Test.thy
author Christian Urban <urbanc@in.tum.de>
Tue, 07 Feb 2017 02:10:22 +0000
changeset 151 a79a6a286108
parent 127 38c6acf03f68
permissions -rw-r--r--
test9

theory Test 
imports Precedence_ord Graphs
begin

type_synonym thread = nat -- {* Type for thread identifiers. *}
type_synonym priority = nat  -- {* Type for priorities. *}
type_synonym cs = nat -- {* Type for critical sections (or resources). *}

-- {* Schedulling Events *}

datatype event = 
  Create thread priority 
| Exit thread 
| P thread cs 
| V thread cs 
| Set thread priority 

type_synonym state = "event list"

fun threads :: "state \<Rightarrow> thread set"
  where 
  "threads [] = {}" 
| "threads (Create th prio#s) = {th} \<union> threads s" 
| "threads (Exit th # s) = (threads s) - {th}" 
| "threads (_#s) = threads s" 

fun priority :: "thread \<Rightarrow> state \<Rightarrow> priority"
  where
  "priority th [] = 0" 
| "priority th (Create th' prio#s) = (if th' = th then prio else priority th s)" 
| "priority th (Set th' prio#s) = (if th' = th then prio else priority th s)" 
| "priority th (_#s) = priority th s"

fun last_set :: "thread \<Rightarrow> state \<Rightarrow> nat"
  where
  "last_set th [] = 0" 
| "last_set th ((Create th' prio)#s) = (if (th = th') then length s else last_set th s)" 
| "last_set th ((Set th' prio)#s) = (if (th = th') then length s else last_set th s)" 
| "last_set th (_#s) = last_set th s"


definition preced :: "thread \<Rightarrow> state \<Rightarrow> precedence"
  where "preced th s \<equiv> Prc (priority th s) (last_set th s)"

abbreviation 
  "preceds s ths \<equiv> {preced th s | th. th \<in> ths}"
 
definition
  "holds wq th cs \<equiv> th \<in> set (wq cs) \<and> th = hd (wq cs)"

definition
  "waits wq th cs \<equiv> th \<in> set (wq cs) \<and> th \<noteq> hd (wq cs)"

--{* Nodes in Resource Graph *}
datatype node = 
  Th "thread" 
| Cs "cs" 

definition
  "RAG wq \<equiv> {(Th th, Cs cs) | th cs. waits wq th cs} \<union> {(Cs cs, Th th) | cs th. holds wq th cs}"

definition
  "dependants wq th \<equiv> {th' . (Th th', Th th) \<in> (RAG wq)^+}"

record schedule_state = 
  wq_fun :: "cs \<Rightarrow> thread list" 
  cprec_fun :: "thread \<Rightarrow> precedence" 

definition cpreced :: "(cs \<Rightarrow> thread list) \<Rightarrow> state \<Rightarrow> thread \<Rightarrow> precedence"
  where 
  "cpreced wq s th \<equiv> Max ({preced th s} \<union> {preced th' s | th'. th' \<in> dependants wq th})"

abbreviation
  "all_unlocked \<equiv> \<lambda>_::cs. ([]::thread list)"

abbreviation 
  "initial_cprec \<equiv> \<lambda>_::thread. Prc 0 0"
 
abbreviation
  "release qs \<equiv> case qs of
             [] => [] 
          |  (_ # qs) => SOME q. distinct q \<and> set q = set qs"

lemma [simp]: 
  "(SOME q. distinct q \<and> q = []) = []"
by auto

lemma [simp]: 
  "(x \<in> set (SOME q. distinct q \<and> set q = set p)) = (x \<in> set p)"
apply(rule iffI)
apply (metis (mono_tags, lifting) List.finite_set finite_distinct_list some_eq_ex)+
done

abbreviation
  "next_to_run ths \<equiv> hd (SOME q::thread list. distinct q \<and> set q = set ths)"


