theory ExtGG+ −
imports PrioG CpsG+ −
begin+ −
+ −
text {* + −
The following two auxiliary lemmas are used to reason about @{term Max}.+ −
*}+ −
lemma image_Max_eqI: + −
assumes "finite B"+ −
and "b \<in> B"+ −
and "\<forall> x \<in> B. f x \<le> f b"+ −
shows "Max (f ` B) = f b"+ −
using assms+ −
using Max_eqI by blast + −
+ −
lemma image_Max_subset:+ −
assumes "finite A"+ −
and "B \<subseteq> A"+ −
and "a \<in> B"+ −
and "Max (f ` A) = f a"+ −
shows "Max (f ` B) = f a"+ −
proof(rule image_Max_eqI)+ −
show "finite B"+ −
using assms(1) assms(2) finite_subset by auto + −
next+ −
show "a \<in> B" using assms by simp+ −
next+ −
show "\<forall>x\<in>B. f x \<le> f a"+ −
by (metis Max_ge assms(1) assms(2) assms(4) + −
finite_imageI image_eqI subsetCE) + −
qed+ −
+ −
text {*+ −
The following locale @{text "highest_gen"} sets the basic context for our+ −
investigation: supposing thread @{text th} holds the highest @{term cp}-value+ −
in state @{text s}, which means the task for @{text th} is the + −
most urgent. We want to show that + −
@{text th} is treated correctly by PIP, which means+ −
@{text th} will not be blocked unreasonably by other less urgent+ −
threads. + −
*}+ −
locale highest_gen =+ −
fixes s th prio tm+ −
assumes vt_s: "vt s"+ −
and threads_s: "th \<in> threads s"+ −
and highest: "preced th s = Max ((cp s)`threads s)"+ −
-- {* The internal structure of @{term th}'s precedence is exposed:*}+ −
and preced_th: "preced th s = Prc prio tm" + −
+ −
-- {* @{term s} is a valid trace, so it will inherit all results derived for+ −
a valid trace: *}+ −
sublocale highest_gen < vat_s: valid_trace "s"+ −
by (unfold_locales, insert vt_s, simp)+ −
+ −
context highest_gen+ −
begin+ −
+ −
text {*+ −
@{term tm} is the time when the precedence of @{term th} is set, so + −
@{term tm} must be a valid moment index into @{term s}.+ −
*}+ −
lemma lt_tm: "tm < length s"+ −
by (insert preced_tm_lt[OF threads_s preced_th], simp)+ −
+ −
text {*+ −
Since @{term th} holds the highest precedence and @{text "cp"}+ −
is the highest precedence of all threads in the sub-tree of + −
@{text "th"} and @{text th} is among these threads, + −
its @{term cp} must equal to its precedence:+ −
*}+ −
lemma eq_cp_s_th: "cp s th = preced th s" (is "?L = ?R")+ −
proof -+ −
have "?L \<le> ?R"+ −
by (unfold highest, rule Max_ge, + −
auto simp:threads_s finite_threads)+ −
moreover have "?R \<le> ?L"+ −
by (unfold vat_s.cp_rec, rule Max_ge, + −
auto simp:the_preced_def vat_s.fsbttRAGs.finite_children)+ −
ultimately show ?thesis by auto+ −
qed+ −
+ −
(* ccc *)+ −
lemma highest_cp_preced: "cp s th = Max ((\<lambda> th'. preced th' s) ` threads s)"+ −
by (fold max_cp_eq, unfold eq_cp_s_th, insert highest, simp)+ −
+ −
lemma highest_preced_thread: "preced th s = Max ((\<lambda> th'. preced th' s) ` threads s)"+ −
by (fold eq_cp_s_th, unfold highest_cp_preced, simp)+ −
+ −
lemma highest': "cp s th = Max (cp s ` threads s)"+ −
proof -+ −
from highest_cp_preced max_cp_eq[symmetric]+ −
show ?thesis by simp+ −
qed+ −
+ −
end+ −
+ −
locale extend_highest_gen = highest_gen + + −
fixes t + −
assumes vt_t: "vt (t@s)"+ −
and create_low: "Create th' prio' \<in> set t \<Longrightarrow> prio' \<le> prio"+ −
and set_diff_low: "Set th' prio' \<in> set t \<Longrightarrow> th' \<noteq> th \<and> prio' \<le> prio"+ −
and exit_diff: "Exit th' \<in> set t \<Longrightarrow> th' \<noteq> th"+ −
+ −
sublocale extend_highest_gen < vat_t: valid_trace "t@s"+ −
by (unfold_locales, insert vt_t, simp)+ −
+ −
lemma step_back_vt_app: + −
assumes vt_ts: "vt (t@s)" + −
shows "vt s"+ −
proof -+ −
from vt_ts show ?thesis+ −
proof(induct t)+ −
case Nil+ −
from Nil show ?case by auto+ −
next+ −
case (Cons e t)+ −
assume ih: " vt (t @ s) \<Longrightarrow> vt s"+ −
and vt_et: "vt ((e # t) @ s)"+ −
show ?case+ −
proof(rule ih)+ −
show "vt (t @ s)"+ −
proof(rule step_back_vt)+ −
from vt_et show "vt (e # t @ s)" by simp+ −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
+ −
locale red_extend_highest_gen = extend_highest_gen ++ −
fixes i::nat+ −
+ −
sublocale red_extend_highest_gen < red_moment: extend_highest_gen "s" "th" "prio" "tm" "(moment i t)"+ −
