diff -r a4bb5525b7b6 -r 8d8ed7b9680f PIPBasics.thy --- a/PIPBasics.thy Mon Mar 21 14:07:37 2016 +0000 +++ b/PIPBasics.thy Mon Mar 21 14:15:51 2016 +0000 @@ -156,13 +156,13 @@ @{term dependants} and @{term cp}. *} -lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs" - by (unfold s_waiting_def cs_waiting_def wq_def, auto) - -lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs" - by (unfold s_holding_def wq_def cs_holding_def, simp) - -lemma eq_dependants: "dependants (wq s) = dependants s" +lemma waiting_eq: "waiting s th cs = waiting_raw (wq s) th cs" + by (unfold s_waiting_def cs_waiting_raw wq_def, auto) + +lemma holding_eq: "holding (s::state) th cs = holding_raw (wq s) th cs" + by (unfold s_holding_def wq_def cs_holding_raw, simp) + +lemma eq_dependants: "dependants_raw (wq s) = dependants s" by (simp add: s_dependants_abv wq_def) lemma cp_eq: "cp s th = cpreced (wq s) s th" @@ -392,8 +392,8 @@ qed (insert assms, auto simp:cntV_def) lemma eq_RAG: - "RAG (wq s) = RAG s" - by (unfold cs_RAG_def s_RAG_def, auto) + "RAG_raw (wq s) = RAG s" + by (unfold cs_RAG_raw s_RAG_def, auto) text {* The following three lemmas shows the shape @@ -594,12 +594,12 @@ "cp s th = Max ((the_preced s) ` {th'. Th th' \ (subtree (RAG s) (Th th))})" proof - - have "Max (the_preced s ` ({th} \ dependants (wq s) th)) = + have "Max (the_preced s ` ({th} \ dependants_raw (wq s) th)) = Max (the_preced s ` {th'. Th th' \ subtree (RAG s) (Th th)})" (is "Max (_ ` ?L) = Max (_ ` ?R)") proof - have "?L = ?R" - by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def) + by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_raw s_RAG_def subtree_def) thus ?thesis by simp qed thus ?thesis by (unfold cp_eq cpreced_def, fold the_preced_def, simp)