fun schs :: "state \<Rightarrow> schedule_state"
  where 
  "schs [] = (| wq_fun = \<lambda> cs. [],  cprec_fun = (\<lambda>_. Prc 0 0) |)" 
| "schs (Create th prio # s) = 
       (let wq = wq_fun (schs s) in
          (|wq_fun = wq, cprec_fun = cpreced wq (Create th prio # s)|))"
|  "schs (Exit th # s) = 
       (let wq = wq_fun (schs s) in
          (|wq_fun = wq, cprec_fun = cpreced wq (Exit th # s)|))"
|  "schs (Set th prio # s) = 
       (let wq = wq_fun (schs s) in
          (|wq_fun = wq, cprec_fun = cpreced wq (Set th prio # s)|))"
|  "schs (P th cs # s) = 
       (let wq = wq_fun (schs s) in
        let new_wq = wq(cs := (wq cs @ [th])) in
          (|wq_fun = new_wq, cprec_fun = cpreced new_wq (P th cs # s)|))"
|  "schs (V th cs # s) = 
       (let wq = wq_fun (schs s) in
        let new_wq = wq(cs := release (wq cs)) in
          (|wq_fun = new_wq, cprec_fun = cpreced new_wq (V th cs # s)|))"

definition wq :: "state \<Rightarrow> cs \<Rightarrow> thread list" 
  where "wq s = wq_fun (schs s)"

definition cpreced2 :: "state \<Rightarrow> thread \<Rightarrow> precedence"
  where "cpreced2 s \<equiv> cprec_fun (schs s)"

abbreviation
  "cpreceds2 s ths \<equiv> {cpreced2 s th | th. th \<in> ths}"

definition
  "holds2 s \<equiv> holds (wq_fun (schs s))"

definition
  "waits2 s \<equiv> waits (wq_fun (schs s))"

definition
  "RAG2 s \<equiv> RAG (wq_fun (schs s))"
  
definition
  "dependants2 s \<equiv> dependants (wq_fun (schs s))"

(* ready -> is a thread that is not waiting for any resource *) 
definition readys :: "state \<Rightarrow> thread set"
  where "readys s \<equiv> {th . th \<in> threads s \<and> (\<forall> cs. \<not> waits2 s th cs)}"

definition runing :: "state \<Rightarrow> thread set"
  where "runing s \<equiv> {th . th \<in> readys s \<and> cpreced2 s th = Max (cpreceds2 s (readys s))}"

(* all resources a thread hols in a state *)
definition holding :: "state \<Rightarrow> thread \<Rightarrow> cs set"
  where "holding s th \<equiv> {cs . holds2 s th cs}"


lemma exists_distinct:
  obtains ys where "distinct ys" "set ys = set xs"
by (metis List.finite_set finite_distinct_list)

lemma next_to_run_set [simp]:
  "wts \<noteq> [] \<Longrightarrow> next_to_run wts \<in> set wts"
apply(rule exists_distinct[of wts])
by (metis (mono_tags, lifting) hd_in_set set_empty some_eq_ex)

lemma holding_RAG: 
  "holding s th = {cs . (Cs cs, Th th) \<in> RAG2 s}"
unfolding holding_def RAG2_def RAG_def
unfolding holds2_def holds_def waits_def
by auto

inductive step :: "state \<Rightarrow> event \<Rightarrow> bool"
  where
  step_Create: "\<lbrakk>th \<notin> threads s\<rbrakk> \<Longrightarrow> step s (Create th prio)" 
| step_Exit: "\<lbrakk>th \<in> runing s; holding s th = {}\<rbrakk> \<Longrightarrow> step s (Exit th)" 
| step_P: "\<lbrakk>th \<in> runing s;  (Cs cs, Th th)  \<notin> (RAG2 s)^+\<rbrakk> \<Longrightarrow> step s (P th cs)" 
| step_V: "\<lbrakk>th \<in> runing s;  holds2 s th cs\<rbrakk> \<Longrightarrow> step s (V th cs)" 
| step_Set: "\<lbrakk>th \<in> runing s\<rbrakk> \<Longrightarrow> step s (Set th prio)"