apply (insert extend_highest_gen_axioms, subst (asm) (1) moment_restm_s [of i t, symmetric])+ −
apply (unfold extend_highest_gen_def extend_highest_gen_axioms_def, clarsimp)+ −
by (unfold highest_gen_def, auto dest:step_back_vt_app)+ −
+ −
+ −
context extend_highest_gen+ −
begin+ −
+ −
lemma ind [consumes 0, case_names Nil Cons, induct type]:+ −
assumes + −
h0: "R []"+ −
and h2: "\<And> e t. \<lbrakk>vt (t@s); step (t@s) e; + −
extend_highest_gen s th prio tm t; + −
extend_highest_gen s th prio tm (e#t); R t\<rbrakk> \<Longrightarrow> R (e#t)"+ −
shows "R t"+ −
proof -+ −
from vt_t extend_highest_gen_axioms show ?thesis+ −
proof(induct t)+ −
from h0 show "R []" .+ −
next+ −
case (Cons e t')+ −
assume ih: "\<lbrakk>vt (t' @ s); extend_highest_gen s th prio tm t'\<rbrakk> \<Longrightarrow> R t'"+ −
and vt_e: "vt ((e # t') @ s)"+ −
and et: "extend_highest_gen s th prio tm (e # t')"+ −
from vt_e and step_back_step have stp: "step (t'@s) e" by auto+ −
from vt_e and step_back_vt have vt_ts: "vt (t'@s)" by auto+ −
show ?case+ −
proof(rule h2 [OF vt_ts stp _ _ _ ])+ −
show "R t'"+ −
proof(rule ih)+ −
from et show ext': "extend_highest_gen s th prio tm t'"+ −
by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt)+ −
next+ −
from vt_ts show "vt (t' @ s)" .+ −
qed+ −
next+ −
from et show "extend_highest_gen s th prio tm (e # t')" .+ −
next+ −
from et show ext': "extend_highest_gen s th prio tm t'"+ −
by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt)+ −
qed+ −
qed+ −
qed+ −
+ −
+ −
lemma th_kept: "th \<in> threads (t @ s) \<and> + −
preced th (t@s) = preced th s" (is "?Q t") + −
proof -+ −
show ?thesis+ −
proof(induct rule:ind)+ −
case Nil+ −
from threads_s+ −
show ?case+ −
by auto+ −
next+ −
case (Cons e t)+ −
interpret h_e: extend_highest_gen _ _ _ _ "(e # t)" using Cons by auto+ −
interpret h_t: extend_highest_gen _ _ _ _ t using Cons by auto+ −
show ?case+ −
proof(cases e)+ −
case (Create thread prio)+ −
show ?thesis+ −
proof -+ −
from Cons and Create have "step (t@s) (Create thread prio)" by auto+ −
hence "th \<noteq> thread"+ −
proof(cases)+ −
case thread_create+ −
with Cons show ?thesis by auto+ −
qed+ −
hence "preced th ((e # t) @ s) = preced th (t @ s)"+ −
by (unfold Create, auto simp:preced_def)+ −
moreover note Cons+ −
ultimately show ?thesis+ −
by (auto simp:Create)+ −
qed+ −
next+ −
case (Exit thread)+ −
from h_e.exit_diff and Exit+ −
have neq_th: "thread \<noteq> th" by auto+ −
with Cons+ −
show ?thesis+ −
by (unfold Exit, auto simp:preced_def)+ −
next+ −
case (P thread cs)+ −
with Cons+ −
show ?thesis + −
by (auto simp:P preced_def)+ −
next+ −
case (V thread cs)+ −
with Cons+ −
show ?thesis + −
by (auto simp:V preced_def)+ −
next+ −
case (Set thread prio')+ −
show ?thesis+ −
proof -+ −
from h_e.set_diff_low and Set+ −
have "th \<noteq> thread" by auto+ −
hence "preced th ((e # t) @ s) = preced th (t @ s)"+ −
by (unfold Set, auto simp:preced_def)+ −
moreover note Cons+ −
ultimately show ?thesis+ −
by (auto simp:Set)+ −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
text {*+ −
According to @{thm th_kept}, thread @{text "th"} has its living status+ −
and precedence kept along the way of @{text "t"}. The following lemma+ −
shows that this preserved precedence of @{text "th"} remains as the highest+ −
along the way of @{text "t"}.+ −
+ −
The proof goes by induction over @{text "t"} using the specialized+ −
induction rule @{thm ind}, followed by case analysis of each possible + −
operations of PIP. All cases follow the same pattern rendered by the + −
generalized introduction rule @{thm "image_Max_eqI"}. + −
+ −
The very essence is to show that precedences, no matter whether they are newly introduced + −
or modified, are always lower than the one held by @{term "th"},+ −
which by @{thm th_kept} is preserved along the way.+ −
*}+ −
lemma max_kept: "Max (the_preced (t @ s) ` (threads (t@s))) = preced th s"+ −
proof(induct rule:ind)+ −
case Nil+ −
from highest_preced_thread+ −
show ?case+ −
by (unfold the_preced_def, simp)+ −
next+ −
case (Cons e t)+ −
interpret h_e: extend_highest_gen _ _ _ _ "(e # t)" using Cons by auto+ −
