diff -r e3cf792db636 -r 0f124691c191 Attic/PrioG.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Attic/PrioG.thy Fri Jun 17 09:46:25 2016 +0100 @@ -0,0 +1,797 @@ +theory Correctness +imports PIPBasics +begin + +text {* + The following two auxiliary lemmas are used to reason about @{term Max}. +*} +lemma image_Max_eqI: + assumes "finite B" + and "b \ B" + and "\ x \ B. f x \ f b" + shows "Max (f ` B) = f b" + using assms + using Max_eqI by blast + +lemma image_Max_subset: + assumes "finite A" + and "B \ A" + and "a \ B" + and "Max (f ` A) = f a" + shows "Max (f ` B) = f a" +proof(rule image_Max_eqI) + show "finite B" + using assms(1) assms(2) finite_subset by auto +next + show "a \ B" using assms by simp +next + show "\x\B. f x \ f a" + by (metis Max_ge assms(1) assms(2) assms(4) + finite_imageI image_eqI subsetCE) +qed + +text {* + The following locale @{text "highest_gen"} sets the basic context for our + investigation: supposing thread @{text th} holds the highest @{term cp}-value + in state @{text s}, which means the task for @{text th} is the + most urgent. We want to show that + @{text th} is treated correctly by PIP, which means + @{text th} will not be blocked unreasonably by other less urgent + threads. +*} +locale highest_gen = + fixes s th prio tm + assumes vt_s: "vt s" + and threads_s: "th \ threads s" + and highest: "preced th s = Max ((cp s)`threads s)" + -- {* The internal structure of @{term th}'s precedence is exposed:*} + and preced_th: "preced th s = Prc prio tm" + +-- {* @{term s} is a valid trace, so it will inherit all results derived for + a valid trace: *} +sublocale highest_gen < vat_s: valid_trace "s" + by (unfold_locales, insert vt_s, simp) + +context highest_gen +begin + +text {* + @{term tm} is the time when the precedence of @{term th} is set, so + @{term tm} must be a valid moment index into @{term s}. +*} +lemma lt_tm: "tm < length s" + by (insert preced_tm_lt[OF threads_s preced_th], simp) + +text {* + Since @{term th} holds the highest precedence and @{text "cp"} + is the highest precedence of all threads in the sub-tree of + @{text "th"} and @{text th} is among these threads, + its @{term cp} must equal to its precedence: +*} +lemma eq_cp_s_th: "cp s th = preced th s" (is "?L = ?R") +proof - + have "?L \ ?R" + by (unfold highest, rule Max_ge, + auto simp:threads_s finite_threads) + moreover have "?R \ ?L" + by (unfold vat_s.cp_rec, rule Max_ge, + auto simp:the_preced_def vat_s.fsbttRAGs.finite_children) + ultimately show ?thesis by auto +qed + +lemma highest_cp_preced: "cp s th = Max (the_preced s ` threads s)" + using eq_cp_s_th highest max_cp_eq the_preced_def by presburger + + +lemma highest_preced_thread: "preced th s = Max (the_preced s ` threads s)" + by (fold eq_cp_s_th, unfold highest_cp_preced, simp) + +lemma highest': "cp s th = Max (cp s ` threads s)" + by (simp add: eq_cp_s_th highest) + +end + +locale extend_highest_gen = highest_gen + + fixes t + assumes vt_t: "vt (t@s)" + and create_low: "Create th' prio' \ set t \ prio' \ prio" + and set_diff_low: "Set th' prio' \ set t \ th' \ th \ prio' \ prio" + and exit_diff: "Exit th' \ set t \ th' \ th" + +sublocale extend_highest_gen < vat_t: valid_trace "t@s" + by (unfold_locales, insert vt_t, simp) + +lemma step_back_vt_app: + assumes vt_ts: "vt (t@s)" + shows "vt s" +proof - + from vt_ts show ?thesis + proof(induct t) + case Nil + from Nil show ?case by auto + next + case (Cons e t) + assume ih: " vt (t @ s) \ vt s" + and vt_et: "vt ((e # t) @ s)" + show ?case + proof(rule ih) + show "vt (t @ s)" + proof(rule step_back_vt) + from vt_et show "vt (e # t @ s)" by simp + qed + qed + qed +qed + +(* locale red_extend_highest_gen = extend_highest_gen + + fixes i::nat +*) + +(* +sublocale red_extend_highest_gen < red_moment: extend_highest_gen "s" "th" "prio" "tm" "(moment i t)" + apply (insert extend_highest_gen_axioms, subst (asm) (1) moment_restm_s [of i t, symmetric]) + apply (unfold extend_highest_gen_def extend_highest_gen_axioms_def, clarsimp) + by (unfold highest_gen_def, auto dest:step_back_vt_app) +*) + +context extend_highest_gen +begin + + lemma ind [consumes 0, case_names Nil Cons, induct type]: + assumes + h0: "R []" + and h2: "\ e t. \vt (t@s); step (t@s) e; + extend_highest_gen s th prio tm t; + extend_highest_gen s th prio tm (e#t); R t\ \ R (e#t)" + shows "R t" +proof - + from vt_t extend_highest_gen_axioms show ?thesis + proof(induct t) + from h0 show "R []" . + next + case (Cons e t') + assume ih: "\vt (t' @ s); extend_highest_gen s th prio tm t'\ \ R t'" + and vt_e: "vt ((e # t') @ s)" + and et: "extend_highest_gen s th prio tm (e # t')" + from vt_e and step_back_step have stp: "step (t'@s) e" by auto + from vt_e and step_back_vt have vt_ts: "vt (t'@s)" by auto + show ?case + proof(rule h2 [OF vt_ts stp _ _ _ ]) + show "R t'" + proof(rule ih) + from et show ext': "extend_highest_gen s th prio tm t'" + by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt) + next + from vt_ts show "vt (t' @ s)" . + qed + next + from et show "extend_highest_gen s th prio tm (e # t')" . + next + from et show ext': "extend_highest_gen s th prio tm t'" + by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt) + qed + qed +qed + + +lemma th_kept: "th \ threads (t @ s) \ + preced th (t@s) = preced th s" (is "?Q t") +proof - + show ?thesis + proof(induct rule:ind) + case Nil + from threads_s + show ?case + by auto + next + case (Cons e t) + interpret h_e: extend_highest_gen _ _ _ _ "(e # t)" using Cons by auto + interpret h_t: extend_highest_gen _ _ _ _ t using Cons by auto + show ?case + proof(cases e) + case (Create thread prio) + show ?thesis + proof - + from Cons and Create have "step (t@s) (Create thread prio)" by auto + hence "th \ thread" + proof(cases) + case thread_create + with Cons show ?thesis by auto + qed + hence "preced th ((e # t) @ s) = preced th (t @ s)" + by (unfold Create, auto simp:preced_def) + moreover note Cons + ultimately show ?thesis + by (auto simp:Create) + qed + next + case (Exit thread) + from h_e.exit_diff and Exit + have neq_th: "thread \ th" by auto + with Cons + show ?thesis + by (unfold Exit, auto simp:preced_def) + next + case (P thread cs) + with Cons + show ?thesis + by (auto simp:P preced_def) + next + case (V thread cs) + with Cons + show ?thesis + by (auto simp:V preced_def) + next + case (Set thread prio') + show ?thesis + proof - + from h_e.set_diff_low and Set + have "th \ thread" by auto + hence "preced th ((e # t) @ s) = preced th (t @ s)" + by (unfold Set, auto simp:preced_def) + moreover note Cons + ultimately show ?thesis + by (auto simp:Set) + qed + qed + qed +qed + +text {* + According to @{thm th_kept}, thread @{text "th"} has its living status + and precedence kept along the way of @{text "t"}. The following lemma + shows that this preserved precedence of @{text "th"} remains