diff -r 4b717aa162fa -r 8a13b37b4d95 PIPBasics.thy --- a/PIPBasics.thy Thu Jul 07 13:32:09 2016 +0100 +++ b/PIPBasics.thy Fri Jul 08 01:25:19 2016 +0100 @@ -2835,16 +2835,16 @@ context valid_trace begin -lemma rtree_RAG: "rtree (RAG s)" +lemma forest_RAG: "forest (RAG s)" using sgv_RAG acyclic_RAG - by (unfold rtree_def, auto) + by (unfold forest_def, auto) end -sublocale valid_trace < rtree_RAG?: rtree "RAG s" - using rtree_RAG . - -sublocale valid_trace < fsbtRAGs?: fgraph "RAG s" +sublocale valid_trace < forest_RAG?: forest "RAG s" + using forest_RAG . + +sublocale valid_trace < fsbtRAGs?: fforest "RAG s" proof show "\x. finite (children (RAG s) x)" by (smt Collect_empty_eq Range.intros children_def finite.emptyI finite_RAG finite_fbranchI) @@ -2886,7 +2886,7 @@ finite-branch relational tree (or forest): *} -sublocale valid_trace < rtree_s?: rtree "tRAG s" +sublocale valid_trace < forest_s?: forest "tRAG s" proof(unfold_locales) from sgv_tRAG show "single_valued (tRAG s)" . next @@ -2894,7 +2894,7 @@ qed -sublocale valid_trace < fsbttRAGs?: fgraph "tRAG s" +sublocale valid_trace < fsbttRAGs?: fforest "tRAG s" proof fix x show "finite (children (tRAG s) x)" @@ -3210,7 +3210,7 @@ obtain xs1 xs2 where "rpath (RAG s) n xs1 (Th th1)" "rpath (RAG s) n xs2 (Th th2)" by metis hence False - proof(cases rule:rtree_RAG.rpath_overlap') + proof(cases rule:forest_RAG.rpath_overlap') case (less_1 xs3) from rpath_star[OF this(3)] have "Th th1 \ subtree (RAG s) (Th th2)"