interpret h_t: extend_highest_gen _ _ _ _ t using Cons by auto+ −
show ?case+ −
proof(cases e)+ −
case (Create thread prio')+ −
show ?thesis (is "Max (?f ` ?A) = ?t")+ −
proof -+ −
-- {* The following is the common pattern of each branch of the case analysis. *}+ −
-- {* The major part is to show that @{text "th"} holds the highest precedence: *}+ −
have "Max (?f ` ?A) = ?f th"+ −
proof(rule image_Max_eqI)+ −
show "finite ?A" using h_e.finite_threads by auto + −
next+ −
show "th \<in> ?A" using h_e.th_kept by auto + −
next+ −
show "\<forall>x\<in>?A. ?f x \<le> ?f th"+ −
proof + −
fix x+ −
assume "x \<in> ?A"+ −
hence "x = thread \<or> x \<in> threads (t@s)" by (auto simp:Create)+ −
thus "?f x \<le> ?f th"+ −
proof+ −
assume "x = thread"+ −
thus ?thesis + −
apply (simp add:Create the_preced_def preced_def, fold preced_def)+ −
using Create h_e.create_low h_t.th_kept lt_tm preced_leI2 preced_th by force+ −
next+ −
assume h: "x \<in> threads (t @ s)"+ −
from Cons(2)[unfolded Create] + −
have "x \<noteq> thread" using h by (cases, auto)+ −
hence "?f x = the_preced (t@s) x" + −
by (simp add:Create the_preced_def preced_def)+ −
hence "?f x \<le> Max (the_preced (t@s) ` threads (t@s))"+ −
by (simp add: h_t.finite_threads h)+ −
also have "... = ?f th"+ −
by (metis Cons.hyps(5) h_e.th_kept the_preced_def) + −
finally show ?thesis .+ −
qed+ −
qed+ −
qed+ −
-- {* The minor part is to show that the precedence of @{text "th"} + −
equals to preserved one, given by the foregoing lemma @{thm th_kept} *}+ −
also have "... = ?t" using h_e.th_kept the_preced_def by auto+ −
-- {* Then it follows trivially that the precedence preserved+ −
for @{term "th"} remains the maximum of all living threads along the way. *}+ −
finally show ?thesis .+ −
qed + −
next + −
case (Exit thread)+ −
show ?thesis (is "Max (?f ` ?A) = ?t")+ −
proof -+ −
have "Max (?f ` ?A) = ?f th"+ −
proof(rule image_Max_eqI)+ −
show "finite ?A" using h_e.finite_threads by auto + −
next+ −
show "th \<in> ?A" using h_e.th_kept by auto + −
next+ −
show "\<forall>x\<in>?A. ?f x \<le> ?f th"+ −
proof + −
fix x+ −
assume "x \<in> ?A"+ −
hence "x \<in> threads (t@s)" by (simp add: Exit) + −
hence "?f x \<le> Max (?f ` threads (t@s))" + −
by (simp add: h_t.finite_threads) + −
also have "... \<le> ?f th" + −
apply (simp add:Exit the_preced_def preced_def, fold preced_def)+ −
using Cons.hyps(5) h_t.th_kept the_preced_def by auto+ −
finally show "?f x \<le> ?f th" .+ −
qed+ −
qed+ −
also have "... = ?t" using h_e.th_kept the_preced_def by auto+ −
finally show ?thesis .+ −
qed + −
next+ −
case (P thread cs)+ −
with Cons+ −
show ?thesis by (auto simp:preced_def the_preced_def)+ −
next+ −
case (V thread cs)+ −
with Cons+ −
show ?thesis by (auto simp:preced_def the_preced_def)+ −
next + −
case (Set thread prio')+ −
show ?thesis (is "Max (?f ` ?A) = ?t")+ −
proof -+ −
have "Max (?f ` ?A) = ?f th"+ −
proof(rule image_Max_eqI)+ −
show "finite ?A" using h_e.finite_threads by auto + −
next+ −
show "th \<in> ?A" using h_e.th_kept by auto + −
next+ −
show "\<forall>x\<in>?A. ?f x \<le> ?f th"+ −
proof + −
fix x+ −
assume h: "x \<in> ?A"+ −
show "?f x \<le> ?f th"+ −
proof(cases "x = thread")+ −
case True+ −
moreover have "the_preced (Set thread prio' # t @ s) thread \<le> the_preced (t @ s) th"+ −
proof -+ −
have "the_preced (t @ s) th = Prc prio tm" + −
using h_t.th_kept preced_th by (simp add:the_preced_def)+ −
moreover have "prio' \<le> prio" using Set h_e.set_diff_low by auto+ −
ultimately show ?thesis by (insert lt_tm, auto simp:the_preced_def preced_def)+ −
qed+ −
ultimately show ?thesis+ −
by (unfold Set, simp add:the_preced_def preced_def)+ −
next+ −
case False+ −
then have "?f x = the_preced (t@s) x"+ −
by (simp add:the_preced_def preced_def Set)+ −
also have "... \<le> Max (the_preced (t@s) ` threads (t@s))"+ −
using Set h h_t.finite_threads by auto + −
also have "... = ?f th" by (metis Cons.hyps(5) h_e.th_kept the_preced_def) + −
finally show ?thesis .+ −
qed+ −
qed+ −
qed+ −
also have "... = ?t" using h_e.th_kept the_preced_def by auto+ −
finally show ?thesis .+ −
qed + −
qed+ −
qed+ −
+ −
lemma max_preced: "preced th (t@s) = Max (the_preced (t@s) ` (threads (t@s)))"+ −