(* valid states *)
inductive vt :: "state \<Rightarrow> bool"
  where
  vt_nil[intro]: "vt []" 
| vt_cons[intro]: "\<lbrakk>vt s; step s e\<rbrakk> \<Longrightarrow> vt (e#s)"

lemma runing_ready: 
  shows "runing s \<subseteq> readys s"
  unfolding runing_def readys_def
  by auto 

lemma readys_threads:
  shows "readys s \<subseteq> threads s"
  unfolding readys_def
  by auto

lemma wq_threads: 
  assumes vt: "vt s"
  and h: "th \<in> set (wq s cs)"
  shows "th \<in> threads s"
using assms
apply(induct)
apply(simp add: wq_def)
apply(erule step.cases)
apply(auto simp add: wq_def Let_def holding_def holds2_def holds_def waits2_def runing_def readys_def)
apply(simp add: waits_def)
apply(auto simp add: waits_def split: if_splits)[1]
apply(auto split: if_splits)
apply(simp only: waits_def)
by (metis insert_iff set_simps(2))



lemma Domain_RAG_threads:
  assumes vt: "vt s"
  and in_dom: "(Th th) \<in> Domain (RAG2 s)"
  shows "th \<in> threads s"
proof -
  from in_dom obtain n where "(Th th, n) \<in> RAG2 s" by auto
  then obtain cs where "n = Cs cs" "(Th th, Cs cs) \<in> RAG2 s"  
    unfolding RAG2_def RAG_def by auto
  then have "th \<in> set (wq s cs)"
    unfolding wq_def RAG_def RAG2_def waits_def by auto
  with wq_threads [OF vt] show ?thesis .
qed

lemma dependants_threads:
  assumes vt: "vt s"
  shows "dependants2 s th \<subseteq> threads s"
proof
  fix th1 
  assume "th1 \<in> dependants2 s th"
  then have h: "(Th th1, Th th) \<in> (RAG2 s)\<^sup>+"
    unfolding dependants2_def dependants_def RAG2_def by simp
  then have "Th th1 \<in> Domain ((RAG2 s)\<^sup>+)" unfolding Domain_def by auto
  then have "Th th1 \<in> Domain (RAG2 s)" using trancl_domain by simp
  then show "th1 \<in> threads s" using vt by (rule_tac Domain_RAG_threads)
qed

lemma finite_threads:
  assumes vt: "vt s"
  shows "finite (threads s)"
using vt by (induct) (auto elim: step.cases)


section {* Distinctness of @{const wq} *}

lemma wq_distinct_step: 
  assumes "step s e" "distinct (wq s cs)" 
  shows "distinct (wq (e # s) cs)"
using assms
unfolding wq_def
apply(erule_tac step.cases)
apply(auto simp add: RAG2_def RAG_def Let_def)[1]
apply(auto simp add: wq_def Let_def RAG2_def RAG_def holds_def runing_def waits2_def waits_def readys_def)
apply(auto split: list.split)
apply(rule someI2)
apply(auto)
done

lemma wq_distinct: 
  assumes "vt s" 
  shows "distinct (wq s cs)"
using assms
apply(induct)
apply(simp add: wq_def)
apply(simp add: wq_distinct_step)
done


section {* Single_Valuedness of @{const waits2}, @{const holds2}, @{const RAG2} *}

lemma waits2_unique:
  assumes "vt s"
  and "waits2 s th cs1"
  and "waits2 s th cs2"
  shows "cs1 = cs2"
using assms
apply(induct)
apply(simp add: waits2_def waits_def)
apply(erule step.cases)
apply(auto simp add: Let_def waits2_def waits_def holds_def RAG2_def RAG_def 
 readys_def runing_def split: if_splits)
apply (metis Nil_is_append_conv hd_append2 list.distinct(1) split_list)
apply (metis Nil_is_append_conv hd_append2 list.distinct(1) split_list)
apply (metis distinct.simps(2) distinct_length_2_or_more list.sel(1) wq_def wq_distinct)
by (metis (full_types, hide_lams) distinct.simps(2) distinct_length_2_or_more list.sel(1) wq_def wq_distinct)

lemma single_valued_waits2:
  assumes "vt s"
  shows "single_valuedP (waits2 s)"
using assms
unfolding single_valued_def
by (simp add: Product_Type.Collect_case_prodD waits2_unique)

lemma single_valued_holds2:
  assumes "vt s"
  shows "single_valuedP (\<lambda>cs th. holds2 s th cs)"
unfolding single_valued_def holds2_def holds_def by simp

