Merged back ExtGG.thy and PrioG.thy.
section {*+ −
This file contains lemmas used to guide the recalculation of current precedence + −
after every system call (or system operation)+ −
*}+ −
theory Implementation+ −
imports PIPBasics+ −
begin+ −
+ −
text {* (* ddd *)+ −
One beauty of our modelling is that we follow the definitional extension tradition of HOL.+ −
The benefit of such a concise and miniature model is that large number of intuitively + −
obvious facts are derived as lemmas, rather than asserted as axioms.+ −
*}+ −
+ −
text {*+ −
However, the lemmas in the forthcoming several locales are no longer + −
obvious. These lemmas show how the current precedences should be recalculated + −
after every execution step (in our model, every step is represented by an event, + −
which in turn, represents a system call, or operation). Each operation is + −
treated in a separate locale.+ −
+ −
The complication of current precedence recalculation comes + −
because the changing of RAG needs to be taken into account, + −
in addition to the changing of precedence. + −
+ −
The reason RAG changing affects current precedence is that,+ −
according to the definition, current precedence + −
of a thread is the maximum of the precedences of every threads in its subtree, + −
where the notion of sub-tree in RAG is defined in RTree.thy.+ −
+ −
Therefore, for each operation, lemmas about the change of precedences + −
and RAG are derived first, on which lemmas about current precedence + −
recalculation are based on.+ −
*}+ −
+ −
section {* The @{term Set} operation *}+ −
+ −
text {* (* ddd *)+ −
The following locale @{text "step_set_cps"} investigates the recalculation + −
after the @{text "Set"} operation.+ −
*}+ −
locale step_set_cps =+ −
fixes s' th prio s + −
-- {* @{text "s'"} is the system state before the operation *}+ −
-- {* @{text "s"} is the system state after the operation *}+ −
defines s_def : "s \<equiv> (Set th prio#s')" + −
-- {* @{text "s"} is assumed to be a legitimate state, from which+ −
the legitimacy of @{text "s"} can be derived. *}+ −
assumes vt_s: "vt s"+ −
+ −
sublocale step_set_cps < vat_s : valid_trace "s"+ −
proof+ −
from vt_s show "vt s" .+ −
qed+ −
+ −
sublocale step_set_cps < vat_s' : valid_trace "s'"+ −
proof+ −
from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" .+ −
qed+ −
+ −
context step_set_cps + −
begin+ −
+ −
text {* (* ddd *)+ −
The following two lemmas confirm that @{text "Set"}-operation+ −
only changes the precedence of the initiating thread (or actor)+ −
of the operation (or event).+ −
*}+ −
+ −
lemma eq_preced:+ −
assumes "th' \<noteq> th"+ −
shows "preced th' s = preced th' s'"+ −
proof -+ −
from assms show ?thesis + −
by (unfold s_def, auto simp:preced_def)+ −
qed+ −
+ −
lemma eq_the_preced: + −
assumes "th' \<noteq> th"+ −
shows "the_preced s th' = the_preced s' th'"+ −
using assms+ −
by (unfold the_preced_def, intro eq_preced, simp)+ −
+ −
text {*+ −
The following lemma assures that the resetting of priority does not change the RAG. + −
*}+ −
+ −
lemma eq_dep: "RAG s = RAG s'"+ −
by (unfold s_def RAG_set_unchanged, auto)+ −
+ −
text {* (* ddd *)+ −
Th following lemma @{text "eq_cp_pre"} says that the priority change of @{text "th"}+ −
only affects those threads, which as @{text "Th th"} in their sub-trees.+ −
+ −
The proof of this lemma is simplified by using the alternative definition + −
of @{text "cp"}. + −
*}+ −
+ −
lemma eq_cp_pre:+ −
assumes nd: "Th th \<notin> subtree (RAG s') (Th th')"+ −
shows "cp s th' = cp s' th'"+ −
proof -+ −