by (insert th_kept max_kept, auto)+ −
+ −
text {*+ −
The reason behind the following lemma is that:+ −
Since @{term "cp"} is defined as the maximum precedence + −
of those threads contained in the sub-tree of node @{term "Th th"} + −
in @{term "RAG (t@s)"}, and all these threads are living threads, and + −
@{term "th"} is also among them, the maximum precedence of + −
them all must be the one for @{text "th"}.+ −
*}+ −
lemma th_cp_max_preced: + −
"cp (t@s) th = Max (the_preced (t@s) ` (threads (t@s)))" (is "?L = ?R") + −
proof -+ −
let ?f = "the_preced (t@s)"+ −
have "?L = ?f th"+ −
proof(unfold cp_alt_def, rule image_Max_eqI)+ −
show "finite {th'. Th th' \<in> subtree (RAG (t @ s)) (Th th)}"+ −
proof -+ −
have "{th'. Th th' \<in> subtree (RAG (t @ s)) (Th th)} = + −
the_thread ` {n . n \<in> subtree (RAG (t @ s)) (Th th) \<and>+ −
(\<exists> th'. n = Th th')}"+ −
by (smt Collect_cong Setcompr_eq_image mem_Collect_eq the_thread.simps)+ −
moreover have "finite ..." by (simp add: vat_t.fsbtRAGs.finite_subtree) + −
ultimately show ?thesis by simp+ −
qed+ −
next+ −
show "th \<in> {th'. Th th' \<in> subtree (RAG (t @ s)) (Th th)}"+ −
by (auto simp:subtree_def)+ −
next+ −
show "\<forall>x\<in>{th'. Th th' \<in> subtree (RAG (t @ s)) (Th th)}.+ −
the_preced (t @ s) x \<le> the_preced (t @ s) th"+ −
proof+ −
fix th'+ −
assume "th' \<in> {th'. Th th' \<in> subtree (RAG (t @ s)) (Th th)}"+ −
hence "Th th' \<in> subtree (RAG (t @ s)) (Th th)" by auto+ −
moreover have "... \<subseteq> Field (RAG (t @ s)) \<union> {Th th}"+ −
by (meson subtree_Field)+ −
ultimately have "Th th' \<in> ..." by auto+ −
hence "th' \<in> threads (t@s)" + −
proof+ −
assume "Th th' \<in> {Th th}"+ −
thus ?thesis using th_kept by auto + −
next+ −
assume "Th th' \<in> Field (RAG (t @ s))"+ −
thus ?thesis using vat_t.not_in_thread_isolated by blast + −
qed+ −
thus "the_preced (t @ s) th' \<le> the_preced (t @ s) th"+ −
by (metis Max_ge finite_imageI finite_threads image_eqI + −
max_kept th_kept the_preced_def)+ −
qed+ −
qed+ −
also have "... = ?R" by (simp add: max_preced the_preced_def) + −
finally show ?thesis .+ −
qed+ −
+ −
lemma th_cp_max: "cp (t@s) th = Max (cp (t@s) ` threads (t@s))"+ −
using max_cp_eq th_cp_max_preced the_preced_def vt_t by presburger+ −
+ −
lemma th_cp_preced: "cp (t@s) th = preced th s"+ −
by (fold max_kept, unfold th_cp_max_preced, simp)+ −
+ −
lemma preced_less:+ −
assumes th'_in: "th' \<in> threads s"+ −
and neq_th': "th' \<noteq> th"+ −
shows "preced th' s < preced th s"+ −
using assms+ −
by (metis Max.coboundedI finite_imageI highest not_le order.trans + −
preced_linorder rev_image_eqI threads_s vat_s.finite_threads + −
vat_s.le_cp)+ −
+ −
text {*+ −
Counting of the number of @{term "P"} and @{term "V"} operations + −
is the cornerstone of a large number of the following proofs. + −
The reason is that this counting is quite easy to calculate and + −
convenient to use in the reasoning. + −
+ −
The following lemma shows that the counting controls whether + −
a thread is running or not.+ −
*}+ −
+ −
lemma pv_blocked_pre:+ −
assumes th'_in: "th' \<in> threads (t@s)"+ −
and neq_th': "th' \<noteq> th"+ −
and eq_pv: "cntP (t@s) th' = cntV (t@s) th'"+ −
shows "th' \<notin> runing (t@s)"+ −
proof+ −
assume otherwise: "th' \<in> runing (t@s)"+ −
show False+ −
proof -+ −
have "th' = th"+ −
proof(rule preced_unique)+ −
show "preced th' (t @ s) = preced th (t @ s)" (is "?L = ?R")+ −
proof -+ −
have "?L = cp (t@s) th'"+ −
by (unfold cp_eq_cpreced cpreced_def count_eq_dependants[OF eq_pv], simp)+ −
also have "... = cp (t @ s) th" using otherwise + −
by (metis (mono_tags, lifting) mem_Collect_eq + −
runing_def th_cp_max vat_t.max_cp_readys_threads)+ −
also have "... = ?R" by (metis th_cp_preced th_kept) + −
finally show ?thesis .+ −
qed+ −
qed (auto simp: th'_in th_kept)+ −
moreover have "th' \<noteq> th" using neq_th' .+ −
ultimately show ?thesis by simp+ −
qed+ −
qed+ −
+ −
lemmas pv_blocked = pv_blocked_pre[folded detached_eq]+ −
+ −
lemma runing_precond_pre:+ −
fixes th'+ −
assumes th'_in: "th' \<in> threads s"+ −
and eq_pv: "cntP s th' = cntV s th'"+ −