lemma single_valued_RAG2:
  assumes "vt s"
  shows "single_valued (RAG2 s)"
using single_valued_waits2[OF assms] single_valued_holds2[OF assms] 
unfolding RAG2_def RAG_def
apply(rule_tac single_valued_union)
unfolding holds2_def[symmetric] waits2_def[symmetric]
apply(rule single_valued_Collect)
apply(simp)
apply(simp add: inj_on_def)
apply(rule single_valued_Collect)
apply(simp)
apply(simp add: inj_on_def)
apply(auto)
done


section {* Properties of @{const RAG2} under events *}

lemma RAG_Set [simp]: 
  shows "RAG2 (Set th prio # s) = RAG2 s"
unfolding RAG2_def
by (simp add: Let_def)

lemma RAG_Create [simp]: 
  "RAG2 (Create th prio # s) = RAG2 s"
unfolding RAG2_def
by (simp add: Let_def)

lemma RAG_Exit [simp]: 
  shows "RAG2 (Exit th # s) = RAG2 s"
unfolding RAG2_def
by (simp add: Let_def)

lemma RAG_P1:
  assumes "wq s cs = []"
  shows "RAG2 (P th cs # s) \<subseteq> RAG2 s \<union> {(Cs cs, Th th)}"
using assms
unfolding  RAG2_def RAG_def wq_def Let_def waits_def holds_def
by (auto simp add: Let_def)

lemma RAG_P2:
  assumes "(Cs cs, Th th) \<notin> (RAG2 s)\<^sup>+" "wq s cs \<noteq> []"
  shows "RAG2 (P th cs # s) \<subseteq> RAG2 s \<union> {(Th th, Cs cs)}"
using assms
unfolding RAG2_def RAG_def wq_def Let_def waits_def holds_def
by (auto simp add: Let_def)


lemma RAG_V1:
assumes vt: "wq s cs = [th]"
shows "RAG2 (V th cs # s) \<subseteq> RAG2 s - {(Cs cs, Th th)}"
using assms
unfolding RAG2_def RAG_def waits_def holds_def wq_def
by (auto simp add: Let_def)

lemma RAG_V2:
assumes vt:"vt s" "wq s cs = th # wts \<and> wts \<noteq> []"
shows "RAG2 (V th cs # s) \<subseteq>
  RAG2 s - {(Cs cs, Th th), (Th (next_to_run wts), Cs cs)} \<union> {(Cs cs, Th (next_to_run wts))}"
unfolding RAG2_def RAG_def waits_def holds_def
using assms wq_distinct[OF vt(1), of"cs"]
by (auto simp add: Let_def wq_def)