-- {* After unfolding using the alternative definition, elements + −
affecting the @{term "cp"}-value of threads become explicit. + −
We only need to prove the following: *}+ −
have "Max (the_preced s ` {th'a. Th th'a \<in> subtree (RAG s) (Th th')}) =+ −
Max (the_preced s' ` {th'a. Th th'a \<in> subtree (RAG s') (Th th')})"+ −
(is "Max (?f ` ?S1) = Max (?g ` ?S2)")+ −
proof -+ −
-- {* The base sets are equal. *}+ −
have "?S1 = ?S2" using eq_dep by simp+ −
-- {* The function values on the base set are equal as well. *}+ −
moreover have "\<forall> e \<in> ?S2. ?f e = ?g e"+ −
proof+ −
fix th1+ −
assume "th1 \<in> ?S2"+ −
with nd have "th1 \<noteq> th" by (auto)+ −
from eq_the_preced[OF this]+ −
show "the_preced s th1 = the_preced s' th1" .+ −
qed+ −
-- {* Therefore, the image of the functions are equal. *}+ −
ultimately have "(?f ` ?S1) = (?g ` ?S2)" by (auto intro!:f_image_eq)+ −
thus ?thesis by simp+ −
qed+ −
thus ?thesis by (simp add:cp_alt_def)+ −
qed+ −
+ −
text {*+ −
The following lemma shows that @{term "th"} is not in the + −
sub-tree of any other thread. + −
*}+ −
lemma th_in_no_subtree:+ −
assumes "th' \<noteq> th"+ −
shows "Th th \<notin> subtree (RAG s') (Th th')"+ −
proof -+ −
have "th \<in> readys s'"+ −
proof -+ −
from step_back_step [OF vt_s[unfolded s_def]]+ −
have "step s' (Set th prio)" .+ −
hence "th \<in> runing s'" by (cases, simp)+ −
thus ?thesis by (simp add:readys_def runing_def)+ −
qed+ −
from vat_s'.readys_in_no_subtree[OF this assms(1)]+ −
show ?thesis by blast+ −
qed+ −
+ −
text {* + −
By combining @{thm "eq_cp_pre"} and @{thm "th_in_no_subtree"}, + −
it is obvious that the change of priority only affects the @{text "cp"}-value + −
of the initiating thread @{text "th"}.+ −
*}+ −
lemma eq_cp:+ −
assumes "th' \<noteq> th"+ −
shows "cp s th' = cp s' th'"+ −
by (rule eq_cp_pre[OF th_in_no_subtree[OF assms]])+ −
+ −
end+ −
+ −
section {* The @{term V} operation *}+ −
+ −
text {*+ −
The following @{text "step_v_cps"} is the locale for @{text "V"}-operation.+ −
*}+ −
+ −
locale step_v_cps =+ −
-- {* @{text "th"} is the initiating thread *}+ −
-- {* @{text "cs"} is the critical resource release by the @{text "V"}-operation *}+ −
fixes s' th cs s -- {* @{text "s'"} is the state before operation*}+ −
defines s_def : "s \<equiv> (V th cs#s')" -- {* @{text "s"} is the state after operation*}+ −
-- {* @{text "s"} is assumed to be valid, which implies the validity of @{text "s'"} *}+ −
assumes vt_s: "vt s"+ −
+ −
sublocale step_v_cps < vat_s : valid_trace "s"+ −
proof+ −
from vt_s show "vt s" .+ −
qed+ −
+ −
sublocale step_v_cps < vat_s' : valid_trace "s'"+ −
proof+ −
from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" .+ −
qed+ −
+ −
context step_v_cps+ −
begin+ −
+ −
lemma ready_th_s': "th \<in> readys s'"+ −
using step_back_step[OF vt_s[unfolded s_def]]+ −
by (cases, simp add:runing_def)+ −
+ −
lemma ancestors_th: "ancestors (RAG s') (Th th) = {}"+ −
proof -+ −
from vat_s'.readys_root[OF ready_th_s']+ −
show ?thesis+ −
by (unfold root_def, simp)+ −
qed+ −
+ −
lemma holding_th: "holding s' th cs"+ −
proof -+ −
from vt_s[unfolded s_def]+ −
have " PIP s' (V th cs)" by (cases, simp)+ −
thus ?thesis by (cases, auto)+ −
qed+ −
+ −
lemma edge_of_th:+ −
"(Cs cs, Th th) \<in> RAG s'" + −
proof -+ −
from holding_th+ −
show ?thesis + −
by (unfold s_RAG_def holding_eq, auto)+ −
qed+ −
+ −
lemma ancestors_cs: + −
"ancestors (RAG s') (Cs cs) = {Th th}"+ −
proof -+ −
have "ancestors (RAG s') (Cs cs) = ancestors (RAG s') (Th th) \<union> {Th th}"+ −