and neq_th': "th' \<noteq> th"+ −
shows "th' \<in> threads (t@s) \<and>+ −
cntP (t@s) th' = cntV (t@s) th'"+ −
proof(induct rule:ind)+ −
case (Cons e t)+ −
interpret vat_t: extend_highest_gen s th prio tm t using Cons by simp+ −
interpret vat_e: extend_highest_gen s th prio tm "(e # t)" using Cons by simp+ −
show ?case+ −
proof(cases e)+ −
case (P thread cs)+ −
show ?thesis+ −
proof -+ −
have "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'"+ −
proof -+ −
have "thread \<noteq> th'"+ −
proof -+ −
have "step (t@s) (P thread cs)" using Cons P by auto+ −
thus ?thesis+ −
proof(cases)+ −
assume "thread \<in> runing (t@s)"+ −
moreover have "th' \<notin> runing (t@s)" using Cons(5)+ −
by (metis neq_th' vat_t.pv_blocked_pre) + −
ultimately show ?thesis by auto+ −
qed+ −
qed with Cons show ?thesis+ −
by (unfold P, simp add:cntP_def cntV_def count_def)+ −
qed+ −
moreover have "th' \<in> threads ((e # t) @ s)" using Cons by (unfold P, simp)+ −
ultimately show ?thesis by auto+ −
qed+ −
next+ −
case (V thread cs)+ −
show ?thesis+ −
proof -+ −
have "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'"+ −
proof -+ −
have "thread \<noteq> th'"+ −
proof -+ −
have "step (t@s) (V thread cs)" using Cons V by auto+ −
thus ?thesis+ −
proof(cases)+ −
assume "thread \<in> runing (t@s)"+ −
moreover have "th' \<notin> runing (t@s)" using Cons(5)+ −
by (metis neq_th' vat_t.pv_blocked_pre) + −
ultimately show ?thesis by auto+ −
qed+ −
qed with Cons show ?thesis+ −
by (unfold V, simp add:cntP_def cntV_def count_def)+ −
qed+ −
moreover have "th' \<in> threads ((e # t) @ s)" using Cons by (unfold V, simp)+ −
ultimately show ?thesis by auto+ −
qed+ −
next+ −
case (Create thread prio')+ −
show ?thesis+ −
proof -+ −
have "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'"+ −
proof -+ −
have "thread \<noteq> th'"+ −
proof -+ −
have "step (t@s) (Create thread prio')" using Cons Create by auto+ −
thus ?thesis using Cons(5) by (cases, auto)+ −
qed with Cons show ?thesis+ −
by (unfold Create, simp add:cntP_def cntV_def count_def)+ −
qed+ −
moreover have "th' \<in> threads ((e # t) @ s)" using Cons by (unfold Create, simp)+ −
ultimately show ?thesis by auto+ −
qed+ −
next+ −
case (Exit thread)+ −
show ?thesis+ −
proof -+ −
have neq_thread: "thread \<noteq> th'"+ −
proof -+ −
have "step (t@s) (Exit thread)" using Cons Exit by auto+ −
thus ?thesis apply (cases) using Cons(5)+ −
by (metis neq_th' vat_t.pv_blocked_pre) + −
qed + −
hence "cntP ((e # t) @ s) th' = cntV ((e # t) @ s) th'" using Cons+ −
by (unfold Exit, simp add:cntP_def cntV_def count_def)+ −
moreover have "th' \<in> threads ((e # t) @ s)" using Cons neq_thread + −
by (unfold Exit, simp) + −
ultimately show ?thesis by auto+ −
qed+ −
next+ −
case (Set thread prio')+ −
with Cons+ −
show ?thesis + −
by (auto simp:cntP_def cntV_def count_def)+ −
qed+ −
next+ −
case Nil+ −
with assms+ −
show ?case by auto+ −
qed+ −
+ −
text {* Changing counting balance to detachedness *}+ −
lemmas runing_precond_pre_dtc = runing_precond_pre+ −
[folded vat_t.detached_eq vat_s.detached_eq]+ −
+ −
lemma runing_precond:+ −
fixes th'+ −
assumes th'_in: "th' \<in> threads s"+ −
and neq_th': "th' \<noteq> th"+ −
and is_runing: "th' \<in> runing (t@s)"+ −
shows "cntP s th' > cntV s th'"+ −
using assms+ −
proof -+ −
have "cntP s th' \<noteq> cntV s th'"+ −
by (metis is_runing neq_th' pv_blocked_pre runing_precond_pre th'_in)+ −
moreover have "cntV s th' \<le> cntP s th'" using vat_s.cnp_cnv_cncs by auto+ −
ultimately show ?thesis by auto+ −
qed+ −
+ −
lemma moment_blocked_pre:+ −
assumes neq_th': "th' \<noteq> th"+ −
and th'_in: "th' \<in> threads ((moment i t)@s)"+ −
and eq_pv: "cntP ((moment i t)@s) th' = cntV ((moment i t)@s) th'"+ −
shows "cntP ((moment (i+j) t)@s) th' = cntV ((moment (i+j) t)@s) th' \<and>+ −
th' \<in> threads ((moment (i+j) t)@s)"+ −
proof -+ −
interpret h_i: red_extend_highest_gen _ _ _ _ _ i+ −
by (unfold_locales)+ −
interpret h_j: red_extend_highest_gen _ _ _ _ _ "i+j"+ −
by (unfold_locales)+ −
interpret h: extend_highest_gen "((moment i t)@s)" th prio tm "moment j (restm i t)"+ −
proof(unfold_locales)+ −