section {* Acyclicity of @{const RAG2} *}

lemma acyclic_RAG_step: 
  assumes vt: "vt s"
  and     stp: "step s e"
  and     ac: "acyclic (RAG2 s)"
  shows "acyclic (RAG2 (e # s))"
using stp vt ac
proof (induct)
  case (step_P th s cs)
  have ac: "acyclic (RAG2 s)" by fact
  have ds: "(Cs cs, Th th) \<notin> (RAG2 s)\<^sup>+" by fact
  { assume wq_empty: "wq s cs = []" -- "case waiting queue is empty"
    then have "(Th th, Cs cs) \<notin> (RAG2 s)\<^sup>+"
    proof (rule_tac notI)
      assume "(Th th, Cs cs) \<in> (RAG2 s)\<^sup>+"
      then obtain x where "(x, Cs cs) \<in> RAG2 s" using tranclD2 by metis 
      with wq_empty show False by (auto simp: RAG2_def RAG_def wq_def waits_def)
    qed
    with ac have "acyclic (RAG2 s \<union> {(Cs cs, Th th)})" by simp
    then have "acyclic (RAG2 (P th cs # s))" using RAG_P1[OF wq_empty] 
      by (rule acyclic_subset)
  }
  moreover
  { assume wq_not_empty: "wq s cs \<noteq> []" -- "case waiting queue is not empty"
    from ac ds
    have "acyclic (RAG2 s \<union> {(Th th, Cs cs)})" by simp
    then have "acyclic (RAG2 (P th cs # s))" using RAG_P2[OF ds wq_not_empty] 
      by (rule acyclic_subset)
  }
  ultimately show "acyclic (RAG2 (P th cs # s))" by metis
next    
  case (step_V th s cs) -- "case for release of a lock" 
  have vt: "vt s" by fact
  have ac: "acyclic (RAG2 s)" by fact
  have hd: "holds2 s th cs" by fact
  from vt have wq_distinct:"distinct (wq s cs)" by (rule wq_distinct)
  from hd have "th \<in> set (wq s cs)" "th = hd (wq s cs)" unfolding holds2_def holds_def wq_def by auto
  then obtain wts where eq_wq: "wq s cs = th # wts"  by (cases "wq s cs") (auto)
  -- "case no thread present in the waiting queue to take over"
  { assume "wts = []" 
    with eq_wq have "wq s cs = [th]" by simp
    then have "RAG2 (V th cs # s) \<subseteq> RAG2 s - {(Cs cs, Th th)}" by (rule RAG_V1)
    moreover have "acyclic (RAG2 s - {(Cs cs, Th th)})" using ac by (auto intro: acyclic_subset)
    ultimately 
    have "acyclic (RAG2 (V th cs # s))" by (auto intro: acyclic_subset)
  }
  moreover
  -- "at least one thread present to take over"
  { def nth \<equiv> "next_to_run wts"
    assume wq_not_empty: "wts \<noteq> []" 
    have "waits2 s nth cs" 
      using eq_wq wq_not_empty wq_distinct
      unfolding nth_def waits2_def waits_def wq_def[symmetric] by auto
    then have cs_in_RAG: "(Th nth, Cs cs) \<in> RAG2 s" 
      unfolding RAG2_def RAG_def waits2_def by auto
    have "RAG2 (V th cs # s) \<subseteq> RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)} \<union> {(Cs cs, Th nth)}" 
      unfolding nth_def using  vt wq_not_empty eq_wq by (rule_tac RAG_V2) (auto)
    moreover 
    have "acyclic (RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)} \<union> {(Cs cs, Th nth)})" 
    proof -
      have "acyclic (RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)})" using ac by (auto intro: acyclic_subset)
      moreover 
      have "(Th nth, Cs cs) \<notin> (RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)})\<^sup>+" 
      proof (rule notI)
        assume "(Th nth, Cs cs) \<in> (RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)})\<^sup>+"
        then obtain z where a: "(Th nth, z) \<in> (RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)})"
          by (metis converse_tranclE)
        then have "(Th nth, z) \<in> RAG2 s" by simp
        then have "z = Cs cs" using cs_in_RAG single_valued_RAG2[OF vt]
          by (simp add: single_valued_def)
        then show "False" using a by simp
      qed
      ultimately 
      show "acyclic (RAG2 s - {(Cs cs, Th th), (Th nth, Cs cs)} \<union> {(Cs cs, Th nth) })" by simp
    qed
    ultimately have "acyclic (RAG2 (V th cs # s))" 
      by (rule_tac acyclic_subset)
  }
  ultimately show "acyclic (RAG2 (V th cs # s))" by metis
qed (simp_all)


lemma finite_RAG:
  assumes "vt s"
  shows "finite (RAG2 s)"
using assms
apply(induct)
apply(simp add: RAG2_def RAG_def waits_def holds_def)
apply(erule step.cases)
apply(auto)
apply(case_tac "wq sa cs = []")
apply(rule finite_subset)
apply(rule RAG_P1)
apply(simp)
apply(simp)
apply(rule finite_subset)
apply(rule RAG_P2)
apply(simp)
apply(simp)
apply(simp)
apply(subgoal_tac "\<exists>wts. wq sa cs = th # wts")
apply(erule exE)
apply(case_tac "wts = []")
apply(rule finite_subset)
apply(rule RAG_V1)
apply(simp)
apply(simp)
apply(rule finite_subset)
apply(rule RAG_V2)
apply(simp)
apply(simp)
apply(simp)
apply(subgoal_tac "th \<in> set (wq sa cs) \<and> th = hd (wq sa cs)") 
apply(case_tac "wq sa cs") 
apply(auto)[2]
apply(auto simp add: holds2_def holds_def wq_def)
done