proof(rule vat_s'.rtree_RAG.ancestors_accum)+ −
from vt_s[unfolded s_def]+ −
have " PIP s' (V th cs)" by (cases, simp)+ −
thus "(Cs cs, Th th) \<in> RAG s'" + −
proof(cases)+ −
assume "holding s' th cs"+ −
from this[unfolded holding_eq]+ −
show ?thesis by (unfold s_RAG_def, auto)+ −
qed+ −
qed+ −
from this[unfolded ancestors_th] show ?thesis by simp+ −
qed+ −
+ −
lemma preced_kept: "the_preced s = the_preced s'"+ −
by (auto simp: s_def the_preced_def preced_def)+ −
+ −
end+ −
+ −
text {*+ −
The following @{text "step_v_cps_nt"} is the sub-locale for @{text "V"}-operation, + −
which represents the case when there is another thread @{text "th'"}+ −
to take over the critical resource released by the initiating thread @{text "th"}.+ −
*}+ −
locale step_v_cps_nt = step_v_cps ++ −
fixes th'+ −
-- {* @{text "th'"} is assumed to take over @{text "cs"} *}+ −
assumes nt: "next_th s' th cs th'" + −
+ −
context step_v_cps_nt+ −
begin+ −
+ −
text {*+ −
Lemma @{text "RAG_s"} confirms the change of RAG:+ −
two edges removed and one added, as shown by the following diagram.+ −
*}+ −
+ −
(*+ −
RAG before the V-operation+ −
th1 ----|+ −
|+ −
th' ----|+ −
|----> cs -----|+ −
th2 ----| |+ −
| |+ −
th3 ----| |+ −
|------> th+ −
th4 ----| |+ −
| |+ −
th5 ----| |+ −
|----> cs'-----|+ −
th6 ----|+ −
|+ −
th7 ----|+ −
+ −
RAG after the V-operation+ −
th1 ----|+ −
|+ −
|----> cs ----> th'+ −
th2 ----| + −
| + −
th3 ----| + −
+ −
th4 ----| + −
| + −
th5 ----| + −
|----> cs'----> th+ −
th6 ----|+ −
|+ −
th7 ----|+ −
*)+ −
+ −
lemma sub_RAGs': "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s'"+ −
using next_th_RAG[OF nt] .+ −
+ −
lemma ancestors_th': + −
"ancestors (RAG s') (Th th') = {Th th, Cs cs}" + −
proof -+ −
have "ancestors (RAG s') (Th th') = ancestors (RAG s') (Cs cs) \<union> {Cs cs}"+ −
proof(rule vat_s'.rtree_RAG.ancestors_accum)+ −
from sub_RAGs' show "(Th th', Cs cs) \<in> RAG s'" by auto+ −
qed+ −
thus ?thesis using ancestors_th ancestors_cs by auto+ −
qed+ −
+ −
lemma RAG_s:+ −
"RAG s = (RAG s' - {(Cs cs, Th th), (Th th', Cs cs)}) \<union>+ −
{(Cs cs, Th th')}"+ −
proof -+ −
from step_RAG_v[OF vt_s[unfolded s_def], folded s_def]+ −
and nt show ?thesis by (auto intro:next_th_unique)+ −
qed+ −
+ −
lemma subtree_kept: (* ddd *)+ −
assumes "th1 \<notin> {th, th'}"+ −
shows "subtree (RAG s) (Th th1) = subtree (RAG s') (Th th1)" (is "_ = ?R")+ −
proof -+ −
let ?RAG' = "(RAG s' - {(Cs cs, Th th), (Th th', Cs cs)})"+ −
let ?RAG'' = "?RAG' \<union> {(Cs cs, Th th')}"+ −
have "subtree ?RAG' (Th th1) = ?R" + −
proof(rule subset_del_subtree_outside)+ −
show "Range {(Cs cs, Th th), (Th th', Cs cs)} \<inter> subtree (RAG s') (Th th1) = {}"+ −
proof -+ −
have "(Th th) \<notin> subtree (RAG s') (Th th1)"+ −
proof(rule subtree_refute)+ −
show "Th th1 \<notin> ancestors (RAG s') (Th th)"+ −
by (unfold ancestors_th, simp)+ −
next+ −
from assms show "Th th1 \<noteq> Th th" by simp+ −
qed+ −
moreover have "(Cs cs) \<notin> subtree (RAG s') (Th th1)"+ −
proof(rule subtree_refute)+ −
show "Th th1 \<notin> ancestors (RAG s') (Cs cs)"+ −
by (unfold ancestors_cs, insert assms, auto)+ −
qed simp+ −
ultimately have "{Th th, Cs cs} \<inter> subtree (RAG s') (Th th1) = {}" by auto+ −
thus ?thesis by simp+ −
qed+ −
qed+ −
moreover have "subtree ?RAG'' (Th th1) = subtree ?RAG' (Th th1)"+ −
proof(rule subtree_insert_next)+ −
show "Th th' \<notin> subtree (RAG s' - {(Cs cs, Th th), (Th th', Cs cs)}) (Th th1)"+ −
proof(rule subtree_refute)+ −
show "Th th1 \<notin> ancestors (RAG s' - {(Cs cs, Th th), (Th th', Cs cs)}) (Th th')"+ −