show "vt (moment i t @ s)" by (metis h_i.vt_t) + −
next+ −
show "th \<in> threads (moment i t @ s)" by (metis h_i.th_kept)+ −
next+ −
show "preced th (moment i t @ s) = + −
Max (cp (moment i t @ s) ` threads (moment i t @ s))"+ −
by (metis h_i.th_cp_max h_i.th_cp_preced h_i.th_kept)+ −
next+ −
show "preced th (moment i t @ s) = Prc prio tm" by (metis h_i.th_kept preced_th) + −
next+ −
show "vt (moment j (restm i t) @ moment i t @ s)"+ −
using moment_plus_split by (metis add.commute append_assoc h_j.vt_t)+ −
next+ −
fix th' prio'+ −
assume "Create th' prio' \<in> set (moment j (restm i t))"+ −
thus "prio' \<le> prio" using assms+ −
by (metis Un_iff add.commute h_j.create_low moment_plus_split set_append)+ −
next+ −
fix th' prio'+ −
assume "Set th' prio' \<in> set (moment j (restm i t))"+ −
thus "th' \<noteq> th \<and> prio' \<le> prio"+ −
by (metis Un_iff add.commute h_j.set_diff_low moment_plus_split set_append)+ −
next+ −
fix th'+ −
assume "Exit th' \<in> set (moment j (restm i t))"+ −
thus "th' \<noteq> th"+ −
by (metis Un_iff add.commute h_j.exit_diff moment_plus_split set_append)+ −
qed+ −
show ?thesis + −
by (metis add.commute append_assoc eq_pv h.runing_precond_pre+ −
moment_plus_split neq_th' th'_in)+ −
qed+ −
+ −
lemma moment_blocked_eqpv:+ −
assumes neq_th': "th' \<noteq> th"+ −
and th'_in: "th' \<in> threads ((moment i t)@s)"+ −
and eq_pv: "cntP ((moment i t)@s) th' = cntV ((moment i t)@s) th'"+ −
and le_ij: "i \<le> j"+ −
shows "cntP ((moment j t)@s) th' = cntV ((moment j t)@s) th' \<and>+ −
th' \<in> threads ((moment j t)@s) \<and>+ −
th' \<notin> runing ((moment j t)@s)"+ −
proof -+ −
from moment_blocked_pre [OF neq_th' th'_in eq_pv, of "j-i"] and le_ij+ −
have h1: "cntP ((moment j t)@s) th' = cntV ((moment j t)@s) th'"+ −
and h2: "th' \<in> threads ((moment j t)@s)" by auto+ −
moreover have "th' \<notin> runing ((moment j t)@s)"+ −
proof -+ −
interpret h: red_extend_highest_gen _ _ _ _ _ j by (unfold_locales)+ −
show ?thesis+ −
using h.pv_blocked_pre h1 h2 neq_th' by auto + −
qed+ −
ultimately show ?thesis by auto+ −
qed+ −
+ −
(* The foregoing two lemmas are preparation for this one, but+ −
in long run can be combined. Maybe I am wrong.+ −
*)+ −
lemma moment_blocked:+ −
assumes neq_th': "th' \<noteq> th"+ −
and th'_in: "th' \<in> threads ((moment i t)@s)"+ −
and dtc: "detached (moment i t @ s) th'"+ −
and le_ij: "i \<le> j"+ −
shows "detached (moment j t @ s) th' \<and>+ −
th' \<in> threads ((moment j t)@s) \<and>+ −
th' \<notin> runing ((moment j t)@s)"+ −
proof -+ −
interpret h_i: red_extend_highest_gen _ _ _ _ _ i by (unfold_locales)+ −
interpret h_j: red_extend_highest_gen _ _ _ _ _ j by (unfold_locales) + −
have cnt_i: "cntP (moment i t @ s) th' = cntV (moment i t @ s) th'"+ −
by (metis dtc h_i.detached_elim)+ −
from moment_blocked_eqpv[OF neq_th' th'_in cnt_i le_ij]+ −
show ?thesis by (metis h_j.detached_intro) + −
qed+ −
+ −
lemma runing_preced_inversion:+ −
assumes runing': "th' \<in> runing (t@s)"+ −
shows "cp (t@s) th' = preced th s" (is "?L = ?R")+ −
proof -+ −
have "?L = Max (cp (t @ s) ` readys (t @ s))" using assms+ −
by (unfold runing_def, auto)+ −
also have "\<dots> = ?R"+ −
by (metis th_cp_max th_cp_preced vat_t.max_cp_readys_threads) + −
finally show ?thesis .+ −
qed+ −
+ −
text {*+ −
The situation when @{term "th"} is blocked is analyzed by the following lemmas.+ −
*}+ −
+ −
text {*+ −
The following lemmas shows the running thread @{text "th'"}, if it is different from+ −
@{term th}, must be live at the very beginning. By the term {\em the very beginning},+ −
we mean the moment where the formal investigation starts, i.e. the moment (or state)+ −
@{term s}. + −
*}+ −
+ −
lemma runing_inversion_0:+ −
assumes neq_th': "th' \<noteq> th"+ −
and runing': "th' \<in> runing (t@s)"+ −
shows "th' \<in> threads s"+ −
proof -+ −
-- {* The proof is by contradiction: *}+ −
{ assume otherwise: "\<not> ?thesis"+ −
have "th' \<notin> runing (t @ s)"+ −
proof -+ −
-- {* Since @{term "th'"} is running at time @{term "t@s"}, so it exists that time. *}+ −
have th'_in: "th' \<in> threads (t@s)" using runing' by (simp add:runing_def readys_def)+ −