lemma dchain_unique:
  assumes vt: "vt s"
  and th1_d: "(n, Th th1) \<in> (RAG2 s)^+"
  and th1_r: "th1 \<in> readys s"
  and th2_d: "(n, Th th2) \<in> (RAG2 s)^+"
  and th2_r: "th2 \<in> readys s"
  shows "th1 = th2"
proof(rule ccontr)
  assume neq: "th1 \<noteq> th2"
   with single_valued_confluent2 [OF single_valued_RAG2 [OF vt]] th1_d th2_d
  have "(Th th1, Th th2) \<in> (RAG2 s)\<^sup>+ \<or> (Th th2, Th th1) \<in> (RAG2 s)\<^sup>+" by auto
  moreover
  { assume "(Th th1, Th th2) \<in> (RAG2 s)\<^sup>+"      
    then obtain n where dd: "(Th th1, n) \<in> RAG2 s" by (metis converse_tranclE)
    then obtain cs where eq_n: "n = Cs cs"
      unfolding RAG2_def RAG_def by (case_tac n) (auto)
    from dd eq_n have "th1 \<notin> readys s"
      unfolding RAG2_def RAG_def waits2_def readys_def by (auto)
    with th1_r have "False" by auto
  }
  moreover
  { assume "(Th th2, Th th1) \<in> (RAG2 s)\<^sup>+"
    then obtain n where dd: "(Th th2, n) \<in> RAG2 s" by (metis converse_tranclE)
    then obtain cs where eq_n: "n = Cs cs"
      unfolding RAG2_def RAG_def by (case_tac n) (auto)
    from dd eq_n have "th2 \<notin> readys s"
      unfolding RAG2_def RAG_def waits2_def readys_def by (auto)
    with th2_r have "False" by auto
  }
  ultimately show "False" by metis
qed

lemma cpreced2_cpreced: "cpreced2 s th = cpreced (wq s) s th"
unfolding cpreced2_def wq_def
apply(induct s rule: schs.induct)
apply(simp add: Let_def cpreced_def dependants_def RAG_def waits_def holds_def preced_def)
apply(simp add: Let_def)
apply(simp add: Let_def)
apply(simp add: Let_def)
apply(subst (2) schs.simps)
apply(simp add: Let_def)
apply(subst (2) schs.simps)
apply(simp add: Let_def)
done

lemma cpreced_Exit:
  shows "cpreced2 (Exit th # s) th' = cpreced2 s th'"
by (simp add: cpreced2_cpreced cpreced_def preced_def wq_def Let_def)

lemma readys_Exit:
  shows "readys (Exit th # s) = readys s - {th}"
by (auto simp add: readys_def waits2_def Let_def)

lemma readys_Create:
  shows "readys (Create th prio # s) \<subseteq> {th} \<union> readys s"
apply (auto simp add: readys_def waits2_def Let_def waits_def)
done

lemma readys_Set:
  shows "readys (Set th prio # s) = readys s"
by (auto simp add: readys_def waits2_def Let_def)


lemma readys_P:
  shows "readys (P th cs # s) \<subseteq> readys s"
apply(auto simp add: readys_def waits2_def Let_def)
apply(simp add: waits_def)
apply(case_tac "csa = cs")
apply(simp)
apply(drule_tac x="cs" in spec)
apply(simp)
apply (metis hd_append2 in_set_insert insert_Nil list.sel(1))
apply(drule_tac x="csa" in spec)
apply(simp)
done

lemma readys_V:
  shows "readys (V th cs # s) \<subseteq> readys s \<union> set (wq s cs)"
apply(auto simp add: readys_def waits2_def waits_def Let_def wq_def)
done


fun the_th :: "node \<Rightarrow> thread"
  where "the_th (Th th) = th"

lemma image_Collect2:
  "f ` A = {f x | x. x \<in> A}"
apply(auto)
done

lemma Collect_disj_eq2:
  "{f x | x. x = y \<or> x \<in> A} = {f y} \<union> {f x | x. x \<in> A}"
by (auto)

lemma last_set_lt: 
  "th \<in> threads s \<Longrightarrow> last_set th s < length s"
  apply(induct rule: threads.induct)
  apply(auto)
  done

lemma last_set_eq_iff: 
  assumes "th1 \<in> threads s" "th2 \<in> threads s"
  shows "last_set th1 s = last_set th2 s \<longleftrightarrow> th1 = th2"
  using assms
  apply(induct s rule: threads.induct) 
  apply(auto split:if_splits dest:last_set_lt)
  done