(is "_ \<notin> ?R")+ −
proof -+ −
have "?R \<subseteq> ancestors (RAG s') (Th th')" by (rule ancestors_mono, auto)+ −
moreover have "Th th1 \<notin> ..." using ancestors_th' assms by simp+ −
ultimately show ?thesis by auto+ −
qed+ −
next+ −
from assms show "Th th1 \<noteq> Th th'" by simp+ −
qed+ −
qed+ −
ultimately show ?thesis by (unfold RAG_s, simp)+ −
qed+ −
+ −
lemma cp_kept:+ −
assumes "th1 \<notin> {th, th'}"+ −
shows "cp s th1 = cp s' th1"+ −
by (unfold cp_alt_def preced_kept subtree_kept[OF assms], simp)+ −
+ −
end+ −
+ −
locale step_v_cps_nnt = step_v_cps ++ −
assumes nnt: "\<And> th'. (\<not> next_th s' th cs th')"+ −
+ −
context step_v_cps_nnt+ −
begin+ −
+ −
lemma RAG_s: "RAG s = RAG s' - {(Cs cs, Th th)}"+ −
proof -+ −
from nnt and step_RAG_v[OF vt_s[unfolded s_def], folded s_def]+ −
show ?thesis by auto+ −
qed+ −
+ −
lemma subtree_kept:+ −
assumes "th1 \<noteq> th"+ −
shows "subtree (RAG s) (Th th1) = subtree (RAG s') (Th th1)"+ −
proof(unfold RAG_s, rule subset_del_subtree_outside)+ −
show "Range {(Cs cs, Th th)} \<inter> subtree (RAG s') (Th th1) = {}"+ −
proof -+ −
have "(Th th) \<notin> subtree (RAG s') (Th th1)"+ −
proof(rule subtree_refute)+ −
show "Th th1 \<notin> ancestors (RAG s') (Th th)"+ −
by (unfold ancestors_th, simp)+ −
next+ −
from assms show "Th th1 \<noteq> Th th" by simp+ −
qed+ −
thus ?thesis by auto+ −
qed+ −
qed+ −
+ −
lemma cp_kept_1:+ −
assumes "th1 \<noteq> th"+ −
shows "cp s th1 = cp s' th1"+ −
by (unfold cp_alt_def preced_kept subtree_kept[OF assms], simp)+ −
+ −
lemma subtree_cs: "subtree (RAG s') (Cs cs) = {Cs cs}"+ −
proof -+ −
{ fix n+ −
have "(Cs cs) \<notin> ancestors (RAG s') n"+ −
proof+ −
assume "Cs cs \<in> ancestors (RAG s') n"+ −
hence "(n, Cs cs) \<in> (RAG s')^+" by (auto simp:ancestors_def)+ −
from tranclE[OF this] obtain nn where h: "(nn, Cs cs) \<in> RAG s'" by auto+ −
then obtain th' where "nn = Th th'"+ −
by (unfold s_RAG_def, auto)+ −
from h[unfolded this] have "(Th th', Cs cs) \<in> RAG s'" .+ −
from this[unfolded s_RAG_def]+ −
have "waiting (wq s') th' cs" by auto+ −
from this[unfolded cs_waiting_def]+ −
have "1 < length (wq s' cs)"+ −
by (cases "wq s' cs", auto)+ −
from holding_next_thI[OF holding_th this]+ −
obtain th' where "next_th s' th cs th'" by auto+ −
with nnt show False by auto+ −
qed+ −
} note h = this+ −
{ fix n+ −
assume "n \<in> subtree (RAG s') (Cs cs)"+ −
hence "n = (Cs cs)"+ −
by (elim subtreeE, insert h, auto)+ −
} moreover have "(Cs cs) \<in> subtree (RAG s') (Cs cs)"+ −
by (auto simp:subtree_def)+ −
ultimately show ?thesis by auto + −
qed+ −
+ −
lemma subtree_th: + −
"subtree (RAG s) (Th th) = subtree (RAG s') (Th th) - {Cs cs}"+ −
proof(unfold RAG_s, fold subtree_cs, rule vat_s'.rtree_RAG.subtree_del_inside)+ −
from edge_of_th+ −
show "(Cs cs, Th th) \<in> edges_in (RAG s') (Th th)"+ −
by (unfold edges_in_def, auto simp:subtree_def)+ −
qed+ −
+ −
lemma cp_kept_2: + −
shows "cp s th = cp s' th" + −
by (unfold cp_alt_def subtree_th preced_kept, auto)+ −
+ −
lemma eq_cp:+ −
shows "cp s th' = cp s' th'"+ −
using cp_kept_1 cp_kept_2+ −
by (cases "th' = th", auto)+ −
end+ −
+ −
+ −
locale step_P_cps =+ −
fixes s' th cs s + −
defines s_def : "s \<equiv> (P th cs#s')"+ −
assumes vt_s: "vt s"+ −
+ −
sublocale step_P_cps < vat_s : valid_trace "s"+ −
proof+ −
from vt_s show "vt s" .+ −
qed+ −
+ −
section {* The @{term P} operation *}+ −
+ −
sublocale step_P_cps < vat_s' : valid_trace "s'"+ −
proof+ −
from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" .+ −
qed+ −
+ −
context step_P_cps+ −
begin+ −
+ −