-- {* However, @{text "th'"} does not exist at very beginning. *}+ −
have th'_notin: "th' \<notin> threads (moment 0 t @ s)" using otherwise+ −
by (metis append.simps(1) moment_zero)+ −
-- {* Therefore, there must be a moment during @{text "t"}, when + −
@{text "th'"} came into being. *}+ −
-- {* Let us suppose the moment being @{text "i"}: *}+ −
from p_split_gen[OF th'_in th'_notin]+ −
obtain i where lt_its: "i < length t"+ −
and le_i: "0 \<le> i"+ −
and pre: " th' \<notin> threads (moment i t @ s)" (is "th' \<notin> threads ?pre")+ −
and post: "(\<forall>i'>i. th' \<in> threads (moment i' t @ s))" by (auto)+ −
interpret h_i: red_extend_highest_gen _ _ _ _ _ i by (unfold_locales)+ −
interpret h_i': red_extend_highest_gen _ _ _ _ _ "(Suc i)" by (unfold_locales)+ −
from lt_its have "Suc i \<le> length t" by auto+ −
-- {* Let us also suppose the event which makes this change is @{text e}: *}+ −
from moment_head[OF this] obtain e where + −
eq_me: "moment (Suc i) t = e # moment i t" by blast+ −
hence "vt (e # (moment i t @ s))" by (metis append_Cons h_i'.vt_t) + −
hence "PIP (moment i t @ s) e" by (cases, simp)+ −
-- {* It can be derived that this event @{text "e"}, which + −
gives birth to @{term "th'"} must be a @{term "Create"}: *}+ −
from create_pre[OF this, of th']+ −
obtain prio where eq_e: "e = Create th' prio"+ −
by (metis append_Cons eq_me lessI post pre) + −
have h1: "th' \<in> threads (moment (Suc i) t @ s)" using post by auto + −
have h2: "cntP (moment (Suc i) t @ s) th' = cntV (moment (Suc i) t@ s) th'"+ −
proof -+ −
have "cntP (moment i t@s) th' = cntV (moment i t@s) th'"+ −
by (metis h_i.cnp_cnv_eq pre)+ −
thus ?thesis by (simp add:eq_me eq_e cntP_def cntV_def count_def)+ −
qed+ −
show ?thesis + −
using moment_blocked_eqpv [OF neq_th' h1 h2, of "length t"] lt_its moment_ge+ −
by auto+ −
qed+ −
with `th' \<in> runing (t@s)`+ −
have False by simp+ −
} thus ?thesis by auto+ −
qed+ −
+ −
text {* + −
The second lemma says, if the running thread @{text th'} is different from + −
@{term th}, then this @{text th'} must in the possession of some resources+ −
at the very beginning. + −
+ −
To ease the reasoning of resource possession of one particular thread, + −
we used two auxiliary functions @{term cntV} and @{term cntP}, + −
which are the counters of @{term P}-operations and + −
@{term V}-operations respectively. + −
If the number of @{term V}-operation is less than the number of + −
@{term "P"}-operations, the thread must have some unreleased resource. + −
*}+ −
+ −
lemma runing_inversion_1: (* ddd *)+ −
assumes neq_th': "th' \<noteq> th"+ −
and runing': "th' \<in> runing (t@s)"+ −
-- {* thread @{term "th'"} is a live on in state @{term "s"} and + −
it has some unreleased resource. *}+ −
shows "th' \<in> threads s \<and> cntV s th' < cntP s th'"+ −
proof -+ −
-- {* The proof is a simple composition of @{thm runing_inversion_0} and + −
@{thm runing_precond}: *}+ −
-- {* By applying @{thm runing_inversion_0} to assumptions,+ −
it can be shown that @{term th'} is live in state @{term s}: *}+ −
have "th' \<in> threads s" using runing_inversion_0[OF assms(1,2)] .+ −
-- {* Then the thesis is derived easily by applying @{thm runing_precond}: *}+ −
with runing_precond [OF this neq_th' runing'] show ?thesis by simp+ −
qed+ −
+ −
text {* + −
The following lemma is just a rephrasing of @{thm runing_inversion_1}:+ −
*}+ −
lemma runing_inversion_2:+ −
assumes runing': "th' \<in> runing (t@s)"+ −
shows "th' = th \<or> (th' \<noteq> th \<and> th' \<in> threads s \<and> cntV s th' < cntP s th')"+ −
proof -+ −
from runing_inversion_1[OF _ runing']+ −
show ?thesis by auto+ −
qed+ −
+ −
lemma runing_inversion_3:+ −
assumes runing': "th' \<in> runing (t@s)"+ −
and neq_th: "th' \<noteq> th"+ −
shows "th' \<in> threads s \<and> (cntV s th' < cntP s th' \<and> cp (t@s) th' = preced th s)"+ −
by (metis neq_th runing' runing_inversion_2 runing_preced_inversion)+ −
+ −
lemma runing_inversion_4:+ −
assumes runing': "th' \<in> runing (t@s)"+ −
and neq_th: "th' \<noteq> th"+ −
shows "th' \<in> threads s"+ −
and "\<not>detached s th'"+ −
and "cp (t@s) th' = preced th s"+ −
apply (metis neq_th runing' runing_inversion_2)+ −
