment_ge + by auto + qed + with `th' \ runing (t@s)` + have False by simp + } thus ?thesis by auto +qed + +text {* + The second lemma says, if the running thread @{text th'} is different from + @{term th}, then this @{text th'} must in the possession of some resources + at the very beginning. + + To ease the reasoning of resource possession of one particular thread, + we used two auxiliary functions @{term cntV} and @{term cntP}, + which are the counters of @{term P}-operations and + @{term V}-operations respectively. + If the number of @{term V}-operation is less than the number of + @{term "P"}-operations, the thread must have some unreleased resource. +*} + +lemma runing_inversion_1: (* ddd *) + assumes neq_th': "th' \ th" + and runing': "th' \ runing (t@s)" + -- {* thread @{term "th'"} is a live on in state @{term "s"} and + it has some unreleased resource. *} + shows "th' \ threads s \ cntV s th' < cntP s th'" +proof - + -- {* The proof is a simple composition of @{thm runing_inversion_0} and + @{thm runing_precond}: *} + -- {* By applying @{thm runing_inversion_0} to assumptions, + it can be shown that @{term th'} is live in state @{term s}: *} + have "th' \ threads s" using runing_inversion_0[OF assms(1,2)] . + -- {* Then the thesis is derived easily by applying @{thm runing_precond}: *} + with runing_precond [OF this neq_th' runing'] show ?thesis by simp +qed + +text {* + The following lemma is just a rephrasing of @{thm runing_inversion_1}: +*} +lemma runing_inversion_2: + assumes runing': "th' \ runing (t@s)" + shows "th' = th \ (th' \ th \ th' \ threads s \ cntV s th' < cntP s th')" +proof - + from runing_inversion_1[OF _ runing'] + show ?thesis by auto +qed + +lemma runing_inversion_3: + assumes runing': "th' \ runing (t@s)" + and neq_th: "th' \ th" + shows "th' \ threads s \ (cntV s th' < cntP s th' \ cp (t@s) th' = preced th s)" + by (metis neq_th runing' runing_inversion_2 runing_preced_inversion) + +lemma runing_inversion_4: + assumes runing': "th' \ runing (t@s)" + and neq_th: "th' \ th" + shows "th' \ threads s" + and "\detached s th'" + and "cp (t@s) th' = preced th s" + apply (metis neq_th runing' runing_inversion_2) + apply (metis neq_th pv_blocked runing' runing_inversion_2 runing_precond_pre_dtc) + by (metis neq_th runing' runing_inversion_3) + + +text {* + Suppose @{term th} is not running, it is first shown that + there is a path in RAG leading from node @{term th} to another thread @{text "th'"} + in the @{term readys}-set (So @{text "th'"} is an ancestor of @{term th}}). + + Now, since @{term readys}-set is non-empty, there must be + one in it which holds the highest @{term cp}-value, which, by definition, + is the @{term runing}-thread. However, we are going to show more: this running thread + is exactly @{term "th'"}. + *} +lemma th_blockedE: (* ddd *) + assumes "th \ runing (t@s)" + obtains th' where "Th th' \ ancestors (RAG (t @ s)) (Th th)" + "th' \ runing (t@s)" +proof - + -- {* According to @{thm vat_t.th_chain_to_ready}, either + @{term "th"} is in @{term "readys"} or there is path leading from it to + one thread in @{term "readys"}. *} + have "th \ readys (t @ s) \ (\th'. th' \ readys (t @ s) \ (Th th, Th th') \ (RAG (t @ s))\<^sup>+)" + using th_kept vat_t.th_chain_to_ready by auto + -- {* However, @{term th} can not be in @{term readys}, because otherwise, since + @{term th} holds the highest @{term cp}-value, it must be @{term "runing"}. *} + moreover have "th \ readys (t@s)" + using assms runing_def th_cp_max vat_t.max_cp_readys_threads by auto + -- {* So, there must be a path from @{term th} to another thread @{text "th'"} in + term @{term readys}: *} + ultimately obtain th' where th'_in: "th' \ readys (t@s)" + and dp: "(Th th, Th th') \ (RAG (t @ s))\<^sup>+" by auto + -- {* We are going to show that this @{term th'} is running. *} + have "th' \ runing (t@s)" + proof - + -- {* We only need to show that this @{term th'} holds the highest @{term cp}-value: *} + have "cp (t@s) th' = Max (cp (t@s) ` readys (t@s))" (is "?L = ?R") + proof - + have "?L = Max ((the_preced (t @ s) \ the_thread) ` subtree (tRAG (t @ s)) (Th th'))" + by (unfold cp_alt_def1, simp) + also have "... = (the_preced (t @ s) \ the_thread) (Th th)" + proof(rule image_Max_subset) + show "finite (Th ` (threads (t@s)))" by (simp add: vat_t.finite_threads) + next + show "subtree (tRAG (t @ s)) (Th th') \ Th ` threads (t @ s)" + by (metis Range.intros dp trancl_range vat_t.range_in vat_t.subtree_tRAG_thread) + next + show "Th th \ subtree (tRAG (t @ s)) (Th th')" using dp + by (unfold tRAG_subtree_eq, auto simp:subtree_def) + next + show "Max ((the_preced (t @ s) \ the_thread) ` Th ` threads (t @ s)) = + (the_preced (t @ s) \ the_thread) (Th th)" (is "Max ?L = _") + proof - + have "?L = the_preced (t @ s) ` threads (t @ s)" + by (unfold image_comp, rule image_cong, auto) + thus ?thesis using max_preced the_preced_def by auto + qed + qed + also have "... = ?R" + using th_cp_max th_cp_preced th_kept + the_preced_def vat_t.max_cp_readys_threads by auto + finally show ?thesis . + qed + -- {* Now, since @{term th'} holds the highest @{term cp} + and we have already show it is in @{term readys}, + it is @{term runing} by definition. *} + with `th' \ readys (t@s)` show ?thesis by (simp add: runing_def) + qed + -- {* It is easy to show @{term th'} is an ancestor of @{term th}: *} + moreover have "Th th' \ ancestors (RAG (t @ s)) (Th th)" + using `(Th th, Th th') \ (RAG (t @ s))\<^sup>+` by (auto simp:ancestors_def) + ultimately show ?thesis using that by metis +qed + +text {* + Now it is easy to see there is always a thread to run by case analysis + on whether thread @{term th} is running: if the answer is Yes, the + the running thread is obviously @{term th} itself; otherwise, the running + thread is the @{text th'} given by lemma @{thm th_blockedE}. +*} +lemma live: "runing (t@s) \ {}" +proof(cases "th \ runing (t@s)") + case True thus ?thesis by auto +next + case False + thus ?thesis using th_blockedE by auto +qed + +end +end + + +