lemma readys_th: "th \<in> readys s'"+ −
proof -+ −
from step_back_step [OF vt_s[unfolded s_def]]+ −
have "PIP s' (P th cs)" .+ −
hence "th \<in> runing s'" by (cases, simp)+ −
thus ?thesis by (simp add:readys_def runing_def)+ −
qed+ −
+ −
lemma root_th: "root (RAG s') (Th th)"+ −
using readys_root[OF readys_th] .+ −
+ −
lemma in_no_others_subtree:+ −
assumes "th' \<noteq> th"+ −
shows "Th th \<notin> subtree (RAG s') (Th th')"+ −
proof+ −
assume "Th th \<in> subtree (RAG s') (Th th')"+ −
thus False+ −
proof(cases rule:subtreeE)+ −
case 1+ −
with assms show ?thesis by auto+ −
next+ −
case 2+ −
with root_th show ?thesis by (auto simp:root_def)+ −
qed+ −
qed+ −
+ −
lemma preced_kept: "the_preced s = the_preced s'"+ −
by (auto simp: s_def the_preced_def preced_def)+ −
+ −
end+ −
+ −
locale step_P_cps_ne =step_P_cps ++ −
fixes th'+ −
assumes ne: "wq s' cs \<noteq> []"+ −
defines th'_def: "th' \<equiv> hd (wq s' cs)"+ −
+ −
locale step_P_cps_e =step_P_cps ++ −
assumes ee: "wq s' cs = []"+ −
+ −
context step_P_cps_e+ −
begin+ −
+ −
lemma RAG_s: "RAG s = RAG s' \<union> {(Cs cs, Th th)}"+ −
proof -+ −
from ee and step_RAG_p[OF vt_s[unfolded s_def], folded s_def]+ −
show ?thesis by auto+ −
qed+ −
+ −
lemma subtree_kept:+ −
assumes "th' \<noteq> th"+ −
shows "subtree (RAG s) (Th th') = subtree (RAG s') (Th th')"+ −
proof(unfold RAG_s, rule subtree_insert_next)+ −
from in_no_others_subtree[OF assms] + −
show "Th th \<notin> subtree (RAG s') (Th th')" .+ −
qed+ −
+ −
lemma cp_kept: + −
assumes "th' \<noteq> th"+ −
shows "cp s th' = cp s' th'"+ −
proof -+ −
have "(the_preced s ` {th'a. Th th'a \<in> subtree (RAG s) (Th th')}) =+ −
(the_preced s' ` {th'a. Th th'a \<in> subtree (RAG s') (Th th')})"+ −
by (unfold preced_kept subtree_kept[OF assms], simp)+ −
thus ?thesis by (unfold cp_alt_def, simp)+ −
qed+ −
+ −
end+ −
+ −
context step_P_cps_ne + −
begin+ −
+ −
lemma RAG_s: "RAG s = RAG s' \<union> {(Th th, Cs cs)}"+ −
proof -+ −
from step_RAG_p[OF vt_s[unfolded s_def]] and ne+ −
show ?thesis by (simp add:s_def)+ −
qed+ −
+ −
lemma cs_held: "(Cs cs, Th th') \<in> RAG s'"+ −
proof -+ −
have "(Cs cs, Th th') \<in> hRAG s'"+ −
proof -+ −
from ne+ −
have " holding s' th' cs"+ −
by (unfold th'_def holding_eq cs_holding_def, auto)+ −
thus ?thesis + −
by (unfold hRAG_def, auto)+ −
qed+ −
thus ?thesis by (unfold RAG_split, auto)+ −
qed+ −
+ −
lemma tRAG_s: + −
"tRAG s = tRAG s' \<union> {(Th th, Th th')}"+ −
using RAG_tRAG_transfer[OF RAG_s cs_held] .+ −
+ −
lemma cp_kept:+ −
assumes "Th th'' \<notin> ancestors (tRAG s) (Th th)"+ −
shows "cp s th'' = cp s' th''"+ −
proof -+ −
have h: "subtree (tRAG s) (Th th'') = subtree (tRAG s') (Th th'')"+ −
proof -+ −
have "Th th' \<notin> subtree (tRAG s') (Th th'')"+ −
proof+ −
assume "Th th' \<in> subtree (tRAG s') (Th th'')"+ −
thus False+ −
proof(rule subtreeE)+ −
assume "Th th' = Th th''"+ −
from assms[unfolded tRAG_s ancestors_def, folded this]+ −
show ?thesis by auto+ −
next+ −
assume "Th th'' \<in> ancestors (tRAG s') (Th th')"+ −
moreover have "... \<subseteq> ancestors (tRAG s) (Th th')"+ −
proof(rule ancestors_mono)+ −
show "tRAG s' \<subseteq> tRAG s" by (unfold tRAG_s, auto)+ −
qed + −
ultimately have "Th th'' \<in> ancestors (tRAG s) (Th th')" by auto+ −
moreover have "Th th' \<in> ancestors (tRAG s) (Th th)"+ −
by (unfold tRAG_s, auto simp:ancestors_def)+ −
ultimately have "Th th'' \<in> ancestors (tRAG s) (Th th)"+ −
by (auto simp:ancestors_def)+ −
with assms show ?thesis by auto+ −
qed+ −
qed+ −
from subtree_insert_next[OF this]+ −