lemma preced_eq_iff: 
  assumes th_in1: "th1 \<in> threads s"
  and th_in2: "th2 \<in> threads s"
  shows "preced th1 s = preced th2 s \<longleftrightarrow> th1 = th2"
using assms
by (auto simp add: preced_def last_set_eq_iff)

lemma dm_RAG_threads:
  assumes vt: "vt s"
  and in_dom: "(Th th) \<in> Domain (RAG2 s)"
  shows "th \<in> threads s"
proof -
  from in_dom obtain n where a: "(Th th, n) \<in> RAG2 s" by auto
  then obtain cs where "n = Cs cs" 
    unfolding RAG2_def RAG_def
    by auto
  then have "(Th th, Cs cs) \<in> RAG2 s" using a by simp
  hence "th \<in> set (wq s cs)"
    unfolding RAG2_def wq_def RAG_def waits_def
    by (auto)
  then show ?thesis
    apply(rule_tac wq_threads)
    apply(rule assms)
    apply(simp)
    done
qed

lemma cpreced_eq_iff:
  assumes "th1 \<in> readys s" "th2 \<in> readys s" "vt s"
  shows "cpreced2 s th1 = cpreced2 s th2 \<longleftrightarrow> th1 = th2" 
proof 
  def S1\<equiv>"({th1} \<union> dependants (wq s) th1)"
  def S2\<equiv>"({th2} \<union> dependants (wq s) th2)"
  have fin: "finite ((the_th o fst) ` ((RAG (wq s))\<^sup>+))" 
      apply(rule)
      apply(simp add: finite_trancl)
      apply(simp add: wq_def)
      apply(rule finite_RAG[simplified RAG2_def])
      apply(rule assms)
      done

  from fin have h: "finite (preceds s S1)" "finite (preceds s S2)"
      apply(simp_all add: S2_def S1_def Collect_disj_eq2 image_Collect[symmetric])
      apply(rule)
      apply(simp add: dependants_def)  
      apply(rule rev_finite_subset)
      apply(assumption)
      apply(auto simp add: image_def)[1]
      apply(metis fst_conv the_th.simps)
      apply(rule)
      apply(simp add: dependants_def)  
      apply(rule rev_finite_subset)
      apply(assumption)
      apply(auto simp add: image_def)[1]
      apply(metis fst_conv the_th.simps)
      done
    moreover have "S1 \<noteq> {}" "S2 \<noteq> {}" by (simp_all add: S1_def S2_def)
    then have "(preceds s S1) \<noteq> {}" "(preceds s S2) \<noteq> {}" by simp_all
    ultimately have m: "Max (preceds s S1) \<in> (preceds s S1)" "Max (preceds s S2) \<in> (preceds s S2)"
      apply(rule_tac [!] Max_in)
      apply(simp_all)
      done

  assume q: "cpreced2 s th1 = cpreced2 s th2"
  then have eq_max: "Max (preceds s S1) = Max (preceds s S2)"
    unfolding cpreced2_cpreced cpreced_def
    apply(simp only: S1_def S2_def)
    apply(simp add: Collect_disj_eq2)
    done
 