as the highest + along the way of @{text "t"}. + + The proof goes by induction over @{text "t"} using the specialized + induction rule @{thm ind}, followed by case analysis of each possible + operations of PIP. All cases follow the same pattern rendered by the + generalized introduction rule @{thm "image_Max_eqI"}. + + The very essence is to show that precedences, no matter whether they + are newly introduced or modified, are always lower than the one held + by @{term "th"}, which by @{thm th_kept} is preserved along the way. +*} +lemma max_kept: "Max (the_preced (t @ s) ` (threads (t@s))) = preced th s" +proof(induct rule:ind) + case Nil + from highest_preced_thread + show ?case by simp +next + case (Cons e t) + interpret h_e: extend_highest_gen _ _ _ _ "(e # t)" using Cons by auto + interpret h_t: extend_highest_gen _ _ _ _ t using Cons by auto + show ?case + proof(cases e) + case (Create thread prio') + show ?thesis (is "Max (?f ` ?A) = ?t") + proof - + -- {* The following is the common pattern of each branch of the case analysis. *} + -- {* The major part is to show that @{text "th"} holds the highest precedence: *} + have "Max (?f ` ?A) = ?f th" + proof(rule image_Max_eqI) + show "finite ?A" using h_e.finite_threads by auto + next + show "th \ ?A" using h_e.th_kept by auto + next + show "\x\?A. ?f x \ ?f th" + proof + fix x + assume "x \ ?A" + hence "x = thread \ x \ threads (t@s)" by (auto simp:Create) + thus "?f x \ ?f th" + proof + assume "x = thread" + thus ?thesis + apply (simp add:Create the_preced_def preced_def, fold preced_def) + using Create h_e.create_low h_t.th_kept lt_tm preced_leI2 + preced_th by force + next + assume h: "x \ threads (t @ s)" + from Cons(2)[unfolded Create] + have "x \ thread" using h by (cases, auto) + hence "?f x = the_preced (t@s) x" + by (simp add:Create the_preced_def preced_def) + hence "?f x \ Max (the_preced (t@s) ` threads (t@s))" + by (simp add: h_t.finite_threads h) + also have "... = ?f th" + by (metis Cons.hyps(5) h_e.th_kept the_preced_def) + finally show ?thesis . + qed + qed + qed + -- {* The minor part is to show that the precedence of @{text "th"} + equals to preserved one, given by the foregoing lemma @{thm th_kept} *} + also have "... = ?t" using h_e.th_kept the_preced_def by auto + -- {* Then it follows trivially that the precedence preserved + for @{term "th"} remains the maximum of all living threads along the way. *} + finally show ?thesis . + qed + next + case (Exit thread) + show ?thesis (is "Max (?f ` ?A) = ?t") + proof - + have "Max (?f ` ?A) = ?f th" + proof(rule image_Max_eqI) + show "finite ?A" using h_e.finite_threads by auto + next + show "th \ ?A" using h_e.th_kept by auto + next + show "\x\?A. ?f x \ ?f th" + proof + fix x + assume "x \ ?A" + hence "x \ threads (t@s)" by (simp add: Exit) + hence "?f x \ Max (?f ` threads (t@s))" + by (simp add: h_t.finite_threads) + also have "... \ ?f th" + apply (simp add:Exit the_preced_def preced_def, fold preced_def) + using Cons.hyps(5) h_t.th_kept the_preced_def by auto + finally show "?f x \ ?f th" . + qed + qed + also have "... = ?t" using h_e.th_kept the_preced_def by auto + finally show ?thesis . + qed + next + case (P thread cs) + with Cons + show ?thesis by (auto simp:preced_def the_preced_def) + next + case (V thread cs) + with Cons + show ?thesis by (auto simp:preced_def the_preced_def) + next + case (Set thread prio') + show ?thesis (is "Max (?f ` ?A) = ?t") + proof - + have "Max (?f ` ?A) = ?f th" + proof(rule image_Max_eqI) + show "finite ?A" using h_e.finite_threads by auto + next + show "th \ ?A" using h_e.th_kept by auto + next + show "\x\?A. ?f x \ ?f th" + proof + fix x + assume h: "x \ ?A" + show "?f x \ ?f th" + proof(cases "x = thread") + case True + moreover have "the_preced (Set thread prio' # t @ s) thread \ the_preced (t @ s) th" + proof - + have "the_preced (t @ s) th = Prc prio tm" + using h_t.th_kept preced_th by (simp add:the_preced_def) + moreover have "prio' \ prio" using Set h_e.set_diff_low by auto + ultimately show ?thesis by (insert lt_tm, auto simp:the_preced_def preced_def) + qed + ultimately show ?thesis + by (unfold Set, simp add:the_preced_def preced_def) + next + case False + then have "?f x = the_preced (t@s) x" + by (simp add:the_preced_def preced_def Set) + also have "... \ Max (the_preced (t@s) ` threads (t@s))" + using Set h h_t.finite_threads by auto + also have "... = ?f th" by (metis Cons.hyps(5) h_e.th_kept the_preced_def) + finally show ?thesis . + qed + qed + qed + also have "... = ?t" using h_e.th_kept the_preced_def by auto + finally show ?thesis . + qed + qed +qed + +lemma max_preced: "preced th (t@s) = Max (the_preced (t@s) ` (threads (t@s)))" + by (insert th_kept max_kept, auto) + +text {* + The reason behind the following lemma is that: + Since @{term "cp"} is defined as the maximum precedence + of those threads contained in the sub-tree of node @{term "Th th"} + in @{term "RAG (t@s)"}, and all these threads are living threads, and + @{term "th"} is also among them, the maximum precedence of + them all must be the one for @{text "th"}. +*} +lemma th_cp_max_preced: + "cp (t@s) th = Max (the_preced (t@s) ` (threads (t@s)))" (is "?L = ?R") +proof - + let ?f = "the_preced (t@s)" + have "?L = ?f th" + proof(unfold cp_alt_def, rule image_Max_eqI) + show "finite {th'. Th th' \ subtree (RAG (t @ s)) (Th th)}" + proof - + have "{th'. Th th' \ subtree (RAG (t @ s)) (Th th)} = + the_thread ` {n . n \ subtree (RAG (t @ s)) (Th th) \ + (\ th'. n = Th th')}" + by (smt Collect_cong Setcompr_eq_image mem_Collect_eq the_thread.simps) + moreover have "finite ..." by (simp add: vat_t.fsbtRAGs.finite_subtree) + ultimately show ?thesis by simp + qed + next + show "th \ {th'. Th th' \ subtree (RAG (t @ s)) (Th th)}" + by (auto simp:subtree_def) + next + show "\x\{th'. Th th' \ subtree (RAG (t @ s)) (Th th)}. + the_preced (t @ s) x \ the_preced (t @ s) th" + proof + fix th' + assume "th' \ {th'. Th th' \ subtree (RAG (t @ s)) (Th th)}" + hence "Th th' \ subtree (RAG (t @ s)) (Th th)" by auto + moreover have "... \ Field (RAG (t @ s)) \ {Th th}" + by (meson subtree_Field) + ultimately have "Th th' \ ..." by auto + hence "th' \ threads (t@s)" + proof + assume "Th th' \ {Th th}" + thus ?thesis using th_kept by auto + next + assume "Th th' \ Field (RAG (t @ s))" + thus ?thesis using vat_t.not_in_thread_isolated by blast + qed + thus "the_preced (t @ s) th' \ the_preced (t @ s) th" + by (metis Max_ge finite_imageI finite_threads image_eqI + max_kept th_kept the_preced_def) + qed + qed + also have "... = ?R" by (simp add: max_preced the_preced_def) + finally show ?thesis . +qed + +lemma th_cp_max[simp]: "Max (cp (t@s) ` threads (t@s)) = cp (t@s) th" + using max_cp_eq th_cp_max_preced the_preced_def vt_t by presburger + +lemma [simp]: "Max (cp (t@s) ` threads (t@s)) = Max (the_preced (t@s) ` threads (t@s))" + by (simp add: th_cp_max_preced) + +lemma [simp]: "Max (the_preced (t@s) ` threads (t@s)) = the_preced (t@s) th" + using max_kept th_kept the_preced_def by auto + +lemma [simp]: "the_preced (t@s) th = preced th (t@s)" + using the_preced_def by auto + +lemma [simp]: "preced th (t@s) = preced th s" + by (simp add: th_kept) + +lemma [simp]: "cp s th = preced th s" + by (simp add: eq_cp_s_th) + +lemma th_cp_preced [simp]: "cp (t@s) th = preced th s" + by (fold max_kept, unfold th_cp_max_preced, simp) + +lemma preced_less: + assumes th'_in: "th' \ threads s" + and neq_th': "th' \ th" + shows "preced th' s < preced th s" + using assms +by (metis Max.coboundedI finite_imageI highest not_le order.trans + preced_linorder rev_image_eqI threads_s vat_s.finite_threads + vat_s.le_cp) + +section {* The `blocking thread` *} + +text {* + The purpose of PIP is to ensure that the most + urgent thread @{term th} is not blocked unreasonably. + Therefore, a clear picture of the blocking thread is essential + to assure people that the purpose is fulfilled. + + In this section, we are going to derive a series of lemmas + with finally give rise to a picture of the blocking thread. + + By `blocking thread`, we mean a thread in running state but + different from thread @{term th}. +*} + +text {* + The following lemmas shows that the @{term cp}-value + of the blocking thread @{text th'} equals to the highest + precedence in the whole system. +*} +lemma runing_preced_inversion: + assumes runing': "th' \ runing (t@s)" + shows "cp (t@s) th' = preced th s" (is "?L = ?R") +proof - + have "?L = Max (cp (t @ s) ` readys (t @ s))" using assms + by (unfold runing_def, auto) + also have "\ = ?R" + by (metis th_cp_max th_cp_preced vat_t.max_cp_readys_threads) + finally show ?thesis . +qed + +text {* + + The following lemma shows how the counters for @{term "P"} and + @{term "V"} operations relate to the running threads in the states + @{term s} and @{term "t @ s"}. The lemma shows that if a thread's + @{term "P"}-count equals its @{term "V"}-count (which means it no + longer has any resource in its possession), it cannot be a running + thread. + + The proof is by contraction with the assumption @{text "th' \ th"}. + The key is the use of @{thm eq_pv_dependants} to derive the + emptiness of @{text th'}s @{term dependants}-set from the balance of + its @{term P} and @{term V} counts. From this, it can be shown + @{text th'}s @{term cp}-value equals to its own precedence. + + On the other hand, since @{text th'} is running, by @{thm + runing_preced_inversion}, its @{term cp}-value equals to the + precedence of @{term th}. + + Combining the above two resukts we have that @{text th'} and @{term + th} have the same precedence. By uniqueness of precedences, we have + @{text "th' = th"}, which is in contradiction with the assumption + @{text "th' \ th"}. + +*} + +lemma eq_pv_blocked: (* ddd *) + assumes neq_th': "th' \ th" + and eq_pv: "cntP (t@s) th' = cntV (t@s) th'" + shows "th' \ runing (t@s)" +proof + assume otherwise: "th' \ runing (t@s)" + show False + proof - + have th'_in: "th' \ threads (t@s)" + using otherwise readys_threads runing_def by auto + have "th' = th" + proof(rule preced_unique) + -- {* The proof goes like this: + it is first shown that the @{term preced}-value of @{term th'} + equals to that of @{term th}, then by uniqueness + of @{term preced}-values (given by lemma @{thm preced_unique}), + @{term th'} equals to @{term th}: *} + show "preced th' (t @ s) = preced th (t @ s)" (is "?L = ?R") + proof - + -- {* Since the counts of @{term th'} are balanced, the subtree + of it contains only itself, so, its @{term cp}-value + equals its @{term preced}-value: *} + have "?L = cp (t@s) th'" + by (unfold cp_eq_cpreced cpreced_def eq_dependants vat_t.eq_pv_dependants[OF eq_pv], simp) + -- {* Since @{term "th'"} is running, by @{thm runing_preced_inversion}, + its @{term cp}-value equals @{term "preced th s"}, + which equals to @{term "?R"} by simplification: *} + also have "... = ?R" + thm runing_preced_inversion + using runing_preced_inversion[OF otherwise] by simp + finally show ?thesis . + qed + qed (auto simp: th'_in th_kept) + with `th' \ th` show ?thesis by simp + qed +qed + +text {* + The following lemma is the extrapolation of @{thm eq_pv_blocked}. + It says if a thread, different from @{term th}, + does not hold any resource at the very beginning, + it will keep hand-emptied in the future @{term "t@s"}. +*} +lemma eq_pv_persist: (* ddd *) + assumes neq_th': "th' \ th" + and eq_pv: "cntP s th' = cntV s th'" + shows "cntP (t@s) th' = cntV (t@s) th'" +proof(induction rule:ind) -- {* The proof goes by induction. *} + -- {* The nontrivial case is for the @{term Cons}: *} + case (Cons e t) + -- {* All results derived so far hold for both @{term s} and @{term "t@s"}: *} + interpret vat_t: extend_highest_gen s th prio tm t using Cons by simp + interpret vat_e: extend_highest_gen s th prio tm "(e # t)" using Cons by simp + interpret vat_es: valid_trace_e "t@s" e using Cons(1,2) by (unfold_locales, auto) + show ?case + proof - + -- {* It can be proved that @{term cntP}-value of @{term th'} does not change + by the happening of event @{term e}: *} + have "cntP ((e#t)@s) th' = cntP (t@s) th'" + proof(rule ccontr) -- {* Proof by contradiction. *} + -- {* Suppose @{term cntP}-value of @{term th'} is changed by @{term e}: *} + assume otherwise: "cntP ((e # t) @ s) th' \ cntP (t @ s) th'" + -- {* Then the actor of @{term e} must be @{term th'} and @{term e} + must be a @{term P}-event: *} + hence "isP e" "actor e = th'" by (auto simp:cntP_diff_inv) + with vat_es.actor_inv + -- {* According to @{thm vat_es.actor_inv}, @{term th'} must be running at + the moment @{term "t@s"}: *} + have "th' \ runing (t@s)" by (cases e, auto) + -- {* However, an application of @{thm eq_pv_blocked} to induction hypothesis + shows @{term th'} can not be running at moment @{term "t@s"}: *} + moreover have "th' \ runing (t@s)" + using vat_t.eq_pv_blocked[OF neq_th' Cons(5)] . + -- {* Contradiction is finally derived: *} + ultimately show False by simp + qed + -- {* It can also be proved that @{term cntV}-value of @{term th'} does not change + by the happening of event @{term e}: *} + -- {* The proof follows exactly the same pattern as the case for @{term cntP}-value: *} + moreover have "cntV ((e#t)@s) th' = cntV (t@s) th'" + proof(rule ccontr) -- {* Proof by contradiction. *} + assume otherwise: "cntV ((e # t) @ s) th' \ cntV (t @ s) th'" + hence "isV e" "actor e = th'" by (auto simp:cntV_diff_inv) + with vat_es.actor_inv + have "th' \ runing (t@s)" by (cases e, auto) + moreover have "th' \ runing (t@s)" + using vat_t.eq_pv_blocked[OF neq_th' Cons(5)] . + ultimately show False by simp + qed + -- {* Finally, it can be shown that the @{term cntP} and @{term cntV} + value for @{term th'} are still in balance, so @{term th'} + is still hand-emptied after the execution of event @{term e}: *} + ultimately show ?thesis using Cons(5) by metis + qed +qed (auto simp:eq_pv) + +text {* + By combining @{thm eq_pv_blocked} and @{thm eq_pv_persist}, + it can be derived easily that @{term th'} can not be running in the future: +*} +lemma eq_pv_blocked_persist: + assumes neq_th': "th' \ th" + and eq_pv: "cntP s th' = cntV s th'" + shows "th' \ runing (t@s)" + using assms + by (simp add: eq_pv_blocked eq_pv_persist) + +text {* + The following lemma shows the blocking thread @{term th'} + must hold some resource in the very beginning. +*} +lemma runing_cntP_cntV_inv: (* ddd *) + assumes is_runing: "th' \ runing (t@s)" + and neq_th': "th' \ th" + shows "cntP s th' > cntV s th'" + using assms +proof - + -- {* First, it can be shown that the number of @{term P} and + @{term V} operations can not be equal for thred @{term th'} *} + have "cntP s th' \ cntV s th'" + proof + -- {* The proof goes by contradiction, suppose otherwise: *} + assume otherwise: "cntP s th' = cntV s th'" + -- {* By applying @{thm eq_pv_blocked_persist} to this: *} + from eq_pv_blocked_persist[OF neq_th' otherwise] + -- {* we have that @{term th'} can not be running at moment @{term "t@s"}: *} + have "th' \ runing (t@s)" . + -- {* This is obvious in contradiction with assumption @{thm is_runing} *} + thus False using is_runing by simp + qed + -- {* However, the number of @{term V} is always less or equal to @{term P}: *} + moreover have "cntV s th' \ cntP s th'" using vat_s.cnp_cnv_cncs by auto + -- {* Thesis is finally derived by combining the these two results: *} + ultimately show ?thesis by auto +qed + + +text {* + The following lemmas shows the blocking thread @{text th'} must be live + at the very beginning, i.e. the moment (or state) @{term s}. + + The proof is a simple combination of the results above: +*} +lemma runing_threads_inv: + assumes runing': "th' \ runing (t@s)" + and neq_th': "th' \ th" + shows "th' \ threads s" +proof(rule ccontr) -- {* Proof by contradiction: *} + assume otherwise: "th' \ threads s" + have "th' \ runing (t @ s)" + proof - + from vat_s.cnp_cnv_eq[OF otherwise] + have "cntP s th' = cntV s th'" . + from eq_pv_blocked_persist[OF neq_th' this] + show ?thesis . + qed + with runing' show False by simp +qed + +text {* + The following lemma summarizes several foregoing + lemmas to give an overall picture of the blocking thread @{text "th'"}: +*} +lemma runing_inversion: (* ddd, one of the main lemmas to present *) + assumes runing': "th' \ runing (t@s)" + and neq_th: "th' \ th" + shows "th' \ threads s" + and "\detached s th'" + and "cp (t@s) th' = preced th s" +proof - + from runing_threads_inv[OF assms] + show "th' \ threads s" . +next + from runing_cntP_cntV_inv[OF runing' neq_th] + show "\detached s th'" using vat_s.detached_eq by simp +next + from runing_preced_inversion[OF runing'] + show "cp (t@s) th' = preced th s" . +qed + +section {* The existence of `blocking thread` *} + +text {* + Suppose @{term th} is not running, it is first shown that + there is a path in RAG leading from node @{term th} to another thread @{text "th'"} + in the @{term readys}-set (So @{text "th'"} is an ancestor of @{term th}}). + + Now, since @{term readys}-set is non-empty, there must be + one in it which holds the highest @{term