diff -r c80a08ff2a85 -r 420e03a2d9cc Implementation.thy --- a/Implementation.thy Mon Mar 21 14:41:40 2016 +0000 +++ b/Implementation.thy Mon Mar 21 15:06:52 2016 +0000 @@ -29,7 +29,7 @@ from tranclD[OF this] obtain z where "(Th th, z) \ RAG s" by auto with assms(1) have False - apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def) + apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_raw) by (fold wq_def, blast) } thus ?thesis by (unfold root_def, auto) qed @@ -668,7 +668,7 @@ have "Th th \ Range (RAG s)" proof assume "Th th \ Range (RAG s)" - then obtain cs where "holding (wq s) th cs" + then obtain cs where "holding_raw (wq s) th cs" by (unfold Range_iff s_RAG_def, auto) with holdents_th_s[unfolded holdents_def] show False by (unfold holding_eq, auto) @@ -676,7 +676,7 @@ moreover have "Th th \ Domain (RAG s)" proof assume "Th th \ Domain (RAG s)" - then obtain cs where "waiting (wq s) th cs" + then obtain cs where "waiting_raw (wq s) th cs" by (unfold Domain_iff s_RAG_def, auto) with th_ready_s show False by (unfold readys_def waiting_eq, auto) qed