have "subtree (tRAG s' \<union> {(Th th, Th th')}) (Th th'') = subtree (tRAG s') (Th th'')" .+ −
from this[folded tRAG_s] show ?thesis .+ −
qed+ −
show ?thesis by (unfold cp_alt_def1 h preced_kept, simp)+ −
qed+ −
+ −
lemma cp_gen_update_stop: (* ddd *)+ −
assumes "u \<in> ancestors (tRAG s) (Th th)"+ −
and "cp_gen s u = cp_gen s' u"+ −
and "y \<in> ancestors (tRAG s) u"+ −
shows "cp_gen s y = cp_gen s' y"+ −
using assms(3)+ −
proof(induct rule:wf_induct[OF vat_s.fsbttRAGs.wf])+ −
case (1 x)+ −
show ?case (is "?L = ?R")+ −
proof -+ −
from tRAG_ancestorsE[OF 1(2)]+ −
obtain th2 where eq_x: "x = Th th2" by blast+ −
from vat_s.cp_gen_rec[OF this]+ −
have "?L = + −
Max ({the_preced s th2} \<union> cp_gen s ` RTree.children (tRAG s) x)" .+ −
also have "... = + −
Max ({the_preced s' th2} \<union> cp_gen s' ` RTree.children (tRAG s') x)"+ −
+ −
proof -+ −
from preced_kept have "the_preced s th2 = the_preced s' th2" by simp+ −
moreover have "cp_gen s ` RTree.children (tRAG s) x =+ −
cp_gen s' ` RTree.children (tRAG s') x"+ −
proof -+ −
have "RTree.children (tRAG s) x = RTree.children (tRAG s') x"+ −
proof(unfold tRAG_s, rule children_union_kept)+ −
have start: "(Th th, Th th') \<in> tRAG s"+ −
by (unfold tRAG_s, auto)+ −
note x_u = 1(2)+ −
show "x \<notin> Range {(Th th, Th th')}"+ −
proof+ −
assume "x \<in> Range {(Th th, Th th')}"+ −
hence eq_x: "x = Th th'" using RangeE by auto+ −
show False+ −
proof(cases rule:vat_s.rtree_s.ancestors_headE[OF assms(1) start])+ −
case 1+ −
from x_u[folded this, unfolded eq_x] vat_s.acyclic_tRAG+ −
show ?thesis by (auto simp:ancestors_def acyclic_def)+ −
next+ −
case 2+ −
with x_u[unfolded eq_x]+ −
have "(Th th', Th th') \<in> (tRAG s)^+" by (auto simp:ancestors_def)+ −
with vat_s.acyclic_tRAG show ?thesis by (auto simp:acyclic_def)+ −
qed+ −
qed+ −
qed+ −
moreover have "cp_gen s ` RTree.children (tRAG s) x =+ −
cp_gen s' ` RTree.children (tRAG s) x" (is "?f ` ?A = ?g ` ?A")+ −
proof(rule f_image_eq)+ −
fix a+ −
assume a_in: "a \<in> ?A"+ −
from 1(2)+ −
show "?f a = ?g a"+ −
proof(cases rule:vat_s.rtree_s.ancestors_childrenE[case_names in_ch out_ch])+ −
case in_ch+ −
show ?thesis+ −
proof(cases "a = u")+ −
case True+ −
from assms(2)[folded this] show ?thesis .+ −
next+ −
case False+ −
have a_not_in: "a \<notin> ancestors (tRAG s) (Th th)"+ −
proof+ −
assume a_in': "a \<in> ancestors (tRAG s) (Th th)"+ −
have "a = u"+ −
proof(rule vat_s.rtree_s.ancestors_children_unique)+ −
from a_in' a_in show "a \<in> ancestors (tRAG s) (Th th) \<inter> + −
RTree.children (tRAG s) x" by auto+ −
next + −
from assms(1) in_ch show "u \<in> ancestors (tRAG s) (Th th) \<inter> + −
RTree.children (tRAG s) x" by auto+ −
qed+ −
with False show False by simp+ −
qed+ −
from a_in obtain th_a where eq_a: "a = Th th_a" + −
by (unfold RTree.children_def tRAG_alt_def, auto)+ −
from cp_kept[OF a_not_in[unfolded eq_a]]+ −
have "cp s th_a = cp s' th_a" .+ −
from this [unfolded cp_gen_def_cond[OF eq_a], folded eq_a]+ −
show ?thesis .+ −
qed+ −
next+ −
case (out_ch z)+ −
hence h: "z \<in> ancestors (tRAG s) u" "z \<in> RTree.children (tRAG s) x" by auto+ −
show ?thesis+ −
proof(cases "a = z")+ −
case True+ −
from h(2) have zx_in: "(z, x) \<in> (tRAG s)" by (auto simp:RTree.children_def)+ −
from 1(1)[rule_format, OF this h(1)]+ −
have eq_cp_gen: "cp_gen s z = cp_gen s' z" .+ −
with True show ?thesis by metis+ −
next+ −
case False+ −
from a_in obtain th_a where eq_a: "a = Th th_a"+ −
by (auto simp:RTree.children_def tRAG_alt_def)+ −
have "a \<notin> ancestors (tRAG s) (Th th)"+ −
proof+ −