cp}-value, which, by definition, + is the @{term runing}-thread. However, we are going to show more: this running thread + is exactly @{term "th'"}. + *} +lemma th_blockedE: (* ddd, the other main lemma to be presented: *) + assumes "th \ runing (t@s)" + obtains th' where "Th th' \ ancestors (RAG (t @ s)) (Th th)" + "th' \ runing (t@s)" +proof - + -- {* According to @{thm vat_t.th_chain_to_ready}, either + @{term "th"} is in @{term "readys"} or there is path leading from it to + one thread in @{term "readys"}. *} + have "th \ readys (t @ s) \ (\th'. th' \ readys (t @ s) \ (Th th, Th th') \ (RAG (t @ s))\<^sup>+)" + using th_kept vat_t.th_chain_to_ready by auto + -- {* However, @{term th} can not be in @{term readys}, because otherwise, since + @{term th} holds the highest @{term cp}-value, it must be @{term "runing"}. *} + moreover have "th \ readys (t@s)" + using assms runing_def th_cp_max vat_t.max_cp_readys_threads by auto + -- {* So, there must be a path from @{term th} to another thread @{text "th'"} in + term @{term readys}: *} + ultimately obtain th' where th'_in: "th' \ readys (t@s)" + and dp: "(Th th, Th th') \ (RAG (t @ s))\<^sup>+" by auto + -- {* We are going to show that this @{term th'} is running. *} + have "th' \ runing (t@s)" + proof - + -- {* We only need to show that this @{term th'} holds the highest @{term cp}-value: *} + have "cp (t@s) th' = Max (cp (t@s) ` readys (t@s))" (is "?L = ?R") + proof - + have "?L = Max ((the_preced (t @ s) \ the_thread) ` subtree (tRAG (t @ s)) (Th th'))" + by (unfold cp_alt_def1, simp) + also have "... = (the_preced (t @ s) \ the_thread) (Th th)" + proof(rule image_Max_subset) + show "finite (Th ` (threads (t@s)))" by (simp add: vat_t.finite_threads) + next + show "subtree (tRAG (t @ s)) (Th th') \ Th ` threads (t @ s)" + by (metis Range.intros dp trancl_range vat_t.rg_RAG_threads vat_t.subtree_tRAG_thread) + next + show "Th th \ subtree (tRAG (t @ s)) (Th th')" using dp + by (unfold tRAG_subtree_eq, auto simp:subtree_def) + next + show "Max ((the_preced (t @ s) \ the_thread) ` Th ` threads (t @ s)) = + (the_preced (t @ s) \ the_thread) (Th th)" (is "Max ?L = _") + proof - + have "?L = the_preced (t @ s) ` threads (t @ s)" + by (unfold image_comp, rule image_cong, auto) + thus ?thesis using max_preced the_preced_def by auto + qed + qed + also have "... = ?R" + using th_cp_max th_cp_preced th_kept + the_preced_def vat_t.max_cp_readys_threads by auto + finally show ?thesis . + qed + -- {* Now, since @{term th'} holds the highest @{term cp} + and we have already show it is in @{term readys}, + it is @{term runing} by definition. *} + with `th' \ readys (t@s)` show ?thesis by (simp add: runing_def) + qed + -- {* It is easy to show @{term th'} is an ancestor of @{term th}: *} + moreover have "Th th' \ ancestors (RAG (t @ s)) (Th th)" + using `(Th th, Th th') \ (RAG (t @ s))\<^sup>+` by (auto simp:ancestors_def) + ultimately show ?thesis using that by metis +qed + +text {* + Now it is easy to see there is always a thread to run by case analysis + on whether thread @{term th} is running: if the answer is Yes, the + the running thread is obviously @{term th} itself; otherwise, the running + thread is the @{text th'} given by lemma @{thm th_blockedE}. +*} +lemma live: "runing (t@s) \ {}" +proof(cases "th \ runing (t@s)") + case True thus ?thesis by auto +next + case False + thus ?thesis using th_blockedE by auto +qed + +end +end