A little more change.
theory Graphs
imports Main
begin
lemma rtrancl_eq_trancl [simp]:
assumes "x \<noteq> y"
shows "(x, y) \<in> r\<^sup>* \<longleftrightarrow> (x, y) \<in> r\<^sup>+"
using assms by (metis rtrancl_eq_or_trancl)
(* NOT NEEDED : FIXME *)
lemma trancl_split:
"(a, b) \<in> r^+ \<Longrightarrow> \<exists> c. (a, c) \<in> r"
by (induct rule:trancl_induct, auto)
section {* Single_Valuedness *}
lemma single_valued_Collect:
assumes "single_valuedP r"
and "inj f"
shows "single_valued {(f x, g y) | x y. r x y}"
using assms
unfolding single_valued_def inj_on_def
apply(auto)
done
lemma single_valued_union:
assumes "single_valued r" "single_valued q"
and "Domain r \<inter> Domain q = {}"
shows "single_valued (r \<union> q)"
using assms
unfolding single_valued_def
by auto
lemma single_valuedP_update:
assumes "single_valuedP r"
shows "single_valuedP (r(x := y))"
using assms
oops
lemma single_valued_confluent2:
assumes unique: "single_valued r"
and xy: "(x, y) \<in> r^+"
and xz: "(x, z) \<in> r^+"
and neq_yz: "y \<noteq> z"
shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+"
proof -
have "(x, y) \<in> r^*" "(x, z) \<in> r^*" using xy xz by simp_all
with single_valued_confluent[OF unique]
have "(y, z) \<in> r\<^sup>* \<or> (z, y) \<in> r\<^sup>*" by auto
with neq_yz
show "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+" by simp
qed
lemmas unique_chain = single_valued_confluent2
definition funof :: "[('a * 'b)set, 'a] => 'b" where
"funof r == (\<lambda>x. THE y. (x, y) \<in> r)"
lemma funof_eq: "[|single_valued r; (x, y) \<in> r|] ==> funof r x = y"
by (simp add: funof_def single_valued_def, blast)
lemma funof_Pair_in:
"[|single_valued r; x \<in> Domain r|] ==> (x, funof r x) \<in> r"
by (force simp add: funof_eq)
lemma funof_in:
"[|r `` {x} \<subseteq> A; single_valued r; x \<in> Domain r|] ==> funof r x \<in> A"
by (force simp add: funof_eq)
end