apply (metis neq_th pv_blocked runing' runing_inversion_2 runing_precond_pre_dtc)+ −
by (metis neq_th runing' runing_inversion_3)+ −
+ −
+ −
text {* + −
Suppose @{term th} is not running, it is first shown that+ −
there is a path in RAG leading from node @{term th} to another thread @{text "th'"} + −
in the @{term readys}-set (So @{text "th'"} is an ancestor of @{term th}}).+ −
+ −
Now, since @{term readys}-set is non-empty, there must be+ −
one in it which holds the highest @{term cp}-value, which, by definition, + −
is the @{term runing}-thread. However, we are going to show more: this running thread+ −
is exactly @{term "th'"}.+ −
*}+ −
lemma th_blockedE: (* ddd *)+ −
assumes "th \<notin> runing (t@s)"+ −
obtains th' where "Th th' \<in> ancestors (RAG (t @ s)) (Th th)"+ −
"th' \<in> runing (t@s)"+ −
proof -+ −
-- {* According to @{thm vat_t.th_chain_to_ready}, either + −
@{term "th"} is in @{term "readys"} or there is path leading from it to + −
one thread in @{term "readys"}. *}+ −
have "th \<in> readys (t @ s) \<or> (\<exists>th'. th' \<in> readys (t @ s) \<and> (Th th, Th th') \<in> (RAG (t @ s))\<^sup>+)" + −
using th_kept vat_t.th_chain_to_ready by auto+ −
-- {* However, @{term th} can not be in @{term readys}, because otherwise, since + −
@{term th} holds the highest @{term cp}-value, it must be @{term "runing"}. *}+ −
moreover have "th \<notin> readys (t@s)" + −
using assms runing_def th_cp_max vat_t.max_cp_readys_threads by auto + −
-- {* So, there must be a path from @{term th} to another thread @{text "th'"} in + −
term @{term readys}: *}+ −
ultimately obtain th' where th'_in: "th' \<in> readys (t@s)"+ −
and dp: "(Th th, Th th') \<in> (RAG (t @ s))\<^sup>+" by auto+ −
-- {* We are going to show that this @{term th'} is running. *}+ −
have "th' \<in> runing (t@s)"+ −
proof -+ −
-- {* We only need to show that this @{term th'} holds the highest @{term cp}-value: *}+ −
have "cp (t@s) th' = Max (cp (t@s) ` readys (t@s))" (is "?L = ?R")+ −
proof -+ −
have "?L = Max ((the_preced (t @ s) \<circ> the_thread) ` subtree (tRAG (t @ s)) (Th th'))"+ −
by (unfold cp_alt_def1, simp)+ −
also have "... = (the_preced (t @ s) \<circ> the_thread) (Th th)"+ −
proof(rule image_Max_subset)+ −
show "finite (Th ` (threads (t@s)))" by (simp add: vat_t.finite_threads)+ −
next+ −
show "subtree (tRAG (t @ s)) (Th th') \<subseteq> Th ` threads (t @ s)"+ −
by (metis Range.intros dp trancl_range vat_t.range_in vat_t.subtree_tRAG_thread) + −
next+ −
show "Th th \<in> subtree (tRAG (t @ s)) (Th th')" using dp+ −
by (unfold tRAG_subtree_eq, auto simp:subtree_def)+ −
next+ −
show "Max ((the_preced (t @ s) \<circ> the_thread) ` Th ` threads (t @ s)) =+ −
(the_preced (t @ s) \<circ> the_thread) (Th th)" (is "Max ?L = _")+ −
proof -+ −
have "?L = the_preced (t @ s) ` threads (t @ s)" + −
by (unfold image_comp, rule image_cong, auto)+ −
thus ?thesis using max_preced the_preced_def by auto+ −
qed+ −
qed+ −
also have "... = ?R"+ −
using th_cp_max th_cp_preced th_kept + −
the_preced_def vat_t.max_cp_readys_threads by auto+ −
finally show ?thesis .+ −
qed + −
-- {* Now, since @{term th'} holds the highest @{term cp} + −
and we have already show it is in @{term readys},+ −
it is @{term runing} by definition. *}+ −
with `th' \<in> readys (t@s)` show ?thesis by (simp add: runing_def) + −
qed+ −
-- {* It is easy to show @{term th'} is an ancestor of @{term th}: *}+ −
moreover have "Th th' \<in> ancestors (RAG (t @ s)) (Th th)" + −
using `(Th th, Th th') \<in> (RAG (t @ s))\<^sup>+` by (auto simp:ancestors_def)+ −
ultimately show ?thesis using that by metis+ −
qed+ −
+ −
text {*+ −
Now it is easy to see there is always a thread to run by case analysis+ −
on whether thread @{term th} is running: if the answer is Yes, the + −
the running thread is obviously @{term th} itself; otherwise, the running+ −
thread is the @{text th'} given by lemma @{thm th_blockedE}.+ −
*}+ −
lemma live: "runing (t@s) \<noteq> {}"+ −
proof(cases "th \<in> runing (t@s)") + −
case True thus ?thesis by auto+ −
next+ −
case False+ −
thus ?thesis using th_blockedE by auto+ −
qed+ −
+ −
end+ −
end+ −
+ −
+ −
+ −