assume a_in': "a \<in> ancestors (tRAG s) (Th th)"+ −
have "a = z"+ −
proof(rule vat_s.rtree_s.ancestors_children_unique)+ −
from assms(1) h(1) have "z \<in> ancestors (tRAG s) (Th th)"+ −
by (auto simp:ancestors_def)+ −
with h(2) show " z \<in> ancestors (tRAG s) (Th th) \<inter> + −
RTree.children (tRAG s) x" by auto+ −
next+ −
from a_in a_in'+ −
show "a \<in> ancestors (tRAG s) (Th th) \<inter> RTree.children (tRAG s) x"+ −
by auto+ −
qed+ −
with False show False by auto+ −
qed+ −
from cp_kept[OF this[unfolded eq_a]]+ −
have "cp s th_a = cp s' th_a" .+ −
from this[unfolded cp_gen_def_cond[OF eq_a], folded eq_a]+ −
show ?thesis .+ −
qed+ −
qed+ −
qed+ −
ultimately show ?thesis by metis+ −
qed+ −
ultimately show ?thesis by simp+ −
qed+ −
also have "... = ?R"+ −
by (fold vat_s'.cp_gen_rec[OF eq_x], simp)+ −
finally show ?thesis .+ −
qed+ −
qed+ −
+ −
lemma cp_up:+ −
assumes "(Th th') \<in> ancestors (tRAG s) (Th th)"+ −
and "cp s th' = cp s' th'"+ −
and "(Th th'') \<in> ancestors (tRAG s) (Th th')"+ −
shows "cp s th'' = cp s' th''"+ −
proof -+ −
have "cp_gen s (Th th'') = cp_gen s' (Th th'')"+ −
proof(rule cp_gen_update_stop[OF assms(1) _ assms(3)])+ −
from assms(2) cp_gen_def_cond[OF refl[of "Th th'"]]+ −
show "cp_gen s (Th th') = cp_gen s' (Th th')" by metis+ −
qed+ −
with cp_gen_def_cond[OF refl[of "Th th''"]]+ −
show ?thesis by metis+ −
qed+ −
+ −
end+ −
+ −
section {* The @{term Create} operation *}+ −
+ −
locale step_create_cps =+ −
fixes s' th prio s + −
defines s_def : "s \<equiv> (Create th prio#s')"+ −
assumes vt_s: "vt s"+ −
+ −
sublocale step_create_cps < vat_s: valid_trace "s"+ −
by (unfold_locales, insert vt_s, simp)+ −
+ −
sublocale step_create_cps < vat_s': valid_trace "s'"+ −
by (unfold_locales, insert step_back_vt[OF vt_s[unfolded s_def]], simp)+ −
+ −
context step_create_cps+ −
begin+ −
+ −
lemma RAG_kept: "RAG s = RAG s'"+ −
by (unfold s_def RAG_create_unchanged, auto)+ −
+ −
lemma tRAG_kept: "tRAG s = tRAG s'"+ −
by (unfold tRAG_alt_def RAG_kept, auto)+ −
+ −
lemma preced_kept:+ −
assumes "th' \<noteq> th"+ −
shows "the_preced s th' = the_preced s' th'"+ −
by (unfold s_def the_preced_def preced_def, insert assms, auto)+ −
+ −
lemma th_not_in: "Th th \<notin> Field (tRAG s')"+ −
proof -+ −
from vt_s[unfolded s_def]+ −
have "PIP s' (Create th prio)" by (cases, simp)+ −
hence "th \<notin> threads s'" by(cases, simp)+ −
from vat_s'.not_in_thread_isolated[OF this]+ −
have "Th th \<notin> Field (RAG s')" .+ −
with tRAG_Field show ?thesis by auto+ −
qed+ −
+ −
lemma eq_cp:+ −
assumes neq_th: "th' \<noteq> th"+ −
shows "cp s th' = cp s' th'"+ −
proof -+ −
have "(the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th') =+ −
(the_preced s' \<circ> the_thread) ` subtree (tRAG s') (Th th')"+ −
proof(unfold tRAG_kept, rule f_image_eq)+ −
fix a+ −
assume a_in: "a \<in> subtree (tRAG s') (Th th')"+ −
then obtain th_a where eq_a: "a = Th th_a" + −
proof(cases rule:subtreeE)+ −
case 2+ −
from ancestors_Field[OF 2(2)]+ −
and that show ?thesis by (unfold tRAG_alt_def, auto)+ −
qed auto+ −
have neq_th_a: "th_a \<noteq> th"+ −
proof -+ −
have "(Th th) \<notin> subtree (tRAG s') (Th th')"+ −
proof+ −
assume "Th th \<in> subtree (tRAG s') (Th th')"+ −
thus False+ −
proof(cases rule:subtreeE)+ −
case 2+ −
from ancestors_Field[OF this(2)]+ −
and th_not_in[unfolded Field_def]+ −
show ?thesis by auto+ −
qed (insert assms, auto)+ −
qed+ −
with a_in[unfolded eq_a] show ?thesis by auto+ −
qed+ −
from preced_kept[OF this]+ −
show "(the_preced s \<circ> the_thread) a = (the_preced s' \<circ> the_thread) a"+ −