  obtain th0 where th0_in: "th0 \<in> S1" "th0 \<in> S2" and 
      eq_f_th1: "preced th0 s = Max (preceds s S1)"
                "preced th0 s = Max (preceds s S2)"
    using m 
      apply(clarify)
      apply(simp add: eq_max)
      apply(subst (asm) (2)  preced_eq_iff)
      apply(insert assms(2))[1]
      apply(simp add: S2_def)
      apply(auto)[1]
      apply (metis contra_subsetD readys_threads)
      apply(simp add: dependants_def)
      apply(subgoal_tac "Th tha \<in> Domain ((RAG2 s)^+)")
      apply(simp add: trancl_domain)
      apply (metis Domain_RAG_threads assms(3))
      apply(simp only: RAG2_def wq_def)
      apply (metis Domain_iff)
      apply(insert assms(1))[1]
      apply(simp add: S1_def)
      apply(auto)[1]
      apply (metis contra_subsetD readys_threads)
      apply(simp add: dependants_def)
      apply(subgoal_tac "Th th \<in> Domain ((RAG2 s)^+)")
      apply(simp add: trancl_domain)
      apply (metis Domain_RAG_threads assms(3))
      apply(simp only: RAG2_def wq_def)
      apply (metis Domain_iff)
      apply(simp)
    done
  then show "th1 = th2"
    apply -
    apply(insert th0_in assms(1, 2))[1]
    apply(simp add: S1_def S2_def)
    apply(auto)
    --"first case"
    prefer 2
    apply(subgoal_tac "Th th2 \<in> Domain (RAG2 s)")
    apply(subgoal_tac "\<exists>cs. (Th th2, Cs cs) \<in> RAG2 s")
    apply(erule exE)
    apply(simp add: runing_def RAG2_def RAG_def readys_def waits2_def)[1]
    apply(auto simp add: RAG2_def RAG_def)[1]
    apply(subgoal_tac "Th th2 \<in> Domain ((RAG2 s)^+)")
    apply (metis trancl_domain)
    apply(subgoal_tac "(Th th2, Th th1) \<in> (RAG2 s)^+")
    apply (metis Domain_iff)
    apply(simp add: dependants_def RAG2_def wq_def)
    --"second case"
    apply(subgoal_tac "Th th1 \<in> Domain (RAG2 s)")
    apply(subgoal_tac "\<exists>cs. (Th th1, Cs cs) \<in> RAG2 s")
    apply(erule exE)
    apply(insert assms(1))[1]
    apply(simp add: runing_def RAG2_def RAG_def readys_def waits2_def)[1]
    apply(auto simp add: RAG2_def RAG_def)[1]
    apply(subgoal_tac "Th th1 \<in> Domain ((RAG2 s)^+)")
    apply (metis trancl_domain)
    apply(subgoal_tac "(Th th1, Th th2) \<in> (RAG2 s)^+")
    apply (metis Domain_iff)
    apply(simp add: dependants_def RAG2_def wq_def)
    --"third case"
    apply(rule dchain_unique)
    apply(rule assms(3))
    apply(simp add: dependants_def RAG2_def wq_def)
    apply(simp)
    apply(simp add: dependants_def RAG2_def wq_def)
    apply(simp)
    done
next
  assume "th1 = th2"
  then show "cpreced2 s th1 = cpreced2 s th2" by simp
qed

lemma at_most_one_running:
  assumes "vt s"
  shows "card (runing s) \<le> 1"
proof (rule ccontr)
  assume "\<not> card (runing s) \<le> 1"
  then have "2 \<le> card (runing s)" by auto
  moreover 
  have "finite (runing s)"
    by (metis `\<not> card (runing s) \<le> 1` card_infinite le0)
  ultimately obtain th1 th2 where a: 
    "th1 \<noteq> th2" "th1 \<in> runing s" "th2 \<in> runing s" 
    "cpreced2 s th1 = cpreced2 s th2" 
    apply(auto simp add: numerals card_le_Suc_iff runing_def) 
    apply(blast)
    done
  then have "th1 = th2"
    apply(subst (asm) cpreced_eq_iff)
    apply(auto intro: assms a)
    apply (metis contra_subsetD runing_ready)+
    done
  then show "False" using a(1) by auto
qed



  (*
  obtain th0 where th0_in: "th0 \<in> S1 \<and> th0 \<in> S2" 
    and eq_f_th0: "preced th0 s = Max ((\<lambda>th. preced th s) ` (S1 \<inter> S2))"
  proof -
    from fin have h1: "finite ((\<lambda>th. preced th s) ` (S1 \<inter> S2))"
      apply(simp only: S1_def S2_def)
      apply(rule)
      apply(rule)
      apply(rule)
      apply(simp add: dependants_def) 
      apply(rule rev_finite_subset)
      apply(assumption)
      apply(auto simp add: image_def)
      apply (metis fst_conv the_th.simps)
      done
    moreover 
    have "S1 \<inter> S2 \<noteq> {}" apply (simp add: S1_def S2_def) 
      apply(auto) 
      
      done
    then have h2: "((\<lambda>th. preced th s) ` (S1 \<union> S2)) \<noteq> {}" by simp
    ultimately have "Max ((\<lambda>th. preced th s) ` (S1 \<union> S2)) \<in> ((\<lambda>th. preced th s) ` (S1 \<union> S2))"
      apply(rule Max_in)
      done
    then show ?thesis using that[intro] apply(auto) 
      
      apply(erule_tac preced_unique)
      done
  qed
  *)

thm waits_def waits2_def

end