by (unfold eq_a, simp)+ −
qed+ −
thus ?thesis by (unfold cp_alt_def1, simp)+ −
qed+ −
+ −
lemma children_of_th: "RTree.children (tRAG s) (Th th) = {}"+ −
proof -+ −
{ fix a+ −
assume "a \<in> RTree.children (tRAG s) (Th th)"+ −
hence "(a, Th th) \<in> tRAG s" by (auto simp:RTree.children_def)+ −
with th_not_in have False + −
by (unfold Field_def tRAG_kept, auto)+ −
} thus ?thesis by auto+ −
qed+ −
+ −
lemma eq_cp_th: "cp s th = preced th s"+ −
by (unfold vat_s.cp_rec children_of_th, simp add:the_preced_def)+ −
+ −
end+ −
+ −
locale step_exit_cps =+ −
fixes s' th prio s + −
defines s_def : "s \<equiv> Exit th # s'"+ −
assumes vt_s: "vt s"+ −
+ −
sublocale step_exit_cps < vat_s: valid_trace "s"+ −
by (unfold_locales, insert vt_s, simp)+ −
+ −
sublocale step_exit_cps < vat_s': valid_trace "s'"+ −
by (unfold_locales, insert step_back_vt[OF vt_s[unfolded s_def]], simp)+ −
+ −
context step_exit_cps+ −
begin+ −
+ −
lemma preced_kept:+ −
assumes "th' \<noteq> th"+ −
shows "the_preced s th' = the_preced s' th'"+ −
by (unfold s_def the_preced_def preced_def, insert assms, auto)+ −
+ −
lemma RAG_kept: "RAG s = RAG s'"+ −
by (unfold s_def RAG_exit_unchanged, auto)+ −
+ −
lemma tRAG_kept: "tRAG s = tRAG s'"+ −
by (unfold tRAG_alt_def RAG_kept, auto)+ −
+ −
lemma th_ready: "th \<in> readys s'"+ −
proof -+ −
from vt_s[unfolded s_def]+ −
have "PIP s' (Exit th)" by (cases, simp)+ −
hence h: "th \<in> runing s' \<and> holdents s' th = {}" by (cases, metis)+ −
thus ?thesis by (unfold runing_def, auto)+ −
qed+ −
+ −
lemma th_holdents: "holdents s' th = {}"+ −
proof -+ −
from vt_s[unfolded s_def]+ −
have "PIP s' (Exit th)" by (cases, simp)+ −
thus ?thesis by (cases, metis)+ −
qed+ −
+ −
lemma th_RAG: "Th th \<notin> Field (RAG s')"+ −
proof -+ −
have "Th th \<notin> Range (RAG s')"+ −
proof+ −
assume "Th th \<in> Range (RAG s')"+ −
then obtain cs where "holding (wq s') th cs"+ −
by (unfold Range_iff s_RAG_def, auto)+ −
with th_holdents[unfolded holdents_def]+ −
show False by (unfold eq_holding, auto)+ −
qed+ −
moreover have "Th th \<notin> Domain (RAG s')"+ −
proof+ −
assume "Th th \<in> Domain (RAG s')"+ −
then obtain cs where "waiting (wq s') th cs"+ −
by (unfold Domain_iff s_RAG_def, auto)+ −
with th_ready show False by (unfold readys_def eq_waiting, auto)+ −
qed+ −
ultimately show ?thesis by (auto simp:Field_def)+ −
qed+ −
+ −
lemma th_tRAG: "(Th th) \<notin> Field (tRAG s')"+ −
using th_RAG tRAG_Field[of s'] by auto+ −
+ −
lemma eq_cp:+ −
assumes neq_th: "th' \<noteq> th"+ −
shows "cp s th' = cp s' th'"+ −
proof -+ −
have "(the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th') =+ −
(the_preced s' \<circ> the_thread) ` subtree (tRAG s') (Th th')"+ −
proof(unfold tRAG_kept, rule f_image_eq)+ −
fix a+ −
assume a_in: "a \<in> subtree (tRAG s') (Th th')"+ −
then obtain th_a where eq_a: "a = Th th_a" + −
proof(cases rule:subtreeE)+ −
case 2+ −
from ancestors_Field[OF 2(2)]+ −
and that show ?thesis by (unfold tRAG_alt_def, auto)+ −
qed auto+ −
have neq_th_a: "th_a \<noteq> th"+ −
proof -+ −
from vat_s'.readys_in_no_subtree[OF th_ready assms]+ −
have "(Th th) \<notin> subtree (RAG s') (Th th')" .+ −
with tRAG_subtree_RAG[of s' "Th th'"]+ −
have "(Th th) \<notin> subtree (tRAG s') (Th th')" by auto+ −
with a_in[unfolded eq_a] show ?thesis by auto+ −
qed+ −
from preced_kept[OF this]+ −
show "(the_preced s \<circ> the_thread) a = (the_preced s' \<circ> the_thread) a"+ −
by (unfold eq_a, simp)+ −
qed+ −
thus ?thesis by (unfold cp_alt_def1, simp)+ −
qed+ −
+ −
end+ −
+ −
end+ −
+ −